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Abstract. This paper studies information changes in default justifica-
tion logic with argumentation semantics. We introduce dynamic opera-
tors that combine belief revision and default theory tools to define both
prioritized and non-prioritized operations of contraction, expansion and
revision for justification logic-based default theories. This combination
enriches both default logics and belief revision techniques. We argue that
the kind of attack called “undermining” amounts to those operations that
contract a knowledge base by an attacked formula.
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1 Introduction

This paper investigates the dynamics of default theories with justification logic
formulas. Our logic has been presented in [28] as a theory of structured arguments
where justification formulas of the form t : F are interpreted as arguments that
can defeat other formulas by means of undercut or rebuttal. Technically, the
workings of undercut and rebuttal rely on defining default theories with default
rules based on justification logic formulas. In such rules, justification terms codify
defeasible inferences in their structure. In this paper, we will take a step further
to add reasoning about changes to default theories.

The existing work about dynamics in formal argumentation [9,11–13,33]
almost entirely focuses on abstract argumentation frameworks in the style of
[14]. The literature on the dynamics of structured argumentation is limited to
the DeLP framework [2], where the dynamics is understood as adding or remov-
ing strict and defeasible rules, and ASPIC+ [26], where the dynamic component
is meant to resolve symmetric attacks by updating preferences. The current
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paper advances this line of research by specifying a variety of dynamic operators
for modeling changes of argument systems based on justification logic.

We will show that introducing dynamic operators for justification logic
default theories enables us to model an additional kind of defeat: undermining.
According to [16], an argument is undermined if its premises or assumptions
are attacked. Defeating an argument by attacking its premise or its assump-
tion is not new to structured argumentation. In assumption-based argumenta-
tion (ABA) [15], all attacks are reduced to this type of attacks and in ASPIC+
[30], ordinary premises of an argument are susceptible to undermining. However,
these systems do not provide an insight into the logical workings of undermining,
because they neither specify a concrete logical language nor inference rules.1

In our default theories, undermining can be given a precise logical inter-
pretation. While undercut and rebuttal rely on the uncertainty of defeasible
arguments, undermining changes the context from which agents make further
inferences. For a specific default theory, this context is determined by the set of
starting premises, sometimes also called “axioms”. Our idea is that, since under-
mining targets axioms that are considered as a given, it should be modeled as
a result of non-inferential information inputs that require contracting the set
of axioms of a default theory. This means that we will define undermining by
“climbing up” the definitions of more fundamental operations of default theory
changes. To elicit the reasoning process behind undermining, we specify four dif-
ferent logical operations that model undermining: prioritized and non-prioritized
contraction and prioritized and non-prioritized revision.

The paper is organized as follows. Section 2 introduces the basics of the logic
of default justifications first introduced in [27,29] and developed as a theory of
structured arguments in [28]. This logic already models non-monotonic behavior
with the use of undercut and rebuttal. Section 3 is the main technical contri-
bution of this paper, where we define dynamic operations for default theories
with justification formulas. The operations we introduce combine base revision
operations as defined in, e.g., [20] with a specific kind of standard Reiter default
rules. Our approach to defining the dynamic operators for default theory revision
has most in common with the approach of [4], which deals with the dynamics of
Reiter’s default theories. It turns out by the end of the paper that undermining
attacks on premises correspond to those dynamic operations that involve either
contraction or a variant of non-prioritized contraction defined in Sect. 3.

2 Logic of Default Reasons

The logic of default justifications was first defined in [27] and our definitions
in this section follow those given in [29]. We start by outlining the underlying
justification logic on which we base default theories. Before we formally introduce
1 In fact, ABA does not distinguish between different kinds of attacks and models

each attack as that on premises or what we call here undermining. In ASPIC+,
undermining is taken as a primitive notion of attack, which is different from rebuttal
or undercut only by virtue of targeting “ordinary” premises of an argument.
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syntax, several preliminary remarks on how to build justification assertions of
the type t : F are in order.

One of the basic operations of standard justification logics is Application
(‘·’) exemplified by the following formula u : (F → G) → (t : F → (u · t) : G). By
focusing only on the propositional content of the formula, one may notice the
familiar structure of a modus ponens inference from F → G and F to G. The
added machinery of reason terms syntactically captures the dependence of the
consequent G on the propositions F → G and F . This dependence is witnessed
by the structure of the reason term (u · t) which shows that the reason u has
been applied to the reason t.

In addition to application, all standard justification logics include the oper-
ation known as Sum ‘+’. Sum admits of merging two reason terms into a single
term as done, for example, in the formula t : F → (t + u) : F . The intuition
behind Sum is that, if evidence t justifies some formula F , then adding new
evidence u to t will not invalidate t being a reason for F . Thus, standard justi-
fications are inherently non-defeasible.

The underlying logic for our default theories is a standard justification logic
with non-defeasible and truth-inducing reasons.2 We assume both Application
and Sum operations for this logic. Moreover, to ensure that all reasons in this
logic are truth-inducing, the logic contains the axiom t : F → F called Factivity.
This axiom corresponds to the modal logic truth axiom: �F → F read as “If
F is known, then F”. Our choice of basing default theories on a logic of non-
defeasible and truth-inducing reasons is in line with the strategy of standard
default logics [3], where defeasible conclusions are based on certain information.

2.1 Logic of Factive Reasons JTCS

Syntax, Axioms and Rules. The basic format of justification assertions is
“t : F”, where a justification term “t” is informally interpreted as a reason or
justification for “F”. The set Tm consists of all justification terms, constructed
from variables x1, . . . , xn, . . . and proof constants c1, . . . , cn, . . . by means of
operations · and +. The following BNF gives the grammar of justification terms:

t ::= x | c | (t · t) | (t + t)

where x is a variable denoting an unspecified justification and c is a proof con-
stant, taken as atomic within the system. A set of subterms Sub(t) is defined
by induction on the construction of a term t. The set Fm consists of exactly all
JTCS formulas based on the countable set of propositional atoms P and defined
by the following BNF:

F ::= � | P | (F → F ) | (F ∨ F ) | (F ∧ F ) | ¬F | t : F

2 The first variant of justification logic, the logic of proofs (LP), was developed in [5].
The logic of non-defeasible and factive reasons that we use here was first defined in
[10]. For more basic information on its relation to other justification logics see [17].
For recent overviews of justification logic systems, see [6] and [22].
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where P ∈ P and t ∈ Tm.
We can now define the logic JTCS, which is the weakest logic with non-

defeasible reasons containing axiom schemes for the two basic operations · and
+. These are the axioms and rules of JTCS:

A0. All the instances of propositional logic tautologies from Fm
A1. t : (F → G) → (u : F → (t · u) : G) (Application)
A2. t : F → (t + u) : F ; u : F → (t + u) : F (Sum)
A3. t : F → F (Factivity)
R0. From F and F → G infer G (Modus ponens)
R1. If F is an axiom instance of A0–A3 and cn, cn−1, . . . , c1 proof constants,
then infer
cn : cn−1 : · · · : c1 : F (Iterated axiom necessitation)

The set of all justified formulas produced by the use of R1 is called a Constant
Specification (CS) set:

Definition 1 (Constant specification). CS = {cn : cn−1 : · · · : c1 : F |
F is an instance of A0-A3, cn, cn−1, . . . , c1 are proof constants and n ∈ N}.

The intuition behind the set of formulas CS in R1 is that the basic logical axioms
are taken to be justified by proof constants and so are the formulas likewise
produced. In the set of formulas CS from Definition 1, any axiom instance can
be labelled with any sequence of proof constants. A constant specification of
this type is thus appropriately called Total Constant Specification (T CS) and
the logic we defined with the use of T CS is called JTTCS.

Following the idea that each logical axiom is justified by exactly one constant,
we require that the use of proof constants respects the following two conditions
and we say that CS is:3

– Axiomatically appropriate: for each axiom instance A, there is a constant c
such that c : A ∈ CS and for each formula cn : cn−1 : · · · : c1 : A ∈ CS such
that n ≥ 1, there is a constant cn+1 such that cn+1 : cn : cn−1 : · · · : c1 :
A ∈ CS;

– Injective: each proof constant c justifies at most one formula.

According to the restrictions on an axiomatically appropriate and injective CS,
we replace R1 of JTTCS with the following rule to obtain the logic JTCS:

R1* If F is an axiom instance of A0–A3 and cn, cn−1, . . . , c1 proof constants
such that cn : cn−1 : · · · : c1 : F ∈ CS, then infer cn : cn−1 : · · · : c1 : F

We say that the formula F is JTCS-provable (JTCS � F ) if F can be derived
using the axioms A0–A3 and rules R0 and R1.

3 For example, one such constant specification set could be generated by assigning a
Gödel number to each axiom instance and to each instance of R1.
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Semantics. The semantics for JTCS is an adapted version of the semantics for
the logic of proofs (LP) given by [25].

Definition 2 (JTCS model). We define a function reason assignment based
on CS, ∗(·) : Tm → 2Fm, a function mapping each term to a set of formulas
from Fm. We assume that it satisfies the following conditions:

(1) If F → G ∈ ∗(t) and F ∈ ∗(u), then G ∈ ∗(t · u),
(2) ∗(t) ∪ ∗(u) ⊆ ∗(t + u) and
(3) If c : F ∈ CS, then F ∈ ∗(c).

A truth assignment v : P → {True, False} is a function assigning truth values
to propositional atoms in P. We define the interpretation I as a pair (v, ∗). For
an interpretation I, |= is a truth relation on the set of formulas of JTCS. We
say that, for any formula t : F ∈ Fm, I |= t : F iff F ∈ ∗(t). Truth conditions
for atomic propositions, ¬, →, ∧ and ∨ are defined as usual. An interpretation
I is reflexive iff the truth relation for I fulfills the following condition:

– For any term t and any formula F , if F ∈ ∗(t), then I |= F .

The consequence relation of the logic of factive reasons JTCS is defined on
reflexive interpretations:

Definition 3 (JTCS consequence relation). Σ |= F iff for all reflexive inter-
pretations I, if I |= B for all B ∈ Σ, then I |= F .

For a set of formulas Γ ⊆ Fm and the JTCS consequence relation |= defined
above, a JTCS closure of Γ is given by ThJTCS (Γ ) = {F |Γ |= F}. For a closure
ThJTCS (Γ ), it holds that CS ⊆ ThJTCS (Γ ).

2.2 Logic of Default Reasons

Building on the JTCS syntax, we introduce the definition of the default theory :

Definition 4 (Default Theory). A default theory T is a pair (W,D), where
W is a finite set of JTCS formulas and D is a countable set of default rules.

Each default rule is of the following form:

δ =
t : F :: (u · t) : G

(u · t) : G
.

The informal reading of the default δ is: “If t is a reason justifying F , and
it is consistent to assume that (u · t) is a reason justifying G, then (u · t) is a
defeasible reason justifying G”. The default rule δ introduces a unique reason
term u, which means that, for a default theory T , the following three conditions
are required:

(1) For any formula v : H such that v : H ∈ ThJTCS (W ), it holds that u �= v;
(2) For any formula H ∈ W , u : (F → G) is not a subformula of H and
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(3) For any default rule δ′ ∈ D such that δ′ = t′:F ′ :: (u′·t′):G′

(u′·t′):G′ , if u = u′, then
F = F ′ and G = G′.

In the rule δ, the formula t : F is called the prerequisite, (u · t) : G above the line
is called the consistency requirement and (u · t) : G below the line is called the
consequent of δ. We refer to each of these formulas by pre(δ), req(δ) and cons(δ)
respectively.

Every default rule produces a reason term whose structure codifies an appli-
cation operation step. Notice that in δ above, in contrast to axiom A1, we do not
require the formula u : (F → G) to be a part of the knowledge base. Instead,
u : (F → G) is the underlying assumption of δ on the basis of which we are
able to extend an incomplete knowledge base. The propositions of this kind are
important in the system since they function as rules allowing for default steps,
but they are also specific JTCS formulas. They will be referred to as “war-
rants”, because their twofold role mirrors that of Toulmin’s argument warrants
([34], p. 91). Warrants extend the interpretation of the application operation “·”
and each warrant is made explicit by means of a function warrant assignment :
#(·) : D → Fm. The function maps each default rule to a specific justified
conditional as follows: #(δi) = u : (F → G), where δi ∈ D and δi = t:F :: (u·t):G

(u·t):G ,
for some reason term t, a unique reason term u and some formulas F and G. It
is important that uniqueness of u does not prevent two default rules to share a
warrant formula. This reflects also the informal idea of warrants as general rules
that are, in principle, applicable to different starting data.4

A set of all such underlying warrants of default rules is called Warrant Spec-
ification (WS) set.

Definition 5 (Warrant specification). For a default theory T = (W,D), jus-
tified defeasible conditionals are given by the Warrant Specification set:

WST = #[D] = {u : (F → G) | #(δ) = u : (F → G) and δ ∈ D}.

The basis of operational semantics for a default theory T = (W,D) is the proce-
dure of collecting new, reason-based information from the available defaults. This
procedure is defined following Antoniou’s [3] operational semantics for Reiter’s
default theories. A sequence of default rules Π = (δ0, δ1, . . .) is a possible order
in which a list of default rules without multiple occurrences from D is applied (Π
is possibly empty). Applicability of defaults is determined in the following way:
for a set of JTCS-closed formulas Γ we say that a default rule δ = t:F :: (u·t):G

(u·t):G
is applicable to Γ iff t : F ∈ Γ and ¬(u · t) : G /∈ Γ . Default consequents are
brought together in the set of JTCS formulas that represents the current evi-
dence base: In(Π) = ThJTCS (W ∪ {cons(δ) | δ occurs in Π}). The set In(Π)
pools reason-based formulas whose acceptability depends on the acceptability of
other available (counter-)reasons.
4 Formally, we also do not require that t = t′ holds in the antecedent of condition

(3) for the general definition of defaults above. This reflects the independence of the
warrant (u · t) : G from the data t : F to which we apply the warrant.
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We need to further specify those sequences of defaults that are significant
for a theory T namely, default processes. For a sequence Π, the initial segment
of the sequence is denoted as Π[k], where k indicates the number of elements
contained in that segment of the sequence and a minimal number of defaults for
the sequence Π. Any segment Π[k] is also a sequence. We can now define default
processes:

Definition 6 (Process). A sequence of default rules Π is a process of a default
theory T = (W,D) iff every k such that δk ∈ Π is applicable to the set In(Π[k]),
where Π[k] = (δ0, . . . δk−1).

The kind of process that we are focusing on is called closed process: a process Π
is said to be closed iff every δ ∈ D that is applicable to In(Π) is already in Π.

The possibility to refer to warrants within the language enables us to model
undercutting defeaters. They defeat other reasons by denying that their warrant
provides support for the conclusion in an undercutting circumstance.

Definition 7 (Undercut). A reason u undercuts reason t being a reason for
F in a set of JTCS formulas Γ ⊆ In(Π[k]) iff

∨
(v)∈Sub(t) u : ¬[v : (G → H)] ∈

ThJTCS (Γ ) and v : (G → H) ∈ WSΠ′
for a process Π ′ of T .

We say that a set Γ ⊆ In(Π[k]) undercuts reason t being a reason for F iff, for
a subterm v of t, ¬[v : (G → H)] ∈ ThJTCS (Γ ) and v : (G → H) ∈ WSΠ′

for a
process Π ′ of T .
For any default theory T = (W,D), an agent always considers potential extension
sets of JTCS formulas that meet the following conditions:

1. W ⊆ Γ and
2. Γ ⊆ {W ∪ cons(Π) | Π is some process of T}.

Besides undercut, reasons may conflict each other due to the fact that they
cannot be both added to a same consistent process. For example, if a knowledge
base contains a reason for a statement F , then any default introducing a reason
for ¬F will be inapplicable. This enables us to obtain a formal representation of
rebuttal among reasons for free. Formally, every rebuttal will imply an undercut
for formulas that cannot possibly extend a knowledge base together. Thus, we
exclusively rely on the definition of undercut to characterize all the standard
argumentation extension notions [14] in justification logic. For any potentially
acceptable set Γ we say that Γ is conflict-free if its closure is undercut-free and
we define the notion of acceptability of a justified formula t : F :

Definition 8 (Acceptability). For a process Π of a default theory T =
(W,D), a formula t : F ∈ cons(Π) is acceptable w.r.t. a set of JTCS formulas
Γ ⊆ In(Π) iff for each undercutting reason u for t being a reason for F such
that u : G ∈ In(Π), ThJTCS (Γ ) undercuts u being a reason for G.

Definition 9 (JTCS Extensions). We define multiple argumentation theory
extensions for any default theory T = (W,D) based on the JTCS language:
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JTCS Admissible Extension. A potential extension set of JTCS formulas
Γ ⊂ In(Π) is a JTCS admissible extension of a default theory T = (W,D)
iff ThJTCS (Γ ) is conflict-free, each formula t : F ∈ Γ is acceptable w.r.t. Γ
and Π is closed.

JTCS Preferred Extension. A closure ThJTCS (Γ ) of a JTCS admissible
extension Γ is a JTCS preferred extension of T iff for any other JTCS admis-
sible extension Γ ′, Γ �⊂ Γ ′.

JTCS Complete Extension. A closure ThJTCS (Γ ) of a JTCS admissible
extension Γ is a JTCS complete extension of T iff for each closed process
Π for which Γ ⊂ In(Π) is JTCS admissible it holds that, if a formula
t : F ∈ cons(Π) is acceptable w.r.t., then t : F belongs to Γ .

JTCS Grounded Extension. A JTCS complete extension ThJTCS (Γ ) is the
unique JTCS grounded extension of T if Γ is the smallest potential exten-
sion with respect to set inclusion such that ThJTCS (Γ ) is a JTCS complete
extension of T .

JTCS Stable Extension. A conflict-free closure ThJTCS (Γ ) of a potential
extension Γ is a JTCS stable extension iff Γ undercuts all the formulas
t : F ∈ cons(Π) outside ThJTCS (Γ ), for any process Π of T .

It turns out that a large subclass of Dung’s frameworks, excluding only some
kinds of attack cycles, can be proven to be a special case of our logic via estab-
lishing the correspondences of extensions. This result is shown in [28].

The above presented account of default reasons suffices to represent reason-
ing from an incomplete knowledge base, but it does not represent reasoning with
information changes that alter the facts from which an agent starts to reason.
Still, the basic account can already model one type of non-monotonic behav-
ior induced by the definition of undercut. We will refer to this way of revising
as “inferential” revision. The workings of undercut can be illustrated with Toul-
min’s famous example ([34], p. 92) of arguing for the claim that Harry is a British
subject. This claim “can be defended by appeal to the information that he was
born in Bermuda, for this datum lends support to our conclusion on account of
the warrants implicit in the British Nationality Acts...”. The example is trans-
lated into a justification logic default as follows. Given the fact that Harry was
born in Bermuda (B), an agent can conclude that Harry is a British subject (S):

δ1 =
r : B :: (s · r) : S

(s · r) : S
.

The default can be read as follows: “If r is a reason justifying that Harry was
born in Bermuda and it is consistent to assume that (s · r) is a reason justifying
that Harry is a British subject, then (s · r) is a defeasible reason justifying that
Harry is a British subject”.

However, if the agent were in possession of the additional information saying
that both Harry’s parents are aliens (P ), the “general authority of the warrant”
s : (B → S) for the claim S would have to be set aside. This is modeled with
the following rule that introduces an undercutting reason:
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δ2 =
t : P :: (u · t) : ¬[s : (B → S)]

(u · t) : ¬[s : (B → S)]
.

The consequent can be read as follows: “(u · t) is a defeasible reason denying
that the reason s justifies that if Harry was born in Bermuda, then Harry is a
British subject”. This is a classical argumentation theory example of a defeater
that leads to the suspension of the conclusion supported by the reason (s · r).
For a default theory T1 = (W,D) with W = {r : B, t : P} and D = {δ1, δ2},
the process (δ1, δ2) corresponds to such course of reasoning with revised JTCS

extensions. Notice that the warrant underlying δ2 can also be questioned in a
further course of reasoning. For example, one could find out that one of Harry’s
parents was settled in Bermuda at the time when he was born, thus reinstating
the authority of the warrant used in δ1.

Notice that in the logic above, the argument (s ·r) : S is susceptible to attack
due to the fallibility of inference δ1 that is characteristic for defeasible reasoning.
For the argument (s · r) : S to be undermined, we consider a wider Toulminian
interpretation of the argument that includes the formula r : B as the data for
the argument. Since r : B is in the set W , the only possibility to attack r : B is
to remove it from W and to thereby undermine (s · r) : S. This kind of attack
on arguments is studied under the paradigm of plausible reasoning (see [31],
pp. 59–61 for details on this distinction). In this paradigm, arguments are taken
to be susceptible to attack due to the uncertainty of their premises. The aim of
the current work is to unify the two paradigms in a single logical formalism.

3 Dynamic Operations for Default Theories: Introducing
Undermining Attack

As mentioned above, undermining can be interpreted as an attack on the formu-
las that are considered to be facts. In our view, undermining is essentially non-
inferential because introducing conflicting information that undermines facts
cannot be done with the use of warrants.5 For a default theory, these facts are
represented by the set of justification logic formulas W and, in constructing
a defeasible argument, such formulas can be prerequisites of default rules. A
plausible interpretation of undermining defeaters would be that they propose
alternative states of facts which ground further reasoning steps. To be able to
incorporate factual changes, we need methods based on belief revision methods.
Our selection of the belief-revision operations follows the way in which default
theories are defined—since the set of facts W is typically finite, it is natural to
use operators for sets that do not require closure. Therefore, our choice is to
make use of base revision operators [20] instead of the AGM operators [1].

5 The non-inferential view of information change is also relevant for human interaction.
As Hlobil [21] argues, we can believe by accepting testimonies, but we cannot make
inferences by merely accepting testimony. Two testimonies that contradict each other
are to be, ceteris paribus, equally treated and the acceptance of new information is
not the same process as inferentially extending the existing (incomplete) information.
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To model changes to default theories, we will use the capacity of default logic
to represent two levels of information certainty. The top-level of information
certainty is represented by formulas that are included in all extensions. Typical
examples of such formulas are those contained in a set of facts W . The lower-level
of information certainty is represented by formulas whose status is contingent
on whether it becomes defeated by other available information. Such formulas
are typically consequents of default rules. Our goal is to use the two levels and
to define dynamic operators that can bring about the changes that fix whether
a formula is included in or excluded from all extensions, but also to define non-
prioritizing operations that leave the status of a formula undecided.

To be able to model the dynamics at the two levels of information certainty,
we extend the above defined default theories with defaults without warrants,
which correspond to Reiter’s supernormal defaults, but (possibly) containing
justification assertions:

δ =
� ::F

F
.

Standard default rules with justification assertions encode inferential steps sup-
ported by warrants. In contrast to inferential steps, supernormal defaults will
be used to represent non-inferential, information-changing actions in which an
agent accepts that a formula can be included in (at least) one extension. We
will extend sets of defaults with supernormal defaults whenever we represent
introducing uncertain information to a theory T or relegate information from W
to the status of uncertain information.

Why would we want to make changes only to the lower-level of information
certainty or alter a default theory at the level of some, instead of all extensions?
Sometimes, an agent has doubts with respect to whether it is safe to include
some information or not and, analogously, whether it is safe to remove some
information or not. In the standard base revision approach to modeling infor-
mation change, incoming information is always prioritized over the existing one,
which is ensured by the success postulate. Consider again the example of the
agent reasoning about Harry’s eligibility for British nationality. It is possible
that, according to the census record, Harry was born in Bermuda and, accord-
ing to the military record, he was born outside Bermuda. The fact that the agent
first collected the census record data and then collected the military record data
cannot justify the prioritization of the newly acquired information. If the agent
does not know which information source is reliable, the order of data input is
irrelevant. In these cases, default logic can avoid the “naive” priority ascription
by the use of multiple extensions. The rest of this section gives a solution to the
problem of non-prioritized change of default theories, along with the more stan-
dard prioritized change. In a case of non-prioritized change, the corresponding
dynamic operator uses supernormal defaults with an aim to alter the lower-level
of information certainty of a default theory. On our interpretation of undermin-
ing attacks, whether undermining fully or partially realizes its defeating potential
depends on whether the new information is prioritized or not.
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3.1 Default Theory Expansion

The first kind of change we want to consider corresponds to learning new infor-
mation. For example, adding a formula F to a set of facts W can be based on
the information provided by some information channel. The formal operation
that naively adds new information without checking the joint consistency of the
resulting set of beliefs is called “expansion”:

Definition 10 (Expansion). For a default theory T = (W,D) and a formula
F , T+

F = (W+
F ,D) is the expansion of the default theory T , where W+

F is the
base expansion of the set W such that W+

F = W ∪ {F}.

If the added information results in an inconsistent set W+
F , any definable JTCS

extension will be inconsistent. Notice that default theory expansion can already
cause non-monotonic behaviour on the level of default theory extensions. For
example, if the added formula is a prerequisite for a default rule with an under-
cutter for some other default consequent, the new information can result in
removing elements from JTCS extensions of T .

An agent can approach accepting incoming information more cautiously. If
the agent accepts new information as a plausible premise, but hesitates to con-
sider it a fact, the change is made to the set of default rules:

Definition 11 (Conservative Expansion). For a default theory T = (W,D)
and a formula F , T×

F = (W,D ∪ {δF }) is the conservative expansion of the
default theory T with F , where δF = � ::F

F .

Notice that the operation × opens up a possibility that the formula F is included
in all extensions, but it can also be excluded from all extensions. For example, if
¬F is contained in ThJTCS (W ), then δF is not applicable. The following state-
ments characterize the introduced operators.6

Proposition 12. For a default theory T = (W,D) with unwarranted default
rules and a JTCS formula F it holds that

(a) If F is not a contradiction, then F is contained in each JTCS extension of
the theory T+

F .
(b) If F is not a contradiction and if ¬F is not contained in any JTCS extension

of T , then F is contained in each JTCS extension of the theory T×
F .

(c) If W is not inconsistent and if ¬F is contained in ThJTCS (W ), then F is
not contained in any JTCS extension of the theory T×

F .

3.2 Default Theory Contraction

How does an agent give up on some information, if the information is proven
to be unreliable? We will again differentiate between two strategies of giving
up on information or contracting default theories: one of them aims to remove a
6 Proving Proposition 12 is straightforward. Details are omitted due to space

limitations.



On the Dynamics of Structured Argumentation 233

formula from all extensions and another leaves the possibility that extensions still
contain the formula. One problem we face in removing a formula from all theory
extensions is that the base contraction of a set of facts is necessary, but not
sufficient to secure that the formula will not be reintroduced by the application
of a default rule. To illustrate the need for such operation, consider that changes
in information may cause that a certain source of justification t is denied its
reliability as a reason for some formula F .

To deal with this problem, we propose to put constraints on the application
of default rules. The aim of constraints on application is to prevent an unwanted
formula F to become a part of any default theory extension. Such “application-
constrained” default theories can be defined for any default theory for which the
closure of a set of facts W does not entail F :

Definition 13 (Application-Constrained Default Theory). For a finite
set of JTCS formulas W such that ¬F /∈ ThJTCS (W ), a countable set of default
rules D and a finite set of JTCS formulas C = W ∪ {F}, an application-
constrained default theory [F ]T is defined as a triple (W,D,C) such that:

In(Π) = ThJTCS (C ∪ {cons(δ) | δ occurs in Π}).

For any application-constrained default theory, the expansion operation ([F ]T )+G
and the conservative expansion operation ([F ]T )×

G are both defined analogously
to the corresponding default theory operations, with the following two convention
in effect. Firstly, if a formula F ∈ ThJTCS (W ∪ {G}), then ([F ]T )+G = ([∅]T )+G =
T+

G , where ([∅]T )+G is an application-constrained default theory for which C = W .
Secondly, if a formula ¬F ∈ ThJTCS (W ∪ {G}), then ([F ]T )+G = T+

G .
We first define a contraction operation that aims at removing a formula at

the level of a whole default theory. The operation corresponds to the action of
removing information when an agent is confident that the information is not
reliable. To achieve this in a default theory, a formula has to be removed from
the set of facts by a base contraction and its reintroduction should be prevented.
In the definition of contraction, remainder sets will be used: for any set of JTCS

formulas Γ and a formula F , the remainder set Γ ⊥F is defined as the set of
maximal subsets of Γ that do not entail F .

Definition 14 (Contraction). For a default theory T = (W,D) and a for-
mula F , the application-constrained theory [¬F ]T

−
F = (W−

F ,D ∪ D!F , C) is the
contraction of the default theory T by F , where

1. W−
F is the (full) meet contraction of the set W such that W−

F =
⋂

(W ⊥F ),
2. D!F = {δG | δG = � ::G

G for every G ∈ W \
⋂

(W ⊥F )} and
3. C = W−

F ∪ {¬F}.

Notice that an application-constrained default theory [¬F ]T
−
F is definable for any

theory T since, due to condition 1, the formula F cannot be an element of the
set ThJTCS (W−

F ).
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The combination of the constraint set C and the set of default rules D!F pro-
vides a balanced solution for avoiding extremely cautious and extremely incau-
tious behavior. Since the set of formulas W ⊥F usually contains many elements,
theory contraction operations need to include a procedure of selecting the for-
mulas that can be kept after contracting by F . It is difficult to define such
procedures in a principled and intuitively plausible way. In default theory con-
traction, we do not need to force selection by a function. Instead, the choice
of formulas selected upon contraction depends on the type of extension that is
being computed. For example, a JTCS preferred extension corresponds to the
idea of maxichoice contraction, while JTCS extension corresponds to the idea
of full meet contraction ([20], pp. 12–13).

Using again the two-leveled perspective on changing default theories, we can
define a more conservative way of giving up a belief. In conservative contraction,
agents are reluctant to entirely give up on some information, but the information
is no longer considered to be a fact. To relegate the status of a formula in such
a way within a default theory, the formula is removed from the set of facts and
then reintroduced through application of a supernormal default rule.

Definition 15 (Conservative Contraction). For a default theory T =
(W,D) and a formula F , T÷

F = (W−
F ,D ∪ D!F ) is the conservative contraction

of the default theory T by F , where

1. W−
F is the (full) meet contraction of the set W such that W−

F =
⋂

(W ⊥F )
and

2. D!F = {δG | δG = � ::G
G for every G ∈ W \

⋂
(W ⊥F )}.

Clearly, [¬F ]T
÷
F and [¬F ]T

−
F are defining the same application-constrained default

theory.
Conservative contraction is an open-ended operation in the sense that it

does not preclude the possibility of reintroducing a formula F in an extension
through a default rule application. Furthermore, it leaves open the possibility
that F occurs in all extensions of the resulting default theory.7 In ([4], p. 1149),
a different approach has been taken. Namely, that of securing that there is at
least one extension added that does not contain the formula removed from the
set of facts. In our view, it is unnecessary to have such an operation. If some
formula is not regarded to be a fact, but it is still plausible that the formula is
true, accepting it as the only available information might be the only reasonable
action. Instead of “forcing” an extension without the formula, conservative con-
traction enables the possibility of an extension without the formula. If there is
no support for the contrary statement whatsoever, an agent might still need to
hold on to the only available information. The following statement immediately
follows from conditions 1 and 3 of Definition 14.

7 Analogously, conservative expansion might not guarantee that there will be any
extension containing a formula F , after a default theory has been conservatively
expanded with F .
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Proposition 16. For a default theory T = (W,D) with unwarranted default
rules and a non-tautological JTCS formula F , it holds that F is not contained
in any JTCS extension of the theory [¬F ]T

−
F .

3.3 Default Theory Revision

The task of adding new information to the set of facts by the expansion oper-
ation (Definition 10) can lead to an inconsistent set of facts. A more realistic
dynamic operator for adding information needs to specify a process by which
an agent adds information inconsistent with W without being committed to an
inconsistent set of facts. One possible way is to only add information via the
conservative expansion operation (Definition 11), but this comes with an obvi-
ous flaw: an agent is not able to confidently replace an old, unreliable piece of
information with a new, reliable one. This is one of the motivations to define a
default theory revision operator that not only adds a formula, but also removes
inconsistent formulas at one of the two levels of the default theory.

A revision operation can be defined from a combination of the expansion and
contraction operations.8 In our approach, we will follow the traditional arrange-
ment of the operations ([20], p. 203), namely, removing formulas will precede
adding a formula. This kind of revision operations in which contraction is fol-
lowed by expansion are called “internal revision” operators and we define the
following four internal revision operators for each combination of the operations.

Definition 17 (Revision Operators). For a default theory T = (W,D) and
a formula F , (internal) revision operators for T are defined as follows:

1. T∓
F = ([F ]T

−
¬F )+F

2. T�
F = ([F ]T

−
¬F )×

F

3. T�
F = (T÷

¬F )+F
4. T �

F = (T÷
¬F )×

F

The variety of possible revision operators raises the question about what kinds
of revision strategies they represent.9

8 If we were to exhaust all possible combinations, eight revision operators could be
defined. Note that the revision operation symbols we use below reflect the compo-
sition of the introduced revision operations that are defined in terms of contraction
and expansion variants. The symbols are not intended to be in continuity with the
standard usage of revision operation symbols.

9 Note that the second output theory ([F ]T
−
¬F )×

F of Definition 17 is an application-
constrained default theory (([F ]T

−
¬F )+F is, by our convention, a default theory after

F has been added to the set of facts). The fact that ([F ]T
−
¬F )×

F is an application-
constrained theory might cause problems if we want to make our operators global,
rather than local, and enable iterated revision. A solution to this problem would be to
allow for iterated contraction and generalize the contraction operation to application-
constrained theories. This could be done if we allow that an application-constrained
theory [F ]T can be further constrained by a formula G. We leave the details of
developing iterated variants of the present operators for the future work.
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We can show that the four operations amount to two strategies. Again, as in
the cases of expansion and contraction, one strategy is meant to revise confidently
and the other strategy more conservatively. The key to show this is to prove that
the operations ∓, � and � give equivalent extensions in revising a default theory
with some formula F . This is the result stated in the (a) clause of Proposition 18.

Proposition 18. For a default theory T = (W,D) with unwarranted default
rules and a JTCS formula F , it holds that

(a) If F is not a contradiction, then F is contained in all JTCS extensions of
the theories T∓

F , T�
F and T�

F .
(b) If F is not a contradiction, then F is contained in at least one JTCS exten-

sion of the theory T �

F .
(c) If F is not a contradiction, then ¬F is not contained in all JTCS extensions

of T �

F .

Proof. To prove that (a) holds, consider the three revision operators ∓,� and �
and the resulting theories T∓

F , T�
F and T�

F . For the case of the default theory T∓
F ,

it follows from Proposition 16 that ¬F is not contained in any JTCS extension
of [F ]T

−
¬F . By Proposition 12 (a), F is contained in each JTCS extensions of

([F ]T
−
¬F )+F .

For the case of the default theory T�
F , it follows from Proposition 16 that ¬F

is not contained in any JTCS extension of [F ]T
−
¬F . Moreover, the constraint set

C contains the formula F , which means that the default rule � ::F
F is applicable

to any JTCS extension of the conservative expansion ([F ]T
−
¬F )×

F of the theory
[F ]T

−
¬F . Therefore, F is contained in each JTCS extensions of ([F ]T

−
¬F )×

F .
For the case of the default theory T�

F , consider that the base contraction of
W ensures that ¬F cannot be contained in the set of facts W−

¬F of the default
theory T÷

¬F , but ¬F can still be reintroduced by applying the defaults from D!¬F .
However, after expanding the theory T÷

¬F by F , the inclusion of the formula ¬F

into any JTCS extension of the theory T�
F is blocked and, by Proposition 12(a),

F is in contained each JTCS extensions of T�
F .

To prove that (b) holds, consider that the base contraction of W ensures that
¬F cannot be contained in the set of facts W−

¬F for the conservative contraction
T÷

¬F . This means that, for the conservative expansion (T÷
¬F )×

F , it holds that the
default rule � ::F

F is applicable to ThJTCS (W ) and, therefore, contained in at
least one JTCS extension of T �

F .
To prove (c), consider that after the base contraction of W by ¬F , JTCS

extensions of T÷
¬F are JTCS consistent. Since we also know that, after the con-

servative expansion (T÷
¬F )×

F , (b) holds, then (c) holds.
To show the equivalence of the operators ∓,� and �, we first say that for

any σ-extension, where

σ ∈ {JTCS admissible, JTCS complete, JTCS grounded, JTCS preferred, JTCS stable},
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σ(T ) is the set of all σ-extensions for a theory T . Then we prove that for any
default theory T , the default theories T∓

F , T�
F and T�

F realize the same set of
extensions under any JTCS extension-based semantics for default theories. The
following result is obtainable from Proposition 18(a) together with the fact that
none of the three operators ∓, � and � change the status of formulas that do
not take part in F -implying sets:

Theorem 19. For any default theory T = (W,D), a JTCS formula F and the
(internal) revision operators ∓, � and �, it holds that σ(T∓

F ) = σ(T�
F ) = σ(T�

F ).

Intuitively, the three operations represent a type of revision in which an agent
confidently includes new and possibly inconsistent information into all JTCS

extensions. Another option specified by the operator � is to accept the new
information in some extensions while maintaining the old information in other
extensions. The revision operators comply to the two-leveled view of default
semantics: the first three revision operators of Definition 17 fix the status of
a revision at the level of a default theory as a whole, while the last revision
operator targets at modifying only some extensions. Any of the three operations
T∓

F , T�
F and T�

F will be referred to as the Revision of T with F and the operation
T �

F will be referred to as the Conservative Revision of T with F .

3.4 The Notion of Undermining

Finally, we are now able to say in what way the dynamic operations connect to
the notion of undermining defeat. It was mentioned in the Introduction that by
undermining we understand the attack whereby argument premises are being
questioned. This intuition can now be cashed out by using those dynamic oper-
ators for default theories that involve contracting a default theory.

Definition 20 (Undermining). For a default theory T = (W,D) and a JTCS

formula F such that F ∈ W and F = pre(δ) for some δ ∈ D,F is undermined
iff W is contracted by F by applying any of the following operations to T :

1. [¬F ]T
−
F (Contraction)

2. T÷
F (Conservative Contraction)

3. T∓
G , T�

G or T�
G for JTCS inconsistent formulas F and G (Revision)

4. T �

G for JTCS inconsistent formulas F and G (Conservative Revision).

Notice that there is no requirement on the structure of F . However, each mean-
ingful undermining targets justification assertions because W cannot be success-
fully contracted by a tautology and justification assertions are the only other
type of formula occurring as a default prerequisite. Not every attack on the
premises results in confidently revising the set of facts. It is possible that under-
mining leaves an agent undecided as to whether newly acquired information or
older information should be prioritized.

Starting from the theory T1 defined in Sect. 2, we can give a formalized
undermining example from the beginning of this section to show the difference
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between inferential and non-inferential ways of information acquisition. Recall
that the agent started to reason from the information that Harry was born in
Bermuda. This piece of information is represented in the set of facts W with
the formula r : B, where r can now be taken to reflect the source of information
as, e.g., data from census records. However, if the information based on military
records says that Harry was born outside Bermuda, and having no means to
resolve this conflict of information, the theory T1 needs to be conservatively
revised. The theory T �

1v:¬B
is the revision of T1 with the formula v : ¬B, where

v reflects the new source of information for the claim that Harry was not born
in Bermuda.

To see this revision in more detail, recall that the theory T1 = (W,D) con-
sisted of the set of facts W = {r : B, t : P} and the set of defaults D = {δ1, δ2}.
The first dynamic operation in revising with v : ¬B is contracting the theory
by ¬v : ¬B. The resulting theory T÷

1¬v:¬B
= (W−

¬v:¬B,D ∪ D!¬v:¬B) consists of
the set of facts W−

¬v:¬B = {t : P} and the set of defaults D extended with the
default δr:B = � :: r:B

r:B .
Finally, the agent conservatively expands the theory T÷

1¬v:¬B
with the infor-

mation that Harry was not born in Bermuda. The new default theory is defined
as T �

1v:¬B
= (T÷

1¬v:¬B
)×
v:¬B. The change of the theory after conservative expan-

sion with v : ¬B amounts to adding the new default rule δv:¬B = � :: v:¬B
v:¬B , which

means that the new set of defaults is D ∪ D!¬v:¬B ∪ {δv:¬B}. The revised theory
T �

1v:¬B
changes the default processes in which the agent reasons about Harry’s

nationality and, eventually, changes the structure of acceptable reasons by chang-
ing the way in which JTCS extensions are computed.

4 Related Work and Conclusions

As mentioned in the Introduction, our approach to structured argumentation
dynamics builds on similar ideas as the approach to the dynamics of standard
default theories from [4]. Antoniou’s approach significantly differs from ours
in the way he treats those changes that add or remove a formula at the level
of some, but not necessarily all extensions. Unlike our conservative expansion
and conservative contraction, none of Antoniou’s operations leaves the inclusion
status of a formula undecided. For instance, to secure that a formula is not
contained in at least one extension, Antoniou ([4], p. 1149) adds a new extension
where introducing the formula is blocked by adding either a new atom or its
negation to any default, dependent on whether they are allowed to be in a same
extension or not.

Some approaches to default reasoning such as [23] and [24] represent the
idea of defaults in dynamic epistemic logic. The main focus of [23] is to embed
supernormal defaults in a multi-agent modal logic with knowledge, belief and
update modalities. The authors show that Reiter’s extensions can be represented
as a result of consecutive jump actions to default conclusions, but they do not
focus on how such extensions are revised due to information changes. In [24], a
preference modality is introduced to differ between known and (provisionally)
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preferred information. A non-monotonic belief revision component consists in
changing preferences as a result of obtaining knowledge.

Baltag, Renne and Smets [7,8] and Renne [32] define extensions of justifica-
tion logic in which agents may acquire new information that defeats the reasons
they accepted. The logics combine belief revision and dynamic epistemic logic
techniques to model a kind of defeat that seems to correspond to undermining.
However, each of the logics assumes prioritizing new information and none of
these logics is able to model undercut and rebuttal. Even so, approaches based
on dynamic epistemic logic are attractive because they open up a possibility of
developing a multi-agent justification logic with defeaters.

We indicated in the Introduction that the work in the area of the dynam-
ics of argumentation frameworks without argument structures is already well-
developed. Among the approaches, it is worth mentioning those that follow the
belief revision methods applied to Dung’s frameworks such as [9] and [12]. In
[9], the authors start from a labelling approach to Dung’s frameworks and con-
straints on a framework’s output. Their focus is on finding the best way to
recover a rational output given a framework and a constraint on its output. For
this, they use ordering of conflict-free labellings in a way that the most rational
conflict-free labelling is chosen when none of complete labellings respects the
constraint. In the work by [12], we find two kinds of revision operators. One of
them revises a Dung framework by taking a propositional formula as a means to
represent the new information, while the other operation revises an input frame-
work by information in the form of another framework. Both operations give a
single output framework respecting a particular type of rankings on extensions.

Finally, our paper contributes to the study of non-prioritized belief revision
operations, that is, such operations for which the new information has no special
priority due to its novelty [19]. The way in which our operators are defined
meaningfully combines resources from both belief revision and default logic.
The relation between belief revision and non-monotonic reasoning has long been
a matter of discussion [18] among AI researchers. Although it was not our aim
to discuss the relation between modeling reasoning with incomplete information
in default theories and modeling reasoning with changing information in belief
revision, we showed that our justification logic creates a useful junction for the
two approaches.

As a result of connecting the two reasoning paradigms, the logic presented
here, we can model both plausible and defeasible reasoning. According to [31],
“argumentation models of plausible reasoning locate all fallibility of an argument
in its premises, while argumentation models of defeasible reasoning locate all
fallibility in its defeasible inferences”. To the best of our knowledge, the system
presented here is the first logic to combine the two approaches by modeling all
the standard notions of defeat in AI: rebuttal, undercut and undermining.
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