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Abstract. The polylogarithmic time hierarchy structures sub-linear
time complexity. In recent work it was shown that all classes Σ̃plog

m

or Π̃plog
m (m ∈ N) in this hierarchy can be captured by semantically

restricted fragments of second-order logic. In this paper the descriptive
complexity theory of polylogarithmic time is taken further showing that
there are strict hierarchies inside each of the classes of the hierarchy. A
straightforward consequence of this result is that there are no complete
problems for these complexity classes, not even under polynomial time
reductions.
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1 Introduction

Computations with sub-linear time complexity have not been studied inten-
sively. However, such computations appear rather naturally, e.g. in the area of
circuits. Mix Barrington studied the complexity of circuits [9] characterizing a
class of families of constant-depth quasi-polynomial size AND/OR-circuits. In
particular, he proved that the class of Boolean queries computable by the class
of DTIME[(log n)O(1)] DCL-uniform families of Boolean circuits of unbounded
fan-in, size 2(log n)O(1)

and depth O(1) coincides with the class of Boolean queries
expressible in a fragment SOb of second-order logic. As used in his study, the
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complexity class DTIME[2(log n)O(1)
] is known as quasipolynomial time. Fur-

thermore, the fastest known algorithm for checking graph isomorphisms is in
quasipolynomial time [1].

In [3] we started a deeper investigation of sub-linear time computations
emphasising complexity classes DPolyLogTime and NPolyLogTime of decision
problems that can be solved deterministically or non-deterministically with a
time complexity in O(logk n) for some k, where n is as usual the size of the
input. We extended these complexity classes to a complete hierarchy, the poly-
logarithmic time hierarchy, analogous to the polynomial time hierarchy, and for
each class Σplog

m or Πplog
m (m ∈ N) in the hierarchy we defined a fragment of

semantically restricted second-order logic capturing it [5,6]. While the hierarchy
as a whole captures the same class of problems studied by Mix Barrington, the
various classes of the hierarchy provide fine-grained insights into the nature of
decision problems decidable in sub-linear time.

With these promising results the natural question occurs, whether there are
complete problems in the hierarchy, and what would be an appropriate notion
of reduction to define complete problems. Note that for the somehow related
complexity class PolyLogSpace it is known since long time that it does not have
complete problems.

In this paper we address this problem. We show that for none of the classes
Σ̃plog

m and Π̃plog
m (m ∈ N) in the polylogarithmic time hierarchy there exists a

complete problem. It turns out that this result is a rather simple consequence
of the existence of proper hierarchies inside each of the classes Σ̃plog

m and Π̃plog
m .

Note that a similar approach shows the non-existence of complete problems for
PolyLogSpace, but the corresponding proof exploits theorems by Hartmanis et
al. that cannot be applied to our case, as these theorems (which are well known
in complexity theory as the space and time hierarchy theorems) require at least
linear time.

The remainder of this paper is organized as follows. Section 2 summarizes the
necessary preliminaries for our investigation introducing the complexity classes of
the polylogarithmic time hierarchy. This is complemented in Sect. 3 by reviewing
SOplog, the polylogarithmically-restricted fragment of second-order logic that is
used to define subsets capturing the complexity classes Σ̃plog

m and Π̃plog
m . Section 4

introduces concrete decision problems that we use to show the existence of proper
hierarchies inside Σ̃plog

m and Π̃plog
m . We use the capturing logics to define these

problems that are parametrised by k ∈ N, and the various different values for k
give rise to the hierarchies. Theorems showing that we obtain proper hierarchies
inside Σ̃plog

m and Π̃plog
m are proven in Sect. 5. Then the non-existence of complete

problems arises as a rather straightforward consequence, as we will show in
Sect. 6. We conclude with a brief summary in Sect. 7.

2 Polylogarithmic Time Complexity Classes

The sequential access that Turing machines have to their tapes makes it impossi-
ble to compute anything in sub-linear time. Therefore, logarithmic time complex-
ity classes are usually studied using models of computation that have random
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access to their input. As this also applies to the poly-logarithmic complexity
classes studied in this paper, we adopt a Turing machine model that has a ran-
dom access read-only input, similar to the log-time Turing machine in [10].

In the following, log n always refers to the binary logarithm of n, i.e., log2 n.
With logk n we mean (log n)k.

A random-access Turing machine is a multi-tape Turing machine with (1) a
read-only (random access) input of length n+1, (2) a fixed number of read-write
working tapes, and (3) a read-write input address-tape of length �log n�.

Every cell of the input as well as every cell of the address-tape contains either
0 or 1 with the only exception of the (n+1)st cell of the input, which is assumed
to contain the endmark �. In each step the binary number in the address-tape
either defines the cell of the input that is read or if this number exceeds n, then
the (n + 1)st cell containing � is read.

Example 2.1. Let polylogCNFSAT be the class of satisfiable propositional for-
mulae in conjunctive normal form with c ≤ �log n�k clauses, where n is the
length of the formula. Note that the formulae in polylogCNFSAT tend to have
few clauses and many literals. We define a random-access Turing machine M
which decides polylogCNFSAT. The alphabet of M is {0, 1,#,+,−}. The input
formula is encoded in the input tape as a list of c ≤ �log n�k indices, each
index being a binary number of length �log n�, followed by c clauses. For every
1 ≤ i ≤ c, the i-th index points to the first position in the i-th clause. Clauses
start with # and are followed by a list of literals. Positive literals start with
a +, negative with a −. The + or − symbol of a literal is followed by the ID
of the variable in binary. M proceeds as follows: (1) Using binary search with
the aid of the “out of range” response �, compute n and �log n�. (2) Copy the
indices to a working tape, counting the number of indices (clauses) c. (3) Non-
deterministically guess c input addresses a1, . . . , ac, i.e., guess c binary numbers
of length �log n�. (4) Using c 1-bit flags, check that each a1, . . . , ac address falls
in the range of a different clause. (5) Check that each a1, . . . , ac address points to
an input symbol + or −. (6) Copy the literals pointed by a1, . . . , ac to a working
tape, checking that there are no complementary literals. (7) Accept if all checks
hold.

Let L be a language accepted by a random-access Turing machine M . Assume
that for some function f on the natural numbers, M makes at most O(f(n))
steps before accepting an input of length n. If M is deterministic, then we write
L ∈ DTIME(f(n)). If M is non-deterministic, then we write L ∈ NTIME(f(n)).
We define the classes of deterministic and non-deterministic poly-logarithmic
time computable problems as follows:

DPolyLogTime =
⋃

k,c∈N

DTIME((log n)k · c)

NPolylogTime =
⋃

k,c∈N

NTIME((log n)k · c)
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The non-deterministic random-access Turing machine in Example 2.1 clearly
works in polylog-time. Therefore, polylogCNFSAT ∈ NPolylogTime.

Recall that an alternating Turing machine comes with a set of states Q that
is partitioned into subset Q∃ and Q∀ of so-called existential and universal states.
Then a configuration c is accepting iff

– c is in a final accepting state,
– c is in an existential state and there exists a next accepting configuration, or
– c is in a universal state, there exists a next configuration and all next config-

urations are accepting.

In analogy to our definition above we can define a random-access alternating
Turing machine. The languages accepted by such a machine M , which starts
in an existential state and makes at most O(f(n)) steps before accepting an
input of length n with at most m alternations between existential and universal
states, define the complexity class ATIME(f(n),m). Analogously, we define the
complexity class ATIMEop(f(n),m) comprising languages that are accepted by
a random-access alternating Turing machine that starts in a universal state and
makes at most O(f(n)) steps before accepting an input of length n with at most
m − 1 alternations between universal and existential states. With this we define

Σ̃plog
m =

⋃

k,c∈N

ATIME[(log n)k · c,m] Π̃plog
m =

⋃

k,c∈N

ATIMEop[(log n)k · c,m].

The poly-logarithmic time hierarchy is then defined as PLH =
⋃

m≥1 Σ̃plog
m .

Note that Σ̃plog
1 = NPolylogTime holds.

Remark 2.1. Note that a simulation of a NPolylogTime Turing machine M by a
deterministic machine N requires checking all computations in the tree of com-
putations of M . As M works in time (log n)O(1), N requires time 2log nO(1)

. This
implies NPolylogTime ⊆ DTIME(2log nO(1)

), which is the complexity class called
quasipolynomial time of the fastest known algorithm for graph isomorphism [1],
which further equals the class DTIME(nlog nO(1)

)1.

3 Logics for Polylogarithmic Time

The descriptive complexity of the polylogarithmic time complexity classes
described in the previous section, has been recently studied in deepth in [3–
7], where precise logical characterization of those classes were presented. The
logics used in those characterizations are quite useful to think and describe the
problems used in this paper to prove proper hierarchies inside polylogarithmic
time. In this section we describe these logics and the results regarding their
correspondence with the different polylogarithmic time complexity classes.

1 This relationship appears quite natural in view of the well known relationship NP =

NTIME(nO(1)) ⊆ DTIME(2nO(1)
) = EXPTIME.
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The capturing results for polylogarithmic time hold over ordered structures.
A finite ordered σ-structure A is a finite structure of vocabulary σ ∪{<}, where
≤/∈ σ is a binary relation symbol and <A is a linear order on A. Every finite
ordered structure has a corresponding isomorphic structure, whose domain is
an initial segment of the natural numbers. Thus, we assume, as usual, that
A = {0, 1, . . . , n − 1}, where n is the cardinality |A| of A. In the case of non-
deterministic polylogarithmic time complexity, the capturing results also assume
that σ includes SUCC, BIT and constants for log n, the minimum, second and
maximum elements. In every structure A, the symbol SUCC is interpreted by
the successor relation corresponding to the <A ordering. The constant symbols
0, 1 and max are in turn interpreted as the minimum, second and maximum
elements under the <A ordering and the constant logn as �log |A|�. Finally, BIT
is interpreted by the following binary relation:

BITA = {(i, j) ∈ A2 | Bit j in the binary representation of i is 1}.

W.l.o.g., we assume that all structures have at least three elements. This results
in a cleaner presentation, avoiding trivial cases which would unnecessarily com-
plicate some formulae.

Let us start with DPolylogTime. This class is captured by the index logic
introduced in [6]. Index logic is two-sorted; variables of the first sort range over
the domain of the input structure. Variables of the second sort range over an
initial segment of the natural numbers; this segment is bounded by the logarithm
of the size of the input structure. Thus, the elements of the second sort represent
the bit positions needed to address elements of the first sort. Index logic includes
full fixpoint logic on the second sort. Quantification over the first sort, however,
is heavily restricted. Specifically, a variable of the first sort can only be bound
using an address specified by a subformula that defines the positions of the bits
of the address that are set. This “indexing mechanism” lends index logic its
name.

The following result confirms that the problems that can be described in the
index logic are in DPolylogT ime and vice versa.

Theorem 3.1 ([6]). Index logic captures DPolylogT ime over ordered struc-
tures.

Regarding nondeterministic polylogarithmic time, the restricted second-order
logic SOplog defined in [3–5] captures the polylogarithmic-time hierarchy, with its
quantifier prenex fragments Σplog

m and Πplog
m capturing the corresponding levels

Σ̃plog
m and Π̃plog

m of this hierarchy, respectively.
SOplog is a fragment of second-order logic where second-order quantifica-

tion range over relations of polylogarithmic size and first-order quantification is
restricted to the existential fragment of first-order logic plus universal quantifi-
cation over variables under the scope of a second-order variable.

Formally, we can inductively define the syntax of SOplog as follows:

– Every formula in the existential fragment of first-order logic with equality is
a SOplog formula.
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– If X is a second-order variable of arity r, and t1, . . . , tr are first-order terms,
then both X(t1, . . . , tr) and X(t1, . . . , tr) are SOplog formulae.

– If ϕ and ψ are SOplog formulae, then (ϕ∧ψ) and (ϕ∨ψ) are SOplog formulae.
– If ϕ is a SOplog formula, X is a second-order variable of arity r and x̄ is an

r-tuple of first-order variables, then ∀x̄(X(x̄) → ϕ) is SOplog formula.
– If ϕ is a SOplog formula and x is a first-order variable, then ∃xϕ is a SOplog

formula.
– If ϕ is a SOplog formula and X is a second-order variable, then both ∃Xϕ

and ∀Xϕ are SOplog formulae.

The most significant restriction of SOplog is in its semantics. In addition to
its arity, each second-order variable X is associated with another non-negative
integer, its exponent, and it is required that any X of arity r and exponent k is
interpreted on a structure of domain A as an r-ary relation of cardinality smaller
or equal than logk |A|. Otherwise, the semantics of SOplog follows the standard
semantics of second-order logic.

As usual, the fragments Σplog
m (resp. Πplog

m ) are defined by considering SOplog

formulae with m alternating blocks of second-order quantifiers in quantifier
prenex (Skolem) normal form, starting with an existential (resp. universal) block.
Note that by Lemma 3 in [4], for every SOplog formula ϕ there is an equivalent
formula ϕ′ that is in quantifier prenex normal form. In the following we will
assume that the reader is familiar with the techniques that can be applied to
transform arbitrary SOplog formulae into equivalent formulae in Skolem normal
form. Those techniques are detailed in the proof of Lemma 3 in Appendix B
in [4].

The following result characterizes precisely the expressive power of SOplog

in terms of the nondeterministic polylogarithmic time hierarchy. Note that in
particular, existential SOplog captures NPolylogT ime.

Theorem 3.2 ([3,5]). Over ordered structures with successor relation, BIT and
constants for log n, the minimum, second and maximum elements, Σplog

m captures
Σ̃plog

m and Πplog
m captures Π̃plog

m for all m ≥ 1.

4 Problems that Lead to Proper Hierarchies

Here we introduce the decision problems that we use in the next section to show
the existence of proper hierarchies of polylogarithmic-time. In addition, for the
nondeterministic classes we give a precise definition of these problems in terms
of the logic SOplog studied in [3–5] and discussed in the previous section.

From now on we work with the class of structures known as word models
(see for instance [2]). Let π be the vocabulary {<,R0, R1}, where < is a binary
relation symbol and R0, R1 are unary relation symbols. We can identify any
binary string (word) w = a1 . . . an in {0, 1}+ with a π-structure (word model)
Aw, where the cardinality of the domain A of Aw equals the length of w, <Aw

is a linear order in A, RAw
0 contains the positions in w carrying a 0, and RAw

1

contains the positions in w carrying a 1.
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Problem 4.1 (InitialZerosk). The problem InitialZerosk consists on deciding
(over word models of signature π) the language of binary strings which have
a prefix of at least �log n�k consecutive zeros, where n is the length of the string.

Problem 4.2 (ConseqZerosk). Let ConseqZerosk denote the problem of deciding
the language of binary strings which have at least �log n�k consecutive bits set to
0, where n is the length of the string. This can be expressed formally in SOplog

as follows:

∃X(|X| = logk n ∧ SEQ(X) ∧ ∀x(X(x) → R0(x))),

where X is of arity 1 and exponent k, the expression |X| = logk n denotes the
sub-formula which defines that the cardinality of X is �log n�k, and SEQ(X)
denotes the sub-formula expressing that the elements of X are a contiguous
subsequence of the order <.

The sub-formula expressing |X| = logk n can be written as follows:

∃Y x̄(Y (x̄) ∧ x̄ = 0̄ ∧ ∀ȳ(Y (ȳ) → (SUCCk(ȳ, logn) ∨ ∃z̄(Y (z̄) ∧ SUCCk(ȳ, z̄)))
∧|X| = |Y |)

where Y is of arity k and exponent k, x̄, ȳ, z̄ denote k-tuples of first-order
variables, SUCCk(ȳ, z̄) denotes a sub-formula expressing that z̄ is the imme-
diate successor of ȳ in the lexicographical order of k-tuples, and |X| = |Y |
expresses that X and Y have equal cardinality. SUCCk(ȳ, z̄) can be expressed
by a quantifier-free SOplog formula (for details refer to SUCC k in Sect. 4 in [4]).
In turn, |X| = |Y | can be expressed by an existential SOplog formula using sec-
ond order variables of arity k + 1 and exponent k (for details refer to Sect. 3.1
in [4]).

Finally, SEQ(X) can be expressed in SOplog as follows:

∀x(X(x) → ∃y(SUCC (x, y) ∨ ∀z(X(z) → z < x)))

The whole formula for ConseqZerosk can then be rewritten in Skolem normal
form as a formula in Σplog

1 with second order variables of exponent k.

Problem 4.3 (NoConseqZerosk). Let NoConseqZerosk denote the problem of
deciding the language of binary strings which do not have greater than or equal
�log n�k consecutive bits set to 0, where n is the length of the string. Since syn-
tactically the negation of a formula in SOplog is not always a formula in SOplog ,
we cannot just negate the formula for ConseqZerosk in Problem 4.2 to get the
SOplog formula for NoConseqZerosk. We can nevertheless define NoConseqZerosk

as follows:

∀X(|X| = logk n ∧ SEQ(X) → ∃x(X(x) ∧ R1(x)))

This is equivalent to:

∀X(¬(|X| = logk n) ∨ ¬SEQ(X) ∨ ∃x(X(x) ∧ R1(x))).



Proper Hierarchies in Polylogarithmic Time 97

It follows that the negations of the sub-formulae |X| = logk n that we defined in
Problem 4.2 is in Πplog

1 . Regarding ¬SEQ(X), it can be written in SOplog as

∃xyz(X(x) ∧ ¬X(y) ∧ X(z) ∧ x < y < z).

We then get that the formula for NoConseqZerosk can be rewritten in Skolem
normal form as a formula in Πplog

1 with second order variables of exponent k.

Problem 4.4 (ExactlyOncek). Let ExactlyOncek denote the problem of deciding
the language of binary strings which contain the substring 0�log n	k exactly once,
i.e., s is in ExactlyOncek iff 0�logn	k is a substring of s and every other substring
of s is not 0�logn	k . This can be expressed formally in SOplog by combining
the formulae for ConseqZerosk and NoConseqZerosk (see Problems 4.2 and 4.3,
respectively) as follows:

∃X(|X| = logk n ∧ SEQ(X) ∧ ∀x(X(x) → R0(x))
∧ ∀Y (Y = X ∨ ¬(|Y | = logk n) ∨ ¬SEQ(Y ) ∨ ∃x(X(x) ∧ R1(x)))),

Clearly, all second order variables in the formula need maximum exponent k and
the formula itself can be rewritten in Skolem normal form as a formula in Σplog

2 .

The formulae expressing the following two problems can be well understood
as formulae defining B-trees where the leaves are pointers to positions in the
input string.

Problem 4.5 (AtLeastBlockskl ). Let AtLeastBlockskl for k, l ≥ 0 denote the prob-
lem of deciding the language of binary strings with at least (�log n�k)l non-
overlapping adjacent substrings of the form 0�log n	k where n is the length of
the string, or equivalently, the language of binary strings which have at least
(�log n�k)l+1 consecutive bits set to 0.

If l = 0 then this is equivalent to ConseqZerosk and, as discussed in Prob-
lem 4.2, it can be expressed in Σplog

1 .
If l = 1, we can express AtLeastBlockskl in SOplog as follows:

∃X∀xy∃Z(|X| = logk n ∧ SEQP(X)
∧ (X(x, y) → (|Z| = logk n ∧ SEQ(Z) ∧ min(Z) = x ∧ max (Z)

= y ∧ ∀z(Z(z) → R0(z))))).

Here SEQP(X) denotes the sub-formula expressing that X is a set of ordered
pairs that form a sequence where every consecutive (a1, a2) and (b1, b2) in the
sequence satisfy that a2 is the immediate predecessor of b1 in the order <. This
is clearly expressible by a SOplog formula free of second-order quantification. The
sub-formulae min(Z) = x and max (Z) = y have the obvious meaning and again
can easily be expressed in SOplog without using second-order quantification. The
whole sentence can be transformed into an equivalent sentence in Σplog

3 .
Finally, for every l ≥ 2, we can express AtLeastBlockskl in SOplog with for-

mulae of the form:
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∃X1∀x1y1∃X2∀x2y2 · · · ∃Xl∀xlyl∃Z(|X1| = logk n ∧ SEQP(X1)∧
(X1(x1, y1) →

(|X2| = logk n ∧ SEQP(X2) ∧ minp(X2) = x1 ∧ maxp(X2) = y1∧
· · · ∧ (Xl−1(xl−1, yl−1) →

(|Xl| = logk n ∧ SEQP(Xl) ∧ minp(Xl) = xl−1 ∧ maxp(Xl) = yl−1∧
(Xl(xl, yl) →

(|Z| = logk n ∧ SEQ(Z) ∧ min(Z) = xl ∧ max (Z) = yl∧
∀z(Z(z) → R0(z)))))) · · · ))).

The sub-formulae of the form minp(X) = x (resp. maxp(X) = x) express that
x is the smallest first element (resp. biggest second element) of any tuple in X
and is easily expressible in SOplog by a formula free of second-order quantifiers.
We can rewrite the whole formula as a Σplog

2·l+1 formula.

Problem 4.6 (ExactlyBlockskl ). Let ExactlyBlockskl for k, l ≥ 0 denote the prob-
lem of deciding the language of binary strings with exactly (�log n�k)l non-
overlapping adjacent substrings of the form 0�log n	k where n is the length of the
string, or equivalently, the language of binary strings which contain the substring
0(�logn	k)l+1

exactly once.
If l = 0 then this is equivalent to ExactlyOncek and, as discussed in Prob-

lem 4.4, it can be expressed in Σplog
2 .

If l = 1, we can express ExactlyBlockskl in SOplog as follows:

∃X∀xy∃Z(|X| = logk n ∧ SEQP(X)∧
(X(x, y) → (|Z| = logk n ∧ SEQ(Z) ∧ min(Z) = x ∧ max (Z) = y∧

∀z(Z(z) → R0(z))∧
∀X ′∃x′y′∀Z ′(X ′ = X ∨ ¬(|X ′| = logk n) ∨ ¬SEQP(X ′)∨

(X ′(x′, y′) ∧ (Z ′ = Z ∨ ¬(|Z ′| = logk n) ∨ ¬SEQ(Z ′)∨
¬(min(Z ′) = x′) ∨ ¬(max (Z ′) = y′)∨
∃z′(Z ′(z′) ∧ R1(z′))))))).

It is not difficult to see that this formula can be rewritten as a Σplog
4 formula.

Finally, for every l ≥ 2, we can express ExactlyBlockskl in SOplog with for-
mulae of the form:

∃X1∀x1y1∃X2∀x2y2 · · · ∃Xl∀xlyl∃Z(|X1| = logk n ∧ SEQP(X1)∧
(X1(x1, y1) →

(|X2| = logk n ∧ SEQP(X2) ∧ minp(X2) = x1 ∧ maxp(X2) = y1∧
· · · ∧ (Xl−1(xl−1, yl−1) →

(|Xl| = logk n ∧ SEQP(Xl) ∧ minp(Xl) = xl−1 ∧ maxp(Xl) = yl−1∧
(Xl(xl, yl) →

(|Z| = logk n ∧ SEQ(Z) ∧ min(Z) = xl ∧ max (Z) = yl∧
∀z(Z(z) → R0(z))∧



Proper Hierarchies in Polylogarithmic Time 99

∀X ′
1∃x′

1y
′
1∀X ′

2∃x′
2y

′
2 · · · ∀X ′

l∃x′
ly

′
l∀Z ′(X ′

1 = X1∨
¬(|X ′

1| = logk n) ∨ ¬SEQP(X ′
1) ∨ (X ′

1(x
′
1, y

′
1) ∧ (X ′

2 = X2∨
¬(|X ′

2| = logk n) ∨ ¬SEQP(X ′
2) ∨ ¬minp(X ′

2) = x′
1∨

¬maxp(X ′
2) = y′

1 ∨ (· · · ∨ (X ′
l−1(x

′
l−1, y

′
l−1) ∧ (X ′

l = Xl∨
¬(|X ′

l | = logk n) ∨ ¬SEQP(X ′
l) ∨ ¬(minp(X ′

l) = x′
l−1)∨

¬(maxp(X ′
l) = y′

l−1) ∨ (X ′
l(x

′
l, y

′
l) ∧ (Z ′ = Z∨

¬(|Z ′| = logk n) ∨ ¬SEQ(Z ′) ∨ ¬(min(Z ′) = x′
l)∨

¬(max (Z ′) = y′
l)∨∃z′(Z ′(z′)∧R1(z′)))))) · · · )))))))) · · · ))).

We can rewrite formulae of this form as Σplog
2·l+2 formulae.

5 Proper Hierarchies in Polylogarithmic Time

We now present the key results of the paper showing that all the polylogarithmic
complexity classes defined in Sect. 2, including every level of the polylogarithmic
time hierarchy, contain proper hierarchies defined in terms of the smallest degree
of the polynomial required for the decision problems introduced in the previous
section.

In order to relate the problems described in the previous section using logics
to the polylogarithmic complexity classes defined in terms of random-access
Turing machines, we adhere to the usual conventions concerning binary encoding
of finite structures [8]. That is, if σ = {Rr1

1 , . . . , R
rp
p , c1, . . . , cq} is a vocabulary,

and A with A = {0, 1, . . . , n − 1} is an ordered structure of vocabulary σ.
Each relation RA

i ⊆ Ari of A is encoded as a binary string bin(RA
i ) of length

nri where 1 in a given position indicates that the corresponding tuple is in
RA

i . Likewise, each constant number cAj is encoded as a binary string bin(cAj )
of length �log n�. The encoding of the whole structure bin(A) is simply the
concatenation of the binary strings encodings its relations and constants. The
length n̂ = |bin(A)| of this string is nr1 + · · · + nrp + q�log n�, where n = |A|
denotes the size of the input structure A. Note that log n̂ ∈ O(�log n�), so
NTIME[logk n̂] = NTIME[logk n] (analogously for DTIME). Therefore, we can
consider random-access Turing machines, where the input is the encoding bin(A)
of the structure A followed by the endmark �.

The following simple lemmas are useful to prove our hierarchy theorems. They
show that the problems in the previous section can be expressed by random-
access machines working in the required levels of the hierarchy theorems.

Lemma 5.1. InitialZerosk (see Problem 4.1) is in DTIME(logk n).

Proof. Assume the input tape encodes a word model A of signature π, i.e., a
binary string. A deterministic random-access Turing machine can in determin-
istic time O(log n) calculate and write in its index-tape the address of the first
bit in the encoding of RA

0 . Then it only needs to check whether this bit and the
subsequent �log n�k − 1 bits in the input-tape are 1. If that is the case, then the
machine accepts the input. Clearly, this process takes time O(logk n). ��
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Lemma 5.2. ConseqZerosk (see Problem 4.2) is in NTIME(logk n).

Proof. Assume the input tape encodes a word model A of signature π. A random-
access Turing machine M can non-deterministically guess a position i in the
input tape which falls within the cells encoding RA

0 . This takes time O(log n).
Then M can check (working deterministically) in time O(logk+1n) whether each
cell of the input tape between positions i and i + logk+1n has a 0. ��
Lemma 5.3. NoConseqZerosk (see Problem 4.3) is in ATIMEop(logk n, 1).

Proof. Assume the input tape encodes a word model A of signature π. In a uni-
versal state, a random-access alternating Turing machine M can check whether
for all cell in some position i in the input tape which falls in a position encoding
RA

0 and is at distance at least �log n�k from the end of the encoding, there is a
position between positions i and i + �log n�k − 1 with 0. Each of these checking
can be done deterministically in time O(logkn). Therefore this machine decides
NoConseqZerosk in ATIMEop(logk n, 1). ��
Lemma 5.4. ExactlyOncek (see Problem 4.4) is in ATIME(logk n, 2).

Proof. We only need to combine the machines that decide ConseqZerosk and
NoConseqZerosk in Lemmas 5.2 and 5.3, respectively. An alternating random-
access Turing machine M can decide ExactlyOncek as follows: Assume the input
tape encodes a word model A of signature π. Let s and t be the cells that mark
the beginning and end of the encoding of RA

0 . These cells can be calculated by
M in DTIME(log n). First M checks in an existential state whether there is a
position i in the input tape which fall between s and t − �log n�k + 1 such that
each cell between positions i and i + �log n�k − 1 has a 1. Then M switches to a
universal state and checks whether for all cell in some position j between s and
t − �log n�k + 1 of the input tape other than position i, there is a cell between
positions j and j+�log n�k−1 with 0. If these two checks are successful, then the
input string belongs to ExactlyOncek. We already saw in Lemmas 5.2 and 5.3
that both checks can be done in time O(logk n). ��

In order to get tighter upper bounds, in the previous lemmas we explic-
itly defined the random-access Turing machines that decide the problems. For
the following two lemmas we use the upper bounds resulting from the proof of
Theorem 3.2 instead, since there seems to be no better upper bounds for these
cases. Thus, Lemmas 5.5 and 5.6 follow from the facts that: (a) to evaluate the
SOplog formulae in Problems 4.5 and 4.6 for AtLeastBlockskl and ExactlyBlockskl ,
respectively, the machine needs (as shown in the proof of Theorem 3.2 in [4])
to “guess” �log n�k addresses, each of length �log n�; and (b) the formula for
AtLeastBlockskl and ExactlyBlockskl are in Σplog

2×l+1 and Σplog
2×l+2, respectively.

Lemma 5.5. AtLeastBlockskl (see Problem 4.5) is in ATIME(logk+1 n, 2 · l+1).

Lemma 5.6. ExactlyBlockskl (see Problem 4.6) is in ATIME(logk+1 n, 2 · l+2).
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We can now prove our first hierarchy theorem which shows that there is a
strict hierarchy of problems inside DPolylogTime.

Theorem 5.1. For every k > 1, DTIME(logk n) � DTIME(logk+1 n).

Proof. Lemma 5.1 proves that InitialZerosk+1 ∈ DTIME(logk+1 n). Regarding
the lower bound, we will show that InitialZerosk+1 (see Problem 4.1) is not in
DTIME(logk n).

Let us assume for the sake of contradiction that there is a deterministic
random-access Turing machine M that decides InitialZerosk+1 in time �log n�k ·c,
for some constant c ≥ 1. Take a string s of the form 0n such that �log n�k+1 >
�log n�k · c. Let A be its corresponding word model. Since the running time of
M on input A is strictly less than �log n�k+1, then there must be at least one
position i among the first �log n�k+1 cells in the encoding of RA

0 in the input tape
that was not read in the computation of M(A). Define a string s′ = 0i10n−i−1

and a corresponding word model B. Clearly, the output of the computations of
M(A) and M(B) are identical. This contradicts the assumption that M decides
InitialZerosk+1, since it is not true that the first �log n�k+1 bits of s′ are 0. ��

Our second hierarchy theorem shows that there is also a strict hierarchy of
problem inside NPolylogTime.

Theorem 5.2. For every k > 1, NTIME(logk n) � NTIME(logk+1 n).

Proof. Lemma 5.2 proves that ConseqZerosk+1 ∈ NTIME(logk+1 n). Regarding
the lower bound, we will show that ConseqZerosk+1 (see Problem 4.2) is not in
NTIME(logk n).

Let us assume for the sake of contradiction that there is a nondetermin-
istic random-access Turing machine M that decides ConseqZerosk+1 in time
�log n�k · c, for some constant c ≥ 1. Take a binary string s of the form
0�logn	k+1

1n−�log n	k+1
such that �log n�k+1 > �log n�k · c. Let A be its corre-

sponding word model. Since M accepts A, then there is at least one compu-
tation ρ of M which accepts A in at most �log n�k · c steps. Then there must
be at least one position i among the first �log n�k+1 cells in the encoding of
RA

0 in the input tape that was not read during computation ρ. Define a string
s′ = 0i10�log n	k+1−i−11n−�log n	k+1

and a corresponding word model B. Clearly,
the accepting computation ρ of M(A) is also an accepting computation of M(B).
This contradicts the assumption that M decides ConseqZerosk+1, since it is not
true that there are �log n�k+1 consecutive zeros in s′. ��

The following theorem shows that there is a strict hierarchy of problems
inside the first level of the Π̃plog

m hierarchy.

Theorem 5.3. For every k > 1, ATIMEop(logk n, 1) � ATIMEop(logk+1 n, 1).

Proof. Lemma 5.3 proves that NoConseqZerosk+1 ∈ ATIMEop(logk+1 n, 1).
Regarding the lower bound, we will show that NoConseqZerosk+1 (see Prob-
lem 4.3) is not in ATIMEop(logk n, 1).
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Let us assume for the sake of contradiction that there is an alternating
random-access Turing machine M that decides NoConseqZerosk+1 using only
universal states and in time �log n�k · c, for some constant c ≥ 1. Take a binary
string s of the form 0�logn	k+1

1n−�log n	k+1
such that �log n�k+1 > �log n�k · c.

Let A be its corresponding word model. From our assumption that M decides
NoConseqZerosk+1, we get that there is a rejecting computation ρ of M(A).
Since every computation of M which rejects A must do so reading at most
�log n�k · c cells, then there must be at least one position i among the first
�log n�k+1 cells in the encoding of RA

0 in the input tape that was not read dur-
ing computation ρ. Define a string s′ = 0i10�log n	k+1−i−11n−�logn	k+1

and a
corresponding word model B. Clearly, the rejecting computation ρ of M(A) is
also a rejecting computation of M(B). This contradicts the assumption that M
decides NoConseqZerosk+1, since s′ do not have �log n�k+1 consecutive bits set
to 0 and should then be accepted by all computations of M . ��

The following theorem shows that there is a strict hierarchy of problems
inside the second level of the Σ̃plog

m hierarchy.

Theorem 5.4. For every k > 1, ATIME(logk n, 2) � ATIME(logk+1 n, 2).

Proof. Lemma 5.4 proves that ExactlyOncek+1 ∈ ATIME(logk+1 n, 2). Regard-
ing the lower bound, we will show that ExactlyOncek+1 (see Problem 4.4) is not
in ATIME(logk n, 2).

We assume for the sake of contradiction that there is an alternating random-
access Turing machine M that decides ExactlyOncek+1 in ATIME(logk n, 2).
We further assume, w.l.o.g., that every final state of M is universal. Let M
work in time �log n�k · c for some constant c. Take a binary string s of the
form 0�log n	k+1

10�log n	k+1
1n−2·�logn	k+1−1 such that �log n�k+1 > �log n�k · c.

Let A be its corresponding word model. From our assumption that M decides
ExactlyOncek+1, we get that there is a rejecting computation ρ of M(A). Since
every computation of M which rejects A must do so reading at most �log n�k · c
cells, then there must be a position i among the first �log n�k+1 cells in the
encoding of RA

0 in the input tape that was not read during computation ρ.
Define a string s′ = 0i10�log n	k+1−i−110�log n	k+1

1n−2·�log n	k+1−1 and a corre-
sponding word model B. Clearly, the rejecting computation ρ of M(A) is also a
rejecting computation of M(B). This contradicts the assumption that M decides
ExactlyOncek+1, since s′ has exactly one substring 0�log n	k+1

and should then
be accepted by all computations of M . ��

The following result, together with Theorems 5.2 and 5.4, shows that there
is a proper hierarchy of problems for every level of the polylogarithmic time
hierarchy Σ̃plog

m .

Theorem 5.5. For m > 2 and k > 1, it holds that ATIME(logk n,m) �

ATIME(logk+2 n,m).
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Proof. Since m > 2, we have that Lemma 5.5 proves that if m is odd, then
AtLeastBlocksk+1

(m−1)/2 is in ATIME(logk+2 n,m). Likewise, Lemma 5.6 proves

that if m is even, then ExactlyBlocksk+1
(m−2)/2 is in ATIME(logk+2 n,m). Regard-

ing the lower bounds, it is easy to see (given our previous results in this section)
that: (a) for odd m, AtLeastBlocksk+1

(m−1)/2 is not in ATIME(logk n,m), and (b)

for even m, ExactlyBlocksk+1
(m−2)/2 is also not in ATIME(logk n,m). Note that if

m is odd, then we can prove (a) by contradiction following a similar argument
than in the proof of the lower bound for Theorem 5.2. Likewise, if m is even,
then we can prove (b) by contradiction following a similar argument than in the
proof of Theorem 5.4. ��

It is clear that by taking the complements of the problems AtLeastBlockskl
and ExactlyBlockskl , a similar result holds for each level of the Πplog

m hierarchy.

Theorem 5.6. For m = 2 and every k > 1, it holds that ATIMEop(logk n,m) �

ATIMEop(logk+1 n,m). Moreover, For every m > 2 and every k > 1, it holds
that ATIMEop(logk n,m) � ATIMEop(logk+2 n,m).

6 On Polylogarithmic-Time and Complete Problems

In this section we investigate whether the concept of complete problem can some-
how be applied to the complexity classes DPolylogTime and NPolylogTime. That
is, we want to know whether we can isolate the most difficult problems inside
these sublinear time complexity classes. The first step towards this objective is
to find a suitable concept of many-one reducibility (m-reducibility for short).

It is quite clear that m-reductions with sublinear time bounds do not work.
Consider for instance DPolylogTime reductions. Assume there is a complete
problem P for the class NPolylogTime under DPolylogTime reductions. Let P ′

belong to NPolylogTime and let M be a deterministic random-access Turing
machine that reduces P ′ to P in time c′ · logk

′
n for some constant c′. Then the

output of M given an instance of P ′ of length n has maximum length c′ · logk
′
n.

This means that, given an input of length n for P ′ and its reduction, the random-
access Turing machine that computes the complete problem P can actually com-
pute P (s) in time O((log log n)k) for some fixed k. This is already highly unlikely.
If as one would expect there are more than a single complete problem for the
class, then we could keep applying reductions from one problem to the other,
infinitely reducing the time required to compute the original problem.

Let us then consider the standard concept of Karp reducibility, i.e., deter-
ministic polynomially bounded many-one reducibility, so that we can avoid the
obvious problem described in the previous paragraph. Rather surprisingly, there
is no complete problems for DPolylogTime and NPolylogTime, even under these
rather expensive reductions for the complexity classes at hand.

Theorem 6.1. DPolylogTime does not have complete problems under deter-
ministic polynomially bounded many-one reductions.
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Proof. We prove it by contradiction. Assume that there is such a complete
problem P . Since P is in DPolylogTime, then there is a random-access Tur-
ing machine M which computes P in time O(logk n) for some fixed k. Thus P
belongs to DTIME(logk n). Let us take the problem InitialZerosk+1 of decid-
ing the language of binary strings which have a prefix of at least �log n�k+1

consecutive zeros. Since P is complete for the whole class DPolylogTime, there
must be a function f : {0, 1}∗ → {0, 1}∗, computable in polynomial-time, such
that x ∈ InitialZerosk+1 iff f(x) ∈ P holds for all x ∈ {0, 1}∗. It then follows
that the size of f(x) is polynomial in the size of x. Let |f(x)| = |x|k′

, we get
that the machine M which computes the complete problem P can also decide
InitialZerosk+1 in time O(logk nk′

) = O((k′ · log n)k) = O(logk n). This contra-
dicts the fact that InitialZerosk+1 �∈ DTIME(logk n) as shown in the proof of
Theorem 5.1. ��

Using a similar proof than in the previous theorem for DPolylogTime, we can
prove that the same holds for NPolylogTime. In fact, we only need to replace the
problem InitialZerosk+1 by ConseqZerosk+1 and the reference to Theorem 5.1
by a reference to Theorem 5.2 in the previous proof, adapting the argument
accordingly.

Theorem 6.2. NPolylogTime does not have complete problems under deter-
ministic polynomially bounded many-one reductions.

Moreover, using the problems AtLeastBlockskl and ExactlyBlockskl together
with its complements and Theorems 5.5 and 5.6, it is easy to prove that the
same holds for every individual level of the polylogarithmic time hierarchy.

Theorem 6.3. For every m ≥ 1, Σplog
m and Πplog

m do not have complete prob-
lems under deterministic polynomially bounded many-one reductions.

7 Concluding Remarks

In this paper we showed that none of the classes Σ̃plog
m and Π̃plog

m (m ∈ N) in the
polylogarithmic time hierarchy has a complete problem. This result follows from
the existence of proper hierarchies inside each of the classes. The proof that such
hierarchies exist is constructive by defining concrete problems parameterized by
k ∈ N for each class. For the definition of these concrete problems we exploit the
logics capturing Σ̃plog

m and Π̃plog
m , respectively. We expect that these results can

be taken further towards an investigation of the strictness of the polylogarithmic
time hierarchy as such. We also expect that similar strict hierarchies can be
defined in terms of subsets of formulae in Σplog

m and Πplog
m . Notice that the

latter does not follow directly from the strict hierarchies proven in this paper,
since in the proofs of the characterization results for the polylogarithmic-time
hierarchy [3,5], there is not an exact correspondence between the exponents in
the polylogarithmic functions that bound the time complexity of the machines
and the exponents in the restricted second-order variables of the SOplog formulae
that define the machines.
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5. Ferrarotti, F., González, S., Schewe, K.-D., Turull Torres, J.M.: A restricted
second-order logic for non-deterministic poly-logarithmic time. Logic J. IGPL
(2019, to appear)
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