
Chapter 16
Container Rehandling at Maritime
Container Terminals: A Literature
Update

Marco Caserta, Silvia Schwarze, and Stefan Voß

Abstract This chapter provides an updated survey on rehandling of containers at
maritime container terminals. In particular, we review contributions with a particular
focus on post-stacking situations, i.e., problems arising after the stacking area has
already been arranged. Three types of post-stacking problems have been identified,
namely (1) the re-marshalling problem, (2) the pre-marshalling problem, and (3)
the relocation problem. This research area has received an increasing attention
since the first version of this contribution appeared in 2011. Within this update, we
discuss recent developments presented in literature. In particular, available solution
approaches from the fields of exact and (meta-)heuristic methods are given and
benchmark datasets are summarized. Moreover, an overview on extensions of post-
stacking problems and according solution methods are discussed.

16.1 Introduction

Container terminals can be seen as buffers within larger logistic chains encompass-
ing worldwide distribution systems. The major purpose of using container terminals
is to serve as transshipment points. Container terminals are used as temporary
storage points for containers, such that, e.g., unloading operations from a vessel
and loading operations onto a train or a truck need not be synchronized.

Broadly speaking, a container terminal can be divided into three major areas:
The quayside, i.e., the side in which vessels are berthed, the landside, i.e., the side
in which other means of transportation operate (trucks, trains), and the container
yard, i.e., the area in which containers are stored for future operations. The
management of a container terminal yard is of paramount importance in determining
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the efficiency of a port. Due to the fierce competition in the global market, container
terminal operators are forced to increase the efficiency of storage yard operations,
in order to capture and retain customers.

As pointed out by a number of authors, e.g., Choe et al. (2011), Park et al.
(2009), Stahlbock and Voß (2008), and Zhang et al. (2003), some performance
indicators of container terminal efficiency are: (1) the vessel berthing time, and (2)
the throughput of the quay cranes, i.e., the efficiency in unloading/loading containers
from/to vessels. While such key performance indicators can be improved at the
strategic level by adopting new technologies and structures, such as new equipment
or the terminal layout design, at the operational level, a proven means to enhance the
efficiency of container terminal operations is the optimization of the way in which
such operations are carried out.

While such key performance indicators can be improved through the use of
new technology, such as, e.g., new equipment, terminal layout re-design, etc., the
efficiency of container terminal operations can also be enhanced by optimizing the
way in which such operations are carried out. More specifically, a great deal of
attention should be devoted to the definition of efficient container stacking policies.

As highlighted in Dekker et al. (2006), stacking can be seen as a three-level
problem. Strategic stacking decisions must be made with respect to the layout of
the container yard, the type of equipment, and the design of the container terminal
itself. Tactical stacking decisions are concerned with decisions that affect capacity
in the medium term, e.g., whether a pre-stacking area should be used, whether
pre-arrangement policies should be implemented (re-marshalling, pre-marshalling,
etc.). Finally, operational stacking decisions deal with the identification of slots
to be assigned to containers, the rehandling of containers within the yard, the
berth allocation problem, the assignment of equipment to tasks, the definition of
a loading/unloading (stowage) plan, etc. In this chapter, we deal with operational
stacking decisions, with a special focus on offering a comprehensive overview of
published work dealing with operations that are carried out upon an existing stack
or set of stacks of containers.

These types of problems, presented under the label “marshalling problems at
container terminal yards,” have received a great deal of attention in the last years.
Two recent surveys, i.e., Lehnfeld and Knust (2014) and Carlo et al. (2014), have
proposed classification schemes for the broad set of optimization problems arising
at container terminal yards. More specifically, Carlo et al. (2014) classifies storage
yard operations at container terminals along a number of dimensions, i.e., (i)
yard design, (ii) storage space assignment, (iii) material handling equipment, (iv)
container reshuffling optimization. In turn, this fourth dimension, i.e., optimization
of container reshuffling, is subdivided into four main problem typologies:

(iv.1) selection of storage location;
(iv.2) retrieval and reshuffling, as in the blocks relocation problem;
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Fig. 16.1 No. of papers on post-stacking problems per year

(iv.3) pre-marshalling operations;
(iv.4) re-marshalling operations.

Borrowing from this classification, two more survey papers covering typologies
(iv.2)–(iv.4) above, i.e., retrieval and marshalling operations, have appeared in recent
years, i.e., Caserta et al. (2011a) and Dayama et al. (2016).
In this chapter, we build on the work presented in Caserta et al. (2011a) and
provide an up-to-date overview of optimization approaches for marshalling and
retrieval operations at container terminal yards. The motivation for this literature
update springs from the increasing number of papers on marshalling and stacking
problems appeared in recent years. To provide a glimpse of how active the research
community in this field has been, Table 16.1 and Fig. 16.1 summarize the number
of publications that appeared since 2006.1 From Table 16.1, we can observe that 79
papers have been published in the last 11 years, of which 61 in the last 5 years alone.
From the operational point of view, we focus on three problems:

• the Blocks Relocation Problem (BRP), also known as the Container Relocation
Problem (CRP);

• the Container Pre-Marshalling Problem (CPMP), i.e., intra-bay marshalling;
• and the Container Re-Marshalling Problem (CRMP), i.e., intra-block mar-

shalling.

From the solution approach point of view, we hereby collect contributions on opti-
mization methods for any of the three aforementioned problems. Broadly speaking,
we identify the following solution approaches across the three problems:

• greedy heuristics, i.e., rules-of-thumb employed to select the next best move;
• metaheuristics, i.e., master mechanisms that coordinate the use of a pool of

heuristic rules;

1In Table 16.1 and Fig. 16.1, a single paper being published in 2017 (see Wang et al. 2017) is
assigned to 2016, the year of the online-first publication.
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Table 16.1 Number of publications on post-stacking problems from 2006 to 2016

Total BRP Re- Pre-
Year no. papers BRP extension marshalling marshalling Survey

2016 12 4 3 5 1

2015 18 6 4 3 5

2014 10 5 1 3 1

2013 8 2 2 2 2

2012 12 4 4 4

2011 3 1 1 1

2010 6 3 2 1

2009 7 3 1 1 2

2008 0

2007 1 1

2006 1 1

Total 79 29 17 8 22 3

Sources: Google Scholar, Scopus, ProQuesti, and EBSCOhost

Tiers
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Fig. 16.2 Container bay and block

• exact approaches, i.e., approaches that guarantee the optimality of the provided
solution; and, more recently,

• robust approaches, i.e., formulations and solution approaches that attempt to
capture part of the uncertainty of the problem, thus providing a solution that
should be of good quality even when some disruptive events occur.

In the sequel, we follow the typical terminology adopted in the context of container
terminal operations. We indicate with the term bay a two-dimensional portion of the
container yard, made up by a number of stacks, i.e., the width, and tiers, i.e., the
height, as illustrated in Fig. 16.2a. A block is a set of consecutive bays, as presented
in Fig. 16.2b. Finally, a container yard is made up by a set of blocks.
In addition, we assume that a priority (exact or estimated) is associated with each
container in the stacking area. Priorities account for a number of different factors,
such as (1) category: e.g., containers with the same priority might belong to the
same category and could be piled up on top of each other; (2) departure time:
e.g., containers with earlier departure time will have higher priority than containers
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with later departure time; (3) size and weight: e.g., typically, containers with higher
weight are not stored on top of containers with lower weight, in order to respect
overall ship balancing constraints. It is worth mentioning that, since the precise
departure date of a container might not be known when the container reaches the
stacking area, it might be the case that estimated priority values are assigned to
containers. A new line of research focuses on the definition of robust optimization
methods to tackle this type of uncertainty.

The two terms retrieving and rehandling are used to describe movement of
containers. More specifically, the term retrieving is used to indicate a movement
of a container from the bay to the vessel. Conversely, we use the term rehandling to
indicate a move of a container within the container yard, both in the case of intra-
bay or intra-block movements. In all cases, we consider the layout of the stacking
area as given, i.e., the position and priority, exact or estimated, of each container
in the stacking area is known. Therefore, our interest is not centered on finding
effective stacking policies. Rather, given a stacking area, we wish to determine how
containers should be rehandled or retrieved in order to minimize the total number of
unproductive movements.

The structure of the chapter is as follows: In Sect. 16.2, the complexity of post-
stacking problems is discussed. Afterwards, Sect. 16.3 is devoted to the presentation
of marshalling problems, aimed at reshuffling the storage area in order to eliminate,
or reduce, the total number of future rehandling. Section 16.4 deals with a different
type of problem, the blocks relocation problem. Section 16.5 constitutes a bridge
between rehandling problems at maritime container terminals and similar problems
arising in different realms. Some references to related work in other application
domains are provided in this section. Finally, Sect. 16.6 concludes offering a brief
overview of the current status in the container handling discipline along with a
glimpse of future challenges and opportunities.

16.2 Complexity of Post-stacking Problems

Before surveying the available work in the field of post-stacking problems, we
provide a brief overview on complexity issues:

First, the complexity of the BRP is stated as N P-hard, see Caserta et al.
(2012), by a reduction from the Mutual Exclusion Scheduling (MES) problem on
permutation graphs, proved to be N P-hard in Jansen (2003). It is moreover shown
that a particular case of the BRP, known as the restricted BRP (see, Sect. 16.4.1) is
still N P-hard. Moreover, regarding alternative objectives, the BRP minimizing
the crane movement time, generalizes the BRP and, therefore, is N P-hard, too;
see, Schwarze and Voß (2015). Moreover, recent papers have addressed the issue
of computational complexity of different variants of the marshalling problem. More
precisely:
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• The re-marshalling problem: Caserta et al. (2011a) proved that the problem is
N P-hard by reduction from the BRP.

• The pre-marshalling problem with fixed height: van Brink and van der Zwaan
(2014) proved that both the priority stacking and the configuration stacking, i.e.,
a variant in which a pre-specified bay layout must be reached, are N P-hard
when the height is fixed H ≥ 6. All reductions are from the MES problem on
permutation graphs.

• The pre-marshalling problem with unlimited height: In van Brink and van der
Zwaan (2014), a proof that the priority stacking with unlimited height is
N P-hard is presented. Again, all reductions are from the MES problem on
permutation graphs. However, there is no formal proof for the complexity of the
configuration stacking problem with unlimited height. To the best of the authors’
knowledge, as of today, this seems to be an open question.

16.3 Container Marshalling Problems

In this section, we focus on the pre-marshalling and re-marshalling problems. In
line with Carlo et al. (2014), we make the following assumptions:

A1-D. The container retrieval sequence, based on container priorities, is known in
advance. This also implies that no further containers are expected to arrive;
or

A1-S. The exact container retrieval sequence is not known, since the precise
priority values of containers are not determined yet. This might be due,
e.g., to uncertainty of the arrival time of collecting vessels. We thus assume
that containers are assigned a time interval within which they are expected
to leave.

A2. The reshuffling of containers is limited to the same bay (pre-marshalling)
or the same block (re-marshalling);

Assumptions A1-D and A1-S are mutually exclusive and define the deterministic
and stochastic versions of the corresponding marshalling problem, respectively.
More rigorously, following the accepted terminology from the literature, we define
the two marshalling problems as follows:

Pre-marshalling The pre-marshalling problem is concerned with finding an opti-
mal, i.e., shortest, sequence of reshufflings that reorganizes the containers within
a bay in such a way that, for a known retrieval sequence, no further reshuffling is
required. This problem is also called intra-bay re-marshalling, since the containers
are reshuffled within the same bay.

Intra-bay re-marshalling, or pre-marshalling, is motivated by the use of a specific
technology. As pointed out by Lee and Chao (2009) and Lee and Hsu (2007), yards
that use rail mounted gantry cranes as major container handling equipment typically
solve the marshalling problem at bay level. For safety reasons, in some terminals
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where access of containers to and from the block is usually from the side, a gantry
crane is not moved from one bay or block to another while carrying a container.
Therefore, in those terminals, to move a container from one bay to another, it would
be necessary to temporarily unload the container from the crane, put it on a truck,
move the truck and, possibly, the empty crane to the target bay, pickup the container
from the truck with the crane, and store the container within the target bay. This
operation is time consuming and, therefore, it is avoided whenever possible. This
consideration motivates the study, from a practical perspective, of the intra-bay
pre-marshalling problem. The goal of the pre-marshalling problem is, therefore,
to rehandle containers within the same bay in order to eliminate (or minimize)
future rehandling while minimizing the total number of rehandlings during the pre-
marshalling process itself. Two observations are in place here:

• The pre-marshalling problem does not require to reach a pre-specified bay config-
uration. In other words, as long as no further reshuffles will be needed during the
subsequent loading/unloading phase, the bay configuration is considered optimal.
Thus, a variant of the classical pre-marshalling problem can be envisioned, in
which a pre-specified bay configuration must be reached, not only in terms
of containers priority, as in the classical pre-marshalling, but also in terms of
specific layout of the bay. The only authors that take into account this variant of
the pre-marshalling are Lee and Hsu (2007) and van Brink and van der Zwaan
(2014). Lee and Hsu (2007) defined a Mixed-Integer Programming (MIP) model
for the classical pre-marshalling problem that can be tailored to achieve a pre-
specified bay configuration with the addition of a set of side constraints. Along
the same line, in van Brink and van der Zwaan (2014) the difference between
the priority stacking and the configuration stacking pre-marshalling problems
is highlighted. They use the term priority stacking pre-marshalling problem to
identify the “classical” version of the pre-marshalling, while the configuration
stacking pre-marshalling identifies the variant in which a pre-specified bay layout
must be reached.

• As long as the relocation of containers occurs within the same bay, only the
number of crane movements is to be minimized. In other words, the distance
covered by the crane is negligible and, therefore, is not taken into account in the
optimization process. On the other hand, if containers need to be moved from one
bay to another within the same block, or from one block to another, then some
“transportation costs,” typically proportional to the distance covered, should be
taken into account.

Re-marshalling The re-marshalling problem is concerned with finding the mini-
mum length sequence of container movements aimed at retrieving containers from
a source bay and position them to a target bay (or bays) assigned to a specific vessel
(or vessels) in such a way that no further reshuffling will be needed. This type of
problem is also called intra-block re-marshalling, since movements of containers
typically occur within the same block. These types of problems are not just a
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simple extension of the pre-marshalling problem, since cranes interference and
transportation costs should now be taken into account.

As illustrated in Table 16.1 and Fig. 16.1, in the last years, a growing body of lit-
erature on optimization approaches for marshalling problems has been developing.
More precisely, with respect to the pre-marshalling and the re-marshalling problems
described above, we found 22 papers on the former problem and 8 papers on the
latter problem, without including survey papers mentioning marshalling problems
but not specifically dealing with the aforementioned problems.

From the solution approach point of view, these papers can be classified in the
following four groups. In this regard, a comprehensive list of papers classified along
the related dimensions is provided in Table 16.2:

• Greedy, target-guided heuristic approaches: These approaches typically define
greedy scores to select a target container and a target stack among a pool of
candidates. The targets are chosen according to the value of the greedy score and
the moves needed to relocate the target container to the target stack are carried
out. The types of moves defined can be single moves, i.e., at each step only one
container is moved to a new position, or compound moves, in which cases all
the relocations needed to achieve the target (moving the target containers to the
target stack) are carried out. Examples of these approaches are Bortfeldt and
Forster (2012), Expósito-Izquierdo et al. (2012), Jovanovic et al. (2017), among
others.

• Metaheuristic approaches: These algorithms make use of the greedy rules and
moves described above within the context of a metaheuristic, e.g., the corridor
method (Caserta and Voß 2009b), simulated annealing (Choe et al. 2011), genetic
algorithm (Gheith et al. 2016; Hottung and Tierney 2016), the pilot method (Tus
et al. 2015), among others. In some instances, exact approaches, e.g., dynamic
programming, are used in a metaheuristic fashion, in line with the definition of
“matheuristics” (See, e.g., Caserta and Voß 2009b).

• Exact approaches: These are algorithms aimed at finding an optimal solution
that exploit (1) Mathematical programming techniques, e.g., branch-and-bound
(Zhang et al. 2015), dynamic programming (Prandtstetter 2013), branch-and-
price (van Brink and van der Zwaan 2014), network optimization (Lee and Hsu
2007); (2) Constraint programming, e.g., Rendl and Prandtstetter (2013); (3)
Search algorithms, e.g., A* and IDA* (Tierney et al. 2017).

• Robust approaches: This new line of research is currently represented by two
papers, i.e., Tierney and Voß (2016) and Rendl and Prandtstetter (2013). Robust
optimization attempts to capture the uncertainty of real-world marshalling prob-
lems due to potential delays of vessels arrivals. Since the arrival time of vessels
at a berth is only an “expected” time, this uncertainty affects the priority value
of containers which, consequently, should be dealt with as if it were a stochastic
value. A common approach to deal with uncertainty is to treat container priority
values as intervals, rather than deterministic parameters.
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16.3.1 Container Pre-marshalling Problem

In this section, we present a brief overview of each paper dealing with the CPMP
appeared in the years 2007–2016. A comprehensive list of publications, along with
the solution approach, the benchmark instances used, and a short comment on each
paper can be found in Table 16.2. In addition, we provide a list of publicly available
benchmark instances for the CPMP in Table 16.3. These instances have been used
by a number of authors to test the effectiveness of their algorithms and constitute a
large library of instances, with different degrees of complexity, which could be used
to test future work on the CPMP. We hereby present the contributions appeared in
peer-reviewed outlets, starting with the most recent ones and going backward to the
first work on the CPMP.

Wang et al. (2017) introduce a target-guided heuristic for the CPMP. A target-
driven heuristic is a heuristic in which targets, i.e., containers, are moved to specific
slots one at a time. Thus, at each step, the heuristic identifies the target, i.e., the
container, to be moved and the destination stack. This relocation of the target
container to the destination stack is called “valid task,” and the way in which valid
tasks are identified is based on a set of greedy rules. However, a difference that
stands out between the approach presented in this paper and other target-driven
rules in the literature is that, while in general target containers are selected in a
predetermined order, e.g., according to the container priorities, in this approach the
order is not fixed beforehand but, rather, dynamically determined during the search
phase. In other words, the target container is selected depending on, among other
things, the current layout of the bay. Finally, once a valid move is identified, the
target container is fixed at the destination stack and will no longer be moved during
the optimization process. The algorithm repeats the aforementioned steps until all
the containers are fixed. To speed up the selection of moves, the authors propose a
novel state feasibility test. Prior to moving a container to a slot, the feasibility of the
resulting state, i.e., bay configuration, is tested and, if a move leads to an infeasible
layout, that move is discarded. This feasibility check allows to explore large portions
of the solution space in an efficient fashion. The authors tested their algorithm on
two benchmark sets from the literature, CV and BF,2 and the results obtained show
the effectiveness of the proposed scheme.

Hottung and Tierney (2016) present a metaheuristic that employs the biased
Random Key Genetic Algorithm (bRKGA) framework to guide a three-step iterative
heuristic. The bRKGA is in charge of two major tasks: On the one hand, the
metaheuristic learns and fine-tunes the decision as to which container to move
and which stack to use in each step. That is, the rating mechanisms employed to
judge the quality of candidate moves are guided by the bRKGA via the encoding
and decoding of a part of the chromosome, thus allowing successive generations
of the bRKGA to select better moves. Since the mechanism has some learning

2See Table 16.3 for the source of the benchmark and a description of the same.
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features, it benefits from solving the same instance over and over, i.e., along multiple
generations. On the other hand, the same chromosome devotes some of the genes to
the encoding and decoding of values of some algorithmic parameters. Consequently,
a second task accomplished by the bRKGA is that of fine-tuning the algorithmic
parameters. The algorithm has been tested on the CV and BF instances and, at the
time of writing, together with the Beam Search algorithm of Wang et al. (2015), the
results reported in this paper are the best presented in the literature.

Gheith et al. (2016) discuss a solution approach that employs genetic algorithms.
The encoding is such that each move in the bay is specified via two consecutive
genes, one indicating the stack the container is removed from and the next specifying
the receiving stack. A chromosome thus encodes the full set of moves of a solution
to the pre-marshalling problem. The interesting variation introduced in the paper is
that, since the exact number of moves required to reach the final configuration is
not known, a variable length Genetic Algorithm (GA) is used instead. The length of
the chromosome is thus proportional to the number of moves required by a given
solution. The fitness value associated to a chromosome is composed of two terms,
i.e., the number of moves required (proportional to the chromosome length), and
the number of mis-overlays of the final configuration, i.e., the bay configuration
obtained after implementing all the movements encoded in the chromosome (ideally
equal to zero for a proper pre-marshalling solution). The algorithm has been tested
on instances LH, LC, and CV (see Table 16.3).

Tierney et al. (2017) present an exact algorithm based on a problem specific
implementation of the A* and IDA* algorithms. The authors model the CPMP as
a graph, in which the tree structure used to capture the problem is as follows: The
root node is associated to the initial bay configuration; each branch of the tree leads
to a node associated to a bay configuration that can be reached from the current
state via a single move, i.e., relocating only one container. The leaves of the tree
correspond to final solutions. At each node a cost is computed. Such cost is the
sum of two terms, i.e., the cost of reaching the solution associated to that node,
and the cost of completing such a solution, i.e., to reach the closest leave. Lower
bounds for the latter term are obtained using the lower bound method proposed
in Voß (2012) and Bortfeldt and Forster (2012). At each node, a branch for each
possible container move is created. Problem specific symmetry breaking rules have
been designed to speed up the search process and to prune dominated branches of
the tree. The authors evaluated their approach on instances CV, BF, and a new set
of randomly generated instances obtained using the instance generator of Expósito-
Izquierdo et al. (2012). The proposed algorithm (IDA*) was able to solve over 500
previously unsolved instances to optimality.

Tierney and Voß (2016) discuss a robust variant of the CPMP, in which the
priority of containers is not deterministically known. Rather, a time interval within
which the container must be retrieved is provided. This problem is labeled Robust
Container Pre-Marshalling Problem (RCPMP). The authors first find a relaxation
of the RCPMP solving a binary constraint satisfaction problem, which takes as
input a “blocking matrix” and provides as output a deterministic CPMP, in which
container priorities have been fixed respecting the blocking matrix structure. This
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deterministic CPMP is a relaxation of the original robust problem and is fed as
input to the IDA* algorithm of Tierney et al. (2017), which, in turn, provides an
optimal solution. Interestingly, the authors prove that a reasonable lower bound for
the RCPMP can be found using a lower bound for the CPMP, i.e., the relaxed,
deterministic version. The authors tested their algorithm on 900 new randomly
generated instances, labeled TV in Tables 16.2 and 16.3, and compared their
approach with the only available algorithm dealing with the RCPMP, that of Rendl
and Prandtstetter (2013).

Wang et al. (2015) present a target-guided heuristic to tackle the standard CPMP
and a variant of the same problem, called the Container Pre-Marshalling Problem
with Dummy Stack. The new variant of the CPMP arises from the observations
that some block layouts at container terminals have a transfer line parallel to the
block itself, as opposed to having transfer lines at both ends of the block. This
lateral transfer line can be used by the gantry crane operating on a bay. Therefore,
the pre-marshalling problem can be redefined as having an extra “dummy” stack,
which can be used to temporarily store containers during the reshuffling operations
of the pre-marshalling task. The only caution that must be taken is that the dummy
stack must be emptied at the end of the pre-marshalling work. The authors label this
variant of the pre-marshalling as CPMPDS. The key idea of the target heuristic is
to fix containers to a certain position in a descending order of priorities. Containers
are relocated using both compound moves, called giant moves, as well as single
moves, called baby moves. The greedy heuristics presented in the paper are finally
embedded into a metaheuristic scheme, the beam search, which allows to escape
from suboptimal solutions. The proposed algorithm is tested on a large pool of
instances, namely LC, CV, BF, and a newly generated set of random instances,
called WJL (see Table 16.3), specifically designed for the CPMPDS. The results
reported in this paper for the beam search algorithm are, at the time of writing, the
best in the literature, along with those of Hottung and Tierney (2016).

Another variant of the CPMP is presented in Tus et al. (2015). These authors
consider the case of small-medium size container terminals, in which, rather than
gantry cranes, reach stackers are used. Reach stackers are forklifts that can only
access the top containers of the leftmost and rightmost stacks of a container
bay. They named this variant of the standard pre-marshalling problem the 2-
Dimensional Container Pre-Marshalling Problem (2D-CPMP). The authors adapt
a lowest priority first heuristic, initially designed for the CPMP, to this variant of
the pre-marshalling. Next, they embed this heuristic within two metaheuristics, the
Pilot method and a Max-Min Ant System. To test the effectiveness of the proposed
scheme, the authors generated a new set of instances using the instance generator of
Expósito-Izquierdo et al. (2012). These instances are now available online and are
labeled TRR (see Table 16.3). Their empirical analysis shows that the Min-Max Ant
System is the best performing algorithm among those proposed in this paper, and
that the difference with the other schemes is statistically significant.

An original approach to the CPMP is provided in Tierney and Malitsky (2015).
They use algorithm selection to find the best performing algorithm for each instance.
More specifically, four parameterizations of the A* and IDA* algorithms of Tierney
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et al. (2017) are used to form a pool of solvers. With respect to the instance
pool, they use instances from CV, BG (see Table 16.3), and some newly randomly
generated instances obtained using the instance generator of Expósito-Izquierdo
et al. (2012). Each instance is characterized by a set of features, both observable and
latent. These features are evaluated using Cost-Sensitive Hierarchical Clustering
(CSHC). The performance of the portfolio obtained using CSHC is then compared
with that of the best single solver, and the virtual best portfolio, i.e., a portfolio that
always selects the best algorithm. The authors conclude discussing the importance
of enriching the instance description with the use of latent features which, in turn,
prove beneficial in the algorithm selection phase.

Zhang et al. (2015) present an exact approach for the CPMP. They design a
heuristic-guided branch-and-bound approach, which effectively solves medium-size
instances to optimality. The authors state that the algorithm requires an acceptable
amount of running time as long as the product of the number of stacks with the
maximum height (S × H ) is around 35. The problem is framed in the context of
a branch-and-bound tree, in which the root node corresponds to the initial layout,
each node of the tree is an intermediate layout, and each leave is a final solution. The
role of the guiding heuristic is to generate a set of potential branches at each node.
They also present an approach to compute a valid lower bound for the number of
relocations required and they point out that such lower bound is looser than the one
presented in Bortfeldt and Forster (2012), but easier to compute. The lower bound
is of paramount importance in pruning the branches of the tree at each node, thus
allowing for a more efficient exploration of the branch-and-bound tree. They tested
their algorithm on a new randomly generated set of small-medium size instances,
called ZJY (see Table 16.3), as well as on the small instances from CV and they
were able to achieve an optimal solution for most of these instances in a reasonable
amount of computational time.

Ren and Zhang (2015) design a three-step rule-based iterative algorithm. The first
step, called local optimization, move ill-placed containers, i.e., containers creating
mis-overlays in the current stack, to stacks with zero mis-overlays. The first step
ends when moves of this type are no longer available. The second step aims at
emptying one stack of the bay. Greedy rules are used to select the stack to be emptied
and the destination stacks of containers removed from the emptying stack. Finally,
the third stage takes care of refilling the empty stack. Again, heuristic rules are
used to prevent deadlocks and to identify the relocated containers. The proposed
algorithm has been tested on only three benchmark instances, two from LH and one
from LC.

van Brink and van der Zwaan (2014) present an exact algorithm for two versions
of the pre-marshalling problem, the priority stacking and the configuration stacking.
The former describes the case in which no final specific bay layout is required,
as long as no container with low priority is left on top of containers with higher
priority. Conversely, the second problem describes the case in which a pre-defined
bay layout should be reached, i.e., each container should be placed in a specific
position in the bay. The exact method is based on branch-and-price and column
generation. The problem is formulated as an integer linear program, and the task of
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generating new columns, i.e., a sequence of moves, with negative reduced cost is
almost equivalent to finding a maximum weight independent set in a circle graph,
which is polynomially solvable using dynamic programming. Thus, at each node of
the tree, a series of linear programming relaxations with the addition of new columns
is solved, until no further columns with negative reduced cost can be added. A lower
bound is then used to either prune the branch of the tree or to create further branches.
Another valuable result presented in this paper is related to the proof of complexity
of the priority stacking and configuration stacking pre-marshalling problems with
fixed height. The authors proved that both versions of the CPMP are N P-hard, as
discussed in Sect. 16.2 of this paper.

Jovanovic et al. (2017) revisit the Lowest Priority First Heuristic (LPFH)
presented in Expósito-Izquierdo et al. (2012) and modify each of the four basic
components of such heuristic. The key idea is to identify the best heuristic to be used
at each stage of the algorithm. The authors point out that, given a pool of competing
heuristics for a given task, their performance is highly dependent on the features
and properties of the instance at hand. However, since establishing a correlation
between instance features and heuristic performance is often difficult, their approach
is to test all the heuristics available for the task and select the best performing one.
More precisely, at each stage of the LPFH, a pool of heuristics is used to come up
with different solutions. A look-ahead mechanism and a backtracking procedure are
employed to avoid reaching infeasible bay configurations. The authors tested the
proposed method on instances obtained using the instance generator of Expósito-
Izquierdo et al. (2012) and the results prove that the proposed algorithm outperforms
the original LPFH. In the concluding remarks, the authors point out that (1) no
heuristic outperforms the other on a complete set of instances, and, connected
with this, (2) the performance of each heuristic is dependent on the features and
characteristics of the instance at hand. These final remarks are in direct connection
with the findings of Tierney and Malitsky (2015).

Gheith et al. (2014) proposed a rule-based heuristic, composed of three main
steps: (1) sort container groups according to the frequency of mis-overlays; (2)
find a destination stack employing a number of heuristic rules, (3) move the target
container to the destination stack, again employing a number of heuristic rules. The
three-step algorithm is iteratively applied until no further mis-overlays are present.
The algorithm has been tested on instance LH, and on three randomly generated
instances. Thus, a comparison of this heuristic with other approaches from the
literature is difficult to carry out.

Rendl and Prandtstetter (2013) take a different approach to the CPMP, in which
they formulate and solve the problem employing Constraint Programming (CP).
They iteratively try to solve the CP model in exactly k steps, i.e., number of
relocations. The initial value of k is found computing a valid lower bound as in
Bortfeldt and Forster (2012) and, at each iteration, k is increased by one if no
solution could be found. Thus, the first solution returned is an optimal solution to the
CPMP. Two sets of variables are employed in the CP model: The first set defines bay
configurations, i.e., the layout of the bay after a certain number of steps; the second
set is used to keep track of the moves performed at each point in time. Logical
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constraints ensure the feasibility of each intermediate configuration and drive the
search toward a desired final layout. In addition, a specialized search heuristic,
applied on the bay variables is employed to evaluate all the possible moves based
on the current bay configuration. Another interesting contribution of this paper is
related to the presentation of a robust variant of the CPMP. The authors point out
that, in real-world settings, the arrival time of vessels is far from certain. Thus, in
reality, only the expected arrival time of a vessel is known. The implication is that,
since container priorities are based on the exact arrival time of a vessel, the final
priority of a container is also uncertain. The goal is thus to produce a final bay
layout that is robust with respect to vessel delays and container priority variations.
More precisely, rather than dealing with a specific priority value, each container
should be associated to a priority range {h, . . . , l}, where h is the highest priority
that could be associated to a container, i.e., the earliest possible time that a container
will be collected, and l is the lowest possible priority of the same container. The
authors modified and adapted the CP formulation to deal with the robust variant of
the CPMP. Both models are tested on a set of instances produced using the instance
generator of Expósito-Izquierdo et al. (2012).

Prandtstetter (2013) presents an exact approach for the CPMP. The key idea
is related to the design of a Dynamic Programming (DP) scheme, which is then
embedded into a branch-and-bound framework. To further shrink the DP tree,
the author developed a method that allows to recognize the equivalence of DP
states: Equivalent DP states should be evaluated only once and, therefore, when
an equivalent state is reached, the corresponding branch of the tree can be pruned.
In the branch-and-bound scheme, a lower bound is computed at each node using
the method of Bortfeldt and Forster (2012) and, together with the upper bound
value, allow to further prune the tree. In addition, to further reduce the size of the
three, the author introduces a heuristic evaluation of equivalence of two states. Such
evaluation of equivalence is “heuristic” in the sense that, while it further shrinks the
state space explored by the DP scheme, it does not guarantee that (optimal) states
will not be missed. The different variants of the proposed scheme have been tested
on the benchmark instances EMM from Expósito-Izquierdo et al. (2012). The DP
scheme embedded into the branch-and-bound scheme was able to solve to optimality
a large number of instances from the EMM dataset within a maximum running time
of 3600 s.

Bortfeldt and Forster (2012) present a tree search heuristic procedure, effectively
coupled with the computation of a tight lower bound on the number of moves
required to reach the final bay layout, given the current bay configuration. The use
of such lower bound is paramount in pruning branches of the tree, thus making the
tree search algorithm very effective, even when dealing with large instances. In the
tree, the root node corresponds to the initial bay layout, while the leaves of the tree
correspond to final configurations. Each node in the tree defines an intermediate
state, reachable from its predecessor via a compound move, i.e., a sequence of
relocations. The procedure was tested on a large set of benchmark instances, namely
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LH, LC, and CV. In addition, the authors generated a new set of instances, labeled
BF, composed of 640 instances of different size and complexity.3

Expósito-Izquierdo et al. (2012) propose a lowest priority first heuristic that
iteratively places containers either at the bottom of a stack or above containers with
lower priorities. Thus, the heuristic attempts to place containers in reverse order,
starting with low priority containers first and eventually relocating containers with
the highest priority. The proposed heuristic is stochastic in nature, since some of
the decisions, e.g., the destination stacks of containers to be relocated, are randomly
selected among a pool of candidate stacks. To assert the goodness of the proposed
algorithm, the heuristic has been tested on instances CV and compared with the
results from the literature as well as with an A* algorithm, implemented by the
authors, which provided optimal values for the small-size instances. In addition, the
authors also propose an Instance Generator, called IG in the sequel, which takes
as input a set of parameters, e.g., the number of stacks and tiers of the bay, the set
of container priorities, the bay occupancy rate, and a handful of parameters that
affect the bay layout, and produces instances with varying difficulty levels. Finally,
a computational study aimed at finding the correlation between instance difficulty
and bay occupancy rate and container distribution was carried out.

Huang and Lin (2012) discuss two versions of the CPMP: Type A is the standard
pre-marshalling, in which a final configuration with no mis-overlays must be
reached; type B is a variant of the CPMP, in which a pre-specified bay configuration
should be enforced. The authors propose two heuristics for the two variants of
the problem. Both methods are labeling algorithms, in which stacks receive a
label related to the condition of the stack itself (e.g., wrongly arranged, correctly
arranged). The evaluation of the method has been conducted on two instances of the
set LH for the type A version and on a randomly generated instance for the type B
problem.

Caserta and Voß (2009b) present a metaheuristic algorithm for the pre-
marshalling problem. The central idea of the approach relies on iteratively solving to
optimality smaller portions of the original problem. The algorithm consists of four
different phases, in which ideas from the corridor method, roulette-wheel selection,
and local search techniques are intertwined to foster intensification around an
incumbent solution. The algorithm is stochastic in nature and is based upon a set of
greedy rules that bias the behavior of the scheme toward the selection of the most
appealing moves.

Lee and Chao (2009) define a bi-objective problem: On the one hand, the
authors attempt to create a reshuffled bay that requires the minimum amount of
rehandlings during the loading phase; on the other hand, such desired configuration
should be reached in the minimum amount of steps, i.e., the final configuration
should be reached minimizing the total number of rehandling operations. The
approach is hybrid in the sense that heuristic techniques, such as neighborhood
search, and mathematical programming techniques, such as integer programming,

3See Table 16.3 for a description of this benchmark set.
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are intertwined to deal with different subproblems. First, the neighborhood search
heuristic is used to find a chain of movements to sort out the bay, in such a way that
the number of further rehandling required during the loading phase is minimum.
Next, a binary integer programming model is solved to reduce the number of
movements required to reach that final configuration. A number of minor heuristic
rules are used to foster the effectiveness of the proposed algorithm.

The first work on pre-marshalling was presented by Lee and Hsu (2007). They
propose an integer programming model based upon a multi-commodity network
flow formulation. The network accounts for two dimensions, time and space. Each
level of the network describes a specific point in time and captures the state of the
bay at that instant. Connections among different levels of the network account for
moves of containers over time and space, i.e., edges within the network are used
to model the movement of a container from one stack to another in a given time
period. The basic mathematical model, along with some extensions, is presented in
the paper. Finally, in order to reduce the number of variables and to make the model
tractable, some simplifications are introduced. One drawback of the model concerns
the need to pre-define a parameter T , i.e., the total number of time periods required
to completely reshuffle the bay (which is unknown). The appropriate choice of the
value of T has a strong bearing on the computational time required to solve the
model. If T is chosen too large, then a very large number of variables is created
and, therefore, the MIP solver might not be able to reach the optimal solution in
a reasonable amount of computational time. On the other hand, if T is chosen too
small, a feasible solution might not even exist. Some analysis about this trade off is
presented by the authors.

16.3.2 Container Re-marshalling Problem

Typically, the CRMP refers to the problem of moving a set of containers to pre-
specified bays within the same block. As indicated in Kang et al. (2006), the bays in
which the target containers are located before re-marshalling are called source bays
and the empty bays to which these containers should be moved are called target
bays. Containers within a block are characterized by two types of information:

• a group or category, accounting for, e.g., the port of destination. In order to
minimize the distance traveled by the cranes during the loading phase, containers
belonging to the same group are placed in adjacent slots within the same block;

• a priority, accounting for, e.g., weight information, order of retrieval, etc. Within
the same group, containers should be stacked by ensuring that no container with
lower priority is found on top of a container with higher priority.

Therefore, the two-objective problem of intra-block re-marshalling is aimed at
grouping together containers belonging to the same category and, for each set of
containers of the same category, at piling up such containers taking into account
priorities.
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As pointed out in Caserta et al. (2011a), the CRMP should be seen as more than
a simple extension of intra-bay pre-marshalling, since more than one crane could
be used to handle the containers. Therefore, typically the re-marshalling problem
also encompasses some considerations with respect to avoiding or minimizing
interference among cranes within the same block. As mentioned in Sect. 16.2 of
this paper, the authors proved that the CRMP is N P-hard.

In the sequel, we present a brief summary of the contributions from the literature
dealing with the CRMP. Table 16.4 provides a list of the papers hereby presented,
along with the type of approach used, and a short comment on the paper itself.

Shin and Kim (2015) deal with the study of steal plate storage systems, in
which a multi-state re-marshalling problem is addressed. It is common practice
to divide the storage yard into zones, each dedicated to the storage of plates with
remaining duration of stay within a specified range. Then, plates are assigned
to zones depending on their remaining duration of stay. When a period of time
passes, the durations of stay of the plates are updated and, consequently, it might
be required that some plates are relocated from their current zone to the next
zone in the yard. Thus, the re-marshalling is done periodically between zones
with consecutive remaining duration of stay ranges. Via a formulation and some
enumerative procedures, the proposed approach finds the optimal number of stacks
and the optimal frequency of re-marshalling operations, i.e., the set of parameters
that minimizes the expected number of re-marshalling operations.

Choe et al. (2015) propose a novel approach to the re-marshalling problem. Most
of the works presented in the literature assume that enough time is given to carry out
a complete re-marshalling. More recent contributions have introduced the notion of
“selective re-marshalling,” e.g., Park et al. (2013) and Park et al. (2010). However,
the constant feature of all the approaches presented in the literature is that the re-
marshalling work is carried out in batches. In other words, a starting time for the re-
marshalling is given and, considering the selective re-marshalling, an ending time is
also provided. Within this time horizon, the goal is to find the best possible (partial)
re-marshalling plan. This paper proposes to intertwine the scheduling of the two
cranes typically assigned to a block, used to perform ordinary duties, with some re-
marshalling operations, whenever such cranes are idle. Consequently, given a time
horizon, the goal is to mix together the scheduling of ordinary tasks at the block with
a partial re-marshalling. The scheduling of ordinary tasks is still the priority and, for
this reason, one of the objectives is to minimize the delay of these tasks. However,
a new objective is also introduced, i.e., the minimization of the makespan of all the
jobs, both the ordinary and those due to re-marshalling. The re-marshalling jobs to
be included in the time horizon are selected using heuristics inspired in the selective
re-marshalling of Park et al. (2013) and Park et al. (2010). The authors use a GA for
the iterative rescheduling and run extensive simulations to assert the effectiveness
of the proposed approach.

A variant of the re-marshalling problem is presented in Ji et al. (2015), where
an algorithm for the relocation of containers to vessels, along with the crane
scheduling, is presented. Loading sequence and rehandling strategies are integrated
within the same optimization model, which leads to the identification of the optimal
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loading sequence and the minimization of required rehandling. Three strategies
are considered, i.e., the lowest stack strategy, the nearest stack strategy, and the
optimization strategy. The latter is the most effective strategy in terms of reducing
the number of rehandles.

Ayachi et al. (2013) present a heuristic method for the re-marshalling of both
inbound and outbound containers under uncertainty. The uncertainty arises from the
imperfect information related to arrival and departure times. The authors show how
to deal with different container types. Their method finds an optimal storage plan
with respect to container departure time and minimizes the required re-marshalling
operations at their departure time.

Park et al. (2013) consider the selective re-marshalling presented in Park et al.
(2010), i.e., they consider the case in which the time allocated to re-marshalling is
limited and, therefore, only a subset of containers can be reshuffled. The authors
propose a three-step cooperative co-evolutionary algorithm: Container selection,
target location identification, and re-marshalling schedule. In addition, a cooperative
parallel search is carried out to find good solutions to each of the subproblems. In
a fashion similar to what is done in Park et al. (2010), the method is iteratively
repeated to deal with the uncertainty and the estimation errors introduced by the
real-time operation of cranes.

Choe et al. (2011) study the intra-block re-marshalling problem where more than
one crane is used to handle containers. Therefore, interference among cranes is
taken into account. The authors propose a two-phase algorithm: During the first
phase the target slots to which handled containers should be moved are identified,
and in the second phase an optimal schedule of the cranes to actually perform the
relocation of containers is found. The proposed algorithm, based upon simulated
annealing, is aimed at finding a rehandling-free configuration of the block that can
be achieved in the minimum amount of time. Based upon a partial order graph that
captures all the feasible moves leading from the current block configuration to a
target configuration, at each step of the search phase the algorithm evaluates the
goodness of a candidate solution configuration by heuristically creating a crane
schedule and estimating the time needed to complete re-marshalling to reach that
particular configuration.

Park et al. (2010) introduce a new feature into the re-marshalling problem. The
authors point out that it is quite possible that not enough time is given to carry out a
complete re-marshalling of a block. Consequently, a “selective” re-marshalling must
be carried out, in which only a subset of the containers is actually sorted out. The
authors propose a two-step iterative algorithm: In the first step, an appropriate subset
of containers is selected using heuristic measures; the second step is then focused
on building the re-marshalling schedule for the selected containers. In addition,
since the uncertainty associated to the crane scheduling at the block might introduce
estimation errors, the two-step approach is iteratively applied within the context of
a GA that exploits the solutions obtained in the previous iterations.

Park et al. (2009) analyze the re-marshalling problem with respect to export
containers. Typical dimensions of the considered problem are 41 bays per block,
where each bay is made up by 10 stacks and 6 tiers. A block is managed through
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the use of two cranes, one for export containers and another for import containers.
Due to the large size of the considered blocks, the authors identify two sources of
inefficiencies in the handling of containers. The first one is related to the horizontal
movement of the cranes used to load containers to the vessel. Typically, export
containers are unloaded from trucks and, therefore, are piled up near the landside
of the block. Therefore, during the loading operations, the crane operating on the
waterside is forced to travel long distances toward the landside of the block to
pick-up export containers, hence affecting the overall time of the loading operation.
A second source of inefficiency can be ascribed to the stacking of high priority
containers below low priority containers, forcing a rehandling of the uppermost
containers. The authors present a two-stage heuristic algorithm. The first stage uses
heuristic rules to identify where, i.e., in which stacks, containers must be relocated.
In the second stage of the algorithm, a cooperative co-evolutionary algorithm is used
to identify the precise slot within which containers should be relocated (stack and
tier), along with the order of movements of the containers to be reshuffled. Two
populations are created to identify the slots and to define the order of movements.
Information is exchanged in the following way: Initially, a solution for the target
slots identification is found; such solution is then fed as input to the subproblem
dealing with the movements sequence. In turn, the movements sequence defined by
this last subproblem is used to find a better set of target slots, and the cooperative
approach is repeated in cycles.

Similarly, Kang et al. (2006) deal with export containers, and the objective is
to find a rearrangement that avoids future rehandling during the loading operation.
As in Choe et al. (2011), multiple cranes are used within a block and, therefore,
interference among cranes is also minimized. The proposed approach is similar to
the one of Choe et al. (2011), since a two-phase algorithm is designed. First, a
set of target locations is defined. Next, a partial order graph is created, with the
goal of finding a set of feasible moves leading from the source configuration to
the target configuration. The partial order graph captures all the possible moves
leading from source to target configuration. Next, simulated annealing is used to
find a solution that aims to minimize the overall time required to carry on the re-
marshalling operations. Finally, a heuristic is employed to find a crane’s feasible
schedule. An interesting point brought out by the authors is related to the notion of
neighbor solutions. Given a partial order graph, a neighbor of such graph is obtained
by appropriately modifying the current one via the application of swapping among
containers stored on different stacks of the same bay.

In a seminal work, Kim and Bae (1998) deal with the problem of how to
efficiently move a set of containers from source bays to target bays. Containers
in the target bays should be accommodated according to a pre-specified layout,
called target layout. The intra-block re-marshalling problem is decomposed into
two subproblems: (1) the bay matching and move planning problem, in which
each source bay within the block is matched with the target bay in the target
layout. Decisions with respect to how many containers should be moved between
any two bays are made in this stage. This part of the problem is solved using
dynamic programming (to define the bay matching needs) and the transportation
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algorithm (to plan the movement of containers among bays and assignment to
cranes). Whenever crane interference arises due to container movements, the bay
matching is called again under additional constraints that prohibit the conflicting bay
matching; (2) the movement sequencing problem, in which the actual movements
required to reach the target layout are scheduled. The authors adopt a “macroscopic”
perspective of the problem, i.e., only the number of containers per group type and
bay are considered, whereas the actual positions and rehandling within a bay are
neglected.

16.4 Relocation and Retrieval

In this section, we provide an overview on publications related to relocation and
retrieval at container ports. Such kind of problems, such as the BRP, are closely
related to the previously discussed pre- and re-marshalling problems. However, a
major difference arises: Pre- and re-marshalling problems only consider rehandling
operations, but no retrieval activities. That is, moving a container from a bay to a
destination vessel is not feasible. On the other hand, in the BRP, retrieval operations
are included. That is, retrieving and rehandling operations are carried out in parallel.
Consequently, the number of containers in the bay decreases for the BRP, whereas
the number of containers in the bay (block) remains constant for pre-marshalling
(re-marshalling) problems. The term CRP is an alternative name for the class of
BRP. In the literature, it is an often used convention to apply the term BRP for
two-dimensional scenarios, i.e., if a single bay is considered. The CRP, however, is
introduced as a more general concept, for the treatment of two- or three-dimensional
instances, i.e., described by bays or blocks. As the majority of papers is still
addressing the two-dimensional case, in the remainder of this paper, we use mainly
the term BRP, implicitly addressing also the CRP.

In recent years, the research activity in the area of the BRP has increased a
lot. A total of 46 publications since 2006 can be identified.4 In the sequel, after
discussing the problem properties in Sect. 16.4.1, we focus on solution approaches
in Sect. 16.4.2 and on problem extensions in Sect. 16.4.3.

16.4.1 Properties

Since the introduction of the BRP, several variations and extension of the BRP have
emerged in the literature. However, there is a set of basic properties that hold for all
BRP variants, which are presented next.

4See Table 16.1 from which 17 references address extensions of the BRP.
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• Containers are piled up vertically in stacks, i.e., only the uppermost container of
each stack is accessible for rehandling or retrieving; in addition, each container
is either placed on the ground or on top of another container.

• The number of stacks describes the width of the bay.
• The height of stacks is bounded by the number of tiers.
• The number of bays defines the depth of the block (3D-case, only).
• The total initial number of containers in the bay is denoted by N .
• The initial configuration of the bay/block is given in advance.
• Each container in the bay is associated with a priority number, where more than

one container can belong to the same priority group (indicated by the priority
number).

• Containers have to be retrieved from the bay according to their priority number,
i.e., a container with a certain priority can only be retrieved if all containers with
higher priorities have already been removed.

• Containers to be removed next are called target containers. Rehandling opera-
tions become necessary, if no target container is accessible.

• A majority of models given in the literature add the following condition: (A1)
Only containers located in the same stack as and above the current target
container are allowed to be rehandled (see, e.g., Kim and Hong 2006). This stack
is called target stack. Following the notation provided in the literature, see, e.g.,
Zhu et al. (2012), we call a BRP under A1 as restricted and a BRP neglecting A1
as unrestricted.

Moreover, there is a set of properties that are valid for the BRP. However, when some
of these properties are relaxed or modified, extensions of the BRP are obtained. See
Sect. 16.4.3 for an introduction to extended versions of the BRP.

• The objective of the BRP is to retrieve all the containers from the bay in the
prescribed order while minimizing the number of rehandling operations.

• The retrieval sequence, indicated by the priority numbers of the containers, is
given in advance.

• There are no containers entering the bay/block.

16.4.2 Solution Methods

In this section, we provide an overview on available solution approaches in the field
of the BRP. As already detailed in Sect. 16.3 in relation to the container marshalling
problems, solution methods for the BRP stem from the fields of exact approaches,
metaheuristics, and greedy, target-guided heuristics. Tables 16.5 and 16.6 provide
an overview on available references in this area sorted by the year of publication.
For each publication, the chosen method and benchmark set as well as the BRP
version are reported. An overview on benchmark instances for the BRP is given
in Table 16.7. To survey the available literature in more detail, we first provide in
this section an overview on exact methods and distinguish within this context work
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regarding the restricted and the unrestricted BRP. Later, we investigate heuristic
methods and separate this area accordingly into material on the restricted and on the
unrestricted BRP. Afterwards, in Sect. 16.4.3, extensions of the BRP are discussed
together with a description of the corresponding solution approaches.

Several exact methods for the BRP are available in the areas of mathematical
modeling: Branch-and-bound, tree search, A*-algorithms, and dynamic program-
ming. A subset of articles focus only on exact methods, whereas other references
introduce exact methods but add heuristics for addressing medium and larger
instance sizes, see column “Approach” in Tables 16.5 and 16.6. In the sequel, the
respective work is clustered and discussed according to the chosen approaches and
BRP version. First, exact approaches are given for the restricted and afterward for
the unrestricted BRP.

For the unrestricted BRP (without assumption A1), Caserta et al. (2012) provide
a first mathematical formulation (BRP-I). Later, Petering and Hussein (2013)
introduce BRP-III, an alternative mathematical model for the unrestricted BRP that
requires a reduced number of decision variables. The improvement of running times
when using the BRP-III is illustrated in experiments. Moreover, Expósito-Izquierdo
et al. (2014) provide an A* algorithm that can be adapted to both, the restricted
as well as the unrestricted BRP. Similarly, the Iterative Deepening A* algorithm
presented by Zhu et al. (2012) can be applied to both versions of the BRP. Moreover,
Tricoire et al. (2016) introduce a branch-and-bound approach and compare it against
the A* algorithm of Expósito-Izquierdo et al. (2014). Their results indicate that their
branch-and-bound approach with depth-first policy outperforms the A* algorithm
concerning the number of solved instances in a given time frame. Finally, Tanaka
and Mizuno (2015) develop dominance criteria for excluding a subset of feasible
solutions from the search space. They apply this approach within a branch-and-
bound method.

A first mathematical model for the restricted BRP is proposed by Wan et al.
(2009) and used in the extended context of locating ingoing containers, see
Sect. 16.4.3. Furthermore, the mathematical model BRP-I serves as basis for the
BRP-II, a mixed-integer linear program modeling the restricted BRP (Caserta et al.
2012). A corrected and improved version of the BRP-II is provided by Zehendner
et al. (2015) together with a pre-processing procedure and a new upper bound that is
implemented as cut in the model. An alternative correction of the BRP-II is proposed
by Eskandari and Azari (2015). Experiments illustrate that the improved BRP-II-
A performs better than the corrected BRP formulation regarding computational
time and number of solved instances. Moreover, branch-and-bound approaches
are suggested by Kim and Hong (2006), Ünlüyurt and Aydin (2012), Expósito-
Izquierdo et al. (2015b), and Tanaka and Takii (2016) (see Tanaka and Takii 2014 for
an earlier version of this article). As stated above, Expósito-Izquierdo et al. (2014)
and Zhu et al. (2012) provide A* and Iterative Deepening A* algorithms for the
restricted BRP. Finally, a dynamic programming method is introduced by Caserta
et al. (2011b) and a branch-and-price method is presented by Zehendner and Feillet
(2014). Recently, Ku and Arthanari (2016b) proposed an abstraction method for the
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restricted BRP which allows to reduce the search space and that is applied within a
tree search.

The N P-hardness of the (restricted and unrestricted) BRP justifies the usage
of heuristic approaches that in particular become relevant when addressing realistic
problem instances of larger sizes. For the unrestricted case, Petering and Hussein
(2013) present a look-ahead algorithm which extends a similar approach given
by Caserta et al. (2009) for the restricted case. In this approach, Petering and
Hussein (2013) include voluntary moves into the set of activities. That is, the
rearrangement of a block that is not located in the target stack is feasible. Tricoire
et al. (2016) joins voluntary as well as forced relocation options under a modified
approach, introducing a set of policies for choosing moves. These policies are
embedded within rake search, a metaheuristic framework based on tree search.
Furthermore, Expósito-Izquierdo et al. (2014) present a domain-specific knowledge-
based heuristic which consists of a set of basic rules and a heuristic evaluation for
guiding the search strategy.

For the restricted BRP, Kim and Hong (2006) propose a first heuristic method that
chooses the next move based on the Expected Number of Additional Relocations
(ENAR) in the resulting bay layout. The heuristic is experimentally compared with
the exact branch-and-bound approach proposed in the same paper, indicating an
average increase of moves by up to 7.3%. Furthermore, a simple heuristic priority
rule is proposed by Caserta et al. (2012) and measured against the exact solution and
the heuristic solution of Kim and Hong (2006). Olsen and Gross (2014) investigate
a priority heuristic similar to that one provided by Caserta et al. (2012) and add
a discussion of its performance. More detailed, an average case analysis based on
assumptions on initial stack height and stack capacity is given. Along the same
line, Galle et al. (2016) study the performance of the heuristic given by Caserta
et al. (2012) for the case of asymptotically growing number of stacks. For this
case the convergence of the expected number of relocations to a lower bound is
proved. Moreover, Borjian et al. (2015) carry out similar considerations for the A*
algorithm. A metaheuristic approach for the restricted BRP is presented by Caserta
and Voß (2009b). In this work, the corridor method is adapted to the BRP, where the
corridor limits the number of potential stacks for relocation. The presented approach
embeds a dynamic programming scheme and applies it by iteratively solving to
optimality “constrained” versions of the original BRP. Metaheuristic approaches
adapted and applied to the restricted BRP are presented by Caserta and Voß (2009c)
and Caserta and Voß (2009a). In these approaches, parameterization and tuning
methods for the corridor method are proposed, where the corridor limits the number
of potential stacks for relocation.

Caserta et al. (2009) describe an alternative encoding of the bay using a binary
matrix, which enables fast access to layout information and fast bay transformation.
This encoding is applied for the implementation of a random-guided look-ahead
procedure that explores the quality of potential moves by evaluating their potential
future performance. Look-ahead policies are later also considered by Jin et al.
(2011) and Jin et al. (2015). In these approaches, a tree search is performed
including inspection by look-ahead procedures combined with a locally applied
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probing heuristic. A particular version of look-ahead is performed within the chain
heuristic, proposed by Jovanovic and Voß (2014), where information about the
container to be moved next is included in a current decision. The evaluation of
simple move strategies within a tree search based evaluation is found in further
approaches. For instance, Wu and Ting (2010) design a beam search algorithm that
inspects only a subset of the search tree. Moreover, Forster and Bortfeldt (2012b)
develop a tree search approach including lower bounds on the number of relocations.
Related to tree search approaches is the class of A* approaches which can be
performed as heuristics by reducing the search space. Zhang et al. (2010) and Zhu
et al. (2012) propose an Iterative Deepening A* (IDA*) algorithm that includes
lower bounds and a heuristic probing approach to evaluate and prune nodes during
the search. Finally, a tabu search approach is implemented by Wu et al. (2010) and
compared based on a simple branch-and-bound presented in the same paper.

16.4.3 Problem Extensions

Since the introduction of the BRP, several extensions have emerged in the literature.
By relaxing particular properties of the original BRP, e.g., the property that no
ingoing containers are allowed, or, by adding additional parameters, like the weight
of containers, new versions of the BRP arise. In the sequel, we present an overview
on recent models and solution approaches.

Already mentioned above is the extension from a two-dimensional to a three-
dimensional stacking area. This extension in dimension directly elevates the rel-
evance of crane activities for modeling approaches as the time consumption for
a crane movement across a bay is usually different from the time required for
crane movements within a bay such that a more detailed consideration of crane
working times might be of interest for a realistic model. The consideration of crane
working times naturally leads to the definition of alternative objective functions. The
standard objective function for the BRP, as introduced by Kim and Hong (2006)
is to minimize the number of relocations. As an alternative approach, objectives
can be designed based on the crane working time including time consumption
for picking-up/placing-down containers, for moving trolleys across the stacks and
for moving gantries across bays. A basic model for the crane time supposes that
the time for picking-up/placing-down is constant, i.e., independent of the number
of tiers that are crossed. A more detailed approach includes tier-dependent pick-
up/place-down effort in an extended crane time model. Lee and Lee (2010) develop
a three-phase heuristic to minimize the sum of relocations and basic crane time
in a three-dimensional setting. Also with respect to a three-dimensional yard,
Forster and Bortfeldt (2012a) introduce a tree search heuristic to minimize the
basic crane time. For a two-dimensional bay, i.e., neglecting gantry operations,
Ünlüyurt and Aydin (2012) propose a branch-and-bound approach as well as a
heuristic. Finally, Zhu et al. (2010) include a consideration of spreader and trolley
movements and thus address extended crane times. A filtered-beam search approach
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is suggested. Moreover, Lin et al. (2015) considers extended crane times including
a tier-dependent effort for picking-up/placing-down and includes those measures
into a heuristic that is, however, focusing on minimization of the number of
relocations. Finally, Schwarze and Voß (2015) investigates the relation between
different objectives by analyzing to which extent optimal solutions are changed
when the objective function is replaced.

The consideration of fuel consumption is included into the BRP with Weights
(BRP-W), see, Hussein and Petering (2012). In that setting, the weight of each
container is known and impacts the energy consumption for container movement.
Consequently, the BRP-W aims at minimizing the total energy required for remov-
ing all containers from the stacking area. Hussein and Petering (2012) propose
a Global Retrieval Heuristic (GRH) that relies on a set of parameters describing
preferences for container movement. Using these parameters, a penalty score is
computed for each stack. The GRH is embedded in a genetic algorithm that searches
for a good configuration of the parameters. The results are extended by Hussein and
Petering (2013) by modifying the penalty function.

One assumption of the BRP is that there are only retrieval or relocation
activities; however, storing new items into the bay is not feasible. Nevertheless,
such operations are often required in practice, such that it is a natural extension
to allow incoming items. The DCRP is a dynamical variant of the BRP that
joins relocation, retrieving and stacking of incoming items. For this problem class,
Wan et al. (2009) propose heuristic approaches including basic priority rules for
choosing stacks as new location for incoming or relocated containers. In a second
approach the expected number of additional relocations is considered, inspired by
the heuristic of Kim and Hong (2006). Moreover, a further heuristic is proposed
that includes the solution of a series of CRP formulations. Later, Tang et al.
(2015) propose rule-based heuristics for the DCRP and evaluates them through
a simulation approach. Furthermore, Borjian et al. (2013) add uncertainty to the
DCRP by assuming incomplete information and solving the resulting problem using
a two-stage stochastic optimization model. A mathematical formulation for the
(deterministic) DCRP is provided by Akyüz and Lee (2014). Furthermore, in this
work, three heuristics are developed for the DCRP. First, index-based heuristics add
weights to the columns in order to position incoming and relocated containers. A
second heuristic applies the mathematical model for the DCRP on small portions of
the planning horizon. Finally, a beam search heuristic is proposed including upper
and lower bound approaches allowing to reduce the size of the search tree. Similar
to the DCRP is the Stacking Problem (SP), which was formulated for an application
in the steel industry by Rei and Pedroso (2012b) and Rei and Pedroso (2012a).
A simulation approach is proposed that combines simulation with a construction
heuristic. Furthermore, a probabilistic tree search method is developed. A two-phase
heuristic for the SP is proposed by Expósito-Izquierdo et al. (2015a). Their approach
joins two basic steps, namely the selection of target stacks for relocated or ingoing
containers and, second, the exploitation of idle crane time to resolve conflicts and
improve the crane productivity.
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A further extension of the BRP that includes time windows is described by Ku and
Arthanari (2016a). In their approach, the case of import containers is considered.
Import containers are stored at the yard until their pick-up for the hinterland
transport. In such scenarios, Truck Appointment Systems (TAS) handle the visit
of trucks from the hinterland and monitor announced time slots of arrival. Within
this pre-defined time slot, the actual arrival time of the truck is unknown. The CRP
with Time Windows (CRPTW) includes this uncertainty by allowing stochastic
retrieval sequences within time windows under the objective of finding a minimum
expected number of rehandles. To that end, a stochastic dynamic programming
model is developed and an exact tree search method with depth-first search is
proposed together with an abstraction heuristic that allows to reduce the search
space. Furthermore, an index-based heuristic is proposed that evaluates the expected
number of containers in a column that depart earlier than a container that is
potentially relocated to this column.

An alternative approach that considers incomplete information regarding the
retrieval sequence is proposed by Zehendner et al. (2017). In line with the above
described CRPTW, the Online CRP (OCRP) relaxes the assumption of known pri-
ority numbers. However, while the CRPTW includes stochastic retrieval sequences
for time windows, the OCRP assumes the retrieval sequence to be revealed in an
online fashion over time. Consequently, online optimization techniques are applied
to evaluate the success of the proposed target-guided leveling heuristic. More
specifically, the competitiveness ratio of the leveling heuristic is determined and
average and worst-case analysis are carried out. Finally, a recent extension of the
BRP addresses new crane technology that enables lifting of more than one item and
that could become an option, e.g., in steel plants. The BRP with Batch Moves (BRP-
BM) is introduced by Zhang et al. (2016). This problem formulation addresses
new features of crane technology that allow to lift more than one item at the same
time. Such moves are called batch moves. Zhang et al. (2016) propose a greedy
heuristic for the BRP-BM. Furthermore, lower bounds on the number of relocations
are proposed and applied within tree search methods.

16.5 Related Research Fields

In this section, we give a brief outlook on work in related research fields and the
relationship to the above discussed post-stacking problems in order to refer the
interested reader to related notions and concepts. However, we do not aim at giving
a comprehensive overview over work in those fields beyond maritime shipping.

In the previous sections, we have studied pre-, re-marshalling, and retrieval in
container yards. As pointed out by Steenken et al. (2004), the selection of storage
locations for incoming containers is an additional main task in container reshuffling
and thus related to the aforementioned problems. This relation is already addressed
in the DCRP, see Sect. 16.4.3, by proposing a joint handling of incoming items
and reshuffling operations. Moreover, see Bruns et al. (2016) for a recent study



376 M. Caserta et al.

on complexity issues for storage loading problems. In a broader context, the task of
locating incoming containers includes moreover the assignment of storage space to
containers or container groups, see, e.g., Chen and Lu (2012); Woo and Kim (2011)
as well as the selection of storage allocations, i.e., the question of how containers
should be piled up in the stacking area, see, e.g., Borgman et al. (2010); Dekker
et al. (2006); Jang et al. (2013). Moreover, see Carlo et al. (2014) for more detailed
classification and literature on storage space assignment.

In the event of available crane time, pre- and re-marshalling, see Sect. 16.3, can
be carried out to resolve conflicts within a bay or block before the retrieval process
starts and in order to speed up the subsequent stowing operations. This idea of
saving berthing time by carrying out operations in advance, before the arrival of the
vessel, is transferred to the complete yard area through the approach of transporting
containers to positions closer to the scheduled berth. This process is known as
housekeeping, see, e.g., Legato et al. (2013), Ehleiter and Jaehn (2016), and Cordeau
et al. (2015) for more details in this field.

Moreover, stacking, sorting, and rehandling problems are discussed not only in
the context of containers and ports, but also in different areas like warehousing,
production planning, and artificial intelligence. Some warehouses are organized
following the stacking principle, by storing uniform items piled up on top of each
other, where access is only granted for the uppermost item. Stacking operations
in those warehouses follow similar rules as in container yards. However, a major
difference between container yards and warehouses is given by the item flow, as
warehouses have to offer retrieving and receiving operations in parallel (see, e.g.,
Nishi and Konishi (2010)), whereas in container yards, the receiving operations are
usually completed before the retrieval operations take place. Moreover, in general,
warehouses handle a much larger number of items than container yards. In addition,
the physical properties of the items in a warehouse might differ from that of a box-
shaped container. For instance, in the steel industry, coils are stored by stacking
them on top of each other. The resulting storage setting is not forming “stand-alone”
stacks, as each coil is placed on top of two consecutive coils from the row below
(see, e.g., Zäpfel and Wasner 2006). See Tang and Ren (2010) and Tang et al. (2012)
for approaches that include crane times into problems from stacking in the steel
industry.

Also the handling of trains involves stacking operations; see, e.g., Felsner and
Pergel (2008). A train can be seen as a sequence of wagons. It might happen that
the wagon sequence of a single train needs to be changed or that the wagons of
several trains have to be reshuffled to new collections of trains. These operations
are physically carried out on dead end sidings, where trains or parts of trains can be
stored intermediately and taken away later on. Thus, on dead end sidings, trains can
be “stacked” together and moreover, rehandling of wagons is possible. Each of those
dead end sidings relates to a stack in the container yard, where only the uppermost
container/wagon is accessible.

A well-known concept in artificial intelligence is that of blocks-world. (See, e.g.,
Romero and Alquézar 2004, Gupta and Nau 1992.) The blocks-world is carried out
on a “table” where blocks are stacked on top of each other. A typical blocks-world
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instance consists of a given initial table state and a desired goal state. The task
is to transform the initial state to the goal state with a minimum number of moves.
Variants of blocks-world incorporate limitations on the table size and different levels
of given conditions for the goal state. Gupta and Nau (1992) prove the N P-
hardness of blocks-world and Caserta et al. (2012) show that the BRP is a particular
case of blocks-world.

16.6 Conclusion and Future Challenges

Ever since the first containers were introduced in the early 1960s, container handling
techniques and strategies have always been key factors in measuring the efficiency
of major ports. However, due to the growth of container vessels in recent years,
whenever one of such ships berths at a port, a number of containers that would
have been unthinkable some time ago must be handled in just a few hours. This
poses a serious challenge for container terminal operators, since the volume of traffic
has grown substantially while the available surface for managing such traffic has
remained virtually unchanged. Therefore, optimization techniques for handling and
rehandling containers acquire a prominent role in fostering efficiency of container
terminal operations.

Moreover, in the stages of design, construction, and operation of a container
terminal, simulation tools have turned out to play a crucial role, examples are given
in, e.g., Gambardella et al. (1998) and Yun and Choi (1999). Questions of interest
are, among others, the layout of the terminal itself, including location and size of
facilities (container yards, mooring, maintenance areas, etc.), design and operation
of transport systems (AGVs, cranes, etc.), and modeling of container flows. Opti-
mization methods, like those addressing rehandling and stacking operations at ports,
are suited to extend and enhance classical simulation approaches. For instance,
integrated simulation-optimization establishes a simulation tool on a superior level
which has the permission to call optimization methods on a sublevel. In such a
setting, the optimization algorithm can, e.g., take over a tactical position and be
used to define and control general system parameters on an aggregate level (Saccone
and Siri (2009)). In an alternative setting, optimization tools could be used to take
decisions on a detailed, operational level. For instance, while analyzing transport
systems at a container terminal using simulation, it is helpful to call optimization
tools that solve particular rehandling and stacking problems to obtain information
on capacity utilization of cranes and vehicles. Along the same line, while designing
a terminal layout through simulation, analysis of detailed stacking operations at
container yards is relevant to determine required storage and handling capacities.
The availability of fast optimization techniques is a crucial issue of integrated
simulation-optimization tools as typically, optimization methods will be called quite
often. Thus, the development of efficient optimization techniques is an important
matter of terminal planning.
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In this chapter, we have presented an updated survey on techniques for post-stacking
situations, based on an earlier version (Caserta et al. 2011a). We have focused
on three classes of post-stacking problems, namely the re-marshalling, the pre-
marshalling, and the relocation problem and provided a comprehensive overview
on exact and (meta-)heuristic methods in this areas. This includes a summary of
available benchmark instances and a description of problem extensions. Moreover,
work in related fields has been discussed.

In Caserta et al. (2011a), we mentioned the design of efficient algorithms for
online optimization, the use of recent findings in the metaheuristic field, and the
development of broader, integrated approaches for container terminal logistics as
open challenges for the aforementioned problems. It can be observed that since
then, a number of publications have addressed problems from the mentioned areas.
Examples of this research stream can be found, e.g., in the field of BRP extensions.
Integrated approaches for related operational tasks, like handling of incoming
items and the subsequent restacking, are proposed and combinations with online
optimization policies are suggested there. Moreover, Tables 16.5 and 16.6 illustrate
that the variety of existing metaheuristic approaches for post-stacking problems is
rich. Although this activity illustrates that the interest in this area is high and that
quite a bit of work has been done to answer research questions, still the mentioned
challenges remain as open working areas and offer opportunities for new research.
For instance, in the broader context of housekeeping in container yards, it will be
worthwhile to transfer available methods and knowledge from the field of post-
stacking to related problem areas and focus on integrated solution approaches.

A further avenue for advancing the work in this field is identified in Caserta et al.
(2011a) as the exploitation of recent methods in computer technology, like parallel
computing and grid computing. The increase in computational power obtained by
using such techniques will not only allow to address larger problem sizes but could
also enable to handle problem types of a higher integration level, that are harder
tractable from a computational perspective.

References

Akyüz M, Lee CY (2014) A mathematical formulation and efficient heuristics for the dynamic
container relocation problem. Nav Res Logist 61(2):101–118

Ayachi I, Kammarti R, Ksouri M, Borne P (2013) A heuristic for re-marshalling unbound and
outbound containers. In: 2013 2nd International Conference on Systems and Computer Science
(ICSCS), pp 291–296

Borgman B, van Asperen E, Dekker R (2010) Online rules for container stacking. OR Spectrum
32:687–716

Borjian S, Manshadi V, Barnhart C, Jaillet P (2013) Dynamic stochastic optimization of relocations
in container terminals. Technical report, MIT working paper

Borjian S, Galle V, Manshadi VH, Barnhart C, Jaillet P (2015) Container relocation problem:
approximation, asymptotic, and incomplete information. arXiv:1505.04229. https://arxiv.org/
abs/1505.04229

https://arxiv.org/abs/1505.04229
https://arxiv.org/abs/1505.04229


16 Container Rehandling at Maritime Container Terminals: A Literature Update 379

Bortfeldt A, Forster F (2012) A tree search procedure for the container pre-marshalling problem.
Eur J Oper Res 217(3):531–540

Bruns F, Knust S, Shakhlevich NV (2016) Complexity results for storage loading problems with
stacking constraints. Eur J Oper Res 249:1074–1081

Carlo H, Vis I, Roodbergen K (2014) Storage yard operations in container terminals: literature
overview, trends, and research directions. Eur J Oper Res 235(2):412–430

Caserta M, Voß S (2009a) A cooperative strategy for guiding the corridor method. In: Nature
inspired cooperative strategies for optimization (NICSO 2008). Springer, Berlin, pp 273–286

Caserta M, Voß S (2009b) A corridor method-based algorithm for the pre-marshalling problem.
Lect Notes Comput Sci 5484:788–797

Caserta M, Voß S (2009c) Corridor selection and fine tuning for the corridor method. Lect Notes
Comput Sci 5851:163–175

Caserta M, Schwarze S, Voß S (2009) A new binary description of the blocks relocation problem
and benefits in a look ahead heuristic. Lect Notes Comput Sci 5482:37–48

Caserta M, Schwarze S, Voß S (2011a) Container rehandling at maritime container terminals. In:
Böse JW (ed) Handbook of terminal planning. OR/CS interfaces series, vol 49. Springer, New
York, pp 247–269

Caserta M, Voß S, Sniedovich M (2011b) Applying the corridor method to a blocks relocation
problem. OR Spectrum 33:915–929

Caserta M, Schwarze S, Voß S (2012) A mathematical formulation and complexity considerations
for the blocks relocation problem. Eur J Operat Res 219(1):96–104

Chen L, Lu Z (2012) The storage location assignment problem for outbound containers in a
maritime terminal. Int J Prod Econ 135:73–80

Choe R, Park T, Oh M, Kang J, Ryu K (2011) Generating a rehandling-free intra-block
remarshaling plan for an automated container yard. J Intel Manuf 22(2):201–217

Choe R, Kim T, Kim T, Ryu K (2015) Crane scheduling for opportunistic remarshaling of
containers in an automated stacking yard. Flex Serv Manuf J 27(2):331–349

Cordeau JF, Legato P, Mazza RM, Trunfio R (2015) Simulation-based optimization for housekeep-
ing in a container transshipment terminal. Comput Oper Res 53:81–95

Dayama N, Ernst A, Krishnamoorthy M, Narayanan V, Rangaraj N (2016) New models and
algorithms for the container stack rearrangement problem by yard cranes in maritime ports.
Euro J Trans Log 6:1–42

Dekker R, Voogd P, van Asperen E (2006) Advanced methods for container stacking. OR Spectrum
28(4):563–586

Ehleiter A, Jaehn F (2016) Housekeeping: foresightful container repositioning. Int J Prod Econ
179:203–211

Eskandari H, Azari E (2015) Notes on mathematical formulation and complexity considerations
for blocks relocation problem. Sci Iran Trans E Indu Eng 22(6):2722–2728

Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega M (2012) Pre-marshalling problem: heuris-
tic solution method and instances generator. Expert Syst Appl 39(9):8337–8349

Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega JM (2014) A domain-specific knowledge-
based heuristic for the blocks relocation problem. Adv Eng Inform 28(4):327–343

Expósito-Izquierdo C, Lalla-Ruiz E, de Armas J, Melián-Batista B, Moreno-Vega JM (2015a)
A heuristic algorithm based on an improvement strategy to exploit idle time periods for the
stacking problem. Comput Ind Eng 87:410–424

Expósito-Izquierdo C, Melián-Batista B, Moreno-Vega JM (2015b) An exact approach for the
blocks relocation problem. Expert Syst Appl 42:6408–6422

Felsner S, Pergel M (2008) The complexity of sorting with networks of stacks and queues. Lect
Notes Comput Sci 5193:417–429

Forster F, Bortfeldt A (2012a) A tree search heuristic for the container retrieval problem. In:
Operations research proceedings 2011, pp 257–262

Forster F, Bortfeldt A (2012b) A tree search procedure for the container relocation problem.
Comput Oper Res 39:299–309



380 M. Caserta et al.

Galle V, Borjian Boroujeni S, Manshadi VH, Barnhart C, Jaillet P (2016) An average-case
asymptotic analysis of container relocation problem. Oper Res Lett 44:723–728

Gambardella L, Rizzoli A, Zaffalon M (1998) Simulation and planning of an intermodal container
terminal. Simulation 71(2):107–116

Gheith M, Eltawil A, Harraz N (2014) A rule-based heuristic procedure for the container pre-
marshalling problem. In: 2014 IEEE International Conference on Industrial Engineering and
Engineering Management, pp 662–666

Gheith M, Eltawil A, Harraz N (2016) Solving the container pre-marshalling problem using
variable length genetic algorithms. Eng Optim 48(4):687–705

Gupta N, Nau D (1992) On the complexity of blocks-world planning. Artif Int 56(2–3):223–254
Hottung A, Tierney K (2016) A biased random-key genetic algorithm for the container pre-

marshalling problem. Comput Oper Res 75:83–102
Huang S, Lin T (2012) Heuristic algorithms for container pre-marshalling problems. Comput Ind

Eng 62(1):13–20
Hussein MI, Petering MEH (2012) Global retrieval heuristic and genetic algorithm in block

relocation problem. In: Lim G, Herrmann JW (eds) Proceedings of the 2012 industrial and
systems engineering research conference

Hussein MI, Petering MEH (2013) Linear penalty relation in genetic based algorithms in block
relocation problem weights. In: Krishnamurthy A, Chan WKV (eds) Proceedings of the 2013
industrial and systems engineering research conference, pp 1245–1254

Jang DW, Kim SW, Kim KH (2013) The optimization of mixed block stacking requiring
relocations. Int J Prod Econom 143:256–262

Jansen K (2003) The mutual exclusion scheduling problem for permutation and comparability
graphs. Inform Comput 180(2):71–81

Ji M, Guo W, Zhu H, Yang Y (2015) Optimization of loading sequence and rehandling strategy
for multi-quay crane operations in container terminals. Transp Res Part E Logist Trans Rev
80:1–19

Jin B, Lim A, Zhu W (2011) A greedy look-ahead heuristic for the container relocation problem.
Lect Notes Comput Sci 7906:181–190

Jin B, Zhu W, Lim A (2015) Solving the container relocation problem by an improved greedy
look-ahead heuristic. Eur J Oper Res 240:837–847

Jovanovic R, Voß S (2014) A chain heuristic for the blocks relocation problem. Comput Ind Eng
75:79–86

Jovanovic R, Tuba M, Voß S (2017) A multi-heuristic approach for solving the pre-marshalling
problem. Cent Eur J Oper Res 25(1):1–28

Kang J, Oh M, Ahn E, Ryu K, Kim K (2006) Planning for intra-block remarshalling in a container
terminal. In: International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems, pp 1211–1220

Kim K, Bae J (1998) Re-marshaling export containers in port container terminals. Comput Ind Eng
35(3):655–658

Kim KH, Hong GP (2006) A heuristic rule for relocating blocks. Comput Oper Res 33(4):940–954
Ku D, Arthanari TS (2016a) Container relocation problem with time windows for container

departure. Eur J Oper Res 252(3):1031–1039
Ku D, Arthanari TS (2016b) On the abstraction method for the container relocation problem.

Comput Oper Res 68:110–122
Lee Y, Chao SL (2009) A neighborhood search heuristic for pre-marshalling export containers. Eur

J Oper Res 196(2):468–475
Lee Y, Hsu N (2007) An optimization model for the container pre-marshalling problem. Comput

Oper Res 34(11):3295–3313
Lee Y, Lee YJ (2010) A heuristic for retrieving containers from a yard. Comput Oper Res 37:1139–

1147
Legato P, Mazza RM, Trunfio R (2013) Medcenter container terminal SpA uses simulation in

housekeeping operations. Interfaces 43(4):313–324



16 Container Rehandling at Maritime Container Terminals: A Literature Update 381

Lehnfeld J, Knust S (2014) Loading, unloading and premarshalling of stacks in storage areas:
survey and classification. Eur J Oper Res 239(2):297–312

Lin DY, Lee YJ, Lee Y (2015) The container retrieval problem with respect to relocation. Trans
Res Part C 52:132–143

Nishi T, Konishi M (2010) An optimisation model and its effective beam search heuristics for
floor-storage warehousing systems. Int J Produc Res 48(7):1947–1966

Olsen M, Gross A (2014) Average case analysis of blocks relocation heuristics. Lect Notes Comput
Sci 8760:81–92

Park K, Park T, Ryu K (2009) Planning for remarshaling in an automated container terminal using
cooperative coevolutionary algorithms. In: SAC 2009 – Honolulu, Hawai, pp 1098–1105

Park T, Kim J, Ryu K (2010) Iterative replanning using genetic algorithms for remarshaling in a
container terminal. In: Hamza H (ed) Proceedings of the IASTED International Conference on
Artificial Intelligence and Applications, pp 22–28

Park K, Park T, Ryu K (2013) Planning for selective remarshaling in an automated container
terminal using coevolutionary algorithms. Int J Ind Eng 20:176–187

Petering MEH, Hussein MI (2013) A new mixed integer program and extended look-ahead
heuristic algorithm for the block relocation problem. Eur J Oper Res 231:120–130

Prandtstetter M (2013) A dynamic programming based branch-and-bound algorithm for the
container pre-marshalling problem. Technical repot, IT Austrian institute of technology

Rei R, Pedroso JP (2012a) Heuristic search for the stacking problem. Int Trans Oper Res
19(3):379–395

Rei R, Pedroso JP (2012b) Tree search for the stacking problem. Ann Oper Res 203:371–388
Ren Z, Zhang C (2015) An iterative three-stage algorithm for the pre-marshalling problem in

container terminals. In: 2015 IEEE International Conference on Industrial Engineering and
Engineering Management (IEEM), pp 1232–1236

Rendl A, Prandtstetter M (2013) Constraint models for the container pre-marshaling problem.
In: Katsirelos G, Quimper C (eds) Modref 2013: 12th International Workshop on Constraint
Modelling and Reformulation, pp 44–56

Romero AG, Alquézar R (2004) To block or not to block? Lect Notes Comput Sci 3315:134–143
Saccone S, Siri S (2009) An integrated simulation-optimization framework for the operational

planning of seaport container terminals. Math Comput Model Dyn Syst 15(3):275–293
Schwarze S, Voß S (2015) A note on alternative objectives for the blocks relocation problem,

working paper. University of Hamburg
Shin E, Kim K (2015) Hierarchical remarshaling operations in block stacking storage systems

considering duration of stay. Comput Ind Eng 89:43–52
Stahlbock R, Voß S (2008) Operations research at container terminals: a literature update. OR

Spectrum 30(1):1–52
Steenken D, Voß S, Stahlbock R (2004) Container terminal operations and operations research – a

classification and literature review. OR Spectrum 26(1):3–49
Tanaka S, Mizuno F (2015) Dominance properties for the unrestricted block relocation problem

and their application to a branch-and-bound algorithm. In: 2015 IEEE International Conference
on Automation Science and Engineering (CASE), pp 509–514

Tanaka S, Takii K (2014) A faster branch-and-bound algorithm for the block relocation problem.
In: International Conference on Automation Science and Engineering (CASE). IEEE, Piscat-
away, pp 7–12

Tanaka S, Takii K (2016) A faster branch-and-bound algorithm for the block relocation problem.
IEEE Trans Automat Sci Eng 13(1):181–190

Tang L, Ren H (2010) Modelling and a segmented dynamic programming-based heuristic approach
for the slab stack shuffling problem. Comput Oper Res 37:368–375

Tang L, Zhao R, Liu J (2012) Models and algorithms for shuffling problems in steel plants. Naval
Res Logist 59(7):502–524

Tang L, Jiang W, Liu J, Dong Y (2015) Research into container reshuffling and stacking problems
in container terminal yards. IIE Trans 47(7):751–766



382 M. Caserta et al.

Tierney K, Malitsky Y (2015) An algorithm selection benchmark of the container pre-marshalling
problem. Lect Notes Comput Sci 8994:17–22

Tierney K, Voß S (2016) Solving the robust container pre-marshalling problem. Lect Notes Comput
Sci 9855:131–145

Tierney K, Pacino D, Voß S (2017) Solving the pre-marshalling problem to optimality with A* and
IDA*. Flex Serv Manuf J 29(2):223–259

Tricoire F, Fechter J, Beham A (2016) New solution methods for the blocks relocation problem.
Department of Business Administration, University of Vienna, Working Paper. http://www.
optimization-online.org/DB_FILE/2016/03/5365.pdf

Tus A, Rendl A, Raidl G (2015) Metaheuristics for the two-dimensional container pre-marshalling
problem. In: International Conference on Learning and Intelligent Optimization. Springer,
Berlin, pp 186–201

Ünlüyurt T, Aydin C (2012) Improved rehandling strategies for the container retrieval process. J
Adv Trans 46:378–393

van Brink M, van der Zwaan R (2014) A branch and price procedure for the container premar-
shalling problem. Lect Notes Comput Sci 8737:798–809

Voß S (2012) Extended mis-overlay calculation for pre-marshalling containers. Lect Notes Comput
Sci 7555:86–91

Wan YW, Liu J, Tsai PC (2009) The assignment of storage locations to containers for a container
stack. Naval Res Logist 56(8):699–713

Wang N, Jin B, Lim A (2015) Target-guided algorithms for the container pre-marshalling problem.
Omega 53:67–77

Wang N, Jin B, Zhang Z, Lim A (2017) A feasibility-based heuristic for the container pre-
marshalling problem. Eur J Oper Res 256:90–101

Woo JW, Kim KH (2011) Estimating the space requirement for outbound container inventories in
port container terminals. Int J Produ Econ 133:293–301

Wu KC, Ting CJ (2010) A beam search algorithm for minimizing reshuffle operations at container
yards. In: Proceedings of the International Conference on Logistics and Maritime Systems,
September 15–17, Busan, Korea, pp 703–710

Wu KC, Hernández R, Ting CJ (2010) Applying tabu search for minimizing reshuffle operations
at container yards. J Eastern Asia Soc Trans Stud 8:2379–2393

Yun W, Choi Y (1999) Simulation model for container-terminal operation analysis using an object-
oriented approach. Int J Prod Econ 59(1):221–230

Zäpfel G, Wasner M (2006) Warehouse sequencing in the steel supply chain as a generalized job
shop model. Int J Prod Econ 104(2):482–501

Zehendner E, Feillet D (2014) A branch and price approach for the container relocation problem.
Int J Prod Res 52(24):7159–7176

Zehendner E, Caserta M, Feillet D, Schwarze S, Voß S (2015) An improved mathematical
formulation for the blocks relocation problem. Eur J Oper Res 245(2):415–422

Zehendner E, Feillet D, Jaillet P (2017) An algorithm with performance guarantee for the online
container relocation problem. Eur J Oper Res 259:48–62

Zhang C, Liu J, Wan Y, Murty KG, Linn RJ (2003) Storage space allocation in container terminals.
Trans Res B 37(10):883–903

Zhang H, Guo S, Zhu W, Lim A, Cheang B (2010) An investigation of IDA* algorithms for the
container relocation problem. Lect Notes Comput Sci 6096:31–40

Zhang R, Jiang Z, Yun W (2015) Stack pre-marshalling problem: a heuristic-guided branch-and-
bound algorithm. Int J Ind Eng 22(5):509–523

Zhang R, Liu S, Kopfer H (2016) Tree search procedures for the blocks relocation problem with
batch moves. Flex Services Manuf J 28(3):397–424

Zhu M, Fan X, He Q (2010) A heuristic approach for transportation planning optimization in
container yard. In: Proceedings of industrial engineering and engineering management (IEEM).
IEEE, Piscataway, pp 1766–1770

Zhu W, Qin H, Lim A, Zhang H (2012) Iterative deepening A* algorithms for the container
relocation problem. IEEE Trans Autom Sci Eng 9:710–722

http://www.optimization-online.org/DB_FILE/2016/03/5365.pdf
http://www.optimization-online.org/DB_FILE/2016/03/5365.pdf

	16 Container Rehandling at Maritime Container Terminals: A Literature Update
	16.1 Introduction
	16.2 Complexity of Post-stacking Problems
	16.3 Container Marshalling Problems
	16.3.1 Container Pre-marshalling Problem
	16.3.2 Container Re-marshalling Problem

	16.4 Relocation and Retrieval
	16.4.1 Properties
	16.4.2 Solution Methods
	16.4.3 Problem Extensions

	16.5 Related Research Fields
	16.6 Conclusion and Future Challenges
	References


