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Classic Spatial Models

Stefano Colombo

1.1 Introduction

In this chapter, we illustrate some classic spatial models. Starting from the
seminal paper of Hotelling (1929), space has become a crucial variable in
the economic analysis of oligopolistic models.1 The aim of this chapter is
mainly pedagogical: we aim to provide a useful collection of the principal
classic spatial models, by illustrating their characteristics and the main
results. Indeed, classic spatial models are a flexible tool which adopts the

1Obviously, the importance of the spatial dimension has been well recognized even before Hotelling.
For example, Thunen (1826), Launhardt (1885), Marshall (1890), and Weber (1909) developed
relevant frameworks to understand the implications of space for consumers and firms’ behavior.
However, none of these models has been used for plenty of applications as the Hotelling one and
its epigones.
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space dimension to model a wide array of economic questions, including
industrial organization, regional science, and marketing. This is not an
exhaustive review of spatial models. Indeed, hundreds and hundreds of
spatial models have been developed by scholars; we have selectively chosen
those contributions we believe represent the cornerstone of modern spa-
tial economy, in order to provide a toolkit for those who are approaching
this field for the first time.

Before starting, we briefly put forward the common characteristic of
classic spatial models: classic spatial models do not want to represent
“stylized facts”, but, rather, to highlight and describe the forces that
determine the choices of the firms or the consumers. Indeed, classic
spatial models are often too simple to provide a good description for what
happens in the real word, but they are sufficiently simple to capture which
incentives are at workwhen the firms or the consumers take their decision.
This is the main purpose of classic spatial models.

The rest of the chapter proceeds as follows. In Sect. 1.2 we introduce
and describe the linear model. In Sect. 1.3, we consider the circular
model. In Sect. 1.4 we describe some spatial models adopting price
discrimination, whereas in Sect. 1.5 we introduce elastic demand. In Sect.
1.6 we discuss the “barbell”model. In Sect. 1.7 we consider a spatial model
of vertical differentiation. Section 1.8 concludes.

1.2 The Linear Model

In this section, we describe the linear model, which is based on the work
of Hotelling (1929). The aim of the model consists in providing a simple
framework to describe product differentiation, that is, a situation where
a slight decrease of the price of one firm does not determine an abrupt
increase of the demand of that firm, but rather a gradual shift of demand.
In fact, Hotelling was rather skeptical about Bertrand’s (1883) criticism
of Cournot (1838) equilibrium. Indeed, “in all [Bertrand’s] illustrations
of competition one merchant can take away his rival’s entire business
by undercutting his price ever so slightly. This discontinuities appear,
though a discontinuity, like a vacuum, is abhorred by nature. More
typical of real situations is the case in which the quantity sold by each
merchant is a continuous function of two variables. His own price and
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his competitor’s. Quite commonly a tiny increase in price by one seller
will send only a few customers to the other” (Hotelling 1929, p. 44).
Therefore, the linear model originates in order to show that price compe-
tition does not necessarily lead to the perfect competition outcome (the
so-called Bertrand paradox). Intuitively, this happens because, once space
is introduced, product differentiation arises, and this allows avoiding the
Bertrand paradox. Nowadays, the linear (Hotelling) model is the most
widely used model to describe oligopolistic competition between firms
selling non-homogenous products.
Suppose there is a continuum of consumers located along a segment of

length 1, from 0 to 1. The segment might have a “spatial” interpretation
or a “product differentiation” interpretation. In the first case, the location
of a consumer or a firm in the segment refers to the location in a strict
physical sense (i.e., the consumer or the firm is really located at a certain
point). In the second case, the segment is a metaphor of the product
characteristic space. In this case, the location of a consumer represents
the product’s variety which is preferred by that consumer, whereas the
location of a firm represents the product variety produced by that firm.
Consumers are uniformly distributed along the segment. Let x ∈ [0, 1]

indicate the location of each consumer on the segment. Each consumer
buys just one or zero unit of good. That is, there is unit demand function.
Suppose there are two firms, FirmA and FirmB, whose location is a and b,
respectively. It is assumed, without loss of generality, that 0≤ a≤ b≤ 1 (in
other words, Firm A is the firm which is located at the left). Furthermore,
the firms cannot be located outside the segment. There are no production
costs.
For the moment, we suppose that the locations of the firms are

exogenous. In particular, we assume that a = 0 and b = 1.2 The
utility function of a consumer which is located at x and buys from
Firms A and B is the following, respectively, UA = v − pA − tx and
UB = v − pB − t(1 − x), where v is the reservation price of consumers,3
pA and pB is the price set by Firms A and B, respectively, and t > 0

2It should be observed that the main purpose of spatial models is to derive endogenously the
“locations” of firms. However, it might be useful to start with the case of exogenous locations.
3v is assumed to be sufficiently high so that the market is always covered in equilibrium.
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is the unit transport cost sustained by the consumer when he goes
to the firm’s location to pick up the good (note that in the case of
the product differentiation interpretation, this can be interpreted as a
“disutility cost” deriving from purchasing a less-than-preferred product
variety). It is important to note that the transport costs are linear in
the distance. In what follows we derive the equilibrium prices. Suppose
that the firms set simultaneously the price. First, observe that for any
possible couple of prices (pA, pB), it is possible to determine a consumer
whose location, say x̂, is such that UA

(
pA, pB, x̂

) = UB

(
pA, pB, x̂

)
.

Therefore, consumer x̂ is indifferent between buying from Firm A and
from Firm B. In addition, all consumers located at the left of x̂ buy from
Firm A, and all consumers located at the right of x̂ buy from Firm B
(formally, if x < (>) x̂, then UA

(
pA,pB, x̂

)
> (<) UB

(
pA,pB, x̂

)
).

Therefore, the demand of Firm A is x̂, and the demand of Firm B is
1 − x̂. By solving UA

(
pA, pB, x̂

) = UB

(
pA, pB, x̂

)
, we get x̂ =

pB−pA

2t + 1
2 . The profit functions are therefore πA = pAx̂ and πB =

pB

(
1 − x̂

)
. By maximizing the profit functions, we have the following

best-reply functions, pi

(
pj

) = pj+t

2 , with i, j = A, B. By solving the
system of best-reply functions, the equilibrium prices and profits follow:
pi

∗ = t and πi∗ = t
2 . Therefore, when products are differentiated, the

firms avoid the Bertrand paradox, that is, the prices do not fall to the
marginal cost level, and profits are positive. Intuitively, space introduces
product differentiation. Indeed, consumers do not perceive the products
as homogenous: even if the two products are identical, each consumer, all
else being equal, prefers the closer firm to save on transport costs. In this
sense, t is a measure of product differentiation, and the higher is t, the
higher are the equilibrium prices and profits.

In what follows, we discuss what happens when firms decide where to
locate before setting prices. That is, we look for the locations emerging
endogenously in the model. We assume the following two-stage game4:s

1. Stage 1. The firms choose simultaneously where to locate.
2. Stage 2. The firms choose simultaneously the price.

4This is not the only possible timing. For example, one might consider a simultaneous choice of
location and price. However, the sequential timing is more reasonable when one considers that it
is often more difficult to modify the location/product characteristic rather than the price.
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Due to the dynamic structure of the game, the appropriate solu-
tion concept is the Subgame Perfect Nash Equilibrium (Selten 1975).
Therefore, we solve the model by proceeding by backward induction. In
other words, first we find the equilibrium prices for any possible pair of
locations. Then, by anticipating the second-stage equilibrium prices, we
find the first-stage equilibrium locations. Unfortunately, when Hotelling
wrote his contribution, game theory has not appeared yet. Therefore, it
is not surprising that the main conclusion in terms of expected locations
is not correct. In particular, Hotelling (1929) claims that the two firms
are expected to engage in a fierce competition in order to obtain greater
demand, so that they will end up choosing the same central location (1/2)
(“they crowd together as closely as possible”, p. 53). This conclusion, even
if not correct (see later), is well known as the Minimum Differentiation
Principle.
As mentioned above, the Minimum Differentiation Principle does not

hold in the original framework of Hotelling (1929), as shown in the
famous contribution of D’Aspremont et al. (1979), whose model is based
on a simple variation of the Hotelling model (quadratic transportation
costs rather than linear transportation costs). In particular, D’Aspremont
et al. (1979) show that the Minimum Differentiation principle is invalid
at the Hotelling conditions. The main intuition is based on the following
argument: in the Hotelling model there are no Subgame Perfect Nash
Equilibria; therefore it cannot be said that firms decide to locate in the
middle of the segment.
To understand this non-existence result, consider Fig. 1.1, where the

total cost of purchase (i.e., price plus the transport costs) of each consumer
is represented, given the locations a and b. Note that the demand
might be discontinuous. Indeed, suppose that pA reduces so much that
pA = pB − t(b − a), that is, the consumer located at b is indifferent
between the two firms (i.e., x̂ = b). Note that also all consumers such
that x > b are indifferent between the two firms. Therefore, if pA reduces
a bit further, there is a jump in the demand of Firm A, because now
Firm A serves all consumers. As a consequence, the profits of Firm A are
illustrated in Fig. 1.2. They are continuous in pA until pA = pB − t(b− a),
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Fig. 1.1 Total cost of purchase
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Fig. 1.2 The profits of Firm A
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they are concave in pA until pA = pB + t(b − a), and then they are zero.
Therefore, Firm A’s profits are not everywhere continuous.
D’Aspremont et al. (1979) show that it is possible to find second-

stage equilibrium prices only when the locations of firms satisfy certain
conditions. In particular, the firms must be sufficiently distant from
each other (alternatively, they must be located in the same point): if the
firms are rather near to each other (but not located in the same point),
there is no equilibrium in the second stage of the game. Intuitively, this
happens for the following reason. If the two firms are quite near, each
firm has a strong incentive to undercut the rival’s price. Indeed, from
Fig. 1.2 it can be observed that there are two local maxima, the first at
p̃A = pB − t (b − a) − ε and the second, say p̂A (pB), where the
profit function is concave. In the first maximum, Firm A serves the whole
market, and Firm B has no demand. So here there is no equilibrium,
because Firm B would decrease the price to get a positive demand.
Therefore, an equilibrium is possible if and only if pA∗ = p̂A (pB∗)

and pB∗ = p̂B (pA∗). But this implies that p̂i

(
pj

)
must be a global

maximum, and not just a local maximum, which in turn requires that the
two firms are not too close to each other (intuitively, if the two firms are
sufficiently distant, a focal firm should significantly reduce the price to
serve the whole market, and thus this strategy is not profitable, that is,
p̂i

(
pj

)
is a global maximum). On the other side, case a = b is obvious:

the two firms are undifferentiated, so the standard Bertrand argument
applies and the prices are equal to the marginal costs.
Even more importantly, D’Aspremont et al. (1979) show that there are

no Subgame Perfect Nash Equilibria in the original Hotelling framework.
Indeed, if a and b satisfy the conditions for the existence of the price
equilibrium in the second stage, the profits of Firm A (B) are increasing
(decreasing) in a (b). Therefore, the two firms would like to move toward
the center, but in this way, the locations end up not satisfying the
conditions for the existence of the equilibrium prices in the second stage.
At the same time, the pair a = b cannot be an equilibrium, because each
firm has the incentive to separate from the rival in order to get positive
profits.
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Therefore, the Minimum Differentiation Principle is invalid under
the assumptions in Hotelling (1929). In order to explore the proper-
ties of the location-than-price equilibrium, D’Aspremont et al. (1979)
propose to modify the original Hotelling model by adopting quadratic
transportation costs rather than unit transportation costs. Therefore,
the relevant utility functions become UA = v − pA − t(a − x)2 and
UB = v − pB − t(b − x)2. By equatingUA and UB, we get the indifferent
consumer, x̂ (a, b, pA, pB) = a + b−a

2 + pB−pA

2t(b−a)
. To interpret this equa-

tion, note that, at equal prices, Firm A controls its own turf (the first term
in the equation) and receives half of the consumers located between the
two firms (the second term in the equation). The last term in the equation
expresses the sensitivity of the demand to the price differential. It can be
shown that the second-stage price equilibrium always exists, and it is given
by pA (a, b) = t(b−a)(2+a+b)

3 and pB (a, b) = t(b−a)(4−a−b)

3 . Now we
consider the first-period choice of locations. Firm A maximizes (similarly
for Firm B): πA (a, b) = pA (a, b) x̂ (a, b, pA (a, b) , pB (a, b)). The
profits of Firm A are strictly decreasing in a (symmetrically, the profits of
Firm B are strictly increasing in b). Therefore, the two firms separate as
much as possible: this result is known as the Maximum Differentiation
Principle. The maximum differentiation principle is the result of two
contrasting forces (Tirole 1988). On the one hand, there is a demand
effect, which captures the incentive of each firm to move toward to the
center of the segment in order to increase the demand. On the other
hand, there is also a strategic effect that describes the fact that, when A
moves closer to B, the two firms are more similar and then competition
is fiercer (indeed, the equilibrium price is lower when the two firms
are located closer). Therefore, the strategic effect induces each firm to
move toward the endpoints. Under the assumptions of D’Aspremont et
al. (1979) model, the strategic effect always dominates, and therefore the
unique equilibrium is characterized by maximum differentiation of the
firms.

The linear model with quadratic transportation costs (D’Aspremont
et al. 1979) has been proven to be particularly useful, as it allows a full
characterization of the location-price equilibrium. For example, it can
be used to discuss welfare implications. Suppose that a social planner



1 Classic Spatial Models 11

wants to maximize the overall welfare. Clearly, due to the unit demand
function, prices are simply a transfer from consumers to firms, and they
do not affect welfare.Welfare depends (negatively) only on transportation
costs. Therefore, welfare is maximized when the overall transportation
costs are minimized, which occurs when the two firms are located
at 1/4 and 3/4, respectively. Given that in equilibrium the two firms
maximally differentiate, we can conclude that there is too differentiation
in equilibrium. Intuitively, when choosing the location, each firm does
not take into account the increase in the consumers’ transportation costs,
but just aims to avoid disruptive competition with the rival.
The linear model has been extended in many directions. Here we

focus on some extensions which are particularly relevant. Economides
(1986) considers a more general class of transportation costs. In particular,
the transportation costs are assumed to be equal to t|a − x|α and
t|b − x|α when buying from Firm A and Firm B, respectively, and with
α ∈ [1, 2]. Therefore, α measures the convexity of the transportation
costs. Economides (1986) shows that when the transportation costs are
sufficiently convex (i.e., α ∈ [5/3, 2]), the Maximum Differentiation
Principle holds, as the two firms choose to locate at the endpoints of the
segment. However, when the degree of the convexity of the transportation
costs is intermediate (i.e., α ∈ [63/50, 5/3]), the location equilibrium is
characterized by interior solutions, ranging from 0 to 0.3 for Firm A and
from 1 to 0.7 for Firm B. Finally, when the transportation costs are almost
linear (i.e., α ∈ [1, 63/50]), there is no equilibrium. Therefore, on the one
hand, Economides (1986) confirms that the Minimum Differentiation
Principle does not hold even for more general transportation costs. On
the other hand, he shows that the Maximum Differentiation Principle is
valid only when the transportation costs are sufficiently convex. Another
relevant extension concerns the assumption of the uniform distribution of
consumers over the linear market. This assumption is mainly motivated
by the need to find closed-form solutions. However, it is reasonable to
imagine that in many situations consumers are not uniformly distributed.
For example, suppose that the distribution of the consumers is symmetric
around 1/2, but there is increasing density of consumers toward the center.
In such a framework, Neven (1986) considers a location-price game.
He shows that when the consumers are rather dispersed, the unique
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equilibrium consists in maximal differentiation of firms. However, if
consumers are quite concentered around the center, partial differentiation
of firms emerges in equilibrium. Indeed, when there are more consumers
in the center of the market, the demand effect is rather strong, thus
inducing the firms to move inner. Finally, both the Hotelling model
(1929) and the D’Aspremont et al. (1979) model assume that firms
are constrained to locate between the endpoints. However, in many
situations, firms are free to locate outside the “city boundaries”, that is,
the firms can locate in points of the space where there are no consumers.
Lambertini (1994) considers the D’Aspremont et al. (1979) model and
explores the characteristics of the location-price equilibrium by removing
the assumption 0 ≤ a ≤ b ≤ 1 and just assuming a ≤ b. It is found
that there is a unique equilibrium, where Firm A and Firm B locates
at −1/4 and 5/4, respectively, that is, the two firms locate outside the
endpoints of the segment. Therefore, the firms maximally differentiate
only if they are constrained to locate between 0 and 1; otherwise, the
equilibrium differentiation is finite. Intuitively, the larger is the distance
between the firms, the stronger is the demand effect and the weaker is
the strategic effect: at the equilibrium locations −1/4 and 5/4, the two
effects compensate. Finally, it is worth mentioning the two-dimensional
extension of the Hotelling linear market, which has been introduced by
Tabuchi (1994). In particular, it is shown that, in a location-price game,
in equilibrium the two firms maximize their distance in one dimension,
but minimize their distance in the other dimension.

1.3 The Circular Model

The linear model (Hotelling 1929) has received relevant attention by
economists. However, the existence of the boundaries often makes the
model intractable when the firms are more than two. For example,
Brenner (2005) finds analytically the location-price equilibrium in the
case of three firms under quadratic transportation costs, and he also
numerically characterizes the equilibrium up to nine firms. However,
when the number of firms is larger than nine, a solution is hard to find,
both analytically and numerically. The main problem with the linear
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market is that firms are intrinsically asymmetric. Indeed, the most-to-
the-left and the most-to-the-right firms compete with just another firm;
at the opposite, any other firm competes with two rivals.
The “classic” model that solves this kind of “asymmetry” in the

Hotelling line is the circular model, which has been introduced by
Vickrey (1964) and Salop (1979). The basic idea is very simple: instead
of assuming that the consumers are distributed along a segment, they
are distributed along a circle (of length 1). Now, no point is better than
another. In what follows, we illustrate the main characteristics of the
circular model.
As before, let x ∈ [0, 1] indicate the location of consumers. Instead

of considering just two firms, we consider a large number of identical
potential firms. Firms are also located in the circle, and they can locate
in just one position. Consumers wish to buy one unit of the good, and
sustain linear transportation costs to move to the firm. The only cost
sustained by a firm is the fixed cost f in the case of entry. Suppose
the following two-stage entry-price game. In the first stage of the game,
potential entrants simultaneously decide whether or not to enter. Let us
indicate by n the number of firms that enter in the market. We assume
that firms do not choose their locations: in particular, the firms are
assumed to be automatically located equidistant from one another in the
circle. In other words, maximal differentiation is assumed. It follows that
the circle can be divided in n segments: the length of each of them is 1/n. In
the second stage of the game, the firms that are entered set simultaneously
the price.
Since there are many identical firms, the number of firms in equi-

librium is determined by the zero-profit condition (up to the integer
problem).5 We solve the game by backward induction. Consider the
second stage. Assume that the number of firms that entered in the market
is sufficiently high, so that there is competition between the existing firms
(in other words, there are no local monopolies in the circle): intuitively,
this amounts requiring that f is not too large. Let us focus on the focal
firm, say Firm i. Since the firms are identical, we can assume that all

5That is, the number of firms must be an integer.
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the other firms are setting the same price, say p. Note that Firm i has
just two real competitors, that is, the two firms that surround it. For
example, suppose Firm i is located at point 0 (or 1): its two competitors
are the firms located at 1/n and −1/n. Consider a consumer located at
x ∈ [0, 1/n]. This consumer is indifferent between buying from Firm i
and its closest (to the right) competitor, if the following condition is
verified: v − pi − tx = v − p − t

( 1
n

− x
)
, that is, x̂ = p+t/n−pi

t
.

It follows that the demand of Firm i is 2x̂. The profit function is 2pix̂.
By maximizing the profit function with respect to pi, and then setting
pi = p, we get the equilibrium price: p∗ = t

n
. Not surprisingly, the

price increases with the level of product differentiation (t) and decreases
with the number of competing firms (n). Due to symmetry, the demand
of each firm in equilibrium is 1/n. Let us consider now the first period.
Since there is free-entry net of the entry costs, the equilibrium number of
firms is determined by the zero-profit condition, which yields n∗ =

√
t
f
.

It is interesting to note that, in equilibrium, the price is higher than
the marginal costs. However, the profits are zero, due to the free-entry
conditions. This result is similar to the monopolistic competition of
Chamberlin (1933) (Fig. 1.3).

The Salop model is useful also to derive implications on welfare.
More specifically, is the equilibrium number of firms too high or too
low from the point of view of welfare? Suppose that a social planner
wants to maximize the overall welfare. Welfare is only determined by
the equilibrium transportation costs. Note that, in equilibrium, the
consumer’s average transportation cost is 2n

∫ 1
2n∗
0 txdx =

√
tf

4 . The social
planner chooses n in such a way to minimize the sum of the average
transportation costs and the overall cost of entry. Therefore, the optimal
number of firms, no, is given by no ∈ arg min

[
2n

∫ 1
2n
0 txdx + nf

]
, that

is, no = n∗
2 .We can conclude that the market generates too many firms in

equilibrium. Excess of entry is due to fixed costs of entry. In particular, the
private and the social incentives of entrance do not coincide: entrance is
socially justified only if the savings in the transportation costs compensate
for the entry costs, whereas the private incentive to entry is linked to
stealing the business of other firms. However, it should be noted that
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Fig. 1.3 The Salop model

this “excess of entry” result is not general. For example, Gu and Wenzel
(2009) remove the assumption of unit demand function and introduce a
demand function with constant elasticity. They show that the number
of firms entering into the market in equilibrium decreases with the
demand elasticity: when the demand elasticity is sufficiently large, there
is insufficient entry from the welfare’s point of view.
In general, the linear and the circular markets yield different outcomes,

due to the asymmetric nature of the former and symmetric nature of the
latter. Interestingly, the literature has developed a more general model
aiming to encompass the basic models and limit cases. This model is
known as the “quasi-linear” city and it has been introduced first by
Takahashi and de Palma (1993). We briefly describe it. There is a unit
length circular city with a caveat at point 0. When passing through
this point, there is an additional cost equal to β (e.g., this cost can be
interpreted as a barrier such as a congested bridge, a mountain, or a river).
When this cost is nil, we have the standard circular model; when it is
extremely high, no consumer passes through this point, and therefore we
are back to the standard linear model. When β is intermediate, we have
a mixture of the linear and the circular model.
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1.4 Spatial Price Discrimination

One crucial assumption in Hotelling and Salop models is that the firms
set the same price for all consumers. This kind of pricing technique is also
known as FOB (free-on-board) or mill or uniform pricing. However, it
is also possible that a firm sets a price which depends on the location
of the consumer which is served. This pricing technique is known as
“delivered” pricing. Therefore, delivered pricing is a peculiar form of price
discrimination, where discrimination is based on location (Greenhut and
Greenhut 1975). Alternatively, if we assume a “product differentiation”
interpretation of the spatial models, delivered pricing can be interpreted
as follows. The firmmight produce a single standardized variety and sets a
price for it: this is equivalent to FOB pricing. In contrast, the firm might
decide to offer a basic product with a series of options with different
prices: this is equivalent to delivered pricing.

Thisse and Vives (1988) introduce the analysis of price discrimination
into the basic Hotelling linear model. They consider the following situa-
tion. There are two firms which are exogenously located at the endpoints
of the Hotelling line (i.e., a = 0 and b = 1). The consumers sustain linear
transportation costs. Before setting the price, each firm has to decide its
own pricing policy, which might be uniform or discriminatory. If the
firm chooses uniform price, it is constrained to set the same price for
all consumers; if the firm chooses price discrimination, it is free to set a
different price for each consumers. Note that spatial price discrimination
is assumed to be “perfect”, that is, there is a price for each possible
location. The game is two-stage: in the first stage of the game, each firm
commits to a pricing policy (U and D) which will be followed in the
second stage. In the second stage of the game, the two firms set the price
or the price schedule, depending on the first-period choice. The game
is solved by backward induction, by starting from the last stage of the
game and discussing each subgame in turn (indeed, there are four possible
subgames).

Subgame UU: both firms have chosen uniform pricing in the first
stage. The analysis is the same as in the case of the standard Hotelling
model with linear transportation costs and maximum differentiation.



1 Classic Spatial Models 17

Subgame DD: both firms have chosen discriminatory pricing in the
first stage. Consider a consumer located in x. Define with pi(x) the
price charged by Firm i = A, B to consumer x. The utility of that
consumer when he buys from Firm A (B) is uA(x) = v − pA(x) − tx
(uB(x) = v − pB(x) − t(1 − x)). The consumer buys from the firm which
gives the higher utility; if the utility is the same, it is assumed that he buys
from the nearer firm. Suppose that consumer x is nearer to Firm i. Given
the price set by Firm j �= i, the best thing Firm i can do is to set a price
that gives the consumer the same utility he receives from Firm j: this is
the highest possible price that guarantees that consumer x buys from i.
Given that the price is never lower than the marginal costs, the equi-

librium price schedules are pA(x)∗ =
{

t (1 − x) − tx

0
if x ≤ 1/2
if x ≥ 1/2

and pB(x)∗ =
{
0
tx − t (1 − x)

if x ≤ 1/2
if x ≥ 1/2

. The firms’ profits are

πDD
A ∗ = ∫ 1

2
0pA(x) ∗ dx = t

4 and πDD
B ∗ = ∫ 1

1
2
pB(x) ∗ dx = t

4 .
Subgame UD: only Firm B has chosen discriminatory pricing in the

first stage. If the utility of the consumer is the same, he buys from
the discriminating firm. The firm setting a uniform price moves first.
Consider a generic consumer x. The best-reply function of FirmB consists
in setting pB(x) = pA + tx − t(1 − x). If Firm A sets pA > t(1 − x) − tx,
Firm B can always serve consumer x by undercutting the uniform price
set by Firm A: therefore consumer x will always buy from Firm B. In
order to have a positive demand, Firm A must set a uniform price such
that pA ≤ t(1 − x) − tx, which cannot be undercut by Firm B. Therefore,
the highest uniform price is pA = t(1 − x) − tx. Solving for x, we obtain
the most at the right consumer served by Firm A: x ∗ ’ = (t − pA)/2t.
Therefore, the demand of FirmA is x ∗ ’. Maximizing the profits of FirmA
with respect to pA, we get pA

∗ = t/2. Substituting pA into the best-reply
function of Firm B, we get the equilibrium price schedule: pB(x)∗ ={
2tx − t/2
0

if x ≥ 1/4
if x ≤ 1/4

. The profits are πUD
A ∗ = pA ∗ x ∗ ’ = t

8 and

πUD
B ∗ = ∫ 1

x∗’pB(x) ∗ dx = 9t
16 .

Subgame DU: symmetric to subgame UD.
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Table 1.1 Equilibrium profits in the Thisse and Vives model

πB

πA U D

U t/2; t/2 t/8; 9t/16
D 9t/16; t/8 t/4; t/4

We consider now the first stage of the game. In Stage 1, the two firms
decide simultaneously whether to price discriminate (D) or not (U), by
anticipating the equilibrium profits in Stage 2. Consider Table 1.1.

We observe that there is a unique pricing policy equilibrium, DD, and
that the profits in DD are lower than in UU (Prisoner Dilemma). The
intuition is the following. For any given pricing policy strategy of the
rival, each firm would like to be as flexible as possible in setting prices.
Therefore, each firm chooses D, which is the dominant strategy. However,
when both firms price discriminate, competition is very fierce, as each
firm can reduce the price in one location without fearing to reduce the
price elsewhere. Therefore, the firms would be better off in UU, but they
fail to coordinate on that equilibrium. The crucial difference between
uniform pricing and discriminatory pricing has been well described by
Hoover (1948): “The difference between market competition under FOB
pricing [ . . . ] and discriminatory delivered pricing is something like the
difference between trench warfare and guerrilla warfare. In the former
case all the fighting takes place along a definite battle line; in the second
case the opposing forces are intermingled over a broad area” (p.57).

Lederer and Hurter (1986) also consider spatial price discrimination.
However, they are not interested in the resulting pricing policy equi-
librium. In contrast, they consider a location-price game in a highly
general spatial model and find an important relation between equilibrium
locations and optimal locations. Consider a two-dimensional compact
market region denoted as S (i.e., there is no specific assumption about the
shape of the space). Let the locations of Firm A and Firm B be indicated
by zA = (xA, yA) and zB = (xB, yB), respectively. The marginal costs of
production of Firm A and Firm B are cA and cB, respectively. Therefore,
the two firms are not restricted to be symmetric. Let the location of a
consumer in the space be indicated by z ∈ �2. The consumers’ distri-
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bution over S is a generic distribution ρ(z). Let the cost of transporting
the good from the plant to the consumer be given by fA(zA, z) for Firm
A and by fB(zB, z) for Firm B (therefore, the transportation costs are
sustained by the firms). The consumer buys from the cheapest source.
If the two sources are equal, we assume that the consumer is served by
the firm with the least total marginal costs (production plus transport
costs). The firms are assumed to perfectly price discriminate. That is,
they can set a delivered price schedule where the price depends on the
location of the consumer which is served. The game is two-stage: in the
first stage of the game, the firms choose simultaneously the locations,
and, in the second stage, they choose simultaneously the price schedule.
In the second stage, the equilibrium price schedule is the following:
p ∗ (zA, zB, z) = max [fA(zA, z) + cA, fB(zB, z) + cB]. Intuitively, the proof
is the following. If the low-cost firm does not serve the demand, it could
undercut the low-price firm. The current low-price firm must be pricing
above or at its marginal cost: thus by cutting its price, the low-cost firm
can raise its profits. Furthermore, in equilibrium the low-cost firm must
price at the marginal cost of the next efficient firm at each market point
and that firm must price at its marginal cost. If the next most efficient
firm priced above this amount, the low-cost firm would price at this price
and would serve the demand. This would induce the next most efficient
firm to cut its price.6
Now, we consider the first stage of the game, where the firms choose the

locations by anticipating the equilibrium prices in the second stage of the
game. Denote the social cost as the total cost incurred by the firms to sup-
ply demand to customers in S in a cost-minimizing manner. Therefore, it
is K (zA, zB) =

∫ ∫
S min [fA(zA, z) + cA, fB(zB, z) + cB]ρ(z)dz. Note that

the profits of Firm i = A, B under the equilibrium prices can be written
as follows: π i(zA, zB, p∗) = ∫ ∫

S[fj(zj, z) + cj]ρ(z)dz − K (zA, zB) with

6Note that there is no contradiction with the equilibrium prices in Thisse and Vives (1988) in
the DD subgame. In that case the transportation costs were sustained by the consumers. Here the
transportation costs are sustained by the firm. Therefore, the profit margin is the same.
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0 ...1 M – 1 M
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1

Fig. 1.4 Liu and Serfes model

j �= i.7 Therefore, the location equilibrium (zA∗, zB∗) minimizes the social
costs, that is,8 K (zA∗, zB∗) ≤ K (zA, zB∗) and K (zA∗, zB∗) ≤ K (zA∗, zB).

The spatial models considered until now represent quite extreme
situations. In Hotelling (1929), D’Aspremont et al. (1979) and Salop
(1979) models assume that the firms set a uniform price for all consumers;
in Lederer and Hurter (1986) and Thisse and Vives (1988), the firms set
a different price for any possible location, thus implying “perfect” price
discrimination. However, inmany real-world situations, the firms are able
to “imperfectly” discriminate, that is, they are able to set different prices
for different “groups” of consumers, but they are able not to distinguish
within each group.

The analysis of imperfect spatial price discrimination has been devel-
oped first by Liu and Serfes (2004). As inHotelling (1929), the consumers
are uniformly distributed on a linear segment of length 1 and sustain linear
transportation costs. There is an information technology which allows the
firms to partition the consumers into different groups: the linear market
is partitioned into n sub-segments indexed bym, withm= 1, . . . , n. Each
sub-segment is of equal length, 1/n. It follows that sub-segment m can be
expressed as the interval

[
m−1

n
; m

n

]
(Fig. 1.4). A firm can price discriminate

between consumers belonging to different sub-segments, but not between
the consumers belonging to the same sub-segment. The cost of using
the technology is zero. Denote with pm

i the price set by Firm i = A,B
on consumers belonging to sub-segment m. Assume that n = 2k, with

7Indeed,

πi (zA, zB, p∗) = ∫ ∫
S

[
fj

(
zj , z

) + cj − fi (zi , z) − ci

]
ρ(z)dz

= ∫ ∫
S

[
fj

(
zj , z

) + cj

]
ρ(z)dz − ∫ ∫

S
min

[
fj

(
zj , z

) + cj , fi (zi , z) + ci

]
ρ(z)dz

= ∫ ∫
S

[
fj

(
zj , z

) + cj

]
ρ(z)dz − K (zA, zB)

.

8The continuity of function K on S also guarantees that the location equilibrium exists.
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k = 1, 2, 3, 4 . . . . Therefore, the higher is n, the higher is the information
precision.When n→ ∞, we have the perfect price discrimination model
of Thisse and Vives (1988); at the opposite, when n→ 2 themodel is close
as possible to the uniform pricing case of Hotelling (1929).
Liu and Serfes (2004) consider the case of firms which are exogenously

located at the endpoints of the segment (i.e., a = 0 and b = 1).9 As
in Thisse and Vives (1988) in the first stage of the game, the firms
simultaneously decide between D and U and in the second stage set the
prices.
Subgame UU: both firms have chosen uniform pricing in the first

stage.
The analysis is the same as in the case of the standard Hotelling model

with linear transportation costs and maximum differentiation.
Subgame DD: both firms have chosen discriminatory pricing in the

first stage. Consider segment m. Define xm∗ as the consumer on segment
m which is indifferent between buying from Firm A and from Firm B for
a given couple of discriminatory prices, pm

A and pm
B . Equating the utility

in the two cases and solving for x, we get xm∗ = 1
2 + pm

B −pm
A

2t . Therefore,
the demand of Firm A and Firm B on segment m is, respectively, dm

A =
1
2+ pm

B −pm
A

2t − m−1
n

and dm
B = m

n
− 1

2− pm
B −pm

A

2t . Therefore, the profits of Firm
i on segment m are πm

i = pm
i dm

i . Define mA ≡ n
2 − 1 and mB ≡ n

2 + 2,
with mB > mA. The equilibrium price schedules in DD are as follows: if
mA < m < mB, then pm

A∗ = t(4−2m+n)

3n and pm
B ∗ = t(2+2m−n)

3n ; if m ≤ mA,
then pm

A∗ = t
(
1 − 2m

n

)
and pm

B ∗ = 0; and if m ≥ mB, then pm
A∗ = 0

and pm
B ∗ = t

(2m−2−n
n

)
. Intuitively, Firm A is a constrained monopolist

in all segments m ≤ mA, whereas Firm B is a constrained monopolist in
all segments m ≥ mB; the two firms compete in the remaining segments.
Therefore, in each segment where a firm is a constrained monopolist,

9Colombo (2011) extends to the case of endogenous locations.
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the firm sets the highest price that allows serving the whole sub-segment
without being undercut by the rival. The firms’ profits are therefore

�DD
A ∗ =

mA∑

m=1

t
n

(
1 − 2m

n

) +
mB−1∑

m=mA+1

t(4−2m+n)

3n

(2−m
3n + 1

6

)

= t(9n2−18n+40)
36n2

�DD
B ∗ =

mB−1∑

m=mA+1

t(2+2m−n)

3n

(
m+1
3n − 1

6

)

+
n∑

m=mB

t
n

( 2m−2−n
n

)

= t(9n2−18n+40)
36n2 .

By comparing the profits in the case UU and the profits in the case
DD, it can be observed that the profits in the case of imperfect price
discrimination are always lower than the profits in the case of uniform
pricing. However, the profits in DD are U-shaped in the precision of
segmentation, n. Indeed, there are two contrasting forces at work, the
intensified competition effect and the surplus extraction effect. The first
refers to the fact that, when both firms sell positive quantities in a given
segment of consumers, an information refinement intensifies competi-
tion. The second refers to the fact that some segments are monopolized
by a firm, and on these segments, the firm extracts the consumer surplus.
When n is low and it increases, the number of competitive segments
increases: the intensified competition effect dominates, so the profits
decrease. For further increases of n, the number of competitive segments is
constant, but the number of monopolized segments increases: the surplus
extraction effect dominates, so the profits increase.

Subgame UD: only Firm B has chosen discriminatory pricing in the
first stage. Denote mˆ = n+7

4 . The equilibrium prices are pA∗ = t(n+1)
2n

and pm
B∗ =

{
t
n if m = mˆ − 1
t(4m−3−n)

2n if m ≥ mˆ . The firms’ profits are therefore

�UD
A ∗ = t(n2+2n+1)

8n2 and �UD
B ∗ = t(9n2−6n+5)

16n2 .
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Subgame DU: only Firm A has chosen discriminatory pricing in the
first stage. This case is symmetric to case UD.
Consider now the first stage of the game. By comparing the profits,

it can be shown that if n is low, the dominant strategy is U and there is
no Prisoner Dilemma, whereas if n is high, the dominant strategy is D
and there is a Prisoner Dilemma. Therefore, we can conclude that the
adoption of spatial price discrimination (and, consequently, the existence
of a Prisoner Dilemma) emerges if and only if the information about the
consumers’ location is precise enough.

1.5 Spatial Models with Elastic Demand
Functions

Classic models typically assume that consumers have unit demand func-
tions (i.e., each consumer buys one or zero unit of good). However, it
might be reasonable to assume that consumers might have elastic rather
than unit demand functions. Introducing elastic demand function within
a spatial model with uniform pricing is difficult. Indeed, as shown by
Rath and Zhao (2001), equilibrium prices and equilibrium locations
can only be defined implicitly (when transportation costs are quadratic).
In general, introducing elastic demand functions into a spatial model
with uniform pricing does not allow getting easily interpretable solutions
(Peitz, 2002).
On the other hand, introducing elastic demand in a spatial model

with (spatial) price discrimination is more fruitful, as shown by
Hamilton et al. (1989). The Hamilton et al. (1989) model maintains
the same assumptions of Hotelling (1929) with the only difference
that each consumer has a linear demand function of this type:
px = 1 − (qA, x + qB, x), where qA, x (qB, x) is the quantity produced
by Firm A (B) at location x. Therefore, as in Thisse and Vives (1988),
the firms can spatially price discriminate, as they can deliver different
quantities at different locations in the space, thus making the price
different at any location. The firms pay linear transportation costs to
ship the good from the plant to consumers. Therefore, the profits of
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Firm A (B) at point x are πA, x = (1 − qA, x − qB, x − t|x − a|)qA, x
(πB, x = (1 − qA, x − qB, x − t|x − b|)qB, x). Overall profits of
Firm A (B) are �A = ∫ 1

0πA,xdx (�B = ∫ 1
0πB,xdx). Provided

that the transportation costs are not too high, no point in the space
is monopolized by one firm. The game is a two-stage location-
than-quantity game. Consider the second stage. Each location x
can be treated as a separated market. Indeed, due to spatial price
discrimination, a firm’s quantity decision at a particular location
has no effect on other locations. As a result, at each location, the
Cournot equilibrium is qA, x(a, b) = (1 − 2t|a − x| + t|b − x|)/3 and
qB, x(a, b)= (1− 2t|b− x| + t|a− x|)/3. By anticipating the second-stage
equilibrium quantity schedules, in the first stage, each firm chooses the
location that maximizes its own profits. There is a unique equilibrium,
that is, a∗ = b∗ = 1

2 . Therefore, with spatial discrimination and
quantity competition, agglomeration occurs. It should be mentioned
that agglomeration in the case of spatial Cournot competition is a
quite general result. For example, agglomeration arises in the case of
different production costs throughout the city (Mayer 2000), in the case
of product differentiation (Shimizu 2002), and in the case of different
transportation costs (Colombo 2013).10 Furthermore, since each firm’s
sales are distributed symmetrically around the market center, each firm is
located so as to minimize the transportation costs associated with its sales
pattern.

Hamilton et al. (1989) also consider the case where the firms set
price rather than quantity in the second stage (Bertrand competition).
The relevant demand function is now qx = 1 − px: the consumer
located at x buys from the firm charging the lower delivered price.
When the delivered prices are equal, the firm with lower transport costs
provides the good to the consumers. As under quantity competition,
the price problem can be solved at each location separately. Following
a standard Bertrand argument, the equilibrium price at location x is
pA, x(a, b) = pB, x(a, b) = max [t|a − x|, t|b − x|]. Note that, differently
from the Cournot case, each location x is served by only one firm. Let

10However, it does not emerge in the case of hyperbolic demand function (Colombo 2016).
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us consider now the first stage of the game. The equilibrium locations

are a∗ = 1 − b∗ = 10t−8+
√

(10t−8)2+24t(4−3t)
24t . Therefore, with spatial

price discrimination and price competition, agglomeration never occurs.
Indeed, the firms do not locate in the same point to avoid zero profits.
The equilibrium locations are such that the two firms locate between the
first and third quartiles and very close to them.
The intuition can be summarized as follow. Under both Cournot and

Bertrand, the firms select the locations that minimize the transportation
costs, given the expected second-stage quantity/price schedules. Since
under Cournot there is complete overlapping, the transport costs are min-
imized when each firm locates in the middle of the segment. In contrast,
in Bertrand the market areas are completely disjointed: therefore, the
two firms locate “close” to the first and the third quartiles in order to
minimize the transport costs. Note that they do not locate at the first
and third quartiles: as the price decreases uniformly from the boundary
to the center, the firms sell more in the in-the-between region than in
the hinterlands. Therefore, in order to reduce the transportation costs,
the firms locate closer to the center (i.e., between the first and third
quartiles). As the optimal locations are at the first and third quartiles, we
can conclude that the unit demand assumption is a necessary condition
for the equilibrium locations to be transport cost minimizing (Lederer
andHurter 1986). Furthermore, the dispersed locations in Bertrand make
the total transport costs lower under Bertrand than under Cournot. Since
the equilibrium prices are lower in Bertrand than in Cournot, we can
conclude that welfare is higher under Bertrand.

1.6 The “Barbell” Model

The Hotelling model assumes uniform distribution of consumers. Non-
uniform distribution of consumers makes it difficult to obtain closed-
form solutions (see Sect. 1.2). However, one particular case of non-
uniform distribution of consumers has received considerable attention
due to its tractability. It is the case of consumers located at endpoints of
the linear segment. This is the “barbell” model introduced by Hwang and
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Mai (1990). This model is particularly appealing in a geographical/spatial
perspective.

Suppose a segment from 0 to 1. Consumers are located at the two
endpoints, the “cities”. Denote by 1 (2) the city located at the left
(right) endpoint. A monopolist has to decide the location and the price.
Denote by a ∈ [0, 1] the location of the monopolist. First, we consider
the case where the monopolist cannot price discriminate, and then we
will consider the case of price discrimination. The demand function in
City 1 (2) is q1 = 1 − cp (q2 = 1 − dp). Therefore, the higher is c
and d, the flatter is the corresponding demand curve (so, c and d are
positively related to demand elasticity). The monopolist sustains linear
transportation costs to carry the good to the cities. The profits of the
monopolist are π = (1 − cp)(p − ta) + (1 − dp)(p − t(1 − a)). By
maximizing with respect to price, we get p = 2+tca+td(1−a)

2(c+d)
. Note that

∂2π
∂a2 = t2(c−d)2

2(c+d)
≥ 0. Therefore, the profits are convex in the location, a.

It follows that the optimal location is either a = 0 or a = 1. By comparing

π (a= 0) with π (a= 1), we get a∗ =
{
0
1

a∗ =
{
0 if c ≥ d

1 if c ≤ d
. That is,

the firm locates where the demand curve is flatter. Indeed, at equal prices,
the demand is larger when the demand curve is flatter. Therefore, in order
to minimize the transportation costs, the monopolist locates where the
demand curve is flatter (as here the quantity sold is larger). We consider
now the case of spatial price discrimination. The profit function now is
π = (1− cp1)(p1 − ta)+ (1− dp2)(p2 − t(1− a)). By maximizing, we get
p1 = 1+tca

2c and p2 = 1+td(1−a)

2d . Note that ∂2π
∂a2 = t2(c+d)

2 ≥ 0. Therefore,
the profits are convex in a. By comparing π (a = 0) with π (a = 1), we get

a∗ =
{
0 if c ≤ d

1 if c ≥ d
. That is, the firm locates where the demand curve

is steeper. Note that this result is the opposite with respect to uniform
pricing. Indeed, under price discrimination, all else being equal, even if
the firm sets a lower price where the elasticity is higher, in equilibrium the
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demand is lower in the market characterized by a flatter demand curve.11
Therefore, the firm locates where the demand curve is steeper in order to
minimize the transportation costs.

1.7 Vertical Differentiation

All the models we have considered until now assume that, at equal prices,
some consumers prefer the product of Firm A, whereas others prefer the
product of Firm B. That is, these models describe horizontal product
differentiation. However, there are many situations where, at equal prices,
all consumers prefer the product of, say, Firm A to the product of Firm
B (e.g., because the quality of Firm A is higher). In this case, we refer to
vertical product differentiation. Spatial models are also useful to analyze
vertical product differentiation. In this case their correct interpretation is
the product characteristic one.
In what follows, we discuss one of the most famous spatial models of

vertical differentiation, which dates back to Shaked and Sutton (1982).
Suppose that each consumer buys one or zero unit of the good. The
preferences of the consumer, if he buys the good, are expressed by the
following utility function, U = ϑs − p, where s is a quality index of
the good. If the consumer does not buy the good, the utility is zero.
Parameter ϑ is a taste parameter: all consumers prefer high quality to
low quality, for a given price; however, a consumer with a high ϑ is
more willing to pay to obtain a higher quality.12 Suppose the following
(uniform) distribution of tastes across the population: ϑ ∈ [

ϑ, ϑ
]
,

where ϑ > 0. Furthermore, we assume for the moment that ϑ ≥ 2ϑ
(i.e., there is “sufficient” heterogeneity). Suppose there are two firms,
Firm A and Firm B. Firm A (B) produces a good of quality sA (sB),
with sA ≥ sB: that is, Firm A (B) produces the high (low)-quality good.

11In other words, the lower price is not sufficient to compensate for the higher sensitivity to the
price of consumers.
12It can be shown that ϑ is the inverse of the marginal rate of substitution between income and
quality. That is, consumers have different incomes, and wealthier consumers have a lower marginal
utility of income and a higher ϑ.
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Denote 
 ≡ sA − sB. Consider a two-stage game. In the first stage, the
two firms choose simultaneously the quality; in the second they choose
simultaneously the price. Consider the second stage. Suppose the market
is covered.13 Denote by ϑ̂ the consumer which is indifferent between
buying from Firm A and from Firm B. Solving ϑsA − pA = ϑsB − pB,
we get ϑ̂ = pA−pB



. Clearly, high-ϑ consumers buy the high-quality

good, whereas low-ϑ consumers buy the low-quality good. Therefore, the
demand functions are DA = ϑ − ϑ̂ and DB = ϑ̂ − ϑ , and the profits
are πA = pADA and πB = pBDB. By maximizing with respect to price, we
get pA∗ = 
(2ϑ−ϑ)

3 and pB∗ = 
(ϑ−2ϑ)
3 . The equilibrium profits (for

given qualities) are πA (pA∗, pB∗) = 
(2ϑ−ϑ)
2

9 and πB (pA∗, pB∗) =

(ϑ−2ϑ)

2

9 . Therefore, the high-quality firm sets a higher price and gets
higher profits. Furthermore, note that the prices increase with consumers’
heterogeneity.

Consider now the first stage. Suppose that the quality choice is without
cost. From the profit functions above, it is immediate to see that the
two firms will maximally differentiate. In particular, suppose that s must
belong to

[
s, s

]
. If we assume that sA ≥ sB, then the equilibrium qualities

would be sA∗ = s and sB∗ = s (maximal differentiation). The intuition
is the same as for spatial models of horizontal differentiation: the firms
differentiate in order to reduce price competition. In particular, the
strategic effect dominates, so that, even if producing a high-quality good
is costless, the low-quality firm reduces the quality of its good as much as
possible, in order to soften price competition.14 Clearly, if the two firms
enter sequentially, the firm that enters first chooses s, whereas the other
chooses s.

Suppose now that ϑ < 2ϑ (low consumer heterogeneity). In this
case, in the price equilibrium, Firm B has no demand. Therefore, it
sets a price equal to zero, whereas Firm A sets a price equal to ϑ
/2

13Under some appropriate restrictions on the parameters, this conjecture is correct in equilibrium.
14However, this conclusion is not always true: if the lowest level of quality is particularly low so that
the market is uncovered, the low-quality firm would end up with zero demand. In this case, there
is less than maximal differentiation in equilibrium.
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and gets positive profits. Therefore, even if there are constant return
to scale and no entrance costs, there is only one firm in the market.
This is in contrast with the locational models under horizontal product
differentiation, where there is an infinite number of firms when there are
no entrance costs (see the Salopmodel when f tends to zero). In the case of
vertical differentiation, when consumer heterogeneity is low,more intense
price competition drives the low-quality firm out of the market. Indeed,
if the lower quality is very “low”, the low-quality firm cannot resist to
the competition of the high-quality firm. More generally, the following
“finiteness result” can be stated: provided that the marginal cost of quality
does not increase too quickly with quality, there can be at most a finite
number of firms with a positive market share in the industry regardless of
entry costs.
Before concluding, it is worth stressing the existence of spatial models

combining the “horizontal” and the “vertical” dimension: Gabszewicz and
Thisse (1986) introduce vertical differentiation by allowing firms to be
asymmetrically located outside the linear market, Dos Santos Ferreira
and Thisse (1996) use asymmetric transport costs to generate vertical
differentiation in the Hotelling set-up, and Gabszewicz and Wauthy
(2012) nest horizontal and vertical differentiation by means of a measure
of the “natural market” of each firm (i.e., when the “natural market” of a
firm is the whole market, there is pure vertical differentiation; when the
“natural market” of both firms is of equal size, there is pure horizontal
differentiation).

1.8 Conclusions

This chapter illustrates some prominent classic spatial models. In particu-
lar, we consider some cornerstones of classic spatial economics, including
the linear model, the circular model, and the vertical differentiation
model, and some extensions to them. The aim of the chapter is mainly
pedagogical: we want to discuss the main spatial models and their
implications. Of course, many other relevant models are not discussed,
even if they contribute to our comprehension of the role of space in
shaping economic phenomena.
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