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Spatial Cournot Competition

Fu-Chuan Lai

2.1 Introduction

Competitive location theory started withHotelling (1929),1 who assumed
that there are two identical firms selling homogenous goods to consumers
living along a linear market with unit length (the “main street”). These
consumers are uniformly distributed along this main street, and each buys
exactly one unit of the product from the firm with the lowest full price
(mill price plus linear transport cost). Firms pursue maximization of their
own profits. They decide their locations simultaneously in the first stage

1Early spatial models such as Ricardo (1817), Von Thünen (1826), Weber (1909), and Christaller
(1933) are focused on land use and simple location theory.
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of the game. In the second stage, they simultaneously determine the prices
of their products. Hotelling (1929) “showed” that in equilibrium, these
two firms will locate at the center of the linear market and share the
market equally.

At first glance, Hotelling’s model seems correct, so his model was later
heavily cited, and there were many extended studies, such as Lerner and
Singer (1937), Smithies (1941), and Downs (1957). However, 50 years
later, D’Aspremont et al. (1979) proved thatHotelling’s equilibrium result
is invalid. The reason is that when the two firms locate close to one
another, the price equilibrium provided by Hotelling (1929) cannot be
sustained, because one of them will undercut the other and monopolize
the entire market. In this situation, the profit of the undercutting firm is
higher than what it would earn under co-existence, so the equilibrium of
the Hotelling (1929) model is invalid; in fact, it is wrong.2 D’Aspremont
et al. (1979) proposed to use quadratic transport cost functions instead
of linear transport cost functions, in order to make the game structure be
correct, such that a price equilibrium exists for any location pair.However,
their modification needs to pay a price, that is, the equilibrium locations
will be at the two ends of the linear market, which is very different from
Hotelling’s observation about the reality.3

Since the Hotelling (1929)model had already beenmisused for 50 years
at the time of d’Aspremont et al.’s work in 1979, once the model was
proved to be wrong, its impact on the academic world was foreseeable.
Many scholars have tried to save the Hotelling (1929) model with
slight modifications or directly switch to using quadratic transport cost
functions to avoid the game structure problem. Several attempts will be
briefly introduced in the following, where spatial Cournot competition
will be highlighted.

2Modern game theory had not yet appeared in 1929. For example, John Nash was born in 1928,
and thus Harold Hotelling did not yet know of the so-called Nash equilibrium, not to mention the
“subgame perfect Nash equilibrium” when he published his paper in 1929.
3Hotelling (1929) thought that cities are too concentrated in reality; the taste of apple ciders is too
similar, and the churches of different denominations are too similar.
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2.2 Attempts to Save the Hotelling (1929)
Model

2.2.1 Non-Cournot Models

First, Graitson (1980) employed the max-min strategy for the two firms
and thus changed the game structure. In his model, even though the
opponent’s price is reduced to zero, one firm can keep some parts of
the market (and have a positive profit) by pricing just below the rival’s
price at its own position, or it can relocate to a point far enough away
from the opponent’s location that its rival will not undercut its price,
and both firms can co-exist in the market. As a result, he found that
the co-existence scenario dominates the max-min scenario and the final
equilibrium locations fall at a quantile from both ends of the market.
Osborne and Pitchik (1987) allowed the firms in the Hotelling (1929)

model to take mixed strategies in the price subgame. By way of their
complex calculation process (solving a number of highly non-linear equa-
tions and some inequalities), they found approximate price equilibrium
solutions for any combination of locations, although they couldn’t really
prove these price equilibria. This is because under mixed strategies,
the strategy space of any price is a continuous interval, which made
them unable to completely describe these mixed strategy equilibria. Even
though they did not provide an analytical proof for the price equilibria
that they proposed, the rigor of their arguments prevented the academic
community from questioning the correctness of these price equilibria.
Returning to the first stage (the location stage), if the location behavior is
limited to pure strategies, they confirmed that there is (in a symmetrical
sense) a unique subgame perfect equilibrium, where the firms’ locations
fall at about 0.27 from the two endpoints, respectively. Finally, they also
calculated that if these firms are allowed to use mixed strategies in the
location stage, then there is only one equilibrium in the symmetric case.
Their greatest contribution was “confirming” (although they were unable
to prove) that the Hotelling (1929) model has a unique location-price
equilibrium as long as the firms are allowed to adopt mixed strategies.
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Vogel (2008) concluded that because the profit functions of the
Hotelling (1929) model are not globally quasi-concave, there is no pure-
strategy equilibrium in some of the price subgames, so the Hotelling
(1929) model does not have a pure-strategy subgame perfect Nash equi-
librium (SPNE). Vogel (2008) constructed a model with several hetero-
geneous firms located on a unit circle and introduced an auxiliary game to
redefine the indifferent consumers.He showed that when the difference of
marginal production costs between any two adjacent firms is sufficiently
small, there always exists an indifferent consumer between them, so a
pure-strategy price equilibrium in each subgame exists.

Vogel (2008) also proved that as long as the marginal cost between
firms is small enough, the auxiliary game’s profit is an upper bound on the
real game and any unilateral deviation strategy is unprofitable. In short,
Vogel (2008) did not directly calculate the equilibrium solution of the
Hotelling (1929) model (in fact, it does not exist), but indirectly obtained
the equilibrium of the model by redefining the indifferent consumers,
which is quite clever.

Anderson (1988) used the linear-quadratic transport cost function and
found that unless the two firms are at the same point (and thus the
equilibrium price is zero), undercutting always exists. Therefore, the
linear-quadratic transport cost functions still cannot solve the problem
of undercutting.

In a larger sense, all the above attempts either failed in the agglomerate
result (say Graitson 1980; Anderson 1988) or used abstract mathematical
methodology (say Osborne and Pitchik 1987; Vogel 2008), and thus none
are fully satisfactory.



2 Spatial Cournot Competition 37

2.2.2 Spatial Cournot Models

2.2.2.1 Linear Models

It was not until Anderson andNeven (1991)4 adopted the spatial Cournot
competition model that the problem of inconsistency between the obser-
vation of reality and the mathematical problem of the Hotelling (1929)
model was properly solved.5 Anderson and Neven (1991) assumed that
the demand at every point x ∈ [0, 1]6 of the market is elastic:

p(x) = a − b (q1(x) + q2(q)) ,

where p is the market price, a > 0, b > 0 are parameters; and qi(x), i = 1, 2
are the quantity at x supplied by firm i, where their locations are x1 ∈ [0, 1]
and x2 ∈ [0, 1], respectively. Shipping costs are also linear in distance. They
proved that the two firms (even in the case of n firms) will choose the
same location at the center of the market (i.e., x1 = x2 = 1/2). The critical
contribution of Anderson and Neven (1991) is that the agglomeration
regularity in the real world was supported from a theoretical aspect while
keeping the linear transport rate the same as that in Hotelling (1929), but
without any game structure problem.7

4Hamilton et al. (1989) assumed linear demand in each point of the Hotelling (1929) market, where
firms engage inCournot (Bertrand) competition in the second stage and they simultaneously choose
their locations in the first stage and the transport costs are linear in volume and distance. They
showed that firms will agglomerate at the market center when they engage in Cournot competition.
Anderson and Neven (1991) is different from Hamilton et al. (1989) in that Anderson and Neven
(1991) discussed the scenarios with a general transport cost function and multiple firms. The central
agglomeration result was obtained in both Hamilton et al. (1989) and Anderson and Neven (1991).
5Earlier spatial Cournot models include Greenhut and Greenhut (1975), Greenhut and Ohta
(1975), Norman (1981), Greenhut et al. (1987), and Ohta (1988), whose models assumed exogenous
locations for firms.
6In fact, they assumed the length of the market is L. For simplicity, we here normalize the length
of the market to be one.
7However, they abandoned the inelastic demand, price competition, and consumer-paid transport
costs that were employed in Hotelling (1929).
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For x ∈ [0, 1], the profit functions are π i(x) = [a − bQ(x) − t(x − xi)]
· qi(x), i = 1, 2, where Q(·) = q1(·) + q2(·). Then we can solve for

qi(x) = a + t
(|xj − x|) − 2t (|xi − x|)

3b
, (2.1)

p(x) = a + t (|xi − x|) + t
(|xj − x|)

3
, (2.2)

Q(x) = 2a − t (|xi − x|) − t
(|xj − x|)

3b
, (2.3)

πi(x) = [a+t(|xj−x|)−2t(|xi−x|)]2
9b , i = 1, 2, j = 1, 2, i �= j .

(2.4)

The total profit for firm i is

�i(x) =
x1∫

0
πi (x; x1, x2) dx +

x2∫

x1

πi (x; x1, x2)

+
1∫

x2

πi (x; x1, x2) dx, i = 1, 2.
(2.5)

When the transport cost function is linear in distance, we can solve
∂�1/∂x1 = 0 and ∂�2/∂x2 = 0 simultaneously, yielding x∗

1 = x∗
2 = 1/2.

This agglomeration result is also valid when there are n firms.
Ever since Anderson and Neven (1991) obtained an agglomeration

equilibrium, many scholars have tried to obtain dispersed location
equilibria under the spatial Cournot setting. The first attempt was by
Chamorro-Rivas (2000a), who proved that if the reservation price in
Anderson and Neven (1991) model is low enough, there is a dispersed
location equilibrium in addition to the equilibrium in which firms
agglomerate at the center of the market.

In Anderson andNeven (1991), the reservation price for each consumer
(a) is assumed to be large (a > 2t) to ensure all market areas are served
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by the two firms. Chamorro-Rivas (2000a) discussed the scenarios of
t ≤ α ≤ 2t, such that some areas are only served by one of the firms.8
In other words, the whole market can be divided into monopoly areas
and duopoly areas, and the percentage of the former will increase as α

decreases. After some calculations, he concluded that there exists a unique
equilibrium location pair:

(
x∗
1 , x∗

2
) = (1/2, 1/2), when 3

2 t ≤ α ≤ 2;
there exist two equilibrium location pairs,

(
x∗
1 , x

∗
2
) = (1/2, 1/2) and(

x∗
1 , x∗

2
) = ( 2α−t

4t , 1 − 2α−t
4t

)
, when 11

10 t ≤ α ≤ 3t
2 ; and when t ≤ α ≤

11
10 t , there exist two equilibrium location pairs:

(
x∗
1 , x

∗
2
) = (1/2, 1/2), and

x∗
1 = 1

434t

(
208t − 46α − 4

√−117t2 + 540αt − 356α2
)
, x∗

2 = 1−x∗
1 .

Chen and Lai (2008) further extended Chamorro-Rivas (2000a) to
include zoning policy, where the government can prohibit firms from
locating in the area (z, 1− z) in order to preserve the amenities in this area.
They showed that firms will locate at the boundary of the zoning area,
that is,

(
x∗
1 , x∗

2
) = [z, 1 − z]. They also calculated the optimal zoning

policy under different reservation prices. After some calculations, their
results can be summarized as in Fig. 2.1, where β ≡ α

t
and β ≥ 1. The

results obtained in Chamorro-Rivas (2000a) (i.e., no zoning) are plotted
by dashed lines, and the optimal zoning varies with β. From Fig. 2.1, it is
noticed that the government can enact a proper zoning policy to improve
social welfare.
Pal and Sarkar (2002) extended Anderson and Neven (1991) to allow

each firm to choose multiple stores. They showed that every store will
locate at its quantity-median point, where the total transport costs to its
right-hand-side market equal those of its left-hand-side market. If m is
the number of stores for firm 1 and n is the number of stores for firm
2, then their numerical analysis showed that x∗

1 = 1/2, y∗
1 = 1/2 when

m = n = 1; x∗
1 = 1/4 = y∗

1 , x∗
2 = 3/4 = y∗

2 when m = 2, n = 2, and
whenm = 1, n = 2, x∗

1 = 1/2 and y∗
1 = a −

√
a2 − a

2 + 1
8 , y

∗
2 = 1−y∗

2 .

8The reservation price “a” in Anderson and Neven (1991) is replaced by “α” in Chamorro-Rivas
(2000a). When α < t, there exist some areas where no service is provided. This scenario, to the best
of my knowledge, has not been analyzed in detail.
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Fig. 2.1 The results in Chen and Lai (2008)

Note that their model obtained agglomeration location equilibrium and
separation location equilibrium, depending on the number of plants.

Matsumura and Shimizu (2005) explored the welfare effects of the
spatial Cournot model. They calculated the consumer surplus at each
point of the market, and the profit of two (or more) firms, and found
that the socially optimal locations are farther away than the equilibrium
locations. However, the equilibrium locations will be farther away than
the locations where the consumer surplus is maximized.

Mayer (2000) showed that firms agglomerate at the center when the
production costs are identical at every point of the linear market or
when the production costs are minimized at the center. Firms do not
agglomerate at the center when the production costs have a globally
concave distribution with the highest production costs at the center.

Gupta et al. (1997) examined the location equilibrium in Anderson
and Neven (1991) with non-uniform population density functions. They
showed that the agglomeration equilibrium is robust in most scenarios.
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2.2.2.2 Circular Markets

Another breakthrough path for spatial Cournot competition started when
Pal (1998) modified the Anderson and Neven (1991) model into a unit-
length circular market and proved that the firms’ locations are maximally
separated, that is, the firms will locate at both ends of a diameter. Pal
(1998) assumed a unit-length circular market, and assumed x2 = 1/2,
while 0 ≤ x1 ≤ 1/2. For x ∈ (0, 1), the profit of firm 1 is

π1 (x; x1, x2) = (α − 2t |x1 − x| + t |x2 − x|)2
9b

. (2.6)

In the first stage, firm 1’s objective is

max
x1

�1 (x1, x2) =
∫ 1

0
π1 (x; x1, x2) dx. (2.7)

Given x2 = 1/2 and 0 ≤ x1 ≤ 1/2, we have

�1
(
x1,

1
2

) =
x1∫

0

[α−2t(x1−x)+t( 1
2−x)]2

9b dx

+
1
2∫

x1

[α−2t(x−x1)+t( 1
2−x)]2

9b dx

+
1
2∫

x1

[α−2t(x−x1)+t( 1
2−x)]2

9b dx

+
1∫

1
2+x1

[α−2t(1−x+x1)+t(x− 1
2)]

2

9b dx.

(2.8)

The first-order condition and the second-order condition are solved as
follows:

d�1
(
x1,

1
2

)

dx1
= 4t2x1 (2x1 − 1)

9b
, (2.9)
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d�2
1
(
x1,

1
2

)

dx2
1

= 4t2 (4x1 − 1)
9b

. (2.10)

Only x1 = 0 satisfies both the first-order condition (f.o.c.) and second-
order condition (s.o.c.). Therefore, the unique locational solution is(
x∗
1 , x

∗
2
) = (0, 1/2). The result of Pal (1998) seems to hint that in

spatial Cournot competition, the shape of the market plays a decisive
role. That is, in a linear market, all firms will agglomerate at the center
of the market, but in a circular market, they will stay away from each
other.9 This conjecture was quickly broken by Matsushima (2001), who
proved when there are n firms (and n is even) locating in a circular market,
n
2 firms locating at point 0 and the other n

2 firms locating at point 1
2

is an equilibrium. His result means that the shape of the market is not
necessarily a key factor to determine the location of the firms. This finding
has led many scholars to devote efforts to find the decisive factors in the
location game with two or more firms. With endeavors by many scholars,
this academic competition was soon ended.

Gupta et al. (2004) basically solved the problem of n firms’ location
selections (n can be either odd or even). They found that the firms’
location choices should satisfy the “aggregate cost median condition” (see
Eq. (2.20) later). Therefore, the equilibrium locations may be separated,
aggregated, or partially dispersed and partially aggregated.10

Gupta et al. (2004) did not solve the equilibrium locations directly.
Obviously, as the number of firms increases, the number of the market
segments also increases exponentially, making the solution process more
tedious and more difficult.

Following the same settings as Pal (1998), assume that the consumer
is homogeneously distributed on a circle with a circumference of one.

9In addition, Shimizu (2002) found that in Pal’s (1998) model, if the products are complementary
(instead of substitutes), then the duopoly firms agglomerate at one point of the market. Yu and
Lai (2003a) obtained results similar to that in Shimizu (2002) and extended their model to the
situation in which each firm has two plants.
10In fact, Gupta et al. (2004) was composed of two separate articles, Gupta et al. (2003) and Yu
and Lai (2003b), because they independently solved the same problem and submitted their papers
to the International Journal of Industrial Organization at the same time; after the first reviewing
process, the Editor asked for the two articles to be merged.
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Considering that nmanufacturers engage in Cournot competition, where
n ≥ 2, qi and xi indicate the number of products and the location of
firm i, i ∈ {1, . . . , n}. The quantities and locations of these n firms are
represented by (qi)

n
i=1 and (xi)

n
i=1, respectively. They assumed a unit

transport rate; therefore the profit function for firm i at x is

πi (x1, x2, . . . , xn, x) = (pi(x) − |x − xi |) qi(x), i = 1, . . . , n,

(2.11)

After some calculations, they obtained the equilibrium quantities and
profits in the second stage

qi (x1, x2, . . . , xn, x) = 1
n + 1

⎛

⎝α +
n∑

j=1

|x − xj | − (n + 1) |x − xi |
⎞

⎠,

(2.12)

and

πi (x1, x2, . . . , xn, x) = qi(x1, x2, . . . , xn, x)2, i = 1, . . . , n.

(2.13)

Back to the first stage, given the position of other vendors, the objective
of firm i is

max �i (x1, x2, . . . , xn) =
1∫

0
πi (x1, x2, . . . , xn, x) dx,

s.t. xi ∈ [0, 1) , i = 1, . . . , n.

(2.14)

In Firm i’s profit function, Eq. (2.5) can be expanded to

�i (x1, . . . , xn) =
xi∫

0
πi (x1, . . . , xn, x) dx

+
xi+ 1

2∫

xi

πi (x1, . . . , xn, x) dx +
1∫

xi+ 1
2

πi (x1, . . . , xn, x) dx.
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Divide π i(x1, . . . , xn) to xi

∂πi (x1, . . . , xn, x)

∂xi

= 2qi (x1, . . . , xn, x)
∂qi (x1, . . . , xn, x)

∂xi

, (2.15)

where

∂qi(x1,...,xn,x)

∂xi
= − n

n+1

(
∂|x−xi |

∂xi

)

=
{

− n
n+1 · ∂(xi−x)

∂xi
= −n

n+1 , ∀x ∈ [0, xi) ∪ [
xi + 1

2, 1
)
,

− n
n+1 · ∂(x−xi)

∂xi
= n

n+1 , ∀x ∈ [
xi, xi + 1

2

)
.

(2.16)

Therefore, the first-order condition of �i(x1, . . . , xn) for xi is

∂�i(x1,...,xn)
∂xi

=
xi∫

0

∂πi (x1,...,xn,x)
∂xi

dx +
xi+ 1

2∫

xi

∂πi (x1,...,xn,x)
∂xi

dx +
1∫

xi+ 1
2

∂πi (x1,...,xn,x)
∂xi

dx

= 2n
n+1

⎧
⎨

⎩
−

xi∫

0
qi (x1, . . . , xn, x) dx +

xi+ 1
2∫

xi

qi (x1, . . . , xn, x) dx −
1∫

xi+ 1
2

qi (x1, . . . , xn, x) dx

⎫
⎬

⎭

.

(2.17)

Therefore, the first-order condition for the total profit is satisfied if and
only if the following equation is valid:

∫ xi+ 1
2

xi

qi (x 1, . . . , xn, x) dx =
∫ xi

0
qi (x1, . . . , xn, x) dx

+
∫ 1

xi+ 1
2

qi (x1, . . . , xn, x) dx.

(2.18)

Equation (2.18) implies that the optimal location for any firm must be
consistent with the quantity-median of its products. In a circular market,
the number of the median conditions can be further simplified. Notice
that in a circular market, for any xi ∈ [

0, 1
2

]
, we have

∫ xi+ 1
2

xi

α − n (|x − xi |) dx =
∫ xi

0
α − n (|x − xi |) dx

+
∫ 1

xi+ 1
2

α − n (|x − xi |) dx,

(2.19)
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because the term of α − n(| x − xi| ) in Eq. (2.19) is the same for each
half circle. From the above Eqs. (2.12), (2.18), and (2.19), the first-order
condition can be simplified to

∫ xi+ 1
2

xi

n∑

j �=i

| x − xj | dx =
∫ xi

0

n∑

j �=i

| x − xj | dx

+
∫ 1

xi+ 1
2

n∑

j �=i

| x − xj | dx.

(2.20)

Defining Eq. (2.20) as the aggregate cost median condition, it is a
necessary condition for the optimal location for each firm.
Let LHS and RHS represent the left-hand side and the right-hand

side of the aggregate cost median condition, respectively. That is, for any
xi ∈ [0, 1/2],

LHS ≡
xi+ 1

2∫

xi

n∑

j �=i

| x − xj | dx,

RHS ≡
xi∫

0

n∑

j �=i

| x − xj | dx +
1∫

xi+ 1
2

n∑

j �=i

| x − xj | dx.

Given (x1, x2, . . . , xi − 1, xi + 1, xn) and xi ∈ [
0, 1

2

]
, the sign of ∂2�i

∂x2
i

is
the same as the sign of the first derivative of LHS with respect to xi. That
is,

∂2�i(x1,...,xn)

∂x2
i

= 2n
n+1

{
n

n+1 +
(
2qi (x1, . . . , xn, x)

∣∣
∣x=xi+ 1

2
− 2qi (x1, . . . , xn, x)

∣
∣
x=xi

)}

= 4n2

(n+1)2

(
n∑

j �=i

|xi + 1
2 − xj

∣
∣∣
∣∣
−

n∑

j �=i

|xi − xj

∣
∣∣
∣∣

)

� 0

⇐⇒ h
def= ∂LHS

∂xi
=

n∑

j �=i

| xi + 1
2 − xj

∣∣
∣∣
∣
−

n∑

j �=i

|xi − xj

∣∣
∣∣
∣
� 0,
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Table 2.1 Partial numerical solution of Cournot competition in circular market

Number of firms Location Equilibrium

N = 2
(
0, 1

2

)

N = 3
(
0, 1

3 ,
2
3

)
, and

(
0, 1

2 , 0
)

N = 4
{(

0, 1
2 , x

2
1, x

2
1 + 1

2

)
|x21 ∈

[
0, 1

2

]}

N = 5
(
0, 1

5 ,
2
5 ,

3
5 ,

4
5

)
,
(
0, 0, 0, 1

2 ,
1
2

)
, and

(
0, 1

3 ,
2
3 , 0,

1
2

)

N = 6
{(

0, 1
2 , x

2
1, x

2
1 + 1

2 , x
3
1, x

3
1 + 1

2

)
|x21, x31 ∈

[
0, 1

2

]}
,

and
(
0, 1

3 ,
2
3 , 0,

1
3 ,

2
3

)

N = 7
(
0, 1

7 ,
2
7 ,

3
7 ,

4
7 ,

5
7 ,

6
7

)
,
(
0, 0, 0, 0, 1

2 ,
1
2 ,

1
2

)
,(

0, 1
5 ,

2
5 ,

3
5 ,

4
5 , 0,

1
2

)
,
(
0, 1

3 ,
2
3 , 0,

1
2 , 0,

1
2

)
, and(

0, 1
3 ,

2
3 , 0,

1
2 ,

1
3 ,

5
6

)

N = 8
{(

0, 1
2 , x

2
1, x

2
1 + 1

2 , x
3
1, x

3
1 + 1

2 , x
4
1, x

4
1 + 1

2

)
|x21, x31,

x41 ∈
[
0, 1

2

]}
, and

(
0, 1

2 , 0,
1
3 ,

2
3 , 0,

1
3 ,

2
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)
, and(

0, 1
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2
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4
5 , 0,

1
2 ,

1
5 ,

7
10

)

Note: Without loss of generality, assuming that at least one firm locates at point 0

which implies that LHS must be a negative slope at the optimal position
x∗

i . In fact, instead of calculating the complicated f.o.c. and s.o.c., LHS
and RHS are sufficient to imply whether any combination of locations
is an equilibrium. After some calculations, they obtained the following
Table 2.1. The contribution of Gupta et al. (2004) is significant, because
it demonstrated various types of equilibrium location patterns and also
triggered many subsequent studies and further discussion.

Matsumura and Matsushima (2012) introduced discontinuous
transportation costs to re-examine the various equilibriums of Gupta
et al. (2004). They use the linear-quadratic transport cost function
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T (x, xi) ≡ t · d (x, xi) + τ · d (x, xi)2, t > 0, τ > − t, where x is a point in
the market, xi is the location of firm i, d is the distance, and t and τ are the
unit transport rates. When τ = 0, then this model degenerates to Gupta
et al. (2004). If t �= 0, τ > (<)0, then the transportation rate is convex
(concave). They finally proved that for the various equilibrium location
patterns in Gupta et al. (2004), as long as τ �= 0 (i.e., the transport
cost function is non-linear), only symmetric equilibrium patterns will be
sustained, and asymmetric equilibria will no longer be valid.
Matsumura et al. (2005) explored firms’ locations in terms of the type

of transport costs (convex, linear, and concave) and found that the Pal-
type equilibrium always exists, while the Matsushima-type equilibrium
can only be established under certain conditions.
Matsumura and Shimizu (2006) showed that the Pal (1998)-type

equilibrium (maximal differentiation) always appears in equilibrium if
the transport rate is non-decreasing with distance.
Chamorro-Rivas (2000b) assumed that each of the duopolists can

choose to open up, at most, two plants and the location patterns can
be either neighboring ((A,2) next to (A,1) and (B,2) next to (B,1)) or
intertwined ((A,1) locates between (B,1) and (B,2)). They showed that
for the equilibrium locations, all plants are equally spaced and paired in
the market (Fig. 2.2).
Pal and Sarkar (2006) generalized the Chamorro-Rivas (2000b) model

to a multiple (m) plants and multiple firms (n) and showed that all plants
(and plants of each firm) being located equidistantly is a unique SPNE
when n = 2 and m = 1 and it is very likely results in multiple SPNE
locations for other cases.Moreover, the SPNEmay not be unique, because
firms may choose different numbers of plants.
Sun (2010) employed the directional constraint in a circular market

with Cournot competition,11 where firms can only choose one direction
(clockwise or counter-clockwise) to serve the whole market. This assump-
tion is justified in reality, because each shipping journey involves some
fixed costs, which is double when the shipping job is done by two trucks

11The directional constraint can be found in earlier studies in Cancian et al. (1995) and Lai (2001),
where firms only engage in location competition.
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Fig. 2.2 The equilibrium location pattern in Chamorro-Rivas (2000b)

with different directions. Moreover, when two trucks deliver the products
starting from the location of a firm with two opposite directions, the two
trucks will meet at the point opposite to the firm’s location, and they
should return to the initial point with an empty load, which is a wasteful
travel. He showed that when firms choose different directions, their
locations will be at one point, while if they choose the same direction,
then their locations will be the two endpoints of a diameter.

Cheng and Lai (2018) obtain the same location-direction equilibria
with a different assumption from Sun (2010), instead of assuming a
“first-entrant-takes-all” rule to capture the “one-house-one-outlet” phe-
nomenon in water, electricity, natural gas, telephone, Internet, cable TV,
and other service industries. Interestingly, their model is suitable for
explaining the Treaty of Tordesillas in 1494 between Spain and Portugal,
where both sides agreed to divide the newly discovered lands outside
Europe along a meridian about 1770 km west of Cape Verde Island.

Yu (2007) showed that in a circular market with discrimination, the
location equilibria in price competition are the same as those in quantity.
That is, all the location equilibria in price competition, given the same
number of firms, are identical to the equilibria in quantity competition.
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Fig. 2.3 Four dispatches with maximal service range r = 1/3 in Sun et al. (2017)

Matsushima and Matsumura (2003) proved that when there are n
private firms and a public firm, the public firm locating at one endpoint
of a diameter, while all the private firms agglomerate at the other end of
this diameter, is a location equilibrium.
Sun et al. (2017) considered scenarios of Cournot competition in which

the maximal service range of a truck is less than half of the perimeter of a
circular market, and thus each of the duopoly firms should initiate more
than two dispatches to serve the whole market. For example, supposing
the maximal service range (r) is 1/3, a firm may either initiate four
dispatches (Fig. 2.3) or three dispatches (Fig. 2.4) to serve the whole
market. They found that when the fixed cost of a transportation vehicle
is sufficiently low, there exists a unique outcome with the same location
pattern as that in Pal (1998), and each firm delivers its products with four
dispatches. When the fixed cost is sufficiently high, there exists a unique
outcome such that firms’ locations are less than the maximal difference,
and each firm initiates three dispatches.
Guo and Lai (2019) analyzed the fully symmetric location equilibrium

in two intersecting circular markets (see Fig. 2.5). Both circular markets
are served by two homogenous firms which engage in Cournot com-
petition at each point of these two circular markets. They showed that
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Fig. 2.5 Two intersecting circular markets in Guo and Lai (2019)

each firm locating at each of the intersecting points is the unique fully
symmetric location equilibrium. The intuition of their result is clear: If a
firm does not locate at an intersecting point, say x1 = 0 for firm 1, then it
should deliver its product to the Ymarket through the section [0, s] in the
X market, which produces no revenue and thus is a wasteful trip. Their
model highlights the importance of traffic hubs, which can attract firms.
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2.2.3 Linear Plus Circular Markets

Since the equilibrium location pattern in a linear market is quite different
from that in a circular market, what is the location pattern if these two
types of markets are combined? Ebina et al. (2011) developed a very
smart method to integrate circular and linear markets. They assumed
that there is a circular market with a unit length the same as Pal (1998).
When products are shipped through the “0” point, an additional cost of
β ∈ [0, 1] is generated. This cost can be seen as a tariff; when β = 0, the
model degenerates to Pal (1998).When β is large enough, the vendor will
never pass through the “0” point, which is equivalent to degenerating to a
linear model like Anderson and Neven (1991). They proved that when β

is small or large, the equilibrium location patterns are unique, but when
β is in the middle range, there exist multiple location patterns, and in a
large part of the range of β, the location equilibrium is concentrated at
the market center, while the dispersed location pattern is valid only when
β = 0. Therefore, they believed that some asymmetric location patterns
in a circular market are balanced on a knife’s edge (i.e., unlikely to appear
or not easily sustained).
In addition, Guo and Lai (2015) combined a linear market and a

circular market such that a linear main street connects to an outer belt
road. In particular, they allowed the main street to have a higher demand
density than that of the outer belt road. When the demand in all markets
is identical, the firms will locate at the two ends of the main street, which
is the same as the result of Pal (1998), but as the demand density of the
main street increases, the equilibrium locations graduallymove toward the
center of the main street to form results close (or equivalent) to Anderson
and Neven (1991) (Fig. 2.6).
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2.3 Conclusions

Spatial Cournot competition with endogenous firms’ locations of Hamil-
ton et al. (1989) and Anderson and Neven (1991) is one of the literature
streams avoiding the undercutting trap in Hotelling (1929). This stream
is more successful than other attempts in that most equilibrium patterns
in spatial Cournot models are very intuitive and fit the real-world phe-
nomenon, namely, that all firms will agglomerate at the market center in
most linear market, a fact observed by Harold Hotelling. In this chapter,
the development of spatial Cournot competition in the past 30 years was
analyzed along the two major axes of the linear market and the circular
market (see Fig. 2.7). We believe that spatial Cournot competition will
continue to develop and match the reality in the future.
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