
Emerging Topics in Statistics and Biostatistics 

Design and Analysis 
of Subgroups with 
Biopharmaceutical 
Applications

Naitee Ting
Joseph C. Cappelleri
Shuyen Ho
(Din) Ding-Geng Chen Editors



Emerging Topics in Statistics and Biostatistics

Series Editor
(Din) Ding-Geng Chen, University of North Carolina, Chapel Hill, NC, USA

Editorial Board Members
Andriëtte Bekker, University of Pretoria, Pretoria, South Africa
Carlos A. Coelho, Caparica, Portugal
Maxim Finkelstein, University of the Free State, Bloemfontein, South Africa
Jeffrey R. Wilson, Arizona State University, Tempe, AZ, USA



More information about this series at http://www.springer.com/series/16213

http://www.springer.com/series/16213


Naitee Ting • Joseph C. Cappelleri • Shuyen Ho
(Din) Ding-Geng Chen
Editors

Design and Analysis
of Subgroups with
Biopharmaceutical
Applications



Editors
Naitee Ting
Biostatistics & Data Sciences
Boehringer Ingelheim Corporation
Ridgefield, CT, USA

Shuyen Ho
UCB Biosciences Inc.
Raleigh, NC, USA

Joseph C. Cappelleri
Pfizer Inc.
Groton, CT, USA

(Din) Ding-Geng Chen
School of Social Work
University of North Carolina
Chapel Hill, NC, USA

ISSN 2524-7735 ISSN 2524-7743 (electronic)
Emerging Topics in Statistics and Biostatistics
ISBN 978-3-030-40104-7 ISBN 978-3-030-40105-4 (eBook)
https://doi.org/10.1007/978-3-030-40105-4

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-40105-4


Preface

Clinical development of new drugs started in the 1960s, and it has been over half
a century up to the present. For the last three decades of the twentieth century
(around 1970s to 1990s), most of the new drugs approved by the U.S. Food and
Drug Administration (FDA) were developed to treat chronic conditions and the
best drugs were those for which “one size fits all,” with one drug for the entire
patient population under the given diagnosis. In other words, for a given chronic
condition such as high blood pressure, chronic pain, or depression, the ideal market
leader would be one drug with a specific dose, once a day, and that applied to all
patients with the indicated condition. Such a “one size fits all” drug would be easy
to prescribe, easy to use, and tend to gain a major market share. However, with
movement into the twenty-first century, many drugs have become available to treat
most of the chronic conditions. The question regarding medical intervention has
changed from “Is there a drug to treat this condition?” to “Which of the available
drugs is best for this particular patient?”

Subgroup analysis of clinical trial data has been a common practice starting from
the 1970s. Most of the clinical questions are about which subgroups of patients
benefit most from the study drug or, conversely, which subgroups are most likely to
experience adverse events. Another objective would be to see whether the treatment
benefit could be consistent across all subgroups. Before the turn of the twenty-first
century, the objectives of subgroup analysis were mostly about how the subgroups
of patients respond to the study drug relative to control. Subgroup analyses were
performed largely using pre-marketing clinical trials, and stakeholders were mainly
sponsors (drug manufacturers) and regulatory agencies.

Nevertheless, in recent years, with the demand of personalized medicine or
precision therapy, the objectives of subgroup identification and subgroup analysis
turn into, for the given diagnosis and treatment indication, which drug is best for
this pecific patient. In this new paradigm, subgroup analyses are performed on
both pre-marketing studies and post-marketing studies (either based on a single
clinical study, combined studies, or using meta-analysis). In addition to sponsors and
regulatory agencies, other stakeholders such as payers (e.g., insurance companies,
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vi Preface

Medicare), prescribing physicians, patients, and patient advocacy groups are all
paying more attention to subgroups. One of the newer topics is about subgroup
identification with the purpose of identifying the subgroups of interest.

Generally speaking, subgroup analysis is an exploratory practice—these analyses
are performed post hoc and are data-driven. Results obtained from such analyses
should not serve for confirmatory purposes, nor can they be the basis of drug
approval or label change. If the benefit of a particular subgroup is considered before
the clinical trial started, and the sponsor hopes to develop the study drug focus on
this specific patient subpopulation, then, in order for the drug to receive approval
within this subgroup, the pivotal study needs to be designed with this objective.

Given the history of drug development, the history of subgroup analysis, and the
ensuing challenges in dealing with clinical trial design considerations, subgroup
identification, as well as analysis, there is a need for a book devoted entirely
to the design and analysis of subgroups with biopharmaceutical applications.
We know of no other book dedicated solely to this important topic. In order
to cover all these issues, this book is divided into three major parts—Part I:
Subgroups in Clinical Trial Design and Analysis; Part II: Subgroup Identification
and Personalized Medicine; and Part III: General Issues About Subgroup Analysis,
Including Regulatory Considerations.

There are 18 chapters in this book—four chapters to cover the design and analytic
considerations, nine chapters to discuss issues related to subgroup identification, and
five chapters to deal with general topics about subgroup analysis. Contributors of
this book are expert statisticians or methodological researchers with considerable
experiences on the topic of subgroups; they are from academia, industry, and
regulatory agencies. Examples are used, when possible, throughout the book; some
are real-world applications, and others are simulated data sets. The computer
code for these real-world or simulated examples is mostly provided in the book.
If software code is not included in certain chapters, readers are encouraged to
communicate with the chapter authors directly or go to their designated websites.

Part I of this book focuses on issues related to clinical trial designs and analysis.
Part I includes four chapters. Chapter 1 entitled “Issues Related to Subgroup
Analyses and Use of Intensive Stratification” discusses difficulties in interpretation
of subgroup results, potential sources of confounding, and uncertainty. This chapter
suggests the use of intensive stratification in a study design to help improve the qual-
ity and credibility of subgroup analyses. Chapter 2 entitled “Biomarker-Targeted
Confirmatory Trials” reviews the alpha protection in treatment comparisons when
either the entire population is used or only the marker-positive subpopulation is
used. It covers various designs ranging from enrichment design to Enrichment
versus All-Comers Designs.

Chapter 3 entitled “Data-Driven and Confirmatory Subgroup Analysis in Clinical
Trials” covers the important topics in subgroups during drug development and
approval. This chapter has a wide scope and touches on the key thinking from both
regulatory and sponsor perspectives. It highlights not only design considerations
but also data analysis and interpretation. Chapter 4 entitled “Considerations on
Subgroup Analysis in Design and Analysis of Multi-Regional Clinical Trials” is

http://dx.doi.org/10.1007/978-3-030-40105-4_1
http://dx.doi.org/10.1007/978-3-030-40105-4_2
http://dx.doi.org/10.1007/978-3-030-40105-4_3
http://dx.doi.org/10.1007/978-3-030-40105-4_4
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about a recent trend in drug development: multi-regional clinical trial (MRCT).
By the nature of MRCT, each region is a subgroup and sample sizes are not only
considered from the overall study; they may often be dictated by local regulatory
agencies. There are also challenges in data analysis, because regulatory decision of
each country (or region) can be based on not only the entire data set but also the
subgroup of patients recruited from a particular jurisdiction.

Part II deals with subgroup identification and personalized medicine, with nine
chapters. Chapter 5 entitled “Practical Subgroup Identification Strategies in Late-
Stage Clinical Trials” suggests some ideas to find subgroups from a failed late-stage
trial when the reason of failure is lack of statistical significance. It presents a
comprehensive overview of relevant considerations related to the selection of
clinically candidate biomarkers, choice of statistical models, including the role of
covariate adjustment in subgroup investigation, and selection of subgroup search
parameters.

Chapter 6 entitled “The GUIDE Approach to Subgroup Identification” covers
GUIDE, a multi-purpose algorithm for classification and regression tree construc-
tion with special capabilities for identifying subgroups with differential treatment
effects. It is unique among subgroup methods in having all the following features:
unbiased split variable selection, approximately unbiased estimation of subgroup
treatment effects, treatments with two or more levels, allowance for linear effects
of prognostic variables within subgroups, and automatic handling of missing
predictor variable values without imputation in piecewise-constant models. One
of the applications of GUIDE can be found in the next chapter (Chap. 7) entitled
“A Novel Method of Subgroup Identification by Combining Virtual Twins with
GUIDE (VG) for Development of Precision Medicines.” In this chapter, the authors
propose the VG method, which combines the idea of an individual treatment effect
(ITE) from Virtual Twins with the unbiased variable selection and cutoff value
determination algorithm from GUIDE. Simulation results show the VG method
has less variable selection bias than Virtual Twins and higher statistical power than
GUIDE Interaction in the presence of prognostic variables with strong treatment
effects.

In Chap. 8 entitled “Subgroup Identification for Tailored Therapies: Methods and
Consistent Evaluation,” a number of methods (including SIDES, VT, and GUIDE)
for identifying subgroups with enhanced treatment response are covered, and the
authors expect many more to be developed in the coming years. In order for
development programs for tailored therapeutics to be successful, it is imperative
to determine the best method(s) for biomarker and subgroup identification to be
applied in practice. Furthermore, it is expected that no single method can be optimal
across all scenarios, so fully characterizing the properties of each methodology is of
utmost importance.

Chapter 9 covers “A New Paradigm for Subset Analysis in Randomized Clinical
Trials.” The general subset identification methods are based on multiple hypothesis
testing and using resubstitution estimates of treatment effect that are known to be
highly optimistically biased. In this chapter, the authors describe a new paradigm for

http://dx.doi.org/10.1007/978-3-030-40105-4_5
http://dx.doi.org/10.1007/978-3-030-40105-4_6
http://dx.doi.org/10.1007/978-3-030-40105-4_7
http://dx.doi.org/10.1007/978-3-030-40105-4_8
http://dx.doi.org/10.1007/978-3-030-40105-4_9
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subset analysis. Rather than being based on multiple hypothesis testing, it is based
on training a single predictive classifier and provides an almost unbiased estimate
of treatment effect for the selected subset.

Chapter 10 is “Logical Inference on Treatment Efficacy When Subgroups Exist.”
The authors start with introducing the fundamental statistical considerations in the
inference process when subgroups exist, followed by proposing suitable efficacy
measures for different clinical outcomes and establishing a general logical estima-
tion principle. Finally, as a step forward in patient targeting, the authors present a
simultaneous inference procedure based on confidence intervals to demonstrate how
treatment efficacy in subgroups and mixture of subgroups can be logically inferred.
Chapter 11 entitled “Subgroup Analysis with Partial Linear Regression Model”
recognizes that, in practice, some covariates are known to affect the response non-
linearly, which makes a linear model not appropriate. To address this issue, the
authors used a partial linear model in which the effect of some specific covariates is a
non-linear monotone function, along with a linear part for the rest of the covariates.
This approach makes the model not only more flexible than the parametric linear
model but also more interpretable and efficient than the full nonparametric model.
Illustrations are provided with both simulated data and real-life data.

Part II of this book continues with Chap. 12 entitled “Exploratory Subgroup Iden-
tification for Biopharmaceutical Development.” This chapter provides a comprehen-
sive review of general considerations in exploratory subgroup analysis, investigates
popular statistical learning algorithms for biomarker signature development, and
proposes statistical principles for the subgroup performance assessment. Chapter 13
covers “Statistical Learning Methods for Optimizing Dynamic Treatment Regimes
in Subgroup Identification.” It discusses the many statistical learning methods
that have been developed to optimize multistage dynamic treatment regimens
(DTRs) and identify subgroups that most beneficial from DTRs using data from
sequential multiple assignment randomized trials (SMARTs) and for observational
studies. These methods include regression-based Q-learning and classification-
based outcome-weighted learning. For the latter, a variety of loss functions can be
considered for classification, such as hinge loss, ramp loss, binomial deviance loss,
and square loss. Furthermore, data augmentation can be used to enhance the learning
performance.

Part III of the book covers some general issues about subgroup analysis, includ-
ing some regulatory considerations. Chapter 14 entitled “Subgroups in Design and
Analysis of Clinical Trials, General Considerations” is contributed by colleagues
from FDA. This chapter addresses three topics in subgroup analysis in confirmative
clinical trials: (i) general issues in subgroup analysis as part of the overall evaluation
of a clinical trial, (ii) trial design considerations to establish treatment efficacy
in specific subgroup of patients, and (iii) Bayesian subgroup analysis. Chapter
15 entitled “Subgroup Analysis: A View from Industry” discusses concerns in
design and analysis of clinical trials with subgroup considerations. When planning
and designing confirmatory trials of new medicines, discussion and agreement
with regulatory and reimbursement authorities on the population is exceptionally

http://dx.doi.org/10.1007/978-3-030-40105-4_10
http://dx.doi.org/10.1007/978-3-030-40105-4_11
http://dx.doi.org/10.1007/978-3-030-40105-4_12
http://dx.doi.org/10.1007/978-3-030-40105-4_13
http://dx.doi.org/10.1007/978-3-030-40105-4_14
http://dx.doi.org/10.1007/978-3-030-40105-4_15
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valuable. Pre-identification on a small number of important biologically plausible
subgroups which require exploration is helpful for interpretation.

Chapter 16 is “Subgroup Analysis from Bayesian Perspectives.” This chapter
examines subgroup identification and subgroup analysis from a Bayesian point of
view. Identifying the subpopulation structures, along with the tailored treatments,
for all groups plays a critical role for assigning the best available treatment to an
individual patient. Subgroup analysis, a key component in personalized medicine,
has become increasingly important over the past decade. Besides frequentist
methods, there is a spectrum of methods developed from Bayesian perspectives to
identify subgroups. In this chapter, the authors provide a comprehensive overview
of Bayesian methods and discuss their properties. They further examine empirical
performance of the two Bayesian methods via simulation studies and a real data
analysis.

Subgroup analysis does not have to be based on a single clinical trial. Analysis
can be performed on a combination of studies or can also be performed using meta-
analysis. The last two chapters address this topic of meta-analysis of subgroups.
Chapter 17 is “Power of Statistical Tests for Subgroup Analysis in Meta-Analysis.”
Typically, clinical trials of a new treatment also explore whether the treatment effect
differs in subgroups of patients or subgroups of trials. This chapter discusses the
power of statistical tests for subgroup analysis in order to help in both the planning
and interpretation of subgroup tests in a meta-analysis. Chapter 18 is “Heterogeneity
and Subgroup Analysis in Network Meta-Analysis.” When treatment comparisons
involve more than two interventions, the evidence base consists of multiple random-
ized clinical trials where each of the available studies involves a comparison on a
subset of all the competing interventions of interest. If each of these trials has at
least one intervention in common with another trial, such that the evidence base can
be represented with one connected network, a network meta-analysis (NMA) can
provide relative treatment effects between all competing interventions of interest.
This chapter discusses subgroup analysis under NMA.

The entire content of this book is intended solely and strictly for educational
and pedagogical purposes. The material herein expresses the views of the chapter
authors and does not in any way reflect the views of the co-editors, their employers,
or any other entity.

The co-editors are deeply grateful to those who have supported in the process
of creating this book. We thank all the contributing authors to this book for
their enthusiastic involvements and their kindness in sharing their professional
knowledge and expertise. Our sincere gratitude goes to all the chapter reviewers for
their expert reviews of the book chapters, which lead to a substantial improvement
in the quality of this book. The co-editors thank all the reviewers for providing
thoughtful and in-depth evaluations of the chapters contained in this book. We
gratefully acknowledge the professional support of Ms. Laura Aileen Briskman
from Springer who made the publication of this book a reality. The co-editors would
also like to thank the support and encouragement from the editors of ICSA Book
Series in Statistics, Professors Jiahua Chen and (Din) Ding-Geng Chen.

http://dx.doi.org/10.1007/978-3-030-40105-4_16
http://dx.doi.org/10.1007/978-3-030-40105-4_17
http://dx.doi.org/10.1007/978-3-030-40105-4_18
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The co-editors welcome readers’ comments, including notes on typos or other
errors, and look forward to receiving suggestions for improvements to future
editions. Please send comments and suggestions to any of the co-editors.

Ridgefield, CT, USA Naitee Ting
Groton, CT, USA Joseph C. Cappelleri
Raleigh, NC, USA Shuyen Ho
Chapel Hill, NC, USA (Din) Ding-Geng Chen
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Subgroups in Clinical Trial Design
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Chapter 1
Issues Related to Subgroup Analyses
and Use of Intensive Stratification

Lu Cui, Tu Xu, and Lanju Zhang

Abstract After the completion of a clinical study for the drug efficacy and safety,
subgroup analyses are typically conducted. The analyses may yield supportive
information for the main finding based on the overall population, or generate new
hypotheses on the drug effect for further investigation. Although there are valid
reasons to perform subgroup analyses, the warning has been given to caution the
interpretation of subgroup results. There is a general doubt on the believability
of subgroup analysis because of the potential confounding and uncertainty related
to subgroup findings which could be anti-intuitive, inconsistent, unexpected, or
unexplainable. The present work is to discuss potential sources of confounding in
subgroup analyses which may bias interpretations and lead to erroneous claims.
Solutions to the problem are discussed. A special attention is paid to the use of
the intensive randomization stratification to improve the quality and believability of
subgroup analyses.

1.1 Introduction

Subgroup analyses are often performed in clinical studies. The results of subgroup
analyses can be answers to specific scientific questions or for hypothesis generations
on the treatment effects in special patient populations. A recent survey of 97
clinical trials reveals that 59 studies or 61% of them employed subgroup analyses
(Wang et al. 2007a, b). The new initiative on precision medicine announced by
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President Obama (Ashley 2015) further highlights the need and effort for more
effective medical treatment via a better targeted patient population or a subgroup
of patients. With the objective of the precision medicine, the quality of analysis
of subgroup data becomes critically important. The guidance for conducting and
interpreting subgroup analyses has been issued by European Medicine Agency and
commented in other regulatory documents, for example, the ICH Guidance for
Industry E9: Statistical Principles for Clinical Trials and the FDA Guidance for
Industry: Enrichment Strategies for Clinical Trials to Support Approval of Human
Drugs and Biological Products.

Despite the popularity of subgroup analyses, results from subgroup analyses
have traditionally been viewed as suspicious and unreliable (Sleight 2000). This
is because, if an analysis is handled improperly, an unexpected or inconsistent
subgroup outcome can occur and the result can be hard to interpret and potentially
misleading. Consequently, the believability of the subgroup analysis result suffers
and an extra caution on interpreting the subgroup finding is warranted (Sun et al.
2010, 2012). There have been many discussions in the literature about issues related
to subgroup analyses as given in the references.

Example 1.1 The most well-known example of issues of subgroup analysis is the
result of retrospective analysis of the data of ISIS-2 trial (ISIS-2 1988) by patients’
astrological star signs (Sleight 2000; Peto 2011). The trial (n = 17,187) was to
investigate effectiveness of aspirin treatment as compared to placebo in reduction
of mortality in patients with acute myocardial infarction. The result indicated a
highly significant treatment difference in one month mortality rate in the overall
population (p < 0.000001). The numbers of deaths were 804 (9.4%) in the aspirin
group and 1016 (11.8%) in placebo, respectively. The observed treatment difference,
however, diminished in the subgroup of patients whose astrological birth signs are
Libra or Gemini. With 150 deaths in the aspirin group and 147 deaths in placebo,
the treatment difference was not statistically significant. There was no scientific
explanation to support this insignificant subgroup finding.

Example 1.2 European Carotid Surgery Trial (European Trialists 1998) was a
large randomized controlled study (N = 3024) to assess the benefit of carotid
endarterectomy vs. control without surgery in patients with recently symptomatic
carotid stenosis. Eligible subjects had experienced, in the previous 6 months, one
or more carotid-territory ischaemic events in the brain or eye, which were either
transient (symptoms lasting minutes, hours, or days) or permanent but did not
cause any serious disability. The trial allocated subjects to the surgical group and
control at 3:2 randomization ratio. The results of the trial showed that the treatment
difference between the surgical and control groups in the overall population was
not statistically significant. There were a total of 202 events out of 1807 subjects
(11.2%) in the surgical group and 136 events out of 1211 subjects (11.2%) in
the control group (European Trialists 1998). While the subjects were arbitrarily
grouped by their birth month into three subgroups: birth date between May and
August, September and December, and January and April, no treatment difference,
again, was detected (Rothwell 2005) in these subgroups. While further grouping
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the subjects according to their birth month plus whether they had ≥70% stenosis at
the baseline, significant subgroup differences were found. In subjects born between
May and August and with ≥70% stenosis, the surgical group performed much
better than the control (13/168 vs. 32/105) with statistical significance at α = 0.05,
moderately better than the control (12/142 vs. 14/73) in subjects born between
September and December, and almost equally (18/137 vs. 12/96) in subjects born
between January and April. Such a trend was reversed in subjects with <70%
stenosis. The surgical group performed much worse than the control (51/454 vs.
13/299) with statistical significance in subjects born between May and August,
moderately worse (53/409 vs. 25/292) in subjects born between September and
December, and almost equally (55/489 vs. 40/343) in subjects born between January
and April.

Example 1.3 Bitopertin is a potent and selective GlyT1 inhibitor. With positive pre-
clinical data, a placebo-controlled, double blinded proof-of-concept phase 2 study
(Umbricht et al. 2014) was conducted to assess whether bitopertin could improve
negative symptoms of schizophrenia. A total of N = 323 subjects were randomized
at 1:1:1:1 ratio to receive placebo, 10 mg, 30 mg, or 60 mg of bitopertin once daily,
respectively, for 8 weeks plus a 4-week follow-up. The primary efficacy endpoint
was change in PANSS-NSFS score from baseline, and the secondary efficacy
endpoints were the CGI-I-N score and percentage of responders. The reported trial
results were based on per-protocol (PP) patient population. This outcome dependent
sub-population consisted of N = 231 subjects or 72% all randomized subjects. The
PP analyses indicated a significant difference in mean reduction of PANSS-NSFS
from baseline at Week 8 between PBO and 10 mg (p = 0.049) and 30 mg (p = 0.03)
dose groups of bitopertin. Statistically significant treatment difference in CGI-I-
N score was also observed between PBO and 10 mg dose group. The seemingly
positive PP analysis results led to three large phase III confirmatory studies:
SunLyte, DayLyte, and FlashLyte. All three phase III studies later failed despite
significantly increased sample sizes and treatment durations. Study SunLyte was
declared futile before the patient enrollment completion. Study DayLyte (N = 621)
and Study FlashLyte (N = 594) failed to demonstrate a treatment benefit on the
primary efficacy endpoint, change from baseline in PANSS-NSFS score at Week 24.
In the two studies, the p-values for comparison of an active dose with PBO ranged
from p = 0.32 to p = 0.88. Viewing the PP analysis with 72% of the total population
of the phase 2 study as a subgroup analysis, unlike the previous two examples with
internal inconsistency of the subgroup findings, this example showed an across study
inconsistency. The results of all three larger phase 3 studies were completely in the
opposite direction of the significant PP analysis result of the phase 2 study.

The above examples from real clinical trials illustrate uncertainty of sub-
group outcomes and difficulties in interpretation because of potential confounding
introduced from arbitrarily subdividing an overall population and intentionally or
unintentionally looking for eye-catching results after multiple subgroup analyses are
performed. In the following, we will briefly touch upon the statistical issues related
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to the interpretation of subgroup analysis results, and then focus on the application
of stratified randomization to improve the quality of subgroup analyses.

1.2 Issues in Interpreting Subgroup Data

Potential confounding factors in subgroup analyses have been well recognized. Cui
et al. (2002) summarized some common confounding factors into several categories.
The word “confounding” here is used in a relaxed sense to mean sources for
potential confusions and misinterpretations in subgroup analyses, likely leading to
incorrect claims including biased estimates of treatment effects and false positive or
negative conclusions.

1.2.1 Confounding Due to Sampling Error

Just splitting an overall population into two subpopulations may lead to redistribu-
tion of the outcomes between the treatment groups. For example, while there is a
treatment difference in the overall population, the treatment effect in the resulted
subgroups may still be seen but the effect size can be smaller than the overall effect
size in one subgroup and larger in the complement subgroup. The reversal can also
be true. While there is no treatment effect presented and the treatment response is
equal in the two treatment groups, splitting the overall population, which is easily
uneven, may result in one subpopulation with the outcome in favor of the testing arm
and the other subpopulation with the outcome in favor of the control arm with high
likelihood. Such a forced change of the outcome distribution between the treatment
groups can be viewed as a sampling error and the confounding associated, if any, as
confounding due to sampling error.

Based on our experience, inconsistency in subgroup outcomes due to splitting
of a parent population tends to be numerical but can be nominally statistically
significant from time to time. In previous Example 1.1, arbitrarily grouping patients
according to their astrology birth signs in a post-hoc fashion may introduce the
confounding due to sampling error. Although it is hard to prove, such confounding
is a likely source of the unexplainable and unexpected finding in patients with the
birth signs Libra or Gemini. Similarly, such confounding is a likely source of the
inconsistent and contradicting subgroup findings in Example 1.2 while the post-
hoc splitting the patient populations continues. Statisticians should always be aware
of the issue, and be cautious in interpreting numerical difference between treatment
groups in subgroup analyses while there is no explanation of any other kinds. This is
particularly true while there is no overall treatment effect but the effects in opposite
directions are observed in a subgroup and its complement.
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1.2.2 Confounding Due to Repeated Hypothesis Testing

While a hypothesis testing is performed in a subgroup, just by chance, a false
positive outcome may arise. The probability of the false positive outcome or the type
I error rate often is controlled at the level of α = 0.05. While the same hypothesis
is repeatedly tested in multiple subgroups, the chance of a false positive claim in at
least one subgroup is increased. The more subgroups are tested, the higher chance
for at least one false positive outcome in a subgroup is. The direction of the impact
of the confounding due to repeated hypothesis testing across several subgroups is
clear, i.e. increasing type I error rate.

In general, the inflation of type I error rate from multiple testing can be
effectively controlled using multiple testing procedures. For example, if the number
of subgroups to be tested is specified upfront in the protocol and the total number
of subgroups analyzed is known, say, M, the usual Bonferroni test can be used
by setting the statistical significance level as α/M for each subgroup analysis. The
overall type I error rate for the claim of drug effectiveness in at least one subgroup
is controlled under α. More sophisticated and efficient multiple testing methods can
be used to analyze multiple subgroups depending on how the claims will be made.
Good references on multiple testing methods can be found in Dmitrienko (2009).

In Example 1.2, multiple subgroups defined by the birth months and ≥70% steno-
sis of patients are involved in the inference of the treatment effect. Confounding
due to repeated testing may also be a contributing factor for a positive finding
in patients born between May and August and with ≥70% stenosis. It should be
pointed out, for a similar reason of inflating type I error rate under the null, multiple
testing, by chance, may also lead to a false negative outcome with a conclusion
of no treatment effect or inflate type II error rate while in truth the treatment is
efficacious. In Example 1.1, it is likely that the insignificant finding on the aspirin
treatment in patients with birth signs Libra and Gemini actually is just an artifact
from the multiple testing of the same hypothesis in many sub-patient populations
defined by their birth signs.

1.2.3 Confounding Due to Lack of Statistical Power

A clinical trial typically is sized and powered based on the projected treatment
effect in the primary efficacy endpoint in the overall patient population. The
smaller sample size of a subgroup often provides insufficient statistical power for
the subgroup analysis. Such confounding from insufficient sample size or lack of
statistical power can inflate the type II error rate. The treatment may be efficacious
for the subgroup but demonstrate no statistical significance due to lack of statistical
power of the analysis.

The solution to address the low power issue in subgroup analysis essentially is to
plan a sufficiently large sample size at the trial design stage for the subgroup analysis
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of interest. If it is difficult to make an upfront commitment, an adaptive sample size
design (Cui et al. 1999, 2017; Lehmacher and Wassmer 1999) can be considered.
In this case, a mid-course sample size increase is possible if the sample size and the
power of the subgroup analysis are found insufficient in an interim analysis. Other
techniques to mitigate the problem include enrichment design to make the subgroup
more sensitive to the treatment through targeting at a special patient population,
say with certain positive biomarkers. Such a biomarker positive subgroup can be
specified in the protocol prior to the start of a trial and the analysis can be powered
accordingly. A more responsive subgroup of patients can also be identified in an
interim analysis instead of determined before the start of the trial. In this case,
the sample size of the identified subgroup may be altered accordingly in order to
power the subgroup analysis adequately. The mid-course subgroup enrichment in
combination with the sample size adaptation requires the control of type I error rate.
Depending on how the targeted subgroup is identified and the change to be made, it
can be a complicated issue.

The typical sign of lack of statistical power of subgroup analysis is an overt large
numerical treatment difference accompanied by an insignificant p-value. With that,
in Example 1.1, the negative finding on the effect of aspirin in patients with birth
signs Libra and Gemini does not appear to relate to the smaller sample size or lack
of power of the subgroup analysis but indifferentiable responses between the two
treatment groups. As pointed before, this negative outcome more likely is an artifact
from the artificially splitting the overall population and/or a chance finding from the
repeated testing.

1.2.4 Confounding Due to Baseline Incomparability

While baseline characteristics and prognostic factors, which impact on the treatment
outcomes, are unevenly distributed between the treatment groups, confounding can
be introduced to bias the outcome evaluation, leading to erroneous conclusions
(Pocock and Simon 1975). A valid randomization helps to balance influential
baseline factors across the treatment groups in the overall population. However,
because of excluding subjects, a valid randomization within a subgroup may not be
guaranteed and the imbalance of baseline factors is possible.

The confounding due to treatment group incomparability at baseline is a much
more difficult issue to handle in subgroup analyses (Cui et al. 2002). First, unlike
the confounding due to the repeated testing and the small subgroup sample size, the
direction of the confounding from the baseline incomparability and the magnitude
of the impact are unpredictable. Depending on the directions of the imbalance w.r.t.
individual factors, the overall impact can be either in favor of or against the testing
drug. Second, if there is the confounding due to baseline incomparability, it can be
difficult to detect because the imbalance can be from influential factors which are
not observed and/or from a joint effect of the imbalance of several influential factors.
Third, even while the confounding is recognized, removing it via statistical analysis
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can be difficult. In theory, a model-based covariate adjustment can help to remove
the confounding. In practice, it is difficult since for the analysis to be effective the
complete knowledge about the prognostic factors and their functional relationship
to the outcome is required. Such knowledge generally is incomplete or impossible.

Now let’s go back to our previous examples. Excluding a large number of
randomized subjects leads to significant doubts on the validity of randomization
across the subgroups in Example 1.1 and Example 1.2, and subsequent concerns
on the potential baseline incomparability. While confounding due to sampling error
or repeated testing are suspected on the surface, the baseline incomparability could
be the explanation underneath. Similarly there is a well-founded doubt about the
validity of the randomization in the per-protocol analysis of the phase 2 study
in Example 1.3 knowing that 28% randomized subjects are effectively excluded
from the analysis. The potential baseline incomparability from the subject exclusion
might confound the primary analysis of the phase 2 study leading to spurious
outcomes that contradict the results of the later phase 3 studies.

Since there is no effective method to detect and correct the confounding due to
baseline incomparability, the solution to the problem essentially relies on an upfront
stratified randomization. Particularly, to address the issue, we advocate an intensive
stratification approach as explained below.

1.3 Intensive Stratification in Subgroup Analysis

Although model-based statistical analyses adjusting for influential baseline factors
may help to minimize the impact of the confounding due to baseline incompara-
bility, the approach may not be fully effective in practice. This is because often it
is hard to identify such influential factors for the adjustment and their functional
relationship to the outcome measure is unknown.

More proactively, a stratified randomization by subgroups can be planned in the
protocol and implemented in the trial. With the stratification, the randomization
nested in individual subgroup strata can balance the observable and unobservable
influential baseline factors across the treatment groups in each stratum. Conse-
quently, the subgroup analyses in the individual strata and their combinations are
less likely to subject to the confounding due to baseline incomparability.

The design and implementation of randomization stratification involve the
determination of stratification factors and the minimum stratum size allowed or the
maximum number of strata allowed given the fixed total trial sample size. For the
former, the general agreement is that the stratification factors should be those which
are measured at the baseline and influential on the efficacy outcomes of the trial.
For the latter discussions on the proper number of stratification factors and strata
continue (Hallstrom and Davis 1988; Therneau 1993; Kernan et al. 1999).

While people tend to prefer a few stratification factors in order to have a
large number of patients in each stratum, we advocate intensive randomization
stratification or having as many stratification factors as possible if the factors affect
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the treatment outcome and the number of patients in the trial permits. The more
stratification factors and strata are used, the more subgroups will be immune from
the confounding due to baseline incomparability as shown in the following example.

Often a phase III cardiovascular clinical trial to study a new drug in treating
patients with myocardial infarction requires tens of thousands of subjects. Consider
such a two-arm clinical trial with a total of 18,000 subjects. If the strategy of
intensive stratification is used and at least 8 subjects per stratum are required, a
maximum 11 binary baseline stratification factors can be accommodated. This is
because 11 binary factors will generate 211 = 2048 strata involving minimally a total
of 16,384 subjects. The scheme will accommodate many analyses of subgroups,
supported by a valid randomization, from the arbitrary combinations of some of the
2048 strata. While the common risk factors in the disease population (Antman et al.
2006) involve age (<=65, >65), smoke (Y, N), diabetes (Y, N), BMI (<=30, >30),
hypertension (Y, N), Pre-MI (Y, N), disease risk score (low, high), pre-treatment (Y,
N), the intensive stratification may cover all mentioned risk factors. As so, there
should be a less concern on the confounding due to baseline incomparability in the
subgroup analyses based on the aforementioned disease risk factors.

The major concern for including many stratification factors is potential treatment
group imbalance due to incomplete strata. Blocked randomization can help to
minimize the imbalance within a stratum. Kernan et al. (1999) have suggested that
the minimum size of a stratum be at least 4B, where B is the randomization block
size. In the above example, a block size B = 2 is assumed and thus the minimum
size of a stratum is set to 8.

For a two-arm clinical trial with K binary stratification factors there are 2K strata
generated from the combinations of the different levels of the K factors. If the total
number of subjects of the trial is N and the minimal size of a stratum is 4B, the
maximum number of strata allowed is

⌊
N
4B

⌋
. The maximal number of stratification

factors allowed K∗ then is the maximum value of K such that 2K ≤ ⌊
N
4B

⌋
. Let

L = L(N) = 2K
∗

be the maximum number of the strata, given the total sample

size N. There are
∑L−1

j=1

(
L
j

)
= 2L − 2 subgroups, from a single stratum or a

combination of multiple strata, supported by the valid stratified randomization. The
intensive stratification ensures a valid randomization for a large number of subgroup
analyses.

1.4 Statistical Simulations

1.4.1 Setting

In this section, we examine the performance of the proposed intensive stratification
strategy via a simulated example. The numerical performance of the intensive
stratification strategy (IS) will be compared to the simple randomization without
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stratification (SR). For the illustration purpose, we also include the intensive
stratification with complete blocks (ISC) as a benchmark for the comparison.

The generation of simulated data is based on a hypothetical two-arm clinical trial
with N subjects per treatment group and the randomization assignment at 1:1 ratio.
We assume that the continuous efficacy measure Y for the subject i is Y = Yi which
is generated through the following regression model

Yi = a ∗ trt + 0.1 ∗ (1000 − g(age)) + ε,

where ε~N(0, 10), trt = 1 for the testing drug arm and trt = 0 the control arm. Under
the null and alternative hypothesis, the treatment effect size a is set as

H0 : a = 0 and H1 : a = 5.6.

The age is considered as an influential prognostic factor with the range (20, 60),
and g(age) is defined as

g(age) =
⎧
⎨

⎩

0.25 ∗ age, if age ≤ 45;

(age − 45)3 + 11.25, if age > 45.

Further, assume that the density of the age factor is linearly increasing as there are
more elderly patients, that is, f (x) = x

1600 , 20 ≤ x ≤ 60. Thus agei for the subject i
is generated by the inverse transform sampling method. For the subject i, a genderi is
also generated using the Bernoulli distribution (0.5). In each simulation sample, the
treatment outcomes Yi, i = 1, . . . , N, are generated based on the normal distribution
following N (a ∗ trti + 0.1 ∗ (1000 − g(agei)), 10). A total of 50,000 simulated
samples are generated for each randomization scheme to evaluate the performance
of the intensive stratification (IS and ISC) as compared to the simple randomization
(SR).

Under the proposed intensive stratification strategy, 10 age levels (20 to <24,
24 to <28, . . . , 56 to <60) and the gender factor (male, female) are used in the
stratified randomization, which leads to 20 strata in total. As suggested in Kernan
et al. (1999), in order to maintain the benefit of the stratified randomization, the
number of strata should be no more than N/(B × 4), where N is the total sample size
and B is the block size. We set the total sample size N = 160 and B = 2.

In simulated samples with simple randomization (SR), to reflect the reality, the
subjects in the overall population are sequentially randomly assigned to ether the
active treatment or placebo groups with an equal probability 0.5. The assignments
are nested within each stratum under the intensive stratification (IS) scheme. In
both types of randomization assignments, incomplete blocks are allowed. As a
benchmark, simulation samples based on intensive stratification without incomplete
blocks (ISC) are also generated. In this case, the equal number of samples (8
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subjects) is assigned to each stratum such that all the randomization blocks are
completely filled.

For illustration purpose, the simulated outcomes are analyzed based on four
regression models with different levels of covariate adjustments in the female
subgroup. The four analysis models are

Model 1 : Y = b + c ∗ trt,

Model 2 : Y = b + c ∗ trt + e ∗ age,

Model 3 : Y = b + c ∗ trt + e ∗ age + f ∗ age2,

Model 4 : Y = b + c ∗ trt + e ∗ g(age).

The partial covariate adjustments based on Models 1–3 reflect the practical
scenarios in which either the important covariate is likely missed (Model 1) or
there is only incomplete knowledge of the functional relationship between the
covariate and the outcome (Models 2 and 3). In contrast, Model 4 represents the
full adjustment of age based on the true underlying data model.

1.4.2 Results

From the underlying data generation model, it is clear that age is a highly influential
prognostic factor, especially for those older than 45. The estimated treatment
differences under H0 in female subgroup from 50,000 simulation samples for each
combination of the 3 randomization schemes and 4 analysis methods are plotted
in Fig. 1.1. In the figure, the rows from the top to the bottom are for IS, SR, and
ISC, respectively. The columns from the left to the right are for analysis Model
1, Model 2, Model 3, and Model 4, respectively. The treatment differences for
a combination of the randomization scheme and analysis method in the plot is
organized according to the percent of age imbalance which is the percentage of
the difference in the number of patients who is older than 50 between the treatment
groups. More precisely, it is defined as

age imbalance

= #of f emale with age>50 in the treatment−#of f emale with age>50 in placbo

#of f emale in the treatment
.

In addition to Fig. 1.1, the variation of the estimated treatment difference in
female subgroup in terms of SD, Q1, Q3, Minimum and Maximum are summarized
in Table 1.1.

Based on the simulation outcomes, the following observations can be made.
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Fig. 1.1 Estimated treatment difference in females with or without covariate adjustments

Table 1.1 Summary of
estimated treatment
difference in females with or
without covariate adjustments

Method Model Mean SD Q1 Q3 (Min, Max)

SR 1 0.0 13.2 −8.8 8.9 (−53.6, 54.8)
2 0.0 9.6 −6.6 6.5 (−39.9, 38.4)
3 0.0 5.9 −4.0 4.0 (−21.0, 24.7)
4 0.0 1.6 −1.1 1.1 (−6.3, 6.5)

IS 1 0.0 5.0 −3.4 3.4 (−21.1, 18.4)
2 0.0 4.3 −2.9 2.9 (−18.3, 16.5)
3 0.0 3.3 −2.1 2.2 (−14.0, 12.2)
4 0.0 1.6 −1.1 1.1 (−6.4, 6.4)

ISC 1 −0.1 3.7 −2.6 2.5 (−15.3, 14.6)
2 0.0 3.4 −2.4 2.3 (−14.5, 14.3)
3 0.0 2.8 −1.9 1.9 (−12.0, 11.0)
4 0.0 1.6 −1.1 1.1 (−6.5, 6.4)

(a) The intensive stratifications (IS and ISC) reduce the variation of the estimated
treatment difference as compared to the simple randomization (SR) while there
is no or only a partial covariate adjustment. This can be seen by comparing the
vertical ranges of the plots in Fig. 1.1 and SD column in Table 1.1 with three
randomization schemes under each of Mode l, Model 2, and Model 3.
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(b) The variation of the estimated treatment difference becomes smaller with the
increase of the degree of the completeness of the covariate adjustment in each
randomization scheme, and the full covariate adjustment leads to the same
variation regardless of the randomization schemes. The former can be seen by
comparing the vertical ranges of the plots from Model 1 to Model 4 within each
of the three randomization schemes. The latter can be seen by comparing the
vertical ranges of the plots in three randomization schemes under Model 4. It is
illustrated numerically by the SD column in Table 1.1.

(c) The intensive stratification plays a similar role of the covariate adjustment in
reducing the variation of the estimated treatment difference. The variation of
the estimated treatment difference under the intensive stratification (IS and ISC)
is much smaller than that of the simple randomization (SR). With the intensive
stratification, the contribution of the covariate adjustment diminishes. The SD
is reduced from 13.2 to 1.6 with full covariate adjustment for SR while from 3.7
to 1.6 for ISC.

(d) The intensive stratifications (IS and ISC) reduce the chance of a large percent
difference in age between the treatment groups as compared to the simple
randomization (SR). This can be seen by compare the horizontal ranges of the
plots in different randomization schemes under individual covariate adjustment
models.

(e) For all 3 randomization schemes, the mean of the estimated treatment difference
in females appears around zero or the estimate of the treatment difference is
unbiased in the female subgroup. This is expected since the valid randomization
in the female group is finely supported by the age stratified randomization
within the females.

(f) However, without intensive stratification or under SR, the estimated treatment
difference can be biased or significantly biased in a subgroup of the female
population in which the age factor is not evenly distributed between the two
treatment groups. For example, while there is about 10% age imbalance, without
the covariate adjustment (Model 1), the estimated treatment difference with the
simple randomization (SR) is about 20 which is significantly biased.

(g) The intensive stratification generally can significantly minimize the impact of or
the chance of bias due to baseline incomparability. Under both ISC and IS, the
estimated treatment difference appears unbiased with the mean value at or close
to zero in subgroups with various levels of percent difference. For example,
while there is about 10% age imbalance, without the covariate adjustment
(Model 1), the estimated treatment differences under the intensive stratifications
(IS, ISC) are around zero or unbiased.

(h) Without intensive stratification or under SR, the analysis with the covariate
adjustment of age reduces both variation and bias of the estimated treatment
difference. The analysis with the full covariate adjustment removes the bias
completely though knowing the underlying data model is generally impossible
in practice.

(i) The Intensive stratification works like a model-based adjustment but requiring
no knowledge of the functional relationship between the covariate and the
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outcome. By finely matching the age categories between the treatment groups
and by preventing the baseline imbalance in age upfront, the contribution of the
model-based covariate adjustment under IS and ISC is fairly limited.

As a note, our simulations give similar results under the alternative assumption
of the treatment effect, and therefore the results are not presented.

1.5 Conclusion

This article touches upon the likely sources for confounding in subgroup analyses.
The potential confounding due to repeated testing without multiplicity adjustment
or due to lack of statistical power in subgroup analyses with sizable estimated
treatment difference but achieving no statistical significance can be easily identified.
The directions of the impacts are also clear. The former inflates Type I error
rate while the latter inflates Type II error rate. The remedy measures can be
implemented through a multiplicity adjustment, or increasing subgroup sample size
and/or focusing on a more responsive patient population.

Confounding may arise if the treatment groups are not comparable with respect
to certain influential baseline factors due to lack of a valid randomization from
excluding subjects in subgroup analyses. The impacts on the outcomes of such
confounding can be severe and often are undetectable and unpredictable.

To address the baseline incomparability issue in subgroup analyses, the proactive
implementation of the intensive randomization stratification is proposed. The
immediate benefit of the approach is the guaranteed valid randomization for a
large number of analyses based on the subgroups from a single stratum or an
arbitrary combination of the strata of the stratification factors. In the hypothetic
example of the cardiovascular trial, with the intensive stratification, a total of
2048 strata from 11 influential baseline factors are allowed. Consequently, a vast
number of subgroups from the combinations of the strata are supported by a valid
randomization, and the results of the corresponding subgroup analyses tend to
be trustful. This is particularly true while the outcome of a subgroup analysis is
statistically significant and the claim is limited to this specific subgroup.

Our simulations show that the intensive stratification helps to remove the
potential bias and reduce the variation in estimation. Under the ideal scenario where
all stratification blocks are complete, the intensive stratification performs well in
producing the unbiased analysis result. In this case, the subgroup analysis without
the covariate adjustment performs equally well as the analysis with the full covariate
adjustment based on the true underlying data model. The subgroup analyses without
the covariate adjustment under the intensive stratification still perform better than
the covariate adjusted analyses while the model is misspecified due to lack of
knowledge of the dependency of the outcome on the covariates. Without loss of
generality, our simulations are limited to one subgroup of female patients and
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one influential baseline factor age. The extension of the results to situations with
multiple subgroups and influential baseline factors is apparent.

After the discussion of the idea of intensive stratification and its potential
benefits, it is worthy to comment on its implementation. In general, the candidate
stratification factors can be identified based on the clinical knowledge on the disease
and the effects of the drugs of the same class. Such information might be found
in literature or through analyses of historical data. In general, for a confirmatory
clinical trial, the strategy of a stratified randomization needs to be pre-specified
in the protocol, and detailed in the statistical analysis plan before the database
unblinding. Although a general guidance on the maximum number of strata allowed
is given in the previous section, the statistician needs to decide the extent of the
intensive stratification taking all things into considerations. For example, if there
are too many strata, incomplete blocks become more likely. In such a case, one
may consider dropping some less critical stratification factors in the randomization
or ignored them in the later analyses. Either ways, however, the analyses based on
the stratified subgroups remain valid. In general, the influential or likely influential
factors can be identified either based on clinical knowledge or based on historical
data. Occasionally, there can be cases in which influential factors are not easy to
be identified. In such cases, the intensive stratification can be either implemented
based on well accepted factors (e.g. age, gender, race, and etc.) or factors such as
those generally related to patients wellbeing (e.g. BMI, smoking status, diabetes,
hypertension and etc.) and those about treatments previously received (drugs
received, response status, drug classes and etc.).

In terms of implementation, one should also consider potential challenges
associated with the operation, for example, the added complexity with respect
to randomization, drug supply, patient recruitment, and others. Whether or not
such issues will become limiting factors for the implementation may depend on
individual clinical trial setting. For a large cardiovascular trial, the concern could be
much less because the stratification information in general is well collected at the
baseline and the patient recruitment is not an issue due to the availability of large
number of patients. The situation, however, can be quite different for an oncology
study because of the limited patient availability. In such a case, the best one may do
is to maximize the number of the critical stratification factors within the practical
limit. As for every design of a clinical trial, it is the statistician’s responsibility to
evaluate pros and cons of the intensive stratification to make the best implementation
decision to meet the design objectives.
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Chapter 2
Biomarker-Targeted Confirmatory Trials

Hui Wang, Ilana Belitskaya-Lévy, and Ying Lu

2.1 Introduction

The design of confirmatory phase III trials involving predictive biomarkers has a
wide range from enrichment design to all-comers design. The enrichment design
only enrolls patients tested positive for the biomarker and is often the most
efficient and ethical approach when there is established evidence that treatment
benefit is restricted to the biomarker positive group. On the other hand, when
there is inadequate evidence that treatment benefit is restrictive and no concern
for the safety of patients in the biomarker-negative group, an all-comer design that
enrolls all patients regardless of their biomarker status will have the advantage of
evaluating treatment effect concurrently in the overall population and the biomarker
subgroups. An all-comer design also offers the opportunity for maximizing the size
of patient population, often an important consideration for drug developers. The
recent pivotal trials of PD-L1 inhibitor drugs including nivolumab, pembrolizumab,
and atezolizumab for non-small cell lung cancer all adopted the all-comer design
and enrolled both PD-L1 positive and negative patients (Brahmer et al. 2015;
Borghaei et al. 2015; Fehrenbacher et al. 2016; Rittmeyer et al. 2017; Langer et al.
2016; Bylicki et al. 2018). The thresholds and utility of the PD-L1 biomarker were
studied in these trials and companion diagnostic tools were developed. Patients with
higher PD-L1 expression benefited more from the treatment, while treatments for
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patients negative on PD-L1 expression showed similar benefit as the standard of
care (docetaxel). The drug was approved for the overall population regardless of the
PD-L1 status, considering the better safety profiles among all patients (Borghaei et
al. 2015). This chapter is devoted to statistical issues related to all-comer designs. A
comprehensive review of related methods for other designs such as enrichment and
biomarker-strategy designs can be found in Freidlin and Korn (2014) and Ondra et
al. (2016).

2.2 Inference Errors in an All-Comer Design

In the all-comer design, the treatment effect is evaluated in both the overall and the
prespecified biomarker-positive group. A long-standing statistical problem is how
to optimize the power for testing more than one population while controlling the
family-wise error rate (FWER). As an example, Eichhorn et al. (2001) and Liggett et
al. (2006) presented a genetic sub-study of the Beta-Blocker Evaluation of Survival
Trial (BEST) trial. The BEST trial enrolled 2708 patients between May 1995 and
December 1998 to evaluate the effectiveness of bucindolol in improving survival
of patients with Class III/IV heart failures. The genetic sub-study consisted of
1040 BEST study participants and considered polymorphisms in the β1-adrenergic
receptor (β1-AR), a β-blocker target, as candidate pharmacogenomic loci. The
sub-study found that the Arg-389 homozygotes carriers of β1-AR treated with
bucindolol had an age-, sex-, and race-adjusted 38% reduction in mortality vs.
placebo (p = 0.03). In contrast, the Gly-389 carriers of β1-AR had no clinical
response to bucindolol compared with placebo. The statistical challenge is how
to design a pivotal trial to confirm this finding with simultaneous tests in the
overall population and the subpopulation of the Arg-389 homozygotes carriers while
controlling the FWER.

The complexity of hypothesis testing increases with the number of populations
to be tested due to the increase in the number of possible decisions and in the
corresponding risk of false positive conclusions. For instance, under the assumption
that the efficacy in the marker positive subgroup is not worse than that in the marker
negative subgroup based on biology, when efficacy is assessed in both the overall
population and the marker-positive subgroup, there are three possible scenarios, (1)
no efficacy in any population; (2) efficacy in the marker-positive subgroup only; and
(3) efficacy in the overall population. Efficacy in marker-negative subgroup is not
an a priori hypothesis to be confirmed. Accordingly, a false positive conclusion
is possible for decisions (2) and (3) and a false negative conclusion is possible
for decisions (1) and (2). The correctness of decision depends on the associated
composite null and alternative hypotheses.

For illustration, let us assume that there are two pre-defined subpopulations,
referred to as marker-positive (M+) and marker-negative (M−) groups, and that
randomization leads to an equal distribution of biomarkers among treatment (T) and
control (C) groups. Let μ = μT − μC, μ+ = μT+ − μC+ and μ− = μT− − μC−
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denote the treatment effects in the overall population, the M+ subgroup, and the
M− subgroup. Without loss of generality, we assume that a positive mean difference
between the treatment arms T and C indicates a desired treatment effect and that the
hypothesis tests of interest are one-sided, and the treatment is more effective in the
M+ subgroup based on prior clinical evidence. Then, there is a monotone ordering
of the treatment effects:

μ+ ≥ μ ≥ μ−. (2.1)

The conventional null and alternative hypotheses in the overall population are

H0O : μ ≤ 0 versus HAO : μ > 0;

the corresponding hypotheses in the marker-positive subgroup are

H0+ : μ+ ≤ 0 versus HA+ : μ+ > 0.

A composite null hypothesis for simultaneous testing in both the overall pop-
ulation and the M+ subgroup can be written as the intersection of the two null
hypotheses H0O and H0+.:

H0C : μ ≤ 0 AND μ+ ≤ 0,

and the corresponding composite alternative hypothesis is that the treatment efficacy
is present in at least one of these populations:

HAC : μ > 0 or μ+ > 0.

The composite alternative hypothesis HAC is the union of the following two
mutually exclusive alternative hypotheses:

HA1 : μ ≤ 0 and μ+ > 0 OR HA2 : μ > 0,

where HA1 indicates that desired treatment effect is present in the marker-positive
subgroup only and HA2 indicates that the desired treatment effect is present in
the overall population including the marker-positive subgroup. HA1 implies an
undesired treatment effect in the marker-negative subgroup, i.e. μ− < 0. Therefore,
when HA1 is true, the desired decision is to reject the null hypothesis H0+ and accept
the null hypothesis H0O in the overall population. When HA2 is true and as long as
the treatment is not harmful in the marker-negative group (i.e. μ− ≥ 0), the desired
decision is to reject both H0O and H0+.

A conventional hypothesis testing framework involves a binary inference deci-
sion based on the test statistics. When the null hypothesis is incorrectly rejected,
a type I error, i.e., a false positive error, is made. When the null hypothesis is
incorrectly accepted, a type II error, i.e., a false negative error, is made. An optimal
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Table 2.1 The error structure of the joint hypothesis testing problem in a decision framework

Truth
H0C is False (HAC is True)

Decision
H0C is Trueμ ≤ 0
and μ+ ≤ 0

HA1 is True
μ ≤ 0 < μ+

HA2 is True
μ > 0

Accept H0C Correct decision II∗ (β12) II (β13)
Reject H0C Reject H0+ only I∗ (α21) CD (π1) II∗ (β23)

Reject H0O (and H0+) I (α31) I∗ (α32) CD (π2)

I = Type I Error; II = Type II Error; I∗ = Type I-like Error; II∗ = Type II-like Error; CD = Correct
Decision
π1, π2, are the probabilities of Correct Decision
π1 = P(Accept HA1| HA1)
π2 = P(Accept HA2| HA2)
αij denotes the probabilities of type I and type I-like errors
βij denotes the probabilities of type II and type II-like errors

statistical test maximizes the statistical power (i.e., minimizes the false negative
error) under the constraint that the FWER is under a pre-specified significance level.

To perform simultaneous tests of multiple hypotheses, incorrect acceptance of
any one of the multiple alternative hypotheses can result in either a false positive
(type I-like) error or a false negative (type II-like) error. As illustrated in Table 2.1,
when μ+ ≤ 0, we can only make type I-like (false positive) errors, denoted by α21
and α31. When μ ≤ 0 < μ+, however, both type I-like and type II-like errors are
possible: when the composite null H0C is accepted, a type II-like error is committed
(β12); on the other hand, if H0O (and H0+ ) is rejected with the conclusion that
treatment works for the overall population, a type I-like (false positive) error is
committed (α32). When HA2 is true, only type II-like (false negative) errors are
possible (β13 or β23).

2.3 Multiple-Step Inferences for the Overall Population
and Marker Subgroups

Several methods have been proposed for testing in both the overall population and
the pre-defined subgroups, with a focus on controlling the FWER α. One approach
is to test specific subgroups with Bonferroni correction on α (parallel subgroup-
specific design, Freidlin et al. 2010, 2013). This approach when strong belief exists
that the positive group will benefit from the treatment more than the negative group.
One can also carry out the test in a sequential manner that provides more design
efficiency (Douillard et al. 2010) where the positive group is tested at the level of
α and, if the test is significant, the negative group is tested also at the level of α.
Other strategies include testing the treatment effect in the overall patient population
followed by testing in the marker positive group. This strategy offers the opportunity
for sponsor to claim efficacy in a patient population as large as possible and is
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effective when treatment is also beneficial for the marker-negative group, although
the treatment effect can be much smaller. A well-known example is the fallback
procedure (Simon 2008): the treatment effect is tested in the overall population at
a reduced level of α0; if significant, the procedure stops and an overall effect is
claimed; otherwise, the treatment effect is tested in the marker-positive group at
α+ for claiming efficacy in a sub-population, where α0 + α+ = α. Song and Chi
(2007) proposed an approach that takes into account the correlations between the
test statistics derived from the overall population and the subgroup. They define
a conservative threshold α0 and relaxed threshold α∗

0 for the overall p-value, where
α0 < α < α∗

0 . If the overall p-value is less than α0, the treatment effect is considered
significant in the overall population and tested in the marker-positive group at level
α; if the overall p-value falls between α0 and α∗

0 , the treatment effect in the overall
population is borderline and to be tested in the marker-positive group at a more
stringent level of α+ (α+ < α). If this test is significant, one goes back to test
the overall treatment effect at level α, where α+ is selected conditional on the
value of the overall test statistics to control for the FWER. Freidlin et al. (2014)
proposed a marker sequential test (MaST) that involves all three groups (overall,
marker positive and negative). It begins with testing the treatment effect in the
marker-positive group at a reduced level of α+. If treatment effect is significant
in the marker-positive group, the marker-negative group is tested at α; otherwise,
treatment effect is tested in the overall population at α − α+. The MaST prioritizes
the testing in a subgroup, while the fallback procedure and Song and Chi’s approach
prioritize on the overall treatment effect.

A general class of multiple testing procedures called the chain procedure can
be applied to subgroup analysis with great flexibility (Dmitrienko and D’Agostino
2013; Millen and Dmitrienko 2011). The procedure is governed by an α allocation
rule described by the proportions of α allocated to each hypothesis up-front and an α

propagation rule described by the proportions of transferrable α among hypotheses
upon rejection. For example, when treatment efficacy in the overall population and
the marker-positive group is of equal interest, the allocation and propagation rule can
be specified as ωO = ω+ = 0.5 and gO+ = g+O = 1. The ωO and ω+ are the initial
weights allocated to the FWER (α) for testing the null hypothesis in the overall
population and the marker-positive population. The gO+ (or g+O) is the fraction of
the α that can be carried over for testing the null hypothesis in the marker-positive
population (or overall population) when the null hypothesis is rejected in the overall
population (or marker-positive population). The treatment effect is first tested in the
overall population with ωOα. If the overall test is significant, the allocated α to the
overall test (i.e. ωOα) is transferred to the subgroup test, and the treatment effect is
tested in the marker-positive group at level (ωO gO+ + ω+)α = α; if not significant,
the treatment effect is tested in the marker-positive group at ω+α and if significant
one tests again in the overall population at level (ωO + ω+g+O)α = α. Testing the
subgroup in the first place reaches the same conclusion because the allocation of
α is equal between the overall and subgroup test. The fallback procedure and the
sequential subgroup-specific test can be viewed as a simplified version of the chain
procedure.
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In Johnston et al. (2009), the treatment effect is first tested in the marker-positive
group at level α, and the overall treatment effect is tested at α, too, but only if
statistical significance is achieved for the subgroup test. This testing strategy can
lead to unnecessary or false treatment for marker-negative patients when the overall
population is dominated by the marker-positive population.

Figure 2.1 provides graphic representations and illustrations of rejection regions
of these multi-step sequential tests.

The rejection regions of the sequential tests are illustrated based on (Z-, Z+),
the normalized test statistics. In all tests, the FWER is α = 0.025. The Direct Test

Fig. 2.1 Rejection regions of hypothesis test in multiple-step inference procedures
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Fig. 2.1 (continued)

arrows show the order of the hypothesis tests performed in each procedure. The α1
denotes the allocated α to the first test, and αO denotes the α allocated to the overall
test.

2.4 Simultaneous Inferences for the Overall Population
and Marker-Positive Subgroup

In Belitskaya-Lévy et al. (2016), a simultaneous test in the overall population and
the marker-positive subgroup was proposed. The proposed Confirmatory Overall-
Subgroup Simultaneous Test (COSST) is based on partitioning the sample space of
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the test statistics Z+ and Z− in the marker-positive and marker-negative subgroups.
Let Z, Z+ and Z− be the test statistics for the treatment effects defined previously in
the overall study population, the M+ subgroup and the M− subgroup, respectively.
Note that Z+ and Z− are independent. The following relationship holds between the
overall and the subgroup test statistics:

Z = √K+Z+ +√K−Z−,

where K+ and K− = 1 − K+ depend on biomarker prevalence and standard errors
in the overall sample and the subgroups. For instance, when the variances are equal
among the groups, K+ = p+ and K− = p−, where p+ is the biomarker prevalence
(the proportion of marker-positive patients in the general patient population) and
p− = 1 − p+.

The two-dimensional sample space of (Z−, Z+) can be divided into two rejection
regions and one acceptance region (Fig. 2.2). A safety boundary (SB) is also
incorporated. If the test statistic drops below SB, i.e. Z− ≤ SB, the treatment may
have an undesired effect in the M− subgroup, and the treatment efficacy should not
be claimed in the overall population. There is no need to perform any inference on
SB. All it does is to redistribute the weight in the probability space to assure the
rejection region is safe for M− subgroup.

Rosenblum et al. (2014) proposed a simultaneous test within a Bayesian frame-
work with three null hypotheses: H0+: treatment effect in the marker-positive group

Fig. 2.2 Rejection regions of hypothesis tests in COSST
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is less than 0 (μ+ ≤ 0); H0−: treatment effect in the marker-negative group is less
than 0 (μ− ≤ 0); and H0O: treatment effect in the overall population is less than 0
(μ ≤ 0). The test minimizes an objective function with respect to a multiple testing
procedure M(Z+, Z−) based on the test statistics in the marker-positive and negative
subgroups:

∫
Eμ+,μ−L (M (Z+, Z−) ; u+, u−) dΛ (u+, u−) ,

where L is a pre-specified loss function and �(u+, u−) is the prior distribution of
the treatment effects u+ and u−, under the type I error constraint

Probμ+,μ− (reject any null hypothesis) ≤ α

and the power constraint

Probμ+,μ− (reject H0O : μ ≤ 0) ≥ 1 − β

We illustrate the COSST with plots of rejection regions (Fig. 2.2). The red dashed
diagonal line is Z = √

K+Z+ + √
K−Z− = CZ , and any region above this line

is the marginal rejection region for the overall null hypothesis. The red dashed
horizontal line is Z+ = CZ+, and any region lying above this line is the marginal
rejection region for the subgroup null hypothesis. The vertical black dashed line
is the safety boundary for the biomarker negative subgroup. If Z− is less than the
safety boundary, the overall null hypothesis will not be rejected. The thick blue and
magenta lines outline the two rejection regions based on (Z−, Z+):

(1) Reject the subgroup null and accept the overall null (R1 + Δ1, thick blue line);
(2) Reject the overall null which implies rejecting the subgroup null (R2, thick

magenta line).

The regions R1, Δ1 and R2 are defined as following:

R1 = {(Z−, Z+) : Z+ > CZ+and Z− ≤ SB−} ,

Δ1 =
{

(Z−, Z+) : CZ+ < Z+ ≤ CZ√
K+

− SB−

√
K−
K+

and

SB− < Z− ≤ CZ√
K−

− Z+

√
K+
K−

}

,

R2 =
{
(Z−, Z+) : Z = √K+Z+ +√K−Z− ≥ CZ and Z− ≥ SB−

}
,
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2.5 Extension to Sequential Analysis

Another interesting question for marker defined subgroup clinical trial is to use a
two-stage clinical trial design. Based on the interim subgroup analysis of the first
stage, a decision can be made for stopping the trial either for efficacy or futility or
to continue the trial using overall population or enriched subgroup in the second
stage. In Matsui and Crowley (2018), the authors proposed adaptive subgroup
selection strategies for sequential assessment across marker-defined subgroups. In
the proposed design, superiority and futility boundaries are defined for interim
analysis for marker-positive and marker-negative groups. Four possible decisions
can be made for the trial based on interim look: (1) If superiority boundary is
crossed in the marker-positive group and futility boundary is crossed in the marker-
negative group at interim analysis, the trial will be closed for treatment efficacy in
the M+ group. (2) If superiority boundary is crossed but the futility boundary is not,
treatment efficacy will be claimed in M+ group and the trial will continue in M−
group. (3) If superiority boundary is not crossed but futility boundary is crossed,
then the trial will be continued in M+ group but stopped for M− patients; (4) if
neither the superiority nor the futility boundary is crossed, the trial will continue in
the overall group. Figure 2.3 illustrates the sequential testing procedures.

In Lai et al. (2014), instead of pre-defined subgroups, several patient subgroups
are chosen adaptively by partitioning the parameter space and defining correspond-
ing type I and type II errors. The subgroups are not known at the design stage
but can be learned statistically from the data collected during the trial. These
patient subgroups can be defined by biomarkers, brain imaging, or other risk factors
measured at baseline. The authors propose a novel 3-stage group sequential design
that incorporates adaptive choice of the patient subgroup among several possibilities
which include the entire patient population as a choice. The goal is to reject the
null hypothesis for the largest possible subgroup for which the null hypothesis
of no treatment difference is false. At the first interim analysis, the efficacy and
futility are tested in the overall population. If early stopping for efficacy occurs,
the trial is terminated and efficacy of the new treatment is claimed over the entire
population. If stopping occurs for futility, then the overall hypothesis is accepted
and the trial is continued with the most promising patient subgroup, that is, the
subgroup that maximizes the generalized likelihood statistic, but with the sample
sizes re-estimated. The future enrollment of the trial will include patients of this
subgroup only, while the maximum total sample size N remains the same. The same
procedure is repeated at the second interim analysis and at the final stage. If the
overall test is not stopped for efficacy or futility, then the trial is continued to the next
stage of the 3-stage design and the procedure is repeated. Lansberg et al. (2016) used
simulations, based on real-world patient data, to demonstrate that adaptive subgroup
selection has merit in endovascular stroke trials at it substantially increases power
when treatment effect differs among subgroups in a predicted pattern.
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Fig. 2.3 Matsui and Crowley (2018). Biomarker-Stratified Phase III Clinical Trials: Enhancement
with a Subgroup-Focused Sequential Design

2.6 Discussion

In this chapter, we reviewed several statistical tests for confirmative biomarker
trials. We focused on the trial with intention to make inference for either the entire
population or a biomarker indicated subgroup. Multiple-step inference methods
and simultaneous inference methods were presented. We also presented sequential
clinical trial designs that based on interim analysis to decide the subsequent use of
entire population or enrich biomarker-based subpopulations.

In the above multi-step inference methods, sequential tests are multi-step and
the decision in each step is binary, regardless of the number of hypotheses. As a
result, they are typically laid out in a framework of rejecting the null hypothesis of
no treatment effect either in the overall population or the subgroup regardless of the
specific components of composite alternatives, which may lead to a loss of power
and less accurate decisions. But sequential tests are widely used due to its ease of
implementation. The simultaneous tests are typically more powerful as well as more
complex and often require specialized software.
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With the rapid discovery of new biomarkers and development of drugs targeting
these biomarkers, the use of these inference methods for biomarker confirmative
trials will be increasing. It is an active research area for efficient designs to
address the challenges of biomarker-targeted confirmatory trials such as inferences
in subgroups and multiple comparison adjustment.
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Chapter 3
Data-Driven and Confirmatory Subgroup
Analysis in Clinical Trials

Alex Dmitrienko, Ilya Lipkovich, Aaron Dane, and Christoph Muysers

Abstract In this chapter we provide an overview of the principles and practice of
subgroup analysis in late-stage clinical trials. For convenience, we classify different
subgroup analyses into two broad categories: data-driven and confirmatory. The
two settings are different from each other primarily by the scope and extent of
pre-specification of patient subgroups. First, we review key considerations in con-
firmatory subgroup analysis based on one or more pre-specified patient populations.
This includes a survey of multiplicity adjustment methods recommended in multi-
population Phase III clinical trials and decision-making considerations that ensure
clinically meaningful inferences across the pre-defined populations. Secondly, we
consider key principles for data-driven subgroup analysis and contrast it with that
for a guideline-driven approach. Methods that emerged in the area of principled
data-driven subgroup analysis in the last 10 years as a result of cross-pollination of
machine learning, causal inference and multiple testing are reviewed. We provide
examples of recommended approaches to data-driven and confirmatory subgroup
analysis illustrated with data from Phase III clinical trials. We also illustrate
common errors, pitfalls and misuse of subgroup analysis approaches in clinical trials
often resulting from employing overly simplistic or naive methods. Overview of
available statistical software and extensive bibliographical references are provided.
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3.1 Introduction

Subgroup analyses are commonly performed throughout all phases of clinical
development. As any data analysis in a broad sense, they naturally fall into
exploratory (or hypothesis generation) and confirmatory.

In the early stages this will be to identify potential biomarkers which may help to
explain an enhanced treatment effect for future development, and in proof of concept
studies the aims of subgroup analysis may be more targeted in order to define the
patient population(s) to study in pivotal Phase III clinical trials.

For late-stage trials, confirmatory clinical trials subgroup evaluation is important
to be confident that the drug under study is effective for the entire patient population
studied. If this is not the case, and the drug effect is only apparent in a subset of the
overall population, that may need to be noted. Equally, if there is an enhanced effect
for one group of patients this may also need to be stated in the regulatory label.
Therefore, given the importance of any conclusions regarding subgroup analysis
at this stage of clinical development, it is important that the risk of making the
wrong conclusions regarding subgroup effects are well understood, and indeed this
is a topic specifically addressed by the EMA guidance on subgroup analysis (EMA
2014).

It is important to understand these risks, particularly because the rate of incorrect
identification of a differential treatment effect within a subgroup can be inflated
when many subgroup analyses are undertaken. In addition, given that these trials
are often not designed to detect subgroup differences, any evaluation of differential
treatment effects may miss detecting true differences due to low power. However, as
it is still necessary to understand possible subgroup differences, statistical methods
are required which provide a robust evaluation while addressing the dual issues of
the inflated risk of incorrect subgroup identification and of the low power to detect
true differences in treatment effect across subgroups.

During these later phase studies, the subgroups evaluated can be either intrinsic
factors (such as age, race, gender, severity and type of disease) or extrinsic factors
(such as environmental factors or standard of care differences such as the different
use of concomitant medications or differences in clinical practice regionally).

There are a range of reasons for performing subgroup investigation in late
stage trials, all of which require careful design and interpretation of the results in
order to be sure such interpretation appropriately accounts for the subgroup search
strategy when making any conclusions. The key types of subgroup investigation
often undertaken in confirmatory clinical trials are defined as follows:

• For patient subgroups with anticipated differential treatment effects, it is possible
to design a trial to investigate effects within specific subgroups. This can be
accomplished either by recruiting patients from a target subpopulation (e.g.,
biomarker-positive patients) or by defining several analysis populations (e.g., the
overall and biomarker-positive populations with an appropriate multiplicity
adjustment strategy to control the Type I error rate).
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• The assessment of a range of subgroups important for regulatory or clinical
purposes, where the aim is to show broad consistency with the overall trial
result. Such types of subgroup investigations are considered predominantly in
meta-analysis, e.g., in the context of an ISS (integrated summary of safety) or
ISE (integrated summary of efficacy) of a submission package for marketing
authorization. In this case it is also possible to determine the reproducibility
of subgroup effects across studies to help assess whether such effects are
real. However, it is often the case that a new therapy will make a regulatory
submission on the basis of a single pivotal trial. Thanks to recent developments
of statistical methodologies and the regulatory guidelines these investigations are
now increasingly considered within individual late-stage clinical trials. Formally,
strong control of the Type I error rate is not required in this setting but it
is still important to understand the Type I and Type II error rates to be sure
that appropriate conclusions are made regarding the subgroups of interest. For
this type of strategy, it is important to pre-specify the patient subgroups to be
explored, which will help design a subgroup selection strategy that appropriately
accounts for the number of subgroups investigated.

• A subgroup approach to address questions related to unanticipated (or unex-
pected) subgroup effects, or requests from regulatory agencies after the trial
has been completed. In this case it will be more challenging to account for all
subgroups explored but is still important to have strategies to address questions
such as these and maintain some discipline with respect to the subgroup selection
strategy.

• Last but not least, the presence of a rich set of data collected in the course
of clinical trials, which is often underutilized, calls for application of modern
methods of machine learning, which have been rarely used in the analysis of
clinical data. Such methods assume a rather broad context of candidate subgroups
defined by multiple biomarkers and their combinations. Interest in such analyses
is motivated, on one hand, by the desire of sponsors to salvage “failed” studies,
and, on the other, by recent growing interest in personalized/precision medicine.

In the following sections of this chapter we will clarify these broadly defined
types and refer to them as confirmatory, exploratory, post-hoc, and biomarker and
subgroup discovery, respectively.

Given the strong regulatory context, the gap between post-hoc (or subgroup
discovery) and confirmatory stages of subgroup analyses in clinical trials were
historically somewhat exaggerated and represented wildly different approaches and
practices. For exploratory analyses, little concern was given to careful planning and
pre-specification of the strategy, arguing that no control for multiplicity is needed
when evaluating subgroups for “internal decision making.” Confirmatory subgroup
analyses were performed with strong control of the Type I error rate and complete
pre-specification, often employing overly conservative multiple comparison proce-
dures.

Here we advocate for a more balanced approach based on the understanding that
whether exploratory or confirmatory, subgroup analysis should be always performed
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with a goal of decision making in mind. Therefore the risks and benefits should
be properly evaluated within a well-planned analytic strategy. As an example, an
“unconstrained” brute force subgroup search to assess subgroup effects in a failed
Phase III trial is not recommended. From a regulatory perspective, such effects
would be interpreted with extreme caution and it would be unlikely that they were
accepted for regulatory approval. Even for the purposes of exploratory analysis
aimed at hypothesis generation, caution is needed to ensure that future resources
are not invested based upon spurious findings driven by chance.

One may argue that the best way of avoiding misguided “chasing” of subgroups
would be through always employing prospectively planned confirmatory analysis
methods. However, there are many hurdles to using such approaches consistently in
the framework of subgroup analysis. The lack of prior knowledge about predictive
biomarkers for an investigational treatment also requires pre-planned exploratory
assessments. Even post-hoc analyses to examine the homogeneity of the results or
to identify subgroups with remarkably different efficacy compared to the comple-
mentary group require thorough planning. As a result, the different objectives in
combination with multiple hurdles have promoted the development of a significant
number of statistical methods for subgroup analysis, but also a significant number
of considerations in regulatory guidance documents. The inclusion of subgroup
analysis in regulatory guidance supports a more consistent assessment across
different applications, but cannot solve all problems. To avoid data dredging with
subgroup analyses, all guidelines indicate that the described approaches are either
exploratory in nature and interpret the results very cautiously, or there is a request
for pre-specified confirmatory approaches; e.g., controlling the familywise Type I
error rate.

When it comes to decision making in the regulatory context, simplified as
approval or non-approval, the typical scenarios with the right decision are an
approval when a therapy is truly effective, and a non-approval when a therapy is
truly ineffective. In addition to the classic false-positive and false-negative decision,
there is a risk especially in the situation of analysis of patient subgroups. A subgroup
that does not benefit from treatment might be overlooked. This would lead, after
marketing of the product, to unnecessary exposure of the drug, and thus, to a
potential risk of side effects without benefit for that patient subpopulation. The
reason for such a situation may be a heterogeneity that has not been detected, e.g.,
an overwhelming effect in another, much more favorable subgroup. In combination
with the non-benefitting subgroup, there might still have been an acceptable effect
for the overall patient population. The most desired result, i.e., the promotion of
the most advantageous subgroup and the contraindication for the non-benefitting
subgroup, would be missed. The corresponding counterpart to this risk is based
on a spurious subgroup and the erroneous exclusion of this subpopulation from
the product label due to the apparent lack of efficacy. Such a wrong decision is
certainly made more frequently in clinical trials with a large number of prospective
and/or post-hoc subgroup analyses without appropriate multiplicity adjustment. In
this case, the subpopulation will be deprived of an available beneficial treatment.
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In practice, a clear-cut decision can hardly be done based only on the observed
effect in subgroup analysis for one or the other patient population. However,
an appropriate benefit-risk assessment would limit the risks, either to withdraw
efficatious drugs from patient subpopulations or to protect patient subpopulations
from unnecessary exposure to an ineffective drug. Despite the fact that uncertainties
arise from small subgroups and the usually descriptive nature of the analyses in the
appropriate benefit-risk assessment, it is important to note that ultimately a decision
must be made that either includes or excludes the appropriate subgroup of patients.
Unfortunately, the level of correct vs. wrong decisions typically remains unknown,
as it cannot be quantified that more subjects are prevented from ineffective treatment
in this group compared to the number of subjects wrongly excluded from benefits.
In some cases, it might happen that additional post-hoc analysis or post-marketing
studies provide new evidence for a previous wrong or unclear situation.

The objective of this chapter is to introduce a broad range of topics related to
subgroup analysis in clinical trials that are divided into three relatively indepen-
dent parts that can be read separately: regulatory guidance, data-driven subgroup
analysis, and confirmatory subgroup analyses. Owing to the diversity of the topics
covered, we are targeting a diverse audience. While some readers may naturally
find it more useful to focus on the section(s) of their special interest and skip the
rest, we believe that many readers will benefit from learning about approaches that
until now may have not been on their “radar screen”. Indeed, from our literature
review we found that, as was noted by Leo Breiman in his famous article on two
cultures in statistical modeling (Breiman 2001), there are still boundaries separating
statisticians trained in different cultures, e.g., statistical/machine learning versus
hypothesis testing. An important goal of this review chapter is to help overcome
these barriers by sharing the wealth of knowledge and methodologies developed
within the disparate communities of multiple testing, causal inference and statistical
learning.

The rest of chapter is organized as follows. Section 3.2 contains an overview
of regulatory guidance for subgroup analysis. Section 3.3 provides a discussion of
key principles of data-driven subgroup analysis following the taxonomy of methods
from Lipkovich et al. (2017a) that are illustrated with a case study from Phase
III trial with time to event outcome. Section 3.4 gives an overview of designs
and multiple comparison procedures that are encountered in confirmatory subgroup
analyses. We conclude the chapter with a brief discussion in Sect. 3.5.

3.2 Overview of Regulatory Guidance for Subgroup Analysis

This section is organized as follows. First, we briefly describe the global ICH
guidelines and illustrate some aspects of subgroup analysis for a Multi-Regional
Clinical Trials (MRCT) using a case study, PLATO. Then we divide the rest of the
overview into subsections covering guidelines in three geographical regions: United
States and Europe with the Food and Drug Administration (FDA) and European



38 A. Dmitrienko et al.

Medicines Agency (EMA), respectively, as well as the Chinese and Japanese
regions represented by the China National Medical Product Administration (NMPA)
(formerly known as the China Food and Drug Administration, CFDA, and the State
Food and Drug Administration, SFDA) and Pharmaceuticals and Medical Devices
Agency (PMDA), respectively.

Apart from formal guidance documents from health authorities, various pub-
lished articles were developed out of the surroundings from health authorities or
statisticians explicitly dealing with the regulatory context of subgroup analyses.
The spirit of certain guidance text dealing with subgroup analyses was influenced
or afterwards explained in more detail. For instance, in Rothwell (2005), Sun et al.
(2010), Carroll and Le Maulf (2011), Alosh and Huque (2013), Hemmings (2014),
Koch and Framke (2014), Koch and Schwartz (2014), Wang and Hung (2014) and
Alosh et al. (2015), Alosh et al. (2016).

3.2.1 International Framework: ICH Guidelines

Taking the regulatory framework across all regions into account, it is appropriate to
have a closer look into documents of The International Council for Harmonisation of
Technical Requirements for Pharmaceuticals for Human Use (ICH, https://www.ich.
org/home.html). Only a few aspects of subgroup analysis are mentioned in the ICH
E9 Statistical Principles for Clinical Trials guidance (1999). As a general statement,
“the subjects in confirmatory trials should more closely mirror the target popula-
tion,” which certainly sounds reasonable. Nevertheless, when more sophisticated
trial designs with adaptive approaches and enrichment strategies are considered,
it raises the question of how closely the initial trial population should match
the final prescribed population because of adaptations that take place after trial
planning or even after trial start. In the later Sect. 3.3.4, “Adaptive designs in multi-
population trials,” especially adaptive trials with data-driven subpopulations, offer,
per definition, the option to deal with a flexible description of the trial population.
Furthermore, the ICH E9 guideline is requesting the balance between most flexible
inclusion and exclusion criteria for a broad target population and “maintaining
sufficient homogeneity to permit precise estimation.” Here it is reasonable to clarify
which level of homogeneity translates into “sufficient homogeneity.” In practice,
decisions regarding homogeneity should be made on a case-by-case basis, with
an interdisciplinary discussion of relevant factors that define the population. It is
recommended to have a distinct reflection of this discussion in the trial protocol.
However, the statistical analysis after the conduct of the trial might indicate
heterogeneity for the investigated target population when subgroup analyses are
made.

For the concrete analysis of subgroups, clear warning about careless usage are
provided. Section 5.7 of the ICH E9 guidance (1999) stated that “when exploratory,
these analyses should be interpreted cautiously; any conclusion of treatment efficacy
(or lack thereof) or safety based solely on exploratory subgroup analyses are

https://www.ich.org/home.html
https://www.ich.org/home.html
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unlikely to be accepted.” Furthermore, Alosh et al. (2016) mentioned, in the
same context, “the danger of carrying out too many post-hoc analyses and over-
interpreting their findings. Subgroup analyses that are not supported by a scientific
rationale can lead to spurious findings that are prone to bias and consequently
may lead to misleading interpretations.” These statements are based on scientific
rationale and on many examples where obvious chance findings were picked out of
numerous unadjusted post-hoc analyses. However, Alosh et al. (2016) state, “while
concerns about post-hoc subgroup findings are justified, there are also many success
stories where findings from a subgroup analysis were critical for discovering new
treatments or for revising the population for treatment use after learning that the
treatment is beneficial for only a certain subgroup.” This can be considered as
another specific situation described in Section 6.5 of the EMA subgroup analysis
guideline (EMA 2014). As also stated in this guidance document, it can be doubtless
categorized as a rare situation. Nevertheless, it seems that with the availability
of large computing capacity, combined with thorough consideration of a clinical
rationale, the exploratory investigation offers additional insights. This also follows
the trend for more sensitivity analyses.

An extension to the ICH E9 guidance is under preparation (“Choosing Appro-
priate Estimands and Defining Sensitivity Analyses in Clinical Trials” ICH 2014).
Even though this initiative is primarily triggered by the recent developments
in the handling and prevention of missing data, it supports some ideas of the
EMA approach of gaining more information from sensitivity analyses. The final
concept paper states that “it has become standard in all regions to pre-specify a
primary statistical analysis for efficacy, but it has also been common practice to
investigate the extent to which the outcomes of other approaches to the analysis
lead to consistent findings.” This leads directly to a more extensive investigation
of subgroup effects considering factors for regional and/or ethnical factors. The
different regions take care for this aspect also in their own guidance documents,
as described in the following subsections. Two other ICH guidelines, namely E5
and E17, play a relevant role in this context.

The ICH E5 Ethnic Factors in the Acceptability of Foreign Clinical Data
(1998) provides a general framework for a faster and more cost-effective approach
to worldwide drug development. The idea is to avoid repetition of the entire
development program in a new region if no intrinsic and extrinsic ethnic differences
argue against bridging the data to show consistency across regions. Nevertheless,
the guidance text does not explicitly describe how to perform this consistency
assessment. Apart from various publications in that area, which go beyond the usual
framework of subgroup analyses, the Japanese Health authorities PMDA provide
further information on their Regulatory Science internet homepage (https://www.
pmda.go.jp/english/index.html).

The assessment of consistency across regions is meanwhile regulated in the
finalized ICH E17 guidance (2017) on general principles for planning and design
of multi-regional clinical trials (MRCT). The approaches are dealing with the
achievement of internal consistency in one global trial, in contrast to a separate
local trial for external consistency. Although this guidance did not make explicit

https://www.pmda.go.jp/english/index.html
https://www.pmda.go.jp/english/index.html
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recommendations regarding statistical methods, it requests that “subgroup findings
should take into consideration biological plausibility, internal consistency (e.g.,
similar patterns of regional variability observed for other secondary endpoints)
and/or external consistency (e.g., similar patterns observed in another clinical trial of
the same investigational treatment), the strength of evidence, the clinical relevance,
and the statistical uncertainty.” Koch and Framke (2014) highlighted aspects for the
analysis of treatment effect across regions in multi-regional clinical trials. In this
paper, different constellations of heterogeneity and homogeneity in (non-)significant
trials are discussed against the backdrop of the regulatory decision-making process.
Some of these thoughts go beyond the multi-regional context and can be certainly
generalized for other single-region trials.

3.2.2 Multi-Regional Clinical Trials: Case Study

The PLATO trial was a randomized, double-blind, multicenter, multinational, Phase
III trial in more than 18,000 patients, described in Mahaffey et al. (2011). The
primary analysis intended to show superiority of ticagrelor vs the active comparator
clopidogrel in patients with an acute coronary syndrome. The endpoint for the
primary analysis was a composite endpoint consisting of death from vascular causes,
myocardial infarction, and stroke.

While superiority of ticagrelor over clopidogrel could be established through the
primary analysis (with the hazard ratio of 0.84), an important pre-specified subgroup
analysis triggered discussions due to heterogeneous results. The investigational
centers were clustered into four regions: Europe, Middle East, and Africa with
almost 75% of all patients; Asia and Australia with roughly 9%; Central and South
America close to 7%; and finally North America with almost 10%. All regional
subgroup analyses (with the hazard ratios ranging between 0.80 and 0.86) except
the North American subgroup were roughly consistent with the primary analysis.
The North American subgroup demonstrated a more favorable effect of the active
comparator (clopidogrel) versus the investigational treatment (ticagrelor) with the
hazard ratio of 1.25.

It is worth mentioning that the pre-planned regional subgroup analysis was
descriptively fixed in the statistical analysis plan among more than 30 other factors
that defined the other subgroup analyses. No adjustment had taken place since
these subgroup analyses were only descriptively planned. An interaction test for
treatment and the four regions yielded a p-value which was only slightly below
5% (p = 0.045). Nevertheless, these findings initially led the FDA not to approve
the investigational ticagrelor. Later on, and based on additional data analysis by
independent statistical groups, it was concluded that the trial was appropriately
conducted and that the observed heterogeneity might have been a chance finding
because of a long list of pre-specified unadjusted subgroup analyses. However,
while chance could not be ruled out entirely, the outcome appeared substantially
relevant, since a reasonable rationale could be established. The appearance of the
regional heterogeneity was potentially a manifestation of an underlying interaction
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with concurrent aspirin medication. When use of lower dosages of aspirin were
analyzed, ticagrelor actually demonstrated a benefit in the United States population
(the vast majority of the North American patients in the trial), similar to that seen
in the other regions, e.g., in Mahaffey et al. (2011). Finally, the FDA approved
the investigational ticagrelor, whereas high-dose aspirin was contraindicated. More
details about the statistical aspects of the PLATO trial can be found in Carroll and
Fleming (2013).

In summary, MRCTs can provide major advantages compared to small regional
trials, e.g., higher recruitment opportunities with greater statistical power, investiga-
tion of homogeneity within one larger trial in contrast to homogeneity investigation
across different trials, faster submission, and availability of innovational treatments
on the market. On the other hand, heterogeneity might be more easily hidden in
larger trials where intrinsic and extrinsic factors were not appropriately taken into
account. When not analyzed, this heterogeneity is just simply overlooked. However,
long lists of factors to be used for reckless and unadjusted subgroup analyses
increase the likelihood for false positive signals.

While the PLATO trial can be considered as a relevant multi-regional trial
based on the ICH definition, it is also affected by different aspects of the regional
regulations. Apart from the advantages of an MRCT to solve or at least describe
problems, the same problems can occur in a large regional study. In order to counter
unexpected pre-planned or post-hoc results due to a very long list of analyzed
factors, it is advisable to discuss all relevant factors with a cross-functional team
in advance to identify the most relevant factors be evaluated at the analysis stage.
This approach helps remove the need for a long list of factors to explore and the
probability of a false signal can be reduced by focusing on a smaller set of factors.

Section 3.2.4 describes different scenarios that are fundamental for the dedicated
subgroup guidance document issued by the EMA (EMA 2014). The PLATO trial
can be considered as an interesting case study for these scenarios even though the
guidance is not intended for different scenarios in parallel for one study. While
consistency could be not established for the different regions in this trial and, in fact,
the North American population even demonstrated a directionally different result,
the trial’s credibility could have been questioned if regulators followed the decision
tree presented in Annex 1 of the EMA subgroup guidance. Most probably, due to
the clear consistency across all other regions, the issue could be restricted to the
North American region. A clear separation of subgroups listed in the study protocol
into important and rather exploratory subgroups would have been supportive in the
discussion of the unfavorable results in the PLATO trial when the rules defined in
the decision tree are applied.

When focusing on the North American population alone, it is worthwhile to
consider the second scenario presented the EMA guidance. This is accompanied
again by a decision tree described in Annex 2. Since the Aspirin group was
not a-priori considered, it would have required a strong compelling plausibility
explanation according to the EMA guidance and indeed it required a long pathway
for the FDA approval in the relevant subgroup. For example, Carroll and Fleming
(2013) described extensive additional analyses to provide a convincing reliable post-
hoc explanation of the subgroup findings in the trial.
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3.2.3 FDA Regulations

Despite the fact there is still no dedicated guideline on subgroup analysis available
from the FDA, this health authority already considers subgroup analysis very
thoroughly. More recently, the FDA issued the guidance on “Enrichment Strategies
for Clinical Trials,” FDA (2019) with a focus on confirmatory analyses controlling
the familywise error rate. The Type I error rate for the test can be shared between
the corresponding enriched subgroup and the total trial population. In general, this
guidance deals mostly with the composition of the trial population with respect to
prognostic and predictive factors to support personalized medicine approaches in
clinical trials. Remarkably, consistency assessments are considered predominantly
in the context of post-hoc analysis rather than in prospective planning. This appears
to be a major difference compared to the EMA approach in the EMA draft guidance
(2014), and as discussed in Dmitrienko et al. (2016) and Hemmings (2015).

Since specific statistical methodologies and approaches are rarely recommended
in guidance documents, it makes sense to review additional recent publications by
the authors of the white paper. This includes Alosh and Huque (2013) and Wang
and Hung (2014). For the approach of prospective confirmatory subgroup analysis,
Alosh and Huque (2013) defined a criterion for concluding that the treatment
effect in the least-benefitted (complementary) subgroup exceeds a certain minimum
threshold. The criterion is based on testing the effect in the complementary
subgroup and showing that the estimated treatment effect in the complementary
subgroup is in the right direction. To compensate a lower statistical power, an
alpha level higher than the usual two-sided 0.05 is acceptable and might even
be up to 0.5 for a safe treatment. This technology formalizes a more objective
criterion to assess consistency. On the other hand, the exact choice of the so-called
consistency alpha might still be a debatable question. In addition, the approach
would be difficult to apply outside the specific situation of the complementary
subgroup in a confirmatory subgroup analysis. Wang and Hung (2014) introduced
an approach based on the interaction-to-overall-effects ratio, which might lead, in
certain cases, to a recommendation for a label restriction. Apart from the specific
statistical approach to describe the likelihood of a baseline covariate that may be
predictive of a treatment effect in a subgroup, they provide general regulatory
review recommendations. The recommendations include a decision tree concept,
which, among others, result in prospective design planning or post-hoc analysis
with corresponding statistical measures.

In general, all trials should report descriptive statistics for outcomes of interesting
subgroups, including at least a point estimate and an estimate of variance or standard
deviation. This holds true independent from the corresponding subgroup size and
the potentially limited statistical power or conclusion. More specifically, the FDA
Guidance on the Evaluation of Sex-Specific Data in Medical Device (2014) always
request gender-specific subgroup analyses, where the data should be analyzed for
clinically meaningful gender differences in the primary and secondary effectiveness
and also safety endpoints.
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Most recently, the FDA has released a guidance on the “Evaluation and Reporting
of Age-, Race-, and Ethnicity-Specific Data in Medical Device Clinical Studies,”
(2017a) which also applies to post-approval trial submissions and postmarket
surveillance trials. The primary goals are structured into: (1) diverse participation
which requires collection and consideration during the trial design stage of relevant
covariates, (2) consistent analysis based on analyses of subgroup data, considering
especially demographic data when interpreting overall trial outcomes, and (3) trans-
parency with specified expectations for reporting demographic specific information
in summaries and labeling.

Albeit the above-mentioned guidance documents trace back to different FDA
divisions, e.g., drugs, biologics or medical devices, it is a good idea to consider the
logic behind the guidance and reflect it for other areas, unless it is, content-wise,
clearly related to a specific division’s area.

The FDA has established a working group within the Office of Biostatistics,
which intended to prepare a white paper to provide guidelines for subgroup analysis.
The concept was presented in 2014 at an EMA workshop on the investigation of sub-
groups in confirmatory clinical trials, Russek-Cohen (2014) and published by Alosh
et al. (2015). As an outlook within the white paper, the following specific topics
were mentioned: Bayesian subgroup analyses, including shrinkage concepts, non-
inferiority margin aspects, and personalized medicine, subgroup misclassification,
and safety considerations, such as detection of signals in subgroups or contribution
to benefit risk assessments.

3.2.4 EMA Regulations

Following discussions across various health authorities, and with academic and
industry representatives, the EMA compiled guidance for subgroup analyses parallel
to the FDA’s working group (Alosh et al. 2015), FDA enrichment guideline (FDA
2019), and other initiatives. In 2014, the EMA released a draft guideline on the
investigation of subgroups in confirmatory clinical trials (EMA 2014). While the
guideline has a focus on planning and prospective analysis aspects in the setting of
a confirmatory (pivotal) trial, it also requests the investigation of (in)consistency
and homogeneity (heterogeneity) in a descriptive manner. An important aspect
of the guideline is the discrimination of confirmatory versus exploratory analysis
and their relevance under certain circumstances. A structured approach for such
circumstances is reflected in the following scenarios, which are described in Sec-
tions 6.3–6.5 of the guidance document. This structure is not only a recommendation
for trial sponsors in how to plan and conduct clinical trials, but also to provide
assessors in European regulatory agencies with guidance on assessment of subgroup
analyses.

Scenario 1 intends to establish credibility in a situation where the available
clinical data are generally favorable and consistency should be considered. The
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focus is here to collect circumstantial evidence of consistent efficacy and safety
across the relevant subgroups.

Scenario 2 demonstrates the situation with less convincing clinical data, but
borderline results in certain subgroups. This might be the case when the statistical
test is formally positive, but clinically not sufficiently stable across the whole trial
population. Here, the intention is to establish credibility and find a subgroup with
clinically relevant efficacy or improved risk-benefit. In this scenario, the demand for
concrete evidence is, compared to scenario 1, even greater. This comprises issues of
multiplicity and selection bias.

Scenario 3 describes the rather exceptional case in which the clinical data failed
to establish statistically evidence, but there is, e.g., the medical need in identifying
a subgroup, which has a relevant positive treatment effect.

Even though the identification of the relevant subgroup in Scenario 3 is channeled
towards one specific subgroup, the question remains which subgroups need to be
considered and analyzed for Scenario 1 and 2, i.e., screening across all “relevant”
factors for consistency in scenario 1 and identifying within all “relevant” factors
a subgroup with improved benefit risk in Scenario 2. Collecting all information
from the guidance text which subgroup types can be considered “relevant,” a
remarkably long list evolved. This comprises subgrouping factors used for stratified
randomization, demographic factors, including genomic factors, factors that might
be predictive for different response to treatment, such as stage, severity or phenotype
of disease, use of concomitant medications, and possibly region, country, or
center, and clinical characteristics, and complement subsets of investigated factors.
This implies, obviously, an expectation for the sponsor to consider a huge list
of parameters to perform a thorough characterization of subgroup effects. The
characterization of the treatment effects consistency across all defined subgroups
can consequently not be done in a confirmatory approach with corresponding
multiplicity adjustments, but is at least, in major parts, based on an exploratory
approach. In the case of a more homogenous trial population and consistent
explorative results, it should not be a particular challenge. Otherwise, the less
homogenous the trial population, the greater the number of investigations required
to explore the degree of heterogeneity. In the best case, a prospective plan for
suspicious subgrouping factors was set up.

The above-mentioned decision trees in Scenarios 1 and 2 may be applied to
several covariates from the huge list described in the previous paragraph. Thus, it
is important to recognize that the probability of an incorrect conclusion increases
remarkably. This is addressed in the EMA guideline recommending to predefine
key covariates for which biological plausibility of an interaction can be expected,
whereas the remaining candidate covariates would be treated as “truly exploratory.”

The EMA guideline (2014) refers to several previously issued guidance doc-
uments, since it describes principles and does not regulate a specific statistical
methodology for the analysis of the treatment effect in subgroups of the trial pop-
ulation. Apart from straightforward tools for consistency assessments, e.g., forest
plots with subsequent visual inspection, strict statistical principles in conjunction
with subgroup analysis were considered in earlier EMA guidelines. Specifically the
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following guidance documents reflect largely the current state-of-the-art statistical
concepts: Draft points to consider on multiplicity issues in clinical trials (EMA
2017), Guidance documentation for the consideration of adjustment for baseline
covariates (EMA 2015) and Reflection paper on methodological issues in confirma-
tory clinical trials planned with an adaptive design (EMA 2007). In contrast to this,
the draft guideline on the investigation of subgroups in confirmatory clinical trials
(EMA 2014) deals predominantly with the conceptual aspects of subgroup analysis.

While the FDA also mentions exploratory subgroup analysis in their guidance
documents as outlined in the previous section, the extent of such analysis is
much more prominent in the European guideline. The differences in both regional
approaches are condensed in Hemmings (2015). It seems that the suspicion behind
the EMA guideline (2014) is a potential treatment interaction on the investigated
factors, which can never be assumed to be non-existent and therefore triggers a large
list of factors to be considered in an all-embracing explorative set of consistency
checks. As pointed out by Hemmings (2015), the topic goes beyond a purely
statistical problem, and is set into the context of licensing decisions and putting
a structure around the design, analysis, and interpretation of subgroup analyses that
informs and facilitates risk-benefit decision making. His statement, “If we do not,
or if we do not know, it may be misleading to assume that we do!” is apparent when
the guideline emphasizes, in its executive summary, that ignoring subgroup analysis
is not an option, and not sufficient to dismiss all subgroup findings that indicate
heterogeneity of response as being spurious.

Following the attitude of the EMA guideline (2014) going beyond the statistical
framework, and considering the assessment also of the biological plausibility, it
consequently requires thorough interdisciplinary discussions. As described above,
it might necessitate not only the trial data, but also other circumstances, such as
historical data. These discussion should be reflected in the trial protocol and analysis
plan as part of the planning stage, but also in the end of the clinical trial report, where
the trial results are discussed.

Further reflections on regulatory considerations in late-stage trials with pre-
planned and post-hoc subgroup assessments are highlighted in Hemmings (2014)
and Koch and Framke (2014). Both publications are available in the special issue
of Journal of Biopharmaceutical Statistics on subgroup analysis in clinical trials
guest-edited by Dmitrienko and Wang (2014). The ideas presented in these papers
are consistent with the general framework presented in EMA (2014). In addition to
Hemmings (2015), he provided, in 2014, an overview of statistical and regulatory
issues with respect to three stages; namely, the trial planning, analysis planning,
and reporting stages. This article covers a broad spectrum of topics and provides,
beside a debate, also practical recommendations. The background information
presented in this article sheds additional light on the key principles of the EMA
guidance on subgroup analysis, and helps explain why consistency assessments play
a predominant role in that guidance document.
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3.2.5 China National Medical Product Administration (NMPA)
and Japanese Pharmaceuticals and Medical Devices
Agency (PMDA) Regulations

Regulatory guidance documents, especially from Chinese and Japanese health
authorities, are closely connected to the ICH E5 guideline (Ethnic Factors in the
Acceptability of Foreign Clinical Data) (ICH 1998). The formalization in these
guidance texts provides a rough concept to avoid simple use of foreign trials, and
transfers the results to the corresponding region. It rather regulates the bridging
process, and thereby addresses intrinsic and extrinsic ethnic differences. This is in
line with the fact that the China National Medical Product Administration (NMPA)
and the Japanese Pharmaceuticals and Medical Devices Agency (PMDA) have
certainly a much stronger focus on the evaluation of ethnic differences. However,
the ICH E5 guidance does not describe concrete statistical methodologies. Also,
it was suffering from a time-consuming successive conduct of clinical trials, since
the bridging concept is based on separate trials, rather than subgroup analysis in
one single trial of corresponding Asian and non-Asian populations. This procedure
results in a remarkable time delay of market access to the target patients.

With the bridging of safety and efficacy from other regions, such as the US or
Europe based on ICH E5 (1998), the experiences have been steadily accumulated
with respect to how Japanese and foreign data can be appropriately evaluated. On
the other hand, it resulted in a relevant time lag in approving experimental treatments
for Japanese patients, as outlined in PMDA (2007). To enable simultaneous investi-
gation of Japanese patients, and subsequently an earlier submission and potential
approval, large multi-regional clinical trials are proposed. A reasonable size of
the subgroup of Japanese subjects is expected in such multi-regional clinical trials
to support subgroup evaluations to demonstrate consistency with the overall trial
population. Again, and according to the ICH E9 (1999), the question of sufficient
homogeneity is a precaution. A global multiregional clinical trial including Japanese
subjects should be only conducted if homogeneity can be assumed.

To clarify what a reasonable size of Japanese patients in such a multi-regional
trial means, the PMDA (2007) recommends calculating a sample size considering
the number of regions to be included, the scale of trial, target disease, and the
relevant ratio between the total and Japanese subject numbers. To obtain consistent
results between the entire trial population and the Japanese population when
designing such a trial, taking, as an example, a placebo-controlled trial using
quantitative endpoints, the following two methods are defined. The first method
requires a sufficient number of Japanese subjects to show that at least half of the
overall effect is retained in the Japanese subgroup. The second method requires a
sufficient number of Japanese subjects to show the same positive trend as in the
overall population. Since no method has been currently established as generally
recommended, it is worthwhile to reflect some publications on this topic. Important
statistical considerations such as sample-size requirements, as well alternative
criteria, are discussed in Carroll and Le Maulf (2011). Apart from the standard
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ethnic factors, there is a trend toward considering other background factors or
influential factors that need to be evaluated and discussed as part of subgroup
investigation. Ikeda and Bretz (2010) proposed an alternative method with better
operating characteristics than the current approaches for the first method, with
thorough formalized aspects accompanied with simulation studies. For the second
method, Liu et al. (2016) investigated the specific situation of discrete endpoints
approaches with mixed models. It should be mentioned that the proposed methods
are exemplary for a quite often but also concrete situation, and can be considered
as a first guidance; eventually, a consultation of the PMDA health authority is
recommended.

As supplemental explanation to the “Basic Principles on Global Clinical Trials,”
the PMDA (2012) released the reference cases to encourage Japanese subject
participation in global trials. Hirakawa and Kinoshita (2017) provides a broad
overview of such global trials with practical experience. They investigated the
proportion of Japanese patients in MRCTs and further compared the efficacy results
from the overall population to that of the Japanese population. This provides an
impression of encouragement after the PMDA (2007) initiative.

Depending on the specific circumstances, different trial types in local Chinese
population are requested from NMPA (formerly CFDA, until 2013). The circum-
stances are basically the treatment approval status in other regions, which trigger
a thorough investigation of the treatment effect in Chinese population. The desired
replication of the overall treatment effect in the Chinese subgroups is described in
“Provisions for Drug Registration” (CFDA 2007). In 2016, the NMPA published
a draft with a remarkable revision of this guidance predominantly focusing on
fundamental changes in the administration of the treatment approval process.
Nevertheless, it comes without any additions to the statistical aspects of subgroup
analysis or, more specifically, consistency assessments. The NMPA advice often in
other documents includes references to “consistency assessments” comparable to
the EMA guidance (2014) on subgroup analysis. In 2015, the NMPA released a
guideline on International Multicenter Clinical Trials (IMCTs) (NMPA 2015). The
intention was to define the requirements for IMCTs involving Chinese sites and
subsequent analysis of subgroups of Chinese subjects, compared to the overall trial
population, to investigate the consistency of treatment effects.

3.3 Data-Driven Subgroup Analysis

3.3.1 Key Principles of Data-Driven Subgroup Analysis

The term “exploratory subgroups analysis” is often used to cover a variety of situa-
tions when subgroups are evaluated without strictly controlling the Type I error rate.
In this section, we will refer to “exploratory subgroup investigation” in a broad sense
thus covering any data-driven subgroup analyses where the set of hypotheses tested
is random rather than fixed/pre-specified (see a typology of different data-driven
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analyses in the next section). The problem of subgroup selection is a special case of
a more general problem of model selection. In this situation, an additional challenge
is that the modeling targets the causal treatment effect which is unobservable at the
individual patient level except with a cross-over design.

The key principles of data-driven subgroup analysis can be derived from the
fields of machine learning, causal inference and multiple testing were the novel
method of subgroup/biomarker evaluation originated (a detailed discussion of these
topics can be found in Lipkovich et al. 2017a, 2018). The principles include

• Applying complexity control to prevent data overfitting and selection bias, e.g.,
bias due to selecting the best patient subgroup from a large set of candidate
biomarkers (patient characteristics) and associated cutoffs. Tuning parameters
controlling the subgroup search process often need to be determined in a data-
driven fashion, e.g., via cross-validation.

• Evaluating the Type I error rate for the entire subgroup search strategy, e.g., by
using resampling under the null hypothesis of no subgroup effects. Subgroup
analyses are often performed in clinical trials using a multi-stage strategy as
described in the Introduction where a multiplicity correction is applied to the
last stage but is not applied at earlier stages.

• Obtaining “honest” estimates of the treatment effect within identified subgroups,
expected if evaluated in an independent (future) data set. In the absence of
independent data this can be approximated by using resampling methods or
Bayesian model averaging/Empirical Bayes. Again, uncertainty associated with
the subgroup identification should be taken into account.

3.3.2 Types of Data-Driven Subgroup Analyses

Following the framework in a survey of current industry practices (Mayer et al.
2015) we consider the following three types of data-driven or exploratory (in the
broad sense) subgroup analyses in clinical trials:

• Exploratory (in the narrow sense).
• Post-hoc.
• Biomarker and subgroup discovery.

This taxonomy is not prescriptive but descriptive reflecting current clinical
practice (and language) rather than what may be desired in a “perfect world.”

Exploratory Subgroup Analysis (in the Narrow Sense) This includes strategies
specified in the exploratory analysis section of statistical analysis plans. The number
of evaluated biomarkers is relatively small, typically limited to known prognostic
variables (some of them are included as stratification covariates in the primary
analysis). Often it is conducted using multi-stage strategies. For example, a subset
of biomarkers is selected by fitting separate regression models with one biomarker
at a time and comparing the biomarker-by-treatment interaction p-value with an
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arbitrary pre-specified cutoff. Then each selected continuous biomarker is examined
further by choosing an optimal cutoff to define patient subgroups. Therefore,
although the candidate biomarkers are pre-specified, the selection of subgroups
is only partially pre-specified owing to the data-driven selection of the cutoffs.
The Type I error rate is typically controlled only for some elements of the multi-
stage strategy (e.g., selection of the biomarker-specific cutoffs and ignoring the
multiplicity due to multiple candidate biomarkers). While this description reflects
the existing practices, full control of multiplicity could have been achieved by using
resampling methods (e.g. replicating entire subgroup search strategy on each sample
drawn from the null distribution).

Post-hoc Subgroup Analyses This covers subgroup investigations that are unantic-
ipated prior to data unblinding and therefore are not pre-specified in a statistical
analysis plan. Typically, these are subgroups with unanticipated post-hoc findings
after data unblinding that may have trigged regulatory inquiries or subgroups that
raise regulatory or sponsor’s concerns after approval of an investigational treatment.
The Type I error rate is typically not controlled or only partially controlled within
the selected subgroups (ignoring the fact that they were chosen post-hoc, in a data-
driven manner). Although the evaluation of subgroups may appear to be limited to
pre-specified subgroups, the set of subgroups is conditional on post-hoc findings
and is data-driven in this sense. For example, if a certain country showed unusually
small or large treatment effect, an analysis shrinking the country effect towards a
common mean can be entertained, ignoring a multitude of other covariates where
heterogeneity in treatment effect was not found. Although it is possible to account
for the multiplicity within the subgroup identified (for example, by taking account of
the number of countries evaluated), this does not account for the post-hoc nature of
the initial subgroup identification. As a result, methods which can somehow reflect
the post-hoc nature of the initial identification would be valuable. A somewhat
different situation may occur when a post-hoc finding is in regards to a treatment-
related safety effect where, contrary to efficacy findings, there is a tradition to avoid
any multiplicity adjustment as “anti-conservative.” However, as with any signal
detection, it is important to attempt to understand how likely we are to see a given
safety signal by chance given the number of safety variables we have looked at, as
this could help us interpret the result.

Biomarker and Subgroup Discovery This includes data mining of large sets of
available candidate biomarkers and is not limited to those anticipated as potential
predictors prior to data unblinding. Traditionally, false positive rates are not
controlled and external validity is established using cross-validation or replication
based on independent data sets. However, some form of the overall Type I error
rate control or the false discovery rate control can be incorporated (this approach is
emphasized in this chapter).

Some features distinguishing different subgroup analyses discussed above are
reflected in Rows 2–4 of Table 3.1. The first row presents confirmatory subgroup
analyses (as a “limiting” case when subgroup selection is not data-driven) which
will be discussed in Sect. 3.4.
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Table 3.1 Types of subgroups analyses in clinical trials

Subgroup
analysis type

Strategy
(Preplanned/
Post-hoc)

Multiplicity
control
(Yes/Partially/No)

Data scope
(Broad/Narrow)

Subgroups
(Pre-specified/
Data-driven)

Confirmatory Preplanned Yes (often
ensuring the
strong Type I error
control)

Narrow
(limited to
subgroups
previously
identified)

Pre-specified

Exploratory Preplanned Partially (only
some elements are
controlled)

Narrow
(limited to
pre-specified
biomarkers/
subgroups)

Pre-specified
(often up to
unknown cutoffs)

Post-hoc Post-hoc Partially (controls
for multiple
testing among
subgroups selected
post-hoc)

Narrow
(limited to
biomarkers
became known
after data lock)

Pre-specified
(after
“unanticipated”
subgroups
identified)

Biomarker/
subgroup
discovery

Preplanned Partially (often
controls Type I
error in weak
sense or FDR)

Broad (learning
from a large set
of biomarkers)

Data-driven
(learning from
the data)

3.3.3 “Guideline Driven” Versus Data-Driven Subgroup
Analysis

Subgroup analysis in the context of clinical trials has been a controversial topic as
a potential tool that may be used by sponsor for making unsubstantiated efficacy
claims. Many authors made a point about the inflation of Type I error rates as
a result of “undisciplined” or haphazard subgroup analyses typically followed a
failed primary analysis. To promote principled subgroup analyses some authors
came up with checklists of good practices or guidelines that if followed would
assure integrity in subgroup analyses and prevent discovering false subgroups. For
example, Brookes et al. (2001) provides a list of 25 recommendations, Rothwell
(2005) proposed a guideline with 21 rules, Sun et al. (2010) listed the existing
7 plus 4 additional criteria for assessing credibility of subgroup analysis. The
general theme in these rules is summarized below along with some critical
points.

• “Subgroups should be pre-specified.” While allowing application of well-
established multiple comparison procedures (MCP), this does not fit into
discovery spirit of statistical science.

• “Subgroups should be biologically plausible.” This is obviously one of the most
important pre-requisites; however, it is not often the case that the biological
mechanism driving the heterogeneity of treatment effects is known in advance.
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• “All significance tests should be multiplicity adjusted.” While appealing in
general, one should bear in mind that many classical MCP are overly conservative
and have low power. The key is how to combine efficient subgroup selection with
appropriate MCP. A popular option to improve power is to provide some form of
multiplicity adjustment, but use more liberal Type I error rates. For example, it is
often recommended to use a significance level of 0.1 when testing for biomarker-
by-treatment interactions, as the interaction test has notoriously low power.
While this strategy may be particularly appealing in a more confirmatory setting,
any improvement in power comes at the cost of greatly increased Type I error.
A more powerful procedure could be entertained by incorporating multiplicity
adjustment not after selection but rather as part of selection/estimation. As an
example, using shrinkage estimators such as lasso may result in selecting a
subgroup different from the apparent winner, which will pay-off by requiring
a lesser degree of post-selection adjustment. Note that significance testing for
subgroup effects should still account for model selection, e.g. via lasso, which
became possible thanks to recent advances in post-selection inference (see, for
example, Lee et al. 2016; Taylor and Tibshirani 2017).

• “No testing in a subgroup unless the interaction test is significant.” The idea
that the interaction test be used as a gatekeeper is just one example of possible
search strategy which has low power; also there are many ways to operationalize
interaction testing when the biomarkers are continuous (e.g. by considering
interactions of treatment with many subgroup indicators that can be created by
dichotomizing a continuous biomarker or using other options for non-parametric
modeling of treatment by covariate interactions).

• Sometimes: “No testing in a subgroup unless the overall effect is significant.”
This does not agree with the spirit of personalized medicine, as the experimental
treatment may be not for everyone. Rather than using a test for the overall
treatment effect as a “gatekeeper,” some forms of shrinkage towards the overall
treatment effect may prove more reasonable.

• Finally, a common guideline is to “interpret the results with caution” which
is also hard to operationalize. Clearly, lack of pre-specification often causes
concerns, and rightfully so. For example, subgroup findings based on a large
set of candidate covariates would intuitively be considered prone to model
selection error. However, as stated in the first bullet, complete pre-specification
of hypotheses removes the discovery element from statistical science.

The EMA guideline on subgroup analysis (EMA 2014) provides useful points
to consider when planning subgroup investigation activities. Briefly, the guideline
attempts to discourage reviewers and trial sponsors from making wrong decisions at
two extremes. The guideline warns against dismissing subgroup analysis, which is
seen in the context of current practices often “creating disincentive to properly plan
the investigation of subgroups,” and also warns against “reckless” subgroup analysis
(that does not exercise caution). In particular, the EMA guideline encourages
discussion about potential subgroups at the trial design stage arguing that done
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properly,“this should minimize the need for data-driven investigations, relying
instead on a well-reasoned pre-specified strategy.”

The use of “data-driven” as a negative, perhaps, stresses that the present guideline
relates specifically to the situation when a pivotal trial has been conducted and
a regulatory decision regarding labeling is required and thus discourages from
excessive hypothesis generation. However, there may still be the need to understand
any unexpected findings. As such, the subgroup investigation strategy would need
to be principled (and even pre-specified). We argue that such principled approaches
can be developed which are a special case of model selection in the presence of a
large number of biomarkers.

This allows us to connect this task with a wealth of relevant methods that
have been developed in the areas such as statistical learning, causal inference and
multiple testing. Indeed, we have witnessed a surge of publications on data-driven
subgroup analysis coming from a cross-pollination of these areas. However, as any
conclusions affect regulatory labeling or the need for significant future investment
in expensive clinical trials, the type I error rates need to be clearly understood.

In the next section we will examine several classes of methods that were recently
proposed under the heading of “principled data-driven subgroup analysis.” The key
principles are those listed in Sect. 3.3.1.

3.3.4 Case Study

A case study that will be used throughout the rest of Sect. 3.3 is based on a Phase III
trial conducted to investigate the effect of an experimental therapy for the treatment
of colorectal cancer. The subjects in the treatment arm (N = 353) received the
experimental treatment in addition to the best supportive care (BSC) whereas the
subjects in the control arm (N = 177) received BSC only.

This example illustrates a retrospective approach to biomarker discovery and
subgroup identification. The overall outcome of the trial, defined as progression-
free survival (PFS), was negative with a one-sided log-rank p-value of 0.324.
The sponsor was hoping that a positive treatment effect might be found within a
reasonably sized subpopulation defined by nine biomarkers identified as potentially
having prognostic effects prior to randomization (see Table 3.2). These included
important clinical biomarkers, such as tumor grade and diagnostic site, and genetic
markers, e.g., KRAS gene mutation. Most of the biomarkers in the candidate
set were continuous, one biomarker was ordinal (X1) and two biomarkers were
measured on a nominal scale (X2 and X5). Because a substantial number of patients
had their tumor grade assessment unknown, we treated X1 as a nominal variable
with five levels labelled as G1, G2, G3, G4 and G5.



3 Subgroup Analysis in Clinical Trials 53

Table 3.2 Candidate biomarkers in the case study

Biomarker Description List of values or range

X1 Tumor grade 1, 2, 3, 4, unknown

X2 Primary diagnostic site Colon, rectum, colon and rectum

X3 Time from the initial diagnosis to the
metastatic disease (months)

0–126

X4 Time from the initial diagnosis to the start of
treatment (months)

12–189

X5 KRAS mutation status Wild type, mutated

X6 Protein expression marker 1–32

X7 Protein expression marker 40–236

X8 Protein expression marker 1–38

X9 Protein expression marker 0.6–7.4

3.3.5 Typology of Data-Driven Subgroup Analysis Methods

Following Lipkovich et al. (2017a), we briefly outline four classes of methods that
emerged in the recent literature on data-driven subgroup analysis.

3.3.5.1 Global Outcome Modeling

This approach aims at constructing regression models relating outcome with patient-
level biomarkers for each treatment arm. This can be implemented with a single
regression incorporating main (prognostic) effects and treatment by covariate inter-
actions (predictive effects) or through separate models within each treatment arm.
Identifying subgroups from such models typically requires multistage procedures.
For example, in Virtual twins method of Foster et al. (2011) at the first stage a global
outcome model is estimated using a Random forest with all candidate biomarkers
(X1, . . . , Xp) and treatment indicator, T , included as covariates. Then the fitted
forest is used to compute hypothetical individual treatment differences. That is, for
each patient two potential outcomes (for the case of two alternative treatments) are
predicted from the fitted model: one assuming an experimental treatment (T = 1)
and the other assuming a control treatment (T = 0) (hence the name, Virtual twins).
Thus, a treatment contrast can be computed for each patient (e.g. as the difference
between the fitted values Zi = Ŷ (x = xi , t = 1) − Ŷ (x = xi , t = 0) in case of
continuous outcome). These values Zi, i = 1, . . . , n are then used as an outcome
variable of the seconds stage and modeled using the classification and regression
trees (CART) to construct subgroups capturing heterogeneity in individual treatment
effects (as the tree leaves). The approach allows for variations in implementation. In
general, any “black box” modeling can be used at the first stage (see a comparative
study in Lu et al. 2018) and any method of predictive modeling—at the second stage.
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To illustrate this approach with a survival outcome from our case study, we will
apply the Gradient boosting algorithm of Friedman (2002) using the R package gbm
(Ridgeway 1999). The gradient boosting model is an extension of the proportional
hazards Cox model that can be represented as h0(y) exp(f (x, t)), where h0(y)

is the baseline hazard as a function of time (Y ), and f (x, t) is a function of
baseline covariates and treatment. We fitted the gbm model using up to third order
interactions among included variables (i.e., candidate biomarkers from Table 3.2
and a treatment indicator); the shrinkage parameter was set as 0.001 and the
number of trees in the model was estimated by a tenfold cross validation. Each
subsequent tree was estimated using a random sample of 50% of the data. Then
we computed predicted f̂ (x, t), t = 0, 1 for each subject, assuming s/he is treated
with experimental and control treatments, respectively. The difference between the
two represents an individual hazard ratio on log scale (as the baseline hazard cancels
out). Figure 3.1 displays the density plot (the upper panel) of the estimated treatment
differences on a hazard scale. Clearly, the distribution is bimodal suggesting
heterogeneity of treatment effect; particularly, a subgroup of subjects (with hazard
ratios < 1) may benefit from the experimental treatment. The scatter plot in the lower

Individual hazard ratios

D
en

si
ty

0

20

40

60

80

0.985 0.990 0.995 1.000 1.005

X8

In
di

vi
du

al
 lo

g 
ha

za
rd

 ra
tio

s

−0.010

−0.005

0.000

0.005

0.010

3020100

Fig. 3.1 The graph in the upper part shows the distribution of individual hazard ratios estimated
by gradient boosting. The lower graph shows a scatter plot (with a smooth spline) for individual
treatment differences on the log hazard scale against protein expression marker X8 (random jitter
was added to break the ties in the y-axis
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Fig. 3.2 Pruned regression
tree fitted to the individual
log hazard ratios estimated by
gradient boosting. The values
displayed for each terminal
node are: sample sizes and
hazard ratios estimated with
Cox model from observed
data

X8 < 5.5

8281=>4X0791=>4X

0.56
n=87

0.84
n=166

0.79
n=90

1.4
n=187

yes no

part of the figure suggests that patients with lower levels of protein expression X8
may benefit from the treatment.

At the second stage, we fitted a regression tree (using rpart R package) to the
estimated individual treatment differences. The resulting tree (after pruning via
cross-validation) is shown in Fig. 3.2. The tree suggests that patients with lower
levels of X8 (X8 < 5.5) and higher levels of X4 (X4 ≥ 1970) may have treatment
benefits. The values shown in the terminal nodes of the tree are sample sizes and
hazard ratios estimated from the original data. These are given for illustration. One
should bear in mind that resubstitution of the same data used for model search
would result in estimated treatment effect in subgroups prone to optimism bias.
As we saw from the distribution of predicted treatment differences by gbm, they are
rather modest, perhaps reflecting both lack of fit and the fact that Gradient boosting
(like other methods of ensemble modeling such as Random forest) does not overfit
the data provided its parameters are tuned appropriately. More accurate estimates
of treatment effect in the identified subgroups can be obtained using resampling
approaches (see Foster et al. 2011).

It is worth noting that in recent years methods for estimating and making
inference about individual treatment effects—the outcomes of the first stage of
the Virtual Twins method—received a lot of attention (irrespective of using them
for subsequent subgroup identification). Lamont et al. (2018) reviewed two broad
classes of methods for the identification of “predicted individual treatment effects”
(PITE) from randomized clinical trials, namely, parametric multiple imputation
and recursive partitioning methods. They emphasized that the individual treatment
effects should be predicted for out-of-sample individuals using models estimated
on training data. Although one of the potential outcomes needed for computing the
treatment difference is observed in the test sample, the predicted values rather than
the observed ones should be used to minimize overfitting. Ballarini et al. (2018)
applied penalized regression methods (lasso) to computing PITE and used recently
developed theory of post-selection inference for the lasso to construct confidence
intervals for the individual effects. Su et al. (2018) utilized Random forests of
Interaction trees (RFIT) to estimate individual treatment effects and obtained
standard errors using the infinitesimal jackknife method of Wager et al. (2014).
Wager and Athey (2018) developed a new procedure Causal random forest (CRF)
to estimate individual treatment effects as a function of covariates, building on the
Causal trees of Athey and Imbens (2016). To construct each tree, this method first



56 A. Dmitrienko et al.

extracts a random sample without replacement from the data which is further divided
into two subsets of equal size; then one subset is used for selecting splits whereas
the other for estimating treatment effects. The fact that for each tree no outcome
value is used for both splitting and estimation satisfies the “honesty” condition. They
show that valid standard errors for the individual treatment differences computed
from CRF can be obtained using the infinitesimal jackknife method. Lu et al.
(2018) compared several methods for obtaining individual treatment effects from
observational data, including various types of random forests and BART (Bayesian
Adaptive Regression Trees, Chipman et al. 2010; Hill 2011).

3.3.5.2 Global Treatment Effect Modeling

Approaches of this class obviate the need to include prognostic effects that
effectively “cancel out” so that only predictive effects need to be modeled. This
often results in more robust estimates of predictive effects as the overall model is
not prone to a misspecification of prognostic effects. Examples of this class are
Interaction trees (Su et al. 2008, 2009), Gi method (Loh et al. 2015, implemented
within the GUIDE package), Model-based recursive partitioning (Seibold et al.
2016, 2018), Causal trees and forests (Athey and Imbens 2016; Wager and Athey
2018), and the “Modified covariate method” (Tian et al. 2014).

We illustrate this class of approaches using the method of Interaction trees
(IT) extended to survival outcomes in Su et al. (2008). Briefly, IT constructs a
decision tree similarly to a classification and regression tree (CART, Breiman
et al. 1984, for the case of binary or continuous outcomes), or to a survival tree
(Leblanc and Crowley 1993) with one crucial difference. Specifically, it replaces
the splitting criterion based on the reduction of heterogeneity in the outcome (after
splitting a parent node into two child nodes) with the one based on the reduction
in heterogeneity in treatment effect. This is achieved by choosing the split that
maximizes the treatment-by split interaction in the model fitted for a parent node.
Specifically, when evaluating each candidate split of a parent node, two models are
entertained: one including the binary indicators for the candidate split and treatment,
respectively; the other including additionally treatment by split indicator. In the
context of survival outcomes, this is the proportional hazards Cox model. The split
maximizing the difference in −2× log (partial) likelihood for the two models is
selected. As a result, a decision tree dividing the covariate space into segments with
piecewise constant treatment effects is obtained.

Note that, unlike the IT approach that directly incorporates the treatment variable
in the splitting criterion, the Virtual Twins method uses the CART method at the
second stage. CART employs the usual splitting criterion based on the reduction in
the heterogeneity of the outcome variable due to the split. That is why computing
individual treatment differences (here, the log hazard ratios) were needed at the first
stage of VT, so that they could be used as the input for the usual tree regression.

To analyze the data from the case study, we used a suite of R functions developed
and kindly provided by Xiaogang Su. A slightly pruned interaction tree (to the
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Fig. 3.3 Pruned interaction
tree (IT). The values
displayed for each terminal
node are: sample sizes and
hazard ratios estimated with
Cox model from observed
data
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X4 < 1996
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3.2
n=30
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four terminal nodes) is presented in Fig. 3.3. It is similar to the tree based on the
Virtual twins method, in that it also selected X8 and X4 as splitters for the first
and second level, however the cut-offs are different. Of note, pruning based on a
bootstrap approach (Su et al. 2008) suggested an empty tree (with no splits) for this
data set, which underscores the uncertainty inherent in the model selection process.

3.3.5.3 Modeling Individual Treatment Regimes

Broadly, this includes any approach that determines which patients should receive
which of a set of candidate treatments, based on patient-level data. For example,
Qian and Murphy (2011) formulated finding optimal individual treatment regime
(ITR) by using the following two-stage procedure. At the first stage it estimates (via
penalized regression) the conditional mean response given the treatment choice and
a large number of candidate biomarkers as predictors; and at the second stage derives
the estimated treatment rule from the model for conditional mean obtained at stage
1. In our taxonomy this approach would fall into the first class (global modeling).
Note, however, that all that is needed for assigning patients to optimal treatment
regime is to evaluate the sign of the predictive score, if positive they should receive
the experimental treatment and if negative—the control (in case of two treatment
options). Of course, some patients may fall within an “indifference zone” with no
clear benefits for choosing one treatment over the other, which may be accounted
for by assessing uncertainty of treatment assignment and this “indifference” could
form part of any future treatment algorithm.

An important subclass of modeling ITR reduces the problem of identifying an
optimal treatment rule to directly modeling the sign of the hypothetical treatment
difference. Such methods were pioneered by Zhang et al. (2012) and Zhao et al.
(2012) who showed that estimating optimal treatment regimes can be framed as
a classification problem where the optimal classifier (minimizing an outcome-
weighted classification loss) corresponds to the optimal treatment regime. Other
examples include the ROWSi method (Xu et al. 2015; Huang and Fong 2014).
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Laber and Zhao (2015) and Fu et al. (2016) developed frameworks for estimating an
optimal ITR within a class of interpretable rues (e.g. tree-structured or “rectangles”).

The idea of outcome weighted learning (OWL) is that an optimal individual
treatment assignment rule d∗(X) can be estimated as a function of biomarkers that
returns values 1 or 0, by minimizing a weighted classification loss,

d∗(X) = argmin
d(X)

n∑

i=1

[
I (ti �= d(xi ))

yi

P r(T = ti |xi )
]

The subject weights yi/P r(T = ti ) are proportional to the outcome (here,
time to event) and inversely related to the probability of having been assigned
treatment that was actually observed (a known constant in a randomized clinical
trial). Intuitively, patients with longer survival would have higher weights and the
optimal rule is likely to reproduce treatment they actually received in the clinical
trial. Conversely, patient with shorter survival would get smaller weights, hence the
price of misclassifying is low, so they are likely to be assigned to the treatment
different from actually received (“misclassified”).

As minimizing 0–1 loss is unwieldy, typically it is replaced by an appropriate
smooth loss function (e.g. “exponential loss” as in logistic regression, or a “hinge
loss” as in support vector machines). For our illustrative example, we chose to
fit a classification tree so that the ITR will be approximated as a decision tree.
Specifically, we used rpart to fit a classification tree with the treatment indicator
as an outcome variable and the biomarkers X1, . . . X9 as candidate covariates.
We excluded all records with censored outcomes (by assigning zero weights). To
correct for possible selection bias due to including only uncensored observations, we
incorporated additional weights computed as the inverse probability that the patient
remains uncensored by the time the event had occurred, i.e., the censoring time is
greater than the event time. The probabilities were estimated in a preliminary step
using a separate gradient boosting model. This proposal was recently made by Fu
(2018), along with a more complex doubly robust method. Therefore, our weights
were computed as follows.

wi = yiδi

P r(T = ti )Sc(yi |xi ) ,

where yi is time to event or censoring δi is event indicator and Sc(y|x) is the
(estimated) survival function for censoring process, that is, Sc(yi |xi ) = Pr(C >

yi |xi ) and C is (partially observable) time to censoring.
The fitted classification tree, after pruning by cross-validation contained a single

split by biomarker X8, so that the estimated ITR is: assign to the experimental
treatment, if {X8 < 11.5}, otherwise assign to control.

It is always important to estimate the expected gain if using the optimal rule
versus treating everyone with one of the available treatments. Like with evaluating
treatment benefits within specific subgroup identified by a data-driven method, the
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gain associated with ITR is prone to optimism bias and resampling methods should
be used to obtain a bias-corrected estimates (see, for example, Xu et al. 2015).

3.3.5.4 Local Modeling (Direct Subgroup Search)

The last class of subgroup search methods focuses on a direct search for treatment
by covariate interactions and selecting subgroups with desirable characteristics. For
example, the search for subgroups with improved treatment effect. This approach
obviates the need to estimate the response function over the entire covariate space
and instead focuses on identifying specific regions with a large differential treatment
effect. Some of the approaches under this heading were inspired by Bump hunting
(also known as PRIM) by Friedman and Fisher (1999) which is a method of
predictive modeling that aims at estimating only regions where a target function
is large. They argued that it may be better to search directly for such “interesting”
regions in the covariate space rather than estimating first in the entire space and
then discarding the regions that are “uninteresting.” Examples include extensions
of Bump hunting to subgroup analysis by Kehl and Ulm (2006), Chen et al.
(2015). Other approaches of this class include SIDES (by Lipkovich et al. 2011),
and its further developments, SIDEScreen (Lipkovich and Dmitrienko 2014a) and
Stochastic SIDEScreen (Lipkovich et al. 2017b).

Various methods that seek forming appropriate inference on findings (often post-
hoc) from a collection of patient subgroups can be attributed to the same category.
While a usual practice was to present such findings using graphical tools like forest
plots, little attention was payed to properly accounting for multiplicity and selection
bias inherent in such displays. A resampling-based graphical method to present
the SEAMOS (Standardised Effects Adjusted for Multiple Overlapping Subgroups)
method was recently proposed by Dane et al. (2019).

To illustrate this class of methods, we will present and briefly discuss the results
of the SIDEScreen method using so-called Adaptive screening. Briefly, the regular
(base) SIDES method is a recursive partitioning method for generating a collection
of subgroups derived from the candidate biomarkers. At each level of recursion it
essentially utilizes exhaustive search through all possible splits to find optimal spits
of the current parent population into two child groups and then applies the search
to the best of the two child groups (the one with largest treatment effect) while
abandoning the child with the smaller treatment effect. To generate a large collection
of subgroups not only the best splitting variable is retained but a specified number M
of best splitters (the width parameter). Therefore, the search is repeated recursively
within M best child groups (resulting from the M best splits). The number of levels
in recursion is called the depth, denoted by L.

The Adaptive SIDEScreen method can be thought of as a three stage procedure
that uses the base SIDES as a building block through the following steps (see
Lipkovich and Dmitrienko 2014a,b for details):
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1. The base SIDES is applied to generate a collection of subgroups. The variable
importance scores, denoted VI(X), are computed for each candidate biomarker
X to measure its predictive properties. Like in other tree-based methods, the VI
score for a biomarker X is essentially an average contribution of that biomarker
across all subgroups (a biomarker receives a zero score if it is not involved in a
given subgroup, otherwise its VI-score is a function of the size of the splitting
criterion).

2. The candidate biomarkers are screened by applying a threshold v to their variable
importance scores, so that only biomarkers with VI > v are passed. The v is data-
driven, and computed from the null distribution of the maximal VI score (across
all candidate biomarkers), typically as v = E0 + kS0, where E0 and S0 are the
mean and the standard deviation of the null distribution, respectively, and k is a
user-defined multiplier.

3. If any biomarkers are selected, base SIDES is applied again to the selected
biomarkers that passed the screening.

The multiplicity adjusted p-values are computed for the subgroups selected at the
third step by using resampling methods. Specifically, a large number K of reference
data sets are produced by permuting the treatment variable, then the above 3-step
procedure is applied to each, using the same threshold v as for the observed data.
Let the p-value for the best subgroup identified in the j th null set be pj0 (if no
biomarkers are selected in the null set, set pj0 = 1). The multiplicity adjusted value
for an observed pobs for a given subgroup identified by the Adaptive SIDEScreen is
computed as padj =∑K

j=1 I (pj0 < pobs)/K , where I (·) is the indicator function.
The following parameters were used in the subgroup search algorithm:

• The differential splitting criterion was utilized to find optimal cutoffs during
subgroup search. In the context of survival data it is based on a scaled difference
between the Z statistics from the log-rank test evaluated in the two child
subgroups resulting from the split.

• The maximum number of promising subgroups for each parent group (width)
was set to 5 (M = 5). That is, starting from the full data set, five promising
child groups were pursued, resulting from splitting on five top biomarkers with
the optimal value of splitting criterion.

• The maximum number of biomarkers in the definition of a subgroup (depth) was
set to 3 (L = 3). That is each final subgroup could be defined by up to three
biomarkers.

• The minimal number of subjects within a child subgroup was set to 30 (nmin =
30).

• The multiplier for the Adaptive SIDEScreen procedure was set to 1 (corre-
sponding to about 16% chance probability of selecting a noise biomarker at the
screening stage, assuming no biomarker has predictive effect)

To speed up subgroup search, each continuous biomarker was discretized by
converting it into a categorical covariate with 15 levels based on the 15 percentile
groups.
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Fig. 3.4 Ordered variable importance scores in the SIDES subgroup search algorithm. The dotted
and dashed lines indicate benchmarks from the null distribution drawn at E0 and E0 + 1S0,
respectively

Figure 3.4 shows variable importance scores ordered from the smallest (on the
top) to the largest (at the bottom). These are computed based on a total of 50
subgroups generated at the first stage of the SIDEScreen procedure. As we can see,
only biomarker X8 passed the threshold based on 1 standard deviation above the
mean of the null distribution for the maximal VI score (shown with the vertical
dashed line on the graph) at the second stage of the procedure. Of note, none of
the remaining candidate biomarkers even reached the null’s mean (shown with the
dotted line). The subgroup signature based on the single selected biomarker X8
obtained at the third stage was {X8 ≤ 9} with associated multiplicity adjusted p-
value padj = 0.081, N = 340.

3.3.5.5 Summary of Key Features of Data-Driven Methods

Table 3.3 summarizes some of the features of novel methods classifying them
within the four types considered in previous sections (in the rows) while each
method is further characterized with key features (listed below) in the columns of
the table. The last column contains information on available software for subgroup
identification. Many of these can be accessed from the Biopharmaceutical Network
web site at

http://biopharmnet.com/subgroup-analysis/

1. Modeling type: F (Frequentist), B (Bayesian), P (parametric), SP (semiparamet-
ric), NP (nonparametric).
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2. Dimensionality of the covariate space: L (low; p ≤ 10), M (medium; 10 < p ≤
100), H (high; p > 100).

3. Results produced by the method: B (selected biomarkers or biomarker ranking
based on variable importance scores that can be used for tailoring), P (predictive
scores for individual treatment effects), T (optimal treatment assignment), S
(identified subgroups).

4. Assessment of Type I error rate/False discovery rate for the entire subgroup
search strategy: Yes/No.

5. Application of complexity control to prevent data overfitting: Yes/No.
6. Control (reduction) of selection bias when evaluating candidate cut-offs: Yes/No.
7. Availability of “honest” estimates of treatment effects (i.e., the estimates are

corrected for the optimism bias) in identified subgroups: Yes/No.
8. Availability of software implementation: R [“name”] (R package available on

the CRAN website), B (R code or reference to implementation by the developers
available on the Biopharmaceutical Network website), P (proprietary).

3.4 Confirmatory Subgroup Analysis

The main goal of this section is to present an overview of the general topic of
confirmatory subgroup analysis. The setting that will be assumed in this section
includes pivotal Phase III trials with a very small number of prospectively defined
populations of patients. The efficacy and safety profiles of a novel treatment will
be evaluated in the overall population of patients who meet the trial’s inclusion and
exclusion criteria, also known as the population of all comers, as well as one or two
pre-set subsets of the overall population that will be referred to as subpopulations.
These subsets are defined using binary classifiers derived from relevant baseline
patient characteristics, e.g., demographic, genetic and clinical characteristics, that
are typically identified in earlier Phase II trials or in historical trials (as in Sect. 3.3,
these characteristics will be referred to as biomarkers). For example, if a patient
characteristic is continuous, a binary classifier is constructed using a cut point and
the overall trial population is partitioned into a biomarker-low subgroup (patients
with biomarker values below the cut point) and biomarker-high subgroup (patients
with biomarker values above the cut point).

A comprehensive characterization of the treatment effect within the pre-defined
subpopulations in pivotal trials provides the foundation for tailored therapies and
targeted agents (FDA 2019). There are numerous examples of biomarker-driven
trials that have employed confirmatory subgroup analysis strategies. These examples
include the trastuzumab trials in the subpopulation of patients with breast cancer
whose tumors over-expressed HER2 (human epidermal growth factor receptor 2)
(Piccart-Gebhart et al. 2005) and the erlotinib trial for the treatment of advanced
non-small-cell lung cancer that investigated the treatment’s efficacy in the overall
population as well as a pre-specified subpopulation of EGFR (epidermal growth
factor receptor) immunohistochemistry-positive patients (Cappuzzo et al. 2010).
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A broad set of subgroup analysis topics arising in a confirmatory setting will be
presented in this section. The section will begin with a discussion of designs com-
monly used in clinical trials for targeted agents or tailored therapies (Sect. 3.4.1).
An overview of multiplicity issues arising in trials with several pre-defined patient
populations will be provided in Sect. 3.4.2. This section will introduce basic settings
with a single source of multiplicity and more complex settings with two or more
sources of multiplicity. Important considerations in biomarker-driven trials such as
the development of a decision-making framework that facilitates the interpretation
of overall and subgroup effects will be defined in Sect. 3.4.3. Lastly, adaptive
designs in multi-population trials with an option to select the most promising patient
populations at an interim look will be discussed in Sect. 3.4.4.

3.4.1 Multi-Population Trials

Confirmatory subgroup analysis strategies are employed in pivotal Phase III trials
aimed at the development of tailored therapies (Wang et al. 2007; Freidlin et al.
2010). A variety of trial designs have been developed to incorporate biomarker
information and facilitate the process of evaluating subgroup effects. We will restrict
our attention to the two most common approaches to designing biomarker-driven
trials known as subpopulation-only designs and multi-population designs.

Subpopulation-only designs, also known as enrichment designs, utilize relevant
historical data to restrict patient enrollment to a certain subset of the general
population. A well-known example of subpopulation-only designs is the develop-
ment of trastuzumab as a treatment for breast cancer. Only women with HER2-
positive tumors were enrolled in the pivotal trials and, within this subpopulation,
trastuzumab was shown to be highly beneficial (Piccart-Gebhart et al. 2005).
Subpopulation-only designs rely on a strong assumption that the selected biomarker
is truly predictive of treatment response and the treatment is only effective in the
biomarker-positive subgroup. No treatment benefit is expected or the magnitude
of this benefit is believed to be substantially reduced in the biomarker-negative
subgroup and thus it is difficult to justify exposing biomarker-negative patients to
the treatment.

Multi-population designs, also known as biomarker-stratified designs, serve
as a viable alternative to subpopulation-only designs. With the multi-population
approach, all patients with the condition of interest are enrolled in a trial but the
analysis strategy is set up in such a way that the treatment effect is evaluated in
the broad overall population as well as in one or more subpopulations based on
pre-defined classifiers. These classifiers are set up using biomarkers with strong
predictive properties and thus the efficacy signal is expected to be greater in these
subpopulations compared to the trial’s overall population. An advantage of multi-
population trials is that they enable the trial’s sponsor to provide a comprehensive
characterization of the efficacy and safety properties of an experimental treatment
across the entire population of interest.
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The SATURN trial (Cappuzzo et al. 2010) mentioned above serves as an example
of a multi-population tailoring approach. This trial was conducted to investigate
the advantages of erlotinib in patients with advanced non-small-cell lung cancer. A
twofold efficacy objective was pursued in this trial, namely, the effect of erlotinib
on progression-free survival was evaluated in the overall population of patients and
a subset of biomarker-positive patients, i.e., patients with an EGFR-positive status.
This biomarker-positive subpopulation was incorporated into the primary analysis
to evaluate improved potential benefit from erlotinib compared to the subpopulation
of biomarker-negative patients. Other examples of multi-population designs will be
given later in this chapter.

In what follows we will go over key challenges arising in multi-population
trials, including control of the Type I error rate (Sect. 3.4.2), decision-making
considerations (Sect. 3.4.3) and trial design considerations (Sect. 3.4.4).

3.4.2 Multiplicity Issues in Multi-Population Trials

One of the most important objectives of confirmatory subgroup evaluations in
pivotal Phase III trials is control of the Type I error rate since multiplicity corrections
are mandatory in pivotal trials with multiple clinical objectives (FDA 2017b; EMA
2017). In the context of multi-population designs, there are multiple opportunities to
claim treatment effectiveness, namely, the trial can demonstrate beneficial treatment
effect in the overall patient population (this claim is often referred to as a broad
effectiveness claim) or in one of several target subpopulations (these claims are
known as restricted or tailored effectiveness claims). These claims are independent
of each other and a claim in any patient population can form the basis for a
regulatory submission for the experimental treatment. In particular, if a beneficial
treatment effect is established in a subpopulation, the trial’s sponsor can pursue
a claim in this subpopulation even if the treatment provides no benefit in the
overall population. A multiplicity adjustment must be pre-defined to preserve the
overall Type I error rate across the null hypotheses associated with the individual
claims. For more information on multiplicity corrections used in pivotal trials and
key principles that guarantee error rate control, e.g., the closure principle, see
Dmitrienko and D’Agostino (2013, 2018).

Dozens of multiplicity adjustments, also known as multiple tests, have been
developed in the literature and it is helpful to organize information on the avail-
able options by considering the following classification scheme that incorporates
information on logical relationships among the individual clinical objectives in a
multi-population trial and distributional information.

The first dimension of this classification scheme deals with the available
information on logical restrictions among the null hypotheses corresponding to the
overall population and subpopulations. The most basic multiplicity adjustments,
e.g., the Bonferroni test, examine each null hypothesis independently of the other
null hypotheses and are known as single-step tests. More efficient tests that result in
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a higher overall probability of success belong to the class of stepwise tests. These
tests rely on sequential testing algorithms. For example, the order in which the null
hypotheses are to be tested may be pre-defined and a stepwise test is applied to
carry out the hypothesis tests according to this pre-defined hypothesis ordering.
Examples of stepwise tests with a pre-defined hypothesis ordering include the fixed-
sequence and fallback tests. On the other hand, the null hypotheses may be tested in
the order determined by the significance of the hypothesis test statistics. The Holm
and Hochberg tests serve as examples of stepwise tests that are based on a data-
driven hypothesis ordering. As will be shown below, stepwise tests of this kind are
more flexible than, say, the fixed-sequence test and are generally recommended in
multi-population clinical trials.

Secondly, when selecting the most efficient method for handling multiplicity in a
trial, it is important to fully utilize the available information on the joint distribution
of the hypothesis test statistics associated with the hypotheses of interest. Some of
popular multiple tests such as the Bonferroni test, fixed-sequence test and a family
of chain tests, also known as graphical methods, do not make any assumptions on
the joint distribution of the test statistics. These tests, known as nonparametric
tests, are uniformly less powerful than semiparametric tests (e.g., Hochberg test)
or parametric tests (e.g., Dunnett test). The reason for this is that semiparametric
tests make some distributional assumptions, e.g., they control the overall Type I
error rate under the assumption that the test statistics follow a multivariate normal
distribution with non-negative pairwise correlations, and parametric tests require a
full specification of the joint distribution. The joint distribution of the hypothesis test
statistics is typically well characterized in multi-population trials and therefore it is
advisable to employ semiparametric or parametric tests in confirmatory subgroup
analysis.

To review the recommended multiplicity adjustment strategies, we will begin
with the discussion of traditional multiplicity problems which can be thought of
“univariate” multiplicity problems, e.g., problems where multiplicity is induced by
the evaluation of treatment effects in several patient populations and a single family
of null hypotheses of no effect is set up. Advanced settings with “multivariate”
multiplicity problems, i.e., problems with several families of null hypotheses, will be
considered later in this section. In addition, we will discuss a structured approach to
identifying the multiplicity corrections that perform best in a given multi-population
trial and are also robust against deviations from the (potentially optimistic) original
treatment effect assumptions.

3.4.2.1 Traditional Multiplicity Problems

Two important approaches to handling multiplicity in a traditional setting with a
single family of null hypotheses will be compared and contrasted below. Consider,
for simplicity, a trial with a single pre-specified subgroup and let H0 and H+ denote
the null hypotheses of no treatment effect in the overall population and biomarker-
positive subpopulation, respectively. These hypotheses will be evaluated as part of
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the trial’s primary analysis. The hypothesis of no effect in the biomarker-negative
subpopulation, denoted by H−, can be considered as well but it will be treated as a
secondary hypothesis. The raw or marginal treatment effect p-values in the overall
population and biomarker-positive subpopulation will be denoted by p0 and p+,
respectively, and a multiplicity correction will be applied to control the overall Type
I error rate at a two-sided α = 0.05 in the strong sense.

Even though basic nonparametric multiple tests are known to be inefficient, they
are still often employed in multi-population clinical trials. Most commonly, the
fixed-sequence test is applied which requires that the hypothesis ordering should
be pre-defined. Depending on the testing sequence, the following two strategies can
be considered

• Strategy 1. The overall population effect is evaluated first followed by the
subpopulation effect. In this case, the hypothesis H0 is rejected if p0 ≤ α. If
H0 is rejected, the hypothesis H+ is tested and it is rejected provided p+ ≤ α.

• Strategy 2. The subpopulation effect is evaluated first followed by the overall
population effect. The hypothesis H+ is rejected if p+ ≤ α. If this hypothesis is
rejected, H0 is rejected if p0 ≤ α.

The fixed-sequence testing approach is easily extended to clinical trials with two
or more pre-defined subpopulations.

An important feature of Strategy 1 is that it implicitly assumes a fairly strong
treatment effect in the biomarker-negative subpopulation. If this effect is weak,
i.e., the selected biomarker is a strong predictor of treatment benefit, the overall
effect will be attenuated and the probability of passing the gatekeeper, i.e., the
probability of rejecting H0, will likely be low. On the other hand, Strategy 2
relies on an assumption of a pronounced treatment effect in the biomarker-positive
subpopulation. This assumption will not be satisfied if the selected biomarker is
a weak predictor of treatment response or even completely non-informative. The
following two examples illustrate potential weaknesses of fixed-sequence testing
strategies.

The PRIME trial (Douillard et al. 2014) was conducted to evaluate the efficacy of
panitumumab in combination with FOLFOX4 chemotherapy as a first-line treatment
for patients with metastatic colorectal cancer. Patients in the control arm received
FOLFOX4 alone. The primary efficacy evaluation in the trial was performed using
progression-free survival. A binary classifier based on an oncogene known as KRAS
played a key role in this trial. The KRAS status (wild-type versus mutated) has been
used in multiple metastatic colorectal cancer trials as a strong predictor of anti-
EGFR monoclonal antibody efficacy. A multi-population design stratified by this
biomarker was utilized in the PRIME trial because panitumumab is an anti-EGFR
therapy and a greater effect on progression-free survival was expected in the subset
of patients with wild-type KRAS status. The biomarker-positive and biomarker-
negative subsets were defined as follows:

• Biomarker-positive subpopulation: Patients with wild-type KRAS status.
• Biomarker-negative subpopulation: Patients with KRAS mutations.
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Table 3.4 PRIME trial results

Hazard ratio for PFS

Population (95% CI) Two-sided p-value

Biomarker-positive subpopulation 0.80 (0.67, 0.95) 0.01

Biomarker-negative subpopulation 1.27 (1.04, 1.55) 0.02

A summary of PFS findings in the biomarker-positive and biomarker-negative
subsets is provided in Table 3.4. The table shows the subpopulation-specific hazard
ratios along with two-sided treatment effect p-values computed from the log-rank
test. The experimental treatment significantly improved progression-free survival
for patients with a biomarker-positive status but no improvement was observed in
the complementary subpopulation. In fact, it follows from Table 3.4 that the two-
sided p-value in the biomarker-negative subset was significant at a 0.05 level, which
means that the experimental treatment was significantly worse than the control in
patients with KRAS mutations.

Note that about 40% of the patients in the PRIME trial were biomarker-negative.
If a multiplicity adjustment based on Strategy 1 had been used in this trial, it
would have most likely led to a negative outcome since the treatment effect in the
overall population was reduced due to a strong negative trend in biomarker-negative
patients. Since the probability of establishing a significant overall effect in this and
similar settings is low, the null hypothesis H+ simply will not be tested most of the
time (recall that H+ cannot be tested and is automatically accepted unless H0 is
rejected) and a promising treatment effect in the biomarker-positive subpopulation
will be missed.

The next example is based on the APEX trial (Cohen et al. 2016) which
was conducted in the population of patients at risk for venous thrombosis to
evaluate the efficacy and safety of a novel treatment (betrixaban) compared to an
active control. The primary efficacy endpoint was a composite of several binary
events (deep-vein thrombosis, nonfatal pulmonary embolism or death from venous
thromboembolism). The APEX trial employed a multi-population design with two
pre-defined subpopulations based on the D-dimer level at baseline and patient’s
age:

• Biomarker-positive subpopulation 1: Patients with an elevated D-dimer level.
• Biomarker-positive subpopulation 2: Patients with an elevated D-dimer level or

patients who are older than 75 years.

The two biomarkers were believed to be predictive of treatment benefit; however,
both biomarkers turned out to be non-informative. Table 3.5 presents a summary
of the trial results and shows that the relative risk of primary events compared to
placebo (betrixaban was expected to reduce the risk of vein thrombosis, pulmonary
embolism or death) was virtually constant across the patient populations. The
table also presents the two-sided p-values within each patient population that were
computed using the Cochran-Mantel-Haenszel test. Strategy 2 was employed in
this trial to address multiplicity induced by the analysis of the three populations.
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Table 3.5 APEX trial results

Population Relative risk (95% CI) Two-sided p-value

Biomarker-positive subpopulation 1 0.81 (0.65, 1.00) 0.054

Biomarker-positive subpopulation 2 0.80 (0.66, 0.98) 0.030

Overall population 0.76 (0.63, 0.92) 0.006

Testing started with the first test in the sequence, i.e., with Biomarker-positive
subpopulation 1, but there was not enough evidence to reject the corresponding
null hypothesis of no treatment benefit since the p-value was greater than 0.05.
Consequently, all three null hypotheses were accepted even though the overall effect
was both clinically and statistically significant (p = 0.006).

The two examples based on the PRIME and APEX trials show that both fixed-
sequence testing strategies (Strategy 1 and Strategy 2) make difficult-to-justify
assumptions. If these assumptions are violated, the trial’s overall outcome could
be negative despite the fact that a subpopulation effect or even the overall effect is
significant. An alternative approach to handling multiplicity in a multi-population
trial is to apply an efficient multiple test with a data-driven testing sequence, e.g., the
Hochberg test. This test is a member of the semiparametric class and is uniformly
more powerful than nonparametric tests such as the Bonferroni and chain tests. The
Hochberg test treats the null hypotheses of interest, e.g., the hypotheses H0 and H+
in a trial with two patient populations, as interchangeable rather than hierarchically
ordered.

In a general setting with m null hypotheses denoted by H1 through Hm, let
p(1) < . . . < p(m) denote the ordered p-values and let H(1), . . . , H(m) denote the
corresponding ordered null hypotheses. The Hochberg test is carried out using the
following algorithm:

• Step 1. Accept H(m) if p(m) > α. If H(m) is accepted, proceed to Step 2. Stop
testing and reject all null hypotheses otherwise.

• Step 2. Accept H(m−1) if p(m−1) > α/2. If H(m−1) is accepted, proceed to Step 3.
Stop testing and reject the remaining null hypotheses otherwise.

• Steps i = 3, . . . , m − 1. Accept H(m−i+1) if p(m−i+1) > α/i. If H(m−i+1)
is accepted, proceed to Step i + 1. Stop testing and reject the remaining null
hypotheses otherwise.

• Step m. Reject H(1) if p(1) ≤ α/m.

It is easy to verify that, if the Hochberg test had been applied to the family of
three null hypotheses in the APEX trial, the null hypothesis corresponding to the
overall population would have been rejected and thus a significant treatment effect
would have been established in the all-comers population.

The clinical trial examples presented above demonstrate the strengths and
weaknesses of popular multiplicity corrections in the evaluation of treatment effects
in multi-population trials. A formal framework for assessing the performance of
candidate multiple tests and identifying the best performing multiplicity adjustment
in a particular trial will be presented later in this section.
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3.4.2.2 Advanced Multiplicity Problems

A class of more complex multiplicity problems, commonly referred to as advanced
multiplicity problems, will be briefly discussed in this subsection. This class
is characterized by the fact that several sources of multiplicity are present. In
addition to the analysis of treatment effects in several patient populations, which
defines the first source of multiplicity, multiplicity may also be induced by the
evaluation of several efficacy endpoints or assessment of several doses. Multiple
testing procedures known as gatekeeping procedures are commonly used to address
multiplicity in these more challenging settings. Gatekeeping procedures enable trial
sponsors to protect the overall Type I error rate in complex multiplicity problems
where the null hypotheses of interest are arranged into families to account for the
relative importance of the clinical goals corresponding to the individual sources of
multiplicity.

Applications of gatekeeping procedures to multivariate multiplicity problems
arising in multi-population trials have been discussed in several publications. As an
example, Dmitrienko et al. (2011) discussed the principles that govern the selection
of gatekeeping procedures in clinical trials with two dose-placebo comparisons
(Dose 1 versus placebo and Dose 2 versus placebo) and two patient populations
(overall population and subpopulation of biomarker-positive patients). The resulting
null hypotheses of no effect are grouped into two families as follows:

• Family 1: H1 (null hypothesis of no difference between Dose 1 and placebo in
the overall population) and H2 (null hypothesis of no difference between Dose 2
and placebo in the overall population).

• Family 2: H3 (null hypothesis of no difference between Dose 1 and placebo in
the subpopulation) and H4 (null hypothesis of no difference between Dose 2 and
placebo in the subpopulation).

As shown in Fig. 3.5, by creating these two families of null hypotheses, the trial’s
sponsor can take into account the hierarchical structure of effectiveness claims in the
overall population and pre-defined subpopulation. The family of null hypotheses

Fig. 3.5 Two families of null
hypotheses in the clinical trial
with two dose-placebo
comparisons and two patient
populations

Family 1

Family 2

H1 H2

H3 H4
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of no treatment benefit in the overall population is examined first and thus it is
treated as the primary family. The family of null hypotheses in the subpopulation is
positioned as a secondary family. The treatment effect will be evaluated in Family 2
only if there is evidence of a significant effect in the overall population at either
Dose 1 or Dose 2. If neither hypothesis is rejected in Family 2, the sponsor will
be limited to an effectiveness claim in the overall patient population. However, if a
significant effect is established in the subpopulation at either dose level, the sponsor
can consider a composite claim of treatment effectiveness in the overall population
as well as subpopulation of biomarker-positive patients that will be discussed in
more detail in Sect. 3.4.3.

An additional important aspect of this two-family multiplicity problem is the
specification of logical relationships among the four null hypotheses. In this
particular case, the secondary null hypotheses (H3 or H4) will be tested if at least
one primary null hypothesis (H1 or H2) is rejected. This means that Family 1 serves
as a parallel gatekeeper for Family 2. More complex relationships among the null
hypotheses of interest can be considered to ensure that these relationships are fully
aligned with the trial’s clinical objectives.

The mixture method (Dmitrienko and Tamhane 2011, 2013) has been success-
fully applied to multiple clinical trials to develop powerful and flexible gatekeeping
procedures in multiplicity problems with several families of null hypotheses. This
general method supports arbitrary logical relationships among the null hypotheses
and, unlike simple Bonferroni-based tests such as chain tests, it enables trial
sponsors to efficiently incorporate available distributional information by utilizing
semiparametric or fully parametric tests within the individual families. The mix-
ture method was applied in Dmitrienko et al. (2011) to build several candidate
gatekeeping procedures for the two-family problem displayed in Fig. 3.5. The
authors performed a simulation-based assessment of the candidate procedures
and concluded that the most efficient multiplicity adjustment strategy is the one
that relies on Hochberg-based gatekeeping procedures. A general Hochberg-based
gatekeeping procedure is constructed as follows:

• Powerful Hochberg-type tests are applied to the null hypotheses within each
family. Hochberg-type tests account for positive correlations between the hypoth-
esis test statistics within each family, which is induced by the fact that the
subpopulation is nested within the overall population. This results in a uniform
power gain compared to gatekeeping procedures that rely on nonparametric tests,
e.g., Bonferroni-based gatekeeping procedures.

• A Hochberg-type test, known as the truncated Hochberg test, is applied to the
null hypotheses in Family 1 since this family serves as a gatekeeper for the other
family. The regular Hochberg test is applied in Family 2 due to the fact it is the
last family in the sequence. Since a truncated Hochberg test is used in Family 1,
this gatekeeping procedure can proceed to Family 2 even if only one overall
population test is significant.

It needs to be noted that Hochberg-based gatekeeping procedures control the
overall Type I error rate only if the test statistics within each family follow a
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multivariate normal distribution with non-negative pairwise correlation coefficients
(Dmitrienko and D’Agostino 2013). This condition is satisfied in this clinical
trial example as well as in advanced multiplicity problems arising in other multi-
population trials since nested subpopulations induce non-negative correlations.

3.4.2.3 Clinical Scenario Evaluation Approach

It was pointed earlier in this section that numerous classes of multiple tests or
gatekeeping procedures have been proposed in the literature. To choose the best
multiplicity adjustment strategy for a particular multiplicity problem, it is important
to review the applicable strategies as well as relevant information on logical
relationships among the null hypotheses of interest and joint distribution of the
hypothesis test statistics. This process can be facilitated by utilizing the Clinical
Scenario Evaluation (CSE) framework that was introduced in Benda et al. (2010).

The general CSE framework encourages trial sponsors to perform a structured
quantitative assessment of candidate trial designs and analysis methods in clinical
drug development. The following components play a central role within this
framework:

• Data models define the assumptions for the process of generating trial data.
• Analysis models define the analysis strategies applied to the trial data generated

from the data models.
• Evaluation models define the criteria/metrics for evaluating the performance of

the analysis strategies applied to the trial data.

By carefully building plausible data models, applicable analysis models and
evaluation models that are based on clinically relevant metrics, a trial’s sponsor
can perform a comprehensive evaluation of the advantages and disadvantages of
selected analysis methods and assess their sensitivity to potential deviations from
the original treatment effect assumptions.

This disciplined approach could be used to identify powerful multiplicity
adjustments that exhibit a robust performance across multiple sets of assumptions
unlike suboptimal tests such as the fixed-sequence test employed in the APEX
trial. The emphasis on optimality is not a coincidence since the CSE framework
provides a foundation for developing optimal approaches to selecting trial designs
and analysis methods in clinical trials. Clinical trial optimization strategies based
on the CSE principles have been studied in several recent publications, e.g.,
an overview of CSE-based approaches to finding multiplicity adjustments that
optimize the clinically relevant evaluation criterion in the context of confirmatory
subgroup analysis can be found in Dmitrienko and Paux (2017). The following
recommendations were formulated in this publication:

• Data models should reflect a broad range of assumptions, including optimistic
and pessimistic sets of treatment effect assumptions. For example, scenarios
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corresponding to strong and weak differential treatment effects in the biomarker-
positive and biomarker-negative subpopulations should be considered.

• Analysis models should incorporate several applicable multiple tests, including
basic non-parametric tests such as the fixed-sequence test and more powerful
semiparametric and parametric tests.

• Evaluation models should include commonly used evaluation criteria such as
disjunctive power, i.e., the probability that at least one null hypothesis is rejected,
as well other criteria, e.g., weighted power based on a weighted sum of marginal
power functions. Note that disjunctive power tends to be driven mostly by the
probability of success in the overall population and thus this evaluation criterion
may not be particularly meaningful in a multi-population setting.

• Both qualitative and quantitative sensitivity assessments should be performed
to assess the robustness of the optimal multiple test against deviations from
the most likely set of treatment effect assumptions, known as the main data
model. The qualitative approach focuses on sensitivity assessments based on
a small number of data models that correspond to clinically distinct treatment
effect scenarios. With the quantitative approach, the “robustness profile” of the
selected multiple test is examined using a large set of data models that are only
quantitatively different from the main model (these models are obtained using
random perturbations of the main data model).

These principles provide a useful template for performing CSE-based assess-
ments of multiplicity corrections in multi-population clinical trials.

As an application of the recommendations presented above, Paux and Dmitrienko
(2018) performed a comparison of candidate multiple tests in late-stage clinical
trials using novel evaluation criteria. The proposed approach relied on penalty-based
criteria that facilitate “head-to-head” comparisons of candidate tests to identify
the best performing multiplicity adjustment in a particular trial. Using a case
study based on the APEX trial, the authors evaluated the performance of the
fixed-sequence and Hochberg procedures in the problem of testing the three null
hypothesis of interest, i.e.,

• H1: Null hypothesis of no treatment effect in Biomarker-positive subpopula-
tion 1.

• H2: Null hypothesis of no treatment effect in Biomarker-positive subpopula-
tion 2.

• H3: Null hypothesis of no treatment effect in Overall population.

This evaluation included a qualitative sensitivity assessment based on four data
models or treatment effect scenarios that corresponded to a range of assumptions
about the predictive strength of the two biomarkers employed in the trial. For
example, the underlying biomarkers were assumed to be strongly predictive of
treatment response under Scenario 1, weak predictive effects were assumed under
Scenarios 2 and 3 and lastly the biomarkers were non-informative under Scenario 4,
i.e., a homogeneous treatment effect was assumed across the subgroups defined
by these biomarkers in this case. The probability that each test is superior to the
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other test was computed under the selected data models (a multiple test is superior
to another test if it rejects all null hypotheses rejected by the other test and may
also reject additional null hypotheses). Under Scenario 1, the probability that the
Hochberg procedure would be superior to the fixed-sequence procedure was 15%
and the probability that the fixed-sequence procedure would be superior to the
Hochberg procedure was only 1%. When less optimistic assumptions about the
predictive strength of the biomarkers were considered, e.g., Scenarios 2, 3 and
4, the gap between the two procedures widened. In particular, the probability
that the Hochberg procedure would be superior to the fixed-sequence procedure
increased to 25% and the probability that the fixed-sequence procedure would be
superior to the Hochberg procedure was less than 1% under Scenario 4. Note
that the most meaningful hypothesis to reject under this scenario is H3 and the
Hochberg procedure correctly rejected the hypothesis most of the time while the
fixed-sequence procedure failed to reject H3. This was due to the fact that the fixed-
sequence procedure stopped at the very first hypothesis in the sequence (H1), which
means that the hypotheses H2 and H3 were accepted without testing, as explained
above. The fixed-sequence test was clearly inferior to the Hochberg test across the
selected data models in this CSE exercise, which suggests that multiple tests with
a pre-defined hypothesis ordering should be avoided in multi-population clinical
trials.

3.4.3 Decision-Making Framework in Multi-Population Trials

In general, multi-population tailoring trials provide an important advantage over
single-population trials, e.g., trials that are restricted to biomarker-positive patients
or trials that enroll all patients but focus on the evaluation of the overall effect.
However, since multiple objectives are pursued within a single trial, the trial’s
sponsor needs to carefully interpret the outcome of each population test to ensure
logical decision making in a multi-population setting.

The importance of creating a statistical framework for decision making in clinical
trials that investigate treatment effects in several patient populations has been
stressed in recent publications, see, for example, Rothmann et al. (2012) and Millen
et al. (2012). This framework addresses additional possibilities to commit errors
that go beyond the multiplicity framework that emphasizes Type I error rate control.
These errors are related to the broad and restricted effectiveness claims defined at
the beginning of Sect. 3.4.2. Consider, for simplicity, a clinical trial with a single
pre-defined subpopulation, then the following logical errors could occur:

• If a trial is conducted to pursue the broad claim, an influence error will be
committed if the trial’s sponsor claims effectiveness in the overall population but
this conclusion is purely driven by a strong treatment effect in the subpopulation.

• If the sponsor is interested in a composite claim (the broad and restricted claims
could be pursued simultaneously), an interaction error will be committed if
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Table 3.6 Lapatinib trial results

Hazard ratio for PFS

Population (95% CI) Two-sided p-value

Overall population 0.86 (0.76, 0.98) 0.026

Biomarker-positive subpopulation 0.71 (0.53, 0.96) 0.019

Biomarker-negative subpopulation 0.90 (0.77, 1.05) 0.188

the sponsor concludes that both claims are valid when in reality there is no
differential treatment effect and the treatment is equally effective in biomarker-
positive and biomarker-negative patients.

We will use the Phase III trial that was conducted to develop a first-line therapy
for postmenopausal hormone receptor (HR)-positive metastatic breast cancer (John-
ston et al. 2009) to discuss the relevance of the influence error in multi-population
trials. In this trial, the combination of lapatinib and letrozole was tested versus
letrozole and placebo with the primary endpoint based on progression-free survival.
Within the overall population of HR-positive patients, the following two subsets
were prospectively defined:

• Biomarker-positive subset: Patients with HER2-positive tumors.
• Biomarker-negative subset: Patients with HER2-negative tumors.

A summary of the PFS assessments in the overall trial population as well as
the pre-defined subsets is presented in Table 3.6. The table shows that a significant
reduction in the risk of disease progression was observed within the biomarker-
positive subpopulation with the hazard ratio of 0.71 (in fact, the median PFS
increased from 3 months to 8.2 months). However, the improvement in progression-
free survival within the subset of biomarker-negative patients was not considered
clinically meaningful. The observed hazard ratio was 0.9 with a rather wide 95%
confidence interval. Formally, the overall effect of the experimental treatment was
significant with a two-sided p-value of 0.026 but the trial’s sponsor could have
committed an influence error if the broad effectiveness claim had been pursued in
this trial. It could not be appropriate to recommend the experimental treatment for all
HR-positive patients since the treatment does not appear to be effective in patients
with HER2-negative tumors.

The concept of the interaction error can be illustrated using the KEYNOTE-
010 trial in patients with advanced non-small-cell lung cancer (Herbst et al. 2016).
Patients in this trial were randomly allocated to two regimens of an experimental
treatment (pembrolizumab) or control (docetaxel). The primary analysis focused on
overall survival benefits in the all-comers population and efficacy assessments were
also performed in the following two subsets:

• Biomarker-positive subset: Patients with the tumor proportion score greater than
or equal to 50%.

• Biomarker-negative subset: Patients with the tumor proportion score between 1%
and 49%.



3 Subgroup Analysis in Clinical Trials 77

Table 3.7 KEYNOTE-010
results

Hazard ratio for OS

Population (95% CI)

Overall population 0.67 (0.56, 0.80)

Biomarker-positive subpopulation 0.53 (0.40, 0.70)

Biomarker-negative subpopulation 0.76 (0.60, 0.96)

The tumor proportion score was used to quantify PD-L1 protein expression.
PD-L1 (programmed death-ligand 1) is an immune-related biomarker that can be
expressed on tumor cells.

The results of the pooled analysis of overall survival data in the two pem-
brolizumab regimens versus docetaxel are presented in Table 3.7. We can see from
the table that the experimental treatment was highly beneficial within the biomarker-
positive subpopulation with the hazard ratio of 0.53. A slightly weaker effect was
achieved in the complementary subpopulation but the treatment could still be viewed
as beneficial. As a consequence, this setting could be used as an example of a
potential interaction error. If the sponsor were to use the trial’s results to justify
a composite claim of effectiveness in the overall population and biomarker-positive
subpopulation, one could argue that this conclusion is not logical since the efficacy
signal may in fact be quite similar in the biomarker-positive and biomarker-negative
subpopulations.

To address these considerations, Millen et al. (2012) developed a general
inferential framework for multi-population trials that relies on the influence and
interaction conditions. The first of these conditions states that, to achieve the broad
claim, the sponsor should demonstrate that the beneficial effect of a treatment is
not limited to the biomarker-positive subpopulation and a meaningful benefit is
present in the complementary subpopulation of biomarker-negative patients. The
interaction condition states that, to support the composite claim, the sponsor should
establish a differential treatment effect in the sense that the treatment effect in the
biomarker-positive subpopulation should be appreciably greater than that in the
biomarker-negative subpopulation. We will introduce the influence and interaction
conditions in the context of fixed-design trials with a pre-defined number of patients
or events. This decision-making framework will also play an important role in
clinical trials that support adaptive population selection (Sect. 3.4.4).

The influence and interaction conditions could be formulated using either
frequentist or Bayesian principles. In a more straightforward frequentist setting,
these conditions are defined as follows. Let θ̂− and θ̂+ denote the estimated effect
sizes in the biomarker-negative and biomarker-positive subpopulations, respectively.
Effect sizes are defined as standardized treatment effects, e.g., the effect size is equal
to the negative log-hazard ratio in a trial with a time-to-event endpoint.

The influence condition is met and thus the broad effectiveness claim is
justified if

θ̂− ≥ λINF,
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where λINF is a pre-specified threshold which could be equal to the minimal clin-
ically important difference. For example, if a clinically relevant effect corresponds
to hazard ratios below 0.9, the influence condition threshold can be set to λINF =
− log 0.9 = 0.105. If the influence condition is not met, inference from the trial
will be limited to the biomarker-positive subpopulation. Returning to the lapatinib
trial (see Table 3.6), it is easy to see that the influence condition with λINF > 0.015
would have guided the sponsor to the conclusion that it is most meaningful to claim
treatment effectiveness in the subset of biomarker-positive patients.

If the trial’s sponsor plans to purse the composite claim and the possibility of an
influence error has been ruled out, the next step is to check the interaction condition.
This condition is met if

θ̂+/θ̂− ≥ λINT,

where λINT is a pre-specified interaction condition threshold. This threshold is
greater than 1 and defines a lower bound on the magnitude of desirable differential
treatment effect. As a quick example, if λINT = 1.4, the effect size in the biomarker-
positive subpopulation should be 40% greater than that in the biomarker-negative
subpopulation to conclude that a meaningful differential effect is present in the trial.
If the interaction condition with λINT = 1.4 had been applied to the KEYNOTE-010
trial, this condition would have been met since

θ̂+/θ̂− = (− log 0.53)/(− log 0.76) = 2.3

is clearly greater than 1.4. This indicates that the differential treatment effect in
the KEYNOTE-010 trial is quite strong and the composite claim of treatment
effectiveness in the overall population and biomarker-positive subpopulation could
be justified.

The frequentist formulation of the influence and interaction conditions is easily
extended using Bayesian arguments (Millen et al. 2014). For example, within the
Bayesian framework, the influence condition is satisfied if the posterior probability
of the event of interest, i.e., θ̂− ≥ λINF, is sufficiently high.

It is helpful to compare the decision rules based on the influence condition to
those employed in the marker sequential test (MaST) proposed by Freidlin et al.
(2014). This test is closely related to the fallback test but its main focus is the
formulation of decision-making criteria, i.e., criteria for selecting an appropriate
patient population for a tailored therapy. The corresponding decision rules are
formulated in terms of p-values and incorporate a simple nonparametric multiplicity
adjustment. Let 0 < α1 < α denote the fraction of the Type I error rate assigned
to the treatment effect test in the biomarker-positive subpopulation (α = 0.05).
The remaining error rate, i.e., α2 = α − α1, is allocated to the overall population
test. Also, as in Sect. 3.4.2, let p0, p+ and p− denote the treatment effect p-values
in the overall population, biomarker-positive subpopulation and biomarker-negative
subpopulation, respectively. The MaST-based decision rules are set up as follows:
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• Broad effectiveness claim is considered if either of the following two conditions
is met:

– Condition 1. The treatment effect is simultaneously significant in the
biomarker-positive and biomarker-negative subpopulations, namely, if
p+ ≤ α1 and p− ≤ α.

– Condition 2. The treatment effect is significant in the biomarker-positive
subpopulation (p+ ≤ α1) and overall populations (p0 ≤ α2).

• Restricted effectiveness claim is considered if

– Condition 3. The treatment effect is significant in the biomarker-positive
subpopulation (p+ ≤ α1) but insignificant in the biomarker-negative subpop-
ulation (p− > α).

It is easy to see that the resulting decision rules are not consistent with the
rules based on the influence condition. Beginning with Condition 1, it is logical
to recommend the broad claim if there is evidence of a significant treatment effect
within the biomarker-negative subpopulation, i.e., if p− ≤ α. This condition
appears to be extremely stringent since establishing significance within a subset
where the treatment effect is not expected to be strong is a very high hurdle. To
illustrate this point, let us return to the summary of the lapatinib trial results in
Table 3.6. When we discussed these results, we pointed out that the treatment
effect in biomarker-negative patients is weak since the hazard ratio is close to 1.
Suppose that the minimal clinically important effect in this trial corresponds to the
hazard ratio of 0.85 and the influence condition threshold is defined based on this
hazard ratio. According to the influence condition, the broad effectiveness claim
would be recommended if the hazard ratio in the biomarker-negative subpopulation
was less than 0.85. Switching to Condition 1, the broad effectiveness claim would
be considered only if the treatment effect was significant at a two-sided 0.05
level within the biomarker-negative subpopulation, i.e., if the hazard ratio was less
than 0.75, which is a much higher hurdle. If the MaST-based decision rules had
been applied to the lapatinib trial, the efficacy signal in the biomarker-negative
subpopulation would have to be almost as strong as that in the biomarker-positive
subpopulation to support a claim in the overall population. Next, Condition 2 simply
relies on the significance of the treatment effect tests within the overall population
and biomarker-positive subpopulation and it does not directly address the problem
at hand. The fact that p+ ≤ α1 and p0 ≤ α2 does not provide any evidence to
support the broad claim since the significance of the overall p-value is likely to be
driven by the significance of the treatment effect p-value in the biomarker-positive
subpopulation. As a result, the probability of incorrect recommendations may be
quite high if the MaST-based decision rules are applied.

By contrast, the approach defined earlier in this section is easily combined with
a multiple test to create a set of rules that protect the Type I error rate and support
logical decision making in a multi-population setting:
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• Step 1. Apply an efficient and robust multiplicity adjustment which can be found
using the CSE approach outlined in Sect. 3.4.2.

• Step 2. If only one test (overall population test or subpopulation test) is signif-
icant, the effectiveness claim is selected in a straightforward way. If both tests
are significant, apply the influence condition and, if appropriate, the interaction
condition to formulate an appropriate effectiveness claim.

3.4.4 Adaptive Designs in Multi-Population Trials

So far we have discussed multi-population trials with a fixed design where the
total sample size or target number of events is pre-specified. The multi-population
framework has been successfully extended to trial designs with data-driven decision
rules that enable the trial’s sponsor to select the most promising patient population at
an interim look. These designs are known as adaptive population selection designs
or adaptive enrichment designs (FDA 2018). In this section we will discuss well-
established adaptive designs aimed at evaluating treatment benefits in a set of
subpopulations that are defined at the trial planning stage as well as more advanced
designs that are built around subpopulations selected at an interim analysis.

3.4.4.1 Adaptive Trials with Pre-planned Subpopulations

This section provides an overview of adaptive approaches to designing clinical
trials aimed at evaluating the efficacy and safety of new treatments in several pre-
planned patient populations. Each population is set up using a prospectively defined
binary classifier, which means that a cut point must be pre-specified for every
continuous biomarker. A multi-population adaptive trial can be designed to evaluate
the treatment effect within each pre-planned population at an interim look and
identify the most promising populations that will be examined at the final analysis.
Furthermore, the number of patients or events can be appropriately increased in
the overall population or within a subpopulation if the treatment effect at the
final analysis is projected to be borderline non-significant. An important feature
of adaptive population selection trials is that they are inferentially seamless, i.e., the
final analysis is conducted within the selected populations using all relevant data
(data collected before and after the decision point at which these patient populations
were chosen).

This adaptive approach is appealing in settings where there is enough evidence
to justify an assumption of a differential treatment effect, i.e., to assume that the
treatment would be more effective in biomarker-positive patients compared to the
biomarker-negative subpopulation, and it may be premature to rule out a clinically
relevant treatment benefit in the biomarker-negative subpopulation. In a sense,
adaptive designs with a provision to choose the most appropriate patient population
provide a compromise between subpopulation-only designs that restrict patients
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enrollment to a pre-defined subset of the overall population and multi-population
designs that are open to all comers.

Increasingly more sophisticated adaptive designs are available to support the
investigation of subgroup effects in pivotal trials. These designs incorporate flexible
data-driven decision rules and enable valid statistical inferences that guarantee
Type I error rate control. Adaptive population selection designs have been applied
to dozens of pivotal trials and a detailed description of key methodological and
operational considerations can be found in Bretz et al. (2006) and Wassmer and
Brannath (2016).

When considering the available options for selecting decision rules in adaptive
population selection trials, it is important to differentiate between population
selection rules and hypothesis selection rules. Suppose, for example, that an adaptive
trial needs to be designed to investigate the effects of a novel treatment in two
patient populations (overall population and a subpopulation of biomarker-positive
patients). As in Sect. 3.4.2, the null hypotheses of no effect in the overall population
and biomarker-positive subpopulation will be denoted by H0 and H+, respectively.
The following population selection rule can be applied at an interim look in this
trial:

• Decision 1. Select the overall population, i.e., continue enrolling all patients after
the interim analysis.

• Decision 2. Select the biomarker-positive subpopulation, i.e., continue enrolling
biomarker-positive patients only after the interim analysis (biomarker-negative
patients will no longer be enrolled).

• Decision 3. Select no population, i.e., terminate the trial at the interim analysis.

Depending on the selected patient population, the trial’s sponsor has the follow-
ing options for choosing the hypotheses that will be tested at the final look:

• Decision 1A. If the overall population is selected, evaluate the overall effect as
well as the subpopulation effect, i.e., test both H0 and H+ at the final analysis.

• Decision 1B. If the overall population is selected, evaluate the overall effect only,
i.e., test H0 at the final analysis.

• Decision 2A. If the biomarker-positive subpopulation is selected, evaluate the
subpopulation effect, i.e., test H+ at the final analysis.

It follows from this hypothesis selection rule that, if a decision is made to
continue enrolling all patients, the sponsor may still examine the effectiveness of
the experimental treatment within the biomarker-positive subset, in which case
an appropriate multiplicity correction will need to be employed. Also, under
Decision 1B, the hypothesis H+ can be tested at the end of the trial but as a
secondary hypothesis that does not require a formal multiplicity adjustment.

To construct adaptive designs that guarantee Type I error rate control in
multi-population trials, combination function methods are commonly applied in
conjunction with the closure principle. Assuming a trial with a single interim look,
two stages are easily defined, e.g., the first stage includes all patients who complete
the trial prior to the interim analysis and the second stage includes all patients
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who complete the trial after the interim analysis if the primary efficacy endpoint is
continuous or binary. The stagewise p-values are computed using the data collected
in each trial stage and, to control the Type I error rate, the p-values from the first and
second stages need to be pooled using a pre-specified combination function with
appropriate adjustments for hypothesis selection. This general approach was used
in Brannath et al. (2009) to define a class of adaptive designs with two pre-defined
patient populations. Alternatively, conditional error rate methods can be applied,
see, for example, Friede et al. (2012). For more information on the combination
function and conditional error rate methods, see Wassmer and Brannath (2016). The
combination function principle is mathematically equivalent to the conditional error
rate principle but, as shown in Friede et al. (2012), the former may provide certain
advantages over the latter when dealing with the hypothesis test statistics in multi-
population settings.

In addition to addressing multiplicity issues arising in clinical trials with adaptive
population selection, it is important to define meaningful rules for identifying
the most promising populations and hypotheses to examine at the final analysis.
First of all, the choice of population or hypothesis selection rules is not driven
by multiplicity considerations. In fact, adaptive designs based on the combination
function principle or conditional error rate principle can be set up with any
population or hypothesis selection rules. The rules should be chosen to ensure
logical decision making and it is advisable to apply the decision-making framework
introduced in Sect. 3.4.3.

As a quick illustration of the guiding principles, consider again an adaptive
design in a multi-population trial with a single pre-defined population. To be
consistent with the notation introduced in Sect. 3.4.3, the interim effect sizes in the
biomarker-negative subpopulation, biomarker-positive subpopulation and overall
population will be denoted by θ̂−, θ̂+ and θ̂0, respectively.

Suppose that there is a strong efficacy trend in the overall as well as biomarker-
positive analyses, i.e., both θ̂+ and θ̂0 are sufficiently large. While it may be tempting
to select Decision 1A, i.e., enroll both biomarker-negative and biomarker-positive
patients in the second stage of the trial and test the hypotheses H0 and H+ at the final
analysis, it will be beneficial to carefully examine the evidence in support of this
decision. It was explained in Sect. 3.4.3 that a positive signal in the overall analysis
does not immediately imply that the treatment is truly effective across the trial’s
population. This positive signal may simply be caused by a very strong efficacy
signal in the biomarker-positive subpopulation. This consideration is related to the
concept of an influence error and, according to the influence condition, it will be
sensible to consider Decisions 1A or 1B only if there is evidence of a meaningful
benefit is the subpopulation of biomarker-negative patients, i.e., if θ̂− ≥ λINF, where
λINF is a pre-specified threshold. If this influence condition is not satisfied, the most
reasonable course of action would be to consider Decision 2A, i.e., to restrict patient
enrollment to the biomarker-positive subset since biomarker-negative patients do
not appear to benefit from the treatment. As the next step, the interaction condition
needs to be checked to determine whether or not a differential treatment effect
is present. This condition is met and thus Decisions 1A is justified if θ̂+/θ̂− ≥
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λINT with a pre-specified λINT > 1. Otherwise, there is no clinically meaningful
difference between the biomarker-negative and biomarker-positive subpopulations
and Decisions 1B with the overall population test at the final look needs to be
selected.

To summarize, the following population and hypothesis selection rules would be
generally recommended if the experimental treatment appears to be effective in both
patient populations at the interim look:

• Decision 1A. Select the overall population and test both H0 and H+ at the final
analysis if the influence and interaction conditions are both met.

• Decision 1B. Select the overall population but test H0 only at the final analysis if
the influence condition is satisfied but the interaction conditions is not.

• Decision 2A. Select the biomarker-positive subpopulation and test H+ at the final
analysis if the influence condition is not satisfied.

The decision-making framework presented above depends of the free parameters
known as the influence and interaction thresholds (λINF and λINT). To select
reasonable values of these parameters, it is advisable to perform a comprehensive
evaluation of the operating characteristics of the adaptive design using the Clinical
Scenario Evaluation approach presented at the end of Sect. 3.4.2. The evaluation
may be aimed at maximizing the probability of success in the trial under clinically
meaningful constraints on the influence and interaction thresholds.

3.4.4.2 Adaptive Trials with Data-Driven Subpopulations

A key assumption made in the adaptive designs described above is that the subsets
of the overall population must be prospectively defined, i.e., the corresponding
binary classifiers must be known at the planning stage. This means that the
underlying biomarkers must be selected upfront and, if these biomarkers are
measured on interval or ordinal scales, the cut points that define the biomarker-
low and biomarker-high subgroups must be selected as well. It is natural to consider
extensions of this adaptive design framework that support more flexible decision
rules. Examples include adaptive trials where patient subpopulations are partially
defined at the onset of a trial, i.e., candidate biomarkers are pre-selected but the
rules for defining patient subgroups are not specified, and the subpopulations of
interest are fully defined at an interim look using the data from the first stage of the
trial. To understand the advantages of this approach over standard adaptive designs
with pre-set subpopulations, note that the rules for defining these subpopulations,
e.g., cut points for continuous biomarkers, are typically estimated from rather small
Phase II trials. With data-driven subpopulations, a larger data set from the first stage
of a Phase III trial will be used to identify an optimal cut point for a biomarker. The
subpopulation corresponding to this cut point could then be analyzed at the final
look as if it was pre-planned.

One of the most straightforward approaches to designing adaptive trials with
data-driven subpopulations, often referred to as signature designs, was proposed
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by Freidlin and Simon (2005). Very briefly, consider a two-stage trial with a single
interim look. The interim data set is carefully examined to find a subset with a strong
efficacy signal and the treatment effect is evaluated at the final analysis in the overall
population as well as the subset identified at the interim analysis. The data collected
before and after the interim look are used in the overall test and only the second-
stage data are utilized in the subpopulation test. To protect the Type I error rate,
the Bonferroni test is applied to split the alpha between the two tests. An obvious
limitation of the signature designs is that the data from the first stage of the trial are
discarded when the subpopulation effect is assessed. In addition, it is important to
bear in mind that the null hypothesis of no effect within the subpopulation is not pre-
specified. Therefore, it is not clear how to define the Type I error rate in this problem
with data-driven subsets and, even though the multiplicity adjustment based on the
Bonferroni test is conservative, the probability of an incorrect decision may not be
controlled in this setting.

More efficient designs have been developed to support inferences in data-driven
subsets in an inferentially seamless way, i.e., by pooling the first-stage and second-
stage data within a subset, using the combination function principle, see, for
example, Graf et al. (2019, 2020). This general framework can be combined with
any of the principled subgroup identification methods discussed in Sect. 3.3. Briefly,
suppose that a set of continuous biomarkers is pre-specified in a two-stage Phase III
trial and an appropriate subgroup identification method is applied at the interim
analysis to choose the strongest predictor of treatment benefit and a corresponding
binary classifier that defines a target subpopulation. The trial proceeds to the final
analysis and the treatment effect is assessed within the overall trial population as
well as the selected subpopulation using an appropriate multiplicity adjustment.
This multiplicity adjustment is derived using the combination function principle
and takes into account a rich family of null hypotheses corresponding to all cut
points for the candidate biomarkers and, as a result, the adjustment guarantees Type
I error rate control in the strong sense. This flexible approach to identifying relevant
patient subgroups in pivotal trials has the potential to provide a more comprehensive
characterization of the efficacy of novel treatments compared to adaptive trials that
rely on pre-planned patient subpopulations.

3.5 Discussion

The main goal of this chapter is to provide an overview of key considerations in
the evaluation of subgroup effects in late-stage clinical trials, including an overview
of applicable trial designs, statistical methods used in exploratory and confirmatory
settings, and regulatory considerations.

We started this chapter with a review of applicable regulatory guidance docu-
ments, including one of the earliest guidelines (ICH E9). Regional health author-
ities have carefully considered the topic of subgroup analysis in their guidance
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documents, as reflected in the special issue of Journal of Biopharmaceutical
Statistics on subgroup analysis in clinical trials guest-edited by Dmitrienko and
Wang (2014). All of the guidance documents we reviewed agree that a homogeneity
of the treatment effect can not be assumed a priori in late-stage clinical trials.
Consequently, a comprehensive evaluation of subgroup effects needs to be consid-
ered in all late-stage clinical trials when the objective is to achieve corresponding
licensing for an investigational treatment. In multiple settings, including innovative
therapeutic fields with completely new medical entities and sparse historical data, it
remains challenging to specify a homogeneous trial population, define consistency
and pre-specify factors that define relevant patient subgroup. The interpretation
of trial results in these and similar settings will strongly depend on benefit-risk
considerations. To summarize, it follows from multiple guidance documents that
subgroup findings should take into consideration biological plausibility, internal
and/or external consistency, the strength of evidence, clinical relevance and statisti-
cal uncertainty.

Putting these principles to practice may be challenging and we considered many
challenges and pitfalls of subgroup investigation in both exploratory and confirma-
tory settings in separate sections. Numerous patient subgroups are examined in all
Phase II and Phase III clinical trials and it is critical to identify appropriate statistical
methods that are aligned with the goals of subgroup analysis, e.g., data-driven or
confirmatory subgroup analysis.

In the context of data-driven subgroup analysis we followed the established
clinical practice and distinguished among the traditional exploratory analysis in
clinical trials, post-hoc analysis and subgroup/biomarker discovery, arguing that
a unified set of statistical principles should be applied across different types of
subgroup evaluations. These principles were derived from the literature on statistical
methods that have been proposed recently for data-driven subgroup analysis, as
a result of a cross-fertilization of efforts from machine learning, causal inference
and multiple testing. Several criteria of principled data-driven subgroup evaluation
were established. In particular, complexity and false positive error rate control
should be implemented using, for example, resampling methods to account for
the uncertainty in complex biomarker/subgroup search strategies. Treatment effects
within the identified subgroups or, more broadly, gains from estimated individual
treatment assignment rules should be evaluated by methods that account for
optimism (selection) bias when applied in the future trials/patient populations.

Multiplicity adjustments play a central role in confirmatory subgroup analysis
settings. As a large number of options for multiplicity adjustment exist in a multi-
population trial, it is important to identify a procedure that performs best in the
context of a given trial while being robust against deviations from the assumptions
about the treatment effect. Recently several sophisticated adaptive designs have been
developed to support the investigation of subgroup effects in pivotal trials. These
designs rely on flexible data-driven decision rules, e.g., support options to select
treatment arms or subpopulations, while enabling valid statistical inferences in terms
of controlling the overall Type I error rate.
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Chapter 4
Considerations on Subgroup Analysis
in Design and Analysis of Multi-Regional
Clinical Trials

Hui Quan, Xuezhou Mao, Jun Wang, and Ji Zhang

Abstract The application of multi-regional clinical trials (MRCTs) is a preferred
strategy for rapid global new drug development. In a MRCT, besides the other
subgroup factors that are in general well defined, region is a special subgroup factor
which can be a surrogate of many intrinsic and extrinsic factors. The definition of
a region for a MRCT may be trial specific. It depends on where the MRCT will
be conducted and how the sample sizes will be allocated across the regions. As a
regional health authority will carefully review the regional treatment effect before
the approval of the drug for the patients of the region, special attention should be
paid to the regional subgroup analysis. In this chapter, we will discuss subgroup
analysis in design and analysis of multi-regional clinical trials focusing on regional
subgroup analysis. These include the considerations on region definition, analysis
model, consistency assessment of regional treatment effects, regional sample size
allocation and trial result interpretation. Numerical and real trial examples will be
used to illustrate the applications of the methods.
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definition · Regional treatment effect · Sample size · Statistical analysis plan ·
Subgroup analysis · Stratification factors · Type I error rate

4.1 Introduction

With the growing trend of globalization and the need for rapid availability of
new medicines to patients worldwide, the use of multi-regional clinical trials
(MRCTs) is a preferred strategy applied by sponsors for global drug development.
A MRCT is clearly much more complex than a trial conducted in a single region.
To address issues raised from MRCTs, extensive effort from all parties involved in
MRCTs has been made in the related research field. The Japanese health authority
issued the initial guidance for international clinical trials in 2007. The European
Medicines Agency (EMA) published a reflection paper on the extrapolation of
results from trials conducted outside of Europe in 2008. The International Council
for Harmonisation (ICH) Expert Working Group recommended the adoption of
E17: General principle on planning/designing Multi-Regional Clinical Trials in
2017. Statisticians from academia, regulatory and industry have also contributed
by conducting independent research (Kawai et al. 2007; Uesaka 2009; Quan et al.
2010a, b, 2017; Hung et al. 2010; Chen et al. 2010; Khin et al. 2013).

As in any clinical trials, subgroup analyses are important components of data
analysis in MRCTs. Besides the regular subgroups defined by baseline charac-
teristics such as gender, age, disease severity and biomarkers, region is a special
subgroup factor in a MRCT. Consistency of treatment effects across all subgroups
is essential for the drug to be applicable to all patients. However, different from a
regular subgroup that has no representatives who impose trial requirements from
the perspective of that subgroup, regional health authorities may have specific trial
demands that the sponsor should meet. Therefore, particular attention should be paid
to the regional subgroup analysis in MRCTs.

In this chapter, we will discuss subgroup analysis in a MRCT setting focusing on
regional subgroup analysis. MRCT design related issues will be tackled in Sect. 4.2.
These include considerations of region definitions and harmonization of the regional
requirements. Models for data analysis with region as a factor for the convenience
of regional treatment effect assessment along with the corresponding overall sample
size calculations will be specified in Sect. 4.3. Methods for regional treatment effect
assessments will be discussed in Sect. 4.4. Given the operational complexity of
MRCTs, special care for the conduct and monitoring of a MRCT to ensure the trial
quality will be pointed out in Sect. 4.5. Interpretation of trial results is the focus of
Sect. 4.6. Further regular subgroup analysis in a MRCT setting will be reviewed in
Sect. 4.7 and brief discussion is provided in Sect. 4.8 to conclude the chapter.
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4.2 Trial Design Considerations

Clinical trial design depends on the trial objective(s), the primary endpoint(s), the
primary population and the method for the primary analyses. One objective of
a multi-regional clinical trial is to assess treatment effects simultaneously across
regions. An understanding of the disease and the impact of many intrinsic/extrinsic
factors on the treatment outcomes across regions is the key for determining whether
a MRCT is an appropriate choice for meeting the trial objectives.

The definitions of the regular subgroups which rely on specific factors (e.g.,
gender) are well understood and are basically the same across studies. However,
the definition of regions for a MRCT may be trial dependent. It depends on where
the MRCT will be conducted and how the sample sizes will be allocated across
the regions. Furthermore, upon the completion of the trial, while interpreting the
MRCT results, a country or regional health authority has the obligation to protect
the public health of the patients under its jurisdiction and will examine the regional
result before marketing approval of the drug in the regions. Thus, special care for
handling region related issues should be initiated from MRCT design.

4.2.1 Region Definition

A “region” may be defined as a single country or as a combination of several
countries resting on many considerations. The definition of region may impact many
aspects of the design and data analysis. For example, as will be seen in Sect. 4.3, if
a random effects model is applied to data analysis, a larger number of regions (e.g.,
region is defined at the country level particularly for large countries) will associate
with a smaller overall sample size for the MRCT for the desired power. On the other
hand, if regional treatment effects will be quantified based on solely regional data,
countries should be combined to form regions so that the number of regions is small
and the regional sample sizes are relatively large for producing robust estimates of
regional treatment effects. Documenting the definition of region and the analysis
plan for the evaluation of regional treatment effects at the time of study design
will provide appropriate perspective and integrity for anticipated and unanticipated
regional findings at study conclusion.

A typical approach for combining countries to form a region is based on the
proximity of geographic locations. For instance, the common practice is to combine
Japan, South Korea and China into a single geographic region denoted as “Asia”
in a MRCT. However, considering that region is a surrogate for many intrinsic
and extrinsic factors (Wittes 2013), the definition of region may not be limited to
geographic boundaries. Adequate justification of any definition of region should
take into consideration such factors as race or ethnicity, disease epidemiology,
background therapies, and medical practice among others. If economic situation
or income along with the availability of medications could potentially influence
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treatment outcome, then combining those three countries with different Human
Development Index levels to form an ‘Asia’ region may not make sense and in
fact may increase heterogeneity (Tanaka et al. 2011).

4.2.2 Regional Requirements

As discussed in Girman et al. (2011), for certain disease areas, regulatory agencies
in different parts of the world may have different requirements for the approval
of a new drug for their regions. These differences could be about the primary
endpoints, key secondary endpoints, the minimum treatment duration, a key time
point of measurement, a non-inferiority margin, an analysis population, the amount
of overall data (e.g., safety data) or amount of regional data, and even the approach
for data analysis (e.g., method for handling missing data). Such differences create
significant challenges for trial design and data analysis when a MRCT strategy is
applied for global drug development. To address these challenges, the trial sponsor
should first negotiate with regulatory agencies to harmonize or minimize regional
requirement differences and obtain agreement to use a more consistent standard
across regions. If the differences are unavoidable due to, for example, different
scientific interpretations of the disease, the sponsor needs to carefully address the
disparities in the protocol with key design components capable of meeting most of
the needs of all the regions in order to maintain the efficiency of the MRCT to enable
a successful global new drug development program. Hemmings and Lewis (2013)
even propose to “Develop multiple SAPs (Statistical Analysis Plans) for a single
trial, conducted under a single trial protocol, so that the same trial data separately
analyzed will address the different standards of each region.”

In the case of different agencies requiring different primary endpoints (see
Girman et al. 2011 for examples), data for all these endpoints should be collected
in the same MRCT. However, it should be comprehensively stated in the study
protocol that the primary endpoints for different regions are unique and not co-
primary endpoints for all the regions. The pre-specified region specific primary
endpoints could still be used as supportive endpoints for the other regions. The needs
for multiplicity adjustments are only for the endpoints within a region (see also
ICH E17). In addition, the overall sample size for the MRCT should be the largest
sample size such that there is the desired power for demonstrating the treatment
effects on each of the separate region specific primary endpoints, utilizing the total
trial information from all regions.

Non-inferiority trials are often conducted to establish that the experimental
treatment is not worse than a reference treatment based on a pre-specified non-
inferiority margin. There may be a well-established consensus for defining the
margin for certain therapeutic areas. For other therapeutic areas, a conservative
method requested by an agency will result in a smaller margin. The requests of
different non-inferiority margins from different regions will create a situation where
there are multiple hypotheses for the non-inferiority assessment for the different



4 Considerations on Subgroup Analysis in Design and Analysis of Multi-Regional. . . 97

regions/margins within the same MRCT. Since the hypothesis of a smaller margin
is nested in the hypothesis of a larger margin, all tests for these hypotheses form a
closed procedure and multiplicity adjustment is not necessary. That is, even when
the nominal significance level is applied to test each hypothesis, the overall type I
error rate is still strongly controlled. If no multiplicity adjustment will be considered
across regions, there will be no issue of type I error rate inflation anyway. For non-
inferiority assessment, some agencies may request an Intent-To-Treat analysis while
the other agencies may prefer a Per-Protocol analysis as the primary analysis (see
Girman et al. 2011). The point estimates and sample sizes for these two analyses
are slightly different. Even with all these issues specified in the protocol, results in
the analysis reports for different regions and different populations should be viewed
with caution and in proper context.

When different agencies request different time points for the primary endpoint
or different amounts of data (e.g., safety data), the MRCT should have sufficient
duration for the longest time point and large enough sample size for the largest
requested amount of data. This means that the regulatory agency(s) with the most
extreme requests for the amount and/or duration of data will drive these study design
characteristics. Depending on the specific circumstances, it may not be wise to
perform an interim analysis and submit the interim results to the agency that requests
relatively shorter study duration in order to maintain the integrity of the whole
MRCT. If different active controls, different doses of the experimental treatment or
different rescue medications are used by different regions, the complexity of using
one MRCT for all the regions will significantly increase. The sponsor will need
to address all these complications due to different study design elements, and the
resulting trial conduct and data analysis.

The analyses performed to meet the different requirements of different regional
health authorities are not really the traditional subgroup analyses. They will use all
available data from the whole study across all regions. The results are not specific
for individual regions but for the full population as a whole.

4.2.3 Randomization

The number of pre-specified subgroup analyses for a clinical trial is usually
not small. Thus, it is not practical to incorporate all the factors which define
these subgroups as stratification factors for randomization. As a relatively more
formal analysis will be performed for the region subgroup to meet the needs of
regional health authorities and region is a surrogate for many intrinsic and extrinsic
factors, use region as a stratification factor in randomization and in analysis model
may increase the efficiency of the analysis. Stratified randomization can also be
conducted at the country level in case later on small countries will be combined to
form regions in data analysis.

A subgroup factor may be a predictive factor. That is, the treatment effect is
relatively larger in one subgroup than another subgroup defined by the factor. If
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there is imbalance in terms of the prevalence of patients in these subgroups across
regions, the factor itself should also be treated as a stratified randomization factor
and be included in the analysis model to avoid heterogeneity of treatment effects
across regions (Chen et al. 2012).

4.3 Models and the Overall Sample Sizes

The primary objective of a MRCT is to demonstrate the overall treatment effect
based on data from the whole trial. Before the discussion of subgroup analyses, we
first need to lay out the approaches for the overall analysis. The calculation of the
required overall sample size to have desired power for this primary objective is also
an important component of the trial design. For ease of explanation, we assume
that the endpoint follows a normal distribution. The methodology can be applied
to other types of endpoints through the asymptotic normality of the distributions of
the estimators of treatment effects. Suppose δi is the true treatment effect, Ni is the
sample size per treatment group for region i and s is the number of regions in a
MRCT. When stratified randomization and analysis are performed with region as a
stratification factor, the estimator δ̂i of the regional treatment effect based on data of
region i is the between-treatment difference of sample means and follows

(
δ̂i |δi

)
∼ N

(
δi,

2σ 2

Ni

)
, (4.1)

where σ 2 is the variance of the endpoint assumed to be a constant across regions.
For unbalanced design or in the case of heterogeneity of variance across regions,

modification on the variance in (4.1) is needed. Basically, 2σ 2

Ni
is replaced by the

variance of the estimator of the regional treatment effect. Denoting N = ∑s
i=1Ni

as the total number of patients in each treatment group in the trial, fi = Ni/N will be
the fraction of patients from region i and

∑s
i=1fi = 1.

To address possible regional treatment effect differences in a MRCT, we focus
on and compare three major models: fixed effects, random effects and the discrete
random effects models, in a MRCT setting. With a fixed effects model (FEM), δi’s
are treated as fixed unknown parameters and can be different across regions. The
overall treatment effect can be estimated as a weighted average of those regional
treatment effect estimators δ̂i’s

δ̂ =
∑s

i=1
fi δ̂i . (4.2)

Given δi, i = 1, 2, . . . , s,

(
δ̂|δi, i = 1, 2, . . . , s

)
∼ N

(
δ,

2σ 2

N

)
, (4.3)
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where the expectation δ = Eδ̂ =∑s
i=1fiδi which relies on the regional sample size

configuration and the values of δi’s is the overall treatment effect under the FEM.
A random effects model (REM) has been applied to multi-center clinical trials

(Senn 1998; Fedorov and Jones 2005) which have similar setting of multi-regional
clinical trials. Hung et al. (2010) also proposed to use a random effects model
for sample size calculation for a MRCT. With a REM, the δi’s are treated as
random variables, assumed to be exchangeable (perhaps after the adjustment for
key covariates) and follow the same distribution

δi ∼ N
(
δ, τ 2

)
(4.4)

where δ is the overall population mean or treatment effect and τ 2 is the between-
region variance. Under the REM, from (4.2),

δ̂ ∼ N

(

δ,
2σ 2N + τ 2∑s

i=1N
2
i

N2

)

. (4.5)

With (4.5), to detect an overall treatment effect δ at a one-sided level α with
power 1 − β, the overall sample size should satisfy

N̂ =
[
δ2/
(

2σ 2(zα + zβ
)2)−

(
τ 2/

(
2σ 2
))∑s

i=1
f 2
i

]−1
(4.6)

where za is the 1 − a quantile of the standard normal distribution. If τ 2 = 0 or no
between-region variation, (4.6) becomes the usual sample size formula based on a
fixed effects model

N0 = 2σ 2(zα + zβ
)2
/δ2 (4.7)

(with δ = δ) which is smaller than N̂ unless τ 2 = 0. Under the REM, combining
(4.1) and (4.4),

δ̂i ∼ N
(
δ, τ 2 + 2σ 2/Ni

)
. (4.8)

Rather than δ̂, an alternative estimator of the overall treatment effect with a
smaller variance compared to the one in (4.5) is

δ̃ =
∑s

i=1
wiδ̂i/

∑s

i=1
wi =

∑s

i=1
wiδ̂i/w ∼ N (δ, 1/w) (4.9)

where wi = 1/(τ 2 + 2σ 2/Ni) is the inverse of the variance of δ̂i in (4.8) and w =∑s
i=1wi . Using (4.9) for the inference of the overall treatment effect, the required

sample size Ñ for detecting δ is the solution of (Quan et al. 2013)



100 H. Quan et al.

∑s

i=1

1

τ 2 + 2σ 2/Ñfi
=
(
zα + zβ

)2

δ2 (4.10)

which will become (4.7) when τ 2 = 0. One criticism for the use of δ̃ is that when
τ 2 is not small and sample sizes for individual regions are large, wi ≈ 1/τ 2 so that
a relatively smaller region (but still with a large regional sample size) will have a
weight similar to that of a larger region and δ̃ will be approximately the simple
average of δ̂i’s.

The discrete random effects model (DREM) proposed by Lan and Pinheiro
(2012) assumes that patients are randomly drawn from the s regions with probability
pi from region i. Therefore, the regional sample size vector (N1, . . . , Ns) is random
with a multinomial distribution MN(N, p1, . . . , ps). Under the DREM,

δ̂ ∼ N

⎛

⎜
⎜
⎝δ

0
,

2

(
σ 2 +∑s

i=1pi

(
δi − δ

0
)2
)

N

⎞

⎟
⎟
⎠ (4.11)

where δ
0 = ∑s

i=1piδi as the overall treatment effect under the DREM in a real
MRCT will be approximated by δ = ∑s

i=1fiδi when pi is estimated by fi. The
additional variance component in (4.11) compared to (4.3) is due to the randomness
of the regional sample sizes. The required overall sample size for the MRCT for

detecting an overall treatment effect δ
0 = δ based on (4.11) is

ND = 2
(
σ 2 +

∑s

i=1
pi(δi − δ)2

) (
zα + zβ

)2
/δ2. (4.12)

Ideally, pi represents the proportion of patients in region i among patients
worldwide. However, in a real MRCT setting, the sample size of a region may
rely more on the other considerations rather than the proportion of patients in the
region. For example, for most diseases, even though China has the largest number
of patients in the world, in many MRCTs, it may have a much smaller sample size
than the United States. In addition, some regions (or countries) may have their own
specific requirements for their own regional sample sizes. Thus, in practice, like the
overall sample size for the whole trial which depends on the pre-specified design
parameters and is a fixed value, the sample size for a region is also more like a fixed
value rather than a random variable.

Besides the assumption on the overall treatment effect δ, the use of (4.6), (4.10)
and (4.12) for an overall sample size calculation also need the assumption about
the between-region variability which can be estimated based on data of previous
multi-regional trials of the same drug or the other drugs in the same therapeutic
area. Quan et al. (2014) discussed the consideration for the selection of τ 2 for the
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use of (4.10). Comparing (4.10) and (4.12), we see that the random components
for REM and DREM are different. REM treats the true regional treatment effects
as random variables. A robust estimate of the associated between-region variability
τ 2 needs a reasonably large number of regions and cannot be obtained by solely
increasing the overall sample size. That is the reason why a REM is not suitable for
a regular subgroup analysis where the number of subgroups is small. On the other
hand, DREM treats regional sample sizes as random variables. The corresponding
additional variability for the estimate of the overall treatment effect can be managed
by increasing the overall sample size (see (4.11)).

When regional treatment effects are homogeneous, (4.11) theoretically should
become (4.3) regardless of the sample sizes across the regions. Nonetheless, since

δi’s are unknown parameters, for data analysis,
∑s

i=1pi

(
δi − δ

0
)2

will be estimated

by
∑s

i=1fi

(
δ̂i − δ̂

)2
which is almost always positive, where δ̂ = ∑s

i=1fi δ̂i . For

example, the expectation of
∑s

i=1fi

(
δ̂i − δ̂

)2
is a positive value 2σ 2(s − 1)/N even

for the special case of equal δi’s and fi = 1/s. When δi’s are different across regions,
the expectation will be larger than 2σ 2(s − 1)/N.

Under a fixed or discrete random effects model, δ̂i converges strongly to the true

regional treatment effect δi as Ni tends to infinity while δ̂ =
∑s

i=1 Ni δ̂i
N

converges to
δ0 = ∑s

i=1f
0
i δi where fi = Ni/N → f 0

i when all regional sample sizes tend to
infinity. In other words, δ̂i and δ̂ are consistent estimators of δi and δ0, respectively.

Under a regular random effects model, as seen from (4.5), (4.8) and (4.9), when
all regional sample sizes tend to infinity, the distribution of δ̂i converges to N(δ, τ 2),

the distribution of δ̂ converges to N
(
δ, τ 2∑s

i=1

(
f 0
i

)2)
while the distribution of

δ̃ converges to N(δ, τ 2/s). All the asymptotic variances are greater than zero and
therefore, the estimators are not consistent estimators of δ (unless the number of
regions also tends to infinity which is not realistic with MRCTs). Moreover, the
variance of δ̂i is never less than τ 2 (the variance of δi in (4.4)). In addition, because
wi = 1/(τ 2 + 2σ 2/Ni) < 1/τ 2, 1/w = 1/

∑s
i=1wi > τ 2/s holds regardless of the

values of the Ni’s. Therefore, no matter whether δ̂ or δ̃ is used for the inference and
no matter how large the Ni’s are, there is the possibility that the overall treatment
effect may not be significant under a random effects model if τ 2/s is not small
(relative to δ). Thus, extreme care should be exercised when a random effects model
is selected for the design and analysis of a MRCT. No matter which of these models
is chosen, the model for trial design and sample size calculation should be consistent
with the model of the pre-planned data analysis. That is, if a fixed effects model will
be used for data analysis, the sample size calculation for the trial should also be
based on a fixed rather than a random effects model.
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4.4 Considerations for Regional Subgroup Analysis

Besides the sample size for the overall treatment effect assessment, one of the other
considerations for MRCT design is the allocation of patients across the regions.
Some regional (or country) health authorities have specific requirements on their
regional sample sizes for regional safety evaluations and/or reasonable assurance
probabilities (Uesaka 2009) for consistency assessment of regional treatment effects
(e.g., see the Japanese Guidance 2007). Calculation of the assurance probabilities
heavily depends on the model for data analysis, the approach for quantifying
regional treatment effects and the criteria of consistency. Besides δ̂i based on data of
only region i, that we have already discussed, to quantify regional treatment effects,
another consideration for alternative approaches is to reduce variability through
borrowing information among the regions. Quan et al. (2013, 2014) propose the
use of the empirical shrinkage estimate

δ̃i ≈ τ 2

τ 2 + 2σ 2/Ni

δ̂i + 2σ 2/Ni

τ 2 + 2σ 2/Ni

δ̃

and the James-Stein shrinkage estimate

δ̆i = cδ̂i + (1 − c) δ̂

where c =
∑s

i=1
(
δi−δ

)2
/s

∑s
i=1
(
δi−δ

)2
/s+2sσ 2/N

and δ =
∑s

i=1 Niδi
N

. The parameters in the formulae

can be replaced by their corresponding estimates. Note that δ̃i is defined only under
a random effects model while both δ̂i and δ̆i are available under both the fixed and
random effects models. Discussion and comparison among these estimates can be
found in Quan et al. (2014).

In a MRCT study protocol that assumes a low enough level of heterogene-
ity among regions such that the MRCT is valid, all regions should be treated
equally even when some countries have specific requirements. One commonly used
approach for a consistency assessment is a treatment by region quantitative (or the
test of τ 2 = 0) or qualitative interaction test which is also the common approach for
the regular subgroup analysis. With this approach, there will be no strong evidence
for inconsistency unless the p-value for the interaction test is small (e.g., less than
0.1). The concern for using the interaction test approach is the low power for the
test. Another simple and straightforward approach that is free of formal statistical
inference testing is to require all estimated regional treatment effects to be at least
π fraction of the observed overall treatment effect (Quan et al. 2010b). That is

D1 > πDall, . . . , Ds > πDall (4.13)

where Di can be δ̂i , δ̃i or δ̆i and Dall can be δ̂ or δ̃. Minimally, an agency would
hope to see positive observed treatment effect for the region of its interest. Thus,
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the minimum value for π in (4.13) is zero that is the value suggested in the
Japanese guidance (2007). It is important to note that this consistency assessment
is meaningful only if the overall treatment effect is significant. Therefore, for trial
design, we need to evaluate

Pr (D1 ≥ πDall, . . . , Ds ≥ πDall |significant overall treatment effect). (4.14)

Clearly, (4.14) depends on the methods for quantifying the regional treatment
effects, the number of regions and sample size configuration across the regions.

Example 4.1 A multi-regional diabetes trial was designed to assess the treatment
effect of an experimental drug. The primary endpoint was change from baseline in
HbA1c at Month 6. To detect an overall between-treatment difference of δ = 0.4%
with a standard deviation of 1.1% and 95% power at a one-sided significant level of
0.025, a total of N0 = 197 patients per group would be needed when a fixed effects
model was used for trial design and data analysis. Suppose a total of 12 countries
from 4 geographic locations would participate in the study. A τ 2 = 0.02 would imply
a 95% confidence range for δi of δ±1.96

√
0.02% or (0.4 − 1.96

√
0.02)% = 0.123%

to (0.4 + 1.96
√

0.02)% = 0.677%. The corresponding required overall sample sizes
for the random effects model can be derived using the methods discussed above.
We examine (4.14) under different scenarios based on the random effects model
where the case of 12 regions implies that regions are defined at country level and
the case of 4 regions implies that countries are combined to form regions. Results
are presented in Table 4.1. In the table, P̂ , P̃ and P̆ denote the values of (4.14)
when δ̂i , δ̃i and δ̆i are used for Di, respectively; while δ̂ (δ̃) is used for Dall when
δ̂i or δ̆i (δ̃i) is used for Di. Clearly, P̂ is too small for s = 12 while P̃ may be too
large with too much information borrowed from the other regions for quantifying
regional treatment effects. The R program that implements Table 4.1 can be found
in Mao and Li (2016). Those designing MRCTs have also to evaluate the chance of
demonstrating consistency under the selected setting at the design stage.

Besides the overall consistency assessment, a regional health authority can
request specific regional treatment effect assessment. The Japanese health authority
specifies a method as an example for local consistency assessment in their guidance
for global new drug development. Based on the method, consistency of treatment
effect for region 1 (e.g., Japan) can be declared if

D1/Dall > π, (4.15)

where different from the π for (4.13), the π for (4.15) has to be at least 0.5.
The guidance further requests a large enough sample size for region 1 when
designing the MRCT to ensure at least a 1 − β’ assurance probability to demonstrate
consistency, i.e.,

Pr (D1/Dall > π) ≥ 1 − β’ (4.16)

and 1 − β’ = 0.8.
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Table 4.1 Probabilities (P̂ , P̃ and P̆ )∗ (%) of demonstrating overall consistency based on (4.14) for different π values
and methods for quantifying regional treatment effects

s = 4 s = 12

P̂ P̃ P̆ P̂ P̃ P̆

π = 0

fi case 1 (Equal) 77 99 96 12 100 67

fi case 2∗ 77 99 96 12 100 67

fi case 3∗ 73 99 95 10 100 59

π = 0.15

fi case 1 (Equal) 68 99 94 6 99 53

fi case 2∗ 68 99 94 6 99 52

fi case 3∗ 64 99 92 5 99 45

π = 0.3

fi case 1 (Equal) 56 98 89 2 99 35

fi case 2∗ 55 98 89 2 99 34

fi case 3∗ 53 98 87 2 99 29
∗The 2 unequal fi cases:

fi case 2 fi case 3

s = 4 f1:f2:f3:f4 = 3:3:4:4 f1:f2:f3:f4 = 5:5:2:2

s = 12 f1: . . . :f6: . . . :f7: . . . :f12=3: . . . :3: . . . :4: . . . :4 f1: . . . :f6: . . . :f7: . . . :f12=5: . . . :5: . . . :2: . . . :2

∗P̂ , P̃ and P̆ represent the probabilities of (4.14) when δ̂i (the regular estimator), δ̃i (empirical shrinkage estimator)
and δ̆i (James-Stein shrinkage estimator) are used for Di, respectively; while δ̂ (δ̃) is used for Dall when δ̂i or δ̆i (δ̃i ) is
used for Di

Under a fixed effects model, Quan et al. (2010a) derive closed form sample size
formulae for region 1 to satisfy (4.16) when estimators δ̂1 and δ̂ are used for D1 and
Dall, respectively. Suppose δ1c is the true treatment effect for all regions other than
region 1 and δ1 = uδ1c, or the true treatment effect for region 1 is a u factor of the
true treatment effect of the other regions. Let fu (Nu

1 = fuN ) be the corresponding
minimum fraction of sample size for region 1 to satisfy (4.16). Then fu satisfies
(Quan et al. 2010a)

(
z1−α + z1−β

)√
fu (u − π − π (u − 1) fu)

(1 + (u − 1) fu)
√

1 + (π2 − 2π
)
fu

= z1−β’,

which can be transformed into a cubic equation of fu giving a closed form solution
for fu. More specifically, if u = 1, i.e., δ1 = δ1c = δ, fu has a simple expression

f1 =
z2

1−β’
(
z1−α + z1−β

)2
(1 − π)2 + z2

1−β’
(
2π − π2

) .

Again, consistency assessment is meaningful only if the overall treatment effect
is significant. The conditional probability of local treatment effect consistency given
the significance of the overall treatment effect is
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Pr
(
δ̂1 > πδ̂|δ1, δ1c, δ̂ − z1−ασ/

√
N/2 > 0

)
.

Quan et al. (2010a) provide values of fu for various u, π , 1 − β and 1 − β
′
when

α = 0.025 (one-sided). For π=0.5, 1 − β=0.9 and 1 − β
′=0.8, f1 = 22.4%. That

is, region 1 should have at least 22.4% of the overall sample size in order to satisfy
(4.16) even when the true treatment effect of region 1 is exactly the same as the true
overall treatment effect. Clearly, such a requirement is not practical when there are
more than 5 regions since we should treat all regions equally in a study protocol.
As for the overall consistency assessment via (4.14), we can also use shrinkage
estimates for local consistency assessment.

If another consistency criterion is used for a MRCT, the impact of the config-
uration of the regional sample sizes on the assurance probability should also be
evaluated. Different approaches can be compared under different scenarios before
finalizing the MRCT protocol. The overall sample size and regional sample sizes
should be considered simultaneously to satisfy the requirements of all parties.
Moreover, due to limited availability of data from early phase studies for dose
selection, some Phase III confirmatory trials may have two doses of the experimental
treatment. Taking into account both efficacy and safety, it is possible that the optimal
dose may be different for different regions due to differences in intrinsic and/or
extrinsic factors. For efficient dose justification, it will be ideal to collect PK data
during the trial. Then a PK/PD model can be built with the incorporation of key
baseline patient characteristics or some intrinsic and extrinsic factors as covariates.
With such a PK/PD model, regional treatment effects of different doses including
doses not studied in the MRCT can be predicted. Trial simulation can also be
conducted to obtain more reasonable variability for statistical inference.

In addition, if an Intent-To-Treat (ITT) design is used for a superiority trial,
all patients including those who discontinue study medication will be followed
and endpoint values will be measured until the pre-planned end of the study.
A region with more treatment discontinuations may have a smaller observed
regional treatment effect due to the reduction in treatment effect after treatment
discontinuation. This should be taken into consideration for consistency assessment
when there are unbalanced treatment discontinuations across regions. For a time to
event endpoint, treatment may have delayed effect. This lag in treatment effect needs
to be accounted for such that enough treatment duration for each patient should be
considered when determining the sample size and study duration. Careful planning
and even trial simulation may be needed to get the optimal balance of all these
design specifications from the MRCT perspective.

4.5 Trial Conduct

A large scale confirmatory MRCT may institute a Data Monitoring Committee
(DMC) to monitor cumulative safety and pre-planned interim efficacy data. If a large
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enough number of patients (e.g., more than 20%) are to be enrolled from a region,
the regional agency may suggest having a DMC representative from the region to
provide input from the regional perspective (Japanese PMDA 2013). The regional
DMC representative could pay close attention to

• Regional enrollment rate or number of events for an event driven trial
• Strict applications of the inclusion and exclusion criteria in the regional sites
• Any major differences in baseline characteristics across the regions
• Consistency of the interim observed regional efficacy and safety profiles com-

pared to the other regions

Example 4.2a The MERIT-HF (Metoprolol Controlled-Release Randomized
Intervention Trial in Heart Failure) (The MERIT-HF Study Group 1999) was
a MRCT conducted to evaluate the treatment effect of once-daily metoprolol
controlled/extended release in patients with Congestive Heart Failure (CHF). One
of the primary endpoints was total mortality. A total of 3991 patients were enrolled
from 14 countries. Results for individual countries can be found in (Wedel et al.
2001). Two countries had zero events in the active treatment group. They were
separately combined with another two separate countries to form a total of 12
regions (Wedel et al. 2001). The trial used an adaptive design with 4 pre-specified
interim analyses. Based on the recommendation of the DMC, the trial was stopped
early at the second pre-planned interim analysis with an observed overall hazard
ratio on total mortality via the fixed effects model of 0.66 (95% confidence interval
(0.53, 0.81), and nominal p = 0.00015) (The MERIT-HF Study Group 1999).
However, a post hoc regional analysis on the final data found that the observed
hazard ratio for the United States (sample size: 1071/3991 = 31.58%) was 1.06
associated with an observed negative treatment effect. This created a concern
among regulators that, perhaps, could have been avoided had the DMC noted this
and not stopped the trial early until more information was collected in the United
States.

For a MRCT trial with an adaptive design, even when the interim overall
result has crossed the pre-specified early stopping boundary, the DMC should
still carefully review consistency of treatment effects across different regions and
different subgroups to check whether additional data are needed before making the
recommendation of early trial stopping. This type of study ‘extension’ should not
be viewed as a new study adaptation in terms of Type I error rate control since the
trial results have already met the criterion for declaring significant treatment effect
and the Type I error rate has already been appropriately controlled via the adaptive
design procedure. To help in the situations, the sponsor should provide guidance
in the DMC charter regarding the expectations of what the DMC should look for
in subgroup including regional results, and state preferences as to early stopping
(or not) of the trial when there is qualitative interaction of treatment effect across
regions, especially if that region is viewed as “key” for the success of the drug
approval and subsequent labeling. As noted above, the DMC should not focus only
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on efficacy, but also confirm that there are sufficient safety data to address any safety
concern before early trial stopping.

The study sponsor can further improve the quality of data from all the regions by
making effort to reduce protocol violations, treatment discontinuation and missing
data based on blinded data reviews. For event type endpoints including adverse
events, data monitoring can also detect whether consistent criteria of event definition
are applied to all regions and potential over/under reporting from some of the
regions.

For trials with a time to event endpoint as the primary endpoint, as discussed
earlier, the number of events rather than the number of patients is the measure
of the amount of information. A more efficient trial design for this type of trial
is the common study stopping time design: all patients will stop the study at
the common calendar time once the total number of events for the whole study
reaches the target. Note that times for site initiation for different regions may be
different particularly when some regions have a delayed protocol approval resulting
in differences in the regional mean exposure times. In such a scenario, regional
sample sizes may need certain adjustment during the conduct of the trial in order to
get the appropriate configuration of the regional number of events for consistency
assessment of regional treatment effects. There are methods to connect enrollment
rate, study duration, sample size and the number of events (Quan et al. 2010a).

4.6 Interpretation of Results

Interpretation of results from a MRCT depends on many factors. One of them is
the model applied to derive the trial results. As discussed in Sect. 4.2, compared
to a fixed effects model, the application of a random effects model to a MRCT
demands a larger sample size for demonstrating the overall treatment effect for the
same power and significance level. Several authors (e.g., Fedorov and Jones 2005;
Senn 1998) state that with a random effects model for a multi-center trial, we can
make probabilistic statements about patients in general, including those from centers
we did not include. Since multi-center trials have a similar setting of multi-regional
trials, this statement may also apply to MRCTs.

For a fixed effects model, even though region definition is important for regional
treatment effect quantification, the overall estimate of treatment effect derived from
such a model is more or less independent with whether and how the regions are
combined in the analysis. To see this, the overall estimate of treatment effect based
on a fixed effects model is

δ̂ =
∑s

i=1 Niδ̂i

N
=

N1δ̂1 +
(
N2δ̂2 + · · · + Nsδ̂s

)

N1 + (N2 + · · · + Ns)
= N1δ̂1 + N ’

2 δ̂
’
2

N
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where N’
2 = N2 + · · · + Ns and δ̂’

2 = N2 δ̂2+···+Ns δ̂s

N’
2

. That is, combining regions 2

to s to form a new region will give the same overall estimate of treatment effect and
the corresponding variance based on a fixed effects model. However, for a random
effects model, like the required overall sample size, the overall trial result depends
on how regions are defined.

Example 4.2b In the MERIT-HF trial example, when a total of 12 regions were
considered in a random effects model, the overall estimate of hazard ratio was 0.64.
The corresponding 95% confidence interval for treatment effect = (0.48, 0.83) was
slightly wider than the one via the fixed effects model provided in Example 4.2a
because of the incorporation of the between region variability in the analysis under
a random effects model. The estimate of the between region variance τ̂ 2 = 0.004 was
small and the treatment by region interaction was not significant (p = 0.22). It is not
unusual for a health authority to examine the trial result of its jurisdiction compared
to those outside its jurisdiction. For example, the US FDA often compares the US
versus non-US results in their review. If only two regions, the US and non-US, were
considered, the results in the MERIT-HF trial would show a significant treatment by
region interaction (p = 0.003). There would also be a large τ̂ 2 = 0.19 in this case.
The random effects model would provide an overall estimate of the hazard ratio of
0.74 (95% CI = (0.39, 1.41)) which was not statistically significantly smaller than
1 (p = 0.187). Note that the 12-region and 2-region random effects models were
two different models. The corresponding parameters including the parameters of
between-region variance were also different. These results illustrate the importance
of pre-defining regions in the study protocol. When there are a reasonably large
number of regions, a random effects model can be appropriately used as it provides
a robust estimate of the between region variability. When the number of regions
is small, a fixed effects model will be more appropriate. Point estimates and the
corresponding 95% confidence intervals of the discrete random effects model with
12 and 2 regions were similar to the fixed effects model for this trial example (see
Fig. 4.1).

After the demonstration of significant overall treatment efficacy and good safety
profile for the entire MERIT-HF trial, regional results should be carefully reviewed
as this is the interest of regional health authorities. By definition, the regions are
smaller than the entire trial, and due to the reduced regional sample sizes or numbers
of events, demonstrating statistical significance of a regional treatment effect based
on solely regional data is not realistic unless a study is specifically designed to do
so. The focus of regional treatment effect evaluation should be to assess consistency
of regional treatment effects. Three approaches for quantifying regional treatment
effects and the corresponding consistency assessment for the MERIT-HF trial
example when s = 12 have been discussed and compared in Quan et al. (2014).
It can be seen that the fixed effect estimate that did not borrow information from the
other regions showed negative observed treatment effects for the US and Iceland.
Thus, consistency of treatment effects for these two countries based on this approach
and (4.13) could not be directly declared. It would be of interest to calculate the
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Fig. 4.1 Estimate of hazard ratio (95% CI) for total mortality based on different models (MERIT-
HF trial)

probability of observing at least one negative regional treatment effect assuming all
regions have the identical true log hazard ratio of δ = log(0.66) (note that 0.66 was
the observed overall hazard ratio via the fixed effects model). Based on the fixed
effects model, the probability is

1 − Pr
(
δ̂1 < 0, . . . , δ̂12 < 0|δ

)
= 1 −

12∏

i=1

| Pr
(
δ̂i < 0|δ

)
(4.17)

where δ̂i , i = 1, . . . 12 are the regional estimates of log hazard ratios of the active
treatment versus placebo control that do not borrow information from the other
regions and are independent. Keep in mind that a negative δ̂i implies a positive
observed risk reduction and positive observed treatment effect for region i. Without
data of individual patients and with only the regional numbers of events from the
publication, we consider asymptotic distribution

δ̂i ∼ N
(
δ, σ̂ 2

i

)

where σ̂ 2
i is the estimate of the variance of δ̂i based on data of region i (Quan

et al. 2013). For the MERIT-HF trial, the probability (4.17) of observing at least
one negative regional treatment effect assuming all regions have the identical true
log hazard ratio of δ = log(0.66) was 0.892, which was so large that one negative
observed regional treatment effect could be expected to be observed by chance.
This is in consistent with the other two methods for quantifying regional treatment
effects for MERIT-HF, the empirical shrinkage estimate and James Stein shrinkage
estimate both showed positive and consistent observed treatment effects for all
regions including the US (Quan et al. 2014).
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Regional data review should not solely focus on the result of one primary efficacy
endpoint. Results of other important endpoints should also be carefully evaluated.
For example, in the MERIT-HF trial, even though the observed treatment effect on
total mortality (one of the two primary endpoints with a pre-specified alpha of 0.04)
for the US patients was negative, the US treatment effects on the second primary
endpoint (a composite endpoint of total mortality or all-cause hospitalization with
a pre-specified alpha of 0.01) and some of the pre-specified secondary endpoints
were all positive. This is referred to as consistency of internal evidence, and is very
useful for interpreting inconsistent results of one of the primary endpoints. It is also
an informal way of “borrowing” evidence to help interpret the US result for the
total mortality primary endpoint. Therefore, utilizing all the evidence, the drug was
approved by the FDA with disclosure of the US data in the label.

4.7 The Regular Subgroup Analyses

As any other clinical trials, the regular subgroup analyses should also be of interest
in MRCTs. In some occasions, the subgroup analysis results may help us to identify
the underlying cause of heterogeneity of regional treatment effects. For example, the
heterogeneity in regional treatment effect may be due to the obvious between-region
imbalance in a predictive subgroup factor. Diligent blinded data review during the
trial may be helpful for us to identify between-region imbalance in a predictive
subgroup factor. We can then pre-specify the inclusion of a predictive subgroup
factor in the analysis model before data unblinding to reduce the heterogeneity of
treatment effects across regions.

The levels for each regular subgroup factor (e.g., only two levels for gender) are
generally small. Thus, it is unrealistic to use a random effects model for regular
subgroup analysis as the estimate of the between-subgroup variability will not be
robust. To borrow information from the alternative subgroups for the assessment of
treatment effect for a specific subgroup, we can use James-Stein shrinkage estimate.
When the number of subgroup factors is not so small, care should be exercised when
interpret the results keeping in mind the multiplicity.

4.8 Discussion

In this chapter, we explore thinking for the design, trial conduct, data analysis
and result interpretation of MRCTs treating region as a special subgroup factor.
Practitioners can borrow from these experiences to improve future MRCTs. MRCT
design components include region definition, endpoint selection, model determina-
tion and the others. Agreement from health authorities across regions should first
be obtained. When there are disparities in the requirements even after negotiation
across agencies, a more conservative approach may be necessary to simultaneously
satisfy the needs of all regions with a single MRCT. Separate statistical analysis



4 Considerations on Subgroup Analysis in Design and Analysis of Multi-Regional. . . 111

plans can then be used to analyze the entire data for separate regions (Hemmings and
Lewis 2013). Importantly, to avoid being unnecessarily conservative, the familywise
Type I error rate should be controlled only within an individual region and not across
regions. We have discussed three models for MRCTs. The differences among these
three models basically depend on how we treat regional treatment effects as well as
regional sample sizes and can be summarized as follows.

• In the fixed effects model, the true regional treatment effects are treated as param-
eters rather than random variables and could be different across regions. Differing
from the fixed effects model, the random effects model treats true regional
treatment effects as random variables. With the incorporation of between-region
variability, the required overall sample size based on this model can be much
larger than that of the fixed effects model particularly if the number of regions is
small.

• With the discrete random effects model, patients are assumed to be randomly
drawn from different regions. Thus, regional sample sizes are random variables
and follow a multinomial distribution. However, in a real MRCT, regional sample
sizes have weak relationship with the sizes of the regional patient populations and
are more like fixed values.

To be consistent with current practice and for easy interpretation of the trial
results, a fixed effects model could be proposed for a MRCT. Then shrinkage esti-
mates could be utilized to quantify regional treatment effects to reduce variability
particularly if the number of regions is not small and the regional sample sizes are
not large for the assessment of consistency of regional treatment effects.

No matter how well a MRCT is designed and how carefully the trial is conducted,
there may be some unexpected regional findings based on pre-planned analyses.
Appropriate further analyses should be performed to evaluate whether these findings
are real or due to chance. Regional treatment effects on an endpoint should not
be interpreted in isolation. Other subgroup analyses should be helpful to address
issue of observed heterogeneity of regional treatment effects. For trials with
potential early stopping, consistency of treatment effects across subgroups should
be confirmed before recommending early trial stopping to avoid potential review
issues. The regular subgroup analyses in a MRCT may help us to interpret the
potential heterogeneity of regional treatment effects if we observed across region
imbalance in some predictive subgroup factors.
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Chapter 5
Practical Subgroup Identification
Strategies in Late-Stage Clinical Trials

Pierre Bunouf, Alex Dmitrienko, and Jean-Marie Grouin

Abstract The chapter discusses practical considerations arising in subgroup
exploration exercises in late-stage clinical trials. Subgroup identification strategies
are commonly applied to characterize the efficacy profile of an experimental
treatment based on the results of a failed trial with a non-significant outcome in the
overall patient population. Considering this setting, we present a comprehensive
overview of relevant considerations related to the selection of clinically candidate
biomarkers, choice of statistical models, including the role of covariate adjustment
in subgroup investigation, and selection of subgroup search parameters. The
subgroup identification methods considered in the chapter rely on the SIDES
family of subgroup search algorithms. We discuss applications of this methodology
to failed clinical trials and its key features such as biomarker screening, complexity
control and Type I error rate control. The statistical methods and considerations
discussed in the chapter will be illustrated using a Phase III clinical trial for the
treatment of benign prostate hypertrophy.

5.1 Introduction

The broad topic of assessing subgroup effects in late-stage clinical trials has been
one of the most important topics from the perspective of both clinical trial sponsors
and regulatory authorities (EMA 2019). At a high level, subgroup analysis methods
are divided into pre-planned (confirmatory) and post-hoc (exploratory) subgroup
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analysis. In a confirmatory setting, treatment effects are examined in a small set
of prospectively specified subgroups of patients. By contrast, post-hoc subgroup
analysis is aimed at examining multiple subgroups in a fairly loose manner. For an
overview of exploratory and confirmatory subgroup analysis strategies, including
regulatory considerations in subgroup analysis, see, for example, Grouin et al.
(2005) and Dmitrienko et al. (2016).

Focusing on post-hoc subgroup analysis, there are several fairly distinct types of
post-hoc subgroup investigations carried out in late-stage clinical trials (Lipkovich
et al. 2017a). Examples include subgroup analyses aimed at assessing the consis-
tency of the overall treatment effect by examining patient subgroups based on key
characteristics such as gender, age, disease severity, etc. Post-hoc subgroup assess-
ments may also be performed to inform future trial designs, especially in the context
of failed clinical trials. This is accomplished by reviewing a large set of patient
subgroups based on relevant baseline patient characteristics. These characteristics
can be collectively referred to as biomarkers and could exhibit prognostic and/or
predictive features. Prognostic biomarkers are used in clinical trials for identifying
subgroups of patients with different outcomes, e.g., a subgroup of patients with
a poor prognosis, irrespective of the treatment. Predictive biomarkers help trial
sponsors examine differential treatment effects, e.g., to select a subset of the overall
trial population with a marked treatment effect compared to the complementary
subset. It is important to know that a biomarker could be neither prognostic nor
predictive, purely prognostic without being predictive or simultaneously prognostic
and predictive.

Predictive biomarkers have found numerous applications in the development
of tailored/targeted therapies (Wang et al. 2007). These therapies are developed
to target subgroups based on one or more predictive biomarkers. In this case
patients in the subgroup of interest, known as biomarker-positive patients, may
derive substantial benefit from the experimental treatment whereas there may be no
evidence of treatment benefit in the complementary subgroup (biomarker-negative
patients). For this reason, statistical methods for examining predictive properties of
biomarkers have attracted much attention in the clinical trial literature (Lipkovich
et al. 2017a).

This chapter focuses on practical considerations in an exploratory evaluation of
patient subgroups in clinical trials based on a candidate set of potentially predictive
biomarkers. Within an exploratory subgroup analysis setting, patient subgroups are
not prospectively defined but rather uncovered after the trial ends using a variety of
data-driven methods. It is well known that any type of exploratory analysis is subject
to optimism bias. For post-hoc subgroup analysis, this means that the trial’s sponsor
is likely to identify multiple patient subgroups with a strong treatment effect but,
in reality, the vast majority of these subgroup findings are false-positive outcomes
and ought to be treated with extreme caution. To reduce the likelihood of spurious
results in an exploratory setting, it is critical to rely on disciplined approaches to
post-hoc subgroup investigations.

Multiple statistical methods have been developed in the literature to support
disciplined approaches to post-hoc subgroup analysis, which is known in this
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context as subgroup identification. Most of these subgroup search procedures, e.g.,
procedures based on interaction trees or virtual twins, take advantage of recent
advances in machine learning and data mining. For a comprehensive review of
commonly used subgroup identification procedures, see Lipkovich et al. (2017a)
and Dmitrienko et al. (2019).

A popular subgroup identification method, known as SIDES (Subgroup Iden-
tification based on Differential Effect Search), was introduced in Lipkovich et al.
(2011) and was later extended in several directions to define increasingly more
sophisticated subgroup search procedures such as SIDEScreen procedures (Lip-
kovich and Dmitrienko 2014a) or Stochastic SIDEScreen procedures (Lipkovich
et al. 2017b). The resulting family of procedures offers multiple attractive features,
e.g., they provide options to control the size of the search space and to filter out non-
informative biomarkers, which results in a more efficient subgroup search algorithm.
In addition, these procedures come with tools to account for optimism bias, which
helps address one of the most important problem plaguing post-hoc subgroup
analysis. SIDES-based subgroup search procedures have been successfully applied
to dozens of late-stage clinical trials to uncover subgroups with a beneficial
treatment effect, see, for example, Hardin et al. (2013) and Dmitrienko et al. (2015).
The general SIDES methodology will be utilized in this chapter to investigate patient
subgroups in a failed Phase III trial.

The chapter is organized as follows. Section 5.2 introduces a case study based on
a Phase III trial for the treatment of benign prostatic hypertrophy (BPH). A high-
level summary of SIDES-based subgroup search methods that will be employed
in this chapter is provided in Sect. 5.3. Section 5.4 discusses the importance of
covariate adjustment in subgroup identification and defines analysis approaches
that were utilized in the subgroup search algorithms in the BPH study. Subgroup
search results in the BPH trial are presented in Sect. 5.5. Section 5.6 summarizes
the results of a simulation study that was conducted to evaluate the performance of
subgroup identification methods in the presence of important prognostic variables.
The chapter closes with a general discussion in Sect. 5.7.

5.2 Case Study

This section describes a case study that will be used throughout this chapter to
illustrate subgroup identification strategies in confirmatory clinical trials. The case
study relies on a double-blind Phase III clinical trial that was conducted to compare
the effect of an experimental treatment on the irritative and obstructive symptoms
in patients suffering from benign prostatic hypertrophy compared to placebo. The
primary analysis in the trial was based on the change in the International Prostate
Score Symptom (IPSS) total score from randomization to 12 months. A lower value
of this endpoint indicates improvement.

The trial was conducted as follows. After the selection visit, patients underwent a
2-month placebo run-in period followed by the randomization visit. If a patient met
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the eligibility criteria, he or she was expected to take the treatment for 1 year and
to undergo visits to the investigator 1, 3, 6, 9, and 12 months after randomization.
Patients who discontinued early were asked to undergo a dropout visit at the
discontinuation date.

The total sample size in the trial was set to 350 patients (175 patients per arm) to
guarantee 90% power based on a mean treatment difference of 2 points, a common
standard deviation of 5.5, and a dropout rate of 10%. This treatment difference
was regarded as clinically relevant in BPH patients. Of note, the experimental
treatment is a plant extract and the reported rate of adverse reactions was quite low.
Consequently, a mean treatment difference which is a little lower than 2 is also of
clinical interest.

Out of the 364 randomized patients, 359 patients were analyzed in the intention-
to-treat (ITT) population, including 177 patients who received the experimental
treatment and 182 patients who received placebo. Among them, 18 patients (10.2%)
in the experimental arm and 20 patients (11.0%) in the placebo arm did not complete
the treatment period mainly due to urinary detention and worsening of the BPH
symptoms.

The overall treatment effect was non-significant in this BPH trial and subgroup
search methods were applied to better characterize the efficacy profile of the experi-
mental treatment in subsets of the overall population based on information available
before randomization. This work focused on selecting biomarkers that help predict
treatment response. The chosen biomarkers were utilized to define subgroups of
patients who benefitted from the experimental treatment. The subgroup search
methodology employed in this trial relied on the SIDES family of subgroup search
algorithms (see Sect. 5.3).

5.3 SIDES-Based Subgroup Identification Methods

To prepare for a discussion of subgroup identification strategies in late-stage
clinical trials, this section introduces key components of SIDES-based subgroup
search algorithms. For more information and technical details, see Lipkovich and
Dmitrienko (2014b) and Dmitrienko et al. (2019).

Consider a clinical trial that was conducted to evaluate the efficacy and safety of
a novel treatment versus control and suppose that the trial’s sponsor is interested
in performing a thorough characterization of treatment effects within patient
subgroups based on a set of candidate biomarkers. The biomarkers are denoted
by X1, . . . , Xm and this candidate set includes both continuous and categorical
variables (categorical variables can be nominal or ordinal). In what follows, we will
define the following key components of the general SIDES method:

1. Subgroup generation algorithm.
2. Subgroup and biomarker selection tools (e.g., complexity control and biomarker

screening).
3. Subgroup interpretation tools (e.g., multiplicity adjustment).



5 Practical Subgroup Identification Strategies 121

5.3.1 Subgroup Generation Algorithm

SIDES-based subgroup search procedures rely on recursive partitioning algorithms
to split the trial’s population and then split the resulting subsets of the overall
population into increasingly smaller subgroups with the ultimate goal of uncovering
subgroups of patients who are likely to experience significant treatment benefit.
Most commonly, recursive partitioning is carried out using a splitting criterion
known as the differential treatment effect criterion. Using the overall population,
denoted by S0, as a starting point, this criterion is applied to each candidate
biomarker X. If X is measured on a continuous scale, an optimal split of the parent
subgroup S0 is found by selecting two child subgroups denoted by S1(X, c) and
S2(X, c). These subgroups are defined as follows

S1(X, c) = {X ≤ c}, S2(X, c) = {X > c}.
The two child subgroups can be thought of as biomarker-low and biomarker-high
subgroups. The subgroup generation algorithm focuses on evaluating the differential
effect between the two child subgroups. In particular, the optimal cutoff c is chosen
by minimizing the differential treatment effect criterion, which is given by

d(X, c) = 2

[
1 − �

( |Z1(X, c) − Z2(X, c)|√
2

)]
,

where �(x) is the cumulative distribution function of the standard normal distri-
bution and Zi(X, c) is the appropriately defined test statistics for evaluating the
significance of the treatment effect within the subgroup Si(X, c), i = 1, 2. It is
worth noting that, unlike the interaction between the treatment effect and biomarker
values, the differential effect can be estimated even if the standard deviations are
different between the two subgroups.

The choice of the test statistics is determined by the primary endpoint’s type,
e.g., a log-rank test statistic could be used for survival endpoints. It will be argued
in Sect. 5.4.2 that it is important to define test statistics using models with an
adjustment for key prognostic covariates. The child subgroup with a stronger
treatment effect is retained and is referred to as a promising subgroup. A similar
approach is applied to categorical biomarkers. For example, if X is a nominal
biomarker with k levels, an optimal split of S0 is determined by examining all
possible ways of partitioning the k levels into two nonempty sets.

As the last step, a pre-set number of promising subgroups with the strongest
differential effect is retained (this process is controlled by a parameter known as the
subgroup width). The resulting promising subgroups are partitioned further until
the maximum number of splits is reached (this process is controlled by a parameter
known as the subgroup depth). For example, if the search depth is set to 2, the
overall population is split to define Level 1 subgroups and the splitting algorithm is
applied to a pre-defined number of most promising subgroups. The selected Level 1
subgroups are now treated as parent subgroups and their children serve as Level 2
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Table 5.1 SIDES subgroup search algorithm

Step 1. The parent group representing the overall trial population is defined. The set of
promising subgroups is an empty set.

Step 2. Parent subgroups are generated recursively at each pre-defined level. If the maximum
level (subgroup depth) is reached, the current parent group is declared a terminal group and
the subgroup search algorithm stops. Otherwise:

1. The candidate biomarkers are arranged in terms of the differential treatment effect criterion.
2. For each of the top biomarkers, two child subgroups based on the best split are found.

The child subgroup corresponding to the larger positive treatment effect is identified and
included in the set of promising subgroups.

3. Each promising subgroup becomes a parent group and Step 2 is repeated.
4. If no child subgroup can be found for any biomarker, the current parent group becomes a

terminal group, which means that it is not considered for further partitioning, and Step 2 is
repeated for other parent subgroups.

Step 3. A promising subgroup is included in the final set of patient subgroups if the treatment
effect p-value within this subgroup is significant at a pre-specified level, e.g., α = 0.025.

subgroups. The Level 1 subgroups are defined using a single biomarker whereas
the Level 2 subgroups are defined using two biomarkers. A number of restrictions
could be imposed, e.g., a sample size restriction is often applied to ensure that
the promising subgroups are sufficiently large (smaller promising subgroups are
discarded).

A high-level description of the subgroup search algorithm is provided in
Table 5.1.

5.3.2 Subgroup and Biomarker Selection Tools

An important feature of any recursive partitioning algorithm is that, without proper
constraints, they can easily lead to a very large number of promising subgroups.
Roughly speaking, the number of subgroups grows at an exponential rate, which
makes it extremely difficult to manage the final set of subgroups. Complexity
control tools and biomarker screening tools help reduce the size of the search
space, i.e., the set of all promising subgroups, and streamline the process of
interpreting the subgroup findings. Complexity control criteria were introduced
in the original SIDES procedure, often referred to as the basic SIDES procedure
(Lipkovich et al. 2011), and biomarker screens were defined when advanced two-
stage SIDES procedures, known as the fixed and adaptive SIDEScreen procedures,
were constructed (Lipkovich and Dmitrienko 2014a).

To enable complexity control, the following subgroup pruning tool is typically
employed. This tool relies on a penalty parameter denoted by γ , where 0 < γ ≤
1, which is known as the child-to-parent ratio. If this parameter is prospectively
defined, a child subgroup is added to the list of promising subgroups only if

pc ≤ γpp,
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where pc and pp are the treatment effect p-values within the child subgroup and its
parent group, respectively. In other words, the treatment effect within the selected
child subgroup must be much stronger than that within its parent group. It is clear
from this definition that, with a smaller child-to-parent ratio, the size of the search
space will be reduced due to the fact that the child subgroups that do not provide
much improvement over their parents will be discarded.

Next, considering biomarker screening tools, it was shown in Lipkovich and
Dmitrienko (2014a) and other papers that the subgroup pruning tool defined above
results in efficient complexity control in subgroup identification problems. An
application of this tool reduces the burden of multiplicity and ultimately lowers
the probability of an incorrect subgroup selection. However, this approach has its
limits and, even if most irrelevant child subgroups are discarded, the probability
of an incorrect subgroup selection will still be very high if a large number of
candidate biomarkers are non-informative. To improve the efficiency of SIDES-
based subgroup search, Lipkovich and Dmitrienko (2014a) proposed a family of
two-stage algorithms that support an option to screen out those biomarkers that are
not good predictors of treatment benefit. Two-stage algorithms are utilized in the
fixed and adaptive SIDEScreen procedures that are set up as follows

1. Apply the basic SIDES procedure to the candidate set of biomarkers and select
the strongest predictors of treatment benefit using a pre-defined biomarker
screening tool.

2. Apply the basic SIDES procedure to the selected set of most promising
biomarkers.

A biomarker screening tool is constructed using variable importance scores
(Lipkovich and Dmitrienko 2014a) that are computed for the candidate biomarkers
in the first stage of this procedure. A biomarker’s variable importance score
serves as a quantitative measure of its predictive properties. A higher value of the
variable importance score indicates that the biomarker modifies treatment effect.
On the other hand, if a biomarker is non-informative, e.g., a nuisance variable
that is not related to the treatment effect, its variable importance score will be
close to 0. Therefore, a biomarker screen can be set up by identifying a fixed
number of biomarkers with the highest variable importance score, e.g., the top
three biomarkers. The resulting two-stage procedure is termed the fixed SIDEScreen
procedure.

A more efficient biomarker screen, which is utilized in the adaptive SIDEScreen
procedure, assesses the probability of incorrectly choosing at least one biomarker
for the second stage of the procedure under the null case, i.e., under the assumption
that all biomarkers are non-informative. To apply the corresponding biomarker
screen, the null distribution of the maximum variable importance score is computed
using a resampling-based approach and a biomarker is selected for the second
stage only if its score is greater than an appropriate threshold computed from the
null distribution. Since this null distribution is well approximated by a normal
distribution, the adaptive biomarker screen admits the following simple form. Let
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E0 and V0 denote the mean and variance of the null distribution of the maximum
variable importance score, respectively, that are estimated using permutation-based
methods. The threshold is defined as follows:

E0 + k
√
V0,

where k ≥ 0 is a pre-defined multiplier. This multiplier is typically set to 1 or,
alternatively, it could be derived from the probability of an incorrect biomarker
selection. For example, suppose the trial’s sponsor is interested in a stringent
biomarker screening tool and this probability is set to 0.1 and thus there is only
a 10% chance that at least one non-informative biomarker would be selected for
the second stage under the global null hypothesis, i.e., under the assumption that
no predictive biomarker is present. In this case, the multiplier needs to be set to
�−1(0.9) = 1.28.

The resulting SIDEScreen procedures have been shown to efficiently handle
nuisance variables and result in superior performance, compared to the basic
SIDES procedure, in subgroup identification problems with large sets of candidate
biomarkers.

5.3.3 Subgroup Interpretation Tools

It was explained in the Introduction that, to correctly interpret subgroup findings, it
is important to quantify the impact of optimism bias. With unconstrained subgroup
search, the search space will be broad, which will likely result in substantial
multiplicity burden. In other words, the probability of incorrectly selecting at least
one patient subgroup without any treatment benefit will be very high and thus
treatment effect p-values within the identified subgroups can no longer be trusted.

To estimate this probability and perform appropriate multiplicity adjustments
within the final set of promising subgroups, SIDES relies on a resampling-based
approach (Lipkovich et al. 2018). To define this approach, consider a subgroup
from the final set of promising subgroups. This subgroup is denoted by S and
let p(S) denote the treatment effect p-value within this subgroup. By applying a
resampling method to the original trial database, a large number of null data sets
can be generated. The null data sets are characterized by the fact that there is no
treatment effect within any patient subgroup. After that the basic SIDES procedure
is applied to each null data set to identify a subgroup with the strongest differential
effect. Let qj denote the treatment effect p-value within the best subgroup selected
from the j th null data set, j = 1, . . . , m. A multiplicity-adjusted p-value within the
subgroup S is defined as

p̃(S) = 1

m

m∑

j=1

I {qj ≤ p(S)},
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where I () is the binary indicator. This means that the adjusted p-value associated
with the subgroup S is the proportion of the null data sets where the treatment effect
is stronger than the effect in S. If the search space is very broad, the adjusted p-
value is likely to be much greater than the original p-value. As a consequence, a
highly significant p-value may no longer be significant after a resampling-based
multiplicity adjustment.

It is worth noting that this resampling-based algorithm assumes a complete null
hypothesis (all null hypotheses of no subgroup effect are simultaneously true) and,
as a result, the error rate is preserved in the weak sense. An extended version
of this resampling-based adjustment can be applied to the two-stage SIDEScreen
procedures defined in Sect. 5.3.2. The multiplicity adjusted treatment effect p-
values support reliable inferences in the subgroups selected using a SIDES-based
subgroup search method.

5.4 Practical Considerations in Subgroup Identification

This section provides a detailed discussion of key practical considerations in
subgroup search projects with applications to the BPH trial introduced in Sect. 5.2.
This includes important topics such as the selection of candidate biomarkers, choice
of the primary analysis model and covariate adjustment in subgroup identification.

5.4.1 Candidate Biomarkers

It was explained in the Introduction that predictive biomarkers play a central role
in subgroup identification projects. The choice of biomarkers to be investigated in a
particular trial is a crucial aspect of a subgroup identification problem. It is important
to specify a set of meaningful candidate biomarkers to ultimately ensure that the
chosen subgroups can be interpreted and considered as true clinical population
of interest by academic or regulatory bodies rather than an artificial subset. This
implies that each biomarker must be clinically relevant and, in addition, the selected
combination of biomarker levels should have a clear clinical interpretation.

It is also important to note that the final set of subgroups identified by a
SIDES algorithm is driven by the size of the search space. With a large number
of biomarkers in the candidate set, the trial’s sponsor is likely to face a large set
of promising subgroups, which will induce multiplicity and will directly affect the
final inferences, as explained in Sect. 5.3.3. Therefore, a project team interesting
in carrying out post-hoc subgroup searches must provide clear justifications for the
inclusion and exclusion of potentially relevant biomarkers with regard to available
patient information.

In our case study, 14 variables grouped into 6 clinical dimensions were selected
as candidate predictive biomarkers. The variables and clinical dimensions are
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defined as follows: patient information available before randomization includes
demography, social status, medical history, prior medications, subjective and objec-
tive assessments of BPH symptoms, prostatic anatomy based on echography,
biological parameters and safety data. Formally, each variable is determined by its
assessment time. Some parameters, such as the PSA levels and prostate echography,
were measured at the randomization visit only and are referred to as baseline values.
Some others, such as objective and subjective assessments of BPH symptoms, were
assessed at the selection and randomization visits. As a general rule, we consider
the changes from the selection visit to the randomization visit which are referred to
as changes during the run-in period.

According to the clinical objectives of subgroup analysis, we focus on the
biomarker dimensions related to urology without considering other dimensions
possibly involved in prostate inflammation, such as those related to the metabolic
syndrome. Totally, 14 variables grouped into 6 dimensions were selected as
candidate predictive biomarkers. The variables are defined as follows:

• Demographic characteristics: Body-mass index (BMI) and age (AGE).
• Prior medication: Previous BPH treatment (BPH_TREAT).
• Patient assessments of BPH symptoms:

– IPSS total score at baseline (IPSSTB) and change during the run-in period
(IPSSTR).

– IPSS obstructive subscore at baseline (IPSSOB) and change during the run-in
period (IPSSOR).

– IPSS irritative subscore at baseline (IPSSIB) and change during the run-in
period (IPSSIR).

• Objective assessment of BPH symptoms: Maximum urinary flow at baseline
(QmaxB) and change during the run-in period (QmaxR).

• Prostatic anatomy based on echography: Prostate volume (PRVOLB).
• Biology: Total PSA at baseline (PSATB) and free PSA at baseline (PSAFB).

All of these biomarkers are continuous, except for BPH_TREAT, which is a
binary variable (Yes/No).

Some variables were not selected since the clinical team could not rationalize
possible relationships with IPSS changes in BPH patients. Some other variables
cannot formally characterize patient populations. This is the case for the IPSS
items (i.e., questions) and the detailed characteristics of patient prostate. It was
also stated that all relevant information on medical history and prior medications
is summarized in the indicator variable of previous BPH treatment (BPH_TREAT).
Lastly, except for the PSA levels, none of the safety variables were selected. The
variables available before randomization that were not selected for the candidate set
are:

• Demography: Height, weight, smoker, alcohol consumption.
• Social status: Family status, employment.
• Medical history: List of pathologies.
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• Prior medications: List of medications.
• Patient assessment of symptoms: IPSS items, including Questions 1 through 7

and Question 8 (Quality of life).
• Prostatic anatomy based on echography: Width, thickness, and height of the

prostate and the transition zone and the volume of the transition zone at baseline.
• Safety data: Biological parameters (except for PSA levels) and vital signs.

It is well known that missing observations have a strong impact in subgroup
analysis. Missing biomarker values for a particular patient will likely interfere with
subgroup search since this patient may not be included in all subgroups based on
the selected biomarkers. If biomarker values are missing completely at random, this
issue can be overcome by removing the entire patient record from the database;
however, the subgroup analysis results may no longer reflect the original trial’s
population and the sample size will be reduced, which will lead to lower power.
In the BPH trial, the original data set was complete for all the candidate biomarkers
except for the maximum urinary flow (Qmax) whose values were missing at the
selection visit in four patients. These values were missing because the Qmax
parameter is calculated from a curve of urinary flow which is corrected from
experimental artifacts but the corrected curves were not produced. For the purpose
of subgroup analysis, a decision was made to impute the missing Qmax values using
the values obtained at an intermediate visit during the placebo run-in period or, if
not available, by the Qmax values calculated from the non-corrected curves.

In our case study, all the clinical dimensions are equally relevant. The resulting
classes are considered to be equally important and the corresponding biomarkers
are to be examined at all levels of the subgroup search algorithm. However,
there are many situations wherein some dimensions of candidate biomarkers are
less important than others. These could be designated as second-tier or third-tier
biomarkers and studied only at lower levels of a subgroup search algorithm. The
SIDES-based subgroup search procedures defined in Sect. 5.3 belong to a family of
recursive partitioning methods, which means that patient subgroups are constructed
sequentially beginning with the overall trial population. Then, targeted “constructs”
should be highlighted as much as possible. This can easily be implemented by
considering multiple sets of candidate biomarkers that are ordered according to
their clinical interest. After that patient subgroups are generated by sequentially
introducing the sets of candidate biomarkers by level. This sequential strategy will
be illustrated in Sect. 5.5.1.

5.4.2 Primary Analysis Model

Post-hoc subgroup search procedures are often applied using simplified analysis
methods that do not match the original primary analysis methodology. For example,
a quick review of recent publications that presented the results of SIDES-based
subgroup assessments, e.g., Lipkovich and Dmitrienko (2014a,b) or Dmitrienko
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et al. (2015), reveals that basic methods that relied on the Z-test for the difference in
proportions or the log-rank test were utilized whereas the original primary analysis
was performed using more complex models that accounted for important covariates.

This section discusses the role of covariate adjustment and selection of the most
appropriate primary analysis model in subgroup search procedures. An influential
covariate is a variable which has an impact on the outcome values and thus may
cause an imbalance among treatment arms which directly affects the evaluation of
treatment effect in a trial. As stated in the Introduction, such variables are said to be
prognostic of the outcome variable. An adjustment for key prognostic covariates is
essential to ensure that subgroup determination is not biased by any imbalance with
respect to the prognostic covariates, which is especially important in the context of
small patient subgroups. The modeling strategy in post-hoc subgroup assessments
should follow the primary analysis in the original trial as much as possible. However,
the trial’s sponsor could also consider including other covariates in the primary
analysis model if it is clear that relevant covariates were not accounted for in the
original primary analysis. Additionally, some covariates could be removed from the
model, e.g., categorical covariates with too few patients in some of the categories.

Considering the BPH trial, the original primary analysis was performed using an
ANCOVA model adjusted for the following covariates (all covariates were included
as fixed effects):

• IPSS total score at baseline (IPSSTB).
• Binary variable derived from the IPSS change during the run-in period (i.e.,

IPSSTR ≤ −3 or IPSSTR > −3).
• Study center.

The results obtained from this model are shown in Table 5.2. The mean treatment
difference was 0.30 (the standard error was 0.59) with a one-sided p-value of 0.31.

When subgroup analyses are performed, adjusting for the study center as a
fixed effect may not be an optimal strategy since some of the centers will not
contribute to the treatment effect evaluation due to empty cells in smaller subgroups.

Table 5.2 Analysis results (ITT population)

Original primary analysis Model 0 Model 1 Model 2

Treatmenta 0.30 (0.59) 0.61 (0.62) 0.51 (0.58) 0.72 (0.58)

p = 0.31 p = 0.16 p = 0.19 p = 0.10

IPSSTB p < 0.001 p = 0.005 p = 0.005

IPSSTR (binary) p < 0.001

CENTER p = 0.09

IPSSTR (continuous) p < 0.001 p = 0.005

BPH_TREAT p = 0.02

IPSSIR (IPSSOR) p = 0.01

PRVOLB p = 0.02
aMean treatment difference (standard error) and one-sided p-value
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Consequently, the center term was removed from the model. Another modification
concerns the IPSSTR variable. A dichotomized version of IPSSTR was a pre-
specified covariate in the primary analysis model because the randomization scheme
was stratified by this factor. It was natural to replace this binary variable with the
original continuous variable to gain precision in the treatment effect estimation.

Based on these considerations, the following models were examined as candidate
analysis models for the subgroup identification exercise. Model 0 was based on
a simple analysis of variance (ANOVA) model without covariate adjustment, i.e.,
it included only the treatment term, and Model 1 was defined as analysis of
covariance (ANCOVA) model that incorporated two continuous covariates (IPSSTB
and IPSSTR). This model can be interpreted as a model which is very similar to the
original primary analysis model but optimized for subgroup analysis. These models
were fitted to the data in the ITT population and the evaluation results are presented
in Table 5.2. Considering Model 0, the mean treatment difference was 0.61 with
a one-sided p-value of 0.16. Similarly, the mean treatment difference based on
Model 1 was 0.51 with a one-sided p-value of 0.19.

Furthermore, another model, termed Model 2, was set up based on a more
informed adjustment strategy wherein several influential covariates were added to
the covariates considered in Model 1. The selection of covariates was based on a
multi-step procedure and the covariates used in Model 1 (IPSSTB and IPSSTR)
were forced into the resulting model in each step. It is important to note here that
covariate influence was assessed without adjusting for the treatment effect. First,
each candidate covariate was tested separately using a model with the two forced
covariates IPSSTB and IPSSTR. Then all covariates that were significant at a 0.1
level were included in a multivariate model. The last step consisted of removing non-
significant covariates in a step-down manner, namely, the least significant covariate
was removed if the corresponding p-values was greater than 0.1. This operation was
repeated until no non-significant covariates were left in the model.

Again, the context of post-hoc subgroup analysis imposes a clear rationale for the
selection of candidate covariates which must be based on sound clinical arguments.
In this case study, the candidate covariates for the primary analysis model were
chosen from the set of 14 candidate biomarkers defined in Sect. 5.4.1. It is important
to mention here that IPSSTB and IPSSTR are the sums of the related quantities
for obstructive and irritative symptoms, i.e., IPSSTB = IPSSOB + IPSSIB and
IPSSTR = IPSSOR + IPSSIR. Consequently, IPSSIB and IPSSOB on the one side
and IPSSIR and IPSSOR on the other side yield the same results as IPSSTB and
IPSSTR are included in the model. The one-sided p-values corresponding to the
biomarker effects within the model used in the first step are presented in Table 5.3.
It should also be mentioned that the one-sided p-values of the two covariates
that were forced into the models, i.e., IPSSTB and IPSSTR, were p < 0.001
and p = 0.02, respectively. According to the initial assessments summarized in
Table 5.3, BPH_TREAT, IPSSIR (IPSSOR) and PRVOLB were selected for the
next step. Since the corresponding p-values in the multivariate model were all below
0.1, the three biomarkers, in addition to IPSSTB and IPSSTR, were chosen as the
covariates for Model 2.
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Table 5.3 Analysis of each
biomarker using the model
with the two forced covariates
IPSSTB and IPSSTR (ITT
population)

Biomarker p-value

BMI p = 0.35

AGE p = 0.08

BPH_TREAT p = 0.03

IPSSIB (IPSSOB) p = 0.33

IPSSIR (IPSSOR) p = 0.02

PSATB p = 0.06

PSATB p = 0.07

QmaxB p = 0.36

QmaxR p = 0.22

PRVOLB p = 0.02

Table 5.4 Analysis of
treatment by biomarker
interactions (ITT data set)

Interaction effect p-values

Biomarker Model 0 Model 1 Model 2

BMI p = 0.24 p = 0.28 p = 0.20

AGE p = 0.001 p = 0.01 p = 0.015

BPH_TREAT p = 0.05 p = 0.12 p = 0.11

IPSSTB p = 0.001 p = 0.002 p = 0.004

IPSSTR p = 0.11 p = 0.13 p = 0.11

IPSSOB p = 0.08 p = 0.13 p = 0.16

IPSSIB p = 0.001 p = 0.002 p = 0.002

IPSSOR p = 0.40 p = 0.59 p = 0.59

IPSSIR p = 0.03 p = 0.03 p = 0.02

PSATB p = 0.31 p = 0.30 p = 0.32

PSAFB p = 0.15 p = 0.17 p = 0.19

QmaxB p = 0.44 p = 0.21 p = 0.25

QmaxR p = 0.06 p = 0.08 p = 0.06

PRVOLB p = 0.41 p = 0.41 p = 0.44

Table 5.4 summarizes additional modeling results. Note that Models 0 and 1
used in this table refer to the original models with two additional terms (biomarker
and treatment-by-biomarker interaction). Focusing on the results obtained from
Model 2, the mean treatment difference based on this model was 0.72 and the cor-
responding one-sided treatment effect p-value was 0.10. Although the adjustment
strategy in Model 2 does not overturn the analysis results in terms of statistical
significance, treatment effect variability across the selected models emphasizes the
impact of covariate adjustment.

Finally, a simple assessment of predictive properties of the selected candidate
biomarkers was performed using the models defined above. Under a linearity
assumption, the predictive strength of a biomarker can be examined by including
this biomarker as a covariate along with the corresponding treatment-by-biomarker
interaction in any of the three models. The one-sided p-values associated with
the interaction terms are listed in Table 5.4. It follows from this table that AGE,
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IPSSTB, IPSSIB, IPSSIR and, to a lesser extent, QmaxR were linearly predictive of
treatment response. However, it is possible that other biomarkers could be predictive
of treatment benefit but the relationship between a biomarker and the treatment
effect could be non-linear. To perform a comprehensive evaluation of predictive
properties of the candidate biomarkers, more general methods such as SIDES should
be employed. These methods will be discussed in the next section.

5.5 Subgroup Search Strategies in the BPH Trial

The basic SIDES procedure as well as SIDEScreen procedures were applied to the
BPH trial to identify subgroups of patients who experienced enhanced treatment
benefit. The primary analysis was performed using Model 2 defined in Sect. 5.4.2,
i.e., the treatment effect was evaluated using an ANCOVA model adjusted for
four continuous covariates (IPSSIR, PRVOLB, IPSSTB and IPSSTR) and one
categorical covariate (BPH_TREAT).

It is explained in Sect. 5.3 that several parameters need to be defined before a
SIDES-based subgroup search procedure can be applied to a clinical trial database.
This includes the maximum number of child subgroups for a given parent subgroup
(search width), maximum number of biomarkers to define a patient subgroups
(subgroup depth), smallest acceptable size of a promising subgroup, etc. Based on
the sample size and number of candidate biomarkers in the BPH trial, the following
parameter values were selected:

• The search width was set to 2 or 3 and the search depth was set to 2. These values
were believed to facilitate the process of identifying patient subgroups without
unduly increasing the complexity of interpretation.

• The smallest sample size per subgroup was fixed at 60 or 120 patients, which is
roughly a sixth or a third of the total number of patients in the trial.

• The child-to-parent ratio γ was set to 1 to enable liberal complexity control.
• To help speed up subgroup search, the continuous biomarkers from the candidate

set were discretized by converting them into categorical variables with 20 levels
based on the 20 percentile groups (unless the number of unique values was
already less than 20).

Two approaches to conducting subgroup searches will be compared and con-
trasted in the context of the BPH trial:

• A less formal subgroup search strategy, which relies on general subgroup explo-
ration without explicitly controlling the Type I error rate, i.e., the probability of
incorrectly identifying at least one patient subgroup where there is no treatment
benefit within any subset of the overall trial population. To expand the final set of
promising subgroups, the search width was set to 3 and the smallest sample size
per subgroup was set to 60 patients.
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• A more formal subgroup search strategy, which employs a number of tools
described in Sect. 5.3 to control the error rate and thus can support hypothesis
generation for subsequent clinical trials. To focus on a set of most important
subgroups with a larger number of patients, the search width was set to 2 and the
smallest sample size per subgroup was set to 120 patients.

The search results based on the two strategies are presented below.

5.5.1 Less Formal Subgroup Search Strategy

As part of a purely exploratory approach to subgroup evaluation, the basic SIDES
procedure was applied to the BPH trial with the parameters listed above. The
subgroup search results are summarized in Table 5.5. Since the search width and
depth were equal to 3 and 2, respectively, the final set of subgroups is expected to
consist of 12 subgroups, i.e., 3 first-level subgroups defined using a single biomarker
and 9 second-level subgroups defined using two biomarkers. However, one of the
second-level subgroups did not satisfy the pre-defined complexity control criterion
and the table defines the 11 promising subgroups selected by the basic SIDES
procedure. The table also lists the key characteristics, including the total number
of patients in a subgroup, mean treatment difference and one-sided treatment

Table 5.5 Promising patient subgroups selected by the basic SIDES procedure (child-to-parent
ratio γ = 1)

Subgroup Total sample size
Mean treatment
difference

Raw
p-value

Adjusted
p-value

QmaxR > −2.25 281 1.57 0.0074 0.6833

QmaxR > −2.25 and
BPH_TREAT = No

165 2.28 0.0027 0.4890

QmaxR > −2.25 and
AGE ≤ 68.5

183 2.13 0.0048 0.5964

QmaxR > −2.25 and
IPSSIB > 7

145 2.89 0.0015 0.3751

IPSSIB > 7 185 2.25 0.0043 0.5787

IPSSIB > 7 and
BMI> 25.7

115 3.43 0.0006 0.2374

IPSSIB > 7 and IPSSIR
> −1

121 2.90 0.0032 0.5243

IPSSIB > 7 and AGE
≤ 63.5

77 4.30 0.0009 0.2895

AGE ≤ 63.5 154 2.15 0.0105 0.7426

AGE ≤ 63.5 and IPSSTB
> 15.5

92 3.82 0.0013 0.3542

AGE ≤ 63.5 and IPSSIR
> −1

87 3.54 0.0022 0.4502
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effect p-value (raw p-value). In addition, the multiplicity-adjusted p-value was
computed within each of the subgroups. The adjusted p-values were found using
the resampling-based algorithm described in Sect. 5.3.3 using 10,000 null data sets.

It follows from Table 5.5 that the mean treatment difference in some of the patient
subgroups was well above the desirable level of 2 points. For example, there was
strong evidence of treatment benefit in a large subgroup with 145 patients that
was defined based on QmaxR and IPSSIB, i.e., Subgroup 4 (QmaxR > −2.25
and IPSSIB > 7). The mean treatment difference within this subgroup was 2.89
and the corresponding one-sided treatment effect p-value was highly significant
(p = 0.0015). The efficacy signal was much stronger in smaller subgroups, e.g., the
mean treatment difference in Subgroup 8 (IPSSIB > 7 and AGE ≤ 63.5) with 77
patients was 4.3.

The first-level partitioning yields three subgroups that are based on biomarkers
pertaining to the three-dimensional classification scheme described in Sect. 5.4.1.
These biomarkers are AGE (demographic characteristics), QmaxR (objective
assessment of BPH symptoms) and IPSSIB (subjective assessment of BPH
symptoms). Subgroup 9 (AGE ≤ 63.5) consisted of the 42.8% youngest patients
whereas Subgroup 5 (IPSSIB > 7) focused on the 51.5% more severe patients
on the irritative symptoms at baseline. Subgroup 1 (QmaxR > −2.25) should be
interpreted as an exclusion of a small subset of patients (14.4%) with an abnormal
worsening of obstructive symptoms during the run-in period. In the absence of
a rationale to justify this finding, this subgroup is cautiously considered as not
clinically relevant for interpretation. Within the set of first-level subgroups, the
mean treatment difference was increased up to 2.25 in patients with IPSSIB > 7.
Next, considering the second-level subgroups, as noted above, the mean treatment
difference could reach 4.3, see Subgroup 8 based on IPSSIB and AGE. This
subgroup represented 21.4% of the trial’s population. An interesting aspect of
this subgroup is that, judging by the subgroup sizes and the additivity of treatment
effects, IPSSIB and AGE appear to be independent predictors of treatment response.
It is also interesting to note that some of the identified biomarkers are predictive of
greater treatment effect on one or the other IPSS subscore. To summarize, based
on subgroup analyses of the IPSS subscores, higher values of IPSSIR and IPSSIB
were predictive of stronger treatment effects on the irritative symptoms whereas
lack of previous treatment for BPH (BPH_TREAT = No) and lower patient age
were associated with greater treatment effect on the obstructive symptoms.

The discussion presented above focused on a clinical interpretation of subgroup
effects. It is broadly recognized that appraising clinical relevance and plausibility of
identified patient subgroups plays a key role in understanding how these subgroups
can be used to inform the design of future trials. It was explained earlier in the
chapter that clinical relevance is insured by the selection of candidate biomarkers
which unambiguously characterize the clinical status of patients. However, plausi-
bility of the subgroup analysis findings often remains questionable, especially from
the perspective of replicating the subgroup effect in other trials.

The following approach based on the reference treatment effect serves as a useful
tool for assessing the relevance of subgroup findings in addition to significance
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tests and clinical interpretation. Recall that SIDES-based subgroup identification
methods rely on the assessment of the differential effect between child subgroups
with the same parent groups. In simple terms, the differential effect can be defined as
the difference between the mean treatment effects estimated in a pair of subgroups.
Assume that a larger value of the endpoint indicates a beneficial effect. Let d1
denote the mean treatment difference in the promising subgroup (subgroup with
a beneficial treatment effect) and let d2 denote the mean treatment difference in the
complementary subgroup.

In general, a strong differential effect can be caused by a higher value of d1
but also by an unexpectedly low value of d2. A straightforward method to evaluate
a substantial differential effect in a pair of subgroups is to check whether the
treatment effect in the complementary subgroup is realistic. However, d1 and d2 can
be computed based on observations with high variability that mitigate the relevancy
of this approach. To address this problem, one may consider instead the effect sizes,
denoted by θ1 and θ2, within each of the two subgroups and compare them.

An alternative more formal approach is based on the value of θ2 in the
complementary subgroup. This value can be 0 when an active treatment is compared
to placebo, as there is often no reason for the treatment effect to be in favor of
placebo. By extension, θ2 can also be represented as a proportion of the effect size
in the overall trial population denoted by θ , i.e., θ2 = rθ , where r ≤ 1. Conditional
on θ and θ2, the effect size in the promising subgroup, i.e., θ1, depends only on the
subgroup sizes n1 and n2 = n − n1, i.e.,

θ1 = (n − (n − n1)r)θ/n1.

The reference treatment effect (RTE) is defined as the value of θ1 corresponding
to the null hypothesis of no treatment effect in the complementary subgroup, i.e.,
r = 0. In this case, it is easy to see that RTE is equal to nθ/n1. It is reasonable to
consider the effect size in the promising subgroup (θ1) to be plausible if it does not
substantially exceed RTE. In other words, θ1 should remain in an acceptable range of
values under reasonable assumptions on the treatment effect in the complementary
subgroup given the effect size in the overall population.

To explain the rationale behind RTE, note that the metric does not represent the
maximum possible value of the effect size in the promising subgroup (in fact, the
maximum does not exist) since the effect size in the complementary subgroup could
be potentially negative. But, since a strong negative effect within the complementary
subgroup may not be plausible, the assumption of no effect could serve as a
useful reference point when evaluating the magnitude of the treatment effect in the
corresponding promising subgroup. To illustrate this concept, consider Subgroup 5
(IPSSIB > 7) and Subgroup 8 (IPSSIB > 7 and AGE ≤ 63.5) selected by the
basic SIDES procedure (see Table 5.5). There are 185 patients in Subgroup 5 and
θ1 = 0.39. Given that the effect size in the overall trial population is θ = 0.13, it
is easy to see that RTE is equal to 0.26 for this promising subgroup and thus the
observed effect size greatly exceeds RTE (note that the ratio of the observed effect
size to RTE is 1.5). By contrast, when examining Subgroup 8 with 77 patients, we
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see that θ1 = 0.76 and RTE is equal to 0.61. The resulting ratio is 1.25, which
indicates that the treatment effect in Subgroup 8 is more plausible than that in
Subgroup 5 according to the RTE criterion.

Before continuing to the discussion of more formal subgroup evaluation strate-
gies that incorporate Type I error rate control, it is helpful to present subgroup
search methods based on ordered biomarker sets. The possibility of defining several
biomarker sets and introducing them at different levels of a SIDES-based algorithm
was mentioned in Sect. 5.4.1. There are many situations where candidate biomarkers
characterize different aspects of the condition of interest and it would be natural
to introduce the pre-defined sets of biomarkers sequentially to align the subgroup
search process with a trial’s clinical objectives.

In what follows we will consider a subgroup search exercise based on the
following three-level classification scheme:

• Demography and medical history: AGE, BMI, BPH_TREAT.
• Objective assessment of symptoms: QmaxB, QmaxR, PRVOLB, PSAFB,

PSATB.
• Subjective assessment of symptoms: PSSIB, IPSSOB, IPSSIR, IPSSOR,

IPSSTB, IPSSTR.

The basic SIDES procedure was applied to the ordered biomarker sets and the
resulting patient subgroups are listed in Table 5.6. It is clear that, compared to
the standard subgroup search approach with a single biomarker set presented in

Table 5.6 Promising patient subgroups selected by the basic SIDES procedure with three ordered
sets of biomarkers

Subgroup

Total
sample
size

Mean
treatment
difference

Raw
p-value

AGE ≤ 63.5 154 2.15 0.0105

AGE ≤ 63.5 and PRVOLB > 44.7 75 3.63 0.0021

BPH_TREAT = No 210 1.42 0.0311

BPH_TREAT = No and QMAXR > −1.14 141 2.52 0.0023

BPH_TREAT = No and QMAXR > −1.14 and 77 4.15 0.0013

AGE ≤ 64.5

BPH_TREAT = No and QMAXR > −1.14 and 76 4.34 0.0008

IPSSTB > 15.5

BPH_TREAT = No and QMAXR > −1.14 and 62 4.82 0.0009

IPSSIB > 7

BPH_TREAT = No and AGE ≤ 63.5 99 3.40 0.0022

BPH_TREAT = No and PSATB ≤ 3.37 143 2.36 0.0069

BPH_TREAT = No and PSATB ≤ 3.37 and IPSSIR > −1 75 4.33 0.0015

BPH_TREAT = No and PSATB ≤ 3.37 and AGE ≤ 63.5 77 4.29 0.0011

BPH_TREAT = No and PSATB ≤ 3.37 and IPSSTB > 16.5 76 3.97 0.0023

BMI > 28.8 92 1.90 0.0336
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Table 5.7 Promising patient subgroups selected by the basic SIDES procedure with two ordered
sets of biomarkers

Subgroup

Total
sample
size

Mean
treatment
difference

Raw
p-value

AGE ≤ 63.5 154 2.15 0.0105

AGE ≤ 63.5 and IPSSTB > 15.5 92 3.82 0.0013

AGE ≤ 63.5 and IPSSIB > 7 77 4.29 0.0009

AGE ≤ 63.5 and IPSSIR > −1 87 3.55 0.0022

BPH_TREAT = No 210 1.42 0.0311

BPH_TREAT = No and IPSSTB > 16.5 99 3.77 0.0008

BPH_TREAT = No and AGE ≤ 63.5 99 3.40 0.0022

BPH_TREAT = No and QmaxR > −1.15 140 2.55 0.0029

PSAFB ≤ 1.07 283 1.00 0.0714

PSAFB ≤ 1.07 and BPH_TREAT = No 163 2.33 0.0050

PSAFB ≤ 1.07 and AGE ≤ 63.5 134 2.77 0.0038

PSAFB ≤ 1.07 and QmaxR > −2.28 221 1.64 0.0163

Table 5.5, the first-tier biomarkers such as BPH_TREAT and BMI play a prominent
role in this setting.

Exploratory subgroup analysis can also be aimed at guiding clinicians to examine
patients on the basis of available information. Demographic, medical history and
biological data are commonly available before clinicians could conduct further
investigations on the basis of the IPSS questionnaire, urodynamic exams and
prostate volume assessments. We can address these goals using a strategy with the
following ordered sets of biomarkers that are applied at the first and second levels
of the subgroup search algorithm:

• AGE, BMI, PSAFB, PSATB, BPH_TREAT.
• IPSSIB, IPSSOB, IPSSIR, IPSSOR, IPSSTB, IPSSTR, QmaxB, QmaxR,

PRVOLB.

The patient subgroups identified by the basic SIDES procedure are shown in
Table 5.7. The results presented in this table can aid in determining whether or
not it is worthwhile conducting certain types of exams in some groups of patients
to prescribe the active treatment. For example, Table 5.7 confirms that the IPSS
questionnaire should be submitted to patients who are younger than 63.5 years.

5.5.2 More Formal Subgroup Search Strategy

When interpreting the subgroup findings in the BPH trial, it is important to keep
in mind that many apparent subgroup effects discovered in post-hoc subgroup
investigations may be spurious. Using Table 5.5 as an example, the raw p-values
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presented in this table suggest that there was strong beneficial treatment effect
within all of the selected subgroups; however, this is likely to be misleading since
hundreds of tests were carried out to arrive at the subgroups presented in this
table. After the resampling-based multiplicity adjustment was applied, none of the
multiplicity-adjusted p-values was even remotely significant. For example, despite
a very strong treatment effect, the multiplicity-adjusted p-value in Subgroup 8
(IPSSIB> 7 and AGE ≤ 63.5) was greater than 0.2 (p = 0.2895). The same
resampling-based algorithm was utilized to estimate the overall Type I error rate
(probability of incorrectly identifying at least one subgroup as promising) associated
with the basic SIDES procedure. In this particular case, the error rate was 0.87,
which clearly shows that the burden of multiplicity was too high to support reliable
inferences in this setting.

To enable a more formal framework for post-hoc subgroup investigations, it may
be useful to explore the impact of complexity control on the Type I error rate. To
lower the burden of multiplicity in this subgroup identification problem, one could
try imposing stricter complexity control criteria but, even with a very conservative
approach, complexity control does not typically have much impact on the overall
Type I error rate. For example, when the child-to-parent ratio was set to 0.1, the basic
SIDES procedure identified only four promising subgroups. The other subgroups
were discarded since they did not provide meaningful improvement relative to their
parents. This resulted in a smaller search space but the associated error rate was still
over 0.7. This is due to the important fact that complexity control tools focus on
shrinking the set of potential promising subgroups (search space) but cannot lower
the level of background noise caused by non-informative biomarkers included in
the candidate set. To reduce the influence of non-informative biomarkers and build
efficient subgroup search algorithms, SIDEScreen procedures with an appropriate
biomarker screen need to be employed.

A more formal approach to subgroup search that set the stage for hypothesis
generation will be illustrated using two-stage SIDEScreen procedures. As explained
above, these procedures were applied with a stricter set of parameters to reduce
the size of the search space and support more reliable inferences (in particular, the
search width was set to 2 and the smallest sample size per subgroup was set to 120
patients).

Table 5.8 displays the two promising patient subgroups identified by the fixed
SIDEScreen procedure with the biomarker screen that chose the best two biomark-
ers for the second stage of the procedure. To identify the two biomarkers, the
variable importance scores (Lipkovich and Dmitrienko 2014a) were computed for
all candidate biomarkers to assess their predictive ability. The highest variable
importance scores were 1.49 (IPSSIB) and 1.24 (AGE) and thus IPSSIB and AGE
were identified as the biomarkers with the strongest predictive effects. Using these
biomarkers, two single-level subgroups were chosen in the second stage of the
SIDEScreen procedure (a second-level subgroup based on the two biomarkers was
excluded due to the complexity control constraints). It is easy to see that these
subgroups correspond to Subgroups 5 and 9 from Table 5.5.
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A quick comparison of the adjusted p-values for the first three subgroups listed
in Table 5.8 to those derived using the basic SIDES procedure (see Table 5.5)
reveals that the fixed SIDEScreen procedure with the biomarker screen based
on two biomarkers helped substantially reduce the burden of multiplicity in this
subgroup identification problem. Indeed, the adjusted p-values produced by the
fixed SIDEScreen procedure were considerably smaller than those produced by the
basic SIDES procedure, e.g., the adjusted p-value for Subgroup 1 (IPSSIB> 7) was
0.1053 compared to 0.5787 with the basic procedure. In addition, the overall Type I
error rate was lowered to 0.35. Furthermore, when the fixed SIDEScreen procedure
that chose a single biomarker for the second stage was applied, only one patient
subgroup was identified (IPSSIB> 7). The adjusted treatment effect p-value within
this subgroup was 0.0968, which was even lower than the adjusted p-value shown
in Table 5.8, and the associated Type I error rate was 0.33.

The exploration of patient subgroups with enhanced treatment effect continued
by applying the adaptive SIDEScreen procedure to the BPH trial. The biomarker
screen was constructed by setting the multiplier k, defined in Sect. 5.3.2, to 0.
This resulted in a threshold for variable importance scores that corresponded to
a 50% probability of incorrectly selecting a non-informative biomarker for the
second stage of the procedure (the probability is computed under the assumption
that no predictive biomarker is present). The mean and standard deviation of the
null distribution of the maximum variable importance score were given by:

E0 = 1.348,
√
V0 = 0.647.

These quantities were estimated using 1000 null data sets. Therefore the threshold
for variable importance scores used in this subgroup search algorithm was E0 +
k
√
V0 = 1.348. It was noted above that the highest variable importance scores were

1.49 (IPSSIB) and 1.24 (AGE) and thus only IPSSIB passed this biomarker screen.
Using this biomarker, the SIDEScreen procedure identified a single subgroup shown
in Table 5.9. The same subgroup was found by the fixed SIDEScreen procedure
with the biomarker screen that chooses a single biomarker for the second stage

Table 5.8 Promising patient subgroups selected by the fixed SIDEScreen procedure (biomarker
screen with two top biomarkers)

Subgroup Total sample size
Mean treatment
difference Raw p-value Adjusted p-value

IPSSIB > 7 185 2.25 0.0043 0.1053

AGE ≤ 63.5 154 2.15 0.0105 0.2003

Table 5.9 Promising patient subgroups selected by the adaptive SIDEScreen procedure
(biomarker screen with the multiplier k = 0)

Subgroup Total sample size
Mean treatment
difference Raw p-value Adjusted p-value

IPSSIB > 7 185 2.25 0.0043 0.0782
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(IPSSIB> 7). However, due to a more efficient approach to handling multiplicity,
the adjusted p-value within this subgroup was more significant than that computed
using the fixed SIDEScreen procedure, namely, the adjusted p-value approached
borderline significance (p = 0.0782) and, additionally, the overall Type I error rate
was lowered to 0.21.

Another approach to addressing the high burden of multiplicity in subgroup
search problems is restricting the subgroup search space by splitting the set of
candidate biomarkers into two or more ordered sets. This general approach was
illustrated in Table 5.6 using three ordered sets of biomarkers that represented (1)
demography and medical history, (2) objective assessment of BPH symptoms and
(3) subjective assessment of BPH symptoms.

As an illustration, the adaptive SIDEScreen procedure with k = 0 was applied
to these three biomarker sets and the results are summarized in Table 5.10. It can
be seen from this table that a sequential introduction of biomarkers from ordered
candidate sets tends to decrease the adjusted p-values as well as the overall Type I
error rate. In this particular case, the Type I error rate was 0.18.

As the final note, even though we recognize the importance of lower multiplicity-
adjusted p-values and Type I error rate, we would like to stress that this should not
be the only goal to pursue when designing post-hoc subgroup analysis strategies.
It is clear that one can easily achieve significant adjusted p-values by artificially
restricting the subgroup space via refining the set of candidate biomarkers or by
selecting appropriate values of the algorithm search parameters.

To give an example of extreme situations, consider the patient subgroups
identified by the basic SIDES procedure in Table 5.5. Using the seven biomarkers
shown in this table, let us define a set of binary variables that are derived by
dichotomizing the original variables biomarkers, i.e., BPH_TREAT = Yes, AGE ≤
63.5, BMI> 25.7, QmaxR> −2.25, IPSSTB> 15.5, IPSSB> 7 and IPSSIR>

−1. As shown in Table 5.11, when the adaptive SIDEScreen procedure was applied
to the resulting seven binary biomarkers, a single promising subgroup (IPSSB> 7)
was selected. The treatment effect within this subgroup was significant at a one-

Table 5.10 Promising patient subgroups selected by the adaptive SIDEScreen procedure with
three ordered sets of biomarkers (biomarker screen with the multiplier k = 0)

Subgroup Total sample size
Mean treatment
difference Raw p-value Adjusted p-value

AGE ≤ 63.5 154 2.15 0.0105 0.0956

BPH_TREAT = No 210 1.42 0.0311 0.2200

Table 5.11 Promising patient subgroups selected by the adaptive SIDEScreen procedure using a
set of binary biomarkers (biomarker screen with the multiplier k = 0)

Subgroup Total sample size
Mean treatment
difference Raw p-value Adjusted p-value

IPSSB> 7 185 2.25 0.0043 0.0244
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sided 0.025 level and the corresponding Type I error rate was 0.10. These results
may look appealing even though the approach has limited scientific value.

In general, the trial sponsor’s approach should be guided by different types of
analysis. The SIDESscreen procedures help discover important predictive biomark-
ers which are based on the strongest statistical evidence of a differential treatment
effect whereas subgroup search results based on the basic SIDES procedure provide
a relevant basis for discussions with the clinical team. In our case study, the
partitioning schemes based on ISSIB> 7, AGE ≤ 63.5 and BPH_TREAT = No
emerge from the set of formal analyses. When examining the resulting subgroups, a
team of urologists also noted the clinical relevance of another partitioning scheme
obtained from less formal analyses based on ISSIB> 7 and IPSSIR> −1. By
combining these factors, one can define the profile of a super responder who
is not too old, did not receive previous BPH treatment and has severe irritative
symptoms at baseline without improvement during the run-in placebo period. The
mean treatment difference within the resulting subgroup of 39 patients is equal to
6.7!

5.6 Simulation Study

A simulation study was performed to evaluate the key characteristics of subgroup
search strategies that are adjusted for prognostic variables. We have pointed out
multiple times throughout this chapter that failure to account for important variables
that are prognostic of the primary endpoint in a trial is likely to negatively affect the
performance of subgroup search algorithms, especially when dealing with small
subgroups of patients. This simulation study is built around a simple example with
a strong prognostic variable and demonstrates the value of adjusting for this variable
in SIDES-based subgroup search algorithms.

Consider a two-arm clinical trial (experimental treatment versus placebo) with
the total of n = 200 patients. Assume that the primary endpoint is normally
distributed and larger values of this endpoint indicate a beneficial effect. Let yi
denote the endpoint’s value and ti denote the treatment indicator for the ith patient
(i.e., ti = 0 in the placebo arm and ti = 1 in the treatment arm), i = 1, . . . , n. The
model for the primary endpoint is defined as follows

yi = I (x1i > 0.5)δti + x2i + σεi, i = 1, . . . , n,

where εi is the error term that follows a standard normal distribution, I is a binary
indicator, i.e., I (x1i > 0.5) = 1 if x1i is greater than 0.5 and 0 otherwise, and δ and
σ are model parameters. Furthermore, x1i and x2i are the values of two biomarkers,
denoted by X1 and X2. The biomarkers are independent of the error term and are
generated as follows. Let Z1 and Z2 denote two random variables that follow a
standard bivariate normal distribution with the correlation coefficient ρ and let Xi =
�(Zj ), j = 1, 2, where �(z) is the cumulative distribution function of the standard
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normal distribution. This immediately implies that the marginal distribution of Xj

is uniform on [0, 1], j = 1, 2.
It follows from this model that X1 is predictive of treatment response in this

trial and the value of δ determines the degree of a differential treatment effect. It is
clear that the mean treatment difference is equal to 0 for any value of this biomarker
if δ = 0. When δ is positive, biomarker-high patients experience treatment benefit
while there is no treatment effect in biomarker-low patients. The cutoff that defines a
differential effect is 0.5 and thus the true subgroup with an enhanced treatment effect
is given by {X1 > 0.5}. The other biomarker, i.e., X2, is a prognostic biomarker
since the endpoint’s value increases when X2 is large but this biomarker exhibits no
predictive properties.

To identify a subgroup with enhanced treatment effect, a subgroup search was
carried out using the basic SIDES procedure with the following parameters:

• The search width and depth parameters were 2 and 1, respectively.
• The smallest sample size per subgroup was 30.
• The child-to-parent ratio was 1.
• The biomarkers were not discretized.

Two primary analysis strategies were considered in the SIDES procedure.
Strategy A relied on the two-sample t-test and Strategy B was based on a simple
ANCOVA model adjusted for the prognostic variable X2.

The ability of the SIDES procedure based on Strategies A and B to correctly
select the true subgroup was evaluated as follows. First of all, the probability of
an incorrect decision was computed. An incorrect decision was defined as (1) a
decision to form a subgroup based on X1 by including biomarker-low patients, e.g.,
if the subgroup was incorrectly identified as {X1 ≤ c}, or (2) if no subgroup based
on X1 was found at all, e.g., the subgroup did not meet the complexity control
criterion. Secondly, descriptive statistics were obtained for the cutoff estimated by
the SIDES procedure, namely, the lower quartile (25th percentile), median and
upper quartile (75th percentile), if a subgroup based on X1 was identified and
consisted of biomarker-high patients.

The performance of the two strategies was evaluated using 1000 simulation runs.
The simulation results for three selected values of δ are summarized in Table 5.12
(σ was set to 0.03 and ρ was set to 0.9). The table presents the probability of
an incorrect decision for each primary analysis strategy as well as the descriptive
statistics.

Beginning with the most challenging case when the differential effect parameter
δ was 0.02, Table 5.12 shows that the SIDES procedure based on the two-sample
t-test (Strategy A) struggled to correctly identify the true subgroup, i.e., {X1 >

0.5}. The probability of an incorrect decision was over 40% and, when a biomarker-
high subgroup was chosen by the procedure, the estimated cutoff for X1 was quite
unstable. The lower and upper quartiles were 0.3 and 0.7, which resulted in the
interquartile range of 0.4. This means that promising subgroups based on X1 were
chosen more or less randomly. By contrast, the SIDES procedure that accounted for
the prognostic effect of X2 (Strategy B) correctly selected a subgroup of patients



142 P. Bunouf et al.

Table 5.12 Performance of the SIDES procedure based on the two-sample t-test (Strategy A) and
ANCOVA model (Strategy B)

Primary analysis
strategy

Probability of an
incorrect decision

Estimated cutoff

Lower
quartile Median

Upper
quartile

δ = 0.02

Strategy A 0.44 0.30 0.50 0.70

Strategy B 0.05 0.27 0.42 0.50

δ = 0.1

Strategy A 0.09 0.45 0.54 0.75

Strategy B 0.00 0.49 0.50 0.50

δ = 0.2

Strategy A 0.01 0.49 0.53 0.72

Strategy B 0.00 0.49 0.50 0.50

with high values of X1 most of the time (the probability of an incorrect decision
was 5%) and the interquartile range of the estimated cutoff was 0.23.

When the differential effect parameter was set to 0.1, the performance of
Strategy A clearly improved. The probability of an incorrect decision was below
10% and the interquartile range of the estimated cutoff was down to 0.3. But there
was much more improvement if the SIDES procedure with covariate adjustment
(Strategy B) was applied. With this primary analysis strategy, no incorrect decisions
were made and the cutoff estimates were very tight with the interquartile range of
only 0.01.

Considering the last scenario that corresponds to δ = 0.2, we see that, with
either primary analysis strategy, the probability of an incorrect decision was very
low. However, Strategy A was still inferior to Strategy B because the latter resulted
in very consistent cutoff estimates whereas the interquartile range for Strategy A
was quite wide (0.23).

The simulation results presented in this section demonstrate the importance
of accounting for key prognostic variables in the primary analysis model when
running subgroup searches. For example, if the primary endpoint is measured on a
continuous scale, the SIDES or SIDEScreen procedures based on ANCOVA models
are more likely to correctly identify patient subgroups with a marked differential
treatment effect than those based on a simple t-test. Similarly, an adjustment for key
prognostic covariates will improve the performance of subgroup search algorithms
in trials with binary or time-to-event endpoints.

5.7 Discussion

Post-hoc assessments of patient subgroups in clinical trials are often criticized as
being unreliable. Subgroup effects that appear to be highly significant are likely to
be spurious and thus it is critical to focus on disciplined approaches to subgroup



5 Practical Subgroup Identification Strategies 143

identification that support more reliable inferences. A disciplined approach based
on a family of SIDES subgroup search methods was presented in this chapter and
practical considerations arising in subgroup search exercises were illustrated using
a case study based on a Phase III clinical trial in patients with benign prostatic
hypertrophy.

Beginning with the issue of error rate control in post-hoc subgroup investigation,
the goal of lowering the Type I error rate should not generally be the main
goal of subgroup exploration, it is more important to ensure that the resulting
patient subgroups are clinically relevant. In fact, the SIDES-based subgroup search
algorithms with several sets of parameters may lead to the same Type I error
rate but completely different sets of promising patient subgroups. It may be
counterproductive to pre-define the highest acceptable Type I error rate because
the focus on this artificially selected threshold may interfere with the process of
fully evaluating treatment effects across clinically meaningful subgroups. In many
exploratory settings, the degree of Type I error rate inflation should be considered as
a precautionary measure against unconstrained subgroup searches that are likely to
substantially increase the burden of multiplicity. To assess the relevance of identified
patient subgroups, multiplicity-adjusted p-values and Type I error rate calculations
should be combined with other metrics such as the reference treatment effect (RTE)
introduced in Sect. 5.5 to evaluate the plausibility of observed subgroup effects.

An important topic discussed in the chapter is the role of complex modeling
strategies that account for important covariates in subgroup search exercises. Most
commonly, SIDES-based subgroup assessments presented in the literature focus on
simple analysis methods such as the t-test that ignore information on prognostic
variables. These oversimplified analysis methods are not aligned with the primary
analysis methods utilized in the original trial. In addition, they do not recognize
an important fact that an adjustment for prognostic covariates plays a key role
in ensuring that subgroup assessments are not biased by potential imbalances
with respect to these covariates. These considerations are especially important
when treatment effects are evaluated within small patient subgroups. Using a
series of examples based on the case study, it was shown in this chapter that the
modeling strategy in post-hoc subgroup assessments should generally follow the
original primary analysis. To help quantify the importance of utilizing covariate-
adjusted models in subgroup exploration, a simulation study was presented in
Sect. 5.6. A comparison of SIDES-based subgroup search algorithms based on a
simple t-test and an ANCOVA model adjusted for an important prognostic variable
clearly showed that the likelihood of correctly identifying patient subgroups with a
differential treatment effect is reduced if a key prognostic covariate is ignored.

To help define a recommended approach to SIDES-based subgroup search in
a late-stage clinical trial, it will be ideal to fix a set of SIDES parameters as
well as a covariate adjustment strategy after the trial’s database has been cleaned
but before breaking the blind. This pre-specification freezes the subgroup search
space and enables true weak control of the Type I error rate. In this context,
subgroup investigations can address confirmatory issues provided the estimand and
analysis strategy are unambiguously specified in the statistical analysis plan (in
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this particular context, an estimand reflects what is to be estimated to address the
scientific question posed by subgroup analysis). It will be especially important to
clarify whether or not the investigated subgroups and the measure of treatment effect
differ from the primary analysis applied to the overall trial population. The question
that needs to be asked is, does “the difference between the trial arms in the most
promising subgroups” represent the endpoint of interest? It seems natural to apply
the same statistical model but this approach may be inappropriate in the analysis
of subgroups. For example, in the case study used in this chapter, the original
primary analysis was performed using a certain ANCOVA model with an LOCF-
based imputation of missing data caused by patient dropout. The center term was
included as a factor in the original model but, with a large number of centers, an
ANCOVA model with center effects could not be utilized within smaller subgroups.
Similar restrictions would apply in a longitudinal setting. Specifically, the treatment
effect in the overall population may be estimated from a longitudinal model which
requires numerous parameters. If parameter estimation is not possible due to smaller
sample sizes within subgroups, a change in the analysis strategy is quite justifiable if
a similar missing data mechanism can be assumed across the subgroups of interest.
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Chapter 6
The GUIDE Approach to Subgroup
Identification

Wei-Yin Loh and Peigen Zhou

Abstract GUIDE is a multi-purpose algorithm for classification and regression tree
construction with special capabilities for identifying subgroups with differential
treatment effects. It is unique among subgroup methods in having all these
features: unbiased split variable selection, approximately unbiased estimation of
subgroup treatment effects, treatments with two or more levels, allowance for
linear effects of prognostic variables within subgroups, and automatic handling of
missing predictor variable values without imputation in piecewise-constant models.
Predictor variables may be continuous, ordinal, nominal, or cyclical (such as angular
measurements, hour of day, day of week, or month of year). Response variables
may be univariate, multivariate, longitudinal, or right-censored. This article gives a
current account of the main features of the method for subgroup identification and
reviews a bootstrap method for conducting post-selection inference on the subgroup
treatment effects. A data set pooled from studies of amyotrophic lateral sclerosis is
used for illustration.

Keywords Bootstrap · Classification and regression tree · Confidence interval ·
Missing value · Post selection inference · Recursive partitioning · Variable
selection

6.1 Introduction

GUIDE (Loh 2002, 2009) is an algorithm for fitting classification and regression
tree models to data. AID (Morgan and Sonquist 1963) was the first algorithm but
CART (Breiman et al. 1984) and RPART (Therneau and Atkinson 2018) brought the
basic ideas to the mainstream. GUIDE grew out of work on an alternative approach
to CART classification (Loh and Vanichsetakul 1988; Loh and Shih 1997; Kim and
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Loh 2001, 2003) and regression (Loh 1991b; Ahn and Loh 1994; Chaudhuri et al.
1994, 1995; Chaudhuri and Loh 2002; Chan and Loh 2004). See Loh (2014) for a
recent review of classification and regression trees. Unlike AID and CART that only
fit a constant in each node of the tree, GUIDE can fit linear and generalized linear
models. This makes GUIDE well suited for subgroup identification—the terminal
nodes of the tree are the subgroups and the regression coefficients in the node models
give the treatment effects. It is unique among subgroup methods in having properties
such as unbiased selection of split variables, approximately unbiased estimation
of treatment effects, ability to use treatment variables with more than two levels,
optional local adjustment for linear effects of prognostic variables, and automatic
handling of missing values without needing prior imputation. Predictor variables
may be continuous, ordinal, nominal, or cyclical (such as angles, hour of day, day
of week, and month of year). Response variables may be univariate, multivariate,
longitudinal, or right censored. Missing values may be coded in more than one
way; for example a missing value for age of spouse may be coded as “refuse to
answer” if the respondent did not provide an answer and as “valid nonresponse”
if the respondent is single, widowed or divorced; see Loh et al. (2019b) for other
examples.

This article gives a current account of the GUIDE method for subgroup
identification. It uses data combined from several studies of ALS (Amyotrophic
Lateral Sclerosis) for illustration. The data were selected because they contained
all of the types of response variables that GUIDE can model and because many
of the predictor variables had missing values (denoted by “NA” here). ALS is
a neurological disease that affects voluntary muscle movement. Death typically
occurs within 3–5 years of diagnosis. Only about a quarter of patients survive for
more than 5 years after diagnosis. The data were obtained from the Pooled Resource
Open-Access ALS Clinical Trials (PRO-ACT) Database (Atassi et al. 2014). In
2011, Prize4Life, in collaboration with the Northeast ALS Consortium, and with
funding from the ALS Therapy Alliance, formed the PRO-ACT Consortium. The
data in the PRO-ACT Database were provided by the PRO-ACT Consortium
members. They were pooled from 23 completed ALS clinical trials and one
observational study, and contained information on demographics, family history,
and clinical and laboratory test data from more than 10700 ALS patients.

The ALS Functional Rating Scale (ALSFRS) is often used to evaluate the
functional status of ALS patients. It is the sum of ten scores (speech, salivation,
swallowing, handwriting, cutting food and handling utensils, dressing and hygiene,
turning in bed and adjusting bed clothes, walking, climbing stairs, and breathing),
with each score measured on a scale of 0–4, with 4 being normal. Seibold et al.
(2016) used a subset of the data to study the effectiveness of riluzole, a drug
approved for treatment of ALS by the US FDA, on ALSFRS at 6 months as well as
survival time from trial enrollment. Using the MOB algorithm (Zeileis et al. 2008),
they found that for patients with less than 468 days between disease onset and start
of treatment, riluzole had a negative treatment effect on ALSFRS at 6 months.

A major difficulty with the PRO-ACT data is that besides riluzole, other
medications were also tested in many of the trials (Atassi et al. 2014, Table 1).
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Even worse, the additional medications were not identified in the data. To avoid
confounding the effects of riluzole and that of other medications, the analysis
here is restricted to the subset of 1270 subjects who were assigned to placebo
or riluzole only, without other medications. Thirty-six variables were chosen as
predictor variables; their names are given in Table 6.1 together with their minimum
and maximum values and numbers of missing values. Three additional variables
were chosen as dependent variables: (1) change in ALSFRS from baseline at 6
months, (2) monthly change in ALSFRS from baseline at months 1, 2, . . . , 6, and
(3) survival time in days. ALSFRS scores of subjects who had died by the time the
scores were to be measured were set to 0. ALSFRS variables at 0, 1, . . . , 6 months
are denoted by ALSFRS0, ALSFRS1, . . . , ALSFRS6, respectively.

6.2 Univariate Uncensored Response

Figure 6.1 shows a basic GUIDE tree for predicting change in ALSFRS after
6 months (ALSFRS6 minus ALSFRS0), where a linear model (6.1) with treatment
as the only predictor variable is fitted in each node. A node of the tree represents
a partition of the data, with the root node corresponding to the whole data set. The
sample size in each partition is printed beside the node. At each node, a variable X

is selected to split the data there into two child nodes. The split, in the form X ∈ A,
is printed on the left of the node. The set A is chosen to minimize the sum of the
squared residuals in the left and right child nodes. Observations in the node are sent
to the left child node if and only if the condition is satisfied. Node labels start with
1 for the root node; for a node with label k, its left and right child nodes are labeled
2k and 2k + 1, respectively.

The root node in Fig. 6.1 is split on Diagnosis_Delta, which is the number
of days from clinical diagnosis to the first time the subject was tested in a trial. The
239 subjects with missing values in Diagnosis_Delta go to terminal node 2 and
the others go to intermediate node 3. It is unknown why the subjects have missing
values in Diagnosis_Delta. One possibility is the variable was not measured
in some of the trials, but this cannot be verified because trial ID was not included in
the data. Nevertheless, as the barplot for node 2 in Fig. 6.1 shows, subjects in this
subgroup deteriorate much more on average with riluzole than without. Subjects in
node 3 are split on Hematocrit. Those with Hematocrit missing or ≤ 37.95
(abbreviated in the tree diagrams by the symbol “≤∗” with the asterisk standing for
“is missing”) go to node 6 where they are split on BP_Diastolic and then on
Potassium.

6.2.1 Node Models

Let X = (X1, X2, . . . , XK) denote a K-dimensional vector of covariates, Y a
univariate response variable, and Z a treatment variable taking values 0, 1, . . . ,G,
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Table 6.1 Predictor variables, minimum and maximum values, numbers of categorical levels, and
numbers of missing values for modeling the difference ALSFRS6-ALSFRS0

Name Definition Min Max Miss

Demographics_Delta Demographic measurement day −35.00 32.00 19

Age Subject age at start of trial 18.00 82.00

Sex Subject gender (female, male)

Race Subject race (5 categories) 3

ALS_History_Delta Day ALS history reported 0.00 3.00 43

Symptom Major symptom (10 categories) 1085

Onset_Delta Day of disease onset, from first test −1900.00 −84.00 47

Diagnosis_Delta Day of diagnosis, from first test −1666.00 0.00 239

Site_of_Onset Site of disease onset (3 categories)

Albumin Albumin in blood (g/L) 31.67 53.00 332

ALT_SGPT Alanine amino transferase (U/L) 6.00 181.00 259

AST_SGOT Aspartate amino transferase (U/L) 7.50 116.00 258

Basophil_Count Amount in white blood cell (×109/L) 0.00 5.56 341

Basophils Percent in white blood cell count 0.00 3.00 365

Blood_Urea_Nitrogen Ureas (mmol/L) 0.95 17.34 218

Calcium Calcium in metabolic panel (mmol/L) 1.55 3.00 333

Creatinine Creatinine from kidney test 25.00 159.10 216

Eosinophils Percent in white blood cell count 0.00 15.00 365

Glucose Glucose in blood (mmol/L) 0.07 18.56 325

Hematocrit Percent red blood cells 0.00 56.00 326

Hemoglobin Hemoglobin in blood (g/L) 94.50 181.00 326

Lymphocytes Percent lymphocyte in blood 8.70 50.00 365

Monocytes Percent in white blood cell count 0.00 21.40 365

Platelets Platelets in blood (×109/L) 0.20 552.00 332

Potassium Potassium in electrolytes (mmol/L) 3.30 5.50 258

Sodium Sodium in electrolytes (mmol/L) 125.00 150.00 257

Urine_Ph Acidity of urine 5.00 9.00 355

SVC
(Slow_vital_Capacity)

Volume of air exhaled slowly (L) 1.00 7.00 737

Slow_vital_Capacity_
Delta

Day of SVC assessment 0.00 14.00 737

BP_Diastolic Diastolic blood pressure (mmHg) 52.00 125.00 217

BP_Systolic Systolic blood pressure (mmHg) 90.00 200.00 217

Height Subject height (in) 131.00 205.00 225

Pulse Beats per minute 42.00 120.00 218

Weight Subject weight (kg) 38.33 138.20 178

ALSFRS0 ALSFRS at baseline 10.00 40.00

ALSFRS_Delta0 Day of ALSFRS0 measurement −7.00 154.00

Variables with names containing “_Delta” are days from trial onset to the date that an assessment
took place, with negative values for occurrences before trial onset
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Fig. 6.1 GUIDE tree for change in ALSFRS (ALSFRS6-ALSFRS0) using 1270 observations and
node model (6.1). At each split, an observation goes to the left branch if and only if the condition is
satisfied. The symbol “≤∗” stands for “≤ or missing.” Sample sizes (in italics) are printed beside
nodes. Bootstrap-calibrated 90% simultaneous intervals of treatment effect are given below nodes.
Calibrated alpha is 1.3 × 10−5. Treatment effect is statistically significant in green node. Barplots
show means of change in ALSFRS for placebo and riluzole subjects in the terminal nodes
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with 0 being the reference (or placebo) level. Let t denote a node of the tree. A
regression tree model is constructed by recursively partitioning a training sample
into subsets that are represented by the nodes of a tree. A large majority of
regression tree methods for subgroup identification employ stopping rules based
on Bonferroni-corrected p-values (Lipkovich et al. 2011; Seibold et al. 2016; Su
et al. 2009). Other methods (Dusseldorp and Meulman 2004; Foster et al. 2011),
including GUIDE, first grow an overly large tree and then use cross-validation to
prune it to a smaller size. We only describe the GUIDE node fitting and splitting
steps here because the pruning step is the same as that of CART.

For least-squares regression, GUIDE fits a linear model Y = f (X, Z) + ε to
the data in each node of a tree; ε is an independent zero-mean random variable with
variance that is constant within each node but may vary between nodes. Four choices
of f (x, z) are available, depending on the number of X variables to be included. Let
βz (z = 1, 2, . . . ,G) denote the effect of treatment level z (versus level 0). The
choices are:

f (x, z) = η + βz (Treatment only) (6.1)

f (x, z) = η + βz +
p∑

j=1

γjx
j
k∗ (Polynomial of degree p) (6.2)

f (x, z) = η + βz +
K∑

k

γkxk (Multiple linear) (6.3)

f (x, z) = η + βz +
∑

k∈S
γkxk (Stepwise linear) (6.4)

In (6.2), p is a user-specified positive integer and k∗ is the value of k such that
Xk minimizes the sum of squared residuals in the node (k∗ may vary from node to
node). In (6.4), the set S is the set of indices of the variables Xk that are selected
by forward and backward stepwise regression in the node. Thus the model for a tree
with terminal nodes t1, t2, . . . , tτ may be written as

Y =

⎧
⎪⎨

⎪⎩

f1(X, Z) + ε1, X ∈ t1
...

fτ (X, Z) + ετ , X ∈ tτ

(6.5)

where f1, f2, . . . , fτ take one of the functional forms (6.1)–(6.4) and ε1, . . . , ετ
are independent random variables with mean zero and variances σ 2

1 , . . . , σ
2
τ . This is

different from the model

Y =
τ∑

j=1

fj (X, Z) I (X ∈ tj ) + ε (6.6)
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which assumes that the error variance is the same in all nodes. The least-squares
estimates of the regression coefficients are the same in models (6.5) and (6.6), but
not their standard error estimates. In (6.2)–(6.4), missing values in the X variables
are imputed by their node means.

Figure 6.1 was constructed using model (6.1) and Fig. 6.2 was constructed using
model (6.2) with p = 1. The name of the best linear prognostic variable Xk∗ is
given beneath each terminal node. The root node splits on “Diagnosis_Delta
≤ − 1072 or missing.” Of the 245 subjects in this subgroup, 239 are missing
Diagnosis_Delta. The best linear prognostic variable in node 2 is Pulse.
Plots of the data and regression lines for placebo and riluzole subjects in each node
are shown in the lower half of Fig. 6.2. Mean imputation of Sodium is clearly
shown by the vertical line of points in the plot of node 13.

6.2.2 Split Variable Selection

To find a variable to split a node t , a test of treatment-covariate interaction is
performed for each Xk on the data in t . (This is the default “Gi” method.) Let nt
denote the number of observations in t . The following steps are carried out for each
variable Xj , j = 1, 2, . . . , K .

1. If Xj is a categorical variable, define V = Xj and let h denote its number of
levels (including a level for NA, if any).

2. If Xj is ordinal and takes only one value (including NA) in the node, do not use it
to split the node. Otherwise, let m denote the number of distinct values (including
NA) of Xj in t . Transform it to a discrete variable V with h values as follows.

(a) If m ≤ 4 or if m = 5 and Xj has missing values, define h = m. Otherwise,
define h = 3 if nt < 30(G + 1) and h = 4 otherwise.

(i) If Xj has missing values in t , define rk = k/(h−1), k = 1, 2, . . . , h−2.
(ii) If Xj has no missing values in t , define rk = k/h, k = 1, 2, . . . , h − 1.

(b) Define q0 = −∞ and let qk (k > 0) be the sample rk-quantile of Xj in t .

(i) If Xj has missing values in t , define

V =
h−2∑

k=1

kI (qk−1 < Xj ≤ qk)+(h−1)I (Xj > qh−2)+hI (Xj = NA).

(ii) If Xj has no missing values in t , define

V =
h−1∑

k=1

kI (qk−1 < Xj ≤ qk) + hI (Xj > qh−1).
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Fig. 6.2 GUIDE tree for ALSFRS6-ALSFRS0 using 1270 observations and node model (6.2)
with polynomials of degree 1. At each split, an observation goes to the left branch if and
only if the condition is satisfied. The symbol ‘≤∗’ stands for ‘≤ or missing’. Sample sizes (in
italics) are printed beside nodes. Name of best linear prognostic variable (with sign of slope)
and bootstrap-calibrated 90% simultaneous confidence interval for treatment effect are below each
node. Calibrated alpha is 8.9 × 10−6. Treatment effect is statistically significant in green node.
Plots of change in ALSFRS versus best linear predictor show data points and fitted regression lines
in the terminal nodes. Missing values in predictor variables are imputed by the means of their
non-missing values in the nodes
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3. Test the additive model E(Y |Z,V ) = η +∑z βzI (Z = z) +∑v γvI (V = v),
with β0 = γ1 = 0, against the full model E(Y |Z,V ) = ∑

z

∑
v ωvzI (V =

v, Z = z) and obtain the p-value pj .

Split node t on the Xj with the smallest value of pj .

6.2.3 Split Set Selection

After X is selected, a search is carried out for the best split “X ∈ A”, where A

depends on whether X is ordinal or categorical.

6.2.3.1 Ordinal Variable

If X is ordinal, three types of splits are evaluated.

1. X = NA: an observation goes to the left node if and only if its value is missing.
2. X = NA or X ≤ c: an observation goes to the left node if and only if its value is

missing or if it is less than or equal to c.
3. X ≤ c: an observation goes to the left node if and only if its value is not missing

and it is less than or equal to c.

Candidate values of c are the midpoints between consecutive order statistics of X
in t . If X has m order statistics, the maximum number of possible splits is (m − 1)
or {1 + 2(m − 1)}, depending on the absence or presence of missing X values in t .
Permissible splits are those that yield two child nodes with each having two or more
observations per treatment. The selected split is the one that minimizes the sum of
the deviances (or sum of squared residuals in the case of least-squares regression)
in the two child nodes.

This method of dealing with missing values is unique to GUIDE. CART uses
a hierarchical system of “surrogate splits” on alternative X variables to send
observations with missing values to the child nodes. Because the surrogate splits
depend on the (missing and non-missing) values of the alternative X variables,
observations with missing values do not necessarily go to the same child node.
Therefore it is impossible to predict the path of an observation by looking at the tree
without knowing the values of its predictor variables. Besides, CART’s surrogates
splits are biased towards X variables with few missing values (Kim and Loh 2001).
Other subgroup methods are typically inapplicable to data with missing values
(Dusseldorp and Meulman 2004; Su et al. 2009; Foster et al. 2011; Seibold et al.
2016).

Sometimes, missing-value imputation is illogical, e.g., a prostate-specific antigen
test result for a female subject or the age of first cigarette for a subject who never
smoked. Other times, imputation erases useful information. For example, if missing
values were imputed before application of GUIDE, the large difference in treatment
effect between subjects with and without missing values in Diagnosis_Delta
in Fig. 6.1 would be undetected.
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6.2.3.2 Categorical Variable

If X is a categorical variable, the split has the form X ∈ A, where A is a non-trivial
subset of the values (including NA) of X in t . A complete search of all possible
values of A can be computationally expensive if the number, m, of distinct values
(including NA) of X in t is large, because there are potentially (2m−1 −1) splits (less
if some splits yield child nodes with fewer than two observations per treatment).
Therefore GUIDE carries out a complete search only if m ≤ 11. If m > 11, it
performs an approximate search by means of linear discriminant analysis , based
on an idea from Loh and Vanichsetakul (1988), Loh and Shih (1997), and Loh
(2009).

1. Let ȳz denote the sample mean of the Y values in t that belong to treatment Z = z

(z = 0, 1, . . . ,G).
2. Define the class variable

C =
{

2z − 1, if Z = z and Y > ȳz

2z, if Z = z and Y ≤ ȳz.

3. Let {a1, a2, . . . , am} denote the categorical values of X in t . Transform X to an
m-dimensional 0–1 dummy vector D = (D1,D2, . . . , Dm), where Di = I (X =
ai), i = 1, 2, . . . , m.

4. Apply linear discriminant analysis to the data (D, C) in t to find the discriminant
variables Bj = ∑m

i=1 bijDi , j = 1, 2, . . .. These variables are also called
canonical variates (Gnanadesikan 1997).

5. For each j , find the split Bj ≤ cj that minimizes the sum of the squared residuals
of the least-squares models fitted in the child nodes induced by the split.

6. Let j∗ be the value of j for which Bj ≤ cj has a smallest sum of squared
residuals.

7. Split the node with Bj∗ ≤ cj∗ . Because Bj∗ =∑m
i=1 bij∗Di =∑m

i=1 bij∗I (X =
ai), the split is equivalent to X ∈ A with A = {ai : bij∗ ≤ cj∗}.

6.3 Bootstrap Confidence Intervals

The barplots in the lower half of Fig. 6.1 show that the subgroups defined by nodes 2
and 26 have the largest treatment effects. Similarly, the graphs in the lower half
of Fig. 6.2 suggest that node 2 has the largest treatment effect. Are the effects
statistically significant? This question cannot be answered by means of traditional
methods because the subgroups were not specified independently of the data. It is a
question of post-selection inference.

Given node t and z, let β̂(t, z) be the estimated treatment effect for Z = z in t , let
σ̂β(t, z) denote its usual estimated standard error, and let νt be the residual degrees
of freedom. Further, let tν,α denote the (1 − α)-quantile of the t-distribution with ν

degrees of freedom and let τ denote the number of terminal nodes of the tree. Let
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Table 6.2 90% simultaneous
intervals for subgroup
treatment effects in Figs. 6.1
and 6.2

Model Node B(0.10, t, z) J (α
F̂

, t, z)

Figure 6.1 2 (−16.0,−11.4) (−18.7,−8.7)

α
F̂

= 1.3 × 10−5 7 (1.3, 6.3) (−1.6, 9.2)

12 (−2.5, 1.4) (−4.7, 3.6)

26 (−18.7,−5.8) (−26.2, 1.7)

27 (−6.0,−0.1) (−9.4, 3.3)

Figure 6.2 2 (−15.1,−10.0) (−17.7,−7.4)

α
F̂

= 8.9 × 10−6 7 (−2.1, 4.1) (−5.1, 7.2)

12 (−2.7, 0.6) (−4.3, 2.2)

13 (−14.5,−1.6) (−21.4, 5.3)

B(α, t, z) = β̂(t, z) ± tνt ,α/(2τ) σ̂β(t, z) (6.7)

be the Bonferroni-corrected 100(1 − α)% simultaneous t-interval for the treatment
effect of Z = z in node t . The middle column of Table 6.2 gives the values of
B(0.10, t, z) for the trees in Figs. 6.1 and 6.2. Despite the Bonferroni correction,
the standard errors σ̂β(t, z) are biased low because they do not account for the
uncertainty due to split selection. As a result, the intervals B(α, t, z) tend to be
too short and their simultaneous coverage probability is less than (1 − α).

There are two obvious ways to lengthen the interval widths to improve their
coverage probabilities. One is to correct the standard error estimates, but this is
formidable due to the complexity of the tree algorithm. Another way is to reduce
the nominal value of α in (6.7). For example, to obtain 90% simultaneous coverage,
we could use B(α, t, z) with a nominal α < 0.10. To find the right nominal value
of α, we first need to define the estimand of β̂(t, z), which is the true treatment
effect in t . Let F̂ denote the training data and F the population from which they
are drawn. By definition, β̂(t, z) (z = 1, . . . ,G) are the values of the treatment
effect coefficients that minimize

∑
i∈t (yi − f (xi , zi))2, where the sum is over the

observations in node t . Their estimands, denoted by are βF (t, z), are the values of
the treatment effect coefficients that minimize E{(Y −f (X, Z))2I (X ∈ t)}. Clearly,
βF (t, z) is a random variable, because it depends on t , which in turn depends on F̂ .
If F is known and t is given, however, βF (t, z) can be computed, by simulation
from F if necessary.

Let J (α, t, z) = β̂(t, z) ± tνt ,α/2 σ̂β(t, z) denote the nominal 100(1 − α)% t-
interval, let T̃ be the set of terminal nodes, and let γF (α) = P [∩

t∈T̃ {βF (t, z) ∈
J (α, t, z)}] denote the simultaneous coverage probability. Clearly, γF (α) ↑ 1 as
α ↓ 0. Given a desired simultaneous coverage probability γ ∗, let αF be the
solution of the equation γF (αF ) = γ ∗. Then the intervals J (αF , t, z) have exact
simultaneous coverage γ ∗. We call αF the “calibrated α.” Note that there is no need
to work with the Bonferroni-corrected interval (6.7) because γF (α) is, by definition,
a simultaneous coverage probability.

Of course, the value of αF is not computable if F is unknown. In that case, a
natural solution is bootstrap calibration, a method proposed in Loh (1987, 1991a)
for the simpler problem of estimating a population mean. It was extended to
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Algorithm 1: Bootstrap calibration of confidence intervals for treatment effects
Data: Given K > 0 and α ∈ (0, 1), α1 < α2 < . . . < αK = α; tree T with nodes

t1, t2, . . . , tL constructed from D = {(Xi , Yi , Zi), i = 1, 2, . . . , n}; and model M
(one of (6.1), . . . , or (6.4)) based on T with estimated treatment effects β̂tz,
z = 1, 2, . . . ,G; t = t1, t2, . . . , tL.

Result: (1 − α) simultaneous t-intervals for {βtz}.
begin

γk ← 0 for k = 1, 2, . . . , K;
for b ← 1 to B do

bootstrap data D∗
b = {(X∗

i , Y
∗
i , Z

∗
i ), i = 1, 2, . . . , n} from D ;

construct from D∗
b tree Tb with nodes t∗b1, t

∗
b2, . . . , t

∗
bLb

;
fit model M based on Tb to D observations to get ‘‘true’’ effects β(t∗bl , z);
z = 1, . . . ,G; l = 1, . . . , Lb;

fit model M based on Tb to D∗
b observations to get estimates β̂(t∗bl , z), residual

degrees of freedom νbl and standard errors σ̂β (t∗bl , z); z = 1, . . . ,G; l = 1, . . . , Lb;
for z ← 1 to G do

for l ← 1 to Lb do
for k ← 1 to K do

Jklz ← (1 − αk) t-interval β̂(t∗bl , z) ± tνbl ,αk/2σ̂β (t
∗
bl , z);

if β(t∗bl , z) ∈ Jklz then
cklz ← 1 ; /* interval contains true beta */

else
cklz ← 0 ; /* interval does not contain true
beta */

end
end

end
end
for k ← 1 to K do

if minlz cklz = 1 then
γk ← γk + 1

end
end

end
γk ← γk/B for k = 1, 2, . . . , K;
q ← smallest k such that γk < 1 − α;
g ← (γq−1 − 1 + α)/(γq−1 − γq);
α′ ← (1 − g)αq−1 + gαq ;
construct (1 − α′) simultaneous t-intervals for βtz for t = t1, t2, . . . , tL; z = 1, . . . ,G

end

estimation of subgroup treatment effects in Loh et al. (2016, 2019c). The idea is
to replace F with F̂ in the calculations. Specifically, use simulation from F̂ to find
the solution α

F̂
of the equation γ

F̂
(α

F̂
) = γ ∗. The resulting intervals J (α

F̂
, t, z)

are called “bootstrap-calibrated” 100γ ∗% simultaneous intervals. Algorithm 1 gives
the instructions in pseudo-code, using a grid search to find α

F̂
. The numerical

results here (including those in the last column of Table 6.2) were obtained with
a grid of 200 nominal values of α and 1000 bootstrap iterations. Simultaneous
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90% bootstrap-calibrated intervals of treatment effect are given beneath the terminal
nodes of the trees in Figs. 6.1 and 6.2. Their respective bootstrap-calibrated alpha
values are α

F̂
= 1.3 × 10−5 and 8.9 × 10−6. In the tree diagrams, nodes with

statistically significant treatment effects are in green color.

6.4 Multivariate Uncensored Responses

GUIDE can construct a least-squares regression tree for data with longitudinal or
multivariate response variables as well. Given d response variables Y1, Y2, . . . , Yd ,
it fits the treatment-only model E(Yj |Z) = ηj + ∑G

z=1 βjzI (Z = z), j =
1, . . . , d, separately to each variable in each node. To find the variable to split
a node, the test for treatment-covariate interaction in Sect. 6.2.2 is performed d

times for each Xi (once for each Yj ) to obtain the p-value pi1, pi2, . . . , pid . Let
χ2
ν,α denote the (1 − α)-quantile of the chi-squared distribution with ν degrees

of freedom. The variable Xi for which
∑d

j=1 χ
2
1,pij

is maximum is selected to
split the node. To allow for correlations in the response variables, GUIDE can
optionally apply the treatment-covariate interaction tests to the principal component
(PC) or linear discriminant (LD) variates computed from the Yj values in the node.
Specifically, if principal component transformation is desired, the (Y1, Y2, . . . , Yd)

data vectors in the node are transformed to their PCs (Y ′
1, Y

′
2, . . . , Y

′
d) first; then

the treatment-covariate interactions tests are applied to the (Y ′
1, Y

′
2, . . . , Y

′
d) data

vectors. Similarly, if LD is desired, the (Y1, Y2, . . . , Yd) data vectors in the node are
transformed to their linear discriminant variates, using the treatment levels as class
labels. The PC and LD transformations are carried out locally at each node. After
the split variable Xi is selected, its split point (if Xi is ordinal) or split set (if Xi

is categorical) is the value that yields the smallest total sum of squared residuals
(where the total is over the d models E(Yj |Z) = ηj +∑z βjzI (Z = z)) in the left
and right child nodes. See Loh and Zheng (2013) and Loh et al. (2016) for more
details.

Using change from baseline of ALSFRS1, ALSFRS2, . . . , ALSFRS6 as longi-
tudinal response variables, only the PC option yielded a nontrivial tree, as shown in
Fig. 6.3. Subjects who died after 6 months and had missing values in any response
variable were omitted, leaving a training sample of 627 observations. The tree
has only one split, the same as the split at the root node of Fig. 6.2. The plots
below the tree diagram show bootstrap-calibrated 90% simultaneous intervals for
the treatment effect for each response variable in each terminal node. The longer
lengths of the intervals in the left node are due to its much smaller sample size.
Because every interval contains 0, there is no subgroup with statistically significant
treatment effect.
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Fig. 6.3 GUIDE tree for change from baseline of longitudinal responses ALSFRS1, ALSFRS2,
. . . , ALSFRS6, using 627 observations and PCA at each node. At each split, an observation goes to
the left branch if and only if the condition is satisfied. The symbol ‘≤∗’ stands for ‘≤ or missing’.
Sample size (in italics) printed below nodes. Bootstrap-calibrated 90% simultaneous intervals for
treatment effect of each response variable in each node plotted below tree. Calibrated alpha is 0.011

6.5 Time-to-Event Response

Let (U1,X1), (U2,X2), . . . , (Un,Xn) be the survival times and predictor variable
values of n subjects. Let V1, V2, . . . , Vn be independent and identically distributed
observations from a censoring distribution and let δi = I (Ui < Vi) be the
event indicator. The observed data vector of subject i is (Yi, δi ,Xi ), where Yi =
min(Ui, Vi). Let λ(y, x, z) denote the hazard function at time y and covariates x
and z. The proportional hazards model stipulates that λ(y, x, z) = λ0(y) exp(η),
where λ0(y) is a baseline hazard function independent of (x, z), and η is a function
of x and z. Many methods fit a proportional hazards model to the data in each node
separately (Negassa et al. 2005; Su et al. 2009; Lipkovich et al. 2011; Lipkovich and
Dmitrienko 2014; Seibold et al. 2016), giving the tree model

λ(y, x, z) =
τ∑

j=1

λj0(y) exp(ηj + βjz)I (x ∈ tj ); βj0 = 0; j = 1, 2, . . . , τ.
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Because the baseline hazard λj0(y) varies from node to node, the model does not
have proportional hazards overall. Therefore estimates of regression coefficients
cannot be compared between nodes and relative risks are not independent of y.

GUIDE (Loh et al. 2015) fits one of the following three truly proportional hazards
models instead.

λ(y, x, z) = λ0(y) exp

⎡

⎣
τ∑

j=1

{ηj + βjz}I (x ∈ tj )

⎤

⎦ (6.8)

λ(y, x, z) = λ0(y) exp

⎡

⎣
τ∑

j=1

{

ηj + βjz +
p∑

i=1

γjix
i
k∗

}

I (x ∈ tj )

⎤

⎦ (6.9)

λ(y, x, z) = λ0(y) exp

⎡

⎣
τ∑

j=1

{

ηj + βjz +
K∑

k

δjkxk

}

I (x ∈ tj )

⎤

⎦ (6.10)

where βj0 = 0 (j = 1, . . . , τ ) and the ηj satisfy a constraint such as
∑

j ηj = 0
to prevent over-parameterization. Model fitting is carried out by means of a well-
known connection between proportional hazards regression and Poisson regression
(Aitkin and Clayton 1980; Laird and Olivier 1981). Let Λ0(y) = ∫ y

−∞ λ0(u) du

denote the baseline cumulative hazard function. The regression coefficients in (6.8),
(6.9), or (6.10) are estimated by iteratively fitting a GUIDE Poisson regression
tree (Chaudhuri et al. 1995; Loh 2006), using the event indicators δi as Poisson
responses, logΛ0(yi) as offset variable, and the Poisson models

logE(δ|Z) = logΛ0(y) + ξj +
∑

z

βjzI (Z = z),

logE(δ|Z,Xk∗) = logΛ0(y) + ξj +
∑

z

βjzI (Z = z) +
p∑

i=1

γjiX
i
k∗ ,

logE(δ|Z,X1, X2, . . . , Xk) = logΛ0(y) + ξj +
∑

z

βjzI (Z = z) +
K∑

k

δjkXk,

respectively, in each node tj . At the first iteration, Λ0(yi) is estimated by the Nelson-
Aalen method (Aalen 1978; Breslow 1972). Then the estimated relative risks of the
observations from the tree model are used to update Λ0(yi) for the next iteration;
see, e.g., Lawless (1982, p. 361).

Figure 6.4 gives the result of fitting model (6.8) from the 966 subjects with
non-missing censored or observed survival time in the ALS data. The tree splits
on Symptom to give two terminal nodes. The left node consists of 815 subjects
with Symptom either missing or is speech. The other 151 subjects go to the right
node, which has a statistically significant treatment effect based on the bootstrap-
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Fig. 6.4 GUIDE proportional hazards regression tree for differential treatment effects using
model (6.8). Kaplan-Meier survival curves in each node are shown below the tree. Numbers in
italics beside terminal nodes are sample sizes. Bootstrap-calibrated 90% simultaneous confidence
intervals of relative risks (riluzole versus placebo) are given below terminal nodes. Calibrated alpha
is 0.0003. Treatment effect is statistically significant in green node
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Fig. 6.5 GUIDE proportional hazards regression tree for differential treatment effects using
model (6.9). Numbers in italics beside terminal nodes are sample sizes. Bootstrap-calibrated 90%
simultaneous confidence intervals of relative risks (riluzole versus placebo) and name of linear
prognostic variable (with sign indicating slope) are given below nodes. Calibrated alpha is 0.003.
Treatment effect is statistically significant in green node

calibrated 90% simultaneous confidence intervals of relative risks printed below the
nodes. Kaplan-Meier survival curves for placebo and riluzole subjects in each node
are shown below the tree diagram.

Figure 6.5 gives the result for model (6.9) with polynomial degree p = 1. The
root node is split into two terminal nodes on Symptom, but now the model in each
node includes the effect of the best linear prognostic variable (which turns out to be
Age in both child nodes). According to the bootstrap-calibrated 90% simultaneous
intervals for relative risk printed below the nodes, the subgroup with significant
treatment effect consists of subjects for which Symptom is neither missing nor
swallowing.
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6.6 Concluding Remarks

We have explained and demonstrated the main features of the GUIDE method for
subgroup identification and discussed a bootstrap method of confidence interval
construction for subgroup treatment effects. The bootstrap method is quite general
and is applicable to algorithms other than GUIDE. Because it expands the traditional
t-intervals to account for uncertainty due to split selection, it is more efficient if
the estimated subgroup treatment effects are unbiased. The method may still be
applicable if the estimates are biased, but the calibrated intervals would be wider
as a result. Biased estimates of subgroup treatment effects are common among
algorithms that search for splits to maximize the difference in treatment effects in
the child nodes. A comparison of methods on this and other criteria is reported in a
forthcoming article (Loh et al. 2019a).

Although GUIDE does not impute missing values for split selection, it does
impute them in the predictor variables with their node sample means when fitting
models (6.2)–(6.4) in the nodes. Therefore these models, e.g., Figs. 6.2 and 6.5,
assume that missing values in the X variables are missing at random (MAR). But
the MAR assumption is not needed for model (6.1), such as Figs. 6.1, 6.3, and 6.4.

There are two newer GUIDE features that are not discussed here. One is cyclic or
periodic predictor variables, such as angle of impact in an automobile crash, day of
week of hospital admission, and time of day of medication administration. If GUIDE
splits a node on such a variable, the split takes the form of a finite interval of values
a < X ≤ b instead of a half-line X ≤ c. Another feature is accommodation of
multiple missing-value codes. For example, the result of a lab test may be “missing”
for various reasons. It may not have been ordered by the physician because it was
risky for the patient, it may be inappropriate (e.g., a mammogram for a male or a
prostate-specific antigen test for a female), the patient may have declined the test
due to cost, or the result of the test was accidentally or erroneously not reported.
If the “missing” values are all recorded as NA, a split would take the form “X ≤ c

or X = NA” or “X ≤ c and X �= NA”. But if the reasons for missingness are
known, GUIDE would use the information to produce more specific splits of the
form “X ≤ c or X ∈ S”, where S is a subset of missing-value codes. Illustrative
examples of these two features are given in the GUIDE manual (Loh 2018).
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Chapter 7
A Novel Method of Subgroup
Identification by Combining Virtual
Twins with GUIDE (VG) for
Development of Precision Medicines

Jia Jia, Qi Tang, and Wangang Xie

Abstract A lack of understanding of human biology creates a hurdle for the
development of precision medicines. To overcome this hurdle we need to better
understand the potential synergy between a given investigational treatment (vs.
placebo or active control) and various demographic or genetic factors, disease
history and severity, etc., with the goal of identifying those patients at increased
“risk” of exhibiting clinically meaningful treatment benefit. For this reason, we
propose the VG method, which combines the idea of an individual treatment effect
(ITE) from Virtual Twins with the unbiased variable selection and cutoff value
determination algorithm from GUIDE. Simulation results show the VG method
has less variable selection bias than Virtual Twins and higher statistical power than
GUIDE Interaction in the presence of prognostic variables with strong treatment
effects. Type I error and predictive performance of Virtual Twins, GUIDE and
VG are compared through the use of simulation studies. Results obtained after
retrospectively applying VG to data from an Alzheimer’s disease clinical trial also
are discussed.

7.1 Introduction

The concepts of personalized medicine and precision medicine have “evolved”
over time, with precision medicine now viewed as an approach that allows for
the treatment of patients while taking their personal signatures, such as genes,
environment and lifestyles, into consideration in order to maximize the benefit
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(efficacy) and/or minimize the risk (safety) they receive from the treatment. In
other words, treatment effects are often heterogeneous in a given patient population.
Thus, it is necessary to improve our understanding of differential treatment effects
observed in patients with different signatures.

Although it is difficult to accurately assess and maximize the treatment effect for
every patient, it may be possible to categorize patients into subgroups according to
some known and pre-defined signatures, for example, demographics, biomarkers
and lab values and then assess the treatment effect for those subgroups. The
subgroup in which the “best” treatment effect can be observed also could be
identified via complicated statistical methods without predefining the variables
to be used in the analysis. In this paper, we focus on the latter approach, also
known as retrospective (or ad hoc) subgroup identification. Retrospective subgroup
identification is a critical approach used to develop precision medicines.

Many subgroup identification methods have been developed. For example,
Negassa et al. (2005) developed RECPAM which attempts to maximize the Cox
partial likelihood. Su et al. (2008, 2009) developed Interaction trees (IT), which
attempts to minimize the p-value for testing the significance of the interaction term
between the subgroup indicator and the treatment. Foster et al. (2011) developed
Virtual twins (VT) which uses random forests to predict the treatment effect for each
patient and then applies Classification and Regression Trees (CART) to identify
potential subgroups. Lipkovich et al. (2011) developed the Subgroup Identification
based on Differential Effect Search (SIDES), which targets on the treatment
effect difference but may lead to selection bias associated with variables having
more possible cut-off values. Dusseldorp and Van Mechelen (2014) developed
QUalitative INteraction Trees (QUINT) that attempts to optimize a weighted sum
of measures of effect size and subgroup size. Loh et al. (2002) developed a method
called Generalized, Unbiased, Interaction Detection and Estimation (GUIDE) that
is a multi-purpose machine learning algorithm for constructing classification and
regression trees. Also, Loh et al. (2015) later developed a new method called
GUIDE-Interaction (Gi), which was based on the original GUIDE but targeted
on the treatment effect difference. Also, Gi has been compared to other methods
regarding the statistical properties in certain scenarios. The results showed that Gi
was a preferred solution when the goal is to find the signature based on treatment
difference.

In precision medicine, the treatment effect difference forms the basis for
subgroup identification. Most of the existing methods can identify subgroups, and
some of the methods can obtain unbiased signature selection. However, only a few
of these methods can target directly on the treatment effect difference, especially the
individual treatment effect (ITE) difference, which in general is the benefit obtained
from receiving treatment compared to the benefit obtained from receiving placebo
for a particular patient.

During our review of the existing methods, we found that the variable selection
process of Gi is partly driven by how well a variable predicts the response variable.
Thus, in a case of a strong prognostic effect, Gi may select prognostic variables
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more often than predictive variables, since prognostic variables may in fact predict
the response variable better than predictive variables. In contrast, VT directly
targets on the treatment effect difference and may have better variable selection
performance than Gi in the scenario of a strong prognostic effect. However, CART
is implemented in the variable selection step of VT and may lead to bias in variable
selection (Loh et al. 2015).

In this paper, we propose VG, a novel method that targets directly on individual
treatment effects using an unbiased variable selection procedure by combining two
methods, VT and GUIDE. In VG, the CART part in VT is replaced by GUIDE. The
performance of VG, VT and Gi will be compared via simulations and a case study
will be presented.

7.2 Methods

The VG method contains two steps: (1) estimate the individual treatment effect
(ITE) difference using Virtual Twins; and (2) identify potential subgroup(s) using
GUIDE. Benefits inherited from GUIDE include the ability to utilize missing
covariate information and simultaneously model multiple endpoints.

Without loss of generality, we illustrate the VG method for the case of binary
response variable.

7.2.1 Step I

The first step is to estimate the ITE difference by using Random Forests (need a
citation here). Let Yn and Tn represent the original response variable (continuous
or binary) and treatment variable (0 = placebo; 1 = investigational treatment),
respectively; and let Xn, p represents the matrix that contains all the covariates, where
n is the sample size, and p is the number of covariates.

Let T’
n represent the flipped (or opposite) treatment variable, where T’

n = 1n − Tn.
The purpose of doing this is to estimate the counterfactual response of each patient,
in other words, the response of a patient under the treatment that was not received.

Let Y′
n represent the estimated counterfactual response given T’

n and Xn, p. In
the VG method, GUIDE is used to provide nonparametric estimation of Y′

n. In
order to do that, similar to Foster et al. (2016), we utilize two additional matrices
that contain all possible two − way interactions between (a) Tn and Xn, p and (b) T′

n

and Xn, p, respectively.
As a consequence, data used for predicting Y′

n have the structure provided below,
which contains five components and a total sample size of 2n:
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Y∗
2n =

(
Yn

Y′n
)
,T∗

2n =
(

Tn

T′n
)
, X∗

2n,p =
(

Xn,p

Xn,p

)
,

XT2n,p =
(

TnXn,p

T′nXn,p

)
,X(1 − T)2n,p =

(
(1n − Tn)Xn,p

(1n − T′n)Xn,p

)

The terms TnXn, p, T′
nXn, p, (1n − Tn)Xn, p and (1n − T′

n)Xn, p represent interac-
tions between the treatment indicator, flipped treatment indicator and the covariates.
Note that Y′

n is unknown but can be predicted using GUIDE with a weight variable,
which assigns 0 weight to Yn and 1n weight to Y′

n .
After Y′

n is predicted, we can calculate the individual treatment effect (ITE) dif-
ference. Let’s assume the i-th patient with individual covariates Xi received
treatment (ti = 1) and obtained outcome yi, and the j − th patient with individual
covariates Xj received placebo (tj = 0) obtained outcome yj. By predicting Y′

n,
we have now obtained the‘flipped’ outcome for patients i and j, y′

i and y′
j, given

their individual covariates Xi and Xj, respectively. Thus, the ITE difference for
the i − th patient can be calculated as ITEi = yi − y′

i; while the ITE difference
for the j − th patient can be calculated as ITEj = y′

j − yj. By doing this, we obtain
the vector of length n containing the ITE differences for all the patients, conditional
on their individual covariates.

7.2.2 Step II

The goal of Step II is to identify treatment effect heterogeneity based on the
estimated ITE in Step I.GUIDE is used to identify treatment effect patterns because
of its reliable and robust performance in pattern recognition (Loh 2002).

Figure 7.1 shows the procedures of GUIDE, in which ITE is the outcome, Xk is
the k-th covariate, p is the total number of covariates. Xs is the covariate that has the
smallest p-value from fitting the univariate models ITE ~ XkI k = 1, . . . , p. ITEs(a),
ITEs(b), Xs(a) and Xs(b) are the outcomes and covariate Xs that were split by value
xs, respectively. SSE(a) and SSE(b) are the two SSEs obtained from two model
fittings of ITEs(a), ITEs(b), Xs(a) and Xs(b) (Loh 2002). Once GUIDE has identified
the subgroups, the mean ITE difference for each subgroup is calculated. According
to the algorithm, we can interpret the mean ITE difference as the difference between
the outcome if the patient received treatment and the outcome if the patient received
placebo, while adjusting for all the patient’s covariates. When the original outcome
variable Y is binary (0 or 1), the above algorithm is used to predict the probability
of Y = 1, which will be ITE. And thus the interpretation of ITE difference
would be in terms of the difference of two probabilities : probability of Y = 1 if the
patient received treatment and probability of Y = 1 if the patient received placebo.
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Fig. 7.1 A flow chart of the GUIDE pattern recognition algorithm in the setting of finding
heterogeneous patterns of ITE. ∗ The procedure starts from here

7.3 Simulations

7.3.1 Set-up

In order to evaluate the statistical properties of the VG method and to compare it to
other methods, we performed a simulation study.

The targeted subgroup is the one with the corresponding signature(s) decided
by the predictive variable interacting with the treatment variable. In other words,
the treatment effect observed in the targeted subgroup is larger than that observed
outside the targeted subgroup due to the interaction between the predictive variable
and the treatment variable.

Thus, we first defined the true subgroup in our simulation. The signature was
decided through predictive variable(s). To simplify, we considered cases where there
was only one predictive variable, Xpred, in our simulation. Moreover, we defined
one prognostic variable, Xprog, which had only main effect to the outcome but no
interaction with the treatment.
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We defined T as the treatment variable and Y as the outcome variable. In addition,
we created Zn,p, a matrix containing p variables that are independent with the
response and treatment variables.

In our simulation, we used the following models to generate the treatment vector
and a covariate matrix:

T (0 or 1) ∼ BIN (n, 0.5)

Xn,p+2 =
⎛

⎜
⎝

xpred,1 xprog,1
...

...

xpred,n xprog,n

Zn,p

⎞

⎟
⎠ MVN

(
0,
∑

p+2,p+2

)

if all Xn,p + 2 are continuous and

∑

p+2,p+2
=

⎛

⎜⎜
⎜
⎝

1 0.5 · · · 0.5
0.5 1 · · · 0.5
...

...
. . .

...

0.5 · · · 0.5 1

⎞

⎟⎟
⎟
⎠

For the case where we simulated binary X for Xpred, Xprog and/or Zn,p, we first
simulated

px ∼ Beta (2, 3)

and we used

X ∼ BIN (n, px.)

to generate the values for binary covariates. And for outcome variable Y, we used
the following models:

• when Y is continuous:

Y = βpred × I
(
Xpred > x0

)× T + βprog × Xprog + βtrt × T + e

e ∼ N (0, 0.25)

• when Y is binary:

μ = βpred × I
(
Xpred > x0

)× T + βprog × Xprog + βtrt × T
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py = exp (μ)

1 + exp (μ)

Y ∼ BIN
(
n, py

)

where x0 is the cut − off point, in our simulation, we defined x0 as the mean of Xpred
and e is the noise that follows a normal distribution with mean 0 and variance 0.25.
We’d like to simulate a dataset close to that from an observed clinical trial. Since
we utilize a clinical trial with approximately 15 covariates, and 400 subjects, the
resulting simulated datasets additionally contained 13 noise variables (p = 13), and
400 subjects (n = 400) within each of the iterations.

Therefore, the dataset contains all the components below:

Y =
⎛

⎜
⎝

y1
...

y400

⎞

⎟
⎠ T =

⎛

⎜
⎝

t1
...

t400

⎞

⎟
⎠ X =

⎛

⎜
⎝

xpred,1 xprog,1
...

...

xpred,400 xprog,400

Zn,p

⎞

⎟
⎠

To simulate different scenarios, we selected different values for βpred, βprog and
βtrt. The different scenarios that we have simulated are summarized in Table 7.1.

Through the three scenarios defined above, we used the following metrics to
compare VG, Gi and VT methods:

1. Type I error: probability of identifying a subgroup when there are no subgroups.
2. Power: probability of identifying a subgroup when there is a subgroup.
3. Conditional true discovery rate: conditional probability of correctly identifying

the predictive variable when a subgroup is identified.

For the purpose of fair comparison, we compared the power and true discovery
rate for the three methods under the same type I error rate. We have simulated 500
iterations for each of the scenarios.

7.3.2 Results

According to the simulation results (Fig. 7.2), all three methods behave similarly
and demonstrate above 90% power and almost 100% conditional true discovery rate

Table 7.1 Simulation scenarios

Scenarios βpred Xpred βprog Xprog βtrt Noise variables (p = 13)

No prognostic 0.5 Continuous 0 None 0.2 Continuous
No prognostic mix 0.2 Binary 0 None 0.2 Binary/continuousa

Prognostic 0.5 Continuous 0.5 Continuous 0.2 Continuous
aIncludes 1 binary variable and 12 continuous variables
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Fig. 7.2 Plot of power (Left) and conditional true discovery rate (Right) vs Type I error. (a) No
prognostic scenario. (b) No prognostic Mix scenario. (c) Prognostic scenario

under most of Type I error rates when the predictive variable was continuous and
there was no prognostic effect.

In the scenario where the predictive variable was binary with an effect size of
0.2 and one of the noise covariates was also binary, Gi demonstrated higher power
and conditional true discovery rate than the other two methods, especially when the
Type I error was controlled between 0 and 0.4.

When the prognostic effect was added to the simulation as a continuous variable,
Gi had lower power and similar or lower conditional true discovery rate compared
to the other two methods.
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Since the VG and VT methods are very similar with respect to the background
framework, these two methods behave very much alike. However, one can still
notice about 5%improvement with VG compared to VT in the simulation results
regarding the conditional true discovery rate, especially in the ‘Prognostic’ scenario.

7.4 Case Study

7.4.1 Type I Error Control

In this paper, we define Type I error as the probability of identifying a subgroup
when there are no subgroups. When conducting an analysis using real data, it can
be challenging to obtain Type I error control as if the analysis was conducted using
simulated data. Hence, we implemented the permutation method for the analysis
involving real data.

Specifically, we break the association between treatment and covariate as well as
between treatment and response; while keeping the association between covariate
and response. In other words, we eliminated the predictive effect while keeping
the prognostic effect. Other ways to control Type I error include the Šidák-based
multiplicity adjustment method (Hochberg and Tamhane 1987) as implemented in
SIDES (Lipkovich et al. 2011) and some more complicated permutation methods
described in Foster et al. (2016).

7.4.2 Bootstrap

In the analysis involving real data, one can easily obtain a naïve confidence interval
for the point estimate of the treatment effect. However, such a confidence interval
may not be valid because it does not take into consideration uncertainties from the
selection of the predictive variable and the split value of the predictive variable. In
the case study section of this paper, we implement a more complicated bootstrap
method that is proposed by Loh et al. (2015) to obtain confidence intervals for the
point estimate of the treatment effect.

The bootstrap sample was drawn (with replacement) from the original dataset
with the same size, and the VG method was applied. However, we ignored the
identified signature based on the bootstrap sample. Instead, we obtained newly
predicted ITE, which are different from ITE predicted during the first step of VG
method. The new ITE can be obtained directly from GUIDE. Then, by using the
identified signature of the subgroup from the original dataset, the bootstrap sample
can be separated into subgroups and the mean of new ITE for these subgroups can
be obtained. After these procedures have been repeated B times (B = 500 in our
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case), the distribution and the confidence interval of the mean of new ITE for the
identified subgroup can be obtained.

7.4.3 Application

We applied the VG method to a real world example from a clinical study evaluating
an experimental treatment for patients with Alzheimer’s disease. The endpoint was
the change from baseline to week 12 in ADAS-Cog 11 subscale score (0–70),
which measures the change in severity of the disease. Thus, at the end of week 12,
negative changes indicate improvement from baseline. There were two treatment
arms: experimental treatment and placebo. In this case, the ITE for patient i would
be calculated as

ITEi = yi
∣
∣P lacebo,Xi − y′

i

∣
∣ T reatment,Xi

so that the larger the ITE, the better the treatment effect compared to placebo.
We have included 17 covariates after consulting with medical professionals,

including but not limited to age, sex, race, baseline Mini-Mental State Examination
(MMSE, a disease staging measure, range 0–30), the change of ADAS-Cog 11
subscale score from screening to baseline, and Apolipoprotein E4 (APOE4).

Since there were total of three datasets in this project, and we needed to control
the Type I error while analyzing the data. Thus, we followed the steps below to
conduct the subgroup identification analysis on the first two datasets.

1. Use permutation method on the first dataset to find the Type I error control;
2. Analyze the first dataset while controlling the Type I error, identify the signa-

ture(s); and
3. Find the subgroup in the second dataset according to the signature(s) identified

in step 2, and evaluate the treatment effect in the subgroup to see if it differs from
the other subgroup.

Unfortunately, when the Type I error was controlled at the 0.05 level, no subgroup
was identified. Thus, we ignored Type I error control allowing for exploration of
results that can be found. As shown in Fig. 7.3, the covariate ‘Years Since Onset of
the Symptom’ (YearOnset) was found as the predictive variable with a cut-off value
at 3.55 years.

Fig. 7.3 Subgroup identified
from the first dataset
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Table 7.2 Estimated
treatment effects

Estimated treatment effect
Patient group First dataset Second dataset

Overall 0.91 0.07
YearOnset ≤3.55 1.24 0.00
YearOnset >3.55 0.24 0.15

Fig. 7.4 Subgroup identified from the third dataset

The cartoon in Fig. 7.3 can be interpreted as follows (GUIDE reference): group
‘1’ contains the overall patient population from this dataset. The patients who satisfy
the criteria ‘Years Since Onset of the Symptom ≤ 3.55 years’ are classified into
subgroup ‘2’ (go along with the left line to circle 2), otherwise, the patients are
classified into subgroup ‘3’ (go along with the right line to circle 3).

According to the result, subgroup ‘2’ had mean ITE = 1.24 with sample size 93,
which means, on average, a larger treatment effect was observed in this subgroup of
patients compared to the treatment effect observed in the rest of the patients (mean
ITE = 0.24, n = 45). However, since Type I error was not controlled, we attempted
to validate this result by observing the treatment effect in the subgroup of patients
who were selected according to the identified signature (‘Years Since Onset of the
Symptom ≤3.55 years) from the second dataset, and compared it with the treatment
effect observed from the first dataset.

As shown in Table 7.2, the observed treatment effect in the subgroups from the
first dataset cannot be replicated in the subgroups from the second dataset by using
the same signature. Therefore, the result obtained from the VG method was not valid
in this case given there was no Type I error control.

The third dataset in this project had a larger sample size than either of the first
two datasets. Also, the experimental drug (Treatment) utilized in this dataset was
different from the one utilized in the first two datasets. We applied the VG method
on this dataset while controlling the Type I error at 0.05, and one covariate was
identified as the predictive variable with a cut-off 20.

As shown in Fig. 7.4, subgroup ‘2’ was identified with a larger ITE compared
to subgroup ‘3’, although subgroup ‘3’ had larger sample size. The identified
covariate was MMSE, and the ITE appears to represent a clinically meaningful
difference (Perneczky et al. 2006). The cut-off value 20 is suggested to be used
as the separation of disease staging between moderate (≤20) and mild (>20). For
this dataset, we have also calculated the 95% confidence interval in order to obtain
an estimation of the validity of the results.
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Table 7.3 Estimated treatment effects and 95% CI

Subgroup Mean effect 95% CI

MMSE ≥20 (group ‘2’) 1.09 (−0.11, 2.29)
MMSE <20 (group ‘3’) 0.24 (−1.19, 1.67)
Difference between above two subgroups 0.85 (−0.79, 2.50)

As shown in Table 7.3, although the treatment effect was numerically different
from 0, the 95% confidence intervals for both subgroups contain 0. However, the
95% confidence interval in subgroup ‘2’ is suggestive of a positive trend, while that
in subgroup ‘3’ is not. Moreover, the 95% confidence interval for the difference
of the treatment effects between the two subgroups is also suggestive of a positive
effect favoring subgroup 2 over subgroup 3. Therefore, these results were felt to
be clinically meaningful. Additional exploration (i.e., studies) may be necessary to
demonstrate whether this is truly a clinically meaningful effect.

7.5 Discussion

Precision medicine attempts to improve the safety and/or efficacy of a drug by
tailoring the treatment according to the patient’s characteristics. Subgroup identi-
fication is a critical step to realize the potential of precision medicine. However,
current realizations of subgroup analysis in clinical trials are often limited within
pre-defined subgroups. The current state of conducting analyses according to pre-
defined subgroups while ignoring Type I error control may result in true predictive
variable(s) and/or true cut-off value(s) being missed. Some data-mining based
subgroup identification methods also exist. Most of these methods are used to
prospectively search for subgroups given a dataset. By using data mining techniques,
one can avoid pitfalls of common one variable at a time subgroup analyses.

In this paper, we have proposed a novel method of prospective subgroup
identification, the VG method, which combines the advantages of two existing
methods (i.e., Virtual Twins and GUIDE). However, the VG method is not a simple
combination of the two methods, it replace the CART part of the VT method by
GUIDE. In other words, the VG method first calculates the Individual Treatment
Effect (ITE) according to the counterfactual concept in causal inference; it then
applies GUIDE to identify the subgroup(s) based on the ITE. Results from our
simulation studies show that the VG method outperforms Virtual Twins when there
are binary and continuous covariates in the data and also outperforms GI when
prognostic effect is as strong as predictive effect. The key advantage of the VG
method compared to Gi is that it targets directly on the treatment effect and can
identify a predictive variable in the presence of a prognostic effect. Also, the VG
method has less potential for selection bias when compared to Virtual Twins given
the latter’s reliance on CART. However, in our simulation, we have assumed there is
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only one predictive variable with one cut-off value due to the limitation of the tools
we are using. In fact, there could be more than one predictive variable and there can
be more than one cut-off value for a predictive variable in a given dataset.

Through the case study, without Type I error control, the identified subgroup is
not valid and the results cannot be reproduced. When the Type I error is controlled,
although the identified subgroup is not statistically significant based on the 95%
confidence intervals calculated using the bootstrap method, it demonstrates a trend
related to the treatment effect that might be clinically meaningful. In other words,
with conservatively controlled Type I error, the results might not be statistically
significant, but might provide some clinically helpful information. In this case,
additional research (i.e., clinical trials) would be needed to confirm this result.

Our work has provided a clearly defined framework to compare three different
subgroup identification methods according to type I error control, power and the
conditional true discovery rate. It also provides two applications for controlling type
I error and estimating 95% confidence intervals in the analysis of a real dataset,
which are permutation and bootstrap methods, respectively. The performance of
VG method relies on datasets, case by case simulation is suggested to be tailored to
the study. Generalization the conclusion to other studies should be careful.

Our future work involves the improvement of the prediction accuracy when
calculating the ITE, which is a critical factor that impacts the performance of the
VG method. Moreover, we are trying to extend the VG method to both binary and
time-to-event endpoints.
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Chapter 8
Subgroup Identification for Tailored
Therapies: Methods and Consistent
Evaluation

Lei Shen, Hollins Showalter, Chakib Battioui, and Brian Denton

Abstract In contrast to the “one-size-fits-all” approach of traditional drug devel-
opment, the paradigm of tailored therapeutics seeks to identify subjects with an
enhanced treatment effect. In this chapter, we describe a statistical approach (TSDT)
to subgroup identification that utilizes ensemble trees and resampling. For each
potential subgroup identified, TSDT produces a multiplicity-adjusted strength of
the subgroup finding as well as a bias-adjusted estimate of the treatment effect
in the identified subgroup, both of which are important for decision-making in
the development of tailored therapeutics. We describe a careful examination of
simulation studies in a number of related publications, in order to determine the
ideal framework to compare subgroup identification methods. A simulation study is
performed to evaluate the performance of TSDT. The method has been implemented
in a publicly available R package.

8.1 Background

In randomized clinical trials, individuals are assigned randomly to a treatment group
and a control group. Efficacy and safety outcomes are measured and compared
between the two groups. The main interest of the study investigators is to evaluate
the treatment effect on the overall population. However, some subgroups of patients
may have greater response to treatment than the overall population. It is well known
that patients respond to drugs differently, with many factors affecting the response
to any given drug, such as genetic makeup, phenotypic, pharmacokinetic, social,
and disease severity, as well as demographic factors. Increasingly in pharmaceutical
drug development, it is not sufficient to merely show that the mean effect of a new
treatment is statistically significantly better than the control. Patients, physicians,
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and payers want and, in fact, are demanding, to know more about individual patient
outcomes (Ruberg et al. 2010), so that the right drug can be selected to properly fit
each patient. It has therefore become important to improve on the traditional “one
size fits all” paradigm of drug development (Wong et al. 2019), and there are now
examples of marketed compounds that make tailored therapeutics a reality, such as
trastuzumab/Herceptin and imatinib/Gleevec (Ruberg et al. 2010).

This challenge of identifying subgroups of patients with more desirable clinical
outcomes has also been a complex problem for statisticians. Traditional subgroup
analyses are based on interaction tests where differential treatment effects among
subgroups are analyzed by testing treatment-by-subgroup interactions in regression
models. Such analyses have many drawbacks, such as the inability to consider
more complex subgroups involving multiple markers. These limitations have led
to many recommendations and generated much caution on the interpretation of
results. Many researchers proposed that subgroup analysis should be (1) limited
to a few clinically important questions proposed in advance; (2) based on formal
tests of interaction; (3) adjusted for multiplicity; and (4) fully reported (including
all analyses performed) and not over-interpreted (Brookes et al. 2001; Wang et al.
2007; Rothwell 2005). However, inappropriate analyses continue to appear in the
literature, and there have been many examples of apparently important findings on
treatment effect heterogeneity that are subsequently shown to be false (Rothwell
2005).

Recently, a number of approaches to subgroup identification have been proposed
(Negassa et al. 2005; Su et al. 2008, 2009; Lipkovich et al. 2011; Foster et al. 2011;
Loh et al. 2015) that utilize more advanced statistical methodologies. Shen et al.
(2015) provides an overview of a number of subgroup identification methods.

Two techniques found in many of these approaches are recursive partitioning and
resampling. In the next section, we propose a rigorous and sophisticated approach
to apply these techniques in order to identify subgroups with enhanced treatment
effects with controlled type I error rate and improved power. The method produces
two consistency measures for each potential subgroup identified. We compare
simple ways to combine these measures into an overall summary of strength.
Using stratified permutations and out-of-bag samples, the approach also provides
a multiplicity-adjusted p-value and bias-corrected estimate of treatment effect.

In order for development of tailored therapeutics to be successful, it is imperative
to determine the best subgroup identification methods to be applied. Given the
increasing number of subgroup identification methods that have been, and are being,
developed, and the fact that no single method can be expected to be optimal across
all scenarios, it is valuable to have a consistent framework to evaluate and compare
the performance of various subgroup identification methods. In the third section, we
carefully review the simulations studies in a number of publications on subgroup
identification, and describe a framework for consistent evaluation.

In the fourth section, a simulation study is performed to evaluate the performance
of the proposed TSDT method, which has been implemented in a publicly available
R package. We then end the chapter with some concluding remarks.
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8.2 A Resampling-Based Ensemble Tree Method to Identify
Patient Subgroups with Enhanced Treatment Effect

In this section, we propose a subgroup identification method, which we named
TSDT (Treatment-Specific Subgroup Detection Tool). It uses recursive partitioning,
which has been shown to be extremely useful in modern data mining problems
thanks to many attractive features, including minimal assumptions on distributions
and models (Breiman and Stone 1984). Furthermore, the fact that it directly
leads to patient subgroups—as opposed to regression models from some other
types of analyses—closely matches the needs for drug development. For tailored
therapeutics, a subgroup definition is required to enable the design of a subsequent
trial, labeling of the drug by regulatory agencies, and medical decision making by
prescribers.

A single analysis of recursive partitioning on a given dataset may not be very
stable, as small changes in the dataset can lead to quite different results. Significant
improvements can be made in this regard by using an ensemble approach enabled
by resampling techniques such as bootstrap, cross-validation, and subsampling
(Breiman 1996; Breiman 2001; Friedman 2001). Although these are similar,
subsampling (that is, sampling without replacement) is preferable since it provides
the most flexibility in terms of the number and dimensions of the resampled
datasets. The same recursive partitioning analysis is performed for each resampled
dataset, and we further enrich the ensemble of candidate subgroups by harvesting
multiple subgroups from a given tree and consider multiple competing trees for each
subsample dataset. By aggregating similar subgroups identified in this ensemble
approach, we can easily summarize the frequency by which a given subgroup is
identified among resampled datasets, which provides a highly robust measure that
we will refer to as “internal consistency”.

An additional benefit of subsampling that we also take advantage of is the out-
of-bag sample, consisting of observations not included in a given resampled dataset.
Since these data are entirely distinct from the corresponding resampled dataset,
they can be used to assess, in an unbiased manner, any subgroup findings from the
subsample dataset. Similar to the internal consistency, the results of this assessment
can be averaged across subsampled datasets pairs (of in-bag and out-of-bag samples)
to yield an “external consistency”. While more complex choices can be made, we
have found it both simple and useful to assess a subgroup finding from an in-bag
sample by determining whether it is directionally consistent in the corresponding
out-of-bag sample, and calculating the percentage of consistent out-of-bag samples
among all the times this potential subgroup was selected in in-bag samples.

Once we have obtained both the internal and external consistency measures,
which contain distinct and complementary information, it is natural to ask how we
can best combine the two in order to measure the strength of an identified subgroup.
For the remainder of this paper, we will use Mi (“i” for “internal”) and Me (“e” for
“external”) to denote these two measures for a given subgroup finding. Specifically:
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Mi = the frequency by which the subgroup is identified among resampled
datasets.

Me = the percentage of consistent out-of-bag samples among all the times this
potential subgroup was selected in in-bag samples.

Perhaps the most intuitive and obvious choices for combining the two are:
min(Mi, Me) and Mi × Me. The rationale for the first is to require a subgroup to
have a minimum level of both internal and external consistencies. It should be more
beneficial than using Mi or Me alone, provided that they manifest on comparable
scales, so that one is not always greater than the other. The second combination is
the product of the two measures, which would always utilize information contained
in both measures. There are, of course many other reasonable ways to combine the
two measures—for example, we can weigh the two unequally—but it will be more
complex to investigate those, which is an interesting area of future research.

As an initial investigation of the performance of different measures, we per-
formed a simulation study using virtual datasets with 240 subjects and 20 markers,
including one marker that defines a subgroup with enhanced treatment effect.
Recursive partitioning with subsampling, as described above, yielded a number
of potential subgroups for each dataset, all with various Mi and Me values. Four
overall consistency summaries for these subgroups were considered: (1) Mi alone
(2) Me alone (3) min(Mi, Me), and (4) Mi × Me. For each summary, the type I error
rate and power were estimated for each possible “critical value” of the summary
by calculating the respective numbers of correct and incorrect subgroups whose
summary exceeded the critical value. The power curves (power vs. type I error rate)
for the four summaries (Fig. 8.7) demonstrate the superiority of the last summary,
Mi × Me, in this setting.

When it is desirable to produce a multiplicity-adjusted p-value for the strongest
subgroup identified, our method utilizes permutation testing that is stratified by
treatment groups. That is, a permuted dataset is obtained by shuffling the observed
responses within each treatment arm. While all permutation methods require (often
implicitly) assumptions to be valid, this specific permutation scheme preserves the
overall treatment effect and is an ideal match to the tree construction method (that
is, trees are constructed first from one of the two treatment arms), hence is expected
to be quite robust. As is standard, after performing a large number of simulations,
the summary of the best subgroup identified from each permuted dataset provides a
reference distribution, with which the summary of the top subgroup from the actual
data is compared to yield a multiplicity-adjusted p-value.

Besides the external consistency measure described above, an additional benefit
provided by the out-of-bag samples is an unbiased estimate of the differential
treatment effect associated with the subgroup. It is well known that the “naïve”
estimate of the size of an effect from the same data that led to the identification of
this effect is upwardly biased, sometimes severely so. In the data mining literature,
the best option to replicate a finding, including the size of the effect, is to utilize an
independent dataset. Put in the drug development context, this means either a new
clinical study, or having sufficient amount of data from the current clinical study so
that part of that data is set aside as “testing data” to be used, not in the identification
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of subgroups, but only in validation of an identified subgroup. However, given the
fact that a clinical study is typically powered to detect a main treatment effect,
coupled with the lower power of detecting a treatment-by-subgroup interaction, in
practice, not surprisingly, it is rare to have the luxury of a sufficiently large study
to enable the setting aside of a testing dataset. In such situations, the out-of-bag
samples made possible by bootstrap or subsampling provide the next best solution
to obtaining an unbiased estimate of the differential treatment effect.

The proposed method can therefore be described by the following algorithm:

1. Sample the original data B times (done separately for each treatment arm),
each time creating a pair of mutually exclusive datasets (in-bag and out-of-bag
samples) with size as specified percentages (such as 50–50% or 70–30%) of the
original dataset.

2. Harvest potential subgroups of enhanced treatment effect for each in-bag dataset
by first building a tree with a specified maximum depth using a specified
treatment arm, and then combining with the other treatment arm and applying
specified selection criteria (for example the observed treatment effect in the
subgroup needs to be enhanced beyond a certain threshold as compared to the
observed overall treatment effect). The number of potential subgroups identified
from each resampled dataset also depends on the specified number of competing
markers (i.e. other top candidate markers) to be considered; for example if
one competing marker is considered, then after the strongest subgroup is
identified the analysis is re-run without the corresponding marker. The purpose of
considering competing markers is to avoid “masking” of markers and subgroups.

3. Each identified subgroup is assessed for consistency and differential treatment
effect in the corresponding out-of-bag sample.

4. Combining results across subsampled dataset pairs, the internal and external
consistency measures are calculated for each identified subgroup. The two can
be combined (we use the product Mi × Me) to produce an overall summary.

5. Using permutation stratified by treatment arms, a large number of permuted
datasets are obtained, each analyzed as described above. This provides a
reference distribution of the summary measure, against which the observed result
from the actual dataset is compared to yield a multiplicity-adjusted p-value.

The architecture of the method lends itself naturally to parallel computing that
can dramatically improve the speed if a large number of computing nodes are
utilized.

8.3 Consistent Assessment of Biomarker and Subgroup
Identification Methods

Before the simulation study in the next section, we here execute a careful exam-
ination of simulation studies performed in a number of publications on subgroup
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Fig. 8.1 Framework for evaluating subgroup identification methods

identification methods. These methods should ideally be examined within a com-
mon simulation framework that includes consistently generated virtual trial data and
consistent measurement of performance using the same set of metrics (Fig. 8.1).

On a broad level, this approach enables comprehensive comparison of competing
subgroup identification methods. The situations under which each performs well or
poorly are more accurately identified, potentially leading to further improvements
and/or synergies derived by combining ideas across multiple methods. Within the
context of a single clinical trial or development program, this approach allows
researchers to optimize the application of specific subgroup identification methods
by calibrating various tuning parameters. After assessment via simulation, subgroup
identification methods may be applied to real trial data with increased assurance and
reliability.

8.3.1 Data Generation

All trial simulations require virtual trial data. To generate virtual data, assumptions
are made in an attempt to emulate real data. These assumptions may be based upon
results observed in past trials, knowledge of the disease state, and/or specifics of
the therapy under examination. Because the “truth” underlying the virtual data is
known, the methodology, assay, or tool applied during simulation may be assessed
for its ability to provide accurate and useful inference. Because there is likely
uncertainty associated with the assumptions, it is common to explore multiple
scenarios of “truth” in order to examine trade-offs and consequences should the
real trial data not reflect the most strongly held set of beliefs. This gives researchers
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confidence that the methodology, assay, or tool in question can provide reasonable
results under a broad range of outcomes. These considerations make it challenging,
if not impossible, to directly use real trial data for simulations, primarily because
we do not know the true data-generating mechanism behind a real dataset.

In the case of subgroup identification methodology assessment, virtual trial data
must incorporate embedded markers and subgroups. Key attributes of the virtual
trial data include:

• Sample size
• Treatment assignment
• Number of predictors
• Response type (e.g., continuous, dichotomous, time-to-event)
• Predictor type (e.g., prognostic, predictive) and correlation
• Subgroup size
• Size of effects: placebo response, overall treatment effect, prognostic effect(s),

predictive effect(s)
• Missing data, etc.

These attributes are then tied together via a data generation model. Ideally, code
used to produce the virtual trial data should be flexible enough to accommodate
any/all attributes and models. Furthermore, it is best practice to format the data
consistently, and to ensure that all individual virtual datasets are reproducible (via
documentation of settings, including seeds used for random number generation).
Depending upon the number of simulation scenarios, the size of datasets gener-
ated, the computational intensity of the subgroup identification method(s) under
investigation, and the scope of the intended performance measurement, utilization
of a nested dataset structure (i.e. crossing the attributes in a factorial fashion)
might be considered. Not only does this allow for a more economical use of
resources, it removes a source(s) of variability, enabling cleaner comparisons. In
order to facilitate subsequent performance measurement, it is paramount to clearly
identify the attributes and models used to generate the virtual trial data. Moreover,
capturing the underlying “truth” in a structured way makes automated performance
measurement possible.

Figure 8.2 contains the attributes and models utilized for virtual trial data
generation in a selection of papers describing various subgroup identification
methods:

Methods:

1. SIDES (Lipkovich et al. 2011)
2. SIDES (Lipkovich and Dmitrienko 2014)
3. VT (Foster et al. 2011)
4. GUIDE (Loh et al. 2015)
5. QUINT (Dusseldorp and Van Mechelen 2014)
6. IT (Su et al. 2008)

It should be noted that not all attributes were clearly identified in the papers;
some had to be inferred from context or calculated.
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Fig. 8.2 A survey of simulation studies

Fig. 8.3 Three levels of
performance measures

8.3.2 Performance Measurement

Performance measurement is the process of quantifying how well (or poorly) a
methodology, assay, or tool recaptures the “truth” underlying generated virtual data.
In the case of subgroup identification, researchers are eager to understand how
accurately a method identifies: markers, information about subgroups (such as size
and expected effect), and subgroup membership (i.e., the subjects that comprise
subgroups). These measures can be thought of as representing the three types of
problems dealt with in the field of Statistics: testing, estimation, and prediction,
respectively (Fig. 8.3).

Along with the “truth” underlying the virtual data, most performance measure-
ment metrics can be calculated given the following input:

• A list of the predictive biomarkers identified
• The proposed subgroup membership (i.e., an indication of whether each subject

in the virtual data is in the proposed subgroup or not)
• The estimated treatment effect in the proposed subgroup
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Fig. 8.4 A survey of performance measures in simulation studies

(Note that the input may reflect a “null scenario”. This is a special case whereby
the virtual data does not contain any markers/subgroups.)

Within the simulation framework, the subgroup identification method under
investigation must produce this collection of input for each of the virtual datasets to
which it is applied. Overall performance is then summarized by averaging metrics
across all simulations.

Although there are many different metrics that may be utilized in measuring
subgroup identification performance, in general each can be placed into one of
the aforementioned buckets. Figure 8.4 describes how the metrics utilized by the
selection of papers referenced in the Data Generation section may be classified.

Although each group of metrics attempts to answer a similar question, the
lack of consistency makes it difficult to compare subgroup identification methods.
Therefore, the following metrics are recommended:

Marker Level Sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) given the true markers versus those identified (Fig. 8.5).

Subgroup Level Size of the true subgroup versus size of the proposed subgroup;
true treatment effect in the true subgroup versus true treatment effect in the proposed
subgroup (using the potential outcomes framework) versus estimated treatment
effect in the proposed subgroup. Note that, given operational input, these metrics
may be translated into implications on sample size, time, and cost of future trials.

Subject Level Sensitivity, specificity, PPV, and NPV given the true subgroup
membership versus the proposed subgroup membership (Fig. 8.6).

An advantage of the recommended metrics—particularly those at the marker
and subject levels – is that they are used in many areas of scientific research. This
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Fig. 8.5 Marker level
performance measures

Fig. 8.6 Subject level performance measures

creates efficiencies by (a) harnessing well-accepted concepts and terminology, and
(b) allowing subgroup identification developers to spend less time defining and
explaining niche (perhaps even project-specific) metrics.

Markers/subgroups can be very difficult to find. As a result, the subgroup
identification method under investigation may propose many null scenarios when
applied to the virtual trial datasets. This can make it even harder to compare
multiple methods, since the performance measures will be washed out by the
null submissions. To combat this problem, the aforementioned metrics may be
conditionally produced with null submissions removed. This informs researchers
of how accurate a method is when it does manage to find markers/subgroups.

No single metric can comprehensively describe the accuracy or usefulness of a
subgroup identification method. Therefore, the entire collection of metrics must be
considered. However, the relative importance associated with each category of per-
formance measure is dependent upon the objective of the researcher. Marker level
measures are useful for determining in which marker(s) to further invest. Subgroup
level measures can provide information about tailoring subsequent trials/designs.
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Subject level measures help to assess impact in clinical practice. Measurement
of performance with a consistent set of metrics not only enables comparison of
subgroup identification methods, it clarifies the purpose for which methods are
optimally employed.

8.4 Simulation Study

A simulation study was performed to assess the proposed method. Each generated
dataset consists of a number (represented by p) of 3-level genetic markers (taking
values 0, 1, and 2, representing the number of miner alleles a subject is carrying
for a given SNP), a continuous outcome Y, and a binary treatment variable T
(representing “Treated” and “Placebo” groups). The outcome Y was generated
from a linear model, where the mean placebo response is −0.1, and the standard
deviation conditional on all markers is 1.13. The number of markers (p) can be
5, 20, or 50 and the sample size (n) is either 240 or 480. In terms of marker
effects, datasets were generated under both the “null” scenario (that is, no true
predictive markers) for evaluation of type 1 error rate, and “alternative” scenarios
with one or two true predictive biomarkers for assessment of statistical power.
When true predictive biomarkers are present, the mean treatment effect in the
weakest-responding subgroup is −0.1, and each predictive marker is associated
with a differential treatment effect of −0.45 (applied additively). Therefore, when
a single true predictive marker is present, the datasets contain subgroups with
treatment effects of −0.1 and − 0.55. When two true predictive markers are present,
the datasets contain subgroups with treatment effects of −0.1, −0.55, and −1. A
subgroup is considered to be identified if the multiplicity-adjusted p-value is less
than 0.1.

The 12 simulation scenarios are summarized in Table 8.1. Results of the
simulations are presented in Tables 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, and 8.8 and Figs.
8.7, 8.8, and 8.9.

Table 8.2 compares the performance under the null scenario when the number of
markers ranges from 5 to 50 (scenarios A, B, C), and the results show that type I
errors are controlled at close to the nominal level.

Results for scenarios D, E, and F are presented in Table 8.3 and Fig. 8.7.
Here datasets were generated with 1 true predictive marker, and the number of
markers again ranges from 5 to 20 to 50. Figure 8.7 demonstrates that the simple
combined consistency measure, Mi × Me, had the best performance among the four
considered. The overall statistical power is low, in that no subgroup was identified
for 55–74% of datasets across the scenarios. However, when looking at the instances
when at least one subgroup is identified (i.e., conditionally), the performance of the
method is good, especially when the number of markers is small. In other words,
when a subgroup is identified it tends to be a correct subgroup. Table 8.4 provides
additional performance summaries for these three scenarios at the subgroup level.
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Table 8.2 Estimated type I
error rate for identifying
predictive markers (n = 240)

Scenario Markers Type I error rate

A 5 0.10
B 20 0.11
C 50 0.12

Table 8.3 Summaries of estimated power for identifying predictive markers (n = 240, 1 true
marker)

Scenario Markers
No subgroup
identified

(Cond.)
sensitivity (Cond.) specificity (Cond.) PPV (Cond.) NPV

D 5 0.550 0.955 0.988 0.955 0.988
E 20 0.620 0.769 0.986 0.763 0.988
F 50 0.740 0.538 0.989 0.519 0.990

Table 8.4 Summaries of identified subgroups (n = 240, 1 true marker)

Scenario Markers
No subgroup
identified

(Cond.) proportion of
subjects in subgroup

(Cond.) average
treatment effect

D 5 0.550 0.500 −0.540
E 20 0.620 0.521 −0.495
F 50 0.740 0.535 −0.452

Table 8.5 Summaries of estimated power for identifying predictive markers (n = 240)

Scenario Markers
True
markers

No subgroup
identified

(Cond.)
sensitivity

(Cond.)
specificity

(Cond.)
PPV

(Cond.)
NPV

E 20 1 0.620 0.769 0.986 0.763 0.988
G 20 2 0.520 0.395 0.988 0.791 0.936
F 50 1 0.740 0.538 0.989 0.519 0.990
H 50 2 0.600 0.462 0.996 0.850 0.978

Table 8.6 Summaries of identified subgroups (n = 240)

Scenario Markers True markers
No subgroup
identified

(Cond.) proportion of
subjects in subgroup

(Cond.) average
treatment effect

E 20 1 0.620 0.521 −0.495
G 20 2 0.520 0.528 −0.737
F 50 1 0.740 0.535 −0.452
H 50 2 0.600 0.518 −0.752

To assess the performance under different combinations of p and number of
predictive markers, in Table 8.5 we summarized results when the total number
of markers is 20 or 50, and the number of true predictive markers is 1 or 2.
Comparing scenarios E and G, we can see that the conditional power of identifying
both predictive markers is about half of that of identifying the lone predictive
marker, when there are 20 markers overall. The drop is smaller when there
are 50 markers overall (Fig. 8.8). Table 8.6 provides additional subgroup-level
performance summaries.
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Table 8.7 Summaries of estimated power for identifying predictive markers

Scenario Markers
True
markers

Sample
size

No subgroup
identified

(Cond.)
sensitivity

(Cond.)
specificity

(Cond.)
PPV

(Cond.)
NPV

E 20 1 240 0.620 0.769 0.986 0.763 0.988
I 20 1 480 0.370 0.968 0.994 0.936 0.998
F 50 1 240 0.740 0.538 0.989 0.519 0.990
J 50 1 480 0.490 0.941 0.997 0.921 0.998
G 20 2 240 0.520 0.395 0.988 0.791 0.936
K 20 2 480 0.150 0.688 0.996 0.958 0.967
H 50 2 240 0.600 0.462 0.996 0.850 0.978
L 50 2 480 0.240 0.638 0.998 0.956 0.985

Table 8.8 Summaries of identified subgroups

Scenario Markers
True
markers

Sample
size

No subgroup
identified

(Cond.) proportion of
subjects in subgroup

(Cond.) average
treatment effect

E 20 1 240 0.620 0.521 −0.495
I 20 1 480 0.370 0.522 −0.539
F 50 1 240 0.740 0.535 −0.452
J 50 1 480 0.490 0.510 −0.536
G 20 2 240 0.520 0.528 −0.737
K 20 2 480 0.150 0.508 −0.772
H 50 2 240 0.600 0.518 −0.752
L 50 2 480 0.240 0.516 −0.779

The impact of sample size is illustrated in Tables 8.7 and 8.8 and Fig. 8.9, where
for each p (20 or 50) and true predictive markers (1 or 2), sample sizes of 240 and
480 are compared. Large gain of statistical power is seen across the board.

8.5 Concluding Remarks

We have described a resampling-based ensemble tree approach to identify sub-
groups of patients with enhanced treatment effect in clinical trials. It has a number
of advantages:

• The recursive partitioning approach determines subgroups, a good match with
drug development and medical and regulatory decision making;

• By using an ensemble approach, the results are robust to outliers, which reduces
spurious findings to which some other methods are prone;

• Criteria such as minimum subgroup size can be applied to eliminate subgroups
that do not meet the need of a specific project, thus reducing the scope of
the overall “search space” and lessening the severity of multiplicity, leading to
increased statistical power;
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• By allowing a specified number of competing markers in the “harvesting” of
trees, the issue of collinearity is easily handled, so that a potentially useful marker
is not masked by others;
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• The out-of-bag samples conveniently supplied by bootstrap or subsampling
provide key information such as directional consistency and bias-corrected
estimate of effect;

• By intelligently utilizing both the internal and external consistency measures, the
power is improved for a given level of type I error rate control.

Furthermore, although we have primarily dealt with the more challenging
problem of identifying super-responder subgroups that is common in tailored
therapeutics, the same approach can be used to identify prognostic factors from
a single-arm clinical trial.

There are a number of interesting areas for further research, such as optimization
of how the internal and external consistency measures can be combined. It would
also be informative to evaluate the performance of the method in additional
scenarios.

Resources
The subgroup identification method described in this chapter has been implemented
in a publicly available R package, TSDT. The main function call is given below. The
package and full documentation can be found at https://cran.r-project.org/package=
TSDT

TSDT(response = NULL, response_type = NULL, survival_model
= “kaplan-meier”, percentile = 0.5, tree_builder = “rpart”,
tree_builder_parameters = list(), covariates, trt = NULL,
trt_control = 0, permute_method = NULL, permute_arm = NULL,
n_samples = 1, desirable_response = NULL, sampling_method
= “bootstrap”, inbag_proportion = 0.5, scoring_function = NULL,

https://cran.r-project.org/package=TSDT
https://cran.r-project.org/package=TSDT
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scoring_function_parameters = list(), inbag_score_margin = 0,
oob_score_margin = 0, eps = 1e-05, min_subgroup_n_control = NULL,
min_subgroup_n_trt = NULL, min_subgroup_n_oob_control = NULL,
min_subgroup_n_oob_trt = NULL, maxdepth = .Machine$integer.max,
rootcompete = 0, strength_cutpoints = c(0.1, 0.2, 0.3),
n_permutations = 0, n_cpu = 1, trace = FALSE)

Because of the need to perform nested resampling (for example, permutation
and subsampling), this approach can be computationally intensive. However, the
architecture of the approach lends itself naturally to parallel computing, which can
be leveraged to dramatically improve the computing speed.
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Chapter 9
A New Paradigm for Subset Analysis
in Randomized Clinical Trials

Richard Simon and Noah Simon

Abstract There are numerous methods for identifying subsets of patients in a
randomized clinical trial who appear to benefit from the test treatment to a greater
or lesser extent than average. Generally such claims are based multiple hypothesis
testing and re-substitution estimates of treatment effect that are known to be
highly optimistically biased. In this chapter we describe a new paradigm for subset
analysis. Rather than being based on multiple hypothesis testing, it is based on
training a single predictive classifier and provides an almost unbiased estimate of
treatment effect for the selected subset.

Keywords Predictive classifier · Re-sampling · Pre-validation · Personalized
treatment · Bootstrap sampling · Cross-validation · Subset analysis

9.1 Introduction

The main objective of most randomized clinical trials is to determine whether the
test treatment is beneficial on average for the population of all eligible patients
with regard to the primary endpoint. For biologically heterogeneous diseases like
most forms of cancer, it has become increasingly apparent that for most treatments
the treatment effect is not uniform across the eligible population. Consequently
the average treatment effect is an imperfect guide for basing treatment strategies
and there is often interest in identifying subsets of patients who have treatment
effects greater than or less than the average. Statisticians often dismiss this objective
as “exploratory” because they are not familiar with reliable methods which can
perform discovery and inference on the same dataset. This problem of reliably
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characterizing treatment effect heterogeneity is not a hypothesis testing problem
although it is often treated as if it were.

There is no lack of subset identification methods. Because of the high false
positive rate for tests of treatment effect in subsets selected from the data, such
analyses usually elicit skepticism and are viewed as hypothesis generation to be
tested on independent data. Often however such independent data is not available.
In this chapter we shall describe a new paradigm for subset analysis based on
developing a “predictive classifier” (Freidlin and Simon 2005). We shall also
describe how this predictive classifier can be internally validated using measures
of performance appropriate for classifiers.

9.2 Methods

9.2.1 Predictive Classifiers

Let D denote the data from a randomized clinical trial comparing a test treatment
to a control regimen. The data consists of covariate vectors (X) for the patients,
treatment indicators (z) and outcomes (y). If our clinical trial is “negative” with
regard to average treatment effect for all eligible patients, then our objective may be
to identify and validate a subset of patients who benefit from the test treatment. If
our clinical trial is “positive” overall, the objective may be to identify an “intended
excluding patients” who do not seem to benefit from the test treatment. More
generally, we may want to stratify the population with regard to the likelihood that
they benefit from the test treatment.

A predictive classifier is not like the usual prognostic classifier relating baseline
covariates to prognosis. When there are two treatments, a predictive classifier is
a function which indicates whether the patient is likely to benefit from the test
treatment or not. Here we will discuss tri-level classifiers with C(X) = 2 indicating
that a patient with covariate vector X is very likely to benefit from the test treatment,
C(X) = 1 meaning that the patient is moderately likely to benefit and C(X) = 0
meaning that the patient is unlikely to benefit or may have better outcome on the
control treatment.

We may denote the classifier as C (X;A,D) meaning it is a function of the
covariate vector X and that it was developed by applying a predictive classifier
development algorithm A to the dataset D. Specifying A means that the user is
required to specify in advance the types of analyses that will be performed to
develop a fully specified classifier. This is essential for using re-sampling methods
for evaluating classifiers because the same classifier development algorithm must be
applied to several re-sampled training sets.

A predictive classifier is not a “risk classifier”. Instead it classifies patients with
regard to their likelihood of benefit from the test treatment relative to the control
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regimen. Predictive classifiers have been called “regimes” by some investigators
(Bai et al. 2017).

There are many types of predictive classifiers. For example one could develop
separate prognostic models for the test treatment T and for the standard treatment
S. Denoting these models as f(X;T) and f(X;S), they provide expected outcome
or a function of expected outcome for a patient with covariate vector X. These
models might be based on penalized logistic regression, random forest, support
vector machines, etc. Our predictive classifier C might be defined based on these
models as

C (X;A,D) = 2 if f (X; T) –f (X; S) > k2

C (X;A,D) = 1 if k2 > f (X; T) –f (X; S) > k1

C (X;A,D) = 0 otherwise.
(9.1)

The set of covariate vectors

S2 = {X : C (X;A,D) = 2}

might be taken as the intended use population for the new treatment. S1 and S0.
can be analogously defined. The characterization of the covariate vectors in these
subsets can be used for product labeling if T is a new treatment. Otherwise the
subsets can be used for patient management; i.e. patients with covariate vectors
in S2 would generally receive the test treatment and those with covariate vectors
in S0 generally would receive the control. For patients with covariate vectors in
S1, treatment selection would be influenced by secondary endpoints and patient
preference. The constants k1 and k2 can be specified based on clinical significance,
cost or adverse effects of the test treatment. For example, with survival outcome k2
might be defined as the natural logarithm of 0.90 taking a 10% decrease in hazard
as minimally clinically significance. Defining k1 as zero would identify S2 as the
class in which expected outcome on the control is better than on the test treatment.

With survival modeling, one might fit a proportional hazards model

log
h (t;X, z)

h0(t)
= αz + zβ ′X + (1 − z) γ ′X

where z is a (0,1) treatment indicator. The treatment effect on the log hazard ratio
scale is the value of the log hazard ratio for z = 1 minus the value for z = 0;
that is α + (β − γ )

′
X.The three class classifier described above is C = 2 if

α + (β − γ )
′
X ≤ k2 and the other classes defined similarly (sign reversed because

lower hazard is better). C = 1 if k1 ≤ α + (β − γ )
′
X < k2 and C = 0 otherwise. In

classifying cases we use the maximum likelihood estimates of the parameters. The
sets S0 S1 and S2 thus are a partition of the cases. If there are a large number of
candidate covariates, then penalized regression methods can be utilized in training
the classifier.
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Our objective here is not to provide advice about what types of predictive
classifiers are best nor to develop a new type of predictive classifier, but to show
how to internally validate a predictive classifier once it has been defined.

9.2.2 De-biasing the Re-substitution Estimates

The usual approach to subset analysis involves some type of analysis of the full
dataset D to identify a subset S2 for which the treatment effect seems large. The
empirical estimate of treatment effect for S2 in these circumstances is called a “re-
substitution estimate”. S2 was used as part of D for subset identification and then as
the basis for computing treatment effect and this often results in a large bias in the
estimate of treatment effect.

Although the re-substitution estimates of treatment effect based on the sets S2,
S1, and S0 are biased estimates, they can be de-biased in the following manner as
suggested by Zhang et al. (2017).

Let Db denote a non-parametric bootstrap sample of cases and let Cb =
C (X;A,Db) denote the predictive classifier developed on Db using the classifier
development algorithm A. Define

Δ(Cb,Db)

to be the empirical average treatment effect for patients in Db for whom Cb = 2.
Since Db was the data on which classifier Cb was trained, this is a re-substitution
estimate of treatment effect.

We can also use the classifier Cb to classify the withheld cases Db = D−Db i.e.
those not used to develop the classifier. That classification determines Δ

(
Cb,Db

)

the empirical estimate of treatment effect for the subset of the hold-out subset for
which Cb = 2. Since the hold-out set was not included with the bootstrap data used
to train Cb, Δ

(
Cb,Db

)
is an unbiased estimate of the treatment effect to be expected

in the future for cases with Cb = 2. Also, the differences

ηb = Δ(Cb,Db) − Δ
(
Cb,Db

)

are estimates of the re-substitution bias in estimating treatment effect in S2 using
our algorithm A for classifier development. These estimates can be averaged over
bootstrap samples and then used to debias the re-substitution estimates. We have
described it here for S2 but it can be done similarly for S1 and S0.
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9.2.3 Pre-validated Estimates of Treatment Effect

An alternative approach for estimating the treatment effects is to classify each
patient i using a classifier trained on a dataset not including case i. This approach
was first developed for use in the Cross-Validated Adaptive Signature Design
(Freidlin et al. 2010). Suppose we perform a leave-one-out cross validation. When
case i is omitted we train a classifier and use it to classify the omitted case i.
Let C

(
Xi;A,D(−i)

)
denote the classification of this omitted observation. This is

called “pre-validated” classifications because each observation i is classified using
a classifier trained on a dataset not containing case i.

After all the folds of the cross-validation are completed, we have pre-validated
classifications for all the cases. We can thus collect together the cases classified
C
(
Xi;A,D(−i)

) = 2. These cases define S2 and we can compute the empirical
treatment effect within this subset. Pre-validated subsets S1 and S0 can be analyzed
analogously.

We simulated clinical trials to illustrate the bias of the re-substitution estimate of
treatment effect on the S2 subset and the effectiveness of defining S2 based on pre-
validated classifications. The simulations involved 300 patients with exponentially
distributed survival and 40 binary covariates each with equal prevalence. The
intended use subset S2 was determined by fitting a full proportional hazards model
(2). For each patient the predictive index was computed for the patient receiving the
test treatment and for receiving the control. If the difference was less than −0.2 then
the patient was classified in S2. Table 9.1 shows the results of 10 simulated clinical
trials with no treatment effect. For the first three columns the classifier was trained
on the full dataset and then applied to the same full data to obtain S2. Consequently it
provides biased re-substitution estimates. Column 2 shows the hazard ratio estimates
of treatment effect in these S2 subsets and column 3 shows the computed log-rank
test statistics of treatment effect which should have a chi-square distribution on one
degree of freedom for the usual setting of no treatment effect and an independent
test set. It is seen that the hazard ratios are not close to 1.0 as they should be and the
log-rank distribution looks shifted to larger values.

Columns 4 and 5 of Table 9.1 show results of cross-validation for the same ten
simulated clinical trials. The classifiers were fit to the training sets of each fold of
a tenfold cross validation. Those ten classifiers were used to classify the patients in
the ten respective hold-out sets. That is, for purposes of cross-validated evaluation,
the classifier used to classify a case was trained on a subset of the full dataset
with that target case omitted. These cross-validation based classifiers are not used
for classifying future patients, but they provide a way of evaluating the classifier
developed on the full dataset that avoids the bias of the re-substitution estimator. The
patients classified in S2 in this way were taken as constituting the pre-validated S2
set. The empirical treatment effect was computed on these pre-validated sets and the
hazard ratios and log-rank statistics are shown. The hazard ratios are all expressed
as less than 1. The estimated hazard ratios are closer to 1.0 and the log-rank statistics
are smaller.
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Table 9.1 Simulation of 10
null clinical trials

Re-substitution Cross-validated
Trial HR LR-chisq HR LR-chisq

1 0.59 4.5 0.82 1.0
2 0.60 4.0 0.73 2.7
3 0.64 1.7 0.83 0.67
4 0.62 2.4 0.94 0.07
5 0.68 2.0 0.84 0.66
6 0.72 1.3 0.83 0.67
7 0.49 9.8 0.77 2.0
8 0.48 12.2 0.69 4.9
9 0.54 6.7 0.69 3.7
10 0.56 6.7 0.77 2.1

Estimated HR and log-rank chi-squared in
adaptively determined intended use subset

Table 9.2 Simulation of 10
clinical trials with treatment
effect for subset with marker
1 equal to 1

Re-substitution Cross-validated
Trial HR LR-chisq HR LR-chisq

1 0.49 11.8 0.62 7.2
2 0.28 46.9 0.38 34.0
3 0.54 4.8 0.72 2.0
4 0.55 7.3 0.60 8.2
5 0.41 20.3 0.62 7.8
6 0.43 21.2 0.61 9.4
7 0.54 7.6 0.79 1.5
8 0.38 24.0 0.56 11.0
9 0.38 20.9 0.53 12.8
10 0.63 4.7 0.72 3.1

True HR = 0.6 in subset
Estimated HR and log-rank chi-squared in
adaptively determined intended use subset

Table 9.2 shows analogous results for 10 clinical trials simulated with a treatment
effect of hazard ratio 0.6 for the half of patients with covariate 1 equal to 1. The
same type of proportional hazards predictive classifier was fit as before. The cross-
validated chi-square values for treatment effect within the adaptively determined
intended use subset is not as inflated as the re-substitution values and the hazard
ratio estimates within the intended use subset are closer to the true 0.6 values used
for simulating the data. The R software used to compute Tables 9.1 and 9.2 are
available from the first author.
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9.2.4 Testing Treatment Effects in Subsets S2, S1 and S0

We can estimate the expected treatment effects in these subsets as described in
the previous section but we would also like to test the null hypothesis that these
treatment effects are zero. We can test the null hypothesis that the expected treatment
effect is zero in S2 by permuting the treatment assignments, re-computing the
adaptively determined S2 and using the empirical treatment effect in the new S2
as a test statistic for the permutation test.

9.2.5 PPV and NPV of the Predictive Classifier

If we take classification into subset S2 as indicating that the patient is more likely
to benefit from the new treatment, then what is the PPV and NPV of the classifier?
If outcomes are survival times and the treatments have proportional hazards within
each subset, then the probability that a patient classified in S2 benefits from the test
treatment is approximately

PPV = 1

1 + eδ2

where δ2 is the hazard ratio of the test treatment to control in S2. This is shown
by Simon (2015) under the assumption of independence of treatment effects for a
patient. Similarly, the NPV for a case classified in S2 is approximately

NPV 0 = eδ0

1 + eδ0

where δ0 denotes the hazard ratio for cases in S0. For a case classified in S1 the NPV
is approximately

NPV 1 = eδ1

1 + eδ1
.

9.2.6 Calibration of Pre-Validated Treatment Effects

The development above enables the classification of future patients into the three
subsets, S2 representing very likely to benefit from the test treatment, S0, very
unlikely to benefit from the test treatment and an intermediate group S1. The cases
in S0 may have better outcomes on the control. This is individualized prediction
because it is based on the covariate vector X. These estimates are discretized into
three sets, however, and are based on the parametric prognostic models f(X,T)
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and f(X, S). An alternative approach is to focus on the pre-validated treatment
effect difference f(X,T) − f(X,S) for each case. Then, if our outcome is survival,
these difference scores can be smoothed by fitting a proportional hazards model
containing a main effect of treatment. By using a spline we can estimate the
relationship of difference score to treatment effect. This is similar to the approach
as suggested by (Matsui et al. 2012).

Instead of fitting the proportional hazards model with the splines of the pre-
validated d

(p)
i values, a simple window smoother can possibly be used. For every

small window on the d axis we compute an estimate of the hazard ratio of the two
treatments. The empirical hazard ratio is (e1/m1)/(e0/m0) where e1 and e0 denote the
number of events in the window for the treatment and control groups respectively
and m1 and m0 are the numbers of patients at risk at the start of the window for
those groups. This is only used for windows for which m1 and m0 are both positive.
This is related to the approach suggested by Cai (2011).

9.3 Discussion

In the new paradigm of subset analysis that we have described multiple hypothesis
testing is replaced with the development of a single predictive classifier. We have
shown how to obtain approximately unbiased estimates of the treatment effect for
the set of future patients selected based on this predictive classifier and testing the
significance of this treatment effect. Simulation studies have shown that the residual
bias is very small (Simon and Simon 2019). We have also shown how to estimate
the PPV, NPV for the predictive classifier.

The bootstrap de-biasing approach described provides a method of estimating
and correcting the bias of the re-substitution estimate of treatment effect in an
adaptively defined subset like S2. The re-substitution estimate is the empirical
treatment effect in S2. It is biased because S2 was included in the application of the
algorithm A. The estimate of bias is based on comparing the re-substitution estimate
for each bootstrap sample to the treatment effect in the subset of the “out of box”
cases which have covariate vectors characteristic of S2. These bias estimates are
averaged over the bootstrap samples. The method will fail, however, if the sample
size is too small because there will be insufficient “out of box” cases to estimate the
treatment effect in the S2 subset.

The method based on pre-validated classification of the cases remains effective
with smaller sample sizes. This method evaluates treatment effect in the set of cases
which were classified in S2 during the fold of the cross-validation in which they
were left out. Under the null, those expected treatment effects should all be zero.
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In a prospective randomized clinical trial, we recommend that this approach be
part of the primary analysis. The other part is the usual test of average treatment
effect for the entire eligible population. The threshold significance levels for the
overall test and the test of treatment effect in the adaptively defined intended use
subset can be chosen to ensure that the overall type I error of the trial is limited to
the desired 0.05. If the null hypothesis of no average treatment effect for the overall
eligible population is rejected, one can still use the approach described above for
identifying the subset of patients most likely to benefit from the test treatment. This
can be clinically useful if the proportion with benefit is quite limited as it is in many
clinical trials. The re-sampling procedure can also provide a de-biased estimate of
the treatment effect the complement of the intended use subset.

Rather than use a binary classifier, one can use a three level classifier to identify
patients most likely to benefit from the test treatment, those least likely and those
intermediate. The pre-validated scores can be divided into three sets either based on
the 33rd and 66th percentiles of the difference scores or on pre-specified constants
representing clinical significance as shown here.

We have emphasized here valid evaluation of the predictive classifier, not
advocating using one type of classifier or another as is more usual. Although
predictive classifiers have not been nearly as extensively studied as prognostic
classifiers, many approaches to predictive classification are possible. The prognostic
methods literature can be utilized by training prognostic classifiers for the treatment
and control groups and then combining them into a predictive classifier or predictive
score. The prognostic models can be based on logistic regression, random forest,
support vector machines, proportional hazards regression etc.

Although there are many subset identification methods in the literature, there
are very few subset validation methods. Dixon and Simon (1991) described an
empirical Bayesian method that can be used with proportional hazards or logistic
modeling with a large number of binary covariates. Hierarchical priors are placed
on the interaction effects. The posterior distributions of treatment effect for any
subset defined by one or more covariates are easily computed. These distributions
are shrunken towards zero thereby providing a type of internally validated subset
analysis. The methods presented here, however, avoid the assumption of hierarchical
prior distributions.

Two final points deserve emphasis. First, all aspects of the development should
be described prospectively in the statistical analysis plan. Secondly, fully external
validation of a “subset effect” is always valuable. Generally there is no valid internal
evaluation of the treatment effect in adaptively defined subsets and the claims are
based solely on the biased re-substitution estimates. With the paradigm proposed
here, there will be much stronger evidence of the value of a predictive classifier
based on the internal evaluation. This can guide investigators about whether a
confirmatory study is warranted.
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Chapter 10
Logical Inference on Treatment Efficacy
When Subgroups Exist

Ying Ding, Yue Wei, and Xinjun Wang

Abstract With rapid advances in understanding of human diseases, the paradigm
of medicine shifts from “one-fits-all” to targeted therapies. In targeted therapy
development, the patient population is thought of as a mixture of two or more
subgroups that may derive differential treatment efficacy. To identify the right
patient population for the therapy to target, inference on treatment efficacy in
subgroups as well as in the overall mixture population are all of interest. Depending
on the type of clinical endpoints, inference on a mixture population can be non-
trivial and it depends on the efficacy measure as well as the estimation procedure.
In this chapter, we start with introducing the fundamental statistical considerations
in this inference procedure, followed by proposing suitable efficacy measures for
different clinical outcomes and establishing a general logical estimation principle.
Finally, as a step forward in patient targeting, we present a simultaneous inference
procedure based on confidence intervals to demonstrate how treatment efficacy
in subgroups and mixture of subgroups can be logically inferred. Examples from
oncology studies are used to illustrate the application of the proposed inference
procedure.
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Logical inference · Marginal means · Mean survival · Median survival · Mixture
population · Multiplicity adjustment · Non-proportional hazards · Odds ratio ·
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clinical trial · Relative response · Responder · Simultaneous confidence interval ·
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Simultaneous inference · Subgroup analysis · Subgroup identification · Subgroup
mixable estimation · Suitable efficacy measure · Targeted therapy · Targeted
treatment · Time-to-event outcome · Treatment efficacy

10.1 Introduction

The uptake of targeted therapies has significantly changed the field of medicine.
Traditionally, a treatment with successful clinical trial results is recommended to the
entire population to which the trial is targeted, but such treatment implementation
is oversimplified and has many drawbacks due to treatment effect heterogeneity
among patients. For example, a subpopulation may benefit more from standard of
care than the new treatment, although the trial still meets clinical and statistical
significance in the overall population. Realizing this, instead of the “one-fits-all”
approach, people begin to put tremendous effort in precision medicine or targeted
therapy. One aspect of targeted therapy research is to tailor existing therapies to
individual patients so that the mean treatment response is optimized under such
tailoring. This process identifies the so called “optimal treatment regime (OTR)”
or “individualized treatment rule (ITR)” for each patient among existing treatments
based on their individual characteristics such as patient’s demographics, clinical
measurements, and genetic/genomic markers. It is worthwhile to note that although
such a process gives individualized treatment recommendation, it is still based
on optimizing a reward function that is an expectation (average). Many statistical
methods have been developed to find OTR, such as a two-step procedure with the
use of l1-penalized least squares (l1-PLS) by Qian and Murphy (2011), outcome
weighted learning (OWL) by Zhao et al. (2012), a general framework that shows
OTR can be transformed into a classification problem by Zhang et al. (2012), a
novel penalized minimization method based on the difference of convex functions
algorithm (DCA) by Huang and Fong (2014), and tree-based treatment rules by
Laber and Zhao (2015).

Another aspect of targeted therapy research is to develop new treatments that
target a subgroup of patients. This process aims at identifying subgroup of patients
with enhanced treatment benefit (compared to its complementary group) from the
new therapy. In this chapter, we focus on statistical considerations and issues in the
process of targeted treatment development, specifically in terms of the inference on
treatment efficacy when subgroups exist. Traditional statistical methods for “sub-
group analysis” rely on testing the interactions between treatment and subgroups
defined by biomarkers in a regression model. However, this approach, although
straightforward, has many deficiencies such as the need of identifying candidate
covariates associated with subgroups in priory, difficulty of handling continuous
markers, insufficient or inappropriate multiplicity adjustment and low power. Given
this fact, numerous alternative methods have been developed, most of which take
advantage of some existing tools or concepts from other statistical research fields
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such as machine learning and multiple testing. For example, virtual twins (Foster
et al. 2011) uses potential outcome framework with random forest; interaction
trees (Su et al. 2009), SIDES (Lipkovich et al. 2011; Lipkovich and Dmitrienko
2014) and GUIDE (Loh et al. 2015) utilize recursive partitioning, and Berger et al.
(2014) adopts a Bayesian framework for subgroup identification. More methods are
summarized and introduced in a tutorial article in subgroup analysis by Lipkovich
et al. (2017). Shen et al. (2015) summarized three major challenges of subgroup
identification, including how to (1) handle treatment-by-subgroup interaction; (2)
search for candidate subgroups; and (3) adjust for multiplicity. They proposed a
framework for subgroup identification by handling these three major challenges
using different combinations of existing or emerging approaches. For the multiplic-
ity challenge, a specific statistical consideration they raised is regarding how to find
an “honest” estimate of subgroup treatment effect. Without a proper adjustment, the
estimated treatment effect directly from the subgroup is usually biased.

From the regulatory perspective, subgroup analysis with proper use is nec-
essary in clinical trials to meet the trial objectives, but interpreting the results
from subgroup analysis is usually challenging mainly due to the chance of false
discovery. Alosh et al. (2017) classified subgroup analysis into three categories: (1)
Exploratory analyses aim to identify subgroups with differential treatment effect
at early stage of trials or when trials fail to demonstrate treatment efficacy in
overall targeted population; (2) Supportive analyses aim at assessing the consistency
of treatment effect across subgroups after trials successfully demonstrate their
treatment efficacy in overall population; and (3) Inferential analyses aim at demon-
strating treatment efficacy in pre-specified subgroup and/or overall population. They
provided guidance for the latter two categories including statistical considerations
of using tests for the treatment-by-subgroup interaction as the investigational tool,
and concluded that such analyses should limit the number of subgroups to be
assessed which are pre-defined and of reasonable sample size. For the category
(1), Dmitrienko et al. (2016) mentioned that adjustments of the target population
at later stages would require more convincing data and arguments such as biological
arguments, strict adherence to key scientific and statistical principles. Therefore,
the exploratory subgroup analysis at early stage is usually beneficial and may help
construct adaptive trial designs. In general, the advances in precision medicine
have already led to FDA-approved treatments which are tailored to patient’s
characteristics such as genetic markers. For example, Larotrectinib (VITRAKVI)
(Scott 2019), a treatment for patients with tumors containing a neurotrophic receptor
tyrosine kinase (NTRK) gene fusion, was approved by FDA in November 2018.

In Sect. 10.2, we illustrate two fundamental statistical issues and considerations
when subgroups exist. Then in Sect. 10.3, we first introduce an efficacy estimation
principle for the situation when the population is a mixture (of subgroups with
differential treatment efficacy), followed by a simultaneous inference procedure
through confidence intervals. We demonstrate the application of the method using
two real data examples. Finally, we discuss and conclude in Sect. 10.4.
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10.2 Fundamental Statistical Considerations When
Subgroups Exist

In this section, we discuss several key statistical issues that are fundamental in
targeted treatment development. These issues should be well considered in both
the stage of discovering subgroups (that exhibit differential treatment effects) and
the stage of assessing the treatment efficacy once subgroups being identified.

10.2.1 Treatment Efficacy Measures

In a randomized clinical trial (RCT), the new treatment (denoted by Rx) is typically
compared with a control (denoted by C) such as a standard of care (SoC). The
“relative” treatment effect between Rx and C measures the treatment efficacy.
Targeted treatment development process involves the measurement of treatment
efficacy in subgroups and in combination of subgroups. In this chapter, we use
“marker positive” group (g+) to denote the targeted subgroup and use “marker
negative” group (g−) to denote the non-targeted subgroup.

10.2.1.1 Which Group(s) Need to Be Assessed?

Information such as patients in g+ derive extra efficacy from the therapy, patients
in g− derive little or no benefit from the therapy, or do even worse under the
new therapy than under the SoC, all are useful to the patients and prescribers.
In Lin et al. (2019), it has been made clear that, the efficacy in g+, g− and the
overall population are all needed for a decision making. Figure 10.1 illustrates three
hypothetic situations. In scenarios (a) and (b), the efficacy for the overall and g+
populations are both significant, and the treatment in g− is still efficacious but not
significant. In (a), g+ has enhanced efficacy compared to the overall, indicated by
the non-overlapping confidence intervals. Thus it might be reasonable to target the
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Fig. 10.1 Treatment efficacy for all-comers, g+ and g− in three hypothetic situations (a–c)
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overall population in both scenarios, but have a statement in the label indicating
the treatment has better efficacy in the g+ group for scenario (a). In scenario (c),
the treatment is efficacious in g+ but not efficacious in g−. Thus, targeting g+
is a reasonable decision for this case. These hypothetic examples demonstrate the
efficacy in all three groups are important in the targeted treatment development.

The above considers the situation when subgroups are already identified. In
fact, in the development process of targeted treatment, in order to find the right
patient population for the new treatment, it is still necessary to infer treatment
efficacy in subgroups and combination of subgroups too. For example, for a SNP
that separates patients into three subgroups (denoted by AA, Aa and aa), one may
have to decide whether the new treatment should target a single subgroup (e.g., aa)
or a combination of subgroups (e.g., {Aa, aa}). In this case, the treatment efficacy in
both single genetic subgroups and combinations of subgroups need to be assessed.

10.2.1.2 Logic-Respecting Efficacy Measures

When the population is a mixture of g+ and g− with (potential) differential efficacy,
then the efficacy measure has to be carefully chosen so that it respects the logical
relationships among the subgroups and their combinations, that is, if the treatment
efficacy for g+ is a, and for g− is b, then the efficacy for the combined group should
be within [a, b] (assuming a ≤ b) (Lin et al. 2019). This is intuitive, implying if a
treatment is truly efficacious in g+ and in g−, then it should be truly efficacious in
their mixture {g+, g−}. However, this issue has not been fully recognized and some
commonly used efficacy measures are not logic-respecting for mixture populations.
The efficacy measures depend on outcome types. Frequently used clinical outcomes
can be binary, continuous and time-to-event. We will demonstrate this issue with
examples in different types of outcomes.

Efficacy Measures for Continuous Outcomes In the RCT setting that we consider,
the probability of being g+ is independent of the random assignment of patients to
Rx or C. Denote this probability by γ+. For a continuous outcome, if efficacy is
measured by the difference of mean treatment and control effects, then

μg+ = μRx
g+ − μC

g+ and μg− = μRx
g− − μC

g−

represent the efficacy in g+ and g−, respectively. Then since

μRx = γ+ × μRx
g+ + (1 − γ+) × μRx

g− ,

μC = γ+ × μC
g+ + (1 − γ+) × μC

g− ,

the efficacy in the combined population is

μ{g+,g−} = μRx − μC = γ+ × μg+ + (1 − γ+) × μg− ,
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Table 10.1 An example of responders (R) and non-responders (NR) probabilities given Rx and
C, in g− and g+ subgroups and the all-comers {g+, g−} population

g− subpopulation g+ subpopulation population

R NR R NR R NR

Rx 1/16 3/16 + 3/16 1/16 = 1/4 1/4

C 1/40 9/40 + 1/8 1/8 = 3/20 7/20

1/2 1/2 1

which is guaranteed to be within [μg− , μg+]. Thus, the difference of mean effects is
a logic-respecting efficacy measure for continuous outcomes.

Efficacy Measures for Binary Outcomes Binary outcomes are often used in clinical
trials to capture the response in terms of “Yes” or “No” to a treatment. Binary data
are typically analyzed using either a logistic model or a log-linear model, where the
Odds Ratio (OR) or Relative Response (RR) (between treatment and control) can
be directly obtained through model parameters. Thus, they are often selected as the
efficacy measures for binary case. However, OR is not logic-respecting, as we show
below.

Table 10.1 gives a hypothetic example for the probabilities of responding or non-
responding in each g+ and g− subgroup and the overall {g+, g−}. We can calculate
the OR for each group and the all-comers as follows,

ORg+ =
3

16×8
1

(16×8)

= 3, ORg− =
9

(16×40)
3

(16×40)

= 3, OR{g+,g−} =
7

(4×20)
3

(4×20)

= 2
1

3
.

Therefore, OR is not logic-respecting and cannot be used to measure efficacy for a
mixture population as it can yield paradoxical conclusions. For example, suppose
a clinically meaningful efficacy is defined as OR > 2.5, then Rx is efficacious in
both g+ and in g− relative to C, but is lack of efficacy in {g+, g−}.

The other commonly used efficacy measure, RR, is the ratio of response
probability between Rx and C. Replacing the numbers in Table 10.1 by the
corresponding mathematical notation, for example, pRx

g+ (R)/pRx
g+ = P(R|Rx, g+)

is the response probability given the patients are g+ and treated by Rx, where pRx
g+

(pRx
g+ (R)) is the joint probability of being marker positive and being assigned to

treatment Rx (and responding), then we can derive the RR for g+, g− and the all-
comers {g+, g−} respectively:

RRg+ =
pRx
g+ (R)pC

g+

pC
g+(R)pRx

g+
, RRg− =

pRx
g− (R)pC

g−

pC
g−(R)pRx

g−
, RR{g+,g−} = pRx(R)pC

pC(R)pRx
.

As shown in Lin et al. (2019), the RR for the overall population can be represented
as
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RR{g+,g−} =
pC
g+(R)

pC(R)
× RRg+ +

pC
g−(R)

pC(R)
× RRg− . (10.2.1)

So RR{g+,g−} is a mixture of RRg+ and RRg− and thus guaranteed to be logic-
respecting.

Efficacy Measures for Time-to-Event Outcomes Time-to-event outcomes are fre-
quently used in oncology studies. Since Cox regression is the most popular model
to analyze time-to-event data, where the Hazard Ratio (HR) (between Rx and C)
can be directly obtained from the model parameter, it has been taken as a “natural”
statistic to measure efficacy. However, as shown in Ding et al. (2016), HR is not
suitable for a mixture population, since even if both g+ and g− have constant HRs,
the overall population typically does not have a constant HR. In fact, the HR of
the mixture population is usually a complex function of time, with values at some
time points outside of [HRg+ ,HRg−]. Figure 10.2 gives such an example. The
data are generated from a Weibull distribution where HRg+ = exp(−0.5) = 0.61
and HRg− = exp(0.5) = 1.65. The true HR for the combined group is a smooth
function of t and goes below 0.61 for larger t .

In Ding et al. (2016), it has been shown that the ratio of median (or mean)
survival and difference of median (or mean) survival (between Rx and C) are
suitable efficacy measures for mixture population. Not only these measures are
logic-respecting, they have more direct clinical interpretations compared to HR. For
example, if the median survival time for patients randomized to Rx is 36 months
and is 24 months for patients randomized to C, then the interpretation is that the
Rx extends the median survival time for 12 (= 36 − 24) months or for 1.5 (36/24)
times as compared with C. Ding et al. (2016) provides a graphical tool, namely, the

Fig. 10.2 The plot of HR for
g+, g−, and {g+, g−},
illustrating the illogical issue
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M&M plot (M stands for mean or median), to visualize the efficacy in g+, g− and
the overall {g+, g−} population.

10.2.1.3 Prognostic or Predictive?

In targeted treatment development process, often times researchers aim to discover
“predictive” biomarkers, rather than “prognostic” biomarkers. The definition of
prognostic or predictive biomarkers can be easily found in the literature. The
prognostic biomarker is a disease-related biomarker, and it provides information
on how such a disease may develop or progress in a patient population regardless of
the type of treatment. While the predictive biomarker is a drug-related biomarker, it
helps assess whether a particular treatment will be more effective in a specific patient
population. However, the definitions usually do not specify how the effectiveness or
equivalently, the efficacy of a treatment is defined. In fact, whether a biomarker
is prognostic or predictive depends on the efficacy measure. We use the following
example to illustrate.

Assume a biomarker divides the patient population into two groups g− and g+
and each of them receives Rx or C randomly. The median overall survival (OS) for
the g− group is 45 weeks if receiving C and 90 weeks if receiving Rx. While the
median OS for the g+ group is 25 weeks if receiving C and 70 weeks if receiving
Rx. Is the marker prognostic or predictive? The answer will be different depending
on how the efficacy is defined. We plot the data in Fig. 10.3. If the efficacy is
measured by the difference in median OS, both marker groups demonstrate the

Fig. 10.3 The M&M plot
illustrating whether a
biomarker is prognostic or
predictive depends on the
efficacy measure
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same treatment efficacy (Rx − C = 45 weeks), indicated by the solid 45◦ line
in the figure. Therefore, the marker is not predictive for this particular treatment
Rx. It is prognostic instead since the g+ patients have a worse median survival
outcome as compared to the g− patients, regardless of whether they receive C or
Rx. However, if the efficacy is measured by the ratio in median OS, the g+ group
demonstrates better efficacy than the g− group (Rx/C = 2.8 in g+ vs Rx/C = 2
in g−), indicated by the dotted and dashed-dotted lines. Therefore, the marker is
predictive for Rx in this case.

10.2.2 Inference on Mixture Populations

After suitable efficacy measures being chosen, another separate issue is the esti-
mation procedure for obtaining the efficacy estimates for the mixture population.
One common approach is to ignore the subgroup labels and use the marginal
means. However, this is incorrect and can cause a Simpson’s Paradox to occur.
Another popular approach is to apply the Least Squares means (LSmeans) technique
indiscriminately for any type of outcome. For example, applying LSmeans on
the log RR from a log linear model to estimate the combination group’s RR.
Unfortunately none of these approaches is correct. To yield valid estimates of the
treatment efficacy in subgroups and their combinations, the estimation procedure
has to respect the logical relationship among efficacy parameters.

10.2.2.1 Marginal Means

First, we use the M&M plot to illustrate how marginal means can cause paradoxical
result. Denote by μRx and μC the true mean responses in the overall population
if the overall population had received Rx or C, respectively. Denote by μRx

g+ ,

μRx
g− , μC

g+ , μC
g− the corresponding mean responses in the g+ and g− subgroups.

Figure 10.4 draws an example of such mean responses. Assume the efficacy is
defined as the difference in mean response between Rx and C, then efficacy in
the g+ and g− subgroups are perpendicular distances from those two points to
the 45◦ line, after scaled by

√
2. If g+ and g− patients are equally prevalent

(γ+ = 50%), then true efficacy for the combined g+ and g− population should
be the perpendicular distance from the mid-point (of the two dots) to the 45◦ line
(denoted by the purple line and arrow in the middle). However, in an extreme case in
finite samples, suppose Rx patients are mostly g+, while C patients are mostly g−,
then the marginal means estimate for efficacy in the combined g+ and g− population
will be close to the perpendicular distance from the upper left corner (denoted by ‘x’
in the graph) of the shaded rectangle to the 45◦ line. Or similarly, if Rx patients are
mostly g− and C patients are mostly g+, then the marginal means estimate for g+
and g− combined will be close to the perpendicular distance from the lower right
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Fig. 10.4 M&M plot
illustrating the Simpson’s
paradox
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corner ‘x’ to the 45-degree line. Either reflects a paradox that the efficacy in the
combined group does not lie in between the efficacy of the two subgroups, which is
illogical.

10.2.2.2 LSmeans

Continuous outcomes are usually modeled by a linear model with i.i.d. normal
errors. By the Gauss-Markov theorem, the estimation that respects the logical rela-
tionship coincides with the LSmeans estimation. However, the LSmeans estimation
cannot be simply extended to other types of outcomes when efficacy is defined
differently. For example, in the case of a binary outcome modeled by a log-linear
model, the LSmeans estimation (that is analogous to the continuous case) estimates
the logRR for the mixture by the weighted average of the logRR for the subgroups,
which turns to be incorrect as we show below.

Using the same hypothetic example given in Table 10.1, we have RRg+ = 3/16
1/8 =

3
2 and RRg− = 1/16

1/40 = 5
2 . Assume γ+ = 1

2 , then

log(RR{g+,g−}) = 1

2
× log

(
3

2

)
+ 1

2
× log

(
5

2

)
,

which is not equal to log( 1/4
3/20 ) = log( 5

3 ), the true logarithm of RR for {g+, g−},
as given directly from Table 10.1. Taking logarithm or not is not the key issue, as
combining the RRs by γ+ without taking logarithms results in
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RR{g+,g−} = 1

2
×
(

3

2

)
+ 1

2
×
(

5

2

)
= 2,

which still is not equal to the true RR 5
3 for {g+, g−}. The issue is that the true

RR in {g+, g−} cannot be determined by RRs in the g+ and g− alone. Applying the
LSmeans technique indiscriminately for any type of outcome is not a right procedure
to estimate efficacy for a mixture population.

10.3 Subgroup Mixable Inference Procedure

Given those fundamental issues presented in Sect. 10.2, in this section, we will
introduce a general estimation principle, namely, the Subgroup Mixable Estimation
(SME) principle, which is originally proposed in Ding et al. (2016). The key of
the SME principle is: if an efficacy measure is logic-respecting, then its estimation
should be logic-respecting as well. As shown in Sect. 10.2, the logical relationships
depend on the model for the outcome variable and how efficacy is defined. They
usually need to be established on a case by case basis. However, the SME principle
is general, independent of the model and efficacy measure, so long as the efficacy
measure is suitable and logic-respecting for mixture populations.

10.3.1 The General SME Principle

The general SME principle contains three key steps, we will use the same notation
as in the description of the M&M plot in Sect. 10.2 to describe.

1. Fit the model for the clinical outcome Y , obtain the estimate for the model
parameter θ and its associated variance covariance estimate.

2. Within each treatment Rx and C, estimate the clinical response in each subgroup
through a function of the model parameter: μRx

g+ = r(θ; g+, Rx), μRx
g− =

r(θ; g−, Rx) and μC
g+ = r(θ; g+, C), μC

g− = r(θ; g−, C). Moreover, estimate

the responses in {g+, g−} combined, μRx
{g+,g−} and μC

{g+,g−}, where the estimation

needs to respect the logical relationships between μT rt
{g+,g−} and μT rt

g+ , μT rt
g− , with

T rt = Rx or C.
3. Calculate the efficacy in each subgroup: μg+ = h(μRx

g+ , μC
g+) and μg− =

h(μRx
g− , μC

g−), and in their mixture: μ{g+,g−} = h(μRx
{g+,g−}, μ

C
{g+,g−}), based on

a pre-defined efficacy measure through the function h.

In step 1, adjusting for imbalance in sample sizes and other covariates (such
as baseline measurements) can be done under a model for which the LSmeans
technique suitably applies. In step 2, instead of “mixing” the subgroup’s efficacy
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μg+ and μg− to directly compute the mixture’s efficacy μ{g+,g−}, one has to estimate
the clinical response within each treatment (Rx and C) first, for each subgroup and
their combinations. The “mixing” involved in step 2 (when estimating the response
for the combination group) should always be on the probability scale, rather than
directly on the efficacy measure scale. The mixture (conditional) density functions
for the outcome Y , given by (10.3.1) and (10.3.2), are the basis for obtaining correct
estimation for treatment efficacy in the mixture population that respects the logical
relationships among all efficacy measures. Here, γ+ is the population proportion of
g+ subjects, and it is assumed to be independent of the treatment assignment, which
is typically satisfied in the setting of RCTs.

f (y|Rx; θ) = (1 − γ+)f (y|g−, Rx; θ) + γ+f (y|g+, Rx; θ), (10.3.1)

f (y|C; θ) = (1 − γ+)f (y|g−, C; θ) + γ+f (y|g+, C; θ). (10.3.2)

10.3.2 Simultaneous Confidence Intervals

With the SME principle, the logic relationship among the true efficacy in g+,
g− and {g+, g−} is guaranteed to be preserved among their point estimates. For
inference, we need additional information besides point estimates. In targeted
treatment development, clinical effect size matters and confidence intervals (CIs) are
a lot more informative than mere p-values. For example, a reduction in glycosylated
hemoglobin (HbA1c, a typical primary endpoint for diabetes trials) between 0.8 and
1.2 is much more clinically meaningful than a reduction between 0.4 and 0.6. Yet
the confidence intervals (0.8, 1.2) and (0.4, 0.6) can have identical p-values.

We propose to use the simultaneous CIs to infer efficacy in g+, g− and {g+, g−}.
Besides the reason in terms of “more informative”, another main reason is, the form
of two-sided level 1 − α simultaneous CIs I+, I−, I±:

infP {μg+ ∈ I+ and μg− ∈ I− and μ{g+,g−} ∈ I±} ≥ 1 − α

will also reflect the logic relationships among the true efficacy in g+, g− and
{g+, g−}. On the contrary, it is difficult to convey this logic relationship in terms of
p-values, because a p-value has already reduced the data to a point estimate divided
by its estimated standard error. Detailed explanation with a counter example has
been given in Lin et al. (2019).

Providing confidence intervals also allows direct and flexible decision-making in
targeting patients. Suppose a larger μ is better, and a population can be targeted if
μ > δ. An appropriate δ value may depend on whether the patients are in g+, g−,
or {g+, g−}. For example, δ can be two separate superiority margins δ+ and δ±
for patients in g+ and {g+, g−}, and a non-inferiority margin δ− for patients in g−.
One possible decision could be to target the g+ subpopulation if I+ is entirely larger
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than δ+, and to indicate the drug (in the label) for all-comers {g+, g−} as well if I±
is larger than δ± and I− is entirely larger than δ−.

In the following, we demonstrate the application of the SME principle, together
with the simultaneous CIs inference procedure, on binary and time-to-event out-
comes.

10.3.3 Application of SME on Binary Outcomes

We use RR (relative response) to be the efficacy measure for binary outcomes, as it
is shown to be logic-respecting.

10.3.3.1 Theoretical Derivations

Denote by Y = 1 for “Responder” and Y = 0 for “Non-Responder”. Denote
conditional responder probability for each treatment × subgroup combination by:

p1 = P(Y = 1|C, g+), p2 = P(Y = 1|C, g−)

p3 = P(Y = 1|Rx, g+), p4 = P(Y = 1|Rx, g−). (10.3.3)

With the assumption that the probability of being g+ is the same in the treatment
group and the control group, P(g+|C) = P(g+|Rx) = γ+, the response rates in
{g+, g−} under Rx and C are then:

p5 = P(Y = 1|C) = γ+p1 + (1 − γ+)p2

p6 = P(Y = 1|Rx) = γ+p3 + (1 − γ+)p4. (10.3.4)

Following the SME principle, after obtaining the sample estimates of p1, . . . , p4
by p̂1, . . . , p̂4 from either a logistic or a log-linear model for binary data (step 1 of
SME), we can obtain the estimates of p5 and p6 by

p̂5 = γ+p̂1 + (1 − γ+)p̂2, p̂6 = γ+p̂3 + (1 − γ+)p̂4. (10.3.5)

The variance-covariance matrix of p̂1, . . . , p̂6 can be also obtained by using the
Delta method on original model parameters.

Then followed by the step 3 of SME, the RR for each subgroup and the combined
group, as functions of p1, . . . , p6,

RRg+ = p3

p1
, RRg− = p4

p2
, RR{g+,g−} = p6

p5
= γ+p3 + (1 − γ+)p4

γ+p1 + (1 − γ+)p2
,

can be estimated by
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R̂Rg+ = p̂3

p̂1
, R̂Rg− = p̂4

p̂2
, R̂R{g+,g−} = p̂6

p̂5
.

The variance-covariance matrix of these three RR estimates can be also obtained by
the Delta method (applying on p1, . . . , p6).

Note that this principled SME computations produce the correct asymptotic
distribution for efficacy estimates without going through the formula (10.2.1), which
gives the true logic relationship between RRg+ , RRg− , and RR{g+,g−}. This is in
fact the key feature of SME, which requires to “mix” within each treatment arm
before deriving the efficacy. Therefore, the true logic relationship among efficacy
parameters is not needed. In Lin et al. (2019), they also provided a different
estimation procedure by directly using the formula (10.2.1). However, as pointed
out by the authors, this alternative procedure is not simpler and is specific to RR
being the efficacy measure only. It is important to point that the mixing coefficient
in (10.2.1), i.e., the proportion of C responders in the g+ subgroup among all C

responders (
pC

g+ (R)

pC(R)
) cannot be simply treated as a constant, and its estimate is a

random variable that in fact estimates the treatment effect of C. Therefore, the
principled SME procedure is preferred.

In practice, we recommend to derive the asymptotic joint distribution of three
efficacy estimates on the logarithm scale since the normality approximation works
better on the log scale than on the original scale. Then we transform them back to
the original scale for the simultaneous CIs. Specifically, we obtain the critical value
q based on the multivariate normal distribution such that

P {| log(R̂Rg+) − log(RRg+)|/se(log(R̂Rg+)) < q,

| log(R̂Rg−) − log(RRg−)|/se(log(R̂Rg−)) < q,

| log(R̂R{g+,g−}) − log(RR{g+,g−})|/se(log(R̂R{g+,g−})) < q} = 1 − α,

for a desired α level. This can be done using the R function {qmvnorm}. The
input for the {qmvnorm} function contains the simultaneous coverage probability
1 − α and the correlation matrix from the joint multivariate normal distribution
of the three efficacy estimates (on log scale). Finally, the simultaneous confidence
intervals for RRg+ , RRg− and RR can be obtained as I+ = exp{log(R̂Rg+) ±
q × se(log(R̂Rg+))}, I− = exp{log(R̂Rg−) ± q × se(log(R̂Rg−))}, and I± =
exp{(log(R̂R{g+,g−})) ± q × se(log(R̂R{g+,g−}))}.

10.3.3.2 A Real Example

We use a Phase 3 oncology study to illustrate the SME inference. This study com-
pares an immunotherapy OPDIVO (Nivolumab) with a chemotherapy Docetaxel
for Non-Small-Cell Lung Cancer (NSCLC) (Borghaei et al. 2015). Patients were
retrospectively stratified into two groups according to their tumor PD-L1 protein
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Table 10.2 The objective response rates in g+, g− and {g+, g−}, separated by treatment arms.

g+ (≥1%) g− (<1%) {g+, g−} (overall)

Nivolumab (Rx) 38/123 10/108 48/231

Docetaxel (C) 15/123 15/101 30/224

Table 10.3 Relative
response estimates in g+, g−
and {g+, g−}

Group R̂R log(R̂R) 95% simultaneous CI for R̂R

g+ 2.53 0.93 [1.33, 5.14]

g− 0.62 −0.47 [0.26, 1.52]

{g+, g−} 1.55 0.44 [0.96, 2.54]

expression level, measured with the use of a validated automated immunohisto-
chemistry (IHC) assay. While the primary endpoint was overall survival, a key
secondary endpoint was objective response rate (ORR). Table 10.2 presents the
ORRs given OPDIVO (Novimumab) and Docetaxel, separately for patients with
tumor PD-L1 levels < 1% and ≥ 1%.

We analyzed the data using a logistic regression and applied the SME principle
to derive the estimates of RR (in terms of the ORRs). We also obtained the
simultaneous CIs for g+, g− and {g+, g−} using the formulas in Sect. 10.3.3.1.
Table 10.3 presents the result. As we can see, both the g+ (PD-L1 expression ≥ 1%)
group and the overall population group have estimated RRs greater than 1. However,
only the g+ group has an CI not covering 1. The g− (PD-L1 expression < 1%)
group has the estimated RR less than 1, although its CI covering 1. This suggests
that, the efficacy of OPDIVO (Nivolumab) (relative to Docetaxel), based on the
secondary endpoint OOR, is (only) established in patients with PD-L1 levels ≥ 1%.

10.3.4 Application of SME on Time-to-Event Outcomes

For time-to-event outcomes, with Weibull model, we will use the ratio of median
survival as the efficacy measure (which has been proved to be logic-respecting in
Ding et al. (2016)) to apply the SME principle.

10.3.4.1 Theoretical Derivations

Assume no other covariates, the Weibull model is then given by

h(t |T rt,M) = (ktk−1/λk) exp{β1T rt + β2M + β3T rt × M},

where T rt = 0 (C) or = 1 (Rx), M = 0 (g−) or = 1 (g+), and h0(t) = ktk−1/λk

is the hazard function for the g− subgroup receiving C, which is from a Weibull
distribution with scale λ and shape k.
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Let θ1 = eβ1 , θ2 = eβ2 and θ3 = eβ3 . Then the survival function for each of the
subgroups has the following form:

SC
g−(t) = e−(t/λ)k , SRx

g− (t) = e−θ1(t/λ)
k

,

SC
g+(t) = e−θ2(t/λ)

k

, SRx
g+ (t) = e−θ1θ2θ3(t/λ)

k

.

Then the median survival for each subgroup can be directly obtained as

νRx
g+ = λ(

log 2

θ1θ2θ3
)

1
k , νC

g+ = λ(
log 2

θ2
)

1
k and νRx

g− = λ(
log 2

θ1
)

1
k , νC

g− = λ(log 2)
1
k .

(10.3.6)
For {g+, g−}, the median survival for Rx and C are the solutions for the following
two equations, respectively,

t = νRx : (1 − γ+)e−θ1(t/λ)
k + γ+e−θ1θ2θ3(t/λ)

k = 0.5, (10.3.7)

t = νC : (1 − γ+)e−(t/λ)k + γ+e−θ2(t/λ)
k = 0.5. (10.3.8)

Therefore, the ratio of median for {g+, g−} is an implicit function of the model
parameters (λ, k, θ1, θ2, θ3).

With the preparation above, we illustrate the three key steps of SME below.

1. First, fit the Weibull model and obtain the point estimates and their estimated
variance-covariance for all model parameters.

2. Then, within each treatment Rx and C, compute the median survival estimates
for g+ and g− and their mixture based on Eqs. (10.3.6), (10.3.7) and (10.3.8), and
compute their estimated variance covariance matrix by the Delta method (for the
implicitly defined random variables).

3. Finally, calculate the ratio of median for g+, g− and {g+, g−}, and compute their
estimated variance covariance matrix based on the Delta method.

As indicated in step 2, the Delta method for implicitly defined random variables
(Benichou and Gail 1989) needs to be applied since the median survival for the
combination group in Rx and C are implicitly defined by Eqs. (10.3.7) and (10.3.8).
In step 3, similar to the binary data case, the asymptotic normal approximation
in the (standard) Delta method can be applied on the logarithm of ratios (instead
of the original ratios). Then we go back to the original scale when computing the
simultaneous CIs for the ratios.

10.3.4.2 A Real Example

We use a phase 2 oncology study for patients with advanced non-small-cell lung
cancer to illustrate the use of SME on time-to-event data (Spigel et al. 2013).
The study compared a dual treatment to a single treatment to test whether the
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Table 10.4 The SME result on the PFS data of the MET+ patients in Spigel et al. (2013)

Population Median in C Median in Rx Ratio and 95% CI

2+ 2.22 (n=25) 4.97 (n=26) 2.24 (1.12, 4.48)

3+ 2.00 (n=6) 3.19 (n=9) 1.59 (0.51, 5.05)

{2+, 3+} 2.17 (n=31) 4.47 (n=35) 2.06 (1.14, 3.74)

Estimates of median survival and their ratios are provided

dual treatment was more efficacious. The progression-free survival (PFS) is a
(co-)primary endpoint. In this study, the patients were first separated into four
groups by their MET expression level measured by the IHC test (0, 1+, 2+, and 3+)
and then combined into two groups, namely, MET− (0, 1+) and MET+ (2+, 3+).

We applied the SME procedure on the MET+ patients using the “reversed-
engineered” PFS data by Ding et al. (2016). More details regarding how the
data were reverse-engineered can be found in Ding et al. (2016). The results are
shown in Table 10.4. All three groups show positive efficacy (indicated by ratio
of median > 1) for the dual treatment. However, only the 2+ and the combined
group are statistically significant (with CIs not covering 1). Note that, with our
SME procedure, the estimated efficacy for the combined group stays between the
estimated efficacy of 2+ and 3+, in terms of both point estimates and simultaneous
CIs.

10.4 Discussion

In Sect. 10.2, we presented two key fundamental statistical issues in the targeted
treatment development process, especially during the inference on treatment effi-
cacy when subgroups exist. The Rcode and example data sets for performing the
SME approach for both time-to-event and binary outcomes can be found in Github:
https://github.com/yingding99/SME as well as from the online supplementary
materials.

Besides these two issues, there are certainly additional issues or challenges in the
analysis or identification of subgroups. We briefly discuss two more in this section.

10.4.1 Additional Issues or Challenges

Multiplicity Adjustment Multiplicity is perhaps the most frequently mentioned
challenge in statistical methods dealing with subgroups, especially in subgroup
identification. It can come from several sources. First, the number of predic-
tors/markers to be tested can range from tens to thousands (or even more). Second,
if a marker is measured on a continuous scale, evaluating different cut points

https://github.com/yingding99/SME
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will introduce multiplicity. Third, in the analysis exploring subgroups defined
by more than a single marker, the number of potential subgroups defined by
the same set of markers increases exponentially with higher complexity of the
subgroups being considered. In the recently released guidance papers by U.S. Food
and Drug Administration and European Medicines Agency (US Food and Drug
Administration 2012; Committee for Medicinal Products for Human Use and others
2010), it has been made clear that all the statistical approaches for subgroup analysis
need to adjust for multiplicity.

In general, there are (at least) two levels of multiplicity when searching for
subgroups. One is “across” markers and the other is “within” a marker. Appropriate
types of error rates (to be controlled) should be considered for each level. For
example, in Ding et al. (2018) for finding SNPs that are predictive of treatment
efficacy, they proposed to control the familywise error rate (FWER) within a SNP
and the per family error rate across SNPs. This sounds reasonable, since within
a SNP, the consequence of an incorrect inference may directly lead to targeting a
wrong patient population, which is very serious. Thus, controlling a stringent error
rate is appropriate. For inference across a large number of SNPs, controlling a less
stringent error rate is acceptable. How the two error rates are controlled usually
depends on each other. Note that in our proposed simultaneous CI inference under
the SME principle, the error rate being (strongly) controlled is the FWER. A proof
can be found in Lin et al. (2019).

Re-sampling approach (such as permutation or bootstrap) is an option for
multiplicity adjustment, provided it is done carefully to satisfy the conditions needed
for its validity. For example, if permutation methods are used to produce the null
distribution, then one has to check the stringent conditions in Huang et al. (2006)
and Kaizar et al. (2011).

Formulation of Null Hypothesis In many subgroup analysis or identification proce-
dures, the null hypothesis is often formulated as “all the subgroups have identical
treatment efficacy”. For example, if the marker is a SNP that separates the patients
into three groups AA, Aa, aa, the null hypothesis is often stated as AA = Aa = aa,
which is tested against specific alternatives such as the SNP has a dominant,
recessive, or additive effect. Such a null hypothesis is called a “zero-null”. In
fact, controlling the Type I error rate in testing zero-nulls sometimes offers little
protection against false discoveries. For example, in the SNP testing case, if the truth
is a allele is dominant, then the rejection infers a recessive is counted positively
towards power (when the null is formulated as μAA = μAa = μaa). In drug
development, correct inference matters, with an incorrect inference possibly worse
than no inference at all. For example, when the truth is a dominant, then inferring
a recessive leads to targeting only the aa subgroup, missing out on targeting the
combined {Aa, aa} subgroup.

In Ding et al. (2018), based on the foundations of multiple testing principle,
they proposed to formulate the null hypothesis as the complement of each desired
inference as a separate null hypothesis. In the SNP testing case, a null hypothesis
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could be formulated as a is NOT dominant. In this way, a rejection of the null
hypothesis can lead to the desired inference unambiguously.

10.4.2 Moving Forward

Targeted therapies are becoming more and more common. Such medicine can
be large molecules such as antibodies targeting specific antigens on cell surfaces
or extracellular growth factors. They can also be small molecules penetrating
cell membrane to interact with enzymatic activities. The development of targeted
treatment is a very complex process, of which the key is to identify the right patients
for the drug to target. Any patient subgroup with significantly better efficacy could
be identified for tailoring with appropriate labeling language and reimbursement
considerations in the market. Correct and useful statistical inference is critical
in decision-making for such a process. When developing new statistical methods
motivated by the needs and challenges in this process, some fundamental issues
mentioned in this chapter shall be well considered.
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Chapter 11
Subgroup Analysis with Partial Linear
Regression Model

Yizhao Zhou, Ao Yuan, and Ming T. Tan

Abstract In clinical trials it is common that the treatment has different effects on
different subjects. This motivates the precision medicine, the goal is to identify
the treatment favorable or unfavorable subgroups, if they exist, and classify the
subjects into one of the subgroups based on their covariate values. In practice, some
covariate(s) is known to affect the response non-linearly, in this case the existing
linear model is not adequate. To address this issue, we use a partial linear model,
in which the effect of some specific covariates is a non-linear monotone function,
along with a linear part for the rest of the covariates. This approach not only makes
the model more flexible than the parametric linear model, and more interpretable
and efficient than the full nonparametric model. The Wald statistics is used to
test the existence of subgroups, and the Neyman-Pearson rule is used to classify
the subjects. Simulation studies are conducted to evaluate the performance of the
method, and then the method is used to analyze a real clinical trial data.

11.1 Introduction

In clinical studies, often treatment effect is not uniform over all the patients, some
subgroup of patients may benefit significantly from the treatment and others may not
so. Thus one of goals of precision medicine is to find out if such subgroups exist or
not, and if existence is justified, identify the subgroups of patients according to their
covariate values. For example, in IBCSG (2002), patients with ER-negative tumors
were likely to benefit from chemotherapy, while those with ER-positive tumors did
not.
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Subgroup analysis is recently a very active research area see, e.g., Sabine (2005),
Song and Chi (2007), Ruberg et al. (2010), Foster et al. (2011), Lipkovich et al.
(2011), Friede et al. (2012), Shen and He (2015), Fan et al. (2017), and Ma and
Huang (2017). Rothmann et al. (2012) discussed issues for subgroups testing and
analysis. Fokkema (2018) used generalized linear mixed-effect model tree (GLMM
tree) algorithm detecting treatment-subgroup interactions in clustered datasets. Yuan
et al. (2018, 2020) proposed semiparametric methods for this problem.

Existing methods for this problem often use linear model. In practice, sometimes
it is known that some covariate has non-linear effect on the response, incorporating
such information can improve the quality of the analysis. Here we consider such
case and apply a more featured partial linear model to identify the existence of
subgroups and to classify the subjects into different subgroups if the existence of
subgroup is confirmed. This model assumes a monotone non-linear effect of some
covariate, and linear effects from the rest covariates. First, a partial model with
individual subgroup membership as latent variable and with a covariate whose effect
are known as non-linear are formulated and the model regression parameters is
estimated with expectation-maximization algorithm (E-M algorithm), and isotonic
regression method is used for the maximum likelihood of the nonparametric non-
linear part. Then null hypothesis of non-existence of subgroups are tested with
Wald Statistics. If the existence of subgroup is confirmed, we use the Neyman-
Pearson rule to classify each subject so that the misclassification error for the
treatment favored group is under control while the misclassification error for the
other subgroup is minimized.

The rest of the chapter is organized as follows. In Sect. 11.2 we describe the
model and parameter estimation, Sect. 11.3 elaborates the testing and classification
method, and Sect. 11.4 illustrates the simulation study and real data analysis.

11.2 The Method

The observed data is denoted as Dn = {(yi, xi, zi), i = 1, . . . , n}, where yi ∈ R is the
response variable of i-th subject, xi = (xi1, . . . , xid)′∈ Rd and zi is another covariate,
which is known to have a non-linear monotone effect on the response. Each subject
i receives the same treatment, and we assume that bigger value of the response
corresponds to better treatment effects. We want to test if there are treatment
favorable and non-favorable subgroups in the patients. If subgroup does exist, we
need to classify each subject into corresponding subgroup based on his/her covariate
profile. In this paper, we assume that there are only two potential subgroups:
treatment-favorable and treatment-nonfavorable subgroups. We need first to specify
the model, estimate the model parameters, and then perform the hypothesis test and
classification of subjects.
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11.2.1 The Semiparametric Model Specification

We specify the semiparametric partial linear model as

yi = β ′xi + g(zi) + δiη + εi, ε ∼ N(0, 1), g ∈ G,
where δi is a latent indicator for whether subject i belongs to the treatment favorable
subgroup (δi = 1) or not (δi = 0). β is a d-vector of unknown parameters, η is the
effect of treatment favorable subgroup, and the constraint η≥ 0 is used for the
identifiability with the intercept vector term in β. It is assumed that the covariate
zi has a non-linear effect g(·) to the response yi, we only know that g(·) ∈ G, the
collection of all monotone increasing functions on R.

Denote the i.i.d. copy of the (yi, xi, zi, δi, εi)’s as (y, x, z, δ, ε). Let λ= P(δ = 1)
and θ = (β ′, η, λ)′ be the vector of all the Euclidean parameters. Conditioning on
(x, z), the density of y is the mixture

h(y|x, z, θ) = λφ
(
y − β ′x − g(z) − η

)
+ (1 − λ)φ

(
y − β ′x − g(z)

)
.

where φ(·) is the density function of the standard normal distribution. The log-
likelihood of the observed data is

�(θ , g|Dn) =
n∑

i=1

log
(
λφ(yi−β ′xi−g(zi)−η) + (1 − λ)φ(yi − β ′xi − g(zi))

)
,

θ ∈ Θ, g ∈;G. (11.1)

Direct computation of the maximum likelihood estimate (MLE) from a mixture
model (11.1) is not convenient, especially in the presence of the nonparametric
component g(·), and it is known that E-M algorithm (Dempster et al. 1977) is
typically easy to use. For this, we treat the latent variable δi’s as missing data, with
δi = 1 if the i-th subject belongs to the treatment-favorable subgroup, otherwise
δi = 0. The likelihood based on the ‘complete data’ Dc

n = {(yi, xi , zi , δi) : i =
1, . . . , n)} is

L(θ , g|Dc
n) =

n∏

i=1

(
λφ(yi−β ′xi−g(zi)−η)

)δi
(
(1−λ)φ(yi−β ′xi−g(zi))

)1−δi

,

the corresponding log-likelihood is

�(θ, g|Dc
n) =

n∑

i=1

(
δi logφ(yi − β ′xi − g(zi) − η)

+(1 − δi) logφ(yi − β ′xi − g(zi)) + δi log λ + (1 − δi) log(1 − λ)
)
. (11.2)
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The semiparametric MLE (θ̂n, f̂n) of the true parameter (θ0, f0) is given by

(θ̂n, ĝn) = arg max
(θ,g)∈(Θ,G)

�(θ , g|Dc
n). (11.3)

11.2.2 Estimation of Model Parameters

As the δi’s are missing, (θ̂n, ĝn) in (11.3) cannot be computed directly, the EM
algorithm is used instead. For this a starting value θ (0) of θ is needed, then find
g(1)(·) ∈ G as the maxima of �(θ (0), g|Dc

n), then fix g(1), find θ (1) ∈� as the maxima
of �n(θ , g(1)), and so on . . . . until convergence of the sequence {(θ (r), g(r))}, which
is increasing the likelihood at each iteration, and will converge to at least some local
maxima of �n(θ , g). In fact, the increasing likelihood property is obvious, as for all
integer r,

�(θ (r+1), g(r+1)|Dc
n) ≥ �(θ (r), g(r+1)|Dc

n) ≥ �(θ (r), g(r)|Dc
n).

A formal justification of the convergence of the above iterative algorithm is a case
of the block coordinate descent methods in Bertsekas (2016).

Our algorithm is a semiparametric version of EM algorithm, see also Tan et al.
(2009, chap. 2) for bio-medical applications of this algorithm. The semiparametric
and nonparametric EM algorithm was used in a large number of literatures, such
as in Mun̂oz (1980), Campbell (1981), Hanley and Parnes (1983), Groeneboom
and Wellner (1992, Section 3.1), and see the argument there for the convergence
of such algorithm (p. 67–68). Chen et al. (2002) applied the EM algorithm to
a semiparametric random effects model, Bordes et al. (2007) applied the EM
algorithm to a semiparametric mixture model, using simulation studies to justify
the convergence of the algorithm. Balan and Putter (2019) developed an R-package
of EM algorithm for semiparametric shared frailty models.

Now we give the detail of the algorithm. At each iteration r, do the following:

Step 0. For fixed (g(0), θ (0)), compute {δ(0)i } with E-step of E-M algorithm.
Step 1. For fixed (g(r), θ (r)), compute

Hn(θ , g|θ (r), g(r)) = Eδ[�(θ , g|Dc
n)|Dn, θ

(r), g(r)]

=
n∑

i=1

(
δ
(r)
i logφ(yi − β ′xi − g(zi) − η)

+ δ
(r)
i log λ) + (1 − δ

(r)
i ) logφ(yi − β ′xi − g(zi))

+ (1 − δ
(r)
i ) log(1 − λ))

)
, (11.4)
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where the expectation is taken with respect to the missing δ, and as if the true
data is generated from parameters (θ (r), g(r)). In particular, the r-th step estimates
of the δi’s (for i = 1, . . . ., n;r = 0, 1, 2, . . . ), are

δ
(r)
i = E(δi |yi, xi, zi, g(r), θ (r)) = P(δi = 1|yi, xi, zi, g(r), θ (r))

= P(yi |δi = 1, xi, zi, g(r), θ (r))P (δi = 1|xi, zi, g(r), θ (r))
P (yi |xi, zi, g(r), θ (r))

=
λ(r)φ

(
yi−β

′(r)xi−g(r)(zi)−η(r)
)

λ(r)φ
(
yi−β

′(r)xi−g(r)(zi)−η(r)
)

+ (1−λ(r))φ
(
yi−β

′(r)xi−g(r)(zi)
) .

Step 2. In the M-step for θ , compute

θ (r+1) = arg sup
θ∈Θ

Hn(θ , g
(r)|θ (r), g(r)).

This step can be computed by standard optimization packages. Especially,

λ(r+1) = 1

n

n∑

i=1

δ
(r)
i .

Step 3. For fixed (θ (r+1), δ
(r+1)
i ) compute

g(r+1)(·) = arg max
g∈G

Hn(θ
(r+1), g|θ (r), g(r)).

This step computes the nonparametric maximum likelihood estimate of ĝ under
shape restriction, which is non-trivial, we describe it below.

11.2.2.1 Computation of g(r+1)

The pool adjacent violators algorithm (PAVA, see for example, Best and Chakravarti
(1990)) is a convenient computational tool to perform such order restricted maxi-
mization or minimization, and is available in R. Patrick et al. (2009) gives a review
of the algorithm history and computational aspects. In particular, the computation
of ĝ(zi) = ĝi is as follows.
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g(r+1)(·) = arg max
g∈G

Hn(θ
(r+1), g|θ (r), g(r))

= arg min
g∈G

n∑

i=1

(
δ
(r)
i

(
yi − β(r)xi − η(r) − gi

)2

+ (1 − δ
(r)
i )
(
yi − β(r)xi − gi

)2)

= arg min
g∈G

n∑

i=1

(
yi − β(r)xi − η(r)δ

(r)
i − gi

)2

Generally, let vi = yi −β ′xi − δiη, wi = 1, then

ĝ = arg min
g∈G

n∑

i=1

wi(vi − gi)
2

The above is the standard form of isotonic regression procedure, and ĝ can be
computed using the R-function isoreg(·).

11.2.3 Asymptotic Results of the Estimates

Zhou et al. (2019) derived asymptotic results for θ̂ and ĝ(·), as presented below.
Detailed regularity conditions and proofs can be found there.

Theorem 11.1 Under regularity conditions, as n →∞

‖θ̂ − θ0‖ a.s.→ 0,
∫

|ĝ(z) − g0(z)|dz a.s.→ 0.

Denote
D→ for convergence in distribution.

Theorem 11.2 Under regularity conditions, as n →∞,

√
n(θ̂ − θ0)

D→ N(0, I ∗−1(θ0|g0)),

where I∗ (θ0|g0) = E[�∗ (X, Z|θ0, g0)�∗‘(X, Z|θ0, g0)] is the efficient Fisher informa-
tion matrix of θ for fixed g0, and �∗ (X, Z|θ0, g0) is the efficient score for θ .

Let B(·) be the two-sided Brownian motion originating from zero: a mean zero
Gaussian process on R with B(0) = 0, and E

(
B(s) − B(h)

)2 = |s − h| for all s,
h ∈ R.
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Theorem 11.3 Denote ġ0(z) = dg0(z)/dz and density of z as q(z). Assume q(z) > 0.
Under regularity conditions, as n →∞,

n1/3(ĝn(z) − g0(z))
D→
(4ġ0(z)

q(z)

)1/3
arg max

h∈R {B(h) − h2}.

11.3 Testing the Null Hypothesis and the Classification Rules

11.3.1 Test the Null Hypothesis

After the model parameters are estimated, we need to test the existence of
subgroups, which is formulated as testing the null hypothesis H0 : η= 0 vs the
alternative H1 : η �= 0. For parametric model, commonly used test statistic including
the likelihood ratio statistic, score statistic and the Wald statistic, and the three
statistics are asymptotically chi-squared distributed and equivalent. However, in our
case when η= 0, λ is non-identifiable in the model, although the other parameters
are still identifiable and estimable. In this case, the likelihood ratio statistic cannot
be applied. So we use the Wald statistic.

Denote θ = (θ1, θ2) with dim(θ) = d and dim(θ1) = d1, and θ̂ = (θ̂1, θ̂2) is the
MLE of θ under the full model. Consider the null hypothesis H0 : θ1 = θ1,0. The
Wald test statistic is

Wn = (θ̂1 − θ1,0)
′V ar−1(θ̂1)(θ̂1 − θ1,0).

If Cov(θ̂1) is known, then asymptotically Wn ∼ χ2
d1

. If Cov(θ̂1) is estimated,
asymptotically Wn/d1 ∼ Fd1,n−d . For our problem, θ1 = η, θ1,0 = 0, we treat
Cov(η̂) to be known, so Wn = η̂nV ar−1(η̂n)η̂n ∼ χ2

1 asymptotically, and if
Wn > χ2

1 (1 − α), which is the upper (1 −α)-th quantile of the χ2
1 distribution,

then H0 is rejected.

11.3.2 The Classification Rule

After the existence of subgroup is justified, or the null hypothesis above is
rejected, we need to classify the subjects. There are different classification rules.
In subgroup analysis, the correct classification of the treatment favorable subgroup
is of significant clinical meaning, so we use the Neyman-Pearson rule in Yuan et al.
(2018, 2020) as it can control the miss-classification error for the treatment favorable
subgroup.



236 Y. Zhou et al.

To be specific, for each subject i, denote the i-th likelihood ratio

LR(yi, xi ) = f (yi, xi , zi |θ̂ , δ = 1)

f (yi, xi , zi |θ̂ , δ = 0)
≈ φ(yi − β̂

′
xi − ĝ(zi) − η̂)

φ(yi − β̂
′
xi − ĝ(zi))

.

Parallel to the NP uniformly most powerful test procedure for testing the simple
hypothesis H0 : η= 0 vs. H1 : η �= 0. For given significance level α, the optimal
classification rule is: classify the i-th subject to subgroup S1 if

LR(yi, xi , zi) ≥ K(α), with K(α) determined by PH0

(
LR(Y,X,Z) ≥ K(α)

)=α,

or, with ε = y − β̂
′
x − ĝ(zi) generated under H0,

PH0

(φ(yi − β̂
′
xi − ĝ(zi) − η̂)

φ(yi − β̂
′
xi − ĝ(zi))

≥ K(α)
)

= α.

We can find approximate solution for K(α). For simulated data, let {LRj : j = 1, . . . ,
n0} be the LRj’s of patients from the treatment unfavorable subgroup (for simulated
data, the subgroup memberships are known), then set K(α) is estimated by the
(1 −α)-th upper quantile of LR1, . . . , LRn0 , it is the cut-off beyond which patients
will be classified to the treatment favorable subgroup, even though they are from the
treatment unfavorable subgroup.

However, for real data {(yi, xi, zi) : i = 1, . . . , n}, the subgroup memberships are
unknown, we cannot use the above method to decide K(α), instead we obtain it by
the following way. Set LRi = φ(εi − η̂)/φ(εi), let

Qn(t) =
n∑

i=1

wniI (LRi ≤ t), wni = (1 − δ̂i )/

n∑

j=1

(1 − δ̂j )

be a weighted empirical distribution of the LRi’s under the null hypothesis. Note that
1 − δ̂i is the estimated membership of subject i belonging to group 0, corresponding
to the null hypothesis, and 1 − δ̂i scaled by

∑n
j=1(1 − δ̂j ) makes the wni’s a set of

actual weights. So intuitively, Qn(·) is a reasonable estimate of the distribution of
the LRi’s under the null hypothesis. We set K(α) = Q−1

n (1−α) to be the (1 −α)-th
upper quantile of Qn.

For coming patient with covariate x but without response y, we define

LR(x, z) = EH0

(φ(y − β̂
′
x − η̂)

φ(y − β̂
′
x)

∣∣
∣x, z

)
≈ 1

n0

n0∑

i=1

φ(yi − β̂
′
x − ĝ(zi) − η̂)

φ(yi − β̂
′
x − ĝ(zi))

,
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where yi (i = 1, . . . , n0) are the responses of the subjects already in the trail, and
being classified to group 0, and classify this patient to group 1 if LR(x, z) > K(α),
with K(α) given above.

11.4 Simulation Study and Application

11.4.1 Simulation Study

We simulate four examples with non-linear effect of zi to yi. We simulate n = 1000
i.i.d. data with 1-dimensional response yi’s and with covariates xi = (xi1, xi2, xi3).
We first generate the covariates, sample the xi’s from the 3-dimensional normal
distribution with mean vector μ= (3.1, 1.8, −0.5)′ and a given covariance matrix
�. sample the zi’s from the normal distribution with mean μ= 0 and σ 2 = 1. The
εi are also sampled from normal distribution with mean μ= 0 and σ 2 = 1.We will
display estimation results with four different choices of θ0 = (β0, η0, λ0) and four
choices of g0(·) below. What is more, we fixed a point (0, 0) for the non-linear effect.

Example 1 g0(z) = 6 × Exponential(z + 2) − 6 × Expnential(0 + 2);

Example 2 g0(z) = 5 × Beta((z + 2)/4, 5, 1) − 5 × Beta((0 + 2)/4, 5, 1);

Example 3 g0(z) = 6×I(z < 0)×((N(z, 0, 0.5))−N(0, 0, 0.5))+6×I(z ≥ 0)×(N
(z, 0, 0.2)−N(0, 0, 0.2)));

Example 4 g0(z) = 3×I(z < 0)×(Beta((z+2)/4, 0.2, 0.2)−Beta((0+2)/4,
0.2, 0.2))+7×I(z ≥ 0)×(Beta((z+2)/4, 0.7, 0.7)−Beta((0+2)/4, 0.7, 0.7)).

The estimated ĝ and g0 are shown in Fig. 11.1.
The parameter estimates from the proposed model are displayed in Tables 11.1,

11.2, 11.3 and 11.4, along with the estimates from commonly used linear model as
comparison. The estimated standard errors are displayed as [se].

The hypothesis testing results from both partial linear and linear model are given
in Table 11.5, and the classification results using the partial linear model are in Table
11.6.

From Table 11.5 we see that the partial linear model gives reasonable estimates,
while the estimates from the linear model is not reasonable, may due to the fact that
it seriously over-estimate the effect η for small value of it.

From Table 11.6, it is seen that the mis-classification error for the treatment
favorable subgroup is well controlled around the specified level α = 0.05, and the
overall classification error depends on the effect size η. It is small when η is large
and vice versa. Note that for η= 0.95 and 1.70, the N-P error is larger than 0.05 this
is because the estimate of η is not that accurate when the true value of η is small.

Interpretation of the Results From Tables 11.1, 11.2, 11.3 and 11.4, we see that
when the effect η of treatment favorable subgroup is tiny, the biases of the estimates
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Fig. 11.1 Solid line: true g0(·); Step line: estimate ĝ(·)

Table 11.1 Parameter
estimates under two models
(example 1)

θ β η λ

θ0 (1.300,1.200,−1.600) 1.650 0.700
Partial linear (1.291,1.202,−1.598) 1.619 0.723
[se] [0.094,0.087,0.039] [0.134] [0.060]
95% CP (0.944,0.945,0.949) 0.942 0.941
Linear model (0.995,1.275,−1.520) 2.053 0.653
[se] [0.084,0.100,0.043] [0.101] [0.048]
95% CP (0.042,0.885,0.552) 0.017 0.840
θ0 (1.200,−1.400,3.200) 7.740 0.300
Partial linear (1.198,−1.401,3.202) 7.740 0.300
[se] [0.061,0.068,0.030] [0.070] [0.014]
95% CP (0.946,0.953,0.949) 0.953 0.955
Linear model (0.966,−1.344,3.263) 7.742 0.300
[se] [0.054,0.081,0.034] [0.085] [0.014]
95% CP (0.009,0.896,0.541) 0.948 0.952
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Table 11.2 Parameter
estimates under two models
(example 2)

θ β η λ

θ0 (−1.300,2.200,1.400) 1.700 0.700
Partial linear (−1.300,2.202,1.398) 1.678 0.718
[se] [0.085,0.085,0.039] [0.126] [0.055]
95% CP (0.952,0.947,0.955) 0.951 0.946
Linear model (−1.033,2.137,1.328) 2.029 0.549
[se] [0.084,0.103,0.045] [0.084] [0.059]
95% CP (0.105,0.909,0.643) 0.018 0.272
θ0 (−2.300,−1.400,2.100) 8.390 0.800
Partial linear (−2.295,−1.400,2.098) 8.392 0.801
[se] [0.059,0.070,0.030] [0.079] [0.012]
95% CP (0.942,0.947,0.942) 0.951 0.940
Linear model (−2.061,−1.458,2.037) 8.396 0.801
[se] [0.061,0.084,0.035] [0.099] [0.012]
95% CP (0.031,0.897,0.557) 0.949 0.939

Table 11.3 Parameter
estimates under two models
(example 3)

θ β η λ

θ0 (−1.300,1.400,2.000) 1.500 0.650
Partial linear (−1.282,1.396,1.995) 1.454 0.666
[se] [0.135,0.090,0.047] [0.122] [0.080]
95% CP (0.955,0.952,0.951) 0.938 0.942
Linear model (−1.270,1.389,1.995) 2.263 0.476
[se] [0.083,0.113,0.048] [0.079] [0.046]
95% CP (0.936,0.945,0.945) 0 0.023
θ0 (1.600,−1.200, 1.300) 5.800 0.400
Partial linear (1.622,−1.204,1.294) 5.801 0.400
[se] [0.108,0.076,0.039] [0.067] [0.015]
95% CP (0.944,0.941,0.945) 0.948 0.949
Linear model (1.648,−1.209,1.286) 5.811 0.406
[se] [0.076,0.115,0.046] [0.090] [0.015]
95% CP (0.909,0.956,0.940) 0.948 0.918

from the linear model are much larger than those with the proposed partial linear
model. That also can be used to explain the results of hypothesis testing with linear
model. When the effect of treatment favorable subgroup is small, linear model tend
to give an estimate with positive bias. So, type I error here is large and type II error
is small. If the effect of treatment favorable subgroup is large, partial linear model
and linear model tend to give similiar estimates of parameters.



240 Y. Zhou et al.

Table 11.4 Parameter estimates under two models (example 4)

θ β η λ

θ0 (2.000,2.400,−2.500) 1.300 0.850
Partial linear (1.977,2.403,−2.493) 1.402 0.853
[se] [0.183,0.088,0.054] [0.394] [0.150]
95% CP (0.948,0.946,0.952) 0.938 0.946
Linear model (2.257,2.336,−2.566) 1.358 0.717
[se] [0.116,0.083,0.041] [0.190] [0.122]
95% CP (0.383,0.873,0.618) 0.931 0.825
θ0 (−2.500,1.200, 1.700) 8.850 0.300
Partial linear (−2.481,1.198,1.693) 8.851 0.299
[se] [0.059,0.069,0.030] [0.070] [0.014]
95% CP (0.940,0.946,0.947) 0.950 0.951
Linear model (−2.287,1.151,1.643) 8.853 0.299
[se] [0.049,0.072,0.030] [0.074] [0.014]
95% CP (0.012,0.897,0.536) 0.945 0.951

Table 11.5 Hypothesis test using the partial linear and linear models (example 4)

Partial linear Linear model
η0 η̂ Type I error Power η̂ Type I error Power

0 0.006 0.018 1.485 0.237
0.02 0.003 0.016 1.496 0.234
0.5 0.761 0.151 1.545 1
0.75 1.047 0.223 1.608 1
0.9 1.087 0.491 1.659 1
1.0 1.103 0.934 1.700 1
1.1 1.142 0.996 1.738 1
1.3 1.286 1 1.842 1

Table 11.6 Classification results using partial linear model (simulated data)

η0 η̂ Decision Overall error N-P Error K(0.05)

0.95 0.680 H1 0.165 0.390 1.093
1.70 1.531 H1 0.198 0.182 1.000
3.50 3.592 H1 0.042 0.032 1.000
5.00 5.036 H1 0.003 0.004 1.000
7.74 7.785 H1 0 0 1.000

11.4.2 Application to Real Data Problem

Now we analyze the real data ACTG175 with the proposed method. The trial was
conducted by the AIDS Clinical Trials Group (ACTG), which was supported by the
National Institute of Allergy and Infectious Diseases (NIAID). Participants were
enrolled into the study between December 1991 and October 1992, and received
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treatment through December 1994. Follow-up and final evaluations of participants
took place between December 1994 and February 1995.

The purpose of this data was to investigate whether treatment of HIV infection
with one drug (monotherapy) was the same, better than, or worse than treatment with
two drugs (combination therapy) in patients under some conditions.Three different
drugs were used to conduct this study: (1) zidovudine (AZT), (2) didanosine
(ddI), and (3) zalcitabine (ddC). The three drugs are nucleotide analogues that
act as reverse transcriptase inhibitors (RT-inhibitors). The original study noted no
clear differences between the ddI and AZT + ddI treatments—both appeared to
be approximately equal effective in preventing HIV progressing. Treatment with
AZT + ddC provided no additional benefit to continued treatment with AZT.
However, the results of ACTG 175 together with the results from earlier studies
demonstrate that antiretroviral therapy is beneficial to HIV-infected people who have
less than 500 CD4+ T cells/mm3. This study also shows, for the first time, that an
improvement in survival can be achieved in a sub-population.

We analyze this data using the proposed method on the combined therapy
(ZDV+ddI). The number of patients is 522. The response variable is the CD4
counts after 20 weeks of the corresponding treatment, and the covariates are age,
baseline CD4 counts, karnofsky score and number of days of previously received
antiretroviral therapy. We assume the effect of baseline CD4 counts on the response
variable is non-linear.

The analysis results are presented in Tables 11.7 and 11.8. We see that the
null hypothesis of no subgroup is rejected, and there is a treatment favorable
subgroup which is about 5% of the total patients. This is consistent with the result
in Yuan et al. (2020). This case is of particular interest for hypothesis generating for
developmental therapeutics. We can examine the small group of patients who are
not benefiting from the treatment and identify underlying reasons and study them.

Table 11.7 Parameter estimates under two models (scaled real data)

θ β η λ

Partial model (0.073,0.0421,−0.105) 2.986 0.009
[se] [0.042,0.041,0.044] [0.610] [0.031]
Linear model (0.083,0.053,−0.123) 3.106 0.010
[se] [0.042,0.041,0.043] [0.585] [0.004]

Table 11.8 Classification results (under scaled real data)

η̂ Decision K(0.05) Group1-percent

2.986 H1 0.349 0.052
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11.5 Conclusion

A partial linear model is proposed for the analysis of subgroups in clinical trial,
for the case one of the covariate has monotone non-linear effect on the response.
The non-linear part is modeled by a monotone function along with the linear part
of other covariates. The semiparametric maximum likelihood is used to estimate
model parameters. Simulation study is conducted to evaluate the performance of the
proposed method, and results show that the proposed model perform much better
than linear models especially when treatment effect is relatively small. Then the
model is applied to analyze a real data.
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Chapter 12
Exploratory Subgroup Identification for
Biopharmaceutical Development

Xin Huang, Yihua Gu, Yan Sun, and Ivan S. F. Chan

Abstract A major challenge in developing precision medicines is the identifi-
cation and confirmation of patient subgroups where an investigational regimen
has a positive benefit–risk balance. In biopharmaceutical development, exploring
these patient subgroups of potential interest is usually achieved by constructing
decision rules (a signature) using single or multiple biomarkers in a data-driven
fashion, accompanied by rigorous statistical performance evaluation to account for
potential overfitting issues inherent in subgroup searching. This chapter provides a
comprehensive review of general considerations in exploratory subgroup analysis,
investigates popular statistical learning algorithms for biomarker signature develop-
ment, and proposes statistical principles for subgroup performance assessment. An
example of subgroup identification for an immunology disease treatment leading to
regulatory label inclusion will be provided.

12.1 Introduction

Patients may have different prognoses when experiencing the same disease and
respond differently to the same treatment regimen, due to the heterogeneity of the
biological system and its interaction with the environment. The use of biomarkers
to understand the cause of this heterogeneity and to identify subgroups of patients
with similar disease prognosis and treatment response is the key to the success
of modern biopharmaceutical development. A biomarker, as defined by the FDA-
NIH Biomarker Working Group, is “a characteristic that is objectively measured
and evaluated as an indicator of normal biologic processes, pathologic processes,
or biological responses to a therapeutic intervention”(Group 2016). The term
biomarker, in clinical use for defining patient subgroups, refers to a broad range
of markers which can have demographic, physiologic, molecular, histologic or
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radiographic characteristics or measurements that are thought to be related to
some aspect of normal or abnormal biological functions or processes. A biomarker
signature is a combination of one or more biomarkers that are measured at baseline
or at an early disease progression/treatment time point and can predict an outcome
of clinical interest via an empirical model or rule. From the perspective of subgroup
identification in clinical usage, biomarkers signatures can be classified into two
categories: prognostic biomarker signatures and predictive biomarker signatures,
with the recognition that some biomarker signatures may fall into both categories.
A prognostic biomarker signature focuses on patient risk classification, which is
used to identify the likelihood of a clinical event, disease recurrence or progression
in patients who have the disease or medical condition of interest, and thus usually
aids in the decision of which patient subgroup needs an intensive treatment as
opposed to no treatment or standard therapy. Examples of prognostic biomarker
signatures are Breast Cancer genes 1 and 2 (BRCA1/2) mutations for assessing
the likelihood of a second breast cancer (Basu et al. 2015); Oncotype Dx Breast
Cancer Assay, measuring 21 genes to predict breast cancer recurrence in women
with node negative or node positive, ER-positive, HER2-nagative invasive breast
cancer (Mamounas et al. 2010; Paik et al. 2004); and C-reactive protein (CRP) level
as a prognostic biomarker to identify patients with unstable angina (Ferreiros et al.
1999). A predictive biomarker signature focuses on treatment selection, which is
used to identify a subgroup of patients who are more likely than similar individuals
without the biomarker signature to experience a favorable or unfavorable effect from
exposure to a medical product. Examples of predictive biomarker signatures are
patients with advanced NSCLC with high PD-L1 IHC expressions having better
penbrolizumab efficacy (Garon et al. 2015); BRCA1/2 mutations to identify patients
likely to respond to PARP inhibitors (Ledermann et al. 2012); and NSCLC patients
with high tumor mutation burden (≥10 mutations per megabase) having promising
efficacy after being treated with nivolumab plus ipilimumab versus chemotherapy
(Hellmann et al. 2018). Due to the complexity of biological systems, the causal
mechanism of relationship between the clinical outcomes and the biomarkers are
usually unknown and must be deduced empirically from experimental data. We
focus our discussion in this chapter on the retrospective statistical development of
biomarker signatures that provide a clear binary stratification of patients (signature
positive versus signature negative) for exploratory subgroup identification. In Sect.
12.2, we discuss how to find the optimal and stable cutoff for both prognostic and
predictive cases when a candidate biomarker is available but the cutoff to distinguish
the signature positive versus signature negative subpopulation is unknown. In Sect.
12.3, we consider situations where no single candidate biomarker to identify patient
subgroups is available and a complex biomarker signature needs to be derived. For
these settings, we provide an overview of scoring-based and rule-based methods
for the signature development for both prognostic and predictive cases. In Sect.
12.4, we propose a framework of internal validation for signature performance
assessment, and emphasize that the goal of exploratory subgroup identification is
to develop a stable signature with accurate performance assessment (which needs
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to be validated in future studies), instead of performing hypothesis testing. In Sect.
12.5, we present a successful example of subgroup identification for an immunology
disease treatment leading to regulatory label inclusion.

12.2 Single Biomarker Signature

It is common and often desirable during pharmaceutical development that a single
biomarker emerges as a promising predictor to select a subgroup of patients for
an outcome of interest. It simplifies the biological interpretation as well as the
downstream assay development. Many existing successful examples are based on
a single biomarker, such as 17p deletion for venetoclax in patients with relapsed
or refractory chronic lymphocytic leukemia (Stilgenbauer et al. 2016) and PD-L1
IHC expressions for penbrolizumab in patients with advanced NSCLC (Garon et
al. 2015). The clinical outcome of interest can be both efficacy or safety endpoints,
and the corresponding biomarker can be prognostic or predictive, depending on the
objective of the exploratory analysis and the experimental design. We will begin
this section with the prognostic case, introducing various tools for evaluating and
determining the optimal cutoff. We will then extend the discussion to the predictive
case, illustrating the difference in concepts and methods. Last, we will propose a
framework of searching for robust and stable cutoff for a single biomarker. Some
of the discussions in this section, especially the general concepts, also apply to the
later section of complex biomarker signature development.

12.2.1 Prognostic Biomarker Signature Analysis

In this section, we consider the scenario where a single prognostic biomarker is used
to identify a subgroup of patients that are more likely to experience an outcome
under a given disease or treatment condition. Intuitively, this type of signature is
useful for identifying a subgroup of patients who are more likely to progress in
disease or develop an adverse event after treatment. In early phases when there is
only a single arm, however, a signature can also be developed under the prognostic
setting to generate a hypothesis for a certain patient subgroup who may respond
better to the investigational new drug (usually combined with the support from
biological interpretation and external/public data validation); the signature can be
subsequently used for predictive purposes in later confirmative trials.

Many outcomes of interest during drug development are binary (e.g., 0 for event
absence and 1 for event presence); and a cutoff on a biomarker is often needed
to select a subgroup with significantly different event rate. This is often done
through comparing the performance of different candidate cutoffs. Some common
performance evaluation metrics for binary outcome can be shown in Table 12.1.
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These metrics measure the cutoff performance from different perspectives,
although some are more frequently used than others. A cutoff can then be selected
through optimizing some of these metrics. Meanwhile, there are many graphical
tools for evaluating the discriminatory accuracy of a continuous biomarker. The
receiver operating characteristic (ROC) curve is the most commonly used method,
which utilizes sensitivity and specificity to visualize and facilitate the cutoff selec-
tion. An ROC curve is created by plotting the sensitivity against the (1 − specificity)
using empirical or fitted values at a series of ordered cutoffs as shown in Fig. 12.1.

The ROC curve describes the discriminatory accuracy of a biomarker, with
the 45-degree diagonal line equivalent to random guessing. ROC-based cutoff
determination is an important technique, and it has been widely used for not only
subgroup identification but also assay and diagnostic test development. It is simple,
intuitive, and easy to interpret. Common methods to determine optimal cutoff
through ROC curves are listed below:

• Maximize the Youden index (sensitivity + specificity − 1) (Youden 1950), which
corresponds to the vertical distance between a point on the curve and the 45
degree line.

• Minimize the Euclidean distance between a point on the curve and the ideal point
(sensitivity = specificity = 1).

• Maximize the product of sensitivity and specificity (Liu 2012), which corre-
sponds to the rectangular area under the ROC curve for a given point.

There are also methods that take into account costs (Cantor et al. 1999; McNeil
et al. 1975; Metz 1978; Zweig and Campbell 1993). However, they are rarely used
in the exploratory analysis during pharmaceutical development because it is often
difficult to estimate the respective costs and prevalence.

The decision matrix in Table 12.1 essentially focuses on evaluating the concor-
dance between the dichotomized biomarker and the binary outcome. Alternatively,
one can use a model-based approach to select the best cutoff through optimization

Fig. 12.1 Receiver operating
characteristic curve
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procedures. Consider a supervised learning problem with data (xi, yi), i = 1, 2, . . . ,
n, where xi is the single biomarker variable and yi is the binary response/outcome
variable for the ith patient. We assume that the observed data are independently
and identically distributed copies of (X, Y), and an appropriate model (e.g., logistic
regression) incorporating a candidate cutoff can be built based on the data. Denote
the observed log likelihood by

∑n
i=1� {η (xi) , yi}, where η(xi) is a function of the

single biomarker that incorporates the cutoff. The following working model can be
used for the development of a cutoff-based prognostic signature,

η(x) = α + β · ω(x), (12.1)

where ω(x) is the subgroup indicator, with 1 and 0 representing signature positive
and negative subgroups respectively, so we have

ω(x) = I (s · x ≥ s · c) , (12.2)

where c is a candidate cutoff on the single biomarker x and s = ± 1 indicates the
direction of the cutoff. The best ω(x) along with the cutoff and the direction can then
be decided by searching for the optimal cutoff via testing β = 0 based on score test
statistics.

One of the major advantages of the model-based cutoff determination method
is its flexibility of handling different types of endpoints and its potential to adjust
for other covariates. Continuous and time-to-event outcomes are quite common
in drug development. For example, in oncology clinical trials, we often have best
tumor size change from baseline and survival time in addition to binary response.
The aforementioned model-based method can be easily extended to derive cutoffs
for the continuous and time-to-event endpoints by adopting a different model. For
instance, we can use a linear regression model for the continuous outcome and a
Cox regression model for the time-to-event outcome. The adjustment for potential
covariates is also straightforward. We can simply add the covariates to the model in
addition to α + β · ω(x), and search for the optimal cutoff by testing the statistical
significance of β = 0 for ω(x) based on score test statistics.

It is important to have a comprehensive performance evaluation once a cutoff has
been selected. While sensitivity, specificity and p-values for comparing subgroups
are often used to derive the optimal cutoff, other metrics may also be important
to gain a comprehensive assessment of performance of the final signature. For
example, PPV and NPV are relevant for binary outcomes if we want to estimate the
event rate within the selected and unselected subgroup. For continuous endpoints,
we may want to conduct some robust non-parametric testing (e.g., rank or sign
test) when the distribution of the biomarker within the subgroups is not normally
distributed. For time-to-event endpoints, we may want to calculate hazard ratio
or median/restricted mean survival time (Tian et al. 2014) for each subgroup. In
addition to various tests and statistics for performance evaluation, it is also beneficial
to utilize visualization tools to form a big picture of how the subgroup performance
changes with a moving cutoff. The ROC curve discussed above is one such example,
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Fig. 12.2 GAM plot on
outcome versus biomarker
cutoff

but it is not presented in the scale of the cutoff. An alternative option is to generate
a plot of fitted curve from a generalized additive model (GAM) using the outcome
and the biomarker data, as illustrated in Fig. 12.2.

The GAM plot shows the impact of a single biomarker on the outcome.
Depending on the type of the outcome, the y-axis could represent the log odds
ratio, log hazard ratio, or the difference compared to the population mean. Taking
the continuous case as an example, the curve represents the difference between the
outcome of a subject having a particular biomarker value on the x-axis and the
mean outcome of the population. Such a GAM plot could be generated to provide
additional insight for cutoff selection.

12.2.2 Predictive Biomarker Signature Analysis

A single predictive biomarker is used to identify a subgroup of patients who are
more likely to experience a treatment difference given two different treatments. For
example, we may want to identify a subpopulation that has a larger improvement
in response rate over the standard care compared to the rest of the population when
taking an investigational new drug. It is worth noting that, in the prognostic case,
the focus on the outcome itself; while in the predictive case, the focus is on the
difference of the outcome between the two treatment arms as illustrated in Fig. 12.3
(sig+ group corresponds to the selected subgroup using the single biomarker).

The prognostic and predictive cases are very different in nature, but the afore-
mentioned model-based method can be easily modified for predictive biomarker
cutoff derivation as in Eq. (12.3).

η(x) = α + β · [ω(x) × t] + γ · t, (12.3)

where t is the treatment indicator (e.g., 1 for treated and 0 for untreated subjects)
and ω(x) follows the same definition as in Eq. (12.2). Similarly, the best ω(x) along
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Fig. 12.3 Interaction plots for prognostic and predictive signature

with the cutoff and the direction can then be decided by searching for the optimal
cutoff via testing β = 0 in (12.3) based on score test statistics. The above working
model can be further modified to include the prognostic effect of the biomarker and
other covariates by adding the corresponding terms into the model.

Subgroup performance needs to be further evaluated after a cutoff has been
selected for the predictive biomarker. Similar to the prognostic case, various tests
and statistics can be calculated. For example, it may be of interest to calculate the
p-value of the treatment effect within each of the two subgroups, the p-value of
the subgroup effect within each of the two treatment arms, or some other summary
statistics within each subgroup. A GAM plot can also be generated to demonstrate
the relationship between the outcome difference of the two arms and the single
biomarker. Depending on the type of outcome, the treatment difference could be the
log odds ratio, log hazard ratio, or the difference between the two treatments for
subjects having a particular biomarker value on the x-axis. Alternatively, a so-called
subpopulation treatment effect pattern plot (STEPP) (Bonetti and Gelber 2004) can
be generated using a sliding window over the ordered values of the biomarker.
Briefly speaking, to generate the STEPP plot, one needs to first choose a window
size (sample size) and calculate a summary statistic within the window. Then a
sliding window will be used along the ordered values of the biomarker at a fixed
pace to generate the same summary statistic at each stop. The STEPP plot is simply
the connected dots, with x values equivalent to the median of the biomarker values
in the window, and y values equivalent to the corresponding summary statistic. The
advantage of STEPP over GAM is that it does not rely on a specific model, and it can
provide “model free” summary statistics within each window. The disadvantages of
STEPP are also obvious: a sufficiently large window size is needed for a reliable
estimate within each window; the total sample size is also needed to be large enough
so that the window can actually slide at a meaningful pace for a meaningful distance;
the visualization is affected by varying the window size or the sliding pace.
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12.2.3 A Framework for Robust Cutoff Derivation

Due to the data variability and quality, a small perturbation in the dataset may result
in a different cutoff selection, especially when the sample size is small. In this
section, we introduce a general framework for the cutoff selection process, called
Bootstrapping and Aggregating of Thresholds from Trees (BATTing) (Huang et al.
2017). The motivation of BATTing is that a single cutoff built on the original dataset
may be unstable and not robust enough against small perturbations in the data, and
prone to be over-fitting, thus resulting in lower prediction (stratification) power.
We note that the idea of BATTing is closely related to Breiman’s bagging method
(Breiman 1996) for generating multiple versions of a predictor via bootstrapping
and using these to get an aggregated predictor. We summarize the BATTing
algorithm below:

BATTing procedure:

Step 1. Draw B bootstrap datasets from the original dataset.
Step 2. Build a single cutoff on the biomarker for each of these B datasets using

appropriate cutoff derivation methods.
Step 3. Examine the distribution/spread of the B cutoffs, and use a robust estimate

(e.g., median) of this distribution as the selected cutoff (BATTing cutoff
estimate).

A simple simulation was performed with different sample sizes and effect sizes
to demonstrate the advantage of BATTing in terms of the robustness of cutoff
estimation. Specifically, in the simulation setting, data were generated from the
predictive case following Eq. (12.3) x follows a normal distribution with mean = 0
and variance = 2; β is set according to the designated effect size; γ = − β/2; and
subjects are randomized in a 1:1 ratio to receive treatment or placebo.

The benefit of BATTing on the threshold estimation under different scenarios
(with different sample sizes and effect sizes) was investigated. Figure 12.4 shows
the distribution of BATTing threshold estimates from 500 simulation runs across
different numbers of bootstrapping for sample size = 100 and effect size = 0.2,
with true optimal cutoff being 0 (red dashed vertical line). It shows that BATTing
helps reduce the influence of data perturbations in the dataset and thus stabilizes the
threshold estimate. Figure 12.5 shows the inter-quartile range of threshold estimates
from 500 simulations runs across different effect sizes when n = 100 (top panel) and
across different sample sizes when effect size is 0.2 (bottom panel). These plots also
demonstrate that the BATTing procedure helps reduce the variation and stabilizes
the threshold estimate. To further evaluate the advantage of using the more “stable”
threshold in terms of the accuracy in identifying subgroups of patients of interest, a
simulation was performed to compare the accuracy of identified subgroup labels
via the BATTing procedure with 50 bootstraps versus a stub without bootstrap.
The simulation result shows that the median accuracy is 85% versus 76% with
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Fig. 12.4 Simulation comparison on BATTing threshold distribution (sample size = 100, effect
size = 0.2; “n.boot” refers to the number of bootstraps)

Fig. 12.5 Interval quartile ranges on the distribution of threshold estimates

and without BATTing, which represents a 12% improvement. As a rule of thumb,
the number of bootstrap samples ≥50 is adequate and recommended in practice;
and fewer bootstraps may be adequate as the sample size increases and for larger
effect size.
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12.3 Complex Biomarker Signature

With multiple candidate biomarkers available, one can develop statistical learning
algorithms to combine multiple biomarkers into a single signature (decision rule).
There are generally two types of signatures: (1) scoring-based methods first project
the biomarkers from multiple dimensional spaces into a single composite score for
each patient; then algorithms described in Sect. 12.2 can be applied to derive an
optimal cutoff of this composite score in order to define the signature positive group;
(2) rule-based algorithms directly define a (AND/OR) logic combination of multiple
biomarkers and their cutoffs to define the signature positive subgroup.

The model-based approach introduced in Sect. 12.2 can be generalized to com-
plex biomarker signature development. Consider a supervised learning problem with
data (Xi, yi), i = 1, 2, . . . , n, where Xi is a p-dimensional vector of predictors and
yi is the response/outcome variable for the ith patient. We assume that the observed
data are independently and identically distributed copies of (X, y). We consider three
major applications: linear regression for continuous response, logistic regression for
binary response, and Cox regression for time-to-event response, where yi = (Ti, δi),
Ti is a right censored survival time and δi is the censoring indicator. We denote
the observed log likelihood or log partial likelihood by

∑n
i=1� {η (Xi ) , yi}, where

η(Xi) is a function of predictors. For example, η(·) may represent the mean response
in simple linear regression, the log odds in logistic regression, or the log hazard ratio
in the Cox proportional hazards model without intercept. We consider the following
working model for the development of prognostic signatures (i.e., for identifying
patient subgroups with favorable response, independent of the therapeutic),

η (X) = α + β · ω (X) (12.4)

Similarly, we consider the following working model for predictive signatures
(i.e., for identifying patient subgroups with favorable response to a specific thera-
peutic),

η (X) = α + β · [ω (X) × t] + γ · t, (12.5)

where t is the treatment indicator, with 1 for treated and 0 for untreated subjects. In
both models, ω(X) is the binary signature rule, with 1 and 0 for signature positive
and negative subgroups respectively.

For scoring-based methods,

ω (X) = I (s · f (X) > s · c) , (12.6)

where f (·) can be any function that projects multiple biomarkers into a single
composite score, c is a candidate cutoff on the score, and s = ± 1 indicates the
direction of the cutoff.
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For rule-based methods,

ω (X) =
∏m

j
I
(
sjXj ≥ sj cj

)
, (12.7)

where cj is the cutoff on the jth selected marker Xj, sj = ± 1 indicates the direction
of the binary cutoff for the selected marker, and m is the number of selected markers.

In this section, we will discuss several algorithms for constructing ω(X) with the
objective of optimizing the statistical significance level for testing β = 0 in (1) or
(2) based on the score test statistics:

S {ω (· )} = U{ω (· )}2/V {ω (· )} , (12.8)

where U {ω (· )} = ∑n
i=1∂� {η (Xi) , yi} /∂β and V{ω(·)} is the corresponding

inverse of the Fisher information marix under the null hypothesis with β = 0 (Tian
and Tibshirani 2011). The specific form of this test statistic depends on the employed
working model. For example,

U {ω (· )} = n− 1
2
∑n

i=1
ti ω̂ (Xi)

{

yi − eα̂+γ̂ ti

1 + eα̂+γ̂ ti

}

(12.9)

can be used for estimating the predictive signature rule for binary responses, where
α̂ and γ̂ are consistent estimators for α and γ respectively, in the absence of the
interaction term, and ω̂ (X) is the current estimator of the rule.

12.3.1 Scoring-Based Methods

When multiple candidate biomarkers are available, most of the statistical learning
methods first create a scoring system f (X) as a function of multiple biomarkers
to estimate a subject-specific outcome (i.e., the estimated endpoints of interest in
the prognostic case, and the estimated treatment differences in the predictive case).
Based on this scoring system, a desired level (cutoff) c of endpoint measures (in a
prognostic case) or treatment differences (in a predictive case) needs to be specified
to obtain a subgroup of patients.

Many of the popular subgroup identification methods in the statistical literature
belong to this category. In the prognostic case, for example, regression-based
methods (GLM, LASSO, MARS, etc.), machine learning based methods (CART,
GUIDE, Random Forest, SVM and Neural Network, etc.) are among those popular
algorithms (Hastie et al. 2009) to construct the scoring system for predicting the
outcome of interest, followed by algorithms of finding (or predefining) a cutoff as
the second step in defining the subgroup of interest. In the predictive cases, mod-
ifications of the above algorithms that take into account the treatment interaction
are developed for predicting the treatment difference. Examples include Interaction
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Trees (Su et al. 2008, 2009), Bayesian approaches (Berger et al. 2014), Virtual Twins
(Foster et al. 2011), Adaptive Index Model (AIM) (Tian and Tibshirani 2011), and
outcome weighted learning related methods (Chen et al. 2017; Delmar et al. 2017;
Zhao et al. 2012).

We will present the AIM approach in detail as below, in which f (X) is in the form
of additive signature score as the sum of individual binary rules,

f (X) =
∑m

j
I
(
sjXj ≥ sj cj

)
,

where m predictors are selected from a set of p candidates via a cross-validation
procedure. The complete AIM procedure for the purpose of subgroup identification
is shown below:

AIM procedure:

Step 1. Begin with f(0)(X) = 0, � = {1, . . . , p}, where p is the number of candidate
predictors.

Step 2. For j = 1, 2, . . . , m, update

f (j) (X) ← f (j−1) (X) + I
(
sh(j)Xh(j) ≥ sh(j)ch(j)

)
and

Λj ← Λj−1\h (j − 1)

where index h(j) ∈ �j and (ch(j), sh(j)) are selected to maximize S{f(j)(X)}.
Step 3. BATTing is applied to the resulting AIM score f (X) =∑m

j I
(
sjXj > sj cj

)

to construct the final signature rule in the form of I(sAIMf (X) ≥ cAIM) with
estimated direction sAIM and cutoff cAIM .

Due to the randomness of cross-validation, the optimal number of predictors m
may be different in each implementation for the same dataset. In order to stabilize
the variable selection process (i.e., estimation of m), we propose a Monte Carlo
procedure that entails repeating the cross-validation multiple times, estimating the
optimal number of predictors, m, each time, and using the median of the m s
derived from each cross-validation run as the final optimal number of predictors.
We performed simulations (results not reported here due to space limitations) to
demonstrate how the proposed Monte Carlo procedure stabilized the estimation of
m; and based on the simulation results we recommended the optimal number of
Monte Carlo repetition to be 25 to 50.

Remark 12.1 We may use t − π t to replace the treatment indicator t in the working
model and the corresponding algorithm such as AIM, where π t is the proportion
of treated patients in the study. In this way, the main effect becomes orthogonal
to this “centered treatment indicator”; and thus the search for predictive signature
based on the score test would not be confounded by the presence of a prognostic
effect. On the other hand, when the prognostic and predictive signatures do share
common components, the current algorithm may be more sensitive in estimating
such predictive signature rules.
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Remark 12.2 All scoring-based methods are two-step optimization procedures. To
avoid bias due to over-optimism, one needs to use a nested cross-validation method
that implements the complete two-step procedure to evaluate the model performance
and select the best scoring system among all competing methods. We will discuss
this procedure in detail in Sect. 12.4.

Remark 12.3 For the same reason, the visualization tools introduced in Sect. 12.2
cannot be directly applied to evaluate the relationship across all possible cutoffs and
their corresponding performance. Instead, the nested cross-validation methods need
to be adapted to generate similar visualization (Zhao et al. 2013).

12.3.2 Rule-Based Methods

In contrast to the two-step procedure implemented by scoring-based methods, rule-
based methods aim for direct subgroup search, and usually result in simple decision
rules for patient subgroup selection that are more interpretable and convenient in
clinical practice. Some examples are RULE-Fit (Friedman and Popescu 2008),
PRIM (Chen et al. 2015; Friedman and Fisher 1999), SIDES (Lipkovich and
Dmitrienko 2014; Lipkovich et al. 2011), AIM-Rule (Huang et al. 2017), and
Sequential-BATTing (Huang et al. 2017).

In this section, we describe in detail two rule-based methods for subgroup iden-
tification: (1) Sequential-BATTing, a multivariate extension of the Bootstrapping
and Aggregating of Thresholds from Trees (BATTing), and (2) AIM-RULE, a
multiplicative rules-based modification of the Adaptive Index Model (AIM). We
present these subgroup identification methods under the aforementioned unified
framework.

Both methods focus on multiplicative signature rules:

ω (X) =
∏m

j
I
(
sjXj ≥ sj cj

)
,

where cj is the cutoff on the jth selected marker Xj, sj = ± 1 indicates the direction
of the binary cutoff for the selected marker, and m is the number of selected markers.

12.3.2.1 Sequential BATTing

Sequential BATTing is designed to derive a binary signature rule of (12.7) in a
stepwise manner by extending the BATTing procedure. The resulting signature rule
is a multiplicative of predictor-threshold pairs. The details of the algorithm are
described in the following steps:
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Sequential BATTing procedure

Step 1. ω(0)(X) = 1, � = {1, . . . , p}, where p is the number of candidate predictors.
Step 2. For j = 1, · · · , m, first find ck and sk for each Xk, k ∈ �j via BAT-

Ting procedure described above and Xh(j) is then selected to maximize
S{ω(j − 1)(X)I(shXh ≥ shch)} with respect to h.

ω(j) (X) ← ω(j−1) (X) I
(
sh(j)Xh(j) ≥ sh(j)ch(j)

)
and

Λj ← Λj−1\h (j − 1) .

Step 3. The final signature rule ω(X) = ω(j − 1)(X), if the likelihood of ratio test
statistics of ω(j)(X) vs ω(j − 1)(X) is not significant at a predefined level of
α.

Note that the p-values from the likelihood ratio test in the stopping criteria do not
have usual interpretation because of multiplicity inherent in subgroup search; and
the α cutoff in the stopping criteria is served as a tuning parameter. Nevertheless, the
choice of α = 0.05 prevents premature termination of the algorithm and encourages
inclusion of potentially informative markers.

12.3.2.2 AIM-Rule

Note that step 2 of the AIM algorithm implicitly ranked the selected predictors in
terms of their contribution to the model. This order of the predictor importance,
however, is not reflected in the additivity form of the AIM score f (X), because
it assigns equal weights to all m predictors. Intuitively, the AIM procedure is
very efficient if all m predictors have relatively equal contributions to the model;
otherwise, the same AIM score may not imply the same effects for different
patients. Here, we proposed another variation of the AIM algorithm called AIM-

Rule which uses multiplicative binary rules
∼
f (X) = ∏h(k)

j I
(
sjXj ≥ sj cj

)
as the

final signature, where k = 1, 2, . . . , m.
AIM-Rule procedures:

Step 1. Construct the AIM score f (X) = ∏m
j I
(
sjXj ≥ sj cj

)
. Without loss of

generality, we assume that the relevant features enter the signature rule in
the order of X1, X2, · · · , Xm.

Step 2. Construct the final signature rule in the form of

∼
f (X) =

∏∼
h

j=1
I
(
sjXj ≥ sj cj

)
,

where the index
∼
h is selected via BATTing based on the ordered signature rules:

{
I (s1X1 ≥ s1c1) , I (s1X1 ≥ s1c1) I (s2X2 ≥ s2c2) , . . . ,

∏m

j
I
(
sjXj ≥ sj cj

)}
.



260 X. Huang et al.

12.4 Model Evaluation: Nested Cross-Validation

Based on the signature rule ω(X) derived from the above algorithms, patients are
stratified into signature positive and signature negative groups. It should be noted
that the resubstitution p-values for β associated with the final signature rules and
the resubstitution summary measures determined from the same data used to derive
the stratification signature may be severely biased because the data has already been
explored for deriving the signature. Instead, we advocate determining the p-value of
the signature via K-fold cross-validation (CV) and refer to such p-value as Predictive
Significance (Chen et al. 2015; Huang et al. 2017). From this CV procedure, we can
also estimate the effect size and related summary statistics, along with estimates
of predictive/prognostic accuracy. For practical purposes, we recommend K = 5.
We now describe the procedure for deriving the Predictive Significance and the
associated summary measures. First, the dataset is randomly split into K subsets
(folds). A signature rule is then derived from K-1 folds from one of the algorithms.
This signature rule is then applied to the left-out fold, resulting in the assignment
of a signature positive or signature negative label for each patient in this fold. This
procedure is repeated for each of the other K-1 folds by leaving them out one at a
time, resulting in a signature positive or signature negative label for each patient in
the entire dataset. All signature positive and negative patients in the entire dataset
are then analyzed together and a p-value for β is calculated; we refer to this p-value
as CV p-value. Due to the variability in random splitting of the entire dataset, this
K-fold CV procedure is repeated multiple times (e.g., 100 times), and the median of
the CV p-values across these CV iterations is used as an estimate of the Predictive
Significance. Note that the CV p-value preserves the error of falsely claiming a
signature when there is no true signature, as demonstrated in the simulation section.
Therefore it can be used to conclude that no signature is found if the effect of interest
is greater than a pre-specified significance level (i.e., 0.05). In addition to p-values,
we can use the same procedure to calculate the CV version of relevant summary
statistics (e.g., response rate, median survival time, restricted mean survival time
(Tian et al. 2014), sensitivity, specificity, etc.) and point estimates of the treatment
effect in each subgroup (odds ratio, hazard ratios, etc.).

Note that this cross-validation procedure evaluates the predictive performance
only after aggregating the predictions from all the left-out folds, which is an
important difference compared to the more traditional/common approaches that
evaluate the predictive performance of each fold separately. The proposed approach
is in the same spirit of the pre-validation scheme proposed in Tibshirani and Efron
(2002), as well as the cross-validated Kaplan-Meier curves proposed by Simon
(2013) and Simon et al. (2011). The proposed cross-validation procedure preserves
the sample size of the original training-set, which is particularly important for the
subgroup identification algorithms where we evaluate the p-values for testing β = 0,
and also for more reliable estimation of summary statistics and point estimates – this
is especially critical when the training data set is not large, as is often the case in
Phase-I and Phase-II clinical trials.
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The Predictive Significance and related CV version of summary statistics
calculated in the aforementioned process help reduce the bias of the resubstitution
performance assessment of the final signature and provide a realistic estimation of
predictive performance of the recovered signature derived from a method. It is of
note that a signature performance estimate based on cross-validation would be of
more practical use and more likely to be replicated in a future prospective trial,
enriching the patient population based on such signature.

12.5 Optimizing Long-Term Treatment Strategy: An
Example of Subgroup Identification Leading to Label
Inclusion

On July 30, 2015, the European Medicines Agency approved the use of originator
adalimumab (Humira

®
, AbbVie) 40 mg every-week dosing for the treatment of

adults with active moderate to severe hidradenitis suppurativa (HS) who have failed
to respond to conventional systemic HS treatments. Humira

®
was the first, and up

to today the only, medication approved for HS in the European Union. The long-
term treatment strategy included in the European Medicines Agency Summary of
Produce Characteristics for Humira was the result of subgroup identification which
provides patients the opportunity to benefit from this treatment beyond 12 weeks,
the originally planned primary analysis point. The U.S. Food and Drug Admiration
(FDA) approval later (September 10, 2015) did not limit the treatment duration to
12 weeks either.

The sections below summarize the background, methods, and the results of the
subgroup analysis that led to the label inclusions of longer-term treatment strategy.

12.5.1 Motivation and Background

Evaluating the benefit–risk profile in a randomized withdrawal setting has become
commonplace, required by regulatory agencies for the approval of long-term treat-
ment in a chronic disease setting, and by payers for economic consideration. Various
challenges were faced in the clinical development program of adalimumab in the
treatment of hidradenitis suppurativa (HS), making a well-powered randomized
withdrawal trial unfeasible.

HS is a serious, painful, systemic, chronic skin disease which may persist for
decades (Jemec 2012; Revuz 2009; Shlyankevich et al. 2014). Inflammatory skin
lesions, including abscesses, fistulas, and nodules, may exhibit purulent, malodorous
drainage, and develop tunnels (sinus tracts) (Lipsker et al. 2016) and scarring as
disease severity increases (Jemec 2012; Kurzen et al. 2008).
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The adalimumab clinical development program included two double-blind,
placebo-controlled pivotal studies; both were powered for the primary endpoint
at the end of the initial 12-week double blind period. Per agreement with FDA, a
subsequent 24-week randomized withdrawal period was included in each study as
exploratory, and the outcome of this period would not impact the approvability, for
the following reasons:

1. Adalimumab is a fully human, IgG1 monoclonal antibody specific for TNF-α.
While immunologic abnormalities have been hypothesized to have a causal role
in the disease (Jemec et al. 1996) as significant elevations in levels of the tumor
necrosis factor α (TNF-α) have been detected in HS lesions (van der Zee et
al. 2011), the unknown nature of responses made pre-specification of dosing
strategy for long-term treatment extremely challenging. Randomized trials of
other anti-TNF-α agents (infliximab (Grant et al. 2010) and etanercept (Adams
et al. 2010)) for the treatment of HS had failed to show a significant benefit.

2. HS lesions may flare, resolve and recur in different body areas; therefore, a high
degree of disease fluctuation was expected, and the categorization of long-term
treatment was difficult.

3. A well-powered randomized withdrawal study requires a large study size, which
was not practical because of the low prevalence of HS. Consequently, FDA has
granted adalimumab Orphan Drug designation for the treatment of moderate to
severe HS.

12.5.2 Method

PIONEER I and II are two pivotal studies similar in design and in enrollment
criteria. Each study had two placebo-controlled, double-blind periods.

• Period A: patients were randomized 1:1 to adalimumab 40 mg weekly dosing
(adalimumab weekly dosing) or placebo. The primary endpoint was the propor-
tion of patients achieving Hidradenitis Suppurativa Clinical Response (HiSCR)
(Kimball et al. 2016b), which is defined as a ≥50% reduction in inflammatory
lesion count (sum of abscesses and inflammatory nodules, AN count), and no
increase in abscesses or draining fistulas in HS when compared with baseline as
a meaningful clinical endpoint for HS treatment.

• Period B: adalimumab-treated patients continuing to Period B were
re-randomized at week 12 to adalimumab weekly dosing, adalimumab every-
other-week dosing, or matching placebo in a 1:1:1 ratio; Week-12 HiSCR status
was included as a stratification factor. Placebo patients were reassigned to
adalimumab weekly dosing in PIONEER I or remained on placebo in PIONEER
II. Patients who lost response or had worsening or absence of improvement in
Period B (defined in Fig. 12.6) were allowed to enter the open label extension
study (OLE). All patients were treated in a blinded fashion. Randomization and
blinding details have been published (Kimball et al. 2016a).
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Fig. 12.6 Study design. aWeek-12 HiSCR Responders through Period B to week 36 or until
loss of response (loss of 50% of the AN count improvement gained between baseline and week
12), and Week-12 HiSCR Non-Responders continued Period B to at least week 26 (and up to
week 36). bPatients could enter the multi-center, 60-week, phase-3 OLE trial (evaluated long-
term safety, tolerability, and efficacy of adalimumab for patients with moderate-to-severe HS),
if: (1) they completed Period B of their respective PIONEER trial, (2) achieved HiSCR at entry
to Period B of their respective PIONEER trial and then experienced a loss of response (LOR),
or (3) did not achieve HiSCR at the entry of Period B and then experienced worsening or
absence of improvement (WOAI) (greater or equal to the baseline AN count on two consecutive
visits after week 12, occurring at least 14 days apart). cStarting at week 4 after 160 mg (week
0), 80 mg (week 2). dStratified by baseline Hurley Stage II versus III (PIONEER I & II) &
baseline concomitant antibiotic use (PIONEER II). eRe-randomization for patients treated with
adalimumab in Period A was stratified by Week-12 HiSCR status at entry into Period B, and by
baseline Hurley Stage II versus III. f40 mg starting at week 16 after 160 mg (week 12), 80 mg
(week 14). Abbreviations: HiSCR, Hidradenitis Suppurativa Clinical Response; AN, abscesses
and inflammatory nodules; OLE, open-label extension; HS, hidradenitis suppurativa; LOR, loss of
response; WOAI, worsening or absence of improvement

This subgroup identification utilized the integrated data from the two studies
to ascertain the most clinically appropriate patient group receiving continuous
adalimumab weekly dosing over the longer term versus adalimumab discontin-
uation. The analysis population comprised patients who were re-randomized to
either continuation of adalimumab weekly dosing or withdrawal from adalimumab
(placebo) in Period B after initial treatment of adalimumab weekly dosing for 12
weeks. The primary endpoint was the proportion of patients achieving HiSCR at the
end of Period B. Safety profile was evaluated as well.
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Fig. 12.7 Predictive significance by cross-validation (CV)

Several subgroup identification algorithms were implemented for this subgroup
identification exercise, which included: Sequential-BATTing, AIM, AIM-Rule,
PRIM, VG (Virtual Twins plus GUIDE) and SIDES.

Candidate variables included: baseline BMI and stratification factors (baseline
Hurley Stage and continuation of baseline antibiotics), patients’ response status at
the end of Period A (HiSCR status, change and percent change from baseline in AN
count).

The final subpopulation was proposed by comparing cross-validation perfor-
mance of these candidate methods via a rigorous statistical framework, as intro-
duced in Sect. 12.4 and shown in Fig. 12.7, which demonstrated that the subgroup
identified from Sequential-BATTing is optimal.

The analysis of continued adalimumab weekly dosing vs withdrawal from
adalimumab in each population was performed by CMH, adjusting for baseline
Hurley Stage and Week-12 HiSCR status. Missing data (including early escape
to OLE due to loss of responses or worsening of disease) were handled by non-
responder imputation (NRI) (Fig. 12.8).

12.5.3 Result

A total of 199 patients (99 continued adalimumab weekly dosing, 100 withdrawal
from adalimumab weekly dosing) in Period B were included for the subgroup
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Fig. 12.8 Proportion of patients achieving HiSCR by visit (all patients). *, **, ***: statistically
significant at 0.05, 0.01, and 0.005 level

Fig. 12.9 Results from sequential BATTing method. EW/PBO: withdrawal from adalimumab
weekly dosing; EW/EW: continuation with adalimumab weekly dosing; AN25: at least 25%
reduction in total AN count

identification. The overall HiSCR rates are presented in (Gulliver et al. 2017). The
identified signature-positive subgroup comprised patients achieving at least 25%
reduction in AN count (≥AN25) after the initial 12 weeks of treatment, named PRR
population (Partial Responders and HiSCR Responders). The subgroup results are
presented in Figs. 12.9, 12.10, and 12.11. The safety profile in the PRR population
was similar to the overall population.

The results of these analyses were included in the EU Summary of Product
Characteristics (SmPC), Canada Product Monograph, etc.
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Fig. 12.11 Proportion of patients achieving HiSCR (signature-negative: non-PRR population)

EMA SmPC:

In patients with at least a partial response to Humira 40 mg weekly at Week 12, the HiSCR
rate at Week 36 was higher in patients who continued weekly Humira than in patients
in whom dosing frequency was reduced to every other week, or in whom treatment was
withdrawn.

Canada Product Monograph:

In patients with at least a partial response (≥25% improvement in AN count) to HUMIRA
40 mg weekly at Week 12, the proportion of patients achieving HiSCR at Week 24 was
57.1% in HUMIRA 40 mg weekly, 51.4% in HUMIRA 40 mg every other week and 32.9%
in the placebo group. The corresponding proportion at Week 36 was 55.7% in HUMIRA
40 mg weekly, 40.0% in HUMIRA 40 mg every other week and 30.1%.
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The identified PRR population was also used in the cost-effectiveness modeling
and provided a scientific rationale to payers, allowing the majority of the patients to
receive long-term treatment of adalimumab weekly dosing.

12.6 Discussion

Subgroup identification strategies can be applied to various stages of drug devel-
opment. The considerations when initiating exploratory subgroup identification
activities include study design, clinical scenario, and practical considerations. The
subgroup identification activities are not only applicable in searching for potential
subgroups of treatment responders from a failed trial, but also applicable in
identifying subgroups of patients who may experience different outcomes (efficacy,
safety, etc.) in a successful trial to further enhance the optimal treatment strategies
(dosage, treatment duration, etc.) with a more favorable benefit–risk profile.

There are many discussions in the statistical literature addressing the issue
of controlling “type I error” for the subgroup identification exercise. It is worth
noting that the retrospective subgroup identification is not a hypothesis testing
strategy; instead, like all the statistical learning practices, it is aimed at developing a
predictive classifier as accurate as possible, and using a rigorous internal validation
paradigm to obtain an unbiased estimate of the statistic of interest (e.g., treatment
effect in the signature positive group) resulting from the developed classifier. When
exercising subgroup identifications, there is no “one-size-fits-all” method (it is usu-
ally difficult to predetermine which method outperforms others due to the difference
in dataset structure under the specific problem); hence we recommend considering
a variety of methods for identifying patient subgroups in any given dataset. When
an independent validation/test dataset is not available, it is particularly important
that the performance of the derived signatures from different algorithms needs to be
evaluated with careful application of a cross-validation approach, such as the nested
cross-validation described in Sect. 12.4 of this chapter. Finally, an independent
validation/test dataset (preferably from a similar and proper design) would be ideal
to confirm and validate the subgroup finding.

Due to the exploratory nature of the retrospective subgroup identification, one
must carefully interpret the results according to the level of evidence generated
(Simon et al. 2009), especially when the result is intended for regulatory approval
and change of clinical practice. For this purpose, a successful subgroup identifi-
cation exercise requires cross-disciplinary collaborations from the trial design to
the interactions with regulatory authorities. For example, the study needs to be
designed appropriately to allow the identification of subgroups. In the adalimumab
HS example, with the consideration of the natural disease fluctuation and the
unknown response time course, the clinical development program did not follow
the traditional randomized withdrawal trial design which would have re-randomized
only the initial HiSCR responders; the re-randomization in the HS program included
all patients entering Period B, which made the subgroup identification possible. Last
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but not least, the success of convincing regulatory agencies, payers, and physicians
often relies on supporting evidence beyond statistical modeling. For example, the
candidate biomarkers feeding to the algorithms must be clinically meaningful;
the subgroup signature needs to be biologically plausible and easy to identify
and evaluate by physicians or patients; and the effect size needs to be clinically
meaningful. In addition, the size of the signature positive subgroup also needs to
be considered. The success of the Humira HS example was also influenced by the
unmet medical need and impact of the adalimumab treatment.
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Chapter 13
Statistical Learning Methods for
Optimizing Dynamic Treatment Regimes
in Subgroup Identification

Yuan Chen, Ying Liu, Donglin Zeng, and Yuanjia Wang

Abstract Many statistical learning methods have been developed to optimize
multistage dynamic treatment regimes (DTRs) and identify subgroups that most
benefit from DTRs using data from sequential multiple assignment randomized
trials (SMARTs) and for observational studies. These methods include regression-
based Q-learning and classification-based outcome-weighted learning. For the latter,
a variety of loss functions can be considered for classification, such as hinge
loss, ramp loss, binomial deviance loss, and squared loss. Furthermore, data
augmentation can be used to further improve learning performance. In this chapter,
we describe the development of an R-package, namely “DTRlearn2”, to incorporate
the methods from Q-learning and outcome-weighted learning to be widely used
for medical clinical trials and public health observational studies. We illustrate the
new R package via application to data from a 2-stage ADHD study. We compare
the performance of different learning methods that are obtained from the package.
The analysis reveals that children with medication history can benefit from starting
treatment of behavioral modification.
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13.1 Introduction

Heterogeneous treatment responses are commonly observed in patients. Thus, a
universal treatment strategy may not be ideal, and tailored treatments adapting
to individual characteristics could improve treatment response rates. Dynamic
treatment regimes (DTRs, Lavori and Dawson 2000), also known as adaptive
treatment strategies (Lavori and Dawson 2000), multi-stage treatment strategies
(Thall et al. 2002; Thall and Wathen 2005), or treatment policies (Lunceford et al.
2002; Wahed and Tsiatis 2006), adaptively assign treatments based on patient’s
intermediate responses and health history over time. DTRs provide useful tools
for managing patient’s long-term health conditions and for facilitating personalized
medicine.

DTRs can be inferred from data collected in Sequential Multiple Assignment
Randomization Trials (SMARTs), in which randomization is implemented at each
treatment stage. Recently, there have been numerous methods developed to estimate
optimal DTRs using SMARTs. In particular, Q-learning, first proposed by Watkins
(1989) and Qian and Murphy (2011), models the conditional expectation of the so-
called Q-functions in order to infer the best treatment at each stage. Alternatively,
A-learning (Murphy 2003) and G-computation (Lavori and Dawson 2004; Moodie
et al. 2007) models the contrasts of the Q-functions between two treatments.

Without modeling Q-function but making an analogy between learning optimal
DTRs and weighted classification, outcome-weighted learning (O-learning, Zhao
et al. 2012, 2015) were developed to estimate DTRs through support vector
machines (SVMs). Later on, Liu et al. (2014, 2018) proposed an augmented version
of outcome-weighted learning to further improve the efficiency based on fitted
Q-functions and derived residuals after removing the average treatment effects.
Other non-parametric and machine learning methods exist, for example tree-based
methods (Su et al. 2009; Foster et al. 2011; Laber and Zhao 2015; Qiu and
Wang 2019) to identify subgroups of people who can benefit more from a certain
treatment.

In this paper, we develop software for Q-learning and a variety of outcome-
weighted learning methods for DTR estimation using data from SMARTs. We also
discuss extensions to handle observational studies. We develop a comprehensive R
package, namely “DTRlearn2”, to implement these methods. For outcome-weighted
learning, we include different loss functions such as hinge loss, ramp loss, binomial
deviance loss, and squared loss. The package is illustrated via implementation to
both simulated and real data. We also demonstrate how the learned DTRs can be
applied to future patients.
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13.2 Conceptual Framework

We consider estimating K-stage DTRs from a K-stage SMART. For k =
1, 2, . . . , K , we denote Ak as the assigned treatment at stage k taking values in
{−1, 1}, and Rk as a reward outcome variable (e.g., treatment response measured
by reduction of symptoms) observed post the kth stage treatment. Without loss
of generality, we assume a higher reward is more desirable. Let Xk be a vector
of subject-specific variables collected at stage k just before treatment. A patient’s
health history information (feature variables) prior to treatment at stage k, denoted
by Hk , can be defined recursively as Hk = (Hk−1, Ak−1, Rk−1, Xk) with H1 = X1.
Note that Hk can also be constructed flexibly to allow interaction terms, for example,
Hk = (Hk−1, Ak−1, Rk−1, Xk,Hk−1Ak−1, Rk−1Ak−1, XkAk−1).

A DTR is a sequence of decision functions, D = (D1,D2, . . . ,DK), where Dk

maps Hk to the domain of Ak , i.e., {−1, 1}. Our goal is to identify the optimal DTR,
defined as D∗, that yields the highest expected total reward if all patients in the
population follow the DTR. That is,

D∗ = argmaxDED [R1 + R2 + . . . + RK ],

where ED is the expectation under Ak = Dk(Hk). The expectation on the right-hand
side is defined as the value function associated with D , denoted by V (D).

13.2.1 Q-learning

In Q-learning, a key concept is called Q-function, which is defined at each stage as
the expected outcome if patients are treated optimally at the current stage and all
future stages. Let Qk(Hk) be the Q-function at stage k. An important property of
the Q-function is the following Bellman-type equation:

Qk(Hk) = max
a

E[Rk + Qk+1(Hk+1)|Hk,Ak = a].

Thus, the optimal treatment for a patient with Hk at stage k is the treatment
maximizing the expectation on the right-hand side of the above equation.

Motivated by this property, Q-learning proceeds by estimating Q-functions and
optimal DTRs through a backward algorithm. Starting from stage K , we estimate
the conditional function

E[RK |HK,AK ],

and denote the optimal treatment at stage K as

D∗
K(HK) = argmaxaE[RK |HK,AK = a].
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The optimal conditional expected outcome at stage K can be represented as

QK(HK) = E[RK |HK,AK = D∗
K(HK)], (13.1)

At stage (k−1), k = K, . . . , 2, given Qk(Hk), we estimate the conditional function

E[Rk−1 + Qk(Hk)|Hk−1, Ak−1].

The optimal treatment at stage (k − 1) is the one that maximizes the expected
conditional cumulative outcome from stage k − 1 to K ,

D∗
k−1(Hk−1) = argmaxaE[Rk−1 + Qk(Hk)|Hk−1, Ak−1 = a].

The expected optimal outcome increment from stage k − 1 to K under the optimal
treatment from stage k − 1 to K can be represented as

Qk−1(Hk−1) = E[Rk−1 + Qk(Hk)|Hk−1, Ak−1 = D∗
k−1(Hk−1)]. (13.2)

13.2.2 Outcome-Weighted Learning

Different from Q-learning, outcome-weighted learning estimates optimal treatment
rules via directly maximizing the value function V (D). If we let πk(a, hk) denote
the treatment assignment probability at stage k in a SMART, i.e., P(Ak = a|Hk =
hk), then this value function can be shown (Qian and Murphy 2011) to be equivalent
to

V (D) = ED

[ K∑

k=1

Rk

]
= E

[
�K

k=1I (Ak = Dk(Hk))(
∑K

k=1 Rk)

�K
k=1πk(Ak,Hk)

]
.

Hence, the goal is to estimate a DTR that maximizes the value function. Outcome-
weighted learning transforms this optimization as a weighted classification problem,
where Ak are class labels, Hk are feature variables, and reward outcomes along with
treatment assignment probabilities are subject-specific weights.

13.2.2.1 Outcome-Weighted Learning Without Augmentation

Motivated by the observation of the connection between the value maximization and
the weighted classification, a general framework of outcome-weighted learning can
be described as follows. Starting from stage K , we minimize
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E

[
RK

πK(AK,HK)
I
(
AK �= DK(HK)

)]

with respect to DK to learn the optimal treatment rule D∗
K . Based on Liu et al. (2014,

2018), this minimization is equivalent to minimizing

E

[ |RK − sK(HK)|
πK(AK,HK)

I
[
AK sign

(
RK − sK(HK)

) �= DK(HK)
]]

, (13.3)

where we subtract the total reward by an arbitrary function sK(HK) of feature
variables Hk . The rationale is that removal of the main effects independent of treat-
ment should not affect treatment-decision while taking residuals can significantly
reduce the variability of weights to improve algorithm performance. Furthermore,
the weights in the latter are non-negative so many learning algorithms are applicable.
Liu et al. (2014, 2018) theoretically prove the efficiency gain of taking residuals and
equivalence of the above two equations.

At stage (k − 1), k = K, . . . , 2, we minimize

E

[
MK

k

|∑K
j=k−1 Rj−sk−1(Hk−1)|
�K

j=k−1πj (Aj ,Hj )

I
[
Ak−1 sign

(∑K
j=k−1 Rj − sk−1(Hk−1)

) �= Dk−1(Hk−1)
]]

(13.4)

with respect to Dk−1, where MK
k = I (Ak = D∗

k , . . . , AK = D∗
K), that is, the

assigned treatment being the optimal treatment from stage k to K .
As remark, the algorithms in Zhao et al. (2012, 2015) are the special cases of

the above algorithm if we choose sk(Hk) to be the minimal value of the cumulative
reward.

13.2.2.2 Augmented Outcome-Weighted Learning (AOL)

In (13.3), we only utilize those subjects whose treatments are optimal from stage k

to K when learning the rule at stage (k − 1). This can result in much information
loss. Later, Liu et al. (2014, 2018) proposed augmented outcome-weighted learning
(AOL) which utilizes partial information from all subjects to improve efficiency
while preserving validity of DTRs. More specifically, at stage k, AOL constructs an
augmented outcome Gk with the following form

Gk = MK
k

∑K
j=k Rj

�K
j=kπj

−
K∑

j=k

[
M

j−1
k

�
j−1
l=k πj

(
I (Aj = D∗

j (Hj ))

πj

− 1

)
mkj (Hj )

]
,

(13.5)
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where M
j−1
k = I (A1 = D∗

1 , . . . , Aj−1 = D∗
j−1, Aj �= D∗

j ) for j > k, Mk−1
k = 1,

and mkj (Hj ) is the expected outcome increment under optimal treatments from
stage k up to stage (j − 1). That is,

mkj (Hj ) = E[Qk|Hj ,M
j−1
k = 1]

= Rk + . . . + Rj−1+E[Qj |Hj ,Ak=D∗
k (Hk), . . . , Aj−1=D∗

j−1(Hj−1)].
(13.6)

With the augmented outcome Gk , we can estimate the DTR at stage (k − 1) by
minimizing

E

[
|Rk−1+Gk−sk−1(Hk−1)|

πk−1(Ak−1,Hk−1)

I
[
Ak−1 sign

(
Rk−1 + Gk − sk−1(Hk−1)

) �= Dk−1(Hk−1)
]]

. (13.7)

Liu et al. (2014, 2018) showed that the augmentation in AOL can reduce the stochas-
tic variability of DTRs asymptotically and demonstrated significant improvement
over outcome-weighted learning without augmentation. In addition, they also
showed that AOL is robust when the regression models in the augmentation terms
are misspecified.

13.2.2.3 Surrogate Loss Functions in Outcome-Weighted Learning

As we have seen in the previous sections, learning the optimal rule at each stage
is reduced to the problem of minimizing a weighted misclassification error. Since
0–1 loss is not continuous, surrogate loss functions are used to replace 0–1 loss as
commonly done in most of supervised learning methods.

At stage k, let Dk(Hk) = sign(f (Hk)), where f (.) is the decision function at
stage k, k = 1, 2, . . . , K . Denote yk as the class label, and wk as the weight in the
classification problem. For example, at stage K in outcome-weighted learning with
or without augmentation,

yK = AK sign(RK − sK(HK)), wK = |RK − sK(HK)|
πK(AK,HK)

.

We consider the following surrogate loss functions:

• Hinge loss: Hinge loss is the loss function used in support vector machine (SVM).
It takes the form of L(yk, f (Hk)) = [1 − ykf (Hk)]+.

• Ramp loss: Ramp loss provides a tight bound on the misclassification rate
(Collobert et al. 2006; Keshet and McAllester 2011). The function can be
expressed as
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Ls(yk, f (Hk))=I
(
ykf (Hk) ≤ − s

2

)
+
(1

2
−ykf (Hk)

s

)
I
(
− s

2
<ykf (Hk)<

s

2

)
,

(13.8)
where s is a positive slope parameter.

• Binomial deviance loss: Binomial deviance loss is minimized in logistic regres-
sion, where

L(yk, f (Hk)) = log
(

1 + exp
[− ykifk(Hik)

])
.

• Squared or L2 loss: L2 loss is minimized in least squares estimation, where

L(yk, f (Hk)) = (yik − fk(Hik))
2.

The above loss functions are plotted in Fig. 13.1 and they all lead to Fisher consistent
DTRs in theory (Neykov et al. 2016).

13.2.3 Evaluation of DTRs

Benefit function, proposed in Qiu et al. (2018), is the difference in the value function
between those who follow the DTR and those who follow the opposite treatment
assignment to the DTRs. They have shown that a single-stage DTR is optimal if and
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only if its corresponding benefit function is non-negative for any subset of the pop-
ulation. We extend the benefit function to the multi-stage by defining the benefit as

δ(D) = ED

[ K∑

k=1

Rk

]
− ED̄

[ K∑

k=1

Rk

]

= E

[
�K

k=1I
[
Ak = Dk(Hk)

]
(
∑K

k=1 Rk)

�K
k=1πk(Ak,Hk)

]

− E

[
(

1 − �K
k=1I

[
Ak = Dk(Hk)

])(∑K
k=1 Rk

)

�K
k=1πk(Ak,Hk)

]
.

This quantity can be useful to evaluate the overall benefit gain of D .

13.3 Estimation and Algorithm

Based on the framework in Sect. 13.2, we estimate K-stage DTRs from a K-stage
SMART with n subjects. We denote Aik as the treatment assignment for subject i
at stage k, Rik as the observed outcome post the kth stage treatment for subject i,
and Hik as subject i’s health history information prior to the treatment at stage k,
for k = 1, 2, . . . , K , i = 1, 2, . . . , n.

13.3.1 Q-learning

With backward learning, starting from stage K , we estimate the conditional function
E[RK |HK,AK ] via least squares, which minimizes

n−1
n∑

i=1

(
RiK −

[
β0K + HT

iKβ1K + β2KAiK + (HiKAiK)
T β3K

])2

.

Lasso penalty can be added for variable selection, by minimizing

n−1
n∑

i=1

(
RiK −

[
β0K + HT

iKβ1K + β2KAiK + (HiKAiK)
T β3K

])2

+ λ

( p1K∑

j=1

|β1Kj | +
p2K∑

j=1

|β2Kj | +
p3K∑

j=1

|β3Kj |
)
,

where p1K , p2K , and p3K is the dimension of β1K , β2K , and β3K .
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Based on the estimated coefficients β̂0K, β̂1K, β̂2K, β̂3K , the estimated outcome
R̂iK under treatment AK = 1 and AK = −1 can be computed by

R̂iK(HiK,AK) = β̂0K + HT
iKβ̂1K + β̂2KAK + (HiKAK)

T β̂3K.

The estimated treatment rule D̂K is set to be the treatment that yields a higher
estimated outcome, that is

D̂K(HiK) = argmaxaR̂iK(HiK,AK = a) = sign
(
β̂2K + HT

iKβ̂3K
)
.

The estimated optimal Q-function at stage K for subject i can then be represented
as

Q̂iK(HiK) = β̂0K +HT
iKβ̂1K + β̂2KD̂K(HiK)+ (HiKD̂K(HiK))

T β̂3K. (13.9)

At stage (k−1), k = K, . . . , 2, with Q̂ik estimated from stage k, we estimate the
conditional function E[Rk−1 +Qk|Hk−1, Ak−1] via least squares, which minimizes

n∑

i=1

(
Ri,k−1+Q̂ik−

[
β0,k−1+HT

i,k−1β1,k−1+β2,k−1Ai,k−1+(Hi,k−1Ai,k−1)
T β3,k−1

])2

.

Lasso penalty can be added for variable selection.
Define R̃i,k−1 = Ri,k−1 + Q̂ik , then the estimated outcome ̂̃Ri,k−1 under

treatment Ak−1 = 1 and Ak−1 = −1 can be computed with

̂̃Ri,k−1(Hi,k−1, Ak−1)=β̂0,k−1+HT
i,k−1β̂1,k−1+β̂2,k−1Ak−1+(Hi,k−1Ak−1)

T β̂3,k−1.

Similar to stage K , the estimated optimal treatment is the one that yields a higher
estimated outcome, that is

D̂k−1(Hi,k−1)=argmaxa
̂̃Ri,k−1(Hi,k−1, Ai,k−1=a)=sign

(
β̂2,k−1+HT

i,k−1β̂3,k−1
)
.

Then the optimal Q-function at stage k − 1 can be estimated by

Q̂i,k−1(Hi,k−1) = β̂0,k−1 + HT
i,k−1β̂1,k−1 + β̂2,k−1D̂k−1(Hi,k−1)

+ (Hi,k−1D̂k−1(Hi,k−1))
T β̂3,k−1. (13.10)

If no tailoring variable is selected at stage k under lasso penalty, i.e., β̂2,k +
HT

i,kβ̂3,k = 0, we randomly assign a treatment (1 or −1) with equal probability.
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13.3.2 Outcome-Weighted Learning

For learning the sequence of optimal treatments for K stages, we use backward
algorithm starting from the last stage with index K . We denote the decision
function learned at stage K as f̂K(HK), and the estimated DTR at stage K as
D̂K = sign(f̂K(HK)). At stage (k − 1), k = K,K − 1, . . . , 2, we denote
M̂K

k = I (Ak = D̂k, . . . , AK = D̂K), and use M̂K
k to approximate MK

k in (13.4).
With augmented outcomes, at stage (k − 1), k = K,K − 1, . . . , 2, similarly, we

use D̂j (Hj ) to approximate D∗
j (Hj ), and take M̂

j−1
k = I (A1 = D̂1, . . . , Aj−1 =

D̂j−1, Aj �= D̂j ) to approximate M
j−1
k in (13.5). In constructing mkj (Hj ), we

estimate the last expectation term in (13.6) by the estimated optimal Q-function Q̂j

at stage j from Q-learning ((13.9), (13.10)). The functions sk(Hk), k = 1, 2, . . . , K
in ((13.3), (13.4), (13.7)) are constructed by least squares with Hk being the
predictors.

The decision functions f̂k , k = K,K − 1, . . . , 1, are estimated by solving
the following minimization problems under different loss functions. We adopt the
notation of wk and yk from Sect. 13.2.2.3 as the weight and the class label for the
weighted classification problem at stage k. Note that yk takes value in {−1, 1},
k = K,K − 1, . . . , 1.

13.3.2.1 Under SVM Hinge Loss

Under the hinge loss in the SVM framework, at each stage k, we minimize

Cn−1
n∑

i=1

wik[1 − yikfk(Hik)]+ + 1

2
||fk||2, (13.11)

where C is a regularization parameter, and ||f || is the norm in a reproducing kernel
Hilbert space (RKHS). Linear kernel and radial basis function (RBF) kernel (also
known as Gaussian kernel) are implemented under the hinge loss. Linear kernel on
two samples x and x′ is defined as

K(x, x′) = 〈x, x′〉, (13.12)

where 〈·, ·〉 is the inner product. The RBF kernel on two samples x and x′ is defined
as

K(x, x′) = exp

(
−‖x − x′‖2

2σ 2

)
,

where ‖ · ‖ is the Euclidean distance and σ is a non-negative tunning parameter.
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The solution to the minimization problem in (13.11) can be obtained by solving
the Lagrangian dual problem via quadratic programming. The estimated decision
function at stage k can be represented as

f̂k(Hk) = β̂0k +
n∑

i=1

α̂ik yikK(Hk,Hik),

where α̂ik , i = 1, 2, . . . , n is the solution to the dual problem at stage k. With linear
kernel, the estimated decision function can also be represented as

f̂k(Hk) = β̂0k + HT
k β̂k.

The estimated probability that treatment 1 (vs. −1) is the optimal treatment at stage
k can be calculated by Platt scaling as

ef̂k(Hk)

1 + ef̂k(Hk)
. (13.13)

13.3.2.2 Under SVM Ramp Loss

We implement the linear kernel under ramp loss in the SVM framework. At each
stage k, we minimize

Cn−1
n∑

i=1

wik Ls(yik, fk(Hik)) + 1

2
||βk||2 (13.14)

over βk , where ||βk|| is the Euclidean norm of βk , Ls(·) is the hinge loss function
defined in (13.8), C is a regularization parameter, and the decision function has the
form fk(Hik) = β0k + HT

ikβk .
Since ramp loss is a non-convex loss function, we solve this optimization

problem by the difference of two convex functions algorithm (DCA) (Tao et al.
1996). Basically, we express the ramp loss function as the difference of two
convex functions and iteratively solve the Lagrangian dual problem via quadratic
programming. To improve convergence, initial values of βk is set to be the estimated
β̂k from SVM hinge loss with linear kernel. The convergence criterion at each stage
is set as the change in the loss function (13.14) to be less than 10−5. The maximum
number of iterations to run at each stage is set to be 20.

The estimated decision function at stage k can be represented as

f̂k(Hk) = β̂0k +
n∑

i=1

α̂ik yikK(Hk,Hik), or f̂k(Hk) = β̂0k + HT
k β̂k,
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where α̂ik , i = 1, 2, . . . , n is the solution to the Lagrangian dual problem at stage
k, and the linear kernel K(·, ·) is defined in (13.12). The estimated probability that
treatment 1 (vs. −1) is the optimal treatment at stage k can be calculated by Platt
scaling similar to (13.13).

13.3.2.3 Under Binomial Deviance Loss

Binomial deviance loss is minimized in logistic regression. We construct the
decision function as fk(Hk) = β0k + HT

k βk at each stage k, and minimize

n−1
n∑

i=1

wik log
(

1 + exp[−yik fk(Hik)]
)
,

Lasso penalty can be added to conduct variable selection by minimizing

n−1
n∑

i=1

wik log
(

1 + exp[−yik fk(Hik)]
)

+ λ

pk∑

j=1

|βkj |,

where pk is the dimension of βk . The estimated decision function at stage k is

f̂k(Hk) = β̂0k + HT
k β̂k,

and the estimated probability that treatment 1 (vs. −1) is the optimal treatment can
be represented as (13.13).

13.3.2.4 Under L2 Loss

L2 loss is minimized in the least squares estimation. We construct the decision
function as fk(Hk) = β0k + HT

k βk at each stage k, and minimize

n−1
n∑

i=1

wik(yik − fk(Hik))
2

over βk . Lasso penalty can be added for variable selection by minimizing

n−1
n∑

i=1

wik(yik − fk(Hik))
2 + λ

pk∑

j=1

|βkj |

where pk is the dimension of βk . The estimated decision function at stage k is
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f̂k(Hk) = β̂0k + HT
k β̂k

and the estimated probability that treatment 1 (vs. −1) is the optimal treatment at
stage k is (13.13).

13.3.2.5 Tuning Parameters

When estimating DTR under SVM hinge loss, there is a regularization parameter C
and an additional tuning parameter σ if RBF kernel is used. This spread parameter
σ can also be chosen using a heuristic method, for example, σ = 1/d2

m where
dm is the median pairwise Euclidean distance defined as median {||Xi − Xj || :
Ai �= Aj } (Wang et al. 2018). Under SVM ramp loss with linear kernel, there is
a regularization parameter C and a slope parameter s. We consider all of them as
tuning parameters. We choose the values of the tuning parameters such that the
learned DTR has the best value function. At each stage, we perform m-fold cross
validation for all possible combinations of the tuning parameters over a given range,
and choose the set of values that yields the highest empirical value function on the
validation sets.

13.3.3 Handling Observational Study Data

Treatment assignment probability at stage k, P(Ak = a|Hk = hk), is defined as
the probability of being assigned to the observed treatment a given subject’s health
history up to stage k. The treatment assignment probability at stage k, denoted as
πk(a, hk), plays a role in constructing the weight wk , k = 1, 2, . . . , K.

In order to infer DTR with causal interpretation, we need three conditions—(C1)
the stable unit treatment value assumption (SUTVA), that is the potential outcome
at stage k, Rk(a1, . . . , ak), equals the observed Rk under A1 = a1, . . . ., Ak =
ak, k = 1, 2, . . . , K; (C2) the sequential ignorability assumption or no unobserved
confounder assumption, that is at each stage k the treatment Ak is assigned
independently of the potential future outcomes conditional on patient’s history
information up to this stage Hk; (C3) the positive assumption that P(Ak =
a|Hk = hk) > 0,∀a. (C2) and (C3) are guaranteed in SMARTs, and the treatment
assignment probabilities are known by design in randomized trials which can be
directly used in DTR estimation.

For observational studies, under assumptions (C1)–(C3), we can still estimate
valid DTRs. A propensity score (Rosenbaum and Rubin 1983), the probability
of receiving the treatment, can be estimated for each individual, through logistic
regression at each stage k with Hk being the covariates. Lasso penalty can be applied
when the dimension of Hk is high. This propensity score π̂k(a, hk) can be used in
the DTR estimation procedure for observational study.
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13.3.4 DTR Evaluation and Future Use

13.3.4.1 Empirical Value Function and Benefit Function

The empirical value function and benefit function can be calculated after the
estimation of DTR by

V̂ (D) = n−1
n∑

i=1

[
�K

k=1I (Aik = D̂k(Hik))(
∑K

k=1 Rik)

�K
k=1πik(Aik,Hik)

]
,

δ̂(D) = n−1
n∑

i=1

[
�K

k=1I (Aik = D̂k(Hik))(
∑K

k=1 Rik)

�K
k=1πik(Aik,Hik)

−
(

1 − �K
k=1I

[
Aik = D̂k(Hik)

])(∑K
k=1 Rik

)

�K
k=1πik(Aik,Hik)

]
.

13.3.4.2 Apply the Learned DTR to an Independent Sample

After estimating the DTR from the training data, we can apply the fitted DTR
D̂ = (D̂1, D̂2, . . . , D̂K) to independent patients where the feature variables Hk ,
k = 1, 2, .., K are the same as the training sample. If only partial feature variables
are observed in the new sample, for example, Hk is observed from stage 1 up to stage
j , j ≤ K , treatment recommendations for the new sample from stage 1 to stage j

can be provided by applying (D̂1, . . . , D̂j ) to (H1, . . . ., Hj ), respectively. If all the
information (Hk,Ak, Rk, πk), k = 1, 2, . . . K , in the new sample has been observed,
one can evaluate the performance of the learned DTR D̂ on the new sample, and
compute the value function and benefit function.

13.4 Software and Illustrations

Models in Sect. 13.3 are implemented in the R package “DTRlearn2”.

13.4.1 DTR Estimation

13.4.1.1 Q-learning

The function for estimating DTRs using Q-learning is ql(). The function argument
is given by

ql (H, AA, RR, K, pi=’estimated’, lasso=TRUE, m=4)
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• K is the number of stages.
• AA and RR are the observed treatment assignments and reward outcomes

respectively at the K stages for all subjects in the sample. They can be a vector if
K is 1, or a list of K vectors corresponding to the K stages.

• H is the subject history information before treatment at each stage. It can be
a vector or a matrix when only baseline information is used in estimating
the DTR; otherwise, it would be a list of length K, representing the history
information corresponding to the K stages. A patient’s history information
prior to the treatment at stage k can be constructed recursively as Hk =
(Hk−1, Ak−1, Rk−1, Xk) with H1 = X1, where Xk is subject-specific vari-
ables collected at stage k before the treatment, Ak is the treatment at stage
k, and Rk is the outcome observed post the treatment at stage k. Higher
order or interaction terms can also be easily incorporated in Hk , e.g., Hk =
(Hk−1, Ak−1, Rk−1, Xk,Hk−1Ak−1, Rk−1Ak−1, XkAk−1).

• pi is the treatment assignment probabilities at the K stages for all subjects
in the sample. It can be a user specified input if the treatment assignment
probabilities are known. It is a vector if K=1, or a list of K vectors corresponding
to the K stages. The default is pi="estimated", that is we estimate the
treatment assignment probabilities based on lasso-penalized logistic regressions.
See Sect. 13.3.3 for more details.

• lasso specifies whether to add lasso penalty at each stage when fitting the
model. Lasso penalty is encouraged especially when the dimension of Hk is high.
The default is lasso=TRUE.

• m is the number of folds in the m-fold cross validation. It is used when
lasso=TRUE is specified. The default is m=4.

After fitting the function ql(), a list of results is returned as an object. It contains
the following attributes

• stage1 consists of the stage 1 outputs;
• stage2 consists of the stage 2 outputs;

. . .
• stageK consists of the stage K outputs;
• valuefun is the overall empirical value function under the estimated DTR;
• benefit is the overall empirical benefit function under the estimated DTR;
• pi is the treatment assignment probabilities of the observed treatments for each

subject at the K stages. It is a list of K vectors. If pi="estimated" is specified
as input, the estimated treatment assignment probabilities from lasso-penalized
logistic regressions will be returned.
And in each stagek outputs, k = 1, 2, . . . , K , we have the following results

• stagek$co is the estimated coefficients of (1,Hk,Ak,HkAk), the variables in
the model at stage k;

• stagek$treatment is the estimated optimal treatments at stage k for each
subject in the sample;

• stagek$Q is the estimated optimal outcome increments from stage k to K (the
estimated optimal Q-functions at stage k) for each subject in the sample.
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13.4.1.2 Outcome-Weighted Learning

The function for estimating DTRs using outcome-weighted learning methods is
owl(). The function argument is given by

owl (H, AA, RR, n, K, pi=’estimated’, res.lasso=TRUE,
loss=’hinge’, kernel=’linear’, augment=TRUE, c=2.^(-2:
2), sigma=c(0.03,0.05,0.07),s=2.^(-2:2),m=4)

• n is the sample size, and K is the number of stages.
• AA and RR are the observed treatment assignments and reward outcomes at the K

stages for all subjects in the sample. They can be a vector if K is 1, or a list of K
vectors corresponding to the K stages.

• H is the subject history information before treatment at each stage. It
can be a vector or a matrix when only baseline information is used in
estimating the DTR; otherwise, it would be a list of length K, representing
the history information corresponding to the K stages. A patient’s history
information prior to the treatment at stage k can be constructed recursively
as Hk = (Hk−1, Ak−1, Rk−1, Xk) with H1 = X1, where Xk is subject-
specific variables collected at stage k before the treatment, Ak is the treatment
at stage k, and Rk is the outcome observed post the treatment at stage k.
Higher order or interaction terms can also be easily incorporated in Hk ,
e.g., Hk = (Hk−1, Ak−1, Rk−1, Xk,Hk−1Ak−1, Rk−1Ak−1, XkAk−1). Please
standardize all the variables in H to have mean 0 and standard deviation of 1
before using H as the input.

• pi is the treatment assignment probabilities at the K stages for all subjects
in the sample. It can be a user specified input if the treatment assignment
probabilities are known. pi is a vector if K=1 or a list of K vectors corresponding
to the K stages. The default is pi="estimated", that is we estimate the
treatment assignment probabilities based on lasso-penalized logistic regressions.
See Sect. 13.3.3 for more details.

• res.lasso specifies whether or not to use lasso penalty in fitting sk(Hk), the
least squares to acquire the residuals in constructing the weights at stage k, k =
1, 2, . . . , K . Lasso penalty is encouraged especially when the dimension of Hk

is high. The default is res.lasso=TRUE.
• loss specifies which loss function to use for the weighted classification

problem at each stage. The options are "hinge", "ramp", "logit",
"logit.lasso", "l2", "l2.lasso". "hinge" and "ramp" are for
the SVM hinge loss and SVM ramp loss. "logit" and "logit.lasso" are
for the binomial deviance loss used in the logistic regression, where lasso penalty
is applied under "logit.lasso". "l2" and "l2.lasso" are for the L2 or
square loss, where lasso penalty is applied under "l2.lasso". The default is
loss="hinge".

• kernel specifies which kernel function to use under SVM hinge loss and SVM
ramp loss, i.e., when loss="hinge" or loss="ramp". "linear" and
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"rbf" kernel are implemented under SVM hinge loss, and "linear" kernel
is implemented under SVM ramp loss. The default is kernel="linear".

• augment specifies whether or not to use augmented outcomes at each stage.
Augmentation is recommended when there are multiple stages with a small
sample size. The default is augment=TRUE.

• c is a vector which specifies the values of the regularization parameter
C for tuning under SVM hinge loss or SVM ramp loss. The default is
c=c(0.25,0.5,1,2,4). In practice, a wider range of c can be specified
based on the data.

• sigma is a vector which specifies the values of the parameter σ in the RBF
kernel for tuning under SVM hinge loss, i.e., when loss="hinge" and
kernel="rbf". The default is sigma=c(0.03,0.05,0.07). In practice,
a wider range of sigma can be specified based on the data.

• s is a vector which specifies the values of the slope parameter s in the SVM
ramp loss for tuning, i.e., when loss="ramp" and kernel="linear". The
default is c=c(0.25,0.5,1,2,4). In practice, a wider range of s can be
specified based on the data.

• m is the number of folds in the m-fold cross validation. The m-fold cross validation
is implemented in selecting the tuning parameters c, sigma or s. It is also used
for choosing the tuning parameter for the lasso penalty when res.lasso=T,
loss="logit.lasso", or loss="l2.lasso" is specified. The default is
m=4.

After fitting the function owl(), a list of results is returned as an object. It
contains the following attributes

• stage1 consists of the stage 1 outputs;
• stage2 consists of the stage 2 outputs;

. . .
• stageK consists the stage K outputs;
• valuefun is the overall empirical value function under the estimated DTR;
• benefit is the overall empirical benefit function under the estimated DTR;
• pi is the treatment assignment probabilities of the observed treatments for each

subject at the K stages. It is a list of K vectors. If pi=’estimated’ is specified
as input, the estimated treatment assignment probabilities from lasso-penalized
logistic regressions will be returned.

• type type of the returned object corresponding to the loss and kernel
And in each stagek result, k=1, 2, . . . , K, we have the following possible
outputs.

• stagek$beta0 is β̂0k , the estimated coefficient of the intercept in the decision
function.

• stagek$beta is β̂k , the estimated coefficients of Hk in the decision function.
It is not returned with RBF kernel under SVM hinge loss.

• stagek$fit is the fitted decision functions for each subject in the sample.
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• stagek$probability is the estimated probabilities that treatment 1 (vs. -1)
is the optimal treatment for each subject in the sample, which is calculated by
exp(stagek$fit)/(1 + exp(stagek$fit).

• stagek$treatment is the estimated optimal treatments for each subject in
the sample.

• stagek$c is the best regularization parameter C in SVM hinge loss or SVM
ramp loss, chosen from the values specified in c via cross validation.

• stagek$sigma is the best parameter σ in the RBF kernel, chosen from the
values specified in sigma via cross validation.

• stagek$s is the best slope parameter s in the ramp loss, chosen from the values
specified in s via cross validation.

• stagek$iter is the number of iterations conducted under SVM ramp loss.
• stagek$alpha1 is the solutions to the Lagrangian dual problem under SVM

hinge loss or SVM ramp loss. It is used for constructing the decision function on
the new sample.

• stagek$H is the patient history matrix Hk , which is returned only under SVM
hinge loss with RBF kernel. It is used for constructing the RBF kernel on the new
sample.

13.4.2 Apply the Estimated DTR to an Independent Sample

The predict() function can be applied to the object returned after running
ql() or owl() on the training sample, to apply the learned DTR to another
independent sample. The new sample should have the same observed subject history
variables Hk for k = 1, 2, .., j , where j ≤ K . Then treatments up to stage j can be
recommended for subjects in the new sample. To do this, we call predict() with
argument

predict1 = predict(object, H=newH, K=j)

To see the outputs, call predict1$treatment for the recommended treat-
ments for each subject at the j stages, which is a list of j vectors. The fitted decision
functions of the j stages are also available when predict with owl objects, by calling
predict1$fit.

If all the information (Hk,Ak, Rk, πk), k = 1, 2, . . . K , in the new sample has
been observed, we can evaluate the performance of the learned DTR D̂ on the new
sample and see the value and benefit function. To do this, we call predict with
argument

predict2 = predict(object, H=newH, AA=newAA, RR=newRR,
K=K, pi=newpi)

To see the outputs, similarly, call predict2$treatment and predict2$fit
for the recommended treatments and decision functions for the K stages. Addition-
ally, the overall empirical value function and benefit function on the new sample
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applying the learned DTR are stored in the following attributes of the function
output predict2$valuefun and predict2$benefit.

13.4.3 Other Details

There are several packages we used in implementing the functions in the package.
kernlab is used in constructing the kernels and solving the quadratic program-
ming problem under SVM hinge loss or SVM ramp loss. glmnet is used in
implementing lasso penalized models. MASS is used for generating some of the
results.

To reduce the errors occurred due to matrix singularity when solving the
quadratic programming problem, we modify the quadratic matrix in the quadratic
programming. An eigenvalue decomposition is firstly conducted for the quadratic
matrix as A = V�V −1, and those eigenvalues that are smaller than 10−5 times
of the biggest eigenvalue is truncated to 10−5 times the biggest eigenvalue. The
modified quadratic matrix is calculated as Ã = V �̃V −1, where �̃ is the diagonal
matrix with the modified eigenvalues (Rebonato and Jäckel 2011).

NAs will be returned in the results with an error message printed if too few
samples were selected for estimating the DTR. The tuning parameters under which
computation issues are encountered in solving the quadratic programming will be
skipped in comparison for choosing the best tuning parameters.

13.5 Simulations and Real Data Implementation

13.5.1 Simulations

We simulated a four-stage SMART with baseline variables X1, . . . , X30 from
a multivariate Gaussian distribution. X1, . . . , X10 had variance 1 and pairwise
correlation 0.2; X11, . . . ., X30 had mean 0 and were uncorrelated with each other
and with X1, . . . , X10. We assumed that subjects were from 10 latent groups with
equal size, and these 10 groups were characterized by the different means of the
feature variables X1, . . . , X10. The means of X1, . . . , X10 for the 10 groups were
generated from N (0, 5). Each latent group was assumed to have its own optimal
treatment sequence, which was generated as

A∗
kg = 2([g/(2k − 1)] mod 2) − 1, k = 1, 2, 3, 4, g = 1, 2, . . . , 10.

for group g at stage k. The primary outcome was observed only at the end of the
trial, which was generated as
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R1 = R2 = R3 = 0, R4 =
4∑

k=1

AkA
∗
kg, k = 1, 2, 3, 4, g = 1, 2, . . . , 10.

where Ak , the assigned treatment group (1 or −1) at stage k, was randomly
generated with equal probability.

We simulated a large test set with sample size 20,000 according to this setting.
The empirical optimal value function on this test set was 4.02. We then simulated
100 training datasets of sample size 100 with the same means in X1, . . . , X10
with the test set. Q-learning and different outcome-weighted learning methods were
implemented on each training set and the learned rules were applied to the test
set. The history information at stage 1 was constructed as H1 = (X1, . . . , X30),
and at stage k, k = 2, 3, 4, the history information was constructed recursively as
Hk = (Hk−1, Ak−1,Hk−1Ak−1) since there were no intermediate outcomes. The
regularization parameter C in the outcome-weighted learning was tuned on the grid
of 2p where p is an integer ranging from −15 to 15; σ in the RBF kernel and s

in the ramp loss were tuned on the grid of 2p where p is an integer ranging from
−8 to 8. The running time for 1 iteration with the specified tuning parameters is
the following: 0.10 s for Q-learning; for outcome-weighted learning, 0.74 s under
binomial deviance loss, 0.76 s under squared loss, 5.5 s under SVM hinge loss with
linear kernel, 610 s under SVM hinge loss with RBF kernel, and 492 s under SVM
ramp loss with linear kernel when running on a computer with 2.7 GHz Intel Core
i5 processor.

The value functions evaluated on the test set with the DTRs learned from
100 simulated training sets are plotted in Fig. 13.2. Augmented outcome-weighted
learning under SVM hinge loss with RBF kernel yields the highest value function
(mean 1.49, median 1.53) followed by augmented outcome-weighted learning under
SVM hinge loss with linear kernel (mean 1.19, median 1.18) and Q-learning (mean
0.92, median of 0.9). In this setting, we didn’t assume any parametric decision
boundaries, but with decision boundaries implicitly determined by the underlying
latent groups with differentiable feature variable means; thus, Q-learning suffers
from misspecification of the decision rules. Outcome-weighted learning under SVM
hinge loss, especially with RBF kernel, allows more flexible decision boundaries.
However, with a small training sample size (n = 100), in the backward stages,
outcome-weighted learning can suffer from an even smaller sample size at early
stages (stage 2 and stage 1). Augmented outcome-weighted learning borrows
information from Q-learning and improves the efficiency substantially in this case.

13.5.2 Illustration of the Real Data Implementation

We applied Q-learning and outcome-weighted learning methods to a two-stage
SMART mimicking a real world study of children affected by attention deficit
hyperactive disorder (ADHD) (Pelham and Fabiano 2008). At the first stage,
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Fig. 13.2 Empirical value functions on the test set with DTRs learned from 100 simulated 4-stage
SMARTs of sample size 100 with Q-learning and various outcome-weighted learning methods
without or with augmented outcomes

children were randomized to treatment of low-intensity behavioral modification
(BMOD) or low-intensity methamphetamine (MED) with equal probability. At
second stage, children were randomized to treatment of low-intensity BMOD +
low-intensity MED, or high-intensity BMOD with equal probability. The primary
outcome of study was participant’s school performance score ranging from 1 to
5, which was assessed at the end of the study for all participants. The diagram of
the study design is shown in Fig. 13.3. Variables in this ADHD study are listed in
Table 13.1.

First load the data, and construct the matrix of the health history information for
each individual at the two stages and standardize each variable.

library(DTRlearn2)
data(adhd)
attach(adhd)
R> H1 = scale(cbind(o11, o12, o13, o14))
R> H2 = scale(cbind(H1, a1, H1*a1, r,o22,r*a1,o22*a1))
R> colnames(H2)[12] = "r*a1"
R> colnames(H2)[13] = "o22*a1"
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Low-intensity BMOD

R

Low-intensity MEDS

R

Low-intensity BMOD +
Low-intensity MEDS

High-intensity BMOD

R

Low-intensity BMOD +
Low-intensity MEDS

High-intensity BMOD

Fig. 13.3 Study design of the two-stage SMART for Children with ADHD. BMOD: behavioral
modification; MEDS: methamphetamine

Table 13.1 Variables in the dataset for the two-stage SMART of 150 children with ADHD

Variable name Variable type Variable description

O11 Baseline covariate
(binary; coded as 0/1)

Diagnosed with ODD (oppositional defiant
disorder) before the first-stage intervention

O12 Baseline covariate
(continuous)

ADHD score: ADHD symptoms at the end of the
previous school year (ranging from 0 to 3, larger
values for fewer symptoms)

O13 Baseline covariate
(binary; coded as 0/1)

Medication during the previous school year

O14 Baseline covariate
(binary; coded as 0/1)

Race: white (coded 1) versus nonwhite
(coded 0)

A1 First stage intervention
(binary; coded as −1/1)

A1 = −1 for low-intensity MEDS;
A1 = 1 for low-intensity BMOD

R First stage response indicator
(binary; coded as 0/1)

R = 0 if participant did not respond to the first
stage intervention; R= 1 if he or she responded

O21 Intermediate outcome
(postbaseline covariate,
continuous)

Number of months until non-response
(maximum: 8 months, NA for responders)

O22 Intermediate outcome
(post-baseline covariate,
binary; coded as 0/1)

Adherence to the stage 1 intervention:
1 for high adherence

A2 Second stage intervention
(binary; coded as −1/1)

A2 = −1 for low-intensity BMOD + MEDS;
A2 = 1 for high-intensity BMOD

Y Primary outcome
(continuous)

School performance at the end of the school
year (ranging from 1 to 5, higher values reflect
better performance)
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Randomly split the dataset to a training set and a test set with ratio of 2:1.

R> n = length(a1)
R> nfold = 3
R> set.seed(1)
R> train_idx = sample(1:n, n/nfold*(nfold-1))
R> ntrain = length(train_idx)
R> ntest = n - length(train_idx)

Estimate the DTRs from the training set using Q-learning.

R> fit1 = ql(H=list(H1[train_idx,], H2[train_idx,]),
+ AA=list(a1[train_idx], a2[train_idx]),
+ RR=list(rep(0, ntrain), y[train_idx]),
+ pi=list(rep(0.5, ntrain), rep(0.5,ntrain)), K=2,

m=3, lasso=T)

Apply the estimated DTRs from Q-learning on the test set, and output the
recommended treatments for the two stages as well as the value function of the
estimated DTRs evaluated on the test set.

R> pred1 = predict(fit1, H=list(H1[-train_idx,],
H2[-train_idx,]),

+ AA=list(a1[-train_idx],a2[-train_idx]),
+ RR=list(rep(0, ntest), y[-train_idx]),
+ pi=list(rep(0.5,ntest), rep(0.5,ntest)), K=2)

R> pred1$treatment[[1]]
[,1]

[1,] 1
[2,] -1
[3,] 1
[4,] 1
[5,] -1
...

R> pred1$treatment[[2]]
[,1]

[1,] 1
[2,] -1
[3,] -1
[4,] -1
[5,] 1
...

R> pred1$valuefun
[1] 3.44
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Next, implement outcome-weighted learning with SVM hinge loss under the
linear kernel with augmented outcomes. We tune the regularization parameter C

on the grid of 2−15 to 215.

R> c = 2^(-15:15)
R> set.seed(1)
R> fit2 = owl(H=list(H1[train_idx,], H2[train_idx,]),
+ AA=list(a1[train_idx], a2[train_idx]),
+ RR=list(rep(0, ntrain), y[train_idx]),
+ pi=list(rep(0.5, ntrain), rep(0.5,ntrain)),
+ n=ntrain, K=2, res.lasso = T, loss="hinge",

kernel="linear",
+ augment=T, c=c, m=3)

Apply the estimated DTRs on the test set, and output the recommended
treatments for the two stages as well as the value function of the estimated DTRs
evaluated on the test set.

R> pred2 = predict(fit2, H=list(H1[-train_idx,],
H2[-train_idx,]),

+ AA=list(a1[-train_idx],a2[-train_idx]),
+ RR=list(rep(0, ntest), y[-train_idx]),
+ pi=list(rep(0.5,ntest), rep(0.5,ntest)), K=2)

R> pred2$treatment[[1]]
1

[1,] 1
[2,] -1
[3,] 1
[4,] -1
[5,] -1
...

R> pred2$treatment[[2]]
1

[1,] 1
[2,] -1
[3,] -1
[4,] -1
[5,] 1
...

R> pred2$valuefun
[1] 3.92

Outcome-weighted learning yields a higher value function evaluated on the test
set. Hence, we fit the estimated DTR though outcome-weighted learning on the
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entire sample to examine the contribution of tailoring variables by examining the
estimated standardized coefficients.

R> set.seed(1)
R> fit2_whole = owl (H=list(H1, H2), AA=list(a1,a2),

RR=list(rep(0, n), y),
+ n=n, K=2, pi=list(rep(0.5, n), rep(0.5,n)),

res.lasso = T, loss="hinge",
+ kernel="linear", augment=T, c=c)

R> fit2_whole$stage1$beta
1

o11 -8.633966e-06
o12 5.337246e-05
o13 -8.965257e-01
o14 2.913989e-02

R> fit2_whole$stage2$beta
1

o11 -3.986267e-05
o12 1.309333e-04
o13 1.206403e-04
o14 2.774660e-05
a1 -4.813819e-05
o11 -2.086035e-05
o12 -1.331149e-05
o13 4.701919e-05
o14 4.035830e-05
r 1.076440e-01
o22 8.855914e-01
r*a1 1.322140e-01
o22*a1 -1.527959e-01

The variable with the largest contribution to tailor stage 1 treatments is prior
medication (O13), with an estimated coefficient of −0.90 on the standardized
variable. This result suggests that children who do not have medication history
prior to the trial should start with behavioral modification. The variables with a
large contribution to tailor stage 2 treatments are adherence to stage 1 intervention
(O22, standardized estimated coefficient 0.88) and O22*A1 (standardized estimated
coefficient −0.15). This result suggests that children who start with behavioral
modification in the first stage and adhere but do not achieve adequate response
should be treated by high-intensity behavioral modification at the second stage.
Additionally, children who respond after the first stage of behavioral intervention
can benefit more from the augmented behavioral intervention at the second stage
(estimated standardized coefficient of 0.11 + 0.13 = 0.24 based on r and r ∗ a1
coefficient estimates).
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13.6 Summary

We provide a comprehensive software, “DTRlearn2”, to estimate general K-stage
DTRs from SMARTs and possibly from observational data with Q-learning and
a variety of outcome-weighted learning methods. Penalizations are allowed for
variable selection and model regularization. Q-learning can be efficient when
the Q-function is correctly specified but it can also suffer from incorrect model
specification, while outcome-weighted learning is more robust since it directly
optimizes with respect to the treatment rule. With the outcome-weighted learning
scheme, different loss functions—SVM hinge loss, SVM ramp loss, binomial
deviance loss, and L2 loss—can be adopted to solve the weighted classification
problem at each stage. SVM hinge losses are powerful in learning complex decision
rules using the kernel trick, especially under the rbf kernel. SVM ramp loss is more
robust to outliers since the loss function is bounded unlike other loss functions.
But the SVM methods all require tuning over the hyperparameters. In practice,
different methods can be applied to estimate the DTRs, and the method that yields
the best value function and benefit function can be determined. Augmentation is
allowed for outcome-weighted learning methods to improve efficiency, especially
for estimating multi-stage DTRs and when sample size is small. After estimating the
DTR on the training sample, the fitted DTR can be easily applied to a new sample
for individualized treatment recommendations or DTR evaluation. “DTRlearn2”
facilitates these processes.
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Chapter 14
Subgroups in Design and Analysis
of Clinical Trials, General Considerations

Li Ming Dong, Heng Li, Ram Tiwari, and Lilly Q. Yue

Abstract Assessing whether different subgroups of clinical trial participants have
different treatment benefits plays a crucial role in the interpretation of the clinical
trial findings. All analyses of subgroup treatment effects are not conducted for the
same purpose. While an exploratory subgroup analysis can be performed after the
trial completion to evaluate the heterogeneity/homogeneity of the treatment effects
across various subgroups, focused subgroup analysis can also be planned at the trial
design stage to establish treatment effect in a specific subpopulation in addition to
or in lieu of the overall study population. This chapter discusses general statistical
issues and points to consider in subgroup analysis in confirmatory randomized
controlled clinical trials for medical products. The chapter covers the following three
topics:

1. General issues in subgroup analysis as part of the overall evaluation of a clinical
trial;

2. Trial design considerations to establish treatment efficacy in specific subgroup of
patients; and

3. Bayesian subgroup analysis.

A summary is provided at the end of the chapter.

As a means of evaluating the safety and effectiveness of medical products, clinical
trials enroll targeted patients who are considered most likely to benefit from the
treatment under investigation. Nevertheless, the enrolled patients are typically far
from being homogeneous. They vary in biological characteristics such as age, sex,
race, disease stage, biomarkers etc. It is well-known that there are times when
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a medical product performs differently in different subgroups defined by those
characteristics. Therefore, in making treatment decisions, physicians as well as
patients are often interested in finding out whether differences exist in the benefit-
risk profile of a treatment across such subgroups. This knowledge can also help us
better understand how the treatment works and may lead to the identification of
a better-defined patient population for the treatment. As such, assessing treatment
effect in different subsets of trial participants, or subgroup analysis, plays a crucial
role in the interpretation of the clinical trial findings and regulatory decision making.
Besides subgroups defined by biological characteristics, another kind of subgroups
that can influence the performance of a medical product is geographical region,
because of regional differences in patient population or in medical practice. The
statistical issues discussed herein apply to those subgroups as well.

This chapter covers three topics in subgroup analysis in confirmatory clinical
trials: (1) General issues in subgroup analysis as part of the overall evaluation of
a clinical trial; (2) Trial design considerations to establish treatment efficacy in
specific subgroup of patients; and (3) Bayesian subgroup analysis. The confirmatory
clinical trial in this chapter refers to randomized parallel-group comparative clinical
trials conducted to confirm the effect of a medical product or intervention. The issues
and considerations are described mostly in the context of superiority trials; however,
the considerations apply to other types of clinical trials such as non-inferiority trials.

14.1 General Issues in Subgroup Analysis as Part
of the Overall Evaluation of a Clinical Trial

For confirmatory clinical trials, after analyses on the overall patient population have
been conducted, additional analyses are performed routinely for subgroups based on
demographics, disease severity, geographical region and other relevant factors as an
integral part of evaluation of trial results. There are two scenarios to consider with a
completed clinical trial: (1) The clinical trial met its objectives in the overall study
population, in terms of statistical and clinical significance on the key hypotheses
regarding primary efficacy/safety endpoints; (2) The trial did not meet its objectives
in the overall study population.

14.1.1 Successful Trial for the Overall Study Population

When a clinical trial met its objectives in the study population, such as a significant
treatment effect is detected in the overall study population in a superiority trial,
observed differences in the primary efficacy/safety endpoints (and in some cases,
important secondary endpoints as well) are examined for various subgroups of
interest. The objective of the subgroup analysis is typically to gain insight into
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the level of consistency/heterogeneity of the treatment effect across the subgroups.
Relative consistency among the subgroups may provide evidence that the findings
are robust over the intended patient population, while signs of heterogeneity may
be used to inform clinical practice. However, challenge in interpreting subgroup
analysis findings arises when subgroup analyses were not included as part of a
pre-specified and multiplicity-adjusted statistical plan. Some observed subgroup
treatment effects could be due to true heterogeneity and others are due to chance
alone. A key challenge is how to distinguish true heterogeneity from the play of
chance, especially when the number of subgroups is large and subgroup sample
sizes are small.

In addition to examining observed treatment effects by various subgroups, the
consistency/heterogeneity of treatment effect across subgroups can be assessed
through statistical testing of treatment-by-subgroup interaction, quantitative or
qualitative. With quantitative interactions, the magnitude of the treatment effect
may vary across subpopulations, but the subgroup-specific treatment effects are
in the same direction. Suspected quantitative interactions usually do not lead to
restrictions on the population for which a product can be deemed efficacious;
however, variations in observed treatment effect among subgroups need to be
reported. With qualitative interactions, the treatment difference is nonzero in at least
one subgroup but is zero or goes in the opposite direction in at least one other
subgroup. In such a case, considerable concerns arise in the case of superiority
trials, as this implies the investigational treatment is no better than or even worse
than the control for certain subgroups. It should be noted that in practice, clinical
trials usually have low power to detect potentially important treatment-by-subgroup
interactions, and failure to detect a significant interaction does not imply the absence
of an important interaction. It is also known that observed subgroup difference may
be explained by other characteristics, for example, gender difference may be due to
difference in body size.

If the treatment effect is consistent across the subgroups of interest, or the
treatment effect varies in magnitude across the subgroups but not too much, the
subgroup analyses can increase the confidence in the robustness of the study results
in the overall patient population, and a conclusion about the overall effectiveness
of the treatment could be drawn. When there is a significant treatment-by-subgroup
interaction, investigation is needed to explore possible reasons that may account for
the heterogeneity of the treatment effects, and conclusions of a favorable benefit-risk
profile may be restricted to a certain subgroup of the studied population. It is known
that when a large number of subgroup analyses are conducted when the treatment
effect is not large, the probability is high that some subgroups will have treatment
effect estimates in the opposite direction. In other words, there is a great uncertainty
in observed subgroup treatment effects and caution is needed in attempt to interpret
the observed subgroup effects.
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14.1.2 Failed Trial for the Intended Overall Patient Population

If a study didn’t meet its objectives in the intended overall patient population, but
some exploratory subgroup analyses identified one or more subgroups in which the
investigational therapy is apparently beneficial, it is difficult to distinguish whether
the observed treatment benefit is due to true benefit or chance. Alosh et al. (2015)
calculated the probability of observing at least one subgroup with a nominal p-value
<0.025 for selected numbers of subgroup factors and levels when the true treatment
effect in the overall study population and in all the subgroups is zero. For three
subgrouping factors with three levels each, the probability of at least one subgroup
with a nominal p-value <0.025 when the overall finding was not significant is 0.15;
the probability is much higher with large number of subgroup factors commonly
seen in clinical trials. Therefore, the subgroup findings should usually be considered
as hypothesis generating that need to be confirmed by one or more new studies
(Alosh et al. 2015).

When planning confirmatory clinical trials, due to limited information avail-
able on the treatment effect for the study population and even less information
about treatment effect in subpopulations, the trials typically assume implicitly the
consistency of treatment effect across different subpopulations. However, from a
scientific perspective, patients with different biological characteristics may respond
differently to treatment. As such, subgroup analyses looking for signs of gross
deviation from homogeneity assumption in a successful trial is a necessary first
step in investigating whether overall findings can be applied to subpopulations with
various biological characteristics. For failed trials, subgroup analyses are also con-
ducted to understand the treatment as well as to search for subpopulations that may
benefit from the treatment. Despite subgroup-level treatment effect heterogeneity
is rarely identifiable reliably in a single clinical trial, report of subgroup analysis
results is important. The availability of subgroup data not only provides needed
information for the clinicians and patients to make clinical decisions, but also
provides information for planning future study or makes future meta-analysis of
a specific subgroup possible when data for the same subgroup from other trials are
available.

14.2 Trial Design Considerations to Establish Treatment
Efficacy in Specific Subgroup of Patients

Clinical trials target patients who are expected to benefit from the treatment under
investigation. If there is indication, either from previous studies or based on
scientific rationale, that treatment effects may vary substantially across different
subgroups, the trial perhaps should be conducted only among the group of the
patients who are most likely to benefit from the treatment, because an overall
average “treatment effect” obtained from mixing such subgroups presents great
difficulty for interpretation.



14 Subgroups in Design and Analysis of Clinical Trials, General Considerations 305

When there is uncertainty about in which study population the treatment is most
effective, or the investigators want to establish the treatment efficacy either in the
overall patient population or in a pre-specified target subgroup in one clinical trial,
it is possible to design a clinical trial to achieve that goal. In this case, it is critically
important to plan at the design stage. The planning needs to consider two aspects.
One is the control of overall type I error rate due to the multiplicity issue, the other is
power. The two alternative paths to trial success, one for the overall study population
and one for the targeted subgroup, give rise to multiplicity issue. Adjustment for
this multiplicity is needed to ensure proper control of the type I error rate. The other
aspect for consideration is that the study power for both overall study population
and the targeted subgroup should be adequate, and a sufficient number of patients
in the subgroup are needed for reliable subgroup results. Sample size estimation
can be done separately for the overall study population and the targeted subgroup,
each with its desired power and expected size of treatment effect. In such trials,
randomization stratified by the targeted subgroup and its complementary subgroup
is recommended because of the advantage of creating balance within each subgroup.
This is especially useful when the goal is to establish treatment efficacy in the
targeted subgroup. In addition to statistical considerations, care also needs to be
given to whether the estimated sample size for the targeted subgroup would be
adequate for safety evaluation of the treatment in the subgroup.

In some situations, trials may need to enroll a higher proportion of target
subgroup than its prevalence in the general population (over sampling) to increase
power for the target subgroup. For this enrichment design, the estimate and inference
of the treatment effect for the entire study population need to adjust for the
enrichment sampling scheme. Methods have been proposed for various types of
enrichment designs (Zhao et al. 2010; Simon and Simon 2013; Lai et al. 2019).

Although treatment effect in the overall study population and in the targeted
subgroup of study population can be estimated and tested statistically, the study
findings for the overall patient population should be carefully interpreted. For
example, if the treatment effect in the overall study population is mostly driven by
the large effect size in the targeted subgroup, i.e., the treatment under investigation
has little or even negative effect in the complementary subgroup, it would raise
the question whether the treatment effect applies to patients in the complementary
subgroup. This is in fact the case of treatment effect by subgroup interaction. To
better understand treatment effect for overall patient population, an evaluation of
the complementary subgroup should be performed.

14.3 Bayesian Subgroup Analysis

The statistical inference for subgroup analysis that has been discussed so far in
this chapter can be viewed as a frequentist approach. Frequentist inference for
subgroup-specific treatment effect has limitations in that it forces the analyst into
a dichotomy of either solely using overall treatment effect or solely using within-
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subgroup treatment effect. Bayesian inference can overcome this limitation, by
“borrowing” information across subgroups. For example, Simon (2002) proposed
a method in which prior distributions are assigned to parameters in such a way
that the probability of a qualitative interaction is a priori small, thereby making
information in the “other” subgroups relevant in estimating treatment effect for a
given subgroup.

An approach for Bayesian subgroup analysis that has a larger body of literature
is the Bayesian hierarchical modeling. Under this rubric, various methods of
estimating treatment effect in subgroups have been proposed using different models
(Louis 1984; Dixon and Simon 1991; Gamalo-Siebers et al. 2016; Hsu et al. 2019).
The Bayesian estimators from this approach shrink the observed subgroup treatment
effect toward an overall treatment effect, resembling the shrinkage estimator under
the frequentist framework.

The basic idea and general framework of Bayesian hierarchical modeling can
be illustrated using a model based on normal distribution. Following Pennello and
Rothman’s notation (2018), let yj be the sample estimate of the treatment effect for
subgroup j, j = 1, 2, . . . , J, such as differences in sample average or proportions or
log hazard ratios, and y = (y1, y2, . . . , yJ).In the first level of the hierarchical model,
yj given μj and σ 2

j , are is assumed to be independently distributed with

yj | μj , σ
2
j ∼ N

(
μj , σ

2
j

)
,

where μj is the treatment effect and σ 2
j is the variance for subgroup j. In the second

level μj are specified as independently distributed with

μj ∼ N
(
μ0, σ

2
μ

)

where μ0 is the mean of the subgroup treatment effects, i.e., the overall treatment
effect, and σ 2

μ is the between-subgroup variance of the subgroup treatment effects.
Finally, prior distributions are specified for μ0 and σ 2

μ, and σ 2
j are replaced by

their sample point estimates. Many proposed methods are analogous to the above
hierarchical model although the model settings and priors are different (Louis 1984;
Dixon and Simon 1991; Gamalo-Siebers et al. 2016; Hsu et al. 2019). Simulation
may be needed because analytical posterior distributions may be difficult to obtain
for some choices of priors.

Subgroup analysis with Bayesian hierarchical modeling offers an alternative to
frequentist inference in investigating treatment homogeneity/heterogeneity among
subpopulations of clinical trial participants, where point estimate of a subgroup
treatment effect parameter is obtained using only the data in this subgroup. Often
times when large differences between subgroup treatment effects are observed,
questions would arise as to whether such differences reflect the true underlying
treatment effects or are simply due to randomness. Bayesian approaches provide
posterior distribution of the subgroup treatment effect parameters while integrating
the treatment effects from other subgroups. The posterior distribution allows the
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calculation of the probability of extreme subgroup treatment effect. In addition, the
Bayes estimates which shrinks the subgroup effect toward the overall treatment
effect may be more appealing because the apparently extreme subgroup effects
in some subgroups are likely exaggerated especially when many subgroups are
examined.

Although a useful tool, Bayesian subgroup analysis with hierarchical models
has limitations. A crucial assumption in this approach is the exchangeability
of the subgroup effects, implied by the specification that treatment effects in
different subgroups are samples from a common probability distribution. This
exchangeability assumption needs to hold a priori, i.e., it cannot be checked with
the trial data, therefore its validity needs to be considered carefully. For example, in
the subgroup analysis by gender, one should ask whether it is a clinically plausible
assumption that effects in males and females are exchangeable.

It should be noted that, just as with the frequentist subgroup analysis, when the
analysis is not pre-planned, subgroup analysis with Bayesian hierarchical modeling
is post hoc in nature and should be considered as exploratory. As discussed earlier,
findings from such analyses need to be confirmed by one or more new studies.

14.4 Summary

Subgroup analyses are routinely performed in randomized confirmatory clinical
trials to examine treatment effect in subgroups of study populations. Estimation or
testing of treatment effect in a specific subpopulation of the trial can be achieved
with validity in an appropriately designed trial taking into consideration type I
error control and adequate statistical power. An exploratory subgroup analysis can
be conducted to evaluate the heterogeneity/homogeneity of the overall treatment
effect across various subgroups. While the observed consistency of treatment effects
across subgroups provide confidence in the estimated overall treatment effect, the
observed heterogeneity of subgroup treatment effects, whether under a frequentist
or a Bayesian paradigm, needs to be carefully investigated, and sometimes generates
hypotheses for new trials.

Even if subgroup-level treatment effect heterogeneity cannot be ascertained
reliably in a clinical trial, report of subgroup analysis results is important in not
only providing useful information to the clinicians and patients for making clinical
decisions, but also in informing the design of future studies.
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Chapter 15
Subgroup Analysis: A View
from Industry

Oliver N. Keene and Daniel J. Bratton

Abstract Subgroup analysis in clinical trials for regulatory and reimbursement
purposes can be confirmatory or exploratory in nature. Confirmatory subgroup
analysis requires pre-specification of the proposed analysis and appropriate control
of the type I error rate. Exploratory subgroup analysis is a feature of Phase III
clinical trials. Examination of the results by sex, age and race is required by
FDA and submissions for regulatory approval typically involve numerous further
analyses by baseline characteristics such as disease severity. For efficacy these
exploratory analyses are often directed at providing reassurance that the overall
estimated treatment effect translates into benefit for each of the subgroups and
for safety to investigate the existence of signals in more vulnerable subgroups.
For reimbursement purposes, extensive analysis is required to try to identify those
groups experiencing most benefit and for whom the medicine is therefore most cost-
effective.

Exploratory subgroup analyses present a major challenge in interpretation due
to the large number of subgroups examined. Effect sizes can vary largely from
the overall treatment effect estimate and even be in opposite directions due to
chance alone. The commonly used statistical methods to assess consistency of
effect all have limitations. There is an important role for statistical modelling
and an increasing interest from industry in Bayesian shrinkage techniques which
balance emphasis on a specific observed differential subgroup effect with the overall
treatment effect.

When planning and designing confirmatory trials of new medicines, discussion
and agreement with regulatory and reimbursement authorities on the population is
exceptionally valuable. Pre-identification of a small number of important biologi-
cally plausible subgroups which require exploration is helpful for interpretation.
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15.1 Introduction

The classic design of a company-sponsored late-stage trial is directed at providing
a single overall estimate of the effect of a medicine on the primary endpoint. Many
important stakeholders find a single summary of response on an endpoint to be
incomplete. Patients want to know if this average effect will apply to them with
their own individual set of baseline characteristics which will vary among patients
studied in the clinical trial. Physicians are concerned with identifying those patients
for whom the medicine will be more effective or less effective. Payers only want to
pay for a medicine for patient groups where the medicine is cost-effective.

The need for subgroup analyses is therefore unavoidable for late stage clinical
trials performed by the pharmaceutical industry. They are regularly requested by
practising physicians seeking to understand the results of the trial in the context of
the diversity of the patients who consult them.

In a regulatory setting, the FDA require summaries of efficacy and safety by
demographic subgroups (FDA 2015) and for a multi-regional trial an evaluation
of consistency of treatment effects across regions is required by ICH E17 (ICH
2017). In a reimbursement setting, the Institute for Quality and Efficiency in
Health Care (IQWiG) in Germany requires analysis by sex, age, country and
disease severity for all patient relevant endpoints, including safety endpoints as
well as efficacy endpoints (IQWiG 2017). These requirements are independent
of an a priori expectation that a particular subgroup will experience a different
treatment effect. As well as these mandated subgroups, further subgroup analyses
are also frequently requested by regulatory and reimbursement agencies to assess
consistency of treatment effects.

In the next sections we start by defining what is meant by a subgroup effect. We
then review the key issue of multiplicity. Later sections describe analysis methods
that go beyond the simple approaches of separate analysis of subgroups according
to a specific characteristic and interaction tests.

15.2 Defining a Subgroup Effect

It is important to define what is meant by a subgroup effect as this terminology can
have different interpretations. Subgroups can be dichotomous (e.g. male/female),
categorical (e.g. region), ordered categorical (e.g. disease score at baseline) or based
on a continuous measure (e.g. age). For subgroups defined by a continuous measure,
patients are often categorised based on values lying within specific cut-points. A
more powerful method of evaluation is often to retain the continuous scale and use
a modelling approach (this is discussed later in the chapter).

Subgroup effects considered in this chapter are defined by baseline characteristics
measured prior to treatment. Analysis based on differentiating patients according
to a post-randomisation measurement can be misleading, because a particular
treatment effect may influence classification to the subgroup (Yusuf et al. 1991).
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Table 15.1 Illustrative example of importance of scale of measurement for subgroup effects

Baseline event rate Placebo event rate Active event rate Absolute reduction
Percentage
reduction (%)

0 0.8 0.6 0.2 25
1 1.2 0.9 0.3 25
2 or more 2.0 1.5 0.5 25

There are two keys aspects to describing a subgroup effect for a typical phase
III superiority study. Firstly, the baseline characteristic may affect the outcome
regardless of treatment and therefore be a prognostic variable. In modelling terms,
this would be a main effect. For example, severe patients may have poorer outcomes
than milder patients. Secondly, a baseline characteristic may influence the effect
of active treatment compared to placebo and therefore be a predictive variable.
In modelling terms this would be an interaction of the treatment effect with the
variable. The same covariate can be both prognostic and predictive; it is examination
of potential predictive variables that is the focus of this chapter.

Importantly, whether a differential treatment effect exists may depend on the
scale of measurement used (Keene 1995). For instance, consider the example below
shown in Table 15.1. The outcome variable is the number of events during treatment,
and this has been split according to number of events in the previous year. For those
with a baseline event rate of 0 per year, the event rate after randomisation is 0.8 on
placebo compared to 0.6 on treatment, a reduction of 25%. The same percentage
reduction of 25% applies to those with two or more events in the previous year.
However, some may consider absolute reductions as more clinically relevant; these
are very different, a reduction of 0.5 events/year for this group compared to 0.2
events/year for the group with 0 events at baseline. Model based analysis of event
rates such as the negative binomial model (Keene et al. 2007) express treatment
effects in terms of relative reductions and therefore there would be no statistical
interaction. However, for a payer, there may be more willingness to fund a medicine
that reduces event rates by 0.5 events a year than one that reduces events by 0.2
events.

15.3 Multiplicity in Subgroup Analysis

The major difficulty when interpreting subgroup analysis is that subgroup differ-
ences in treatment effect can arise by chance and it is exceptionally hard to identify
what is a true difference. While there is a general acknowledgement that results
from small subgroups are unreliable, unfortunately results from analyses of larger
subgroups of patients are often interpreted as the true results for that group of
patients, ignoring the fact that it is likely that some groups will show bigger or
smaller differences simply by chance. While multiplicity issues can also arise in
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clinical trials from other sources such as multiple endpoints, the issue is particularly
difficult for subgroups.

In the classic illustration of the problem, the ISIS-2 authors (ISIS 1988) examined
the outcome by astrological birth sign. While the overall results showed an
impressively positive effect for aspirin on mortality, for patients born under Gemini
or Libra there was a small observed increase in mortality.

For trials performed by the pharmaceutical industry, prior specification of a
subgroup, combined with an appropriate strategy to strongly control the type I error
rate is required if a claim of efficacy in a subgroup is to be approved (EMA 2002).
If the effect of a treatment is expected to be stronger in a subgroup compared to the
complimentary subgroup, then studying this subgroup alone is an option. However,
where the subgroup is defined by a biomarker, there is a desire from regulatory
authorities to understand the effect in both the biomarker positive and biomarker
negative patients. The FDA guideline on enrichment designs (FDA 2019) suggests
that the type I error rate for the study be shared between a test conducted using only
the enriched subpopulation and a test conducted using the entire population. In this
case, it will be beneficial to increase sample size in the group where greater efficacy
is expected. Simple strategies for this sharing include Bonferroni adjustment of p-
values or hierarchical testing but increases in power can be obtained using strategies
that take advantage of the correlation between the test statistics for analysis of a
subgroup and analysis of the whole population (Song and Chi 2007).

Historically, there have been concerns about inferring efficacy in a post-hoc
subgroup in trials where the overall effect was not positive. However, the current
emphasis in regulatory and reimbursement submissions is on showing that specific
subgroups derive benefit from the medicine in the presence of a positive effect
overall. Regulators seek assurance that effects are consistent across subgroups and
payers seek to restrict access to medicines to those groups where the benefit is
strongest.

Li et al. (2007) investigated the probability of observing negative subgroup
results when the treatment effect is positive and homogeneous across subgroups.
Negative here is defined as an effect size in the opposite direction to the overall
result. They show that if a trial with 90% power to detect an overall effect and total
sample size of 338 is divided into five equally sized subgroups, the probability of
observing at least one negative subgroup result is 32%. Each subgroup in this case
has more than 65 patients.

The number of different subgroups that are typically examined in a confirmatory
clinical trial of a new medicine is extensive and this can create challenges in
interpretation. For an integrated summary of effectiveness, the FDA guideline (FDA
2015) includes the following list of subpopulations to be considered: age, sex, race,
disease severity, prior treatment, concomitant illness, concomitant drugs, alcohol,
tobacco, body weight and renal or hepatic functional impairment. While some of
these subpopulations may not be applicable to a specific medicine, most will be
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and there will be a perceived need to split the data into subgroups according to
multiple criteria. The greater the number of subgroup analyses performed and the
smaller the resulting subgroups are, the higher chance that there will be subgroups
with seemingly no benefit or potential harm from treatment. This issue of selection
bias is recognised in the European regulatory guideline on subgroup analysis (EMA
2019) which states: “Not only might the play of chance impact the estimated effect,
but it is tempting to focus on subgroups with extreme effects”.

For submission for reimbursement in Germany, the Institute for Quality and
Efficiency in Health Care (IQWiG) requires analysis by sex, age, country and
disease severity for all patient relevant endpoints, including safety endpoints as well
as efficacy endpoints (IQWiG 2017). These analyses are usually performed in the
population for whom reimbursement is sought, often already a subgroup of the trial
population. This requirement can typically lead to an excessively large number of
subgroup analyses (e.g. 5 characteristics × 20 endpoints = 100 subgroup analyses)
and can involve very small sample size in some analyses. The credibility of the
analysis produced for IQWIG submissions has therefore been questioned (Ruof
et al. 2014) and the value of this exhaustive exercise in the determination of the
cost-effectiveness of the medicine is unclear.

When assessing whether observed differences across levels of a subgroup
represent a true difference, it is possible to use checklists such as that provided
by Sun et al. (2010). In practice, discussion often focuses on biological rationale
(Hemmings 2014; Pocock et al. 2002). Unfortunately, biological plausibility is a
somewhat elusive concept as most subgroup analyses have a degree of plausibility
and therefore it is helpful to plan subgroup analysis in advance of unblinding of the
trial. One possibility is to divide proposals for subgroup analysis into whether (a)
a differential effect is anticipated, (b) a differential effect is biologically plausible
but not anticipated and (c) observed differential effects are hypothesis generating
(Dane et al. 2019). The weight given to the observed findings could then depend on
which category the subgroup analysis was assigned to as well as the overall number
of subgroup analyses performed.

Replication across endpoints and across two or more trials strengthens the
support for a hypothesis of a different effect in a specific subgroup. In particular
because of regression to the mean, treatment effects from exploratory subgroup
analyses that show the biggest differential often cannot be reproduced.

15.4 Statistical Methods

The next sections describe commonly used statistical methods for investigating
exploratory subgroup effects. This is not an exhaustive list and other methods are
available. The focus is on methods that explore treatment by a single covariate,
which is a problem in many practical cases in analysis of data from clinical trials.
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15.4.1 Separate Analysis by Subgroup

Separate analysis by subgroup can be performed by either using an entirely separate
analysis for the specific subgroup or via a model of the complete data with a
treatment interaction term for the subgroup under investigation.

Graphical representation of subgroup analyses is a key component in facilitating
the interpretation of subgroup analyses. Forest plots, displaying treatment effect
estimates for each subgroup along with the associated confidence interval, is one
of the most common displays used.

Interpretation of such forest plots however is not straightforward. For example,
it is not possible to draw valid inferences about consistency of effect by comparing
the individual subgroup p-values or by assessing whether the CIs in the forest plot
cross the line of no difference. A significant difference in one subgroup but not the
other is not necessarily evidence of a significant difference between the subgroups.

When performing subgroup analysis, it is common to classify a continuous
variable such as age into categories and to analyse each subgroup separately. A
key choice then is the number and location of the cut-points used to define the
categories. Usually these might be dictated by clinical relevance. For example, it is
often necessary to define body mass index (BMI) subgroups by <18.5, 18.5–<25,
25–<30 and ≥ 30 kg/m2 as these are commonly used in clinical practice to identify
underweight, normal, overweight and obese patients respectively. Where possible, it
is helpful to state the cut-points prior to unblinding as different choices of cut-points
can result in different estimates of treatment effect (Royston et al. 2006).

However, pre-specifying cut-points is not without issues. In some cases, there
might be insufficient data in a particular pre-defined subgroup to allow estimation
of a treatment effect. In such cases the subgroup could be combined with a
neighbouring group but then the analysis can lose some of its value in estimating
treatment differences in groups of interest or even miss a true interaction. A potential
solution to this problem is to define subgroups by quantiles of the observed covariate
distribution (e.g. quartiles) to help ensure that there will be sufficient data within
each subgroup. Although such an approach might help to identify associations
between the treatment effect and the covariate, the chosen subgroups may not have
an easy clinical interpretation.

15.4.2 Interaction Tests

The classical approach to assessing consistency of effects across subgroups is to
perform an interaction test. The focus of interest here is the contrast between the
effects in the different subgroups, rather than examining a specific subgroup in
isolation. For a factor with multiple levels such as region, a global test of any
difference across all categories can be performed or a test for a specific category
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vs. the rest of the population. The ICH E9 guideline indicates in section 5.7 that
interaction testing is the first step in undertaking subgroup analyses (ICH 1999).

However, in practice, simple significance tests for interaction are on their own of
limited value when investigating subgroup differences. Firstly, as interaction tests
are tests of significance, they have an associated fixed type I error rate. If this is
fixed at 5%, then even if there are no true differences among subgroups, 5% of the
tests will be expected to be significant suggesting a differential subgroup effect.
Because of the low power of interaction tests, tests at the 10% or 20% level have
been suggested (Hemmings 2014). In these cases, even more false positive results
are to be expected.

Secondly, they have low power to detect heterogeneity. For example, in the
simple case of a continuous endpoint with two equal sized groups, the variance of
the interaction contrast is four times the variance of the overall treatment difference.
This implies that only unlikely large interaction effects can be detected with any
certainty.

Absence of statistically significant interactions does not imply consistency of the
treatment effect in the studied population since absence of statistical significance
cannot be taken to imply equality or consistency. To require only absence of
statistical significance in an interaction test, or only directional consistency, would
not be sufficiently sensitive filters to detect differences of potential interest.

The need to go beyond simple interaction tests is recognised in the CHMP
guideline on subgroup analysis (EMA 2019) which states that “The sole reporting
of an isolated p-value from a test for interaction is an inadequate basis for
decision making”. The guideline recommends including estimates of the size of the
interaction contrasts with associated confidence intervals to show what differences
a trial can reliably detect.

15.4.3 Stepwise Regression

When subgroups are assessed individually, the analysis does not account for
potential imbalances in known effect-modifiers between groups. Multivariable
analysis of an endpoint including various subgroups of interest and their interaction
with treatment may be required to determine whether the effects observed within a
subgroup are partially or wholly affected by other factors. In addition, a modelling
approach allows for correlation between covariates instead of examining these in
isolation.

Selection methods based on stepwise regression can be a useful exploratory
approach for this to help determine the most influential factors on treatment effect.
Various approaches are available for such an analysis, including forward, backward
and stepwise selection (Royston and Sauerbrei 2009).

In backward selection, all subgroups of interest and their interactions with
treatment are included in a model and the term with the largest p-value is removed
if it is above a specified significance threshold (e.g. p = 0.1). The process continues
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iteratively removing the term with the largest p-value above the significance
threshold at successive steps until all remaining covariates are significant at this
level. Alternatively, selection methods based on information criteria (e.g. Akaike’s
information criterion) or penalised likelihood could be used rather than p-values for
the individual covariates. Main effects should only be removed if its interaction with
treatment has also been removed at a previous step. Forward selection is essentially
the opposite to this, with terms being added separately to a model and retaining that
with the smallest p-value below some specified threshold for the next step of the
process. This is repeated until no covariates are significant when added to the model.
In this case interaction terms should only be added to the model if the corresponding
main effect was added at a previous iteration. Stepwise selection is a combination
of the two approaches, testing variables for inclusion or exclusion at each step and
allowing previously included or excluded variables to be removed or reincluded
respectively. Ideally all methods will result in the same final model, but this is not
always the case.

Results from such models should be deemed to be exploratory in nature since
the selection procedure will tend to lead to an over-estimation of the effects of the
selected covariates and, as in the case of separate analyses of subgroups, type I
error rate is not strictly controlled. However, they are a useful tool for hypothesis
generation or building prediction models.

When control of type I error is required, then potential methods are reviewed in
Dane et al. (2019), Ballarini et al. (2018) and Thomas and Bornkamp (2017). Dane
at al describe resampling methods and Balletini et al use penalised regression with
a Lasso-type penalty as a model selection and estimation technique. Thomas and
Bornkamp include model averaging in addition to resampling and Lasso methods.
However, absence of statistical significance does not imply that the effects are the
same in each subgroup and in a response to the Dane et al. article, Hemmings and
Koch (2019) argue that “power should be prioritised over type I error where the
objective is to generate signals for further inspection”.

15.4.4 Fractional Polynomial Modelling Approaches
with Continuous Covariates

As stated above, it is common to analyse a continuous variable by classifying
the variable into categories. Clear disadvantages of this approach are the loss of
information (Altman and Royston 2006; Royston et al. 2006) and the assumption
that patients close to a cut-point will have different responses when these are likely
to be similar. While these subgroup analyses provide treatment effect estimates
within a narrower range of the baseline covariate than in the overall study, they
do not necessarily adequately estimate the effect of treatment for a particular value
of that covariate which might be more useful to an individual patient.



15 Subgroup Analysis: A View from Industry 317

A more informative approach is to create a statistical model of the outcome by
treatment as a function of the covariate (Keene and Garrett 2014). For instance, the
covariate of interest can be entered into the model as a continuous linear term along
with its interaction with treatment. Such a model allows treatment differences to
be estimated at particular values of the covariate of interest rather than in groups.
A resulting plot of the estimated treatment difference versus the covariate can
potentially show in more detail how the treatment effect varies over the range of
the covariate than a forest plot of subgroup effects focusing on specific categories.

However, if the relationship between treatment efficacy and the covariate of
interest is non-linear then a model where the prognostic and predictive effects of
a covariate are represented by linear terms may fit the data poorly. For instance,
if a treatment has lower efficacy in patients who are underweight (<18.5 kg/m2)
and overweight (≥25 kg/m2) compared to patients in the ‘normal’ range, then the
association between efficacy and BMI is non-linear. In such a case a linear model
will miss such a result whereas the subgroup analysis is more likely to demonstrate
this interaction. Other transformations of the covariate could be assessed (e.g. log
transformation or adding a quadratic term) but while some transformations might fit
the data better and more closely align with subgroup estimates, there may be more
appropriate functions to use.

Fractional polynomial models (FPs) offer the flexibility to identify non-linear
treatment-covariate interactions (Royston and Altman 1994). In the FP framework,
various transformations of a covariate are assessed and the model which describes
the data best is selected. Transformations of the covariate of interest X that are
assessed are of the form Xp, where p is chosen from a set S of eight powers:
S = {−2, −1, −0.5, 0, 0.5, 1, 2, 3}. Here p = 0 indicates a log transformation
of X. Each transformed covariate is assessed individually and that which maximises
the likelihood of the model is used to assess the treatment interaction (Royston and
Sauerbrei 2004). The model can include other covariates, for instance those pre-
specified in the primary analysis, or a multivariable fractional polynomial (MFP)
algorithm can be applied prior to modelling the treatment interaction to determine
the most influential prognostic factors for the outcome and their best fitting forms
(Royston and Sauerbrei 2009).

An FP model containing a single transformation of the covariate X is referred
to as an FP1 model. To increase the flexibility of the modelling procedure, two
transformations of the covariate can be entered into the model using powers from
the same set S, so the model contains terms Xp and Xq where p, q ε S. This is
referred to as an FP2 model. If p = q then this is referred to as a repeated-powers
model and one of the terms is replaced by Xp log(X). Unlike an FP1 model, including
two transformations of X allows non-monotonic functions to be fitted thus greatly
increasing the flexibility of the modelling. Examples of FP1 and FP2 functions are
shown in Fig. 15.1. More than two transformations of the covariate could be used,
but such models do not greatly increase the flexibility of the modelling procedure
over and above FP2 models, can greatly increase the time taken to find the best
fitting model, and may lead to overfitting.
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Fig. 15.1 Examples of FP1 (dashed lines) and FP2 (solid lines) functions

It is important to check the results of the FP modelling, particularly if it indicates
a treatment-covariate interaction. Should there be an interaction, then this is also
likely to be indicated by a subgroup analysis. Therefore, estimating treatment effects
within a number of subgroups, for instance defined by quartiles or quintiles, can
show whether there is agreement between the two approaches. Disagreement should
be a signal of caution and investigated as it could be an artefact of the modelling—
for instance due to influential outliers of the covariate which are less likely to affect
a subgroup analysis.

Although FP modelling has several advantages over subgroup analysis, it is not
without some potential pitfalls. FPs can behave strangely at the tails of the covariate,
particularly close to 0 when negative powers are used. However, given that tails
contain little data and that the CIs for the treatment effect line are likely to be wide,
the plot of the treatment interaction can simply be truncated so that only the middle
90 or 95% of the distribution of the covariate are presented. There are also issues
with scaling and ensuring that the covariate is strictly positive prior to modelling,
but suitable solutions are available (Royston and Sauerbrei 2007).

An example of the value of a modelling approach is provided by the METREO
and METREX trials of mepolizumab in patients with COPD (Pavord et al. 2017).
These two randomised, placebo-controlled, double-blind, parallel group trials com-
pared mepolizumab (100 mg in METREX, 100 or 300 mg in METREO) with
placebo, given every 4 weeks for 52 weeks in patients with COPD who had a
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history of moderate or severe exacerbations while taking inhaled triple maintenance
therapy. The trials were funded by GlaxoSmithKline (ClinicalTrials.gov numbers:
METREO: NCT02105961, METREX: NCT02105948). The primary variable was
the rate of moderate/severe exacerbations and analysis was performed using a
negative binomial generalised linear model with a log link function (Keene et al.
2007).

The key covariate of interest was the screening blood eosinophil count. A pre-
specified meta-analysis of the two studies was performed to examine the result of
the studies by subgroups defined by categories of screening blood eosinophil count
and the results are shown in Fig. 15.2. The estimated exacerbation rate reduction in
patients with a screening eosinophil count between 300 and <500 cells/μL is 18%,
however, some patients are likely to fare better than others within this category and
so it is not clear for example what the estimated treatment effect is for a patient with
say an eosinophil count of 400 cells/μL. In addition, the subgroup analysis implies
a cliff effect at the cut-offs whereby two similar values of eosinophils correspond
to markedly different treatment effect estimates. In this example a patient with
a screening eosinophil count of 499 cells/μL and another with 500 cells/μL are
estimated to achieve a 18% and 33% reduction in exacerbations, respectively, when
there is a negligible difference between the two eosinophil values.

The relationship between exacerbation rate reduction with mepolizumab and
screening eosinophil count has been analysed using fractional polynomial modelling
and the results are shown in Fig. 15.3. Here the best fitting model was an FP2

<150 cells/μL

150 - <300 cells/μL

300 - <500 cells/μL

>=500 cells/μL

0.4 0.6 0.8

Rate Ratio (cells/μL)

1.2 1.4 1.61

1.08 (0.89, 1.31)

Rate Ratio (95% CI)

0.93 (0.78, 1.11)

0.82 (0.62, 1.08)

0.67 (0.46, 0.97)

Fig. 15.2 Rate of moderate/severe exacerbations by screening blood eosinophil count:
METREO/METREX trials

http://clinicaltrials.gov
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Fig. 15.3 Fractional polynomial modelling of exacerbations by screening eosinophils

function with repeated powers of (−0.5, −0.5). Estimates from the analysis based
on the categories in Fig. 15.2 are overlaid on the FP plot against the mean
eosinophil level in each category. The most obvious difference is that FP modelling
estimates a smooth treatment effect curve across the range of eosinophils rather
than a biologically implausible step-function obtained from a subgroup analysis,
thus allowing more accurate estimates of treatment efficacy to be made at specific
eosinophil values.

15.4.5 Splines

An alternative method to model treatment interactions with a continuous covariate
is using splines. With splines and unlike FPs, the covariate is subdivided at cut-
points defined as ‘knots’ and then separate regression curves are modelled in each
segment using polynomial functions. These piecewise polynomials are anchored
at the knots in such a way that the resulting curve is smooth and continuous.
Various approaches are available for spline modelling but one of the more common
methods is restricted cubic splines (Durrleman and Simon 1989). With this approach
polynomial functions are fitted in each segment. A cubic function is used as this is
the smallest degree polynomial which allows an inflection. Since cubic splines are
likely to behave poorly at the tails due to lack of data, the splines are ‘restricted’ to be
linear outside the two boundary knots. This can give an advantage over FPs, which
as mentioned above can behave erratically in the lower tail particularly if values of
the covariate are close to 0. Similarly, since functions are estimated in intervals of
the covariate, splines may be less prone to outliers of the covariate compared to FPs.
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An obvious additional step for splines is the need to specify the number and
location of the knots, much like categorization in subgroup analysis. The choice
of the number of knots can depend on the sample size and the prior belief in how
‘undulating’ the relationship is between efficacy and the covariate. Too many knots
can lead to overfitting while too few can impede the flexibility of the modelling and
thus might miss a true non-linear association. Authors have suggested using between
3 and 5 knots depending on sample size (Harrell 2001; Croxford 2016). For the
location of the knots, Harrell (2001) has suggested particular quantiles depending
on the number of knots to ensure that there is sufficient data within each interval to
estimate the cubic function. For instance, for three knots Harrell recommends using
the 10th, 50th, and 90th percentiles of the covariate, while for five knots use the 5th,
27.5th, 50th, 72.5th and 95th percentiles.

Despite the above guidance, the choice of knots can affect the resulting curve
and so restricted-cubic splines can suffer from similar issues to subgroup analysis
of the covariate. It is therefore important to pre-specify the knots where possible.
Alternatively, penalized splines use many knots but discourage overfitting by
restricting model complexity based on some penalty parameter (Eilers and Marx
1996). For instance, one option is to choose the spline which minimises the AIC
(Binder et al. 2013). Penalised splines therefore avoid the need to specify the number
and location of the knots, and hence some of the potential pitfalls of restricted cubic
splines.

With these approaches, unlike FP modelling, there is currently no suitable proce-
dure for simultaneously selecting functional forms and variables in a multivariable
procedure (Binder et al. 2013). Binder et al. (2013) in their comparison of splines
and FPs, concluded that for large sample sizes, the two methods often estimated
similar curves, while for moderate sample sizes, FPs tended to outperform splines
and were easier to implement.

Restricted cubic spline models were applied to the mepolizumab trial described
above to model the efficacy of mepolizumab versus placebo on exacerbations by
screening blood eosinophil count. Figure 15.4 shows the resulting curves for a spline
with three knots and another with five knots using the percentiles as suggested by
Harrell (2001) above and compares these curves to the best fitting FP2 function
presented in Fig. 15.3. The 3-knot spline resulted in estimates curve very close
the FP2 function while the 5-knot spline was more variable, likely due to fewer
data points between knots. This demonstrates the need to carefully pre-specify the
number of knots up-front, as the estimated curve can be sensitive to this choice.

15.4.6 Shrinkage Methods

As discussed above, when there is no true difference in efficacy between subgroups,
spurious interactions can arise. This is especially the case if many subgroups are
assessed, or if a specific subgroup contains a large number of levels. Subgroups
including a small amount of data are particularly susceptible to showing a difference
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Fig. 15.4 Comparison of modelling of exacerbations by screening eosinophils using fractional
polynomials with two powers and splines with three and five knots

to the complementary group due to the higher variability. Although the estimate in
any one subgroup does not have a statistical bias in isolation, focusing on the specific
result for that subgroup ignores relevant information from other groups.

Shrinkage methods are a technique to incorporate this information and move
subgroup estimates toward the overall effect. They also increase the precision of the
estimates by borrowing information across subgroups. Various shrinkage methods
are available, including Empirical Bayes and Bayesian Hierarchical modelling. In
the Empirical Bayes approach (Quan et al. 2013) the treatment effect di is first
estimated in each subgroup i using data in that subgroup only. The subgroup
estimates are then combined in a random-effects meta-analysis to obtain an estimate
of the overall treatment effect, d, and the level of heterogeneity between the
subgroup estimates as measured by the between-subgroup variability, τ 2. Subgroup
estimates are then moved toward d by taking a weighted average of the original
estimate di and d with weights wi and (1 − wi) respectively where wi = τ 2/(τ 2 + si

2)
and si

2 is the estimated variance of within-subgroup effect di. The result is that
the original subgroup estimates are shrunk towards the overall effect, with this
shrinkage being larger the higher the variability between estimates.

Another approach, Bayesian hierarchical modelling (Spiegelhalter et al. 1999),
assumes that the effect in each subgroup di is a random quantity drawn from some
common distribution centred around the overall treatment effect, d, i.e. di ~ N (d,
τ 2). The subgroup effects are assumed to be exchangeable in that there is no reason
a priori to believe that the effect in one group will be different from another. Prior
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distributions are placed on the random effect and the hyperparameters d and τ 2 to
then estimate posterior distributions for the di and corresponding credible intervals
to provide shrunken estimates of the subgroup effects.

Figure 15.5 shows a subgroup analysis of exacerbation rates by region for one
of the example trials (METREO) described above. In the standard analysis using
data within each subgroup separately, there appears to be a more beneficial effect
of treatment in the Eastern Europe region compared to other regions, and the
effect looks more favourable than the overall rate ratio of ∼0.80 but confidence
intervals are wide. The Empirical Bayes estimates are somewhat closer to the overall
effect and the confidence intervals of most estimates are also narrower due to the
borrowing of additional information from other regions. The Bayesian hierarchical
analysis estimates are slightly closer to those from the original analysis, and CIs
also have similar width. Thus, shrinkage techniques can incorporate prior scepticism
about observing large positive or negative effects in subgroups which are unlikely
to be true.

The above approach is useful primarily for evaluating a specific covariate as each
patient needs to be included in a single category i.e. subgroups must be disjoint. If
there is interest in assessing multiple subgroups simultaneously then patients need
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to be split by the covariates of interest (e.g. male European smokers). This is likely
to lead to groups containing few patients, thus affecting the stability of the model.
Instead, approaches involving model averaging of subgroup-specific models can be
used (Bornkamp et al. 2017). Subgroups are assessed in individual models and the
model averaging applies shrinkage across all groups.

15.4.7 Bayesian Dynamic Borrowing

One novel technique which may become increasingly useful in evaluation of
subgroup effects is Bayesian dynamic borrowing (Schmidli et al. 2014; Gamalo-
Siebers et al. 2017). As described above, it is often required to show evidence
of effect in a subgroup alongside an overall positive effect. A separate analysis
of the subgroup in question is limited by sample size and does not take account
of the information on the effects of treatment in the complementary subgroup.
A Bayesian statistical approach is one natural quantitative method to explicitly
borrow information from the complementary subgroup to provide inferences on the
subgroup under evaluation.

The approach works as follows. A robust mixture prior is constructed as a
weighted combination of an informative prior and a non-informative prior. The
results from the complementary subgroup are used for the informative prior for
the response in the subgroup of interest. The non-informative prior consists of a
weak prior distribution centred on a mean of zero, reflecting no relevance of results
from the complementary subgroup. This weighted combination of priors allows
for dynamic borrowing of prior information; the analysis learns how much of the
complementary subgroup prior information to borrow based on the consistency
between the subgroup of interest and the complementary subgroup.

The prior weight, w, assigned to the informative prior component represents
the prior degree of confidence in the similarity of the two subgroups. At lower
prior weights the mixture prior presents a heavier tailed distribution with more
prior weight being applied to the non-informative weak prior component. When
the mixture prior is combined with the observed efficacy data, w is updated using
Bayes theorem according to how consistent the data in the subgroup are with the
complementary subgroup; the stronger the evidence of consistency, the greater the
increase in the posterior weight (w∗) relative to the prior weight (w). Conversely,
when there is prior-data conflict, w∗ will be lower than w and will tend to zero as
evidence of conflict increases, so that the informative prior is down-weighted and
posterior inference is based almost entirely on the observed data in the subgroup.

To assess the strength of prior belief in the consistency assumption required to
show efficacy in the subgroup, a tipping point analysis can be carried out to identify
how much prior weight (w) needs to be placed on the complimentary subgroup
component of the robust mixture prior for the estimate of efficacy in the subgroup of
interest to show statistically significant evidence of treatment benefit (in a Bayesian
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framework, this corresponds to a posterior probability that there is a treatment
benefit of greater than 97.5%).

Subgroups that may be suitable for use of this dynamic borrowing approach
include those subgroups of specific regulatory interest e.g. sex, race, region. For
example, in a trial which includes both paediatric and adult subjects, there may
be insufficient paediatric subjects to show statistical significance if this subgroup
is analysed separately. A Bayesian dynamic borrowing approach of the adult data
would allow assessment of the degree of belief needed that adult efficacy applied to
paediatrics in order to conclude that there was evidence of efficacy in the paediatric
subgroup.

15.4.8 Partitioning Methods

When there are more than a few pre-defined covariates, e.g. when there are multiple
biomarkers under consideration, selection methods based on stepwise regression
approaches become increasingly problematic. If there is interest in investigating
complex models which go beyond evaluating relationships between treatment and a
single covariate then stepwise regression may not be feasible due to the substantial
number of potential two-way and three-way covariate interactions (Ruberg and Shen
2015). If there is more than one continuous covariate under evaluation, then a cut-
point approach may be needed for the additional continuous variable and this brings
the disadvantages described above.

Cluster analysis approaches group patients rather than examine covariates in
series. They aim to identify subgroups of patients whose responses are more similar
(in some sense) to each other than to those in other groups and the output is
a classification tree. Historically cluster analysis has sometimes been performed
with the aim of finding subgroups where the p-value for the difference between
treatments is maximised, but such approaches have poor reproducibility. A more
promising method is the SIDES (Subgroup Identification based on Differential
Effect Search) method described by Lipkovich et al. (2011) and by Lipkovich and
Dmitrienko (2014).

SIDES is a recursive partitioning method to establish response to treatment in
patient subpopulations. The idea is to build a collection of subgroups by recursively
partitioning a database into two subgroups at each parent group, such that the
treatment effect within one of the two subgroups is maximised compared with the
other subgroup. The process of data splitting continues until a predefined stopping
condition has been satisfied.

An alternative approach to identify subgroups of patients with enhanced benefit
is the virtual twins method described by Foster et al. (2011). The procedure works
by first building a model to predict the response on treatment and control for each
patient. Each patient comprises a set of ‘twins’ who differ only by the treatment
they receive. This can be done by applying a random forest to each treatment group
and then using the forest for a patient’s opposite treatment to predict their response



326 O. N. Keene and D. J. Bratton

on that treatment (Foster et al. 2011). Random forests are particularly useful for
this step as they exhibit low bias and prediction variance while avoiding overfitting,
despite potentially dealing with a large number of covariates (Lipkovich et al. 2017).

The predicted within-patient treatment differences are then taken as observed val-
ues and used as the outcome for the subsequent subgroup identification step which
uses a regression tree (or classification tree if the differences are dichotomised) to
find a small number of strongly associated covariates. These are used to identify a
subgroup of patients with a predicted treatment contrast greater than some clinically
relevant threshold. For instance, if an asthma trial estimated the effect of treatment
on FEV1 to be 50 mL which might not be clinically relevant in many cases, then
the procedure could be used to identify a subgroup likely to achieve a value more
worthwhile, such as 100 mL. The enhanced treatment effect is then estimated as
the difference between the effect in the subgroup and the overall population effect.
Since the naïve estimate of this will be over-optimistic because the subgroup was
estimated from the same data, Foster et al. (2011) describe a bias-corrected bootstrap
procedure to obtain a better estimate of the effect.

Concerns can arise that clustering algorithms such as SIDES and the virtual
twins method may over-fit the available data. In order to mitigate these concerns,
a common practice is to divide the data into independent training and validation
datasets. It is important to ensure that the training and test data sets are balanced
with respect to the treatment variable and all prespecified categorical covariates
(Lipkovich et al. 2011). A treatment effect identified based on the training set is
considered to be confirmed if the effect is demonstrated in the validation data set.

These methods may require large sample sizes and/or large enhanced treatment
effects to identify and confirm subgroups (Foster et al. 2011). If sample size is
limited, it may not be practical to divide the dataset into training and validation
datasets with a separate trial required to confirm findings.

A key disadvantage of the SIDES and Virtual Twins approach is the partitioning
of continuous variables above and below a specific cut-point. As described above,
this implies a cliff-edge effect at the cut-point which is biologically implausible.

Machine learning approaches combine different classification trees into ensem-
bles of trees. There is no simple output showing how patients are classified; rather
multiple trees are pooled in various combinations. These methods are primarily
directed at prediction of response using a large number of input variables rather
than at scientific understanding of which specific baseline characteristics predict
response.

15.5 Discussion

In the case of a confirmatory trial for regulatory purposes, it could be argued that
the burden of proof to establish an effect in each heterogeneous subgroup is with
the trial sponsor. In particular, examination of results by sex and race is increasingly
emphasised e.g. there are calls for efficacy to be established separately for both
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women and men. Many diseases are more prevalent in one sex rather than another;
for example, trials of severe asthma have recruited a majority of female participants
while COPD trials reflect the historically greater incidence of smoking among men.
Depending on where trials are conducted, there is likely to be imbalance in the
numbers of patients across the potential classifications of race and there can be
confounding of race and region which may make it difficult to disentangle medical
practice from race. Small numbers of patients in a specific race category leads to
large variability as reflected in wide confidence intervals for the observed effect.
Going forward there is likely to be an increasing need for recruitment to trials
to reflect a greater diversity in the groups studied even if this does not reflect the
relative prevalence of the disease being studied and to have larger sample sizes to
allow appropriate assessment of effects in subgroups defined by sex and race. One
novel approach that may be helpful is Bayesian dynamic borrowing which quantifies
the degree of belief needed from the complementary subgroup to confirm efficacy
in the subgroup under evaluation.

Exploratory subgroup analyses are a major scientific and statistical challenge
(Peto 2011) and because of multiplicity issues it is hard to identify true quantitative
interactions. Subgroup analysis should depend on the heterogeneity of the popu-
lation and there should be fewer requirements for these analyses when the overall
population is targeted (Keene and Garrett 2014).

Formal methods for defining consistency of effect are problematic. Tests of
interaction are of limited value as they do not formally provide evidence for a lack
of effect, although more emphasis could be placed on estimation of the interaction
effect to direct a more rational approach to assessing consistency. Methods of
subgroup analysis which strongly control type I error may be able to conclude a lack
of evidence for differential effects but may not identify potentially clinical relevant
differences in treatment effect. Bayesian shrinkage estimates can be helpful in the
interpretation of differential subgroup effects as they balance the overall effect with
that observed in the particular subgroup.

A modelling approach can be enlightening in identifying covariates which predict
both the absolute level of outcome and the extent to which the treatment effect
is modified in that subgroup. Newer methods such as the SIDES method allow
consideration of multiple covariates and the interrelationships of these covariates
on treatment effect. However, for continuous variables these methods employ a
partitioning (cut-point approach).

Fractional polynomial modelling and splines allow a broad range of relationships
between a continuous baseline characteristic and outcome and can show treatment
interactions in greater clarity compared with categorisation of the covariate. These
models of outcomes against a specific covariate avoid imposition of arbitrary cut-
offs for continuous variables and can determine cut-offs for treatment based on the
clinical relevance of the treatment effect observed. Thus, a modelling analysis is
arguably more aligned to a stratified medicine paradigm where a specific expected
treatment effect can be estimated more accurately for an individual based on their
value for the covariate. Prediction intervals for an individual patient will nonetheless
be wide as models summarise results of a trial over a range of values.
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The key issue in subgroup analysis is whether heterogeneity can reasonably be
assumed. When designing a clinical trial, it is usual to assume that a common effect
size holds for all patient groups. If there is a scientific rationale for heterogeneous
effects across subgroups defined by a specific characteristic, then it may be
necessary to show effects of treatment separately in each subgroup which implies
large increases in sample size for trials. Grouin et al. (2005) for example states: “If
substantial heterogeneity of the treatment effect across subgroups is suspected at the
design stage, then the whole basis of the trial is undermined.”

The conundrum of subgroup analysis is therefore that consistency of effect has
to be assumed at some level. The trial population is already a subgroup of possible
patients who could be treated. Within that trial population, subgroups can be defined
based on a specific characteristic. Analysis of this specific subgroup represents a
combined effect across all other characteristics. Analysis of subgroups of subgroups
is possible in theory, but in practice sample size quickly becomes very small.

In conclusion therefore, the desire for individualised medicine is never likely to
be completely satisfied by examination of clinical trial data which by its nature only
recruits a limited number of individuals. In general, only broad statements regarding
effects of individual characteristics is likely to be possible.
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Chapter 16
Subgroup Analysis from Bayesian
Perspectives

Yang Liu, Lijiang Geng, Xiaojing Wang, Donghui Zhang, and Ming-Hui Chen

Abstract Identifying the sub-population structures along with the tailored treat-
ments for all groups plays a critical rule for assigning the best available treatment
to an individual patient. Subgroup analysis, a key to develop personalized medicine,
becomes increasingly important over the past decade. Besides frequentist methods,
there are a spectrum of methods developed from Bayesian perspectives to identify
subgroups. In this chapter, we provide a comprehensive overview of Bayesian
methods and discuss their properties. We further examine empirical performance
of the two Bayesian methods via simulation studies and a real data analysis.

16.1 Introduction

In order to provide the best available treatment for individual patients, it is
critical to examine whether heterogeneous treatment effect exists among the patient
population. Many exploratory methods are developed in the literature to identify
subgroups. Among them there are a variety of frequentist approaches, for instance,
recursive tree based methods such as Interaction Trees (Su et al. 2009), Virtual
Twins (Foster et al. 2011), Subgroup Identification based on Differential Effect
Search (SIDES) (Lipkovich et al. 2011), Qualitative Interaction Trees (Dusseldorp
and Van Mechelen 2014) and Generalized Unbiased Interaction Detection and Esti-
mation (GUIDE) (Loh et al. 2015). Some optimization-oriented optimal treatment
regime methodologies (Zhao et al. 2012, 2015; Tian et al. 2014; Chen et al. 2017)
are also developed within the frequentist framework.
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Meanwhile, many Bayesian methods are proposed from different perspectives to
identify subgroups. In Sect. 16.2, we give an overview of some recently developed
Bayesian methods for subgroup analysis. Simulation studies are conducted in
Sect. 16.3. Section 16.4 presents a real data analysis. We conclude this chapter with
a brief discussion in Sect. 16.5.

16.2 Bayesian Subgroup Analysis Methods

In subgroup analysis, a nonparametric mean structure E(Y |X, trt) = g(X, trt) is
often considered for the data Y , where g(·) is a multivariate function representing
an underlying mechanism of the signal, trt indicates the treatment option, and
X is a vector of potential covariates used to identify subgroups. In a commonly
investigated scenario, there are two treatment options, placebo or treatment, i.e.,
trt = 0 or trt = 1. Then, the difference of treatment effects �(X) between these
two options can be defined as

�(X) = E(Y | X, trt = 1) − E(Y | X, trt = 0) = g(X, 1) − g(X, 0).

Therefore, we can equivalently model the nonparametric mean structure as

E(Y | X, trt) = g(X, 0) + �(X)trt = a(X) + �(X)trt. (16.2.1)

The first term a(X) in Eq. (16.2.1) is usually referred as the prognostic effect, since
it affects the response at the same amount regardless of the treatment assignment.
�(X) is often called the predictive effect or predictive subgroup effect, as �(X)trt

affects the response differently under the different treatment assignment trt .
Tracing back to the literature in the twentieth century, Dixon and Simon (1991)

proposed a linear regression model

E(Y | X, trt) = μ + τ trt + Xβ + γXtrt (16.2.2)

with the first-order term γX serving as �(X), and a linear function of X serving
as the prognostic effect a(X), assuming the covariate X has two possible values.
The parameters (μ, τ, β, γ ) are estimated using a Bayesian approach. Jones et al.
(2011) extended the previous linear regression framework of Dixon and Simon
(1991) by allowing second-order and third-order interaction terms for the predictive
effects. These two methods are not directly applicable when there are other types
of covariates, and may not work well when there are a large number of candidate
variables.

Many other Bayesian subgroup analysis methods have been proposed from
various perspectives. Below we introduce several recently developed Bayesian
methods grouped by their similarity.
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16.2.1 Tree-Based Bayesian Subgroup Analysis Methods

There are a few Bayesian subgroup analysis approaches which are linked to tree
structures. The advantage of a tree structure is that it can handle interactions and
nonlinear relationships between covariates and responses in an implicit way.

Berger et al. (2014) used a tree-splitting process to construct the treatment
(subgroup) submodels, i.e., �(X) and baseline (prognostic) submodels, i.e., a(X),
which simultaneously incorporate the predictive effects and prognostic effects in
the modeling. The tree-splitting process is randomly bisecting the covariate space
recursively and leads to an allowable partition of the entire population arising from
terminal nodes of a tree based on covariate splits, with possible zero treatment or
baseline effects. There are several key steps in stochastically splitting a tree: (1)
randomly select an ordering of covariates for splitting; (2) randomly determine the
existence of a zero effect node at each level, and then randomly choose one of the
nodes at that level to be the zero effect, which is a terminal node; (3) randomly
decide non-zero effect nodes at each level to be further split by the corresponding
covariate at that level; if not it becomes a terminal node. The detailed elaboration
of the tree constructions is discussed in Wang (2012). The advantage of this tree
splitting process is the elimination of possible partitions of the entire population
without scientific meaning in comparison of treatment or baseline effects, which
dramatically reduces the total number of models considered in the model space for
the outcome.

The simplest way to model the outcome is to combine the treatment and
baseline submodels with additive effects. Then, the model space for the outcome
Y includes all possible distinct combinations of these two submodels. Next, the
prior probabilities of the outcome models are assigned according to the stochastic
scheme to generate trees. Once the prior specification is complete, the Bayesian
model average techniques are utilized for subgroup analysis and, as a byproduct,
the yielded results provide individual probabilities of treatment effect that might be
useful for personalized medicine.

Here, we briefly discuss their main idea of defining an outcome model and
specifying the priors. Let � denote the set of covariates in the study. Let Xij be
the j -th binary covariate for the i-th person, where j ∈ � and i = 1, · · · , n.
If we allow at most one covariate to split the treatment submodel, we are going
to have five different types of models, i.e., S1,0

i = 0, S
2,0
i = trtiμ2, S

3,j
i =

trtiμ3j1{Xij=0} + trtiμ
′
3j1{Xij=1}, S4,j

i = trtiμ4j1{Xij=0}, S5,j
i = trtiμ5j1{Xij=1},

where μ2 is the mean overall treatment effect (if present), μ3j , μ′
3j , μ4j and μ5j are

the potential treatment (predictive) effects in the subgroups defined by the covariate
j , trti is the treatment indicator, and 1{·} is the indicator function. Similarly, there are
two possible types of baseline submodels via splitting one factor. That is, B1,0

i = μ1

and B
2,k
i = μ1 + βk1{Xik=0}, where μ1 is the overall mean and βk is the mean

baseline effect for covariate k ∈ �.
Then, the outcome model in Berger et al. (2014) is
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Yi = S
h,j
i + B

�,k
i + εi, εi ∼ N (0, σ 2), (16.2.3)

i = 1, · · · , n, h = 1, · · · , 5, � = 1, 2 and j, k ∈ {0,�}. Let m be the number
of covariates considered, then the total number of models for at most one covariate
splitting is 2 + 5m + 3m2, which is a huge reduction from 2m+1 possible models
when m is large.

The method developed in Berger et al. (2014) automatically takes account of
multiplicity adjustment in the prior specification for the model space. The prior
probability is computable via specifying three interpretable prior inputs, which are:
(1) specifying the prior probability that an individual has no treatment (predictive)
effect and no baseline (prognostic) effect, respectively; (2) assigning relative effect
odds for a covariate i has an effect compared to the first covariate; (3) defining the
ratio of the sum of the prior probabilities of the submodels with i − 1 split and
the sum of the prior probabilities of the submodels with i splits. An advantage for
this prior specification is that the experts can easily incorporate pre-experimental
preference to specific subgroups. See Section 3 of Berger et al. (2014) for more
details of computing the prior probability for each outcome model based on the
three interpretable inputs.

Once the prior specification for the outcome model and the unknown parameters
in the model is complete, then we can summarize the posterior quantity we are
interested in. In Berger et al. (2014), they summarized the posterior quantity
of interest using the Bayesian model averaging idea. Two interesting posterior
summaries discussed in their paper are:

1. Individual Treatment Effects: first, the probability for an individual to have
treatment effects is given by Pi = ∑

Mκ∈M P(Mκ | Y1, · · · , Yn)1{μiκ �=0}, for
any i = 1, · · · , n, where M denotes the entire model space for the outcome
model, Mκ is a specific outcome model in the model space, μiκ is the subgroup
treatment effect associated with the ith individual in the given model Mκ and
μ̄iκ is the posterior mean of μiκ . Then, the individual treatment effect size for
each individual is defined as weighted average of μ̄iκ , i.e., �i = ∑

κ P(Mκ |
Y1, · · · , Yn)μ̄i,κ1{μi,κ �=0}/Pi.

2. Subgroup Treatment Effects: based on individual posterior probability for the
treatment effects, the posterior probability of a nonzero treatment effect for
Subgroup j (denoted as Sj ) is defined as an average of Pi over the subgroups that
individual j belongs to (using the symbol {#i ∈ Sj }, i.e., Qj = ∑i∈Sj Pi/{#i ∈
Sj }. Similarly, the subgroup treatment effect size for Sj is calculated via �j =∑

i∈Sj Pi �i/
∑

i∈Sj Pi .

The Bayesian approach described in Berger et al. (2014) can be generally extended
to allow more than one covariate used in splitting. However, when more than two
covariates are utilized in tree-splitting process, the total number of models that we
need to consider will be increasing and the model enumeration scheme in Berger
et al. (2014) becomes impossible.
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Sivaganesan et al. (2017) restricted the scope from searching for subgroup effects
among all possible subgroups, to searching for subgroup effects among only a few
pre-determined candidate groups. More specifically, the authors focus on identifying
subgroup effects related to certain pre-specified covariates and shapes of subgroups.
Any center regions in the covariate space will be excluded from consideration, for
instance, a subgroup defined as {a < X1 < b, c < X2 < d} would be excluded.
For any subgroup A, the amount by which its predictive effect �(A) = E(Y |X ∈
A, trt = 1) − E(Y |X ∈ A, trt = 0) exceeds the predictive effects of entire patient
population �(C) = E(Y |trt = 1) − E(Y |trt = 0), that is, δ(A) = �(A) − �(C),
is used as the primary measure for identifying any potential enhanced subgroup
effects. The author defined a utility function to compare potential subgroups:

U(A) =
{ [(|A|−N)+]d

(1+c)nvar(A)−1 [δ(A) − Ts], if ∅ ⊂ A ⊂ C,

0, A = ∅,
(16.2.4)

where |A| is the number of observations in A, and nvar(A) is the number of
covariates used to define A, {x}+ = max(0, x), N is the pre-specified minimum
subgroup size, c, d > 0 are constants to control the “reward” for the subgroup size
and the “penalty” for complex subgroups, respectively. Ts is the minimum threshold
for δ(A) which corresponds to the clinically meaningful effect magnitude. Bayesian
Additive Regression Trees (BART) (Chipman et al. 2010) approach is used to fit the
response Y on the combined covariate space (X, trt) as a nonparametric function, to
get the predicted value of δ(A) for each subgroup A. Subgroups with larger positive
expected utility are preferred. Since the candidate subgroups are pre-specified, the
process of exploring from the entire covariate space is omitted, which makes this
approach differ from many other exploratory subgroup analysis methods.

Zhao et al. (2018) proposed another BART-based subgroup analysis approach
to identify important biomarkers. They modeled the predictive effects �(X) with
a single tree for better interpretability, and impose an additive tree structure on the
prognostic effects a(X) to enhance model fitting. Such an additive tree structure
allows more flexibility for the prognostic effect comparing to the commonly
assumed linear structures in Dixon and Simon (1991), Jones et al. (2011), and
Schnell et al. (2016), which may lead to better estimation performance for the
predictive effects �(X) at the same time. However, the computation time will also
increase quickly when sample size and number of candidate variables get larger.

Similar to BART, the posterior sampling procedure is carried out using Bayesian
backfitting algorithm (Hastie et al. 2000). The posterior probability that a biomarker
served as a splitting variable in the predictive tree will be used to determine whether
any covariate has notable predictive subgroup effect. In order to reduce “type
I error”, i.e., claiming irrelevant covariates as predictive biomarkers, no specific
subgroup will be declared when such posterior probabilities for all biomarkers
are less than a certain threshold. Several simulation scenarios with at most two
biomarkers are considered in the paper, and the estimated probabilities for the true
predictive biomarker(s) to rank as the top two predictive variables are reported. The
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method seems to identify the predictive biomarkers well when there is only one
predictive biomarker, despite presence of some prognostic effects. Meanwhile it
appears to be underpowered when there are two predictive biomarkers in the model,
especially for the purpose of identifying both predictive variables as the top two
candidate biomarkers.

16.2.2 ANOVA-Based Bayesian Subgroup Analysis Methods

Sivaganesan et al. (2011) developed a Bayesian approach from model selection
perspective by considering each covariate separately and constructed the model
space by enumerating the possible cases for different levels of treatment-subgroup
effects. First denote M00 and M10 the overall null and the overall effect model,
representing no treatment effect and homogeneous treatment effect in the whole
population, and the model space of “overall effect”, i.e., the model space of
no treatment-subgroup interaction models, is M0 = {M00,M01}. Then for each
covariate, define models in the model space by introducing the cluster membership
indicator γ = (γ1, . . . , γS), where the elements in γ range from 0 to number of
distinct non-zero treatment-subgroup effects and represent the order of appearances
of distinct treatment-subgroup effects, and S is the number of levels of the covariate.
To demonstrate this setting more clearly, Table 16.1 shows an example of models
defined by a covariate of two levels.

Use the zero-enriched Polya urn scheme as the probability distribution on the
model space MX . After getting the posterior model probabilities, the authors
proposed a decision-making algorithm, comparing the posteriors of models in M0
with the models defined by each covariate to determine whether notable subgroup
effects should be reported. In the algorithm, two threshold values c0 and c1 are used
for comparing model posterior probabilities. The model selected is the most likely
model, and also beats the overall null model M00 and the overall effect model M01
as its posterior probability odds exceeding c0 and c1. Therefore, c0 represents the
threshold for the posterior probability odds of the overall or a subgroup effect model
against the overall null model, and c1 represents the threshold for the posterior
probability odds of a subgroup effect model against the overall effect model. When

Table 16.1 Example of model space MX defined by covariate X

Model index γ Treatment-subgroup effects

M0 (0, 0) �(X = 0) = �(X = 1) = 0

M1 (1, 0) �(X = 0) �= 0, �(X = 1) = 0

M2 (0, 1) �(X = 0) = 0, �(X = 1) �= 0

M3 (1, 1) �(X = 0) = �(X = 1) �= 0

M4 (1, 2) �(X = 0) �= �(X = 1), �(X = 0),�(X = 1) �= 0

X has two levels
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no subgroup or overall effect models satisfy the comparing conditions, the overall
null model will be selected at last. A characteristic of this algorithm is that, when
selecting subgroup models, it only compares models within the model space of each
covariate, and in the end reports either models in M0, or one or more subgroup
models defined by different covariates. Therefore, this method cannot discover
subgroups defined by interactions of multiple covariates, unless data transformation
is done. However, an advantage of this method is that it does not only discover
subgroups, but also detect orders of subgroup effect sizes.

Liu et al. (2017) extended Sivaganesan et al. (2011) by considering two variables
at a time and enumerated all possible situations for the mean levels to construct the
model space. The authors elaborated on the case that there are two covariates of
interest and each has two levels, which are specified a priori by the investigators.
Similar to the decision algorithm introduced in Sivaganesan et al. (2011), a
stepwise procedure is adopted based on posterior model probabilities to determine
potential subgroup effects. The model space grows quickly when more covariates
are considered and/or there are more than two levels for each covariate.

Both of these two ANOVA-based methods do not model prognostic effects as a
function of the covariates, and the results may be biased when there exist covariate-
dependent prognostic effects.

16.2.3 Other Types of Bayesian Subgroup Analysis Methods

Schnell et al. (2016) also used a linear combination of the covariates to model both
prognostic effects and predictive effects similar to Dixon and Simon (1991). Denote
the predictive effects as �(x) = x′γ for any covariate vector x, and define the
beneficial subgroup as Bγ = {x : �(x) > δ, δ > 0} for a pre-specified threshold δ.
This method aims to find a credible subgroup pair (D, S) satisfying D ⊆ Bγ ⊆ S,
where D, defined as the “exclusive credible subgroup”, is the region such that the
posterior probability of �(x) > δ for all x ∈ D is no less than 1−α. The “inclusive
credible subgroup” S is defined as the region such that the posterior probability of
including all x, s.t. �(x) > δ for all patients in S is no less than 1 − α. The highest
posterior density method is applied to find the 1 − α credible region Gα for the
posterior distribution of γ . Therefore (D, S) can be constructed as: D = {x : x′γ >

δ for all γ ∈ Gα}, and Sc = {x : x′γ ≤ δ for all γ ∈ Gα}. There are two other ways
of constructing (D, S) discussed in the paper.

This approach may work well when the dimension of the parameter space is
low, while the computational costs increase quickly when the number of candidate
covariates increases. When the dimension of parameter space is high, it is also
difficult to interpret the credible subgroup pair (D, S) and characterize the patient
population within it.

Gu et al. (2013) applied a two-stage Bayesian lasso approach to time-to-
event responses and also used the first-order terms of X to model the predictive
effects. Three different treatment options are considered. In the first stage, linear



338 Y. Liu et al.

combinations of main effects, overall treatment effects and first-order treatment-
covariate interactions are considered to model the predictive effects, and shrinkage
priors are specified on the parameters, and a distance-based criterion is implemented
to help screen the unimportant biomarkers. In the second stage, all the biomarkers
retained after the first stage will be included in the model, and the Bayesian adaptive
lasso approach is deployed to perform further biomarker selection. The authors
only considered the case when true predictive effects are linear structured in the
simulation study, and the robustness of this method remains unknown when the
predictive effect model is misspecified.

This method does not consider higher-order treatment subgroup interactions and
the variable selection step does not extend further to split point selections to identify
a potential subgroup such as {X1 > 0.5}. Also, the sure screening property for the
first stage has not been established yet for this method, we shall be wary of the fact
that certain important biomarkers may be missed since the variables excluded from
the first stage will never enter the second stage.

16.3 Simulation Studies

In this section, we carry out simulation studies to examine the empirical perfor-
mance of two aforementioned methods (Berger et al. 2014; Sivaganesan et al. 2011).
Both methods consider subgroups defined by one binary variable. We focus on
testing of the scenarios listed below

(a) yi = 2 + εi ,
(b) yi = 2 + 2trti + εi ,
(c) yi = 2 + 2trtiI (Xi1 = 0) + εi ,
(d) yi = 2 + 2trtiI (Xi1 = 0) + I (Xi1 = 0) + 2I (Xi2 = 0) − 3I (Xi3 = 0) + εi ,
(e) yi = 2 + 2trti{I (Xi1 = 0) + I (Xi2 = 0)} + εi ,
(f) yi = 2 + 2trti{I (Xi1 = 0) − I (Xi2 = 0)} + εi ,

where yi is the i-th univariate response. The treatment variable trti
i.i.d∼

Bernoulli(0.5). Ten independent binary covariates are considered: Xij
i.i.d∼

Bernoulli(0.5), i = 1, . . . , n, j = 1, . . . , 10. The random error is set at two

levels, εi
i.i.d∼ N(0, 1) and N(0, 4). We assume {εi}′s, {Xij }′s, and {trti}′s are

mutually independent, for i = 1, . . . n, j = 1, . . . , J . The indicator function I (E)

takes a value of 1 if the event E is true and 0 otherwise. Here we set n = 100 for all
cases. We illustrate scenarios (c), (e), and (f) with tree diagrams in Fig. 16.1, where
Xi denotes the i-th covariate.

Under scenarios (a) and (b), there is actually no subgroup with heterogeneous
treatment effects. Under scenarios (c) and (d), there are heterogeneous treatment
effects, between group {i : I (Xi1 = 0), 1 ≤ i ≤ n} and the rest of the population.
Since the subgroup is defined by a single covariate, these two approaches are
expected to detect X1 with a high probability. In scenario (d), there are three



16 Subgroup Analysis from Bayesian Perspectives 339

Root

X1 = 0

2

X1 = 1

0

Scenario (c)

Scenario (f) Root

X1 = 0

X2 = 0

0

X2 = 1

2

X1 = 1

X2 = 0

-2

X2 = 1

0

Root

X1 = 0

X2 = 0

4

X2 = 1

2

X1 = 1

X2 = 0

2

X2 = 1

0

Scenario (e)

Fig. 16.1 Tree diagrams of scenarios (c), (e), and (f) along with the treatment effect size for each
terminal node

prognostic variables X1, X2, and X3, and it is desirable to test how these two
methods perform when there are prognostic effects. For scenario (e), there are
indeed three subgroups with heterogeneous treatment effects: g1 = {i : I (Xi1 =
0 ∩ Xi2 = 0), 1 ≤ i ≤ n}, g2 = {i : I [(Xi1 = 0 ∩ Xi2 = 1) ∪ (Xi1 =
1 ∩ Xi2 = 0)], 1 ≤ i ≤ n}, g3 = {i : I (Xi1 = 1 ∩ Xi2 = 1), 1 ≤ i ≤ n},
among which only g3 is the subgroup with zero treatment effect. Under scenario
(f), there is also qualitative treatment-subgroup interaction (i.e., there exists both
subgroups with positive treatment effects and negative treatment effects), and there
are two subgroups, {i : I (Xi1 = 0 ∩ Xi2 = 1), 1 ≤ i ≤ n} and {i : I (Xi1 =
1 ∩ Xi2 = 0), 1 ≤ i ≤ n}, having non-zero treatment effects. We repeat each
simulation independently for 200 times.

For the Bayesian tree method (Berger et al. 2014), the posterior probabilities Pi

of having a non-zero treatment effect for individual i = 1, . . . , n are extracted as
the major outcome for analysis. The simulations results are reported in Table 16.2.
P̄ 0 represents the mean of Pi’s of the patients whose treatment effects are 0. On
the contrary, P̄ 1 represents the mean of Pi’s of the patients whose treatment effects
are non-zero. The medians of P̄ 0 across different scenarios are shown as the point
estimate and the 95% confidence intervals for P̄ 0 are displayed below the point
estimates correspondingly in the table. Similar results are shown for P̄ 1. Ideally, we
should have P̄ 0 being close to 0, while P̄ 1 being close to 1 if a particular method
performs well in distinguishing the patient group with non-zero treatment effects
and the subgroup with the zero treatment effect.

For scenarios (c)–(f), since there are both subgroups with zero treatment
effects and non-zero treatment effects, we can construct the receiver operating
characteristic (ROC) curve and obtain the area under curve (AUC) for each scenario.
To construct the ROC curve, we compare Pi with each of these threshold values
0, 0.01, 0.02, . . . , 1.00 to classify individuals to two groups: the group with non-
zero treatment effect and the group with zero treatment effect. The AUC values are
given in Table 16.2.

From Table 16.2, we see that for scenario (a), the mean of the patient’s posterior
probability of getting a non-zero treatment effect, P̄ 0, is 0.25, which is noticeably
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Table 16.2 Simulation results under scenarios (a)–(f) obtained by the method (Berger et al. 2014)

Scenario

(a) (b) (c)

σ 1 2 1 2 1 2

P̄ 0 0.25 0.25 – – 0.17 0.35

(0.18, 0.59) (0.18, 0.59) – – (0.11, 0.59) (0.18, 0.92)

P̄ 1 – – 1.00 0.997 1.00 0.93

– – (1.00, 1.00) (0.82, 1.00) (1.00, 1.00) (0.27, 1.00)

AUC – – – – 1.00 0.89

Scenario

(d) (e) (f)

σ 1 2 1 2 1 2

P̄ 0 0.97 0.71 0.98 0.52 0.27 0.29

(0.35, 1.00) (0.19, 1.00) (0.46, 1.00) (0.24, 0.99) (0.12, 0.97) (0.15, 0.84)

P̄ 1 1.00 0.96 0.97 0.57 0.77 0.74

(0.70, 1.00) (0.59,1.00) (0.65, 1.00) (0.24, 0.99) (0.64,0.99) (0.45,0.93)

AUC 0.77 0.73 0.54 0.50 0.83 0.82

Symbol “–” is deployed when the criterion is not applicable for the cell

smaller comparing to P̄ 1 in scenario (b). Results from these two extreme scenarios
give us some ideas about the “benchmark value” of Pi , regarding to patients with
zero or non-zero treatment effects. Under scenario (c), there is only one binary
predictive variable and no prognostic variable, this method performs very well in
terms of AUC, and AUC drops a little when the noise level increases from N(0, 1)
to N(0, 4). When adding prognostic variables to the model, we see from the results
of scenario (d) that the AUCs are much smaller comparing to those under scenario
(c). The point estimates of P̄ 0 are much closer to 1, which indicates that the method
is not able to distinguish the group with zero treatment effect from the others. Since
the method only considers up to one prognostic variable, when the prognostic effect
structure is more complicated, it will affect the estimates of Pi’s. For scenarios
(e)–(f), there is no prognostic variable, while there are subgroups with non-zero
treatment effects defined by more than one variable. Since we use the algorithm that
allows at most one factor for split in Berger et al. (2014), the performance is not very
good as expected. Results from scenario (f) are better comparing to those from (e),
since there are more patients with zero treatment effect and it is easier to distinguish
this “null group” from others.

Under the model space setting in Sivaganesan et al. (2011), the true models for
scenarios (a) and (b) are M00 and M01, namely, the overall null and the overall effect
model. For scenarios (c) and (d), the true model is M11 indicating two subgroups
defined by X1, and the treatment effects in these two subgroups are zero and non-
zero. For scenarios (e) and (f), based on the decision making algorithm, the models
expected to be reported are M13 and M23, representing there are heterogenous non-
zero treatment effects defined by both X1 and X2. For the comparing threshold in
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the decision making algorithm, we set c0 = c1 = c for simplicity, c varying from 0
to exp(25). Figures 16.2 and 16.3 show the probabilities of models reported under
scenarios (a)–(f) for different values of c when σ = 1, 2. Note that c is chosen
when type I error (TIE) is controlled and power is reached as big as possible. Under
scenario (a) where TIE = 1 − Pr(M00 is reported|M00), we observe from Figs. 16.2
and 16.3 that TIE is controlled at 0.1 for log(c) > 1.5 and TIE is controlled at
0.05 for log(c) > 2 approximately. From Fig. 16.3 when σ = 2, we notice that
under scenarios (c)–(f), the probabilities of reporting true models are obviously
lower than the probabilities when σ = 1. This indicates that selection accuracy
of the method (Sivaganesan et al. 2011) is easily affected by data noise. In general,
log(c) = 2 controls TIE and achieves relatively high rates of reporting true models,
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Fig. 16.2 Probabilities of models reported when σ = 1
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Fig. 16.3 Probabilities of models reported when σ = 2

therefore we choose c0 = c1 = exp(2) as the comparing threshold in the decision
making algorithm, and the simulation results under this threshold value are shown
in Table 16.3.

From Table 16.3 it can be seen that the method in Sivaganesan et al. (2011)
performs quite well under scenarios (a) and (b) when there are no subgroup
treatment effects for σ = 1, 2. However, by comparing results of scenarios (c) and
(d), we find that prognostic variables cause great interference to selection results.
This can also be seen from Fig. 16.2 and 16.3, where the reporting probability curve
of M11 under scenario (d) is always lower than the curve of M11 in scenario (c).
Under scenarios (e) and (f) when multiple covariates have subgroup effects, though
reporting all true subgroup models is difficult, the probabilities of discovering at
least one true subgroup model are notably higher.
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Table 16.3 Simulation results under scenarios (a)–(f) obtained by the method (Sivaganesan et al.
2011) when c0 = c1 = exp(2)

Scenario (a) (b) (c)

Ture model M00 M01 M11

σ 1 2 1 2 1 2

P(TrueModel) 0.965 0.965 0.970 0.910 0.805 0.260

Scenario (d) (e) (f)

Ture model M11 M13,M23 M13,M23

σ 1 2 1 2 1 2

P(TrueModel) 0.340 0.100 0.475 0.020 0.465 0.005

P ∗ – – 0.850 0.260 0.855 0.090

P ∗=Pr(At least one true model is reported | multiple subgroup models) under scenarios (e)–(f)

16.4 A Real Data Example

We apply the method of Berger et al. (2014), the QUINT (Dusseldorp and
Van Mechelen 2014) method (a frequentist approach), and the approach of Siva-
ganesan et al. (2011) to analyze the Breast Cancer Recovery Project (BCRP) dataset.
BCRP dataset is publicly available in the R package quint. The test subjects were
women with early-stage breast cancer. There were three treatment arms in the
randomized trial: a nutrition intervention arm, an education intervention arm, and
a standard care arm. We only study the patients from the education intervention
(assign trt = 1) arm and the standard care arm (trt = 0). After removing missing
values, we had 146 test subjects left, among which 70 patients were in trt = 1
group and 76 patients were in trt = 0 group.

The response variable was the improvement in depression score at a 9-month
follow-up. There were nine covariates: age, nationality, marital status, weight
change, treatment extensiveness index, comorbidities, dispositional optimism,
unmitigated communion and negative social interaction, and we dichotomized
each continuous or categorical variable by its median value so we can apply the
Bayesian methods.

We use the default options to implement QUINT in R, and the final tree is just the
trivial tree (i.e., no split is made), which indicates no notable qualitative treatment-
subgroup interaction has been found. The posterior probabilities Pi’s of having a
non-zero treatment effect for all subjects are between 0.20 and 0.24, which also
suggests no findings of subgroup effect. The method in Sivaganesan et al. (2011),
where the decision-making is carried out based on c0 = c1 = 2 from our simulation
results, also reports the overall null effect model, which means no subgroup is found.
However, QUINT produces a non-trivial tree as reported in Liu et al. (2019) if the
variables are not dichotomized. The information loss after dichotomization is also a
main disadvantage for methods that are only applicable to binary variables.
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16.5 Discussion

Overall, Bayesian subgroup analysis methods add in a lot of varieties and new
aspects of thinking to the personalized medicine development. Bayesian methods
such as Berger et al. (2014) and Sivaganesan et al. (2011) can provide inference
over a model space rather than just one specific model, though it may not be
easy to extend and apply these methods to accommodate categorical variables or
continuous variables without information loss. In the aforementioned Bayesian tree
methods, only the method developed by Zhao et al. (2018) can be applied directly to
continuous variables, and considers the issue of splitting point selection implicitly
when building the tree. Comparing to frequentist methods, Bayesian methods allow
for the incorporation of prior information and expert’s inputs as well as account for
model uncertainty. Many of the Bayesian methods consider simple prognostic effect
structures. When the dimension of the parameter space is high and there are various
types of covariates, current Bayesian methods need to be improved to tackle these
challenges.
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Chapter 17
Power of Statistical Tests for Subgroup
Analysis in Meta-Analysis

Terri D. Pigott

Abstract Meta-analysis is used extensively in health and medicine to examine
the average effect of a treatment and the variation among studies estimating this
effect. However, the estimate of the average treatment effect is not the only concern
in a systematic review. Researchers also need to understand how the treatment
effect may vary. The potential challenges for subgroup analyses in meta-analysis
parallel those in randomized trials where many have urged caution in the conduct
and interpretation of subgroup analyses. This chapter will discuss the power of
statistical tests for subgroup analysis in order to help in both the planning and
interpretation of subgroup tests in a meta-analysis. The chapter will begin with an
overview of subgroup analyses in a meta-analysis, reviewing recent research on
the interpretation of these results. The chapter will then discuss the a priori power
of subgroup analyses under the fixed and the random effects model and provide
examples of power computations. The chapter will also present a general overview
of power in meta-regression with directions for future research on power analysis
for examining subgroup effects.

17.1 Overview of Subgroup Analysis in Meta-Analysis

Systematic review and meta-analysis examine the average treatment effect and its
variance across a set of clinical trials. While meta-analysis can provide an estimate
of the average treatment effect and its variance, researchers are often interested in
whether the treatment effect differs for subgroups of patients or studies. Researchers
conducting randomized trials often pose similar questions, asking whether the
overall treatment effect is consistent across patients that differ on one or more
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baseline variables (Pocock et al. 2002). In a systematic review and meta-analysis,
these questions focus on the variation in the estimated treatment effect across
studies and whether that variation is associated with differences in study methods or
subgroup differences.

When a researcher is conducting a meta-analysis, the first stage involves
estimating the average treatment effect and its heterogeneity among the trials in the
sample. Often the treatment effect differs across trials, and meta-analysis can help
inform clinicians about potential reasons why the treatment effect varies. Guidelines
for conducting subgroup analyses in randomized trials highlight the importance of
pre-specification of subgroup analyses and the use of clinical knowledge to evaluate
the credibility of these findings (European Medicines Agency 2014; Wang et al.
2007). These same cautions apply to subgroup analyses in meta-analysis. When the
individual trials in a meta-analysis report on subgroup differences in the treatment
and when researchers have an a priori hypothesis about the potential treatment
differences, meta-analytic techniques can provide an estimate of the treatment effect
for each subgroup, test whether the difference in that treatment effect is statistically
significant, and examine the heterogeneity of those subgroup effects across studies.

Subgroup analyses in meta-analysis differ from the standard use of interaction
effects in a randomized trial, the preferred method for testing the significance of
subgroup effects (Brookes et al. 2004; Wang et al. 2007). When we are testing
whether the mean effect size for a small number of subgroups differ, the meta-
analysis techniques used are analogous to the use of one-way ANOVA models. This
technique would be similar to the use of a single-predictor meta-regression. For
example, let us say we are interested in testing whether there is a difference in
treatment effect between men and women. Each study in the meta-analysis provides
an effect size for the treatment effect for men and an independent effect size for the
treatment effect for women. The current method for examining the subgroup effect
is to assume that the effect sizes across studies are independent and to examine the
difference in the mean effect size for men versus the mean effect size for women
using an omnibus test for the equality of the two mean effects. When the group
means differ and the effect sizes within groups are homogeneous, then there is
evidence of a treatment effect difference. However, when the group means differ
and the effect sizes within one or both groups are heterogeneous, the evidence for a
treatment effect difference is unclear.

As in subgroup analyses within a clinical trial, subgroup analyses in meta-
analysis are potentially both informative and potentially misleading as described by
Oxman and Guyatt (1992). Subgroup analyses in meta-analysis should be planned in
advance to avoid discovering a difference suggested by the data that may later prove
spurious. Reviewers should clearly delineate among planned subgroup analyses and
exploratory ones suggested by the data to avoid this difficulty. Planning for a small
number of subgroup analyses is also important given the relative small numbers of
trials in many systematic reviews in health.
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17.1.1 Potential Role of Power in Subgroup Analysis
in Meta-Analysis

Many researchers using meta-analysis have difficulty in the interpretation of the
results of subgroup analysis in meta-analysis. Richardson et al. (2019) surveyed
Cochrane Collaboration review authors who had included subgroup analyses in their
completed reviews. Many of these authors were confused about the interpretation
of the statistical significance of a subgroup difference particularly when one or
more of the subgroups were heterogeneous. For example, Richardson et al. (2019)
found that 28% of review authors incorrectly interpreted whether a statistically
significant subgroup analysis was present in an example analysis. Richardson et al.
(2019) provide criteria to assist review authors in interpreting subgroup analyses.
When a subgroup analysis results in a statistically significant difference among
subgroups, Richardson et al. (2019) urge researchers to discuss the plausibility
and importance of the subgroup difference. In addition, they recommend that
researchers also carefully examine the balance of studies contributing to each
subgroup and whether there could be a confounding variable that could also explain
the subgroup difference. This recommendation in consistent with guidelines for
subgroup analysis in randomized trials that urge the use of clinical knowledge to
evaluate the credibility of a subgroup finding as well as evidence from other sources
of relevant trial data (European Medicines Agency 2014).

Richardson et al. (2019) provide a clear set of criteria for interpreting subgroup
analyses in meta-analysis. Another strategy to assist reviewers in the interpretation
of subgroup differences is a priori power computations. Knowing at the outset of
a review the potential power for a range of subgroup differences can aid reviewers
in their interpretation of the results. If there is adequate power (typically power of
0.8) to detect a potentially important treatment difference, then the reviewer can be
more confident about the insights the meta-analysis may provide to clinical practice.
Knowing the power of potential subgroup analyses may also researchers to resist the
urge to conduct a number of exploratory subgroup analyses that are suggested by
the data. As discussed by Brookes et al. (2004), power calculations for randomized
trials focus on the overall treatment effect and rarely compute power for subgroup
differences, a situation that also occurs in subgroup analysis in meta-analysis. This
chapter will build on the suggestions of Richardson et al. by focusing in the power
to detect a clinically important difference among subgroups in meta-analysis.

As in all statistical analyses, power for subgroup analysis depends on the size
of the effect a researcher wishes to detect, the statistical test used, the sample size
including the number of trials and the number of participants in the trial, and the
balance of trials across the subgroups. The following sections provide an overview
of computing power for subgroup analysis.
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17.2 Power Computations in Meta-Analysis

In meta-analysis as in other statistical analysis, power analysis can provide the
researcher with information about the potential power for conducting the analysis.
The same is true in meta-analysis—power computations prior to collecting and
coding studies for the systematic review allows the researcher to plan for the analysis
and to avoid questionable research practices (Ioannidis 2005). This chapter will
assume that the researcher has a priori hypotheses about variation in treatment
effects across subgroups of patients and across studies using different methods.

Power computations in meta-analysis require the researcher to have educated
guesses about the studies included in the review. Researchers conduct power
analysis in meta-analysis under assumptions about the number of studies included
in the review, the sample size of studies within the review, and other quantities
related to the statistical test and form of the model (fixed or random). Hedges and
Pigott (2001), Valentine et al. (2010) and Pigott (2012) provide a discussion of
power analysis under the fixed and random effects model for the test of the average
treatment effect and for the test of overall homogeneity. This chapter will focus on
understanding the power of subgroup tests.

17.2.1 Power for Subgroup Analyses in Meta-Analysis: Test
of Between-Group Homogeneity in Fixed Effects
Models

In a fixed effects analysis, we assume that all variation among effect sizes in our
sample of studies is due to random sampling error. Suppose that a researcher is
interested in planning a meta-analysis that will examine how the treatment varies
across studies. A common subgroup difference of interest relates to gender—how
does a treatment vary for men and women? In meta-analysis, a researcher will
typically examine the difference in the mean treatment effect for women and men,
using either studies that report the treatment effect for women and men within a
trial, or studies that use patients of only one gender. When there are a small number
of subgroups, such as defined by gender or by a limited number of racial/ethnic
categories, we use a test analogous to one-way ANOVA. For this test, we assume
that the set of effect sizes are from independent samples within studies.

To set up our subgroup analysis, let us assume that there are k total studies in
the meta-analysis. Within each study, we compute a value for the overall effect
size within each study j, designated as Tj with variance v2

j . This effect size may
be a standardized mean difference, comparing the treatment and control group’s
performance on a continuous measure, or an odds ratio, comparing the number of
events in the treatment versus the control groups. In meta-analysis, we compute
the overall mean effect size as a weighted mean where the weights are given by
wj = 1/v2

j , or the inverse of the variance of the effect size.
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For our subgroup analysis, say we are interested in comparing the treatment
effect sizes for a set of p subgroups. Since not all studies will provide an estimate
of the effect size for the target subgroup, we will use mi, where i = 1 , . . . , p, to
indicate the number of studies within each of the i subgroups. We will designate
the individual effect sizes by Tij, i = 1 , . . . , p, and j = 1 , . . . , mi . These effects
sizes are for the treatment effect for each subgroup, computed within each of the j
studies. Each effect size has variance, v2

ij , i = 1 ,.., p and j = 1 , . . . , mi. When we
are interested in whether the treatment effect differs for men and women, p equals
2. If instead we are interested in subgroups defined by race or ethnicity, p may be
greater than 2.

Our null hypothesis in a subgroup analysis in meta-analysis takes the form of

H0 : θ1 = θ2 = · · · = θp (17.1)

where θ i, i = 1, . . . , p are the population treatment means for each subgroup. To
test this hypothesis, we compute the between-groups omnibus test of homogeneity,
QB, given by

QB =
p∑

i=1

wi·(Ti· − T··)2 (17.2)

where wi· are the sums of the weights for the ith group or wi· = ∑mi

j=11/v2
ij . The

subgroup mean Ti· and the overall mean T·· are given by

Ti· =
∑mi

j=1 wijTij
∑mi

j=1 wij

(17.3)

T·· =
∑p

i=1

∑mi

j=1 wijTij
∑p

i=1

∑mi

j=1 wj

(17.4)

The omnibus test of between-group homogeneity, or the test that all p means are
equal, given by QB is compared to a chi-square distribution with (p − 1) degrees of
freedom. Note that in this overview, we have not specified the form of the variance
of the effect sizes, v2

ij , as these differ for each type of effect size.
When the null hypothesis in Eq. 17.1 is true, then QB given in Eq. 17.2 has the

central chi-square distribution with (p − 1) degrees of freedom. When QB > cα
where cα is the 100(1 − α) percentile point of the chi-square distribution with
(p − 1) degrees of freedom, we reject the null hypothesis.

When the null hypothesis is false, then at least one of the p subgroup means
differs. Rejecting the null hypothesis also means that QB no longer has a central
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chi-square distribution. In this case, under the fixed effects model, QB has a non-
central chi-square distribution with (p − 1) degrees of freedom and non-centrality
parameter λB given by

λB =
p∑

i=1

wi·(θi· − θ··)2 (17.5)

where θ i· are the p population subgroup means and θ ·· is the overall population
treatment mean. The non-centrality parameter expresses the extent to which the null
hypothesis is false and is defined by a specific alternative hypothesis, in this case,
about the difference among the group means. The power of the test QB is

1 − F (cα | p − 1; λB) (17.6)

where 1 − F(cα | p − 1; λB) is the cumulative distribution of the non-central chi-
square with (p − 1) degrees of freedom and non-centrality parameter λB. The values
of the non-centrality parameter λB will depend on the model used (fixed or random
effects) and the values posed for the subgroup means. Recall that the power of a
statistical test is the probability that we will reject the null hypothesis in favor of
some other alternative hypothesis. In the case of subgroup analyses, our alternative
hypothesis is typically that at least one subgroup mean differs from the others. In
the simple case of gender differences, our alternative hypothesis will typically be
that one of the means is larger than the other by some clinically significant quantity,
such as Ha : θFemale − θMale = 0.5. The value of the non-centrality parameter λB

reflects our alternative hypothesis in the values chosen for the subgroup means.

17.2.2 Choosing Parameters for the Power of QB in Fixed
Effects Models

In order to compute power a priori in planning a meta-analysis with a subgroup
analysis, we need to pose values for parameters in the power computations. In a fixed
effects model, we assume that the effect sizes from each study estimate a common
effect (the fixed effect) and vary only as a result of random sampling variance.

In a fixed effects subgroup analysis, we are interested in the difference in
treatment effect for a limited number of subgroups. If we are interested in two
subgroups, such as the difference in the treatment effect for men and for women,
we need to decide on the magnitude of a clinically important difference between
men and women. In the context of standardized mean differences, we may say
that a difference of 0.5 standard deviations between men and women is clinically
important, and we will examine the power of our subgroup test for a difference of 0.5
standard deviations. Note that our choice of a clinically important difference will be
informed by prior research and a deep understanding of the particular treatment of
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interest. Given that we will typically have a clinically important subgroup difference
in mind a priori̧ we will use a one-sided test of statistical significance for the
subgroup difference.

The non-centrality parameter λB also includes values for the sum of our subgroup
weights, wi· These weights are the inverse of the variance of our effect sizes. For
both standardized mean differences and odds ratios, the variance of the effect size
depends on the sample size of the individual studies. To conduct power analysis,
we will need to provide a guess of the within-study sample size. We also need the
number of studies within each group, mi. Prior to conducting a systematic review
and meta-analysis, these quantities may be difficult to predict. Many researchers
with knowledge of the trials in the meta-analysis will have guesses about the typical
sample size used in the trials and the number of trials that will be available for the
review and can use this information to make a range of informed guesses about
typical values for the parameters needed in power computations.

17.2.3 Example: Power for a Fixed Effects Analysis
with the Standardized Mean Difference

Suppose we are interested in the power of detecting a difference of 0.5 standard
deviation units between men and women in their response to a treatment using a
fixed effects model. Let us assume that we have k = 10 studies. We will assume that
all studies have n = 40 patients, equally divided into 20 men and 20 women. We will
also assume that all k = 10 studies provide information about the treatment effect
separately for men and women so that m1 = m2 = 10. Note that we are assuming that
the treatment effect estimate within studies is independent—we have two estimates
of the treatment effect within a study that are estimated from independent samples.
We are also making the assumption that all studies have the same sample size,
a simplifying assumption in order for us to compute power. In essence, we are
assuming that the sample sizes in our included studies average to the value we are
using for the power computations.

Suppose we are interested in the power to detect a difference of 0.5 standard
deviation units between men and women in their treatment response. Let us assume
for simplicity that the mean effect size for men is θMale = 0.0 while the mean effect
size for women is θFemale = 0.5 resulting in an overall mean effect size, θ ·· = 0.25.
Note that we will assume a one-tailed test given that we will pose that one of the
groups will have an effect size larger than the other group. To compute the value of
the non-centrality parameter, λB, given in Eq. 17.5, we will also need a value for
the wi·, the sum of the weights within each group. We have assumed that each study
has a total sample size of n = 40 with nMale = nFemale = 20. The estimate of the
variance, v2, for the standardized mean difference in the fixed effects model within
a study is
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v2 = nT + nC

nT nC
+ d2

2 (nT + nC)
(17.7)

where nT is the sample size in the Treatment group, nC the sample size in the Control
group, and d is the effect size. We will assume a common value of v2 across the
groups. Let us use an effect size of d = 0.25, the overall mean effect size, as the
value to compute the common variance across our studies with equal numbers in
the treatment and control group (nT = nC = 10). The variance for the within-study
effect size for both men and women is 0.20. With mi = 10 studies for males and
females, wi· = 10(1/0.20)= 50. We can compute the value of the non-centrality
parameter as

λB =
2∑

i=1

wi·(θi· − θ··)2 = 50(0.0 − 0.25)2 + 50(0.5 − 0.25)2 = 6.25 (17.8)

The central chi-square distribution with p − 1 = 2–1 = 1 degree of freedom has
a critical value equal to 3.84 for α = 0.05. The power of the omnibus test that the
two means are equal is given by Eq. 17.6, or 1 − F(cα | p − 1; λB) = 1 − F(3.84|
1; 6.25). The value of the non-central chi-square at the critical value 3.84 with 1
degree of freedom and a non-centrality parameter value of 6.25 is 0.29 giving us
power of 1 − 0.29 = 0.71 to detect a difference in the treatment effect between men
and women in this example.

Many standard statistical packages provide a function for obtaining values for the
non-central chi-square distribution. SPSS, STATA and SAS provide the non-central
chi-square distribution. In R, the function pchisq provides the values needed given
values for the non-centrality parameter. Appendix 1 provides information about how
to use the R function pchisq.

Figure 17.1 provides a comparison of power for the standardized mean difference
under three different values for m1 = m2, namely 15, 10 and 5. Appendix 2 provides
the R code to produce Fig. 17.1. The lower line in Fig. 17.1 shows that power is low
when we have only five studies per group, and a within-study sample size of 20 for
the subgroup effect sizes.

17.2.4 Example: Power for a Fixed Effects Analysis for
the Log-Odds Ratio

Now suppose we are interested in detecting a difference of 1.0 in the log-odds ratio
between men and women in a treatment. As in the prior example, the choice of the
clinically important difference will should be guided by a deep understanding of
the potential effects of the treatment in subgroups. In this case, let us assume that
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Fig. 17.1 Power for subgroup differences for the standardized mean differences

Table 17.1 Example of 2 ×
2 table for an odds ratio

Treatment Control

Improvement 6 5
No improvement 4 5

we think the treatment difference from men will not be different from the control,
but we think that women will have a treatment difference close to 1.0 in the log-
odds metric. In log-odds ratios, we are assuming that the mean effect size for men
is θMale = 0.0 while the mean effect size for women is θFemale = 1.0 resulting in
an overall mean effect size, θ ·· = 0.5 (given equal numbers of studies and equal
sample sizes within each group). We will have the same assumptions as we have
in the previous example, k = 10 studies, and within each study, we have n = 40
patients, equally divided into 20 men and 20 women.

As in the prior example, we will need to compute the common within-group
variance for the effect size for men and for women. Estimating a common within-
group variance is more difficult with the odds ratio than with the standardized mean
difference. The variance of the log-odds ratio depends on the observed counts within
each cell. For example, the Table 17.1 would result in an odds-ratio of 1.5, and a log-
odds ratio of 0.40.

For the log-odds ratio, the variance of the effect size is v2 = 1
a
+ 1

b
+ 1

c
+ 1

d
where

a, b, c, and d are the frequencies in each cell of the 2 × 2 table. The within-study
variance for the log-odds ratio for the table above would be equal to 1

6 + 1
4 + 1

5 + 1
5 =

0.82. We will use the value 0.82 as the common value for the log-odds ratio for
both groups as it corresponds closely to an log-odds ratio of 0.5, the hypothesized
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overall mean log-odds ratio. As the log-odds ratio deviates from 0 (equal events
in each group), the variance changes. As in the example on the standardized mean
difference, we make simplifying assumptions in order to compute statistical power
a priori.

Using these values, w1· = w2· = 10(1/0.82) = 12.2. We can compute the value
of the non-centrality parameter as

λB =
2∑

i=1

wi·(θi· − θ··)2 = 12.2(0.0 − 0.5)2 + 12.2(1.0 − 0.5)2 = 61 (17.9)

The central chi-square distribution with p − 1 = 2 − 1 = 1 degree of freedom
has a critical value equal to 3.84 for α = 0.05. The power of the omnibus test that the
two means are equal is given by Eq. 17.6, or 1 − F(cα | p − 1; λB) = 1 − F(3.84|
1; 6.10). The value of the non-central chi-square at the value 3.84 with 1 degree
of freedom and a non-centrality parameter value of 6.10 is 0.31 giving us power
of 1 − 0.31 = 0.69 to detect a difference in the treatment effect between men and
women in this example.

17.2.5 Power for Subgroup Analyses in Meta-Analysis: Test
of Between-Group Homogeneity in Random Effects
Models

In a random effects model, we assume that the variation among effect sizes is due
to both random sampling variance and the underlying variance of the population,
τ 2. Effect sizes in a random effects model are assumed drawn from a population of
effect sizes. Thus, study-level effect sizes differ due to both sampling variance and
the underlying population variance, τ 2. Power computations for subgroup analyses
using a random effects model will need to include an estimate of τ 2.

As discussed by Borenstein et al. (2009), subgroup analyses using a random
effects model must make assumptions about the variance component, τ 2. In this
chapter, we will make the assumption of a common variance component within
subgroups. Subgroup analyses in biopharmaceutical meta-analyses will likely
have a small number of studies, making it more difficult to estimate a variance
component without bias. Assuming that all groups share a variance component is
the recommended strategy with small samples of studies (Borenstein et al. 2009).
The power of the test of between-group heterogeneity follows the same steps as in
the fixed effects case but with different values for the variance of effect sizes and
the non-centrality parameter.

As in the fixed effects case, our null hypothesis under the random effects model is

H0 : θ∗
1 = θ∗

2 = · · · = θ∗
p (17.10)
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where the θ∗
i are the random effects means for the i = 1 ,..., p groups. We test this

hypothesis using the random effects between-group heterogeneity test given by

Q∗
B =

p∑

i=1

w∗
i·
(
T ∗
i· − T ∗··

)2 (17.11)

where w∗
i· are the sums of the weights in the ith group, T ∗

i· is the random effects
mean effect size in the ith group, and T ∗·· is the overall random effects mean effect
size. These quantities are given as

w∗
i· =

mi∑

j=1

w∗
ij =

mi∑

j=1

1
(
v2
ij + τ 2

) (17.12)

T ∗
i· =

∑mi

j=1 w
∗
ij T

∗
ij

∑kmi

j=1 w
∗
ij

(17.13)

T ∗·· =
∑p

i=1

∑mi

j=1 w
∗
ij T

∗
ij∑p

i=1

∑mi

j=1 w
∗
ij

(17.14)

When the null hypothesis in Eq. 17.10 is true, then Q∗
B given in Eq. 17.11 has

the central chi-square distribution with (p − 1) degrees of freedom. When Q∗
B >

cα where cα is the 100(1 − α) percentile point of the chi-square distribution with
(p − 1) degrees of freedom, we reject the null hypothesis. When the null hypothesis
is false, then at least one of the p subgroup means differs. In this case, Q∗

B has a non-
central chi-square distribution with (p − 1) degrees of freedom and non-centrality
parameter λ∗

B given by

λ∗
B =

p∑

i=1

w∗
i·
(
θ∗
i· − θ∗··

)2 (17.15)

where θ∗
i· are the p population subgroup means and θ∗·· is the overall population

treatment mean. The power of the test Q∗
B is

1 − F (cα | p − 1; λ∗
B) (17.16)

where 1 − F (cα | p − 1; λ∗
B)is the cumulative distribution of the non-central chi-

square with (p − 1) degrees of freedom and non-centrality parameter λ∗
B .

Jackson and Turner (2017) have recently examined the power of the random
effects model in meta-analysis. Their analysis accounts for the fact that the variance
component, τ 2, must be estimated, adding uncertainty to any random effects
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meta-analysis. They find in their simulation studies that ignoring the uncertainty
introduced by estimating τ 2 is not a serious concern. However, the number of studies
in the meta-analysis is an important factor in power for meta-analysis in random
effects models as will be illustrated in the examples below.

17.2.6 Choosing Parameters for the Power of QB in Random
Effects Models

As for power under the fixed effects model, we need to pose values for the typical
within-study sample size, the number of studies eligible for the meta-analysis, and
the clinically important difference we wish to test. We also need to estimate a value
for the common variance component, τ 2, in order to estimate the variances and
weights for our effect sizes. One way to arrive at a set of values for the variance
component, τ 2, is to use conventions for I2 as addressed in the Cochrane Handbook
(Higgins and Green 2011). I2 is a relative measure of variance in meta-analysis, the
ratio of between-study variation as measured by τ 2 and total variation, or

I 2 = τ 2

τ 2 + v2 (17.17)

where v2 is the sampling variance for our common effect size. For example, an
I2 = 0.75 is in the range of considerable hetereogeneity as indicated in the Cochrane
Handbook. Given Eq. 17.17, a value of 0.75 for I2 would result in τ 2 = 3v2, or a
variance component that is three times the value of the sampling variance for the
effect size. Thus, we can pose a number of values of τ 2 relative to the variance of
the study level effect size that correspond to differing levels of heterogeneity. For
this chapter, we will use τ 2 = 3v2 for a large degree of heterogeneity, τ 2 = v2.for a
moderate degree of heterogeneity corresponding to an I2 = 0.5 and, τ 2 = 1

3v
2 for a

low degree of heterogeneity corresponding to an I2 = 0.25.

17.2.7 Example: Power for a Random Effects Analysis
with the Standardized Mean Difference

Returning to our example for the standardized mean difference, suppose we are
interested in the power of detecting a difference of 0.5 standard deviation units
between men and women. Recall that we have k = 10 studies, all studies have n = 40
patients, equally divided into 20 men and 20 women. We will also assume that all
k = 10 studies provide information about the treatment effect separately for men and
women so that m1 = m2 = 10. We will again assume that the mean effect size for
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men is θMale = 0.0 while the mean effect size for women is θFemale = 0.5 resulting
in an overall mean effect size, θ ·· = 0.25.

Within studies, we will assume a common variance for the within-study effect
of 0.20 as described in the example for a fixed effects subgroup analysis for the
standardized mean difference. To compute our weights w∗

i· in Eq. 17.11, we will
need to pose values for τ 2.

For a large degree of heterogeneity, we will use 3v as the value for τ 2 so that
τ 2 = 3(0.20) = 0.60. For both groups, the sum of the weights across the ten studies

is w∗
i· = 10

(
1

0.20+0.60

)
= 12.5. We can compute the value of the non-centrality

parameter λ∗
B from Eq. 17.15 as

λ∗
B = 12.5( 0.0 − 0.25)2 + 12.5(0.5 − 0.25)2 = 1.56 (17.18)

The power of the subgroup test for a large degree of heterogeneity is given in
Eq. 17.16 as 1 − F (cα | p − 1; λ∗

B) where cα = 3.84 for α = 0.05 for a chi-
square test with 1 degree of freedom. The power of the test is 1 − F(3.84| 1;
1.56) = 1 − 0.76 = 0.24. With a large degree of heterogeneity, we have little power
to detect a difference of 0.5 standard deviations between men and women’s response
to treatment. In general, the power of tests under the random effects model is lower
than under the fixed effects model.

17.2.8 Example: Power for a Random Effects Analysis for
the Log-Odds Ratio

As in our prior log-odds ratio example, we are interested in detecting a difference
of 1.0 in the log-odds ratio between men and women in a treatment. In log-odds
ratios, we are assuming that the mean effect size for men is θMale = 0.0 while the
mean effect size for women is θFemale = 1.0 resulting in an overall mean effect
size, θ ·· = 0.5 (given equal numbers of studies and equal sample sizes within each
group). We will have the same assumptions as we have in the previous example,
k = 10 studies, and within each study, we have n = 40 patients, equally divided
into 20 men and 20 women and m1 = m2 = 10. We will use the value 0.82 as the
common value for the log-odds ratio for both groups as it corresponds closely to a
log-odds ratio of 0.5, the hypothesized overall mean log-odds ratio.

For this example, we will assume a moderate degree of heterogeneity so that
τ 2 = v2 = 0.82. For both groups, the sum of the weights across the ten studies

will be equal to is w∗
i· = 10

(
1

0.82+0.82

)
= 6.10. We can compute the value of the

non-centrality parameter λ∗
B from Eq. 17.15 as

λ∗
B = 6.10( 0.0 − 0.5)2 + 6.10(1.0 − 0.5)2 = 3.05 (17.19)
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Fig. 17.2 Power for subgroup differences with log-odds ratio and varying degrees of heterogeneity

The power of the subgroup test for a large degree of heterogeneity is given in
Eq. 17.16 as 1 − F (cα | p − 1; λ∗

B) where cα = 3.84 for α = 0.05 for a chi-
square test with 1 degree of freedom. The power of the test is 1 − F(3.84| 1;
3.05) = 1 − 0.58 = 0.42. With a moderate degree of heterogeneity, we have little
power to detect a difference of 1.0 in the log-odds ratio between men and women’s
response to treatment.

Figure 17.2 provides a comparison of power in this example for a range of
subgroup differences and for low, moderate and high degrees of heterogeneity. We
have less power to detect a subgroup difference when there is a high degree of
heterogeneity for both subgroups. Note that in this example, we have m1 = m2 = 10
studies within each subgroup. It is not uncommon for meta-analyses in health to
have a smaller number of studies within each subgroup. In the case of small numbers
of studies and a large degree of heterogeneity, Jackson and Turner (2017) caution
that these meta-analyses, and by analogy these subgroup analyses, will have low
power and should be interpreted with caution..

17.2.9 Example: Unbalanced Number of Studies Within
Subgroups

Richardson et al. (2019), their tutorial on interpreting subgroup analysis in meta-
analysis, urge researchers to examine the balance of the number of studies within
each subgroup. The balance of the covariate across studies potentially influences
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Fig. 17.3 Power for the log-odds ratio with varying numbers of studies within groups

power through the computation of the non-centrality parameter. Figure 17.3 pro-
vides power curves for three different scenarios in the prior example for power for
random effects subgroup analysis with the log-odds ratio. The top curve is the power
for the prior example with a log-odds ratio difference of 1.0 with a large degree of
heterogeneity and equal numbers of studies within subgroups (m1 = m2 = 10). The
middle curve shows power for m1 = 2m2, or m1 = 12 and m2 = 6. The curve with the
lowest power has the most imbalance with m1 = 15 and m2 = 3. Jackson and Turner
(2017) find that power for the random effects model in meta-analysis with less than
five studies is low. Reviewers who anticipate that there will be an imbalance in the
number of studies should use caution in interpreting subgroup analyses that are both
imbalanced and have fewer than five studies within a subgroup.

17.2.10 Power for Other Tests of Moderators in Meta-Analysis

The discussion in this chapter has centered on power for subgroup differences,
comparing the treatment effect in two or more groups. While the examples focused
on two subgroups, note that power can be obtained for any number of subgroup
differences. The researchers would need to hypothesize the size of clinically
important differences among more than two means to compute power. Richardson
et al. (2019) also highlight the need to examine the heterogeneity of groups when
interpreting the subgroup difference in a meta-analysis. Hedges and Pigott (2004)
and Pigott (2012) both discuss the power of the test of within-group homogeneity.
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The power of these tests requires a guess about the amount of heterogeneity that
may exist prior to conducting the review. Because of the difficulty in guessing the
amount of heterogeneity expected, these tests are not discussed in this chapter.

Hedges and Pigott (2004) also provide power for meta-regression under both
the fixed and random effects model. Meta-regression is used for examining the joint
association of multiple moderators with variation in effect sizes. Computing a priori
power for meta-regression requires guesses about the magnitude of the regression
coefficients, the amount of variation explained by the set of potential moderators,
and under the random effects model, the estimate of the variance component. These
values are difficult to hypothesize prior to the study, and thus are not discussed here.

17.3 Summary of Power for Subgroup Analysis
in Meta-Analysis

Subgroup analysis in meta-analysis has the potential to provide insight into treat-
ment effect variation across studies and to contribute to clinical practice. However,
Richardson et al. (2019) have demonstrated that reviewers find the interpretation of
the results of subgroup analysis challenging. Computing a priori power for planned
subgroup analysis can allow reviewers to understand the potential power of their
analyses and help inform whether a subgroup analysis is warranted given the number
of eligible studies.

Table 17.2 provides a summary of the steps for computing a priori power for a
subgroup analysis. While power analysis does require a number of guesses about
important parameters, reviewers could compute power for a range of values for the
target subgroup difference, within-study sample size and number of eligible studies.
Note that power will be low for small numbers of studies, particularly in the random
effects model, as described recently by Jackson and Turner (2017).

Table 17.2 Steps for computing power in subgroup analysis in meta-analysis

1. Establish a critical value for statistical significance, cα
2. Decide on the magnitude of the clinically important difference among subgroup means in
the metric of the effect size
3. Assign values to the subgroup means, θ1, θ2, . . . , θp, corresponding to clinically important
differences between the subgroup means
4. Estimate the number of studies within each group, m1, . . . , mp

5. Compute v2, the common value of the sampling variance for each effect size, given typical
values for the within-study sample sizes
6. In the random effects model, provide values for τ 2 corresponding to different levels of
heterogeneity expected in the meta-analysis
7. Compute values for the common weight for each study. In fixed effects, wi = 1/(v2); in
random effects, wi = 1/(v2 + τ 2 )
8. Compute the value of the non-centrality parameter for the appropriate model, λB

9. Compute power under the assumptions in steps 1–8
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This chapter has focused exclusively on computing power a priori. The compu-
tation of observed power remains controversial as discussed by Hoenig and Heisey
(2001). Subgroup analysis in meta-analysis should be planned in advance; any
subgroup analyses suggested by the data gathered should be considered exploratory.
Smith and Egger (2001) also note that individual patient data meta-analysis would
provide more meaningful subgroup analyses rather than a reliance on aggregated
data from clinical trials. As this volume suggests, subgroup analysis is potentially
informative for understanding how treatment effects differ across subgroups but
require careful planning and interpretation before applied to clinical practice.

Appendix 1 R Function pchisq to Compute Power

In R, the function pchisq gives the distribution function for the chi-square distribu-
tion, the area either above or below a particular value. To compute the power for the
examples of the chapter, use the following code:

1–pchisq (x, df, ncp = y, lower.tail = TRUE, log .p = FALSE)

The value x is the critical value for the central chi-square for a test at the α level
of significance with df degrees of freedom (the number of groups in the test – 1).
The value y in ncp = y is the value of the non-centrality parameter for the alternative
hypothesis being tested. The argument lower.tail = TRUE gives the area in the non-
central chi-square distribution that is less than the value of x, or the lower tail of
the distribution. By default, the function returns the result in log units; setting the
argument log.p = FALSE provides the value needed for computing power.

To obtain the critical value of the central chi-square distribution at the α level of
significance, use the following code:

qchisq (p, df, ncp = 0, lower.tail = TRUE, log .p = FALSE)

The value p is 1 − α, and df are the degrees of freedom for the test (the number
of groups in the test – 1). The expression ncp = 0 indicates that we are interested in
the central chi-square distribution.

Appendix 2 R Code for Fig. 17.1, Power for Subgroup
Differences with the Standardized Mean
Difference

# Power analysis for fixed effects subgroup analysis of two groups - SMD
library(ggplot2)
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# Create a dataframe with N = 15 values for power analysis
# subdiff is a range of subgroup mean differences
# m is the common number of studies in both groups
# ssize is the within-study sample size
# vi is the common within-study variance for the effect size
N < −15
powerparms1 < − data.frame(subdiff = numeric(N), ssize = (N), vi = numeric

(N))
# add values for the power parameters
# seq is a function that creates a sequence of numbers for the subgroup

differences
# rep is a function that repeats a value for the common within-study sample size
powerparms1$subdiff <− c(seq(from = 0.05, to = 0.75, by = 0.05))
powerparms1$ssize <− c(rep(20, times = 15))
# use effsize and ssize to create vi for standardized mean difference
# I use 1/2 of the subgroup difference of interest for the overall mean effect size
powerparms1$vi < − ((powerparms1$ssize)/((0.5*powerparms1$ssize) ˆ 2)) +
(((0.5*powerparms1$subdiff) ˆ 2)/ (2*powerparms1$ssize))
# copy the dataframe 3 times to create parameters for 3 different
# scenarios for number of studies within groups m = 5, 10, 15
powerp1 < − rbind(powerparms1, powerparms1, powerparms1)
# create values for equal m within groups of 5, 10, 15
powerp1$m < − c(rep(5, times = 15), rep(10, times = 15), rep(15, times = 15))
powerp1$mlab <− c(rep(“3:m = 5”, times = 15), rep(“2:m = 10”, times = 15),
rep(“1:m = 15”, times = 15))
# get the sums of the weights for values of the vi and m
powerp1$w1sum < − powerp1$m*(1/powerp1$vi)
powerp1$w2sum < − powerp1$m*(1/powerp1$vi)
# get lambda the non-centrality parameter
powerp1$lambda <− (powerp1$w1sum*((0.5*powerp1$subdiff) ˆ 2))+
(powerp1$w2sum*((0.5*powerp1$subdiff) ˆ 2))
#get power
powerp1$power < − 1 - pchisq(3.84, 1, ncp = powerp1$lambda, lower.tail = T,
log.p = F)
# plot the power curves
ggplot(powerp1, aes(x = powerp1$subdiff, y = powerp1$power, group =

powerp1$mlab)) +
geom_line() +
geom_point(aes(shape = powerp1$mlab)) +
ggtitle(“Power for subgroup differences with SMD”) +
labs(y = “Power”, x = “Subgroup difference”) +
labs(shape = “Subgroup size”)
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Appendix 3 R Code for Fig. 17.2, Power for Subgroup
Differences with Log-Odds Ratio and Varying
Degrees of Heterogeneity

# Power analysis for random effects subgroup analysis of two groups - LOR
library(ggplot2)
# Create a dataframe with values for power analysis
# subdiff is a range of subgroup mean differences
# m is the common number of studies in both groups
# ssize is the within-study sample size
# vi is the common within-study variance for the effect size
N < -15
powerparms2 < − data.frame(subdiff = numeric(N), m = numeric(N),

ssize = numeric(N), vi = numeric(N))
# add values for the power parameters
# seq is a function that creates a sequence of numbers for the subgroup

differences
# rep is a function that repeats a value
powerparms2$subdiff <− c(seq(from = 0.05, to = 2.85, by = 0.20))
powerparms2$ssize <− c(rep(20, times = 15))
powerparms2$m < − c(rep(10, times = 15))
# use an LOR = 1 for overall effect size to compute vi
# ssize/4 for each cell to obtain common estimate of vi
cellcounts <− powerparms2$ssize/4
powerparms2$vi < − 4*(1/cellcounts)
# copy the dataframe 3 times to create parameters for 3 different
# scenarios for heterogeneity: low, medium, high
powerp2 < − rbind(powerparms2, powerparms2, powerparms2)
# create factor for each value of heterogeneity
powerp2$levelh <− c(rep(“1:low”, times = 15), rep(“2:medium”, times = 15),
rep(“3:high”, times = 15))
# create values for tau for the three different levels of heterogeneity
powerp2$tausq[1:15] < − powerp2$vi[1:15]/3
powerp2$tausq[16:30] < − powerp2$vi[16:30]
powerp2$tausq[31:45] < − powerp2$vi[31:45]*3
# get the sums of the weights for values of the vi and m
powerp2$w1sum < − powerp2$m*(1/(powerp2$vi + powerp2$tau))
powerp2$w2sum < − powerp2$m*(1/(powerp2$vi + powerp2$tau))
# get lambda the non-centrality parameter
powerp2$lambda <− (powerp2$w1sum*((0.5*powerp2$subdiff) ˆ 2))+
(powerp2$w2sum*((0.5*powerp2$subdiff) ˆ 2))
# get power
powerp2$power < − 1 - pchisq(3.84, 1, ncp = powerp2$lambda, lower.tail = T,
log.p = F)
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# plot the power curves
ggplot(powerp2, aes(x = powerp2$subdiff, y = powerp2$power, group =

powerp2$levelh)) +
geom_line() +
geom_point(aes(shape = powerp2$levelh)) +
ggtitle(“Power for subgroup differences with LOR”) +
labs(y = “Power”, x = “Subgroup difference”) +
labs(shape = “Heterogeneity”)

Appendix 4 R Code for Fig. 17.3, Power for the Log-Odds
Ratio with Varying Numbers of Studies Within
Groups

# Power analysis for random effects subgroup analysis of two groups - LOR
# Moderate heterogeneity and unbalanced groups
library(ggplot2)
# Create a dataframe with values for power analysis
# subdiff is a range of subgroup mean differences
# m is the common number of studies in both groups
# ssize is the within-study sample size
# vi is the common within-study variance for the effect size
N < -15
powerparms3 < − data.frame(subdiff = numeric(N), ssize = numeric(N),

vi = numeric(N))
# add values for the power parameters
# seq is a function that creates a sequence of numbers
# rep is a function that repeats a value
powerparms3$subdiff <− c(seq(from = 0.05, to = 2.85, by = 0.20))
powerparms3$ssize <− c(rep(20, times = 15))
# use an LOR = 1 for overall effect size to compute vi
# ssize/4 for each cell to obtain common estimate of vi
cellcounts <− powerparms3$ssize/4
powerparms3$vi < − 4*(1/cellcounts)
# copy the dataframe 3 times to create parameters for 3 different
# scenarios for balance of subgroups - balanced, 1/2 and 1/5
powerp3 < − rbind(powerparms3, powerparms3, powerparms3)
# create factor for balance scenario
powerp3$balance <− c(rep(“1:balanced”, times = 15), rep(“2:m1 = 2 m2”,

times = 15),
rep(“3:m1 = 5 m2”, times = 15))
# create values for m1 and m2
powerp3$m2[1:15] < − 9
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powerp3$m1[1:15] < − powerp3$m2[1:15]
powerp3$m2[16:30] < − 6
powerp3$m1[16:30] < − 2* powerp3$m2[16:30]
powerp3$m2[31:45] < − 3
powerp3$m1[31:45] < − 5* powerp3$m2[31:45]
# moderate level of tau: vi = tau
powerp3$tausq <− powerp3$vi
# get the sums of the weights for values of the vi and m
powerp3$w1sum < − powerp3$m1*(1/(powerp3$vi + powerp3$tau))
powerp3$w2sum < − powerp3$m2*(1/(powerp3$vi + powerp3$tau))
# get the value of the overall mean effect size given subdiff
# and the values of m1 and m2
powerp3$meaneff <− (powerp3$m2*powerp3$subdiff)/(powerp3$m1 +

powerp3$m2)
# get lambda assuming group 1 has mean 0 and group 2 has mean = subdiff
powerp3$lambda <− (powerp3$w1sum*((0 - powerp3$meaneff) ˆ 2))+
(powerp3$w2sum*((powerp3$subdiff - powerp3$meaneff) ˆ 2))
powerp3$power < − 1 - pchisq(3.84, 1, ncp = powerp3$lambda, lower.tail = T,
log.p = F)
# plot the power curves
ggplot(powerp3, aes(x = powerp3$subdiff, y = powerp3$power, group =

powerp3$balance)) +
geom_line() +
geom_point(aes(shape = powerp3$balance)) +
ggtitle(“Power for LOR: Unbalanced groups”) +
labs(y = “Power”, x = “Subgroup difference”) +
labs(shape = “Group Balance”)
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Chapter 18
Heterogeneity and Subgroup Analysis
in Network Meta-Analysis

Jeroen P. Jansen

18.1 Background

Comprehensive healthcare decision-making requires a comparisons of the relevant
competing treatment options for a particular disease state. Randomized controlled
trials (RCTs) are considered the most credible evidence to obtain insight into the
relative treatment effects of a medical intervention. However, an individual RCT
rarely includes all competing interventions of interest. Typically, the evidence base
consists of multiple RCTs where each of the available studies compares a subset
of all the competing interventions of interest. If each of these trials has at least
one intervention in common with another trial such that the evidence base can
be represented with one connected network, a network meta-analysis (NMA) can
provide relative treatment effects between all competing interventions of interest
(see the network diagram in Fig. 18.1) (Ades 2003; Bucher et al. 1997; Dias et
al. 2013a, 2018a; Hutton et al. 2015; Jansen et al. 2011, 2014; Lumley 2002; Lu
and Ades 2004; Salanti et al. 2008). A NMA can be considered a generalization of
conventional pairwise meta-analysis (Dias et al. 2018b, c). Rather than synthesizing
the findings of multiple RCTs each comparing the same intervention with the same
control, with a NMA we are simultaneously synthesizing the findings of multiple
pair-wise comparisons across a range of interventions and obtaining estimates of
relative treatment effects between all competing interventions based on direct and/or
indirect evidence. Even if there was a conclusive RCT that included all competing
interventions of interest, the available RCTs comparing a subset of the interventions
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Fig. 18.1 Concept of network meta-analysis. An evidence network of connected randomized
controlled trials for the competing interventions of interest (A, D, E, F, G, H) provide the data
to estimate the relative treatment effects of each intervention relative to A (estimates for the
basic parameters) given the assumption of consistency. These basic parameters are the basis for
inferences regarding comparative effectiveness

provide relevant evidence as well. A NMA allows to estimate relative treatment
effects based on the totality of the RCT evidence base.

RCTs of novel biopharmaceuticals are frequently performed in the context
of regulatory approval. These trials are designed to demonstrate efficacy versus
placebo or standard care, but not typically against each other. However, obtaining
approval for drug licensing based on positive trials is not a guarantee for market
access. Payers need to be convinced about the value of the new drug as well. As
part of a health technology assessment (HTA), the value of the new intervention
is assessed by examining its benefits, risks, and costs in comparison with existing
standards of care for a given patient population of interest based on explicit and
scientifically credible methods to inform healthcare and reimbursement decision-
making. In many countries, the agencies tasked with HTA expect manufacturers
of biopharmaceuticals to provide evidence regarding the comparative and cost-
effectiveness of their drugs. With the evidence base characterized by multiple RCTs
that only provide direct evidence regarding relative treatment effects for a subset of
comparisons of interest, NMA is a core component of HTA submissions for new
biopharmaceutical interventions.

It is well known that subgroups of patients within a population will derive
value from a medical intervention that can differ systematically from the expected
estimate of value for the overall population due to heterogeneous treatment effects
(Espinoza et al. 2014; Sculpher 2008; Stevens and Normand 2004). As such,
evaluation of treatment effects in subgroups are an integral part of the HTA review
process, and treatment recommendations can be limited to specific subpopulations.
In the context of relative treatment effects in RCTs, a subgroup effect can be
understood as a categorical patient related covariate that modifies the treatment
effect.



18 Heterogeneity and Subgroup Analysis in Network Meta-Analysis 371

This chapter will discuss the estimation of relative treatment effects between
competing interventions for specific subpopulations based on existing evidence
by means of NMA methods. Methods that will be discussed include shrinkage
estimation, network meta-regression, and a hierarchical approach to network meta-
regression to combine study-level and patient level data.

18.2 Criteria for Valid Network Meta-Analysis

In order to appreciate the relevance of a NMA in the context of heterogenous and
subgroup effects, it is important to highlight the criteria for a valid NMA first.

The purpose of a NMA is to estimate the relative treatment effects between
competing interventions of interest for a specific target population based on
available RCT evidence. In principle, this means that the study population in each of
the RCTs that define the evidence base used for the NMA needs to be representative
of the target population of interest. Individual RCTs are representative of the
target population if there are no systematic differences in patient characteristics
that influence the relative treatment effects, i.e. effect modifiers, between the study
populations and the target population (Turner et al. 2009; Dias et al. 2018c). If this
requirement for a relevant NMA is met, then there are no systematic differences
in patient related effect-modifiers between the different RCTs in the network, and
any of the relative treatment effects obtained with the NMA based on direct and/or
indirect evidence is valid (Ades 2003; Dias et al. 2013a, 2018b, c; Jansen et al. 2012;
Jansen and Naci 2013). Alternatively, if a subset of the trials in the network are not
representative of the target population then there are differences in the distribution
of effect-modifiers between the trials in the network and the estimated relative
treatment effects based on indirect evidence are biased. If the study populations
for all trials are different from the target population, but not different between trials,
then the relative treatment effects of NMA are valid, but not representative of the
target population of interest; we have external bias (Turner et al. 2009; Dias et al.
2018d). Obviously, effect-modifiers are not limited to patient characteristics. If there
are study characteristics or contextual factors that act as effect modifiers and are
different between the RCTs in the network, then the estimated relative treatment
effects are biased as well.

In summary, for a credible NMA we need a connected network of RCTs where
each trial has at least one intervention in common with another trial, without
systematic differences in known and unknown effect modifiers between studies.
For the findings to be relevant, there should not be systematic differences in effect-
modifiers between the evidence base and the target population and setting of interest.
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18.3 Standard Network Meta-Analysis Model

A NMA of RCTs relies on the same fundamental principle as a pairwise meta-
analysis of RCTs. With a random effects pairwise meta-analysis, we assume that
each study i aims to estimate study-specific relative treatment effects, δi, AB, and are
exchangeable, i.e. a priori the study-specific relative treatment effects are expected
to be similar, yet non-identical (Dias et al. 2013a, 2018b). The study specific
treatment effects come from a normal distribution with mean dAB and variance
σ 2
AB reflecting the between-study heterogeneity: δi,AB ∼ N

(
dAB, σ

2
AB

)
. With a

NMA we have multiple RCTs, each comparing a subset of all the interventions of
interest, e.g. intervention A, B, C, and D (see Fig. 18.1). Now, we must assume
the exchangeability of the study-specific relative treatment effects between any
intervention k and b across the entire set of trials in the network: δi,bk ∼ N

(
dkb, σ

2
kb

)

(Dias et al. 2018b, c). We assume that the relative treatment effect δi, AB in trial
i comparing B with A is a sample from the same random effects distribution as
the other AB trials are estimating effects from, as well as the AC, AD, BC, and
CD trials if these would have included intervention A and B as well. This notion
extends to all the interventions in the network (Dias et al. 2018c). Accordingly,
transitivity of the within-trial relative treatment effects of any intervention k relative
to b in trial i can be described as δi, bk = δi, Ak − δi, Ab. Consequently, the average
treatment effects are related according to: dbk = dAk − dAb. Typically, it is assumed
that σ 2

kb = σ 2
Ak = σ 2

Ab = σ 2 (Dias et al. 2018b, c).
The general random-effects NMA model can be expressed as:

g (γik) = θik =
{
μi k = b, b ∈ {A,B,C, ..}
μi + δi,bk k � b

δi,bk ∼ Normal
(
dAk − dAb, σ

2
)

(18.1)

where g is an appropriate link function (e.g. the logit link for binary outcomes)
and θ ik is the linear predictor of the expected outcome with intervention k in trial i
(e.g. the log odds). μi is the study i specific outcome with comparator treatment b.
δi, bk reflects the study specific relative treatment effects with intervention k relative
to comparator b and are drawn from a normal distribution with the pooled relative
treatment effect estimates expressed relative to the overall reference treatment A:
dbk = dAk − dAb (with dAA = 0). Variance parameter σ 2 reflects the heterogeneity
across studies. With a fixed effects NMA, δibk~Normal(dAk − dAb, σ 2) is replaced
with δibk = dAk − dAb because σ 2 is assumed to be 0.

The primary parameters of interest are dAk and σ 2 and are estimated based
on the available RCTs included in the evidence network. Estimates of dAk reflect
the relative treatment effect of each intervention k relative to overall treatment of
reference A based on direct and/or indirect evidence and facilitates decision-making
regarding how interventions rank regarding their effects on the outcome of interest.
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It is important to highlight that the model is applicable to many types of data, by
just specifying an appropriate likelihood describing the data generating process and
corresponding link function (Dias et al. 2018b). For example, when we have study
level data and the measure of interest is response expressed as a proportion we use
a binomial likelihood. When we have patient-level response (yes/no) data, we can
use a Bernoulli distribution.

When the NMA is performed in a Bayesian framework, the parameters to be
estimated, μi, dAk , and σ 2 need be given prior distributions. In principle, we like
the model parameter estimates to reflect the observed data from the RCTs and
will therefore consider non-informative, or minimally informative prior distribu-
tions, wherever possible (Dias et al. 2018b). For example, μi~Normal(0, 1002),
dAk~Normal(0, 1002), and μ~uniform(0, x) with x a reasonable upper bound depen-
dent on the expected range of observed relative treatment effects.

18.4 Specific Challenges with Subpopulations

With a NMA we estimate relative treatment effects between competing interventions
based on existing RCTs. The available trials for biopharmaceutical interventions
have frequently been designed for regulatory approval and powered to detect a
relative treatment effect for the overall study population. However, in the context
of HTA, the target population of interest may be a subgroup of the overall study
populations of the RCTs for the interventions of interest. This will pose challenges
for the NMA when subgroup effects have not been reported or subgroup data are not
available for the relevant trials. Even if the available RCTs do provide information
on relative treatment effects for the subpopulation of interest, the studies may not
have been powered to detect these subgroup effects and relative treatment effect
estimates may be characterized by substantial uncertainty due to small sample sizes.
In the following sections some of the methods that may be relevant for a NMA of
treatment effects in subpopulations will be highlighted.

18.5 Shrinkage Estimation

Let us assume we have a connected network of RCTs that include all the competing
interventions of interest, and all trials report results or provide data for mutually
exclusive subgroups defined by observable patient characteristics. If the evidence
base is rather weak due to a limited number of studies and/or small sample sizes
in each of the subgroups, the NMA by subpopulation may not provide informative
answers due to the uncertain estimates. As a potential solution we can consider
using so called class effect models where the multiple interventions in the NMA are
categorized into a smaller set of classes (Henderson et al. 2016; Kew et al. 2014;
Lipsky et al. 2010; Mayo-Wilson et al. 2014; Warren et al. 2014). We assume that
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the treatment-specific relative effects within a class are exchangeable. For example,
treatments with a similar mechanism of action fall into the same class and, a priori,
their relative effects are more alike than effects of treatments from different classes
(Dias et al. 2018d). For a class effects model with exchangeable treatment effects
within a class, model 18.1 can be modified by defining that the basic parameters dAk

are assumed to come from a distribution with a common mean and variance, if they
belong to the same class:

dAk ∼ Normal
(
mDk

, σ 2
Dk

)
(18.2)

where Dk is defined as the class to which treatment k belongs. mDk
is the mean

class effect in class Dk, and σ 2
Dk

are the within-class variances. These models allow
borrowing of strength across treatments in the same class: Unstable estimates for
dAk due to limited subgroup data will be shrunken towards the class mean effect
and become more precise than obtained with a model where dAk are assumed to be
independent (Eq. 18.1). Depending on the sparseness of the available data, infor-
mative distributions may be needed for σ 2

Dk
. It is recommended to perform multiple

sensitivity analyses with different choices of values for the prior distributions of σ 2
Dk

(Dias et al. 2018d).
As an alternative to a NMA by subgroup, we can also define a model where all

mutually exclusive subgroups are incorporated simultaneously and subgroup effects
are exchangeable by treatment:

g
(
γis,k

) = θis,k =
{
μis k = b, b ∈ {A,B,C, ..}
μis + δis,bk k � b

δis,bk ∼ Normal
(
ds,Ak − ds,Ab, σ

2
s

)

ds,Ak ∼ Normal
(
DAk, σ

2
k

)
(18.3)

where θ is, k is the linear predictor for the expected outcome with intervention k in
subgroup s of trial i. μis is the expected outcome with comparator treatment b in
subgroup s of study i. δis, bk reflects the relative treatment effect with intervention
k relative to comparator b in subgroup s of trial i and are drawn from a normal
distribution with the pooled estimates expressed in terms of the overall relative
treatment effects versus treatment A in that subgroup ds, Ak. This model adds the
assumption that the underlying subgroup specific treatment effects ds, Ak are drawn
from a common normal distribution with mean DAk and treatment specific variance
σ 2
k . With this model, highly uncertain relative treatment effects for each subgroup

are stabilized by borrowing information from the data from other subgroups for that
treatment (rather than from other treatments for the same subgroup) (Henderson
et al. 2016).
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The two “shrinkage models” presented here are a compromise between a model
where treatment effects by subgroup are completely independent and a completely
pooled analysis which ignores subgroup effects (Henderson et al. 2016).

18.6 Network Meta-Regression

Depending on the available data, a network meta-regression may be a relevant
approach to estimate relative treatment effects between competing interventions
for particular subpopulations. A meta-regression analysis can be used to explain
between-study heterogeneity due to observed differences in the distribution of
effect-modifiers between studies (Dias et al. 2018d). When there are differences
between the target population of interest and the study populations of the individual
studies included in the evidence network regarding effect-modifiers, a meta-
regression can be used to adjust for this external bias (Turner et al. 2009; Dias et
al. 2013b, 2018d). A network meta-regression analysis can be performed based
on aggregate or study-level data, individual patient level data (IPD), or evidence
networks where for a subset of the studies IPD is available and for other studies
only aggregate level data (Efthimiou et al. 2016).

When the available evidence base only consists of aggregate level data, the model
presented with Eq. 18.1 can be extended with covariates according to: (Cooper et al.
2009; Dias et al. 2013b, 2018d; Donegan et al. 2017, 2019; Nixon et al. 2007)

θik =
{
μi k = b, b ∈ {A,B,C, ..}
μi + δi,bk + (βAk − βAb)

(
mi − xtarget

)
k � b

δi,bk ∼ Normal
(
dAk − dAb, σ

2
)

(18.4)

mi is the study-level covariate value for trial i, which can represent a subpopulation
of interest. βAk represent the covariate effects with treatment k relative to the overall
reference treatment A. xtarget is the centered covariate value representing the target
(sub) population of interest. dAk represent the relative effect of the treatment k
compared to treatment A at the value xtarget. As before, dAA = βAk = 0. With this
model we do not only assume consistency regarding relative treatment effects, but
also regarding the parameters reflecting the impact of the covariates. Figure 18.2a, b
illustrate the concept for an evidence base consisting of three AB and three AC trials
for which only study-level data is available. If it is believed the Eq. 18.1 covariate
of interest is not an effect modifier than the indirect BC estimate is relevant for the
target population of interest (Fig. 18.2a). However, if the covariate is believed to be
an effect modifier, a network meta-regression may be of interest to estimate the BC
estimate for the target population (Fig. 18.2b). In model Eq. (18.4) the impact of
the covariate on the relative treatment effects is assumed to be independent for each
intervention k relative to A. However, we can also simplify the model by assuming
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the impact of the covariate is the same for every treatment k relative to A, βAk = B,
or assume these to be exchangeable, βAk ∼ Normal

(
B, σ 2

B

)
(Cooper et al. 2009;

Dias et al. 2013b, 2018d). This is useful when the number of studies for a certain
intervention is limited or whether all the studies have the same covariate value.

Without access to IPD we only have information on trial-level covariates. The
information on patient characteristics is aggregated at the trial level, such as pro-
portion of patients with prior treatment or severe disease, or mean age of the study
population (Dias et al. 2013b, 2018d). If the study population of a particular trial
is homogeneous regarding a certain dichotomous characteristic (e.g. only treatment
naïve or treatment experienced), we have a dichotomous between-trial covariate. If
the trial population is heterogeneous regarding a dichotomous characteristic (e.g. a
mixed population of treatment naïve and experienced) the between-trial covariate
is continuous representing the proportion of individuals with the characteristics
in the trial. For an aggregated continuously distributed patient characteristic, the
between-trial covariate is continuous as well. If the precision of each trial is large
and the number of studies is small, we may find a spurious relationship based on
the between-trial comparisons to be statistically significant if the contrast in the
between-trial level covariate between these studies is sufficiently large (Dias et al.
2018d). On the other hand, with continuously distributed patient characteristics, the
within-trial variation is typically much larger than the variation in aggregated means
used for the between-trial meta-regression, thereby not having the power to detect a
true relationship (Dias et al. 2013b, 2018d). Using aggregated information regarding
patient characteristics in a network meta-regression is vulnerable to ecologic bias:
the parameter estimate indicating the impact of a patient characteristic on a relative
treatment effect based on between-trial comparisons may be very different from the
within-trial relationship, as illustrated by the different regression lines in Fig. 18.2b,
c (Berlin et al. 2002; Higgins and Thompson 2004; Jansen 2012; Lambert et al.
2002; Riley et al. 2010; Schmid et al. 2004; Riley and Steyerberg 2010).

Even in the absence of study level confounding, ecological bias can exist in
non-linear models (Schmid et al. 2004; Greenland 2002; Jackson et al. 2006,
2008; Jansen 2012; Riley and Steyerberg 2010). In Fig. 18.3, the relationship
between a relative treatment effect on the log odds ratio scale is presented against
a dichotomous patient level effect-modifier X (x = 0 and x = 1) that is aggregated
across the individuals in a study and represented as the proportion with x = 1. Let
us assume that the probability of response is 40% with treatment A in both AB and
AC trials for x = 0 and x = 1. The probability of response with B in the AB trials
is 60% when x = 0 and 80% when x = 1. The probability of response with C in the
AC trials is 70% when x = 0 and 95% when x = 1. The solid non-linear lines in Fig.
18.3a reflect the true log odds ratio of AB and AC trials for different distributions
of the dichotomous covariate X in a particular study given the probability of the
outcome with intervention A, B and C. For the AB comparison there are 5 studies in
which the proportions of subjects with x = 1 are 0.1, 0.15, 0.20, 0.25, and 0.30 (the
blue dots). For the AC comparison the five studies have proportions of x = 1 of 0.20,
0.30, 0.40, 0.50, 0.60 (the red dots). The dashed line in Fig. 18.3b reflects a network
meta-regression model where the study specific log odds ratios are modeled as a
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Fig. 18.2 Network meta-analysis of AB and AC studies with a continuous covariate. (a) Indirect
estimate for BC comparison without adjustment for the imbalance in the effect modifier; (b) with
adjustment based on aggregate level data; and (c) after adjustment with individual patient level
data (modified from Jansen 2012)
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Fig. 18.3 Network meta-regression of AB and AC studies with a non-linear model with a
dichotomous patient related covariate X to estimate subgroup effects x = 0 and x = 1 in the absence
of study level confounding. (a) True indirect estimates for x = 0 and x = 1, can be obtained with
patient level data for all studies; (b) Biased indirect estimates for x = 0 and x = 1 (b) based on
aggregated level data network meta-regression (modified from Jansen 2012)

function the proportion of subjects with x = 1 in each study using study-level data.
When we are interested in the AB, AC, and indirect BC estimate for the subgroups
x = 0 and x = 1, the projected treatment effects with the network meta-regression
model are biased: the estimated log odd ratios for x = 0 and x = 1 (the dashed lines)
differ from the true log odds ratios (the solid).

The limitations of network meta-regression based on aggregate level data can be
overcome with the use of IPD. In the context of adjusting for external bias in relation
to patient characteristics, a network meta-regression analysis based on IPD can be
considered the “gold-standard” (Cope et al. 2012; Dias et al. 2018d; Debray et al.
2018; Leahy et al. 2018). The solid curves in Fig. 18.3a show the estimates that an
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analysis with IPD would provide (Jansen et al. 2012). With IPD available for all the
trials in the evidence network, a model can be defined according to:

θijk =
{
μi + β0ixij k = b, b ∈ {A,B,C, ..}
μi + δi,bk + β0ixij + (βAk − βAb) xij k � b

δi,bk ∼ Normal
(
dAk − dAb, σ

2
)

(18.5)

j reflects the individual in study i. β0i is the main effect of covariate x on the outcome
of interest in study i. xijis the value of the covariate for individual j in study i. Here
we assume the interaction effect βAk is fixed across studies. We can also separate
the within and between-trial interaction and define the model with a covariate for
the mean value of the patient-related effect-modifier of each study and a covariate
for the individual patient value of the effect-modifier minus the mean value in that
study to describe the within-study variation (Riley and Steyerberg 2010; Donegan
et al. 2013):

θijk =
⎧
⎨

⎩

μi + β0ixij k = b, b ∈ {A,B,C, ..}
μi + δi,bk + β0ixij + (βa

Ak − βa
Ab

)
mi k � b

+ (βw
Ak − βw

Ab

) (
xij − mi

)

δi,bk ∼ Normal
(
dAk − dAb, σ

2
)

(18.6)

βa
Ak represent the between-study coefficient for the covariate effects with treatment

k relative to the overall reference treatment A. βw
Ak represent the within-study

coefficient for the covariate effects with treatment k relative to the overall reference
treatment A. If the within-trial and between-trial interactions are different, then
ecological or confounding bias may be present and the relative treatment effects
may be biased. In such cases, inferences regarding treatment effects for specific
subpopulations of interest should be based on the within-trial interactions estimated
by models that separate the two types of interaction (Dias et al. 2018d). Again,
models (18.5) and (18.6) can be simplified by assuming that the impact of the effect
modifier is the same for every intervention k relative to A.

Unfortunately, a meta-analyst may not have access to IPD for all trials, but only
for a subset. Rather than excluding relevant aggregate level studies from the network
meta-regression, a combination of IPD studies and aggregate level studies is of
interest (Sutton et al. 2008; Riley et al. 2007, 2008). We need a model that can
combine both sources of data, such as (Donegan et al. 2013):
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IPD trials:

θijk =

⎧
⎪⎨

⎪⎩

μi + β0ixij k = b, b ∈ {A,B,C, ..}
μi + δi,bk + β0ixij + (βa

Ak − βa
Ab

)
mi k � b

+ (βw
Ak − βw

Ab

) (
xij − mi

)

Aggregate level data trials:

θik =
{
μi k = b, b ∈ {A,B,C, ..}
μi + δi,bk + (βa

Ak − βa
Ab

)
mi k � b

δi,bk ∼ Normal
(
dAk − dAb, σ

2
)

(18.7)

With this model, the aggregate-level data studies as well as the IPD studies
contribute to estimation of the between-study interactions. Now, let us assume we
have a scenario where for a certain set of the direct comparisons in the network we
have IPD and for the remaining set of direct comparisons we only have aggregate-
level data. If treatment-by-covariate interactions are believed to be the same for
each intervention k relative to A then depending on how IPD and study level data
is divided over the available direct comparisons in the network, we may be able
to “transfer” the within-trial interaction estimate for Ak comparison for which IPD
is available to the Ak comparisons for which we only have aggregate level data.
Unfortunately, this only applies to specific evidence structures. We can potentially
improve the precision of the interaction effects for studies with only aggregate-level
data for any structure based on the available IPD, if we define the model with the
same interaction parameter for the within- and between-trial comparisons (Donegan
et al. 2013; Jansen et al. 2012; Saramago et al. 2012). However, as mentioned,
this will bias the estimates when there is study-level confounding, i.e. when not all
effect-modifiers are accounted for, or when we have non-linear models (e.g. when
adopting a logit link function).

18.7 Hierarchical Approach to Network Meta-Regression

As an alternative to using network meta-regression models that use the same
interaction-effect parameters for the IPD studies and aggregate-level studies, we
can use a type of model based on the hierarchical related regression approach
to avoid aggregation or ecological bias (Jackson et al. 2006, 2008). A model for
a hierarchical approach to a NMA (Jansen 2012; Phillippo et al. 2018) with a
dichotomous covariate can be defined according to:
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IPD trials:

g
(
γijk
) = θijk =

⎧
⎨

⎩

μi + β0xij k = b, b ∈ {A,B,C, ..}
μi + δi,bk + β0xij k � b

+ (βAk − βAb) xij

Aggregate level data trials:

γik = γ o
ik (1 − mi) + γ 1

ikmi

g
(
γ o
ik

) = θoik =
{
μi k = b, b ∈ {A,B,C, ..}
μi + δi,bk k � b

g
(
γ 1
ik

)
= θ1

ik =
{
μi + β0 k = b, b ∈ {A,B,C, ..}
μi + δi,bk + β0 + (βAk − βAb) k � b

δi,bk ∼ Normal
(
dAk − dAb, σ

2
)

(18.8)

The IPD part of this model is the same as the previous model (see Eq. 18.5), with
the exception that the coefficient related to the covariate effect, β0, is fixed across
studies. For the aggregate-level data part of the model, γ ik is the expected outcome
in study i with intervention k and is determined by integrating the individual-level
model over the joint within-study distribution of the binary covariate. γ ik equals
the sum of the proportion of subjects with covariate x = 1 in each aggregate level
data study (mi) multiplied with γ 1

ik and the proportion of subjects with covariate
x = 0 (1-mi) multiplied with γ o

ik . γ 1
ikrepresent the marginal expected outcome with

treatment k for a subject with the covariate x = 1 in study i. Similarly, γ o
ikis the

equivalent for a subject with x = 0. The essence of the approach is that an individual
model is averaged over the population in study i to obtain the aggregate-level
model for that study. Initial simulation studies have shown that relative treatment
effects for subgroups with this approach may be less affected by bias than estimates
obtained with network meta-regression for non-linear models with large treatment-
by-patient-level-covariate interactions (Jansen 2012). Furthermore, it allows for the
“transfer” of the within-trial interaction estimates to comparisons for which we only
have aggregate level data available.



382 J. P. Jansen

18.8 Conclusion

NMA provides a consistent framework to estimate relative treatment effects between
competing interventions for a certain disease state based on RCT evidence. A NMA
can be performed with study-level data, IPD, or a combination of both. In the context
of health technology assessment, evaluation of treatment effects in subgroups are
an integral part of the process to evaluate the value of a healthcare technology.
Standard NMA to estimate subgroup effects may be challenging depending on
the evidence available, and modified methods may be needed. If the evidence
base is rather weak due to a limited number of RCTs and/or small sample sizes
in each of the subgroups, the estimates obtained with a NMA may be stabilized
with “shrinkage estimation” where intervention specific relative treatment effect
are assumed exchangeable for interventions of the same class. As an alternative
to a NMA by subgroup, we can also define a model where all mutually exclusive
subgroups are incorporated simultaneously and subgroup effects are exchangeable
by treatment, and thereby improving the precision of estimates. A network meta-
regression may be a relevant approach to adjust for external bias when there are
differences between the target population of interest and the study populations
of the individual studies regarding effect-modifiers. When there is only access
to study-level data, network meta-regression is vulnerable to ecologic bias when
the subgroups of interest relate to patient characteristics. Even in the absence of
study level confounding, ecological bias can exist in non-linear models. A NMA
with IPD is the gold-standard to estimate relative treatment effects for different
patient characteristics. Unfortunately, a meta-analyst may not have access to IPD
for all trials, but only for a subset. Network meta-regression models can be defined
where both sources of evidence are integrated. In order to improve the power to
estimate interaction effects for comparisons for which only aggregate level data
is available, we can use the same parameter for the within- and between-trial
interaction effects at the expense of ecological or aggregation bias when there is
study-level confounding or when we have non-linear models. A potential solution
are hierarchical related regression models where the model for aggregate-level data
is obtained by integrating an underlying IPD model over the joint within-study
distribution of covariates. The methods presented in this chapter or only a selection
of available techniques to perform evidence synthesis studies to estimate subgroup
specific treatment effects. In principle, one could add comparative observational
studies to the networks in an attempt to use a larger evidence base to estimate
subgroup effects and effect-modification. However, additional research is needed
regarding its benefit versus the potential risk of bias before any recommendations
can be made. In general, the established NMA framework can be modified without
violating its underlying assumptions of exchangeability and consistency in order to
improve estimation of treatment effects for subpopulations based on the available
RCT evidence. These methods are useful as part of drug development decisions
and to support commercialization activities for novel drugs when preparing HTA
submissions.
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Kaplan-Meier survival curves, 162
Karnofsky score, 241
K-fold CV procedure, 260

L
Lagrangian duality, 281, 282, 288
Lasso penalty, 278, 279, 282, 283, 285–287
Latent variable, 230, 231
Least Squares means (LSmeans), 217–219
Least-squares regression, 152, 155, 159
Linear discriminant (LD) analysis, 156, 159
Linear kernel, 280–283, 287, 290, 294



Index 393

L2 loss, 282–283
Log hazard ratio, 201
Logic-respecting, 219, 221
Logic-respecting efficacy measures

binary outcomes, 214
clinical outcome, 213
continuous outcomes, 213
“difference of mean” effects, 214
differential efficacy, 213
efficacy, 213
logical relationships, 213
logistic/log-linear model, 214
paradoxical conclusions, 214
predictive biomarkers, 216–217
probabilities, 214
prognostic biomarkers, 216–217
time-to-event outcomes, 215

Log-odds ratio, 354–356, 365–366
Long-term treatment strategy

adalimumab (see Adalimumab clinical
development program)

benefit–risk profile, 261
European Medicines Agency, 261
HS, 261
label inclusions, 261

Low-intensity behavioral modification
(BMOD), 291, 292

Low-intensity methamphetamine (MED), 291,
292

M
Machine learning, 326
Marginal means, 217–218
Marker sequential test (MaST), 23, 78–79
Maximum likelihood estimate (MLE), 231,

232, 235
Median survival estimates, 224
MERIT-HF Study Group 1999, 106
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