
Andreas Herzig
Juha Kontinen (Eds.)

LN
CS

 1
20

12

11th International Symposium, FoIKS 2020
Dortmund, Germany, February 17–21, 2020
Proceedings

Foundations
of Information and
Knowledge Systems

Lecture Notes in Computer Science 12012

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Andreas Herzig • Juha Kontinen (Eds.)

Foundations
of Information and
Knowledge Systems
11th International Symposium, FoIKS 2020
Dortmund, Germany, February 17–21, 2020
Proceedings

123

Editors
Andreas Herzig
CNRS, University of Toulouse
Toulouse, France

Juha Kontinen
University of Helsinki
Helsinki, Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-39950-4 ISBN 978-3-030-39951-1 (eBook)
https://doi.org/10.1007/978-3-030-39951-1

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-0833-2782
https://orcid.org/0000-0003-0115-5154
https://doi.org/10.1007/978-3-030-39951-1

Preface

These proceedings contain the papers selected for presentation at the 11th International
Symposium on Foundations of Information and Knowledge Systems (FoIKS 2020).
The symposium was held during February 17–21, 2020, at the TU Dortmund
University, Germany.

The FoIKS symposia provide a biennial forum for presenting and discussing the-
oretical and applied research on information and knowledge systems. The goal is to
bring together researchers with an interest in this subject, share research experiences,
promote collaboration, and identify new issues and directions for future research.
Previous FoIKS meetings were organized in Schloss Salzau (Germany, 2002), Vienna
(Austria, 2004), Budapest (Hungary, 2006), Pisa (Italy, 2008), Sofia (Bulgaria, 2010),
Kiel (Germany, 2012), Bordeaux (France, 2014), Linz (Austria, 2016), and Budapest
(Hungary, 2018).

The call for papers solicited original contributions dealing with any foundational
aspect of information and knowledge systems, including submissions that apply ideas,
theories, or methods from specific disciplines to information and knowledge systems.
Examples of such disciplines are discrete mathematics, logic and algebra, model the-
ory, information theory, complexity theory, algorithmics and computation, statistics,
and optimization.

The FoIKS symposia are traditionally a forum for intense discussions where
speakers are given sufficient time to present their ideas and results within the larger
context of their research; furthermore, participants are asked to prepare a first response
to another contribution in order to initiate discussion.

FoIKS 2020 received 33 paper submissions, which were evaluated by the Program
Committee on the basis of their significance, novelty, technical soundness, and
appropriateness for the FoIKS audience. Each paper was subjected to three reviews
(only two in one case). In the end, 19 papers were selected for presentation at the
symposium and publication in the proceedings.

We were delighted to have four outstanding keynote speakers. The abstracts of their
talks were included in this volume:

– Jan Van den Bussche: “First-Order Logic of Information Flows: Expressibility,
Primitivity, Input-Output Properties, and Limited Access Patterns”

– Bernhard Nebel: “Implicit Coordination of Mobile Agents”
– Klaus-Dieter Schewe: “Computation on Structures: Behavioural Theory, Logic and

Complexity”
– Anni-Yasmin Turhan: “Description Logics for Typicality and Nonmonotonic

Reasoning”

We would like to thank all the people who contributed to make FoIKS 2020 a
success. In particular, we thank the invited speakers for their inspirational talks, the
authors for providing their high-quality submissions, revising and presenting their

work, and all the attendees for contributing to the symposium discussion. We thank the
Program Committee and the external reviewers for their prompt, careful reviewing and
discussion of the submissions on a quite tight schedule.

We extend our thanks to the Local Organizing Committee chaired by Gabriele
Kern-Isberner and Christoph Beierle. We gratefully acknowledge the support of FoIKS
2020 by the TU Dortmund University, the FernUniversität in Hagen (University of
Hagen), and the European Association for Theoretical Computer Science (EATCS).
Finally, we are grateful to EasyChair for allowing us to use their excellent conference
management system.

February 2020 Andreas Herzig
Juha Kontinen

vi Preface

Organization

Program Chairs

Andreas Herzig CNRS, IRIT, University of Toulouse, France
Juha Kontinen University of Helsinki, Finland

Program Committee

Yamine Ait Ameur IRIT/INPT-ENSEEIHT, France
Alessandro Artale Free University of Bolzano-Bozen, Italy
Kim Bauters University of Bristol, UK
Christoph Beierle FernUniversität in Hagen, Germany
Leopoldo Bertossi Relational AI Inc. and Carleton University, Canada
Philippe Besnard CNRS, IRIT, University of Toulouse, France
Nicole Bidoit LRI, Universitè de Paris, France
Meghyn Bienvenu CNRS, LaBRI, University of Bordeaux, France
Joachim Biskup Technische Universität Dortmund, Germany
Elena Botoeva Imperial College London, UK
Arina Britz CAIR, Stellenbosch University, South Africa
Dragan Doder University of Belgrade, Serbia
Thomas Eiter Vienna University of Technology, Austria
Christian Fermüller Vienna University of Technology, Austria
Flavio Ferrarotti Software Competence Centre Hagenberg, Austria
Nina Gierasimczuk Technical University of Denmark, Denmark
Dirk Van Gucht Indiana University Bloomington, USA
Marc Gyssens Universiteit Hasselt, Belgium
Andreas Herzig CNRS, IRIT, University of Toulouse, France
Tomi Janhunen Tampere University, Finland
Matti Järvisalo University of Helsinki, Finland
Gabriele Kern-Isberner Technische Universität Dortmund, Germany
Attila Kiss Eötvös Loránd University, Hungary
Juha Kontinen University of Helsinki, Finland
Markus Krötzsch TU Dresden, Germany
Antti Kuusisto Tampere University, Finland
Sebastian Link The University of Auckland, New Zealand
Thomas Lukasiewicz University of Oxford, UK
Alessandra Palmigiano Technical University of Delft, The Netherlands
Sebastian Rudolph TU Dresden, Germany
Attila Sali Alfréd Rényi Institute of Mathematics, Hungary
Klaus-Dieter Schewe Zhejiang University, China
Steven Schockaert Cardiff University, UK
Kostyantyn Shchekotykhin Universität Klagenfurt, Austria

Guillermo R. Simari Universidad del Sur, Argentina
Bernhard Thalheim Christian-Albrechts-Universität zu Kiel, Germany
Alex Thomo University of Victoria, Canada
Mirek Truszczynski University of Kentucky, USA
José Turull-Torres Universidad Nacional de La Matanza, Argentina
Ivan Varzinczak CNRS, University of Artois, France
Jonni Virtema Universiteit Hasselt, Belgium
Qing Wang The Australian National University, Australia
Stefan Woltran Vienna University of Technology, Austria

Additional Reviewers

Sabine Frittella
Aurona Gerber
Adrian Haret
Rafael Kiesel
Timo Lang
Andrea Mazzullo
Vladislav Ryzhikov

Local Organizing Chairs

Gabriele Kern-Isberner Technische Universität Dortmund, Germany
Christoph Beierle University of Hagen, Germany

Local Organizing Team

Kai Sauerwald
Marco Wilhelm

viii Organization

Abstracts of Invited Talks

First-Order Logic of Information Flows:
Expressibility, Primitivity, Input-Output
Properties, and Limited Access Patterns

Jan Van den Bussche

Universiteit Hasselt, Belgium
jan.vandenbussche@uhasselt.be

Abstract. The logic of information flows has been proposed by Ternovska as a
general framework in the field of knowledge representation. The general aim of
LIF is to model how information propagates in complex systems. In this work,
we focus on the first-order (FO) version of LIF. Unique to LIF is the dynamic
semantics which relates input assignments to output assignments. We formulate
semantic definitions of input and output variables of a LIF expression. These
semantic definitions are then approximated by syntactic definitions. The
expressive power of LIF is compared to that of FO logic, and bounded-variable
fragments of FO. In this setting, we investigate the primitivity of the compo-
sition operator in LIF. We also introduce the “forward” fragment of LIF and
show how it can offer a fresh, navigational perspective on querying information
sources with limited access patterns.

This is joint work with Evgenia Ternovska (Simon Fraser University), Bart
Bogaerts (Vrije Universiteit Brussel), and Heba Aamer and Dimitri Surinx
(Universiteit Hasselt).

Short Biography. Jan Van den Bussche is professor of databases and theoretical
computer science at Hasselt University in Belgium. He received his PhD from the
University of Antwerp in 1993, under the supervision of Jan Paredaens. He served as
PC chair, and chair of the council, for the International Conference on Database
Theory, and also as PC chair, and chair of the Executive Committee, for the ACM
Symposium on Principles of Database Systems. His main research interest is in data
models and query languages for a wide variety of data applications, ranging from
spatial data to data stored in DNA. Most recently he is leading a work package on
distributed data intelligence within the context of the Artificial Intelligence Research
Flanders initiative.

Implicit Coordination of Mobile Agents

Bernhard Nebel

Institut für Informatik, Albert-Ludwigs-Universität Freiburg, Germany
nebel@informatik.uni-freiburg.de

Abstract. In multi-agent path finding (MAPF), it is usually assumed that
planning is performed centrally and that the destinations of the agents are
common knowledge. We will drop both assumptions and analyze under which
conditions it can be guaranteed that the agents reach their respective destinations
using implicitly coordinated plans without communication. Furthermore, we
will analyze what the computational costs associated with such a coordination
regime are. As it turns out, guarantees can be given assuming that the agents are
of a certain type. However, the implied computational costs are quite severe.
The plan existence problem becomes PSPACE-complete, while the original
MAPF plan existence problem is in P. This clearly demonstrates the value of
communicating about plans before execution starts.

Short Biography. Bernhard Nebel received his first degree in Computer Science
(Dipl.-Inform.) from the University of Hamburg and his PhD (Dr. rer. nat.) from the
University of Saarland in 1989. Between 1982 and 1993 he worked on different AI
projects at the University of Hamburg, the Technical University of Berlin, ISI/USC,
IBM Germany, and the German Research Center for AI (DFKI). From 1993 to 1996 he
held an associate professor position at the University of Ulm. Since 1996, he has been a
professor at Albert-Ludwigs-Universität Freiburg and head of the research group on
Foundations of Artificial Intelligence. Bernhard Nebel is an EurAI and AAAI fellow
and member of the Leopoldina. His research interests are knowledge representation,
planning, and the application of methods from these areas in robotic contexts.

Computation on Structures: Behavioural
Theory, Logic and Complexity

Klaus-Dieter Schewe

UIUC Institute, Zhejiang University, China
kd.schewe@intl.zju.edu.cn

kdschewe@acm.org

Abstract. Database theory is closely linked to finite model theory. Each rela-
tional database defines a finite relational structure, and queries as well as
database transformations are computations on these structures. Furthermore,
descriptive complexity theory provides many links between the expressiveness
of logics concerning queries and common space/time complexity classes.
Examples are the celebrated results by Fagin concerning the capture of NP by
existential second-order logic and by Immerman/Vardi concerning the capture
of PTIME by first-order logic plus inflationary fixed-point over ordered
structures.

Another related development is provided by behavioural theories of classes
of algorithms and proofs that these are captured by variants of abstract state
machines, which operate on isomorphism classes of structures. Such theories
with purely logical definitions of classes of computations of interest have been
developed for sequential, parallel, concurrent, and reflective algorithms.

Therefore, we will argue for a shift of paradigm making computations on
structures as provided by abstract state machines the standard model of com-
putation with the advantage that computations on arbitrary levels of abstraction
are enabled. Behavioural theories provide the means for logical characterisation
of classes of computations, and also the logical characterisation of complexity in
connection with the capture of complexity classes by specific classes of abstract
state machines seems possible and adequate. We will provide evidence for the
rationale of this shift.

Short Biography. Klaus-Dieter Schewe studied mathematics and computer science at
the University of Bonn, Germany. Originally he worked in group representation theory,
which was also the field of his PhD. After some years in industry he returned to
academia working in software engineering, knowledge representation, database theory,
and rigorous methods, bringing these diverse fields together. His particular interest is
on mathematical and logical foundations, semantics, and expressiveness. He investi-
gated methods for consistency enforcement, contributed to many results in dependency
theory for complex-value databases (together with Sali, Link, and Hartmann), devel-
oped a thorough methodology for the design and development of web information
systems (together with Thalheim), created a client-centric middleware for cloud
computing (together with Bosa and others), and developed a theory of knowledge
patterns for entity resolution (together with Qing Wang). He developed behavioural
theories for unbounded parallel and reflective algorithms (together with Ferrarotti,

Wang, and Tec) and for concurrent systems (together with Börger), with which he
contributed to the foundations of rigorous methods. Recently, he linked this research to
descriptive complexity theory. He graduated in Pure Mathematics at University of
Bonn, received a PhD in 1985 from University of Bonn in Mathematics, and later in
1995 received his DSc from Brandenburg Technical University in Theoretical Com-
puter Science. He was Chair of Information Systems at Massey University, Director
of the Information Science Research Centre in New Zealand, and Scientific Director
of the Software Competence Center Hagenberg in Austria. In September 2019, he
joined the University of Illinois at Urbana Champaign and the Institute of Zhejiang
University at the International Campus in Haining, China.

xiv K.-D. Schewe

Description Logics for Typicality
and Nonmonotonic Reasoning

Anni-Yasmin Turhan

Institute for Theoretical Computer Science,
Technische Universität Dresden, Germany

anni-yasmin.turhan@tu-dresden.de

Abstract. Description Logics (DLs) are an intensively studied class of logics
tailored towards building ontologies. Most DLs are decidable fragments of
first-order logic. A DL knowledge base consists of two parts: the terminological
part that captures the concepts of the application at hand by means of concept
axioms and of the assertional part that captures the data from the application. In
practical applications where exceptions occur frequently, such as biology or
medicine, classical, monotone reasoning is often undesirable. Likewise, for
applications where data may be erroneous and causes inconsistencies with
respect to the DL terminology, monotonic reasoning is unsuitable. An approach
to achieve nonmonotonic behaviour of DLs is to employ defeasible description
logics, which admit the use of defeasible concept axioms. During reasoning
these axioms can be omitted for those instances that otherwise would cause an
inconsistency. Defeasible DLs can also be employed to model typicality.
Instances that fulfill more defeasible axioms are simply regarded more typical
than others.

Over the last decade a whole range of defeasible DLs has been proposed in
the literature. The proposals have very different strengths and weaknesses and
can be rather hard to compare with each other—in particular, as the semantics
are often given in a procedural way.

In this talk I introduce defeasible DLs and demonstrate different approaches
to reasoning in these DLs. I discuss our recent approach for the defeasible
Description Logic EL? that has model-theoretic semantics and remedies some
of the severe shortcomings of earlier approaches. We also investigate the
complexity of reasoning in this defeasible DL in different settings.

Short Biography. Anni-Yasmin Turhan is an assistant professor at the Institute of
Theoretical Computer Science of Dresden University of Technology. Having obtained
her Diploma in Computer Science from the University of Hamburg, she started her
scientific career in a research project dedicated to non-standard inferences in
Description Logics (DLs). She received her doctoral (2008) and habilitation degree
(2014) from TU Dresden. Her research interests are rooted in the fields of artificial
intelligence (AI) and theoretical computer science and are dedicated to knowledge
representation and reasoning. She has been a Program Committee member for many
conferences in the fields of knowledge representation and reasoning, Semantic Web,
and AI. In her research she studied inferences that can be employed to build and

maintain DL knowledge bases. Her recent research projects are dedicated to situation
recognition by DL reasoning, reasoning using similarity, and reasoning under non-
monotonic semantics.

xvi A.-Y. Turhan

Contents

Functional Dependencies in Incomplete Databases with Limited Domains . . . 1
Munqath Alattar and Attila Sali

Normal Forms of Conditional Knowledge Bases Respecting Entailments
and Renamings . 22

Christoph Beierle and Jonas Haldimann

On Matrices and K-Relations . 42
Robert Brijder, Marc Gyssens, and Jan Van den Bussche

Social Consolidations: Rational Belief in a Many-Valued Logic
of Evidence and Peerhood . 58

Yuri David Santos

ASPARTIX-V19 - An Answer-Set Programming Based System
for Abstract Argumentation . 79

Wolfgang Dvořák, Anna Rapberger, Johannes P. Wallner,
and Stefan Woltran

Proper Hierarchies in Polylogarithmic Time and Absence
of Complete Problems . 90

Flavio Ferrarotti, Senén González, Klaus-Dieter Schewe,
and José María Turull-Torres

Diversity, Dependence and Independence . 106
Pietro Galliani and Jouko Väänänen

Towards Probabilistic Reasoning in Type Theory - The Intersection
Type Case . 122

Silvia Ghilezan, Jelena Ivetić, Simona Kašterović, Zoran Ognjanović,
and Nenad Savić

Measuring Inconsistency in a General Information Space 140
John Grant and Francesco Parisi

Parameterised Complexity of Model Checking and Satisfiability
in Propositional Dependence Logic . 157

Yasir Mahmood and Arne Meier

Utilizing Deep Learning and RDF to Predict Heart
Transplantation Survival. 175

Dennis Medved, Johan Nilsson, and Pierre Nugues

Game Description Logic with Integers: A GDL Numerical Extension 191
Munyque Mittelmann and Laurent Perrussel

Craig Interpolation of Epistemic Logics with Distributed Knowledge. 211
Ryo Murai and Katsuhiko Sano

On the Dynamics of Structured Argumentation: Modeling Changes
in Default Justification Logic . 222

Stipe Pandžić

Logic-Based Approach to Incremental Monitoring and Optimization
on Strongly Distributed Data Streams . 242

Elena V. Ravve

Realisability of Choreographies. 263
Klaus-Dieter Schewe, Yamine Aït-Ameur, and Sarah Benyagoub

Schema Optimisation Instead of (Local) Normalisation 281
Bernhard Thalheim

Strongly Minimal MapReduce Algorithms: A TeraSort Case Study 301
Daniel Xia, Michael Simpson, Venkatesh Srinivasan, and Alex Thomo

Event Sequence Interpretation of Structural Geomodels:
A Knowledge-Based Approach for Extracting Tectonic Sequences 318

Xianglin Zhan, Cai Lu, and Guangmin Hu

Author Index . 335

xviii Contents

Functional Dependencies in Incomplete
Databases with Limited Domains

Munqath Alattar1 and Attila Sali1,2(B)

1 Department of Computer Science and Information Theory,
Budapest University of Technology and Economics, Budapest, Hungary

m.attar@cs.bme.hu
2 Alfréd Rényi Institute of Mathematics, Budapest, Hungary

sali.attila@renyi.hu

Abstract. Missing data value is an extensive problem in both research
and industrial developers. Two general approaches are there to deal with
the problem of missing values in databases, they either could be ignored
(removed) or imputed (filled in) with new values [9]. In the present paper,
we use the second method. Possible worlds were introduced in [14,16]
and possible and certain keys, as well as weak and strong functional
dependencies were studied. We introduced the intermediate concept of
strongly possible worlds that are obtained by imputing values already
existing in the table in a preceding paper. This results in strongly possible
keys and strongly possible functional dependencies. We give a polynomial
algorithm to verify a single spKey, and show that in general, it is NP-
complete to verify an arbitrary collection of spKeys. We give a graph
theoretical characterization of the validity of a given spFD X →sp Y .
We analyze which weak/strong functional dependency axioms remain
sound for strongly possible functional dependencies and give appropriate
modifications of the not sound ones.

Keywords: Strongly possible functional dependencies · NULL values ·
Armstrong tables · Data imputation · Matchings in bipartite graphs ·
List coloring

1 Introduction

Many systems today allow entering incomplete tuples into a database. For exam-
ple, in case of data warehousing, if different sources of raw data are merged,
some attributes may exist in some of the sources while not available in some of
the others. This makes it necessary to treat keys over incomplete tables. It is

Research of the second author was partially supported by the National Research, Devel-
opment and Innovation Office (NKFIH) grant K–116769. This work is also connected to
the scientific program of the “Development of quality-oriented and harmonized R+D+I
strategy and functional model at BME” project, supported by the New Hungary Devel-
opment Plan (Project ID: TMOP-4.2.1/B-09/1/KMR-2010-0002).

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 1–21, 2020.
https://doi.org/10.1007/978-3-030-39951-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_1

2 M. Alattar and A. Sali

common to encounter databases having up to half of the entries missing, making
it very difficult to mine them using data analysis methods that can work only
with complete data [10].

There are different reasons why incompleteness occurs in database tables.
Date [7] determined more than one kind of missing data and identified seven
distinct types of null as follows: value not applicable, value unknown, value does
not exist, value undefined, value not valid, value not supplied, and value is the
empty set. The present paper deals with data consumption with missing values
in a database table, we take the second, third, and seventh types. For the other
types of missing data we assume that symbol N/A belongs to each domain, and
we treat it as regular domain element in comparisons.

The issue of missing values complicates data analysis for the analysts. Other
problems are usually associated with missing values such as loss of data efficiency
and effectiveness [9]. Although some methods of data analysis may overcome the
missing value problem, many others require complete databases. Two general
approaches are there to deal with the problem of missing values in databases,
incomplete tuples either could be ignored (removed) or imputed (filled in) with
new values [9].

Köhler et al. [14] used possible worlds by replacing each occurrence of a null
with a value from the corresponding attribute’s (possibly infinite) domain. Each
possible world is considered as a table of total tuples that may contain duplicated
tuples. They defined a possible key as a key that is satisfied by some possible
world of a non total database table and a certain key as a key that is satisfied by
every possible world of the table. For example, Fig. 1a has some possible world
that satisfies the possible key {Course Name} while there is no possible world of
the table that satisfies key {Lecturer} and, furthermore, every possible world of
the table satisfies the certain key {Course Name, Y ear, Semester}. Also, weak
functional dependencies were defined as FD’s that are satisfied by some possible
world and strong functional dependencies are satisfied by each possible world.

In many cases we have no proper reason to assume the existence of any other
attribute value than the ones already existing in the table. Such examples could
be types of cars, diagnoses of patients, applied medications, dates of exams,
course descriptions, etc. We define a strongly possible world as a possible world
that is obtained by replacing each occurrence of null value from the correspond-
ing attribute’s existing values. This is a data mining type approach, our idea
is that we are given a raw table with nulls and we would like to identify pos-
sible key sets and functional dependencies based on the data only. A strongly
possible key is some key satisfied by a strongly possible world and similarly,
a strongly possible functional dependency is an FD satisfied by some strongly
possible world. Set of the values that are already shown in each attribute of a
table represent the part of that attribute’s domain which is certain. For the cases
of incomplete databases with unknown domain values, choosing values that are
not in the real attribute domain may distort the data. For example, the clients’
information table bellow, it could be inappropriate to use any other value than
the ones appearing in the marriage status attribute to fill the ⊥ in the second

FD’s with Nulls and Bounded Domains 3

Name gender mrg status age

⊥ female married 32

Sarah female ⊥ ⊥
David ⊥ divorced 38

James male single ⊥
⊥ male widower 47

(a) Incomplete Table

Name gender mrg status age

30 female married 32

Sarah female lawyer high

David Apple divorced 38

James male single -12

operation male widower 47

(b) Possible World

Name gender mrg status age

David female married 32

Sarah female single 32

David male divorced 38

James male single 38

James male widower 47

(c) Strongly Possible World

Fig. 1. Possible and strongly possible worlds

row. Otherwise, some other values like numbers, symbols, or any other strings
with distant meanings cause the distortion. So, using one of the already shown
values in the attribute provides more meaningful and semantically acceptable
possible (strongly possible) world, as the one in Fig. 1c is preferred to the one in
Fig. 1b.

The present paper continues the work started in [2]. There properties of
strongly possible keys were analyzed and a (worst case exponential time) algo-
rithm was given for verifying a single spKey. Here we give a polynomial time
solution for the same problem and show that verifying an arbitrary system of
strongly possible keys is NP-complete. Then we turn to spFD’s and give a graph
theoretical characterization when spFD X →sp Y holds in an SQL table T con-
taining NULL’s. Then we analyze several rules/axioms of weak and strong func-
tional dependencies whether they are sound for spFD’s, as well. For those which
are not, we give several possible weakenings or restrictions that keep soundness.

The paper is organized as follows. Section 2 contains the necessary definitions,
Sect. 3 discusses related work. Section 4 deals with the complexity of verifying
strongly possible keys. Section 5 studies strongly possible functional dependen-
cies. Finally, Sect. 6 contains concluding remarks and future research directions.

2 Basic Definitions

We start with summarizing some basic definitions and terminologies. Let R =
{A1, A2, . . . An} be a relation schema. The set of all the possible values for each
attribute Ai ∈ R is called the domain of Ai and denoted as Di = dom(Ai) for
i = 1, 2, . . . n. For X ⊆ R then DX =

∏

∀Ai∈K

Di.

4 M. Alattar and A. Sali

An instance T = (t1, t2, . . . ts) over R is a list of tuples that each tuple is a
function t : R → ⋃

Ai∈R dom(Ai) and t[Ai] ∈ dom(Ai) for all Ai in R. By taking
a list of tuples we use the bag semantics that allows several occurrences of the
same tuple. For a tuple tr ∈ T and X ⊂ R, let tr[X] be the restriction of tr
to X.

It is assumed that ⊥ is an element of each attribute’s domain that denotes
missing information. tr is called V -total for a set V of attributes if tr[A] �=
⊥, ∀A ∈ V . Also a tuple tr is a total tuple if it is a R-total. t1 and t2 are
weakly similar on X ⊆ R denoted as t1[X] ∼w t2[X] defined by Köhler et al.
[14] if:

∀A ∈ X (t1[A] = t2[A] or t1[A] = ⊥ or t2[A] = ⊥).

Furthermore, t1 and t2 are strongly similar on X ⊆ T denoted by t1[X] ∼s

t2[X] if:
∀A ∈ X (t1[A] = t2[A] �= ⊥).

For the sake of convenience we write t1 ∼w t2 if t1 and t2 are weakly similar on R
and use the same convenience for strong similarity. Let T = (t1, t2, . . . ts) a table
instance over R. T ′ = (t′1, t

′
2, . . . t

′
s) is a possible world of T , if ti ∼w t′i for all

i = 1, 2, . . . s and T ′ is completely NULL-free. That is, we replace the occurrences
of ⊥ = t[Ai] with a value from the domain Di different from ⊥ for all tuples and
all attributes.

Weak functional dependency X →w Y holds in T if there exists a possible
world T ′ such that T ′ |= X → Y in the classical sense, that is functional depen-
dency X → Y holds in T ′ meaning that if t′i[X] = t′j [X] then t′i[Y] = t′j [Y] is
satisfied, for all pairs of tuples t′i, t

′
j ∈ T ′.

Strong functional dependency X →s Y holds in T if functional dependency
X → Y holds in all possible worlds T ′ of T . If X →w R holds in T then X is a
possible key and if X →s R holds in T , then X is a certain key. The following
was proven in [14].

Theorem 2.1. X ⊆ R is a certain (possible) key iff ∀t1, t2 ∈ T : t1[X] �∼w

t2[X] (t1[X] �∼s t2[X]).

2.1 Strongly Possible Worlds

The concept of strongly possible world was introduced in [2].

Definition 2.1. The visible domain of an attribute Ai (V Di) is the set of all
distinct values except ⊥ that are already used by tuples in T :

V Di = {t[Ai] : t ∈ T} \ {⊥} for Ai ∈ R

Then the V D1 in Fig. 2a is {Mathematics, Datamining}. The term visible domain
refers to the data that already exist in a given dataset. For example, if we have a
dataset with no information about the attributes’ domains definitions, then we
use the data itself to define their own structure and domains. This may provide

FD’s with Nulls and Bounded Domains 5

Course Name Year Lecturer Credits Semester

Mathematics 2019 ⊥ 5 1

Datamining 2018 Sarah 7 ⊥
⊥ 2019 Sarah ⊥ 2

(a) Incomplete Dataset

Course Name Year Lecturer Credits Semester

Mathematics 2019 Sarah 5 1

Datamining 2018 Sarah 7 2

Datamining 2019 Sarah 7 2

(b) Complete Dataset

Fig. 2. Complete and incomplete datasets

more realistic results when extracting the relationship between data so it is more
reliable to consider only what information we have in a given dataset.

While a possible world is obtained by using the domain values instead of the
occurrence of NULL, a strongly possible world is obtained by using the visible
domain values.

Definition 2.2. A possible world T ′ of T is called strongly possible world if
t′[Ai] ∈ V Di for all t′ ∈ T ′ and Ai ∈ R.

Strongly possible worlds allow us to define strongly possible keys and
strongly possible functional dependencies (spFD’s).

Definition 2.3. Strongly possible functional dependency X →sp Y holds in
table T over schema R if there exists a strongly possible world T ′ of T such
that T ′ |= X → Y . X is a strongly possible key, if there exists a strongly possible
world T ′ of T such that X is a key in T ′, in notation sp〈X〉. Note that this is
not equivalent with spFD X →sp R, since we use the bag semantics.

For example, {Course Name, Year} is a strongly possible key of the table in
Fig. 2a as the strongly possible world in Fig. 2b shows it.

2.2 NULL-Free Subschema

The NULL-free subschema (NFS) of a schema R is a subset RS ⊆ R. This cor-
responds to SQL’s NOT NULL constraint. A table T over R satisfies NFS RS , if
it is RS-total, that is every tuple t ∈ T is RS-total, i.e. ∀A ∈ RS : t[A] �= ⊥.
If T satisfies NFS RS , then we say T is over (R,Rs). Also, if Σ is a set of
integrity constraints (for example spFD’s) then a table T over (R,Rs) is an
Armstrong instance of Σ if

6 M. Alattar and A. Sali

(1) T |= σ iff Σ |= σ for any constraint σ, and
(2) For any attribute A ∈ R \ RS there is a tuple t ∈ T such that t[A] = ⊥.

This is the classical definition of Armstrong instance extended with the require-
ment that if an attribute is not in the NULL-free subschema, then it indeed
contains NULL’s.

3 Related Work

Keys and functional dependencies are important constraints that enforce the
semantics of relational database systems. Database tables of real database sys-
tems usually contain occurrences of null values and for some cases this includes
candidate key columns. Various studies have been done for the purpose of han-
dling missing values.

Sree Dhevi [4] shows that it is necessary to impute the missing values based
on other information in the dataset to overcome the biased results that affect
the accuracy of classification generated by missing values. Similarly, we use the
attribute’s existing values for each null in that attribute. Cheng et al. [6] utilize
clustering algorithms to cluster data, and calculate coefficient values between
different attributes by generating minimum average error.

Farhangfar et al. introduced a framework of imputation methods in [9] and
evaluates how the choice of different imputation methods affects the performance
in [10]. Experimental analyses of several algorithms for imputation of missing
values were performed by [1,5,8,12] An approach introduced by Zhang et al. [21]
discusses and compares several strategies that utilize only known values.

Interactions of functional dependencies and other integrity constraints with
null values have long been investigated. Early studies concentrated on “fixing”
the database using the Chase procedure, such as Grahne did in [11]. Imlienski
and Lipski [13] also studied the properties of Chase with respect to NULL’s.

The two main interpretations of NULL’s are “value unknown at present” and
“no information”. The first one leads to possible world semantics that is NULL’s
are replaced by domain values to obtain total tables. Vassilou [19] gave a three-
valued model of FD satisfaction, namely all possible words of a table T are
considered and a functional dependency either holds, does not hold or may hold
on T . This latter means that in some possible worlds it holds, and in some other
ones it does not hold. Levene and Loizou defined weak and strong functional
dependencies based on possible world semantics. A weak FD holds in some of
the possible worlds and a strong FD holds in all possible worlds. They gave a
sound and complete axiom system for them in [16].

The “no information” approach unifies the treatment of unknown as well as
non-existing data. Lien [17] defined functional dependencies to hold if strong
similarity on the LHS implies equality on RHS. Here equality means that if an
attribute value is NULL in a tuple then the same attribute must also be NULL in
the other tuple. This corresponds to p-FD’s of Köhler and Link [15]. The main
novelty of the latter paper is the concept of c-FD’s, that is certain functional

FD’s with Nulls and Bounded Domains 7

dependencies. A c-FD holds if weak similarity of LHS implies equality of the
RHS, where equality is in the same sense as for p-FD’s.

Atzeni and Morfuni gave some axiom system for functional dependencies
with NULL’s [3]. The drawback of their approach that they allowed no NULL’s on
the left hand sides of functional dependencies.

Our strongly possible functional dependency is also based on possible world
semantics and fits between weak and strong FD’s of Levene and Loizou. In case
that a table instance has at least one non-NULL value in each attribute, then
satisfaction of a c-FD X w → Y implies that X →sp Y holds, as well. On the
other hand, satisfaction of X →sp Y does not imply that p-FD X s → Y holds.
A brief comparison of the different notions is given in the following example,
which is a modification of Example 3 of [15].

Example 3.1. Let T be the following SQL table.

Employee Dept Manager Salary

Knuth NULL Chomsky 100,000

Turing CS von Neumann NULL

Turing NULL Gödel NULL

We compare 3-valued [19], weak and strong [16], possible [17], certain [15] and
strongly possible.

3-valued Weak Strong Possible Certain Strongly possible

e → d unk T F F F T

e → m F F F F F F

e → s unk T F T T T

d → d T T T T F T

d → m unk T F T F F

m → e T T T T T T

m → d unk T F T T T

Köhler et al. [14] introduced possible and certain keys. A set K of attributes
is possible key if there is a possible world where K is a key. On the other hand,
K is a certain key if it is a key in every possible world. The main concept of the
present paper is between these two, since a strongly possible world is a possible
world, as well. Possible worlds may use any value from an attribute domain to
replace a null. This effectively allows an infinite pool of values. Strongly possible
worlds are created from finite attribute domains. Some of the results in [14]
essentially use that some attribute domains are infinite. In the present paper we
investigate what can be stated without that assumption.

8 M. Alattar and A. Sali

Finally let us mention the very recent concept of embedded functional depen-
dency introduced by Wei and Link [20]. Their aim is to define a robust interpre-
tation of functional dependencies that does not depend on the interpretation of
NULL’s. Both papers [15,20] contain work on normalization of databases based
on the appropriate functional dependencies. Normalization is important to elim-
inate redundancy that may cause inconsistency at updates. It is a topic of future
research how our spFD’s could be applied for the same goal.

4 Complexity of Strongly Possible Keys

The algorithmic question we study here is the following. Given SQL table T
and collection of strongly possible key constraints Σ, does T |= Σ hold? We
may assume without loss of generality that all tables treated have at least one
strongly possible world. Indeed, the degenerate case of non-existence of strongly
possible world occurs only if a table contains only NULLs in an attribute.

An algorithm using bipartite matchings was given in [2] for the case of Σ =
{sp〈K〉}, that is when a single strongly possible key needs to be checked. Let
K = {A1, A2 . . . Ab}. The running time of that algorithm is O(|R|(|T |+ |T �|))+
O((|T |+ |T �|)|E|), where T � is the set of total tuples T � = {t� ∈ Πb

i=1V Di : ∃t ∈
T such that t[K] ∼w t�[K]}. However, the size of T � can easily be exponential
function of the size of T . Here we give a polynomial time refinement of that
algorithm.

If a single strongly possible key sp〈K〉 is to be checked, then it is enough
to consider T |K , since K is a key iff the tuples are pairwise distinct on K. Let
T � ⊆ V D1 × V D2 × . . . × V Db be defined by T � = {t� ∈ V D1 × V D2 × . . . ×
V Db : ∃t ∈ T : t[K] ∼w t�} and define bipartite graph G = (T, T �;E) with
{t, t�} ∈ E ⇐⇒ t[K] ∼w t�[K].

Proposition 4.1. T |= sp〈K〉 iff there exists a matching in G = (T, T �;E)
covering T .

Proof. Let T = {t1, t2, . . . tm}. Suppose first that T |= sp〈K〉. This means that
there exists a strongly possible world T ′ such that ∀i �= j, t′i, t

′
j ∈ T ′ : t′i[K] �=

t′j [K]. Then clearly M = {{ti, t′i[K]} : t′i is the extension of ti i = 1, 2, . . . ,m} is
a matching in G covering T .

On the other hand, if a matching M = {{ti, t�i } : i = 1, 2, . . . m exists in G,
then let t′i be an arbitrary extension of t�i with visible domain values on attributes
in R \ K. Then T ′ = {t′i : i = 1, 2, . . . ,m} is a strongly possible world that has
no two distinct tuples that agree on K, that is K is a key in T ′. �

In order to make our algorithm run in polynomial time we only generate part of
T �. Let T = {t1, t2 . . . tm} and �(ti) = |{t� ∈ V D1 × V D2 × . . . × V Db : t� ∼w

ti[K]}|. Note that �(ti) =
∏

j : ti[Aj]=⊥ |V Dj |, hence these values can be cal-
culated by scanning T once and using appropriate search tree data struc-
tures to hold values of visible domains of each attribute. Sort tuples of T
in non-decreasing �(ti) order, i.e. assume that �(t1) ≤ �(t2) ≤ . . . ≤ �(tp).

FD’s with Nulls and Bounded Domains 9

Let j = max{i : �(ti) < i} and Tj = {t1, t2, . . . tj}, furthermore T �
j = {t� :

∃t ∈ Tj : t� ∼w t[K]} ⊆ V D1 × V D2 × . . . × V Db. Note that |T �
j | ≤ 1

2j(j − 1).
If ∀i = 1, 2, . . . ,m : �(ti) ≥ i, then define j = 0 and T �

j = ∅.

Proposition 4.2. T |= sp〈K〉 iff j = 0 or there exists a matching in G′ =
(Tj , T

�
j ;E|Tj×T �

j
) covering Tj.

Proof. ⇒: According to Proposition 4.1 T |= sp〈K〉 implies a matching M in G
covering T . The edges of M incident with tuples from Tj can only go to tuples
in T �

j , hence they form a matching covering Tj in bipartite graph G′.
⇐: Assume that a matching M ′ in G′ = (Tj , T

�
j ;E|Tj×T �

j
) covering Tj exists.

For j < k ≤ m pick a tuple t�k ∈ T � such that tk[K] ∼w t�k and t�k has not
been used for ti : i = 1, 2, . . . k − 1 yet. Since �(tk) ≥ k, such t�k exists. Then
M = M ′ ∪ {{tk, t�k} : j < k ≤ p} is a matching verifying that T |= sp〈K〉 holds
by Proposition 4.1. �

Proposition 4.2 gives a polynomial time algorithm for deciding whether T |=
sp〈K〉 holds.

Algorithm 1. Verifying T |= sp〈K〉
Input: Table T over schema R, K ⊆ R
Output: Strongly possible world T � showing T |= sp〈K〉 if exists

1: procedure spKey(item T , item R, item K)
2: Calculate �(t) : t ∈ T
3: Sort Ti in non-decreasing �(ti) order
4: j ← max{i : �(ti) < i}
5: Construct bipartite graph G′ = (Tj , T

�
j ; E|Tj×T �

j
)

6: M = MaxMatching(G′)
7: if |M | < j then return T �|= sp〈K〉
8: T � ← M ∩ T �

j

9: for k = j + 1 to |T | do
10: Generate t�

k �∈ T � such that tk ∼w t�
k

11: T � ← T � ∪ {t�
k}

12: end for
13: return T �

14: end if
15: end procedure

The running time of Algorithm1 can roughly be estimated as follows. Line 2
can be done using binary search trees in time O(|K| · |T | log |T |). Sorting in
line 3 adds another O(|T | log |T |). Finding the maximum in line 4 takes O(|T |)
time. Constructing bipartite graph G′ takes O(|Tj | · |T �

j |) = O(|T |3) time.
Finding maximum matching using Augmenting Path method [18] is done in
O((|Tj | + |T �

j |)|E|Tj×T �
j
|) = O(|T |5) time. In the for loop of lines 9–11 we have

10 M. Alattar and A. Sali

to generate at most |T | tuples in each round that have to be checked against
at most |T | tuples each, and we have at most |T | rounds, so in total the loop
takes O(|T |3) time. Summing up we get that the running time of Algorithm1 is
O(|K| · |T | log |T | + |T |5).

The question whether T |= Σ for a collection Σ of strongly possible key
constraints was reduced to the problem of finding maximal common independent
set of three or more matroids in [2]. That problem is known to be NP-complete,
but this does not yet prove that our problem is NP-complete. However, modifying
an argument of [14] we can prove that the latter is the case.

Theorem 4.1. The strongly possible key satisfaction problem is NP-complete.

Proof. Let Σ = {sp〈K1〉, sp〈K2〉, . . . , sp〈Km〉} be a collection of strongly pos-
sible key constraints and T be relational table instance containing NULLs. The
question whether T |= Σ belongs to NP, since we can guess a strongly possible
world T ′ of T and then check in polynomial time that Ki : i = 1, 2, . . . ,m are
keys in T ′.

In order to prove that the question is NP-hard, the known NP-complete prob-
lem 3-SAT is reduced to it. Let I be an instance of 3-SAT with set of variables
V = {v1, v2, . . . vn} and set of clauses C = {c1, c2, . . . , cm}. We may assume
without loss of generality that C does not contain tautologies. Construct a table
T over scheme R and collection strongly possible key constraints Σ as follows.
R = {A1, A2, . . . Am, B1, B2, . . . Bn}. Σ = {sp〈K1〉, sp〈K2〉, . . . , sp〈Km〉} where
Ki = {Ai, Bi1 , Bi2 , Bi3} for ci = [(¬)vi1 ∨ (¬)vi2 ∨ (¬)vi3]. T consists of tuples
T = {t0, t1, . . . tm, tm+1, tm+2} such that

t0[Ai] = 0 i = 1, 2, . . . m, and t0[Bj] = ⊥ j = 1, 2, . . . , n.

and for all i = 1, 2, . . . m

ti[Ai] = i, ti[Ak] = 0 k �= i, and ti[Bj] = F if vj ∈ ci, ti[Bj] = T if vj �∈ ci j = 1, 2, . . . , n.

Finally, for s = m + 1,m + 2

ts[Ai] = s i = 1, 2, . . . m, tm+1[Bj] = T and tm+2[Bj] = F j = 1, 2, . . . , n.

A strongly possible world of T ′ of T corresponds to a truth assignment of the
variables by setting vj = t′0[Bj] for j = 1, 2, . . . , n. Each tuple ti i > 0 of T is
total and so t′j [Ai] �= t′k[Ai] for 0 < j < k ≤ m + 2, hence no two tuples of
positive indices of T ′ agree on any of the attribute sets Ki : i = 1, 2, . . . m. On
the other hand, it is easy to see that t′i[Ki] = t′0[Ki] iff ci evaluates false by the
truth assignment given above. �

In some special cases, more than one strongly possible keys can be verified in
polynomial time.

Proposition 4.3. Let T be a table over schema R, Σ = {sp〈K1〉, sp〈K2〉, . . . ,
sp〈Km〉} be a collection of strongly possible key constraints. If Ki ∩ Kj = ∅ for
i �= j, then T |= Σ can be decided in polynomial time.

FD’s with Nulls and Bounded Domains 11

Proof. Since the Ki’s are pairwise distinct, Algorithm 1 can be applied succes-
sively and then the tuples of the strongly possible worlds of T |Ki

for i = 1, 2, . . . m
can be concatenated. �

5 Strongly Possible Functional Dependencies

Having investigated strongly possible keys, it is natural to extend investigations
to strongly possible FD’s. In this section we first give a graph theoretical charac-
terization of when does a table T satisfy X →sp Y . Then we characterize what
set systems could be left hand sides and right hand sides of spFD’s if the other
side is a fixed attribute set. In the remaining part of the section we give the first
step towards a possible axiomatisation of spFD’s by comparing them with the
axioms given for weak and strong FD’s by Levene and Loizou [16].

Recall that a table T over Schema R satisfies X →sp Y iff there exists a
strongly possible world T ′ of T such that T ′ |= X → Y . If T = {t1, t2, . . . , tp} and
T ′ = {t′1, t

′
2, . . . , t

′
p} with ti ∼w t′i, then t′i is called an sp-extension or in short an

extension of ti. Let X ⊆ R be a set of attributes and let ti ∼w t′i such that for each
A ∈ X : t′i[A] ∈ V D(A), then t′i[X] is an strongly possible extension of ti on X.
A useful tool in investigations of strongly possible functional dependencies is
(spFD’s in short) is the concept of weak similarity graph.

Definition 5.1. Let T = {t1, t2, . . . tp} be a table (instance) over schema R. The
weak similarity graph GY with respect to Y is defined as GY = (T,E), where
{ti, tj} ∈ E ⇐⇒ ti[Y] ∼w tj [Y].

We can characterize when T |= X →sp Y holds using weak similarity graphs.

Theorem 5.1. Let T = {t1, t2 . . . tm} be a table over schema R. For X,Y ⊆ R,
T |= X →sp Y holds iff GY can be list colored1 using lists {t1i , t

2
i . . . tri

i } for
ti ∈ T , where GY is the complement of the weak similarity graph on Y and tji ’s
are the strongly possible extensions of ti on X.

Proof. X →sp Y holds iff there exists strongly possible world T ′ such that
T ′ |= X → Y .

⇒: Assume T |= X →sp Y holds. Take a strongly possible world in which
X → Y . This gives a coloring from the lists by giving color t′i[X] to ti. That
coloring is proper because if t1[Y] �w t2[Y], then t′1[Y] �= t′2[Y] and also t′1[X] �=
t′2[X] where t′1[X] and t′2[X] are colors from lists of t1 and t2 respectively.

⇐: Assume there exist a proper list coloring, then t′1[X], t′2[X] . . . t′m[X]
are partial extensions of ti[X]. Suppose t′i1 [X] = t′i2 [X] = . . . = t′ib

[X], then
tih

[Y] ∼w tik
[Y] for 1 ≤ h < k ≤ b that forms a weak similarity clique, see

Table 1. Thus in each attribute of Y there is at most one non-NULL value in
tuples ti1 , ti2 , . . . tib

, hence they all can be made equal in Y . �

1 Let G(V, E) be a graph and L : V → 2N be a mapping that assigns each ver-
tex a list of colors L(v). A list coloring of G using lists {L(v) : v ∈ V } is a mapping
c : V → ⋃

v∈V L(v) such that c(v) ∈ L(v) and c(u) �= c(v) if {u, v} ∈ E.

12 M. Alattar and A. Sali

Table 1. Color classes and weak similarity cliques.

If we fix the left hand side of an spFD, then the possible right hand sides
clearly form a down-set, that is if T |= X →sp Y holds and Y ′ ⊂ Y , then
T |= X →sp Y ′ also holds. The following Proposition tells, that there is no other
restriction for the right hand sides of spFD’s with fixed left hand sides.

Proposition 5.1. Let (R,RS) be a schema and X ⊂ R. Let Y be a down-set of
subsets of R\X. Then there exists a table T over (R,RS) such that T |= X →sp Y
holds iff Y ∩ (R \ X) ∈ Y.

Proof. Let the maximal elements of Y be Y1, Y2, . . . , Ys, that is Y = {A :
∃i such that A ⊆ Yi} and Yi �⊆ Yj for i �= j. Let A0 ∈ X \ RS be a fixed
attribute, A1, A2, . . . An be the other attributes of R. Table T contains tuples
t0, t1, . . . ts such that

t0[Ai] =
{⊥ if i = 0

1 if i > 0

and

ti[Aj] =
{

1 if Aj ∈ Yi

i if Aj �∈ Yi
for i = 1, 2, . . . , s and j = 1, 2, . . . , n.

If X ⊆ RS , then tuple t0 is not included in T .

A0 A1 . . . An

⊥ 1 . . . 1
i 1 . . . 1 i . . . i

︸ ︷︷ ︸

Yi

Y ∈ Y ⇐⇒ ∃1 ≤ iY ≤ s : Y ⊆ YiY
, so FD X → Y holds in the strongly

possible world obtained by replacing ⊥ in t0[A0] by iY . On the other hand,
if Y �∈ Y, then for every 1 ≤ i ≤ s there exists an attribute Aji

∈ Y \ Yi,
so whichever element i ∈ V DA0 is put in place of ⊥ in t0[A0], we get that
t0[X] = ti[X], but t0[Y] �= ti[Y], hence T �|= X →sp Y . �

FD’s with Nulls and Bounded Domains 13

The case when the right hand side of an spFD is fixed can also be characterized.
It is clear that for any given table T over a schema R and a fixed set Y ⊂ R the
collection of attribute sets X = {X : T |= X →sp Y } forms an up-set. But this
is the only condition we have, as the following Proposition shows.

Proposition 5.2. Let (R,RS) be a schema, Y ⊂ R be a fixed set of attributes,
furthermore X be an upset of subsets of R \ Y . Then there exists a table T over
(R,RS) such that T |= X →sp Y ⇐⇒ X ∈ X .

For the proof we recall the Armstrong instance construction for strongly possible
keys from [2].

Theorem 5.2. Suppose that Σ = {sp 〈K〉 : K ∈ K} is a collection of strongly
possible key constraints such that if |K| = 1, then K ⊆ RS. Then there exists an
Armstrong table for (R,RS , Σ).

Proof of Proposition 5.2. If ∅ ∈ X , then any table T over (R,RS) that has exactly
one non-NULL value in each attribute of Y works. So assume that ∀X ∈ X : |X| >
0. Let U = {X1,X2, . . . , Xz,Xz+1, . . . , Xu} be the collection of singleton sets in
X such that X1,X2, . . . , Xz ∈ R \ RS and Xz+1, . . . , Xu ∈ RS . Construct table
T as follows. Let t0, t1 be two tuples defined by

t0[A] =
{⊥ if A ∈ {X1,X2, . . . , Xz

1 otherwise

t1[A] =
{

1 if A ∈ U ∪ Y
2 otherwise

Tuples t2, t3, . . . tg are given by the construction of the proof of Theorem5.2
as follows. tj [A] = j if A ∈ U ∪ Y . On columns (attributes) of R \ (U ∪ Y)
we put the Armstrong table constructed for strongly possible key system Σ =
{sp〈X〉 : X ∩ U = ∅ and X ∈ X} with the minor modification that attribute
values are shifted up, so values 1 and 2 do not occur on these tuples.

U \ Rs U ∩ Rs Rs \ (U ∪ Y) Y
︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷ ︸︸ ︷

X1 Xu

⊥ . . . ⊥ 1 . . . 1 1 . . . 1 1 . . . 1
1 . . . 1 1 . . . 1 2 . . . 2 1 . . . 1
2 . . . 2 2 . . . 2 spKey

construction
(3 ... i)

2 . . . 2
⎫
⎬

⎭
Distinct...

...
...

...
...

...
i . . . i i . . . i i . . . i

We need to show that the table T defined above satisfies T |= X →sp Y ⇐⇒
X ∈ X . If X ∩ U �= ∅, then substituting 1 in place of ⊥ in t0 we get a strongly
possible world that satisfies X → Y . If X ∩ U = ∅, then the strongly possible

14 M. Alattar and A. Sali

world for key system Σ that shows sp〈X〉 holds also shows X →sp Y . Now, for
Z ⊆ R \ Y , if Z �∈ X , then Z ∩ U = ∅. Also, since X is an up-set Σ �|= sp〈Z〉
by the characterization of implication between strongly possible keys given in
Theorem 4.1 of [2]. Thus, in any strongly possible world there are two tuples
from t2, t3, . . . tg that are equal on Z, hence T �|= Z →sp Y . �

5.1 Basic Properties of spFD’s

Levene and Loizou [16] gave an axiomatization of weak and strong functional
dependencies together. As a first step towards axiomatisation of strongly possible
functional dependencies, here we check these axioms and see which are sound
for spFD’s as well. As we will see, there are significant differences caused by the
limited domains. Let T be any SQL table over (R,RS).

(1) Reflexivity If Y ⊆ X ⊆ R then T |= X →sp Y holds. Indeed, in any
possible world X → Y holds.

(2) Augmentation if T |= X →sp Y and W ⊆ R, then T |= XW →sp

Y W . Again, this holds in any possible world. Augmentation rule is a
Disjoint Augmentation if W ∩ X = ∅.

(3) Union If T |= X →sp Y and T |= X →sp Z then T |= X →sp Y Z. This is
not sound, see the counterexample (Table 2).

Table 2. Union counterexample

X Y Z

1 1 1

⊥ 1 2

2 2 2

The visible domain of X is {1, 2}. If ⊥ is replaced by 1, then X → Y is
satisfied but X → Z does not hold, if ⊥ is replaced by 2, then just the
opposite is the case.

Possible weakenings are
(a) Mixed-union If T |= X →s Y and T |= X →sp Z then T |= X →sp Y Z

or if T |= X →sp Y and T |= X →s Z then T |= X →sp Y Z. This is
sound, since strong functional dependencies hold in each possible world,
in particular in the strongly possible one giving the other dependency.

(b) NULL-free union T |= X →sp Y and T |= X →sp Z and X ⊆ RS ,
then T |= X →sp Y Z. To prove the soundness, we need that GY Z , the
complement of the weak similarity graph with respect to Y Z can be list
colored using extensions on X. It is not hard to see that {ti, tj} ∈ E(GY Z)
iff {ti, tj} ∈ E(GY) or {ti, tj} ∈ E(GZ). Note that X ⊆ RS implies that
every tuple is X-total, so by T |= X →sp Y if {ti, tj} ∈ E(GY), then
ti[X] �= tj [X]. Similarly, ti[X] �= tj [X] if {ti, tj} ∈ E(GZ).

FD’s with Nulls and Bounded Domains 15

(4) Decomposition if T |= X →sp Y Z, then T |= X →sp Y and T |= X →sp

Z. The strongly possible world T ′ that satisfies X → Y Z also satisfies
X → Y and X → Z.

(5) Transitivity If T |= X →sp Y and T |= Y →sp Z hold, then T |= X →sp

Z. This is not sound (Table 3).

Table 3. Transitivity counterexample

X Y Z

1 1 1

2 ⊥ 1

2 2 2

Again, there is no strongly possible world that satisfies both T |= X →sp Y
and T |= Y →sp Z.

(a) AM-transitivity Atzeni and Morfuni [3] used a weaker version. If T |=
X →sp Y and T |= Y →sp Z hold, and Y −X ⊆ Rs, then T |= X →sp Z.
This is not sound either, as shown by the following counterexample.

Y
X Z

1 1 1 1

1 ⊥ 1 2

1 2 2 1

2 2 2 ⊥

However, some weaker versions are sound.
(b) Sp-transitivity T |= X →sp Y and T |= Y →sp Z hold, and Y ⊆ Rs,

then T |= X →sp Z. Indeed, T |= Y →sp Z is equivalent list coloring of
GZ by extensions of tuples on Y . However, as Y is NULL-free, we obtain
that {ti, tj} ∈ E(GZ) implies ti[Y] �= tj [Y], so {ti, tj} ∈ E(GY). That is
GZ is a subgraph of GY , hence the list coloring of GY by extensions of
tuples on X is proper also for GZ , thus T |= X →sp Z.

(c) Mixed-transitivity We may mix different dependencies like in the
Union case. If T |= X →s Y and T |= Y →sp Z or if T |= X →sp Y and
T |= Y →s Z hold, then T |= X →sp Z. This is sound in the same reason
as Mixed-union is sound.

(6) Pseudo-transitivity If T |= X →sp Y and T |= Y Z →sp V hold, then
T |= XZ →sp V . Or if T |= X →sp Y Z and T |= Y →sp V hold, then
T |= X →sp ZV . These are not sound as the following counterexamples
show (Fig. 3). Sound weaker versions are as follows.

16 M. Alattar and A. Sali

X Y Z V

1 1 1 1

1 ⊥ 2 1

1 1 2 2

2 2 1 2

X Y Z V

1 1 1 1

1 ⊥ 1 2

2 2 2 1

3 3 3 2

Fig. 3. Pseudo transitivity counterexamples

(a) Mixed-pseudo transitivity Of course, if one of the given spFD’s is
strong, then the property is sound, since strong functional dependencies
hold in every possible world, in particular in the strongly possible world
that satisfies the other spFD.

(b) NULL-free pseudo transitivity Assume that Y ⊆ RS . Then T |=
X →sp Y Z and T |= Y →sp V imply T |= X →sp ZV . Indeed,
T |= X →sp Y Z means that there is a proper coloring of GY Z by exten-
sions of tuples on X. E(GY Z) = E(GY)∪E(GZ), thus the coloring satis-
fies ti[X] �= tj [X] if ti[Y] �∼w tj [Y] or ti[Z] �∼w tj [Z]. On the other hand,
T |= Y →sp V means that there is a proper coloring by extensions of
tuples on Y of GV . Since Y ⊆ RS , there is one extension of each tuple on
Y , so we get that if ti[V] �∼w tj [V], then ti[Y] �∼w tj [Y]. Thus the color-
ing of tuples by extensions on X given by T |= X →sp Y Z also has the
property that ti[X] �= tj [X] if ti[V] �∼w tj [V] or ti[Z] �∼w tj [Z] yielding
T |= X →sp ZV .

(c) Disjoint NULL-free pseudo transitivity Unfortunately, the assump-
tion Y ⊆ RS is not enough to make (T |= X →sp Y and T |= Y Z →sp

V) ⇒ T |= XZ →sp V sound. For example, if X = Z, then the following
is a counterexample (Table 4).

Table 4. NULL-free pseudo transitivity counterexample

X Y V

1 1 1

⊥ 2 2

2 2 3

Replacing ⊥ by 1 we have T |= XY →sp V , replacing by 2 we get T |=
X →sp Y . However, as |V DX | = 2, T �|= XZ →sp V . This can be
mended by requiring disjointness. Assume that Y ⊆ RS . If X ∩ Z = ∅
then T |= X →sp Y and T |= Y Z →sp V imply T |= XZ →sp V . Indeed,
T |= Y Z →sp V means that GV can be properly colored by extensions
of tuples on Y Z, that is if ti[V] �∼w tj [V], then ti[Y Z] �= tj [Y Z]. To have

FD’s with Nulls and Bounded Domains 17

T |= XZ →sp V we need a coloring such that if ti[V] �∼w tj [V], then
ti[XZ] �= tj [XZ]. On Z take the extensions given by ti[Y Z] �= tj [Y Z].
Now, if ti[V] �∼w tj [V] but ti[Z] = tj [Z], then ti[Y] �= tj [Y] which implies
ti[Y] �∼w tj [Y] since Y ⊆ Rs. For X then take the extensions obtained
from T |= X →sp Y . Since X ∩ Z = ∅, these are independent of the
extensions on Z, we get that ti[XZ] �= tj [XZ] if ti[V] �∼w tj [V].

(7) Chaining If T |= X →sp Y , T |= XY →s W , and T |= XW →sp Z, with
W ∩ Y = ∅, then T |= X →sp Z. This not sound, see the counterexample
(Table 5).

Table 5. Chaining counterexample

X Y W Z

3 3 2 2

1 ⊥ 1 ⊥
2 ⊥ 1 2

⊥ 2 1 3

1 1 1 1

We get sound rule if one of the spFD of the premise is changed into strong
FD.

(a) Strongly possible Chaining: If T |= X →s Y , T |= XY →s W ,
and T |= XW →sp Z, or T |= X →sp Y , T |= XY →s W , and T |=
XW →s Z, with W ∩ Y = ∅, then T |= X →sp Z. Indeed, the strongly
possible world that satisfies the spFD in the premise also satisfies the
strong FD’s, so by the soundness follows from the fact that the rule is
sound for ordinary FD’s.

(8) Weakening If T |= X →s Y then T |= X →sp Y . Also, if T |= X →sp Y
then T |= X →w Y . This follows from the definitions.

(9) Strengthening If T |= X →s Y, T |= Y →sp W, and T |= XW →s Z
with W ∩ Z = ∅, then T |= X →s Z provided the following condition is
satisfied:

∃ a sequence {Ai} (i ∈ I), with
⋃

i∈l

Ai = X ∩ Y, such that ∀i ∈ I ∃Vi ⊆ R

such that Si = (Y − X) ∪ {Aj |Aj ∈ X ∩ Y and j < i}, T |= Si →sp Vi and
∃V ⊆ XY Vi such that V − Ai →s Ai.

It was proven in [16] that strengthening is sound if the spFD’s are replaced
by wFD’s. However that means that the conclusion follows from weaker
conditions then as stated above, so they remain true if we assume spFD’s
in place of wFD’s.

(10) Composition If T |= X →sp Y and T |= A →sp B hold, then T |=
XA →sp Y B. This is not sound as the following counterexample shows
(Table 6).

18 M. Alattar and A. Sali

Table 6. Composition counterexample

X/A X ∩ A A/X Y B

1 1 1 1 1

1 ⊥ 1 2 1

1 2 1 2 2

We obtain sound rules as follows.
(a) Mixed composition Replace one of the spFD’s of the premise by

strongFD, so if T |= X →s Y and T |= A →sp B hold, then T |= XA →sp

Y B, or if T |= X →sp Y and T |= A →s B hold, then T |= XA →sp Y B.
Both of these versions are sound, because the strongly possible world that
verifies the spFD in the premise satisfies the strongFD, as well, hence the
conclusion is valid in the same strongly possible world, by properties of
ordinary FD’s.

(b) NULL-free composition If T |= X →sp Y and T |= A →sp B hold with
Y A ⊆ RS , then T |= XA →sp Y B. This is sound, since T |= X →sp Y
implies T |= XA →sp Y A and T |= A →sp B implies T |= Y A →sp Y B
by Augmentation rule. These latter two imply T |= XA →sp Y B by
Sp-transitivity.

(c) Disjoint composition If T |= X →sp Y and T |= A →sp B hold with
X ∩ A = ∅, then T |= XA →sp Y B. This is sound, since XA →sp Y B
holds if and only if GY B can be list colored by extensions of tuples on
XA. {t1, t2} ∈ E(GY B) means t1[Y B] �w t2[Y B] if and only if ∃ an
attribute C ∈ Y ∪ B such that ⊥ �= t1[C] �= t2[C] �= ⊥. If C ∈ Y then
{t1, t2} ∈ E(GY). If C ∈ B then {t1, t2} ∈ E(GB), hence E(GY B) =
E(GY) ∪ E(GB). An extension of a tuple t ∈ T on XA can be obtained
by taking an extension on X and matching it up with an extension on A.
i. X →sp Y : ∃ a coloring tuples of T by extensions on X that is a proper

coloring of GY .
ii. A →sp B: ∃ a coloring tuples of T by extensions on A that is a proper

coloring of GB .
Now for each t ∈ T , for t[X] use (a) and for t[A] use (b). So that let
{t1, t2} ∈ E(GY B), if {t1, t2} ∈ E(GY) then the coloring differs on the X
part and if {t1, t2} ∈ E(GB) then the coloring differs on the A part.

From this list of rules we may deduce that if a rule contains only one spFD in its
premise then it remains sound. However, more than one spFD’s in the premise
usually cause problems, since by the limitations of visible domains, the different
spFD’s do not hold in the same strongly possible world. For a complete axioma-
tization this problem must be handled. In particular, the fact that composition
does not hold in general makes usual proof methods of completeness virtually
unusable.

An interesting special case of transitivity is the following proposition.

FD’s with Nulls and Bounded Domains 19

Proposition 5.3. Let T be a table over (R,RS) and X1,X2, . . . Xm ∈ R be
attributes such that T |= Xi →sp Xi+1 for i = 1, 2, . . . ,m where indices are
understood modulo m. Then T |= Xi+1 →sp Xi for i = 1, 2, . . . ,m also holds.

Proof. T |= Xi →sp Xi+1 implies by pigeon hole principle that |V Di+1| ≤ |V Di|,
hence by the cyclicity we get that |V Di+1| = |V Di| for i = 1, 2, . . . ,m. Let i be
an arbitrarily fixed index and V Di = {a1, a2, . . . ak}. Also assume without loss of
generality that tj [Xi] = a� for p�−1 < j ≤ p�, where 0 = p0 < p1 < . . . < pk ≤ n
and tj [Xi] = ⊥ for pk < j ≤ n where the number of tuples of the table is n.
Clearly, there cannot be two tuples tg, th such that pd < g < h ≤ pd+1 with
tg[Xi+1] �= th[Xi+1] and both not NULL. If there exist j ≤ pb < j′ ≤ p� such
that tj [Xi+1] = tj′ [Xi+1] �= ⊥, then there must be visible domain value β of
Xi+1 that occurs only in tuples where Xi has the value ⊥. However, in that case
any strongly possible world would have two tuples that agree on Xi but differ on
Xi+1 (one value in Xi+1 is β). From this it follows, that there is a substitution of
the NULL’s with visible domain values such that ta[Xi] = tb[Xi] ⇐⇒ ta[Xi+1] =
tb[Xi+1], so T |= Xi+1 →sp Xi. �

It would be tempting to guess that more could be proven, that is T |= Xj →sp Xi

holds for any i, j. However, that is not the case, as the following example shows
(Table 7).

Table 7. X1 �→sp X3

X1 X2 X3 X4

1 1 1 1

1 ⊥ 2 ⊥
2 2 ⊥ 2

2 ⊥ ⊥ ⊥

6 Conclusions

In the present paper we continued the investigations started in [2] of strongly
possible worlds of SQL tables with NULL’s. We gave a polynomial time algo-
rithm to verify whether a given set K of attributes is a strongly possible key. We
also showed that to do the same for an arbitrary system of Σ = {sp〈Ki〉 : i =
1, 2, . . . n} of strongly possible key constraints is NP-complete. Then we investi-
gated rules established for strong and weak functional dependencies and deter-
mined which ones remain sound for strongly possible functional dependencies
and for those that failed we gave appropriate weakenings. This is a large step
toward a possible axiomatization of spFD’s. The main obstacle is that different
spFD’s in the premises of rules may hold in different strongly possible worlds
that are incompatible with each other. Further research is needed to find how
to incorporate this into the axiom system.

20 M. Alattar and A. Sali

Another direction of future investigations is finding a robust definition of
closures with respect to strongly possible functional dependencies. As the com-
position rule is not sound, the usual way of X+ = {A : T |= X →sp A} may
result in T �|= X →sp X+, which is an undesired event.

Finally, the main application of functional dependencies is lossless decom-
positions of database tables to eliminate redundancy and the possibilities of
inconsistent updates. Recent works of Köhler and Link [15], furthermore Wei
and Link [20] show how to use c-FD’s or embedded functional dependencies for
that. Our future research will include similar analysis for spFD’s.

References

1. Acuña, E., Rodriguez, C.: The treatment of missing values and its effect on classifier
accuracy. In: Banks, D., McMorris, F.R., Arabie, P., Gaul, W. (eds.) Classification,
Clustering, and Data Mining Applications. STUDIES CLASS. Springer, Berlin,
Heidelberg (2004). https://doi.org/10.1007/978-3-642-17103-1 60

2. Alattar, M., Sali, A.: Keys in relational databases with nulls and bounded domains.
In: Welzer, T., Eder, J., Podgorelec, V., Kamǐsalić Latifić, A. (eds.) ADBIS 2019.
LNCS, vol. 11695, pp. 33–50. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-28730-6 3

3. Atzeni, P., Morfuni, N.M.: Functional dependencies and constraints on null values
in database relations. Inf. Process. Lett. 18(4), 233–238 (1984)

4. Sree Dhevi, A.T.: Imputing missing values using Inverse Distance Weighted Inter-
polation for time series data. In: Sixth International Conference on Advanced Com-
puting (ICoAC), Chennai, pp. 255–259 (2014). https://doi.org/10.1109/ICoAC.
2014.7229721

5. Chang, G., Ge, T.: Comparison of missing data imputation methods for traffic flow.
In: Proceedings 2011 International Conference on Transportation, Mechanical, and
Electrical Engineering (TMEE), Changchun, pp. 639–642 (2011). https://doi.org/
10.1109/TMEE.2011.6199284

6. Cheng, C., Wei L., Lin, T.: Improving relational database quality based on adaptive
learning method for estimating null value. In: Second International Conference on
Innovative Computing, Information and Control (ICICIC 2007), Kumamoto, p. 81
(2007). https://doi.org/10.1109/ICICIC.2007.350

7. Date, C.J.: NOT Is Not “Not”! (Notes on Three-Valued Logic and Related Mat-
ters) in Relational Database Writings 1985–1989. Addison-Wesley, Reading (1990)

8. Farhangfar, A., Kurgan, L.A., Pedrycz, W.: Experimental analysis of methods for
imputation of missing values in databases. In: Proceedings of the SPIE, Intelligent
Computing: Theory and Applications II, 12 April 2004, vol. 5421 (2004). https://
doi.org/10.1117/12.542509

9. Farhangfar, A., Kurgan, L.A., Pedrycz, W.: A novel framework for imputation of
missing values in databases. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum.
37(5), 692–709 (2007)

10. Farhangfar, A., Kurgan, L., Dy, J.: Impact of imputation of missing values on
classification error for discrete data. Pattern Recogn. 41(12), 3692–3705 (2008)

11. Grahne, G.: Dependency satisfaction in databases with incomplete information.
In: Proceedings of the Tenth International Conference of Very Large Data Base,
Singapore, August 1984. vldb.org

https://doi.org/10.1007/978-3-642-17103-1_60
https://doi.org/10.1007/978-3-030-28730-6_3
https://doi.org/10.1007/978-3-030-28730-6_3
https://doi.org/10.1109/ICoAC.2014.7229721
https://doi.org/10.1109/ICoAC.2014.7229721
https://doi.org/10.1109/TMEE.2011.6199284
https://doi.org/10.1109/TMEE.2011.6199284
https://doi.org/10.1109/ICICIC.2007.350
https://doi.org/10.1117/12.542509
https://doi.org/10.1117/12.542509
http://www.vldb.org

FD’s with Nulls and Bounded Domains 21

12. Grzymala-Busse, J.W., Hu, M.: A comparison of several approaches to missing
attribute values in data mining. In: Ziarko, W., Yao, Y. (eds.) RSCTC 2000. LNCS
(LNAI), vol. 2005, pp. 378–385. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45554-X 46

13. Imielinski, T., Lipski, W.: Incomplete information in relational databases. JACM
31(4), 761–791 (1984)

14. Köhler, H., Leck, U., Link, S., Zhou, X.: Possible and certain keys for SQL. VLDB
J. 25(4), 571–596 (2016)

15. Köhler, H., Link, S.: SQL schema design: foundations, normal forms, and normal-
ization. Inf. Syst. 76, 88–113 (2018)

16. Levene, M., Loizou, G.: Axiomatisation of functional dependencies in incomplete
relations. J. Theor. Comput. Sci. 206(1–2), 283–300 (1998)

17. Lien, Y.E.: On the equivalence of database models. J. ACM 29(2), 333–362 (1982)
18. Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical

Society, Providence (2009)
19. Vassilou, Y.: Functional dependencies and incomplete information. In: Proceedings

of International Conference on Very Large Databases, VLDB 1980, pp. 260–269
(1980)

20. Wei, Z., Link, S.: Embedded functional dependencies and data-completeness tai-
lored database design. PVLDB 12(11), 1458–1470 (2019)

21. Zhang, S., Qin, Z., Ling, C.X., Sheng, S.: “Missing is Useful”: missing values in
cost-sensitive decision trees. IEEE Trans. Knowl. Data Eng. 17(12), 1689–1693
(2005)

https://doi.org/10.1007/3-540-45554-X_46
https://doi.org/10.1007/3-540-45554-X_46

Normal Forms of Conditional Knowledge
Bases Respecting Entailments

and Renamings

Christoph Beierle and Jonas Haldimann(B)

Faculty of Mathematics and Computer Science,
FernUniversität in Hagen, 58084 Hagen, Germany

jonas.haldimann@fernuni-hagen.de

Abstract. Normal forms of conditional knowledge bases are useful to
create, process and compare the knowledge represented by them. In this
paper, we propose the reduced antecedent normal form (RANF) for con-
ditional knowledge bases. Compared to the antecedent normal form, it
represents conditional knowledge with significantly fewer conditionals. A
set of transformation rules maps every knowledge base to a model equiva-
lent knowledge base in RANF. The new notion of renaming normal form
(ρNF) of a conditional knowledge base takes signature renamings into
account. We develop an algorithm for systematically generating condi-
tional knowledge bases over a given signature that are both in RANF
and in ρNF. The generated knowledge bases are consistent, pairwise not
antecedentwise equivalent and pairwise not equivalent under signature
renaming. Furthermore, the algorithm is complete in the sense that, tak-
ing signature renamings and model equivalence into account, every con-
sistent knowledge base is generated.

Keywords: Conditional knowledge base · Antecedent normal form ·
ANF · Reduced antecedent normal form · RANF · Signature
renaming · Renaming normal form · ρNF · Knowledge base generation

1 Introduction

For describing objects, situations, relationships, problems, solutions, etc. in a
formal representation, adequacy, expressivity, and manageability of the used
representation language are of crucial importance. This typically leads to many
possibilities to express something in syntactically different, albeit semantically
equivalent ways. On the other hand, the idea of normal forms is to reduce this
redundancy by focussing on some standardized way of representation. Besides
supporting standardized representations, benefits of normal forms include easier
comparisons, avoidance of notorious borderline cases, fewer exceptions and thus
clearer algorithms, and easier organization of proofs. Regarding the cost of nor-
mal forms, it has to be noted, though, that some machine-oriented normal forms

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 22–41, 2020.
https://doi.org/10.1007/978-3-030-39951-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_2&domain=pdf
http://orcid.org/0000-0002-2618-8721
https://doi.org/10.1007/978-3-030-39951-1_2

Normal Forms of Conditional Knowledge Bases Respecting Entailments 23

may reduce human readability. Normal forms have been studied and employed
extensively e.g. in logic formalisms or in automated theorem proving [18].

In this paper, we deal with normal forms of conditional knowledge bases. A
conditional knowledge base is a set of conditionals representing a defeasible rule
If A then usually B. Such conditionals play a central role in nonmonotonic rea-
soning, and different semantic approaches have been defined for them (cf. [1,9–
15,17]). Normal forms of conditional knowledge bases have been investigated in
e.g. [3,4,7]. Here, we will propose two new normal forms for conditional knowl-
edge bases. The reduced antecedent normal form (RANF) extends the notion
of antecedent normal form introduced in [7] by taking non-monotonic entail-
ments sanctioned by system P [14] into account. The renaming normal form
(ρNF) which we define for knowledge bases consisting only of so-called normal
form conditionals, respects renamings of the underlying signature. While the
RANF takes the semantic notion of model equivalence into account, the ρNF
refers to renaming equivalence on the syntactic level. For both normal forms, we
study their key properties. After providing a transformation system converting
a conditional knowledge base into a model-equivalent knowledge base in RANF,
we address the question of systematically generating knowledge bases that are
both in RANF and in ρNF. We present an algorithm KBρra generating knowl-
edge bases over a given signature that are consistent, pairwise not antecedent-
wise equivalent and pairwise not equivalent under signature renaming. We also
show that, when taking signature renamings and model equivalence into account,
every consistent knowledge base is generated, thus providing an excellent base
for empirical evaluations and comparisons of conditional knowledge bases.

The rest of this paper is organized in the following way. After recalling the
required basics in Sect. 2, the reduced antecedentwise normal form is introduced
in Sect. 3, and the transformation system yielding a knowledge base in RANF is
presented in Sect. 4. The renaming normal form ρNF is developed in Sect. 5, and
the systematic generation of knowledge bases is presented in Sect. 6. In Sect. 7
we conclude and point out future work.

2 Background: Conditional Logic

Let L be a propositional language over a finite signature Σ of atoms a, b, c,
The formulas of L will be denoted by letters A,B,C, We write AB for A∧B
and A for ¬A. We identify the set of all complete conjunctions over Σ with the
set Ω of possible worlds over L. For ω ∈ Ω, ω |= A means that A ∈ L holds
in ω, and the set of worlds satisfying A is ΩA = {ω | ω |= A}. By introducing
a new binary operator |, we obtain the set (L | L) = {(B|A) | A,B ∈ L} of
conditionals over L. For a conditional r = (B|A), ant(r) = A is the antecedent
of r, and cons(r) = B is its consequent. The counter conditional of r = (B|A) is
r = (B|A). As semantics for conditionals, we use ordinal conditional functions
(OCF) [19]. An OCF is a function κ : Ω → N expressing degrees of plausibility
of possible worlds where a lower degree denotes “less surprising”. At least one
world must be regarded as being normal; therefore, κ(ω) = 0 for at least one

24 C. Beierle and J. Haldimann

ω ∈ Ω. Each κ uniquely extends to a function mapping sentences to N ∪ {∞}
given by κ(A) = min{κ(ω) | ω |= A} where min ∅ = ∞. An OCF κ accepts a
conditional (B|A), written κ |= (B|A), if the verification of the conditional is less
surprising than its falsification, i.e., if κ(AB) < κ(AB); equivalently, κ |= (B|A)
iff for every ω′ ∈ ΩAB there is ω ∈ ΩAB with κ(ω) < κ(ω′). A conditional
(B|A) is trivial if it is self-fulfilling (A |= B) or contradictory (A |= B); a set
of conditionals is self-fulfilling if every conditional in it is self-fulfilling. A finite
set R ⊆ (L|L) of conditionals is called a knowledge base. An OCF κ accepts
R if κ accepts all conditionals in R, and R is consistent if an OCF accepting
R exists [11]. We extend the set of knowledge bases by the special symbol 	,
denoting an inconsistent knowledge base. Mod(R) denotes the set of all OCFs
κ accepting R. Two knowledge bases R,R′ are model equivalent, denoted by
R ≡mod R′, if Mod(R) = Mod(R′). We say (B|A) ≡ (B′|A′) if A ≡ A′ and
AB ≡ A′B′, where ≡ denotes classical propositional equivalence. Example 1
presents a knowledge base we will use for illustration.

Example 1 (Rbook). Let Σbook = {b, p, t} be a propositional signature
where b indicates whether something is a book, p indicates whether
something is made out of paper, and t indicates whether something
contains text. The knowledge base Rbook contains five conditionals:
q1: (p|pb) “Books printed on paper are usually made out of paper.”
q2: (p|b) “Books are usually made out of paper.”
q3: (t|b) “Books usually contain text.”
q4: (t|bp) “Books made of paper usually contain text”
q5: (t|bp) “Books that are not made out of paper usually do not contain text.”

System P [14] allows reasoning about conditional knowledge bases. It consists
of the six axioms that are displayed in Fig. 1. If a conditional (B|A) can be
derived from a conditional knowledge base R by applying the rules in system P,
we denote this by A |∼RB. It has been shown (see [1,10,14,16]) that system P
inference coincides with p-entailment [11] where A p-entails B in the context of
R iff all models of R accept the conditional (B|A). Moreover, A |∼RB holds iff
R ∪ {(B|A)} is inconsistent [11].

3 Reduced Antecedentwise Normal Form

Instead of the semantic equivalence notion ≡mod we will now consider syntactic
notions of equivalences of knowledge bases and corresponding normal forms. For
comparing or generating knowledge bases, it is useful to abstract from merely
syntactic variants. In particular, it is desirable to have minimal versions and
normal forms of knowledge bases at hand. The idea of elementwise equivalence
[4] is that each piece of knowledge in one knowledge base directly corresponds
to a piece of knowledge in the other knowledge base.

Normal Forms of Conditional Knowledge Bases Respecting Entailments 25

(RE) Reflexivity : A |∼ A

(LLE) Left Logical Equivalence :
|= A ↔ B, A |∼ C

B |∼ C

(RW) Right Weakening :
|= B → C, A |∼ B

A |∼ C

(AND) And :
A |∼ B, A |∼ C

A |∼ B ∧ C

(OR) Or :
A |∼ C, B |∼ C

A ∨ B |∼ C

(CM) Cautious Monotonicity :
A |∼ B, A |∼ C

A ∧ B |∼ C

Fig. 1. Axioms of system P (cf. [14]) with A, B, C ∈ L.

Definition 1 (equivalence ≡ee [4]). Let R, R′ be knowledge bases.

– R is an elementwise equivalent sub-knowledge base of R′, denoted by R �ee

R′, if for every conditional (B|A) ∈ R that is not self-fulfilling there is a
conditional (B′|A′) ∈ R′ such that (B|A) ≡ (B′|A′).

– R and R′ are strictly elementwise equivalent if R �ee R′ and R′ �ee R.
– R and R′ are elementwise equivalent, denoted by R ≡ee R′, if either both

are inconsistent, or both are consistent and strictly elementwise equivalent.

The knowledge bases R1 = {(a|), (b|), (ab|)} and R2 = {(a|), (b|)}
are model equivalent, but not elementwise equivalent since for (ab|) ∈ R1 there
is no corresponding conditional in R2. The idea of antecedentwise equivalence [7]
is to take into account the set of conditionals having the same (or propositionally
equivalent) antecedent when comparing to knowledge bases.

Definition 2 (Ant(R), R|A, ANF [7]). Let R be a knowledge base.

– Ant(R) = {A | (B|A) ∈ R} is the set of antecedents of R.
– For A ∈ Ant(R), the set R|A = {(B′|A′) | (B′|A′) ∈ R and A ≡ A′} is the

set of A-conditionals in R.
– R is in antecedent normal form (ANF) if either R is inconsistent and R = 	,

or R is consistent, does not contain any self-fulfilling conditional, contains
only conditionals of the form (AB|A), and

∣
∣R|A

∣
∣ = 1 for all A ∈ Ant(R).

Definition 3 (�ae, equivalence ≡ae [7]). Let R, R′ be knowledge bases.

– R is an antecedentwise equivalent sub-knowledge base of R′, denoted by
R �ae R′, if for every A ∈ Ant(R) such that R|A is not self-fulfilling there
is an A′ ∈ Ant(R′) with R|A ≡mod R′

|A′ .

26 C. Beierle and J. Haldimann

– R and R′ are strictly antecedentwise equivalent if R �ae R′ and R′ �ae R.
– R and R′ are antecedentwise equivalent, denoted by R ≡ae R′, if either both

are inconsistent, or both are consistent and strictly antecedentwise equivalent.

Note that any two inconsistent knowledge bases are also antecedentwise
equivalent e.g., {(b|a), (b|a)} ≡ae {(b|b), (aa|)}, thus avoiding cumbersome case
distinctions when dealing with consistent and inconsistent knowledge bases. In
general, we have:

Proposition 1 (≡ae [7]). Let R,R′ be consistent knowledge bases.

1. If R �ae R′ then Mod(R′) ⊆ Mod(R).
2. If R ≡ae R′ then R ≡mod R′.
3. If R �ee R′ then R �ae R′.
4. If R ≡ee R′ then R ≡ae R′.
5. None of the implications (1.)–(4.) holds in general in the reverse direction.

Thus, under antecedentwise equivalence more knowledge bases are equivalent
than under elementwise equivalence. For instance, for R5 = {(bc|a), (cd|a)} and
R6 = {(bd|a), (bcd|a)} we have R5 ≡ae R6, but R5 �≡ee R6.

While ≡ae is a better approximation of ≡mod than ≡ee, the following example
demonstrates a characteristic feature of model equivalence that is not covered
by antecedentwise equivalence.

Example 2 (≡ae). Let R7 = {(bc|a), (c|ab)} and R8 = {(bc|a), (b|ac)}. Then
R7 �≡ae R8, but R7 ≡mod R8. Furthermore, also for R′

7 = {(abc|a), (abc|ab)}
and R′

8 = {(abc|a), (abc|ac)} which are both in ANF, we have R′
7 �≡ae R′

8, but
R′

7 ≡mod R′
8.

The knowledge bases R7 and R8 from Example 2 both contain a conditional
that is entailed from the other conditionals in that knowledge base using the
axioms of system P, i.e., (c|ab) in R7 and (b|ac) in R8, respectively. Therefore,
we now introduce a new normal form prohibiting this kind of redundancy.

Definition 4 (reduced form, RANF). Let R be a knowledge base.

– R is in reduced form (with respect to system P) if there is no conditional
(B|A) ∈ R such that A |∼R\(B|A) B.

– R is in reduced antecedent normal form (RANF) if R is in ANF and in
reduced form.

Example 3 (≡ae). None of the four knowledge bases from Example 2 is in RANF,
while, e.g., R9 = {(abc|a)} is in RANF. Both R10 = {(ac|a), (bc|b), (ac∨bc|a∨b)}
and R11 = {(ac|a), (bc|b)} are in ANF, but only the obviously simpler knowledge
base R11 is in RANF.

Normal Forms of Conditional Knowledge Bases Respecting Entailments 27

4 Transforming Knowledge Bases into Reduced ANF

In order to be able to deal with normal forms of formulas in L without having to
select a specific representation, we assume a function ν mapping a propositional
formula A to a unique normal form ν(A) such that A ≡ A′ iff ν(A) = ν(A′).
We also use a function Π with Π(R) = 	 iff R is inconsistent; Π can easily be
implemented by the tolerance test for conditional knowledge bases [11]. Using Π
and the propositional normalization function ν, the system Θra given in Fig. 2
contains five transformation rules:

(RE) reduction :
R ∪ {(B|A)}

R Π((R \ {(B|A)}) ∪ {(B|A)}) = �, A ⊥≡�

(SF) self -fulfilling :
R ∪ {(B|A)}

R A |= B, A ⊥≡�

(AE) antecedence :
R ∪ {(B|A), (B′|A′)}

R ∪ {(BB′|A)} A ≡ A′

(NO) normalization :
R ∪ {(B|A)}

R ∪ {(ν(AB)|ν(A))} A �= ν(A) or B �= ν(AB)

(IC) inconsistency :
R
� R �= �, Π(R) = �

Fig. 2. Transformation rules Θra and their applicability conditions for the transforma-
tion of knowledge bases into RANF; Π is a consistency test, e.g. the tolerance criterion
[11], and ν a normalization function for propositional formulas.

(RE) removes a conditional (B|A) with A �≡ ⊥ from R if A p-entails B in the
context of R \ {(B|A)}.

(SF) removes a self-fulling conditional (B|A) with A �≡ ⊥.
(AE) merges two conditionals (B|A) and (B′|A′) with propositionally equivalent

antecedents to a conditional having this antecedent and the conjunction of
the consequents.

(NO) transforms a conditional (B|A) by sharpening its consequent to the con-
junction with its antecedent and propositionally normalizes the antecedent
and the resulting consequent.

(IC) transforms an inconsistent knowledge base into 	.

Example 4. Consider the knowledge base Rbook from Example 1.

(SF) The conditional q1 is self-fulfilling. Application of (SF) removes q1 from
the knowledge base.

(AE) The conditionals q2 and q3 share the same antecedence. The application of
(AE) replaces them with q6 : (pt|b).

28 C. Beierle and J. Haldimann

(RE) The knowledge base {q6, q5} p-entails q4. Therefore q4 is removed by the
application of (RE).

(NO) Normalizing the conditionals q5 and q6 in the knowledge base yields q′
5 :

(ν(tbp)|ν(bp)) and q′
6 : (ν(tbp)|ν(bp)).

By applying Θra exhaustively to Rbook , we get R′
book = {(ν(tbp)|ν(bp)),

(ν(tbp)|ν(bp))} which is in RANF and model equivalent to Rbook .

In contrast to the transformation system Θ given in [7] yielding the unique
ANF for every conditional knowledge base, the system Θra is not confluent.

Example 5 (Non-confluence of Θra). Consider the knowledge base R =
{(ν(ab)|ν(a)), (ν(ab)|ν(b)), (ν((a ∨ c)d)|ν(a ∨ c)), (ν((b ∨ c)d)|ν(b ∨ c)),
(ν(aef)|ν(ae))}. It is already in ANF, but it is not reduced.

The third or the forth conditional can be removed with (RE), yielding either
R′ = {(ν(ab)|ν(a)), (ν(ab)|ν(b)), (ν((a ∨ c)d)|ν(a ∨ c)), (ν(aef)|ν(ae))} or R′′ =
{(ν(ab)|ν(a)), (ν(ab)|ν(b)), (ν((b∨c)d)|ν(b∨c)), (ν(aef)|ν(ae))} after exhaustive
application of (NO). Neither R′ nor R′′ can be reduced further by Θra . Both
R′ and R′′ are in RANF, and they are two different normal forms of R with
respect to Θra .

Because Θra is not confluent, the result of applying the rules Θra to a knowl-
edge base R is not uniquely determined in general. In the following, Θra(R) will
denote the set of all knowledge bases that can be obtained from R by exhaus-
tively applying the transformation rules of Θra to R in some arbitrary order.

Proposition 2 (properties of Θra). Let R be a knowledge base, and let R′ ∈
Θra(R).

1. (termination) Θra is terminating.
2. (consistency) R is consistent iff Θra(R) �= {	}.
3. (≡mod soundness) R ≡mod R′.
4. (RANF) R′ is in reduced antecedent normal form.

Proof. (1.) The transformation rules (RE), (SF) and (AE) each remove one
conditional. (NO) can be applied at most once per conditional, and (IC) can be
applied at most once in the whole transformation. Therefore Θra is terminating.

(3.) We will check that ≡mod is preserved by every rule in Θra . (RE) is applied
if (R\{(B|A)})∪{(B|A)} is inconsistent. In this case A |∼R\{(B|A)}B, i.e. every
model of R \ {(B|A)} accepts (B|A). Therefore removing the conditional (B|A)
from R does not affect the set of models. It was shown that (SF), (AE), (NO),
and (IC) preserve model equivalence in [7, Proof of Prop. 2, (≡mod correctness)].
Therefore, R ≡mod R′.

(2.) Let R be an inconsistent knowledge base. (3.) implies that the application
of the rules in Θra to R cannot lead to a consistent knowledge base. Thus every
exhaustive application of rules in Θra will apply (IC) at one point. Therefore
Θra(R) = {	}.

(4.) R′ is in ANF, otherwise (SF), (AE), (NO), or (IC) could be applied,
and R′ is in reduced form, otherwise (RE) could be applied.

��

Normal Forms of Conditional Knowledge Bases Respecting Entailments 29

5 Renamings and Renaming Normal Form (ρNF)

There are knowledge bases that are identical except for the names of their vari-
ables. E.g., the knowledge bases R1 = {(a|b), (a|c)} and R2 = {(c|b), (c|a)}
become equal if we swap the names for the variables a and c in one of them.
When generating knowledge bases, we are only interested to store one of such
knowledge bases that are identical except for a signature renaming.

Definition 5 (renaming, �). Let Σ be a signature. We call a bijective function
ρ : Σ → Σ a (signature) renaming. A renaming is lifted canonically to formulas,
worlds, conditionals, knowledge bases, and sets thereof as usual.

Two formulas, worlds, conditionals, knowledge bases, or sets thereof X,X ′

are called equivalent under signature renaming, denoted as X � X ′, if there
exists a renaming ρ such that X ′ = ρ(X).

For a set M , m ∈ M , and an equivalence relation ≡ on M , the set of equiva-
lence classes induced by ≡ is denoted by [M]/≡, and the unique equivalence class
containing m is denoted by [m]≡. It is easy to see that equivalence under signa-
ture renaming is an equivalence relation. Thus, for instance, for Σab = {a, b} the
only non-identity renaming is the function ρab with ρab(a) = b and ρab(b) = a,
[ΩΣab

]/� = {[ab], [ab, ab], [ab]} are the three equivalence classes of worlds over
Σab, and we have [(ab|ab ∨ ab)]� = [(ab|ab ∨ ab)]�.

An important observation is that renaming has no influence on whether a
knowledge base is in ANF or in RANF, respectively, or not:

Proposition 3. Let R,R′ be knowledge bases such that R � R′. It holds that:

– R is in ANF iff R′ is in ANF.
– R is in RANF iff R′ is in RANF.

For developing a method for the systematic generation of knowledge bases in
RANF while also taking renamings into account, we will represent each formula
A ∈ L uniquely by its set ΩA of satisfying worlds. The two conditions B � A
and B �= ∅ then ensure the falsifiability and the verifiability of a conditional
(B|A), thereby excluding any trivial conditional [6]. This yields a propositional
normalization function ν as employed in Θra (Fig. 2), giving us:

Proposition 4 (NFC (Σ) [8]). For NFC (Σ) = {(B|A) | A ⊆ ΩΣ , B � A, B �=
∅}, the set of normal form conditionals over a signature Σ, the following holds:

(nontrivial) NFC (Σ) does not contain any trivial conditional.
(complete) For every nontrivial conditional over Σ there is an equivalent con-

ditional in NFC (Σ).
(minimal) All conditionals in NFC (Σ) are pairwise non-equivalent.

30 C. Beierle and J. Haldimann

For instance, for Σab we have ({ab, ab}|{ab, ab}) ≡ ({ab}|{ab, ab}) where the
latter is in NFC (Σab). Out of the different 256 conditionals over Σab obtained
when using sets of worlds as formulas, only 50 are in NFC (Σab) [8].

For defining a linear order on NFC (Σ), we use the following notation. For
an ordering relation � on a set M , its lexicographic extension to strings over
M is denoted by �lex . For ordered sets S, S′ ⊆ M with S = {e1, . . . , en} and
S′ = {e′

1, . . . , e
′
n′} where ei � ei+1 and e′

j � e′
j+1 its extension �set to sets is:

S �set S′ iff n < n′, or n = n′ and e1 . . . en �lex e′
1 . . . e′

n′ (1)

For Σ with ordering �, [[ω]]
�

is the usual interpretation of a world ω as a binary
number; e.g., for Σab with a�b, [[ab]]

�
= 3, [[ab]]

�
= 2, [[ab]]

�
= 1, and [[ab]]

�
= 0.

Definition 6 (induced ordering on formulas and conditionals). Let Σ
be a signature with linear ordering �. The orderings induced by � on worlds
ω, ω′ and conditionals (B|A), (B′|A′) over Σ are given by:

ω
w
�. ω′ iff [[ω]]

�
� [[ω′]]

�
(2)

(B|A)
c
�. (B′|A′) iff ΩA

w
�set ΩA′ , or ΩA = ΩA′ and ΩB

w
�.

set ΩB′ (3)

In order to ease our notation, we will omit the upper symbol in
w
� and

c
�, and

write just � instead, and analogously �. for the non-strict variants. For instance,
for Σab with a � b we have ab � ab � ab � ab for worlds, and (ab|ab ∨ ab) �

(ab|ab ∨ ab) and (ab ∨ ab|ab ∨ ab ∨ ab) � (ab|ab ∨ ab ∨ ab ∨ ab) for conditionals.

Proposition 5 (NFC (Σ), � [8]). For a linear ordering � on a signature Σ, the
induced ordering � according to Definition 6 is a linear ordering on NFC (Σ).

Obviously, a signature renaming can map a conditional only to a conditional
in the same equivalence class induced by �, leading to the following observations.

Proposition 6. Let Σ be a signature, R,R′ ⊆ NFC (Σ) knowledge bases, and
ρ a renaming on Σ. Then it holds that:

ρ(R) = R′ ⇔ for every [r]� ∈ [NFC (Σ)]/� : ρ(R ∩ [r]�) = R′ ∩ [r]�
R � R′ ⇒ for every [r]� ∈ [NFC (Σ)]/� : |R ∩ [r]�| = |R′ ∩ [r]�|

The first observation states that a renaming ρ maps R to R′ if and only if
for every equivalence class [r]� wrt. � it maps the conditionals in R from [r]� to
the conditionals in R′ from [r]�. Later on, we will use this observation to check
whether two knowledge bases R,R′ are equivalent under renaming by checking
if ρ(R ∩ [r]�) = R′ ∩ [r]� for every equivalence class [r]� ∈ [NFC (Σ)]/�. The
second observation in Proposition 6 is an immediate consequence of the first
observation.

Given the ordering � on NFC (Σ) from Proposition 5, we will now define
a new ordering ≺· on these conditionals that takes signature renamings into
account and prioritizes the conditionals according to the �-minimal elements in
each �-induced equivalence class.

Normal Forms of Conditional Knowledge Bases Respecting Entailments 31

Definition 7 (NFC (Σ), ≺·). Given a signature Σ with linear ordering �, let
[NFC (Σ)]/� = {[r1]�, . . . , [rm]�} be the equivalence classes of NFC (Σ) induced
by renamings such that for each i ∈ {1, . . . , m}, the conditional ri is the minimal
element in [ri]� with respect to �, and r1�. . .�rm. The conditionals {r1, . . . , rm}
are the canonical normal form conditionals over Σ. Let Mi = [ri]� \ {ri} denote
the equivalence class of the canonical normal form conditional ri without ri itself.
The canonical ordering on NFC (Σ) induced by �, denoted by ≺·, is given by the
schema

r1 ≺· M1 ≺· r2 ≺· M2 ≺· . . . ≺· rm ≺· Mm

where r ≺· r′ iff r � r′ for all r, r′ ∈ Mi with i ∈ {1, . . . , m}.
For instance, while NFC (Σab) contains 50 conditionals, there are 31 equiva-

lence classes in [NFC (Σab)]/�; hence NFC (Σab) has 31 canonical normal form
conditionals. Note that the ordering defined in Definition 7 differs form the cor-
responding ordering ≺· defined in [8] because in [8] all canonical conditionals
are ≺·-smaller than all non-canonical conditionals. The complete ordering ≺· on
NFC (Σab) is given in Table 1.

Proposition 7 (NFC (Σ), ≺·). For a linear ordering � on a signature Σ, the
induced ordering ≺· according to Definition 7 is a linear ordering on NFC (Σ).
Furthermore, its extension to sets of conditionals ≺·set as given by Eq. (1) is a
linear ordering on the set of knowledge bases using NFC (Σ).

In the following, we will abbreviate R ≺·set R′ simply by R ≺· R′ for knowl-
edge bases R,R′, and analogously for the non-strict version �·set . Furthermore,
for every set R ⊆ NFC (Σ), the maximal element of R with respect to ≺· will
be denoted by max≺·(R) or simply by max(R). Using these notations, we can
now introduce a new normal form for conditional knowledge bases that takes
renamings into account.

Definition 8 (ρNF). A knowledge base R ⊆ NFC (Σ) is in renaming normal
form (ρNF) if for every knowledge base R′ with R � R′ it holds that R �· R′.

Note that we defined the ρNF just for knowledge bases containing only nor-
mal form conditionals. However, for every knowledge base R, a corresponding
knowledge base in ρNF exists that modulo renaming has the same models as
R, or that is even renaming equivalent to R, depending on whether R contains
arbitrary or only normal form conditionals. More precisely, we have:

Proposition 8 (ρNF). Let R be a consistent knowledge base over Σ.

(i) There is a knowledge base R′ over Σ in ρNF and a renaming ρ such that
R ≡mod ρ(R′).

(ii) Furthermore, if R contains only normal form conditionals from NFC (Σ),
then there is a unique knowledge base R′ in ρNF such that R � R′.

32 C. Beierle and J. Haldimann

Table 1. The 50 conditionals r01.1 ≺· r01.2 ≺· . . . ≺· r30.2 ≺· r31.1 in NFC (Σab) for Σab =
{a, b}, and their 31 equivalence classes [01], . . . , [31]. Formulas in conditionals are given
by sets of worlds, and worlds are represented by their binary number interpretation;
e.g., r03.1: ({3}|{3, 0}) stands for ({ab}|{ab, ab}).

Class First conditional Second conditional

[01] r01.1: ({3}|{3, 2}) r01.2: ({3}|{3, 1})
[02] r02.1: ({2}|{3, 2}) r02.2: ({1}|{3, 1})
[03] r03.1: ({3}|{3, 0})
[04] r04.1: ({0}|{3, 0})
[05] r05.1: ({2}|{2, 1}) r05.2: ({1}|{2, 1})
[06] r06.1: ({2}|{2, 0}) r06.2: ({1}|{1, 0})
[07] r07.1: ({0}|{2, 0}) r07.2: ({0}|{1, 0})
[08] r08.1: ({3}|{3, 2, 1})
[09] r09.1: ({2}|{3, 2, 1}) r09.2: ({1}|{3, 2, 1})
[10] r10.1: ({3, 2}|{3, 2, 1}) r10.2: ({3, 1}|{3, 2, 1})
[11] r11.1: ({2, 1}|{3, 2, 1})
[12] r12.1: ({3}|{3, 2, 0}) r12.2: ({3}|{3, 1, 0})
[13] r13.1: ({2}|{3, 2, 0}) r13.1: ({1}|{3, 1, 0})
[14] r14.1: ({0}|{3, 2, 0}) r14.1: ({0}|{3, 1, 0})
[15] r15.1: ({3, 2}|{3, 2, 0}) r15.2: ({3, 1}|{3, 1, 0})
[16] r16.1: ({3, 0}|{3, 2, 0}) r16.2: ({3, 0}|{3, 1, 0})
[17] r17.1: ({2, 0}|{3, 2, 0}) r17.2: ({1, 0}|{3, 1, 0})
[18] r18.1: ({2}|{2, 1, 0}) r18.2: ({1}|{2, 1, 0})
[19] r19.1: ({0}|{2, 1, 0})
[20] r20.1: ({2, 1}|{2, 1, 0})
[21] r21.1: ({2, 0}|{2, 1, 0}) r21.2: ({1, 0}|{2, 1, 0})
[22] r22.1: ({3}|{3, 2, 1, 0})
[23] r23.1: ({2}|{3, 2, 1, 0}) r23.2: ({1}|{3, 2, 1, 0})
[24] r24.1: ({0}|{3, 2, 1, 0})
[25] r25.1: ({3, 2}|{3, 2, 1, 0}) r25.2: ({3, 1}|{3, 2, 1, 0})
[26] r26.1: ({3, 0}|{3, 2, 1, 0})
[27] r27.1: ({2, 1}|{3, 2, 1, 0})
[28] r28.1: ({2, 0}|{3, 2, 1, 0}) r28.2: ({1, 0}|{3, 2, 1, 0})
[29] r29.1: ({3, 2, 1}|{3, 2, 1, 0})
[30] r30.1: ({3, 2, 0}|{3, 2, 1, 0}) r30.2: ({3, 1, 0}|{3, 2, 1, 0})
[31] r31.1: ({2, 1, 0}|{3, 2, 1, 0})

While in case (ii) in Proposition 8 the knowledge base R′ is uniquely deter-
mined, there may be several different knowledge bases R′ satisfying case (i) of
Proposition 8. Naturally, requiring a renaming ρ such that R = ρ(R′) as in case

Normal Forms of Conditional Knowledge Bases Respecting Entailments 33

(ii) is a syntax oriented restriction that is a much stricter condition than the
model oriented restriction requiring R ≡mod ρ(R′) as in case (i). In the remain-
ing parts of this paper, we will focus on automatically enumerating knowledge
bases in ρNF. The task of designing an algorithm for transforming a knowledge
base R into a knowledge base R′ that is in ρNF and that satisfies Proposition 8
will be addressed to future work.

Removing the ≺·-maximal element form a knowledge base that is in ρNF
yields a knowledge base that is also in ρNF.

Proposition 9. Let R be a knowledge base in ρNF and r = max(R). Then
R \ {r} is in ρNF as well.

Proof. Let Q = R \ {r}. Assume there is a renaming ρ, such that ρ(Q) ≺· Q.
Then is ρ(R) ≺· R because r is the maximum of R. This is a contradiction to
the assumption that R is in ρNF. ��

This property will be exploited in the following for systematically generating
knowledge bases in ρNF.

6 Generating Knowledge Bases in RANF and ρNF

In this section, we will introduce two algorithms to generate consistent knowledge
bases that are both in RANF and ρNF. The first algorithm, KBρra

basic , clarifies the
basic approach used here to generate knowledge bases. The second algorithm,
KBρra , obtains the same result as KBρra

basic but is computationally more efficient.

6.1 Basic Algorithm KBρra
basic

KBρra
basic (Algorithm 1) is a basic algorithm to generate consistent knowledge bases

in RANF, that are not pairwise equivalent under renaming. To do so, it starts
with an empty set of conditionals and tries to extend it by one conditional at a
time. Proposition 2 ensures that it is sufficient to generate only knowledge bases
over NFC (Σ) (cf. transformation rule (NO) in Fig. 2). To avoid generating the
same knowledge base multiple times, the algorithm KBρra

basic will add conditionals
to a knowledge base in the order of ≺· as induced by the order � on Σ (cf.
Definition 7).

Proposition 10 (KBρra
basic). Let Σ be a signature with a linear ordering �.

Then applying KBρra
basic terminates and returns a set KB for which the following

holds:

1. (correctness) If R ∈ KB then R is a knowledge base over Σ.
2. (consistency) If R ∈ KB then R is consistent.
3. (RANF) If R ∈ KB then R is in RANF.
4. (ρNF) If R ∈ KB then R is in ρNF.
5. (� minimality) If R,R′ ∈ KB and R �= R′ then R �� R′.

34 C. Beierle and J. Haldimann

Algorithm 1. KBρra
basic – Basic algorithm to generate knowledge bases over Σ

with order � that are in RANF and ρNF
Require: signature Σ with order �

Ensure: set KB of knowledge bases over Σ in reduced antecedentwise normal form
(RANF) and in renaming normal form (ρNF) that are consistent, pairwise not
antecedentwise equivalent and pairwise not equivalent under signature renaming

1: k ← 0
2: L0 ← {∅}
3: while Lk �= ∅ do � Lk contains all generated KBs with k conditionals
4: Lk+1 ← ∅
5: for R ∈ Lk do
6: for r ∈ NFC (Σ) do � For every possible extension. . .
7: if max(R) ≺· r
8: and R ∪ {r} is consistent � . . . that is consistent. . .
9: and R ∪ {r} is in RANF � . . . in RANF . . .
10: and R ∪ {r} is in ρNF � . . . and in ρNF . . .

then
11: Lk+1 ← Lk+1 ∪ {R ∪ {r}}

� . . . add it to Lk+1.

12: k ← k + 1

13: return KB ← L1 ∪ · · · ∪ Lk

6. (≡ae minimality) If R,R′ ∈ KB and R �= R′ then R �≡ae R′.
7. (� completeness) If R is a consistent knowledge base in RANF over

Σ then there is R′ ∈ KB and a signature renaming
 such that R =
(R′).
8. (≡mod completeness) If R is a consistent knowledge base over Σ then

there is R′ ∈ KB and a signature renaming
 such that R ≡mod
(R′).

Proof. We prove the stated properties one by one.
(1.) is clear, as the algorithm returns a set of sets of conditionals by design.
(2.) is ensured by the condition in Line 8.
(3.) is ensured by the condition in Line 9.
(4.) is ensured by the condition in Line 10.
(5.) Assume that there are two knowledge bases R,R′ ∈ KB such that R �=

R′ but R � R′. Then (4.) implies that both knowledge bases are in ρNF. With
Proposition 8 it follows that R = R′ because R � R′ and both are in ρNF. This
is a contradiction to the assumption.

(6.) Assume that there are two knowledge bases R,R′ ∈ KB such that R �=
R′ but R ≡ae R′. Because R and R′ are in ANF, the sets R|A and R′

|A contain
at most one element for every antecedent A. Therefore, R ≡ae R′ implies that
every conditional in R is equivalent to a conditional in R′ and vice versa, i.e.
R ≡ee R′. Because all conditionals in R and R′ are in normal form, this implies
R = R′, a contradiction to the assumption.

(7.) For proving (7.), we first prove the following by induction over k:

For k � 0 it holds that every consistent knowledge base R in
RANF and in ρNF with |R| = k is contained in Lk. (4)

Normal Forms of Conditional Knowledge Bases Respecting Entailments 35

Base case: The empty set is the only knowledge base with 0 conditionals. There-
fore the statement holds for k = 0, as L0 = {∅}.
Induction step: Let R be a consistent knowledge base in RANF and ρNF with
|R| = k. Let q := max(R). Then Q := R \ {q} is in ρNF as well (cf. Proposi-
tion 9). Moreover, Q is consistent and in RANF. Hence, the induction hypothesis
implies Q ∈ Lk−1. Therefore, R = Q ∪ {q} is added to Lk by KBρra

basic because
max(Q) ≺· q and R is consistent, in RANF, and in ρNF.

Now let R be a consistent knowledge base in RANF. With Proposition 8 (ii)
it follows that there is a renaming ρ and a knowledge base R′ in ρNF with
R′ = ρ(R). Because R is consistent and in RANF, R′ is consistent and in
RANF. With (4) it follows that R′ ∈ L|R′| ⊆ KB.

(8.) Let R be a consistent knowledge base over Σ. Then there is a knowledge
base R′′ in RANF with R′′ ≡mod R (cf. Proposition 2). From (7.) it follows that
there is a renaming ρ and a knowledge base R′ ∈ KB such that R′′ = ρ(R′).
Therefore, R ≡mod ρ(R′). ��
Example 6. Let Σ = {a, b} and, using the notation as in Table 1,

R1 = {r01.1: ({3}|{3, 2}), r01.2: ({3}|{3, 1}), r05.1: ({2}|{2, 1})},

R2 = {r01.1: ({3}|{3, 2}), r05.2: ({1}|{2, 1})},

R3 = {r01.1: ({3}|{3, 2}), r01.2: ({3}|{3, 1}), r05.2: ({1}|{2, 1})}.

Then R1,R2 ∈ KBρra
basic(Σ), but R3 /∈ KBρra

basic(Σ) because R3 � R1 and R1 ≺·
R3.

6.2 Improved Algorithm KBρra

In order to improve Algorithm KBρra
basic by decreasing its search space, we take a

closer look on how to evaluate the conditions in lines 7 to 10 in KBρra
basic . Similar to

the well-known apriori algorithm determining candidates for extending frequent
item sets [2] and also similar to the algorithms introduced in [7,8] that generate
systematically knowledge bases, but in less elaborated normal forms, we can
keep track of a set C of conditionals that might be extensions of R. In this
section, we will thus refine KBρra

basic , thereby refining and largely extending the
concept of candidates and candidate elimination for knowledge base generation.
Furthermore, we employ significant search space improvements for ensuring that
all generated knowledge bases are in ρNF.

Definition 9 (excluded conditionals, EXC (r)). Given a signature Σ, let
r ∈ NFC (Σ). The set EXC (r), called the set of conditionals excluded by r, is:

EXC (r) = {r′ ∈NFC (Σ) | r′ �· r or ant(r) = ant(r′) or {r, r′} is inconsistent}

Whenever Algorithm KBρra
basic adds a conditional r to a knowledge base, all

conditionals r′ in EXC (r) can be excluded from the set of candidates for further
extensions. If r′ � r (or {r, r′} is inconsistent or ant(r) = ant(r′), respectively)

36 C. Beierle and J. Haldimann

the condition in Line 7 (or in 8 or in 9, respectively) of KBρra
basic will prohibit the

extension of R ∪ {r} by r′. Note that EXC (r) is independent of R and can be
pre-computed before running KBρra . For instance, for r = r04.1: ({0}|{3, 0}) ∈
NFC (Σab) (cf. Table 1) we have:

EXC (r) = {r01.1: ({3}|{3, 2}), r01.2: ({3}|{3, 1}), . . . , r03.1: ({3}|{3, 0}),
r12.1: ({3}|{3, 2, 0}), r12.2: ({3}|{3, 1, 0}), r22.1: ({3}|{3, 2, 1, 0})}

Another improvement regards the check for ρNF in Line 10 of Algorithm
KBρra

basic . Checking for ρNF in Line 10 naively requires to consider all signature
renamings over Σ. For convenience, we will identify the renamings of Σ with the
set PermΣ of permutations over Σ, with id being the identity. Thus, there are
|PermΣ | = |Σ|! many renamings over Σ. The following proposition provides a
criterion for reducing the number of renamings that have to be taken into account
if the conditional to be added to R is ≺·-larger than the maximal conditional in
R.

Proposition 11. Let R be a knowledge base and r ∈ NFC (Σ) such that
max(R) ≺· r and R\ [r]� is in ρNF. Then R∪{r} is in ρNF iff for all renamings
ρ it holds that:

ρ(R \ [r]�) = R \ [r]� ⇒ (R ∪ {r}) ∩ [r]� �· ρ((R ∪ {r}) ∩ [r]�)

Proof. Due to Proposition 8, from R being in ρNF, we conclude that R \ [r]� is
in ρNF. Let S = R ∪ {r}. Then we have:

S in ρNF (5)

⇔ for every renaming ρ it holds that S �· ρ(S) (6)

⇔ for every renaming ρ it holds that S \ [r]� ≺· ρ(S \ [r]�)
or S \ [r]� = ρ(S \ [r]�) and S ∩ [r]� �· ρ(S ∩ [r]�) (7)

⇔ for every renaming ρ it holds that
S \ [r]� = ρ(S \ [r]�) ⇒ S ∩ [r]� �· ρ(S ∩ [r]�) (8)

The equivalence between (6) and (7) holds, because a renaming can only map
a conditional to another conditional in the same equivalence class (cf. Proposi-
tion 6) and the conditionals in [r]� are greater than all conditionals in S \ [r]�.
The equivalence between (7) and (8) holds because S \ [r]� is in ρNF and there-
fore, S \ [r]� �= ρ(S \ [r]�) implies S \ [r]� ≺· ρ(S \ [r]�). ��

Normal Forms of Conditional Knowledge Bases Respecting Entailments 37

Proposition 11 implies that for verifying that R ∪{r} is in ρNF if max(R) ≺· r
and R \ [r]� is in ρNF, it is sufficient to check

(R ∪ {r}) ∩ [r]� �· ρ((R ∪ {r}) ∩ [r]�)

for all ρ ∈ P := {ρ | (R ∪ {r}) \ [r]� = ρ((R ∪ {r}) \ [r]�)} \ {id} instead of
checking

R ∪ {r} �· ρ′(R ∪ {r})

for all ρ′ ∈ PermΣ . As conditionals from the same equivalence class are added
directly after each other, it is possible to keep track of the set P during the
algorithm.

Algorithm KBρra (Algorithm 2) is an refined version of Algorithm KBρra
basic

that makes use of these concepts and observations. The set Lk contains states
instead of knowledge bases. A state is a triple consisting of a knowledge base
R, the set P of all signature renamings ρ such that ρ(R \ E) = R \ E where
E := [max(R)]�, and the set C of conditionals that are candidates for the
extension of R. In the initial state, we have R = ∅, P = PermΣ \ {id}, and
C = NFC (Σ). If a conditional from a new equivalence class is selected, the set
P has to be updated. The set C is updated with every extension.

Proposition 12 (KBρra). Let Σ be a signature with a linear ordering �. Then
applying KBρra terminates and KBρra

basic(Σ) = KBρra(Σ).

Proof. There are three differences between the algorithm KBρra
basic and KBρra :

The usage of candidate sets, the modified check for ρNF, and omission of the
checks in Lines 7 to 9 in KBρra

basic . In order to prove that KBρra is a correct
refinement of KBρra

basic , we have to show that

– it is sufficient to consider the conditionals in the candidate set of a knowledge
base maintained in KBρra as extensions,

– the check for ρNF in KBρra is correct, and
– the checks for max(R) ≺· r, consistency, and RANF done in KBρra

basic are not
necessary due to the filtering of the candidate sets done in KBρra .

Let us first consider the candidate sets. Initially a candidate set contains all
normal form conditionals. So far, no possible extension is excluded. Now let us
consider the conditionals that are removed from candidate sets in the Lines 17 to
20. Assume the knowledge base R was just extended by the conditional r. The
conditionals in EXC (r) cannot extend R ∪ {r} any more by the construction of
EXC (r). If R ∪ {r, d} is inconsistent, d cannot extend R ∪ {r} or any superset
thereof to a consistent knowledge base. Every candidate d, such that R ∪ {r, d}
is inconsistent, is an entailment of R ∪ {r}. Therefore, an extension of R ∪ {r}
or a any superset thereof by d cannot be in reduced form. Analogously, if (R ∪
{r, d, r′})\{r′} is inconsistent for any r′ ∈ R∪{r}, then (R∪{r, d})\{r′} entails
r′. Therefore, R ∪ {r, d} or any superset thereof is not in reduced form.

38 C. Beierle and J. Haldimann

Algorithm 2. KBρra – Improved algorithm to generate knowledge bases over
Σ with order � that are in RANF and in ρNF
Require: signature Σ with order �

Ensure: set KB of knowledge bases over Σ in reduced antecedentwise normal form
(RANF) and in renaming normal form (ρNF) that are consistent, pairwise not
antecedentwise equivalent and pairwise not equivalent under signature renaming

1: k ← 0
2: L0 ← {〈∅,PermΣ \ {id},NFC (Σ)〉} � Initialize the set of states
3: while Lk �= ∅ do
4: Lk+1 ← ∅
5: for 〈R, P, C〉 ∈ Lk do
6: E ← if k = 0 then [max(R)]� else ∅ � equiv. class of last conditional
7: for r ∈ C do
8: if r /∈ E then � If r is from a new equivalence class. . .
9: P ← {� ∈ P | �(R) = R} � . . . update P and . . .
10: E ← [r]� � . . . update E.

11: is minimal ← true
12: for � ∈ P do � Check if R ∪ {r} is in ρNF
13: if �((R ∪ {r}) ∩ E) ≺· (R ∪ {r}) ∩ E then
14: is minimal ← false
15: break
16: if is minimal then � Keep the extension if it is in ρNF
17: Cnew ← C \ EXC (r) � Reduce candidate set
18: Cnew ← Cnew \ {d ∈ Cnew | R ∪ {r, d} inconsistent}
19: Cnew ← Cnew \ {d ∈ Cnew | R ∪ {r, d} inconsistent}
20: Cnew ← Cnew \ {d ∈ Cnew | r′ ∈ R ∪ {r},

(R ∪ {r, d, r′}) \ {r′} inconsistent}
21: Lk+1 ← Lk+1 ∪ {〈R ∪ {r}, P, Cnew 〉}

22: k ← k + 1

23: return KB ← R1 ∪ · · · ∪ Rk with Ri = {R | 〈R, P, C〉 ∈ Li}

The check for ρNF in Lines 9 to 15 of KBρra is correct because of Proposi-
tion 11.

The checks in Lines 7 to 9 of KBρra
basicwere moved to the reduction of the

candidate sets. The exclude set EXC (r) for a conditional r contains all smaller
conditionals r′ �· r. All extensions by a single conditional d such that r and d
are pairwise inconsistent are already removed by using EXC (r), and all other
extensions of R ∪{r} that would lead to an inconsistency are removed in Line 18.
The exclude set EXC (r) also contains all conditionals with the same antecedence
as r, and all conditionals considered here are already normal form conditionals,
implying that the extension of a knowledge base with a candidate from the
corresponding candidate set is always in ANF. The Lines 19 and 20 ensure that
the extension is in reduced form. Therefore the omitted checks from KBρra

basic

are not necessary in KBρra . In summary this implies the claim KBρra
basic(Σ) =

KBρra(Σ). ��

Normal Forms of Conditional Knowledge Bases Respecting Entailments 39

Thus, all properties (1.)–(8.) as stated in Proposition 10 also hold for the
set of knowledge base returned by KBρra . At the same time, KBρra requires
less computational effort than KBρra

basic , because it uses a significantly reduced
search space. For the check for ρNF, only the intersection of the equivalence
class of the conditional to be added with the knowledge base to be extended
has to be checked, and only with respect to the permutations maintained by
KBρra . For many knowledge bases, this set of permutations still to be taken
into account will shrink very fast after a few conditionals have been selected.
Furthermore, the improved algorithm checks unsuccessful extensions less often.
If KBρra

basic does not use a conditional in one iteration of the while loop, it will
check the same conditional again in the next iteration of the loop. If KBρra does
not use a conditional for another reason than the extension not being in ρNF, it
is removed from the candidate set permanently.

7 Conclusions and Further Work

In this paper, we introduced two new normal forms for conditional knowledge
bases, the semantically motivated reduced antecedent normal form (RANF) for
arbitrary knowledge bases and the syntax oriented renaming normal form (ρNF)
for knowledge bases over normal form conditionals, and studied their properties.
The RANF is an improved version of the antecedent normal form (ANF) and
further reduces the number of conditionals in the knowledge base. The trans-
formation system Θra transforms any conditional knowledge base into one in
RANF. To systematically generate knowledge bases over a given signature that
are both in RANF and in ρNF, we developed the algorithm KBρra and proved
its correctness and key characteristics.

We are currently working on extending the results of this paper in several
directions. Here, the notion of ρNF has been defined only for knowledge bases
containing no other conditionals than normal form conditionals. While for such
knowledge bases there is a unique knowledge base that is equivalent to a given
knowledge base under signature renaming, there is not yet an algorithm doing
this transformation into ρNF; designing such an algorithm as well as the exten-
sion of ρNF to knowledge bases containing arbitrary conditionals is addressed
in our current work. Furthermore, the ordering ≺· induced by the underlying
� on the signature is only one of many orders that could be used in our app-
roach; it could be replaced by other orderings that respect the equivalence classes
induced by renamings. Moreover, instead of renamings over the same signature,
also mappings between different signatures could be taken into account. Both,
the normalizing system Θra and the generating algorithm KBρra will be studied
with respect to efficiency and complexity, and using implementations of these
methods and the InfOCF system [5], we will empirically evaluate properties of
given and of generated conditional knowledge bases.

40 C. Beierle and J. Haldimann

References

1. Adams, E.W.: The Logic of Conditionals: An Application of Probability to Deduc-
tive Logic. Synthese Library. Springer, Dordrecht (1975). https://doi.org/10.1007/
978-94-015-7622-2

2. Agrawal, R., Mannila, H., Srikant, R., Toivonen, H., Verkamo, A.: Fast discovery
of association rules. In: Fayyad, U., Piatetsky-Shapiro, G., Smyth, P., Uthurusamy,
R. (eds.) Advances in Knowledge Discovery and Data Mining, pp. 307–328. MIT
Press, Cambridge (1996)

3. Beierle, C.: Inferential equivalence, normal forms, and isomorphisms of knowledge
bases in institutions of conditional logics. In: Hung, C., Papadopoulos, G.A. (eds.)
The 34th ACM/SIGAPP Symposium on Applied Computing (SAC 2019), pp.
1131–1138. ACM, New York (2019)

4. Beierle, C., Eichhorn, C., Kern-Isberner, G.: A transformation system for unique
minimal normal forms of conditional knowledge bases. In: Antonucci, A., Cholvy,
L., Papini, O. (eds.) ECSQARU 2017. LNCS (LNAI), vol. 10369, pp. 236–245.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-61581-3 22

5. Beierle, C., Eichhorn, C., Kutsch, S.: A practical comparison of qualitative infer-
ences with preferred ranking models. KI - Künstliche Intelligenz 31(1), 41–52
(2017)

6. Beierle, C., Kutsch, S.: Computation and comparison of nonmonotonic skeptical
inference relations induced by sets of ranking models for the realization of intelli-
gent agents. Appl. Intell. 49(1), 28–43 (2019)

7. Beierle, C., Kutsch, S.: On the antecedent normal form of conditional knowledge
bases. In: Kern-Isberner, G., Ognjanović, Z. (eds.) ECSQARU 2019. LNCS (LNAI),
vol. 11726, pp. 175–186. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-29765-7 15

8. Beierle, C., Kutsch, S.: Systematic generation of conditional knowledge bases up
to renaming and equivalence. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA
2019. LNCS (LNAI), vol. 11468, pp. 279–286. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-19570-0 18

9. Benferhat, S., Dubois, D., Prade, H.: Possibilistic and standard probabilistic
semantics of conditional knowledge bases. J. Logic Comput. 9(6), 873–895 (1999)

10. Dubois, D., Prade, H.: Conditional objects as nonmonotonic consequence relation-
ships. IEEE Trans. Syst. Man Cybern. 24(12), 1724–1740 (1994). Special Issue on
Conditional Event Algebra

11. Goldszmidt, M., Pearl, J.: Qualitative probabilities for default reasoning, belief
revision, and causal modeling. Artif. Intell. 84, 57–112 (1996)

12. Kern-Isberner, G.: Conditionals in Nonmonotonic Reasoning and Belief Revision.
LNCS (LNAI), vol. 2087. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44600-1

13. Kraus, S., Lehmann, D., Magidor, M.: Nonmonotonic reasoning, preferential mod-
els and cumulative logics. Artif. Intell. 44, 167–207 (1990)

14. Lehmann, D., Magidor, M.: What does a conditional knowledge base entail? Artif.
Intell. 55, 1–60 (1992)

15. Lewis, D.: Counterfactuals. Harvard University Press, Cambridge (1973)
16. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, San

Mateo (1988)

https://doi.org/10.1007/978-94-015-7622-2
https://doi.org/10.1007/978-94-015-7622-2
https://doi.org/10.1007/978-3-319-61581-3_22
https://doi.org/10.1007/978-3-030-29765-7_15
https://doi.org/10.1007/978-3-030-29765-7_15
https://doi.org/10.1007/978-3-030-19570-0_18
https://doi.org/10.1007/978-3-030-19570-0_18
https://doi.org/10.1007/3-540-44600-1
https://doi.org/10.1007/3-540-44600-1

Normal Forms of Conditional Knowledge Bases Respecting Entailments 41

17. Pearl, J.: System Z: a natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In: Parikh, R. (ed.) Proceedings of the 3rd Conference on
Theoretical Aspects of Reasoning About Knowledge (TARK 1990), pp. 121–135.
Morgan Kaufmann Publishers Inc., San Francisco (1990)

18. Robinson, J.A., Voronkov, A. (eds.): Handbook of Automated Reasoning (in 2
Volumes). Elsevier and MIT Press, Cambridge (2001)

19. Spohn, W.: The Laws of Belief: Ranking Theory and Its Philosophical Applications.
Oxford University Press, Oxford (2012)

On Matrices and K-Relations

Robert Brijder, Marc Gyssens(B), and Jan Van den Bussche

Data Science Institute, Hasselt University, Martelarenlaan 42, 3500 Hasselt, Belgium
marc.gyssens@uhasselt.be

Abstract. We show that the matrix query language MATLANG cor-
responds to a natural fragment of the positive relational algebra on
K-relations. The fragment is defined by introducing a composition oper-
ator and restricting K-relation arities to two. We then proceed to show
that MATLANG can express all matrix queries expressible in the positive
relational algebra on K-relations, when intermediate arities are restricted
to three. Thus we offer an analogue, in a model with numerical data, to
the situation in classical logic, where the algebra of binary relations is
equivalent to first-order logic with three variables.

Keywords: Expressive power · Provenance semirings · Annotated
relations · Data science

1 Introduction

Motivated by large-scale data science, there is recent interest in supporting linear
algebra operations, such as matrix multiplication, in database systems. This
has prompted investigations comparing the expressive power of common matrix
operations with the operations on relations provided by the relational algebra
and SQL [2,6,7,10].

For boolean matrices, the connection between matrices and relations is very
natural and well known. An m × n boolean matrix A can be viewed as a binary
relation R ⊆ {1, . . . , m} × {1, . . . , n}, where R consists of those pairs (i, j) for
which Ai,j = 1. Boolean matrix multiplication then amounts to composition of
binary relations. Composition is the central operation in the algebra of binary
relations [13,15,16]. Besides composition, this algebra has operations such as
converse, which corresponds to transposition of a boolean matrix; union and
complement, which correspond to disjunction and negation of boolean matrices;
and the empty and identity relations, which correspond to the zero and identity
matrices.

A common theme in research in the foundations of databases is the expressive
power of query languages [1]. When we employ a query language, we would like to
understand as well as possible what we can do with it. Of this kind is the classical
Codd theorem, stating the equivalence between the standard relational algebra
and first-order logic. Likewise, for the algebra of binary relations, a classical
result [17] is that it has the same expressive power as the formulas with two free

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 42–57, 2020.
https://doi.org/10.1007/978-3-030-39951-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_3

On Matrices and K-Relations 43

variables in FO(3), the three-variable fragment of first-order logic. In this sense,
we understand quite well the expressive power of a natural set of operations on
boolean matrices.

What can now be said in this regard about more general matrices, with entries
that are not just boolean values? An m×n matrix with entries in some semiring
K is essentially a mapping from {1, . . . ,m}×{1, . . . , n} to K. This perfectly fits
the data model of K-relations introduced by Green, Garvounarakis and Tannen
[5]. In general, consider an infinite domain dom and a supply of attributes.
In a database instance, we assign to each attribute a range of values, in the
form of a finite subset of dom. Attributes can be declared to be compatible;
compatible attributes have the same range. A relation schema S is a finite set
of attributes. Tuples over S are mappings that assign to each attribute a value
of the appropriate range. Now a K-relation over S is a mapping that assigns to
each tuple over S an element of K.

So, an m × n matrix X can be seen as a K-relation over two attributes A
and B where the range of A is {1, . . . , m} and the range of B is {1, . . . , n}. We
can assume an order on all attributes and choose A < B so that we know which
values are row indices and which are column indices. Then an n × k matrix
Y is modeled using attributes C < D where we choose C and B compatible,
to reflect that the number of columns of matrix X equals the number of rows
of matrix Y . We can view vectors as K-relations over a single attribute, and
scalars as K-relations over the empty schema. In general, a K-relation of arity
r is essentially an r-dimensional tensor (multidimensional array). (Because we
need not necessarily assume an order on dom, the tensor is unordered.)

Green et al. defined a generalization of the positive relation algebra working
on K-relations, which we denote here by ARA.1 When we restrict ARA to arities
of at most three, which we denote by ARA(3), we obtain an analogue to FO(3)
mentioned above. So, ARA provides a suitable scenario to reinvestigate, in a
data model with numerical values, the equivalence between the algebra of binary
relations and FO(3). In this paper we make the following contributions.

1. We define a suitable generalization, to K-relations, of the composition oper-
ation of classical binary relations. When we add this composition operator to
ARA, but restrict arities to at most two, we obtain a natural query language
for matrices. We refer to this language here as “ARA(2) plus composition”.

2. We show that ARA(2) plus composition actually coincides with the matrix
query language MATLANG, introduced by two of the present authors with
Geerts and Weerwag [2] in an attempt to formalize the set of common matrix
operations found in numerical software packages.

3. We show that a matrix query is expressible in ARA(3) if and only if it is
expressible in MATLANG, thus providing an analogue to the classical result
about FO(3) and the algebra of binary relations. More generally, for any
arity r, we show that an r-ary query over r-ary K-relations is expressible in

1 ARA stands for Annotated-Relation Algebra, as the elements from K that a K-
relation assigns to its tuples are usually viewed as annotations.

44 R. Brijder et al.

ARA(r+1) if and only if it is expressible in ARA(r) plus composition. For this
result, we need the assumption that K is commutative. We stress that the
proof is not a trivial adaptation of the proof of the classical result, because we
can no longer rely on familiar classical properties like idempotence of union
and join.

ARA has been a very influential vehicle for data provenance.2 The elements
from K are typically viewed as annotations, or as identifiers, and the seman-
tics of ARA operations was originally designed to show how these annotations
are propagated in the results of data manipulations. Other applications, apart
from provenance, have been identified from the outset, such as security levels,
or probabilities [5]. By doing the present work, we have understood that ARA
can moreover serve as a fully-fledged query language for tensors (multidimen-
sional arrays), and matrices in particular. This viewpoint is backed by the recent
interest in processing Functional Aggregate Queries (FAQ [11,12], also known
as AJAR [8]). Indeed, FAQ and AJAR correspond to the project-join fragment
of ARA, without self-joins.

This paper is further organized as follows. Section 2 recalls the data model
of K-relations and the associated query language ARA. Section 3 presents the
result on ARA(r + 1) and ARA(r) plus composition. Section 4 relates ARA(2)
plus composition to MATLANG. Section 5 draws conclusions, discusses related
work, and proposes directions for further research.

2 Annotated-Relation Algebra

By function we will always mean a total function. For a function f : X → Y
and Z ⊆ X, the restriction of f to Z, denoted by f |Z , is the function Z → Y
where f |Z(x) = f(x) for all x ∈ Z.

Recall that a semiring K is a set equipped with two binary operations,
addition (+) and multiplication (∗), such that (1) addition is associative, com-
mutative, and has an identity element 0; (2) multiplication is associative, has an
identity element 1, and has 0 as an annihilating element; and (3) multiplication
distributes over addition. A semiring is called commutative when multiplication
is commutative. We fix a semiring K.

Remark 1. We will explicitly indicate where we assume commutativity of K.

From the outset, we also fix countable infinite sets rel, att, and dom, the
elements of which are called relation names, attributes, and domain elements,
respectively. We assume an equivalence relation ∼ on att that partitions att into
an infinite number of equivalence classes that are each infinite. When A ∼ B,
we say that A and B are compatible. Intuitively, A ∼ B will mean that A and B
have the same set of domain values. A function f : X → Y with X and Y sets
of attributes is called compatible if f(A) ∼ A for all A ∈ X.

2 The paper [5] received the PODS 2017 test-of-time award.

On Matrices and K-Relations 45

A relation schema is a finite subset of att. A database schema is a function
S on a finite set N of relation names, assigning a relation schema S(R) to each
R ∈ N . The arity of a relation name R is the cardinality |S(R)| of its schema.
The arity of S is the largest arity among relation names R ∈ N .

We now recursively define the expressions of the Annotated-Relation Algebra,
abbreviated by ARA. At the same time we assign a relation schema to each ARA
expression by extending S from relation names to arbitrary ARA expressions.
An ARA expression e over a database schema S is one of the following:

Relation name a relation name R of S;
One the one operation 1(e′), where e′ is an ARA expression, and S(e) := S(e′);
Union the union e1 ∪ e2, where e1 and e2 are ARA expressions with S(e1) =

S(e2), and S(e) := S(e1);
Projection the projection πY (e′), where e′ is an ARA expression and Y ⊆ S(e′),

and S(e) := Y ;
Selection the selection σY (e′), where e′ is an ARA expression, Y ⊆ S(e′), the

elements of Y are mutually compatible, and S(e) := S(e′);
Renaming the renaming ρϕ(e′), where e′ is an ARA expression and ϕ : S(e′) →

Y a compatible one-to-one correspondence with Y ⊆ att, and S(e) := Y ; or
Join the join e1 �� e2, where e1 and e2 are ARA expressions, and S(e) := S(e1)∪

S(e2).

A domain assignment is a function D : att → D, where D is a set of
nonempty finite subsets of dom, such that A ∼ B implies D(A) = D(B).
Let X be a relation schema. A tuple over X with respect to D is a function
t : X → dom such that t(A) ∈ D(A) for all A ∈ X. We denote by TD(X) the
set of tuples over X with respect to D. Note that TD(X) is finite. A relation r
over X with respect to D is a function r : TD(X) → K. So a relation annotates
every tuple over X with respect to D with a value from K. If S is a database
schema, then an instance I of S with respect to D is a function that assigns
to every relation name R of S a relation I(R) : TD(S(R)) → K.

Remark 2. In practice, a domain assignment need only be defined on the
attributes that are used in the database schema (and on attributes compati-
ble to these attributes). Thus, it can be finitely specified. While here we have
chosen to keep the notion of domain assignment and instance separate, it may

I(no courses) =

student dptm K

Alice CS 5
Alice Math 2
Alice Bio 0
Bob CS 2
Bob Math 1
Bob Bio 3

I(course fee) =

dptm K

CS 300
Math 250
Bio 330

Fig. 1. Example of a database instance.

46 R. Brijder et al.

perhaps be more natural to think of the domain assignment as being part of the
instance.

Example 1. Let us record for a university both the number of courses each stu-
dent takes in each department and the course fee for each department. Let K be
the set of integers and let S be a database schema on {no courses, course fee}
with S(no courses) = {student,dptm} and S(course fee) = {dptm}. Let D be a
domain assignment with D(student) = {Alice,Bob} and D(dptm) = {CS,Math,
Bio}. A database instance I of S with respect to D is shown in Fig. 1.

We now define the relation 1X , as well as the generalizations of the classical
operations from the positive relational algebra to work on K-relations.

One. For every relation schema X, we define 1X : TD(X) → K as 1X(t) = 1.
Union. Let r1, r2 : TD(X) → K. Define r1 ∪ r2 : TD(X) → K as (r1 ∪ r2)(t) =

r1(t) + r2(t).
Projection. Let r : TD(X) → K and Y ⊆ X. Define πY (r) : TD(Y) → K as

(πY (r))(t) =
∑

t′∈TD(X),
t′|Y =t

r(t′).

Selection. Let r : TD(X) → K and Y ⊆ X where the elements of Y are mutually
compatible. Define σY (r) : TD(X) → K such that

(σY (r))(t) =

{
r(t) if t(A) = t(B) for all A,B ∈ Y ;
0 otherwise.

Renaming. Let r : TD(X) → K and ϕ : X → Y a compatible one-to-one
correspondence. We define ρϕ(r) : TD(Y) → K as ρϕ(r)(t) = r(t ◦ ϕ).

Join. Let r1 : TD(X1) → K and r2 : TD(X2) → K. Define r1 �� r2 : TD(X1 ∪
X2) → K as (r1 �� r2)(t) = r1(t|X1) ∗ r2(t|X2).

The above operations provide semantics for ARA in a natural manner. For-
mally, let S be a database schema, let e be an ARA expression over S, and let I
be an instance of S. The output relation e(I) of e under I is defined as follows.
If e = R with R a relation name of S, then e(I) := I(R). If e = 1(e′), then
e(I) := 1S(e′). If e = e1 ∪ e2, then e(I) := e1(I) ∪ e2(I). If e = πX(e′), then
e(I) := πX(e′(I)). If e = σY (e′), then e(I) := σY (e′(I)). If e = ρϕ(e′), then
e(I) := ρϕ(e′(I)). Finally, if e = e1 �� e2, then e(I) := e1(I) �� e2(I).

Remark 3. The language ARA is a slight variation of the K-annotated relational
algebra as originally defined by Green et al. [5] to better suit our purposes.

First of all, the original definition does not have a domain assignment D :
att → D but instead a single domain common to all attributes (and it therefore
also does not have a compatibility relation ∼). As such, the original definition
corresponds to the case where database schemas and ARA expressions use only

On Matrices and K-Relations 47

mutually compatible attributes. We need our more general setting when we
compare ARA to MATLANG in Sect. 4.

Also, here, we focus on equality selections, while the original paper does
not fix the allowed selection predicates. Finally, the original definition assumes
zero-relations 0X , while we instead use one-relations 1X .

The following observations, to the effect that some (but not all) classical
relational-algebra equivalences carry over to the K-annotated setting, were orig-
inally made by Green et al.

Proposition 1 ([5, Proposition 3.4]). The following properties and equiva-
lences hold, where, for each given equivalence, we assume that the left-hand side
is well defined.

– Union is associative and commutative.
– Join is associative and distributive over union, i.e., (r1 ∪ r2) �� r3 = (r1 ��

r3) ∪ (r2 �� r3).
– Any two selections commute.
– Projection and selection commute when projection retains the attributes on

which selection takes place.
– Projection distributes over union, i.e., πY (r1 ∪ r2) = πY (r1) ∪ πY (r2).
– Selection distributes over union, i.e., σY (r1 ∪ r2) = σY (r1) ∪ σY (r2).
– We have σY (r1) �� r2 = σY (r1 �� r2) and r1 �� σY (r2) = σY (r1 �� r2).
– If K is commutative, then join is commutative.

Note that idempotence of union and of join, i.e., r �� r = r ∪ r = r, which
holds for the classical relational algebra, does not in general hold for ARA.

We supplement Proposition 1 with the following easy-to-verify properties.

Lemma 1. Let r1 : TD(X1) → K and r2 : TD(X2) → K.

– If X1 ∩ X2 ⊆ X ⊆ X1 ∪ X2, then πX(r1 �� r2) = πX∩X1(r1) �� πX∩X2(r2).
– If Y1, Y2 ⊆ X1 where Y1 ∩ Y2
= ∅ and the attributes of Y1 and of Y2 are

mutually compatible, then σY2(σY1(r1)) = σY1∪Y2(r1).
– If ϕ : X1 ∪ X2 → X is a compatible one-to-one correspondence, then ρϕ(r1 ��

r2) = ρϕ|X1
(r1) �� ρϕ|X2

(r2). If moreover X1 = X2, then ρϕ(r1 ∪ r2) =
ρϕ(r1) ∪ ρϕ(r2).

– If Y ⊆ X1 and ϕ : X1 → X is a compatible one-to-one correspondence, then
ρϕ(σY (r1)) = σϕ(Y)(ρϕ(r1)), where ϕ(Y) = {ϕ(y) | y ∈ Y }.

We also use the operation of projecting away an attribute, i.e., π̂A(e) :=
πS(e)\{A}(e) if A ∈ S(e). Note that conversely, πX(e) = (π̂Am

· · · π̂A1)(e) where
X = S(e) \ {A1, . . . , Am} and the Ai’s are mutually distinct. Projecting away,
allowing one to deal with one attribute at a time, is sometimes notationally more
convenient.

48 R. Brijder et al.

3 Composition and Equivalence

In this section we define an operation called k-composition and show that aug-
menting ARA by composition allows one to reduce the required arity of the
relations that are computed in subexpressions. The intuition is to provide a gen-
eralization of classical composition of two binary relations to annotated relations,
so that we can compose up to k relations of arity up to k. Specifically, the classi-
cal composition of a binary relation r with a binary relation s amounts to viewing
these relations as relations over schemas {B,A} and {A,C}, respectively, and
performing π̂A(r �� s). Thus we arrive at the following generalization.

Definition 1. Let k be a nonnegative integer and let l ∈ {1, . . . , k}. Let ri :
TD(Xi) → K for i ∈ {1, . . . , l}, let X = X1 ∪ · · · ∪Xl, and let A ∈ X1 ∩ · · · ∩Xl.

Define the k -composition ζA,k(r1, . . . , rl) : TD(X \ {A}) → K as

(ζA,k(r1, . . . , rl))(t) = (π̂A(r1 �� · · · �� rl))(t)

for all t ∈ TD(X \ {A}).

Note that ζA,k takes at most k arguments. We emphasize that ζA,k is defined
as a new operator (albeit one that can be defined by an ARA expression) and
not as a shorthand for an ARA expression.

We denote by ARA + ζk the language obtained by extending ARA with
k-composition. Consequently, if e1, . . . , el are ARA + ζk expressions with l ≤ k
and A ∈ S(e1) ∩ · · · ∩ S(el), then e = ζA,k(e1, . . . , el) is an ARA+ ζk expression.
Also, we let S(e) := (S(e1) ∪ · · · ∪ S(el)) \ {A}.

Let k be a nonnegative integer. We denote by ARA(k) the fragment of ARA
in which the database schemas are restricted to arity at most k and the relation
schema of each subexpression is of cardinality at most k. In particular, join
e1 �� e2 is only allowed if |S(e1 �� e2)| ≤ k. The fragment (ARA + ζk)(k) is
defined similarly.

From Definition 1 it is apparent that (ARA+ζk)(k) is subsumed byARA(k+1).
One of our main results (Corollary 1) provides the converse inclusion, when the
database schemas and outputs are restricted to arity at most k. To this end, we
establish a normal form for ARA expressions.

We use the following terminology. Let F be any family of expressions. A
selection of F-expressions is an expression of the form σYn

· · · σY1(f), where
f is an F-expression and n ≥ 0. Note the slight abuse of terminology as we
allow multiple selection operations. Also, when we say that e is a union of F
-expressions or a join of F-expressions, we allow e to be just a single expression
in F (so union and join may be skipped).

We are now ready to formulate a main result of this paper. This result is
inspired by the classic equivalence of FO(3) and the algebra of binary relations
[17]. A compact proof of this classical result is given by Marx and Venema [14,
Theorem 3.4.5, Claim 2], and a self-contained exposition is also available [3].

Two ARA expressions e1 and e2 over the same database schema are called
equivalent, naturally, if they yield the same output relation for every domain
assignment and every database instance respecting that domain assignment.

On Matrices and K-Relations 49

Theorem 1. Let S be a database schema of arity at most k and assume that K
is commutative. Every ARA(k + 1) expression over S is equivalent to a union of
selections of joins of (ARA + ζk)(k) expressions over S.

The proof of Theorem 1 uses Proposition 1, Lemma 1, and the following
technical lemma to effectively construct the expression in the form given by
Theorem 1. This effective construction is illustrated in Example 2.

Lemma 2. Let r1, . . . , rn be relations with relation schemas X1, . . . , Xn, respec-
tively, and with respect to a domain assignment D. Assume that A,B ∈ X1 ∪
· · · ∪ Xn are distinct and compatible. Define, for i ∈ {1, . . . , n},

r′
i :=

⎧
⎪⎨

⎪⎩

ri if A /∈ Xi;
ρA→B(ri) if A ∈ Xi, B /∈ Xi;
π̂A(σ{A,B}(ri)) if A,B ∈ Xi,

where A → B denotes the one-to-one correspondence from Xi to (Xi\{A})∪{B}
that assigns A to B and keeps the remaining attributes fixed. Then

π̂A(σ{A,B}(r1 �� · · · �� rn)) = r′
1 �� · · · �� r′

n.

Example 2. Assume that K is commutative and consider the ARA(3) expression
e = π{B,C}(σ{B,C}(R �� R �� S �� T �� ρϕ(T)) ∪ σ{A,B}(R �� S �� T)), where
S(R) = {A,B}, S(S) = {B,C}, S(T) = {A,C} (A,B,C are mutually distinct),
and ϕ sends A to B and C to itself. The proof of Theorem 1 obtains an equivalent
expression in normal form by using Proposition 1, Lemmas 1 and 2 as follows.

e = π̂A(σ{B,C}(R �� R �� S �� T �� ρϕ(T)) ∪ σ{A,B}(R �� S �� T))
≡ π̂A(σ{B,C}(R �� R �� S �� T �� ρϕ(T))) ∪ π̂A(σ{A,B}(R �� S �� T))
≡ σ{B,C}(π̂A(R �� R �� S �� T �� ρϕ(T))) ∪ π̂A(σ{A,B}(R �� S �� T))
≡ σ{B,C}(S �� ρϕ(T) �� π̂A(R �� R �� T)) ∪ π̂A(σ{A,B}(R �� S �� T))
≡ σ{B,C}(S �� ρϕ(T) �� ζA,2(R �� R, T)) ∪ π̂A(σ{A,B}(R �� S �� T))

≡ σ{B,C}(S �� ρϕ(T) �� ζA,2(R �� R, T)) ∪
(
π̂A(σ{A,B}(R)) �� S �� ρA→B(T)

)
.

The first two equivalences follow from Proposition 1, the third equivalence follows
from Lemma 1, the fourth equivalence is by the definition of ζA,2, and the last
equivalence is by Lemma 2. The last expression is in the normal form since the
subexpressions S, ρϕ(T), ζA,2(R �� R, T), π̂A(σ{A,B}(R)), and ρA→B(T) are all
(ARA + ζ2)(2) expressions.

Note that we likely cannot omit the “selections of” in the above theorem. For
example, for k = 2 consider σ{A,C}(R �� S) where R and S are relation names
with S(R) = {A,B} and S(S) = {B,C}.

Remark 4. Theorem 1 still holds if the 1 operator is omitted from the definition
of ARA.

50 R. Brijder et al.

Since union, selection, and join do not decrease the number of attributes of
relations, we have the following corollary to Theorem 1, which establishes the
main result announced in the Introduction.

Corollary 1. Let S be a database schema of arity at most k and assume that
K is commutative. Every ARA(k + 1) expression e over S with |S(e)| ≤ k is
equivalent to an (ARA + ζk)(k) expression over S.

Remark 5. We remark that transforming an expression into the normal form of
Theorem 1 may lead to an exponential increase in expression length. The reason
is that the proof uses distributivity of join over union. Indeed, each time we
replace an expression of the form (e1 ∪ e2) �� e3 by (e1 �� e3) ∪ (e2 �� e3) there is
a duplication of e3. The proof of the classic translation of FO(3) to the algebra
of binary relations also induces an exponential increase of expression length for
similar reasons. A proof that this blowup is unavoidable remains open, both for
our result and for the classical result (to the best of our knowledge).

3.1 Connection with FO(k)

The connection between ARA(k) and FO(k), to which we have hinted several
times already, can be made explicit as follows.

Let K be the Boolean semiring. Consider a database schema S of arity at most
k. Let D be a domain assignment such that D(A) = D(B) for all attributes A and
B. In other words, D just fixes a single nonempty finite subset of dom. A tuple
(D, I), with I an instance over S, is a classical relational structure over S.

We can consider FO(k) formulas as first-order logic formulas (also known as
relational-calculus formulas [1]) over S that use only k distinct variables. It is
then an easy exercise to see that every FO(k) formula that does not use negation
or universal quantification, and has k′ ≤ k free variables can be translated to an
equivalent ARA(k) expression. The converse translation is also possible.

4 Matrices

In this section we show that (ARA + ζ2)(2) is equivalent to a natural version of
MATLANG [2]. As a consequence of Corollary 1, we then obtain that also ARA(3),
with database schemas and output relations restricted to arity at most 2, is
equivalent to MATLANG. We begin by recalling the definition of this language.

4.1 MATLANG

Let us fix the countable infinite sets matvar and size, where the latter has
a distinguished element 1 ∈ size. The elements of matvar are called matrix
variables and the elements of size are called size symbols.

A matrix schema is a function S : V → size × size with V ⊆ matvar both
finite and nonempty. We write (α, β) ∈ size × size also as α × β.

On Matrices and K-Relations 51

MATLANG expressions are recursively defined as follows. At the same time
we assign a matrix schema to each MATLANG expression by extending S from
matrix variables to arbitrary MATLANG expressions.

A MATLANG expression e over a matrix schema S is one of the following:

Variable a matrix variable M of S;
Transposition a transposition (e′)T , where e′ is a MATLANG expression, and

S(e) := β × α if S(e′) = α × β;
One-vector a one-vector 1(e′), where e′ is a MATLANG expression, and S(e) :=

α × 1 if S(e′) = α × β;
Diagonalization a diagonalization diag(e′), where e′ is a MATLANG expression

with S(e′) = α × 1, and S(e) := α × α;
Multiplication a multiplication e1 · e2, where e1 and e2 are MATLANG expres-

sions with S(e1) = α × β and S(e2) = β × γ, and S(e) := α × γ;
Addition an addition e1 + e2, where e1 and e2 are MATLANG expressions with

S(e1) = S(e2), and S(e) := S(e1); or
Hadamard product a Hadamard product e1 ◦ e2, where e1 and e2 are MAT-

LANGexpressions with S(e1) = S(e2), and S(e) := S(e1).

A size assignment is a function σ that assigns to each size term a strictly
positive integer with σ(1) = 1. Let M be the set of all matrices over K. We say
that M ∈ M conforms to α×β ∈ size×size by σ if M is a σ(α)×σ(β)-matrix.

If S : V → size × size is a matrix schema, then an instance of S with
respect to σ is a function I : V → M such that, for each M ∈ V , the matrix
I(M) conforms to S(M) by σ.

Remark 6. In practice, a size assignment need only be defined on the size terms
that are used in the schema. Thus, it can be finitely specified. While here we
have chosen to keep the notion of size assignment and instance separate, it may
perhaps be more natural to think of the size assignment as being part of the
instance.

Fig. 2. An example of an instance of a matrix schema.

Example 3. This example is similar to Example 1. Let K be the set of integers
and let S be a matrix schema on {no courses, course fee} with S(no courses) =
student × dptm and S(course fee) = dptm × 1. Let σ be a size assignment with
σ(student) = 2 and σ(dptm) = 3. An instance I of S with respect to σ is shown
in Fig. 2.

52 R. Brijder et al.

The semantics for MATLANG is given by the following matrix operations.
Let A be an m × n-matrix over K. We define 1(A) to be the m × 1-matrix (i.e.,
column vector) with 1(A)i,1 = 1. If n = 1 (i.e., A is a column vector), then
diag(A) is the m × m-matrix with diag(A)i,j equal to Ai,1 if i = j and to 0
otherwise. If B is an m × n-matrix, then A ◦ B denotes the Hadamard product
of A and B. In other words, (A ◦B)i,j = Ai,j ∗Bi,j . Matrix addition and matrix
multiplication are as usual denoted by + and ·, respectively.

Formally, let S be a matrix schema, let e be a MATLANG expression over S,
and let I be a matrix instance of S. Then the output matrix e(I) of e under I
is defined in the obvious way, given the operations just defined. If e = M with
M a matrix variable of S, then e(I) is naturally defined to be equal to I(M).

Remark 7. Matrix addition and the Hadamard product are the pointwise
applications of addition and product, respectively. The original definition of
MATLANG [2] is more generally defined in terms of an arbitrary set Ω of allowed
pointwise functions. So, MATLANG as defined above fixes Ω to {+, ·}. This
restriction was also considered by Geerts [4] (who also allows multiplication by
constant scalars, but this is not essential).

Also, the original definition of MATLANG fixes K to the field of complex
numbers and complex transpose is considered instead of (ordinary) transpose.
Of course, transpose can be expressed using complex transpose and pointwise
application of conjugation.

Table 1. Symbol table for the simulations between MATLANG and (ARA + ζ2)(2).

Mapping MATLANG → ARA ARA → MATLANG

Attributes A/size terms α rowα, colα Ψ(A)

Schemas S Γ (S) Θ(S)

Expressions e Υ (e) Φ(e)

Instances I, relations r/matrices M RelS,σ(I), Rels,σ(M) MatD(I), MatD(r)

In the following subsections we provide simulations between MATLANG and
(ARA+ ζ2)(2). The notations for the different translations that will be given are
summarized in Table 1.

4.2 Simulating MATLANG in (ARA + ζ2)(2)

For notational convenience, instead of fixing a one-to-one correspondence
between rel and matvar, we assume that rel = matvar.

Let us now fix injective functions row : size\{1} → att and col : size\{1} →
att such that (1) row(α) and col(α) are compatible for all α ∈ size \ {1}, and
(2) the range of row is disjoint from the range of col. To reduce clutter, we also
write, for α ∈ size \ {1}, row(α) as rowα and col(α) as colα.

On Matrices and K-Relations 53

Let s ∈ size×size. We associate to s a relation schema Γ (s) with |Γ (s)| ≤ 2
as follows.

Γ (s) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

{rowα, colβ} if s = α × β;
{rowα} if s = α × 1;
{colβ} if s = 1 × β;
∅ if s = 1 × 1,

where α
= 1
= β.
Let S be a matrix schema on a set of matrix variables V . We associate to

S a database schema Γ (S) on V as follows. For M ∈ V , we set (Γ (S))(M) :=
Γ (S(M)).

Let σ be a size assignment. We associate to σ a domain assignment D(σ)
where, for α ∈ size, (D(σ))(rowα) := (D(σ))(colα) := {1, . . . , σ(α)}.

Let M ∈ M conform to s = α × β by σ. We associate to M a relation
Rels,σ(M) : TD(σ)(Γ (s)) → K as follows. We have (Rels,σ(M))(t) := Mi,j ,
where (1) i is equal to t(rowα) if α
= 1 and equal to 1 if α = 1; and (2) j is
equal to t(colβ) if β
= 1 and equal to 1 if β = 1.

Let S : V → size×size be a matrix schema and let I be a matrix instance of
S with respect to σ. We associate to I an instance RelS,σ(I) of database schema
Γ (S) with respect to D(σ) as follows. For M ∈ V , we set (RelS,σ(I))(M) :=
RelS(M),σ(I(M)).

I(no courses) =

rowstudent coldptm K

1 1 5
1 2 2
1 3 0
2 1 2
2 2 1
2 3 3

I(course fee) =

rowdptm K

1 300
2 250
3 330

Fig. 3. Matrix instance from Fig. 2 represented as a database instance.

Example 4. Recall I, S, and σ from Example 3. We have that (Γ (S))
(no courses) = {rowstudent, coldptm} and (Γ (S))(course fee) = {rowdptm}. The
database instance RelS,σ(I) is shown in Fig. 3.

The next lemma shows that every MATLANG expression can be simulated
by an (ARA + ζ2)(2) expression.

Lemma 3. For each MATLANG expression e over a matrix schema S, there
exists an (ARA+ζ2)(2) expression Υ (e) over database schema Γ (S) such that (1)
Γ (S(e)) = (Γ (S))(Υ (e)) and (2) for all size assignments σ and matrix instances
I of S with respect to σ, we have RelS(e),σ(e(I)) = (Υ (e))(RelS,σ(I)).

54 R. Brijder et al.

Example 5. We continue the running example. In particular, recall I, S, and σ
from Example 3. Consider the MATLANG expression e = no courses · course fee
over S. We have S(e) = student × 1 and

e(I) =
(

2000
1840

)
; RelS(e),σ(e(I)) =

rowstudent K
1 2000
2 1840

.

By Lemma 3 and its proof, we have that RelS(e),σ(e(I)) is equal to e′(RelS,σ(I))
with

e′ = ζC,2(ρϕ1(no courses), ρϕ2(course fee)),

where ϕ1(colγ) = ϕ2(rowγ) = C /∈ {rowα, colβ} and ϕ1 and ϕ2 are the identity
otherwise.

4.3 Simulating (ARA + ζ2)(2) in MATLANG

In order to simulate (ARA+ ζ2)(2) in MATLANG, we equip att with some linear
ordering <. We remark that < is an ordering on attributes, not on domain
elements. Only an ordering on domain elements can have an impact on the
expressive power of query languages of query languages [1].

Again we assume that rel = matvar. Let us fix an injective function Ψ :
att → size \ {1}.

Let X ⊆ {A1, A2} be a relation schema for some A1 and A2 with A1 < A2.
We associate to X an element Θ(X) ∈ size × size as follows. We have

Θ(X) :=

⎧
⎪⎨

⎪⎩

Ψ(A1) × Ψ(A2) if X = {A1, A2};
Ψ(A) × 1 if X = {A} for some A;
1 × 1 if X = ∅.

Let S a database schema on a set N of relation names of arities at most 2.
We associate to S a matrix schema Θ(S) on N as follows. For R ∈ N , we set
(Θ(S))(R) := Θ(S(R)).

Let D be a domain assignment. We associate to D a size assignment σ(D)
where, for A ∈ att, (σ(D))(D(A)) = |D(A)|. If every element in the range of a
domain assignment D is of the form {1, . . . , n} for some n, then we say that D
is consecutive.

Let D be a consecutive domain assignment. Given a relation r : TD(X) → K
with X ⊆ {A1, A2} and A1 < A2, we associate a matrix MatD(r) conforming
to Θ(X) by σ(D) as follows. We define (MatD(r))i,j := r(t), where t is (1) the
tuple with t(A1) = i and t(A2) = j if |X| = 2; (2) the tuple with t(A) = i and
j = 1 if X = {A} for some A; and (3) the unique tuple of TD(X) if X = ∅.

Let S a database schema on a set N of relation names of arities at most 2,
and let I be a database of S instance with respect to D. We associate to I a
matrix instance MatD(I) of Mat(S) with respect to σ(D) as follows. For R ∈ N ,
we set (MatD(I))(R) := MatD(I(R)).

On Matrices and K-Relations 55

Example 6. Recall I, S, and D from Example 1. To reduce clutter, assume that
att = size \ {1} and that Ψ is the identity function. Take student < dptm.
We have that (Θ(S))(no courses) = student × dptm and (Θ(S))(course fee) =
dptm × 1. Consider domain assignment D′ and database instance I ′ obtained
from D and I, respectively, by replacing Alice by 1, Bob by 2, CS by 1, Math by
2, and Bio by 3. Note that D′ is consecutive. The instance MatD′(I ′) is shown
in Fig. 2.

The next lemma shows that every (ARA+ζ2)(2) expression can be simulated
by a MATLANG expression.

Lemma 4. For each (ARA + ζ2)(2) expression e over a database schema S
of arity at most 2, there exists a MATLANG expression Φ(e) over matrix
schema Θ(S) such that (1) Θ(S(e)) = (Θ(S))(Φ(e)) and (2) for all consecu-
tive domain assignments D and database instances I with respect to D, we have
MatD(e(I)) = (Φ(e))(MatD(I)).

Example 7. We continue the running example. In particular, recall I ′, S, and D′

from Examples 1 and 6. Consider the (ARA+ζ2)(2) expression e = no courses ��

course fee over S. We have S(e) = {student,dptm} and

e(I ′) =

student dptm K
1 1 1500
1 2 500
1 3 0
2 1 600
2 2 250
2 3 990

; MatD′(e(I ′)) =
(

1500 500 0
600 250 990

)
.

By Lemma 3 and its proof, we have that MatD′(e(I ′)) is equal to e′(MatD′(I ′))
with e′ = no courses · diag(course fee).

4.4 Relationship with ARA(3) and Complexity

Corollary 1, Lemmas 3 and 4 together establish the equivalence of MATLANG
with the language ARA(3) restricted to database schemas and output relations
of arity at most 2.

Theorem 2. For each ARA(3) expression e over a database schema S of arity
at most 2 and with |S(e)| ≤ 2, there exists a MATLANG expression e′ such
that MatD(e(I)) = e′(MatD(I)) for all consecutive domain assignments D and
instances I with respect to S over D.

Conversely, for each MATLANG expression e over a matrix schema S, there
exists an ARA(3) expression e′ such that RelS(e),σ(e(I)) = e′(RelS,σ(I)) for all
size assignments σ and matrix instances I of S with respect to σ.

As to complexity, we note that Υ and Φ in Lemmas 3 and 4 can be effectively
constructed and of linear length (for fixed schemas; quadratic when the schema
is part of the input). We conclude that the direction MATLANG → (ARA+ζ2)(2)
→ ARA(3) in the above result is linear. The direction ARA(3) → (ARA+ ζ2)(2),
however, is exponential, see Remark 5.

56 R. Brijder et al.

5 Conclusion

In related work, Yan, Tannen, and Ives consider provenance for linear algebra
operators [18]. In that approach, provenance tokens represent not the matrix
entries (as in our work), but the matrices themselves. Polynomial expressions
(with matrix addition and matrix multiplication) are derived to show the prove-
nance of linear algebra operations applied to these matrices.

Our result that every matrix query expressible in ARA(3) is also expressible
in MATLANG provides a partial converse to the observation already made in the
original paper [2], to the effect that MATLANG can be expressed in LAggr(3):
the relational calculus with summation and numerical functions [9], restricted
to three base variables.3 This observation was made in the extended setting
of MATLANG that allows arbitrary pointwise functions (Remark 7). For the
language considered here, ARA(3) provides a more appropriate upper bound for
comparison, and ARA(3) is still a natural fragment of LAggr(3).

When allowing arbitrary pointwise functions in MATLANG, we actually move
beyond the positive relational algebra, as queries involving negation can be
expressed. For example, applying the function x ∧ ¬y pointwise to the entries
of two n × n boolean matrices representing two binary relations R and S on
{1, . . . , n}, we obtain the set difference R − S. It is an interesting research ques-
tion to explore expressibility of queries in MATLANG in this setting. For example,
consider the following LAggr(3) query on two matrices M and N :

∀i∃j∀k∀x(M(i, k, x) → ∃iN(j, i, x))

Here, M(i, k, x) means that Mi,k = x, and similarly for N(j, i, x).
The above query, which does not even use summation, reuses the base variable

i and checks whether each row of M , viewed as a set of entries, is included in
some row of N , again viewed as a set of entries. We conjecture that the query
is not expressible in MATLANG with arbitrary pointwise functions. Developing
techniques for showing this is an interesting direction for further research.

Finally, recall that our main result Corollary 1 assumes that K is commu-
tative. It should be investigated whether or not this result still holds in the
noncommutative case.

Acknowledgments. We thank Floris Geerts for inspiring discussions. Robert Brijder
has been a postdoctoral fellow of the Research Foundation - Flanders (FWO). Jan Van
den Bussche was partially supported by the National Natural Science Foundation of
China under grant# 61972455.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley,
Reading (1995)

3 LAggr is a two-sorted logic with base variables and numerical variables.

On Matrices and K-Relations 57

2. Brijder, R., Geerts, F., Van den Bussche, J., Weerwag, T.: On the expressive power
of query languages for matrices. In: Kimelfeld, B., Amsterdamer, Y. (eds.) Pro-
ceedings of 21st International Conference on Database Theory. LIPIcs, vol. 98, pp.
10:1–10:17. Schloss Dagstuhl-Leibniz Center for Informatics (2018)

3. Van den Bussche, J.: FO3 and the algebra of binary relations. https://
databasetheory.org/node/94. Accessed 22 July 2019

4. Geerts, F.: On the expressive power of linear algebra on graphs. In: Barcelo, P.,
Calautti, M. (eds.) Proceedings of 22nd International Conference on Database The-
ory. LIPIcs, vol. 127, pp. 7:1–7:19. Schloss Dagstuhl-Leibniz Center for Informatics
(2019)

5. Green, T., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings
of 26th ACM Symposium on Principles of Database Systems, pp. 31–40 (2007)

6. Hutchison, D., Howe, B., Suciu, D.: LaraDB: a minimalist kernel for linear and
relational algebra computation. In: Afrati, F., Sroka, J. (eds.) Proceedings of 4th
ACM SIGMOD Workshop on Algorithms and Systems for MapReduce and Beyond,
pp. 2:1–2:10 (2017)

7. Jananthan, H., Zhou, Z., et al.: Polystore mathematics of relational algebra. In: Nie,
J.Y., Obradovic, Z., Suzumura, T., et al. (eds.) Proceedings of IEEE International
Conference on Big Data, pp. 3180–3189. IEEE (2017)

8. Joglekar, M., Puttagunta, R., Ré, C.: AJAR: aggregations and joins over annotated
relations. In: Proceedings of 35th ACM Symposium on Principles of Databases, pp.
91–106. ACM (2016)

9. Libkin, L.: Expressive power of SQL. Theoret. Comput. Sci. 296, 379–404 (2003)
10. Luo, S., Gao, Z., Gubanov, M., Perez, L., Jermaine, C.: Scalable linear algebra on

a relational database system. SIGMOD Rec. 47(1), 24–31 (2018)
11. Abo Khamis, M., Ngo, H.Q., Rudra, A.: FAQ: questions asked frequently. In: Pro-

ceedings of 35th ACM Symposium on Principles of Databases, pp. 13–28. ACM
(2016)

12. Abo Khamis, M., Ngo, H.Q., Rudra, A.: Juggling functions inside a database.
SIGMOD Rec. 46(1), 6–13 (2017)

13. Maddux, R.: The origin of relation algebras in the development and axiomatization
of the calculus of relations. Stud. Logica. 50(3/4), 421–455 (1991)

14. Marx, M., Venema, Y.: Multi-Dimensional Modal Logic. APLS, vol. 4. Springer,
Dordrecht (1997). https://doi.org/10.1007/978-94-011-5694-3

15. Pratt, V.: Origins of the calculus of binary relations. In: Proceedings of 7th Annual
IEEE Symposium on Logic in Computer Science, pp. 248–254 (1992)

16. Tarski, A.: On the calculus of relations. J. Symb. Log. 6, 73–89 (1941)
17. Tarski, A., Givant, S.: A Formalization of Set Theory Without Variables. AMS Col-

loquium Publications, vol. 41. American Mathematical Society, Providence (1987)
18. Yan, Z., Tannen, V., Ives, Z.: Fine-grained provenance for linear algebra opera-

tors. In: Proceedings of 8th USENIX Workshop on the Theory and Practice of
Provenance (2016)

https://databasetheory.org/node/94
https://databasetheory.org/node/94
https://doi.org/10.1007/978-94-011-5694-3

Social Consolidations: Rational Belief
in a Many-Valued Logic of Evidence

and Peerhood

Yuri David Santos(B)

University of Groningen, Groningen, The Netherlands
y.david.santos@rug.nl

Abstract. We explore an interpretation of FVEL, a four-valued logic
of evidence, where states represent agents, the propositional layer cor-
responds to the evidence available to these agents, and the relation cor-
responds to peerhood connections between them. Belief is determined
based on the agent’s evidence, but also on her peers’ evidence. Consol-
idation functions are proposed, which map evidence situations to belief
attitudes. We adapt some postulates of Social Choice Theory to our belief
formation setting and, with them, we separate rational from irrational
consolidations. We define a dynamic operator for addition and removal
of evidence, which serves as a basis for some essential dynamic postulates
and also for future developments on consolidations that take amounts of
evidence into account. Our main technical result is a characterisation of
a class of consolidations satisfying most of our rationality postulates.

Keywords: Evidence logics · Epistemic logic · Many-valued logic

1 Introduction

Four-valued epistemic logic (FVEL) [29] was first designed to model scenarios
where agents are uncertain about the evidence publicly available. Here we give
another interpretation to this logic, where the binary relation represents peer-
hood connections. Therefore, each state will represent the evidential state of one
agent. This puts this work in line with other network logics such as [4,7].

In our setting, agents have four-valued evidence for propositions, embodied
by a four-valued valuation function over atoms, which represents only evidence
for that atom, only evidence against it, evidence both for and against it, or no
evidence at all. Our main goal in this paper is to find rational ways of forming
beliefs for these agents, given their own evidence and their peers’. With that
in mind, we establish some rationality postulates and check some definitions of
belief that respect those postulates, and some that do not.

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 58–78, 2020.
https://doi.org/10.1007/978-3-030-39951-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_4

Social Consolidations 59

After that, we introduce a dynamic operator for addition/removal of evi-
dence. This operator is used to axiomatise some of the postulates, but also to
define two new ones, which serve to rule out some undesirable consolidations.
We then prove that these axioms characterise a class of consolidations satisfying
most of the main postulates. Finally, we show how this operator can be used to
“count” peers, which in the future can be employed to define consolidations that
form beliefs based on the amount of evidence for or against something.1

2 Syntax and Semantics

In this section we explore a variant of four-valued epistemic logic (FVEL) [29].

2.1 Syntax

Let At be a countable set of atoms. Below, p ∈ At; the classical part of the
language, L0, is represented below by ψ; the propositional part L1, where ψ ∈
L0, is represented by χ; and the complete language L , where ψ ∈ L0 and
χ ∈ L1, is given by ϕ:

ψ ::= p | ˜ψ | (ψ ∧ ψ) χ ::= ψ | ¬χ | (χ ∧ χ) | ˜χ

ϕ ::= χ | ˜ϕ | (ϕ ∧ ϕ) | �ϕ | Bψ

We abbreviate ϕ ∨ ψ
def= ˜(˜ϕ ∧ ˜ψ) and ♦ϕ

def= ˜�˜ϕ. We restrict belief to
classical propositional formulas (L0) because formulas with ¬ refer to evidence,
and we do not want agents forming beliefs about evidence, only about facts.

Formulas such as p are read as the agent has evidence for p, whereas ¬p is
read as the agent has evidence against p, and ˜ϕ as it is not the case that ϕ.
We read �ϕ as ϕ holds for all peers and Bϕ as the agent believes ϕ.2, 3

2.2 Semantics

Models are tuples M = (S,R, V), where S is a finite set of agents, R is a binary
relation on S representing “peerhood” and V : At × S → P({0, 1}) is a four-
valued valuation representing agents’ evidence: {1} is true (t), {0} is false (f),

1 Some proofs at: https://github.com/ydsantos/appendix scons/blob/master/proofs.
pdf.

2 Notice that our language is non-standard in that even though a formula in L1 has
an evidential meaning (such as p meaning the agent has evidence for p), under the
belief operator B these formulas are read as factual statements (e.g. Bp means that
the agent believes p and not that the agent believes that she has evidence for p).

3 We chose B (belief) instead of K (knowledge) because we are working with imperfect
evidence, which can be misleading. Therefore, our agents can form false beliefs, which
violate factivity, a standard requirement for knowledge.

https://github.com/ydsantos/appendix_scons/blob/master/proofs.pdf
https://github.com/ydsantos/appendix_scons/blob/master/proofs.pdf

60 Y. D. Santos

{0, 1} is both (b) and ∅ is none (n). A satisfaction relation is defined as follows:

M, s |= p iff 1 ∈ V (p, s) M, s |= ¬p iff 0 ∈ V (p, s)
M, s |= ˜ϕ iff M, s �|= ϕ

M, s |= (ϕ ∧ ψ) iff M, s |= ϕ and M, s |= ψ

M, s |= ¬(ϕ ∧ ψ) iff M, s |= ¬ϕ or M, s |= ¬ψ

M, s |= �ϕ iff for all t ∈ S s.t. sRt, it holds that M, t |= ϕ

M, s |= ¬˜ϕ iff M, s |= ϕ M, s |= ¬¬ϕ iff M, s |= ϕ

Note that the semantics of ¬ is defined in a case-by-case fashion (this operator
comes from FDE [5]). An extended valuation function V can be defined dif-
ferently for each type of formula. If ϕ ∈ L1, then: 1 ∈ V (ϕ, s) iff M, s |= ϕ;
0 ∈ V (ϕ, s) iff M, s |= ¬ϕ. Otherwise: 1 ∈ V (ϕ, s) iff M, s |= ϕ iff 0 /∈ V (ϕ, s).

As pointed out in [29], this logic can be seen as a modal extension of FDE
[5], with the addition of a classical negation. The logic FDE deals with evidence
differently than other logics such as intuitionistic logic [18,33]. While both are
weaker than classical logic, the concept of justification as existence of construc-
tive proofs is much stronger than what we consider evidence in this paper. In
our case, evidence can be misleading, as mentioned before. FDE is more suitable
for modelling situations with incomplete and inconsistent evidence, while FVEL
extends this logic to a modal setting, enabling us to talk about multiple agents.
FVEL also includes a classical negation, which gives it much more expressive
power, and many of the definitions and results in this paper make use of this
operator (˜). Among other things, it allows us to define formulas discriminat-

ing which of the four truth values a formula ϕ ∈ L1 has: ϕn def= (˜ϕ ∧ ˜¬ϕ);

ϕf def= ˜˜(˜ϕ ∧ ¬ϕ); ϕt def= ˜˜(ϕ ∧ ˜¬ϕ); ϕb def= ˜˜(ϕ ∧ ¬ϕ). In words, a formula
ϕx is satisfied (M, s |= ϕx) iff ϕ has value x ∈ {t, f, b, n}, i.e. V (ϕ, s) = x.

We say that Σ |= ϕ (Σ entails ϕ) when for all models M and states s, if
M, s |= σ for all σ ∈ Σ, then M, s |= ϕ. We say that M |= ϕ if M, s |= ϕ for
all states s of M . And |= ϕ (ϕ is valid) if M |= ϕ for all M ; otherwise ϕ is
invalid. If |= ˜ϕ, we say ϕ is contradictory, and if ϕ is not contradictory nor
valid, it is contingent. If a formula is valid or contingent, it is satisfiable. Call
the truth range of ϕ the set {x | there is a model M = (S,R, V) and an s ∈ S
s.t. V (ϕ, s) = x}. The following result will be useful for some of the proofs:

Proposition 1. All formulas in L0 have one of the following four truth ranges:
{{1}}, {{0}}, {{0}, {1}}, {∅, {0}, {1}, {0, 1}}. A formula in L1 can have any
truth range in P(P({0, 1})) \ ∅ except for {∅}, {{0, 1}}, and {∅, {0, 1}}.
The central question of this paper is how to define the semantics for belief based
on the evidence, a process we call consolidation (see [30]). A key philosophical
assumption of this project is that rational belief is determined by evidence.

Social Consolidations 61

3 Rationality Conditions for Consolidations

3.1 Epistemic Autonomy Versus Epistemic Authority

In social epistemology, there is currently a lot of debate around the topics of
peer disagreement and higher-order evidence [6,12,13,17,22–24]. One important
question in this debate is: What should a rational agent do when her peers –
who she deems as rational as her – have different opinions on some proposition?
There are many different proposals in the literature as to what to do in this case.
Nevertheless, we can roughly categorise them into two main groups: the equal
weight views [9], and the steadfast views [21]. The former tend to consider the
agent and her peers to be on equal footing, so if you and your peer disagree on
something, your opinion should be something in the middle of both opinions.
The latter claim that you are entitled to trust yourself more than you trust your
peers – maybe because you have direct access to your evidence, as opposed to
mere testimonial access to your peers’ evidence, or because of some other reason.
In both views, the concept of peerhood is preeminent. It is assumed that, in what
matters, you and your peers are of equal competence. Evidently, if one’s peer is
far more competent than oneself in the topic at hand and one knows that, the
rational thing to do is to defer to her judgement (but in that case she is not
your peer). What enables peerhood is the lack of such higher-order knowledge:
we usually do not know exactly how competent a peer is, so the reasonable (and
modest) thing to do is to assume that the relevant people in the given case are
(possibly) as competent as you, except if you have a “defeater” for that belief4.

3.2 Rationality Postulates

Now we propose and discuss a series of rationality postulates, mostly adapted
from postulates from Social Choice Theory (SCT) [2,14,31]. SCT is concerned
with determining outcomes of voting from certain voting profiles. The adaptation
we make here is in the sense that a rational belief in propositions (atomic or
otherwise) will be determined from the evidence possessed by the agent and
her peers, so here “voting profiles” become evidence, and “election outcome”
becomes belief attitude. Consolidations are not voting procedures, but involve
the weighing of inputs to find a suitable outcome.5

Regardless of the semantics of B, which is not yet defined, the following
function Att serves as a shorthand for the doxastic attitude of an agent s w.r.t.
a formula ϕ (belief, disbelief or abstention):

Definition 1 (Attitude). Let Att : L0 × S → {1, 0,−1} be a function such
that: Att(ϕ, s) = 1 iff M, s |= Bϕ; Att(ϕ, s) = −1 iff M, s |= B˜ϕ; otherwise
Att(ϕ, s) = 0.6

4 As a scientist investigating hypothesis H, you consider another scientist also inves-
tigating H to be your peer, but not if she committed fraud in the past.

5 Note, however, that we only make a loose connection to SCT here, not a formal one.
6 The function Att also depends on a model M , but this will be left implicit. We will

usually write Att′ if we are referring to another model M ′, Att′′ for M ′′, and so on.

62 Y. D. Santos

Postulate 1 (Consistency (Con)). For all models M and s ∈ S: let Σ =
{ϕ ∈ L0 | M, s |= Bϕ}. Then Σ �|= p ∧ ˜p.

The postulate above is the most important demand on our consolidations: ratio-
nal belief has to be consistent.

Postulate 2 (Modesty (Mod)). For all models M = (S,R, V), all s ∈ S,
and all contingent ϕ ∈ L0, there is a model M ′ = (S′, R′, V ′) with S ⊆ S′ s.t.
Att(ϕ, s) �= Att′(ϕ, s), where V |s = V ′|s.7

Postulate 2 says that it is possible to change an agent’s attitude toward a con-
tingent formula just by changing her peerhood connections and the evidence of
her peers. Modesty is adapted from the SCT postulate of non-dictatorship: the
outcome of the election is not determined by one single agent. Postulate 3 also
comes from non-dictatorship, but for Modesty we think of the agent as her own
dictator.

The plausibility of this postulate hinges on the plausibility of the claim that
regardless of what evidence you have, it is never rational to ignore others’ evi-
dence. This, in turn, depends on the outcome of the debate in epistemology
discussed above. In any case, is the format of this postulate adequate? The
restriction to contingent formulas seems justified: if we reject Logical Omni-
science, it might be acceptable to abstain from judgement on tautologies and
contradictions, but it seems irrational to expect one to be persuaded to aban-
don a belief in a tautology or adhere to a contradiction. Keeping V |s untouched
captures exactly the idea of not changing one’s evidence, but possibly changing
others’. The S ⊆ S′ part demands that the original agents be preserved. This
is innocuous, for even if a change in belief demands the removal of a peer, that
can be obtained by removing the connection (changing R); non-peers do not
matter in our setting. A stronger variant of Modesty could be considered, Strong
Modesty, where not only is it possible to change the attitude for any formula,
but also any other attitude is possible. This could be plausible, but expecting
a radical change in attitude (for example, from disbelief to belief) for any con-
tingent proposition might require a huge amount of evidence, but we are not
representing this aspect of evidence here; we do make a step in this direction in
Sect. 5.

Postulate 3 (No Gurus (NG)). For all agents s, t ∈ S (with s �= t) and all
contingent ϕ ∈ L0, there is a model M = (S,R, V) s.t. Att(ϕ, s) �= Att(ϕ, t).

This postulate says that for any formula there is a model such that the attitudes
of two agents towards that formula differ, i.e. an agent’s opinion is not determined
by anyone else’s. This postulate also stems from the postulate of non-dictatorship
in SCT (in a more obvious way). We have that a consolidation satisfying Mod
also satisfies NG (see Proposition 4 later). So if Modesty is plausible, then this
postulate has to be as well. In principle, it might be odd to think that, for
example, two biologists could rationally disagree on whether natural selection
7 We denote by V |s the restriction of a valuation V to At × {s}, with s ∈ S.

Social Consolidations 63

happens. This apparent controversy is only superficial, though. If we stick to our
key assumption that evidence determines rational belief, then that should be
possible given they have access to different circles – with one of them possibly
possessing misleading evidence.

Postulate 4 (Equal Weight (EW)). Consider any model M = (S,R, V), any
two agents s, t ∈ S, and a valuation V ′ such that V ′(p, s) = V (p, t), V ′(p, t) =
V (p, s), and V ′(p, u) = V (p, u) for all u ∈ S \ {s, t}, for all p ∈ At. Then if sRt,
it holds that Att′(ϕ, s) = Att(ϕ, s), for all ϕ ∈ L0.

What this postulate says is that if you swap all your evidence with the evidence
of one of your peers, your beliefs do not change: you treat your evidence and your
peers’ equally. It comes from the SCT postulate of anonimity : if we have the
same voting profile but swap the voters, the outcome does not change. Again, the
plausibility of this postulate depends on your position in the debate of Sect. 3.1.

Postulate 5 (Atom Independence (AI)). Consider any model M =
(S,R, V). For any atom p ∈ At, if V ′ is a valuation s.t. V ′(p, s) = V (p, s)
for all s ∈ S, then Att(p, s) = Att′(p, s) for all s ∈ S.

The valuation of one atom should not interfere in the attitudes towards another.
This postulate is adapted from independence of irrelevant alternatives: the out-
come between x and y should only depend on voters opinions w.r.t. x and y;
changing the preferences between other candidates does not affect the outcome.
A more “local” version of this postulate could be formulated: for any p ∈ At and
s ∈ S, if V (p, s) = V ′(p, s) and V (p, t) = V ′(p, t) for all t such that sRt, then
Att(p, s) = Att′(p, s).8 We can prove that this definition is equivalent to AI.

Let 	 be the smallest reflexive and transitive relation 	: P({0, 1}) ×
P({0, 1}) such that {0} 	 ∅, {0} 	 {0, 1}, ∅ 	 {1} and {0, 1} 	 {1}. Let
� be the complement of 	, and define x ≺ y iff x 	 y and y � x.

Postulate 6 (Monotonicity (Mon)). Consider a model M = (S,R, V) and
a V ′ which coincides with V , except that V ′(p, s) �= V (p, s) for one s ∈ S
and p ∈ At. If V (p, s) ≺ V ′(p, s), then for all t ∈ S, Att(p, t) ≤ Att′(p, t). If
V ′(p, s) ≺ V (p, s), then for all t ∈ S, Att′(p, t) ≤ Att(p, t).

Postulate 6 states that if the valuation only changes positively/negatively for
one atom and one agent, then the attitude towards this atom for any agent
should either stay the same, or change according to the same trend (more posi-
tive/negative). Monotonicity was adapted from a homonymous SCT postulate:
if a profile is altered only by promoting (demoting) one candidate, the out-
come should either change only by promoting (demoting) this candidate, or not
change.

8 We thank an anonymous reviewer for this suggestion.

64 Y. D. Santos

Now there is a question of adequacy of the format of this postulate. There
is not always a unique way of changing a valuation to produce a certain change
in the (extended) valuation of a complex formula, so we limited this postulate
to atomic changes. The other question regarding format is why the postulate
limits the valuation change to only one atom and one agent. Clearly changing
one atom in one direction (according to ≺) for more agents, or changing several
atoms in this fashion, should preserve monotonicity. These “cumulative” effects
are already covered by the postulate as it is.

Postulate 7 (Doxastic Freedom (DF)). Consider any set of agents S and
any function f : At×S → {1,−1, 0}. Then there is a model M = (S,R, V) such
that Att(p, s) = f(p, s) for all p ∈ At and s ∈ S.

DF says that any combination of attitudes towards atoms is possible for any
agent. It is adapted from non-imposition: every outcome is achievable by some
voting profile. This postulate seems somehow connected to AI. However:

Observation 1. A consolidation satisfying Doxastic Freedom does not neces-
sarily satisfy Atom Independence. The converse also holds.

Postulate 8 (Consensus (Css)). If for some agent s ∈ S and some ϕ ∈ L0

we have that V (ϕ, s) = {1} (or {0}), and for all t ∈ S such that sRt: V (ϕ, t) =
{1} (or {0}), then Att(ϕ, s) �= −1 (or 1).

Consensus is derived from the SCT postulate of unanimity : if all voters prefer one
candidate over another, then so must the outcome. It says that if an agent and
all her peers have unambiguous evidence about some atom, then she should not
believe contrary to that. We can define Strong Consensus in a similar way, but
instead of demanding no contrary belief, it demands belief in case of unanimous
positive evidence and disbelief in case of unanimous negative evidence.

Observation 2. A consolidation satisfying Strong Consensus and Consistency
also satisfies Consensus.

Proof. One just has to see that M, s |= Bϕ implies M, s �|= B˜ϕ for a consoli-
dations satisfying Consistency (and similarly for the B˜ϕ case). �
Notice that this stronger variant, in combination with Proposition 1, entails a
form of logical omniscience. We could also have defined the postulate differently
by considering unanimity among all agents instead of one agent and her peers,
but, again, we are assuming that non-peers are inaccessible/irrelevant.

Postulate 9 (Logical Omniscience (LO)). For all models M and s ∈ S: if
Σ |= ϕ and M, s |= Bσ for all σ ∈ Σ, then M, s |= Bϕ.

This postulate is not derived from any postulate of SCT. It is debatable whether
it should be satisfied or not, but as a normative demand on real agents we
consider it too strong. Notice that it implies the knowledge of all validities, as

Social Consolidations 65

they are consequences of the empty set, and also that the doxastic state has to
be consistent or it will be trivialised.

In summary, all the postulates listed in this section are expected to be sat-
isfied by any rational consolidation (call these core postulates), except for Mod
and EW, whose normative status depend on the reader’s philosophical commit-
ments w.r.t. the debate of Sect. 3.1, and LO, which is also part of another long
debate [11,19,20,26]. No impossibility theorem à la Arrow [2] ensues, and con-
solidations satisfying all core postulates are presented. One main difference of
our approach that might explain this is that we do not have preference orders
over attitudes. Note also that our connection to SCT is not fully formal, our
postulates are only inspired by it.

4 Social Consolidations

In this section we will define consolidation policies, that is, methods of defining
belief from evidence. We expect the most reasonable consolidations to satisfy all
the core postulates, and unreasonable ones to violate at least one of them.

4.1 Preliminaries

Before talking about consolidations, we will formally specify what are the pos-
sible ones. Now let M = {(M, s) | M = (S,R, V) is an FVEL model and s ∈ S}
be the class of all pointed models. First, we draw the following definition from
the literature on n-bisimulations:

Definition 2 (1-Bisimulation). Consider two FVEL models M = (S,R, V)
and M ′ = (S′, R′, V ′), an s ∈ S and an s′ ∈ S′. We say that (M, s) � (M ′, s′),
read (M, s) is 1-bisimilar to (M ′, s′), iff:

atoms For all p ∈ At, V (p, s) = V ′(p, s′);
back For all t′ ∈ S′ s.t. s′R′t′, there is a t ∈ S s.t. sRt and V (p, t) = V ′(p, t′)

for all p ∈ At.
forth For all t ∈ S s.t. sRt, there is a t′ ∈ S′ s.t. s′R′t′ and V (p, t) = V ′(p, t′)

for all p ∈ At.

The purpose of Definition 2 is to determine whether two pointed models have
equivalent evidence. Since our relation R of peerhood is not transitive, we assume
that our agents only have access to their own evidence and their peers’. So
formulas such as �p are relevant for consolidation, whereas ��p is not.

Proposition 2. (M, s) � (M ′, s′) implies: M, s |= ϕ iff M ′, s′ |= ϕ for all
ϕ ∈ L not containing B nor nested �. The converse also holds for image-finite
models (each agent has finitely many peers).

Proposition 3. The relation � is an equivalence relation.

66 Y. D. Santos

Then �⊆ M × M. Denote by [M, s] the equivalence class of (M, s) under �,
that is, [M, s] = {(M ′, s′) ∈ M | (M, s) � (M ′, s′)}. Let M/� be the quotient
class of M by �, that is, the class of equivalence classes of M under �. Then,
we are interested in the following:

Definition 3. A consolidation is a function C : M/� × L0 → {0, 1}. For any
model M = (S,R, V) with s ∈ S, we set M, s |= Bϕ iff C([M, s], ϕ) = 1.

Proposition 4. A consolidation satisfying Mod also satisfies NG.

With these definitions in hand, we will introduce the following:

Definition 4. We say that a condition is axiomatisable when: it holds iff all
σ ∈ Σ are valid, for some Σ ⊆ L . We say that a condition is negatively
axiomatisable when: it holds iff all σ ∈ Σ are invalid, for some Σ ⊆ L .

Proposition 5. Consistency holds iff for all finite Σ = {σ1, ...σn} ⊆ L0 such
that Σ |= p ∧ ˜p, ˜(Bσ1 ∧ ... ∧ Bσn) is valid.

Proof. The logic of L0 is basically classical propositional logic (as mentioned in
[29]), and is, therefore, compact. So for any Σ |= ϕ with ϕ ∈ L0, there is a finite
Σ′ ⊆ Σ such that Σ′ |= ϕ. The case where ϕ = p ∧ ˜p is a particular case of
this. So all inconsistent subsets of L0 have a finite inconsistent subset. �
Proposition 6. Logical Omniscience holds iff for all finite Σ = {σ1, ...σn} ⊆
L0 and ϕ ∈ L0 such that Σ |= ϕ, ˜(Bσ1 ∧ ... ∧ Bσn ∧ ˜Bϕ) is valid.

Proof. The reasoning is similar to the case for Proposition 5. �
Note that Propositions 5 and 6 follow from compactness of L0. Now consider
the following axioms:

C1 ˜((ϕt ∧ �ϕt) ∧ B˜ϕ) C2 ˜((ϕf ∧ �ϕf) ∧ Bϕ)

Proposition 7. A consolidation satisfying Consistency satisfies Consensus iff
C1 and C2 are valid.

4.2 Consolidation Policies

First, we will look at the most straightforward (and naive) possibility: M, s |=
Bϕ iff M, s |= �ϕ. This possibility is appealing because it is familiar and simple.
First, let us note that, in order to include the evidence of the agent itself in
the consolidation, we have to require the model to be reflexive. This raises the
question: is the agent a peer of herself (see [9])? If yes, then we should only work
with reflexive models, if not, then only with anti-reflexive models (sRs holds for
no s). This is not so crucial as we can (and will) use an equivalent definition for
anti-reflexive models: M, s |= Bϕ iff M, s |= ϕ ∧ �ϕ. So we assume that agents
are not peers of themselves. We call this latter definition naive consolidation.

Social Consolidations 67

Proposition 8. Naive consolidation satisfies Con, Mod, EW, AI, Mon and
Strong Css. It does not satisfy DF and LO.

Surprisingly, naive consolidation only fails one core postulate: Doxastic Freedom.
It is surprising because this consolidation actually ignores all negative evidence.

s

t

r

w

up
Bp

p Bp

p,¬p

˜Bp,˜B˜p

B˜p

¬p˜Bp,˜B˜p

Fig. 1. An example of naive consolidation. Agent s believes p, but not ˜p, since all her
peers and herself satisfy p (have evidence for p), and not ˜p. One of the peers (r) has
¬p, but s ignores that. Agent w believes ˜p, even though she does not have evidence
against p. She believes ˜p only on the grounds that she and r do not have evidence for
p. Agent u does not believe p nor ˜p, because she does not have evidence for p, but
her only peer does.

Another simple consolidation we can analyse is the sceptical consolidation, which
sets M, s �|= Bϕ for all ϕ ∈ L0. Fortunately this extreme position is blocked by
two of our core postulates.

Proposition 9. Sceptical consolidation satisfies Con, EW, AI, Mon and Css.
It does not satisfy in general NG (and therefore Mod), DF and LO.

Now we will try a more sophisticated definition:

Definition 5. Call C -consolidations the policies defined by:

M, s |= Bp iff C (V s
p , V s

¬p, V
s
♦p, V

s
♦¬p, V

s
�p, V

s
�¬p) = 1

M, s |= B˜p iff C (V s
p , V s

¬p, V
s
♦p, V

s
♦¬p, V

s
�p, V

s
�¬p) = −1

M, s |= B˜˜ϕ iff M, s |= Bϕ

M, s |= B(ϕ ∧ ψ) iff M, s |= Bϕ and M, s |= Bψ

M, s |= B˜(ϕ ∧ ψ) iff M, s |= B˜ϕ or M, s |= B˜ψ

where V t
χ is 1 if 1 ∈ V (χ, t) and 0 otherwise; and C : {0, 1}6 → {1,−1, 0} is a

function that maps evidence (in this case represented by the six binary parame-
ters) to a belief attitude (1 for belief, −1 for disbelief and 0 for abstention).

What is a good definition for C ? As we can see above, the real consolidation
effort is only with respect to atomic propositions, while more complex beliefs are
formed from those atomic beliefs. Some advantages of this approach are that it
uses all evidence available for each atom, the agent still retains some inference
power (with which it can derive other beliefs), and avoids malformed definitions,

68 Y. D. Santos

such as: M, s |= Bϕ iff M, s |= ϕt ∧ �ϕt; M, s |= B˜ϕ iff M, s |= ϕf ∧ �ϕf .
In words: the agent believes a formula if she and her peers have only positive
evidence for it, and believes its negation if she and her peers have only negative
evidence for it. This seems like a good (if too cautious) definition at first sight,
but it is actually not well-formed. We can verify whether B˜ψ via the second
clause, but also via the first if ϕ = ˜ψ. And these can sometimes give conflicting
results. We avoid that by using C only to decide belief for literals. Moreover:

Proposition 10. All C -consolidations satisfy Con and AI.

Our agents under C -consolidations are not necessarily omniscient, but they
present some properties related to unbounded logical power:

Proposition 11. Consider any C -consolidation, and a maximally consistent
set of literals Σ. If M, s |= Bσ for all σ ∈ Σ and Σ |= ϕ, then M, s |= Bϕ.

Corollary 1. Any C -consolidation satisfying DF also satisfies NG.

Proposition 12. Belief in C -consolidations is closed under modus ponens: if
M, s |= Bϕ and M, s |= B˜(ϕ ∧ ˜ψ), then M, s |= Bψ.

Corollary 2. Any C -consolidation satisfies Logical Omniscience if we add the
following clause to the semantics: if |= ϕ, then M, s |= Bϕ (where ϕ ∈ L0).

There are 3(2
6) = 364 ≈ 3.43 × 1030 consolidation function candidates for C .

The combinations (0, 1, 1) for V s
♦p, V

s
♦¬p, V

s
�p and (1, 0, 1) for V s

♦p, V
s
♦¬p, V

s
�¬p

are impossible, though, which leaves us with “only” 348 ≈ 7.98× 1022 relevantly
different candidates. Now we consider some promising possibilities.

Policy I. Our first social consolidation policy is in Fig. 2. In cases of unam-
biguous evidence, the agent decides for belief or disbelief, accordingly. In the
case of conflicting evidence, the agent already has some evidence, and since we
want a consistent doxastic state, this entails that the agent will inevitably have
to discard some evidence. So, in this case, the mere existence of evidence of one
kind from one peer is enough to produce belief. However, when the agent has no
evidence at all, even if she decides to abstain there is no waste of evidence, so
she will be more demanding to change her view. In this case, unanimity of her
peers is needed (see an example in Fig. 3).

Policy II. One might consider that our previous policy still does not justify
the different treatment for the problematic evidence cases, and is therefore arbi-
trary. Hence, we can consider a second policy where the behaviour when the
evidence is none imitates the case for both: consider a decision tree identical to
that of Fig. 2 but with the subtree for none (the leftmost subtree) just replaced
by that used for both (the rightmost one).

Proposition 13. Policy I and II satisfy Monotonicity, Doxastic Freedom and
Consensus. Modesty and Equal Weight are not satisfied.

Social Consolidations 69

p

♦p

♦¬p

0 �¬p

0 −1

♦¬p

�p

0 1

�p

�¬p

0 −1

�¬p

1 0

−1 1 ♦p

♦¬p

0 −1

♦¬p

1 �p

�¬p

0 −1

�¬p

1 0

∅

0

0 1

0 1

1

0

0 1

1

0

0 1

1

0 1

{0} {1} {0, 1}

0

0 1

1

0 1

0

0 1

1

0 1

Fig. 2. Decision trees will be used to represent C -consolidations. This one represents
C for Policy I. Nodes are labelled by expressions that are representable with the six
parameters for C . The leaves are the outcomes of the consolidation: 1 for belief, −1 for
disbelief and 0 for abstention of judgement.

s

t

r

w

up
Bp

p Bp

p,¬p
Bp

B˜p

¬p
B˜p

Fig. 3. Policy I applied to the model of Fig. 1. Here all agents except for r and w
have unambiguous evidence about p, so they can easily form beliefs without looking at
their peers. Agent w has no evidence whatsoever, so by the tree of Fig. 2 she decides
to believe ˜p due to her only peer satisfying ¬p. Agent r has evidence both for and
against p. Since she has a peer with evidence for p, but no peer with evidence against
p, she believes p. Note that by Fig. 2 this decision would have been different if r had
no evidence at all.

Policy III. The previous policies are in the “steadfast” category. Our agent gives
more weight to her own evidence than to others’ opinions. We can devise a policy
that is more in line with the “equal weight” view. In this case, we consider
the relation R to be reflexive, and then “dissolve” the agents’ exceptionality in
the modal expression. Starting from the consolidation of Fig. 2, we can take its
subtree for both as the decision tree for this policy (Fig. 4 (left)), ignoring the

♦p

♦¬p

0 −1

♦¬p

1 �p

�¬p

0 −1

�¬p

1 0

0

0 1

1

0 1

0

0 1

1

0 1

♦p ∨ p

♦¬p ∨ ¬p

0 −1

♦¬p ∨ ¬p

1 �p ∧ p

�¬p ∧ ¬p

0 −1

�¬p ∧ ¬p

1 0

0

0 1

1

0 1

0

0 1

1

0 1

Fig. 4. Decision trees for C of Policy III for reflexive (left) and anti-reflexive (right)
models. Both yield the same beliefs in their respective class of models.

70 Y. D. Santos

inputs V s
ϕ , V s

¬ϕ. This definition makes no distinction between the agent’s own
evidence and her peers’. We will, however, use the definition of Fig. 4 (right)
instead, as we are working with anti-reflexive models. For an example of Policy
III, see Fig. 5.

Proposition 14. Policy III satisfies Mod, EW, Mon, DF and Css.

5 Dynamics

The dynamic operations we will study use the following models for semantics:

Definition 6. Consider a model M = (S,R, V). We denote by M+
p = (S,R, V ′)

any model s.t. for some t ∈ S, V ′(p, t) = V (p, t) ∪ {1}, and V ′(q, r) = V (q, r)
when q �= p or r �= t. We define M−

p , M+
¬p, M−

¬p analogously, but with V ′(p, t) =
V (p, t) \ {1}, V ′(p, t) = V (p, t) ∪ {0}, V ′(p, t) = V (p, t) \ {0}, respectively.

s

t

r

w

up
Bp

p Bp

p,¬p

˜Bp,˜B˜p

B˜p

¬p
B˜p

Fig. 5. Policy III applied to the model of Fig. 1. Agent w believes ˜p because she or
some peer have ¬p, but neither she nor her peer have p. All the other agents have
evidence for and against p, either by themselves or via some peer. In this case, if the
agent and all her peers have one type of evidence but not the other, a belief is formed.
E.g. agent s and her peers have evidence for p but not all of them have ¬p, so she
settles with belief in p. Agent r, on the other hand, has evidence for and against p (by
herself or via a peer), but they are not unanimous about neither, therefore r abstains.

Now, with l ∈ {p,¬p} for some p ∈ At and ◦ ∈ {+,−}, we can define the
following operator (with obvious additions to the language).

M, s |= [◦l]ϕ iff for every model M◦
l it holds that M◦

l , s |= ϕ

So, for example, M, s |= [+p]ϕ can be read as if evidence for p is added for any
agent, ϕ is the case for s. A corresponding existential version of this operator
can be defined by 〈◦l〉ϕ def= ˜[◦l]˜ϕ, with the expected semantics:

M, s |= 〈◦l〉ϕ iff for some model M◦
l it holds that M◦

l , s |= ϕ

We note the following interactions between modalities:

M, s |= �[◦l]ϕ iff M, s |= [◦l]�ϕ M, s |= ♦〈◦l〉ϕ iff M, s |= 〈◦l〉♦ϕ

Social Consolidations 71

Interestingly, we can use the axioms below to define Monotonicity, revealing
the hidden dynamic nature of that postulate.

M1 ˜(Bp ∧ 〈+p〉˜Bp) M5 ˜(B˜p ∧ 〈−p〉˜B˜p)

M2 ˜(Bp ∧ 〈−¬p〉˜Bp) M6 ˜(B˜p ∧ 〈+¬p〉˜B˜p)

M3 ˜(˜B˜p ∧ 〈+p〉B˜p) M7 ˜(˜Bp ∧ 〈−p〉Bp)

M4 ˜(˜B˜p ∧ 〈−¬p〉B˜p) M8 ˜(˜Bp ∧ 〈+¬p〉Bp)

Proposition 15. A consolidation satisfying Consistency satisfies Monotonicity
iff M1-M8 are valid.

Proof. (⇐) If ˜(Bp∧〈+p〉˜Bp) is valid, then for any M, s, it holds that M, s �|=
Bp or M, s �|= 〈+p〉˜Bp, which implies that M, s |= Bp implies M, s �|= 〈+p〉˜Bp.
This implies that if M, s |= Bp, then there is no M+

p such that M+
p , s �|= Bp.

This covers one of the cases of Monotonicity. By analogous reasoning with the
other axioms, we get all the other cases.

(⇒) The axiom ˜(Bp∧〈+p〉˜Bp) is valid if, for arbitrary M and s, M, s |= Bp

implies there is no M+
p such that M+

p , s �|= Bp. Indeed a model M+
p satisfies the

condition V (p, t) 	 V ′(p, t) for some t (by Definition 6). In this case Monotonicity
implies that Att′(p, s) ≥ Att(p, s). So indeed, if M, s |= Bp, which by Consistency
means that Att(p, s) = 1, we can only have Att′(p, s) = 1, so M+

p , s |= Bp. So
the semantic conditions for M1 are satisfied. Notice that the case for M2 is
similar, because a model M−

¬p also satisfies V (p, t) 	 V ′(p, t) for some t. The
cases for the other axioms are similar. �

We can do something similar for AI, where l ∈ {q,¬q} and q �= p:

AI1 ˜(Bp ∧ 〈◦l〉˜Bp) AI3 ˜(˜Bp ∧ 〈◦l〉Bp)

AI2 ˜(B˜p ∧ 〈◦l〉˜B˜p) AI4 ˜(˜B˜p ∧ 〈◦l〉B˜p)

Proposition 16. For image-finite models and a finite At, a consolidation sat-
isfies Atom Independence iff AI1-AI4 are valid. For infinite At, validity of
AI1-AI4 do not imply Atom Independence.

Proof. (⇐) Suppose AI1-AI4 are valid. If our models are image-finite and At is
finite, then for any two models M and M ′, if there is a p such that for all s ∈ S we
have V (p, s) = V ′(p, s), then there is a finite sequence: M,M◦1

l1
, (M◦1

l1
)◦2
l2

, ...,M ′,
where l1, l2, ... do not involve p. If Att(p, s) �= Att′(p, s) (for M and M ′, respec-
tively), then there is one Mi in this sequence such that Atti(p, s) �= Atti+1(p, s).
But if AI1-AI4 are valid, this is not possible.

(⇒) Assume that Atom Independence is satisfied, and Bp ∧ 〈◦l〉˜Bp is sat-
isfiable. Then there is a M◦

l and s such that M◦
l , s �|= Bp, while M, s |= Bp. But

then V ◦
l (p, t) = V (p, t) for all t, but Att(p, s) �= Att◦

l (p, s), and therefore Atom
Independence does not hold. Contradiction. Therefore AI1 is valid. The other
cases are similar.

72 Y. D. Santos

Now we show a consolidation which satisfies AI1-AI4 but violates Atom
Independence (in a setting with infinite At). First, we will need to define some
preliminary notions. Let M, s have a p-canonical valuation iff V (p, s) = {1} and
V (p, t) = {1} for all t with sRt, and V (q, s) = {0} and V (q, t) = {0} for all t
with sRt, for all q �= p. The p-canonical model of M, s is a pointed model M�, s,
where the valuation of M� is such that M�, s has a p-canonical valuation. For
two pointed models M, s and M ′, s which differ only in V , define the distance
between them to be the size of the sequence (similar to the one built in the first
part of this proof) needed to go from M to M ′. If no such sequence exists, the
distance is infinite. We can easily show that (*) if M, s � M ′, s′, then M, s is
at a finite distance from its p-canonical model iff M ′, s′ is at a finite distance
from its p-canonical model. Now define a consolidation C as follows: M, s |= Bp
iff M, s is at a finite distance from its p-canonical model, and M, s �|= Bϕ for
all non-atomic ϕ. This consolidation respects Definition 4, due to (*). Moreover,
this definition violates Atom Independence, for if we take a p-canonical M, s
(with Att(p, s) = 1) and change the valuation of infinitely many atoms (without
changing p) to obtain M∗, s, this new pointed model is not at a finite distance
from its p-canonical model M, s, and therefore Att∗(p, s) �= 1. This violates Atom
Independence. Axioms AI1 to AI4, however, are valid. Suppose M, s |= Bp.
Then M, s is at a finite distance from its p-canonical model. For M, s |= 〈◦l〉˜Bp
to be satisfied, there needs to be a M◦

l , s such that M◦
l , s |= ˜Bp. But that

would mean that M◦
l is at an infinite distance from its p-canonical model. This

is impossible, for M, s is p-canonical and M◦
l only differs from it in one atom for

one agent. �
The following formula means that there is an agent other than myself such that
if we add/remove evidence l for her, ϕ holds (where l ∈ {p,¬p}, for some
p ∈ At):

〈〈◦l〉〉ϕ def
= (pt ∧ 〈◦l〉(pt ∧ ϕ)) ∨ (pf ∧ 〈◦l〉(pf ∧ ϕ)) ∨ (pb ∧ 〈◦l〉(pb ∧ ϕ)) ∨ (pn ∧ 〈◦l〉(pn ∧ ϕ))

The two following postulates could have been defined before, but now we can
define them less cumbersomely:

ES1 Bp ∧ 〈+¬p〉˜Bp ES3 Bp ∧ 〈−p〉˜Bp

ES2 B˜p ∧ 〈−¬p〉˜B˜p ES4 B˜p ∧ 〈+p〉˜B˜p

SS1 Bp ∧ 〈〈+¬p〉〉˜Bp SS3 Bp ∧ 〈〈−p〉〉˜Bp

SS2 B˜p ∧ 〈〈−¬p〉〉˜B˜p SS4 B˜p ∧ 〈〈+p〉〉˜B˜p

Postulate 10 (Evidence Sensitivity (ES)). ES1-ES4 are satisfiable.

Postulate 11 (Social Sensitivity (SS)). SS1-SS4 are satisfiable.

Observation 3. A consolidation satisfying SS also satisfies ES.

Now from Propositions 5, 7, 15–16 and Postulate 10–11, we get our main tech-
nical result:

Social Consolidations 73

Corollary 3. A consolidation satisfies Consistency, Monotonicity, Consensus,
Evidence Sensitivity and Social Sensitivity iff: ˜(Bσ1 ∧ ...∧Bσn) is valid, for all
finite Σ = {σ1, ...σn} ⊆ L0 such that Σ |= p ∧ ˜p; M1-M8, C1-C2 are valid;
and ES1-ES4, SS1-SS4 are satisfiable.

Atom Independence can be included (with its respective axioms AI1-AI4) if we
apply the restrictions of Proposition 16. The significance of Corollary 3 is that
it characterises a class of consolidations satisfying almost all core postulates.
We conjecture that Doxastic Freedom and No Gurus are not axiomatisable (nor
negatively so). A hint of why that might be the case for NG is that it is equivalent
to saying that there is a model s.t.: (M, s |= Bϕ and M, t �|= Bϕ) or (M, s |= B˜ϕ
and M, t �|= B˜ϕ) or (M, s �|= Bϕ and M, t |= Bϕ) or (M, s �|= B˜ϕ and
M, t |= B˜ϕ). Our language, however, can only talk of belief from an agent’s
perspective, or modally (e.g. ♦Bϕ – there is a peer who believes ϕ).

p

0 −1 1 0
∅ {0} {1} {0, 1}

♦p

♦¬p

0 �¬p

0 −1

♦¬p

�p

0 1

0

0

0 1

0 1

1

0

0 1

1

♦p

−1 �p

0 1

0 1

0 1

Fig. 6. Anti-social consolidation (left), Policy IV (center), and Policy V (right).

Figure 6 defines three more C -consolidations which will show the importance of
the new postulates. First, Social Sensitivity is the only core postulate to rule out
anti-social consolidation, an unacceptable function that only takes the agent’s
own evidence into account.

Proposition 17. Anti-social consolidation satisfies Mon, DF, Css and ES.
Mod, EW and SS are not satisfied.

Now it can be speculated that Evidence Sensitivity can be forced by a com-
bination of other postulates, such as Strong Modesty, Atom Independence and
Monotonicity. Policy IV satisfies all those postulates:

Proposition 18. Policy IV satisfies Strong Modesty, Monotonicity, Doxastic
Freedom, Consensus and Social Sensitivity. It does not satisfy Equal Weight.

But that logical connection between those postulates does not hold. Interestingly,
Policy IV violates Equal Weight, but this time not by the agents not giving
enough importance to their peers, but by failing to appreciate their own evidence.

Policy V, which is just a modified version of naive consolidation that satisfies
Doxastic Freedom, violates Evidence Sensitivity, because, as its cousin, it com-
pletely ignores negative evidence. What Evidence Sensitivity enforces is exactly
this: that all evidence is taken into account at least in some occasions.

74 Y. D. Santos

Proposition 19. Policy V satisfies Strong Mod, Mon, DF and Css. It does not
satisfy EW and ES.

Proposition 20. Policies I, II and III satisfy Social Sensitivity. Naive and scep-
tical consolidations do not satisfy Evidence Sensitivity.

A summary of the consolidations appears in Table 1. But the main conclusion is
that indeed the straightforward definitions such as naive and sceptical consoli-
dations are very unsatisfactory, and the best ones (the only ones satisfying all
core postulates) are Policies I-IV, depending on whether one adheres to equal
weight or steadfast views.

Table 1. Postulates satisfied by consolidations. A.-S. is anti-social consolidation.

Naive Scept. A.-S. Pol. I Pol. II Pol. III Pol. IV Pol. V

AI � � � � � � � �
Mon � � � � � � � �
Css � � � � � � � �
NG � � � � � � �
DF � � � � � �
ES � � � � �
SS � � � �
Mod � � � �
EW � � �

The [◦l] operators make the language more expressive, so we cannot use reduction
axioms to obtain equivalent non-dynamic formulas. With these operators we
gain the power to count peers9. Let us abbreviate 〈◦l〉...〈◦l〉, repeated n times,
by 〈◦l〉n, with 〈◦l〉0ϕ def= ϕ. Then, with l ∈ {p,¬p} for some p ∈ At, we have:

M, s |= ˜〈−l〉n�˜l iff s has more than n peers satisfying l

M, s |= ˜〈+l〉n�l iff s has more than n peers not satisfying l

M, s |= 〈−l〉n�˜l iff s has at most n peers satisfying l

M, s |= 〈+l〉n�l iff s has at most n peers not satisfying l

We can abbreviate those formulas by formulas such as [>n]x and [≤n]x, meaning
agent has more than n peers satisfying x and agent has at most n peers satisfying
x, respectively, where x ∈ {p,¬p,˜p,˜¬p}, for p ∈ At. We can also define

[= n]x def= [≤ n]x ∧ [> n − 1]x, with n ≥ 1, meaning that the agent has exactly
n peers satisfying x. For n = 0, define [= 0]x def= �˜x. Now [= n]l ∧ [= m]˜l,

9 See [1,3,4,25] for modal logics with notions of counting.

Social Consolidations 75

where l ∈ {p,¬p}, indicates that the agent has exactly n + m peers in total.
Since for any n ∈ N there are exactly n + 1 binary sums that equal n, we can
define [[= n]], meaning that an agent has exactly n peers in total, via a finite
disjunction ([=n]p ∧ [=0]˜p) ∨ ([=n − 1]p ∧ [=1]˜p) ∨ ... ∨ ([=0]p ∧ [=n]˜p).

Notice that our counting abilities are limited to ¬-literals (like p and ¬p)
and their ˜-negations, since our base modalities [◦l] deal only with ¬-literals.
This indicates that a consolidation taking amounts of evidence into account
would have to work on the atomic level, just as our C -consolidations, but the
development of such consolidations will be left for future work.

6 Related Work

Now we briefly put our work in context with other belief formation/update
theories. There are similar works, but in general our multi-agent perspective
plus the qualitative and “modal” processing of evidence set our approach apart.

The term “consolidation” employed here is inspired by the homonymous
belief revision operator [15,16], where an inconsistent belief base is transformed
into a consistent one; likewise, our consolidations must respect the Consistency
postulate. One of the most obvious differences between our approach and belief
revision is that we are dealing with a multi-agent setting.

As for Bayesianism, the Bayesian update rule tells us how to update our
beliefs, but not how to form them – those are the priors, which are usually
allowed to be arbitrary. Our models, in principle, seem to be more in line with
objective Bayesianism, which is a controversial position, but more research is
needed in order to make a more rigorous comparison.

Dempster-Shafer theory of evidence [8,32] is a generalisation of probability
theory where probabilities can be assigned not only to events but also to sets
of events. This theory offers rules for combinations of probability assignments,
which in a way can be seen as a kind of consolidation operation.

One of the main differences between our modelling and theories as Dempster-
Shafer’s and Bayesianism is that the latter have a clear quantitative take on evi-
dence. Our framework employs a more limited modal language, where such quan-
titative statements are not even expressible (although we lay the groundwork for
such possibility in Sect. 5). In our models, features such as unanimity and exis-
tence of at least one peer with some evidence play important roles, whereas in
the other two theories mentioned above these notions are not straightforwardly
expressible. Our paper illustrates that there are some sensible rationality con-
straints for formation of evidence-based beliefs even in a limited modal setting,
but on the other hand shows the limitations of such a framework and gives the
next step towards a quantitative, many-valued modal logical approach to the
consolidation problem.

This modal/qualitative perspective is also one of the main differences between
our models and opinion diffusion models such as [4]. Although our system is
very much in the spirit of other works in opinion dynamics and aggregation and
social choice theory (see e.g. [10]), our setup and treatment of evidence is unique.

76 Y. D. Santos

This contribution does not attempt to offer a better formalism for multi-agent
evidence-based beliefs, but to highlight how a many-valued modal logic can be
used for such a task, bringing an entirely new perspective to this field.

7 Conclusions and Future Work

In this paper we took a many-valued modal logic (FVEL) and showed how it can
be used to model networks of peers, where each one may have different evidence
for each atomic proposition, including conflicting and incomplete evidence. We
showed that in this setup, there is a question of consolidation: how to form
beliefs given some evidence? We delineated formally a reasonable class of possible
consolidations (Definition 3), using a concept similar to bisimulation. Then, we
proposed postulates that have to be satisfied in order for a consolidation to be
rational, and we showed that (i) they are enough to block many inadequate
consolidations and (ii) they are not too strong, as they are jointly satisfiable.

Moreover, we have defined one dynamic operator with the aim of adding and
removing evidence. We showed that this operator is useful to formalise some
postulates inside the language, and also proposed two important new postulates
formulated as axioms containing this operator, without which some unreasonable
consolidations would be allowed. With these axioms, we characterised a class of
consolidations satisfying most core postulates – with the exception of two which
are not axiomatisable. Finally, we showed that this dynamic operator makes the
language strictly more expressive, giving it the ability to “count peers”, and how
this lays the groundwork for quantitative consolidations that take amounts of
evidence into account – but the development of those are left for future work.

A complete tableau system for FVEL is found in [29], and [27,28] give an
axiomatisation for a language similar to it. Since we use a different version of
FVEL, a calculus for it is still missing. Given that we already presented axioms
for most postulates, an axiomatic system is preferable. It remains to be seen,
however, if such axiomatisation is possible, given that some postulates are not
axiomatisable and others are only “negatively” so. Considering that we have not
defined a unique belief operator but only constrained the possibilities for such
an operator, a complete axiomatisation for our variant of FVEL will probably
require one particular consolidation to be chosen. Although we have not talked
about public announcements, which in this setting are operations that remove
peers not satisfying some conditions regarding evidence, higher-order evidence or
even beliefs, we know that not all of the reduction axioms of [29] apply here.

Finally, in the consolidations presented here, the agents form beliefs based
on their evidence and their peers’ evidence. Another possibility is to make the
evidence private to each agent, so that they have to resort only to their own
evidence and their peers’ opinions.

Acknowledgements. Special thanks to Barteld Kooi and Rineke Verbrugge for
important suggestions. I would also like to thank the anonymous reviewers for very
relevant comments. Research supported by Ammodo KNAW project “Rational Dynam-
ics and Reasoning”.

Social Consolidations 77

References

1. Areces, C., Hoffmann, G., Denis, A.: Modal logics with counting. In: Dawar, A., de
Queiroz, R. (eds.) WoLLIC 2010. LNCS (LNAI), vol. 6188, pp. 98–109. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-13824-9 9

2. Arrow, K.J.: Social Choice and Individual Values. Wiley, New York (1951)
3. Baltag, A., Christoff, Z., Hansen, J.U., Smets, S.: Logical models of informational

cascades. Stud. Logic 47, 405–432 (2013)
4. Baltag, A., Christoff, Z., Rendsvig, R., Smets, S.: Dynamic epistemic logics of

diffusion and prediction in social networks. In: Proceedings of the 12th Conference
on Logic and the Foundations of Game and Decision Theory (2016)

5. Belnap, N.: A useful four-valued logic. In: Dunn J.M., Epstein G., (eds.) Modern
Uses of Multiple-valued Logic, vol. 2, pp. 5–37. Springer, Dordrecht (1977). https://
doi.org/10.1007/978-94-010-1161-7 2

6. Christensen, D.: Higher-order evidence. Philos. Phenomenol. Res. 81(1), 185–215
(2010)

7. Christoff, Z., Hansen, J.U.: A logic for diffusion in social networks. J. Appl. Logic
13(1), 48–77 (2015)

8. Dempster, A.P.: A generalization of Bayesian inference. J. Roy. Stat. Soc.: Ser. B
(Methodol.) 30(2), 205–232 (1968)

9. Elga, A.: Reflection and disagreement. Noûs 41(3), 478–502 (2007)
10. Endriss, U., Grandi, U.: Graph aggregation. Artif. Intell. 245, 86–114 (2017)
11. Fagin, R., Halpern, J.: Belief, awareness, and limited reasoning. Artif. Intell. 34(1),

39–76 (1987)
12. Foley, R.: Self-trust and the authority of others. In: Foley, R. (ed.) Intellectual

Trust in Oneself and Others, pp. 83–130. Cambridge University Press, Cambridge
(2001)

13. Fricker, E.: Testimony and epistemic autonomy. In: Lackey, J., Sosa, E. (eds.) The
Epistemology of Testimony, pp. 225–250. Oxford University Press, Oxford (2006)

14. Gibbard, A.: Manipulation of voting schemes: a general result. Econometrica 41(4),
587–601 (1973)

15. Hansson, S.O.: Belief base dynamics. Ph.D. thesis, Uppsala University (1991)
16. Hansson, S.O.: Semi-revision. J. Appl. Non-Class. Logics 7(1–2), 151–175 (1997)
17. Hardwig, J.: Epistemic dependence. J. Philos. 82(7), 335–349 (1985)
18. Heyting, A.: Intuitionism: an Introduction, vol. 41. Elsevier (1966)
19. Hintikka, J.: Impossible possible worlds vindicated. In: Saarinen, E. (ed.) Game-

Theoretical Semantics, vol. 5, pp. 367–379. Springer, Dordrecht (1979). https://
doi.org/10.1007/978-1-4020-4108-2 13

20. Hintikka, J.: Knowledge and Belief: An Introduction to the Logic of the Two
Notions, Contemporary Philosophy, vol. 4. Cornell University Press, Ithaca (1962)

21. Kelly, T.: Peer disagreement and higher order evidence. In: Goldman, A.I., Whit-
comb, D. (eds.) Social Epistemology: Essential Readings, pp. 183–217. Oxford Uni-
versity Press (2010)

22. Lasonen-Aarnio, M.: Higher-order evidence and the limits of defeat. Philos. Phe-
nomenol. Res. 88(2), 314–345 (2014)

23. Lehrer, K.: Social information. The Monist 60(4), 473–487 (1977)
24. Martini, C., Sprenger, J., Colyvan, M.: Resolving disagreement through mutual

respect. Erkenntnis 78(4), 881–898 (2013)
25. Pacuit, E., Salame, S.: Majority logic. In: Dubois, D., Welty, C., Williams, M.A.

(eds.) Principles of Knowledge Representation and Reasoning, KR 2004, vol. 4, pp.
598–605. AAAI Press (2004)

https://doi.org/10.1007/978-3-642-13824-9_9
https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1007/978-94-010-1161-7_2
https://doi.org/10.1007/978-1-4020-4108-2_13
https://doi.org/10.1007/978-1-4020-4108-2_13

78 Y. D. Santos

26. Rantala, V.: URN models: a new kind of non-standard model for first-order logic.
J. Symbolic Logic 4, 455–474 (1975)

27. Rivieccio, U.: Algebraic semantics for bilattice public announcement logic. In: Stu-
dia Logica Proceedings Trends in Logic XIII. Springer, Heidelberg (2014)

28. Rivieccio, U.: Bilattice public announcement logic. In: Goré, R., Kooi, B., Kurucz,
A. (eds.) AiML, vol. 10, pp. 459–477. College Publications (2014)

29. Santos, Y.D.: A dynamic informational-epistemic logic. In: Madeira, A., Benevides,
M. (eds.) DALI 2017. LNCS, vol. 10669, pp. 64–81. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-73579-5 5

30. Santos, Y.D.: Consolidation of belief in two logics of evidence. In: Blackburn, P.,
Lorini, E., Guo, M. (eds.) LORI 2019. LNCS, vol. 11813, pp. 57–70. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-60292-8 5

31. Satterthwaite, M.A.: Strategy-proofness and arrow’s conditions: existence and cor-
respondence theorems for voting procedures and social welfare functions. J. Econ.
Theory 10(2), 187–217 (1975)

32. Shafer, G.: A Mathematical Theory of Evidence, vol. 42. Princeton University
Press, Princeton (1976)

33. Troelstra, A.S., Van Dalen, D.: Constructivism in Mathematics, vol. 1. North Hol-
land, Amsterdam (1988)

https://doi.org/10.1007/978-3-319-73579-5_5
https://doi.org/10.1007/978-3-319-73579-5_5
https://doi.org/10.1007/978-3-662-60292-8_5

ASPARTIX-V19 - An Answer-Set
Programming Based System for Abstract

Argumentation

Wolfgang Dvořák(B) , Anna Rapberger , Johannes P. Wallner ,
and Stefan Woltran

Institute of Logic and Computation, TU Wien, Vienna, Austria
{dvorak,arapberg,wallner,woltran}@dbai.tuwien.ac.at

Abstract. We present ASPARTIX-V, a tool for reasoning in abstract
argumentation frameworks that is based on answer-set programming
(ASP), in its 2019 release. ASPARTIX-V participated in this year’s edi-
tion of the International Competition on Computational Models of Argu-
mentation (ICCMA’19) in all classical (static) reasoning tasks. In this
paper we discuss extensions the ASPARTIX suite of systems has under-
gone for ICCMA’19. This includes incorporation of recent ASP language
constructs (e.g. conditional literals), domain heuristics within ASP, and
multi-shot methods. In particular, with this version of ASPARTIX-V we
partially deviate from an earlier focus on monolithic approaches (i.e.,
one-shot solving via a single ASP encoding) to further enhance perfor-
mance. We also briefly report on the results achieved by ASPARTIX-V
in ICCMA’19.

Keywords: Abstract argumentation · Argumentation system ·
Answer-set programming

1 Introduction

Abstract argumentation frameworks (AFs) as introduced by Dung [4] are a core
formalism for many problems and applications in the field of formal argumen-
tation. In a nutshell, AFs formalize statements as arguments together with a
relation denoting conflicts between arguments. Semantics of these AFs give a
handle to resolve the conflicts between statements by selecting coherent subsets
of the arguments. This selection is solely based on the relation between the argu-
ments and considers arguments as abstract entities. Several different semantics
to select coherent subsets of arguments have already been proposed by Dung [4]
but numerous other semantics have been introduced later on which lead to a
multitude of argumentation semantics (see [1]).

A prominent line of research in the field of computational argumentation has
focused on implementations of reasoning procedures for abstract argumentation

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 79–89, 2020.
https://doi.org/10.1007/978-3-030-39951-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_5&domain=pdf
http://orcid.org/0000-0002-2269-8193
http://orcid.org/0000-0003-0355-3535
http://orcid.org/0000-0002-3051-1966
http://orcid.org/0000-0003-1594-8972
https://doi.org/10.1007/978-3-030-39951-1_5

80 W. Dvořák et al.

(see, e.g., [2]) and cumulated in the biennial International Competition on Com-
putational Models of Argumentation (ICCMA)1 which has been established in
2015. There are two kinds of approaches to such systems. First, the direct app-
roach of implementing dedicated algorithms for argumentation problems which
are often based one some kind of labelling propagation (see, e.g., [20]). Second,
the reduction-based approach where the argumentation problem is encoded in
some other formalism for which sophisticated solvers already exist. Prominent
target formalisms for the later are answer-set programming (ASP) [17,18] and
propositional logic with SAT-solving technology; see [3] for an overview.

In this paper we consider the ASPARTIX2 system that exploits ASP technol-
ogy to solve argumentation reasoning problems and describe the ASPARTIX-V
(Answer Set Programming Argumentation Reasoning Tool - Vienna) version in
its 2019 edition which is dedicated to the reasoning tasks of ICCMA’19. We
discuss the specifics of ASPARTIX-V19 and differences to earlier versions of
ASPARTIX. This includes incorporation of recent ASP language constructs (e.g.
conditional literals), domain heuristics within ASP, and multi-shot methods. In
particular, with this version of ASPARTIX-V we partially deviate from an earlier
focus on monolithic approaches (i.e., one-shot solving via a single ASP encoding)
to further enhance performance. Moreover, we give a first analysis of the results
achieved by ASPARTIX-V in ICCMA’19.

In the remainder of the paper we first recall the necessary argumentation
background and the tracks of this years ICCMA competition. We then give an
overview on the ASPARTIX system and explain the aim of our ASPARTIX-V19
edition. In the main part we discuss technical specifics of the ASPARTIX-V19
edition. Finally, we briefly discuss the performance of our system at ICCMA’19.

2 Preliminaries

In this section we briefly introduce the necessary background on abstract argu-
mentation and discuss the tracks of the ICCMA’19 competition.

2.1 Abstract Argumentation

Let us introduce argumentation frameworks [4] and recall the semantics relevant
for this work (for a comprehensive introduction, see [1]).

Definition 1. An argumentation framework (AF) is a pair F = (A,R) where
A is a finite set of arguments and R ⊆ A × A is the attack relation. The pair
(a, b) ∈ R means that a attacks b, and we say that a set S ⊆ A attacks (in F)
an argument b if (a, b) ∈ R for some a ∈ S. An argument a ∈ A is defended (in
F) by a set S ⊆ A if each b with (b, a) ∈ R is attacked by S in F .

1 www.argumentationcompetition.org.
2 www.dbai.tuwien.ac.at/research/argumentation/aspartix/.

www.argumentationcompetition.org
www.dbai.tuwien.ac.at/research/argumentation/aspartix/

ASPARTIX-V19 81

Semantics for argumentation frameworks are defined as functions σ which
assign to each AF F = (A,R) a set σ(F) ⊆ 2A, with each set S ∈ σ(F) called
an extension. We consider for σ the functions cf , grd , stb, adm, com, ideal , prf ,
sem and stg which stand for conflict-free, grounded, stable, admissible, com-
plete, ideal, preferred, semi-stable and stage extensions, respectively. Towards
the definition of these semantics we introduce the following notation. For a set
S ⊆ A, we denote the set of arguments attacked by (resp. attacking) S in F as
S+
F = {x | S attacks x in F} (resp. S−

F = {x | x attacks some s ∈ S in F}), and
define the range of S in F as S⊕

F = S ∪ S+
F .

We are now prepared to give the formal definitions of the abstract argumen-
tation semantics we will consider.

Definition 2. Let F = (A,R) be an AF. A set S ⊆ A is conflict-free (in F),
if there are no a, b ∈ S, such that (a, b) ∈ R. cf (F) denotes the collection of
conflict-free sets of F . For a conflict-free set S ∈ cf (F), it holds that

– S ∈ stb(F), if each a ∈ A \ S is attacked by S in F ;
– S ∈ adm(F), if each a ∈ S is defended by S in F ;
– S ∈ com(F), if S ∈ adm(F) and each a ∈ A defended by S in F is contained

in S;
– S ∈ grd(F), if S ∈ com(F) and there is no T ⊂ S such that T ∈ com(F);
– S ∈ prf (F), if S ∈ adm(F) and there is no T ⊃ S such that T ∈ adm(F);
– S ∈ ideal(F), if S is a ⊆-maximal admissible set that is contained in each

preferred extension of F ;
– S ∈ sem(F), if S ∈ adm(F) and there is no T ∈ adm(F) with S⊕

R ⊂ T⊕
R ;

– S ∈ stg(F), if there is no T ∈ cf (F), with S⊕
R ⊂ T⊕

R .

Notice that grd(F), ideal(F) respectively, always yields a unique extension, the
grounded, ideal respectively, extension of F .

Example 1. Consider the AF F = (A,R), with arguments A = {a, b, c, d, e} and
attacks R = {(a, b), (c, b), (c, d), (d, c), (d, e), (e, e)}. The graph representation
of F is as follows.

a b c d e

Considering the extensions of F , we have stb(F) = stg(F) = sem(F) = {{a, d}}.
The admissible sets of F are ∅, {a}, {c}, {d}, {a, c} and {a, d} and thus the set
of preferred extensions is prf (F) = {{a, c}, {a, d}} and the complete extensions
are {a}, {a, c} and {a, d}. Finally, the grounded extension is {a} and coincides
with the ideal extension. �

2.2 Tracks of ICCMA’19

ICCMA’193 is the third edition of the International Competition on Compu-
tational Models of Argumentation (ICCMA) and had two types of tracks, the
classical tracks and the novel dynamic tracks. In the classical tracks the solver
3 https://www.iccma2019.dmi.unipg.it/.

https://www.iccma2019.dmi.unipg.it/

82 W. Dvořák et al.

is given an argumentation framework and has to solve a specific reasoning task
while in the dynamic tracks the solver is given an initial argumentation frame-
works and a list of updates to that framework and the reasoning task has to
be evaluated after each update to the framework. As the ASPARTIX-V system
supports only the classical tracks we will focus on these tracks here.

For the classical tracks ICCMA’19 considers the following four reasoning
tasks, that correspond to the standard reasoning problems studied in the liter-
ature (see, e.g., [7]).

– DC-σ: Decide Credulous acceptance of an argument w.r.t. a semantics σ:
Given F = (A,R), a ∈ A decide whether a ∈ E for some extension E ∈ σ(F).

– DS-σ: Decide Skeptical acceptance of an argument w.r.t. a semantics σ: Given
F = (A,R), a ∈ A decide whether a ∈ E for all extensions E ∈ σ(F).

– SE-σ: compute Some σ-Extension: Given F = (A,R) return some E ∈ σ(F).
– EE-σ: Enumerate all σ-Extensions: Given F =(A,R) enumerate all E ∈σ(F).

For σ, seven semantics were considered, namely complete, preferred, stable, semi-
stable, stage, grounded and ideal. This resulted in a total number of 24 classical
tracks, as for σ ∈ {ideal , grd} (the semantics with a unique extension) we have
DC-σ = DS-σ and SE-σ = EE-σ.

3 The ASPARTIX System and Its V19 Edition

The ASPARTIX system was one of the first systems that supported efficient
reasoning for a broad collection of abstract argumentation semantics starting
with the work of Gaggl et al. (see, e.g., [11]) and has been continuously expanded
and improved since then (see, e.g., [8–10,13,21]). However, the system is not
limited to abstract argumentation frameworks but also supports enhancements
of AFs by, e.g., preferences or recursive attacks. It is thus frequently used as
reference system in the literature.

ASPARTIX is based on answer-set programming (ASP) and the idea of char-
acterizing argumentation semantics via ASP encodings. With such an encoding
of a semantics one can easily apply state-of-art systems for ASP to solve diverse
reasoning tasks or to enumerate all extensions of a given AF. Given an AF as
input, in the apx format of ICCMA, ASPARTIX delegates the main reasoning to
an answer set programming solver (e.g., [15]), with answer set programs encoding
the argumentation semantics and reasoning tasks. The basic workflow is shown
in Fig. 1, i.e., the AF is given in apx format (facts in the ASP language), and the
AF semantics and reasoning tasks are encoded via ASP rules, possibly utilizing
further ASP language constructs. For more information on the ASPARTIX sys-
tem and its derivatives in general the interested reader is referred to the systems
web-page:

www.dbai.tuwien.ac.at/research/argumentation/aspartix/

In this work we shall focus on ASPARTIX-V19 which is a derivative of
ASPARTIX tuned towards the tracks of ICCMA’19. That is, ASPARTIX-V19

www.dbai.tuwien.ac.at/research/argumentation/aspartix/

ASPARTIX-V19 83

ASP-solver

arg(a).
arg(b).
att(a,b).

input

ASP-Encoding
of semantics

ASP-Encoding
of reasoning task

[[a]]

resultASPARTIX

Fig. 1. Basic workflow of ASPARTIX

is restricted to AFs and supports all the standard tasks of ICCMA’19, i.e.
credulous/skeptical acceptance and computing all/some extension(s) for com-
plete, preferred, stable, semi-stable, stage, grounded, and ideal semantics. In the
following we highlight specifics of the current version and in particular differ-
ences to prior versions. In this instance of the argumentation competition, the
software systems were collected as docker containers. The competition version
ASPARTIX-V19 is available at

https://hub.docker.com/r/aspartix19/aspartix19-repo.

In this competition version of the ASPARTIX system we deviate from classi-
cal ASPARTIX design virtues. First, while traditional ASPARTIX encodings are
modular in the sense that fixed encodings for semantics can be combined with
the generic encodings of reasoning tasks, we use semantics encodings specific
to a reasoning task. Second, when appropriate, we apply multi-shot methods
for reasoning, which is in contrast to the earlier focus on so-called monolithic
encodings, where one uses a single ASP-encoding and runs the solver only once
(as illustrated in Fig. 1). Third we make use of advanced features of the ASP-
language, and utilize clingo v5.3.0 and v4.4.04 [15].

Next, we list and overview some of the ASP-techniques novel to the
ASPARTIX system. First, we exploit the concept of conditional literals [14,
Section 3.1.11], which has first been applied for ASP-encodings of argumentation
semantics in [13]. For example we simplified the encoding of grounded seman-
tics (cf. Listing 1.1). Moreover, conditional literals enable us to give ASPARTIX
style encodings of the translations from AF semantics to ASP semantics provided
in [22]. Second, we exploit clingo domain heuristics [16] (see also [14, Chapter
10]), in order to compute subset-maximal extensions while only specifying con-
straints for the base semantics [12].

4 Implementation Details

When not stated otherwise, for a supported semantics we provide an ASP-
encoding such that when combined with an AF in the apx format the answer-sets
4 https://potassco.org/.

https://hub.docker.com/r/aspartix19/aspartix19-repo
https://potassco.org/

84 W. Dvořák et al.

of the program are in a one-to-one correspondence with the extensions of the
AF. Given an answer-set of such an encoding the corresponding extension is
given by the in(·) predicate, i.e., an argument a is in the extensions iff in(a)
is in the answer-set. With such an encoding we can exploit a standard ASP-
solver to compute some extension (SE) by computing an answer-set; enumerate
all extensions (EE) by enumerating all answer-sets; decide credulous acceptance
(DC) of an argument a by adding the constraint ← in(a) to the program and
testing whether the program is satisfiable, i.e., a is credulously accepted if there
is at least one answer set; and decide skeptical acceptance (DS) of an argument
a by adding the constraint ← not in(a) to the program and testing whether the
program is unsatisfiable, i.e., a is skeptically accepted if there is no answer set.

4.1 Conditional Literals

We make use of the conditional literal [14]. In the head of a disjunctive rule
literals may have conditions, e.g. consider the head of rule “p(X) : q(X) ←”.
Intuitively, this represents a head of disjunctions of atoms p(a) where also q(a)
is true. Rules might as well have conditions in their body, e.g. consider the body
of rule “← p(X) : q(X)”, which intuitively represents a conjunction of atoms
p(a) where also q(a) is true.

A bottleneck of previous encodings for grounded semantics was the grounding
step of the solver, i.e., the instantiation of variables with constants typically
produces large programs. By utilizing conditional literals we were able to provide
a compact encoding (cf. Listing 1.1) with significant smaller grounded programs.

Listing 1.1. Encoding for grounded semantics (using conditional literals)

in(X) ← arg(X), defeated(Y) : att(Y,X).
defeated(X) ← arg(X), in(Y), att(Y,X).

Moreover, conditional literals allow for an ASPARTIX style implementation of
the translations from argumentation framework to grounded logic programs pro-
vided in [22]. For example consider our one line encoding of stable semantics in
Listing 1.2 and the encoding of preferred semantics in Listing 1.3.

Listing 1.2. Encoding for stable semantics (using conditional literals)

in(Y) ← arg(Y), not in(X) : att(X,Y).

Listing 1.3. Encoding for preferred semantics (using conditional literals)

defended(X) | defeated(X) ← arg(X).
defended(X) ← arg(X), defeated(Y) : att(Y,X).
defeated(X) ← defended(Y), att(Y,X).
← defended(X), not defeated(Y), att(Y,X).
← defeated(X), not defended(Y) : att(Y,X).
in(X) ← defended(X), not defeated(X).

ASPARTIX-V19 85

4.2 Domain Heuristics

Clingo provides an option to specify user-specific domain heuristics in the ASP-
program which guides the ASP-solver. In particular one can define heuristics in
order to select the answer-sets that are subset-maximal/minimal w.r.t. a spec-
ified predicate. Inspired by [12] we use such heuristics to compute preferred
extensions by utilizing an encoding for complete semantics and identifying the
subset-maximal answer-sets w.r.t. the in(·) predicate (cf. Listing 1.4). Moreover,
we use domain heuristics and three-valued labelling-based characterizations of
complete semantics via the predicates in(·), out(·), and undec(·) in order to
compute the subset-maximal ranges of complete and conflict-free sets, i.e. we
compute the subset-minimal answer-sets w.r.t. the undec(·) predicate. This can
be exploited for computing some semi-stable or stage extensions. However, the
domain heuristics only return one witnessing answer-set for each minima and
thus this technique is not directly applicable to the corresponding enumerations
tasks (we would miss some extensions if several extensions have the same range).
In the next section we present a multi-shot method addressing this problem.

Listing 1.4. Encoding for preferred semantics (using domain heuristics)

%% Complete labellings

in(X) | out(X) | undec(X) ← arg(X).

in(X) ← arg(X), out(Y) : att(Y,X).

out(X) ← in(Y), att(Y,X).

← in(X), not out(Y), att(Y,X).

← out(X), not in (Y): att(Y,X).

← in(X), out(X).

← undec(X), out(X).

← undec(X), in(X).

%% We now apply heuristics to get the complete labeling with subset-maximal in(.) set

#heuristic in(X) : arg(X). [1,true]

4.3 Multi-shot Methods

We utilize multi-shot strategies and pre-processing of the AF for several seman-
tics and reasoning tasks. In the current section, we briefly describe these meth-
ods.

For credulous and skeptical reasoning with complete, preferred, grounded,
and ideal semantics we do not need to consider the whole framework but only
those arguments that have a directed path to the query argument (notice that
this does not hold true for stable, semi-stable and stage semantics). We perform
pre-processing on the given AF that removes arguments without a directed path
to the queried argument before starting the reasoning with an ASP-solver.

For computing the ideal extension we follow a two-shot strategy that is
inspired by algorithms proposed earlier for ideal semantics [5,6]. That is, we
first use an encoding for complete semantics and the brave reasoning mode of
clingo to compute all arguments that are credulously accepted/attacked w.r.t.

86 W. Dvořák et al.

preferred semantics. Second, we use the outcome of the first call together with
an encoding that computes a fixed-point corresponding to the ideal extension.
For reasoning with ideal semantics we use an encoding for ideal sets and perform
credulous reasoning on ideal sets in the standard way.

Semi-stable extensions correspond to those complete labellings for which the
set of undecided arguments is subset-minimal. In our approach, we utilize an
encoding for complete semantics extended by an undec(·) predicate and process
the answer-sets. We check whether models without an undec(·) predicate have
been computed; in that case, semi-stable extensions coincide with stable exten-
sions. In the other case, we compute all subset-minimal sets among all undecided
sets using the set class in python and return the corresponding models.

For enumerating stage extensions we use a multi-shot strategy. First we use
the domain heuristics to compute the maximal ranges w.r.t. naive semantics (as
each range maximal conflict-free set is also subset-maximal it is sufficient to only
consider naive sets, i.e. subset-maximal conflict free sets). Second, for each of
the maximal ranges we start another ASP-encoding which computes conflict-free
sets with exactly that range (this is equivalent to computing stable extension
of a restricted framework). Each of these extensions corresponds to a different
stage extension of the AF.

For reasoning with semi-stable and stage semantics we use a multi-shot strat-
egy similar to that for enumerating the stage extensions. First we use domain
heuristics to compute the maximal ranges w.r.t. complete or naive semantics. In
the second step we iterate over these ranges and perform skeptical (credulous)
reasoning over complete extensions (conflict-free sets) with the given range. For
skeptical acceptance, we answer negatively as soon as a counterexample to a pos-
itive answer is found when iterating the extensions; otherwise, after processing
all maximal ranges we answer with YES. Analogously, for credulous acceptance,
we check in each iteration whether we can report a positive answer; otherwise,
after processing all maximal ranges, we return NO.

5 Discussion

We next briefly discuss the performance of our system at ICCMA’19 (detailed
results of the competition are published at https://www.iccma2019.dmi.unipg.
it/results/results-main.html). The competition was dominated by the μ-toksia
system by Niskanen and Järvisalo [19], an optimized system based on modern
SAT-solving technology which won all the tracks of the competition and only
failed to solve two of the benchmark instances in the given time-limit of 600
seconds.

The ASPARTIX-V19 system scored third in the overall evaluation of the com-
petition, scored second in 8 of the 24 tracks and scored second in the aggregated
evaluation of complete and stable semantics. Moreover, for 16 tracks ASPARTIX-
V19 solved all instances of the competition within the given time-limit. Notewor-
thy, ASPARTIX-V19 was to only system to solve the enumeration task under
stage semantics for the n256p3q08n.apx instance.

https://www.iccma2019.dmi.unipg.it/results/results-main.html
https://www.iccma2019.dmi.unipg.it/results/results-main.html

ASPARTIX-V19 87

The ICCMA’19 results also reported different kinds of errors in the results
of the ASPARTIX-system, which we investigated and shall discuss in the follow-
ing. This errors include wrong results, malformed output, crashed computations
and for enumeration tasks incomplete list of extensions which are not due to a
timeout. The affected tasks are skeptical acceptance under preferred and semi-
stable semantics, credulous acceptance under semi-stable semantics, stage and
ideal semantics and enumeration of semi-stable and stage semantics.

The main reason for these errors seems to be side-effects of concurrent calls
to the solver. Towards understanding the erroneous results, we performed addi-
tional experiments. For these experiments we considered all skeptical and cred-
ulous acceptance instances of the competition where ASPARTIX-V19 returned
an erroneous result or crashed and reran the ASPARTIX-V19 docker on these
instances in an isolated setting. For all but one instance we got the correct results.
In this isolated setting ASPARTIX-V19 only reported one wrong result for
skeptical reasoning with semi-stable semantics on the Small-result-b86.apx
instance. This seems to be due to a bug in the used ASP solver, which can be
resolved by using an earlier version of the solver (we got correct results with
clingo 4.4.0). We maintain an updated and extended version of ASPARTIX-
V19, available at the systems web-page5. For the enumeration tasks we investi-
gated selected instances with erroneous/incomplete results and again got correct
results when running them in an isolated setting and on the other hand could
generate erroneous results by concurrent calls to the solver.

From our development work and the results achieved in the international
competition, we conclude that (i) a performance increase was achieved by utiliz-
ing advanced language features of ASP, across multiple reasoning tasks covering
several levels of complexity of the polynomial hierarchy (e.g., argumentative
reasoning tasks considered in the ICCMA range from polynomial-time decidable
to being complete for a class on the second level of the polynomial hierarchy),
(ii) said language features, furthermore, provide means for compact and acces-
sible modeling of problem shortcuts in the ASP language, however care needs
to be taken when designing systems that interface ASP solvers, and (iii) while
our prototype was outperformed by the SAT based approach of μ-toksia, perfor-
mance of ASPARTIX-V19 does not lag behind for several cases. Indeed, as wit-
nessed by the uniquely solved instance only by ASPARTIX-V19, certain short-
cuts included in ASPARTIX-V19 can lead to complementary performance for
families of instances.

Acknowledgments. The authors are grateful to a reviewer for suggesting directions
for further improvements in the encodings.

This work has been funded by the Austrian Science Fund (FWF): P30168-N31,
W1255-N23, and I2854.

5 https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/dung.html#
iccma interface.

https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/dung.html#iccma_interface
https://www.dbai.tuwien.ac.at/research/argumentation/aspartix/dung.html#iccma_interface

88 W. Dvořák et al.

References

1. Baroni, P., Caminada, M., Giacomin, M.: Abstract argumentation frameworks
and their semantics. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre,
L. (eds.) Handbook of Formal Argumentation, Chapt. 4. College Publications,
London (2018)

2. Cerutti, F., Gaggl, S.A., Thimm, M., Wallner, J.P.: Foundations of implementa-
tions for formal argumentation. In: Baroni, P., Gabbay, D., Giacomin, M., van der
Torre, L. (eds.) Handbook of Formal Argumentation, Chapt. 15. College Publica-
tions, London (2018). Also available as an article in the IfCoLog Journal of Logics
and their Applications 4(8), 2623–2706

3. Charwat, G., Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Methods for
solving reasoning problems in abstract argumentation - a survey. Artif. Intell. 220,
28–63 (2015)

4. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–358 (1995)

5. Dunne, P.E.: The computational complexity of ideal semantics. Artif. Intell.
173(18), 1559–1591 (2009)

6. Dunne, P.E., Dvořák, W., Woltran, S.: Parametric properties of ideal semantics.
Artif. Intell. 202, 1–28 (2013)

7. Dvořák, W., Dunne, P.E.: Computational problems in formal argumentation and
their complexity. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L.
(eds.) Handbook of Formal Argumentation, Chapt. 14. College Publications, Lon-
don (2018). Also available as an article in the IfCoLog Journal of Logics and their
Applications 4(8), 2557–2622

8. Dvořák, W., Gaggl, S.A., Wallner, J.P., Woltran, S.: Making use of advances
in answer-set programming for abstract argumentation systems. In: Tompits,
H., Abreu, S., Oetsch, J., Pührer, J., Seipel, D., Umeda, M., Wolf, A. (eds.)
INAP/WLP -2011. LNCS (LNAI), vol. 7773, pp. 114–133. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-41524-1 7

9. Dvořák, W., Gaggl, S.A., Linsbichler, T., Wallner, J.P.: Reduction-based
approaches to implement Modgil’s extended argumentation frameworks. In: Eiter,
T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge Rep-
resentation, Logic Programming, and Abstract Argumentation. LNCS (LNAI),
vol. 9060, pp. 249–264. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
14726-0 17

10. Dvořák, W., Greßler, A., Woltran, S.: Evaluating SETAFs via answer-set program-
ming. In: Thimm, M., Cerutti, F., Vallati, M. (eds.) CEUR Workshop Proceedings
of the SAFA Co-Located with COMMA 2018, vol. 2171, pp. 10–21. CEUR-WS.org
(2018)

11. Egly, U., Gaggl, S.A., Woltran, S.: Answer-set programming encodings for argu-
mentation frameworks. Argument Comput. 1(2), 147–177 (2010)

12. Faber, W., Vallati, M., Cerutti, F., Giacomin, M.: Enumerating preferred exten-
sions using ASP domain heuristics: the ASPrMin solver. In: Modgil, S., Budzynska,
K., Lawrence, J. (eds.) Proceedings of the COMMA, Frontiers in Artificial Intelli-
gence and Applications, vol. 305, pp. 459–460. IOS Press (2018)

13. Gaggl, S.A., Manthey, N., Ronca, A., Wallner, J.P., Woltran, S.: Improved answer-
set programming encodings for abstract argumentation. Theory Pract. Logic Pro-
gram. 15(4–5), 434–448 (2015)

https://doi.org/10.1007/978-3-642-41524-1_7
https://doi.org/10.1007/978-3-319-14726-0_17
https://doi.org/10.1007/978-3-319-14726-0_17

ASPARTIX-V19 89

14. Gebser, M., et al.: Potassco guide version 2.2.0 (2019). https://github.com/
potassco/guide/releases/tag/v2.2.0

15. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report. CoRR, abs/1405.3694 (2014)

16. Gebser, M., et al.: Domain-specific heuristics in answer set programming. In: des
Jardins, M., Littman, M.L. (eds.) Proceedings of the AAAI, pp. 350–356. AAAI
Press (2013)

17. Marek, V.W., Truszczyński, M.: Stable models and an alternative logic program-
ming paradigm. In: Apt, K.R., Marek, V.W., Truszczynski, M., Warren, D.S. (eds.)
The Logic Programming Paradigm - A 25-Year Perspective, pp. 375–398. Springer,
Heidelberg (1999)

18. Niemelä, I.: Logic programming with stable model semantics as a constraint pro-
gramming paradigm. Ann. Math. Artif. Intell. 25(3–4), 241–273 (1999)

19. Niskanen, A., Järvisalo, M.: µ-toksia participating in ICCMA 2019 (2019). https://
www.iccma2019.dmi.unipg.it/papers/ICCMA19 paper 11.pdf

20. Nofal, S., Atkinson, K., Dunne, P.E.: Algorithms for decision problems in argument
systems under preferred semantics. Artif. Intell. 207, 23–51 (2014)

21. Ronca, A., Wallner, J.P., Woltran, S.: ASPARTIX-V: utilizing improved ASP
encodings (2015). http://argumentationcompetition.org/2015/pdf/paper 11.pdf

22. Sakama, C., Rienstra, T.: Representing argumentation frameworks in answer set
programming. Fundam. Inform. 155(3), 261–292 (2017)

https://github.com/potassco/guide/releases/tag/v2.2.0
https://github.com/potassco/guide/releases/tag/v2.2.0
https://www.iccma2019.dmi.unipg.it/papers/ICCMA19_paper_11.pdf
https://www.iccma2019.dmi.unipg.it/papers/ICCMA19_paper_11.pdf
http://argumentationcompetition.org/2015/pdf/paper_11.pdf

Proper Hierarchies in Polylogarithmic
Time and Absence of Complete Problems

Flavio Ferrarotti1(B), Senén González1, Klaus-Dieter Schewe2,
and José Maŕıa Turull-Torres3

1 Software Competence Center Hagenberg, Hagenberg, Austria
{flavio.ferrarotti,senen.gonzalez}@scch.at

2 Zhejiang University, UIUC Institute, Haining, China
kd.schewe@intl.zju.edu.cn

3 Universidad Nacional de La Matanza, Buenos Aires, Argentina
jturull@unlam.edu.ar

Abstract. The polylogarithmic time hierarchy structures sub-linear
time complexity. In recent work it was shown that all classes Σ̃plog

m

or Π̃plog
m (m ∈ N) in this hierarchy can be captured by semantically

restricted fragments of second-order logic. In this paper the descriptive
complexity theory of polylogarithmic time is taken further showing that
there are strict hierarchies inside each of the classes of the hierarchy. A
straightforward consequence of this result is that there are no complete
problems for these complexity classes, not even under polynomial time
reductions.

Keywords: Strict hierarchies · Polylogarithmic time · Complexity
theory · Complete problems · Finite models · Logic

1 Introduction

Computations with sub-linear time complexity have not been studied inten-
sively. However, such computations appear rather naturally, e.g. in the area of
circuits. Mix Barrington studied the complexity of circuits [9] characterizing a
class of families of constant-depth quasi-polynomial size AND/OR-circuits. In
particular, he proved that the class of Boolean queries computable by the class
of DTIME[(log n)O(1)] DCL-uniform families of Boolean circuits of unbounded
fan-in, size 2(log n)O(1)

and depth O(1) coincides with the class of Boolean queries
expressible in a fragment SOb of second-order logic. As used in his study, the

The research reported in this paper results from the project Higher-Order Logics and
Structures supported by the Austrian Science Fund (FWF: [I2420-N31]). It has also
been partly supported by the Austrian Ministry for Transport, Innovation and Tech-
nology, the Federal Ministry for Digital and Economic Affairs, and the Province of
Upper Austria in the frame of the COMET center SCCH.

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 90–105, 2020.
https://doi.org/10.1007/978-3-030-39951-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_6

Proper Hierarchies in Polylogarithmic Time 91

complexity class DTIME[2(log n)O(1)
] is known as quasipolynomial time. Fur-

thermore, the fastest known algorithm for checking graph isomorphisms is in
quasipolynomial time [1].

In [3] we started a deeper investigation of sub-linear time computations
emphasising complexity classes DPolyLogTime and NPolyLogTime of decision
problems that can be solved deterministically or non-deterministically with a
time complexity in O(logk n) for some k, where n is as usual the size of the
input. We extended these complexity classes to a complete hierarchy, the poly-
logarithmic time hierarchy, analogous to the polynomial time hierarchy, and for
each class Σplog

m or Πplog
m (m ∈ N) in the hierarchy we defined a fragment of

semantically restricted second-order logic capturing it [5,6]. While the hierarchy
as a whole captures the same class of problems studied by Mix Barrington, the
various classes of the hierarchy provide fine-grained insights into the nature of
decision problems decidable in sub-linear time.

With these promising results the natural question occurs, whether there are
complete problems in the hierarchy, and what would be an appropriate notion
of reduction to define complete problems. Note that for the somehow related
complexity class PolyLogSpace it is known since long time that it does not have
complete problems.

In this paper we address this problem. We show that for none of the classes
Σ̃plog

m and Π̃plog
m (m ∈ N) in the polylogarithmic time hierarchy there exists a

complete problem. It turns out that this result is a rather simple consequence
of the existence of proper hierarchies inside each of the classes Σ̃plog

m and Π̃plog
m .

Note that a similar approach shows the non-existence of complete problems for
PolyLogSpace, but the corresponding proof exploits theorems by Hartmanis et
al. that cannot be applied to our case, as these theorems (which are well known
in complexity theory as the space and time hierarchy theorems) require at least
linear time.

The remainder of this paper is organized as follows. Section 2 summarizes the
necessary preliminaries for our investigation introducing the complexity classes of
the polylogarithmic time hierarchy. This is complemented in Sect. 3 by reviewing
SOplog, the polylogarithmically-restricted fragment of second-order logic that is
used to define subsets capturing the complexity classes Σ̃plog

m and Π̃plog
m . Section 4

introduces concrete decision problems that we use to show the existence of proper
hierarchies inside Σ̃plog

m and Π̃plog
m . We use the capturing logics to define these

problems that are parametrised by k ∈ N, and the various different values for k
give rise to the hierarchies. Theorems showing that we obtain proper hierarchies
inside Σ̃plog

m and Π̃plog
m are proven in Sect. 5. Then the non-existence of complete

problems arises as a rather straightforward consequence, as we will show in
Sect. 6. We conclude with a brief summary in Sect. 7.

2 Polylogarithmic Time Complexity Classes

The sequential access that Turing machines have to their tapes makes it impossi-
ble to compute anything in sub-linear time. Therefore, logarithmic time complex-
ity classes are usually studied using models of computation that have random

92 F. Ferrarotti et al.

access to their input. As this also applies to the poly-logarithmic complexity
classes studied in this paper, we adopt a Turing machine model that has a ran-
dom access read-only input, similar to the log-time Turing machine in [10].

In the following, log n always refers to the binary logarithm of n, i.e., log2 n.
With logk n we mean (log n)k.

A random-access Turing machine is a multi-tape Turing machine with (1) a
read-only (random access) input of length n+1, (2) a fixed number of read-write
working tapes, and (3) a read-write input address-tape of length �log n�.

Every cell of the input as well as every cell of the address-tape contains either
0 or 1 with the only exception of the (n+1)st cell of the input, which is assumed
to contain the endmark �. In each step the binary number in the address-tape
either defines the cell of the input that is read or if this number exceeds n, then
the (n + 1)st cell containing � is read.

Example 2.1. Let polylogCNFSAT be the class of satisfiable propositional for-
mulae in conjunctive normal form with c ≤ �log n�k clauses, where n is the
length of the formula. Note that the formulae in polylogCNFSAT tend to have
few clauses and many literals. We define a random-access Turing machine M
which decides polylogCNFSAT. The alphabet of M is {0, 1,#,+,−}. The input
formula is encoded in the input tape as a list of c ≤ �log n�k indices, each
index being a binary number of length �log n�, followed by c clauses. For every
1 ≤ i ≤ c, the i-th index points to the first position in the i-th clause. Clauses
start with # and are followed by a list of literals. Positive literals start with
a +, negative with a −. The + or − symbol of a literal is followed by the ID
of the variable in binary. M proceeds as follows: (1) Using binary search with
the aid of the “out of range” response �, compute n and �log n�. (2) Copy the
indices to a working tape, counting the number of indices (clauses) c. (3) Non-
deterministically guess c input addresses a1, . . . , ac, i.e., guess c binary numbers
of length �log n�. (4) Using c 1-bit flags, check that each a1, . . . , ac address falls
in the range of a different clause. (5) Check that each a1, . . . , ac address points to
an input symbol + or −. (6) Copy the literals pointed by a1, . . . , ac to a working
tape, checking that there are no complementary literals. (7) Accept if all checks
hold.

Let L be a language accepted by a random-access Turing machine M . Assume
that for some function f on the natural numbers, M makes at most O(f(n))
steps before accepting an input of length n. If M is deterministic, then we write
L ∈ DTIME(f(n)). If M is non-deterministic, then we write L ∈ NTIME(f(n)).
We define the classes of deterministic and non-deterministic poly-logarithmic
time computable problems as follows:

DPolyLogTime =
⋃

k,c∈N

DTIME((log n)k · c)

NPolylogTime =
⋃

k,c∈N

NTIME((log n)k · c)

Proper Hierarchies in Polylogarithmic Time 93

The non-deterministic random-access Turing machine in Example 2.1 clearly
works in polylog-time. Therefore, polylogCNFSAT ∈ NPolylogTime.

Recall that an alternating Turing machine comes with a set of states Q that
is partitioned into subset Q∃ and Q∀ of so-called existential and universal states.
Then a configuration c is accepting iff

– c is in a final accepting state,
– c is in an existential state and there exists a next accepting configuration, or
– c is in a universal state, there exists a next configuration and all next config-

urations are accepting.

In analogy to our definition above we can define a random-access alternating
Turing machine. The languages accepted by such a machine M , which starts
in an existential state and makes at most O(f(n)) steps before accepting an
input of length n with at most m alternations between existential and universal
states, define the complexity class ATIME(f(n),m). Analogously, we define the
complexity class ATIMEop(f(n),m) comprising languages that are accepted by
a random-access alternating Turing machine that starts in a universal state and
makes at most O(f(n)) steps before accepting an input of length n with at most
m − 1 alternations between universal and existential states. With this we define

Σ̃plog
m =

⋃

k,c∈N

ATIME[(log n)k · c,m] Π̃plog
m =

⋃

k,c∈N

ATIMEop[(log n)k · c,m].

The poly-logarithmic time hierarchy is then defined as PLH =
⋃

m≥1 Σ̃plog
m .

Note that Σ̃plog
1 = NPolylogTime holds.

Remark 2.1. Note that a simulation of a NPolylogTime Turing machine M by a
deterministic machine N requires checking all computations in the tree of com-
putations of M . As M works in time (log n)O(1), N requires time 2log nO(1)

. This
implies NPolylogTime ⊆ DTIME(2log nO(1)

), which is the complexity class called
quasipolynomial time of the fastest known algorithm for graph isomorphism [1],
which further equals the class DTIME(nlog nO(1)

)1.

3 Logics for Polylogarithmic Time

The descriptive complexity of the polylogarithmic time complexity classes
described in the previous section, has been recently studied in deepth in [3–
7], where precise logical characterization of those classes were presented. The
logics used in those characterizations are quite useful to think and describe the
problems used in this paper to prove proper hierarchies inside polylogarithmic
time. In this section we describe these logics and the results regarding their
correspondence with the different polylogarithmic time complexity classes.

1 This relationship appears quite natural in view of the well known relationship NP =

NTIME(nO(1)) ⊆ DTIME(2nO(1)
) = EXPTIME.

94 F. Ferrarotti et al.

The capturing results for polylogarithmic time hold over ordered structures.
A finite ordered σ-structure A is a finite structure of vocabulary σ ∪{<}, where
≤/∈ σ is a binary relation symbol and <A is a linear order on A. Every finite
ordered structure has a corresponding isomorphic structure, whose domain is
an initial segment of the natural numbers. Thus, we assume, as usual, that
A = {0, 1, . . . , n − 1}, where n is the cardinality |A| of A. In the case of non-
deterministic polylogarithmic time complexity, the capturing results also assume
that σ includes SUCC, BIT and constants for log n, the minimum, second and
maximum elements. In every structure A, the symbol SUCC is interpreted by
the successor relation corresponding to the <A ordering. The constant symbols
0, 1 and max are in turn interpreted as the minimum, second and maximum
elements under the <A ordering and the constant logn as �log |A|�. Finally, BIT
is interpreted by the following binary relation:

BITA = {(i, j) ∈ A2 | Bit j in the binary representation of i is 1}.

W.l.o.g., we assume that all structures have at least three elements. This results
in a cleaner presentation, avoiding trivial cases which would unnecessarily com-
plicate some formulae.

Let us start with DPolylogTime. This class is captured by the index logic
introduced in [6]. Index logic is two-sorted; variables of the first sort range over
the domain of the input structure. Variables of the second sort range over an
initial segment of the natural numbers; this segment is bounded by the logarithm
of the size of the input structure. Thus, the elements of the second sort represent
the bit positions needed to address elements of the first sort. Index logic includes
full fixpoint logic on the second sort. Quantification over the first sort, however,
is heavily restricted. Specifically, a variable of the first sort can only be bound
using an address specified by a subformula that defines the positions of the bits
of the address that are set. This “indexing mechanism” lends index logic its
name.

The following result confirms that the problems that can be described in the
index logic are in DPolylogT ime and vice versa.

Theorem 3.1 ([6]). Index logic captures DPolylogT ime over ordered struc-
tures.

Regarding nondeterministic polylogarithmic time, the restricted second-order
logic SOplog defined in [3–5] captures the polylogarithmic-time hierarchy, with its
quantifier prenex fragments Σplog

m and Πplog
m capturing the corresponding levels

Σ̃plog
m and Π̃plog

m of this hierarchy, respectively.
SOplog is a fragment of second-order logic where second-order quantifica-

tion range over relations of polylogarithmic size and first-order quantification is
restricted to the existential fragment of first-order logic plus universal quantifi-
cation over variables under the scope of a second-order variable.

Formally, we can inductively define the syntax of SOplog as follows:

– Every formula in the existential fragment of first-order logic with equality is
a SOplog formula.

Proper Hierarchies in Polylogarithmic Time 95

– If X is a second-order variable of arity r, and t1, . . . , tr are first-order terms,
then both X(t1, . . . , tr) and X(t1, . . . , tr) are SOplog formulae.

– If ϕ and ψ are SOplog formulae, then (ϕ∧ψ) and (ϕ∨ψ) are SOplog formulae.
– If ϕ is a SOplog formula, X is a second-order variable of arity r and x̄ is an

r-tuple of first-order variables, then ∀x̄(X(x̄) → ϕ) is SOplog formula.
– If ϕ is a SOplog formula and x is a first-order variable, then ∃xϕ is a SOplog

formula.
– If ϕ is a SOplog formula and X is a second-order variable, then both ∃Xϕ

and ∀Xϕ are SOplog formulae.

The most significant restriction of SOplog is in its semantics. In addition to
its arity, each second-order variable X is associated with another non-negative
integer, its exponent, and it is required that any X of arity r and exponent k is
interpreted on a structure of domain A as an r-ary relation of cardinality smaller
or equal than logk |A|. Otherwise, the semantics of SOplog follows the standard
semantics of second-order logic.

As usual, the fragments Σplog
m (resp. Πplog

m) are defined by considering SOplog

formulae with m alternating blocks of second-order quantifiers in quantifier
prenex (Skolem) normal form, starting with an existential (resp. universal) block.
Note that by Lemma 3 in [4], for every SOplog formula ϕ there is an equivalent
formula ϕ′ that is in quantifier prenex normal form. In the following we will
assume that the reader is familiar with the techniques that can be applied to
transform arbitrary SOplog formulae into equivalent formulae in Skolem normal
form. Those techniques are detailed in the proof of Lemma 3 in Appendix B
in [4].

The following result characterizes precisely the expressive power of SOplog

in terms of the nondeterministic polylogarithmic time hierarchy. Note that in
particular, existential SOplog captures NPolylogT ime.

Theorem 3.2 ([3,5]). Over ordered structures with successor relation, BIT and
constants for log n, the minimum, second and maximum elements, Σplog

m captures
Σ̃plog

m and Πplog
m captures Π̃plog

m for all m ≥ 1.

4 Problems that Lead to Proper Hierarchies

Here we introduce the decision problems that we use in the next section to show
the existence of proper hierarchies of polylogarithmic-time. In addition, for the
nondeterministic classes we give a precise definition of these problems in terms
of the logic SOplog studied in [3–5] and discussed in the previous section.

From now on we work with the class of structures known as word models
(see for instance [2]). Let π be the vocabulary {<,R0, R1}, where < is a binary
relation symbol and R0, R1 are unary relation symbols. We can identify any
binary string (word) w = a1 . . . an in {0, 1}+ with a π-structure (word model)
Aw, where the cardinality of the domain A of Aw equals the length of w, <Aw

is a linear order in A, RAw
0 contains the positions in w carrying a 0, and RAw

1

contains the positions in w carrying a 1.

96 F. Ferrarotti et al.

Problem 4.1 (InitialZerosk). The problem InitialZerosk consists on deciding
(over word models of signature π) the language of binary strings which have
a prefix of at least �log n�k consecutive zeros, where n is the length of the string.

Problem 4.2 (ConseqZerosk). Let ConseqZerosk denote the problem of deciding
the language of binary strings which have at least �log n�k consecutive bits set to
0, where n is the length of the string. This can be expressed formally in SOplog

as follows:

∃X(|X| = logk n ∧ SEQ(X) ∧ ∀x(X(x) → R0(x))),

where X is of arity 1 and exponent k, the expression |X| = logk n denotes the
sub-formula which defines that the cardinality of X is �log n�k, and SEQ(X)
denotes the sub-formula expressing that the elements of X are a contiguous
subsequence of the order <.

The sub-formula expressing |X| = logk n can be written as follows:

∃Y x̄(Y (x̄) ∧ x̄ = 0̄ ∧ ∀ȳ(Y (ȳ) → (SUCCk(ȳ, logn) ∨ ∃z̄(Y (z̄) ∧ SUCCk(ȳ, z̄)))
∧|X| = |Y |)

where Y is of arity k and exponent k, x̄, ȳ, z̄ denote k-tuples of first-order
variables, SUCCk(ȳ, z̄) denotes a sub-formula expressing that z̄ is the imme-
diate successor of ȳ in the lexicographical order of k-tuples, and |X| = |Y |
expresses that X and Y have equal cardinality. SUCCk(ȳ, z̄) can be expressed
by a quantifier-free SOplog formula (for details refer to SUCC k in Sect. 4 in [4]).
In turn, |X| = |Y | can be expressed by an existential SOplog formula using sec-
ond order variables of arity k + 1 and exponent k (for details refer to Sect. 3.1
in [4]).

Finally, SEQ(X) can be expressed in SOplog as follows:

∀x(X(x) → ∃y(SUCC (x, y) ∨ ∀z(X(z) → z < x)))

The whole formula for ConseqZerosk can then be rewritten in Skolem normal
form as a formula in Σplog

1 with second order variables of exponent k.

Problem 4.3 (NoConseqZerosk). Let NoConseqZerosk denote the problem of
deciding the language of binary strings which do not have greater than or equal
�log n�k consecutive bits set to 0, where n is the length of the string. Since syn-
tactically the negation of a formula in SOplog is not always a formula in SOplog ,
we cannot just negate the formula for ConseqZerosk in Problem 4.2 to get the
SOplog formula for NoConseqZerosk. We can nevertheless define NoConseqZerosk

as follows:

∀X(|X| = logk n ∧ SEQ(X) → ∃x(X(x) ∧ R1(x)))

This is equivalent to:

∀X(¬(|X| = logk n) ∨ ¬SEQ(X) ∨ ∃x(X(x) ∧ R1(x))).

Proper Hierarchies in Polylogarithmic Time 97

It follows that the negations of the sub-formulae |X| = logk n that we defined in
Problem 4.2 is in Πplog

1 . Regarding ¬SEQ(X), it can be written in SOplog as

∃xyz(X(x) ∧ ¬X(y) ∧ X(z) ∧ x < y < z).

We then get that the formula for NoConseqZerosk can be rewritten in Skolem
normal form as a formula in Πplog

1 with second order variables of exponent k.

Problem 4.4 (ExactlyOncek). Let ExactlyOncek denote the problem of deciding
the language of binary strings which contain the substring 0�log n	k exactly once,
i.e., s is in ExactlyOncek iff 0�logn	k is a substring of s and every other substring
of s is not 0�logn	k . This can be expressed formally in SOplog by combining
the formulae for ConseqZerosk and NoConseqZerosk (see Problems 4.2 and 4.3,
respectively) as follows:

∃X(|X| = logk n ∧ SEQ(X) ∧ ∀x(X(x) → R0(x))
∧ ∀Y (Y = X ∨ ¬(|Y | = logk n) ∨ ¬SEQ(Y) ∨ ∃x(X(x) ∧ R1(x)))),

Clearly, all second order variables in the formula need maximum exponent k and
the formula itself can be rewritten in Skolem normal form as a formula in Σplog

2 .

The formulae expressing the following two problems can be well understood
as formulae defining B-trees where the leaves are pointers to positions in the
input string.

Problem 4.5 (AtLeastBlockskl). Let AtLeastBlockskl for k, l ≥ 0 denote the prob-
lem of deciding the language of binary strings with at least (�log n�k)l non-
overlapping adjacent substrings of the form 0�log n	k where n is the length of
the string, or equivalently, the language of binary strings which have at least
(�log n�k)l+1 consecutive bits set to 0.

If l = 0 then this is equivalent to ConseqZerosk and, as discussed in Prob-
lem 4.2, it can be expressed in Σplog

1 .
If l = 1, we can express AtLeastBlockskl in SOplog as follows:

∃X∀xy∃Z(|X| = logk n ∧ SEQP(X)
∧ (X(x, y) → (|Z| = logk n ∧ SEQ(Z) ∧ min(Z) = x ∧ max (Z)

= y ∧ ∀z(Z(z) → R0(z))))).

Here SEQP(X) denotes the sub-formula expressing that X is a set of ordered
pairs that form a sequence where every consecutive (a1, a2) and (b1, b2) in the
sequence satisfy that a2 is the immediate predecessor of b1 in the order <. This
is clearly expressible by a SOplog formula free of second-order quantification. The
sub-formulae min(Z) = x and max (Z) = y have the obvious meaning and again
can easily be expressed in SOplog without using second-order quantification. The
whole sentence can be transformed into an equivalent sentence in Σplog

3 .
Finally, for every l ≥ 2, we can express AtLeastBlockskl in SOplog with for-

mulae of the form:

98 F. Ferrarotti et al.

∃X1∀x1y1∃X2∀x2y2 · · · ∃Xl∀xlyl∃Z(|X1| = logk n ∧ SEQP(X1)∧
(X1(x1, y1) →

(|X2| = logk n ∧ SEQP(X2) ∧ minp(X2) = x1 ∧ maxp(X2) = y1∧
· · · ∧ (Xl−1(xl−1, yl−1) →

(|Xl| = logk n ∧ SEQP(Xl) ∧ minp(Xl) = xl−1 ∧ maxp(Xl) = yl−1∧
(Xl(xl, yl) →

(|Z| = logk n ∧ SEQ(Z) ∧ min(Z) = xl ∧ max (Z) = yl∧
∀z(Z(z) → R0(z)))))) · · ·))).

The sub-formulae of the form minp(X) = x (resp. maxp(X) = x) express that
x is the smallest first element (resp. biggest second element) of any tuple in X
and is easily expressible in SOplog by a formula free of second-order quantifiers.
We can rewrite the whole formula as a Σplog

2·l+1 formula.

Problem 4.6 (ExactlyBlockskl). Let ExactlyBlockskl for k, l ≥ 0 denote the prob-
lem of deciding the language of binary strings with exactly (�log n�k)l non-
overlapping adjacent substrings of the form 0�log n	k where n is the length of the
string, or equivalently, the language of binary strings which contain the substring
0(�logn	k)l+1

exactly once.
If l = 0 then this is equivalent to ExactlyOncek and, as discussed in Prob-

lem 4.4, it can be expressed in Σplog
2 .

If l = 1, we can express ExactlyBlockskl in SOplog as follows:

∃X∀xy∃Z(|X| = logk n ∧ SEQP(X)∧
(X(x, y) → (|Z| = logk n ∧ SEQ(Z) ∧ min(Z) = x ∧ max (Z) = y∧

∀z(Z(z) → R0(z))∧
∀X ′∃x′y′∀Z ′(X ′ = X ∨ ¬(|X ′| = logk n) ∨ ¬SEQP(X ′)∨

(X ′(x′, y′) ∧ (Z ′ = Z ∨ ¬(|Z ′| = logk n) ∨ ¬SEQ(Z ′)∨
¬(min(Z ′) = x′) ∨ ¬(max (Z ′) = y′)∨
∃z′(Z ′(z′) ∧ R1(z′))))))).

It is not difficult to see that this formula can be rewritten as a Σplog
4 formula.

Finally, for every l ≥ 2, we can express ExactlyBlockskl in SOplog with for-
mulae of the form:

∃X1∀x1y1∃X2∀x2y2 · · · ∃Xl∀xlyl∃Z(|X1| = logk n ∧ SEQP(X1)∧
(X1(x1, y1) →

(|X2| = logk n ∧ SEQP(X2) ∧ minp(X2) = x1 ∧ maxp(X2) = y1∧
· · · ∧ (Xl−1(xl−1, yl−1) →

(|Xl| = logk n ∧ SEQP(Xl) ∧ minp(Xl) = xl−1 ∧ maxp(Xl) = yl−1∧
(Xl(xl, yl) →

(|Z| = logk n ∧ SEQ(Z) ∧ min(Z) = xl ∧ max (Z) = yl∧
∀z(Z(z) → R0(z))∧

Proper Hierarchies in Polylogarithmic Time 99

∀X ′
1∃x′

1y
′
1∀X ′

2∃x′
2y

′
2 · · · ∀X ′

l∃x′
ly

′
l∀Z ′(X ′

1 = X1∨
¬(|X ′

1| = logk n) ∨ ¬SEQP(X ′
1) ∨ (X ′

1(x
′
1, y

′
1) ∧ (X ′

2 = X2∨
¬(|X ′

2| = logk n) ∨ ¬SEQP(X ′
2) ∨ ¬minp(X ′

2) = x′
1∨

¬maxp(X ′
2) = y′

1 ∨ (· · · ∨ (X ′
l−1(x

′
l−1, y

′
l−1) ∧ (X ′

l = Xl∨
¬(|X ′

l | = logk n) ∨ ¬SEQP(X ′
l) ∨ ¬(minp(X ′

l) = x′
l−1)∨

¬(maxp(X ′
l) = y′

l−1) ∨ (X ′
l(x

′
l, y

′
l) ∧ (Z ′ = Z∨

¬(|Z ′| = logk n) ∨ ¬SEQ(Z ′) ∨ ¬(min(Z ′) = x′
l)∨

¬(max (Z ′) = y′
l)∨∃z′(Z ′(z′)∧R1(z′)))))) · · ·)))))))) · · ·))).

We can rewrite formulae of this form as Σplog
2·l+2 formulae.

5 Proper Hierarchies in Polylogarithmic Time

We now present the key results of the paper showing that all the polylogarithmic
complexity classes defined in Sect. 2, including every level of the polylogarithmic
time hierarchy, contain proper hierarchies defined in terms of the smallest degree
of the polynomial required for the decision problems introduced in the previous
section.

In order to relate the problems described in the previous section using logics
to the polylogarithmic complexity classes defined in terms of random-access
Turing machines, we adhere to the usual conventions concerning binary encoding
of finite structures [8]. That is, if σ = {Rr1

1 , . . . , R
rp
p , c1, . . . , cq} is a vocabulary,

and A with A = {0, 1, . . . , n − 1} is an ordered structure of vocabulary σ.
Each relation RA

i ⊆ Ari of A is encoded as a binary string bin(RA
i) of length

nri where 1 in a given position indicates that the corresponding tuple is in
RA

i . Likewise, each constant number cAj is encoded as a binary string bin(cAj)
of length �log n�. The encoding of the whole structure bin(A) is simply the
concatenation of the binary strings encodings its relations and constants. The
length n̂ = |bin(A)| of this string is nr1 + · · · + nrp + q�log n�, where n = |A|
denotes the size of the input structure A. Note that log n̂ ∈ O(�log n�), so
NTIME[logk n̂] = NTIME[logk n] (analogously for DTIME). Therefore, we can
consider random-access Turing machines, where the input is the encoding bin(A)
of the structure A followed by the endmark �.

The following simple lemmas are useful to prove our hierarchy theorems. They
show that the problems in the previous section can be expressed by random-
access machines working in the required levels of the hierarchy theorems.

Lemma 5.1. InitialZerosk (see Problem 4.1) is in DTIME(logk n).

Proof. Assume the input tape encodes a word model A of signature π, i.e., a
binary string. A deterministic random-access Turing machine can in determin-
istic time O(log n) calculate and write in its index-tape the address of the first
bit in the encoding of RA

0 . Then it only needs to check whether this bit and the
subsequent �log n�k − 1 bits in the input-tape are 1. If that is the case, then the
machine accepts the input. Clearly, this process takes time O(logk n). ��

100 F. Ferrarotti et al.

Lemma 5.2. ConseqZerosk (see Problem 4.2) is in NTIME(logk n).

Proof. Assume the input tape encodes a word model A of signature π. A random-
access Turing machine M can non-deterministically guess a position i in the
input tape which falls within the cells encoding RA

0 . This takes time O(log n).
Then M can check (working deterministically) in time O(logk+1n) whether each
cell of the input tape between positions i and i + logk+1n has a 0. ��
Lemma 5.3. NoConseqZerosk (see Problem 4.3) is in ATIMEop(logk n, 1).

Proof. Assume the input tape encodes a word model A of signature π. In a uni-
versal state, a random-access alternating Turing machine M can check whether
for all cell in some position i in the input tape which falls in a position encoding
RA

0 and is at distance at least �log n�k from the end of the encoding, there is a
position between positions i and i + �log n�k − 1 with 0. Each of these checking
can be done deterministically in time O(logkn). Therefore this machine decides
NoConseqZerosk in ATIMEop(logk n, 1). ��
Lemma 5.4. ExactlyOncek (see Problem 4.4) is in ATIME(logk n, 2).

Proof. We only need to combine the machines that decide ConseqZerosk and
NoConseqZerosk in Lemmas 5.2 and 5.3, respectively. An alternating random-
access Turing machine M can decide ExactlyOncek as follows: Assume the input
tape encodes a word model A of signature π. Let s and t be the cells that mark
the beginning and end of the encoding of RA

0 . These cells can be calculated by
M in DTIME(log n). First M checks in an existential state whether there is a
position i in the input tape which fall between s and t − �log n�k + 1 such that
each cell between positions i and i + �log n�k − 1 has a 1. Then M switches to a
universal state and checks whether for all cell in some position j between s and
t − �log n�k + 1 of the input tape other than position i, there is a cell between
positions j and j+�log n�k−1 with 0. If these two checks are successful, then the
input string belongs to ExactlyOncek. We already saw in Lemmas 5.2 and 5.3
that both checks can be done in time O(logk n). ��

In order to get tighter upper bounds, in the previous lemmas we explic-
itly defined the random-access Turing machines that decide the problems. For
the following two lemmas we use the upper bounds resulting from the proof of
Theorem 3.2 instead, since there seems to be no better upper bounds for these
cases. Thus, Lemmas 5.5 and 5.6 follow from the facts that: (a) to evaluate the
SOplog formulae in Problems 4.5 and 4.6 for AtLeastBlockskl and ExactlyBlockskl ,
respectively, the machine needs (as shown in the proof of Theorem 3.2 in [4])
to “guess” �log n�k addresses, each of length �log n�; and (b) the formula for
AtLeastBlockskl and ExactlyBlockskl are in Σplog

2×l+1 and Σplog
2×l+2, respectively.

Lemma 5.5. AtLeastBlockskl (see Problem 4.5) is in ATIME(logk+1 n, 2 · l+1).

Lemma 5.6. ExactlyBlockskl (see Problem 4.6) is in ATIME(logk+1 n, 2 · l+2).

Proper Hierarchies in Polylogarithmic Time 101

We can now prove our first hierarchy theorem which shows that there is a
strict hierarchy of problems inside DPolylogTime.

Theorem 5.1. For every k > 1, DTIME(logk n) � DTIME(logk+1 n).

Proof. Lemma 5.1 proves that InitialZerosk+1 ∈ DTIME(logk+1 n). Regarding
the lower bound, we will show that InitialZerosk+1 (see Problem 4.1) is not in
DTIME(logk n).

Let us assume for the sake of contradiction that there is a deterministic
random-access Turing machine M that decides InitialZerosk+1 in time �log n�k ·c,
for some constant c ≥ 1. Take a string s of the form 0n such that �log n�k+1 >
�log n�k · c. Let A be its corresponding word model. Since the running time of
M on input A is strictly less than �log n�k+1, then there must be at least one
position i among the first �log n�k+1 cells in the encoding of RA

0 in the input tape
that was not read in the computation of M(A). Define a string s′ = 0i10n−i−1

and a corresponding word model B. Clearly, the output of the computations of
M(A) and M(B) are identical. This contradicts the assumption that M decides
InitialZerosk+1, since it is not true that the first �log n�k+1 bits of s′ are 0. ��

Our second hierarchy theorem shows that there is also a strict hierarchy of
problem inside NPolylogTime.

Theorem 5.2. For every k > 1, NTIME(logk n) � NTIME(logk+1 n).

Proof. Lemma 5.2 proves that ConseqZerosk+1 ∈ NTIME(logk+1 n). Regarding
the lower bound, we will show that ConseqZerosk+1 (see Problem 4.2) is not in
NTIME(logk n).

Let us assume for the sake of contradiction that there is a nondetermin-
istic random-access Turing machine M that decides ConseqZerosk+1 in time
�log n�k · c, for some constant c ≥ 1. Take a binary string s of the form
0�logn	k+1

1n−�log n	k+1
such that �log n�k+1 > �log n�k · c. Let A be its corre-

sponding word model. Since M accepts A, then there is at least one compu-
tation ρ of M which accepts A in at most �log n�k · c steps. Then there must
be at least one position i among the first �log n�k+1 cells in the encoding of
RA

0 in the input tape that was not read during computation ρ. Define a string
s′ = 0i10�log n	k+1−i−11n−�log n	k+1

and a corresponding word model B. Clearly,
the accepting computation ρ of M(A) is also an accepting computation of M(B).
This contradicts the assumption that M decides ConseqZerosk+1, since it is not
true that there are �log n�k+1 consecutive zeros in s′. ��

The following theorem shows that there is a strict hierarchy of problems
inside the first level of the Π̃plog

m hierarchy.

Theorem 5.3. For every k > 1, ATIMEop(logk n, 1) � ATIMEop(logk+1 n, 1).

Proof. Lemma 5.3 proves that NoConseqZerosk+1 ∈ ATIMEop(logk+1 n, 1).
Regarding the lower bound, we will show that NoConseqZerosk+1 (see Prob-
lem 4.3) is not in ATIMEop(logk n, 1).

102 F. Ferrarotti et al.

Let us assume for the sake of contradiction that there is an alternating
random-access Turing machine M that decides NoConseqZerosk+1 using only
universal states and in time �log n�k · c, for some constant c ≥ 1. Take a binary
string s of the form 0�logn	k+1

1n−�log n	k+1
such that �log n�k+1 > �log n�k · c.

Let A be its corresponding word model. From our assumption that M decides
NoConseqZerosk+1, we get that there is a rejecting computation ρ of M(A).
Since every computation of M which rejects A must do so reading at most
�log n�k · c cells, then there must be at least one position i among the first
�log n�k+1 cells in the encoding of RA

0 in the input tape that was not read dur-
ing computation ρ. Define a string s′ = 0i10�log n	k+1−i−11n−�logn	k+1

and a
corresponding word model B. Clearly, the rejecting computation ρ of M(A) is
also a rejecting computation of M(B). This contradicts the assumption that M
decides NoConseqZerosk+1, since s′ do not have �log n�k+1 consecutive bits set
to 0 and should then be accepted by all computations of M . ��

The following theorem shows that there is a strict hierarchy of problems
inside the second level of the Σ̃plog

m hierarchy.

Theorem 5.4. For every k > 1, ATIME(logk n, 2) � ATIME(logk+1 n, 2).

Proof. Lemma 5.4 proves that ExactlyOncek+1 ∈ ATIME(logk+1 n, 2). Regard-
ing the lower bound, we will show that ExactlyOncek+1 (see Problem 4.4) is not
in ATIME(logk n, 2).

We assume for the sake of contradiction that there is an alternating random-
access Turing machine M that decides ExactlyOncek+1 in ATIME(logk n, 2).
We further assume, w.l.o.g., that every final state of M is universal. Let M
work in time �log n�k · c for some constant c. Take a binary string s of the
form 0�log n	k+1

10�log n	k+1
1n−2·�logn	k+1−1 such that �log n�k+1 > �log n�k · c.

Let A be its corresponding word model. From our assumption that M decides
ExactlyOncek+1, we get that there is a rejecting computation ρ of M(A). Since
every computation of M which rejects A must do so reading at most �log n�k · c
cells, then there must be a position i among the first �log n�k+1 cells in the
encoding of RA

0 in the input tape that was not read during computation ρ.
Define a string s′ = 0i10�log n	k+1−i−110�log n	k+1

1n−2·�log n	k+1−1 and a corre-
sponding word model B. Clearly, the rejecting computation ρ of M(A) is also a
rejecting computation of M(B). This contradicts the assumption that M decides
ExactlyOncek+1, since s′ has exactly one substring 0�log n	k+1

and should then
be accepted by all computations of M . ��

The following result, together with Theorems 5.2 and 5.4, shows that there
is a proper hierarchy of problems for every level of the polylogarithmic time
hierarchy Σ̃plog

m .

Theorem 5.5. For m > 2 and k > 1, it holds that ATIME(logk n,m) �

ATIME(logk+2 n,m).

Proper Hierarchies in Polylogarithmic Time 103

Proof. Since m > 2, we have that Lemma 5.5 proves that if m is odd, then
AtLeastBlocksk+1

(m−1)/2 is in ATIME(logk+2 n,m). Likewise, Lemma 5.6 proves

that if m is even, then ExactlyBlocksk+1
(m−2)/2 is in ATIME(logk+2 n,m). Regard-

ing the lower bounds, it is easy to see (given our previous results in this section)
that: (a) for odd m, AtLeastBlocksk+1

(m−1)/2 is not in ATIME(logk n,m), and (b)

for even m, ExactlyBlocksk+1
(m−2)/2 is also not in ATIME(logk n,m). Note that if

m is odd, then we can prove (a) by contradiction following a similar argument
than in the proof of the lower bound for Theorem 5.2. Likewise, if m is even,
then we can prove (b) by contradiction following a similar argument than in the
proof of Theorem 5.4. ��

It is clear that by taking the complements of the problems AtLeastBlockskl
and ExactlyBlockskl , a similar result holds for each level of the Πplog

m hierarchy.

Theorem 5.6. For m = 2 and every k > 1, it holds that ATIMEop(logk n,m) �

ATIMEop(logk+1 n,m). Moreover, For every m > 2 and every k > 1, it holds
that ATIMEop(logk n,m) � ATIMEop(logk+2 n,m).

6 On Polylogarithmic-Time and Complete Problems

In this section we investigate whether the concept of complete problem can some-
how be applied to the complexity classes DPolylogTime and NPolylogTime. That
is, we want to know whether we can isolate the most difficult problems inside
these sublinear time complexity classes. The first step towards this objective is
to find a suitable concept of many-one reducibility (m-reducibility for short).

It is quite clear that m-reductions with sublinear time bounds do not work.
Consider for instance DPolylogTime reductions. Assume there is a complete
problem P for the class NPolylogTime under DPolylogTime reductions. Let P ′

belong to NPolylogTime and let M be a deterministic random-access Turing
machine that reduces P ′ to P in time c′ · logk

′
n for some constant c′. Then the

output of M given an instance of P ′ of length n has maximum length c′ · logk
′
n.

This means that, given an input of length n for P ′ and its reduction, the random-
access Turing machine that computes the complete problem P can actually com-
pute P (s) in time O((log log n)k) for some fixed k. This is already highly unlikely.
If as one would expect there are more than a single complete problem for the
class, then we could keep applying reductions from one problem to the other,
infinitely reducing the time required to compute the original problem.

Let us then consider the standard concept of Karp reducibility, i.e., deter-
ministic polynomially bounded many-one reducibility, so that we can avoid the
obvious problem described in the previous paragraph. Rather surprisingly, there
is no complete problems for DPolylogTime and NPolylogTime, even under these
rather expensive reductions for the complexity classes at hand.

Theorem 6.1. DPolylogTime does not have complete problems under deter-
ministic polynomially bounded many-one reductions.

104 F. Ferrarotti et al.

Proof. We prove it by contradiction. Assume that there is such a complete
problem P . Since P is in DPolylogTime, then there is a random-access Tur-
ing machine M which computes P in time O(logk n) for some fixed k. Thus P
belongs to DTIME(logk n). Let us take the problem InitialZerosk+1 of decid-
ing the language of binary strings which have a prefix of at least �log n�k+1

consecutive zeros. Since P is complete for the whole class DPolylogTime, there
must be a function f : {0, 1}∗ → {0, 1}∗, computable in polynomial-time, such
that x ∈ InitialZerosk+1 iff f(x) ∈ P holds for all x ∈ {0, 1}∗. It then follows
that the size of f(x) is polynomial in the size of x. Let |f(x)| = |x|k′

, we get
that the machine M which computes the complete problem P can also decide
InitialZerosk+1 in time O(logk nk′

) = O((k′ · log n)k) = O(logk n). This contra-
dicts the fact that InitialZerosk+1 �∈ DTIME(logk n) as shown in the proof of
Theorem 5.1. ��

Using a similar proof than in the previous theorem for DPolylogTime, we can
prove that the same holds for NPolylogTime. In fact, we only need to replace the
problem InitialZerosk+1 by ConseqZerosk+1 and the reference to Theorem 5.1
by a reference to Theorem 5.2 in the previous proof, adapting the argument
accordingly.

Theorem 6.2. NPolylogTime does not have complete problems under deter-
ministic polynomially bounded many-one reductions.

Moreover, using the problems AtLeastBlockskl and ExactlyBlockskl together
with its complements and Theorems 5.5 and 5.6, it is easy to prove that the
same holds for every individual level of the polylogarithmic time hierarchy.

Theorem 6.3. For every m ≥ 1, Σplog
m and Πplog

m do not have complete prob-
lems under deterministic polynomially bounded many-one reductions.

7 Concluding Remarks

In this paper we showed that none of the classes Σ̃plog
m and Π̃plog

m (m ∈ N) in the
polylogarithmic time hierarchy has a complete problem. This result follows from
the existence of proper hierarchies inside each of the classes. The proof that such
hierarchies exist is constructive by defining concrete problems parameterized by
k ∈ N for each class. For the definition of these concrete problems we exploit the
logics capturing Σ̃plog

m and Π̃plog
m , respectively. We expect that these results can

be taken further towards an investigation of the strictness of the polylogarithmic
time hierarchy as such. We also expect that similar strict hierarchies can be
defined in terms of subsets of formulae in Σplog

m and Πplog
m . Notice that the

latter does not follow directly from the strict hierarchies proven in this paper,
since in the proofs of the characterization results for the polylogarithmic-time
hierarchy [3,5], there is not an exact correspondence between the exponents in
the polylogarithmic functions that bound the time complexity of the machines
and the exponents in the restricted second-order variables of the SOplog formulae
that define the machines.

Proper Hierarchies in Polylogarithmic Time 105

References

1. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the
Forty-Eighth Annual ACM Symposium on Theory of Computing (STOC 2016),
pp. 684–697 (2016)

2. Ebbinghaus, H.-D., Flum, J.: Finite Model Theory. Perspectives in Mathematical
Logic. Springer, Heidelberg (1995)

3. Ferrarotti, F., González, S., Schewe, K.-D., Turull Torres, J.M.: The polylog-time
hierarchy captured by restricted second-order logic. In: 20th International Sym-
posium on Symbolic and Numeric Algorithms for Scientific Computing, SYNASC
2018, Timisoara Romania, 20–23 September 2018, pp. 133–140. IEEE (2018)

4. Ferrarotti, F., González, S., Schewe, K.-D., Turull Torres, J.M.: The polylog-time
hierarchy captured by restricted second-order logic. CoRR, abs/1806.07127 (2018)

5. Ferrarotti, F., González, S., Schewe, K.-D., Turull Torres, J.M.: A restricted
second-order logic for non-deterministic poly-logarithmic time. Logic J. IGPL
(2019, to appear)

6. Ferrarotti, F., González, S., Turull Torres, J.M., Van den Bussche, J., Virtema,
J.: Descriptive complexity of deterministic polylogarithmic time. In: Iemhoff, R.,
Moortgat, M., de Queiroz, R. (eds.) WoLLIC 2019. LNCS, vol. 11541, pp. 208–222.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-59533-6 13

7. Ferrarotti, F., González, S., Turull Torres, J.M., Van den Bussche, J., Virtema, J.:
Descriptive complexity of deterministic polylogarithmic time and space. Submitted
for publication (2019)

8. Immerman, N.: Descriptive complexity. Graduate Texts in Computer Science.
Springer, New York (1999)

9. Mix Barrington, D.A.: Quasipolynomial size circuit classes. In: Proceedings of
the Seventh Annual Structure in Complexity Theory Conference, Boston, Mas-
sachusetts, USA, 22–25 June 1992, pp. 86–93. IEEE Computer Society (1992)

10. Mix Barrington, D.A., Immerman, N., Straubing, H.: On uniformity within NC1.
J. Comput. Syst. Sci. 41(3), 274–306 (1990)

https://doi.org/10.1007/978-3-662-59533-6_13

Diversity, Dependence and Independence

Pietro Galliani1(B) and Jouko Väänänen2

1 Free University of Bozen-Bolzano, Bolzano, Italy
Pietro.Galliani@unibz.it

2 University of Helsinki, Helsinki, Finland
jouko.vaananen@helsinki.fi

Abstract. We introduce the concepts of dependence and independence in a very
general framework. We use a concept of rank to study dependence and inde-
pendence. By means of the rank we identify (total) dependence with inability to
create more diversity, and (total) independence with the presence of maximum
diversity. We show that our theory of dependence and independence covers a
variety of dependence concepts, for example the seemingly unrelated concepts of
linear dependence in algebra and dependence of variables in logic.

Keywords: Dependence Logic · Matroids · Independence · Team Semantics

1 Introduction

Our starting point is very general. Suppose we have a setM of objects. We want to make
sense of the concept that a subset x ⊆ M depends on another subset y ⊆ M , or that a
subset x ⊆ M is independent of another subset y ⊆ M . To accomplish this in the most
general sense, we define the concept of diversity of a set x ⊆ M . The idea is that a
small set has less diversity than a bigger set, hence our diversity function is monotone.
Also, the diversity of X arises from properties of the individual elements, hence our
diversity function satisfies certain further conditions. The connection between diversity
and dependence arises from the idea that dependence reduces diversity, and respectively
independence preserves diversity. If x totally determines y, then adding y to x does not
increase the diversity of x at all. On the other hand, if x and y are independent, then
putting them together means simply adding the diversities together: nothing is lost,
because there is no interaction between x and y.

Because of the generality of our approach, according to which M is just a set of
objects about which we a priori know nothing, we do not define the diversity function
explicitly, but rather give a few conditions it ought to satisfy. The point is that on the
basis of these conditions we can introduce natural notions of dependence and indepen-
dence with a variety of applications.

The concepts of dependence and independence occur widely in science. Exact study
of these concepts has taken place at least in four different contexts:

– Mathematics: Dependence and independence are fundamental concepts in algebra:
linear dependence in linear algebra and algebraic dependence in field theory. In both
cases independence is defined as the lack of dependence: elements {x1, . . . , xn} are
independent if no xi is dependent on the rest. Whitney [15] and van derWaerden [14]

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 106–121, 2020.
https://doi.org/10.1007/978-3-030-39951-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_7

Diversity, Dependence and Independence 107

pointed out the similarity between these two notions of dependence and proposed
axioms that cover both cases. Whitney suggested the name matroid for the general
dependence structure inherent in algebra, giving rise to matroid theory, nowadays a
branch of discrete mathematics.

– Computer science: Functional dependence [1] is a fundamental concept of database
theory. The design and analysis of so called relational databases is often based on a
careful study of the functional dependencies between attributes of various parts of
the database. The more general multivalued dependencies are analogous to what we
call independence relations between attributes.

– Statistics and probability theory:Dependence and independence of events (or ran-
dom variables) is the basis of probability theory and statistical analysis of data.

– Logic: Dependence of a variable on another is the basic concept in quantification
theory. In Dependence Logic [12] this concept is separated from quantification,
making it possible, as in Independence-Friendly Logic [10], to write formulas with
more complicated dependence relations between variables than what first order logic
allows. Independence Logic [5], likewise, extends First Order Logic by an atom
x ⊥ y that states that the tuples of quantified variables x and y are chosen inde-
pendently, in the sense that every possible choice of x and of y may occur together.
These logics – and the generalization of Tarski’s Semantics used for their analysis,
commonly called Team Semantics – have lead in the last decade to a considerable
amount of research regarding logics augmented by various notions of dependence
and independence, in the first order case but also in the propositional case [16], in
the modal case [7,13], in the temporal case [9], and recently even in probabilistic
cases [3,6,8].

As it turns out, these concepts of dependence and independence arise from one par-
ticular more general concept—diversity—that simultaneously generalizes all the above
cases and satisfies the same axioms in each case. It is the purpose of this paper to intro-
duce this concept and suggest thereby a wide-ranging general theory of dependence.

2 Diversity Rank in a General Setting

We now define the concept of rank in an entirely general setting. We use the notation
xy to denote the union x ∪ y of subsets x and y of a fixed set M . The following is the
key definition of this work:

Definition 1. Suppose M is an arbitrary set and M ⊆ P(M) such that M is closed
under (finite) unions and contains the finite subsets of M . A function x �→ ‖x‖ from
M to R

+ ∪ {0} is called a diversity rank function on M if it satisfies the following
conditions for all x, y, z ∈ M:

R1: ‖∅‖ = 0;
R2: ‖x‖ ≤ ‖xy‖ ≤ ‖x‖ + ‖y‖;
R3: If ‖xy‖ = ‖x‖ then ‖xyz‖ = ‖xz‖;
R4: If ‖xyz‖ = ‖x‖ + ‖yz‖ then ‖xy‖ = ‖x‖ + ‖y‖.1
1 Since set union is commutative, it also follows that if ‖xyz‖ = ‖x‖ + ‖yz‖ then ‖xz‖ =
‖x‖ + ‖z‖.

108 P. Galliani and J. Väänänen

Intuitively, the rank of x is the amount of “diversity” or “variation” that x contains.
For example, if x is a sequence of vectors in a vector space, the amount of diversity in x
is revealed by the dimension of the subspace spanned by x. If x is the set of attributes in
a relation schema in a given database schema, the amount of diversity in x is revealed by
the maximum number of different tuples (records) that may exist in the corresponding
relation in a given database instance that can be considered as valid for that schema.
Finally, if x is simply a word in a finite alphabet, a possible measure of the amount of
diversity in x is the number of different letters in x, so that for example the diversity of
“abbab” is 2 and the diversity of “abcdda” is 4.

It is obvious that we have to require R1 and R2. The empty set cannot manifest any
diversity, more elements means more diversity, and the amount of diversity manifesting
in two sets taken together is at most the sum of the amounts of diversity occurring in
each of them separately.

The axioms R3 and R4 are less intuitive. In brief, Axiom R3 states that if adding y
to x does not increase the amount of diversity of x (that is, y is “trivial” given x), then
adding it to xz does not increase the amount of diversity of xz (that is, y is also “trivial”
given xz) either; and Axiom R4 states that if adding yz to x increases the amount of
diversity of the maximum amount possible (that is, yz is “maximally non-trivial” given
x) then adding y to x also increases the amount of diversity of the maximum amount
possible (that is, y is also “maximally non-trivial” given x). R3 and R4 (as well as
the right part of R2) would follow at once if we assumed that our rank-function is
submodular, in the sense that it satisfies the condition

SUBM: ‖xyz‖ + ‖z‖ ≤ ‖xz‖ + ‖yz‖ :

Proposition 1. Every function from subsets of some set M to non-negative real num-
bers satisfying R1, the left part of R2 and SUBM is a diversity rank function in the
sense of Definition 1.

Proof. Let ‖x‖ satisfy R1, the left part of R2 and SUBM. We need to show that ‖x‖
also satisfies the right part of R2 as well as R3 and R4.

Choosing z = ∅, we obtain immediately from submodularity that ‖xy‖ + ‖∅‖ ≤
‖x‖ + ‖y‖. But by R1 we know that ‖∅‖ = 0, and subadditivity (that is, the right part
of R2) follows.

As for R3, suppose that ‖xy‖ = ‖x‖. Then by SUBM, ‖xyz‖ ≤ ‖xy‖ + ‖xz‖ −
‖x‖ = ‖x‖ + ‖xz‖ − ‖x‖ = ‖xz‖; but on the other hand ‖xz‖ ≤ ‖xyz‖ by the left
part of R2 and so ‖xyz‖ = ‖xz‖ as required.

Finally, R4 holds. Indeed, by SUBM we know that ‖xyz‖ + ‖y‖ ≤ ‖xy‖ + ‖yz‖.
Thus, if ‖xyz‖ = ‖x‖+ ‖yz‖ we have at once that ‖x‖+ ‖yz‖+ ‖y‖ ≤ ‖xy‖+ ‖yz‖,
that is, that ‖x‖ + ‖y‖ ≤ ‖xy‖. But ‖xy‖ ≤ ‖x‖ + ‖y‖ by the right part of R2, which
we already proved, and hence ‖xy‖ = ‖x‖ + ‖y‖ as required.

As we will soon see, however, submodularity would be too strong a requirement for
our intended application.

A direct consequence of the above result is that our diversity rank functions gener-
alize matroids:

Diversity, Dependence and Independence 109

Definition 2 (Matroid). A matroid over some finite set E may be defined in terms of
a rank function2 from subsets of E to non-negative integers satisfying the following
conditions for all subsets x and y of E:

M1 r(x) ≤ |x|;
M2 r(xy) + r(x ∩ y) ≤ r(x) + r(y);
M3 If |y| = 1 then r(x) ≤ r(xy) ≤ r(x) + 1.

Corollary 1. Let r be the rank function of a matroid over some finite set E. Then r is a
diversity rank function over E.

Proof. R1 holds for r. Indeed, byM1, r(∅) ≤ |∅| = 0, and therefore the only possibility
is that r(∅) = 0.

The left part ofR2 holds at once because ofM3 (this can be shown by easy induction
on the number of elements in y\x).

Moreover, SUBM also holds of r. Indeed, since xyz = xzyz, we have by M2 that
r(xyz) + r(xz ∩ yz) ≤ r(xz) + r(yz). But z ⊆ xz ∩ yz, and so by the left part
of R2 (which we already proved) r(z) ≤ r(xz ∩ yz) and hence r(xyz) + r(z) ≤
r(xz) + r(yz), as required.

The conclusion then follows, since because of Proposition 1 the right part of R2 as
well as R3 and R4 are also true of r.

Given a notion of diversity, it is easy to define dependence and independence in
terms of minimal and maximal diversity contributions:

Definition 3. Suppose M is a set and ‖ · ‖ a rank-function on M . We can now define
dependence relations on P(M) (with respect to ‖ · ‖) as follows:
– Dependence: y (totally) depends on x, in symbols =(x, y), if ‖xy‖ = ‖x‖.
– Constancy: x is constant, in symbols =(x), if ‖x‖ = 0.
– Independence: x and y are independent, in symbols x ⊥ y, if ‖x‖ + ‖y‖ = ‖xy‖.

The idea is that =(x, y) holds under a rank-function if the amount of diversity inher-
ent in x in terms of the rank-function does not increase when y is added. Simply put,
x determines y, so no new diversity occurs. =(x), on the other hand, holds if x has
no diversity at all; and x ⊥ y holds if the diversity inherent in x is so unrelated to the
diversity inherent in y that when the two are put together into xy, the diversity is the
sum of the diversity of x and the diversity of y: no loss of diversity occurs because there
is—intuitively—no connection between x and y.

2 Equivalently, it is possible to define matroids in terms of its independent sets (that is, the x such
that r(x) = |x|), in terms of circuits (maximal independent sets), in terms of bases (minimal
non-independent sets), or closure operations. All these definitions are equivalent. We refer the
reader to [11] for more details.

110 P. Galliani and J. Väänänen

3 Examples

Let us now consider some examples of our definitions, in order to get a better feel of
their applicability and consequences:

Example 1 (Constant diversity). As an extreme case we have the constant rank ‖x‖ =
c, c constant, for all x ⊆ M , with the exception that ‖∅‖ = 0. If c = 0, there is
no diversity, every set depends on every other set and is also independent of every
other set. If c �= 0 then every set y is still dependent on any non-empty set x, because
‖xy‖ = c = ‖x‖, and every set x is still independent from the empty set ∅, because
‖x∅‖ = ‖x‖ = ‖x‖+‖∅‖; but two non-empty sets x and y are not independent, because
‖xy‖ = c �= c + c = ‖x‖ + ‖y‖.
Example 2 (Singular diversity). Let a0 ∈ M be fixed. Let

‖x‖ =
{
1, if a0 ∈ x,
0, otherwise.

In this case a chosen individual a0 is the only “diversity” there is. A set has diversity 1
iff it contains a0. In this case y depends on x if

a0 ∈ y → a0 ∈ x

and two sets x and y are independent if at most one of them contains a0. So dependence
reduces in this case to implication and independence to the Sheffer stroke (also known
as NAND).

Example 3 (Two-valued diversity). Suppose ‖{a}‖ is either 0 or 1 for all a ∈ M , and

‖x‖ = max{‖{a}‖ : a ∈ x}
for all x ⊆ M .

In this case some chosen individuals are declared to have diversity 1 and the rest
are of diversity 0. A set has diversity 1 if it contains one of those chosen individuals.
In this case diversity is an on/off thing, either it exists (1) or it does not (0), and a set
has diversity if it includes some singleton that has it. In an extreme case ‖{a}‖ = 0 for
all singletons {a}, a ∈ M , and we have constant diversity: every set has diversity 0. In
another extreme case ‖{a}‖ = 1 for all singletons {a}, a ∈ M , and we are again in
constant diversity: every non-empty set has diversity 1.

According to this diversity notion, =(x, y) if and only if ∃a ∈ x s.t. ‖{a}‖ = 1 ⇒
∃b ∈ y s.t. ‖{b}‖ = 1; and x is independent from y if and only if at most one of x and
y contain an element c with ‖{c}‖ = 1.

Example 4 (Uniform diversity). Suppose

‖x‖ = |x|.
This is the bold choice of taking the cardinality of the (finite) set as the measure of
diversity. Dependence means inclusion: y is (totally) dependent on x if and only if

Diversity, Dependence and Independence 111

|xy| = |x|, that is, if and only if y ⊆ x. Independence is disjointness: x and y are
independent if and only if |xy| = |x|+ |y|, that is, if and only if x ∩ y = ∅. Note that if
M has at least three elements a, b, c, then independence is not equivalent to the failure
of dependence both ways, as consideration of {a, b} and {b, c} reveals.

Example 5 (Coverage diversity). Suppose U is a finite set and we have a set Am ⊆ U
for each m ∈ M . For a1 . . . an ∈ M , let

‖{a1, . . . , an}‖ = |Aa1 ∪ . . . ∪ Aan
|.

We can think of each Am as “data”, about the element m of M . The more data we have
the more diversity we give to the element, and the diversity of a set is obtained by simply
putting together all the data we have. In this simple example the data is not thought to
be specific to the m in M , so the data about different m is just lumped together. For
example, if a and b are two genera, such as Astragalus and Angylocalyx, the diversity
of {a, b} in a set U of data about species (e.g. in some location) is obtained by counting
how many different species of Astragalus or Angylocalyx there are in U .

According to this diversity notion, y is dependent on x if and only if
⋃{Aai

: ai ∈
y} ⊆ ⋃{Abi : bi ∈ x}, that is, every data point corresponding to some element of
y also corresponds to some element of x; and y is independent from x if and only if⋃{Aai

: ai ∈ y} ∩ ⋃{Abi : bi ∈ x} = ∅, that is, if no data point corresponds to some
element of x and to some element of y.

Example 6 (Relational diversity). Suppose X is a nonempty, finite set of variable
assignments s from a finite set V of variables to a set A of elements (in the language
of Dependence and Independence Logic, such a X is said to be a team over A with
domain V).3 Given some x = {v1 . . . vn} ⊆ V , let4

‖x‖ = log(#rowsX(v1 . . . vn)).

where
#rowsX(v1 . . . vn) = |{(s(v1), . . . , s(vn)) : s ∈ X}|

is the number of different values that x = v1 . . . vn takes in X .
We can think of each s ∈ X as an “observation”, or “data”, about the possible values

that the variables in V can take. The more different observations we have the more
diversity we give to the element. Note the difference with the coverage diversity, where
the data was not specific to the element of A. Here what matters is the relationships of
the different observations to each other. Thus

‖{v}‖ = log |{s(v) : s ∈ X}|,
that is, the diversity rank of a single element v of V is the (logarithm of the) number of
different observations about v. The diversity of a pair {v, w} is the (logarithm of the)
number of different combinations of observations of v and w. For example, if v and

3 In general, in Dependence and Independence Logic teams do not necessarily have to be finite,
but we will focus on the finite case in this example.

4 In this work, log will always represent the base-2 logarithm.

112 P. Galliani and J. Väänänen

w are two genera, the diversity of {v, w} in a set X of observations is calculated by
counting how many different pairs of observations of a specimen of v and a specimen
of w there are in X .

The dependence relation arising from the relational diversity rank is the usual func-
tional dependence relation of database theory and dependence logic. Why? By defini-
tion, =(x, y) if and only if log(#rowsX(xy)) = log(#rowsX(x)), that is, if and only
if #rowsX(xy) = #rowsX(x). This can be the case if and only if any two s, s′ ∈ X
which differ with respect to xy differ already on x alone, or, by contrapositive, if and
only if any two s, s′ ∈ X which are the same with respect to x are also the same with
respect to y. This is precisely the usual notion of functional dependence.

The independence relation arising from the relational diversity rank is also the inde-
pendence relation of Independence Logic [5]. Indeed, x ⊥ y if and only if

log(#rowsX(x)) + log(#rowsX(y)) = log(#rowsX(xy)),

or, in other words, if and only if

#rowsX(xy) = #rowsX(x) · #rowsX(y).

This is the case if and only if the projection of X along xy is the Cartesian product of
its projections along x and along y, that is, if and only if every possible value for x and
every possible value for y can occur together in X – or, more formally, if and only if for
every s, s′ ∈ X there exists some s′′ ∈ X such that s′′(x) = s(x) and s′′(y) = s′(y).

It may be instructive to verify that the relational diversity notion of rank satisfies
our axioms:

R1 Since #rows(∅) = |{()}| = 1 for any choice of X , where () represents the empty
tuple, we have that ‖∅‖ = 0 as required.

R2 Since #rows(x) ≤ #rows(xy) and the logarithm is a monotone function, we have
at once that ‖x‖ ≤ ‖xy‖; and since #rows(xy) ≤ #rows(x) · #rows(y), we have
at once that ‖xy‖ ≤ ‖x‖ + ‖y‖.

R3 If ‖xy‖ = ‖x‖, #rows(xy) = #rows(x) and hence every possible value of x
occurs together with only one possible value of y. But then every possible value of
xz occurs together with only one possible value of y, and hence #rows(xyz) =
#rows(xz) and ‖xyz‖ = ‖xz‖;

R4 If ‖xyz‖ = ‖x‖ + ‖yz‖, it must be the case that #rows(xyz) = #rows(x) ·
#rows(yz), and hence that every possible value of x occurs together with every pos-
sible value for yz. But then in particular every possible value for x occurs together
with every possible value for y, and so #rows(xy) = #rows(x) · #rows(y) and
‖xy‖ = ‖x‖ + ‖y‖.
Note, however, that differently from the other examples given this notion of rela-

tional diversity is not submodular, as the following counterexample, which we owe to
(Tong Wang, personal communication) shows:

Diversity, Dependence and Independence 113

Proposition 2. Relational diversity fails to satisfy SUBM.

Proof. Consider the relation

v1 v2 v3
1 1 1
1 1 2
2 1 1
1 2 1
2 1 2

Then #rows(v1v2v3) = 5, #rows(v2) = 2, and #rows(v1v2) = #rows(v2v3) = 3.
Thus, #rows(v1v2v3) · #rows(v2) = 10 > 9 = #rows(v1v2) · #rows(v2v3), and
hence ‖v1v2v3‖ + ‖v2‖ > ‖v1v2‖ + ‖v2v3‖.
Example 7 (Algebraic diversity). Suppose that V is a vector space and that h maps M
into V . We get a rank function by letting for x ⊆ M :

‖x‖ = the dimension of the subspace generated by {h(a) : a ∈ x}.

Submodularity SUBM follows at once from the known fact that if U and V are vector
subspaces,

dim(U ∪ V) = dim(U) + dim(V) − dim(U ∩ V).

In this context, it is not hard to verify that V is dependent on U if and only if every
dim(U ∪ V) = dim(U), that is, if and only if every vector of V is a linear combination
of vectors in U ; and that, on the other hand, U and V are independent if and only if
dim(U ∪ V) = dim(U) + dim(V), that is, if and only if no nonzero vector belongs in
both the subspaces generated by U and V .

Likewise, if F is a field, we get a rank function by letting for x ⊆ M and letting h
map M into F instead:

‖x‖ = the transcendence degree of the subfield generated by {h(a) : a ∈ x}.

This gives rise to the concepts of algebraic dependence and independence.
As mentioned in the Introduction, this notion of rank defines a matroid (in fact, it

was one of the original motivations for the development of Matroid Theory); and thus,
by Corollary 1, it is also a diversity rank function according to our definition.

Example 8 (Entropy). Let us think of the individuals ofM as discrete random variables
v1, v2, . . . over some probability space and with outcomes in some finite set A.5 Then
for any x = {v1 . . . vk} ⊆ M we can define ‖x‖ as the joint entropy H(x) of v1 . . . vk,
that is, as

−
∑

(m1...mk)∈Ak

P (v1 . . . vk = m1 . . . mk) logP (v1 . . . vk = m1 . . . mk).

5 Nothing in this example hinges on A being the same for all v ∈ M , but we will assume so for
simplicity.

114 P. Galliani and J. Väänänen

This definition clearly satisfies rule R0, since the entropy of the only possible distri-
bution over the empty space is zero; moreover, it is not hard to convince oneself that it
is monotone and submodular. In brief, this can be shown by considering the conditional
entropy H(y|x) = H(xy) − H(x).

Indeed, it can be proved (see any Information Theory textbook, for instance The-
orem 2.2.1 of [2]) that the conditional entropy H(y|x) is always non-negative6, from
which we have at once the left part of R2; and furthermore (see e.g. Theorem 2.6.5 of
[2])7 that H(x|yz) ≤ H(x|z), from which we obtain at once that H(xyz) − H(yz) ≤
H(xz) − H(z), that is, Axiom SUBM.

From Proposition 1, we can conclude at once that entropy is an example of a diver-
sity rank function. y depends on x according to the entropy diversity rank if and only if
H(xy) = H(x), that is, if and only if the relative entropy of y given x is 0, or in other
words if the value of y is completely determined by the value of x; and x and y are
independent according to this rank if and only if they are independent tuples of random
variables, that is, P (x = m, y = m′) = P (x = m)P (y = m′) for all possible choices
of values a and b for x and y.

4 From Diversity to Dependence

We have already identified dependence =(x, y) of y on x with xy not contributing any
diversity to x, in the sense that ‖xy‖ = ‖x‖.

It is easy to verify that any notion of dependence thus defined satisfies the following
axioms:

Proposition 3. The following always hold:

1. Reflexivity: =(xy, x).
2. Augmentation: =(x, y) implies =(xz, yz).
3. Transitivity: If =(x, y) and =(y, z), then =(x, z).

Proof
Reflexivity: Clearly ‖xyx‖ = ‖xy‖. Therefore, =(xy, x).
Augmentation: Suppose that ‖xy‖ = ‖x‖. Then, by R3, ‖xyz‖ = ‖xz‖; and therefore,

‖xzyz‖ = ‖xz‖, or, in other words, =(xz, yz).
Transitivity: Suppose that ‖x‖ = ‖xy‖ and ‖y‖ = ‖yz‖. Again, by R3, from ‖x‖ =

‖xy‖ we get that ‖xz‖ = ‖xyz‖; and similarly, from ‖y‖ = ‖yz‖ we get that
‖xy‖ = ‖xyz‖. By the transitivity of equality, we can conclude that ‖xz‖ = ‖xy‖.
But we have as an hypothesis that ‖xy‖ = ‖x‖, and therefore we can conclude that
‖x‖ = ‖xz‖, or, in other words, that =(x, z).

6 More precisely, this theorem shows that H(xy) − H(x) = − ∑
m P (x = m)

∑
m′ P (y =

m′|x = m) logP (y = m′|x = m), and the right hand side is straightforwardly seen to be
non-negative.

7 Strictly speaking, this theorem states that H(x) − H(x|y) ≥ 0, but if we consider the above
inequality with respect to distributions already conditioned on z the result follows at once.

Diversity, Dependence and Independence 115

We can use the above rules as axioms of a proof system for inferring the conse-
quences of a set of dependence statements:

Definition 4. Let Σ be a finite set of relations of the form =(z, w) for z, w ⊆ M , and
let also x, y ⊆ M . Then Σ �=(x, y) if it is possible to derive =(x, y) from Σ through
applications of the rules of Reflexivity, Augmentation and Transitivity.

According to these axioms, a dependency notion is entirely defined even if we only
consider singletons on the right-hand side of it:

Corollary 2. Let Σ be a finite set of relations of the form =(z, w) for z, w ⊆ M , and
let also x, y ⊆ M . Then Σ �=(x, y) if and only if Σ �=(x, {m}) for all m ∈ y.

Proof. By Reflexivity, if m ∈ y then it is always the case that Σ �=(y, {m}). If
Σ �=(x, y), by Transitivity it is thus the case that Σ �=(x, {m}) for all such m.

Conversely, suppose that Σ �=(x, {m}) for all m ∈ y. Then, in order to reach
our conclusion that Σ �=(x, y), it suffices to verify that whenever Σ �=(x, y1) and
Σ �=(x, y2) it is also the case that Σ �=(x, y1y2).

This is easily shown: if Σ �=(x, y1), by Augmentation we have that Σ �=(x, xy1)
(remember that in our notation xx = x ∪ x = x), and if Σ �= (x, y2) again by
Augmentation we have that Σ �=(xy1, y1y2), and an application of Transitivity gives
us Σ �=(x, y1y2). The conclusion follows at once.

The following is essentially proved in [1], albeit in the special case of relations and
functional dependences:

Theorem 1. Let M be a set and Σ is a finite set of relations of the form =(z, w) and
let also x, y ⊆ M . The following are equivalent:

1. =(x, y) holds under any rank-function on M , under which Σ holds.
2. =(x, y) holds under any rank-function P(M) → {0, 1}, under which Σ holds.
3. =(x, y) holds under any relational diversity rank-function, under which Σ holds.
4. =(x, y) follows from Σ by the rules of Proposition 3.

Proof. Trivially, (1) implies (2) and (3), and (4) implies (1). We demonstrate that (2)
and (3) both separately imply (4). Let us first assume (2). Suppose =(x, y) does not
follow from Σ by the rules of Proposition 3. Let V be the set of m ∈ M such that
=(x, {m}) follows from Σ by the above rules. By Corollary 2, for all w ⊆ M we have
that Σ �=(x,w) if and only if w ⊆ V .

Let W be all the remaining elements of M . Note that y is not a subset of V , since
Σ ��=(x, y), and therefore W �= ∅. Let us define a rank-function on M by letting for
m ∈ M :

‖{m}‖ =
{
0, if m ∈ V
1, if m ∈ W .

and otherwise

‖{m1, . . . ,mn}‖ = max{‖{m1}‖, . . . , ‖{mn}‖}.

116 P. Galliani and J. Väänänen

Note that ‖xy‖ = 1, while ‖x‖ = 0. Thus the relation =(x, y) does not hold under this
rank-function. Suppose then =(z, w) ∈ Σ. If z ⊆ V , this means that Σ �=(x, z);
and then, by Transitivity, Σ �=(x,w) and so w ⊆ V as well. So ‖zw‖ = ‖z‖ = 0
and =(z, w) holds. On the other hand, if z �⊆ V , then ‖z‖ = 1. So ‖zw‖ = ‖z‖ = 1,
whence =(z, w) holds again.

Let us then assume (3). We proceed as above. Let X consist of the two functions
{s1, s2}, where s1(m) = 0 for all m ∈ M , s2(m) = 0 for m ∈ V and s2(m) = 1 for
m ∈ W . We get the same rank as above, so we are done.

Since – as we saw – functional dependence is exactly the dependency notion gener-
ated by the relational dependency rank function, we get that

Corollary 3 (Armstrong). A functional dependence follows semantically, in all
databases, from a given set of functional dependencies if and only if it follows by the
rules of Proposition 3.

The proof of Theorem 1 shows that Armstrong’s completeness theorem for func-
tional dependence is actually a more general completeness theorem of dependence rela-
tions arising from diversity ranks.

5 From Diversity to Independence

We shall now study the properties of the notions of independence arising from our
diversity ranks. Let us recall that, according to our definition, x and y are independent
(x ⊥ y) if and only if ‖xy‖ = ‖x‖ + ‖y‖.
Proposition 4. The following always hold:

1. Empty Set: x ⊥ ∅.
2. Symmetry: If x ⊥ y, then y ⊥ x.
3. Decomposition: If x ⊥ yz, then x ⊥ y.
4. Mixing: If x ⊥ y and xy ⊥ z, then x ⊥ yz.
5. Constancy: If z ⊥ z then z ⊥ x.8

Proof. Let us prove that these axioms follow from our notion of independence:
Empty Set: Since ‖∅‖ = 0, ‖x‖ + ‖∅‖ = ‖x‖ + 0 = ‖x‖ = ‖x∅‖.
Symmetry: Follows at once from the commutativity of sum and union. If ‖x‖+ ‖y‖ =

‖xy‖ then ‖y‖ + ‖x‖ = ‖xy‖ = ‖yx‖.
Decomposition: Suppose that x ⊥ yz, that is, ‖x‖ + ‖yz‖ = ‖xyz‖.

By R4, we then have that ‖xy‖ = ‖x‖ + ‖y‖ and x ⊥ y.
Mixing: Suppose that ‖xy‖ = ‖x‖+ ‖y‖ and ‖xyz‖ = ‖xy‖+ ‖z‖. We need to prove

that ‖xyz‖ = ‖x‖ + ‖yz‖.
Begin by observing that ‖x‖ + ‖y‖ + ‖z‖ = ‖xy‖ + ‖z‖ = ‖xyz‖. But by R2
‖yz‖ ≤ ‖y‖ + ‖z‖, and therefore ‖x‖ + ‖yz‖ ≤ ‖x‖ + ‖y‖ + ‖z‖ = ‖xyz‖.
On the other hand, again byR2, ‖xyz‖ ≤ ‖x‖+‖yz‖, and so in conclusion ‖xyz‖ =
‖x‖ + ‖yz‖, as required.

8 If one is uninterested in independence statements x ⊥ y in which x and y overlap, this axiom
can be removed. Our proof of Theorem 2 then reduces essentially to the proof in [4].

Diversity, Dependence and Independence 117

Constancy: If z ⊥ z then ‖z‖ = ‖z‖ + ‖z‖, and hence ‖z‖ = 0. But then by R2
‖x‖ ≤ ‖xz‖ ≤ ‖x‖ + ‖z‖ = ‖x‖, and thus ‖xz‖ = ‖x‖ + ‖z‖ and z ⊥ x.

Definition 5. Let Σ be a finite set of relations of the form z ⊥ w for z, w ⊆ M , and
let also x, y ⊆ M . Then Σ � x ⊥ y if it is possible to derive x ⊥ y from Σ through
applications of the rules Empty Set, Symmetry, Decomposition, Mixing and Constancy.

The following derived rule will be useful:

Corollary 4 (Constancy Augmentation). Let Σ be a finite set of relations of the form
z ⊥ w for z, w ⊆ M , and suppose that Σ � u ⊥ u and Σ � x ⊥ y. Then Σ � xu ⊥ y

Proof. By Constancy, if Σ � u ⊥ u then Σ � u ⊥ xy, and so by Symmetry Σ �
xy ⊥ u. If furthermore Σ � x ⊥ y, by Symmetry Σ � y ⊥ x; and thus, by Mixing,
Σ � y ⊥ xu, and by Symmetry once more Σ � xu ⊥ y as required.

The following is a variation of the proof in [4], with the added complication that we
do not require the left- and right-hand sides of an independence statement to be disjoint
and generalized from probabilistic independence to our more general setting. First of
all, we will show that that the above axioms are complete for statements of the form
{m} ⊥ {m}:
Lemma 1 (Completeness of Independence Axioms wrt Constancy Statements). Let
M be a finite set and let m ∈ M . Then the following conditions are equivalent:

1. {m} ⊥ {m} holds under any rank-function on M under which Σ holds.
2. {m} ⊥ {m} holds under any relational diversity rank-function under which Σ

holds.
3. {m} ⊥ {m} follows from Σ by the rules of Proposition 4.

Proof. Trivially (1) implies (2) and (3) implies (1). Let us verify that (2) implies (3).
Suppose that {m} ⊥ {m} does not follow from Σ by the above rules. Then let V
contain all m′ ∈ M such that Σ � {m′} ⊥ {m′} and let S be a team with domain M
over {0, 1} (that is, a set of functions fromM to {0, 1}) that contains all s : M → {0, 1}
such that s(m′) = 0 for all m′ ∈ V .

Now let ‖ · ‖ = log(#rowsS(·)) be the relational diversity rank-function induced
by S: as already discussed, such a rank-function satisfies an independence statement
z ⊥ w if and only if any possible values of z and w in S may occur together, or, in other
words, if and only if for all s, s′ ∈ S there exists some s′′ ∈ S that agrees with s on z
and with s′ on w. In particular, for the S given, this means that z ⊥ w is satisfied if and
only if z ∩ w ⊆ V . Thus, S does not satisfy {m} ⊥ {m}, since by assumption m �∈ V .

On the other hand, S satisfies all statements of Σ. Indeed, consider any z ⊥ w ∈ Σ.
By Decomposition and Symmetry, every element of m0 ∈ M which is in both z and
w is such that Σ � {m0} ⊥ {m0}, that is, such that m0 ∈ V . Thus, z ∩ w ⊆ V and
therefore z ⊥ w is satisfied by (the relational diversity rank-function corresponding to)
S, as required.

In conclusion, from the assumption that {m} ⊥ {m} does not follow from Σ
according to the rules we were able to find a relational diversity rank-function that
satisfies Σ but not {m} ⊥ {m}. Thus (2) implies (3), and this concludes the proof.

118 P. Galliani and J. Väänänen

Now we can generalize the completeness result to arbirary independence state-
ments:

Theorem 2 (Completeness of the Independence Axioms). Let M be a finite set.
Then the following conditions are equivalent:

1. x ⊥ y holds under any rank-function on M under which Σ holds.
2. x ⊥ y holds under any relational diversity rank-function under which Σ holds.
3. x ⊥ y follows from Σ by the rules of Proposition 4.

Proof. We adapt the proof of [4] into our framework. Trivially (1) implies (2) and (3)
implies (1). So we prove only that (2) implies (3). Suppose x ⊥ y follows semantically
from Σ but does not follow by the above rules. Without loss of generality, we can
assume that Σ is closed under the rules. We may assume that x and y are minimal,
that is, if x ′ ⊆ x and y ′ ⊆ y and at least one containment is proper, then if x ′ ⊥ y ′

follows from Σ semantically (which it does, because Decomposition and Symmetry are
semantically valid) then x′ ⊥ y′ ∈ Σ.

Suppose x = {a1, . . . , al} and y = {b1, . . . , bl′}. Without loss of generality, l ≥ 1
and l′ ≥ 1, because otherwise x ⊥ y would be in Σ via the Empty Set Rule.

Now let z = {c1, . . . , cq} enumerate all the ci ∈ M for which {ci} ⊥ {ci} ∈ Σ. By
the minimality of x ⊥ y, it follows at once that z does not intersect x or y: indeed, if for
instance x were of the form x′{c} for some c ∈ z then we would have by the minimality
of x ⊥ y that x′ ⊥ y ∈ Σ, and thus – by the Constancy Augmentation Rule and the
fact that {c} ⊥ {c} ∈ Σ – we could conclude that x ⊥ y is also in Σ, contrarily to our
premises. Since we already saw that our axioms are complete with respect to constancy
expressions {c} ⊥ {c}, this also implies that x and y are disjoint. Indeed, suppose that
m ∈ x ∩ y. Then it would follow semantically from Σ that {m} ⊥ {m} (because it
follows semantically from Σ that x ⊥ y and because Symmetry and Decomposition are
semantically valid), which would imply that m ∈ z, which would contradict the already
verified fact that x and y cannot intersect with z.

Then let w = {d1, . . . , dk} be the set of the remaining elements of M .
We construct a team S with domain xyzw over {0, 1} (that is, a set of functions

from xyzw to {0, 1}) as follows: we take to S every s : xyzw → {0, 1} which satisfies

s(a1) = the number of ones in s[{a2, . . . , al, b1, . . . , bl′}] mod 2

and such that s(ci) = 0 for all ci ∈ z. We use the relational diversity rank

‖{v1, . . . , vn}‖ = log |{(s(v1), . . . , s(vn)) : s ∈ S}|,
according to which, as shown previously, S satisfies u ⊥ u′ if and only if for every
s, s′ ∈ S there exists some s′′ ∈ S that agrees with s on u and with s′ on u′ It is easy to
see that x = (a1 . . . al) and y = (b1 . . . bl′) take all 2l (respectively 2l

′
) possible values

in S, and hence that ‖x‖ = l and ‖y‖ = l′.

Claim 1: x ⊥ y is not true according to [the relational diversity rank function induced
by] S. Consider the following two assignments in S:

Diversity, Dependence and Independence 119

a1 other ai b1 other bi other
s 1 0 1 0 0
s′ 0 0 0 0 0

If s′′ agrees with s on x = {a1 . . . al} and with s′ on {b1 . . . bl′}, then s′′ /∈ S.
Thus, it is not true that x ⊥ y according to S.

Claim 2: [The relational diversity rank function induced by] S satisfies all the indepen-
dence atoms in Σ. Suppose u′ ⊥ u′′ ∈ Σ.

If u′ = ∅, there is nothing to prove, because every diversity rank satisfies trivially
∅ ⊥ u′′ for any choice of u′′. Likewise, if u′′ = ∅ then all ranks (and in particular the
one induced by S) satisfy u′ ⊥ u′′.

Furthermore, without loss of generality, we can assume that u′ ∩ z = u′′ ∩ z = ∅.
Indeed, suppose for instance that u′ were of the form u′

0{zi} for some zi ∈ z: then zi
takes only constant value 0 in S, and hence S satisfies u′ ⊥ u′′ if and only if S satisfies
u′
0 ⊥ v′′.
Now suppose that u′ ∩ u′′ = t �= ∅. Then, since u′ ⊥ u′′ ∈ Σ, by Decomposition

and Symmetry we have that {e} ⊥ {e} ∈ Σ for all e ∈ t, and thus that t ⊆ z. But we
already said that we can assume u′ and u′′ do not intersect with z, and so we can also
assume that u′ ∩ u′′ = ∅.

Thus, without loss of generality, we can assume that u′ �= ∅, u′′ �= ∅, u′ ∩ z =
u′′ ∩ z = ∅ and u′ ∩ u′′ = ∅. We need to prove that S satisfies u′ ⊥ u′′.

If u′u′′ does not cover all of xy then S satisfies u′ ⊥ u′′, because we can fix parity
on the variable in xy which does not occur in u′ nor in u′′. So let us assume u′u′′

covers all of xy. Thus u′ ⊇ x′y′ and u′′ ⊇ x′′y′′, where x′x′′ = x and y′y′′ = y, and
by Decomposition and Symmetry x′y′ ⊥ x′′y′′ ∈ Σ.

But by the minimality of x ⊥ y among the statements that follow semantically from
Σ but are not in it, we then have that x′ ⊥ y′ is in Σ. Thus, using the Mixing axiom,
from x′y′ ⊥ x′′y′′ ∈ Σ we can derive that x′ ⊥ x′′y′y′′ is in Σ as well. Once more, by
the minimality of x ⊥ y we have that x′′ ⊥ y′y′′ ∈ Σ, and so - byMixing and Symmetry
- that x′x′′ ⊥ y′y′′ is in Σ. But this contradicts our assumption that x ⊥ y �∈ Σ.

5.1 Dependence/Independence Axioms

At this point, it would be natural to ask whether there are any rules that govern the inter-
action between dependence and independence in our framework. Here we will consider
only two simple such axioms:

Constancy Equivalence: x ⊥ x if and only if =(∅, x);
Propagation: If x ⊥ y and =(y, z) then x ⊥ yz.

Both of these can be shown to follow easily from our notion of rank.

Constancy Equivalence: Suppose that x ⊥ x: then, by definition, ‖x‖ + ‖x‖ = ‖xx‖.
But on the other hand, xx = x: and therefore, ‖x‖ = 0 and ‖x‖ = ‖∅x‖ = ‖∅‖ = 0.
Conversely, suppose that =(∅, x): then ‖x‖ = ‖∅x‖ = ‖∅‖ = 0, and therefore
‖x‖ + ‖x‖ = 0 = ‖xx‖.

120 P. Galliani and J. Väänänen

Propagation: Suppose that ‖x‖ + ‖y‖ = ‖xy‖ and that ‖yz‖ = ‖y‖. From the second
hypothesis, by R3, we can show that ‖xy‖ = ‖xyz‖; and therefore, in the first
hypothesis we can replace ‖y‖ with ‖yz‖ and ‖xy‖ with ‖xyz‖, thus obtaining

‖x‖ + ‖yz‖ = ‖xyz‖.

Therefore, x ⊥ yz, as required.

6 Conclusions

In this work, we showed how many distinct notions of dependence and independence,
having their origin in different branches of mathematics, may be treated as instances of
the same framework, which can be seen as a generalization of matroid theory that allows
for non-integer ranks and that weakens the submodularity condition. In this framework,
y is said to be dependent on x if adding it to x does not increase at all the amount
of diversity, while y is independent from x if adding it to x increases maximally the
amount of diversity.

Despite this considerable amount of generality, this framework is nonetheless pow-
erful enough to prove non-trivial results - including, in particular, completeness theo-
rems for the corresponding dependence and independence notions which adapt to the
entire setting the completeness theorems by Armstrong and by Geiger-Paz-Pearl for
functional dependence and for probabilistic independence respectively.

The natural next step would consist in investigating further the properties of this for-
malism, in particular with respect to the interaction between independence and depen-
dence statements. Combinatorial properties of this system would also be worth inves-
tigating, as would be the study of possible operations that combine different diversity
rank functions. This could also contribute to the logical study of notions of dependence
and independence in the context of Team Semantics, in particular providing a unifying
approach for the different variants (e.g. probabilistic, modal, propositional, . . .) of it.

Acknowledgments. We thank the reviewers for a number of helpful comments and suggestions.
The research of the second author was partially supported by grant 322795 of the Academy of
Finland, and a grant of the Faculty of Science of the University of Helsinki.

References

1. Armstrong, W.W.: Dependency structures of data base relationships. Inf. Process. 74, 580–
583 (1974)

2. Cover, T.M., Thomas, J.A.: Entropy, relative entropy and mutual information. Elem. Inf.
Theory 2, 1–55 (1991)

3. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team semantics.
In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp. 186–206. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-90050-6 11

4. Geiger, D., Paz, A., Pearl, J.: Axioms and algorithms for inferences involving probabilistic
independence. Inf. Comput. 91(1), 128–141 (1991)

5. Grädel, E., Väänänen, J.: Dependence and independence. Stud. Logica. 101(2), 399–410
(2013)

https://doi.org/10.1007/978-3-319-90050-6_11

Diversity, Dependence and Independence 121

6. Hannula, M., Hirvonen, Å., Kontinen, J., Kulikov, V., Virtema, J.: Facets of distribution iden-
tities in probabilistic team semantics. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA
2019. LNCS (LNAI), vol. 11468, pp. 304–320. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-19570-0 20

7. Hella, L., Luosto, K., Sano, K., Virtema, J.: The expressive power of modal dependence
logic. In: Advances in Modal Logic, vol. 10, pp. 294–312. Coll. Publ., London (2014)

8. Hyttinen, T., Paolini, G., Väänänen, J.: A logic for arguing about probabilities in measure
teams. Arch. Math. Logic 56(5–6), 475–489 (2017)

9. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the specification and
verification of hyperproperties. In: 43rd International Symposium on Mathematical Founda-
tions of Computer Science, LIPIcs. Leibniz International Proceedings of the Information,
vol. 117, pages Art. No. 10, 16. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern (2018)

10. Mann, A.L., Sandu, G., Sevenster, M.: Independence-Friendly Logic. London Mathematical
Society Lecture Note Series, vol. 386. Cambridge University Press, Cambridge (2011). A
game-theoretic approach

11. Oxley, J.G.: Matroid Theory, vol. 3. Oxford University Press, New York (2006)
12. Väänänen, J.: Dependence Logic. London Mathematical Society Student Texts, vol. 70.

Cambridge University Press, Cambridge (2007)
13. Väänänen, J.: Modal Dependence Logic. New Perspectives on Games and Interaction. Texts

Log. Games, vol. 4, pp. 237–254. Amsterdam Univ. Press, Amsterdam (2008)
14. van der Waerden, B.L.: Moderne Algebra. Springer, Berlin (1940)
15. Whitney, H.: On the abstract properties of linear dependence. Amer. J. Math. 57(3), 509–533

(1935)
16. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Logic 167(7),

557–589 (2016)

https://doi.org/10.1007/978-3-030-19570-0_20
https://doi.org/10.1007/978-3-030-19570-0_20

Towards Probabilistic Reasoning in Type
Theory - The Intersection Type Case

Silvia Ghilezan1,2, Jelena Ivetić1, Simona Kašterović1(B), Zoran Ognjanović2,
and Nenad Savić3

1 Faculty of Technical Sciences, University of Novi Sad, Trg Dositeja Obradovića 6,
21000 Novi Sad, Serbia

{gsilvia,jelenaivetic,simona.k}@uns.ac.rs
2 Mathematical Institute SANU, Kneza Mihaila 36, 11000 Belgrade, Serbia

zorano@mi.sanu.ac.rs
3 Institute of Computer Science, University of Bern, Neubrueckstrasse 10,

3012 Bern, Switzerland
savic@inf.unibe.ch

Abstract. The development of different probabilistic models of uncer-
tainty has been inspired by the rapid progress in various fields, e.g. in AI,
probabilistic programming, etc. Lambda calculus is a universal model
of computation suitable to express programming languages concepts.
Hence, different methods for probabilistic reasoning in lambda calcu-
lus have been investigated. In this paper, we develop a formal model
for probabilistic reasoning about lambda terms with intersection types,
which is a combination of lambda calculus and probabilistic logic. The
language of lambda calculus with intersection types is endowed with a
probabilistic operator. We propose a semantics based on the possible
world approach. An infinitary axiomatization is given for this system
and it is proved to be sound with respect to the proposed semantics.

Keywords: Probabilistic reasoning · Lambda calculus · Intersection
types · Kripke-style semantics · Soundness

1 Introduction

Over the last decades the interest in probabilistic programming has been rapidly
growing due to the role reasoning about uncertain knowledge has in computer
science and artificial intelligence. In order to formalize uncertain reasoning, dif-
ferent approaches have been investigated.

One of the approaches, completely different from ours, consists in taking a
probabilistic choice as primitive and obtaining probabilistic computation, which
has proved to be extremely applicable and useful in various areas, such as

This work was supported by the Serbian Ministry of Education and Science through
projects ON174026, III 044006 and by the Swiss National Science Foundation grant
200021 165549.

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 122–139, 2020.
https://doi.org/10.1007/978-3-030-39951-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_8

Towards Probabilistic Reasoning in Type Theory 123

robotics [27], machine learning [26], and natural language processing [22]. This
approach was used in [8–10,19].

On the other hand, our approach consists in extending the language of typed
lambda calculus with probabilistic operators. We are interested in probabilistic
reasoning in type theory. More precisely, we want to define a logical framework
where we can express the probability that a term (program) has a certain type
(behavior).

As many others mathematical stories, the story about probabilistic logic
begins in ancient times. In order to argue about legal, medical or political ques-
tions, sophists Corax and Tisias in Plato’s Phaedrus and Aristotle’s Rhetoric
used the notion of probability [21]. Many mathematicians were interested in the
strong connection between mathematical logic and probability theory, as early as
Leibnitz, Lambert and Boole. Until the 1960s the ideas about probability logic
did not have a lot in common with proof-theoretical and model-theoretical results
of Gödel, Alfred Tarski, Leon Henkin, Abraham Robinson, Saul Kripke and oth-
ers. The papers by Gaifman [11], Keisler [20], Hamblin [15] and Hailperin [14]
changed this situation. In 1980s the development of application of reasoning
about uncertain knowledge in economics, artificial intelligence, computer science
and philosophy resulted in growing interest in probability logics and numerous
publications. Nils Nilsson in his seminal work [23] started the modern develop-
ment of probability logic. Following the approaches from [18,24,25] we extend
the lambda calculus with intersection types and give a sound infinitary axioma-
tization.

Alonzo Church proposed the lambda calculus in the early 1930s, as a sim-
ple formal system capable of expressing all effectively computable functions,
and equivalent to Turing machines. The first formalism Church proposed was
untyped. Later Church introduced the system with simple types in [6]. Inter-
section types [5,7] were introduced in the lambda calculus as an extension of
the simple types in order to overcome the limitations of the simple (functional)
types and to completely characterize the termination of reduction (strong nor-
malization) in the lambda calculus. For example, term λx.xx is not typable in
simply typed lambda calculus, but it is typable in lambda calculus with intersec-
tion types. In lambda calculus with intersection types, we can infer the following
typing statement $ λx.xx : (σ X (σ Ñ τ)) Ñ τ . Moreover, intersection types
gave rise to filter models which ensure completeness of the type assignment in [3].

Our motivation for the formalization of the system which captures probabilis-
tic reasoning over programs (typed lambda terms) was increased application of
reasoning about uncertain knowledge in computer science and artificial intelli-
gence. In order to overcome some limitations of probabilistic logic over simply
typed lambda calculus, we consider lambda calculus with intersection types.

In the paper, we develop a formal model for probabilistic reasoning about
lambda terms with intersection types, which is a combination of lambda calculus
and probabilistic logic. We extend the language of lambda calculus with inter-
section types with a probabilistic operator Pěs and obtain formulas of the form
PěsM : σ, which have the following meaning:

124 S. Ghilezan et al.

“A probability that the term M has the type σ is equal to or greater than s.”

A semantics we propose is based on the possible world approach. We gave an
infinitary axiomatization for this system and as a main result we prove it to
be sound with respect to the proposed semantics. Our future goal is to prove
that this axiomatization is strongly complete, that is that every consistent set
is satisfiable.

The paper is organized as follows: in Sect. 2 we recall some basic notions of
the probabilistic logic LPP2, the lambda calculus with intersection types and
filter models. Then, in Sect. 3 we introduce the syntax of the logic PΛX and
propose the semantics. We give an axiomatization of logic PΛX in Sect. 4 and
prove it to be sound. In Sect. 5 we introduce the probabilistic logic with a finitary
axiomatization. Finally, Sect. 6 contains some concluding remarks.

2 Preliminaries

In this section, we recall some basic notions of the probabilistic logic LPP2 [25],
lambda calculus [1], intersection types [5,7], lambda models [1,17] and revisit the
soundness and completeness result for the intersection type assignment proved
in [3].

2.1 Probabilistic Logic

Let S “ [0, 1] X Q be the set of all rational numbers from the real unit interval
[0, 1]. The alphabet of the logic LPP2 consists of

– primitive propositions from the countable set P “ {p, q, r, . . . , p1, . . .},
– classical propositional connectives �, and ^,
– a list of probability operators Pěs for every s P S.

The set ForC of all classical propositional formulas over the set P is the smallest
set containing all primitive propositions which is closed under Boolean connec-
tives. Classical propositional formulas are generated by the following grammar:

ForC α ::“ p | α ^ α | �α (1)

Other propositional Boolean connectives ñ, _, ô are defined as usual. The
formulas from the set ForC will be denoted by α, β, . . ., indexed if necessary.
Probabilistic formulas are defined as follows:

Definition 1. If α P ForC and s P S, then Pěsα is a basic probabilistic for-
mula. The intuitive meaning of this formula is “the probability that α is true is
greater than or equal to s”. The set ForP of all probabilistic formulas is the small-
est set containing all basic probabilistic formulas which is closed under Boolean
connectives. Probabilistic formulas are generated by the following grammar:

ForP A ::“ Pěsα | A ^ A | �A (2)

The set of all LPP2-formulas is ForLPP2 “ ForC Y ForP .

Towards Probabilistic Reasoning in Type Theory 125

The formulas from the sets ForP and ForLPP2 will be denoted by A,B, . . ., and
ϕ,ψ, . . ., respectively, and indexed if necessary.

We use the following abbreviations to introduce other probabilistic operators:

Păsα stands for �Pěsα,
Pďsα stands for Pě1−s�α,
Pąsα stands for �Pďsα,
P“sα stands for Pěsα ^ �Pąsα.

Note that mixing of pure propositional formulas and probabilistic formulas
and nested probability operators are not allowed in LPP2. Nesting of probability
operators allowed in some other probabilistic logics [25] is beyond the scope of
this paper.

The semantics for LPP2 is based on the possible world approach.

Definition 2. An LPP2-model is a structure M “ (W,H, μ, v) where:

– W is a nonempty set of objects called worlds,
– H is an algebra of subsets of W ,
– μ is a finitely additive probability measure, μ : H Ñ [0, 1], and
– v : W ˆP Ñ {true, false} provides a two-valued valuation of primitive propo-

sitions, for each world w P W .

For each world w P W , we extend the truth valuation v(w, ·) to all classical
propositional formulas from ForC in the usual way.

Let M be an LPP2-structure. By [α]M, we will denote the set of all worlds
in which α is true, i.e. {w P W | w |“ α}. If M is clear from the context, we
omit the subscript M from [α]M and write [α].

Definition 3. An LPP2-model M “ (W,H, μ, v) is measurable if [α]M P H for
every formula α P ForC . The class of all measurable LPP2-models is denoted by
LPP2,Meas.

Definition 4 (Satisfiability relation). The satisfiability relation |“Ď
LPP2,Meas ˆ ForLPP2 is defined in the following way:

– M |“ α if and only if for every w P W , v(w,α) “ true;
– M |“ Pěsα if and only if μ([α]) ě s;
– M |“ �A if and only if it is not the case that M |“ A;
– M |“ A ^ B if and only if M |“ A and M |“ B.

Definition 5. Let A P ForLPP2 be a formula and F Ď ForLPP2

– A is satisfiable if there is a LPP2,Meas-model M such that M |“ A;
– A set of formulas F is satisfiable if there is a LPP2,Meas-model M such that

M |“ A for every A P F ;
– A is valid if for every LPP2,Meas-model M, M |“ A;
– A is a semantical consequence of a set of formulas F , denoted by F |“ A, if

it holds that A is satisfied in a model M (denoted by M |“ A) whenever F
is satisfied in that model (denoted by M |“ F)

126 S. Ghilezan et al.

The axiom system AxLPP2 for the logic LPP2 includes the following set of
axiom schemes:

(1) all instances of the classical propositional tautologies (atoms are any LPP2-
formulas),

(2) Pě0α,
(3) Pďrα ñ Păsα, s ą r,
(4) Păsα ñ Pďsα,
(5) (Pěrα ^ Pěsβ ^ Pě1(�α _ �β)) ñ Pěmin{1,r+s}(α _ β),
(6) (Pďrα ^ Păsβ) ñ Păr+s(α _ β), r + s ď 1.

and inference rules

ϕ ϕ ñ ψ
(1)

ψ

α(2)
Pě1α

{A ñ Pěs− 1
k
α | k ě 1

s}
(3)

A ñ Pěsα

Classical propositional logic is a sublogic of LPP2 because of Axiom scheme
(1), and Rule (1). Thus, all instances of classical propositional tautologies are
LPP2;Meas-valid. By Axiom (2) sets of worlds that satisfy classical formulas have
non-negative measures. As a consequence (by using �α instead of α we obtain
Pď1α), the upper bound of probabilities is 1. Axioms (3) and (4) imply mono-
tonicity of measures, while Axiom (5) and Axiom (6) guarantee finite additivity
of measures.

Rule (1) is the classical Modus Ponens. Rule (2) corresponds to necessitation
in modal logics. It can be applied to the classical propositional formulas only,
since iterations of probability operators are not allowed in LPP2. Note that
Rule (3) is the only infinitary rule in the system. It has a countable set of
assumptions and one conclusion. Rule (3) corresponds to Archimedean axiom
for real numbers. Intuitively it says that if the probability is arbitrary close to
s, then it is at least s.

Definition 6. A formula ϕ is deducible from a set T of formulas (denoted by
T $LPP2 ϕ) if there is a sequence ϕ0, . . . , ϕn (n is a finite or countable ordinal)
of ForLPP 2-formulas, such that

– ϕn “ ϕ, and
– every ϕi, i ď n, is an axiom-instance, or ϕi P T , or ϕi is derived by an

inference rule applied to some previous members of the sequence.

A proof for ϕ from T is the corresponding sequence of formulas.

Using soundness of classical propositional logic and the properties of probability
measures, soundness of LPP2 logic was proved in [25].

Theorem 1 (Soundness). The axiomatic system AxLPP2 is sound with respect
to the class of LPP2,Meas-models.

Definition 7. A set T of formulas is consistent if there is at least a formula
from ForC , and at least a formula from ForP that are not deducible from T ,
otherwise T is inconsistent.

Towards Probabilistic Reasoning in Type Theory 127

In [25], the authors also prove strong completeness (every consistent set of
formulas is satisfiable) of LPP2 logic.

Theorem 2 (Strong completeness of LPP2). Every consistent set of LPP2-
formulas T is LPP2,Meas-satisfiable.

The proof can be found in [25], Chapter 3. It consists of the following main
steps: proving Deduction theorem, showing how to extend a consistent set of
formulas to a maximal consistent set and constructing a canonical model, using
a maximal consistent set.

2.2 Intersection Type Assignment

Intersection types [5,7] were introduced in the lambda calculus as an extension of
the simple types in order to overcome the limitations of the simple (functional)
types. Indeed, lambda calculus with intersection types has two unique properties
which do not hold in other type systems. First, it completely characterizes the
termination of reduction, a.k.a strong normalization, in lambda calculus (e.g.
[12]). Second, its type assignment is sound and complete with respect to the
filter model, which was proven in the seminal paper by Barendregt et al. [3].

The set of untyped terms (λ-terms) Λ is defined by the following grammar:

M ::“ x | λx.M | MM (3)

where x belongs to a countable set of λ-term variables, VΛ. The letters M,N, . . .
will denote arbitrary λ-terms. The operator λx is a binder and the set of free
variables of a λ-term M is defined as usual. The β-reduction is the rewriting rule
(λx.M)N Ñβ M [N/x]. The definition and main properties of β-reduction (and
βη-reduction) can be found in [1,16].

Intersection types are generated by the following grammar:

σ ::“ a | ω | σ Ñ σ | σ X σ (4)

where a belongs to a countable set of propositional variables VType, and ω is a
constant.
The set of all intersection types is denoted by TypeX and will be ranged over by
σ, τ, . . . , σ1,

The pre-order ď is a binary relation on the set of all intersection types defined
in the following way:

(1) σ ď σ; (2) σ ď τ , τ ď ρ then σ ď ρ;
(3) (σ Ñ ρ) X (σ Ñ τ) ď (σ Ñ ρ X τ); (4) ω ď ω Ñ ω;
(5) σ ď ρ, σ ď τ then σ ď ρ X τ ; (6) σ X τ ď σ, σ X τ ď τ ;
(7) σ ď σ1, τ ď τ1, then σ1 Ñ τ ď σ Ñ τ1, (8) σ ď ω.

The induced equivalence relation „ is defined by

σ „ τ if and only if σ ď τ and τ ď σ.

A lambda statement is an expression of the form M : σ, with M P Λ and
σ P TypeX. The type σ is the predicate and the term M is the subject of the

128 S. Ghilezan et al.

statement. A Declaration (basic statement) is a lambda statement with a term-
variable as subject, i.e. x : σ. A basis (context), denoted by Γ , is a set of basic
statements with distinct term variables. It can be infinite.

Definition 8. Intersection (extended) type assignment, ΛX, is defined as fol-
lows:

M : σ Ñ τ N : σ (ÑE)
MN : τ

[x : σ]
...

M : τ (ÑI)
λx.M : σ Ñ τ

M : σ X τ (XE)
M : σ

M : σ X τ (XE)
M : τ

M : σ M : τ (XI)
M : σ X τ

(ω)
M : ω

M : σ σ ď τ (ď)
M : τ

The rule (ÑE), represents rule for the typing of application and has the
following meaning: if a term M has type σ Ñ τ , then it can be applied to some
term N of type σ and the the resulting term MN has type τ . According to
the rule ÑI , if we can derive that term M has type τ whenever variable x has
type σ, then lambda abstraction λx.M , which represents a function, has type
σ Ñ τ . The explanation of other rules as well as the motivation for introducing
intersection types for lambda calculus and the pre-order relation on the set of
all types, can be found in [2].

If M : σ is derivable from a set of premises
Γ “ {x1 : σ1, . . . , xn : σn} by the rules given in Definition 8, it is denoted by
Γ $ M : σ.

There are several attempts to give intersection type assignment à la Church,
nevertheless none of them became standard. This is the reason why we work
with type assignments à la Curry. For more details on the two versions of type
systems we refer the reader to [4].

Lambda Models. In this section we recall the notion of the lambda model and
the interpretation of terms in it, which is given in [1], §5.2.

A lambda model for untyped lambda calculus is of the form xD, ·, [[]]y, where
xD, ·y is an applicative structure and [[]] is an interpretation map which assigns
to each term M and each map ρ (ρ : VΛ Ñ D), an element [[M]]ρ, of D such that

(i) [[x]]ρ “ ρ(x);
(ii) [[MN]]ρ “ [[M]]ρ · [[N]]ρ;
(iii) if σ(x) “ ρ(x) for all x free in M , then [[M]]σ “ [[M]]ρ;
(iv) [[λx.M]]ρ · a “ [[M]]ρ[x:“a];

Towards Probabilistic Reasoning in Type Theory 129

(v) if M “β N , then [[M]]ρ “ [[N]]ρ.

The interpretation of intersection types in a lambda model is defined as fol-
lows.

Definition 9. Let M “ xD, ·, [[]]y be a λ-model.

(i) If ρ : VΛ Ñ D is the valuation of term variables in D, then [[M]]ρ P D is the
interpretation of M P Λ in M via ρ.

(ii) Let ξ : VType Ñ P(D) be a valuation of type variables. The interpretation of
σ P TypeX in M via ξ, denoted by [[σ]]ξ P P(D), is defined as follows:
– [[a]]ξ “ ξ(a);
– [[σ Ñ τ]]ξ “ {d P D | ∀e P [[σ]]ξ, d · e P [[τ]]ξ};
– [[ω]]ξ “ D;
– [[σ X τ]]ξ “ [[σ]]ξ X [[τ]]ξ.

(iii) The satisfiability relation and semantical consequence are defined as follows:
– M, ρ, ξ |“ M : σ if and only if [[M]]ρ P [[σ]]ξ;
– M, ρ, ξ |“ Γ if and only if M, ρ, ξ |“ x : σ for all x : σ P Γ ;
– Γ |“ M : σ if and only if (∀M, ρ, ξ |“ Γ) M, ρ, ξ |“ M : σ.

Soundness of intersection type assignment is proved with respect to the
notion of lambda models (e.g. [5]). However completeness can not be proved.

Theorem 3 (Soundness of ΛX). Γ $ M : σ ñ Γ |“ M : σ.

For proving completeness of the type assignment, the notion of filters is
introduced in [3].

Definition 10. (i) A subset d Ď TypeX is a filter if and only if
– ω P d;
– if σ, τ P d then σ X τ P d;
– if τ P d and σ ě τ then σ P d.

(ii) Let F “ {d | d is a filter}, then for d1, d2 P F , we define d1 · d2 “
{τ P Type | ∃σ P d2, σ Ñ τ P d1}.

It is shown in [3] that xF , ·, [[]] y is a lambda model, called the filter lambda
model, where [[]] is explicitly defined as follows:

(i) If ρ : VΛ Ñ F is a valuation in F , then Γρ “ {x : σ | σ P ρ(x)}.
(ii) If M P Λ, [[M]] “ {σ | Γρ $ M : σ}.

Completeness of the intersection type assignment with respect to the class
of filter lambda models was proved in [3].

Theorem 4 (Strong completeness of ΛX). Γ |“ M : σ ñ Γ $ M : σ.

130 S. Ghilezan et al.

3 Probabilistic Logical System for Lambda Terms
with Intersection Types PΛX

We define the probabilistic logical system for lambda terms with intersection
types PΛX as a probabilistic logic over the lambda calculus with intersection
types ΛX. In this section, we introduce the syntax and propose the semantics of
PΛX.

3.1 Syntax of PΛX

Let S be the set of rational numbers from [0, 1]. The alphabet of the logic PΛX
consists of

– all symbols needed to define lambda terms with intersection types, given in
Sect. 2.2,

– the classical propositional connectives � and ^,
– the list of probability operators Pěs, for every s P S.

Other classical propositional connectives ñ, _, ô being defined as usual.

Basic Formulas. The set ForB of all basic formulas over the set of term-variables
VΛ is the smallest set containing all lambda statements M : σ with M P Λ and
σ P TypeX, which is closed under the Boolean connectives. Basic formulas are
generated by the following grammar:

ForB α ::“ M : σ | α ^ α | �α. (5)

The set of all basic formulas is denoted by ForB and basic formulas will be
denoted by α, β, . . . , possibly indexed.

Probabilistic Formulas. If α P ForB and s P S, then a basic probabilistic formula
is any formula of the form Pěsα.

The set of all probabilistic formulas, denoted by ForP, is the smallest set
containing all basic probabilistic formulas which is closed under Boolean con-
nectives.

Probabilistic formulas are generated by the following grammar:

ForP φ ::“ Pěsα | φ ^ φ | �φ. (6)

The formulas from the set ForP will be denoted by φ, ψ, . . . , possibly with sub-
scripts.

Formulas of PΛX. The language of PΛX consists of both basic formulas and
probabilistic formulas

ForPΛX “ ForB Y ForP. (7)

The set of formulas ForPΛX will be ranged over by A,A1,A2, We use the same
abbreviations as in Sect. 2.1 to introduce other probabilistic operators (Păs, Pąs,
Pďs and P“s).

Towards Probabilistic Reasoning in Type Theory 131

We also denote both α ^ �α and φ ^ �φ by ⊥ (and dually for J).
Similarly as in Sect. 2.1 and [13], where we introduced a formal model for

reasoning about probabilities of simply typed lambda terms, neither mixing of
basic formulas and probabilistic formulas, nor nested probability operators is
allowed.

For example, the following two expressions are not (well defined) formulas of
the logic PΛX:

(x : σ) ^ Pě 1
2
(x : σ X τ), Pě 1

3
Pě 1

2
(x : σ X τ).

3.2 Semantics of PΛX

Similarly as in [13], the semantics for PΛX will be based on the possible-world
approach, with an important difference that worlds are now filter models, defined
in Sect. 2.2.

Definition 11 (PΛX-structure). A PΛX-structure is a tuple M “ xW,ρ, ξ,
H, μy, where:

(i) W is a nonempty set of worlds, where each world is the filter model, i.e. for
every w P W , w “ xFw, ·w, [[]]wy;

(ii) ρ : VΛ ˆ {w} −Ñ Fw, w P W ;
(iii) ξ : VType ˆ {w} −Ñ P(Fw), w P W ;
(iv) H is an algebra of subsets of W , i.e. H Ď P(W) such that

– W P H,
– if U, V P H, then W \ U P H and U Y V P H;

(v) μ is a finitely additive probability measure defined on H, i.e.
– μ(W) “ 1,
– if U X V “ H, then μ(U Y V) “ μ(U) + μ(V),

for all U, V P H.

The elements of H are called measurable sets of worlds. We will write ρw(x),
instead of ρ(x,w) and similarly for ξ.

Definition 12. We say that a lambda statement M : σ holds in a world w,
denoted by w |“ M : σ, if and only if

[[M]]wρ P [[σ]]wξ , (8)

where [[M]]wρ is the interpretation of a term M in a world w via ρ, and [[σ]]wξ is
the interpretation of a type σ in a world w via ξ. We define interpretation of
Boolean combinations of lambda statements in the usual way:

– ω |“ α ^ β if and only if ω |“ α and ω |“ β;
– ω |“ �α if and only if ω � α.

If M is a PΛX-structure, the set of all worlds in which α is true, {w P W |
w |“ α}, is denoted by [α]M. We will omit the subscript M from [α]M and write
[α] if M is clear from the context.

132 S. Ghilezan et al.

Definition 13 (Measurable structure). A structure M is measurable if
[α]M P H for every α P ForB. The class of all measurable structures of the
logic PΛX will be denoted by PΛX

Meas.

Definition 14 (Satisfiability relation). The satisfiability relation |“Ď
PΛX

Meas ˆ ForPΛX is defined in the following way:

– M |“ M : σ iff w |“ M : σ, for all w P W ;
– M |“ Pěsα iff μ([α]) ě s;
– M |“ �A iff it is not the case that M |“ A;
– M |“ A1 ^ A2 iff M |“ A1 and M |“ A2.

Definition 15 (Formula satisfiability). Let A P ForPΛX be a formula and
F Ď ForPΛX

– A is satisfiable if there is a PΛX
Meas-model M such that

M |“ A;
– A is valid if for every PΛX

Meas-model M, M |“ A;
– A set of formulas F is satisfiable if there is a PΛX

Meas-model M such that
M |“ A for every A P F ;

– A is a semantical consequence of a set of formulas F , denoted by F |“ A, if
it holds that A is satisfied in a model M (denoted by M |“ A) whenever F is
satisfied in that model (denoted by M |“ F).

In order to clarify the above notions we give an example.

Example 1. Let Γ1 “ {x : σ Ñ τ, y : σ}, Γ2 “ {y : σ} and Γ3 “ {z : ρ}. Consider
the following PΛX-model with three worlds, i.e. let M “ xW,ρ, ξ,H, μy, such
that:

– W “ {w1, w2, w3} and for all i P {1, 2, 3}, wi “ xF , ·, [[]]y, defined as in
Definition 10.

– H “ P(W);
– μ({wi}) “ 1

3 , i “ 1, 2, 3,

Let the valuations ρ and ξ be defined in the following way:

– ρwi
(x) “ {σ | Γi $ x : σ}, for all x P VΛ and i P {1, 2, 3};

– ξwi
(a) “ {d P F | a P d}, for all a P VType and i P {1, 2, 3}.

It can be proved that for all σ P Type, [[σ]]wi

ξwi
“ {d P F | σ P d}, see [3].

In [3] it is proved that {σ | Γ $ M : σ} is a filter, for any term M . Now,
we have that ρw1(x) “ {σ | Γ1 $ x : σ} is a filter which contains σ Ñ τ , since
Γ1 $ x : σ Ñ τ . Thus, ρw1(x) P [[σ Ñ τ]]w1

ξw1
. From the latter and Definition 12 we

conclude w1 |“ x : σ Ñ τ . Similarly, we obtain w1 |“ y : σ, w2 |“ �(x : σ Ñ τ),
w2 |“ y : σ, w3 |“ �(x : σ Ñ τ) and w3 |“ �(y : σ) (Figure 1). Finally, we can
conclude that M |“ P“ 1

3
(x : σ Ñ τ), M |“ P“ 2

3
(y : σ) and M |“ Pě 1

3
(xy : τ).

�

Towards Probabilistic Reasoning in Type Theory 133

Fig. 1. An illustration of the Example 1

The compactness theorem which states that “if every finite subset of F is
satisfiable, then F is satisfiable” does not hold for PΛX. We show this in the
following example.

Example 2. Consider the set

F “ {�P“0α} Y {Pă 1
n
α | n is a positive integer} (9)

Every finite subset of F is clearly PΛX
Meas-satisfiable, but the set F itself is not,

since there is no real number greater than 0 and smaller than all positive rationals
due to the Archimedean property of real numbers1. Therefore, the compactness
theorem does not hold for PΛX.

4 The Axiomatization AxPΛX

In this section, an axiom system for the logic PΛX, denoted by AxPΛX , is intro-
duced. This axiom system was obtained from axiom system of probability logic
LPP2 and intersection type assignment system.

Axiom Schemes

(1) all instances of the classical propositional tautologies, (atoms are λ-
statements or any PΛX-formulas),

(2) Pě0α,
(3) Pďrα ñ Păsα, s ą r,
(4) Păsα ñ Pďsα,
(5) (Pěrα ^ Pěsβ ^ Pě1(�α _ �β)) ñ Pěmin{1,r+s}(α _ β),
(6) (Pďrα ^ Păsβ) ñ Păr+s(α _ β), r + s ď 1,
(7) Pě1(α ñ β) ñ (Pěsα ñ Pěsβ).

The meaning of the first six axioms is explained in Sect. 2.1. In order to better
understand Axiom 1, we give an instance of axiom, that can be obtained from
it. The formula (α ñ β) ô (�β ñ �α) is tautology of classical propositional

1 For any real number ε ą 0 there exists an n P N such that 1
n

ă ε.

134 S. Ghilezan et al.

Table 1. Inference Rules I

M : σ Ñ τ N : σ(1) (ÑE)
MN : τ

[x : σ]

...
M : τ(2) (ÑI)

λx.M : σ Ñ τ

M : σ X τ(3) (XE)
M : σ

M : σ X τ(4) (XE)
M : τ

M : σ Γ $ M : τ
(5) (XI)

M : σ X τ
(6) (ω)

M : ω

M : σ σ ď τ
(7) (ď)

M : τ

Table 2. Inference rules II

A1 A1 ñ A2
(1) (MP)

A2

α
(2)

Pě1α

{
φ ñ Pěs− 1

k
α | k ě 1

s

}

(3)
φ ñ Pěsα

logic. If α and β are replaced with Pěs(x : σ) and Pěr(x : σ), we get (Pěs(x :
σ) ñ Pěr(x : σ)) ô (�Pěr(x : σ) ñ �Pěs(x : σ)). Using abbreviations for
probabilistic operators, we obtain the formula (Pěs(x : σ) ñ Pěr(x : σ)) ô
(Păr(x : σ) ñ Păs(x : σ)), which is an axiom of the logical system PΛX. Axiom
7 ensures that equivalent formulas have equal measures.

Inference Rules I are given in Table 1. These rules correspond to inference
of lambda terms with intersection types and they can be applied only on lambda
statements.

Inference Rules II are given in Table 2. They are also discussed in Sect. 2.1.
Similarly as in [13], we introduce a notion of proof, consistent set, maximal

consistent set and deductively closed set.

Definition 16. Let T be a set of PΛX-formulas and A a formula.

1. T $PΛX A means that there exists a sequence A0, . . . ,An (n is finite or count-
able ordinal) of formulas, such that An “ A and for all i � n, Ai is an
axiom-instance, or Ai P T , or Ai is a PΛX-formula which can be derived by
some inference rule from Tables 1 and 2 applied on some previous members
of the sequence.

2. Instead of H $PΛX A we write $PΛX A. Any formula A such that $PΛX A will
be called a theorem.

3. T is consistent if
(1) there is at least a formula α P ForB and a formula φ P ForP that are not

deducible from T and
(2) for every lambda statement M : σ that is in T , if xi, i P I are

all free variables of M , then all basic statements of the form xi : τi,

Towards Probabilistic Reasoning in Type Theory 135

needed to adequately derive M : σ according to Inference Rules I, i.e.
xi : σi, . . . , xn : σn $ M : σ, are also in T .2

Otherwise, T is inconsistent;
4. T is a maximally consistent set if it is consistent and:

(1) for every α P ForB, if T $PΛX α, then α P T and Pě1α P T
(2) for every φ P ForP, either φ P T or �φ P T .

5. T is deductively closed if for every A P ForPΛX , if T $PΛX A, then A P T .

If T $PΛX ⊥, then the condition (1) from the definition of a consistent set
does not hold, and T is inconsistent. The opposite does not hold. Inconsistency
of set T does not imply T $PΛX ⊥. However, the first condition is equivalent to
T $PΛX ⊥. Hence if T is inconsistent due to the fact that condition (1) does not,
although condition (2) does hold, then T $PΛX ⊥. Note that it is not required
that for every α P ForBX , either α or �α belongs to a maximal consistent set
(as it is done for formulas from ForPX). It can be proved that, otherwise, in our
canonical model, for each α we would have P“1α or P“0α, which trivializes the
probabilities.

Recall Example 2. It shows that we need an infinitary axiomatization in order
to obtain strong completeness for our formal model. Inconsistency of F cannot
be proved by a finitary proof, since only finite number of members of F can be
used in such a proof, while every finite subset of F is satisfiable and consistent.
Hence, for every finitary axiomatization there are consistent sets of formulas,
which are unsatisfiable. Thus, strong completeness can not be obtained for any
finite axiomatic system.

Theorem 5 (Deduction theorem). Let T be a set of PΛX-formulas and
φ, ψ P ForP. If T Y {φ} $PΛX ψ then T $PΛX φ ñ ψ.

Proof. Analogous to the proof of Deduction theorem in [13].

Theorem 6 (Soundness of PΛX). The axiomatic system AxPΛX is sound with
respect to the class of PΛX

Meas-models.

Proof. Soundness is a consequence of soundness of intersection type assignment
with respect to the (filter) lambda models and soundness of probabilistic logic
LPP2 with respect to the semantics presented in Sect. 2.1. The idea is to prove
that that every instance of an axiom scheme holds in every model and that
the inference rules preserve the validity. The proof that every instance of an
axiom scheme holds in every model and that inference rules in Table 2 preserve
validity proceed as in the probabilistic logical system for simply typed lambda
terms, introduced in [13]. This is due to the fact that there is a certain similarity
between the structures of the model proposed in Sect. 3.2 and the one proposed
in [13]. An important difference between those models is that worlds of models
we propose in the paper are filter models, while in [13] worlds are term models.
Inference rules from Table 1 are validity-preserving because of the soundness of
intersection type assignment. For example, let us consider rule
2 Note that the notion of a consistent set is different than usual. We have one additional

condition, namely condition (2).

136 S. Ghilezan et al.

M : σ Ñ τ N : σ(1) (ÑE)
MN : τ

Suppose that model M “ xW,ρ, ξ,H, μy satisfies premises of the rule, i.e. M |“
M : σ Ñ τ and M |“: σ. From Definition 14, it follows that for every world
w P W , w |“ M : σ Ñ τ and w |“ N : σ. This is equivalent to the following:

[[M]]wρ P [[σ Ñ τ]]wξ and [[N]]wρ P [[σ]]wξ , (10)

by Definition 12. Using the definition of the interpretation of a functional type,
i.e. [[σ Ñ τ]]ξ, and the property of the interpretation map in a lambda model,
[[MN]]ρ “ [[M]]ρ · [[N]]ρ, we can conclude [[MN]]wρ P [[τ]]wξ , that is w |“ MN : τ .
Since the latter holds for every world w P W , we obtain M |“ MN : τ . Thus,
this rule preserves validity. Next, let us consider the rule

M : σ X τ(3) (XE)
M : σ

If model M “ xW,ρ, ξ,H, μy satisfy premise, i.e. M |“ M : σ X τ , then for every
world w P W , w |“ M : σ X τ holds. By Definition 12 and the definition of the
interpretation of an intersection type ([[σ X τ]]ξ), we obtain [[M]]wρ P [[σ X τ]]wξ “
[[σ]]wξ X[[τ]]wξ . Hence, we can conclude [[M]]wρ P [[σ]]wξ . Since the latter holds for every
world w P W , it follows that M |“ M : σ. Thus, this rule also preserves validity.
The proofs that other rules are validity-preserving can be obtained similarly.

Next example illustrates the difference between the probabilistic logic over
simply typed lambda calculus and probabilistic logic over lambda calculus with
intersection types.

Example 3. Let us consider term λx.xx. As we already mentioned in Intro-
duction, in lambda calculus with intersection types we can infer $ λx.xx :
(σ X (σ Ñ τ)) Ñ τ for any types σ and τ . Thus, in PΛX logic, we can infer
$ Pě1λx.xx : (σ X (σ Ñ τ) Ñ τ). Because of the soundness of PΛX logic we
conclude that every model M satisfies formula Pě1λx.xx : (σ X (σ Ñ τ)) Ñ τ .
On the other hand, in probabilistic logic over simply typed lambda calculus,
introduced in [13] this does not hold.

One interesting direction for further work would be the study of probabilistic
logic over some lambda calculus where for some s, P“sM : σ is always true and
PąsM : σ is not.

5 The Logic PΛFr(n)

In this section, we introduce countably many more logics (for each positive inte-
ger n, one logic) which are similar to logic PΛX. The main difference is that in
semantics we allow only that μ : H Ñ Range, where Range “ {0, 1

n , . . . , n−1
n , 1}.

We will call these semantics PΛ
Fr(n)
Meas -models. That change in semantics provides

the change in Definition 16, i.e. the proofs are finite sequences of formulas.
For s P [0, 1), let s+ “ min{r P Range | s ă r}, and if s P (0, 1], let

s− “ max{r P Range | s ą r}.
The axiomatization of the logic PΛFr(n) includes all the axioms from Sect. 4,

plus one more axiom:

Towards Probabilistic Reasoning in Type Theory 137

(8) Pąsα Ñ Pěs+α,

and, the only infinitary rule, i.e. Rule (3) from group Inference Rules II, is not
included. Therefore, this gives us a finite axiomatization.

It is straightforward to prove that Deduction theorem holds and that the
axiomatization is sound with respect to the proposed semantics.

Theorem 7 (Soundness of PΛFr(n)). The axiomatic system of logic PΛFr(n) is
sound with respect to the class of PΛ

Fr(n)
Meas-models.

Proof. The proof is similar to the proof of soundness for PΛX logic. Again, we
prove that every instance of an axiom scheme holds in every model and that the
inference rules preserve the validity. The difference with respect to the proof of
Theorem 6 is that we need to prove that Axiom (8) holds in every model and
we do not consider the infinitary rule. Using the definition of the satisfiability of
a probabilistic formula Pěsα in a model and the definition of s+, we can easily
obtain that Axiom (8) holds in every model.

Completeness is still an open problem.
In Example 2, we showed that the logic PΛX is not compact. The next theorem

states that logics PΛFr(n) are compact.

Theorem 8 (Compactness theorem for PΛFr(n)). Let C be any class of models
considered in this section, and let T be any set of formulas. If every finite subset
of T is C-satisfiable, then T is also C-satisfiable.

Proof. Suppose that T is not C-satisfiable. Then, it is not AxPΛFr(n)-consistent,
so T $K. Because the axiomatic system AxPΛFr(n) is finite, there must be a finite
set T1 Ď T , such that T1 $K. Contradiction with the fact that every finite subset
of T is both C-satisfiable and AxPΛFr(n)-consistent.

6 Conclusion

In this paper, we introduced a formal model for probabilistic reasoning in lambda
calculus with intersection types. We extended with probabilistic operators the
language of lambda calculus with intersection types. The main result is the
proof that the proposed infinitary axiomatization is sound with respect to the
measurable possible world semantics.

In order to overcome some limitations of probabilistic logic over simply typed
lambda calculus, we consider lambda calculus with intersection types. Probabilis-
tic reasoning is introduced in simply typed lambda calculus with the equality rule
in [13]. Here we have introduced probabilistic reasoning in lambda calculus with
intersection types, which is a pure type system without equality. Furthermore,
the lambda models employed in the construction of the Kripke-style models in
[13] are term models, whereas in this paper filter models of lambda calculus are
the basis for this construction. Our further goal is to push forward probabilistic
reasoning in type theory and to consider probabilistic extensions of other typed
lambda calculi.

138 S. Ghilezan et al.

References

1. Barendregt, H.P.: The Lambda Calculus: Its Syntax and Semantics. North Holland
Publishing Company, Amsterdam (1984)

2. Barendregt, H.P., Dekkers, W., Statman, R.: Lambda Calculus with Types.
Perspectives in Logic. Cambridge University Press, Cambridge (2013). http://
www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-
sets/lambda-calculus-types

3. Barendregt, H., Coppo, M., Dezani-Ciancaglini, M.: A filter lambda model and the
completeness of type assignment. J. Symb. Logic 48(4), 931–940 (1983). https://
doi.org/10.2307/2273659

4. Barendregt, H.P.: Lambda calculi with types. In: Handbook of Logic in Computer
Science. vol. 2, pp. 117–309. Oxford University Press Inc, New York (1992). http://
dl.acm.org/citation.cfm?id=162552.162561

5. Ben-Yelles, C.B.: Type assignment in the lambda-calculus: syntax and semantics.
Ph.D. thesis, Department of Pure Mathematics, University College of Swansea,
September 1979

6. Church, A.: A formulation of the simple theory of types. J. Symb. Logic 5(2),
56–68 (1940). https://doi.org/10.2307/2266170

7. Coppo, M., Dezani-Ciancaglini, M.: A new type assignment for λ-terms. Arch.
Math. Log. 19(1), 139–156 (1978). https://doi.org/10.1007/BF02011875

8. Crubillé, R., Dal Lago, U.: On probabilistic applicative bisimulation and call-by-
value λ-calculi. In: Shao, Z. (ed.) ESOP 2014. LNCS, vol. 8410, pp. 209–228.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54833-8 12

9. Crubillé, R., Dal Lago, U., Sangiorgi, D., Vignudelli, V.: On applicative similar-
ity, sequentiality, and full abstraction. In: Meyer, R., Platzer, A., Wehrheim, H.
(eds.) Correct System Design. LNCS, vol. 9360, pp. 65–82. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23506-6 7

10. Dal Lago, U., Sangiorgi, D., Alberti, M.: On coinductive equivalences for higher-
order probabilistic functional programs. In: POPL, pp. 297–308. ACM (2014)

11. Gaifman, H.: Concerning measures in first order calculi. Israel J. Math. 2(1), 1–18
(1964). https://doi.org/10.1007/BF02759729

12. Ghilezan, S.: Strong normalization and typability with intersection types.
Notre Dame J. Form. Logic 37(1), 44–52 (1996). https://doi.org/10.1305/ndjfl/
1040067315

13. Ghilezan, S., Ivetić, J., Kašterović, S., Ognjanović, Z., Savić, N.: Probabilistic
reasoning about simply typed lambda terms. In: Artemov, S., Nerode, A. (eds.)
LFCS 2018. LNCS, vol. 10703, pp. 170–189. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-72056-2 11

14. Hailperin, T.: Best possible inequalities for the probability of a logical function of
events. Am. Math. Monthly 72(4), 343–359 (1965). http://www.jstor.org/stable/
2313491

15. Hamblin, C.L.: The modal “probably”. Mind 68(270), 234–240 (1959). https://
doi.org/10.1093/mind/LXVIII.270.234

16. Hindley, J.R.: Basic Simple Type Theory. Cambridge Tracts in Theoretical Com-
puter Science 42. Cambridge University Press, Cambridge (1997). http://gen.lib.
rus.ec/book/index.php?md5=3BB4134A46F16E81D2D16744850F44EA

17. Hindley, J.R., Longo, G.: Lambda-calculus models and extesionality. Math. Logic
Q. 26, 289–310 (1980)

http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
http://www.cambridge.org/de/academic/subjects/mathematics/logic-categories-and-sets/lambda-calculus-types
https://doi.org/10.2307/2273659
https://doi.org/10.2307/2273659
http://dl.acm.org/citation.cfm?id=162552.162561
http://dl.acm.org/citation.cfm?id=162552.162561
https://doi.org/10.2307/2266170
https://doi.org/10.1007/BF02011875
https://doi.org/10.1007/978-3-642-54833-8_12
https://doi.org/10.1007/978-3-319-23506-6_7
https://doi.org/10.1007/BF02759729
https://doi.org/10.1305/ndjfl/1040067315
https://doi.org/10.1305/ndjfl/1040067315
https://doi.org/10.1007/978-3-319-72056-2_11
https://doi.org/10.1007/978-3-319-72056-2_11
http://www.jstor.org/stable/2313491
http://www.jstor.org/stable/2313491
https://doi.org/10.1093/mind/LXVIII.270.234
https://doi.org/10.1093/mind/LXVIII.270.234
http://gen.lib.rus.ec/book/index.php?md5=3BB4134A46F16E81D2D16744850F44EA
http://gen.lib.rus.ec/book/index.php?md5=3BB4134A46F16E81D2D16744850F44EA

Towards Probabilistic Reasoning in Type Theory 139

18. Ikodinović, N., Ognjanović, Z., Rašković, M., Marković, Z.: First-order probabilistic
logics and their applications. In: Zbornik radova, Subseries Logic in Computer
Science, vol. 18, no. 26, pp. 37–78. Matematički institut(2015)

19. Kašterović, S., Pagani, M.: The discriminating power of the let-in operator in the
lazy call-by-name probabilistic lambda-calculus. In: 4th International Conference
on Formal Structures for Computation and Deduction, FSCD 2019, 24–30 June
2019, Dortmund, Germany, pp. 26:1–26:20 (2019). https://doi.org/10.4230/LIPIcs.
FSCD.2019.26

20. Keisler, H.: Hyperfinite models of adapted probability logic. Ann. Pure Appl.
Logic 31, 71–86 (1986). https://doi.org/10.1016/0168-0072(86)90063-1. http://
www.sciencedirect.com/science/article/pii/0168007286900631

21. Kraus, M.: Early Greek probability arguments and common ground in dissensus.
In: Ontario Society for the Study of Argumentation (OSSA) Proceedings, pp. 1–11.
OSSA Conference Archive (2007)

22. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (1999)

23. Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–87 (1986). https://doi.
org/10.1016/0004-3702(86)90031-7

24. Ognjanović, Z., Rašković, M., Marković, Z.: Probability logics. In: Zborik radova,
Subseries logic in computer science, vol. 12, no. 20, pp. 35–111. Matematički insti-
tut (2009)

25. Ognjanović, Z., Rašković, M., Marković, Z.: Probability Logics: Probability-Based
Formalization of Uncertain Reasoning. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-47012-2

26. Pearl, J.: Probabilistic Reasoning in Intelligent Systems - Networks of Plausible
Inference. Morgan Kaufmann series in representation and reasoning. Morgan Kauf-
mann, San Mateo (1989)

27. Thurn, S.: Exploring Artificial Intelligence in the New Millennium, chap. Robotic
Mapping: A Survey, pp. 1–35. Morgan Kaufmann Publishers Inc., San Francisco
(2003), http://dl.acm.org/citation.cfm?id=779343.779345

https://doi.org/10.4230/LIPIcs.FSCD.2019.26
https://doi.org/10.4230/LIPIcs.FSCD.2019.26
https://doi.org/10.1016/0168-0072(86)90063-1
http://www.sciencedirect.com/science/article/pii/0168007286900631
http://www.sciencedirect.com/science/article/pii/0168007286900631
https://doi.org/10.1016/0004-3702(86)90031-7
https://doi.org/10.1016/0004-3702(86)90031-7
https://doi.org/10.1007/978-3-319-47012-2
https://doi.org/10.1007/978-3-319-47012-2
http://dl.acm.org/citation.cfm?id=779343.779345

Measuring Inconsistency in a General
Information Space

John Grant1 and Francesco Parisi2(B)

1 University of Maryland at College Park, College Park, USA
grant@cs.umd.edu

2 DIMES Department, University of Calabria, Rende, Italy
fparisi@dimes.unical.it

Abstract. AI systems often need to deal with inconsistent information. For this
reason since the early 2000s some AI researchers have developed ways to mea-
sure the amount of inconsistency in a knowledge base. By now there is a substan-
tial amount of research about various aspects of inconsistency measuring. The
problem is that most of this work applies only to knowledge bases formulated
as sets of formulas in propositional logic. Hence this work is not really appli-
cable to the way that information is actually stored. The purpose of this paper
is to extend inconsistency measuring to real world information. We first define
the concept of general information space which encompasses various types of
databases and scenarios in AI systems. Then, we show how to transform any gen-
eral information space to an inconsistency equivalent propositional knowledge
base, and finally apply propositional inconsistency measures to find the inconsis-
tency of the general information space. Our method allows for the direct compar-
ison of the inconsistency of different information spaces, even though the data is
presented in different ways. We demonstrate the transformation on three general
information spaces: a relational database, a graph database, and a Blocks world
scenario, where we apply several inconsistency measures after performing the
transformation.

Keywords: Inconsistency measurement · General information space ·
Inconsistency measures

1 Introduction

As AI systems may need to deal with inconsistency, some AI researchers started in the
early 2000s to develop ways of measuring the inconsistency of a propositional knowl-
edge base, that is, a set of formulas in propositional logic. By now a substantial amount
of work has been done along these lines, which includes for instance the approaches
developed in [18,20–24,26,28,34,35,38]. A survey on the topic can be found in [13].

But information in many cases is not restricted to propositional logic formulas. In
this paper we show that much of the work done for measuring inconsistency in propo-
sitional logic knowledge bases can be applied to measure inconsistency in more com-
plex frameworks, where real world information is actually stored. Our approach is as
follows.
c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 140–156, 2020.
https://doi.org/10.1007/978-3-030-39951-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_9

Measuring Inconsistency in a General Information Space 141

– We first introduce the concept of a general information space that covers various
types of databases and AI frameworks. A general information space consists of a
framework, such as a database schema, a set of information units, such as tuples in
a relation, and a set of restrictions, such as integrity constraints.

– Then, we formulate a transformation from a general information space to a propo-
sitional knowledge base in such a way that the inconsistencies are preserved. As
expected, the propositional knowledge base resulting from the transformation does
not capture the rich content of the general information space, but it does capture all
of its inconsistencies in a precise way.

– Finally, after the transformation we apply a propositional inconsistency measure
to the just obtained propositional knowledge base to find the inconsistency of the
general information space.

Hence, our approach allows for measuring the inconsistency of any information
space and the method can be applied in a uniform manner over a variety of informa-
tion scenarios. To the best of our knowledge, this is the first approach that lifts the
idea of inconsistency measure from propositional knowledge bases to a range of dif-
ferent frameworks used for storing real world data. This makes it possible to apply all
the results about inconsistency measures for propositional knowledge bases to a wide
range of applications. We believe that this is a significant advance for the whole idea of
inconsistency measurement that has been developed for propositional knowledge bases,
and explored in several other individual settings such as software specifications [27],
databases [2,25,31], and ontologies [39,40], among others.

The plan of this paper is as follows. We start by giving some basic information
and examples of inconsistency measures for propositional knowledge bases. Then, we
define the concept of a general information space. This is followed by the steps of the
transformation and the equivalence of the two for inconsistencies. Then, specific exam-
ples illustrate what happens for a relational database [4], a graph database [33], and a
Blocks world scenario [17]. We also show that this method allows for the important
task of evaluating and comparing the inconsistency [10] even for such different ways of
storing information.

2 Brief Background on Inconsistency Measures for Propositional
Knowledge Bases

The idea of an inconsistency measure is to assign a nonnegative number to a knowl-
edge base that measures its inconsistency. We start with a propositional language of
formulas composed from a countable set of atoms, the fundamental propositions, and
the connectives ∧ (conjunction), ∨ (disjunction), and ¬ (negation). We writeK for the
set of all propositional knowledge bases (KBs), i.e. the set of all finite sets of formulas
in the language. We write K for an individual KB. 2X is the set of all subsets (the power
set) of any set X . In general, an inconsistency measure assigns each KB a nonnegative
real number or infinity.

Definition 1. A function I : K → R
≥0
∞ is an inconsistency measure if the following

conditions hold for all K,K′ ∈ K :

142 J. Grant and F. Parisi

1. Consistency. I(K) = 0 iff K is consistent.
2. Monotony. If K ⊆ K′, then I(K) ≤ I(K′).

Consistency and Monotony are called (rationality) postulates. Postulates are desir-
able properties for inconsistency measures. Consistency means that all and only consis-
tent KBs get measure 0. Monotony means that the enlargement of a KB cannot decrease
its measure. Monotony is not appropriate for relative measures [19] where the ratio of
inconsistency may decrease with the addition of consistent information; however, it is
appropriate for the measures we consider in this paper.

For a knowledge base K, MI(K) is the set of minimal inconsistent subsets of K.
Also, if MI(K) = {M1, ...,Mn} then Problematic(K) = M1 ∪ ...∪ Mn, and Free(K) =
K \Problematic(K). A free formula is not involved in an essential way in any incon-
sistency, while a problematic formula is so involved in at least one inconsistency.
As an example, for Kex = {a1,a2,a3,a4,¬a1 ∨ ¬a2,¬a2 ∨ ¬a3,a4 ∧ a5}, MI(Kex) =
{{a1,a2,¬a1 ∨ ¬a2},{a2,a3,¬a2 ∨ ¬a3}}, and Problematic(Kex) = {a1,a2,a3,¬a1 ∨
¬a2,¬a2 ∨¬a3}, while a4 and a4 ∧a5 are free formulas.

A classical interpretation i for K assigns each atom a that appears in a formula of K
the truth value T or F , that is, i : Atoms(K) → {T,F}. However, there is an important
propositional inconsistency measure, IC, that uses 3 truth values: T , F , and B, where B
indicates inconsistency. This measure uses Priest’s 3-valued logic. This interpretation
uses an ordering on the truth values where F < B < T and ∧ computes the minimum
value while ∨ computes the maximum value; also ¬(B) =B. So, for example, B∧F =F
and B ∨ F = B. Then, an interpretation i satisfies a formula iff the truth-value of the
formula for i is T or B.

Now we are ready to define the propositional inconsistency measures we will con-
sider in this paper. Although we can use any of the inconsistency measures that have
been formulated for propositional knowledge bases, we will present ones that involve
in some way the minimal inconsistent subsets. As was shown in [5] many important
inconsistency measures can be defined using only the structure of the minimal incon-
sistent subsets and these are particularly relevant in view of the transformation. Below
the definition we briefly explain the meanings of these measures.

Definition 2 (Propositional Inconsistency Measures). For a knowledge base K, the
inconsistency measures IB, IM, I#, IP, IH, and Inc are such that

– IB(K) = 1 if K is inconsistent and IB(K) = 0 if K is consistent.
– IM(K) = |MI(K)|.
– I#(K) =

{
0 if K is consistent,
∑X∈MI(K)

1
|X | otherwise.

– IP(K) = |Problematic(K)|.
– IH(K) =min{|X | | X ⊆ K and ∀M ∈ MI(K)(X ∩M = ∅)}.
– Inc(K) = |K|−max{n | ∀K′ ⊆ K : |K′| = n implies that K′ is consistent }.
– IC(K) = min{|i−1(B)| such that i satisfies every formula in K}.

We explain the measures as follows. IB is also called the drastic measure [20]: it
simply distinguishes between consistent and inconsistent KBs. IM counts the number

Measuring Inconsistency in a General Information Space 143

of minimal inconsistent subsets [20]. I# also counts the number of minimal inconsis-
tent subsets, but it gives larger sets a smaller weight; the reason is that when a minimal
inconsistent set contains more formulas than another minimal inconsistent set, the for-
mer is intuitively less inconsistent than the latter [20]. IP counts the number of formulas
that contribute essentially to one or more inconsistencies [11]. Finally, IC counts the
minimal number of atoms that must be assigned the truth-value B in the three-valued
logic by an interpretation that satisfies every formula in the KB [11]. IH counts the
minimal number of formulas whose deletion makes the set consistent [12]. Inc uses the
largest number such that all sets with that many formulas are consistent [6]. For the KB
Kex, we have that IB(Kex) = 1 as it is inconsistent; IM(Kex) = 2 as there are 2 minimal
inconsistent subsets; I#(Kex) = 1

3 +
1
3 = 2

3 as both minimal inconsistent subsets consist
of 3 formulas; IP(Kex) = 5 as there are 5 problematic formulas; IH(Kex) = 1 as deleting
a2 suffices to make Kex consistent; Inc(Kex) = 7−2= 5 as 2 is the largest number such
that all subsets of size 2 are consistent; and IC(Kex) = 1 as the following interpretation
satisfies all the formulas: i(a1) = i(a3) = i(a4) = i(a5) = T, i(a2) = B.

3 General Information Spaces

Our goal is to lift the idea of inconsistency measure from propositional knowledge
bases to more complex cases that are useful in AI and databases. For this reason we
now define the concept of a general information space that encompasses many such
cases.

Definition 3. A general information space S= 〈F,U,C〉 is a triple where F is the frame-
work for the information, U is a set of information units, and C is a set of requirements
that U must satisfy, where the following hold:

A1 (Consistency of individual information units). The set of information units, U, sim-
ply gives some information and each unit is itself consistent.

A2 (Consistency of requirements). There are no inconsistencies among requirements.
All inconsistencies arise from the interaction of U and C.

A3 (Procedure for finding violations of the requirements). For every requirement, there
has to be a procedure that finds all violations of that requirement.

A relational database is an example of a general information space. Here the frame-
work is the database schema as well as the language used to describe the database and
the domains for the constants. The information units are the tuples in the relations of
the schema. The set of requirements is the set of constraints.

A graph database is another example. Here the framework is the type of information
stored in the vertices and edges. The information units are the information given by the
vertices and edges. The requirements are the graph constraints.

A Blocks world is a general information space as well. Here the framework is the
type of information stored about blocks such as block color and which block is on
top of another block. The elements of the domain are also part of the framework. The
information units describe the Blocks world such as giving the colors of the blocks and
which block is on top of another block. The requirements are the rules of the Blocks
world such as that a green block cannot be on top of a blue block.

144 J. Grant and F. Parisi

Another example is a board game configuration. Here the framework is information
about the board and the pieces. The information units describe the position of each piece
and some action or actions. The requirements are the rules of the game, such as how the
pieces may move and what constitutes a winning position.

Thus a general information space encompasses many ways in which information is
stored and presented; we give three concrete examples later.

It is worth noting that A1, A2, and A3 hold in many real world scenarios, such as
those mentioned earlier. For instance, for relational databases, tuples are units of infor-
mation that are usually assumed to be consistent when considered alone (without inter-
acting with the integrity constraints), integrity constraints are usually satisfiable (there
exists a database instance that satisfies them), and procedures for checking inconsis-
tency are well-known for large classes of integrity constraints [1,37].

A requirement for a general information space is really a constraint but we use this
terminology to indicate that there need not be a formal language in which the require-
ment is presented and we will use English in some examples. In many cases a positive
number, called the arity, can be associated with each requirement that indicates the
minimal number of information units that together violate the requirement and thereby
cause an inconsistency. We will also explain later that we can also handle an additional
case where the arity is set to 0.

Next we give some details concerning requirements for relational databases, and
illustrate the notion of arity for them.1 Consider a relational database with two rela-
tions, a binary relation R1 and a ternary relation R2. As is usual we call a requirement
a constraint. Consider the constraint: ¬R1(1,2). This constraint specifically excludes
the tuple (1,2) from R1. Hence the existence of that tuple with the constraint is incon-
sistent. Thus, the arity of this constraint is 1. Consider the more general constraint:
∀x1x2x3[R1(x1,x2)∧R1(x1,x3)→ x2 = x3]. This states the functional dependency of the
second attribute of R1 on the first. This would be violated, for instance, by the two
tuples: (1,2) and (1,3) in R1 causing an inconsistency. So the arity of this constraint
is 2. Next consider the constraint: ∀x1x2[R1(x1,x2)→ ∃x3x4(R2(x2,x3,x4))]. This states
the inclusion dependency that the elements in the second column of R1 are included in
the first column of R2. A violation of this constraint is caused by a single tuple in R1

whose second element is not in the first column of R2. This means that the arity is 1.
It is worth pointing out an important difference between this case and the previous two
cases. Take the first constraint, ¬R1(1,2), the functional dependency case is similar. The
existence in R1 of the tuple (1,2), that is, R1(1,2) together with the constraint ¬R1(1,2)
form an inconsistent set of formulas. But in the inclusion dependency the existence of
some tuple in R1, say R1(1,2) together with the inclusion dependency is not inconsis-
tent: there may be a tuple in R2, say R2(2,3,4) that would satisfy the constraint. Hence
for this type of constraint the context is needed, such as what tuples are in R2. In any
case, all the usual database constraints such as the various types of dependencies, denial
and key constraints are included in our concept of a requirement.

There is also a somewhat different type of constraint. Consider that the requirement
R1(1,2) requires the tuple (1,2) to be in R1. So in this case it is a lack of the tuple

1 We assume the reader is familiar with the classical notions of database scheme, relation
scheme, relation instance, and integrity constraint. We will recall these notions in Sect. 5.1.

Measuring Inconsistency in a General Information Space 145

that violates the requirement and causes an inconsistency. A more general example is
∃x1x2R2(1,x1,x2) which states that there must be a tuple in the R2 relation whose first
element is 1. Note how there is some similarity between this constraint and the inclusion
dependency given above: in both cases a required tuple is not in the database. The
difference is that for an inclusion dependency we can point to a tuple in R1 that is the
source of the problem, i. e. without that tuple there would not be a constraint violation.
But this example is purely existential; no deletion from the database would negate the
violation. Hence the arity of such a constraint is 0 and the constraint is inconsistent with
respect to U .

4 Transforming a General Information Space to a Propositional
Knowledge Base

We now show how any general information space can be transformed to a propositional
knowledge base in such a way that all the violations of the requirements are inconsis-
tencies in the knowledge base. Note however that the transformation also loses some
information: there is no way to go back from the propositional knowledge base to the
original general information space. In fact many different information spaces repre-
senting different phenomena may be transformed to the same knowledge base. But the
transformation is appropriate if we are interested in measuring inconsistency.

Definition 4 (Transformation). The transformation from a general information space
S = 〈F,U,C〉 to a propositional KB KS is as follows.

– Let AU = {a1, . . . ,a|U |} be a set of |U | propositional atoms.
– Define a bijective function f :U → AU that assigns a distinct propositional atom to

each information unit in U.
– Let BC = {b1, . . . ,b|C|} be another set of |C| propositional atoms.
– Define a bijective function h : C → BC that assigns a distinct propositional atom to

each requirement in C.
– Let FS be the set of propositional formulas using AU ∪BC.
– Define a function g :C → FS as follows: For each requirement c ∈ C do as follows.

(1) If there is no violation of the requirement, then set g(c) = h(c). Otherwise,
there is at least one violation of c.

(2) If the arity of c is greater than 0, then a minimal inconsistency is formed
by one or more information units together with c. Find all such sets, say
Mc = {U1, . . . ,Uk} and suppose that |Ui| = n. Let Ui = {u1i , . . . ,u

n
i } (where

each u j
i is an information unit). Define ρ(Ui) = ¬ f (u1i)∨ . . .∨¬ f (un

i) which
is a propositional logic formula. Then, define

g(c) = (
∧

Ui∈Mc

ρ(Ui))∧h(c).

(3) When the arity of c is 0, define g(c) = ¬h(c)∧h(c).
– Define KS = { f (u) | u ∈ U}∪{g(c) | c ∈ C}.

146 J. Grant and F. Parisi

Clearly g is one-to-one because each g(c) is identified with its corresponding unique
h(c). Next we show the equivalence between the violation of the requirements C for S
and the minimal inconsistent subsets of KS. A requirement violation causes an incon-
sistency for S but we need a definition for it.

Definition 5 (Inconsistency of a general information space). An inconsistency of S
consists of one of two cases:

(1) The arity of the requirement c is a positive number k. In this case an inconsistency
of S is a set of k information units, {u1, . . . ,uk}, that violates c. We write such an
inconsistency as {u1, . . . ,uk,c}.

(2) The arity of the requirement c is 0. If c is violated by S, there is an inconsistency
written as {c,¬c}.

Then we define Inc(S) as the set of inconsistencies of S.

Theorem 1. A general information space S and its transformation to a propositional
knowledge base KS are equivalent for inconsistencies in the sense that there is a bijec-
tion m : Inc(S) → MI(KS). Furthermore, for M ∈ Inc(S), |M| = |m(M)|.
Proof. (⇒) Let M ∈ Inc(S). Every inconsistency of S contains exactly one requirement.

Suppose the arity of the requirement c is a positive integer k. In this case the incon-
sistency contains k elements from U , say u1, . . . ,uk, and a requirement c ∈ C. Then,
according to the construction, g(c) is a propositional formula in CNF, one of whose
conjuncts is ¬ f (u1)∨ ·· ·∨¬ f (uk). Hence { f (u1), . . . , f (uk),g(c)} ∈ MI(KS). Thus, in
this case m({u1, . . . ,uk,c}) = { f (u1), . . . , f (uk),g(c)}. It is clear from the construction
that |M| = |m(M)|.

In the case where the arity of c is 0, c is inconsistent with respect to U . Then,
according to the construction g(c) = ¬h(c)∧h(c) which is also a minimal inconsistent
set (of size 1) in KS. Thus, in this case m({¬c,c}) = {¬h(c),h(c)}.
(⇐) Let M ∈ MI(KS). Based on the structure of the transformation with the informa-
tion units transformed to atoms and only the constraints transformed to formulas that
may involve negation, there are two cases. In the first case M = {a1, . . . ,ak,g(c)} where
¬a1 ∨ ·· ·∨¬ak is a conjunct in g(c). As g is one-to-one, g−1 exists and g−1(g(c)) = c.
Therefore m−1(M) = { f −1(a1), . . . , f −1(ak),c} ∈ Inc(S). The other case is where
M = {¬bi ∧bi} for some i, 1 ≤ i ≤ |C|. This means that m−1(M) = {g−1(M)} which is
exactly a constraint that is inconsistent (with respect to U). In both cases the construc-
tion gives |M| = |m−1(M)|.

Our approach to measuring the inconsistency of a general information space accord-
ing to a propositional inconsistency measure Ix is to apply the inconsistency measure to
the transformed space, that is, we define Ix(S) = Ix(KS).

In the rest of this paper, we consider several examples to illustrate this process. In
each case we first describe the general information space, then do the transformation,
and finally compute the inconsistency measures according to the propositional incon-
sistency measures of Definition 2.

Measuring Inconsistency in a General Information Space 147

5 Examples of Instantiation

We now show how the transformation and the calculation of the inconsistency mea-
sures work on three general information spaces: a relational database, a graph database,
and a Blocks world scenario. For the relational database case, we start by recalling the
formal definitions of database scheme, database instance, and integrity constraint, and
then illustrate how these concepts correspond to the components of a general informa-
tion space. Then an example is provided. For the other two cases, we directly give the
examples.

5.1 A Relational Database as a General Information Space

A relation scheme R(A1, . . . ,An) consists of a relation name R and a sorted list of
attribute names A1, . . . ,An, where each attribute Ai (with i ∈ [1..n]) has associated a
domain DOM(Ai). A database scheme DS is a nonempty finite set of relation schemes.
A tuple t = (v1, . . . ,vn) over R(A1, . . . ,An) is a mapping assigning to each attribute Ai

of R a value vi ∈ DOM(Ai). A relation instance is a set of tuples over a given relation
scheme, and a database instance D is a set of relation instances over a given database
scheme. We use ui for terms. An atom over a database scheme DS is an expression of
one of the following forms: (a) R(u1, . . . ,un)where R is a relation scheme inDS , or (b)
ui ◦u j where ◦ ∈ {=, =,>,<,≥,≤}. An integrity constraint overDS is any (function-
free) first-order sentence over the database scheme DS . For a database scheme DS
and a set C of integrity constraints over DS , an instance D of DS is said to be con-
sistent w.r.t. C (or, equivalently, C is satisfied by D, C is not violated by D) iff D |= C
in the standard model-theoretic sense.

The components of the general information space S = 〈F,U,C〉 for a relational
database instance D over the database schemeDS with a set C of integrity constraints
are as follows. The framework F is the database scheme DS and the (function-free)
first-order language using a set of uninterpreted constants and predicate symbols for
relation names, as well as domains of the attributes for the evaluation of constants.
The set U of information units is the instance D (the set of the tuples in the relation
instances), and the set C of requirements is the set C of integrity constraints.

We now provide an example. Let the framework F be the database scheme consist-
ing of the relation schemes Asset(SN, DateLoaned, Employee, Date Returned) whose
instance contains the serial number, the loan date, the employee’ identifier, and the
returned date of assets provided by a company to the employees, about whom informa-
tion is stored in two relations: Employee(SSN, Name, HiringDate), and Family(SSN,
Child, Project). Here U , the database instance, is shown in the usual tabular form in
Fig. 1. Altogether there are 13 information units (tuples) that for convenience we name
ti, with 1 ≤ i ≤ 13.

There are 8 requirements in C as given below both as first-order logic formulas and
in English.

– c1 = ∀x1 . . .x4[Asset(x1,x2,x3,x4) → x2 ≤ x4], stating that, for every asset, the loan
date must predate the return date.

– c2 = ∀x1 . . .x7[Asset(x1,x2,x3,x4)∧ Asset(x1,x5, x6,x7)→ (x2 = x5∧x3 = x6∧x4 =
x7)], i.e. the constraint that the serial number is a key for Asset.

148 J. Grant and F. Parisi

Asset
Atom SN DateLoaned Employee DateReturned Tuple
a1 999 2015-02-01 123456789 2016-03-15 t1
a2 999 2015-02-01 123456789 2018-12-31 t2
a3 999 2013-06-15 222222222 2017-12-31 t3
a4 888 2016-12-01 222222222 2013-12-01 t4
a5 555 2014-07-01 333333333 2013-06-20 t5
a6 666 2014-07-01 333333333 2015-09-10 t6
a7 777 2014-07-01 333333333 2014-05-21 t7

Employee
Atom ID Name HiringDate Tuple

a8 333333333 Robert 1980-01-01 t8
a9 444444444 William 1975-06-01 t9
a10 123456789 William 1975-06-01 t10

Family
Atom ID Child Project Tuple
a11 123456789 Steve Q1 t11
a12 123456789 Mary Q2 t12
a13 123456789 Steve Q2 t13

Fig. 1. Instances of Asset, Employee, and Family

– c3 = ∀x1 . . .x8[Asset(x1,x2,x3,x4)∧ Asset(x5,x2, x3,x6)∧ Asset(x7,x2,x3,x8) →
(x1 = x5 ∨ x1 = x7 ∨x5 = x7)], stating the numerical dependency [15,16]
DateLoaned, Employee →2SN whose meaning is that for every date and employee
there can be at most 2 assets loaned.

– c4 = ∀x1 . . .x5[Employee(x1,x2,x3)∧ Employee(x1, x4,x5) → (x2 = x4 ∧ x3 = x5)],
stating that ID is a key for Employee.

– c5 = ∀x1 . . .x4[Employee(x1,x2,x3)∧ Employee(x4, x2,x3) → x1 = x4], that is, the
pair of attributes Name and HiringDate also form a key for Employee.

– c6 = ∀x1 . . .x6[Asset(x1,x2,x3,x4)→ ∃ x5,x6 Employee (x3,x5,x6)] i.e., the inclusion
dependency Asset[Employee] ⊆ Employee[ID].

– c7 = ∀x1 . . .x5[Family(x1,x2,x3)∧ Family(x1,x4, x5) → Family(x1,x2,x5)], i.e. the
multivalued dependency [8] Family: ID →→ Child.

– c8 = ∃x1 . . .x6[Family(x1,x2,x3)∧ Family(x4,x5, x6)∧ x1 = x4)] stating that there
must be at least two employees referenced in the Family relation.

Transformation to a Propositional Knowledge Base. We now show how the transfor-
mation from a general information space to a propositional knowledge base is applied
for this relational database.

Measuring Inconsistency in a General Information Space 149

1. AU = {a1, . . . ,a13} corresponding to the 13 tuples,
2. f (ti) = ai for all i, 1 ≤ i ≤ 13.
3. BC = {b1, . . . ,b8} corresponding to the 8 constraints.
4. h(ci) = bi for all i, 1 ≤ i ≤ 8.
5. FS is the set of propositional formulas using AU ∪BC.
6. Now we show the mapping g by going over the constraints one at a time.

c1 The arity of c1 is 1. The 3 tuples t4, t5, and t7 each violate c1. Hence, g(c1) =
¬a4 ∧¬a5 ∧¬a7 ∧b1.

c2 The arity of c2 is 2. The 3 tuples t1, t2, and t3 all have the same serial number but
are not identical. Hence, g(c2) = (¬a1∨¬a2)∧ (¬a1∨¬a3)∧ (¬a2∨¬a3)∧b2.

c3 The arity of c3 is 3. t5, t6, and t7 together violate this constraint. Hence, g(c3) =
(¬a5 ∨¬a6 ∨¬a7)∧b3.

c4 This constraint is satisfied. Hence, g(c4) = b4.
c5 The arity of c5 is 2. It is violated by the pair t9 and t10. Hence, g(c5) = (¬a9 ∨

¬a10)∧b5.
c6 The arity of c6 is 1. It is violated separately by t3 and t4. Hence, g(c6) = ¬a3 ∧

¬a4 ∧b6.
c7 The arity of c7 is 2. It is violated by the pair t11 and t12. Hence, g(c7) = (¬a11 ∨

¬a12)∧b7.
c8 The arity of c8 is 0 and it is violated by U . Hence, g(c8) = ¬b8 ∧b8.

7. Therefore KS = {a1, . . . ,a13,¬a4 ∧ ¬a5 ∧ ¬a7 ∧ b1,(¬a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬a3) ∧
(¬a2 ∨ ¬a3) ∧ b2,(¬a5 ∨ ¬a6 ∨ ¬a7) ∧ b3,b4,(¬a9 ∨ ¬a10) ∧ b5,¬a3 ∧ ¬a4 ∧
b6,(¬a11 ∨¬a12)∧b7,¬b8 ∧b8}.

The Calculation of the Inconsistency Measures. Below are the results of calculating
the inconsistency measures of the relational database example. We use the fact that
MI(KS) = {{a4,¬a4 ∧ ¬a5 ∧ ¬a7 ∧ b1},{a5,¬a4 ∧ ¬a5 ∧ ¬a7 ∧ b1},{a7,¬a4 ∧ ¬a5 ∧
¬a7∧b1},{a1,a2,(¬a1∨¬a2)∧(¬a1∨¬a3)∧(¬a2∨¬a3)∧b2},{a1,a3,(¬a1∨¬a2)∧
(¬a1 ∨ ¬a3)∧ (¬a2 ∨ ¬a3)∧ b2},{a2,a3,(¬a1 ∨ ¬a2)∧ (¬a1 ∨ ¬a3)∧ (¬a2 ∨ ¬a3)∧
b2},{a5,a6,a7,(¬a5 ∨¬a6 ∨¬a7)∧b3},{a9,a10,(¬a9 ∨¬a10)∧b5},{a3,¬a3 ∧¬a4 ∧
b6},{a4,¬a3 ∧¬a4 ∧b6},{a11,a12,(¬a11 ∨¬a12)∧b7},{¬b8 ∧b8}}.
– IB(S) = 1 as KS is inconsistent.
– IM(S) = 12 as there are 12 minimal inconsistent subsets for KS.
– I#(S) = 1+ 5× 1

2 + 5× 1
3 +

1
4 = 65

12 as there is one minimal inconsistent subset of
size 1, 5 of size 2, 5 of size 3, and 1 of size 4 in KS.

– IP(S) = 11+ 7 = 18 as 11 atoms (i.e., tuples) plus 7 propositional formulas (i.e.,
constraints) are problematic in KS.

– IH(S) = 7 as the deletion of the 7 formulas of g(ci) for all i, 1 ≤ i ≤ 3 and 5 ≤ i ≤ 8
makes KS consistent and there is no set of smaller cardinality that accomplishes the
same.

– Inc(S) = 21 as the set {¬b8 ∧b8} has size 1 and is inconsistent.
– IC(S) = 8 as there must be at least 8 atoms, for example a2, a3, a4, a5, a7, a9, a11,

and b8, that must be given the value B for a 3-valued interpretation in order to satisfy
all the formulas.

150 J. Grant and F. Parisi

Daniel Markknows Paul Jamesknowsknows

knows

knows

likes

likes

Photo 1

posted

likes likes

Photo 2

posted

Photo 3

posted posted

taken before

taken beforeresolution : 12MP resolution : 16MP resolution : 8MP

age : 35 age : 26

Fig. 2. Graph database instance

5.2 A Graph Database as a General Information Space

We start by giving the components of S= 〈F,U,C〉. It will be helpful to look at the graph
for this example in Fig. 2. We consider a general form of graph databases where ver-
tices may be associated with properties and edges may be labeled [32,33]. The frame-
work F consists of basic information about the vertices and the edges of the graph,
that is, the sets of vertex names, edge labels, and vertex properties. Each vertex prop-
erty has an associated domain, which is a set of values that can be assigned to the
property. For instance, a property for the vertices of our graph database example is
type, whose domain includes person and media. In Fig. 2, the vertices indicated by cir-
cles represent people and the vertices indicated by rectangles represent media objects.
Moreover, property age is associated with people and resolution with media objects
(their domains are obvious). The edges represent relationships between vertices whose
meaning is given by the labels.

The data units are the vertices and the edges. For convenience we number them so
that each unit is some ui starting with the square vertices: u1 . . .u3, then the circular
vertices: u4 . . .u7, and finally the edges: u8 . . .u22.

u1 : (Photo 1, 12MP) u2 : (Photo 2, 16MP)
u3 : (Photo 3, 8MP) u4 : (Daniel, 35)
u5 : (Mark) u6 : (Paul)
u7 : (James, 26) u8 : (Daniel, posted, Photo 1)
u9 : (Daniel, knows, Mark) u10 : (Daniel, knows, Paul)
u11 : (Mark, likes, Photo 1) u12 : (Mark, posted, Photo 2)
u13 : (Mark, knows, Paul) u14 : (Mark, likes, James)
u15 : (Paul, knows, Mark) u16 : (Paul, likes, Photo 2)
u17 : (Paul, posted, Photo 3) u18 : (Paul, knows, James)
u19 : (James, likes, Paul) u20 : (James, posted, Photo 3)
u21 : (Photo 1, taken before, Photo 2) u22 : (Photo 2, taken before, Photo 1)

Finally we get to the requirements that are constraints on the graph; we write them
in English.

Measuring Inconsistency in a General Information Space 151

– c1: Every circular vertex must have an associated age value.
– c2: Every rectangular vertex must have an associated resolution.
– c3: There may not be a cycle on rectangular vertices.
– c4: There cannot be 2 edges with the label “posted” going to the same rectangular

vertex.
– c5: For every edge between circular vertices that has the label “likes” there must be
another edge with the label “knows”.

Transformation to a Propositional Knowledge Base. We now show how the transfor-
mation from a general information space to a propositional knowledge base is applied
for this graph database.

1. AU = {a1, . . . ,a22} corresponding to the 7 vertices and 15 edges.
2. f (ui) = ai for all i, 1 ≤ i ≤ 22.
3. BC = {b1, . . . ,b5} corresponding to the 5 constraints.
4. h(ci) = bi for all i, 1 ≤ i ≤ 5.
5. FS is the set of propositional formulas using AU ∪BC.
6. Now we show the mapping g by going over the constraints one at a time.

c1 The arity of c1 is 1. The two nodes u5 and u6 each violate c1. Hence, g(c1) =
¬a5 ∧¬a6 ∧b1.

c2 This constraint is satisfied. Hence, g(c2) = b2.
c3 This constraint does not have a fixed arity because a cycle does not have a fixed

number of elements. However, if it is violated its arity is greater than zero. It is
violated by the pair of edges u21 and u22. Hence, g(c3) = (¬a21 ∨¬a22)∧b3.

c4 The arity of c4 is 2. It is violated by the pair of edges u17 and u20. Hence, g(c4) =
(¬a17 ∨¬a20)∧b4.

c5 The arity of c5 is 1. The two edges u14 and u19 each violate c5. Hence, g(c5) =
¬a14 ∧¬a19 ∧b5.

7. Therefore KS = {a1, . . . ,a22,¬a5 ∧¬a6 ∧b1,b2,(¬a21 ∨¬a22)∧b3,(¬a17 ∨¬a20)∧
b4,¬a14 ∧¬a19 ∧b5}.

The Calculation of the Inconsistency Measures. Below are the results of calculating
the inconsistency measures of the graph database example. We use the fact that
MI(KS) = {{a5,¬a5 ∧¬a6 ∧ b1},{a6,¬a5 ∧¬a6 ∧ b1}, {a21,a22,(¬a21 ∨¬a22)∧ b3},
{a17,a20,(¬a17 ∨¬a20)∧b4},{a14,¬a14 ∧¬a19 ∧b5},{a19,¬a14 ∧¬a19 ∧b5}}.
– IB(S) = 1 as KS is inconsistent.
– IM(S) = 6 as there are 6 minimal inconsistent subsets for KS.
– I#(S) = 4× 1

2 +2× 1
3 = 8

3 as there are 4 minimal inconsistent subsets of size 2 and
2 minimal inconsistent subsets of size 3 for KS.

– IP(S) = 8+4= 12 as 8 atoms (i.e., vertices and edges) plus 4 propositional formulas
(i.e., the transformations of the constraints) are problematic in KS.

– IH(S) = 4 as the deletion of the 4 formulas: g(c1), g(c3), g(c4), and g(c5) makes KS

consistent and there is no smaller cardinality set that accomplishes the same.
– Inc(S) = 27−1= 26 as there is a minimal inconsistent subset of size 2.
– IC(S) = 6 as a 3-valued interpretation must give at least a5, a6, a14, a19, one of a21

and a22, and one of a17 and a20 the value B to satisfy all the formulas.

152 J. Grant and F. Parisi

green

blue

blue

red

yellow

blue

red

yellow

red

blue

red

Fig. 3. Blocks world configuration

5.3 A Blocks World Configuration as a General Information Space

Blocks-world planning has been widely investigated in AI, as it captures several aspects
of planning systems [17]. In this case, the components of S = 〈F,U,C〉 are as follows.
The framework indicates that there is a finite number of colored blocks of the same size
in stacks on a table, which is large enough to hold all (i.e., the number of stacks can be
equal to number of blocks).

A blocks world configuration is shown in Fig. 3.
We indicate the data units, which are the stack and the colors of the block in them

by writing sti, j : color to indicate that the block in stack i in the jth position has that
color. Here the first position means directly on the table, the second position means on
top of the first block, and so on.

The data units in this example are as follows:

st11 : green st12 : blue st13 : blue
st21 : red st22 : yellow st23 : blue st24 : red
st31 : yellow st32 : red st33 : blue st41 : red

So there are 4 stacks with 3, 4, 3, and 1 blocks respectively.
Finally we get to the requirements that are the constraints in this Blocks world; we

write them in English.

– c1: No blue block can be on top of another blue block.
– c2: There cannot be a yellow block that has a red block below it and a red block

above it.
– c3: There cannot be a red block on the table (i.e. at the bottom of a stack).
– c4: No stack has both a green block and a blue block.
– c5: At least one of the blocks is purple.
– c6: There must be a blue block in at least 3 stacks.

Transformation to a Propositional Knowledge Base. We now show how the transfor-
mation from a general information space to a propositional knowledge base is applied
for this blocks world example.

1. AU = {a1, . . . ,a11} corresponding to the 11 blocks.
2. f (st11) = a1, f (st12) = a2, f (st13) = a3, f (st21) = a4, f (st22) = a5, f (st23) = a6,

f (st24) = a7, f (st31) = a8, f (st32) = a9, f (st33) = a10, f (st41) = a11,

Measuring Inconsistency in a General Information Space 153

3. BC = {b1, . . . ,b6} corresponding to the 6 constraints.
4. h(ci) = bi for all i, 1 ≤ i ≤ 6.
5. FS is the set of propositional formulas using AU ∪BC.
6. Now we show the mapping g by going over the constraints one at a time.

c1 The arity of c1 is 2. The two blocks st12 and st13 together violate c1. Hence,
g(c1) = (¬a2 ∨¬a3)∧b1.

c2 The arity of c2 is 3. The 3 blocks that together violate this constraint are st21, st22,
and st24. Hence, g(c2) = (¬a4 ∨¬a5 ∨¬a7)∧b2.

c3 The arity of c3 is 1. The blocks st21 and st41 both violate this constraint. Hence,
g(c3) = ¬a4 ∧¬a11 ∧b3.

c4 The arity of c4 is 2. The blocks st11 and st12 as well as the blocks st11 and st13
violate this constraint. Hence, g(c4) = (¬a1 ∨¬a2)∧ (¬a1 ∨¬a3)∧b4.

c5 The arity of c5 is 0. There is no purple block in any stack. Hence, g(c5) = ¬b5 ∧
b5.

c6 This constraint is satisfied. Hence, g(c6) = b6.
7. Therefore KS = {a1, . . . ,a11,(¬a2∨¬a3)∧b1,(¬a4∨¬a5∨¬a7)∧b2,¬a4∧¬a11∧

b3,(¬a1 ∨¬a2)∧ (¬a1 ∨¬a3)∧b4,¬b5 ∧b5,b6}.

The Calculation of the Inconsistency Measures. Below are the results of calculating
the inconsistency measures of the Blocks world example. We use the fact thatMI(KS) =
{{a2,a3,(¬a2 ∨ ¬a3) ∧ b1},{a4,a5,a7,(¬a4 ∨ ¬a5 ∨ ¬a7) ∧ b2},{a4,¬a4 ∧ ¬a11 ∧
b3},{a11,¬a4 ∧ ¬a11 ∧ b3},{a1,a2,(¬a1 ∨ ¬a2) ∧ (¬a1 ∨ ¬a3) ∧ b4},{a1,a3,(¬a1 ∨
¬a2)∧ (¬a1 ∨¬a3)∧b4},{¬b5 ∧b5}}.
– IB(S) = 1 as KS is inconsistent.
– IM(S) = 7 as there are 7 minimal inconsistent subsets for KS.
– I#(S) = 1+2× 1

2 +3× 1
3 +1× 1

4 = 13
4 as there is 1 minimal inconsistent subset of

size 1, 2 minimal inconsistent subsets of size 2, 3 minimal inconsistent subsets of
size 3, and 1 minimal inconsistent subset of size 4 for KS.

– IP(S) = 7+ 5 = 12 as 7 atoms (i.e., colored block locations) plus 5 propositional
formulas (i.e., the transformations of the requirements) are problematic in KS.

– IH(S) = 5 as the deletion of the 5 formulas: g(c1), g(c2), g(c3), g(c4), and g(c5)
makes KS consistent and there is no smaller cardinality set that accomplishes the
same.

– Inc(S) = 17 as there is a minimal inconsistent subset of size 1.
– IC(S) = 5 as a 3-valued interpretation that satisfies all the formulas must give a4,

a11, b5, and at least 2 other atoms, for example, a1 and a2 the value B.

6 Conclusions and Future Work

As inconsistency in real-world information systems can not be easily avoided, many
inconsistency-tolerant approaches have been developed to live with inconsistency [9],
and provide appropriate mechanisms to handle inconsistent data [3,7]. A key issue in
such situations is measuring the amount of inconsistency to assess its nature and under-
stand the degree of the dirtiness of data.

154 J. Grant and F. Parisi

In this paper, we developed a general approach for measuring inconsistency in gen-
eral information spaces which encompasses various ways in which information is stored
in real-world systems. An important advantage of defining inconsistency measures for
general information spaces is its wide range of use. Consider an inconsistency measure
defined specifically for relational databases. Such a measure allows for comparing two
relational databases and determining if one is less inconsistent than the other one or if
they have the same inconsistency. But using the concept of a general information space
and the uniformity of the definition of an inconsistency measure allows for compar-
ing the inconsistency of a relational database and a graph database or a Block worlds
scenario.

For instance, we can compare the inconsistency measures obtained for the 3 exam-
ples using the 6 inconsistency measures we have considered. These inconsistency mea-
sures measure different aspects of the inconsistencies. Hence we find that for some
measures one of the examples is more inconsistent than another but for a different mea-
sure it is the reverse. So for comparing these general information spaces we need to
decide which aspect we really want to measure. In particular, measuring the number
of inconsistent subsets, that is, using IM , is a good way to get a general sense of the
amount of inconsistency. Using that measure we find that the answer is largest for the
first example, the relational database, where IM(S) = 12. This measure gives almost the
same result for the graph database example, 6, and the Blocks world example, 7.

For the sake of the presentation we have focused on showing how our approach
works with the inconsistency measures listed in Definition 2. But it is important to
observe that the transformation creates a propositional knowledge base; hence all propo-
sitional inconsistency measures ever proposed are applicable.

There are several directions that we plan to explore for future work. For one, we
will provide more instantiations of our framework. Recently, there has been some work
on measuring inconsistency in spatio-temporal databases [14]. Interestingly, a spatio-
temporal database can be viewed as a general information space where information
units are the possible positions of objects in time and the requirements are entailed
by the spatio-temporal atoms along with the spatio-temporal constraints (e.g. an object
cannot be in two different places at the same time). However, how to encode prob-
abilistic spatio-temporal knowledge bases [29,30], and more in general probabilistic
information, into a general information space needs further investigation that may lead
to define a concept of probabilistic general information space.

We plan to consider complexity issues as well. One aspect is the complexity of
the transformation itself. The second aspect is the complexity of the calculation of the
inconsistency measures. For general propositional knowledge bases this calculation is
not polynomial [36]. However, the result of the transformation is a set of formulas that
must have a specific form and may have lower complexity. Finally, we also plan to study
what aspects of inconsistency the various inconsistency measures actually measure to
determine which ones are the most appropriate to use for general information spaces.

Measuring Inconsistency in a General Information Space 155

References

1. Foto, N.A., Kolaitis, P.G.: Repair checking in inconsistent databases: algorithms and com-
plexity. In: Proceedings of International Conference on Database Theory (ICDT), pp. 31–41
(2009)

2. Bertossi, L.E.: Repair-based degrees of database inconsistency. In: Proceedings of Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pp.
195–209 (2019)

3. Bertossi, L.E., Hunter, A., Schaub, T.: Introduction to inconsistency tolerance. In: Inconsis-
tency Tolerance, pp. 1–14 (2005)

4. Codd, E.F.: The Relational Model for Database Management, Version 2. Addison-Wesley,
Boston (1990)

5. De Bona, G., Grant, J., Hunter, A., Konieczny, S.: Towards a unified framework for syn-
tactic inconsistency measures. In: Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence, (AAAI), pp. 1803–1810 (2018)

6. Doder, D., Raskovic, M., Markovic, Z., Ognjanovic, Z.: Measures of inconsistency and
defaults. Int. J. Approximate Reasoning 51(7), 832–845 (2010)

7. Eiter, T., Fink, M., Schüller, P., Weinzierl, A.: Finding explanations of inconsistency in multi-
context systems. Artif. Intell. 216, 233–274 (2014)

8. Fagin, R.: Multivalued dependencies and a new normal form for relational databases. ACM
Trans. Database Syst. 2(3), 262–278 (1977)

9. Gabbay, D.M., Hunter, A.: Making inconsistency respectable: a logical framework for incon-
sistency in reasoning. In: Proceedings of International Workshop on Fundamentals of Artifi-
cial Intelligence Research (FAIR), pp. 19–32 (1991)

10. Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. J. Intell. Inf. Syst. 27(2),
159–184 (2006)

11. Grant, J., Hunter, A.: Measuring consistency gain and information loss in stepwise incon-
sistency resolution. In: Proceedings of European Conference Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (ECSQARU), pp. 362–373 (2011)

12. Grant, J., Hunter, A.: Distance-based measures of inconsistency. In: Proceedings of
ECSQARU, pp. 230–241 (2013)

13. Grant, J., Martinez, M.V.: Measuring Inconsistency in Information. College Publications
(2018)

14. Grant, J., Martinez, M.V., Molinaro, C., Parisi, F.: On measuring inconsistency in spatio-
temporal databases. In: Grant, J., Martinez, M.V. (eds.) Measuring Inconsistency in Infor-
mation, volume 73 of Studies in Logic, pp. 313–342. College Publications (2018)

15. Grant, J., Minker, J.: Inferences for numerical dependencies. Theoret. Comput. Sci. 41, 271–
287 (1985)

16. Grant, J., Minker, J.: Normalization and axiomatization for numerical dependencies. Inf.
Control 65(1), 1–17 (1985)

17. Gupta, N., Nau, D.S.: Complexity results for blocks-world planning. In: Proceedings of the
9th National Conference on Artificial Intelligence (AAAI), pp. 629–633 (1991)

18. Hunter, A.: Measuring inconsistency in knowledge via quasi-classical models. In: Proceed-
ings of National Conference on Artificial Intelligence and Conference on Innovative Appli-
cations of Artificial Intelligence (AAAI/IAAI), pp. 68–73 (2002)

19. Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In: Inconsis-
tency Tolerance, pp. 191–236 (2005)

20. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In:
Proceedings of International Conference on Principles of Knowledge Representation and
Reasoning (KR), pp. 358–366 (2008)

156 J. Grant and F. Parisi

21. Hunter, A., Konieczny, S.: On the measure of conflicts: Shapley inconsistency values. Artif.
Intell. 174(14), 1007–1026 (2010)

22. Jabbour, S., Ma, Y., Raddaoui, B., Sais, L.: Quantifying conflicts in propositional logic
through prime implicates. Int. J. Approximate Reasoning 89, 27–40 (2017)

23. Knight, K.: Measuring inconsistency. J. Philos. Logic 31(1), 77–98 (2002)
24. Ma, Y., Qi, G., Xiao, G., Hitzler, P., Lin, Z.: An anytime algorithm for computing incon-

sistency measurement. In: Proceedings of International Conference on Knowledge Science,
Engineering and Management (KSEM), pp. 29–40 (2009)

25. Martinez, M.V., Pugliese, A., Simari, G.I., Subrahmanian, V.S., Prade, H.: How dirty is your
relational database? An axiomatic approach. In: Proceedings of European Conference Sym-
bolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU), pp. 103–
114 (2007)

26. McAreavey, K., Liu, W., Miller, P.C.: Computational approaches to finding and measuring
inconsistency in arbitrary knowledge bases. Int. J. Approximate Reasoning 55(8), 1659–1693
(2014)

27. Mu, K., Jin, Z., Lu, R., Liu, W.: Measuring inconsistency in requirements specifications. In:
Proceedings of European Conference on Symbolic and Quantitative Approaches to Reason-
ing with Uncertainty (ECSQARU), pp. 440–451 (2005)

28. Kedian, M., Liu, W., Jin, Z., Bell, D.A.: A syntax-based approach to measuring the degree
of inconsistency for belief bases. Int. J. Approximate Reasoning 52(7), 978–999 (2011)

29. Parisi, F., Grant, J.: Knowledge representation in probabilistic spatio-temporal knowledge
bases. J. Artif. Intell. Res. 55, 743–798 (2016)

30. Parisi, F., Grant, J.: On repairing and querying inconsistent probabilistic spatio-temporal
databases. Int. J. Approximate Reasoning 84, 41–74 (2017)

31. Parisi, F., Grant, J.: Inconsistency measures for relational databases. CoRR, abs/1904.03403
(2019)

32. Parisi, F., Park, N., Pugliese, A., Subrahmanian, V.S.: Top-k user-defined vertex scoring
queries in edge-labeled graph databases. ACM Trans. Web (TWEB) 12(4), 211–2135 (2018)

33. Robinson, I., Webber, J., Eifrem, E.: Graph Databases. O’Reilly Media Inc., Sebastopol
(2013)

34. Thimm, M.: On the expressivity of inconsistency measures. Artif. Intell. 234, 120–151
(2016)

35. Thimm, M.: Stream-based inconsistency measurement. Int. J. Approximate Reasoning 68,
68–87 (2016)

36. Thimm, M., Wallner, J.P.: On the complexity of inconsistency measurement. Artif. Intell.
275, 411–456 (2019)

37. Vardi, M.Y.: The complexity of relational query languages (extended abstract). In Proceed-
ings of Symposium on Theory of Computing (STOC), pp. 137–146 (1982)

38. Xiao, G., Ma, Y.: Inconsistency measurement based on variables in minimal unsatisfiable
subsets. In Proceedings of 20th European Conference on Artificial Intelligence (ECAI), pp.
864–869 (2012)

39. Zhang, X., Wang, K., Wang, Z., Ma, Y., Qi, G., Feng, Z.: A distance-based framework for
inconsistency-tolerant reasoning and inconsistency measurement in dl-lite. Int. J. Approxi-
mate Reasoning 89, 58–79 (2017)

40. Zhou, L., Huang, H., Qi, G., Ma, Y., Huang, Z., Qu, Y.: Measuring inconsistency in dl-lite
ontologies. In: Proceedings of International Conference on Web Intelligence (WI), pp. 349–
356 (2009)

Parameterised Complexity
of Model Checking and Satisfiability
in Propositional Dependence Logic

Yasir Mahmood(B) and Arne Meier

Leibniz Universität Hannover, Institut für Theoretische Informatik,
Hannover, Germany

{mahmood,meier}@thi.uni-hannover.de

Abstract. In this paper, we initiate a systematic study of the parame-
terised complexity in the field of Dependence Logics which finds its origin
in the Dependence Logic of Väänänen from 2007. We study a proposi-
tional variant of this logic (PDL) and investigate a variety of parameteri-
sations with respect to the central decision problems. The model checking
problem (MC) of PDL is NP-complete (Ebbing and Lohmann, SOFSEM
2012). The subject of this research is to identify a list of parameterisa-
tions (formula-size, formula-depth, treewidth, team-size, number of vari-
ables) under which MC becomes fixed-parameter tractable. Furthermore,
we show that the number of disjunctions or the arity of dependence atoms
(dep-arity) as a parameter both yield a paraNP-completeness result.
Then, we consider the satisfiability problem (SAT) which classically is
known to be NP-complete as well (Lohmann and Vollmer, Studia Logica
2013). There we are presenting a different picture: under team-size, or
dep-arity SAT is paraNP-complete whereas under all other mentioned
parameters the problem is in FPT. Finally, we introduce a variant of the
satisfiability problem, asking for teams of a given size, and show for this
problem an almost complete picture.

Keywords: Propositional dependence logic · Parameterised
complexity · Model checking · Satisfiability

1 Introduction

The logics of dependence and independence are a recent innovation studying
such central formalisms occurring in several areas of research: computer science,
logic, statistics, game theory, linguistics, philosophy, biology, physics, and social
choice theory [18]. Väänänen [35] initiated this subfield of research in 2007,
and nowadays, it is a vibrant area of study [1]. Its focus widened from initially
first-order dependence logic further to modal logic [36], temporal logics [24,25],
probabilistic logics [12], logics for independence [23], inclusion logics [16,22],
multi-team semantics [11], and poly-team semantics [20].

Funded by German Research Foundation (DFG), project ME 4279/1-2.

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 157–174, 2020.
https://doi.org/10.1007/978-3-030-39951-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_10&domain=pdf
http://orcid.org/0000-0002-5651-5391
http://orcid.org/0000-0002-8061-5376
https://doi.org/10.1007/978-3-030-39951-1_10

158 Y. Mahmood and A. Meier

Table 1. (Left) An example database with 4 attributes and universe size 15. (Right)
An encoding with �log2(3)� + �log2(3)� + �log2(5)� + �log2(4)� many propositional
variables.

Instructor Room Time Course

Antti A.10 09.00 Logic
Antti A.10 11.00 Statistics
Antti B.20 15.00 Algebra
Jonni C.30 10.00 LAB
Juha C.30 10.00 LAB
Juha A.10 13.00 Statistics

i1i2 r1r2 t1t2t3 c1c2

00 11 110 11
00 11 111 00
00 00 000 01
01 01 001 10
10 01 001 10
10 11 010 00

In this paper, we study a sub-logic of the modal variant which is called
propositional dependence logic (PDL) [21,37]. The main concept also in this
logic, the dependence atom dep(P ;Q), intuitively states that the variables p ∈ P
functionally determine the values of the variables q ∈ Q. As functional depen-
dence only makes sense on sets of assignments, which Väänänen called teams,
team-semantics are the heart of the satisfaction relation |= in this logic. For-
mally, a team T is a set of classical propositional assignments t : VAR → {0, 1},
and T |= dep(P ;Q) if and only if for all t, t′ ∈ T , we have that t and t′ agree on
the variables in P implies t and t′ agree on variables in Q.

The model checking question (MC), given a team T and a PDL-formula ϕ,
asks if T |= ϕ is true. The satisfiability problem (SAT), given a PDL-formula
ϕ, asks for the existence of a team T such that T |= ϕ. It is known that MC
as well as SAT are NP-complete by Ebbing and Lohmann [14], respectively, by
Lohmann and Vollmer [27]. These authors classify the complexity landscape of
even operator-fragments of PDL yielding a deep understanding of these problems
from a classical complexity point of view. For an overview of how other atoms
(e.g., inclusion, or independence) influence the complexity of these problems
consider the tables in the work Hella et al. [22].

Example 1. We illustrate an example from relational databases providing under-
standing of team logics. Table 1 depicts a database which can be expressed in
PDL via binary encoding of the possible entries for the attributes. The set of
rows then corresponds to a team T . The database satisfies two functional depen-
dencies:

dep({Room, Time}; {Course}) and dep({Instructor, Time}; {Room, Course}).

Whereas, it does not satisfy dep({Room, Time}; {Instructor}) as witnessed by
the tuples (Juha, C.30, 10, LAB) and (Jonni, C.30, 10, LAB). Formally, we have
that

T |= dep({Room, Time}; {Course}) ∧ dep({Instructor, Time}; {Room, Course}),

but

T �|= dep({Room, Time}; {Instructor}).

Parameterised Complexity of Model Checking and Satisfiability 159

Notice that in propositional logic, we cannot express a table of so many values.
As a result, we need to binary encode the values of each column separately. This
might cause a logarithmic blow-up (by binary encoding the universe values for
each column) in the parameter values, for example, it influences the number of
variables. Furthermore, one also has to rewrite variables in the occurring formu-
las accordingly. For instance, as in Table 1, for dep({Room, Time}; {Instructor})
this would yield the formula dep({r1, r2, t1, t2, t3}; {i1, i2}). The parameters dis-
cussed in this paper correspond to the already encoded values. This means that
there is no need in considering this blow-up as in this example.

Often, when a problem is shown to be intrinsic hard, a possible way to fur-
ther unravel the true reasons for the intractability is the framework of parame-
terised complexity theory [10]. Here, one aims for a more fine-grained complexity
analysis involving the study of parameterisations and how they pin causes for
intractability substantially. One distinguishes two runtimes of a different quality:
f(k) · p(|x|) versus p(|x|)f(k), where f is an arbitrary computable function, p is
a polynomial, |x| the input length and k the value of the parameter. Clearly,
both runtimes are polynomial in x for each fixed k but the first one is much
better as the polynomial degree is independent of the parameter’s value. Prob-
lems that can be solved with algorithms running in a time of the first kind
are said to be fixed-parameter tractable (or FPT). Whereas, problems of cate-
gory two are in the complexity class XP. It is known that FPT � XP [15].
Whenever runtimes of the form f(k) · p(|x|) are considered with respect to
nondeterministic machines, one studies the complexity class paraNP ⊇ FPT.
In between these two classes a presumably infinite W-hierarchy is contained:
FPT ⊆ W[1] ⊆ W[2] ⊆ · · · ⊆ paraNP. It is unknown whether any of these
inclusions is strict. Showing W[1]-hardness of a problem intuitively corresponds
to being intractable in the parameterised world.

The area of research of parameterised problems is tremendously growing and
often provides new insights into the inherent difficulty of the studied problems
[9]. However, the area of dependence logic is rather blank with respect to this
direction of research, only Meier and Reinbold [30] investigated the (parame-
terised) enumeration complexity of a fragment of PDL recently. As a subject of
this research, we want to initiate and to further push a study of the parame-
terised complexity of problems in these logics.

Applications. The teams in the team semantic bear a close resemblance with the
relations studied in relational database theory. Moreover, dependence atoms are
analogous to functional dependencies in the context of database systems. The
MC problem for dependence logic, for example, is equivalent to determining
whether a relation in the database satisfies a functional dependency. The teams
of PDL also relate to theinformation states of inquisitive logic [7]; a semantic
framework for the study of the notion of meaning and information exchange
among agents.

Contributions. We study a wealth of parameters, also relevant from the perspec-
tive of database theory. Specifically, the parameter team-size corresponds to the

160 Y. Mahmood and A. Meier

Table 2. Complexity classification overview showing the results of the paper with
pointers to the theorems. All results are completeness results. The question mark sym-
bol means that the precise complexity is unknown.

Parameter MC SAT m-SAT

formula-tw paraNP14 FPT22 ?

formula-team-tw FPT19 see above see above

team-size FPT16 paraNP21 paraNP26

formula-size FPT18 FPT24 FPT25

formula-depth FPT18 FPT24 FPT25

#variables FPT18 FPT24 FPT25

#splits paraNP17 FPT23 ?

dep-arity paraNP15 paraNP21 paraNP26

number of entries in the database and #variables is the number of attributes.
The parameter formula-tw denotes how much interleaving is present among the
attributes in the query and dep-arity bounds the size of functional dependencies
in the query. Furthermore, the parameter formula-team-tw bounds the interleav-
ing between a query and the database, formula-size limits the size of the query,
formula-depth restricts the nesting depth of the query, and #splits controls the
unions in relational algebra queries. With respect to all parameters, we study
MC and SAT. Furthermore, we introduce a satisfiability variant m-SAT, which
has an additional unary input m ∈ N, and asks for a satisfying team of size
exactly m.

In Table 2, we give an overview of our results. In this article, we prove
dichotomies for MC and SAT: depending on the parameter the problem is either
fixed-parameter tractable or paraNP-complete. Only the satisfiability variant
under the parameters formula-tw and #splits resist a complete classification and
are left for further research.

Related Work. The notion of treewidth is due to Robertson and Seymour [32].
The study of the complexity of bounded treewidth query evaluation is a
vibrant area of research [3–6,13,19]. As stated earlier, the formulas of depen-
dence logic correspond to the functional dependencies in the database context.
Bläsius et al. [2] study the parameterised complexity of dependency detection.
The problem is defined as, given a database T and a positive integer k whether
there is a non-trivial functional dependency of size (dep-arity in our notion) at
most k that is satisfied by T . These authors prove that this problem is W[2]-
complete.

Organisation of the Article. At first, we introduce some required notions and
definitions in (parameterised) complexity theory, dependence logic, and proposi-
tional logic. Then we study the parameterised complexity of the model checking
problem. We proceed with the satisfiability problem and study a variant of it.
Finally, we conclude and discuss open questions. For results marked with a (�)
their proof can be found in the related full version [29].

Parameterised Complexity of Model Checking and Satisfiability 161

2 Preliminaries

In this paper, we assume familiarity with standard notions in complexity the-
ory [31] such as the classes NP and P.

2.1 Parameterised Complexity

We will recapitulate some relevant notion of parameterised complexity theory,
now. For a broader introduction consider the textbook of Downey and Fellows
[10], or Flum and Grohe [15]. A parameterised problem (PP) Π ⊆ Σ∗ × N

consists of tuples (x, k), where x is called the instance and k the (value of the)
parameter.

Definition 2 (Fixed-parameter tractable and paraNP). Let Π be a PP
over Σ∗ × N. We say that Π is fixed-parameter tractable (or is in the class
FPT) if there exists a deterministic algorithm A deciding Π in time f(k) ·
|x|O(1) for every input (x, k) ∈ Σ∗, where f is a computable function. If A is a
nondeterministic algorithm instead, then Π belongs to the class paraNP.

Let P be a PP over Σ∗ × N. Then the �-slice of P , for � ≥ 0, is the set
P� := {x | (x, �) ∈ P}. It is customary to use the notation O�(f(k)) to denote the
runtime dependence only on the parameter and to ignore the polynomial factor
in the input. We will use the following result from parameterised complexity
theory to prove paraNP-hardness results.

Proposition 3 ([15, Theorem 2.14]). Let P be a PP. If there exists an � ≥ 0
such that P� is NP-complete, then P is paraNP-complete.

Moreover, we will use the following folklore result to get several upper bounds.

Proposition 4. Let Q be a problem such that (Q, k) is in FPT and let � be
another parameter such that k ≤ f(�) for some computable function f , then
(Q, �) is also in FPT.

2.2 Propositional Dependence Logic

Let VAR be a countably infinite set of variables. The syntax of propositional
dependence logic (PDL) is defined via the following EBNF:

ϕ ::=
 | ⊥ | x | ¬x | ϕ ∨ ϕ | ϕ ∧ ϕ | dep(X;Y) | ¬dep(X;Y),

where
 is verum, ⊥ is falsum, x ∈ VAR is a variable, X,Y ⊂ VAR are finite
sets of variables, dep(·; ·) is called the dependence atom, and the disjunction ∨
is also called split-junction. Observe that we only consider atomic negation. We
let PL be defined as the PDL-formulas without dep(·; ·). Finally, the set X in
dep(X;Y) can be empty, giving rise to formulas of the form dep(;Y). To simplify
the notation, when either set in the arguments of dep(X;Y) is singleton then we
write, for example, dep(x; y) instead of dep({x}; {y}).

162 Y. Mahmood and A. Meier

Definition 5 (Team semantics). Let ϕ,ψ be PDL-formulas and P,Q ⊆ VAR
be two finite sets of variables. A team T is a set of assignments t : VAR → {0, 1}.
Furthermore, we define the satisfaction relation |= as follows, where T |=
 is
always true, T |= ⊥ is never true, and T |= ¬dep(P ;Q) iff T = ∅:

T |= x iff ∀t ∈ T : t(x) = 1
T |= ¬x iff ∀t ∈ T : t(x) = 0
T |= ϕ ∧ ψ iff T |= ϕ and T |= ψ

T |= ϕ ∨ ψ iff ∃T1∃T2(T1 ∪ T2 = T) : T1 |= ϕ and T2 |= ψ

T |= dep(P ;Q) iff ∀t, t′ ∈ T :
∧

p∈P

t(p) = t′(p) implies
∧

q∈Q

t(q) = t′(q)

Observe that for formulas of the form dep(;Q) the team has to be constant
with respect to Q. That is why such atoms are called constancy atoms. Note that
in literature there exist two semantics for the split-junction operator: lax and
strict semantics (e.g., Hella et al. [22]). Strict semantics requires the “splitting
of the team” to be a partition whereas lax semantics allow an “overlapping” of
the team. We use lax semantics here. Notice that the computational complexity
for SAT and MC in PDL are the same irrespective of the considered semantics.
Furthermore, our proofs work for both semantics. Also further note that allowing
an unrestricted negation operator dramatically increases the complexity of SAT
in this logic to ATIME-ALT(exp, poly) (alternating exponential time with
polynomially many alternations) as shown by Hannula et al. [21]. That is one
reason why we stick to atomic negation.

In the following, we define three well-known formula properties which are
relevant to results in the paper. A formula φ is flat if, given any team T , we
have that T |= φ ⇐⇒ {s} |= φ for every s ∈ T . A logic L is downwards
closed if for every L-formula φ and team T , if T |= φ then for every P ⊆ T we
have that P |= φ. A formula φ is 2-coherent if for every team T , we have that
T |= φ ⇐⇒ {si, sj} |= φ for every si, sj ∈ T . The classical PL-formulas are
flat. This also implies that for PL-formulas, the truth value is evaluated under
each assignment individually, consequently, the semantics is the usual Tarski
semantic. Moreover, PDL is downwards closed and every dependence atom is
2-coherent.

2.3 Representation of Inputs as Graphs

As we will consider specific structural parameters, we need to agree on a represen-
tation of formulas, respectively, teams. Classically, propositional formulas were
represented via different kinds of graphs (e.g., Gaifman graph, primal graph)
[33]. However, in this setting usually CNF-formulas are considered. Coping with
this restriction, Lück et al. [28] defined syntax circuits for temporal logic formu-
las that also allow arbitrary formulas. In our setting, we continue this direction
and define the syntax (or formula) circuit with respect to a PDL-formula.

Parameterised Complexity of Model Checking and Satisfiability 163

An important observation regarding the graph representation for the PDL-
formulas is due to Grädel [17]. In the usual setting for logics with team semantics,
we take the syntax tree and not the associated circuit, that is, we distinguish
between different occurrences of the same subformula. The reason for this choice
is that a formula φ ∨ φ is not equivalent to φ, and in its evaluation, different
teams are entitled to the two occurrences of φ in the formula. Consequently, the
well-formed formulas of PDL can be seen as binary trees with leaves as atomic
subformulas (variables and dependence atoms).

Example 6. The team {00, 01, 10, 11} satisfies dep(x; y) ∨ dep(x; y), even though
it does not satisfy dep(x; y).

Notice that according to the graph representation of formulas as trees, the
treewidth (Definition 8) of a PDL-formula is already 1. As a consequence, the
1-slice of each problem is NP-hard and both problems (MC and SAT) are
paraNP-complete when parameterised by the treewidth of the syntax tree of
a PDL-formula. For this reason we consider the syntax circuit rather than the
syntax tree as a graph structure.

Given an instance 〈T, Φ〉 of the model checking problem, where Φ is a PDL-
formula with propositional variables {x1, . . . , xn} ⊆ VAR and T = {s1, . . . sm} is
a team of assignments si : VAR → {0, 1}. Then we consider the graph-structure
AT,Φ with vocabulary τT,Φ and represent the formula by its syntax circuit. Hence-
forth, we write A instead of AT,Φ when it is clear that our input instance is T, Φ
and define the vocabulary as

τT,Φ := {SF1,�2, r,VAR1,NEG2,CONJ3,DISJ3,DEP3,

inTeam1, isTrue2, isFalse2, c1, . . . , cm},

where the superscripts denote the arity of each relation. The set of vertices A of
the graph is SF(Φ) ∪ {cA

1 , . . . , cA
m}, where SF(Φ) denotes the set of subformulas

of Φ.

– SF and VAR are unary relations representing ‘is a subformula of Φ’ and ‘is a
variable in Φ’ respectively.

– � is a binary relation such that φ �A ψ iff ψ is the immediate subformula of
φ and r is a constant symbol representing Φ.

– The set {c1, . . . , cm} encodes the team T , where each ci is interpreted as
cA
i ∈ A and each ci corresponds to an assignment si ∈ T for i ≤ m.

– inTeam(c) is true if and only if c ∈ {c1, . . . , cm}.
– isTrue and isFalse relate variables with the team elements. isTrue(c, x) (resp.,

isFalse(c, x)) is true if and only if x is mapped 1 (resp., 0) by the assignment
interpreted by c.

The remaining relations interpret how subformulas are related to each other.

Definition 7 (Gaifman graph). Given a team T and a PDL-formula Φ, the
Gaifman graph GT,Φ = (A,E) of the τT,Φ-structure A is defined as

E := {{u, v} | u, v ∈ A, u and v share a tuple in a relation in A}.

164 Y. Mahmood and A. Meier

∧r

∨1

x3 ¬

x1

∨2

dep(x3;x4) ∧1

x1 x2

x1 x2 x3 x4

∧1 dep

¬ ∨1

∨2

∧r

∧r,∨1,∨2

∨1,∨2, dep

∨2, dep, x4

∨2, dep, x3

∨1,∨2,∧1

∨2,∧1, x2

∨2,∧1, x1

∨2, x1,¬

Fig. 1. An example syntax tree (left) with the corresponding circuit graph (middle)
and a tree decomposition (right) for (x3 ∨ ¬x1) ∧ [(dep(x3; x4)) ∨ (x1 ∧ x2)].

Definition 8 (Treewidth). The tree-decomposition of a given graph G =
(V,E) is a tree T = (B,ET), where the vertex set B ⊆ P(V) is called bags
and ET is the edge relation such that the following is true: (i)

⋃
b∈B = V (ii) for

every {u, v} ∈ E there is a bag b ∈ B with u, v ∈ b, and (iii) for all v ∈ V the
restriction of T to v (the subtree with all bags containing v) is connected. The
width of a given tree-decomposition T = (B,ET) is the size of the largest bag
minus one: maxb∈B |b| − 1. The treewidth of a given graph G is the minimum
over all widths of tree-decompositions of G.

Observe that if G is a tree then the treewidth of G is one. Intuitively, one can
say that treewidth accordingly is a measure of tree-likeliness of a given graph.

Example 9. Figure 1 represents a graph (in middle) with a tree-decomposition
(on the right). Since the largest bag is of size 3, the graph has a treewidth of 2.

2.4 Considered Parameterisations

We consider eight different parameters for all three problems (MC, SAT and
m-SAT). These include formula-tw, formula-team-tw, team-size, formula-size,
#variables, formula-depth, #splits and dep-arity. All these parameters arise nat-
urally in the problems we study. #splits denotes the number of times a split
junction (∨) appears in a formula and #variables denotes the total number of
propositional variables. The parameter formula-depth is the depth of the syntax
tree of Φ, that is, the length of the longest path from root to any leaf in the
tree. Arity of a dependence atom dep(P ;Q) is the length of P and dep-arity is
the maximum arity of a dependence atom in the input formula.

Regarding treewidth, notice first that for the MC problem, we can also
include the assignment-variable relation in the graph representation. This yields
two treewidth notions formula-tw and formula-team-tw, the name emphasises
whether the team is also part of the graph. formula-tw is the treewidth of the
syntax circuit of input formula alone whereas formula-team-tw comes from the
syntax circuit when team elements are also part of the representation. Clearly,
formula-team-tw is only relevant for the MC problem.

Parameterised Complexity of Model Checking and Satisfiability 165

team-size

#variables formula-size

formula-depthformula-team-tw

L10

L10

L11
L11 L10

Fig. 2. The relationship among different parameters. The direction of arrow in p ← q
implies that bounding q results in bounding p. The dotted line indicates that the
parameter bounds either (minimum) of the given two. Li means the Lemma i.

The following lemma proves relationships between several of the aforemen-
tioned parameters (also see Fig. 2). The notation κ(T, Φ) stands for the param-
eter κ of the input instance (T, Φ).

Lemma 10. Given a team T and a formula Φ then

1. team-size(T, Φ) ≤ 2#variables(T,Φ)

2. team-size(T, Φ) ≤ 2formula-size(T,Φ)

3. formula-size(T, Φ) ≤ 22·formula-depth(T,Φ)

Proof. If a PDL-formula Φ has m variables then there are 2m many assign-
ments and the maximum size for a team is 2m. As a result, we have team-size ≤
2#variables. Furthermore, the number of variables in a PDL-formula Φ is bounded
by the formula-size and as a consequence, we have 2#variables ≤ 2formula-size. This
proves the second claim.

If a formula Φ has formula-depth = d then there are ≤ 2d leaves in the (binary)
syntax tree of Φ and ≤ 2d internal nodes. Then formula-size ≤ 22d is true. ��
Now we prove the following non-trivial lemma stating that treewidth of the
structure AT,Φ bounds either the team size or the number of variables. This
implies that bounding the treewidth of the structure also bounds either of the
two parameters. Recall that we talk about the formula-team-tw of the Gaifman
graph underlying the structure AT,Φ that encodes the MC question.

Lemma 11. Let 〈T, Φ〉 be a given MC instance. Then the following relationship
between parameters is true,

formula-team-tw(T, Φ) ≥ min{team-size(T, Φ),#variables(T, Φ)}

Proof. We prove that if formula-team-tw is smaller than the two then such a
decomposition must have cycles and hence cannot be a tree decomposition. The
proof idea uses the fact that in the Gaifman graph AT,Φ, every team element
is related to each variable. As a consequence, in any tree decomposition, the
assignment-variable relations ‘isTrue’ and ‘isFalse’ cause some bag to have their
size larger than either the team size or the number of variables (based on which
of the two values is smaller). We consider individual bags corresponding to an

166 Y. Mahmood and A. Meier

edge in the Gaifman graph due to the relations from τT,Φ. Let {x1, . . . , xn} be
the variables that also appear as leaves in the formula tree 〈SF(Φ),�, Φ〉.

Consider a minimal tree decomposition 〈BT ,≺〉 for the Gaifman graph of
A. Denote by Bxi,cj the bag that covers the edge between a variable xi and
an assignment-element cj , that is, either isTrue(xi, cj) or isFalse(xi, cj) is true.
Moreover, denote by Bxi,αr

the bag covering the edges between a variable xi and
its immediate �-predecessor αr. Recall that in the formula part of the Gaifman
graph, there is a path from each variable xi to the formula Φ due to �. This
implies that there exists a minimal path between any pair of variables in the
Gaifman graph, and this path passes through some subformula Ψ of Φ. Let
Bx,α1 , Bα1,α2 , . . . Bαn,Ψ , . . . BΨ,βn

, . . . Bβ2,β1 , Bβ1,y be the sequence of bags that
covers �A-edges between x and y. Without loss of generality, we assume that
all these bags are distinct. Now, for any pair x, y of variables, the bags Bx,ci

and By,ci contain ci for each i ≤ m and as a consequence, we have either of the
following two cases.

– The two bags are equal, that is Bx,ci = By,ci and as a consequence, we
have |Bx,ci | ≥ 3 because Bx,ci contains at least x, y, ci. Moreover, if this is
true (otherwise case two applies) for each pair of variables, then there is a
single bag Bci that contains all the variables and the element ci. This means
the maximum bag size must be larger than the total number of variables, a
contradiction.

– Every path between Bx,ci and By,ci contains ci. We know that if a Bx,α1-
Bβ1,y-path between x and y due to � exist, then the bags Bx,ci and By,ci can-
not be incident because this will produce a cycle, a contradiction again. Now,
for two different assignment-elements ci, cj , consider the bags By,ci , By,cj .
If these two bags are incident then Bx,cj , By,cj cannot be incident and the
path between Bx,cj , By,cj must contain cj . Notice that both By,ci , By,cj and
Bx,cj , By,cj cannot be incident since this would, again, create a cycle. Conse-
quently, the only possible case is that either By,ci and By,cj are not incident
and every path between these bags contains y, or Bx,cj and By,cj are not inci-
dent and every path between these bags contains cj . Also see Fig. 3 explaining
this situation.

Finally, since this is true for all the variables and all the elements ci with i ≤ m
this proves that either there is a bag that contains all the variables, or there is
one that contains all ci’s. The remaining case that there are cycles in the tree
decomposition is not applicable. This proves the claim and completes the proof
to the lemma. ��

The following corollary is immediate due to previous lemma.

Corollary 12. Let Φ ∈ PDL and T be a team. Then formula-team-tw(T, Φ)
bounds team-size(T, Φ).

Proof. If formula-team-tw ≥ #variables then bounding formula-team-tw bounds
#variables which in turn bounds team-size because team-size ≤ 2#variables. Other-
wise we already have formula-team-tw ≥ team-size according to Lemma 11. ��

Parameterised Complexity of Model Checking and Satisfiability 167

Bx,cj By,cj

Bx,ci By,ci

Fig. 3. The rectangles represent bags corresponding to a variable-assignment relation.
If the ci-bags do not contain cj-nodes, then there can be only either dotted or dashed
edges between the bags to avoid cycles.

3 Parameterised Complexity of Model Checking in PDL

In this section, we study the MC question under various parameterisations.
Table 2 contains a complete list of the results.

Proposition 13 ([14, Thm. 3.2]). MC is NP-complete.

Theorem 14. MC parameterised by formula-tw is paraNP-complete.

Proof. The upper bounds follows from Proposition 13. For lower bound we prove
that 1-slice of the problem is NP-hard by reducing from 3SAT. The reduction
provided by Ebbing and Lohmann (Proposition 13) uses Kripke semantics (as
they aim for a modal logic related result). We slightly modify it to fit our pre-
sentation (the correctness proof is the same). Let Φ := C1 ∧ . . . Cm be a 3CNF
over the variables {x1, . . . , xn}. We form an instance 〈T, Ψ〉 of PDL-MC such
that VAR(Ψ) = {p1, . . . , pn, r1 . . . , rn}. The team T = {s1, . . . , sm} contains m
assignments where each assignment si : VAR(Ψ) → {0, 1} is defined as follows,

si(pj) = si(rj) = 1 if xj ∈ Ci,

si(pj) = 0, si(rj) = 1 if ¬xj ∈ Ci,

si(pj) = si(rj) = 0 otherwise.

Finally, let Ψ :=
n∨

j=1

(rj ∧ dep(; pj)). The proof of T |= Ψ ⇐⇒ Φ ∈ SAT

follows from [14, Thm. 3.2]. Notice that none other parameter except formula-tw
is fixed in advance. The syntax circuit of Ψ yields a tree, as a consequence,
formula-tw = 1. This completes the proof. ��

Notice that the formula in the reduction from 3SAT has fixed arity for any
dependence atom (that is, dep-arity = 0). As a consequence, we obtain the fol-
lowing corollary.

Corollary 15. MC parameterised by dep-arity is paraNP-complete.

The main source of difficulty in the model checking problem seems to be
the split-junction operator. For a team of size k and a formula with only one
split-junction there are 2k many candidates for the correct split and each can

168 Y. Mahmood and A. Meier

Algorithm 1. check(T, Φ), recursive bottom-up algorithm solving the
MC parameterised by team-size.
Input : A PDL-formula Φ and a team T
Output: true if T |= Φ, otherwise false

1 foreach non-root node v in the syntax tree do Lv = {∅}
2 foreach leaf � of the syntax tree do // find all possible sub-teams for �
3 L� = {∅}
4 foreach P ⊆ T do
5 if � = X and ∀s ∈ P : s(X) = 1 then L� ← L� ∪ {P}
6 else if � = ¬X and ∀s ∈ P : s(X) = 0 then L� ← L� ∪ {P}
7 else if � = dep(Q; r) and ∀si∀sj

∧

q∈Q

si(q) = sj(q) ⇒ si(r) = sj(r) then
8 L� ← L� ∪ {P}

9 foreach α1, α2 with α = α1 ◦ α2 and Lαi �= ∅ for i = 1, 2 do
10 foreach P ∈ Lα1 , Q ∈ Lα2 do
11 if ◦ = ∧ and P = Q then Lα ← Lα ∪ {P}
12 else if ◦ = ∨ then Lα ← Lα ∪ {P ∪ Q}
13 if T ∈ LΦ then return true else return false

be verified in polynomial time. As a result, an exponential runtime in the input
length seems necessary. However, if the team size (k) is considered as a parameter
then the problem can be solved in polynomial time with respect to the input
size and exponentially in the parameter. We consider both parameters (team-size
and #splits) in turn.

Theorem 16. MC parameterised by team-size is in FPT.

Proof. We claim that Algorithm 1 solves the task in fpt-time. The correctness
follows from the fact that the procedure is simply a recursive definition of truth
evaluation of PDL-formulas in bottom-up fashion.

Recall that the input formula Φ is a binary tree. The procedure starts at the
leaf level by checking whether for each subformula α and each subteam P ⊆ T ,
P |= α. Then recursively, if P |= αi for i = 1, 2 and there is a subformula α such
that α = α1 ∧ α2 then it answers that P |= α. Moreover, if Pi |= αi for i = 1, 2
and there is a subformula α such that α = α1 ∨ α2 then it answers that P |= α
where P = P1 ∪ P2.

The first loop runs in O�(2k) steps for each leaf node and there are |Φ| many
iterations, which gives a running time of |Φ|·O�(2k), where team-size = k. At each
inner node, there are at most 2k candidates for P and Q and as a consequence,
at most 22k pairs that need to be checked. This implies that the loop for each
inner node can be implemented in O�(22k) steps. Furthermore, the loop runs
once for each pair of subformulas α1, α2 such that α1 ◦ α2 is also a subformula
of Φ. This gives a running time of |Φ| · O�(22k) for this step. Finally, in the last
step a set of size k needs to be checked against a collection containing 2k such
sets, this can be done in k · O(2k) steps.

Parameterised Complexity of Model Checking and Satisfiability 169

vj vi

vk

e�

em

xi xj xk y�,i y�,j y�,k ym,i ym,j ym,k

si 0 1 1 1 1 1 1 1 1
sj 1 0 0 1 1 1 1 0 1
sk 1 0 0 1 1 0 1 1 1

Fig. 4. A graph G : 〈{vi, vj , vk}, {el, em}〉 and a corresponding team.

We conclude that the above procedure solves the MC problem in p(|Φ|) ·
O(22k) steps for some polynomial p. The fact that we do not get a blow-up in
the number of subformulas is due to the reason that the formula tree is binary.
The procedure operates on a pair of subformulas in each step and the label size
(|Lα|) at the end of this step is again bounded by 2k. ��

Regarding the parameter #splits, we show paraNP-completeness by reduc-
ing from the 3-colouring problem (3COL) and applying Proposition 3. The idea
of the reduction from 3COL is to construct a team as shown in Fig. 4 in com-
bination with the disjunction of three times the formula

∧
ek={vi,vj} dep(yk;xi).

Intuitively, vertices of the graph correspond to assignments in the team and the
three splits then map to the three colours.

Theorem 17 (�). MC parameterised by #splits is paraNP-complete.

The following cases then can be easily deduced.

Theorem 18 (�). MC under the parameterisations formula-size, formula-depth
or #variables is FPT.

Finally, the case for formula-team-tw follows due to Corollary 12 in conjunction
with the FPT result for team-size (Lemma 16).

Corollary 19. MC parameterised by formula-team-tw is FPT.

4 Satisfiability

In this section, we study SAT under various parameterisations, so the question
of whether there exists a team T for a given formula Φ such that T |= Φ. Notice
first, that the question is equivalent to finding a singleton team. This is since
PDL is downwards closed. Consequently, if there is a satisfying team, then a
singleton team satisfies the formula. As a result, team semantics coincides with
the usual Tarskian semantics. This facilitates, for example, determining the truth
value of disjunctions in the classical way. Accordingly, simplifying the notation
a bit, for SAT we now look for an assignment rather than a singleton team that
satisfies the formula.

Corollary 20. The problem SAT under the parameterisations formula-team-tw
and formula-tw is same.

170 Y. Mahmood and A. Meier

The following result is obtained by classical SAT being NP-complete [8,26].

Corollary 21. SAT under the parameterisations team-size, or dep-arity is
paraNP-complete.

Proof. The 1-slice regarding team-size (a singleton team is the same as an
assignment), and the 0-slice regarding dep-arity (no dependence atoms at all) is
NP-hard. ��

Turning towards treewidth, notice that classical propositional SAT is fixed-
parameter tractable when parameterised by treewidth due to Samer and Szeider
[34, Thm. 1]. However, we are unable to immediately utilise their result because
Samer and Szeider study CNF-formulas and we have arbitrary formulas instead.
Yet, Lück et al. [28, Cor. 4.7] studying temporal logics under the parameterised
approach, classified, as a byproduct, the propositional satisfiability problem with
respect to arbitrary formulas to be fixed-parameter tractable.

Corollary 22. SAT parameterised by formula-tw is in FPT.

Proof. As before, we need to find a singleton team. This implies that split-
junctions have the same semantics as classical disjunctions and dependence
atoms are always satisfied. So replacing every occurrence of a dependence atom
dep(P ;Q) by
 yields a propositional logic formula. This substitution does not
increase the treewidth. Then the result follows by Lück et al. [28, Cor. 4.7]. ��

Now, we turn towards the parameter #splits. We present a procedure that
constructs a satisfying assignment s such that s |= Φ if there is one and otherwise
it answers no. The idea is that this procedure needs to remember the positions
where a modification in the assignment is possible. We show that the number of
these positions is bounded by the parameter #splits.

Consider the syntax tree of Φ where, as before, multiple occurrences of sub-
formulas are allowed. The procedure starts at the leaf level with satisfying assign-
ment candidates (partial assignments, to be precise). Reaching the root it con-
firms whether it is possible to have a combined assignment or not. We assume
that the leaves of the tree consist of literals or dependence atoms. Accordingly,
the internal nodes of the tree are only conjunction and disjunction nodes. The
procedure sets all the dependence atoms to be trivially true (as we satisfy them
via every singleton team). Additionally, it sets all the literals satisfied by their
respective assignment. Ascending the tree, it checks the relative conditions for
conjunction and disjunction by joining the assignments and thereby giving rise
to conflicts. A conflict arises (only at a conjunction node) when two assignments
are joined with contradicting values for some variable. At this point, it sets this
variable x to a conflict state c. At disjunction nodes the assignment stores that
it has two options and keeps the assignments separately.

Joining a true-value from a dependence atom affects the assignment only at
disjunction nodes. This corresponds to the intuition that a formula of the form
dep(P ;Q) ∨ ψ is true under any assignment. Whereas, at a conjunction node,
when an assignment s joins with a true, the procedure returns the assignment s.

Parameterised Complexity of Model Checking and Satisfiability 171

Since at a split the procedure returns both assignments, for k splits there could
be ≤ 2k-many assignment choices. At the root node if at least one assignment
is consistent then we have a satisfying assignment. Otherwise, if all the choices
contain conflicts over some variables then there is no such satisfying singleton
team.

Theorem 23 (�). SAT parameterised by #splits is FPT. Moreover, there is an
algorithm that solves the problem in O(2#splits(Φ) · |Φ|O(1)) for any Φ ∈ PDL.

The remaining cases follow easily.

Theorem 24 (�). SAT parameterised by #variables, formula-size or
formula-depth is FPT.

A satisfiability Variant
The shown results suggest that it might be interesting to study the following
variant of SAT, in which we impose an additional input 1m (unary encoding) with
m ≥ 2 and ask for a satisfying team of size m. Let us call the problem m-SAT.
We wish to emphasise that m-SAT is not the same as the SAT parameterised
by team-size.

Theorem 25 (�). m-SAT under the parameterisations #variables, formula-size,
or formula-depth is FPT.

Neither the arity of the dependence atoms nor the team-size alone are fruitful
parameters which follows from Corollary 21.

Corollary 26. m-SAT parameterised by team-size, or dep-arity is paraNP-
complete.

5 Conclusion

In this paper, we started a systematic study of the parameterised complexity
of model checking and satisfiability in propositional dependence logic. For both
problems, we exhibited a complexity dichotomy (see Table 2): depending on the
parameter, the problem is either FPT or paraNP-complete. Interestingly, there
exist parameters for which MC is easy, but SAT is hard (team-size) and vice versa
(#splits).

In the end, we introduced a satisfiability question which also asks for a team
of a given size (m-SAT). This has not been studied at all in the setting of team
logics, yet. We pose it as an interesting problem to study. Here, we leave the
cases for #splits and formula-tw open for further research.

As future work, we want to study combinations of the studied parameters,
e.g., #splits + dep-arity. This parameter is quite interesting, as dep-arity alone
is always hard for all three problems, whereas adding #splits allows for SAT
to reach FPT. It is also interesting to observe that in both of our reductions
for proving hardness of MC under the parametrisation #splits and dep-arity, if
dep-arity is fixed then #splits is unbounded and vice versa.

172 Y. Mahmood and A. Meier

Another important question for future research is to consider the parame-
terised version of validity and implication problem for PDL. Finally, we aim,
besides answering the open cases, to study further operators such as indepen-
dence and inclusion atoms.

References

1. Abramsky, S., Kontinen, J., Väänänen, J., Vollmer, H. (eds.): Dependence Logic,
Theory and Applications. Springer, Basel (2016). https://doi.org/10.1007/978-3-
319-31803-5

2. Bläsius, T., Friedrich, T., Schirneck, M.: The parameterized complexity of
dependency detection in relational databases. In: Guo, J., Hermelin, D. (eds.)
11th International Symposium on Parameterized and Exact Computation (IPEC
2016). Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl,
Germany, vol. 63, pp. 6:1–6:13. Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik (2017). http://drops.dagstuhl.de/opus/volltexte/2017/6920, https://doi.
org/10.4230/LIPIcs.IPEC.2016.6

3. Chen, H., Mengel, S.: A trichotomy in the complexity of counting answers to con-
junctive queries. In: Arenas, M., Ugarte, M. (eds.) 18th International Conference
on Database Theory, ICDT 2015, Brussels, Belgium, 23–27 March 2015. LIPIcs,
vol. 31. pp. 110–126. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2015).
https://doi.org/10.4230/LIPIcs.ICDT.2015.110

4. Chen, H., Mengel, S.: Counting answers to existential positive queries: a complex-
ity classification. In: Milo, T., Tan, W.-C. (eds.) Proceedings of the 35th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2016, San Francisco, CA, USA, 26 June–01 July 2016, pp. 315–326. ACM (2016).
https://doi.org/10.1145/2902251.2902279

5. Chen, H., Mengel, S.: The logic of counting query answers. In: 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, 20–23 June 2017, pp. 1–12. IEEE Computer Society (2017). https://doi.
org/10.1109/LICS.2017.8005085

6. Chen, H., Müller, M.: The fine classification of conjunctive queries and parame-
terized logarithmic space. TOCT 7(2), 7:1–7:27 (2015). https://doi.org/10.1145/
2751316

7. Ciardelli, I., Groenendijk, J., Roelofsen, F.: Towards a logic of information
exchange - an inquisitive witness semantics. In: Bezhanishvili, G., Löbner, S.,
Marra, V., Richter, F. (eds.) TbiLLC 2011. LNCS, vol. 7758, pp. 51–72. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-36976-6 6

8. Cook, S.A.: The complexity of theorem-proving procedures. In: Harrison, M.A.,
Banerji, R.B., Ullman, J.D. (eds.) Proceedings of the 3rd Annual ACM Symposium
on Theory of Computing, Shaker Heights, Ohio, USA, 3–5 May 1971, pp. 151–158.
ACM (1971). https://doi.org/10.1145/800157.805047

9. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

10. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts in
Computer Science. Springer, London (2013). https://doi.org/10.1007/978-1-4471-
5559-1

11. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Approximation and
dependence via multiteam semantics. Ann. Math. Artif. Intell. 83(3–4), 297–320
(2018). https://doi.org/10.1007/s10472-017-9568-4

https://doi.org/10.1007/978-3-319-31803-5
https://doi.org/10.1007/978-3-319-31803-5
http://drops.dagstuhl.de/opus/volltexte/2017/6920
https://doi.org/10.4230/LIPIcs.IPEC.2016.6
https://doi.org/10.4230/LIPIcs.IPEC.2016.6
https://doi.org/10.4230/LIPIcs.ICDT.2015.110
https://doi.org/10.1145/2902251.2902279
https://doi.org/10.1109/LICS.2017.8005085
https://doi.org/10.1109/LICS.2017.8005085
https://doi.org/10.1145/2751316
https://doi.org/10.1145/2751316
https://doi.org/10.1007/978-3-642-36976-6_6
https://doi.org/10.1145/800157.805047
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/s10472-017-9568-4

Parameterised Complexity of Model Checking and Satisfiability 173

12. Durand, A., Hannula, M., Kontinen, J., Meier, A., Virtema, J.: Probabilistic team
semantics. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol. 10833, pp.
186–206. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-90050-6 11

13. Durand, A., Mengel, S.: Structural tractability of counting of solutions to conjunc-
tive queries. Theory Comput. Syst. 57(4), 1202–1249 (2015). https://doi.org/10.
1007/s00224-014-9543-y

14. Ebbing, J., Lohmann, P.: Complexity of model checking for modal dependence
logic. In: Bieliková, M., Friedrich, G., Gottlob, G., Katzenbeisser, S., Turán, G.
(eds.) SOFSEM 2012. LNCS, vol. 7147, pp. 226–237. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-27660-6 19

15. Flum, J., Grohe, M.: Parameterized Complexity Theory. Texts in Theoretical Com-
puter Science. An EATCS Series. Springer, Heidelberg (2006). https://doi.org/10.
1007/3-540-29953-X

16. Galliani, P.: Inclusion and exclusion dependencies in team semantics - on some log-
ics of imperfect information. Ann. Pure Appl. Log. 163(1), 68–84 (2012). https://
doi.org/10.1016/j.apal.2011.08.005

17. Grädel, E.: Model-checking games for logics of imperfect information. Theor. Com-
put. Sci. 493, 2–14 (2013). https://doi.org/10.1016/j.tcs.2012.10.033

18. Grädel, E., Kontinen, J., Väänänen, J., Vollmer, H.: Logics for dependence
and independence (Dagstuhl seminar 15261). Dagstuhl Reports 5(6), 70–85
(2016). http://drops.dagstuhl.de/opus/volltexte/2016/5508, https://doi.org/10.
4230/DagRep.5.6.70

19. Grohe, M., Schwentick, T., Segoufin, L.: When is the evaluation of conjunctive
queries tractable? In: Vitter, J.S., Spirakis, P.G., Yannakakis, M. (eds.) Proceedings
on 33rd Annual ACM Symposium on Theory of Computing, Heraklion, Crete,
Greece, 6–8 July 2001, pp. 657–666. ACM (2001). https://doi.org/10.1145/380752.
380867

20. Hannula, M., Kontinen, J., Virtema, J.: Polyteam semantics. In: Artemov, S.,
Nerode, A. (eds.) LFCS 2018. LNCS, vol. 10703, pp. 190–210. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-72056-2 12

21. Hannula, M., Kontinen, J., Virtema, J., Vollmer, H.: Complexity of propositional
logics in team semantic. ACM Trans. Comput. Log. 19(1), 2:1–2:14 (2018). https://
doi.org/10.1145/3157054

22. Hella, L., Kuusisto, A., Meier, A., Virtema, J.: Model checking and validity in
propositional and modal inclusion logics. J. Log. Comput. (2019). https://doi.org/
10.1093/logcom/exz008

23. Kontinen, J., Müller, J.-S., Schnoor, H., Vollmer, H.: Modal independence logic. J.
Log. Comput. 27(5), 1333–1352 (2017). https://doi.org/10.1093/logcom/exw019

24. Krebs, A., Meier, A., Virtema, J.: A team based variant of CTL. In: Grandi,
F., Lange, M., Lomuscio, A. (eds.) 22nd International Symposium on Temporal
Representation and Reasoning, TIME 2015, Kassel, Germany, 23–25 September
2015, pp. 140–149. IEEE Computer Society (2015). https://doi.org/10.1109/
TIME.2015.11

25. Krebs, A., Meier, A., Virtema, J., Zimmermann, M.: Team semantics for the speci-
fication and verification of hyperproperties. In: Potapov, I., Spirakis, P.G., Worrell,
J. (eds.) 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS 2018, Liverpool, UK, 27–31 August 2018. LIPIcs, vol. 117, pp. 10:1–
10:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik (2018). https://doi.org/
10.4230/LIPIcs.MFCS.2018.10

26. Levin, L.: Universal search problems. Probl. Inf. Transm. 9(3), 115–116 (1973)

https://doi.org/10.1007/978-3-319-90050-6_11
https://doi.org/10.1007/s00224-014-9543-y
https://doi.org/10.1007/s00224-014-9543-y
https://doi.org/10.1007/978-3-642-27660-6_19
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1016/j.apal.2011.08.005
https://doi.org/10.1016/j.tcs.2012.10.033
http://drops.dagstuhl.de/opus/volltexte/2016/5508
https://doi.org/10.4230/DagRep.5.6.70
https://doi.org/10.4230/DagRep.5.6.70
https://doi.org/10.1145/380752.380867
https://doi.org/10.1145/380752.380867
https://doi.org/10.1007/978-3-319-72056-2_12
https://doi.org/10.1145/3157054
https://doi.org/10.1145/3157054
https://doi.org/10.1093/logcom/exz008
https://doi.org/10.1093/logcom/exz008
https://doi.org/10.1093/logcom/exw019
https://doi.org/10.1109/TIME.2015.11
https://doi.org/10.1109/TIME.2015.11
https://doi.org/10.4230/LIPIcs.MFCS.2018.10
https://doi.org/10.4230/LIPIcs.MFCS.2018.10

174 Y. Mahmood and A. Meier

27. Lohmann, P., Vollmer, H.: Complexity results for modal dependence logic. Studia
Logica 101(2), 343–366 (2013). https://doi.org/10.1007/s11225-013-9483-6

28. Lück, M., Meier, A., Schindler, I.: Parameterised complexity of satisfiability in
temporal logic. ACM Trans. Comput. Log. 18(1), 1:1–1:32 (2017). https://doi.
org/10.1145/3001835

29. Mahmood, Y., Meier, A.: Parameterised complexity of model checking and satis-
fiability in propositional dependence logic. CoRR, abs/1904.06107 (2019). http://
arxiv.org/abs/1904.06107

30. Meier, A., Reinbold, C.: Enumeration complexity of poor man’s propositional
dependence logic. In: Ferrarotti, F., Woltran, S. (eds.) FoIKS 2018. LNCS, vol.
10833, pp. 303–321. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
90050-6 17

31. Pippenger, N.: Theories of Computability. Cambridge University Press, Cambridge
(1997)

32. Robertson, N., Seymour, P.D.: Graph minors. V. Excluding a planar graph.
J. Comb. Theory Ser. B 41(1), 92–114 (1986). https://doi.org/10.1016/0095-
8956(86)90030-4

33. Samer, M., Szeider, S.: Fixed-parameter tractability. In: Biere, A., Heule, M., van
Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial
Intelligence and Applications, vol. 185, pp. 425–454. IOS Press (2009). https://
doi.org/10.3233/978-1-58603-929-5-425

34. Samer, M., Szeider, S.: Algorithms for propositional model counting. J. Discrete
Algorithms 8(1), 50–64 (2010)

35. Väänänen, J.A.: Dependence Logic - A New Approach to Independence Friendly
Logic. London Mathematical Society Student Texts, vol. 70. Cambridge Uni-
versity Press, Cambridge (2007). http://www.cambridge.org/de/knowledge/isbn/
item1164246/?site locale=de DE

36. Väänänen, J.A.: Modal dependence logic. In: Apt, K., van Rooij, R. (eds.) New
Perspectives on Games and Interaction. Amsterdam University Press, Amsterdam
(2008)

37. Yang, F., Väänänen, J.: Propositional logics of dependence. Ann. Pure Appl. Log.
167(7), 557–589 (2016). https://doi.org/10.1016/j.apal.2016.03.003

https://doi.org/10.1007/s11225-013-9483-6
https://doi.org/10.1145/3001835
https://doi.org/10.1145/3001835
http://arxiv.org/abs/1904.06107
http://arxiv.org/abs/1904.06107
https://doi.org/10.1007/978-3-319-90050-6_17
https://doi.org/10.1007/978-3-319-90050-6_17
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.1016/0095-8956(86)90030-4
https://doi.org/10.3233/978-1-58603-929-5-425
https://doi.org/10.3233/978-1-58603-929-5-425
http://www.cambridge.org/de/knowledge/isbn/item1164246/?site_locale=de_DE
http://www.cambridge.org/de/knowledge/isbn/item1164246/?site_locale=de_DE
https://doi.org/10.1016/j.apal.2016.03.003

Utilizing Deep Learning and RDF
to Predict Heart Transplantation Survival

Dennis Medved1,2(B), Johan Nilsson2, and Pierre Nugues1

1 Department of Computer Science, Lund University, Lund, Sweden
{dennis.medved,pierre.nugues}@cs.lth.se

2 Department of Clinical Sciences, Cardiothoracic Surgery,
Lund University and Sk̊ane University Hospital, Lund, Sweden

johan.nilsson@med.lu.se

Abstract. In this paper, we describe the conversion of three different
heart transplantation data sets to a Resource Description Framework
(RDF) representation and how it can be utilized to train deep learning
models. These models were used to predict the outcome of patients both
pre- and post-transplant and to calculate their survival time.

The International Society for Heart & Lung Transplantation (ISHLT)
maintains a registry of heart transplantations that it gathers from grafts
performed worldwide. The American organization United Network for
Organ Sharing (UNOS) and the Scandinavian Scandiatransplant are con-
tributors to this registry, although they use different data models.

We designed a unified graph representation covering these three data
sets and we converted the databases into RDF triples. We used the result-
ing triplestore as input to several machine learning models trained to
predict different aspects of heart transplantation patients.

Recipient and donor properties are essential to predict the outcome of
heart transplantation patients. In contrast with the manual techniques
we used to extract data from the tabulated files, the RDF triplestore
together with SPARQL, enables us to experiment quickly and automati-
cally with different combinations of features sets, to predict the survival,
and simulate the effectiveness of organ allocation policies.

1 Introduction

Heart transplantations are life saving procedures that made it possible to extend
the median survival time to 12 years for patients with end-stage heart diseases.
Unfortunately, patients have to wait a relatively long time before being trans-
planted, because of a limited donor supply that forces the surgeons to prioritize
the recipients.

The understanding of factors that predict mortality could help the doc-
tors with the prioritization task and improve the post-operation care. With an

This research was supported by Heart Lung Foundation, The Swedish Research
Council, and the eSSENCE program.

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 175–190, 2020.
https://doi.org/10.1007/978-3-030-39951-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_11

176 D. Medved et al.

improved outcome prediction, surgeons could be more confident in the trans-
plantation performance. In addition, a better allocation of organs would make
it possible to increase the survival as well as the number of organs that can be
used. The availability of medical databases which have been created during the
last two decades, and the application of machine-learning methods, such as deep
learning, have led to the development of advanced models of survival prediction.

Patient and donor factors are essential to predict the mortality of heart trans-
plantations [14,17]. [7] provides an eloquent advocacy of the importance of such
factors, or features, in the success of machine-learning projects.

We wanted to mine the feature sets from the patient variables and integrate
data from all our sources. We designed a unified, extendable, Resource Descrip-
tion Framework (RDF) representation of the variables. Our goal was to make
the data extraction easier, using the different registries that were available to us,
and simplify the feature engineering for the machine learning models.

The usage of RDF to store the patient data helped us streamline the devel-
opment process of such survival models.

2 Related Works

There are several papers that detail the creation of RDF-based medical databases
[1,3,6,9,16]. [4] used them in the cardiological field, but we have not found any
previous work aiming specifically at heart transplant data.

3 Medical Registries

The International Society for Heart & Lung Transplantation (ISHLT) maintains
a registry of heart transplantations it collects from national or regional orga-
nizations across the world. ISHLT aggregates the data submitted by the con-
tributing organizations. The American organization United Network for Organ
Sharing (UNOS) and the Scandinavian Scandiatransplant are two such con-
tributing institutions. In total, ISHLT contains about 100,000 recorded heart
transplantations.

ISHLT could be seen as a superset of all the included databases, in regards
to the patients recorded, but it only contains a subset of the variables that are
contained within the different registries. Overall, ISHLT is restricted to variables
that are frequently recorded by the different regional registries.

The three data sources we considered: ISHLT, UNOS, and Scandiatransplant,
have different structures, a different number of variables, use different variable
names, and may use different units or encoding of the data.

The variables contained in these databases pertain to both recipient, donor,
and the operation itself. It can for example be the age, weight, gender, or blood
group of the patients.

UNOS contains the largest number of variables, about 500. ISHLT, for exam-
ple, does not feature the variable crossmatch done, a patient compatibility test,
that is available in UNOS.

Utilizing Deep Learning and RDF to Predict Heart Transplantation Survival 177

4 Resource Description Framework

RDF is a model and language for representing information about resources of dif-
ferent types. It is particularly useful for storing metadata about resources. RDF is
based on the idea of making statements about resources in expressions of the form
subject-predicate-object, known as triples. The subject denotes the resource, and
the predicate denotes traits or aspects of the resource, and expresses a relation-
ship between the subject and the object [18].

For example, one way to represent the statement “The Patient is 55 years old”
in RDF is as the triple: a subject denoting “the patient”, a predicate denoting
“has the age”, and an object denoting “55 years”.

RDF is intended for situations in which this information needs to be pro-
cessed by applications, rather than being only displayed to people. It provides
a common framework for expressing this information so it can be exchanged
between applications without loss of meaning.

RDF is an abstract model with several serialization formats so the particular
encoding for resources or triples varies from format to format.

5 Representing the Data in RDF

The ISHLT, UNOS, and Scandiatransplant data sets are normally distributed
to the researchers as SAS or CSV files. We started from the CSV files and we
converted them to an RDF format.

The CSV files represent the transplants as rows, where each column is a
variable for the transplant. In the RDF conversion, we mapped each row to a
head node and we created leaf nodes for the selected variables.

The data sets use different names to denote the same variables. For example,
the most recent blood creatinine value for the recipient patient is Most rec. Creat.
in Scandiatransplant, creat in ISHLT, and creat trr in UNOS. See Fig. 1.

We created unified names for about 140 of the variables, such as aaot:creatinine
for the creatinine value, where the aaot prefix stands for Algorithms and Applica-
tions for Organ Transplantation.

We had to encode the data in a unified way between the databases, for example
binary variables were both recorded as Y/N and 1/0, and categorical variables
often used different codes to encode the data between the registries.

As previously mentioned, UNOS has more variables than ISHLT and Scandi-
atransplant. We used the UNOS variable names, when they had no counterpart
in the other two registries.

We also added metadata about the variables containing the original variable
name, as well the new one, the description of the variable, the source form of the
data, the unit where it is applicable, as well as comments, and start and possibly
end date of the recording of the variable.

We cleaned the data, created consistent encodings between the variables and
built the RDF skeleton using the OpenRefine application [8] (Fig. 2).

178 D. Medved et al.

Fig. 1. A unification of the variable representing the most recent creatinine level of the
recipient.

Fig. 2. aaot:creatinine metadata for the UNOS part of the database.

6 Querying the Database

We created a SPARQL endpoint to be able to query the data. Compared with the
tedious copy-and-paste techniques we used to previously create the data sets and
to test our survival prediction programs, SPARQL offers an easier way to extract
relevant data samples.

Although the RDF database can be used to do statistics and exploratory anal-
ysis, our major use of the database is as input to the machine learning algorithms.
We want to answer questions such as:

What variables are important for heart transplantation survival and how do
they affect the outcome?

Utilizing Deep Learning and RDF to Predict Heart Transplantation Survival 179

7 Deep LearningModels

Artificial neural networks are models inspired by the human brain that approxi-
mate functions used in machine learning, such as classification or regression. They
consist of networks of neurons that emulate the properties of their real counter-
parts.

The neurons propagate signals depending on the weight of their connections.
These connection strengths are tuned during the training step from observations
when the network learns what it should output for a certain set of inputs.

A feed forward network consists of three or more layers. The first layer is called
the input layer, where the features are used as the initial input. The middle layers
which can be one or more, are called hidden layers. Finally, the last layer, the
output layer, which has as many nodes as the wanted amount of outputs from the
model. A neural network with two or more hidden layers is usually referred to as
a deep learning model (Fig. 3).

Fig. 3. The topology of a fully connected neural network with three input nodes, two
hidden layers with four hidden nodes, and three output nodes.

These models have many practical applications, for example in computer
vision, spam filtering, or medicine [2]. They have shown a superior predictive abil-
ity over more conventional models such as risk scores created by classical statisti-
cal methods [5].

8 Applications

We have used the RDF representation of the heart transplant patients to generate
the input to different survival models regarding heart transplantation.

180 D. Medved et al.

1. We first carried out an analysis on the features that had the largest impact on
the post-transplant survival of the patient and to find locally optimal feature
sets for different survival time periods [10].

2. Patients enter a waiting queue before they are transplanted and they may die
in this queue if no appropriate organ becomes available for transplant. We
designed a model to predict the outcome of patients awaiting heart transplant
and we explored which features were the most predictive in assessing the result
for the patients [11].

3. After a patient is being transplanted, the registries record his/her survival time.
We trained a post-transplant model based on neural networks and we evaluated
its performance against a more simple, point based model [13,15]. We used data
from UNOS instead of ISHLT in this experiment. This model is available via
a web application (ihtsa.cs.lth.se), where a user can input a patient’s data and
the server returns the predicted survival. The application shows the survival
prediction as a probability curve depending on the years after transplant.

4. And finally, we trained a pre- and post-transplant algorithm and we used it
together with a discrete simulation model, to simulate a queue system for heart
transplantation. This algorithm, the Lund Deep Learning Transplant Algo-
rithm (LuDeLTA), enables analysts to evaluate the impact of different allo-
cation policies on patient survival [12].

8.1 Explore and Understand the Data

Problem. We wanted to find optimal feature sets to predict the survival of patients
after one, five, and ten year time periods after heart transplant. This is a binary
classification problem, where the patient is either alive or dead after the respective
time periods.

We also wanted to rank the features after their importance, for each period,
to find out which features had the largest impact on the prediction.

To find a globally optimal feature set requires 2n tests, where n is the number
of features. This is infeasible even for a moderate number of features. Using the
482 features we had available, this would require 2482 ≈ 1.25 × 10145 tests.

Method. We applied a greedy forward selection and a greedy backward elimination
that enabled us to find a locally optimal subset. Determining such a feature set is
computationally feasible as opposed to a global optimal.

Table 1. The best validation set AUROC values for 1, 5, and 10 years, found using a
search with 482 possible features [10].

Years AUROC

1 0.6990

5 0.6892

10 0.7509

Utilizing Deep Learning and RDF to Predict Heart Transplantation Survival 181

The greedy forward selection starts from a subset of the features, which can
be empty, and adds one feature from the remaining set to the current subset. The
selection procedure uses the new subset to produce the classification probabilities.
These probabilities are then used to calculate an evaluation metric. The feature
which improves the performance the most is then added to the current feature set
for the next generation. The procedure is repeated if it improves the score of the
preceding subset over a certain threshold Δ. If there is no improvement, we use
the current feature set for a backward elimination instead.

The backward elimination removes the features one by one from the starting
set and the resulting feature set is used to produce the classification probabilities.
If the score improves on the preceding generation, then the process is repeated
with the resulting feature set.

If two following forward selections and backward eliminations do not improve
the score, the process is stopped and the resulting feature set corresponds to a
local optimum.

Starting from the empty feature set and doing a full forward search of the 482
features, meaning that every feature is added, would result in about 100,000 mod-
els being tested. A number somewhat smaller than 1.25 × 10145, but it is only
locally optimal though.

We used logistic regression as the machine learning model for the search pro-
cedure, mainly because it has a short training time for each model, and few hyper-
parameters to tune.

For each generation in a forward and backward search, there is no dependence
between the models. This makes it quite easy to parallelize. We parallelized the
search using the Spark framework, to distribute the workload on a local cluster.

To assess the importance of the variables, we did a forward search from an
empty feature set and recorded the order in which they were added. This roughly
corresponds to the most important features for each time period.

Results. We found locally optimal feature sets, utilizing the available 482 features,
for each time period, using our logistic regression model. Table 1 shows the best
results for these feature sets, using area under the receiver operating characteristic
curve (AUROC) as the metric.

The validation AUROC scores that are about the same for 1 and 5 years, but
approximately 8 % points higher for 10 years. This is somewhat nonintuitive and
we tried without success to find confounding factors to explain these results. A
possible explanation is that there are much more positive examples, that is, dead
patients, for 10 years compared with 1 and 5 years. Another bias is that many
patients of this cohort are censored compared to 1 and 5 years: About 50% of the
patients are censored after 10 year time period.

We listed the most important features, found using a forward search, in
Table 2.

182 D. Medved et al.

Table 2. The ten first features added for a forward search for the 1, 5, and 10 year time
periods. Features in bold decreases the survival probability and features in non-bold
increases the probability. Modified and updated from [10]

Rank 1 year 5 years 10 years

1 Anti viral Ethnicity: white Days in status: 1

2 Creatinine Creatinine clearance Days in status: 2

3 Height Func. status: very sick Days in status: 1b

4 Donor age Donor age Donor angiogram: no

5 Ventricular assist Ventricular assist Func. status: very sick

6 Ventricular assist: none Donor ischemic time Research immunosuppressive

7 Serum bilirubin Func. status: cares for self Func. status: cares for self

8 Donor ischemic time Func. status: some assistance Diabetes

9 Other therapies Func. status: normal activity Anti viral

10 Dialysis Func. status: assistance Func. status: assistance

8.2 Predict the Survival Before Transplant

Problem. Estimating the probability of dying in the waiting list given a waiting
time could support the decision of surgeons on the priority of a transplantation. In
addition, knowing the probability for a patient to be transplanted within a certain
time frame would help plan operation resources and inform the patient. Extending
the models to predict the amount of days a patient may survive in the queue could
be used in a queue simulation system.

We carried out the prediction at three different time points: 180 days, 365 days,
and 730 days, and we categorized the patient status with three possible outcomes:
still waiting, transplanted, or dead in the waiting list.

We chose to use these time periods, because a patient should have a survival
time of less than a year, predicted by a physician, to be placed in the waiting list.
Although a small fraction of the patients may survive several years in the wait list.

There are other outcomes for patient standing in a heart transplantation
queue, such as being too sick to be operated, but most patients are either trans-
planted or die while waiting for an organ.

Method. We created a neural network with two hidden layers and 128 nodes in
each layer. The hidden layers used the rectified linear unit as activation function
and the final output layer used a softmax activation. We used categorical cross
entropy as the loss function and adamax as the optimizer. Dropout was used as a
regularization technique, to reduce potential overfitting. We used the Keras frame-
work to represent this model.

In our model, we included 87 variables as input, describing the patients in the
queue that were available at the time of listing. Example of such features are age,
sex, weight, and blood group.

We wanted to know which features contributed the most to the result of the
classification. We utilized backward elimination to find these features.

Utilizing Deep Learning and RDF to Predict Heart Transplantation Survival 183

Table 3. The F1 values for 180, 365, and 730 days obtained on the test set [11].

Days F1 (micro) F1 (macro)

180 0.750 0.675

365 0.760 0.680

730 0.888 0.680

Table 4. The ten most contributing features for each time period in order of importance,
found using an ablation study [11]

Rank 180 days 365 days 730 days

1 Urgency status 2 BMI BMI

2 Weight Weight Weight

3 BMI Height Height

4 Height Urgency status 2 Urgency status 2

5 Inotropes Creatine clearance Creatinine

6 Blood group: AB Inotropes Functional status

7 Life support Blood group: A Pulmonary Vascular Resistance

8 Blood group: B Life support Educational level: none

9 Inotropic support Blood group: AB Ventricular assist type: LVAD + RVAD

10 Ethnicity: black Blood group: B Educational level: grade school

Results. Table 3 shows the best obtained F1 values for 180, 365, and 730 days,
respectively. Because there is more than two classes, the F1 score needs to be aver-
aged. It was calculated using both micro and macro averaging.

The macro average takes the average of the precision and recall of the system
on the different classes. When the examples are unevenly distributed across the
classes, the macro average method is less biased toward the largest class.

The ten most contributing features were found through a complete backward
elimination, also known as an ablation study, for each time period, and is presented
in Table 4. Using only the ten most important features resulted in a decrease of
only about 2% (absolute difference) from the F1 macro score with all the features.
This means that most of the predictive power from the ANN comes from a few
features.

The features shared by all of the three sets are: urgency status 2, weight,
height and BMI. BMI can be considered a feature transformation of weight and
height as BMI = weight × height2, but it provided extra predictive information
over the constituent variables. A sufficiently complex neural network could prob-
ably approximate this transformation and therefore BMI would probably not be
needed.

184 D. Medved et al.

8.3 Predict the Survival After Transplant

Problem. One of the most limiting factors of the number of heart transplants per-
formed is the lack of donor organs and a conservative allocation policy that results
in the loss of about half of the organs being offered. An improved prediction of the
outcome would augment the confidence in the post-transplantation performance
and make it possible to optimize the allocation of organs. Furthermore, it would
enable practitioners to determine the risk of early and late graft dysfunction more
accurately and improve donor and recipient management.

Although there exist several survival models within cardiac surgery, currently
there is no accepted tool for estimating the outcome after heart transplantation. In
recent years, some risk score algorithms designed to predict post-transplantation
performance have been developed. One of the most notable was the Index for Mor-
tality Prediction After Cardiac Transplantation (IMPACT).

IMPACT was created with a data set of heart transplant patients between
1997 to 2008 that were collected from the UNOS database. IMPACT only utilizes
recipient variables. By apportioning points according to the relative importance
of the variables for the one-year mortality, a risk index was created. The points are
after that converted to a predicted probability of one-year mortality by a formula
derived from logistic regression.

The International Heart Transplantation Survival Algorithm (IHTSA) was
developed on the ISHLT registry, with patients who were transplanted between
1994 and 2010. IHTSA utilizes both recipient and donor variables. The survival
model consists of a flexible nonlinear generalization of the standard Cox propor-
tional hazard model. Instead of using a single prediction model, this model inte-
grates ensembles of artificial neural networks. In addition, its prediction capability
is not limited to one year.

We wanted to determine the most suitable risk stratification model for heart
transplantation by comparing the IMPACT and IHTSA algorithms.

Method. We included all the adult heart transplant patients (>17 years) from
January 1997 to December 2011, from the UNOS database. The data set was
divided into two temporal cohorts: transplantation done before 2009 (deriva-
tion cohort) and after or during 2009 (test cohort). These time periods were
chosen because both IMPACT and IHTSA were developed on patients between
1997–2008 and we wanted disjoint sets (derivation and test) to evaluate the pre-
diction performance.

We used the cohorts as input to both algorithms and then evaluated the per-
formance for both methods.

The discriminatory power for one-year mortality was assessed by calculating
the AUROC. We compared the statistical significance of the difference between
the AUROC of the two models using the non-parametric DeLong’s test. To eval-
uate the discrimination for long-term survival of the patients, we utilized the
Harrell’s concordance index (C-index). We used a z-score test to compare the C-
indexes.

Utilizing Deep Learning and RDF to Predict Heart Transplantation Survival 185

Table 5. The AUROC values for one-year mortality with the different cohorts using
IMPACT and IHTSA respectively.

Time period AUROC (95% CI)

IMPACT IHTSA P-Value

1997–2008 0.61 (0.59–0.62) 0.69 (0.68–0.70) 0.001

2009–2011 0.61 (0.58–0.63) 0.65 (0.63–0.68) 0.001

Table 6. The Harrells C-index for survival for the different cohorts using IMPACT and
IHTSA respectively [13].

Time period C-index (95% CI)

IMPACT IHTSA P-Value

1997–2008 0.56 (0.56–0.56) 0.62 (0.61–0.62) 0.001

2009–2011 0.58 (0.56–0.61) 0.63 (0.61–0.65) 0.001

Results. As shown in Table 5, the IHTSA model has a significantly higher discrim-
ination compared with the IMPACT model for one-year mortality, P = 0.001, cor-
responding to an error reduction of 11.7%. Harrell’s C-index for the recalibrated
IHTSA compared with IMPACT was substantially larger, as shown in Table 6,
with about a 4% absolute difference for the later time era.

The calibration plot, Fig. 4, shows that the predictive mortality compared with
actual mortality was more consistent over all deciles for the ITHSA model, com-
pared with the IMPACT model.

Fig. 4. The observed (gray bars) and expected mortality (black bars), in percent, for
each decile, for the IMPACT and IHTSA models, in the test cohort (2009–2011). The
patients are divided into deciles according to their expected mortality, and the observed
mortality was derived for each decile.

186 D. Medved et al.

We have shown that a flexible nonlinear artificial neural network model
(IHTSA), utilizing deep learning techniques, exhibits better discrimination and
accuracy than a more traditional risk score model (IMPACT) for predicting one-
year mortality. We made public the results of the IHTSA model in the form of a
web-based batch calculator, that could be used as a virtual recipient-donor match-
ing tool.

8.4 Simulating the Impact of Allocation Policies

Problem. Allocation policies in heart transplantation are used to decide how
patients awaiting transplant will be paired with hearts from donors. There is a
trade-off between medical justice, giving everyone an equal chance for a trans-
plant, and medical utility, which aims at making the best use of a scarce resource.

Predictions models are, most of the time, optimized for the prediction of a
single patient, and not applicable to a larger group of patients. This is the reason
why the simulation of the whole queue system in an organ allocation process better
fits the goal of selecting a policy that maximizes the benefit over all the patients.

Simulating a transplantation queue requires the creation of a model of the
queue. This model can thereafter be used to simulate the impact of different poli-
cies, on several possible metrics. Examples of potential metrics are the number of
deaths in the waiting list, the mean survival time after transplant, and the end
size of the waiting list.

The selection of the best allocation policy can be seen as an optimization prob-
lem, where you try to maximize predefined metrics by selecting an appropriate
policy.

Method. We used a discrete event model to simulate the allocation process.
We chose a Poisson process to simulate the arrival of recipients and donors.

This is achieved by selecting patients, without replacement, from the all of the
real patients from that specific year.

We created two prediction models; one to simulate the removal of patients
from the wait list, mainly caused by death, and the other to predict the survival
after heart transplant. A similar model architecture is used. The main difference is
the input features. The pre-transplant prediction uses 87 features, while the post-
transplant utilizes 267 features. We have called this model: Lund Deep Learning
Transplant Algorithm (LuDeLTA).

In addition to our own model LuDeLTA, we also used the IHTSA model to pre-
dict the post-graft survival of the patients. We evaluated the different allocation
methods with both models.

We selected four allocation policies we wanted to evaluate. The policies were
the following: wait time, clinical rules, and neural networks in two different ver-
sions. Wait time prioritized the patients with the longest wait time in the queue.
Clinical rules ranked the patients based on simple rules based on weight, gender,
age, and blood group. Allocation based on neural networks ordered the patients
after predicted survival time and chose the patients with the longest predicted
survival time for each donor, using either the IHTSA or LuDeLTA as the survival
model.

Utilizing Deep Learning and RDF to Predict Heart Transplantation Survival 187

Table 7. Performance metrics of the LuDeLTA models [12].

Metric Pre-transplant Post-transplant

AUROC 1 year 0.89 0.66

C-index 0.80 0.61

Table 8. Mean survival of patients results from simulating heart allocation policies. The
results in bold should be taken with some care, because they use the same algorithm to
both allocate and evaluate the patients. This makes the allocation method heavily biased
and the numbers in bold should rather represent a possible maximum ceiling using the
corresponding method [12].

Allocation policy Mean survival
IHTSA (days)

Mean survival
LuDeLTA (days)

Wait time 4,285 4,309

Clinical rules 4,349 4,309

Neural network: IHTSA 4,976 4,719

Neural network: LuDeLTA 4,541 5,668

Results. We evaluated the LuDeLTA models using the AUROC for the one year
mortality, and the long time survival using The Harrells C-index on the validation
set. Results are shown in Table 7. The predicted mean survival on the wait list
without transplant was 447 days using our pre-transplant survival model.

Table 9. Results from simulating heart allocation policies.

Allocation policy Number
transplanted

Number
dead wait list

Number alive
wait list

Mean wait
time (days)

Wait time 9,469 5,485 444 139

Clinical rules 9,345 5,481 572 150

Neural network: IHTSA 9,469 4,801 1128 150

Neural network: LuDeLTA 9,469 4,993 936 110

The results for the different allocation policies can be found in the Tables 8
and 9. In Table 8, two of the values use the same algorithm to both allocate and
evaluate the patients. This makes the allocation method heavily biased and the
numbers in bold should rather represent a possible maximum ceiling using the cor-
responding method. The predicted mean survival using LuDeLTA, for allocating
according to wait time was about 4,300 days, clinical rules 4,300 days, and using
IHTSA 4,700 days.

The transplant policies based on the neural network models or wait time utilize
all of the available organs, while using clinical rules lead to a discard of 124 hearts.

188 D. Medved et al.

We have shown that an organ transplant queue can be simulated by utilizing
neural networks to predict survival, both pre- and post-transplant. Additionally
we have shown that using neural networks as the allocation policy, could possibly
result in longer survival post-transplant for the patients.

9 Conclusion

The creation of the RDF representation has simplified the use of the three reg-
istries. It enabled us to utilize a unified interface to query the data using SPARQL,
which made it easier to handle the patient variables.

We have successfully created several deep learning models using this patient
data. Prediction using these models have produced results that were comparable
to state-of-the-art systems.

10 FutureWork

The models produced by this work could then be introduced as components in a
tool that the doctors, who are involved in the transplant process can use. Such a
tool could consist of web page, where the physicians would enter potential donors,
where the tool would predict the survival for each patient in the waiting list and
each recipient-donor pair after transplant, and may combine these two metrics
and rank the patients after predicting survival. This could be used to improve the
doctors decision process and help with the allocation of a potential heart donor.

We are also interested in including journals and operation descriptions to our
database, to see if we could improve the outcome prediction of the transplants
based on the written text in these documents.

Another interesting problem to explore would be to use machine learning on
genetic data of patients to see if the outcome could be predicted depending on
their DNA sequence.

Acknowledgements. This work is based on OPTN data as of October 1, 2013 and
was supported in part by the Health Resources and Services Administration contract
234-2005-370011C. The content is the responsibility of the authors alone and does not
necessarily reflect the views or policies of the Department of Health and Human Services,
nor does mention of trade names, commercial products, or organizations imply endorse-
ment by the U.S. Government. This research was supported by Heart Lung Foundation,
The Swedish Research Council, and the eSSENCE program.

References

1. Barzdins, G., Rikacovs, S., Veilande, M., Zviedris, M.: Ontological re-engineering of
medical databases. In: Proceedings of the Latvian Academy of Sciences, vol. 63, p.
156. De Gruyter Open Sp. z oo (2009)

2. Baxt, W.G.: Application of artificial neural networks to clinical medicine. Lancet
346(8983), 1135–1138 (1995)

Utilizing Deep Learning and RDF to Predict Heart Transplantation Survival 189

3. Boulos, M.N.K., Roudsari, A.V., Carson, E.R.: Towards a semantic medical web:
Healthcybermap’s tool for building an RDF metadata base of health information
resources based on the qualified Dublin core metadata set. Med. Sci. Monit. 8(7),
MT124–MT126 (2002)

4. Bratsas, C., Quaresma, P., Pangalos, G., Maglaveras, N.: Using ontologies to build
a knowledge base of cardiology problems and algorithms. In: Computers in Cardi-
ology, 2004, pp. 609–612. IEEE (2004)

5. Cucchetti, A., et al.: Artificial neural network is superior to meld in predicting mor-
tality of patients with end-stage liver disease. Gut 56(2), 253–258 (2007)

6. Dieng-Kuntz, R., Minier, D., Ruzicka, M., Corby, F., Corby, O., Alamarguy, L.:
Building and using a medical ontology for knowledge management and cooperative
work in a health care network. Comput. Biol. Med. 36(7–8), 871–892 (2006)

7. Domingos, P.: A few useful things to know about machine learning. Com-
mun. ACM 55(10), 78–87 (2012). https://doi.org/10.1145/2347736.2347755.
http://doi.acm.org/10.1145/2347736.2347755

8. Ham, K.: Openrefine (version 2.5). http://openrefine.org. Free, open-source tool for
cleaning and transforming data. J. Med. Libr. Assoc. JMLA 101(3), 233 (2013)

9. Lindemann, G., Schmidt, D., Schrader, T., Keune, D.: The resource description
framework (RDF) as a modern structure for medical data. Int. J. Biol. Med. Sci.
4(2) (2009)

10. Medved, D., Nugues, P., Nilsson, J.: Selection of an optimal feature set to predict
heart transplantation outcomes. In: 2016 38th Annual International Conference of
the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3290–3293,
August 2016

11. Medved, D., Nugues, P., Nilsson, J.: Predicting the outcome for patients in a heart
transplantation queue using deep learning. In: 2017 39th Annual International Con-
ference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 74–
77. IEEE (2017)

12. Medved, D., Nugues, P., Nilsson, J.: Simulating the outcome of heart allocation
policies using deep neural networks. In: 2018 40th Annual International Conference
of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2018, to
appear)

13. Medved, D., Ohlsson, M., Höglund, P., Andersson, B., Nugues, P., Nilsson, J.:
Improving prediction of heart transplantation outcome using deep learning tech-
niques. Sci. Rep. 8(1), 3613 (2018)

14. Nilsson, J., Ohlsson, M., Höglund, P., Ekmehag, B., Koul, B., Andersson, B.: Artifi-
cial neural networks - relative importance of different recipient-donor characteristic
combinations on survival after heart transplantation. J. Hear. Lung Transplant. 30,
S68 (2011)

15. Nilsson, J., Ohlsson, M., Höglund, P., Ekmehag, B., Koul, B., Andersson, B.: The
international heart transplant survival algorithm (IHTSA): a new model to improve
organ sharing and survival. PLoS ONE 10(3), e0118644 (2015)

16. Riaño, D., Real, F., López-Vallverdú, J.A., Campana, F., Ercolani, S., Mecocci, P.,
Annicchiarico, R., Caltagirone, C.: An ontology-based personalization of health-
care knowledge to support clinical decisions for chronically ill patients. J. Biomed.
Inform. 45(3), 429–446 (2012)

https://doi.org/10.1145/2347736.2347755
http://doi.acm.org/10.1145/2347736.2347755
http://openrefine.org

190 D. Medved et al.

17. Weiss, E.S., et al.: Creation of a quantitative recipient risk index for mor-
tality prediction after cardiac transplantation (IMPACT). Ann. Thorac.
Surg. 92(3), 914–922 (2011). https://doi.org/10.1016/j.athoracsur.2011.04.
030. http://www.sciencedirect.com/science/article/pii/S0003497511009350

18. WWWC: RDF 1.1 concepts and abstract syntax (2014). https://www.w3.org/TR/
rdf11-concepts/

https://doi.org/10.1016/j.athoracsur.2011.04.030
https://doi.org/10.1016/j.athoracsur.2011.04.030
http://www.sciencedirect.com/science/article/pii/S0003497511009350
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/

Game Description Logic with Integers:
A GDL Numerical Extension

Munyque Mittelmann(B) and Laurent Perrussel

Université de Toulouse - IRIT, Toulouse, France
{munyque.mittelmann,laurent.perrussel}@irit.fr

Abstract. Many problems can be viewed as games, where one or more
agents try to ensure that certain objectives hold no matter the behav-
ior from the environment and other agents. In recent years, a number
of logical formalisms have been proposed for specifying games among
which the Game Description Language (GDL) was established as the
official language for General Game Playing. Although numbers are recur-
ring in games, the description of games with numerical features in
GDL requires the enumeration from all possible numeric values and the
relation among them. Thereby, in this paper, we introduce the Game
Description Logic with Integers (GDLZ) to describe games with numer-
ical variables, numerical parameters, as well as to perform numerical
comparisons. We compare our approach with GDL and show that when
describing the same game, GDLZ is more compact.

Keywords: Game Description Language · Knowledge representation ·
General Game Playing

1 Introduction

Many problems, as multiagent planning or process synchronization, can be
viewed as games, where one or more agents try to ensure that certain objec-
tives hold no matter the behavior from the environment and other agents [4].
Thereby, a number of logical formalisms have been proposed for specifying game
structures and its properties, such as the Game Logic [10,11], the Dynamic Game
Logic for sequential [16] and simultaneous games [17], the GameGolog language
[4] and so on. Among this formalisms, the Game Description Language (GDL)
[1,7] has been established as the official language for the General Game Play-
ing (GGP) Competition. Due to the GDL limitations, such as its restriction to
deterministic games with complete state information, several works investigate
GDL extensions to improve its expressiveness. Zhang and Thielscher (2014) [18]
provide a GDL extension using a modality for linear time and state transition
structures. They also propose two dual connectives to express preferences in
strategies.

Another extension is called GDL with Incomplete Information (GDL-II) and
it was proposed to describe nondeterministic games with randomness and incom-
plete state knowledge [12,13]. A different approach to deal with this problem is
c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 191–210, 2020.
https://doi.org/10.1007/978-3-030-39951-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_12

192 M. Mittelmann and L. Perrussel

the Epistemic GDL, that allows to represent imperfect information games and
provides a semantical model that can be used for reasoning about game infor-
mation and players’s epistemic status [6]. GDL with Imperfect Information and
Introspection (GDL-III) is an extension of GDL-II to include epistemic games,
which are characterized by rules that depend on the knowledge of players [14,15].
In order to model how agents can cooperate to achieve a desirable goal, Jiang
et al. (2014) present a framework to combine GDL with the coalition operators
from Alternating-time Temporal Logic and prioritized strategy connectives [5].

Although numbers are recurring in game descriptions (e.g. Monopoly, Nim
game), neither GDL or its extensions incorporate numerical features. In these
approaches, numbers can be designed as index in propositions or actions but not
directly used as state variables. Thereby, describing games with numerical fea-
tures can lead to an exhaustive enumeration of all possible numeric values and
the relation between them. In the context of planning problems, numerical fea-
tures have been introduced in Planning Domain Description Language (PDDL)
by its first versions [3,9] and improved by PDDL 2.1 [2,8]. In PDDL 2.1, a world
state contains an assignment of values to a set of numerical variables. These
variables can be modified by action effects and used in expressions to describe
actions’ preconditions and planning goals.

Similarly to the approach of PDDL 2.1, in this paper, we introduce the
GDL extension Game Description Logic with Integers (GDLZ) that incorporates
numerical variables, parameters and comparisons. Regarding that board games
are mainly described with discrete values, our approach only considers the integer
set. We compare our approach with GDL and show that a game description in
GDLZ is more compact than the corresponding description in GDL.

This paper is organized as follows. In Sect. 2, we introduce the framework
by means of state transition structures and we present the language syntax
and semantics. In Sect. 3, we define the translation between GDLZ and GDL
and we compare both languages. Section 4 concludes the paper, bringing final
considerations1.

2 Game Description Logic with Integers

In this section, we introduce a logical framework for game specification with
integer numbers. The framework is an extension from the GDL state transition
model and language [18], such that it defines numerical variables and parameters.
We call the framework Game Description Logic with Integers, denoted GDLZ.

To describe a game, we first define a game signature, that specifies who
are the players (the agents), what are the possible actions for each player and
what are the aspects that describe each state in the game (the propositions and
numerical variables). We define a game signature as follows:

1 Due to the space limitation, we omitted most of the Propositions and Theorems
proofs. All the proofs are available at https://arxiv.org/abs/1912.01876.

https://arxiv.org/abs/1912.01876

Game Description Logic with Integers: A GDL Numerical Extension 193

Definition 1. A game signature S is a tuple (N, A, Φ,X), where:

– N = {r1, r2, · · ·, rk} is a nonempty finite set of agents;
– A =

⋃
r∈N Ar where Ar = {ar

1(z̄1), · · ·, ar
m(z̄m)} consists of a nonempty set of

actions performed by agent r ∈ N , where z̄i ∈ Z
l is a possibly empty tuple of l

integer values representing the parameters for the action ar
i , i ≤ m and l ∈ N.

For convenience, we occasionally write ar
i for denoting an action ar

i (z̄i) ∈ A;
– Φ = {p, q, · · ·} is a finite set of atomic propositions for specifying individual

features of a game state;
– X = 〈x1, x2, · · ·, xn〉 is a tuple of numerical variables for specifying numerical

features of a game state.

Given a game signature, we define a state transition model, that allows us to
represent the key aspects of a game, such as the winning states for each agent,
the legal actions in each state and the transitions between game states.

Definition 2. Given a game signature S = (N, A, Φ,X), a state transition ST
model M is a tuple (W, w̄, T, L, U, g, πΦ, πZ), where:

– W is a nonempty set of states;
– w̄ ∈ W is the initial state;
– T ⊆ W is a set of terminal states;
– L ⊆ W × A is a legality relation, describing the legal actions at each state;
– U : W × D → W is an update function, where D =

∏
r∈N Ar denote the set

of joint actions, specifying the transitions for each joint state;
– g : N → 2W is a goal function, specifying the winning states for each agent;
– πΦ : W → 2Φ is the valuation function for the state propositions;
– πZ : W → Z

n is the valuation function for the state numerical variables, such
that πZ(w) is a tuple of integer values assigned to the variables X at state
w ∈ W . Let πi

Z
(w) denote the i-th value of πZ(w).

Given d ∈ D, let d(r) be the individual action for agent r in the joint action
d. Let L(w) = {a ∈ A | (w, a) ∈ L} be the set of all legal actions at state w.

Definition 3. Given an ST-model M = (W, w̄, T, L, U, g, πΦ, πZ), a path is a
finite sequence of states w̄

d1→ w1
d2→ · · · de→ we such that e ≥ 0 and for any

j ∈ {1, · · ·, e}: (i) {w0, · · ·, we−1} ∩ T = ∅, where w0 = w̄; (ii) dj(r) ∈ L(wj−1)
for any r ∈ N ; and (iii) wj = U(wj−1, dj).

A path δ is complete if we ∈ T . Given δ ∈ P, let δ[j] denotes the j-th
reachable state of δ, θ(δ, j) denotes the joint action taken at stage j of δ; and
θr(δ, j) denotes the action of agent r taken at stage j of δ. Finally, the length of
a path λ, written |λ|, is defined as the number of joint actions.

Describing a game with the ST-model is not practical, especially when model-
ing large games. Hereby, given a game signature S = (N, A, Φ,X), we introduce
a variant of the language for GDL (LGDL for short) to describe a GDLZ game
in a more compact way by encoding its rules.

194 M. Mittelmann and L. Perrussel

2.1 Syntax

The language is denoted by LGDLZ and a formula ϕ in LGDLZ is defined by the
following Backus-Naur Form (BNF) grammar:

ϕ ::= p | initial | terminal | legal(ar(z̄)) | wins(r) | does(ar(z̄)) | ¬ϕ | ϕ ∧ ϕ |
©ϕ | z > z | z < z | z = z | 〈z̄〉

where, p ∈ Φ, r ∈ N, ar ∈ Ar, z̄ is a number list and z is a numerical term.
Let ε denote the empty word. A number list z̄ is defined as:

z̄ ::= z | z, z̄ | ε.

Finally, a numerical term z is defined by Lz, which is generated by the
following BNF:

z ::= z′ | x′ | add(z, z) | sub(z, z) | min(z, z) | max(z, z)

where z′ ∈ Z and x′ ∈ X.
Other connectives ∨,→,↔,� and ⊥ are defined by ¬ and ∧ in the stan-

dard way. The comparison operators ≤, ≥ and �= are defined by ∨, >,< and =,
respectively, as follows: (i) z1 < z2 ∨ z1 = z2, (ii) z1 > z2 ∨ z1 = z2 and (iii)
z1 > z2 ∨ z1 < z2.

Intuitively, initial and terminal specify the initial state and the terminal
state, respectively; does(ar(z̄)) asserts that agent r takes action a with the
parameters z̄ at the current state; legal(ar(z̄)) asserts that agent r is allowed to
take action a with the parameters z̄ at the current state; and wins(r) asserts
that agent r wins at the current state. The formula ©ϕ means “ϕ holds at the
next state”. The formulas z1 > z2, z1 < z2, z1 = z2 means that a numerical
term z1 is greater, less and equal to a numerical term z2, respectively. Finally,
〈z̄〉 asserts the current values for the numerical variables, i.e. the i-th variable
in X has the i-th value in z̄, for 0 ≤ i ≤ |X|. Notice that 〈z̄〉 could be repre-
sented by a conjunction over each xi ∈ X of formulas xi = zi, where zi ∈ Lz is
the current value of the variable xi. However, 〈z̄〉 provides a short cut and it is
more meaningful, in the sense that it is strictly related to the valuation of the
numerical variables in a given state.

For numerical terms, add(z1, z2) and sub(z1, z2) specify the value obtained
by adding and subtracting z2 from z1, respectively. The formulas min(z1, z2)
and max(z1, z2) specify the minimum and maximum value between z1 and z2,
respectively. The extension of the comparison operators >,<,=, ≤, ≥ and �= to
multiple arguments is straightforward.

If ϕ is not in the form ¬ϕ′, ©ϕ′ or ϕ′ ∧ ϕ′′, for any ϕ′, ϕ′′ ∈ LGLDZ , then
ϕ is called an atomic formula. We say that a numerical variable occurs in an
atomic formula ϕ if (i) ϕ is either in the form legal(ar(z̄)), does(ar(z̄)) or 〈z̄〉
and there is a x ∈ X in the numerical list z̄; (ii) ϕ is either in the form z1 < z2,
z1 > z2 or z1 = z2 and z1 ∈ X or z2 ∈ X.

Game Description Logic with Integers: A GDL Numerical Extension 195

2.2 Semantics

The semantics for the GDLZ language is given in two steps. First, we define
function v to assign the meaning of numerical terms z ∈ Lz in a specified state
(Definition 4). Next, a formula ϕ ∈ LGDLZ is interpreted with respect to a stage
in a path (Definition 5).

Definition 4. Given an ST-model M , a state w and the functions minimum
and maximum2 let us define function v : W × Lz → Z, associating any zi ∈ Lz

in a state w ∈ W to a number in Z:

v(zi, w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi if zi ∈ Z

πi
Z
(w) if zi ∈ X

πi
Z
(w) if zi = xi & xi ∈ X

v(z′
i, w) + v(z′′

i , w) if zi = add(z′
i, z

′′
i)

v(z′
i, w) − v(z′′

i , w) if zi = sub(z′
i, z

′′
i)

minimum(v(z′
i, w), v(z′′

i , w)) if zi = min(z′
i, z

′′
i)

maximum(v(z′
i, w), v(z′′

i , w)) if zi = min(z′
i, z

′′
i)

Definition 5. Let M be an ST-Model. Given a complete path δ of M , a stage
j on δ, a formula ϕ ∈ LGDLZ and function v, we say ϕ is true (or satisfied) at
j of δ under M , denoted by M, δ, j |= ϕ, according with the following definition:

M, δ, j |= p iff p ∈ πΦ(δ[j])
M, δ, j |= ¬ϕ iff M, δ, j �|= ϕ

M, δ, j |= ϕ1 ∧ ϕ2 iff M, δ, j |= ϕ1 and M, δ, j |= ϕ2

M, δ, j |= initial iff δ[j] = w̄

M, δ, j |= terminal iff δ[j] ∈ T

M, δ, j |= wins(r) iff δ[j] ∈ g(r)
M, δ, j |= legal(ar(z̄)) iff ar(v(z, δ[j]) : z ∈ z̄) ∈ L(δ[j])
M, δ, j |= does(ar(z̄)) iff θr(δ, j) = ar(v(z, δ[j]) : z ∈ z̄)
M, δ, j |= ©ϕ iff if j < |δ|, then M, δ, j + 1 |= ϕ

M, δ, j |= z1 > z2 iff v(z1, δ[j]) > v(z2, δ[j])
M, δ, j |= z1 < z2 iff v(z1, δ[j]) < v(z2, δ[j])
M, δ, j |= z1 = z2 iff v(z1, δ[j]) = v(z2, δ[j])
M, δ, j |= 〈z̄〉 iff 〈v(z, δ[j]) : z ∈ z̄〉 = πZ(δ[j])

A formula ϕ is globally true through δ, denoted by M, δ |= ϕ, if M, δ, j |= ϕ
for any stage j of δ. A formula ϕ is globally true in an ST-Model M , written
M |= ϕ, if M, δ |= ϕ for all complete paths δ in M , that is, ϕ is true at every
reachable state. A formula ϕ is valid, denoted by |= ϕ, if it is globally true in
every ST-model of an appropriate signature. Finally, let Σ be a set of formulas
in LGDLZ , then M is a model of Σ if M |= ϕ for all ϕ ∈ Σ.
2 Through the rest of this paper, the functions minimum(a, b) and maximum(a, b)

respectively return the minimum and maximum value between a, b ∈ Z.

196 M. Mittelmann and L. Perrussel

Whenever j ≥ |δ|, the validity of M, δ, j |= ©ϕ is irrelevant, since δ[j] is the
last state reachable in δ. A formula 〈z̄〉 is valid at a stage j in a path δ under M
only when it corresponds to the valuation of the numerical variables at δ[j].

The following propositions show that if a player does an action at a stage
in a path, then (i) he does not any other action in the same stage and (ii) the
action taken is legal.

Proposition 1. |= does(ar(z̄)) → ∧
br �=ar∈Ar

∧
z̄′ �=z̄∈Zn ¬does(br(z̄′)).

Proposition 2. |= does(ar(z̄)) → legal(ar(z̄)).

Next, we illustrate the representation of a game with numerical features in
GDLZ. First, we define the game signature and the game description in LGDLZ .
Next, we define the ST-model by which it is possible to evaluate the LGDLZ

semantics. Finally, we illustrate a path in the game.

Example 1. (〈γ1, · · ·, γk〉-Nim Game) A 〈γ1, · · ·, γk〉-Nim Game consists in k
heaps. Each heap starts with γi sticks, where 1 ≤ i ≤ k. Two players take turns
in removing sticks from one heap. The game ends when all heaps are empty. A
player wins if it is not his turn when the game ends.

To represent a 〈γ1, · · ·, γk〉-Nim Game in terms in GDLZ, we first specify the
agents, the actions, the propositions, and the numerical variables involved in the
game. Thus, the game signature, written Sk-nim, is described as follows:

– Nk-nim = {Player1, P layer2};
– Ar

k-nim = {reducer(m, s) | s ∈ N, 1 ≤ m ≤ k} ∪ {noopr}, where reducer(m, s)
denotes the action that player r removes s sticks from the m-th heap and
noopr denotes that player r does action noop;

– Φk-nim = {turn(r) | r ∈ {Player1, P layer2}}, where turn(r) says that it is
player r’s turn now;

– Xk-nim = 〈heapi | 1 ≤ i ≤ k〉, where heapsi represents the amount of sticks
in the i-th heap.

Given a player r ∈ Nk−min, we denote −r as the opponent of r, i.e. −r =
Player1 if r = Player2 and −r = Player2 otherwise. The rules of the 〈γ1, ···, γk〉-
Nim Game can be expressed by GDLZ- formulas as shown Fig. 1.

Statement 1 says that the Player1 has the first turn and that the k heaps
starts with γ1, · · ·, γk sticks, respectively. Statement 2 and 3 specify the win-
ning states for each player and the terminal states of the game, respectively.
The player who has not the turn when all the heaps become empty wins the
game, and the game ends if all heaps are empty. Statements 4 and 5 specify the
preconditions of each action (legality). The player who has the turn can reduce
s sticks from the m-th heap if 1 ≤ s ≤ heapm. The other player can only do
noop. Statements 6 and 7 define what is true at the next state: the m-th heap
will be subtracted by s if a player takes the action of reducing the m-th heap
by s, otherwise it will keep its current value. Finally, Statement 8 specifies the
turn-taking. Let Σk-nim be the set of rules 1-8.

Game Description Logic with Integers: A GDL Numerical Extension 197

1. initial ↔ turn(Player1) ∧ ¬turn(Player2) ∧ 〈γ1, · · ·, γk〉
2.

∧
r∈N wins(r) ↔ ¬turn(r) ∧ turn(−r) ∧ 〈0, · · ·, 0〉

3. terminal ↔ 〈0, · · ·, 0〉
4.

∧
r∈N

∧
m∈{1...k}

∧
s∈{1...γm} legal(reducer(m, s)) ↔ 1 ≤ s ≤ heapm

∧turn(r)
5.

∧
r∈N legal(noopr) ↔ ¬turn(r)

6.
∧

i∈{1...k}
∧

hi∈{1...γi} terminal ∧ 〈h1, · · ·, hk〉 → ©〈h1, · · ·, hk〉
7.

∧
i∈{1...k}

∧
hi∈{1...γi} ¬terminal ∧ 〈h1, · · ·, hk〉

∧(∨r∈N

∨
m∈{1...k}

∨
s∈{1...γm} does(reducer(m, s))) →

©〈h1, · · ·, sub(hm, s), · · ·, hk〉
8.

∧
r∈N turn(r) → ©¬turn(r) ∧ ©turn(−r)

Fig. 1. 〈γ1, · · ·, γk〉-Nim Game represented by Σk-nim

Since the semantics for the language is based on the state transition model,
we next specify the ST-model for this game, written Mk-nim, as follows:

– Wk-nim = {〈t1, t2, 〈x1, · · ·, xk〉〉 : t1 ∈ {turn(Player1),¬turn(Player1)}&
t2 ∈ {turn(Player2),¬turn(Player2)}&xi ∈ N, for 1 ≤ i ≤ k} is the set of
states, where t1, t2 specify the turn taking and xi represents the amount of
sticks in the i-th heap, i.e. the integer value assigned to heapi;

– w̄k-nim = 〈turn(Player1),¬turn(Player2), 〈γ1, · · ·, γk〉〉;
– Tk-nim = {〈turn(Player1),¬turn(Player2), 〈0, · · ·, 0〉〉, 〈¬turn(Player1),

turn(Player2), 〈0, · · ·, 0〉〉}, i.e. all heaps are empty;
– Lk-nim = {(〈t1, t2, 〈x1, · · ·, xk〉〉, reducer(m, s)) : tr = turn(r) & 1 ≤ s ≤ xm}∪

{(〈t1, t2, 〈x1, · · ·, xk〉〉, noopr) : tr = ¬turn(r)}, for all 〈t1, t2, 〈x1, · · ·, xk〉〉 ∈
Wk-nim and r ∈ Nk-nim;

– Uk-nim : Wk-nim × Dk-nim → Wk-nim is defined as follows: for all 〈t1, t2, 〈x1, · ·
·, xk〉〉 ∈ Wk-nim and all (reducer(m, s), noop−r) ∈ Dk-nim, let Uk-nim(〈t1, t2,
〈x1, · · ·, xk〉〉, (reducer(m, s), noop−r)) = 〈t′1, t′2, 〈x′

1, · · ·, x′
k〉〉, such that 〈t′1, t′2,

〈x′
1, · · ·, x′

k〉〉 are the same as 〈t1, t2, 〈x1, · · ·, xk〉〉, except by its compo-
nents t′1, t

′
2 and x′

i which are updated as follows: t′1 = turn(Player1) iff
t2 = turn(Player2), otherwise t′1 = ¬turn(Player1); t′2 = turn(Player2)
iff t1 = turn(Payer1), otherwise, t′2 = ¬turn(Player2); and for 1 ≤ i ≤ k:

x′
i =

{
xi − s if reducer(i, s) and 1 ≤ s ≤ xi

xi otherwise

For all 〈t1, t2, 〈x1, · · ·, xk〉〉 ∈ Wk-nim and all (ar, a−r) �= (reducer(m, s),
noop−r) ∈ Dk-nim, let Uk-nim(〈t1, t2, 〈x1, · · ·, xk〉〉, (ar, a−r)) = 〈t1, t2, 〈x1, · · ·,
xk〉〉.

– gk-nim(r) = {〈t1, t2, 〈0, · · ·, 0〉〉}, where tr = ¬turn(r) and t−r = turn(r).

198 M. Mittelmann and L. Perrussel

Finally, for each state w = 〈t1, t2, 〈x1, · · ·, xk〉〉 ∈ Wk-nim, let

– πΦ,k-nim(w) = {turn(r) : tr = turn(r)};
– πZ,k-nim(w) = 〈x1, · · ·, xk〉.

Let Mk-nim = (Wk-nim, w̄k-nim, Tk-nim, Lk-nim, Uk-nim, gk-nim, πΦ,k-nim,
πZ,k-nim) be the ST-model for the k-Nim Game.

Consider, for instance, k = 2 and 〈γ1, γ2〉 = 〈5, 3〉, i.e. there are only two
heaps and their starting values are 5 and 3, respectively. Figure 2 illustrates a
path in Mk-nim. The state w0 represents the initial state. In w0, it is the turn of
Player1 and he removes 5 sticks from the first heap. In the state w1, the first
heap is empty and players can only remove sticks from the second heap. It is
now Player2’s turn and he reduces 2 sticks from the second heap. In the state
w2, Player1 removes the last stick from the second heap. Finally, in the state
w3, there is no stick remaining in any heap, thereby it is a terminal state. Since
it is Player2’s turn, Player1 wins the game.

¬initial
¬terminal
¬wins(Player1)
¬wins(Player2)

w
k
-n

im

T
k
-n

im

g k
-n

im

¬turn(Player1)
turn(Player2)
〈0, 3〉
legal(noopPlayer1)
legal(reducePlayer2(m, s))
For 1 ≤ m ≤ 2,
and 1 ≤ s ≤ heapm

π
Φ

,k
-n

im
,

π
Z

,k
-n

im

L
k
-n

im

w1

d
oe

s(
re

d
u
ce

P
la

y
e
r
1
(2

,1
))

d
oe

s(
n
oo

p
P

la
y

e
r
2
)

¬initial
terminal
wins(Player1)
¬wins(Player2)

w
k
-n

im

T
k
-n

im

g k
-n

im

¬turn(Player1)
turn(Player2)
〈0, 0〉
legal(noopPlayer1)
legal(reducePlayer2(m, s))
For 1 ≤ m ≤ 2,
and 1 ≤ s ≤ heapm

π
Φ

,k
-n

im
,

π
Z

,k
-n

im

L
k
-n

im

w3

d
oe

s(
n
oo

p
P

la
y

e
r
1
)

d
oe

s(
re

d
u
ce

P
la

y
e
r
2
(2

,2
))¬initial

¬terminal
¬wins(Player1)
¬wins(Player2)

w
k
-n

im

T
k
-n

im

g k
-n

im

turn(Player1)
¬turn(Player2)
〈0, 1〉
legal(reducePlayer1(m, s))
For 1 ≤ m ≤ 2,
and 1 ≤ s ≤ heapm

legal(noopPlayer2)

π
Φ

,k
-n

im
,

π
Z

,k
-n

im

L
k
-n

im

w2

w0

L
k
-n

im
π

Φ
,k

-n
im

,
π
Z

,k
-n

im

legal(reducePlayer1(m, s))
For 1 ≤ m ≤ 2,
and 1 ≤ s ≤ heapm

legal(noopPlayer2)

turn(Player1)
¬turn(Player2)
〈5, 3〉

w
k
-n

im

T
k
-n

im

g k
-n

im

initial
¬terminal
¬wins(Player1)
¬wins(Player2)

d
oe

s(
re

d
u
ce

P
la

y
e
r
1
(1

,5
))

d
oe

s(
n
oo

p
P

la
y

e
r
2
)

Fig. 2. A Path in Mk-nim, where k = 2 and 〈γ1, γ2〉 = 〈5, 3〉

The next proposition shows that soundness does hold, i.e. the framework
provides a sound description for the k-Nim Game. Notice that as Mk-nim is not
the unique model for Σk-nim, thereby, the completeness does not hold.

Game Description Logic with Integers: A GDL Numerical Extension 199

Proposition 3. Mk-nim is an ST-model and it is a model of Σk-nim.

In the next section, we show that the model checking for GDLZ is decidable in
polynomial-time deterministic Turing machines (denoted PTIME), which is the
same complexity then the model checking for GDL. In other words, the addition
of numerical features in GDL does not increase the complexity at verifying the
validity of a formula at a stage of a path in a model.

2.3 Model Checking

The model checking problem for GDLZ is the following: Given a GDLZ-formula ϕ,
an ST-model M , a path δ of M and a stage j on δ, determine whether M, δ, j |= ϕ
or not.

Let Sub(ϕ) be the set of all subformulas3 of ϕ. Algorithm 1 works in the
following way: first it gets all subformulas of ϕ and orders them in S by its
ascending length. Thus, S(|ϕ|) = ϕ, i.e. the position |ϕ| in the vector S corre-
sponds to the formula ϕ itself, and if φi is a subformula of φj , then i < j. An
induction on S label each subformula φi depending on whether or not φi is true
in M at δ[j]. If φi does not have any subformula, its truth value is obtained
directly from the semantics. Since S is ordered by the formulas length, if φi is
either in the form φ′ ∧ φ′′ or ¬φ′ the algorithm labels φi according to the label
assigned to φ′ and/or φ′′. If φi is in the form ©φ′, its label will be recursively
defined according to φ′ truth value in δ[j + 1]. As Algorithm 1 visits each node
at most once, and the number of nodes in the tree is not greater than the size
of ϕ, it can be clearly implemented in a polynomial-time deterministic Turing
machine with PTIME.

Algorithm 1. isTrue(M, δ, j, ϕ)
Input: an ST-model M , a path δ of M , a stage j and a formula ϕ ∈ LGDLZ .
Output: true if M, δ, j |= ϕ, and false otherwise

1: S ← Sub(ϕ) ordered by ascending length
2: Let reg[1 · · · size(S)] be a boolean array
3: for i ← 1 to size(S) do
4: φ ← S[i]
5: if (φ = φ′ ∧ φ′′) then
6: reg[i] ← reg[getIndex(S, φ′)] ∧ reg[getIndex(S, φ′′)]
7: else if (φ = ©φ′) then
8: reg[i] ← isTrue(M, δ, j + 1, φ′)
9: else if (φ = ¬φ′) then

10: reg[i] ← ¬reg[getIndex(S, φ′)]
11: else reg[i] ← M, δ, j |= φ

return reg[size(S)]

3 We say that ψ is a subformula of ϕ ∈ LGDLZ if either (i) ψ = ϕ; (ii) ϕ is of the form
¬ϕ′ or ©ϕ′ and ψ is a subformula of ϕ′; or (iii) ϕ is of the form ϕ′ ∧ ϕ′′ and ψ is a
subformula of either ϕ′ or ϕ′′.

200 M. Mittelmann and L. Perrussel

In Sect. 3.3 we show that LGDL ⊆ LGDLZ , i.e. any formula in GDL is also a
formula in GDLZ. Thereby, Algorithm 1 can also be used in the model checking
problem for GDL.

3 Translation Between GDLZ and GDL

In this section, we investigate translation maps among GDLZ and GDL models
and descriptions. We first consider the general case where the GDLZ ST-model
can have infinite components. Next, we restrict to the case where a GDLZ ST-
model is finite. Finally, we compare both languages in order to show the suc-
cinctness of GDLZ descriptions over GDL descriptions.

Given a GDLZ ST-model M , a complete path δ in M and a formula ϕ ∈
LGDLZ , in the Sects. 3.1 and 3.2 our goal is to construct a GDL ST-model M ′,
a path δ′ in M ′ and a formula ϕ′ ∈ LGDL such that, for any stage j on δ, if
M, δ, j |= ϕ then M ′, δ′, j |= ϕ′.

3.1 From GDLZ Paths and Models to GDL Models

In a GDL ST-model, the sets of states, actions and atomic propositions are
finite. Since it does not hold for GDLZ ST-models, it is not possible to define a
complete translation from every GDLZ model to a GDL model. However, since
any GDLZ path is a finite sequence of states and joint actions, we can define
a partial translation from GDLZ ST-models to GDL ST-models based on the
reached states and joint actions performed in a complete path. In other words,
we can translate a run in a GDLZ model into a GDL model. Let us formally
describe the translation.

Through the rest of this section, we fix the GDLZ ST-model M = (W, w̄, T,
L, U, g, πΦ, πZ) with a game signature S = (N, A,X, Φ) and the complete path
δ = w̄

d1→ w1
d2→ · · · de→ we in M .

Given the path δ in M , we next define a shortcut to refer to the smallest and
biggest integers occurring in δ and the set of all actions performed in δ.

Definition 6. Given M and δ, we denote δmin and δmax as the smallest and
biggest integer, respectively, occurring in any parameter list z from any action
a ∈ {d1, d2, · · ·, de} and in any πZ(w), for w ∈ {w̄, w1, · · ·, de}.
Definition 7. Given M and δ, let Aδ = {dj(r) : r ∈ N & 1 ≤ j ≤ e} denote
the set of all actions performed in δ.

Since we are aware of the path numerical range, we are able to construct a
partial model translation. The translation is restricted to the states and actions
involved in a given path.

Definition 8. Given a GDLZ ST-model M and δ, we construct an associ-
ated GDL ST-model M ′ = (W ′, w̄, T ′, L′, U ′, g′, π′) with a game signature
S ′ = (N, A′, Φ′). The components w̄ and N = {r1, · · ·, rk} are the same for
M and M ′.

Game Description Logic with Integers: A GDL Numerical Extension 201

The propositional set Φ′ is constructed over both Φ and X as follows: Φ′ =
{p, smaller(z1, z2), bigger(z1, z2), equal(z1, z2), succ(z1, z2), prec(z1, z2), x(q) : p
∈ Φ, x ∈ X, δmin ≤ q, z1, z2 ≤ δmax}. The notation x(q) represents the proposi-
tion “variable x has the value q”.

For integrating the GDLZ comparison operators <,> and = in GDL, we
need to define the order between the numerical terms in the translated model.
Let πz ⊂ Φ′ denote a set of propositions describing the numerical order, such as:
πz = {succ(z, z+1), prec(z+1, z), equal(z1, z1) : δmin ≤ z < δmax & δmin ≤ z1 ≤
δmax} ∪ {smaller(z1, z2) : δmin ≤ z1, z2 ≤ δmax & z1 < z2} ∪ {bigger(z1, z2) :
δmin ≤ z1, z2 ≤ δmax & z1 > z2}.

For any ar(z1, · · ·, zl) ∈ Aδ, ar
z1,···,zl

∈ A′. We define an action translation
Tra : Aδ → A′ associating every action in Aδ with an action in A′: Tra(ar(z1, · ·
·, zl)) = ar

z1,···,zl
, where ar(z1, · · ·, zl) ∈ Aδ.

The M ′ components W ′, T ′, L′, U ′, g′ and π′ are defined as follows:

– W ′ = {w̄, w1, · · ·, we}
– T ′ = {we};
– L′ = {(wj−1, T ra(dj(r)) : r ∈ N & 1 ≤ j ≤ e};
– U ′(wj−1, (Tra(dj(r1)), · · ·, T ra(dj(rk)))) = wj, for 1 ≤ j ≤ e} ;
– g′(r) = {{we}} if we ∈ g(r), otherwise g′(r) = ∅, for r ∈ N ;
– π′(w) = {πΦ(w)} ∪ {πz} ∪ {x(q) : q ∈ πZ(w), x ∈ X}, for w ∈ W ′.

We say that M ′ = (W ′, w̄′, T ′, L′, U ′, g′, π′) with the signature S ′ = (N, A′,
Φ′) is the ST-model translation of M restricted over δ and write Trm(M, δ).

The path translation assigns each action appearing on it to the appropriated
GDL action through Tra, i.e. the action translation.

Definition 9. Given the agent set N = {r1, · · ·, rk}, define a path translation
Trλ : δ → δ′ associating a path δ = w̄

d1→ w1
d2→ · · · de→ we in M with a path

δ′ in Trm(M, δ): Trλ(δ) = w̄
d′
1→ w1

d′
2→ · · · d′

e→ we, where d′
i = (Tra(di(r1)), · ·

·, T ra(di(rk))), for 1 ≤ i ≤ e.

As shown next propositions, given a path in a GDLZ model, the translation
of the GDLZ model is a GDL model. Moreover, the translation of a path in a
GDLZ model is a path in the translation of the GDLZ model.

Proposition 4. If M is a GDLZ model and δ a complete path in M , then
Trm(M, δ) is a GDL ST-model.

Proposition 5. If δ is a path in a GDLZ model M then Trλ(δ) is a path in
Trm(M, δ).

Next, we show how to translate GDLZ formulas to GDL. Likewise to the
model translation, the translation is restricted to a path.

202 M. Mittelmann and L. Perrussel

From GDLZ Paths and Formulas to GDL Formulas. Let us briefly recall
GDL grammar. Given a GDL game signature S ′ = (N, A′, Φ′), a formula ϕ′ ∈
LGDL is defined by the following BNF:

ϕ′ ::= p | initial | terminal | legal(ar) | wins(r) | does(ar) | ¬ϕ | ϕ ∧ ϕ | ©ϕ

where p ∈ Φ′, r ∈ N and ar ∈ A′.
Given a path δ in a GDLZ ST-model M , we next define a translation for

formulas in LGDLZ to LGDL. Each numerical term z ∈ Lz occurring in a formula
ϕ ∈ LGDLZ is translated by its semantic interpretation through function v (see
Definition 4).

Definition 10. Given a GDLZ ST-model M with S = (N, A,X, Φ), a path δ in
M , a stage j in δ and function v (see Definition 4). A translation Trϕ from a
formula ϕ ∈ LGDLZ in a state δ[j] to a formula ϕ′ ∈ LGDL is defined as follows:

– Trϕ(ϕ, δ[j]) = ϕ for all ϕ ∈ Φ ∪ {initial, terminal, wins(r)};
– Trϕ(¬ϕ, δ[j]) = ¬Trϕ(ϕ, δ[j]);
– Trϕ(ϕ1 ∧ ϕ2, δ[j]) = Trϕ(ϕ1, δ[j]) ∧ Trϕ(ϕ2, δ[j]);
– Trϕ(©ϕ, δ[j]) = ©Trϕ(ϕ, δ[j + 1]);
– Trϕ(legal(ar(z̄)), δ[j]) = legal(Tra(ar(v(z) : z ∈ z̄))) iff legal(ar(v(z, δ[j]) :

z ∈ z̄) = θr(δ, j); otherwise Trϕ(legal(ar(z̄)), δ[j]) = ¬legal(Tra(ar(v(z) :
z ∈ z̄)));

– Trϕ(does(ar(z̄)), δ[j]) = does(Tra(ar(v(z) : z ∈ z̄)));
– Trϕ(〈z̄〉, δ[j]) =

∧|z̄|
i=1 xi(v(qi, δ[j]));

– Trϕ(z1 < z2, δ[j]) = smaller(v(z1, δ[j]), v(z2, δ[j]));
– Trϕ(z1 > z2, δ[j]) = bigger(v(z1, δ[j]), v(z2, δ[j]));
– Trϕ(z1 = z2, δ[j]) = equal(v(z1, δ[j]), v(z2, δ[Trϕ(ϕ, δ[t])])).

Where r ∈ N , xi ∈ X, qi is the i-th value in z̄ and 0 ≤ i ≤ |z̄|.
Given a path in a GDLZ model, we show that the translation of a GDLZ

formula is a GDL formula. Furthermore, if the GDLZ formula is valid at a stage
in the path, its translation will be valid at the same stage in the translated path
in the translated model.

Proposition 6. Given a GDLZ ST-model M , a path δ in M , a stage j in δ and
function v, if ϕ is a formula in LGDLZ then Trϕ(ϕ, δ[j]) is a formula in LGDL.

Theorem 1. If M, δ, j |= ϕ then Trm(M, δ), T rλ(δ), j |= Trϕ(ϕ, δ[j]) .

Proof. Given a GDLZ model M = (W, w̄, T, L, U, g, πΦ, πZ), with the game sig-
nature S = (N, A,X, Φ), a complete path δ, a stage j on δ, a formula ϕ ∈ LGDLZ

and the function v. Let M ′ = (W ′, w̄, T ′, L′, U ′, g′, π′), with S ′ = (N, A′, Φ′),
be the GDL translation of M , i.e. M ′ = Trm(M, δ), δ′ = Trλ(δ) and δmin,
δmax ∈ Z denote the integer bounds in δ.

For any integers δmin ≤ z1, z2 < δmax, πz ⊆ π′(δ[j]) enumerates its prede-
cessor and successor and define all the cases were bigger(z1, z2), smaller(z1, z2)
and equal(z1, z2) are true. Let ϕ′ = Trϕ(ϕ, δ[j]). We assume that M, δ, j |= ϕ
and show that then we have M ′, δ′, j |= ϕ′ for every ϕ.

Game Description Logic with Integers: A GDL Numerical Extension 203

– If ϕ is on the form p ∈ Φ, we have Trϕ(p, δ[j]) = p. By LGDLZ semantics, we
know that p ∈ πΦ(δ[j]). In the ST-model translation, we have the valuation
function constructed such that π′(δ[j]) = {πΦ(δ[j])} ∪ {πz} ∪ {x(q) : q ∈
πZ(δ[j]), x ∈ X} . Then, p ∈ π′(δ[j]′) and M ′, δ′, j |= p;

– If ϕ is either on the form ¬ψ, ϕ1∧ϕ2, initial, terminal, wins(r), legal(ar(z̄)),
does(ar(z̄)), or ©ψ, since Tra and Trϕ assigns each GDLZ action and for-
mula to an unique GDL state, action and formula, respectively, due to both
languages semantics it is easy to see that M ′, δ′, j |= Trϕ(ϕ, δ[j]), whenever
M, δ, j |= ϕ;

– If ϕ is on the form z1 > z2, we have Trϕ(z1 > z2, δ[j]) = bigger(v(z1, δ[j]),
v(z2, δ[j])). By LGDLZ semantics, we know that v(z1, δ[j]) > v(z2, δ[j]), i.e.
v(z1, δ[j]) is bigger then v(z2, δ[j]), then bigger(v(z1, δ[j]), v(z2, δ[j])) ∈ πz.
πz ⊆ π′(δ[j]) defines bigger(v(z1, δ[j]), v(z2, δ[j])) such that it is true, iff
v(z1, δ[j]) > v(z2, δ[j]). Thus, M ′, δ′, j |= bigger(v(z1, δ[j]), v(z2, δ[j]));

– If ϕ is either on the form z1 < z2 or z1 = z2, the proof proceeds as in the
previous case;

– If ϕ is on the form 〈z̄〉, Trϕ(z̄, δ[j]) =
∧|z̄|

i=1 xi(v(qi, w)), where xi ∈ X and qi is
the i-th value of z̄. By LGDLZ semantics, we know that z̄ = πZ(δ[j]). Since, by
the ST-model translation each xi(qi) ∈ Φ′ and π′(δ[j]) = {πΦ(δ[j])} ∪ {πz} ∪
{x(q) : q ∈ πZ(δ[j]), x ∈ X}, we have that M ′, δ′, j |= x1(q1), M ′, δ′, j |=
x2(q2) and so on, thus M ′, δ′, j |= ∧|z̄|

i=1 xi(v(qi, δ[t])).

Because it is a partial translation based on a path, the legal actions are
restricted to the ones performed in the path. To overcome this issue, in the
next section we show how to define complete translations over GDLZ models
and formulas. The following complete translation is limited to the finite GDLZ
models.

3.2 From Finite GDLZ Model to GDL Model

Let us consider the case where the GDLZ ST-model has finite components. In
this case, we are able to define a complete model translation, instead of partial
based on a path. In other words, all possible runs over the finite GDLZ ST-model
can be translated. Next, we characterize a finite GDLZ ST-model.

Definition 11. Given two arbitrary bounds zmin ≤ zmax ∈ Z, a finite GDLZ
ST-model Mf = (Wf , w̄f , Tf , Lf , Uf , gf , πΦf , πZf), with the game signature Sf =
(Nf ,Af ,Xf , Φf) is a subset of GDLZ ST-models that have the following aspects:
(i) zmin ≤ zi ≤ zmax, for any ar(z1, · · ·, zl) ∈ Af , 1 ≤ i ≤ o and r ∈ Nf ; (ii) Wf

and Af are finite sets; and (iii) zmin ≤ qi ≤ zmax, for any 〈q1 · · · qn〉 = πZ(w),
1 ≤ i ≤ n and w ∈ Wf .

Through the rest of this section, we fix the bounds zmin and zmax as well as
the finite GDLZ ST-model Mf = (Wf , w̄f , Tf , Lf , Uf , gf , πΦf , πZf) with a game
signature Sf = (Nf ,Af ,Xf , Φf) and Nf = {r1, · · ·, rk}. Let us show how any
finite GDLZ ST-model can be translated into a GDL ST-model.

204 M. Mittelmann and L. Perrussel

Definition 12. Given the finite GDLZ ST-model Mf and its signature Sf , we
define the GDL ST-model M ′

f = (Wf , w̄f , Tf , L′
f , U ′

f , gf , π′
f) with a game sig-

nature S ′
f = (Nf ,A′

f , Φ′
f). The components Wf , w̄f , Tf , gf and Nf are the same

for Mf and M ′
f .

We construct Φ′
f over both Φf , Xf and its values. Although Xf is a finite set,

each one of its components has an integer value in each state w ∈ Wf . As Φ′
f is

finite, we construct it with the bounds zmin and zmax ∈ Z. Since Z is a countable
set, for any zmin and zmax, we can define a finite enumeration of integer values.

The set of atomic propositions is defined as follows: Φ′
f = {p, smaller(z1, z2),

bigger(z1, z2), equal(z1, z2), succ(z1, z2), prec(z1, z2), x(q) : p ∈ Φ, x ∈ Xf , zmin

≤ q, z1, z2 ≤ zmax}.
We define an action translation Tra

f : Af → A′
f associating every action

in Af with an action in A′
f as follows: Tra

f (ar(z1, · · ·, zl)) = ar
z1,···,zl

, where
ar(z1, · · ·, zl) ∈ Af , zmin ≤ zi ≤ zmax and 0 ≤ i ≤ l}.

Note that Tra is an injective function. Thereby, we can define the GDL
components A′

f and L′
f based on Tra, as follows: (i) A′

f = {Tra
f (ar(z1, · · ·, zl)) :

ar(z1, · · ·, zl) ∈ Af}; and (ii) L′
f = {(w, Tra

f (a)) : (w, a) ∈ Lf}.
For each w ∈ Wf , each r ∈ Nf and each joint action (ar1 , · · ·, ark) ∈∏

r∈Nf
Ar

f , where Ar
f ∈ Af , the update function is defined as: U ′

f (w, (Tra
f (ar1),

· · ·, T ra
f (ark))) = Uf (w, (ar1 , · · ·, ark)).

Let πzf ⊂ Φf denote a set of propositions describing the numerical order,
such that πzf = {succ(z, z + 1), prec(z + 1, z), equal(z1, z1) : zmin ≤ z <
zmax & zmin ≤ z1 ≤ zmax} ∪ {smaller(z1, z2) : zmin ≤ z1, z2 ≤ zmax & z1 <
z2} ∪ {bigger(z1, z2) : zmin ≤ z1, z2 ≤ zmax & z1 > z2}.

Finally, for all w ∈ Wf , we construct the valuation π′
f as follows: π′

f (w) =
{πΦf (w) ∪ πzf ∪ {x(q) : q ∈ πZf (w), x ∈ Xf}}.

We say that M ′
f is a bounded ST-model translation of Mf and write

Trm
f (Mf).

The path translation consists at assigning each action appearing on it to the
appropriated GDL action through Tra

f .

Definition 13. Define a path translation Trλ
f : δf → δ′

f associating every path

δf = w̄f
d1→ w1

d2→ · · · de→ we in Mf with a path δ′
f in M ′

f : Trλ
f (δf) = w̄f

d′
1→ w1

d′
2→

· · · d′
e→ we, where di = (ar1 , · · ·, ark) ∈ Df , Df =

∏
r∈Nf

Ar
f , Ar

f ∈ Af , wi ∈ Wf ,
d′

i = (Tra
f (ar1), · · ·, T ra

f (ark)) and 1 ≤ i ≤ e.

It follows that the translations of a finite GDLZ model and a path in a finite
GDLZ model are a model and a path in GDL, respectively.

Proposition 7. If Mf is a finite GDLZ model then Trm
f (Mf) is a GDL model.

Proposition 8. If δf is a path in a finite GDLZ model Mf then Trλ
f (δf) is a

path in Trm
f (Mf).

Next, we show a complete translate from GDLZ formulas to GDL formu-
las. Likewise to the model translation, we use arbitrary bounds to restrict the
numerical range in the formulas.

Game Description Logic with Integers: A GDL Numerical Extension 205

From Bounded GDLZ Formulas to GDL Formulas. Assuming a GDLZ
game signature Sf = (Nf ,Af , Φf ,Xf), the semantics of a numerical variable
x ∈ Xf in a LGDLZ formula is evaluated depending on the current game state.

To translate the meaning of a numerical variable x ∈ Xf occurring in an
atomic formula ϕ ∈ LGDLZ in the form legal(ar(z̄)), does(ar(z̄)), 〈z̄〉, z1 < z2,
z1 > z2 or z1 = z2, Algorithm 2, denoted removeV ar(ϕ), defines an intermediate
formula ϕx as the disjunction from all possible values zmin ≤ q ≤ zmax for x in
ϕ and x(q). Algorithm 2 stops when there is no more occurrence of numerical
variables in the resulting formula.

Algorithm 2. removeV ar(ϕ)
Input: a formula ϕ ∈ LGDLZ . Assume the variable set Xf and zmin ≤ zmax.
Output: a partially translated formula.

1: I ← {zmin, · · ·, zmax}
2: if (ϕ = “legal(ar(z1, · · ·, zm))”) then
3: for each zi ∈ (z1, · · ·, zm) do
4: if zi ∈ Xf then return

∨
qi∈I(removeV ar(legal(ar(z1, · · ·, qi, · · ·, zm)) ∧

zi(qi))

5: else if (ϕ = “does(ar(z1, · · ·, zm))”) then Proceeds as the previous case.
6: else if (ϕ = “〈z1, · · ·, zm〉”) then
7: for each zi ∈ 〈z1, · · ·, zm〉 do
8: if zi ∈ Xf then return

∨
qi∈I(removeV ar(〈z1, · · ·, qi, · · ·, zm〉) ∧ zi(qi))

9: else if (ϕ = “z1 < z2”) then
10: if z1 ∈ Xf then return

∨
q1∈I(removeV ar(q1 < z2) ∧ z1(q1))

11: if z2 ∈ Xf then return
∨

q2∈I(removeV ar(z1 < q2) ∧ z2(q2))

12: else if (ϕ = “z1 > z2” or ϕ = “z1 = z2”) then Proceeds as the previous case.

return ϕ

A numerical simple term zf is defined by Lzf
, which is generated by the

following BNF: zf :: = z′ | add(zf , zf) | sub(zf , zf) | min(zf , zf) | max(zf , zf),
where z′ ∈ Z. Note that Lzf

⊆ Lz. Each numerical term zf ∈ Lzf
occurring

in a formula ϕ ∈ LGDLZ is translated by its semantic interpretation through
function vf , defined in a similar way to Definition 4:

Definition 14. Let us define function vf : Lzf
→ Z, associating any zf ∈ Lzf

to a number in Z:

vf (zf) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

zi if zf ∈ Z

vf (z′
f) + vf (z′′

f) if zf = add(z′
f , z′′

f)
vf (z′

f) − vf (z′′
f) if zf = sub(z′

f , z′′
f)

minimum(vf (z′
f), vf (z′′

f)) if zf = min(z′
f , z′′

f)
maximum(vf (z′

f), vf (z′′
f)) if zf = min(z′

f , z′′
f)

206 M. Mittelmann and L. Perrussel

The complete formula translation is restricted to bounded formulas, which
are are defined as follows:

Definition 15. ϕ ∈ LGDLZ is a bounded formula if, for any numerical term zf

occurring in ϕ, we have zf ∈ Lzf
and zmin ≤ vf (z) ≤ zmax or if there is no

occurrence of numerical terms in ϕ.

We next define a translation map for bounded formulas in LGDLZ to formulas
in LGDL. Each numerical simple term zf ∈ Lzf

occurring in a formula ϕ ∈
LGDLZ is translated by its semantic interpretation through function vf (see
Definition 14).

Definition 16. Given the GDLZ game signature Sf = (Nf ,Af ,Xf , Φf) and
function vf , a translation Trϕ

f from a bounded formula ϕ ∈ LGDLZ to a formula
ϕ′ ∈ LGDL is defined as Trϕ

f = Trz
f (removeV ar(ϕ)), where Trz

f is specified as
follows:

– Trz
f (ϕ) = ϕ for all ϕ ∈ Φf ∪ {initial, terminal, wins(r)} ∪ {x(q) : x ∈

Xf , zmin ≤ q ≤ zmax};
– Trz

f (¬ϕ) = ¬Trz
f (removeV ar(ϕ)));

– Trz
f (ϕ1 ∧ ϕ2) = Trz

f (removeV ar(ϕ1))) ∧ Trz
f (removeV ar(ϕ2)));

– Trz
f (©ϕ) = ©Trz

f (removeV ar(ϕ)));
– Trz

f (legal(ar(z̄))) = legal(Tra
f (ar(vf (z) : z ∈ z̄)));

– Trz
f (does(ar(z̄))) = does(Tra

f (ar(vf (z) : z ∈ z̄)));

– Trz
f (〈z̄〉) =

∧|z̄|
i=1 xi(vf (qi));

– Trz
f (z1 < z2,) = smaller(vf (z1), vf (z2));

– Trz
f (z1 > z2) = bigger(vf (z1), vf (z2));

– Trz
f (z1 = z2) = equal(vf (z1), vf (z2)).

Where r ∈ Nf , xi ∈ Xf , qi is the i-th value in z̄ and 0 ≤ i ≤ |z̄|.
Let us illustrate the translation of GDLZ formulas into GDL using Trϕ

f .

Example 2. Let I = {zmin, · · ·, zmax} and ϕ1 = does(reducer(heap1, add(1, 2))),
where heap1 ∈ Xf , then Trϕ

f (ϕ1) =
∨

h1∈{zmin,···,zmax}(does(reducer(h1, 3)) ∧
heap1(h1)).

The translation of a GDLZ formula is a GDL formula. Furthermore, if the
GDLZ formula is valid at a stage in the path in a finite GDLZ model, then its
translation will be valid at the same stage in the translated path in the translated
model.

Proposition 9. If ϕ ∈ LGDLZ then Trϕ
f (ϕ) ∈ LGDL.

Theorem 2. If Mf is a finite GDLZ ST-model, ϕ ∈ LGDLZ is a bounded for-
mula and Mf , δf , j |= ϕ then Trm

f (Mf), T rλ
f (δf), j |= Trϕ

f (ϕ).

In the next section, we briefly describe how to translate GDL ST-models into
GDLZ ST-models. Besides that, we show that GDL is a sublanguage of GDLZ.

Game Description Logic with Integers: A GDL Numerical Extension 207

3.3 From GDL to GDLZ

Conversely, we show that any GDL ST-model can be transformed into a GDLZ
ST-model. Given a GDL ST-model M ′ = (W, w̄, T, L, U, g, π′) with a game sig-
nature S ′ = (N, A, Φ), we define an associated GDLZ ST-model M = (W, w̄,
T, L, U, g, πΦ, πZ) with the game signature S = (N, A,X, Φ), such that all ele-
ments are the same, except by πΦ, πZ and X and X. These GDLZ components
are defined as follows: (i) πΦ(w) = π′(w); (ii) πZ(w) = ∅; and (iii) X = ∅.

It follows that any formula ϕ ∈ LGDL is also a formula in GDLZ, i.e. ϕ ∈
LGDLZ .

Proposition 10. If S ′ = (N, A, Φ′) and S = (N, A,X, Φ) are GDL and GDLZ
game signatures, respectively, and Φ′ ⊆ Φ, then LGDL ⊆ LGDLZ .

3.4 Succinctness

Next, we compare LGDLZ and LGDL in order to show the succinctness of LGDLZ

in describing the same game. The following definition specifies when two sets of
formulas in GDLZ and GDL describe the same game.

Definition 17. Two sets of formulas ΣGDLZ ⊆ LGDLZ and ΣGDL ⊆ LGDL

describe the same game either (i) if ΣGDLZ = {ϕ : ϕ ∈ ΣGDL} and LGDL and
LGDL have, respectively, S ′ = (N, A, Φ) and S = (N, A, ∅, Φ); (ii) if ΣGDL =
{Trϕ(ϕ, δ[j]) : ϕ ∈ ΣGDLZ}, given a GDLZ ST-model M , a path δ in M and a
stage j in δ or (iii) if ΣGDL = {Trϕ

f (ϕ) : ϕ ∈ ΣGDLZ}, where every ϕ ∈ ΣGDLZ

is a bounded formula.

The following theorem show that (i) a GDLZ description has less subformulas
and (ii) if we compare with the path translation, the growth is linear, if we
compare with the complete translation, the growth is exponential.

Theorem 3. If ΣGDLZ and ΣGDL are two sets of formulas in LGDLZ and
LGDL, respec., describing the same game, then |Sub(ΣGDLZ)| ≤ |Sub(ΣGDL)|.
Proof. Assume the GDL and GDLZ game signatures S ′ = (N, A′, Φ′) and S =
(N, A,X, Φ), respectively. Since ΣGDLZ and ΣGDL describe the same game, by
Definition 17, we have either: (i) ΣGDLZ = {ϕ : ϕ ∈ ΣGDL}, S ′ = (N, A, Φ)
and S = (N, A, ∅, Φ); (ii) ΣGDL = {Trϕ(ϕ, δ[j]) : ϕ ∈ ΣGDLZ}, for a GDLZ
ST-model M , a path δ in M and a stage j in δ, or (iii) if ΣGDL = {Trϕ

f (ϕ) :
ϕ ∈ ΣGDLZ}, where every ϕ ∈ ΣGDLZ is a bounded formula. In the first case,
A′ = A, Φ′ = Φ, X = ∅ and ΣGDLZ = {ϕ : ϕ ∈ ΣGDL}, we clearly have
|ΣGDLZ | = |ΣGDL| and |Sub(ΣGDLZ)| = |Sub(ΣGDL)|.

Given a path δ in a GDLZ ST-model M and a stage j, let us now consider
the case (ii) where ΣGDL = {Trϕ(ϕ, δ[j]) : ϕ ∈ ΣGDLZ}. From Trϕ(ϕ, δ[j]),
we have that any translation assigns ϕ to a corresponding ϕ′ where |Sub(ϕ)| =
|Sub(ϕ′)|, except in the case where ϕ is of the form 〈z̄〉. If ϕ is of the form
〈z̄〉, then ϕ′ will be constructed as

∧|z̄|
i=1 xi(v(qi, w)), where xi ∈ X and qi is

208 M. Mittelmann and L. Perrussel

the i-th value of z̄. Thus, |Sub(ϕ′)| = |z̄||Sub(ϕ)|. Since |Sub(ϕ)| = 1, then
|Sub(ϕ′)| = |z̄|. Denote Σl = ΣGDLZ −{〈z̄〉 : 〈z̄〉 ∈ LGDLZ}, i.e. Σl is the subset
of ΣGDLZ without any formula 〈z̄〉. Thereby |Sub(Σl)| = |Sub({Trϕ(ϕ, δ[j]) :
ϕ ∈ Σl)}|). Assuming k as the amount of formulas in the form 〈z̄〉 ∈ ΣGDLZ ,
we have |Sub(ΣGDL)| = |Sub(Σl)| + |z̄|k. Thereby, in the second case, we have
|Sub(ΣGDLZ)| ≤ |Sub(ΣGDL)|.

Let us consider case (iii), where ΣGDL = {Trϕ
f (ϕ) : ϕ ∈ ΣGDLZ} and every

ϕ ∈ ΣGDLZ is a bounded formula. Let μ = zmax − zmin. The proof for case
(iii) proceeds in the same way that for case (ii), except in the situation where
there are numerical variables occurring in any ϕ ∈ ΣGDLZ . If we have at least
one numerical variable occurring in ϕ, we know that ϕ is either in the form
legal(ar(z̄)), does(ar(z̄)), 〈z̄〉, z1 < z2, z1 > z2 or z1 = z2. Thereby, |ϕ| = 1
and |Trϕ

f (removeV ar(ϕ))| = 2μη ×|ϕ|, where η is the amount of numerical vari-
ables occurring in ϕ. Thereby, |ϕ| < |Trϕ

f (removeV ar(ϕ))| and |Sub(ΣGDLZ)| ≤
|Sub(ΣGDL)|. Denote Σ′

l = ΣGDLZ −{〈z̄〉 : 〈z̄〉 ∈ LGDLZ}−{ϕ ∈ LGDLZ : there
is at least one numerical variable in ϕ}. Assuming k as the amount of formu-
las in the form 〈z̄〉 ∈ ΣGDLZ and κ as the amount of formulas where occurs η
numerical variables, we have |Sub(ΣGDL)| = |Sub(Σ′

l)| + 2μηκ + |z̄|k.

Theorem 4. Given ΣGDLZ ⊆ LGDLZ , a GDLZ ST-model M with the game
signature S = (N, A, Φ,X):

1. If ΣGDL = {Trϕ(ϕ, δ[j]) : ϕ ∈ ΣGDLZ}, given a path δ in M and a stage j in
δ, then |Sub(ΣGDL)| grows in the order O(n), where n = |Sub(Σl)| + |X|k,
the value k represents the amount of formulas in the form 〈z̄〉 in ΣGDLZ and
Σl = ΣGDLZ − {〈z̄〉 : 〈z̄〉 ∈ LGDLZ}, i.e. Σl is the subset of ΣGDLZ without
any formula 〈z̄〉;

2. If ΣGDL = {Trϕ
f (ϕ) : ϕ ∈ ΣGDLZ}, where every ϕ ∈ ΣGDLZ is a

bounded formula, then |Sub(ΣGDL)| grows in the order O(n + κμη), where
n = |Sub(Σl)| + |X|k, the value k represents the amount of formulas in the
form 〈z̄〉 in ΣGDLZ , Σl = ΣGDLZ −{〈z̄〉 : 〈z̄〉 ∈ LGDLZ} and η is the amount
of numerical variables occurring in κ variables.

The partial translation Trϕ only concerns a fragment of the GDLZ model,
that is the part of the model involved in a specific path. The size of a formula
translated through Trϕ has a linear growth over the number of numerical vari-
ables in X and the number of formulas in the form 〈z̄〉. Conversely, Trϕ

f is a
complete translation over finite GDLZ models. To represent a GDLZ formula in
a GDL formula regardless of a specific path, we should remove the occurrence of
numerical variables as numerical terms (see Algorithm 2). This procedure expo-
nentially increases the size of the translated formula, depending mainly on the
occurrence of numerical variables in the original GDLZ formula.

4 Conclusion

In this paper, we have introduced a GDL extension to describe games with
numerical aspects, called GDLZ. In GDLZ, states are evaluated with proposi-
tions and an assignment of integer values to numerical variables. This allows us to

Game Description Logic with Integers: A GDL Numerical Extension 209

define the terminal and goal states in terms of the numerical conditions. Further-
more, we define actions with numerical parameters, such that these parameters
can influence over the action legality and over the state update. The language
was extended mainly to include the representation of numerical variables and
integer values as well as to allow numerical comparison.

We defined translations between GDLZ and GDL game models and formulas.
Since GDL models have finite components, we can not define a complete model
translation for any GDLZ model. We first defined a partial translation from
any GDLZ model restricted to a specified path, i.e. only a run in the game
is represented. Second, we defined a complete translation from GDLZ models
with finite components and bounded formulas. We show that, in both cases,
a translated GDLZ model, path or formula is a GDL model, path or formula,
respectively. Furthermore, we prove that if a formula is satisfied at a stage in
a path under a GDLZ model, its translation will also be satisfied at the same
stage in the translated path under the translated model.

Finally, we show that, if we have a GDLZ and a GDL description for the
same (finite) game, the GDLZ description is more succinct or equal, in terms
of the quantity of subformulas in the description. More precisely, if the GDL
game description is based on the partial translation from a GDLZ description
restricted to one path, it is linearly larger then the GDLZ description. When we
consider the complete model translation, the GDL description is exponentially
larger than the GDLZ description.

Future work may extend GDLZ to define numerical rewards to players, stat-
ing their achievement when the game ends. It means that numerical variables
may not have values assigned in some state of the model. Our aim is to investi-
gate this new kind of numerical models. In our framework, it is possible to define
both concurrent and sequential games. However, the legality of an agent’s action
is independent from the actions of other agents. Thereby, it may be inappropri-
ate to describe concurrent games where the actions of two agents change the
same numerical variable. To overcome this limitation, future work may explore
the definition of the legality function over joint actions.

Acknowledgments. Munyque Mitttelmann and Laurent Perrussel acknowledge the
support of the ANR project AGAPE ANR-18-CE23-0013.

References

1. Genesereth, M., Love, N., Pell, B.: General game playing: overview of the
AAAI competition. AI Mag. 26(1), 1–16 (2005). http://www.aaai.org/ojs/
index.php/aimagazine/article/viewArticle/1813

2. Gerevini, A.E., Saetti, A., Serina, I.: An approach to efficient planning with numer-
ical fluents and multi-criteria plan quality. Artif. Intell. 172(8–9), 899–944 (2008).
https://doi.org/10.1016/j.artint.2008.01.002

3. Ghallab, M., et al.: PDDL - The Planning Domain Definition Language. Technical
report, AIPS-98 Planning Competition Committee (1998). http://citeseerx.ist.psu.
edu/viewdoc/summary?doi=10.1.1.37.212

http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1813
http://www.aaai.org/ojs/index.php/aimagazine/article/viewArticle/1813
https://doi.org/10.1016/j.artint.2008.01.002
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.212

210 M. Mittelmann and L. Perrussel

4. Giacomo, G.D., Lesp, Y., Pearce, A.R.: Situation calculus-based programs for rep-
resenting and reasoning about game structures. In: Proceedings of the Twelth
International Conference on the Principles of Knowledge Representation and Rea-
soning (KR 2010), pp. 445–455 (2010)

5. Jiang, G., Zhang, D., Perrussel, L.: GDL meets ATL: a logic for game description
and strategic reasoning. In: Pham, D.N., Park, S.B. (eds.) PRICAI 2014: Trends
in Artificial Intelligence, pp. 733–746. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-13560-1 58

6. Jiang, G., Zhang, D., Perrussel, L., Zhang, H.: Epistemic GDL: a logic for repre-
senting and reasoning about imperfect information games. In: IJCAI International
Joint Conference on Artificial Intelligence, January 2016, pp. 1138–1144 (2016)

7. Love, N., Genesereth, M., Hinrichs, T.: General Game Playing: Game Descrip-
tion Language Specification. Technical report LG-2006-01, Stanford University,
Stanford, CA (2006). http://logic.stanford.edu/reports/LG-2006-01.pdf

8. Fox, M., Long, D.: PDDL2.1: An extension to PDDL for express-
ing temporal planning domains. J. Artif. Intell. Res. 20, 1–48 (2003).
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.1957

9. McDermott, D.M.: The 1998 AI planning systems competition. AI Mag. 21(2), 35
(2000). https://doi.org/10.1609/AIMAG.V21I2.1506

10. Parikh, R.: The logic of games and its applications. North-Holland Math. Stud.
102, 111–139 (1985). https://doi.org/10.1016/S0304-0208(08)73078-0

11. Pauly, M., Parikh, R.: Game logic - an overview. Studia Logica 75(2), 165–182
(2003). https://doi.org/10.1023/A:1027354826364

12. Schiffel, S., Thielscher, M.: Representing and reasoning about the rules of general
games with imperfect information. J. Artif. Intell. Res. 49, 171–206 (2014)

13. Thielscher, M.: A general game description language for incomplete information
games. In: Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intel-
ligence (AAAI-2010), pp. 994–999 (2010). https://www.aaai.org/ocs/index.php/
AAAI/AAAI10/paper/view/1727

14. Thielscher, M.: GDL-III: a proposal to extend the game description language to
general epistemic games. In: Proceedings of the European Conference on Artificial
Intelligence (ECAI), vol. 285, pp. 1630–1631. Hague (2016). https://doi.org/10.
3233/978-1-61499-672-9-1630

15. Thielscher, M.: GDL-III: a description language for epistemic general game play-
ing. IJCAI International Joint Conference on Artificial Intelligence, pp. 1276–1282
(2017)

16. Van Benthem, J.: Games in dynamic-epistemic logic. Bull. Econ. Res. 53(4), 219–
248 (2001). https://doi.org/10.1111/1467-8586.00133

17. van Benthem, J., Ghosh, S., Liu, F.: Modelling simultaneous games in dynamic logic.
Synthese 165(2), 247–268 (2008). https://doi.org/10.1007/s11229-008-9390-y

18. Zhang, D., Thielscher, M.: Representing and reasoning about game strategies. J.
Philos. Logic 44(2), 203–236 (2014). https://doi.org/10.1007/s10992-014-9334-6

https://doi.org/10.1007/978-3-319-13560-1_58
https://doi.org/10.1007/978-3-319-13560-1_58
http://logic.stanford.edu/reports/LG-2006-01.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.68.1957
https://doi.org/10.1609/AIMAG.V21I2.1506
https://doi.org/10.1016/S0304-0208(08)73078-0
https://doi.org/10.1023/A:1027354826364
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1727
https://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1727
https://doi.org/10.3233/978-1-61499-672-9-1630
https://doi.org/10.3233/978-1-61499-672-9-1630
https://doi.org/10.1111/1467-8586.00133
https://doi.org/10.1007/s11229-008-9390-y
https://doi.org/10.1007/s10992-014-9334-6

Craig Interpolation of Epistemic Logics
with Distributed Knowledge

Ryo Murai1(B) and Katsuhiko Sano2

1 Graduate School of Humanities and Human Sciences,
Hokkaido University, Sapporo, Japan

rmurai270@gmail.com
2 Faculty of Humanities and Human Sciences,

Hokkaido University, Sapporo, Japan
v-sano@let.hokudai.ac.jp

Abstract. Distributed Knowledge among agents is an important topic
in multi-agent systems. While semantic studies of distributed knowledge
have been done by several authors in the context of epistemic logic, there
are a few proof-theoretic studies. This paper provides cut-free Gentzen-
style sequent calculi for epistemic logics with distributed knowledge and
establishes Craig Interpolation Theorem for the logics by a constructive
method, i.e., Maehara method.

Keywords: Epistemic logic · Distributed knowledge · Sequent
calculus · Craig Interpolation Theorem

1 Introduction

“Distributed knowledge” is a notion developed in the community of multi-agent
epistemic logic [3,10]. As Ågotnes et al. [1, Section 1] say, the notion of “a group
G has a distributed knowledge of ϕ” is understood as: It follows from the combi-
nation of knowledge of members of G that ϕ were true before any communication
or other events took place.1 For example, a group consisting of a and b has dis-
tributed knowledge of a fact q, when a knows p → q and b knows p. Due to
its aggregative nature, the notion of distributed knowledge may be applicable to
the field of cooperative problem solving, knowledge base merging, and judgement
aggregation, as [8] suggests.

In the context of epistemic logic, distributed knowledge is expressed as a
modal operator DG, parameterized by a group of agents and the satisfaction of
DGϕ at a state w is defined as: ϕ holds at all states v such that v can be reached
1 Fagin et al. [3, p. 3] state as intuitive description for distributed knowledge “a group
has distributed knowledge of a fact ϕ if the knowledge of ϕ is distributed among
its members, so that by pooling their knowledge together the members of the group
can deduce ϕ”. This seems clearer, at first sight, than the explanation we give here.
Ågotnes et al. [1] states, however, that the above intuitive description is inappropriate
by an illustrative example given in [1, Section 1].

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 211–221, 2020.
https://doi.org/10.1007/978-3-030-39951-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_13

212 R. Murai and K. Sano

in a single step from w for all agents in G, i.e., wRav for all agents a ∈ G, where
Ra is a binary relation on the states.

The study of distributed knowledge so far is mainly model-theoretic [1,6,16,
19] and proof-theoretic study has been not so active. As far as we know, existing
sequent calculi for logic with distributed knowledge are presented only in [7,8,13].
[8] contains a natural G3-style (without structural rules) formalization, in which
each formula has a label, [13] contains a Gentzen-style sequent calculus for S4
distributed knowledge logic which is simpler than the one we are interested in,
in that the operator is not parameterized by group G, and [7] contains Gentzen-
style and Kanger-style sequent calculi for S5 distributed knowledge logic with
the same type of operator as the second one.

WeproposeGentzen-style sequent calculi (without label) for five kinds ofmulti-
agent epistemic propositional logics with distributed knowledge operators, param-
eterized by groups, which are reasonable generalization of sequent calculi for basic
modal logic, and we prove the cut elimination theorem for four of them. Using
a method described in [9], Craig interpolation theorem is also established for the
four systems, in which not only condition of propositional variables but also that of
agents is taken into account. This is a new result for logic for distributed knowledge,
as far as we know. Craig interpolation theorem does not hold for some expansions
of basic modal logic [2], so the result suggests the logics with distributed knowledge
are “good” expansions of basic modal logic in this sense.

We proceed as follows. Section 2 provides the necessary preliminaries of dis-
tributed epistemic logics. We fix our language and give semantic definition of
a distributed knowledge operator DG. We also introduce the known Hilbert-
style axiomatization of epistemic logics with distributed knowledge. In Sect. 3,
we propose Gentzen-style sequent calculi for the logics defined in Sect. 2. We also
establish the equipollence results between the sequent calculi and the Hilbert-
style axiom systems introduced in Sect. 2 (Theorem 1). In Sect. 4, we prove our
main technical results, Cut Elimination Theorem (Theorem 2) and Craig Inter-
polation Theorem (Theorem 3). In Sect. 5, we state possible future work.

2 Overview of Epistemic Logics with Distributed
Knowledge Operators

2.1 Language

We denote a finite set of agents by Agt. We call a nonempty subset of Agt “group”
and denote it by G,H, etc. Let Prop be a countable set of propositional variables
and Form be the set of formulas defined inductively by the following clauses:

Form � ϕ ::= p ∈ Prop | ⊥ | � | ¬ϕ | ϕ → ϕ | DGϕ.

It is noted that ∧ and ∨ are defined in the same way as in the classical propo-
sitional logic. We also define the epistemic operator Kaϕ (read “agent a knows
that ϕ”) as D{a}ϕ. As noted above, an expression of the form D∅ϕ is not a
well-formed formula, since we have excluded ∅ from our definition of groups.

Craig Interpolation of Epistemic Logics with Distributed Knowledge 213

2.2 Kripke Semantics

We introduce the ordinary Kripke semantics for multi-agent epistemic logic here.
Let W be a possibly countable set of states, (Ra)a∈Agt be a family of binary
relations on W , indexed by agents, and V be a valuation function Prop → P(W).
We call a pair F = (W, (Ra)a∈Agt) a frame and a tuple M = (W, (Ra)a∈Agt, V) a
model. For a model M = (W, (Ra)a∈Agt, V) and a state w ∈ W , a pair (M,w) is
called a pointed model. Satisfaction relation M,w |= ϕ on pointed models and
formulas is defined recursively as follows:

M,w |= p iff w ∈ V (p),
M,w |= ⊥ Never,
M,w |= � Always,
M,w |= ¬ϕ iff M,w
|= ϕ,
M,w |= ϕ → ψ iff M,w
|= ϕ or M,w |= ψ,
M,w |= DGϕ iff for all v ∈ W, if (w, v) ∈ ⋂

a∈G Ra then M,v |= ϕ.

It is noted from our definition of Kaϕ := D{a}ϕ that the satisfaction of Kaϕ at
a state w of a model M is given as follows:

M,w |= Kaϕ iff for all v ∈ W, if (w, v) ∈ Ra then M,v |= ϕ.

Given a frame F = (W, (Ra)a∈Agt), we say that a formula ϕ is valid in F (nota-
tion: F |= ϕ) if (F, V), w |= ϕ for every valuation function V and every w ∈ W .
Moreover, a formula ϕ is valid in a class F of frames if F |= ϕ for every F ∈ F.
Let us say that a set Γ of formulas defines a class F of frames if, for every frame
F , F ∈ F is equivalent to: F |= ϕ for all ϕ ∈ Γ .

2.3 Hilbert Systems

We review the known Hilbert system for epistemic logics with DG operators
(cf. [3]). Hilbert system H(KD) is defined as in the following table.

Hilbert System H(KD)
(Taut) all instantiations of propositional tautologies
(Incl) DGϕ → DHϕ (G ⊆ H)
(K) DG(ϕ → ψ) → (DGϕ → DGψ)
(MP) From ϕ → ψ and ϕ infer ψ
(Nec) From ϕ infer DGϕ

Additional Axiom Schemes
(T) DGϕ → ϕ
(4) DGϕ → DGDGϕ
(5) ¬DGϕ → DG¬DGϕ

For additional axioms schemes, we note that (T), (4) and (5) define the class
of reflexive, transitive and Euclidean frames, respectively (here, e.g., a “reflex-
ive” frame means that Ra is reflexive for all agents a ∈ Agt). Hilbert systems

214 R. Murai and K. Sano

H(KTD), H(K4D), H(S4D), and H(S5D) are defined as axiomatic expansions
of H(KD) with (T), (4), (T) and (4), and (T) and (5), respectively). Given any
Hilbert system X above, the notion of provability is defined as usual.

For Hilbert systems H(KD), H(KTD), H(S4D) and H(S5D), the following
soundness and completeness results are known [3] (we cannot find any explicit
reference on H(K4D), private communication by Thomas Ågotnes).

Fact 1. Each of Hilbert systems H(KD), H(KTD), H(S4D) and H(S5D) is
sound and complete with regard to the class of frames defined by additional axiom
schemes.

3 Sequent Calculi of Epistemic Logics with Distributed
Knowledge

A sequent is a pair of finite multi-sets of formulas Γ and Δ denoted by “Γ ⇒
Δ”, whose reading is “if all formulas in Γ hold then some formulas in Δ hold.”
We now propose our sequent calculi for the logics for distributed knowledge as in
Table 1. Axioms, Structural Rules and Propositional Logical Rules are common
to LK [4,5] and the rest are new. We note that when n = 0, e.g., in the rule (D)
of Table 1, the multi-set is regarded as the empty multi-set and thus

⋃n
i=1 Gi

is regarded as ∅. A sequent Γ ⇒ Δ is derivable in each calculus G(X) if there
exists a finite tree of sequents, whose root is Γ ⇒ Δ and each node of which
is inferred by some rule in G(X). We write it as G(X) Γ ⇒ Δ. We introduce
a notion of “principal formula” for a proof described later. A principal formula
is defined for each inference rule, except for the axioms and (Cut) rule and is
informally expressed as “a formula, on which the inference rule acts”. A principal
formula of the structural rules, the rules for → and the rule (D ⇒) is a formula
appearing in the lower sequent, which is not contained in Γ or Δ. A principal
formula of the rules for DG operator other than (D ⇒) is every formula in the
lower sequent.

Remark 1. The idea underlying the rule (D) is similar to that of an inference
rule called “R12” described in [15, section 4]. Sequent calculi G(KTD),G(K4D),
G(S4D), and G(S5D) are constructed based on the known sequent calculi for
KT,K4,S4, and S5, respectively (surveyed in [14,18]). For example, inference
rules for the modal operator � of the sequent calculus for S4 is as follows:

�Γ ⇒ ϕ

�Γ ⇒ �ϕ
(⇒ �)

ϕ, Γ ⇒ Δ

�ϕ, Γ ⇒ Δ
(� ⇒)

.

We note that for any epistemic logic X with distributed knowledge under
consideration, H(X) and G(X) are equipollent in the following sense, and hence
that each system G(X) deserves its own name.

Theorem 1 (Equipollence). Let X be any of KD, KTD, K4D, S4D, and
S5D. Then, the following hold.

Craig Interpolation of Epistemic Logics with Distributed Knowledge 215

Table 1. Sequent Calculi for KD, KTD, K4D, S4D, and S5D

Axioms

ϕ ⇒ ϕ (Id) ⊥ ⇒ (⊥) ⇒ � (�)

Structural Rules

Γ ⇒ Δ
Γ ⇒ Δ, ϕ

(⇒ w) Γ ⇒ Δ
ϕ, Γ ⇒ Δ

(w ⇒)
Γ ⇒ Δ, ϕ, ϕ

Γ ⇒ Δ, ϕ
(⇒ c)

ϕ, ϕ, Γ ⇒ Δ

ϕ, Γ ⇒ Δ
(c ⇒)

Γ ⇒ Δ, ϕ ϕ, Π ⇒ Σ

Γ, Π ⇒ Δ, Σ
(Cut)

Propositional Logical Rules

ϕ, Γ ⇒ Δ

Γ ⇒ Δ, ¬ϕ
(⇒ ¬) Γ ⇒ Δ, ϕ

¬ϕ, Γ ⇒ Δ
(¬ ⇒)

ϕ, Γ ⇒ Δ, ψ

Γ ⇒ Δ, ϕ → ψ
(⇒→)

Γ ⇒ Δ, ϕ ψ, Γ ⇒ Δ

ϕ → ψ, Γ ⇒ Δ
(→⇒)

Logical Rules for DG of KD

ϕ1, . . . , ϕn ⇒ ψ (
⋃n

i=1 Gi ⊆ G)
DG1ϕ1, . . . , DGnϕn ⇒ DGψ

(D)

Logical Rules for DG of KTD

ϕ1, . . . , ϕn ⇒ ψ (
⋃n

i=1 Gi ⊆ G)
DG1ϕ1, . . . , DGnϕn ⇒ DGψ

(D)
ϕ, Γ ⇒ Δ

DGϕ, Γ ⇒ Δ
(D ⇒)

Logical Rules for DG of K4D

ϕ1, . . . , ϕn, DG1ϕ1, . . . , DGnϕn ⇒ ψ (
⋃n

i=1 Gi ⊆ G)
DG1ϕ1, . . . , DGnϕn ⇒ DGψ

(⇒ DK4D)

Logical Rules for DG of S4D

DG1ϕ1, . . . , DGnϕn ⇒ ψ (
⋃n

i=1 Gi ⊆ G)
DG1ϕ1, . . . , DGnϕn ⇒ DGψ

(⇒ DS4D)
ϕ, Γ ⇒ Δ

DGϕ, Γ ⇒ Δ
(D ⇒)

Logical Rules for DG of S5D

DG1ϕ1, . . . , DGnϕn ⇒ DH1ψ1, . . . , DHmψm, χ (
⋃n

i=1 Gi ∪ ⋃m
j=1 Hj ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DH1ψ1, . . . , DHmψm, DGχ
(⇒ DS5D)

ϕ, Γ ⇒ Δ

DGϕ, Γ ⇒ Δ
(D ⇒)

216 R. Murai and K. Sano

1. If H(X) ϕ, then G(X)⇒ ϕ.
2. If G(X) Γ ⇒ Δ, then H(X)

∧
Γ → ∨

Δ, where
∧ ∅ := � and

∨ ∅ := ⊥.

Proof. We show the case of KD. The idea for proof is common to the rest. Here
we focus on item 2 alone. We show item 2 by induction on the structure of the
derivation for the sequent Γ ⇒ Δ. We deal with the case for the rule (D) only.
Suppose we have a derivation

D
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1 Gi ⊆ G)

DG1ϕ1, . . . , DGn
ϕn ⇒ DGψ

(D)
.

We show H(KD)

∧n
i=1 DGi

ϕi → DGψ. We have H(KD)

∧n
i=1 ϕi → ψ as the

induction hypothesis for the derivation D. From this, we can infer by neces-
sitation H(KD) DG(

∧n
i=1 ϕi → ψ). By this and axiom (K), we have H(KD)

DG(
∧n

i=1 ϕi) → DGψ, which is equivalent to H(KD)

∧n
i=1 DGϕi → DGψ. There-

fore, it suffices to show that H(KD)

∧n
i=1 DGi

ϕi → ∧n
i=1 DGϕi, which is equiv-

alent to H(KD)

∧n
i=1 DGi

ϕi → DGϕi for any i ∈ {1, . . . , n}. This is evident
because we have a propositional tautology H(KD)

∧n
i=1 DGi

ϕi → DGi
ϕi and

the axiom (Incl) H(KD) DGi
ϕi → DGϕi. ��

4 Main Proof-Theoretic Results

4.1 Cut Elimination

The cut elimination theorem does not hold for G(S5D), because the application
of (Cut) rule in the following derivation cannot be eliminated [11].

p ⇒ p (Id)
¬p, p ⇒ (¬ ⇒)

D{a}¬p, p ⇒ (D ⇒)

p ⇒ ¬D{a}¬p
(⇒ ¬)

D{a}¬p ⇒ D{a}¬p
(Id)

⇒ ¬D{a}¬p,D{a}¬p
(⇒ ¬)

⇒ D{a}¬D{a}¬p,D{a}¬p
(⇒ DS5D)

¬D{a}¬p ⇒ D{a}¬D{a}¬p
(¬ ⇒)

p ⇒ D{a}¬D{a}¬p
(Cut)

⇒ p → D{a}¬D{a}¬p
(⇒→)

Therefore, we establish the cut elimination theorem for our sequent calculi except
for G(S5D).

Theorem 2 (Cut Elimination). Let X be any of KD, KTD, K4D, and S4D.
Then, the following holds: If G(X) Γ ⇒ Δ, then G−(X) Γ ⇒ Δ, where G−(X)
denotes a system “G(X) minus the cut rule”.

To prove the theorem, we consider a system G∗(X), in which the cut rule is
replaced by a “extended” cut rule defined as:

Γ ⇒ Δ,ϕn ϕm, Σ ⇒ Θ

Γ,Σ ⇒ Δ,Θ
(ECut)

,

Craig Interpolation of Epistemic Logics with Distributed Knowledge 217

where ϕn denotes the multi-set of n-copies of ϕ and n,m ≥ 0. Since (ECut) is
the same as (Cut) when we set n = m = 1, it is obvious that if G(X) Γ ⇒ Δ,
then G∗(X) Γ ⇒ Δ, so it suffices to show the following.

Lemma 1. Let X be any of KD, KTD, K4D, and S4D. Then, the following
holds: If G∗(X) Γ ⇒ Δ, then G−(X) Γ ⇒ Δ.

Proof. Let X be any of KD, KTD, K4D, and S4D. Suppose G∗(X) Γ ⇒ Δ
and fix one derivation for the sequent. To obtain an (ECut)-free derivation of
Γ ⇒ Δ, it is enough to concentrate on a derivation whose root is derived by
(ECut) and which has no other application of (ECut). In what follows, we let
X be KD. Let us suppose that D has the following structure:

L
Γ ⇒ Δ,ϕn (ruleL) R

ϕm, Σ ⇒ Θ
(ruleR)

Γ,Σ ⇒ Δ,Θ
(ECut)

,

where the derivations L and R has no application of (ECut) and ruleL and
ruleR are meta-variables for the name of rule applied there. Let the number
of logical symbols (including DG) appearing in ϕ be c(D) and the number of
sequents in L and R be w(D). We show the lemma by double induction on
(c(D), w(D)). If n = 0 or m = 0, we can derive the root sequent of D without
using (ECut) by weakening rules. So, in what follows we assume n,m > 0.

Then, it is sufficient to consider the following four cases:2

1. ruleL or ruleR is an axiom.
2. ruleL or ruleR is a structural rule.
3. ruleL or ruleR is a logical rule and a cut formula ϕ is not principal (in the

sense we have specified in Sect. 3) for that rule.
4. ruleL and ruleR are both logical rules (including (D)) for the same logical

symbol and a cut formula ϕ is principal for each rule.

We concentrate on a rule (D) and the case involving the rule (D) is case 4 only,
so we only comment on case 4 where both ruleL and ruleR are rules (D). In
that case, the given derivation D has the following structure.

L′

ϕ1, . . . , ϕn ⇒ ψ (
⋃n

i=1 Gi ⊆ G)

DG1ϕ1, . . . , DGnϕn ⇒ DGψ
(D)

R′

ψm, ψ1, . . . , ψm ⇒ χ (G ∪ ⋃m
j=1 Hj ⊆ H)

(DGψ)m, DH1ψ1, . . . , DHmψm ⇒ DHχ
(D)

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψn ⇒ DHχ
(ECut)

2 In case 4, we assume the condition for both rule applications, because if the one of
the two rule applications does not satisfy the condition, the whole derivation should
be categorized into one of the rest cases.

218 R. Murai and K. Sano

The derivation D can be transformed into the following derivation E :3

L′

ϕ1, . . . , ϕn ⇒ ψ
R′

ψm, ψ1, . . . , ψm ⇒ χ

ϕ1, . . . , ϕn, ψ1, . . . , ψm ⇒ χ
(ECut)

(
⋃n

i=1 Gi ∪ ⋃m
j=1 Hj ⊆ H)

DG1ϕ1, . . . , DGnϕn, DH1ψ1, . . . , DHmψm ⇒ DHχ
(D)

.

We call E ′ its subderivation whose root sequent is ϕ1, . . . , ϕn, ψ1, . . . , ψm ⇒ χ.
The derivation E ′ have no application of (ECut) and c(E ′) < c(D). Hence, by
induction hypothesis, there exists an (ECut)-free derivation Ẽ ′ having the same
root sequent. Replacing the derivation E ′ by Ẽ ′ in E , we obtain an (ECut)-free
derivation for the sequent DG1ϕ1, . . . , DGn

ϕn,DH1ψ1, . . . , DHm
ψm ⇒ DHχ as

required. ��

4.2 Craig Interpolation Theorem

As an application of the cut elimination theorem, Craig interpolation theorem
can be derived, using a Maehara method described in [9] (application of the
method to basic modal logic can be also found in [12]). To state a main lemma
for proving Craig Interpolation Theorem, some definitions are needed.

Definition 1 (Partition). A partition for a sequent Γ ⇒ Δ is defined as a
tuple 〈(Γ1 : Δ1); (Γ2 : Δ2)〉, such that the multi-set union of Γ1 and Γ2 (Δ1 and
Δ2) is equal to Γ (Δ, respectively).

Definition 2. For a formula ϕ, Prop(ϕ) is defined as the set of propositional
variables appearing in ϕ. For a multi-set of formulas Γ , Prop(Γ) is defined as⋃

ϕ∈Γ Prop(ϕ). Similarly, Agt(ϕ) is defined as the set of agents appearing in ϕ
and Agt(Γ) as

⋃
ϕ∈Γ Agt(ϕ)

The following is a key lemma for Craig Interpolation Theorem.

Lemma 2. Let X be any of KD, KTD, K4D, and S4D. Suppose G(X) Γ ⇒ Δ.
Then, for any partition 〈(Γ1 : Δ1); (Γ2 : Δ2)〉 for the sequent Γ ⇒ Δ, there exists
a formula ϕ called “interpolant”, satisfying the following:

1. G(X) Γ1 ⇒ Δ1, ϕ and G(X) ϕ, Γ2 ⇒ Δ2.
2. Prop(ϕ) ⊆ Prop(Γ1,Δ1) ∩ Prop(Γ2,Δ2).
3. Agt(ϕ) ⊆ Agt(Γ1,Δ1) ∩ Agt(Γ2,Δ2).

Proof. We prove the case of KD by induction on the structure of a derivation
for Γ ⇒ Δ. Fix the derivation and name it D. By the cut-elimination theorem
(Theorem 2), we can assume that D is cut-free. We treat only the case of (D)
below (for other cases, the reader is referred to [12]). Suppose D is of the form

3 Note that the condition
⋃n

i=1 Gi ∪ ⋃m
j=1 Hj ⊆ H in E can be obtained by the condi-

tions
⋃n

i=1 Gi ⊆ G and G ∪ ⋃m
j=1 Hj ⊆ H in D through “cutting” G.

Craig Interpolation of Epistemic Logics with Distributed Knowledge 219

E
ϕ1, . . . , ϕn ⇒ ψ (

⋃n
i=1 Gi ⊆ G)

DG1ϕ1, . . . , DGn
ϕn ⇒ DGψ

(D)
.

There are the following two partitions of DG1ϕ1, . . . , DGn
ϕn ⇒ DGψ:

(a) a partition 〈(DG1ϕ1, . . . , DGk
ϕk : ∅); (DGk+1ϕk+1, . . . , DGn

ϕn : DGψ)〉.
(b) a partition 〈(DG1ϕ1, . . . , DGk

ϕk : DGψ); (DGk+1ϕk+1, . . . , DGn
ϕn : ∅)〉.

Since the space is limited, we focus on case (b) alone. By induction hypothesis
on E for a partition 〈(ϕ1, . . . , ϕk : ψ); (ϕk+1, . . . , ϕn : ∅)〉, we have derivations
for ϕ1, . . . , ϕk ⇒ ψ, χ and χ,ϕk+1, . . . , ϕn ⇒ for some formula χ. If k < n, we
can choose ¬D⋃n

i=k+1 Gi
¬χ as a required interpolant, because we have following

derivations:

I.H.
ϕ1, . . . , ϕk ⇒ ψ, χ

¬χ,ϕ1, . . . , ϕk ⇒ ψ
(¬ ⇒)

(
⋃n

i=k+1 Gi ∪ ⋃k
i=1 Gi =

⋃n
i=1 Gi ⊆ G)

D⋃n
i=k+1 Gi

¬χ,DG1ϕ1, . . . , DGk
ϕk ⇒ DGψ

(D)

DG1ϕ1, . . . , DGk
ϕk ⇒ DGψ,¬D⋃n

i=k+1 Gi
¬χ

(⇒ ¬)

I.H.
χ, ϕk+1, . . . , ϕn ⇒
ϕk+1, . . . , ϕn ⇒ ¬χ (⇒ ¬) (

⋃n
i=k+1 Gi ⊆ ⋃n

i=k+1 Gi)
DGk+1ϕk+1, . . . , DGn

ϕn ⇒ D⋃n
i=k+1 Gi

¬χ
(D)

¬D⋃n
i=k+1 Gi

¬χ,DGk+1ϕk+1, . . . , DGn
ϕn ⇒ (¬ ⇒)

Furthermore, the interpolant enjoys the condition 2 and 3 by the induction
hypothesis and a simple calculation. If k = n, we can choose χ (equivalent to ⊥)
as an interpolant. ��
Theorem 3 (Craig Interpolation Theorem). Let X be any of KD, KTD,
K4D, and S4D. Given that G(X) ϕ ⇒ ψ, there exists a formula χ satisfying the
following conditions:

1. G(X) ϕ ⇒ χ and G(X) χ ⇒ ψ.
2. Prop(χ) ⊆ Prop(ϕ) ∩ Prop(ψ).
3. Agt(χ) ⊆ Agt(ϕ) ∩ Agt(ψ).

We note that not only the condition for propositional variables but also the
condition for agents can be satisfied.

Proof. When we set Γ := ϕ and Δ := ψ, and take a partition 〈(ϕ : ∅); (∅ : ψ)〉,
Lemma 2 proves Craig Interpolation Theorem. ��

220 R. Murai and K. Sano

5 Concluding Remark

To conclude the paper, we would like to mention possible directions of further
research. First, we may provide sequent calculi KDD, KD4D or KD45D to
establish the cut-elimination and Craig interpolation theorems. Second, we may
establish the subformula property for S5D along the line of [17,18], which proves
the property on a sequent calculus for S5 though the calculus is not cut-free.
We note that even if the sequent calculus for S5 is not cut-free but still we can
apply Maehara method to establish Craig interpolation theorem (cf [12]). Third,
it is interesting to see if we can construct a cut-free sequent calculus for S5D

on the basis of one of the known cut-free calculi for S5 (with label or with the
notion of hypersequent). Fourth, we may check what follows from Craig inter-
polation theorem. It is known that Craig interpolation theorem entails Beth
definability theorem or Robinson consistency theorem in many systems. It is
interesting to see whether these hold for our logics. Fifth, we may work on com-
putational aspects of the logics of distributed knowledge. Especially, a decision
problem is worth pursuing, because there is a known method for proving decid-
ability based on cut elimination theorem [4,5,12]. In general, sequent calculus
is tractable proof system from a computational viewpoint, because a deriva-
tion in sequent calculus is a finite tree, which is common in computer science.
Therefore, our work can be a basis for computational research about distributed
knowledge. Finally, we may establish completeness results on epistemic logics
with distributed knowledge other than the ones mentioned in Fact 1 (if it has
not been done).

Acknowledgement. We thank three reviewers of FoIKS 2020 for their helpful com-
ments. The work of both authors was partially supported by JSPS KAKENHI Grant-
in-Aid for Scientific Research (C) Grant Number 19K12113 and JSPS Core-to-Core
Program (A. Advanced Research Networks). The second author was also partially sup-
ported by JSPS KAKENHI Grant-in-Aid for Scientific Research (B) Grant Number
17H02258.

References

1. Ågotnes, T., Wáng, Y.N.: Resolving distributed knowledge. Artif. Intell. 252, 1–21
(2017). https://doi.org/10.1016/j.artint.2017.07.002

2. ten Cate, B.: Interpolation for extended modal languages. J. Symbolic Log. 70(1),
223–234 (2005). https://doi.org/10.2178/jsl/1107298517

3. Fagin, R., Halpern, J.Y., Vardi, M.Y., Moses, Y.: Reasoning About Knowledge.
MIT Press, Cambridge (1995)

4. Gentzen, G.: Untersuchungen über das logische Schließen I. Mathematische
Zeitschrift 39(1), 176–210 (1935). https://doi.org/10.1007/BF01201353

5. Gentzen, G.: Untersuchungen über das logische Schließen II. Mathematische
Zeitschrift 39(1), 405–431 (1935). https://doi.org/10.1007/BF01201363

6. Gerbrandy, J.: Bisimulations on planet Kripke. Ph.D. thesis, University of
Amsterdam (1999)

https://doi.org/10.1016/j.artint.2017.07.002
https://doi.org/10.2178/jsl/1107298517
https://doi.org/10.1007/BF01201353
https://doi.org/10.1007/BF01201363

Craig Interpolation of Epistemic Logics with Distributed Knowledge 221

7. Giedra, H.: Cut free sequent calculus for logic S5n(ED). Lietuvos matematikos
rinkinys 51, 336–341 (2010)

8. Hakli, R., Negri, S.: Proof theory for distributed knowledge. In: Sadri, F., Satoh, K.
(eds.) CLIMA 2007. LNCS (LNAI), vol. 5056, pp. 100–116. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-88833-8 6

9. Maehara, S.: Craig no interpolation theorem (Craig’s interpolation theorem).
Sugaku 12(4), 235–237 (1961). https://doi.org/10.11429/sugaku1947.12.235

10. Meyer, J.J.C., Hoek, W.V.D.: Epistemic Logic for AI and Computer Science.
Cambridge University Press, New York (1995)

11. Ohnishi, M., Matsumoto, K.: Gentzen method in modal calculi II. Osaka Math. J.
11(2), 115–120 (1959)

12. Ono, H.: Proof-theoretic methods in nonclassical logic-an introduction. In:
Takahashi, M., Okada, M., Dezani-Ciancaglini, M. (eds.) Theories of Types and
Proofs, MSJ Memoirs, vol. 2, pp. 207–254. The Mathematical Society of Japan,
Tokyo, Japan (1998). https://doi.org/10.2969/msjmemoirs/00201C060

13. Pliuskevicius, R., Pliuskeviciene, A.: Termination of derivations in a fragment of
transitive distributed knowledge logic. Informatica Lith. Acad. Sci. 19, 597–616
(2008)

14. Poggiolesi, F.: Gentzen Calculi for Modal Propositional Logic. Trends in Logic.
Springer, Dordrecht (2010). https://doi.org/10.1007/978-90-481-9670-8

15. Punčochář, V., Sedlár, I.: Substructural logics for pooling information. In: Baltag,
A., Seligman, J., Yamada, T. (eds.) LORI 2017. LNCS, vol. 10455, pp. 407–421.
Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-55665-8 28

16. Roelofsen, F.: Distributed knowledge. J. Appl. Non-Class. Log. 17(2), 255–273
(2007)

17. Takano, M.: Subformula property as a substitute for cut-elimination in modal
propositional logics. Math. Jpn. 37, 1129–1145 (1992)

18. Takano, M.: A semantical analysis of cut-free calculi for modal logics. Rep. Math.
Log. 53, 43–65 (2018)

19. Van Der Hoek, W., Van Linder, B., Meyer, J.J.: Group knowledge is not always
distributed (neither is it always implicit). Math. Soc. Sci. 38(2), 215–240 (1999)

https://doi.org/10.1007/978-3-540-88833-8_6
https://doi.org/10.11429/sugaku1947.12.235
https://doi.org/10.2969/msjmemoirs/00201C060
https://doi.org/10.1007/978-90-481-9670-8
https://doi.org/10.1007/978-3-662-55665-8_28

On the Dynamics of Structured
Argumentation: Modeling Changes

in Default Justification Logic

Stipe Pandžić(B)

Department of Theoretical Philosophy, Bernoulli Institute for Mathematics,
Computer Science and Artificial Intelligence, University of Groningen,

Groningen, The Netherlands
s.pandzic@rug.nl

Abstract. This paper studies information changes in default justifica-
tion logic with argumentation semantics. We introduce dynamic opera-
tors that combine belief revision and default theory tools to define both
prioritized and non-prioritized operations of contraction, expansion and
revision for justification logic-based default theories. This combination
enriches both default logics and belief revision techniques. We argue that
the kind of attack called “undermining” amounts to those operations that
contract a knowledge base by an attacked formula.

Keywords: Justification logic · Default theory · Defeaters · Formal
argumentation · Reasoning dynamics

1 Introduction

This paper investigates the dynamics of default theories with justification logic
formulas. Our logic has been presented in [28] as a theory of structured arguments
where justification formulas of the form t : F are interpreted as arguments that
can defeat other formulas by means of undercut or rebuttal. Technically, the
workings of undercut and rebuttal rely on defining default theories with default
rules based on justification logic formulas. In such rules, justification terms codify
defeasible inferences in their structure. In this paper, we will take a step further
to add reasoning about changes to default theories.

The existing work about dynamics in formal argumentation [9,11–13,33]
almost entirely focuses on abstract argumentation frameworks in the style of
[14]. The literature on the dynamics of structured argumentation is limited to
the DeLP framework [2], where the dynamics is understood as adding or remov-
ing strict and defeasible rules, and ASPIC+ [26], where the dynamic component
is meant to resolve symmetric attacks by updating preferences. The current

I wish to thank Allard Tamminga, Barteld Kooi and Rineke Verbrugge for their useful
advice on this project. My research is supported by Ammodo KNAW award Rational
Dynamics and Reasoning.

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 222–241, 2020.
https://doi.org/10.1007/978-3-030-39951-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_14

On the Dynamics of Structured Argumentation 223

paper advances this line of research by specifying a variety of dynamic operators
for modeling changes of argument systems based on justification logic.

We will show that introducing dynamic operators for justification logic
default theories enables us to model an additional kind of defeat: undermining.
According to [16], an argument is undermined if its premises or assumptions
are attacked. Defeating an argument by attacking its premise or its assump-
tion is not new to structured argumentation. In assumption-based argumenta-
tion (ABA) [15], all attacks are reduced to this type of attacks and in ASPIC+
[30], ordinary premises of an argument are susceptible to undermining. However,
these systems do not provide an insight into the logical workings of undermining,
because they neither specify a concrete logical language nor inference rules.1

In our default theories, undermining can be given a precise logical inter-
pretation. While undercut and rebuttal rely on the uncertainty of defeasible
arguments, undermining changes the context from which agents make further
inferences. For a specific default theory, this context is determined by the set of
starting premises, sometimes also called “axioms”. Our idea is that, since under-
mining targets axioms that are considered as a given, it should be modeled as
a result of non-inferential information inputs that require contracting the set
of axioms of a default theory. This means that we will define undermining by
“climbing up” the definitions of more fundamental operations of default theory
changes. To elicit the reasoning process behind undermining, we specify four dif-
ferent logical operations that model undermining: prioritized and non-prioritized
contraction and prioritized and non-prioritized revision.

The paper is organized as follows. Section 2 introduces the basics of the logic
of default justifications first introduced in [27,29] and developed as a theory of
structured arguments in [28]. This logic already models non-monotonic behavior
with the use of undercut and rebuttal. Section 3 is the main technical contri-
bution of this paper, where we define dynamic operations for default theories
with justification formulas. The operations we introduce combine base revision
operations as defined in, e.g., [20] with a specific kind of standard Reiter default
rules. Our approach to defining the dynamic operators for default theory revision
has most in common with the approach of [4], which deals with the dynamics of
Reiter’s default theories. It turns out by the end of the paper that undermining
attacks on premises correspond to those dynamic operations that involve either
contraction or a variant of non-prioritized contraction defined in Sect. 3.

2 Logic of Default Reasons

The logic of default justifications was first defined in [27] and our definitions
in this section follow those given in [29]. We start by outlining the underlying
justification logic on which we base default theories. Before we formally introduce
1 In fact, ABA does not distinguish between different kinds of attacks and models

each attack as that on premises or what we call here undermining. In ASPIC+,
undermining is taken as a primitive notion of attack, which is different from rebuttal
or undercut only by virtue of targeting “ordinary” premises of an argument.

224 S. Pandžić

syntax, several preliminary remarks on how to build justification assertions of
the type t : F are in order.

One of the basic operations of standard justification logics is Application
(‘·’) exemplified by the following formula u : (F → G) → (t : F → (u · t) : G). By
focusing only on the propositional content of the formula, one may notice the
familiar structure of a modus ponens inference from F → G and F to G. The
added machinery of reason terms syntactically captures the dependence of the
consequent G on the propositions F → G and F . This dependence is witnessed
by the structure of the reason term (u · t) which shows that the reason u has
been applied to the reason t.

In addition to application, all standard justification logics include the oper-
ation known as Sum ‘+’. Sum admits of merging two reason terms into a single
term as done, for example, in the formula t : F → (t + u) : F . The intuition
behind Sum is that, if evidence t justifies some formula F , then adding new
evidence u to t will not invalidate t being a reason for F . Thus, standard justi-
fications are inherently non-defeasible.

The underlying logic for our default theories is a standard justification logic
with non-defeasible and truth-inducing reasons.2 We assume both Application
and Sum operations for this logic. Moreover, to ensure that all reasons in this
logic are truth-inducing, the logic contains the axiom t : F → F called Factivity.
This axiom corresponds to the modal logic truth axiom: �F → F read as “If
F is known, then F”. Our choice of basing default theories on a logic of non-
defeasible and truth-inducing reasons is in line with the strategy of standard
default logics [3], where defeasible conclusions are based on certain information.

2.1 Logic of Factive Reasons JTCS

Syntax, Axioms and Rules. The basic format of justification assertions is
“t : F”, where a justification term “t” is informally interpreted as a reason or
justification for “F”. The set Tm consists of all justification terms, constructed
from variables x1, . . . , xn, . . . and proof constants c1, . . . , cn, . . . by means of
operations · and +. The following BNF gives the grammar of justification terms:

t ::= x | c | (t · t) | (t + t)

where x is a variable denoting an unspecified justification and c is a proof con-
stant, taken as atomic within the system. A set of subterms Sub(t) is defined
by induction on the construction of a term t. The set Fm consists of exactly all
JTCS formulas based on the countable set of propositional atoms P and defined
by the following BNF:

F ::= � | P | (F → F) | (F ∨ F) | (F ∧ F) | ¬F | t : F

2 The first variant of justification logic, the logic of proofs (LP), was developed in [5].
The logic of non-defeasible and factive reasons that we use here was first defined in
[10]. For more basic information on its relation to other justification logics see [17].
For recent overviews of justification logic systems, see [6] and [22].

On the Dynamics of Structured Argumentation 225

where P ∈ P and t ∈ Tm.
We can now define the logic JTCS, which is the weakest logic with non-

defeasible reasons containing axiom schemes for the two basic operations · and
+. These are the axioms and rules of JTCS:

A0. All the instances of propositional logic tautologies from Fm
A1. t : (F → G) → (u : F → (t · u) : G) (Application)
A2. t : F → (t + u) : F ; u : F → (t + u) : F (Sum)
A3. t : F → F (Factivity)
R0. From F and F → G infer G (Modus ponens)
R1. If F is an axiom instance of A0–A3 and cn, cn−1, . . . , c1 proof constants,
then infer
cn : cn−1 : · · · : c1 : F (Iterated axiom necessitation)

The set of all justified formulas produced by the use of R1 is called a Constant
Specification (CS) set:

Definition 1 (Constant specification). CS = {cn : cn−1 : · · · : c1 : F |
F is an instance of A0-A3, cn, cn−1, . . . , c1 are proof constants and n ∈ N}.

The intuition behind the set of formulas CS in R1 is that the basic logical axioms
are taken to be justified by proof constants and so are the formulas likewise
produced. In the set of formulas CS from Definition 1, any axiom instance can
be labelled with any sequence of proof constants. A constant specification of
this type is thus appropriately called Total Constant Specification (T CS) and
the logic we defined with the use of T CS is called JTTCS.

Following the idea that each logical axiom is justified by exactly one constant,
we require that the use of proof constants respects the following two conditions
and we say that CS is:3

– Axiomatically appropriate: for each axiom instance A, there is a constant c
such that c : A ∈ CS and for each formula cn : cn−1 : · · · : c1 : A ∈ CS such
that n ≥ 1, there is a constant cn+1 such that cn+1 : cn : cn−1 : · · · : c1 :
A ∈ CS;

– Injective: each proof constant c justifies at most one formula.

According to the restrictions on an axiomatically appropriate and injective CS,
we replace R1 of JTTCS with the following rule to obtain the logic JTCS:

R1* If F is an axiom instance of A0–A3 and cn, cn−1, . . . , c1 proof constants
such that cn : cn−1 : · · · : c1 : F ∈ CS, then infer cn : cn−1 : · · · : c1 : F

We say that the formula F is JTCS-provable (JTCS � F) if F can be derived
using the axioms A0–A3 and rules R0 and R1.

3 For example, one such constant specification set could be generated by assigning a
Gödel number to each axiom instance and to each instance of R1.

226 S. Pandžić

Semantics. The semantics for JTCS is an adapted version of the semantics for
the logic of proofs (LP) given by [25].

Definition 2 (JTCS model). We define a function reason assignment based
on CS, ∗(·) : Tm → 2Fm, a function mapping each term to a set of formulas
from Fm. We assume that it satisfies the following conditions:

(1) If F → G ∈ ∗(t) and F ∈ ∗(u), then G ∈ ∗(t · u),
(2) ∗(t) ∪ ∗(u) ⊆ ∗(t + u) and
(3) If c : F ∈ CS, then F ∈ ∗(c).

A truth assignment v : P → {True, False} is a function assigning truth values
to propositional atoms in P. We define the interpretation I as a pair (v, ∗). For
an interpretation I, |= is a truth relation on the set of formulas of JTCS. We
say that, for any formula t : F ∈ Fm, I |= t : F iff F ∈ ∗(t). Truth conditions
for atomic propositions, ¬, →, ∧ and ∨ are defined as usual. An interpretation
I is reflexive iff the truth relation for I fulfills the following condition:

– For any term t and any formula F , if F ∈ ∗(t), then I |= F .

The consequence relation of the logic of factive reasons JTCS is defined on
reflexive interpretations:

Definition 3 (JTCS consequence relation). Σ |= F iff for all reflexive inter-
pretations I, if I |= B for all B ∈ Σ, then I |= F .

For a set of formulas Γ ⊆ Fm and the JTCS consequence relation |= defined
above, a JTCS closure of Γ is given by ThJTCS (Γ) = {F |Γ |= F}. For a closure
ThJTCS (Γ), it holds that CS ⊆ ThJTCS (Γ).

2.2 Logic of Default Reasons

Building on the JTCS syntax, we introduce the definition of the default theory :

Definition 4 (Default Theory). A default theory T is a pair (W,D), where
W is a finite set of JTCS formulas and D is a countable set of default rules.

Each default rule is of the following form:

δ =
t : F :: (u · t) : G

(u · t) : G
.

The informal reading of the default δ is: “If t is a reason justifying F , and
it is consistent to assume that (u · t) is a reason justifying G, then (u · t) is a
defeasible reason justifying G”. The default rule δ introduces a unique reason
term u, which means that, for a default theory T , the following three conditions
are required:

(1) For any formula v : H such that v : H ∈ ThJTCS (W), it holds that u �= v;
(2) For any formula H ∈ W , u : (F → G) is not a subformula of H and

On the Dynamics of Structured Argumentation 227

(3) For any default rule δ′ ∈ D such that δ′ = t′:F ′ :: (u′·t′):G′

(u′·t′):G′ , if u = u′, then
F = F ′ and G = G′.

In the rule δ, the formula t : F is called the prerequisite, (u · t) : G above the line
is called the consistency requirement and (u · t) : G below the line is called the
consequent of δ. We refer to each of these formulas by pre(δ), req(δ) and cons(δ)
respectively.

Every default rule produces a reason term whose structure codifies an appli-
cation operation step. Notice that in δ above, in contrast to axiom A1, we do not
require the formula u : (F → G) to be a part of the knowledge base. Instead,
u : (F → G) is the underlying assumption of δ on the basis of which we are
able to extend an incomplete knowledge base. The propositions of this kind are
important in the system since they function as rules allowing for default steps,
but they are also specific JTCS formulas. They will be referred to as “war-
rants”, because their twofold role mirrors that of Toulmin’s argument warrants
([34], p. 91). Warrants extend the interpretation of the application operation “·”
and each warrant is made explicit by means of a function warrant assignment :
#(·) : D → Fm. The function maps each default rule to a specific justified
conditional as follows: #(δi) = u : (F → G), where δi ∈ D and δi = t:F :: (u·t):G

(u·t):G ,
for some reason term t, a unique reason term u and some formulas F and G. It
is important that uniqueness of u does not prevent two default rules to share a
warrant formula. This reflects also the informal idea of warrants as general rules
that are, in principle, applicable to different starting data.4

A set of all such underlying warrants of default rules is called Warrant Spec-
ification (WS) set.

Definition 5 (Warrant specification). For a default theory T = (W,D), jus-
tified defeasible conditionals are given by the Warrant Specification set:

WST = #[D] = {u : (F → G) | #(δ) = u : (F → G) and δ ∈ D}.

The basis of operational semantics for a default theory T = (W,D) is the proce-
dure of collecting new, reason-based information from the available defaults. This
procedure is defined following Antoniou’s [3] operational semantics for Reiter’s
default theories. A sequence of default rules Π = (δ0, δ1, . . .) is a possible order
in which a list of default rules without multiple occurrences from D is applied (Π
is possibly empty). Applicability of defaults is determined in the following way:
for a set of JTCS-closed formulas Γ we say that a default rule δ = t:F :: (u·t):G

(u·t):G
is applicable to Γ iff t : F ∈ Γ and ¬(u · t) : G /∈ Γ . Default consequents are
brought together in the set of JTCS formulas that represents the current evi-
dence base: In(Π) = ThJTCS (W ∪ {cons(δ) | δ occurs in Π}). The set In(Π)
pools reason-based formulas whose acceptability depends on the acceptability of
other available (counter-)reasons.
4 Formally, we also do not require that t = t′ holds in the antecedent of condition

(3) for the general definition of defaults above. This reflects the independence of the
warrant (u · t) : G from the data t : F to which we apply the warrant.

228 S. Pandžić

We need to further specify those sequences of defaults that are significant
for a theory T namely, default processes. For a sequence Π, the initial segment
of the sequence is denoted as Π[k], where k indicates the number of elements
contained in that segment of the sequence and a minimal number of defaults for
the sequence Π. Any segment Π[k] is also a sequence. We can now define default
processes:

Definition 6 (Process). A sequence of default rules Π is a process of a default
theory T = (W,D) iff every k such that δk ∈ Π is applicable to the set In(Π[k]),
where Π[k] = (δ0, . . . δk−1).

The kind of process that we are focusing on is called closed process: a process Π
is said to be closed iff every δ ∈ D that is applicable to In(Π) is already in Π.

The possibility to refer to warrants within the language enables us to model
undercutting defeaters. They defeat other reasons by denying that their warrant
provides support for the conclusion in an undercutting circumstance.

Definition 7 (Undercut). A reason u undercuts reason t being a reason for
F in a set of JTCS formulas Γ ⊆ In(Π[k]) iff

∨
(v)∈Sub(t) u : ¬[v : (G → H)] ∈

ThJTCS (Γ) and v : (G → H) ∈ WSΠ′
for a process Π ′ of T .

We say that a set Γ ⊆ In(Π[k]) undercuts reason t being a reason for F iff, for
a subterm v of t, ¬[v : (G → H)] ∈ ThJTCS (Γ) and v : (G → H) ∈ WSΠ′

for a
process Π ′ of T .
For any default theory T = (W,D), an agent always considers potential extension
sets of JTCS formulas that meet the following conditions:

1. W ⊆ Γ and
2. Γ ⊆ {W ∪ cons(Π) | Π is some process of T}.

Besides undercut, reasons may conflict each other due to the fact that they
cannot be both added to a same consistent process. For example, if a knowledge
base contains a reason for a statement F , then any default introducing a reason
for ¬F will be inapplicable. This enables us to obtain a formal representation of
rebuttal among reasons for free. Formally, every rebuttal will imply an undercut
for formulas that cannot possibly extend a knowledge base together. Thus, we
exclusively rely on the definition of undercut to characterize all the standard
argumentation extension notions [14] in justification logic. For any potentially
acceptable set Γ we say that Γ is conflict-free if its closure is undercut-free and
we define the notion of acceptability of a justified formula t : F :

Definition 8 (Acceptability). For a process Π of a default theory T =
(W,D), a formula t : F ∈ cons(Π) is acceptable w.r.t. a set of JTCS formulas
Γ ⊆ In(Π) iff for each undercutting reason u for t being a reason for F such
that u : G ∈ In(Π), ThJTCS (Γ) undercuts u being a reason for G.

Definition 9 (JTCS Extensions). We define multiple argumentation theory
extensions for any default theory T = (W,D) based on the JTCS language:

On the Dynamics of Structured Argumentation 229

JTCS Admissible Extension. A potential extension set of JTCS formulas
Γ ⊂ In(Π) is a JTCS admissible extension of a default theory T = (W,D)
iff ThJTCS (Γ) is conflict-free, each formula t : F ∈ Γ is acceptable w.r.t. Γ
and Π is closed.

JTCS Preferred Extension. A closure ThJTCS (Γ) of a JTCS admissible
extension Γ is a JTCS preferred extension of T iff for any other JTCS admis-
sible extension Γ ′, Γ �⊂ Γ ′.

JTCS Complete Extension. A closure ThJTCS (Γ) of a JTCS admissible
extension Γ is a JTCS complete extension of T iff for each closed process
Π for which Γ ⊂ In(Π) is JTCS admissible it holds that, if a formula
t : F ∈ cons(Π) is acceptable w.r.t., then t : F belongs to Γ .

JTCS Grounded Extension. A JTCS complete extension ThJTCS (Γ) is the
unique JTCS grounded extension of T if Γ is the smallest potential exten-
sion with respect to set inclusion such that ThJTCS (Γ) is a JTCS complete
extension of T .

JTCS Stable Extension. A conflict-free closure ThJTCS (Γ) of a potential
extension Γ is a JTCS stable extension iff Γ undercuts all the formulas
t : F ∈ cons(Π) outside ThJTCS (Γ), for any process Π of T .

It turns out that a large subclass of Dung’s frameworks, excluding only some
kinds of attack cycles, can be proven to be a special case of our logic via estab-
lishing the correspondences of extensions. This result is shown in [28].

The above presented account of default reasons suffices to represent reason-
ing from an incomplete knowledge base, but it does not represent reasoning with
information changes that alter the facts from which an agent starts to reason.
Still, the basic account can already model one type of non-monotonic behav-
ior induced by the definition of undercut. We will refer to this way of revising
as “inferential” revision. The workings of undercut can be illustrated with Toul-
min’s famous example ([34], p. 92) of arguing for the claim that Harry is a British
subject. This claim “can be defended by appeal to the information that he was
born in Bermuda, for this datum lends support to our conclusion on account of
the warrants implicit in the British Nationality Acts...”. The example is trans-
lated into a justification logic default as follows. Given the fact that Harry was
born in Bermuda (B), an agent can conclude that Harry is a British subject (S):

δ1 =
r : B :: (s · r) : S

(s · r) : S
.

The default can be read as follows: “If r is a reason justifying that Harry was
born in Bermuda and it is consistent to assume that (s · r) is a reason justifying
that Harry is a British subject, then (s · r) is a defeasible reason justifying that
Harry is a British subject”.

However, if the agent were in possession of the additional information saying
that both Harry’s parents are aliens (P), the “general authority of the warrant”
s : (B → S) for the claim S would have to be set aside. This is modeled with
the following rule that introduces an undercutting reason:

230 S. Pandžić

δ2 =
t : P :: (u · t) : ¬[s : (B → S)]

(u · t) : ¬[s : (B → S)]
.

The consequent can be read as follows: “(u · t) is a defeasible reason denying
that the reason s justifies that if Harry was born in Bermuda, then Harry is a
British subject”. This is a classical argumentation theory example of a defeater
that leads to the suspension of the conclusion supported by the reason (s · r).
For a default theory T1 = (W,D) with W = {r : B, t : P} and D = {δ1, δ2},
the process (δ1, δ2) corresponds to such course of reasoning with revised JTCS

extensions. Notice that the warrant underlying δ2 can also be questioned in a
further course of reasoning. For example, one could find out that one of Harry’s
parents was settled in Bermuda at the time when he was born, thus reinstating
the authority of the warrant used in δ1.

Notice that in the logic above, the argument (s ·r) : S is susceptible to attack
due to the fallibility of inference δ1 that is characteristic for defeasible reasoning.
For the argument (s · r) : S to be undermined, we consider a wider Toulminian
interpretation of the argument that includes the formula r : B as the data for
the argument. Since r : B is in the set W , the only possibility to attack r : B is
to remove it from W and to thereby undermine (s · r) : S. This kind of attack
on arguments is studied under the paradigm of plausible reasoning (see [31],
pp. 59–61 for details on this distinction). In this paradigm, arguments are taken
to be susceptible to attack due to the uncertainty of their premises. The aim of
the current work is to unify the two paradigms in a single logical formalism.

3 Dynamic Operations for Default Theories: Introducing
Undermining Attack

As mentioned above, undermining can be interpreted as an attack on the formu-
las that are considered to be facts. In our view, undermining is essentially non-
inferential because introducing conflicting information that undermines facts
cannot be done with the use of warrants.5 For a default theory, these facts are
represented by the set of justification logic formulas W and, in constructing
a defeasible argument, such formulas can be prerequisites of default rules. A
plausible interpretation of undermining defeaters would be that they propose
alternative states of facts which ground further reasoning steps. To be able to
incorporate factual changes, we need methods based on belief revision methods.
Our selection of the belief-revision operations follows the way in which default
theories are defined—since the set of facts W is typically finite, it is natural to
use operators for sets that do not require closure. Therefore, our choice is to
make use of base revision operators [20] instead of the AGM operators [1].

5 The non-inferential view of information change is also relevant for human interaction.
As Hlobil [21] argues, we can believe by accepting testimonies, but we cannot make
inferences by merely accepting testimony. Two testimonies that contradict each other
are to be, ceteris paribus, equally treated and the acceptance of new information is
not the same process as inferentially extending the existing (incomplete) information.

On the Dynamics of Structured Argumentation 231

To model changes to default theories, we will use the capacity of default logic
to represent two levels of information certainty. The top-level of information
certainty is represented by formulas that are included in all extensions. Typical
examples of such formulas are those contained in a set of facts W . The lower-level
of information certainty is represented by formulas whose status is contingent
on whether it becomes defeated by other available information. Such formulas
are typically consequents of default rules. Our goal is to use the two levels and
to define dynamic operators that can bring about the changes that fix whether
a formula is included in or excluded from all extensions, but also to define non-
prioritizing operations that leave the status of a formula undecided.

To be able to model the dynamics at the two levels of information certainty,
we extend the above defined default theories with defaults without warrants,
which correspond to Reiter’s supernormal defaults, but (possibly) containing
justification assertions:

δ =
� ::F

F
.

Standard default rules with justification assertions encode inferential steps sup-
ported by warrants. In contrast to inferential steps, supernormal defaults will
be used to represent non-inferential, information-changing actions in which an
agent accepts that a formula can be included in (at least) one extension. We
will extend sets of defaults with supernormal defaults whenever we represent
introducing uncertain information to a theory T or relegate information from W
to the status of uncertain information.

Why would we want to make changes only to the lower-level of information
certainty or alter a default theory at the level of some, instead of all extensions?
Sometimes, an agent has doubts with respect to whether it is safe to include
some information or not and, analogously, whether it is safe to remove some
information or not. In the standard base revision approach to modeling infor-
mation change, incoming information is always prioritized over the existing one,
which is ensured by the success postulate. Consider again the example of the
agent reasoning about Harry’s eligibility for British nationality. It is possible
that, according to the census record, Harry was born in Bermuda and, accord-
ing to the military record, he was born outside Bermuda. The fact that the agent
first collected the census record data and then collected the military record data
cannot justify the prioritization of the newly acquired information. If the agent
does not know which information source is reliable, the order of data input is
irrelevant. In these cases, default logic can avoid the “naive” priority ascription
by the use of multiple extensions. The rest of this section gives a solution to the
problem of non-prioritized change of default theories, along with the more stan-
dard prioritized change. In a case of non-prioritized change, the corresponding
dynamic operator uses supernormal defaults with an aim to alter the lower-level
of information certainty of a default theory. On our interpretation of undermin-
ing attacks, whether undermining fully or partially realizes its defeating potential
depends on whether the new information is prioritized or not.

232 S. Pandžić

3.1 Default Theory Expansion

The first kind of change we want to consider corresponds to learning new infor-
mation. For example, adding a formula F to a set of facts W can be based on
the information provided by some information channel. The formal operation
that naively adds new information without checking the joint consistency of the
resulting set of beliefs is called “expansion”:

Definition 10 (Expansion). For a default theory T = (W,D) and a formula
F , T+

F = (W+
F ,D) is the expansion of the default theory T , where W+

F is the
base expansion of the set W such that W+

F = W ∪ {F}.

If the added information results in an inconsistent set W+
F , any definable JTCS

extension will be inconsistent. Notice that default theory expansion can already
cause non-monotonic behaviour on the level of default theory extensions. For
example, if the added formula is a prerequisite for a default rule with an under-
cutter for some other default consequent, the new information can result in
removing elements from JTCS extensions of T .

An agent can approach accepting incoming information more cautiously. If
the agent accepts new information as a plausible premise, but hesitates to con-
sider it a fact, the change is made to the set of default rules:

Definition 11 (Conservative Expansion). For a default theory T = (W,D)
and a formula F , T×

F = (W,D ∪ {δF }) is the conservative expansion of the
default theory T with F , where δF = � ::F

F .

Notice that the operation × opens up a possibility that the formula F is included
in all extensions, but it can also be excluded from all extensions. For example, if
¬F is contained in ThJTCS (W), then δF is not applicable. The following state-
ments characterize the introduced operators.6

Proposition 12. For a default theory T = (W,D) with unwarranted default
rules and a JTCS formula F it holds that

(a) If F is not a contradiction, then F is contained in each JTCS extension of
the theory T+

F .
(b) If F is not a contradiction and if ¬F is not contained in any JTCS extension

of T , then F is contained in each JTCS extension of the theory T×
F .

(c) If W is not inconsistent and if ¬F is contained in ThJTCS (W), then F is
not contained in any JTCS extension of the theory T×

F .

3.2 Default Theory Contraction

How does an agent give up on some information, if the information is proven
to be unreliable? We will again differentiate between two strategies of giving
up on information or contracting default theories: one of them aims to remove a
6 Proving Proposition 12 is straightforward. Details are omitted due to space

limitations.

On the Dynamics of Structured Argumentation 233

formula from all extensions and another leaves the possibility that extensions still
contain the formula. One problem we face in removing a formula from all theory
extensions is that the base contraction of a set of facts is necessary, but not
sufficient to secure that the formula will not be reintroduced by the application
of a default rule. To illustrate the need for such operation, consider that changes
in information may cause that a certain source of justification t is denied its
reliability as a reason for some formula F .

To deal with this problem, we propose to put constraints on the application
of default rules. The aim of constraints on application is to prevent an unwanted
formula F to become a part of any default theory extension. Such “application-
constrained” default theories can be defined for any default theory for which the
closure of a set of facts W does not entail F :

Definition 13 (Application-Constrained Default Theory). For a finite
set of JTCS formulas W such that ¬F /∈ ThJTCS (W), a countable set of default
rules D and a finite set of JTCS formulas C = W ∪ {F}, an application-
constrained default theory [F]T is defined as a triple (W,D,C) such that:

In(Π) = ThJTCS (C ∪ {cons(δ) | δ occurs in Π}).

For any application-constrained default theory, the expansion operation ([F]T)+G
and the conservative expansion operation ([F]T)×

G are both defined analogously
to the corresponding default theory operations, with the following two convention
in effect. Firstly, if a formula F ∈ ThJTCS (W ∪ {G}), then ([F]T)+G = ([∅]T)+G =
T+

G , where ([∅]T)+G is an application-constrained default theory for which C = W .
Secondly, if a formula ¬F ∈ ThJTCS (W ∪ {G}), then ([F]T)+G = T+

G .
We first define a contraction operation that aims at removing a formula at

the level of a whole default theory. The operation corresponds to the action of
removing information when an agent is confident that the information is not
reliable. To achieve this in a default theory, a formula has to be removed from
the set of facts by a base contraction and its reintroduction should be prevented.
In the definition of contraction, remainder sets will be used: for any set of JTCS

formulas Γ and a formula F , the remainder set Γ ⊥F is defined as the set of
maximal subsets of Γ that do not entail F .

Definition 14 (Contraction). For a default theory T = (W,D) and a for-
mula F , the application-constrained theory [¬F]T

−
F = (W−

F ,D ∪ D!F , C) is the
contraction of the default theory T by F , where

1. W−
F is the (full) meet contraction of the set W such that W−

F =
⋂

(W ⊥F),
2. D!F = {δG | δG = � ::G

G for every G ∈ W \
⋂

(W ⊥F)} and
3. C = W−

F ∪ {¬F}.

Notice that an application-constrained default theory [¬F]T
−
F is definable for any

theory T since, due to condition 1, the formula F cannot be an element of the
set ThJTCS (W−

F).

234 S. Pandžić

The combination of the constraint set C and the set of default rules D!F pro-
vides a balanced solution for avoiding extremely cautious and extremely incau-
tious behavior. Since the set of formulas W ⊥F usually contains many elements,
theory contraction operations need to include a procedure of selecting the for-
mulas that can be kept after contracting by F . It is difficult to define such
procedures in a principled and intuitively plausible way. In default theory con-
traction, we do not need to force selection by a function. Instead, the choice
of formulas selected upon contraction depends on the type of extension that is
being computed. For example, a JTCS preferred extension corresponds to the
idea of maxichoice contraction, while JTCS extension corresponds to the idea
of full meet contraction ([20], pp. 12–13).

Using again the two-leveled perspective on changing default theories, we can
define a more conservative way of giving up a belief. In conservative contraction,
agents are reluctant to entirely give up on some information, but the information
is no longer considered to be a fact. To relegate the status of a formula in such
a way within a default theory, the formula is removed from the set of facts and
then reintroduced through application of a supernormal default rule.

Definition 15 (Conservative Contraction). For a default theory T =
(W,D) and a formula F , T÷

F = (W−
F ,D ∪ D!F) is the conservative contraction

of the default theory T by F , where

1. W−
F is the (full) meet contraction of the set W such that W−

F =
⋂

(W ⊥F)
and

2. D!F = {δG | δG = � ::G
G for every G ∈ W \

⋂
(W ⊥F)}.

Clearly, [¬F]T
÷
F and [¬F]T

−
F are defining the same application-constrained default

theory.
Conservative contraction is an open-ended operation in the sense that it

does not preclude the possibility of reintroducing a formula F in an extension
through a default rule application. Furthermore, it leaves open the possibility
that F occurs in all extensions of the resulting default theory.7 In ([4], p. 1149),
a different approach has been taken. Namely, that of securing that there is at
least one extension added that does not contain the formula removed from the
set of facts. In our view, it is unnecessary to have such an operation. If some
formula is not regarded to be a fact, but it is still plausible that the formula is
true, accepting it as the only available information might be the only reasonable
action. Instead of “forcing” an extension without the formula, conservative con-
traction enables the possibility of an extension without the formula. If there is
no support for the contrary statement whatsoever, an agent might still need to
hold on to the only available information. The following statement immediately
follows from conditions 1 and 3 of Definition 14.

7 Analogously, conservative expansion might not guarantee that there will be any
extension containing a formula F , after a default theory has been conservatively
expanded with F .

On the Dynamics of Structured Argumentation 235

Proposition 16. For a default theory T = (W,D) with unwarranted default
rules and a non-tautological JTCS formula F , it holds that F is not contained
in any JTCS extension of the theory [¬F]T

−
F .

3.3 Default Theory Revision

The task of adding new information to the set of facts by the expansion oper-
ation (Definition 10) can lead to an inconsistent set of facts. A more realistic
dynamic operator for adding information needs to specify a process by which
an agent adds information inconsistent with W without being committed to an
inconsistent set of facts. One possible way is to only add information via the
conservative expansion operation (Definition 11), but this comes with an obvi-
ous flaw: an agent is not able to confidently replace an old, unreliable piece of
information with a new, reliable one. This is one of the motivations to define a
default theory revision operator that not only adds a formula, but also removes
inconsistent formulas at one of the two levels of the default theory.

A revision operation can be defined from a combination of the expansion and
contraction operations.8 In our approach, we will follow the traditional arrange-
ment of the operations ([20], p. 203), namely, removing formulas will precede
adding a formula. This kind of revision operations in which contraction is fol-
lowed by expansion are called “internal revision” operators and we define the
following four internal revision operators for each combination of the operations.

Definition 17 (Revision Operators). For a default theory T = (W,D) and
a formula F , (internal) revision operators for T are defined as follows:

1. T∓
F = ([F]T

−
¬F)+F

2. T�
F = ([F]T

−
¬F)×

F

3. T�
F = (T÷

¬F)+F
4. T �

F = (T÷
¬F)×

F

The variety of possible revision operators raises the question about what kinds
of revision strategies they represent.9

8 If we were to exhaust all possible combinations, eight revision operators could be
defined. Note that the revision operation symbols we use below reflect the compo-
sition of the introduced revision operations that are defined in terms of contraction
and expansion variants. The symbols are not intended to be in continuity with the
standard usage of revision operation symbols.

9 Note that the second output theory ([F]T
−
¬F)×

F of Definition 17 is an application-
constrained default theory (([F]T

−
¬F)+F is, by our convention, a default theory after

F has been added to the set of facts). The fact that ([F]T
−
¬F)×

F is an application-
constrained theory might cause problems if we want to make our operators global,
rather than local, and enable iterated revision. A solution to this problem would be to
allow for iterated contraction and generalize the contraction operation to application-
constrained theories. This could be done if we allow that an application-constrained
theory [F]T can be further constrained by a formula G. We leave the details of
developing iterated variants of the present operators for the future work.

236 S. Pandžić

We can show that the four operations amount to two strategies. Again, as in
the cases of expansion and contraction, one strategy is meant to revise confidently
and the other strategy more conservatively. The key to show this is to prove that
the operations ∓, � and � give equivalent extensions in revising a default theory
with some formula F . This is the result stated in the (a) clause of Proposition 18.

Proposition 18. For a default theory T = (W,D) with unwarranted default
rules and a JTCS formula F , it holds that

(a) If F is not a contradiction, then F is contained in all JTCS extensions of
the theories T∓

F , T�
F and T�

F .
(b) If F is not a contradiction, then F is contained in at least one JTCS exten-

sion of the theory T �

F .
(c) If F is not a contradiction, then ¬F is not contained in all JTCS extensions

of T �

F .

Proof. To prove that (a) holds, consider the three revision operators ∓,� and �
and the resulting theories T∓

F , T�
F and T�

F . For the case of the default theory T∓
F ,

it follows from Proposition 16 that ¬F is not contained in any JTCS extension
of [F]T

−
¬F . By Proposition 12 (a), F is contained in each JTCS extensions of

([F]T
−
¬F)+F .

For the case of the default theory T�
F , it follows from Proposition 16 that ¬F

is not contained in any JTCS extension of [F]T
−
¬F . Moreover, the constraint set

C contains the formula F , which means that the default rule � ::F
F is applicable

to any JTCS extension of the conservative expansion ([F]T
−
¬F)×

F of the theory
[F]T

−
¬F . Therefore, F is contained in each JTCS extensions of ([F]T

−
¬F)×

F .
For the case of the default theory T�

F , consider that the base contraction of
W ensures that ¬F cannot be contained in the set of facts W−

¬F of the default
theory T÷

¬F , but ¬F can still be reintroduced by applying the defaults from D!¬F .
However, after expanding the theory T÷

¬F by F , the inclusion of the formula ¬F

into any JTCS extension of the theory T�
F is blocked and, by Proposition 12(a),

F is in contained each JTCS extensions of T�
F .

To prove that (b) holds, consider that the base contraction of W ensures that
¬F cannot be contained in the set of facts W−

¬F for the conservative contraction
T÷

¬F . This means that, for the conservative expansion (T÷
¬F)×

F , it holds that the
default rule � ::F

F is applicable to ThJTCS (W) and, therefore, contained in at
least one JTCS extension of T �

F .
To prove (c), consider that after the base contraction of W by ¬F , JTCS

extensions of T÷
¬F are JTCS consistent. Since we also know that, after the con-

servative expansion (T÷
¬F)×

F , (b) holds, then (c) holds.
To show the equivalence of the operators ∓,� and �, we first say that for

any σ-extension, where

σ ∈ {JTCS admissible, JTCS complete, JTCS grounded, JTCS preferred, JTCS stable},

On the Dynamics of Structured Argumentation 237

σ(T) is the set of all σ-extensions for a theory T . Then we prove that for any
default theory T , the default theories T∓

F , T�
F and T�

F realize the same set of
extensions under any JTCS extension-based semantics for default theories. The
following result is obtainable from Proposition 18(a) together with the fact that
none of the three operators ∓, � and � change the status of formulas that do
not take part in F -implying sets:

Theorem 19. For any default theory T = (W,D), a JTCS formula F and the
(internal) revision operators ∓, � and �, it holds that σ(T∓

F) = σ(T�
F) = σ(T�

F).

Intuitively, the three operations represent a type of revision in which an agent
confidently includes new and possibly inconsistent information into all JTCS

extensions. Another option specified by the operator � is to accept the new
information in some extensions while maintaining the old information in other
extensions. The revision operators comply to the two-leveled view of default
semantics: the first three revision operators of Definition 17 fix the status of
a revision at the level of a default theory as a whole, while the last revision
operator targets at modifying only some extensions. Any of the three operations
T∓

F , T�
F and T�

F will be referred to as the Revision of T with F and the operation
T �

F will be referred to as the Conservative Revision of T with F .

3.4 The Notion of Undermining

Finally, we are now able to say in what way the dynamic operations connect to
the notion of undermining defeat. It was mentioned in the Introduction that by
undermining we understand the attack whereby argument premises are being
questioned. This intuition can now be cashed out by using those dynamic oper-
ators for default theories that involve contracting a default theory.

Definition 20 (Undermining). For a default theory T = (W,D) and a JTCS

formula F such that F ∈ W and F = pre(δ) for some δ ∈ D,F is undermined
iff W is contracted by F by applying any of the following operations to T :

1. [¬F]T
−
F (Contraction)

2. T÷
F (Conservative Contraction)

3. T∓
G , T�

G or T�
G for JTCS inconsistent formulas F and G (Revision)

4. T �

G for JTCS inconsistent formulas F and G (Conservative Revision).

Notice that there is no requirement on the structure of F . However, each mean-
ingful undermining targets justification assertions because W cannot be success-
fully contracted by a tautology and justification assertions are the only other
type of formula occurring as a default prerequisite. Not every attack on the
premises results in confidently revising the set of facts. It is possible that under-
mining leaves an agent undecided as to whether newly acquired information or
older information should be prioritized.

Starting from the theory T1 defined in Sect. 2, we can give a formalized
undermining example from the beginning of this section to show the difference

238 S. Pandžić

between inferential and non-inferential ways of information acquisition. Recall
that the agent started to reason from the information that Harry was born in
Bermuda. This piece of information is represented in the set of facts W with
the formula r : B, where r can now be taken to reflect the source of information
as, e.g., data from census records. However, if the information based on military
records says that Harry was born outside Bermuda, and having no means to
resolve this conflict of information, the theory T1 needs to be conservatively
revised. The theory T �

1v:¬B
is the revision of T1 with the formula v : ¬B, where

v reflects the new source of information for the claim that Harry was not born
in Bermuda.

To see this revision in more detail, recall that the theory T1 = (W,D) con-
sisted of the set of facts W = {r : B, t : P} and the set of defaults D = {δ1, δ2}.
The first dynamic operation in revising with v : ¬B is contracting the theory
by ¬v : ¬B. The resulting theory T÷

1¬v:¬B
= (W−

¬v:¬B,D ∪ D!¬v:¬B) consists of
the set of facts W−

¬v:¬B = {t : P} and the set of defaults D extended with the
default δr:B = � :: r:B

r:B .
Finally, the agent conservatively expands the theory T÷

1¬v:¬B
with the infor-

mation that Harry was not born in Bermuda. The new default theory is defined
as T �

1v:¬B
= (T÷

1¬v:¬B
)×
v:¬B. The change of the theory after conservative expan-

sion with v : ¬B amounts to adding the new default rule δv:¬B = � :: v:¬B
v:¬B , which

means that the new set of defaults is D ∪ D!¬v:¬B ∪ {δv:¬B}. The revised theory
T �

1v:¬B
changes the default processes in which the agent reasons about Harry’s

nationality and, eventually, changes the structure of acceptable reasons by chang-
ing the way in which JTCS extensions are computed.

4 Related Work and Conclusions

As mentioned in the Introduction, our approach to structured argumentation
dynamics builds on similar ideas as the approach to the dynamics of standard
default theories from [4]. Antoniou’s approach significantly differs from ours
in the way he treats those changes that add or remove a formula at the level
of some, but not necessarily all extensions. Unlike our conservative expansion
and conservative contraction, none of Antoniou’s operations leaves the inclusion
status of a formula undecided. For instance, to secure that a formula is not
contained in at least one extension, Antoniou ([4], p. 1149) adds a new extension
where introducing the formula is blocked by adding either a new atom or its
negation to any default, dependent on whether they are allowed to be in a same
extension or not.

Some approaches to default reasoning such as [23] and [24] represent the
idea of defaults in dynamic epistemic logic. The main focus of [23] is to embed
supernormal defaults in a multi-agent modal logic with knowledge, belief and
update modalities. The authors show that Reiter’s extensions can be represented
as a result of consecutive jump actions to default conclusions, but they do not
focus on how such extensions are revised due to information changes. In [24], a
preference modality is introduced to differ between known and (provisionally)

On the Dynamics of Structured Argumentation 239

preferred information. A non-monotonic belief revision component consists in
changing preferences as a result of obtaining knowledge.

Baltag, Renne and Smets [7,8] and Renne [32] define extensions of justifica-
tion logic in which agents may acquire new information that defeats the reasons
they accepted. The logics combine belief revision and dynamic epistemic logic
techniques to model a kind of defeat that seems to correspond to undermining.
However, each of the logics assumes prioritizing new information and none of
these logics is able to model undercut and rebuttal. Even so, approaches based
on dynamic epistemic logic are attractive because they open up a possibility of
developing a multi-agent justification logic with defeaters.

We indicated in the Introduction that the work in the area of the dynam-
ics of argumentation frameworks without argument structures is already well-
developed. Among the approaches, it is worth mentioning those that follow the
belief revision methods applied to Dung’s frameworks such as [9] and [12]. In
[9], the authors start from a labelling approach to Dung’s frameworks and con-
straints on a framework’s output. Their focus is on finding the best way to
recover a rational output given a framework and a constraint on its output. For
this, they use ordering of conflict-free labellings in a way that the most rational
conflict-free labelling is chosen when none of complete labellings respects the
constraint. In the work by [12], we find two kinds of revision operators. One of
them revises a Dung framework by taking a propositional formula as a means to
represent the new information, while the other operation revises an input frame-
work by information in the form of another framework. Both operations give a
single output framework respecting a particular type of rankings on extensions.

Finally, our paper contributes to the study of non-prioritized belief revision
operations, that is, such operations for which the new information has no special
priority due to its novelty [19]. The way in which our operators are defined
meaningfully combines resources from both belief revision and default logic.
The relation between belief revision and non-monotonic reasoning has long been
a matter of discussion [18] among AI researchers. Although it was not our aim
to discuss the relation between modeling reasoning with incomplete information
in default theories and modeling reasoning with changing information in belief
revision, we showed that our justification logic creates a useful junction for the
two approaches.

As a result of connecting the two reasoning paradigms, the logic presented
here, we can model both plausible and defeasible reasoning. According to [31],
“argumentation models of plausible reasoning locate all fallibility of an argument
in its premises, while argumentation models of defeasible reasoning locate all
fallibility in its defeasible inferences”. To the best of our knowledge, the system
presented here is the first logic to combine the two approaches by modeling all
the standard notions of defeat in AI: rebuttal, undercut and undermining.

240 S. Pandžić

References

1. Alchourrón, C.E., Gärdenfors, P., Makinson, D.: On the logic of theory change:
partial meet contraction and revision functions. J. Symbolic Log. 50(2), 510–530
(1985)

2. Alfano, G., Greco, S., Parisi, F., Simari, G.I., Simari, G.R.: An incremental app-
roach to structured argumentation over dynamic knowledge bases. In: Thielscher,
M., Toni, F., Wolter, F. (eds.) Sixteenth International Conference on Principles of
Knowledge Representation and Reasoning, KR 2018 (2018)

3. Antoniou, G.: Nonmonotonic Reasoning. MIT Press, Cambridge (1997)
4. Antoniou, G.: On the dynamics of default reasoning. Int. J. Intell. Syst. 17(12),

1143–1155 (2002)
5. Artemov, S.N.: Explicit provability and constructive semantics. Bull. Symbolic

Log. 7, 1–36 (2001)
6. Artemov, S.N., Fitting, M.: Justification Logic: Reasoning with Reasons, Cam-

bridge Tracts in Mathematics, vol. 216. Cambridge University Press, Cambridge
(2019)

7. Baltag, A., Renne, B., Smets, S.: The logic of justified belief change, soft evidence
and defeasible knowledge. In: Ong, L., de Queiroz, R. (eds.) WoLLIC 2012. LNCS,
vol. 7456, pp. 168–190. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-32621-9 13

8. Baltag, A., Renne, B., Smets, S.: The logic of justified belief, explicit knowledge,
and conclusive evidence. Ann. Pure Appl. Log. 165(1), 49–81 (2014)

9. Booth, R., Kaci, S., Rienstra, T., van der Torre, L.: A logical theory about dynamics
in abstract argumentation. In: Liu, W., Subrahmanian, V.S., Wijsen, J. (eds.) SUM
2013. LNCS (LNAI), vol. 8078, pp. 148–161. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40381-1 12

10. Brezhnev, V.: On the logic of proofs. In: Striegnitz, K. (ed.) Proceedings of the
Sixth ESSLLI Student Session, Helsinki, pp. 35–46 (2001)

11. Coste-Marquis, S., Konieczny, S., Mailly, J.G., Marquis, P.: On the revision of
argumentation systems: minimal change of arguments statuses. In: Baral, C., De
Giacomo, G., Eiter, T. (eds.) Fourteenth International Conference on the Principles
of Knowledge Representation and Reasoning, KR 2014 (2014)

12. Diller, M., Haret, A., Linsbichler, T., Rümmele, S., Woltran, S.: An extension-based
approach to belief revision in abstract argumentation. In: Yang, Q., Wooldridge,
M. (eds.) Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015 (2015)

13. Doutre, S., Herzig, A., Perrussel, L.: A dynamic logic framework for abstract argu-
mentation. In: Baral, C., De Giacomo, G., Eiter, T. (eds.) Fourteenth International
Conference on the Principles of Knowledge Representation and Reasoning, KR
2014 (2014)

14. Dung, P.M.: On the acceptability of arguments and its fundamental role in non-
monotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2),
321–357 (1995)

15. Dung, P.M., Kowalski, R.A., Toni, F.: Assumption-based argumentation. In: Rah-
wan, I., Simari, G.R. (eds.) Argumentation in Artificial Intelligence, pp. 199–218.
Springer, Boston (2009). https://doi.org/10.1007/978-0-387-98197-0 10

16. van Eemeren, F.H., Garssen, B., Krabbe, E.C.W., Henkemans, A.F.S., Verheij,
H.B., Wagemans, J.H.M.: Argumentation and artificial intelligence. In: Handbook
of Argumentation Theory, pp. 615–675. Springer, Boston (2014). https://doi.org/
10.1007/978-0-387-98197-0

https://doi.org/10.1007/978-3-642-32621-9_13
https://doi.org/10.1007/978-3-642-32621-9_13
https://doi.org/10.1007/978-3-642-40381-1_12
https://doi.org/10.1007/978-3-642-40381-1_12
https://doi.org/10.1007/978-0-387-98197-0_10
https://doi.org/10.1007/978-0-387-98197-0
https://doi.org/10.1007/978-0-387-98197-0

On the Dynamics of Structured Argumentation 241

17. Fitting, M.: Justification logics, logics of knowledge, and conservativity. Ann. Math.
Artif. Intell. 53(1–4), 153–167 (2008)

18. Gärdenfors, P.: Belief revision and nonmonotonic logic: two sides of the same coin?
In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 52–54. Springer, Heidelberg
(1991). https://doi.org/10.1007/BFb0018432

19. Hansson, S.O.: A survey of non-prioritized belief revision. Erkenntnis 50(2–3),
413–427 (1999)

20. Hansson, S.O.: A Textbook of Belief Dynamics: Theory Change and Database
Updating. Kluwer Academic Publishers, Dordrecht (1999)

21. Hlobil, U.: We cannot infer by accepting testimony. Philos. Stud. 1–10 (2018).
https://doi.org/10.1007/s11098-018-1142-3

22. Kuznets, R., Studer, T.: Logics of Proofs and Justifications. College Publications,
Wenham (2019)

23. van Linder, B., van der Hoek, W., Meyer, J.J.C.: The dynamics of default reason-
ing. Data Knowl. Eng. 3(21), 317–346 (1997)

24. Meyer, J.-J.C., van der Hoek, W.: Non-monotonic reasoning by monotonic means.
In: van Eijck, J. (ed.) JELIA 1990. LNCS, vol. 478, pp. 399–411. Springer, Heidel-
berg (1991). https://doi.org/10.1007/BFb0018455

25. Mkrtychev, A.: Models for the logic of proofs. In: Adian, S., Nerode, A. (eds.)
LFCS 1997. LNCS, vol. 1234, pp. 266–275. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63045-7 27

26. Modgil, S., Prakken, H.: Resolutions in structured argumentation. In: Verheij,
B.H., Szeider, S., Woltran, S. (eds.) Computational Models of Argument: Pro-
ceedings of COMMA 2012, pp. 310–321. IOS Press (2012)

27. Pandžić, S.: A logic of default justifications. In: Fermé, E., Villata, S. (eds.) 17th
International Workshop on Nonmonotonic Reasoning, NMR 2018, pp. 126–135
(2018)

28. Pandžić, S.: Logic of defeasible argumentation: constructing arguments in justifi-
cation logic. Unpublished manuscript (2019)

29. Pandžić, S.: Reifying default reasons in justification logic. In: Beierle, C., Ragni,
M., Stolzenburg, F., Thimm, M. (eds.) Proceedings of the KI 2019 Workshop on
Formal and Cognitive Reasoning, DKB-KIK 2019, CEUR Workshop Proceedings,
vol. 2445, pp. 59–70 (2019)

30. Prakken, H.: An abstract framework for argumentation with structured arguments.
Argument Comput. 1(2), 93–124 (2010)

31. Prakken, H.: Historical overview of formal argumentation. IfCoLog J. Log. Their
Appl. 4(8), 2183–2262 (2017)

32. Renne, B.: Multi-agent justification logic: communication and evidence elimination.
Synthese 185(1), 43–82 (2012)

33. de Saint-Cyr, F.D., Bisquert, P., Cayrol, C., Lagasquie-Schiex, M.C.: Argumen-
tation update in YALLA (yet another logic language for argumentation). Int. J.
Approximate Reasoning 75, 57–92 (2016)

34. Toulmin, S.E.: The Uses of Argument. Cambridge University Press, Cambridge
(2003)

https://doi.org/10.1007/BFb0018432
https://doi.org/10.1007/s11098-018-1142-3
https://doi.org/10.1007/BFb0018455
https://doi.org/10.1007/3-540-63045-7_27
https://doi.org/10.1007/3-540-63045-7_27

Logic-Based Approach to Incremental
Monitoring and Optimization on Strongly

Distributed Data Streams

Elena V. Ravve(B)

Ort Braude College, Karmiel, Israel
cselena@braude.ac.il

Abstract. In this paper, we systematically adopt logical reduction tech-
niques to monitoring and optimization on distributed data streams. The
first technique: Feferman-Vaught reductions, which describe how the
queries over a disjoint union of data streams can be computed from
queries over the components and queries over the index set. The sec-
ond one: the syntactically defined translation schemes, which describe
possible transformations of data. Combination of these two techniques
allows us to consider not only monitoring and optimization on disjoin
unions of data streams but rather on much richer compositions. We call
them strongly distributed data streams. Our approach is applicable to
both homogeneous and heterogeneous data streams. While, as a rule,
the known approaches provide some approximation of the solution of
the original problem, our method derives solutions over the components
of a strongly distributed data stream, such that their further proceeding
gives a result that is equivalent to the solution of the original problem
on the given data stream.

Keywords: Data streams · Incremental · Parallel and distributed
monitoring · Logical reductions · Syntactically defined translation
schemes

1 Introduction

In our reality, data from all fields of business, industry, communication, academic
and private lives are of high volume, distributed, and dynamic. Dynamic charac-
ter of the data leads us to the situation of dealing with data streams rather than
with static databases. As it was shown in particular in [28], the high volume and
distributed character of the data make it unfeasible to collect the distinct data
streams to a central node for processing.

That is why, stream monitoring and optimization on the distributed case is
of great interest. Often, the monitoring problem consists of determining whether
the value of a global function, defined on the combination of all streams, crossed
a certain threshold; while, the optimization problem consists of optimization of a
value of a global function. One wishes to reduce communication by transforming
c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 242–262, 2020.
https://doi.org/10.1007/978-3-030-39951-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_15

Logic-Based Approach to Incremental Monitoring and Optimization 243

the global monitoring problem to the testing of local constraints, checked inde-
pendently at the nodes, or computation of the global minimum or maximum
from the local (not necessarily optimal) values, evaluated on the components.

According to Garofalakis, cf. [24]: Large-scale stream processing applications
rely on continuous, event-driven monitoring, that is, real-time tracking of mea-
surements and events, rather than one-shot answers to sporadic queries... Fur-
thermore, the vast majority of these applications are inherently distributed, with
several remote monitor sites observing their local, high-speed data streams and
exchanging information through a communication network. This distribution of
the data naturally implies critical communication constraints that typically pro-
hibit centralizing all the streaming data ... Finally, an important requirement of
large-scale event monitoring is the effective support for tracking complex, holis-
tic queries that provide a global view of the data by combining and correlating
information across the collection if remote monitor sites.

1.1 Monitoring and Optimization on Streams: Related Work

Monitoring and optimization on streams over distributed systems has a long his-
tory. Babcock and Olston, cf. [1], study a class of queries that continuously report
the k largest values obtained from distributed data streams. Olston, Jiang and
Widom, cf. [35], present users register continuous queries with precision require-
ments at the central stream processor, which installs filters at remote data sources.
The filters adapt to changing conditions to minimize stream rates while guaran-
teeing that all continuous queries still receive the updates necessary to provide
answers of adequate precision at all times. Already in [5], the authors describe two
working stream processing systems, Aurora∗ and Medusa. These systems were
designed in order to explore complementary solutions to architectural challenges
facing the design of large-scale distributed stream processing systems.

In [25], techniques for computing small space representations of massive
data streams were introduced. These are inspired by traditional Wavelet-based
approximations that consist of specific linear projections of the underlying data.
General “sketch”-based methods for capturing various linear projections are pre-
sented. These methods are used in order to provide a pointwise and rangesum
estimation of data streams. The key idea in such sketching techniques is to repre-
sent a streaming frequency vector v using a much smaller sketch vector that can
be easily maintained as the updates incrementally rendering v are streaming by,
and provide probabilistic guarantees for the quality of the data approximation.
Algorithms of [6] rely on tracking general-purpose randomized sketch summaries
of local streams at remote sites along with concise prediction models of local site
behavior in order to produce highly communication- and space/time-efficient
solutions.

An algorithm that determines whether the norm of the average vector in a
distributed system is below a certain threshold, or more generally, whether it lies
inside some convex set, is provided in [47]. However, it does not deal with general
functions. Functional approximation in a distributed setting is considered in [7],
but only lower and upper bounds for vector norm functions are obtained.

244 E. V. Ravve

Geometric monitoring, cf. [31,45,46], proved useful for constructing local
constraints for general functions. Tracking schemes of [23] rely on a novel com-
bination of the geometric method with compact sketch summaries of local data
streams, and maintain approximate answers with provable error guarantees,
while optimizing space and processing costs at each remote site and commu-
nication cost across the network.

It can be easily seen that most of the proposed methods produce a powerful
approximate query that incorporates several complex analysis queries. Extending
the proposed ideas to general, scalable distributed architectures raises several
theoretical and practical challenges From a more foundational perspective, there
is a need for developing new models and theories for studying the complexity of
such continuous distributed computations, cf. [24].

1.2 A Motivating Example: Alternation of Data Streams

Let us consider a toy example, inspired by [44], in order to illustrate our main
idea. Assume that we are given two streams: the First stream and the Second
stream. These streams are coded as ordered sequences of their elements, which
may be labeled. The first element of a stream is labeled by star (�). These streams
are combined in a resulting stream by alternation. Finite constant number of
elements of each stream are labeled by �� that is aimed to define the switch
points of the streams. The combination of these streams is defined as follows.

Combination rules: The resulting stream is composed from a fragment of the
first stream from its first element, labeled by � till its first element, labeled by
��. This element, labeled by the ��, is the last element of the first stream that is
included into the resulting stream. Then, the resulting stream includes all the
elements from the second stream from its first element, labeled by � until its
first element, labeled by ��. Then, we switch back to the first stream an so on,
see Fig. 1.

Some elements of the streams may be also labeled by ⊕ and some elements
of the streams are labeled by ⊗. Assume that we should compute and analyze a
global monitoring or optimization quantitative property on the resulting stream.
Consider, for example, a monitoring property that counts the number of pairs,
for which the first element is labeled by ⊕ and the second element is labeled by
⊗. Locally, one monitors one component and transfers locally observed results
to the centralized final proceeding.

In order to propagate the computation to the components (two original
streams), we observe, that a pair of such elements of the resulting stream is
labeled by ⊕⊗ in two cases.

Case 1: Both elements belong to the same local stream. The first condition
is translated to computation of the number of ⊕⊗ sequences in the original
streams. There are two such pairs on Fig. 1: one in Fragment 1 and one more in
Fragment 4. They are marked by two vertical ovals.

Logic-Based Approach to Incremental Monitoring and Optimization 245

First stream�Second stream�

�

�

�

�⊗
⊕

⊗

�

�

�

�
��

�

�

�

�

�⊕

⊗

⊕
�
�

�
�� �

�

⊗

��

�

�⊕

⊗

�

�

�

�

•Fragment 1 �
�

�
�

�
�

�
�

•Fragment 2 �
�
�
�

�
�
�
�

•Fragment 3 				

•Fragment 4
�

�

. . .

Fig. 1. Alternation of two data streams.

Case 2: These elements are coming from different local streams. The second
condition is translated to computation of the number of pairs of elements x and
y from different streams, which satisfy the following properties:

– Last element of a fragment is labeled by ⊕: x is labeled by both ⊕ and
��;

– First element of a fragment is labeled by ⊗: y is labeled by ⊗ and
either it is also labeled by � or its immediate predecessor in its local stream
is labeled by ��.

– The fragments are succeeding: x belongs to a fragment that is an imme-
diate predecessor of the fragment of y in the resulting stream.

There exists one1 pair of elements on Fig. 1, which satisfies all the conditions
of the second case: the last element of a fragment is labeled by ⊕, the first
element of a fragment is labeled by ⊗, the fragments are succeeding. The pair is
found on the border between Fragment 2 and Fragment 3. This pair is marked
by the horizontal oval.

The final calculation sums all the local results: three ovals on Fig. 1.
1 The first element of the First stream satisfy condition: First element of a frag-
ment is labeled by ⊗. However, its fragment does not satisfy condition: The
fragments are succeeding.

246 E. V. Ravve

From the consideration, we observe:

1. The propagation of the evaluation of the global monitoring property to the
evaluations of the properties on the local fragments and the order of the
fragments is exact: the final calculation on the results of the evaluation of the
derived local properties is equivalent to the evaluation of the global one.

2. The derived properties do not depend upon particular streams but rather
upon the combination rules. For all particular streams, which are com-
bined, according to the predefined rules, the same derived properties must
be checked.

3. The global and the derived properties may coincide (Case 1).
4. The global and the derived properties might not coincide (Case 2).
5. The derived properties may be checked on the original local data streams:

Last element of a fragment is labeled by ⊕ or First element of a
fragment is labeled by ⊗.

6. The derived properties may be checked on the index structure of the frag-
ments: The fragments are succeeding.

Fortunately, the above properties are logically expressible in Weighted
Monadic Second Order Logic (WMSOL), introduced by Droste and Gastin in
[11,12] and further developed in [14]. More surprisingly, such reductions of com-
putation of a global property on a resulting data stream to the derived properties
on components may be sometimes converted to an algorithm. In this contribu-
tion, we prove that such algorithm exists for any strongly distributed data stream.

1.3 Novelty of the Contribution: Logical Tools

In this contribution, we propose a logic-based approach to incremental monitor-
ing and optimization on data streams that is new in the context. The approach
allows unification of the distributed and parallel computation and communica-
tion as well as significant reduction of the communication load. We do not use any
approximation, our results are exact. Our approach is applicable to monitoring
and optimization of any function (property) expressible in lots of extensions of
First Order Logic (FOL). We systematically exploit logical reduction techniques
to handling of big distributed data streams.

Logical reduction techniques come in two flavours. The first one: Feferman-
Vaught reductions, which are applied in situations of distributed data. The
reduction describes how the evaluation of properties over a distributed data
can be computed from evaluation of properties over the components and evalua-
tion of properties over the index set. Feferman-Vaught, cf. [21], reductions were
first introduced in model theory. Their use in computer science was seemingly
first suggested in [39] in the context of formal verification and model check-
ing, and in [8] in the context of graph algorithms for graphs of bounded clique
width. Incremental verification and coverage analysis of strongly distributed soft-
ware systems is discussed in Analytic Methods in Systems and Software Testing
[41]. For the algorithmic uses of the Feferman-Vaught Theorem see also [32].

Logic-Based Approach to Incremental Monitoring and Optimization 247

The reductions are somehow analogue to local violations of [28]. One of the most
recent contribution in the field is due to [17].

The second one: the syntactically defined translation schemes, known also
in model theory as interpretations, cf. [27] for the case of finite models. They
describe transformations of data and evaluation of properties. They give rise
to two induced maps, translations and transductions. Transductions describe
the induced transformation of data instances and the translations describe the
induced transformations of evaluation of properties. The fundamental property
of translation schemes describes how to compute transformed evaluation of prop-
erties in the same way Leibniz’ Theorem describes how to compute transformed
integrals. The fundamental property has a long history, but was first properly
stated by Rabin, cf. [36]. One of the recent uses of interpretations in the field
of database theory may be found in [26]. However, for our best knowledge, the
technique has not be used yet in the context of monitoring and optimization of
distributed data streams.

1.4 Incremental Monitoring and Optimization on Strongly
Distributed Data Streams

Combination and adaptation of these techniques allow us to introduce the notion
of strongly distributed data streams in the context of monitoring and optimiza-
tion. For such data streams, we extend and generalize the known techniques
of incremental monitoring and optimization. For the strongly distributed data
streams, we derive the following main steps of monitoring and optimization:

1. Computation of the derived properties on the components;
2. Computation of the derived properties on the index;
3. Final computation, based on the computations above.

Our use of the logical reduction techniques in the field of the incremental
monitoring and optimization on data streams is new. The notion of strongly
distributed systems was introduced in [10] in the context of information systems.
Then, it was adopted to the database theory in [40], and to the incremental
reasoning and multi-agent systems in [37,43]. Complexity analysis of the strongly
distributed systems goes back to [38].

Our approach shows how evaluation of a global monitoring and optimiza-
tion property, expressed as formula φ on the distributed data streams, may be
syntactically reduced to incremental evaluations of algorithmically derived prop-
erties on components, the index set I and some post-proceeding. From our main
Theorem 3, we derive a method for evaluation of φ on strongly distributed data
streams, which proceeds as follows:

Preprocessing: Given φ and translation scheme Φ that describes combination
of the local streams, but not the distributed data streams themselves; we con-
struct a sequence of formulae ψı,j and an evaluation function FΦ,φ.

248 E. V. Ravve

Incremental Computation: We compute the local values ψı,j on each local
component.

Final Solution: Theorem 3 now states that evaluation of φ of strongly dis-
tributed data streams may be algorithmically computed from ψı,j, using FΦ,φ.

We emphasize the following:

Communication load: Note that the only values transferred between different
computational components are the values of ψı,j, that significantly reduces the
communication load.

Confidentiality: All meaningful information is still stored in the corresponding
locations in the secure way and is not transferred. The transferred values ψı,j,
as a rule, are meaningless without the knowledge about the final proceeding.

1.5 Structure of the Contribution

The paper is structured in the following way. Section 2 provides general logical
background and shows how quantitative queries may be expressible as logical for-
mulae. Section 3 introduces the notion of abstract translation schemes. Section 4
is the core section of the paper, where we define the notion of strongly dis-
tributed data streams and prove our main theorems. Using these theorems, we
propose the general approach for incremental monitoring and optimization on the
strongly distributed data streams. Section 5 summarizes the paper. We assume
that the reader has general logical background, cf. [19]. The precise definitions of
Weighted Finite Automata (WFA) and Weighted Monadic Second Order Logic
(WMSOL) are rather provided in [14].

2 Quantitative Querying

Classical Second Order Logic (SOL) is like First Order Logic, but allows also
variables and quantification over relation variables of various but fixed arities.
The sublogic of SOL, where relation variables are restricted to be unary, is
called Monadic SOL(MSOL). The meaning function of formulae is explained for
arbitrary τ–structures, where τ is the vocabulary, i.e., a finite set of relation and
constant symbols.

Droste and Gastin in [11,12] generalized the fundamental theorems of
Büchi’s, cf. [4], and Elgot’s, cf. [20], to some kinds of quantitative settings. More-
over, a weighted version of MSOL was introduced and it was proven that, for
commutative semirings, the behaviours of weighted automata are precisely the
formal power series definable with the weighted logic. In this contribution, we
restrict ourselves to monitoring and optimization of quantitative properties of
data streams, which are modeled as weighted words. The quantitative proper-
ties are expressed as formulae of WMSOL and evaluation of the properties are
executed using WFA.

Logic-Based Approach to Incremental Monitoring and Optimization 249

2.1 Weighted Monadic Second Order Logic

In this section, we introduce WMSOL on words. Extensions of MSOL to the
case of investigation of quantitative properties of trees may be found in [13] that
is based on [2].

Given semiring K and alphabet A. For each a ∈ A, Pa denotes a unary
predicate symbol. The syntax of WMSOL over K is defined by basis

β ::= Pa(x) | ¬Pa(x) | x ≤ y | ¬(x ≤ y) | x ∈ X

and closure, where β1 and β2 are boolean formulae:

β ::= ¬(x ∈ X) | β1 ∧ β2 | ∀x.β1 | ∀X.β1.

Moreover,

ϕ ::= k |β | φ ∧ ψ | φ ∨ ψ | ∃x.φ | ∃X.φ | ∀x.φ | ∀X.φ,

where k ∈ K and a ∈ A. WMSO(K, A) denotes the collection of all such
weighted formulae ϕ. We call β’s boolean formulae. We call ϕ’s weighted for-
mulae. The syntax of WMSOL over K and A may be easily extended to the case
of multiple ≤ relations.

Let Free(ϕ) denote the set of all free variables of ϕ. Let w = a1a2 . . . an ∈ A�

with ai ∈ A and w(i) = ai(1 ≤ i ≤ n). The length of w is |w| = n. Let V
be a finite set of first-order or second-order variables. A (V, w)-assignment σ
is a function mapping first-order variables in V to elements of {1, . . . , |w|} and
second-order variables in V to subsets of {1, . . . , |w|}. σ[x → i] is the (V ∪{x}, w)
assignment that assigns x to i and acts like σ on all other variables. Similarly,
σ[X → I] is defined for I ⊆ {1, . . . , |w|}.

Let ϕ ∈ WMSOL(K, A) and V be a finite set of variables containing Free(ϕ).
The semantics of ϕ is a formal power series [[ϕ]]V ∈ K〈〈A�

V〉〉. Let (w, σ) ∈ A�
V .

If σ is not a valid V-assignment, then we put [[ϕ]]V(w, σ) = 0. Otherwise, we
define [[ϕ]]V(w, σ) ∈ K as follows:

– [[k]]V(w, σ) = k

– [[Pa(x)]]V(w, σ) =
{

1 if w(σ(x)) = a
0 otherwise

– [[x ≤ y]]V(w, σ) =
{

1 if σ(x) ≤ σ(y)
0 otherwise

– [[x ∈ X]]V(w, σ) =
{

1 if σ(x) ∈ σ(X)
0 otherwise

– If ϕ is of the form Pa(x), (x ≤ y) or (x ∈ X) then

[[¬ϕ]]V(w, σ) =
{

1 if [[¬ϕ]]V(w, σ) = 0
0 if [[¬ϕ]]V(w, σ) = 1

– [[ϕ ∧ ψ]]V(w, σ) = [[ϕ]]V(w, σ) · [[ψ]]V(w, σ)
– [[ϕ ∨ ψ]]V(w, σ) = [[ϕ]]V(w, σ) + [[ψ]]V(w, σ)
– [[∃x.ϕ]]V(w, σ) = Σ1≤i≤|w|[[ϕ]]V∪{x}(w, σ[x → i])

250 E. V. Ravve

– [[∃X.ϕ]]V(w, σ) =
ΣI∈{1,...,|w|}[[ϕ]]V∪{x}(w, σ[X → I])

– [[∀x.ϕ]]V(w, σ) = Π1≤i≤|w|[[ϕ]]V∪{x}(w, σ[x → i])
– We fix some order on the power set of {1, . . . , |w|} so that the follow-

ing product is defined even if K is not commutative: [[∀X.ϕ]]V(w, σ) =
ΠI∈{1,...,|w|}[[ϕ]]V∪{x}(w, σ[X → I])

Note that if ϕ is a sentence, i.e. has no free variables, then [[ϕ]] ∈ K〈〈A�〉〉.

2.2 Expressive Power of WMSOL

WMSOL over semirings and its fragments have considerable expressive power.
As it was shouwn in [2,12,15,18,34], lots of optimization problems and counting
problems are expressible in WMSOL. Here we quote use of only few commutative
semirings from [12].

Example 1. K = (N,+, ·, 0, 1). Let Pa(x) denote a unary predicate symbol. For-
mula ϕState = ∃xPa(x) counts how often a occurs in the word. Each choice of the
unary predicate, affects the meaning of “how often” and generates lots of varia-
tions of the coverage properties. It means that the formula is a good candidate
for monitoring of different coverage properties of data streams.

Example 2. KRavg
= (R ∪ {−∞}, sup, avg,+,−∞, 0).

Let PSend stands for a send event, PReceive for a receive event and

ϕ = ∀x((PSend(x) → 1) ∧ (PReceive(x) → −1)),

where (PSend(x) → 1) stands for (PSend(x) ∧ 1) ∨ (¬PSend(x) ∧ 0) and similarly
for (PSend(x) → −1). Thus, the meaning of ϕ equals the average difference of
Send events PSend and Receive events PReceive in word w, cf. [15].

Example 3. K = ([0, 1],max, ·, 0, 1) is the probability semiring.
Let A = {a1, . . . , an}. Assume that each letter ai has a reliability ki. Then the
series assigning to a word its reliability can be given by the first order formula
∀x

∨
1≤i≤n(Pai

(x) ∧ ki). Note that the damped window model, which associates
weights with the data in the stream, also falls in this formalism.

Results of [11,12] are extended in different papers. Mandrali and Rahonis,
cf. [34], use WFAwith discounting over commutative semirings. Droste and Mei-
necke, cf. [15], investigate also automata operations like average, limit superior,
limit inferior, limit average, or discounting. In fact, there exists a more general
cost model, where the weight of a run may be determined by a global valuation
function, cf. [13]. One may also consider a weighted finite transition systems
with weights from naturally ordered semirings, cf. [16]. Such semirings comprise
distributive lattices as well as the natural numbers with ordinary addition and
multiplication, and the max-plus-semiring.

Logic-Based Approach to Incremental Monitoring and Optimization 251

3 Weighted Translation Schemes

The syntactically defined translation schemes describe transformations of logical
structures. The notion of abstract translation schemes comes back to Rabin, [36].
They give rise to two induced maps, translations and transductions. Transduc-
tions describe the induced transformation of logical structures and the trans-
lations describe the induced transformations of logical formulae. Syntactically
defined translation schemes for WMSOL over weighted trees were already intro-
duced and investigated in [42]. In this contribution, we adopt the machinery to
data streams modeled by weighted words.

Given commutative semiring K and finite alphabets Γ and Δ. For each γ ∈ Γ ,
Pγ denotes a unary predicate symbol (label). For each δ ∈ Δ, Pδ also denotes
a unary predicate symbol. Let R≤ be a binary relation that defines (x ≤ y).
Formal definition of the syntax and semantics of WMSOL over K may be found
in [14]. Let τ = 〈Rτ

≤, P τ
γ |γ ∈ Γ 〉 and σ = 〈Rσ

≤, P σ
δ |δ ∈ Δ〉 be the corresponding

vocabularies. We model data streams as two-sorted logical structures. The first
sort W corresponds to the universe of (positions in) words w = a1a2 . . . an with
w(i) = ai(1 ≤ i ≤ n). The meaning of P (w(i)) is that position i in a word is
labeled by P . The second sort K is coming from the corresponding commutative
semiring K = (K,+, ·, 0, 1). This sort is used in computations over K.

Definition 1 (Translation Schemes ΦK).
Let τ and σ be two vocabularies of weighted labeled words. Let φ, ψ≤, ψδ|δ ∈ Δ
be boolean WMSOL formulae. Let Φ = 〈φ, φK ;ψ≤, ψδ|δ ∈ Δ〉. We say that ΦK
is feasible for σ over τ if

– φ has exactly 1 distinct free first order variable,
– φK is a tautology that has exactly 1 distinct free first order variable,
– ψ≤ has exactly 2 distinct free first order variables that re-defines ≤ relation,
– each ψδ has exactly 1 distinct free first order variable.

Such a ΦK2 we also call a τ–σ–translation scheme or, shortly, a translation
scheme, if the parameters are clear in the context.

With a translation scheme ΦK, we can naturally associate a (partial) function
Φ∗

K from τ–streams to σ–streams.

Definition 2 (The induced map Φ∗
K).

Let Wτ be a τ–stream and ΦK be feasible for σ over τ . The structure Wσ
ΦK is

defined as follows:

• The two-sorted universe U,K contains sets:

1. UΦK = {a ∈ W τ : Wτ |= φ(a)};
2. KΦK = K.

2 The introduced notion of ΦK can be naturally extended to the case of multiple ≤
relations in each of the involved vocabularies.

252 E. V. Ravve

• Relations:

1. The interpretation of Rσ
≤ is the set of pairs

Wσ
ΦK(R≤) = {(a1, a2) ∈ W τ 2 : Wτ |= ψ≤(a1, a2)};

2. The interpretation of each Wσ
ΦK(Pδ) is the set

Wσ
ΦK(Pδ) = {a ∈ W τ : Wτ |= ψδ(a)};

• ΦK∗: The partial function ΦK∗ from weighted labeled words WLW to WLW
ΦK∗ : WLW (τ) → WLW (σ) is defined by ΦK∗(Wτ) = Wσ

ΦK .

Note that ΦK∗(Wτ) is defined iff Wτ |= φ(a).

Usually used landmark data model considers the data in a data stream from
the beginning of the observation until now. In such a case, a sliding window
model in data stream investigation, which considers the data from now up to a
certain range in the past, is a special case of φ(a).

With a translation scheme ΦK we can also naturally associate a function ΦK#

from WMSOL(σ)–formulae to WMSOL(τ)–formulae.

Definition 3 (The induced map ΦK#).
Let ζ be a σ–formula and ΦK be feasible for σ over τ . The formula ζΦK is defined
inductively as follows:

1. for Rσ
≤ we put ζΦK = ψ≤(a1, a2);

2. for each P σ
δ we put ζΦK = ψδ(a);

3. for k we do nothing;
4. for the boolean connectives the translation distributes, i.e., if ζ = (ζ1 ∧ ζ2),

then ζΦK = (ζ1ΦK ∧ ζ2ΦΘ
) and if ζ = ¬ζ1, then ζΦK = ¬ζ1ΦK .

5. for the existential quantifier, we use relativization, i.e. if ζ = ∃vζ1 then we
put ζΦK

= ∃uφ(u) ∧ (ζ1ΦK);
6. for second order variables X and a first order variable x or a constant we

translate X(x) by treating x like a relation symbol and put

ζΦK = ∃X(∀x(X(x) → (φ(x) ∧ (ζ1)ΦK))).

• Function ΦK# : WMSOL(σ) → WMSOL(τ) is defined by ΦK#(ζ) = ζΦK .

The following facts may be proved by induction.

Proposition 1.
Let ΦK be a τ–σ–translation scheme and ζ be a σ–formula. Then,

Wτ |= ΦK#(ζ) iff Φ∗(Wτ) |= ζ.

Logic-Based Approach to Incremental Monitoring and Optimization 253

Definition 4 (Composition of ΦK’s).
Let τ = 〈Rτ

≤, P τ
γ |γ ∈ Γ 〉, σ = 〈Rσ

≤, P σ
δ |δ ∈ Δ〉 and μ = 〈Rμ

≤, Pμ
λ |λ ∈ Λ〉 be

vocabularies. Let K be a commutative semiring. Let Φτσ
K = 〈φτσ, φK ;ψτσ

≤ , ψτσ
δ |δ ∈

Δ〉 be feasible for σ over τ and Φσμ
K = 〈φσμ, φK ;ψσμ

≤ , ψσμ
λ |λ ∈ Λ〉 be feasible for

μ over σ. Then, we denote by Φτσ
K ◦Φσμ

K the translation scheme μ over τ given by
〈Φτσ

K
#(ψσμ), φK ;Φτσ

K
#(ψσμ

λ)|λ ∈ Λ〉. Φτσ
K (Φσμ

K) is called the composition of Φσμ
K

with Φτσ
K .

One can easily check that the syntactically defined composition of translation
schemes has the following semantic property: Φτσ

K ◦ Φσμ
K (Wτ) = Φσμ

K (Φτσ
K (Wτ)).

4 Incremental Analysis of Quantitative Properties
of Strongly Distributed Streams

In this section, we discuss a way of obtaining weighted labeled words from com-
ponents. We use the extended version of WMSOL and weighted labeled words
with multiple ≤ relations.

4.1 Disjoint Union of Weighted Labeled Words

The Disjoint Union of a family of weighted labeled words is the simplest example
of juxtaposing weighted labeled words, where none of the components are linked
to each other.

Definition 5 (Finite Disjoint Union).
Let τı = 〈Rτ

≤ı
, P τ

γ ı
〉, be a vocabulary of a weighted labeled word Wı over K and

Γ . In the general case, the word over τ ∪ I is

W =
⊔̇

ı∈I
Wı = 〈

⋃̇
ı∈I

Wı,K;Rτ
≤ı

(ı ∈ I), P τ
γ ı

(ı ∈ I), Pı(ı ∈ I)〉

for all ı ∈ I, where Pı(a) is true iff a came from Wı, I is the finite index set.

Let us consider an example of disjoint union of two weighted labeled words:

Example 4 (Disjoint union of words). Assume we are given two τalt-words from
example of Sect. 1.2, see Fig. 2. The precise definition of the corresponding vocab-
ulary will be τalt = 〈R≤, P�, P⊕, P⊗, P 1

��
, P 2

��
〉 for up to four alternations. If more,

say κ, alternations are allowed then up to log(κ) unary predicates P �
��

should be
added. K = (N,+, ·, 0, 1). The disjoint union of such words is presented as a
logical structure in the following way:

W∪ = 〈W1 ∪̇W2,N;R≤1, R≤2, P�1, P�2, P⊕1, P⊕2, P⊗1, P⊗1,

P 1
��1

, P 2
��1

, P 1
��2

, P 2
��2

, P1, P2〉.
Note that the interpretation of P 2

��
in the second component is empty.

254 E. V. Ravve

First stream�Second stream�

�

�

�

�⊗
⊕

⊗

�1⊗
��2�

�

�

�

�⊕

⊗

⊕�1

�

�⊕

⊗

Fig. 2. Disjoint union of two data streams.

Now, the following theorem can be stated, cf. [42]:

Theorem 1.
Let I be a finite index set with � elements. There exist commutative semirings K
and weighted labeled words W =

⊔̇
ı∈IWı over K such that for every ϕ ∈ WMSOL

over K there are:

– a computation over WMSOL formulae

Fϕ(�1,1, . . . , �1,j1 , . . . , ��,1, . . . , ��,j�
),

– WMSOL–formulae ψ1,1, . . . , ψ1,j1 , . . . , ψ�,1, . . . , ψ�,j�

such that for every Wı and I as above with �ı,j = �ı,j iff [ψı,j] = �ı,j we have,

[ϕ] = � iff Fϕ(�1,1, . . . , �1,j1 , . . . , ��,1, . . . , ��,j�
) = �.

Moreover, Fϕ and the ψı,j are computable from ϕ, � and vocabularies alone, but
are a tower of exponents in the quantifier depth of ϕ.

We list some options of the commutative semirings to choose:

Theorem 2. The following semirings satisfy Theorem 1.

• Subset Semi-ring: (P(A),∩,∪, ∅, A);
• Boolean Semi-ring: ({0, 1},∨,∧, 0, 1);
• Fuzzy Semi-ring: ([0, 1],∨,∧, 0, 1);
• Extended natural number: (N ∪ {∞},+, ·, 0, 1);
• Arctic Semi-ring: (R+ ∪ {−∞},max,+,−∞, 0);
• Tropical Semi-ring: (R+ ∪ {+∞},min,+,+∞, 0).

Logic-Based Approach to Incremental Monitoring and Optimization 255

Proof:

• Subset Semi-ring: By analyzing and extension of the proof in [21];
• Boolean Semi-ring: cf. [33];
• Fuzzy Semi-ring: By analyzing and extension of the proof in [33];
• Extended natural number: By analyzing and extension of the proof in

[33];
• Tropical Semi-ring: cf. [42];
• Arctic Semi-ring: By analyzing and extension of the proof in [42].

4.2 Strongly Distributed Systems

Disjoint union as such is not very interesting. However, combining it with trans-
lation schemes gives us a rich repertoire of patching techniques. Let τ1, τ be
finite vocabularies, τ1-weighted labeled words are pairwise disjoint for simplicity
Wı(ı ∈ I) and a τ -weighted labeled word W is the disjoint union of 〈Wı : ı ∈ I〉
with W =

⊔̇
i∈IWi.

Now, we generalize the notion of the disjoint union of weighted labeled words
to Strongly Distributed Streams in the following way.

Definition 6.
Let I be a finite index set. Let W =

⊔̇
i∈IWi be a τ -weighted labeled word.

Furthermore let ΦK be a τ–σ WMSOL–translation scheme. The ΦK–weighted
sum of W1, . . . ,W� over I is the weighted labeled word Φ∗

K(W), or rather any
weighted labeled word isomorphic to it. We denote the ΦK–sum of W1, . . . ,W�

over I by
⊔ΦK

i∈IWi.
A strongly distributed weighted stream over I is a stream that is isomorphic

to a ΦK–sum of W1, . . . ,W�.

Now, we come back to our Example 4, where we considered the disjoint
union of two weighted labeled words. Using our technique of weighted translation
schemes, we will proceed as follows:

Example 5 (Alternation of data streams).
Recall that we are given two τ -words and their disjoint union:

W∪ = 〈W1 ∪̇W2,N;R≤1, R≤2, P�1, P�2, P⊕1, P⊕2, P⊗1, P⊗1,

P 1
��1

, P 2
��1

, P 1
��2

, P 2
��2

, P1, P2〉.
We recall that we want to combine the stream in the following way: The

resulting stream is composed from the fragment of the first stream from its first
element, labeled by � till its first element, labeled by ��

1. This element, labeled
by the ��

1, is the last element of the first stream that is included in the resulting
stream. Then the combination stream includes all the elements from the second
stream from its first element, labeled by � until its first element, labeled by ��

1.
Then we switch back to the first stream an so on, see Fig. 1. There exists finite

256 E. V. Ravve

constant number κ of switch points (up to two in each stream in our particular
example). The corresponding translation scheme

Φalt
K = 〈φ, φK;ψ≤, ψ�, ψ⊕, ψ⊗〉

is defined in the following way:

– φ, φK are any tautologies with exactly one free variable;
– ψ≤(a1, a2) = ψori

≤
∨

(ψfirst
≤ ∨ ψsecond

≤ ∨ ψthird
≤ ∨ ψfourth

≤), where
• ψori

≤ (a1, a2) = (P1(a1) ∧ P1(a2) ∧ R≤1(a1, a2))
∨

(P2(a1) ∧ P2(a2) ∧
R≤2(a1, a2)) ;

• ψfirst
≤ (a1, a2) = P1(a1)∧P2(a2)

∧
(P 1

��1
(a1)∨ (∀a3(P1(a3)∧ (P 1

��1
(a3))) →

R≤1(a1, a3)))
tells that any element of the first fragment of the first stream is smaller
than any element of the second stream, see Fig. 1;

• ψsecond
≤ , ψthird

≤ , ψfourth
≤ are similar to ψfirst

≤ ;
– ψ�(a) = P1(a) ∧ P�1(a);
– ψ⊕(a) = (P1(a) ∧ P⊕1(a))

∨
(P2(a) ∧ P⊕2(a));

– ψ⊗ is similar to ψ⊕.

The desired global property counts the number of pairs, for which the first
element is labeled by ⊕ and the second element is labeled by ⊗. The property
is expressed in the following way:

ϕ = ∃a1∃a2(∀a3(R≤(a1, a3) → R≤(a2, a3)))
∧

(P⊕(a1) ∧ P⊗(a2) ∧ R≤(a1, a2) ∧ ¬R≤(a2, a1))).

Let us consider only a part of ϕ:

η(a1, a2) = P⊕(a1) ∧ P⊗(a2) ∧ R≤(a1, a2).

We substitute ψ⊕(a1), ψ⊗(a2), ψ≤(a1, a2). We obtain:

η(a1, a2) = ((P1(a1) ∧ P⊕1(a1))
∨

(P2(a1) ∧ P⊕2(a1)))
∧

((P1(a2) ∧ P⊗1(a2))
∨

(P2(a2) ∧ P⊗2(a2)))
∧

(((P1(a1) ∧ P1(a2) ∧ R≤1(a1, a2)) ∨ (P2(a1) ∧ P2(a2) ∧ R≤2(a1, a2)))
∨

(ψfirst
≤ ∨ ψsecond

≤ ∨ ψthird
≤ ∨ ψfourth

≤)).

Now, when we start to distribute the boolean connectives, we start to detect the
cases, observed in Sect. 1.2. In fact, we easily locate:

Case 1: Both elements belong to the same original stream:

(P1(a1) ∧ P1(a2) ∧ P⊕1(a1) ∧ P⊗1(a2) ∧ R≤1(a1, a2)) ∧ . . .)
∨

(P2(a1) ∧ P2(a2) ∧ P⊕2(a1) ∧ P⊗2(a2) ∧ R≤2(a1, a2)) ∧ . . .).

Case 2: These elements are coming from different original streams
requires more patience and persistence but definitely doable.

Logic-Based Approach to Incremental Monitoring and Optimization 257

However, Theorem 3 guarantees that it is a general case rather than a nice
coincidence.

Theorem 3.
Let I be a finite index set and let W be the Φ–sum of W1,. . .,W� over I. For
every ϕ ∈ WMSOL(τ) that satisfies Theorem 1 there are:

– a computation over weighted formulae

FΦ,ϕ(�1,1, . . . , �1,j1 , . . . , ��,1, . . . , ��,j�
), and

– WMSOL–formulae ψ1,1, . . . , ψ1,j1 , . . . , ψ�,1, . . . , ψ�,j�

such that for every Wı and I as above with �ı,j = �ı,j iff [ψı,j] = �ı,j we have

[ϕ] = � iff FΦ,ϕ(�1,1, . . . , �1,j1 , . . . , ��,1, . . . , ��,j�
) = �.

Moreover, FΦ,ϕ and the ψı,j are computable from Φ# and ϕ, but are a tower of
exponents in the quantifier depth of ϕ.

Proof: By analyzing the proof of Theorem 1 in [42] and using Prop. 1.

Using composition of translated schemes, introduced in Definition 4, the
application of Theorem 3 may be iterated in order to propagate evaluation of
the computation of ϕ ∈ WMSOL(τ) to the components in more complicated
combinations.

4.3 The General Approach

Assume we are given a distributed data stream and we are interested to monitor
or optimize a quantitative property PProperty on the stream. In order to apply
Theorem 3, we want to find commutative semiring K and vocabulary τ , such
that we are able to formulate PProperty as ϕ ∈ WMSOL(τ). Moreover, if we
manage to find such τ and semiring K and ϕ is restricted, then (according to the
main theorem of [11,12]) there may be effectively constructed WFA MϕP roperty

that computes the value of ϕProperty on the data stream.
Moreover, assume the data stream may be obtained as a composition of

translation schemes on the components of the data stream, such that Theorem 3
holds for the corresponding semiring K. In such a case, the question whether
Wτ |= ϕProperty can be reduced, according to Theorem 3, to the incremental
computation on weighted formulae FΦ,ϕP roperty

(�1,1, . . . , ��,j�
), such that

[ϕProperty] = �Property iff FΦ,ϕP roperty
(�1,1, . . . , ��,j�

) = �Property.

In other words, given ϕProperty and ΦK of Definition 6, but not a par-
ticular Wτ , we construct a sequence of formulae ψı,j and evaluation function
FΦ,ϕP roperty

. Now, for any given Wτ , we compute the local values �ı,j for each
component. Then, we compute FΦ,ϕP roperty

such that

[ϕProperty] = FΦ,ϕP roperty
(�1,1, . . . , ��,j�

).

258 E. V. Ravve

We emphasize that Fϕ and the ψı,j are computable from ϕ, � and vocabularies
alone. It means that from our main Theorem 3, we effectively derive an algorithm
for computing ϕProperty on any strongly distributed data streams. On the other
hand, the number of the derived formulae is a tower of exponents in the quantifier
depth of ϕ. However, in practical applications, as a rule, the quantifier depth of
formulae leads to simply exponential complexity. More detailed investigation of
the complexity gains may be found in [38].

The algorithm proceeds as follows:

Preprocessing: Given ϕProperty and Φ, but not the strongly distributed data
streams, we construct a sequence of formulae ψ�,j�

and an evaluation function
FΦ,ϕP roperty

.

Incremental Computation: Given a particular strongly distributed data
stream. We compute the local values ��,j�

on each local component.

Final Solution: Theorem 3 now states that ϕProperty on the strongly dis-
tributed data stream may be effectively computed from ��,j�

, using FΦ,ϕP roperty
.

On the other hand, the choice of τ of W as well as K, such that PProperty may
be expressed as WMSOL-formula ϕProperty, still should be done manually. One
should be lucky to find them, as we are not able to guarantee their existence.

5 Conclusion and Discussion

In this contribution, we systematically adopt two logical reduction techniques
to handling of distributed data streams. For our best knowledge, this is the
first attempt to use logical machinery in the field of incremental monitoring and
optimization on distributed streams and especially in its quantitative aspect. We
used Weighted Monadic Second Order Logic as our quantitative query language.

The first technique are Feferman-Vaught reductions, which describe how the
queries over a disjoint union of data streams can be computed from queries over
the components and queries over the index set. The second one are the syntac-
tically defined translation schemes, which describe possible transformations of
data. We adopted the general framework of the syntactically defined transla-
tion schemes to the particular case of Weighted Monadic Second Order Logic
on words. Combination of these two techniques allows us to consider not only
disjoint unions of data streams but rather much richer compositions. We call
them strongly distributed data streams. For such data streams, we extend and
generalize the known approaches of incremental monitoring.

Our logical approach allows us to improve the known results. It is applicable
to both homogeneous and heterogeneous streams. Our method derives queries
over the components and queries over the index set, such that their proceeding
gives a result that is equivalent to the answer of the original query rather than is
its approximation. The method allows unification of the distributed and parallel
computation as well as significant reduction of the communication load. It is safe
in the sense that the transferred locally evaluated values are mostly meaningless
without knowledge about the final proceeding.

Logic-Based Approach to Incremental Monitoring and Optimization 259

Weighted Monadic Second Order Logic is not a unique way to express quan-
titative properties. In [9], a formalism for graph parameters definable in MSOL,
here called MSOLEVAL with values in a ring R, was introduced. Labai and
Makowsky in [30] provided two proofs that RMSOL (a fragment of WMSOL
that does not contain a universal first-order quantification) and MSOLEVAL
have the same expressive power over words.

Recently, other options of augmentation of classical logics with quantitative
features have been introduced. In fact, Quantitative Monadic Second Order Logic
was introduced in [29], which allows a generic framework for adding quantita-
tive properties to any logic capable of expressing Boolean properties of words.
Moreover, a multioperator monoid � is a commutative monoid with additional
operations on its carrier set. A weighted tree automaton over � is a finite state
tree automaton of which each transition is equipped with an operation of �.
M -expressions over � is defined in [22] in the spirit of formulae of WMSOL.
In addition, new classes of weighted automata on words were introduced in [3].
Equipped with pebbles, they go beyond the class of recognizable formal power
series: they capture weighted first order logic enriched with a quantitative version
of transitive closure.

In other words, WMSOLis not the only quatative query language and WTA
is not the only evaluation tool to handle quantitative properties of distributed
systems. Thus, this apparatus opens a very large window for further research.

References

1. Babcock, B., Olston, C.: Distributed top-k monitoring. In: Proceedings of the 2003
ACM SIGMOD International Conference on Management of Data, pp. 28–39. SIG-
MOD 2003, ACM, New York, NY, USA (2003)

2. Bollig, B., Gastin, P.: Weighted versus probabilistic logics. In: Diekert, V.,
Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 18–38. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-02737-6 2

3. Bollig, B., Gastin, P., Monmege, B., Zeitoun, M.: Pebble weighted automata and
weighted logics. ACM Trans. Comput. Log. 15(2), 15 (2014). https://doi.org/10.
1145/2579819

4. Büchi, J.: Weak second-order arithmetic and finite automata. Z. Math. Logik-
Grundlagen Math. 6, 66–92 (1960)

5. Cherniack, M., et al.: Scalable distributed stream processing. In: CIDR 2003 - First
Biennial Conference on Innovative Data Systems Research, Asilomar, CA, January
2003

6. Cormode, G., Garofalakis, M.: Approximate continuous querying over distributed
streams. ACM Trans. Database Syst. 33(2), 9:1–9:39 (2008)

7. Cormode, G., Muthukrishnan, S., Yi, K.: Algorithms for distributed functional
monitoring. ACM Trans. Algorithms 7(2), 211–2120 (2011). https://doi.org/10.
1145/1921659.1921667

8. Courcelle, B., Makowsky, J.A., Rotics, U.: Linear time solvable optimization prob-
lems on graphs of bounded clique width. In: Hromkovič, J., Sýkora, O. (eds.) WG
1998. LNCS, vol. 1517, pp. 1–16. Springer, Heidelberg (1998). https://doi.org/10.
1007/10692760 1

https://doi.org/10.1007/978-3-642-02737-6_2
https://doi.org/10.1145/2579819
https://doi.org/10.1145/2579819
https://doi.org/10.1145/1921659.1921667
https://doi.org/10.1145/1921659.1921667
https://doi.org/10.1007/10692760_1
https://doi.org/10.1007/10692760_1

260 E. V. Ravve

9. Courcelle, B., Makowsky, J., Rotics, U.: On the fixed parameter complexity of
graph enumeration problems definable in monadic second order logic. Discrete
Appl. Math. 108(1–2), 23–52 (2001)

10. Cvrček, D.: Authorization model for strongly distributed information systems.
Ph.D. thesis, Faculty of Electrical Engineering and Computer Science, Brno Uni-
versity of Technology, Czech Republic (2000)

11. Droste, M., Gastin, P.: Weighted automata and weighted logics, research Report
LSV-05-13, Labiratoire Spécification et Vérification, Ecole Normal Supérieure
Cachan 61, avenue du Président Wilson 94235 Cachan Cedex France (2005)

12. Droste, M., Gastin, P.: Weighted automata and weighted logics. Theoret. Comput.
Sci. 380, 69–86 (2007)

13. Droste, M., Götze, D., Märcker, S., Meinecke, I.: Weighted tree automata over
valuation monoids and their characterization by weighted logics. In: Kuich, W.,
Rahonis, G. (eds.) Algebraic Foundations in Computer Science. LNCS, vol. 7020,
pp. 30–55. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24897-
9 2

14. Droste, M., Kuich, W., Vogler, H.: Handbook of Weighted Automata, 1st edn.
Springer, Berlin (2009)

15. Droste, M., Meinecke, I.: Describing average- and longtime-behavior by weighted
MSO logics. In: Hliněný, P., Kučera, A. (eds.) MFCS 2010. LNCS, vol. 6281, pp.
537–548. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15155-
2 47

16. Droste, M., Meinecke, I., Šešelja, B., Tepavčević, A.: A cascade decomposition of
weighted finite transition systems. In: Mauri, G., Leporati, A. (eds.) DLT 2011.
LNCS, vol. 6795, pp. 472–473. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22321-1 43

17. Droste, M., Paul, E.: A Feferman-Vaught decomposition theorem for weighted
MSO logic. In: Potapov, I., Spirakis, P., Worrell, J. (eds.) 43rd International Sym-
posium on Mathematical Foundations of Computer Science, MFCS 2018. LIPIcs,
vol. 117, pp. 76:1–76:15 (2018)

18. Droste, M., Vogler, H.: Weighted logics for unranked tree automata. Theory Com-
put. Syst. 48(1), 23–47 (2009)

19. Ebbinghaus, H., Flum, J.: Finite Model Theory. Perspectives in Mathematical
Logic. Springer, Berlin (1995). https://doi.org/10.1007/978-3-662-03182-7

20. Elgot, C.: Decision problems of finite automata design and related arithmetics.
Trans. Amer. Math. Soc. 98, 21–52 (1961)

21. Feferman, S., Vaught, R.: The first order properties of products of algebraic sys-
tems. Fundamenta Mathematicae 47, 57–103 (1959)

22. Fülöp, Z., Stüber, T., Vogler, H.: A Büchi-like theorem for weighted tree automata
over multioperator monoids. Theory Comput. Syst. 50(2), 241–278 (2012)

23. Garofalakis, M., Keren, D., Samoladas, V.: Sketch-based geometric monitoring of
distributed stream queries. Proc. VLDB Endow. 6(10), 937–948 (2013)

24. Garofalakis, M.: Querying distributed data streams - (invited keynote talk). In:
Proceedings of 18th East European Conference Advances in Databases and Infor-
mation Systems, ADBIS 2014, Ohrid, Macedonia, 7–10 September 2014, pp. 1–10
(2014)

25. Gilbert, A., Kotidis, Y., Muthukrishnan, S., Strauss, M.J.: One-pass wavelet
decompositions of data streams. IEEE TKDE 15, 2003 (2003)

26. Grädel, E., Siebertz, S.: Dynamic definability. In: 15th International Conference on
Database Theory, ICDT 2012, Berlin, Germany, 26–29 March 2012, pp. 236–248
(2012). https://doi.org/10.1145/2274576.2274601

https://doi.org/10.1007/978-3-642-24897-9_2
https://doi.org/10.1007/978-3-642-24897-9_2
https://doi.org/10.1007/978-3-642-15155-2_47
https://doi.org/10.1007/978-3-642-15155-2_47
https://doi.org/10.1007/978-3-642-22321-1_43
https://doi.org/10.1007/978-3-642-22321-1_43
https://doi.org/10.1007/978-3-662-03182-7
https://doi.org/10.1145/2274576.2274601

Logic-Based Approach to Incremental Monitoring and Optimization 261

27. Immerman, N.: Descriptive Complexity. Graduate texts in computer science.
Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5

28. Keren, D., Sagy, G., Abboud, A., Ben-David, D., Schuster, A., Sharfman, I.,
Deligiannakis, A.: Geometric monitoring of heterogeneous streams. IEEE Trans.
Knowl. Data Eng. 26(8), 1890–1903 (2014)

29. Kreutzer, S., Riveros, C.: Quantitative monadic second-order logic. In: 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New Orleans,
LA, USA, 25–28 June 2013, pp. 113–122 (2013)

30. Labai, N., Makowsky, J.: Weighted automata and monadic second order logic. In:
Proceedings Fourth International Symposium on Games, Automata, Logics and
Formal Verification, GandALF 2013, Borca di Cadore, Dolomites, Italy, 29–31th
August 2013, pp. 122–135 (2013)

31. Lazerson, A., Sharfman, I., Keren, D., Schuster, A., Garofalakis, M., Samoladas,
V.: Monitoring distributed streams using convex decompositions. PVLDB 8(5),
545–556 (2015)

32. Makowsky, J.: Algorithmic uses of the Feferman-Vaught theorem. Ann. Pure Appl.
Logic 126, 159–213 (2004)

33. Makowsky, J.A., Ravve, E.V.: Incremental model checking for decomposable struc-
tures. In: Wiedermann, J., Hájek, P. (eds.) MFCS 1995. LNCS, vol. 969, pp. 540–
551. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60246-1 159

34. Mandrali, E., Rahonis, G.: Recognizable tree series with discounting. Acta Cyber-
netica 19(2), 411–439 (2009)

35. Olston, C., Jiang, J., Widom, J.: Adaptive filters for continuous queries over dis-
tributed data streams. In: Proceedings of the 2003 ACM SIGMOD International
Conference on Management of Data, pp. 563–574. SIGMOD 2003, ACM, New
York, NY, USA (2003)

36. Rabin, M.: A simple method for undecidability proofs and some applications. In:
Hillel, Y.B. (ed.) Logic, Methodology and Philosophy of Science II. Studies in
Logic, pp. 58–68. North Holland, Amsterdam (1965)

37. Ravve, E.V., Volkovich, Z., Weber, G.W.: A uniform approach to incremental
automated reasoning on strongly distributed structures. In: Gottlob, G., Sutcliffe,
G., Voronkov, A. (eds.) GCAI 2015. Global Conference on Artificial Intelligence.
EasyChair Proceedings in Computing, vol. 36, pp. 229–251. EasyChair (2015)

38. Ravve, E., Volkovich, Z.: Four scenarios of effective computations on sum-like
graphs. In: Proceedings of the The 9th International Multi-Conference on Com-
puting in the Global Informationin Technology, pp. 1–8 (2014)

39. Ravve, E.: Model Checking for various notions of products. Master’s thesis, Thesis,
Department of Computer Science, Technion-Israel Institute of Technology (1995)

40. Ravve, E.: Incremental computations over strongly distributed databases. Concur-
rency Comput. Pract. Experience 28(11), 3061–3076 (2016)

41. Ravve, E., Volkovich, Z.: Incremental verification and coverage analysis of strongly
distributed systems. In: Kenett, R., Ruggeri, G., Faltin, F. (eds.) Analytic Methods
in Systems and Software Testing. Wiley, Hoboken (2017)

42. Ravve, E., Volkovich, Z., Weber, G.W.: Effective optimization with weighted
automata on decomposable trees. Optimization Journal, Special Issue on Recent
Advances in Continuous Optimization on the Occasion of the 25th European Con-
ference on Operational Research (EURO XXV 2012), vol. 63, pp. 109–127 (2014)

43. Ravve, E., Volkovich, Z., Weber, G.W.: Reasoning on strongly distributed multi-
agent systems. In: Proceedings of the 17th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, pp. 251–256 (2015)

https://doi.org/10.1007/978-1-4612-0539-5
https://doi.org/10.1007/3-540-60246-1_159

262 E. V. Ravve

44. Schubert, E., Weiler, M., Kriegel, H.P.: Signitrend: scalable detection of emerging
topics in textual streams by hashed significance thresholds. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pp. 871–880. KDD 2014, ACM, New York, NY, USA (2014)

45. Sharfman, I., Schuster, A., Keren, D.: A geometric approach to monitoring thresh-
old functions over distributed data streams. ACM Trans. Database Syst. 32(4), 23
(2007)

46. Sharfman, I., Schuster, A., Keren, D.: Shape sensitive geometric monitoring. In:
Proceedings of the Twenty-seventh ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, pp. 301–310. PODS 2008, ACM, New York,
NY, USA (2008)

47. Wolff, R., Bhaduri, K., Kargupta, H.: A generic local algorithm for mining data
streams in large distributed systems. IEEE Trans. Knowl. Data Eng. 21(4), 465–
478 (2009). https://doi.org/10.1109/TKDE.2008.169

https://doi.org/10.1109/TKDE.2008.169

Realisability of Choreographies

Klaus-Dieter Schewe1(B), Yamine Aı̈t-Ameur2, and Sarah Benyagoub2

1 UIUC Institute, Zhejiang University, Haining, China
kd.schewe@intl.zju.edu.cn, kdschewe@acm.org

2 Université de Toulouse, IRIT/INPT-ENSEEIHT, Toulouse, France
{yamine,sarah.benyagoub}@enseeiht.fr

Abstract. Choreographies prescribe the rendez-vous synchronisation of
messages in a system of communicating finite state machines. Such a
system is called realisable, if the traces of the prescribed communication
coincide with those of the asynchronous system of peers, where the com-
munication channels either use FIFO queues or multiset mailboxes. In
this paper we provide two necessary conditions for synchronisability and
hence for realisability of communication choreographies. We show that
both conditions together are sufficient. A simple consequence is that
realisability in the presence of a choreography becomes decidable. The
conditions permit realisable choreographies to be obtained by means of
composition, and then choreographies can be further refined into con-
current systems of communicating machines.

Keywords: Communicating system · Choreography ·
Synchronisability · Peer-to-peer system · Realisability

1 Introduction

A peer-to-peer (P2P) system is an asynchronous system of independent peers
communicating through messages. On a very high level of abstraction one may
disregard completely the internal computations performed by the peers and con-
sider only the sequences of messages sent and received. Then each peer can be
described by a finite state machine (FSM), the P2P system becomes a system
of communicating FSMs, and its semantics is defined by the traces of messages
sent. In addition, stability conditions may be taken into account, i.e. only those
traces are considered in which all sent messages also have been received.

Such a trace semantics can be defined in various ways, e.g. using a separate
channel organised as a FIFO queue for each ordered pair of distinct peers (see
e.g. [9,12]). In particular, messages on the same channel are received in the same
order as they have been sent and no message is lost. Alternatives are the use of
such FIFO queues with only a single channel for each receiver (as e.g. in [2]) or
the organisation of the channels as multisets (see e.g. [11]), which corresponds
to mailboxes, from which messages can be received in arbitrary order. Naturally,
one may also consider the possibility of messages being lost (see e.g. [10]).

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 263–280, 2020.
https://doi.org/10.1007/978-3-030-39951-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_16

264 K.-D. Schewe et al.

A common question investigated for communicating FSMs is whether the
traces remain the same, if a rendez-vous (or handshake) synchronisation of (send-
ing and receiving of) messages is considered, in which case the P2P system itself
is also modelled as a FSM. This synchronisability problem has been claimed to
be decidable in various publications (see e.g. [2]), but it was finally proven to be
undecidable in general [12], though counterexamples are rather tricky.

The picture changes slightly in the presence of choreographies, i.e. FSMs that
prescribe the rendez-vous synchronisation [3]. In this case the peers are projec-
tions of a choreography, and synchronisability becomes realisability of the given
choreography. The rendez-vous composition of the projected peers coincides with
the choreography, whereas in general projections of a rendez-vous composition
of arbitrary peers may not coincide with the given peers. Also the distinction
between language synchronisability based only on the message traces, and syn-
chronisability based in addition on the stable configurations reached becomes
obsolete.

One may ask, whether there are sufficient or necessary conditions on the
choreography for realisability. In this article we will investigate this question
and characterise realisability by two simple conditions that are both necessary
and together sufficient. Actually, a hint on the sufficiency of these conditions is
already given by the compositional approach to choreographies and the associ-
ated proof of realisability [5]. This compositional approach may then be taken
further, when the communicating FSMs are refined by communicating machines,
i.e. the message exchange is coupled with state-changing behaviour of the peers.

Our Contribution. The main contribution of this article is a characterisation of
synchronisability by two necessary conditions on a communication choreography,
which together are sufficient. One condition refers to sequences of messages in
the choreography and excludes independence. Another condition refers to non-
deterministic choice. Both conditions appear already in a restricted form in the
correct-by-construction proofs in [4]. We generalise the conditions and prove also
their necessity. We embed this result into a discussion of realisability under dif-
ferent semantics. As the conditions are purely syntactical, a simple consequence
is that realisability in the presence of a choreography becomes decidable.

Related Work. The abstract view of P2P systems as communicating FSMs has
already a long tradition [9], and there has been a longer chain of results address-
ing the decidability of the (language) synchronisability problem. Decidability
has been claimed by Basu et al. in [2] for systems with separate FIFO queues for
P2P channels as well as for combined queues per receiver. For both cases Finkel
showed that (language) synchronisability is in fact undecidable [12]. Assuming a
mailbox semantics, i.e. multisets instead of queues, decidability can be obtained
[11], and this remains so even if messages can get lost [10]. However, the examples
in [12] showing that previous claims of decidability are incorrect give already a
hint that if the peers are projections of their rendez-vous composition, the decid-
ability should hold. This will be the case for prescribed choreographies.

Realisability of Choreographies 265

These investigations apply to arbitrary systems of peers, for which an over-
arching FSM is composed, either using communication channels organised as
queues or multisets or rendez-vous synchronisation. If the rendez-vous synchro-
nisation is prescribed by a choreography, the picture changes, as the peers become
projections of the choreography [3]. This adds a conformity problem for chore-
ographies [1] and extends synchronisability to the realisability of choreographies
[6]. As our results in this paper will show, choreographies simplify the theory,
as a choreography can always be regained by rendez-vous composition of its
projection peers, and the problem of messages being sent but never received
disappears.

A constructive approach to develop realisable choreographies and conse-
quently P2P systems was brought up in [6]. The general idea is to exploit con-
struction operators, by means of which realisable choreographies can be built out
of a primitive base. The composition operators can be specified using Event-B
[14], so the correctness of the construction can be verified, e.g. using the RODIN
tool [5]. This actually exploits the sufficiency of our characterisation under mod-
erate restrictions, but cannot be used to show also necessity. On the other hand it
gives already hints for choreography repair [4]. The results in this article further
strengthen the theoretical underpinnings of this correct-by-construction app-
roach to realisable choreographies and permits to remove unnecessary assump-
tions.

Naturally, using Event-B in this context provides an open invitation to a
refinement-based approach taking P2P systems defined by choreographies to
communicating concurrent machines. Here we can exploit the work on concur-
rent Event-B [13]. The proposal to support the development of concurrent sys-
tems by multiple Event-B machines with concurrent runs has been derived from
concurrent ASMs [7], and the introduction of messaging (as in [8] for concurrent
ASMs) is straightforward.

Organisation of the Article. The remainder of this article is organised as follows.
Section 2 is dedicated to preliminaries, i.e. we introduce all the notions that are
relevant for the work: P2P systems, rendez-vous, P2P and mailbox composition,
synchronisability, choreographies, realisability, etc. We also show how projec-
tion and composition interact and how to deal with non-deterministic FSMs
and ε-transitions in this context. In Sect. 3 we address sufficient and necessary
conditions for realisability, which gives our main result. We then indicate how
violations to these conditions can be repaired. Finally, Sect. 4 contains a brief
summary and outlook.

2 P2P Communication Systems and Choreographies

In a P2P system we need at least peers and messages to be exchanged between
them. Therefore, let M and P be finite, disjoint sets, elements of which are
called messages and peers, respectively. Each message m ∈ M has a unique
sender s(m) ∈ P and a unique receiver r(m) ∈ P with s(m) �= r(m). We use the

266 K.-D. Schewe et al.

notation i
m→ j for a message m with s(m) = i and r(m) = j. We also use the

notation !mi→j and ?mi→j for the event of sending or receiving the message m,
respectively. Write Ms

p and Mr
p for the sets of messages, for which the sender or

the receiver is p, respectively.
Let s(M) and r(M) denote the sets of send and receive events defined by a

set M of messages. A P2P system over M and P is a family {Pp}p∈P of finite
state machines (FSMs) Pp over an alphabet Σp = s(Ms

p) ∪ r(Mr
p). By abuse of

terminology Pp is also called a peer. Note that the FSM Pp may be deterministic
or non-deterministic.

We write Pp = (Qp, Σp, q0,p, Fp, δp), where Qp is the finite set of states of
the FSM, q0,p ∈ Qp is the start state, Fp ⊆ Qp is the set of final states, and
δp is the transition relation (or function), i.e. δp : Qp × Σp → Qp in case Pp is
deterministic and δp ⊆ Qp×Σp×Qp in case Pp is non-deterministic. In the latter
case let P̂p denote an equivalent deterministic FSM. We allow the subscript p to
be omitted, if it is given by the context.

For our purpose here we always assume that all states are accepting, i.e. Fp =
Qp. As P is finite, we also assume without loss of generality that P = {1, . . . , n}.

2.1 Composition of Peers

A composition of a P2P system over M and P will be another FSM, the alpha-
bet of which will be either M or s(M) ∪ r(M). The different ways to define a
composition depend on several choices:

1. The sending and receiving of messages may use a rendez-vous (or handshake)
synchronisation, i.e. it is assumed that a sent message is immediately received.
This will lead to an FSM with alphabet M .

2. If no rendez-vous synchronisation is assumed we have to assume channels for
the communication between the peers. For these we have the choice between
channels for each pair of different peers or a single channel per receiving peer.
The former case is usually referred to as P2P semantics, the latter one as
mailbox semantics.

3. For the channels (in both P2P and mailbox semantics) we may assume an
organisation as a FIFO queue or as a multiset. The former case includes the
assumption that messages (in the same channel) are received in the same
order they have been sent, whereas in the latter case messages may pass
each other. Note that if multisets are assumed, then it becomes obsolete to
distinguish between the P2P and the mailbox semantics, as the receiver may
choose any message from a single or multiple channels.

4. Furthermore, we may restrict the capacity of channels to a maximum size,
say si,j for the P2P semantics or sj for the mailbox semantics.

5. We may also allow messages to get lost, i.e. for a send event there may be no
corresponding receive event. However, in this article we will not consider this
possibility.

Realisability of Choreographies 267

Definition 1. The rendez-vous composition of a P2P system {Pp}1≤p≤n with
Pp = (Qp, Σp, q0p, Qp, δp) is the FSM Crv = (Q,M, q0, Q, δ) with Q = Q1 ×
· · · × Qn, q0 = (q01, . . . , q0n), and δ((q1, . . . , qn), i m→ j, (q′

1, . . . , q
′
n)) holds if

(qi, !mi→j , q′
i) ∈ δi and (qj , ?mi→j , q′

j) ∈ δj hold, and qx = q′
x for all x /∈ {i, j}.

Example 1. We adopt and modify the example in [12, Fig. 1] with n = 3. Pre-
serving the notational conventions from above the transition relations δi are
defined as follows:

δ1 : (q01, !m1→2
a) �→ q11, (q11, !m1→2

a) �→ q21, (q21, !m1→3
b) �→ q31

δ2 : (q02, ?m1→2
a) �→ q12, (q12, ?m1→2

a) �→ q22, (q22, ?m3→2
c) �→ q32,

(q02, ?m3→2
c) �→ q42, (q42, !m2→3

d) �→ q52

δ3 : (q03, ?m1→3
b) �→ q13, (q13, !m3→2

c) �→ q23, (q23, ?m2→3
d) �→ q33

Then the transition relation δ in the rendez-vous composition is defined as follows
(omitting states that are unreachable):

((q01, q02, q03), 1
ma→ 2) �→ (q11, q12, q03), ((q11, q12, q03), 1

ma→ 2) �→ (q21, q22, q03)

((q21, q22, q03), 1
mb→ 3) �→ (q31, q22, q13), ((q31, q22, q13), 3

mc→ 2) �→ (q31, q32, q23)

For the other possible choices let us first consider the P2P semantics, which
gives rise to two more compositions1.

Definition 2. The P2P composition of a P2P system {Pp}1≤p≤n with Pp =
(Qp, Σp, q0p, Qp, δp) is the automaton Cp2p = (Q,Σ, q0, Q, δ) satisfying the fol-
lowing conditions:

– The set of states is Q = Q1 × · · · × Qn × (cij)1≤i�=j≤n, where each cij is
either a finite queue (FIFO channel semantics) or a finite multiset (multiset
semantics) with elements in M and |cij | ≤ sij (provided a maximum channel
size sij is defined).

– The alphabet is Σ = s(M) ∪ r(M).
– The initial state is q0 = (q01, . . . , q0n, ([])1≤i�=j≤n) (FIFO channel semantics)

or q0 = (q01, . . . , q0n, (〈〉)1≤i�=j≤n) (multiset semantics), i.e. initially all chan-
nels are empty.

– The transition relation δ is defined by δ((q1, . . . , qn, (cij)1≤i�=j≤n), e, (q′
1, . . . ,

q′
n, (c′

ij)1≤i�=j≤n)) if there exists i such that
• (qi, e, q

′
i) ∈ δi holds, qx = q′

x for all x �= i, and
∗ either e = !mi→j for some j, c′

ij = cij
�[i m→ j] (FIFO channel

semantics) or c′
ij = cij � 〈i m→ j〉 (multiset semantics), and ck� = c′

k�

for all (k, �) �= (i, j)

1 Note that the automata defined in the next two definitions are not FSMs, strictly
speaking, as there may be infinitely many states. Nonetheless, languages accepted
by these automata can be defined analogously to FSMs.

268 K.-D. Schewe et al.

∗ or e = ?mj→i for some j and cji = [j m→ i]�c′
ji (FIFO channel

semantics) or cji = 〈j m→ i〉 � c′
ji (multiset semantics), and ck� = c′

k�

for all (k, �) �= (j, i).

For later use we call a state (q1, . . . , qn, (cij)1≤i�=j≤n) stable if and only if all
channels cij are empty.

Analogously, we can define composition for the mailbox semantics.

Definition 3. The mailbox composition of a P2P system {Pp}1≤p≤n with Pp =
(Qp, Σp, q0p, Qp, δp) is the automaton Cm = (Q,Σ, q0, Q, δ) satisfying the follow-
ing conditions:

– The set of states is Q = Q1 × · · · × Qn × (cj)1≤j≤n, where each cj is either a
finite queue (FIFO channel semantics) or a finite multiset (multiset seman-
tics) with elements in M and |cj | ≤ sj (provided a maximum channel size sj

is defined).
– The alphabet is Σ = s(M) ∪ r(M).
– The initial state is q0 = (q01, . . . , q0n, ([])1≤j≤n) (FIFO channel semantics) or

q0 = (q01, . . . , q0n, (〈〉)1≤j≤n) (multiset semantics), i.e. initially all channels
are empty.

– The transition relation δ is defined by (q1, . . . , qn, (cj)1≤j≤n), e, (q′
1, . . . ,

q′
n, (c′

j)1≤j≤n) ∈ δ if there exists i such that
• (qi, e, q

′
i) ∈ δi holds, qx = q′

x for all x �= i, and
∗ either e = !mi→j for some j, c′

j = cj
�[i m→ j] (FIFO channel seman-

tics) or c′
j = cj � 〈i m→ j〉 (multiset semantics), and ck = c′

k for all
k �= j
∗ or e = ?mj→i for some j and ci = [j m→ i]�c′

i (FIFO channel
semantics) or ci = 〈j m→ i〉 � c′

i (multiset semantics), and ck = c′
k for

all k �= i.

As above we call a state (q1, . . . , qn, (cj)1≤j≤n) stable if and only if all channels
cj are empty.

In the following we consider four different compositions. The first three are
rendez-vous composition Crv as in Definition 1, P2P composition Cp2p with FIFO
queue semantics as in Definition 2, and mailbox composition Cm with multiset
semantics as in Definition 3. The fourth composition is queue composition, which
is mailbox composition with FIFO queue semantics as in Definition 3, but in
order to avoid confusion it will be denoted as Cq. The fifth possible choice, P2P
composition with multiset semantics, can be neglected, as Proposition 3 will
show. We will prove this proposition after defining the trace semantics in the
next subsection.

Let us briefly look at non-determinism. As peers are defined by FSMs, we may
replace them by equivalent non-deterministic FSMs. The following proposition
shows that this is compatible with the compositions, so in the sequel we may
always assume without loss of generality that the FSMs are deterministic. The
proof is straightforward.

Realisability of Choreographies 269

Proposition 1. Let P = {Pp}1≤p≤n be a P2P system. Then the following hold:

(i) If all peers Pp are defined by deterministic FSMs, then also their composition
Cc (with c ∈ {rv, p2p,m, q}) is deterministic.

(ii) Any deterministic Ĉc (for c ∈ {rv, p2p,m, q}) equivalent to the c-composition
Cc of P is also equivalent to the c-composition of P̂ = {P̂p}1≤p≤n.

Let us further look at an extension of peers and compositions of P2P systems
and permit ε-transitions2 in the defining FSMs, i.e. a transition relation is defined
as δ ⊆ Q × (Σ ∪ {ε}) × Q. This can be used to extend also the composition
operations:

– In case of the rendez-vous composition we have in addition ((q1, . . . , qn),
ε, (q′

1, . . . , q
′
n)) ∈ δ if and only if (qi, ε, q

′
i) ∈ δi holds for some i and qj = q′

j

for all j �= i.
– In the case of P2P composition we have ((q1, . . . , qn, (cij)1≤i�=j≤n),

ε, (q′
1, . . . , q

′
n, (cij)1≤i�=j≤n)) ∈ δ if and only if (qi, ε, q

′
i) ∈ δi holds for some i

and qj = q′
j for all j �= i.

– In the case of mailbox composition we have ((q1, . . . , qn, (cj)1≤j≤n),
ε, (q′

1, . . . , q
′
n, (cj)1≤j≤n)) ∈ δ if and only if (qi, ε, q

′
i) ∈ δi holds for some i

and qj = q′
j for all j �= i.

In an FSM ε-transitions can be eliminated as follows: First, whenever
δ(q, ε, q′) and (q′, x, q′′) hold for state q, q′, q′′ ∈ Q and x ∈ Σ, then add
δ(q, x, q′′). Second, if the first rule cannot be applied anymore, remove all ε-
transitions. The resulting automaton is equivalent to the given one. It is again
straightforward to show that this elimination of ε-transitions is also compatible
with the compositions. Therefore, we may always assume to deal with peers that
do not use ε-transitions.

Proposition 2. Let P = {Pp}1≤p≤n be a P2P system, and let P̄ = {P̄p}1≤p≤n

be the corresponding P2P system, where P̄p results from Pp by the elimination
of ε-transitions. Then the composition Cc (for c ∈ {rv, p2p,m, q}) of P and the
corresponding c-composition C̄c of P̄ are equivalent.

2.2 Trace Semantics

Peers as well as any composition of a P2P system are defined by (finite)
automata, so their semantics is well defined by the notion of language accepted
by them. However, in the case of P2P systems the alphabets of these automata
are made out of messages or corresponding send and receive events. It is com-
mon to consider just sequences of sending events, i.e. for a word w ∈ M∗ let
σ(w) denote its restriction to its sending events. Formally, we have σ(ε) = ε,
σ(i m→ j) = !mi→j , and σ(w1 · w2) = σ(w1) · σ(w2), where · denotes concatena-
tion. Analogously, for words in (s(M) ∪ r(M))∗ we have σ(ε) = σ(?mi→j) = ε,
σ(!mi→j) = !mi→j , and σ(w1 · w2) = σ(w1) · σ(w2).
2 As we will see, ε-transitions are not needed, but they come in handy in proofs.

270 K.-D. Schewe et al.

If L is the language accepted by an FSM A with alphabet M or Σ = s(M)∪
r(M), then L(A) = σ(L) is the trace language of A. This applies for the cases
where A is a peer Pp or a composition Crv, Cp2p, Cm or Cq of a P2P system.
Analogous to [12] for a P2P system P = {Pp}1≤p≤n we use the notation L0(P) =
L(Crv), Lω(P) = L(Cc), where c is one of p2p, m or q, and furthermore Lk(P) =
L(Cc) for k > 0, if we require sij ≤ k or sj ≤ k for all i, j.

If we restrict final states to be stable, we obtain a different language L̂(Cc) ⊆
L(Cc) (for c ∈ {p2p,m, q}), which we call the stable trace language of Cc. L̂k(P)
for k > 0 is defined analogously.

With these trace semantics we are now able to state and prove Proposition 3,
which we announced already above.

Proposition 3. For a P2P system {Pp}1≤p≤n its P2P composition with mul-
tiset semantics is equivalent to its mailbox composition Cm with multiset
semantics.

Proof. Let δp2p and δ denote the transition relation for the P2P com-
position with multiset semantics (as in Definition 2), and for the mailbox
composition with multiset semantics (as in Definition 3), respectively. Then
δp2p((q1, . . . , qn, (cij)1≤i�=j≤n), e, (q′

1, . . . , q
′
n, (c′

ij)1≤i�=j≤n)) holds if and only if
δ((q1, . . . , qn, (cj)1≤j≤n), e, (q′

1, . . . , q
′
n, (c′

j)1≤j≤n)) holds with cj = c1j ∪ · · · ∪ cnj

for all j. This implies that the trace languages accepted by both composed
automata are the same. �

A key notion is language synchronisability, which is based on the trace lan-
guages defined above and relates the “synchronous” rendez-vous composition
with any of the other “asynchronous” compositions. If in addition we want to
ensure that all sent messages are also received, then we take stable states into
consideration. This leads to another notion of synchronisability. Obviously, if a
P2P system P is synchronisable, it is also language synchronisable.

Definition 4. A P2P system P = {Pp}1≤p≤n is called language-synchronisable
with respect to P2P, mailbox or queue composition if L0(P) = Lω(P) holds.
P = {Pp}1≤p≤n is called synchronisable with respect to P2P, mailbox or queue
composition if L0(P) = Lω(P) = L̂ω(P) holds.

2.3 Choreography-Defined P2P Systems

Let us now look into choreographies. We define a choreography by an FSM C =
(Q,M, q0, F, δ), where M is again a set of messages. As before we ignore final
states and assume F = Q. Then every rendez-vous composition of a P2P system
P = {Pp}1≤p≤n defines a choreography. We are interested in P2P systems that
are defined by a choreography, for which we need the notion of a projection.

Definition 5. Let C = (Q,M, q0, Q, δ) be a choreography with messages M
and peers P . For p ∈ P the projection πp(C) is the FSM (Q,Σ, q0, Q, δp) with

Realisability of Choreographies 271

Σ = s(M)∪ r(M) and (q, e, q′) ∈ δp if e = !mp→j for some j with (q, p m→ j, q′) ∈
δ, e = ?mi→p for some i with (q, i m→ p, q′) ∈ δ or e = ε for (q, i m→ j, q′) ∈ δ with
p /∈ {i, j}.

The peer Pp defined by C is the FSM without ε-transitions corresponding to
πp(C). A P2P system P = {Pp}1≤p≤n is choreography-defined if there exists a
choreography with peers Pp for all p.

There is a close relationship between rendez-vous compositions and
choreography-defined P2P systems, which we exploit in the next section.

Proposition 4. Each choreography C coincides (up to isomorphism) with the
rendez-vous composition of its peers.

Proof. Let the choreography be C = (Q,M, q0, Q, δ). The peers of C result from
the projection πi(C) by eliminating ε-transitions, and the state sets Qp of these
peers are subsets of Q.

Let Crv = (Q′,M, q′
0, Q

′, δrv). Assume ((q1, . . . , qn), i m→ j, (q′
1, . . . , q

′
n))

∈ δrv. According to Definition 1 there exist i �= j with (qi, !mi→j , q′
i) ∈ δi,

(qj , ?mi→j , q′
j) ∈ δj , and qx = q′

x for all x /∈ {i, j}.
The δi-transition corresponds to a sequence of δ′

i-transitions defined by
the projection πi(C). Let this be (qi,x−1, ε, qix) for x = 1, . . . , k − 1 and
(qi,k−1, !mi→j , qik) with qi0 = qi and qik = q′

i. Analogously, the δj-transition
corresponds to a sequence of δ′

j-transitions defined by the projection πj(C), say
(qj,x−1, ε, qjx) for x = 1, . . . , � − 1 and (qj,�−1, ?mi→j , qj�) with qj0 = qj and
qj� = q′

j .
Now let C′

rv be the rendez-vous composition of the projections. For this we
obtain a sequence of ε-transitions starting in a state with i’th component qi and
j’th component qj , leading to a state with i’th component qi,k−1 and j’th com-
ponent qj,�−1. Furthermore, on this last state we have a δ′

rv-transition consuming
i

m→ j.
If in C′

rv we omit the ε-transitions, only states (q, . . . , q) with q ∈ Q remain.
This shows that Crv is isomorphic to C. �

Proposition 4 implies that not all P2P systems are choreography-defined3. In
fact, if a P2P system is choreography-defined, then it must consist of the peers
defined by its rendez-vous composition.

Example 2. Consider the P2P system P = {Pp}1≤p≤3 from Example 1, which
cannot be choreography-defined. If it were choreography-defined, say by a chore-
ography C, then the peers defined by C would be the peers Pp, and their rendez-
vous composition would give back C.

We computed the rendez-vous composition of P in Example 1. If we take the
peers of this composition we obtain a P2P system with the following transition

3 In fact, all counter-examples in [12] to previously claimed decidability results are
P2P systems that are not choreography-defined.

272 K.-D. Schewe et al.

relations:

δ1 : (q01, !m1→2
a) �→ q11, (q11, !m1→2

a) �→ q21, (q21, !m1→3
b) �→ q31

δ2 : (q02, ?m1→2
a) �→ q12, (q12, ?m1→2

a) �→ q22, (q22, ?m3→2
c) �→ q32

δ3 : (q03, ?m1→3
b) �→ q13, (q13, !m3→2

c) �→ q23

This is not the given P2P system P. �
Next we show that for choreography-defined P2P systems the synchronisabil-

ity problem is much simpler than in the general case.

Proposition 5. Let the P2P system P = {Pp}1≤p≤n be choreography-defined.
Then P is synchronisable if and only if it is language-synchronisable.

Proof. According to Definition 4 and the remark following it we only have to
show Lω(P) ⊆ L̂ω(P).

Let w! ∈ Lω(P) be a sequence of send events: w! = !mi1→j1
1 . . .!mik→jk

k . Let
w? = ?mi1→j1

1 . . .?mik→jk
k denote the sequence of corresponding receive events.

Then there exists a word w with σ(w) = w! that is accepted by the composition
Cc (c ∈ {p2p,m, q}), and w results from interleaving w! and a subsequence of
w? such that for each x the sending event !mix→jx

x precedes the corresponding
receiving event ?mix→jx

x in w, provided the latter one appears in w at all.
Let w = w′

1 . . . w′
�. Then there exists a sequence of states γ0 . . . γ� of Cc with

γx = (qx1, . . . , qxn, Cx) and transitions (γx−1, w
′
x, γx) ∈ δ for x = 1, . . . , �. Here

we use Cx as a shortcut for (cx
ij)1≤i�=j≤n or (cx

j)1≤j≤n depending on the semantics
of the composition. The channels c�

ij (or c�
j , respectively) in the final accepting

state contain the messages iy
my→ jy, for which ?miy→jy

y does not appear in w.
According to Definitions 2 and 3 each transition (γx−1, w

′
x, γx) ∈ δ in the

sequence is defined by a transition (qx−1,i, w
′
x, qxi) ∈ δi for some i, and either

w′
x = !mi→j

y or w′
x = ?mj→i

y holds for some j. By projection we obtain sequences
of states for each peer Pi together with transitions between them associated with
the send events !mi→j

y and the receive events ?mj→i
y .

As we have Lω(P) = L0(P) the sequence of messages i1
m1→ j1, . . . , ik

mk→ jk is
accepted by Crv. Furthermore, as each peer is a projection of Crv, the projected
sequences can be extended by transitions for the missing receive events, i.e.
?miy→jy

y does not appear in w.
We can use these extensions to also define an extension of the sequence of states

γ� . . . γ2k of Cc with γx = (qx1, . . . , qxn, Cx) and transitions (γx−1, w
′
x, γx) ∈ δ

for x = � + 1, . . . , 2k, where w′
x = ?mj→i

y holds for some j. In particular, due to
Definitions 2 and 3 we must have that the channels c�

ij (or c�
j , respectively) in the

final accepting state γ2k must be empty.
This shows that wext = w′

1 . . . w′
2k is also accepted by Cc. As we have

σ(wext) = σ(w) = w!, we conclude w! ∈ L̂ω(P). �
As a consequence of Proposition 5 we may focus only on language-

synchronisability. If a trace is accepted, then it will be accepted in a stable

Realisability of Choreographies 273

configuration. Furthermore, Proposition 4 allows us to identify the rendez-vous
composition with the given choreography. This gives rise to the notion of
realisability.

Definition 6. A choreography C is realisable with respect to P2P, mailbox or
queue composition if L0(P) = Lω(P) holds for the P2P system P defined by the
projections of C.

3 Characterisation of Realisability

We now investigate realisability of choreographies, which due to Proposition 4
are equivalent to the rendez-vous composition of their peers resulting from pro-
jections. We will first derive two necessary conditions for realisability for P2P
and queue composition and discuss them also for mailbox composition. Then
we will show that these conditions together are also sufficient, a result that was
already indicated by the constructive approach in [4]. Finally, we investigate
minimal changes to choreographies in case these conditions are violated.

In the following we fix a choreography C = (Q,M, q0, Q, δ). Both conditions
will establish constraints on δ for two messages i

m1→ j and k
m2→ �, but in both

cases we need to exclude that these two messages are independent in the sense
that they may appear in any order4, i.e. we request that if there are states
q1, q2, q3 with δ(q1, i

m1→ j, q2) and δ(q2, k
m2→ �, q3), then we cannot have both

δ(q1, k
m2→ �, q2) and δ(q2, i

m1→ j, q3).

3.1 The Sequence Condition

We first investigate sequences of messages as prescribed by a choreography. The
sequence condition expresses that if two messages appear in a sequence, the
sender of the second message must coincide with either the sender or the receiver
of the preceding message.

Sequence Condition. Whenever there are states q1, q2, q3 ∈ Q with
δ(q1, i

m1→ j, q2) and δ(q2, k
m2→ �, q3) for non-independent messages

i
m1→ j and k

m2→ �, we must have k ∈ {i, j}.

Proposition 6. If C is a realisable choreography with respect to P2P, queue or
mailbox composition, then it satisfies the sequence condition.

Proof. Due to Propositions 1 and 2 we may assume without loss of generality
that the choreography C is deterministic and does not contain ε-transitions. We
may further assume that all states are reachable.

Assume that the sequence condition is violated, so we have states q1, q2 and
q3 with δ(q1, i

m1→ j) = q2 and δ(q2, k
m2→ �) = q3 with non-independent messages

i
m1→ j and k

m2→ � and pairwise different peers i, j, k. Then we have states q1i, q2i

4 As the theory is based on FSMs, there is no possibility to express parallelism.

274 K.-D. Schewe et al.

with δi(q1i, !m
i→j
1) = q2i, states q1j , q2j with δj(q1j , ?m

i→j
1) = q2j , states q2k, q3k

with δk(q2k, !mk→�
2) = q3k and states q2�, q3� with δ�(q2�, ?mk→�

2) = q3�. We may
have j = �, but this will be irrelevant in the following.

Then L0(C) contains words of the form w!mi→j
1 !mk→�

2 corresponding to a
sequence of states q0 . . . q1q2q3. As the messages are not independent, we have
w!mk→�

2 !mi→j
1 /∈ L0(C). For the projected peers i, j and k we get sequences of

states q0i . . . q1i
︸ ︷︷ ︸

for peer i

q0k . . . q2k
︸ ︷︷ ︸

for peer k

q0j . . . q1j
︸ ︷︷ ︸

for peer ij

generating fractions of w. Combin-

ing them gives rise to a sequence of states in Cc (for c ∈ {p2p, q,m})

(q01, . . . , q0n, C0) (. . . , q1i, . . . , q1j , . . . , q2k, . . . , Cy),

where the Cx stand for the collection of queues or multisets as defined in
Definitions 2 and 3. Initially, in C0 all these queues or multisets are empty.
Without loss of generality we may choose the sequence of states in such a way
that also the queues or multisets in Cy are empty.

This may be continued by a state (. . . , q2i, . . . , q1j , . . . , q2k, . . . , Cy+1) using
δi(q1i, !m

i→j
1) = q2i, in which case i

m1→ j is added to the queue or multiset cij

or cj in Cy+1. We can then use further δk(q2k, !mk→�
2) = q3k to reach a state

(. . . , q2i, . . . , q1j , . . . , q3k, . . . , Cy+2) adding k
m2→ � to ck� or c� in Cy+2. This

implies w!mi→j
1 !mk→�

2 ∈ Lω(C).
In addition, we may continue the sequence of states above by a different state

(. . . , q1i, . . . , q1j , . . . , q3k, . . . , C̃y+1) using δk(q2k, !mk→�
2) = q3k thereby adding

k
m2→ � to ck� or c� in C̃y+1. Then we further use δi(q1i, !m

i→j
1) = q2i to create the

state (. . . , q2i, . . . , q1j , . . . , q3k, . . . , Cy+2) adding i
m1→ j to the queue or multiset

cij or cj . This continuation implies w!mk→�
2 !mi→j

1 ∈ Lω(C), hence Lω(C) �=
L0(C). �

3.2 The Choice Condition

Next we investigate branching in the choreography. The choice condition
expresses that if there is a choice of continuation with two different messages,
then these messages must have the same sender.

Choice Condition. Whenever there are states q1, q2, q3 ∈ Q with
δ(q1, i

m1→ j, q2), δ(q1, k
m2→ �, q3) and q2 �= q3 for non-independent

messages i
m1→ j and k

m2→ �, we must have k = i.

Proposition 7. If C is a realisable choreography with respect to P2P, queue
composition or mailbox composition, then it satisfies the choice condition.

Proof. As in the proof of Proposition 6 we may assume without loss of generality
that the choreography C is deterministic, does not contain ε-transitions, and all
states are reachable.

Assume that the choice condition is violated, so we have states q1, q2 and q3
with δ(q1, i

m1→ j, q2) and δ(q1, k
m2→ �, q3) with non-independent messages i

m1→ j

Realisability of Choreographies 275

and k
m2→ � and peers i �= k. Then we have states q1i, q2i with δi(q1i, !m

i→j
1 , q2i),

states q1j , q2j with δj(q1j , ?m
i→j
1 , q2j), states q1k, q3k with δk(q1k, !mk→�

2 , q3k) and
states q1�, q3� with δ�(q1�, ?mk→�

2 , q3�). We may have j ∈ {k, �} or � ∈ {i, j}, but
this will be irrelevant in the following.

Then L0(C) contains words of the form w1 = w!mi→j
1 and w2 = w!mk→�

2

corresponding to sequences of states q0 . . . q1q2 and q0 . . . q1q3, respectively.
The sequence for w1 gives rise to sequences of states q0i . . . q1iq2i and

q0k . . . q1k for the peers i and k, respectively. From this we build a sequence
of states

(q01, . . . , q0n, C0) . . . (. . . , q1i, . . . , q1k, . . . , Cy) (. . . , q2i, . . . , q1k, . . . , Cy+1)

of Cc (with c ∈ {p2p,m, q} and the Cx standing for the collection of queues or
multisets as defined in Definitions 2 and 3). For the last step we use the transition
δi(q1i, !m

i→j
1 , q2i) thereby adding i

m1→ j to the queue or mailbox cij or cj in Cy+1.
This sequence can be continued using δk(q1k, !mk→�

2 , q3k) to reach a state
(. . . , q2i, . . . , q3k, . . . , Cy+2) and adding k

m2→ � to the queue or mailbox ck� or c�

in Cy+2. This implies w′
1 = w!mi→j

1 !mk→�
2 ∈ Lω(C).

Analogously, the sequence for w2 gives rise to sequences of states q0i . . . q1i

and q0k . . . q1kq3k. From this we build a sequence of states

(q01, . . . , q0n, C0) . . . (. . . , q1i, . . . , q1k, . . . , Cy) (. . . , q1i, . . . , q3k, . . . , Cy+1)

of Cc (with c ∈ {p2p,m, q} and the Cx standing for the collection of queues or
multisets as defined in Definitions 2 and 3). For the last step we use the transition
δk(q1k, !mk→�

2 , q3k) adding k
m2→ � to the queue or mailbox ck� or c� in Cy+1.

This sequence can be continued using δi(q1i, !m
i→j
1 , q2i) to reach a state

(. . . , q2i, . . . , q3k, . . . , Cy+2) thereby adding i
m1→ j to the queue or mailbox cij or

cj in Cy+2. This implies w′
2 = w!mk→�

2 !mi→j
1 ∈ Lω(C).

However, as the messages are dependent, we cannot have both w′
1 and w′

2 in
L0(C), hence either C is not realisable or the assumption that the choice condition
is violated cannot be true. �

3.3 Sufficient Conditions for Realisability

Now we are ready to show our main result, which states that the sequence and
choice conditions together are also sufficient for realisability. This is in accor-
dance with the result achieved in [4], but removes unnecessary assumptions and
extends it to different semantics for the composition.

Theorem 1. A choreography C is a realisable with respect to P2P, queue or
mailbox composition if and only if it satisfies the sequence and choice conditions.

Proof. The necessity of the sequence and choice conditions has been shown in
Propositions 6 and 7. We now show their sufficiency, for which it suffices to show
Lω(C) ⊆ L0(C).

276 K.-D. Schewe et al.

As all states are accepting, the languages under consideration are prefix-
closed. So we can proceed by induction over the length of words. The induction
base for the empty word ε is trivial.

Now take w = w′!mi→j ∈ Lω(C). Then w′ ∈ Lω(C) and hence w′ ∈ L0(C)
by induction. Consider a sequence of states q0 . . . qx of C with transitions that
correspond to accepting w̄ with σ(w̄) = w′. We have to show w ∈ L0(C), which
means that we have to find a state qx+1 with (qx, i

m→ j, qx+1) ∈ δ.
If w′ = ε holds, we have qx = q0, and !mi→j ∈ Lω(C) is only possible, if there

is a transition (q0i, !mi→j , q1i) ∈ δi of the peer i in its initial state qi0. Such a
transition is the result of projecting some (q0, i

m→ j, q1) ∈ δ, hence w ∈ L0(C).
Now assume that w′ �= ε holds, so let us write w′ = w′′!mk→�

2 with some
w′′ ∈ Lω(C). We distinguish two cases.

Case 1. Assume w′′!mi→j ∈ Lω(C). By induction we also have w′′!mi→j ∈
L0(C). Then omitting the last transition the sequence of states q0 . . . qx−1 cor-
responds to accepting w′′. Hence we have a choice in the choreography C with
transitions (qx−1, k

m2→ �, qx) ∈ δ and (qx−1, i
m→ j, q′

x) ∈ δ. As C satisfies the
choice condition, this implies that either the two messages k

m2→ � and i
m→ j

have the same sender, i.e. k = i, or they are independent.
In case they are independent by definition there exists a state qx+1 with

(q′
x, k

m2→ �, qx+1) ∈ δ and (qx, i
m→ j, qx+1) ∈ δ, hence w ∈ L0(C) as desired.

In case k = i we obtain a choice in the projected peer i with transitions
(qx−1,i, !mi→j , q′

xi) ∈ δi and (qx−1,i, !mi→�
2 , qxi) ∈ δi. Furthermore, we must have

also (qyi, !mi→j , q′
y+1,i) ∈ δi for y ≥ x and some state qy+1,i.

If there were transitions between qxi and qyi for peer i, then these can only be
associated with receive events ?m�→i

z . The sender must be �, because C satisfies
the sequence condition. The corresponding send events would appear in peer �
after (qx−1,�, ?mi→�

2 , qx�) ∈ δ�, which contradicts w ∈ Lω(C). This gives y = x,
i.e. we have a transition (qxi, !mi→j , q′

x+1,i) ∈ δi for some state qx+1,i.
As peer i is defined by projection of C, there must exist a state qx+1 of C and

transitions (qx−1, i
m2→ �, qx) ∈ δ and (qx, i

m→ j, qx+1) ∈ δ, hence w ∈ L0(C) as
desired.

Case 2. Now assume w′′!mi→j /∈ Lω(C). This is only possible, if either k = i
and the send event !mk→�

2 precedes the send event !mi→j or � = i and the receive
event ?mk→�

2 precedes the send event !mi→j . Let us look at these two subcases.
In case k = i we have (qx−1,i, !mi→�

2 , qxi) ∈ δi as well as (qyi, !mi→j , q′
y+1,i)

∈ δi for y ≥ x and some state qy+1,i. We can argue as in Case 1 that there
cannot be any transitions between qxi and qyi for peer i, i.e. y = x. Otherwise
such transitions could only be associated with receive events ?m�→i

z due to the
sequence condition. The corresponding send events would appear in peer � after
(qx−1,�, ?mi→�

2 , qx�) ∈ δ�, which contradicts w ∈ Lω(C). Therefore, we have a
transition (qxi, !mi→j , q′

x+1,i) ∈ δi for some state qx+1,i.
As the peer i is defined by a projection of C, we obtain states qx−1, qx and

qx+1 of C with transitions (qx−1, k
m2→ �, qx) ∈ δ and (qx, i

m→ j, qx+1) ∈ δ, hence
w ∈ L0(C).

Realisability of Choreographies 277

In case � = i we have transitions (qxi, ?mk→i
2 , qx+1,i) ∈ δi—as before we

can argue that there cannot be any other intermediate (receive) events—and
(qx+1,i, !mi→j , qx+2,i) ∈ δi. As the peer i is defined by projection, we obtain
states qx−1, qx and qx+2 of C with transitions (qx−1, k

m2→ �, qx) ∈ δ and (qx, i
m→

j, qx+2) ∈ δ, hence w ∈ L0(C). �
A simple consequence of Theorem 1 is that for checking realisability in the

presence of a choreography it suffices to check the choice and sequence conditions.
As this is a purely syntactical check, we have decidability.

Corollary 1. Realisability in the presence of a choreography is decidable.

3.4 Choreography Repair

Let us finally look into the repair of choreographies, i.e. we investigate what can
be done in case a choreography turns out not to be realisable. As we will also
see in Example 3, this usually refers to a design error.

Violation of the Sequence Condition. Suppose we have a non-realisable chore-
ography C violating the sequence condition, i.e. we have states q1, q2, q3 with
(q1,m

i→j
1 , q2) ∈ δ, (q2,mk→�

2 , q3) ∈ δ and k /∈ {i, j}. Then we have the following
minimal choices to repair the choreography:

1. Make the messages mi→j
1 and mk→�

2 independent by adding the transitions
(q1,mk→�

2 , q2) and (q2,m
i→j
1 , q3) to δ.

2. Add an additional intermediate message, i.e. add (q2,mi→k
3 , q′

2) or
(q2,m

j→k
3 , q′

2) with a new state q′
2 to δ, and replace (q2,mk→�

2 , q3) ∈ δ by
(q′

2,m
k→�
2 , q3). In order to enforce the sequence condition the sender of the

additional message must be either i or j, and k must be either the sender or
receiver, which implies that mi→k

3 and mj→k
3 are the only possibilities.

We will illustrate these repairs in Example 3 below.

Violation of the Choice Condition. Suppose now that we have a non-realisable
choreography C violating the choice condition, i.e. we have states q1, q2, q3 with
(q1,m

i→j
1 , q2) ∈ δ, (q1,mk→�

2 , q3) ∈ δ, q2 �= q3 and k �= i. Then we have the
following minimal choices to repair the choreography:

1. Make the messages mi→j
1 and mk→�

2 independent by adding the transitions
(q2,mk→�

2 , q3) and (q3,m
i→j
1 , q2) to δ.

2. Add an additional message preceding either mi→j
1 or mk→�

2 , which gives rise
to the following two possibilities:
(a) Replace (q1,m

i→j
1 , q2) in δ by (q′

2,m
i→j
1 , q2) with a new state q′

2, and add
(q1,mk→i

3 , q′
2) to δ. In order not to repair the choice condition the sender

of the additional message must be k. In order not to violate the sequence
condition i must be either sender or receiver of the new message, so k �= i
implies that i must be the receiver.

278 K.-D. Schewe et al.

(b) Replace (q1,mk→�
2 , q3) in δ by (q′

3,m
k→�
2 , q3) with a new state q′

3, and add
(q1,mi→k

3 , q′
3) to δ. In order not to repair the choice condition the sender

of the additional message must be i. In order not to violate the sequence
condition k must be either sender or receiver of the new message, so k �= i
implies that k must be the receiver.

We now present a final example showing violations of the sequence and choice
conditions and their repair.

Example 3. Take a choreography C with the following transitions in the relation δ:

(q0,m3→2
0 , q1) (q1,m1→2

1 , q2) (q2,m1→2
2 , q3) (q3,m2→1

3 , q4) (q2,m2→1
3 , q5)

In an interpretation (given in [4]) the peer 1 stands for a client, 2 for a server,
and 3 for a communication agent. The latter one initialises a communication
between client and server informing the server about a file transfer using message
m0. Then the client informs the server about the intended file transfer using
message m1. The client may revoke the request and send a cancellation message
m2, and the server informs the client about the completion of the task, either
the successful file transfer or its abortion, using message m3.

It is easy to see that L0(C) �= Lω(C) holds, so the choreography is not real-
isable. Both the sequence and the choice condition are violated.

The former one can be repaired by adding (q1,m2→1
4 , q′

1) or (q1,m3→1
4 , q′

1)
with a new state q′

1, and replacing (q1,m1→2
1 , q2) ∈ δ by (q′

1,m
1→2
1 , q2). Using the

interpretation above this corresponds to either the server 2 or the communication
agent 3 informing the client 1 that the file transfer can be started. Both options
make sense.

The violated choice condition can be repaired by replacing (q2,m1→2
2 , q3) by

(q′
2,m

1→2
2 , q3) and adding (q2,m2→1

4 , q′
2) with a new state q′

2. In the interpre-
tation above this corresponds to the server informing the client that the file
transfer is ongoing but not completed, so cancellation is possible. We dispense
with a discussion of alternative repair options.

4 Conclusion

In this article we re-investigated the synchronisability problem for communica-
tion FSMs under the presence of a choreography that prescribes the rendez-vous
synchronisation of the peers. We discovered two necessary conditions on realis-
able choreographies and proved that these conditions together guarantee realis-
ability. A consequence is decidability of realisability in the presence of a chore-
ography. Hints for the sufficiency of these conditions originate from previous
research on an Event-B-based correct-by-construction approach to the construc-
tion of realisable choreographies [4]. Our new sufficient and necessary characteri-
sation of realisability strengthens the theoretical underpinnings of this approach
and removes unnecessary assumptions. In forthcoming work we extended the
RODIN-based proofs to the necessity of the conditions.

Realisability of Choreographies 279

The approach can be taken further towards concurrent communicating
machines that should result from stepwise refinement, i.e. P2P systems that
go beyond communicating FSMs that are just abstractions emphasising the flow
of messages. First, the characterisation permits the detection of possible repairs
in case a condition is violated, i.e. it allows us to find minimal changes to the
choreography that restore realisability. Clearly, such repairs have to be validated
by a designer. What is needed in addition is a systematic reification by a system
of concurrent machines. So the natural next step is an investigation of refine-
ments by communicating machines based on Event-B. In this context an analysis
of the realisation of the messaging channels is due, for which we expect the most
natural semantics using mailboxes to turn out at the same time to be the sim-
plest to be realised. This refinement method provides an open invitation for the
continuation of this research towards a verifiable method for the specification
and refinement of correct P2P systems.

References

1. Basu, S., Bultan, T.: Choreography conformance via synchronizability. In: Srini-
vasan, S., et al. (eds.) Proceedings of the 20th International Conference on World
Wide Web (WWW 2011), pp. 795–804. ACM (2011)

2. Basu, S., Bultan, T.: On deciding synchronizability for asynchronously communi-
cating systems. Theor. Comput. Sci. 656, 60–75 (2016)

3. Basu, S., Bultan, T., Ouederni, M.: Deciding choreography realizability. In: Field,
J., Hicks, M. (eds.) Proceedings of the 39th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL 2012), pp. 191–202. ACM (2012)

4. Benyagoub, S., Aı̈t-Ameur, Y., Ouederni, M., Mashkoor, A., Medeghri, A.: Formal
design of scalable conversation protocols using Event-B: validation, experiments
and benchmarks. J. Softw. Evol. Process (2019, to appear)

5. Benyagoub, S., Ouederni, M., Aı̈t-Ameur, Y., Mashkoor, A.: Incremental construc-
tion of realizable choreographies. In: Dutle, A., Muñoz, C., Narkawicz, A. (eds.)
NFM 2018. LNCS, vol. 10811, pp. 1–19. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-77935-5 1

6. Benyagoub, S., Ouederni, M., Singh, N.K., Ait-Ameur, Y.: Correct-by-construction
evolution of realisable conversation protocols. In: Bellatreche, L., Pastor, Ó.,
Almendros Jiménez, J.M., Aı̈t-Ameur, Y. (eds.) MEDI 2016. LNCS, vol. 9893, pp.
260–273. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45547-1 21

7. Börger, E., Schewe, K.-D.: Concurrent abstract state machines. Acta Informatica
53(5), 469–492 (2016)

8. Börger, E., Schewe, K.-D.: Communication in abstract state machines. J. UCS
23(2), 129–145 (2017)

9. Brand, D., Zafiropulo, P.: On communicating finite-state machines. J. ACM 30(2),
323–342 (1983)

10. Chambart, P., Schnoebelen, P.: Mixing lossy and perfect fifo channels. In: van
Breugel, F., Chechik, M. (eds.) CONCUR 2008. LNCS, vol. 5201, pp. 340–355.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85361-9 28

11. Clemente, L., Herbreteau, F., Sutre, G.: Decidable topologies for communicating
automata with FIFO and bag channels. In: Baldan, P., Gorla, D. (eds.) CONCUR
2014. LNCS, vol. 8704, pp. 281–296. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-662-44584-6 20

https://doi.org/10.1007/978-3-319-77935-5_1
https://doi.org/10.1007/978-3-319-77935-5_1
https://doi.org/10.1007/978-3-319-45547-1_21
https://doi.org/10.1007/978-3-540-85361-9_28
https://doi.org/10.1007/978-3-662-44584-6_20
https://doi.org/10.1007/978-3-662-44584-6_20

280 K.-D. Schewe et al.

12. Finkel, A., Lozes, É.: Synchronizability of communicating finite state machines is
not decidable. In: Chatzigiannakis, I., et al. (eds.) 44th International Colloquium
on Automata, Languages, and Programming (ICALP 2017). LIPIcs, vol. 80, pp.
122:1–122:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2017)

13. Schewe, K.-D.: Extensions to hybrid Event-B to support concurrency in cyber-
physical systems. In: Abdelwahed, E.H., Bellatreche, L., Golfarelli, M., Méry, D.,
Ordonez, C. (eds.) MEDI 2018. LNCS, vol. 11163, pp. 418–433. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00856-7 28

14. Zoubeyr, F., Aı̈t-Ameur, Y., Ouederni, M., Tari, K.: A correct-by-construction
model for asynchronously communicating systems. STTT 19(4), 465–485 (2017)

https://doi.org/10.1007/978-3-030-00856-7_28

Schema Optimisation Instead of (Local)
Normalisation

Bernhard Thalheim(B)

Department of Computer Science, Christian-Albrechts University at Kiel, 24098 Kiel, Germany
thalheim@is.informatik.uni-kiel.de

http://www.is.informatik.uni-kiel.de/˜thalheim

Abstract. Classical normalisation theory has a number of lacunas although it is
commonly and widely accepted and it is the basis for database theory since the
80ies. Most textbooks and monographs still follow this approach despite the good
number of open problems. Today, modern object-relational DBMS offer far bet-
ter capabilities than the systems that have been built in the past based on the strict
relational paradigm. Constraint maintenance has been oriented on transforma-
tion of structures to structures that are free of functional dependencies beside key
constraints. The maintenance of coherence constraints such as two-type inclu-
sion constraints has been neglected although this maintenance might be the most
expensive one. In reality normalisation is local optimisation that exclusively con-
siders functional dependency maintenance.

We thus need a different normalisation approach. This paper develops an app-
roach towards optimisation of schemata and global normalisation. This approach
results in a denormalisation and object-relational database schemata.

Keywords: Normalisation · Schema optimisation · Denormalisation ·
Performance · Object-relational databases · Global normalisation

1 Normalisation - the Good, the Bad, the Ugly

Normalisation is considered to be one of the pearls of database theory. There is almost
no database course that does not teach this part of a theory. The main results have been
achieved during the 70ies, 80ies and early 90ies. Since then the theory is considered to
be completed although new DBMS (database management systems) and new database
paradigms have been developed since then. There are very few publications on object-
relational structures. XML approaches have mainly be following this research paradigm.

1.1 Local Vertical Normalisation Based on Functional and Other Dependencies

Local database normalization aims at the derivation of database structures that can easily
be supported by the DBMS. In the past, DBMS supported keys, domain constraints and
referenced-key-based inclusion constraints (so-called foreign-key-constraint). There-
fore, it was a goal to derive another equivalent schema to the given one which has a
set of integrity constraints that can be supported by the DBMS used for implementation.
This approach can be understood as a descriptive approach to optimisation of database
structuring depending on the platform for implementation. Normalisation as a concept
is typically too narrow and too much focussed on local vertical normalisation.
c© Springer Nature Switzerland AG 2020

A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 281–300, 2020.
https://doi.org/10.1007/978-3-030-39951-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_17&domain=pdf
http://orcid.org/0000-0002-7909-7786
https://doi.org/10.1007/978-3-030-39951-1_17

282 B. Thalheim

Three Kinds of Normalisation. Normalisation is mainly considered to be vertical nor-
malisation on the basis of projection sets as mappings and join as the restoration opera-
tion. Horizontal normalisation [23] is based on selection and union. Deductive normal-
isation [30] is based on reduction of classes according to tuple-generating constraints
and extended completion using this set of tuple-generating constraints (see, for instance,
[3]). It is the most storage effective and the best computational method for normalisation
as long as the tuple-generating dependency used for decomposition is acyclic [30,31].
The latter two normalization methods have not yet got a proper support by the database
systems vendors. A common treatment for these three kinds has not yet developed.

The consideration of horizontal normalisation together with vertical normalisation
has a number of advantages. A type may be first decomposed horizontally what would
enable application of another vertical normalisation to one of the horizontal subclasses1.
Additionally, horizontal normalisation enables in separation of a class into data that are
stable and will not be changed and volatile data that are still changed. The first data
class can then be supported by a large set of indexes and improve performance.

Normalisation Theory is a Relict of the 80ies. The relational database design book by
[41] is one of the most comprehensive surveys on kinds of normal forms. It essentially
considers almost 30 kinds. Some of them have been superseded by other, some of them
did not find practical solutions or their specific kinds of applications.

Normalisation starts with the requirement of the first normal form, i.e. all attributes
are atomic and do not have an inner structure. Consider, however, the ZIP as an attribute
of an address. It has an inner structure which is guilty for the non-BCNF normalisa-
tion of addresses [21]. Meanwhile DBMS support user-defined data structures (UDT’s).
These data structures have their specific functions and predicates. The address example
is an academic one while in practice address data are checked against public address
databases. A similar observation can be made on the second normal form and others.
They can be neatly supported by modern DBMS. The support goes far beyond what
non-first-normal-form (NF2) research provides.

Beside the flaws of the synthesis algorithm for normalisation discussed below we
should pay attention whether the collection step (step 3 in normalisation: collect all
FD’s with the same left side into a singleton new relation type) is really appropriate.
Some of the FD’s may have a different flavour. Consider, for instance, an organisation
unit which is chaired by somebody, has its postal address, has a main financial funding,
a secretariat or office, and a contact. Why it should be represented as a singleton type?
It is far better to use a star kind structure since each of the associations has its meaning
and its usage in the database application. Such structures are also causing evolution
problems.

Normalisation approaches typically do not consider the different meanings of the
dependencies [35] but treat the set of all constraints under consideration as a set of
elements which are of equal importance. Moreover, normalisation is based on classes

1 This mechanism has been already used for fragmentation techniques for distributed databases.
A similar approach has been proposed by Date [10] for handling NULL-polluted classes by
rigid horizontal normalisation into NULL-free fragments (see also [25,40]).

Schema Optimisation 283

of constraints such as functional dependencies and multivalued dependencies. As we
shall see below, normalisation should however been based on sets of constraints from
different classes and on the meaning of such constraint sets.

Another obstacle of normalisation theory is the assumption that relation classes are
sets. SQL allows multi-sets. The normalisation theory for multi-sets has a different
setting [18].

1.2 Local Vertical Normalisation

Local vertical normalisation plays a prominent role in normalisation theory. Research
started with the introduction of FD-based normal forms (first, second, third in a good
variety of notions, Boyce-Codd) and led to a good body of knowledge2 Later func-
tional dependencies have been generalised to domain, multi-valued, and hierarchical
dependencies and the generalisation of the last one to join dependencies. This research
resulted in introduction of further normal forms, e.g. fourth and fifth. The sixth normal
form (6NF) has already been introduced with the DBMS MIMER in the mid-70ies.

Local normalisation is a good approach as long as we restrict the consideration to
strictly equality-generation dependencies such as functional dependencies and singleton
relational schemata with atomic attributes. In this case the so-called third normal form is
achievable. The Boyce/Codd Normal Form (BCNF) is not achievable in any case. [21]
has shown however that all known counterexamples are based on ill-defined structures.
It can be shown [31] that either hierarchical decomposition or refined granularity of
attributes result in BCNF structures.

Reasons to Normalise. [31] surveys the main targets of normalisation: (1) avoiding
inadequate behaviour such as anomalies, (2) elimination of unnecessary redundancy, (3)
prohibiting inconsistent data, (4) stability of database schemata during application evo-
lution, (5) optimising database performance, and (6) maintenance of abstraction levels
within a schema. We refer to [31] for discussion of other problems encountered for nor-
malisation such as adequate BCNF representation, adequacy of decomposed schemata,
competing normalisations of the same schema, and inadequacy of multivalued depen-
dencies and other tuple-generating dependencies within the relational database model.

We observe that the first three reasons are rather operational one whereas the last
two are tactical ones. The fourth reason is a strategic one that is the main source for
later modernisation, migration, and re-engineering.

Did We Achieve the Six Targets? The answer is no. We achieved the first target and par-
tially achieved the second target. The third target can only be achieved if all potential
constraints and their influence on consistency is handled properly. The fourth target has
not yet found good research solutions. After evolution schemata suffer from manner-
ism and look similar to Gothic cathedrals or chaotic sandcastles. After normalisation,

2 We restrict the citations to the most essential ones for this paper and restrain to give a full
survey of the research.

284 B. Thalheim

database performance might be good for data manipulation operations. Normalisation
might result in a far worse behaviour for database querying. The advent of data ware-
houses is a reaction on this problem. The sixth target is not supported by current lan-
guages that force us to stay on one abstraction level.

1.3 Inclusion Constraint Maintenance After Decomposition

Literature often neglects the set of additional inclusion constraints that must be main-
tained after a decomposition of a class. Given a multivalued dependency X →→ Y
for a partition X,Y,Z of the set of attribute of a relation type R. The class RC can
be decomposed into RC

1 = πX∪Y (RC) and RC
2 = πX∪Z(RC) in such a way that

RC = RC
1 � RC

2 if the multivalued dependency is valid in RC . We note that this
multivalued dependency is implied by a functional dependency X → Y .

This vertical decomposition of RC into RC
1 and RC

2 must be maintained by pairwise
inclusion dependencies πX(R1) ⊆ πX(R2) and πX(R2) ⊆ πX(R1). In the relational
DBMS setting the pairwise inclusion constraint should be maintained by foreign key
constraints, i.e. X should be a key in both RC

1 and RC
2 .

Question 1.Is there any good approach to inclusion constraint maintenance after
decomposition?

A solution to this foreign key requirement is proposed in the RM/V2 model [9] by
introduction of a third relation type RC

0 = πX(RC).

Observation 1. This approach results in a number of additional auxiliary relation types
what limits the effect of normalisation.3

We need to add to the normalisation approach also an extended dependency preser-
vation rule that is often neglected in the literature:

Principle 1. The decomposition based on vertical normalisation adds to the decom-
posed types pairwise inclusion dependencies on intersecting attributes. The decompo-
sition based on horizontal normalisation adds to the decomposed types an exclusion
constraint.

This principle has already been implicitly used for the universal relation assump-
tion. We observe however that pairwise inclusion dependencies may cause severe per-
formance problems.

The union constraint for horizontal decomposition is implicit and is the basis for
defining a view that combines by UNION the decomposed components into the original
type4. The deductive normalisation [31] is another option.

1.4 Constraint Sets Instead of Sets of Constraints

The classical approach of computer science introduces syntax first. And then seman-
tics is defined on top of syntax. As again discussed in [35], this approach is nice for

3 We forbear from postulating these observations as theorems. They are rather simple and easy
to check statements.

4 We note that a database schema is typically not a database model. The schema must be
enhanced by views to become a database model [36]. Since we have to use anyway views then
we should better extensively use horizontal decomposition beside vertical decomposition.

Schema Optimisation 285

computational handling and for inductive and incremental construction but completely
unnatural for normal languages. Syntax, semantics, and pragmatics form a unit. The
syntax-semantics-separation principle finds its rigid continuation in the separation of
integrity constraints into classes that have some uniformity in their definition structure.
This separation principle has been found well-acceptable by programmers and logi-
cians. It is however completely counterintuitive [35]. Natural language use a holistic
semiotic approach and do not artificially separate units that form a semiotic holistic
statement. Additionally, constraints might have their own meaning [28] such as syntac-
tic functional dependencies compared to dependencies that represent semantical units.

The main deficiency is the constraint acquisition problem. Since we need a treat-
ment for sets a more sophisticated reasoning theory is required. One good candidate is
visual or graphical reasoning that goes far beyond logical reasoning [12].

Star and snowflake structures used in OLAP approaches are the basis for an app-
roach that handles structures as a complex within its structure and its semantics in the
complex. With the advent of object-oriented and XML languages we learned lessons
on object identification [2] and the co-use of set-based classes with pointers. These
approaches can be considered as a starting point.

Let us extend the open problem (TIC7) (Real-life constraint sets [33]):

Problem 1. Provide a reasoning facility for treatment of heterogeneous sets of con-
straints instead of constraints from a given constraint class. Classify ‘real life’ constraint
sets which can be easily maintained and specified.

In [13] we realised that the classical Hilbert-type reasoning (premises allow to
derive a conclusion) should be replaced by another schema: some premises which are
supported by other constraints allow to derive a conclusion. This set-of-support reason-
ing can be based on graphical reasoning means or spreadsheet reasoning schemata.

1.5 The Storyline of the Paper

Several reasons can be observed why local normalisation may be inadequate. We shall
discuss some of them in the next Section. We restrict the discussion to relational
database technology and to conceptualisation through the extended entity-relationship
model [31]. Some of the (88 [sic!]) pitfalls of object orientation [39] and of XML orien-
tation have similar causes but are outside the scope of this paper. Normalisation theory
is so far exclusively built as a theory of vertical local normalisation. We might ask
whether we should consider global vertical normalisation. Or at least other kinds of
local normalisation as well. The main target of normalisation of optimisation of the
overall database for all six targets. Instead of poly-optimisation for some of the six cri-
teria we might use a less strict form by optimisation of some of the database types and
by denormalising others.

Since poly-optimisation is typically unsolvable we develop a number of corrections
to normalisation approaches and a general approach to denormalisation as a kernel for
a general theory of optimisation.

286 B. Thalheim

2 Solutions for Classical Normalisation Approaches

2.1 Refining Synthesis Algorithms

Rigidity of Classical Synthesis Algorithms. The third step of the classical synthesis
algorithm typically groups all attributes that can be inferred from the same set of
attributes by functional dependencies. This approach groups then attributes that are
potentially conceptually completely independent into one group. An alternative app-
roach could be rigid non-grouping, i.e. the left hand side of a functional dependency
X −→ Y is the basis of k new types with attributes X∪Bi for Y = {B1, ..., Bk}, 1 ≤
i ≤ k. Both approaches are extreme positions. We may observe, however, that some
separation must be maintained.

Let us consider a simple example [35] of a relational type R: given attributes
attr(R) = {A,B,D, F,G, I} and a set of functional dependencies
ΣR = {A −→ IG,D −→ FG, IAB −→ D, IF −→ AG}.

This FD set can be represented by the graph on the left side of Fig. 1. This set can be
reduced by deleting IF −→ G from the graph since it is derivable through the edges
representing IF −→ A and A −→ G. Furthermore, the set ABI can be reduced since
the edge representing A −→ I already supports subset reduction. No other reduction
can be applied to the graph. We use the calculus for graphical reasoning [12] that is
complete and sound. We use dotted lines for the subset relationship among subsets of
attributes and arrows for functional dependencies.

Fig. 1. The graph of the functional dependencies and the reduced cover of this set

We may directly derive a normalisation according to this graph reduction. Each con-
straint must be covered. We arrive with the synthesis algorithm to5:

R1 = ({A,G, I}, {A −→ GI, R1[AI] ⊆ ⊇ R2[AI]}),
R2 = ({A,F, I}, {A −→ I, FI −→ A, R2[F] ⊆ ⊇ R4[F]}),
R3 = ({A,B,D}, {AB −→ D, R3[D] ⊆ ⊇ R4[D], R1[A] ⊆ ⊇ R3[A]}),
R4 = ({D,F,G}, {D −→ FG, R1[G] ⊆ ⊇ R4[G]}).

The set {A,B} is a key. We thus do not need an additional key type for the
normalisation.

If we however take into account constraint maintenance and redundancy then we
arrive at a smaller and better schema with the type:

5 If we require that all inclusion dependencies are referential integrity constraints then
we need 12 types for normalisation that results in a foreign-key-faithful decomposi-
tion: R1[A], R1[I], R1[A, I], R1[A, G], R2[F], R2[A, I, F], R3[B], R3[A, B], R3[A, B, D],
R4[D], R4[G], R4[D, F, G] where the key of each new type Ri[X] := πX [Ri] is underlined.

Schema Optimisation 287

R′
1 = ({A,G} , {A −→ G, R1[A] ⊆ ⊇ R2[A]})

due to the validity of the following derivation (reduction rule):

R1[A, I] ⊆⊇ R2[A, I], R2 : A → I, R1 : A → GI

R1 � R2 = R′
1 � R2, R′

1 : A → G
R′

1 = πA,G(R1).

This rule is based on general deduction rules and on equalities for the relational algebra:

Theorem 1 (General deduction for closed Horn formulas). A sound and complete
axiomatisation for closed Horn formulas ∀...(α → β) consists of

axioms

α → β
for all facets of substructures β � α,

augmentation rules for super-structures α+ and sub-structures β− α→β
α+→β− for

either β− � β and α � α+ or as well as α+ = α 	 γ and β− = β
 γ ,
and

transitivity rules α→β, β→γ
α→γ for all connecting pairs (α → β,β → γ).

The proof of the theorem is based on the Boolean representation of the open first-order
predicate calculus and on properties of implications. The completeness uses the same
arguments as the classical FD completeness proof.

An alternative proof of the reduction rule is based on algebraic dependencies
[23,30].

We observe that graphical synthesis would result in a better behaviour. This struc-
ture is represented in Fig. 2. The hyper-network approach [24,34] uses nodes as Venn
diagrams of subsets of the set of attributes and directed edges between the nodes. The
constraint set in Fig. 1 is given by the hyper-network representation in Figure 2. Com-
pare this representation to the decomposition hypergraph for the classical synthesis
algorithm [17]. The hyper-network representation is rather simple to read. Each of the
edges must be represented by some new relation type. Moreover, the set {A,B} is a key
due to the graph node closure. Otherwise we may use a combination of nodes for the
graph node closure. The second minimal key is {I, F,B} which is not a node and thus
would have been added to the decomposition if we would not have represented the first
one. We notice that graphical reasoning is simpler for implications than Hilbert-type
calculi, e.g. [3,14,40].

Questions One Might Ask for Normalisation Theory and Their Research Agenda. The
classical normalisation theory is based on functional and multi-valued dependencies.
Normalisation synthesis algorithms are deterministic. The result depends on the order
of attributes and on the order of constraints considered in the algorithm. The minimal
cover is not unique for a given set of constraints (even not polynomial according to the
number of attributes in the worse case). We, thus, have a good number of opportunities
for a normalisation.

Question 2.Which normalisation opportunity should be the best one?
The solution cannot be to consider only one of them. We might used a pragmatistic solu-
tion however: choose the most performing one and keep the knowledge on alternatives.

288 B. Thalheim

Fig. 2. Graphical normalisation depicted as hyper-network and decomposition hypergraph.

The classical approach is based on hypergraphs. Instead we should use hyper-networks
and meta hyper-networks [35] (see also Fig. 2).

Let us consider a very simple set Σ of functional dependencies for
R = ({A,B,C,D,E, F,G,H}, Σ) with
Σ = {A → B → C → AD,D → E → F → DG,G → H → G}.

Σ has more than 50 minimal covers. Similar examples can be given for results of nor-
malisation according to synthesis algorithms.

Observation 2. Attribute sets which are FD-equivalent can be given in an abstract
form, i.e. we consider in a set of constraints the complex [A,B] instead of {A →
B,B → A}.

The attribute-wise consideration might be appropriate for first normal form defini-
tions but it complicates reasoning on constraints.

We thus represent Σ by the rather simple FD set system {[A,B,C] → [D,E, F] →
[G,H]}. It has 18 different BCNF normalisations (similar case in [16,17].

Question 3.Why we should consider so many minimal covers and normal forms?
We note that multivalued dependencies are defined in the relational database theory

in a mathematical manner. They are far better expressed by entity-relationship mod-
elling languages [32] and far simpler to capture and to develop.

Question 4.Should we better develop a normalisation approach for entity-
relationship schemata? Should we better consider a schema for normalisation instead
of type-wise normalisation?

Good HERM Schemata are Typically the Best Normalisation. Folklore of ER modelling
claims that the best normalisation is obtained if the main target of conceptual modelling
is the specification of an ER schema. This claim is not valid in general since extended
entity-relationship modelling languages such as HERM [31] are not cognitively com-
plete. The ER approach provides however a far better solution to normalisation of rela-
tional schemata than normalisation theory, e.g. for multivalued and hierarchical depen-
dencies. Moreover, the structure is more natural and thus better to comprehend.

Schema Optimisation 289

A flaw of the first normalisation algorithms was corrected by a key composition
rule, i.e. if the decomposed relational structure does not have a constructed type which
contains some key of the old schema as a (sub-)structure then a new type is created
for one of the minimal keys and added to this relational structure. This rule is nothing
else as a decomposition for which a relationship type is added with a key that has
the property that it is overwriting the key product of related decomposed types. The
corresponding hyper-network has then nodes which are not incrementally layered and
thus need a connecting element which can be then used as a key. The hyper-network
approach also allows a generalised and less strict key composition rule.

2.2 Balancing Between Conceptualisation and Programming Adequacy

Fig. 3. The ‘Janus’ schema cluster for conceptual modelling

Database design and development is often based on the three-layer architecture. This
architecture requires that the user can be supported by views defined on top of the
conceptual schema. The conceptual schema is mapped to the logical and to the physical
schemata. The last two are considered to be internal or implementation schemata. It is
well known in database design [27,29] that the conceptual schema be represented by a
‘Janus’ schema, i.e. one schema (representational conceptual schema) that is used for
conceptual representation, for view formulation and for conceptual programming and
another schema (optimized conceptual schema) that is used for implementation issues
including logical and physical programming. The two schemata are equivalent to each

290 B. Thalheim

other and are tightly associated with each other by transformation mappings. A typical
example of these two schemata is given in Figure 3. The example is taken from a script
server project. Students enrolled in a course may download scripts that are provided by
the course.

The optimised conceptual schema can be easily mapped to a structure that supports
smooth operating of the database. We can deduct from this schema the internal repre-
sentation, supporting structures such as indexes (in various kinds), internal concatena-
tion or splitting of relations, introduction of generalisations, the navigational structure
for access, the management of derived structures (derived attributes, views, macro-data
on top of the micro-data of the database), criteria for the selection of internal storage
and computational structures, the necessity for the introduction of artificial or surrogate
keys, and for clustering or separation of records. These parameters are used for tun-
ing and physical optimisation of the database. The sophisticated HERM schema uses
the Θ-join for the correct building of the relationship type that records downloads. The
optimised conceptual schema is equivalent to this schema due to the equivalence of the
join decomposition and the inclusion constraints [31].

2.3 Accuracy of the Internal Database Structure

The internal database structure is ruled by the DBMS. The mappings from the concep-
tual schema to the internal schema must preserve a number of properties:

Preservation of content : The conceptual schema has been established by modelling the
application domain and highlights data that are going to be stored in a database. The
internal schema represents the same and only the same data that can be recorded
through the conceptual schema and is based on the database modelling language of
the platform assumed for implementation.

Preservation of access and modification : The access pathes and modification pathes
that are implicitly or explicitly assumed for the conceptual schema are mapped to
access and modification pathes that are entirely supported by the platform assumed
for the implementation.

Preservation of maintenance efficiency : Integrity constraints are given in a declarative
form in conceptual schemata. The efficiency of their maintenance is not considered.
The (economic) value of constraints is neglected. Internal schemata must provide
mechanisms for efficient integrity maintenance.

The first property is an element of any database course and well considered in most
database books. The property can be treated on the basis of non-losslessness and depen-
dency preservation. It might be enhanced by the requirement that each projection (or
other range structure) should be needed for the reconstruction process. The second prop-
erty is mainly solved by the professional experience of database professionals. It is typ-
ically not discussed in scientific publications and is an element of database operator
education. The third property is often neglected in database research. Database oper-
ators have a very simple solution for this property: they switch off all those integrity
preserving processes that become a bottleneck at database production time and switch
on these constraints for a short time at the maintenance phase.

Schema Optimisation 291

Preservation of access and modification is a fuzzy criterion since we often may not
assume that any access and modification can be forecasted at design time. The co-design
approach to database modelling [31] also takes into consideration functionality that can
be envisioned. Optimisation of the internal schemata is based on profiles of functions,
stored procedures and transactions (shortly processes) and on the cardinality profile of
the relations. The first profile provides information on the kind of the operation, the
frequency, the relations affected by the processes, the type of access (online, batch,
prefetch or ad-hoc) and the changes applied to the databases. The cardinality profile of
relations provides detailed information on the size of the relation (minimal, maximal
and average), on the changes of the size over time and the associations among relations
that must be maintained. Both profiles are compared with the modus of computation
(bath, online, ad-hoc), with performance expectations (execution time, throughput, pri-
ority), with visibility of performance gaps (depending on operations frequency, organi-
sation level of users, business process interaction) and with computation strategies for
the operations (kind of operation, scheduling, auxiliary facilities, selection and storage
alternatives, set sizes).

Decomposition approaches generate structures that easily support some of the con-
straints such as key constraints, domain constraints and key-based inclusion constraints.
Typically, the maintenance complexity of such constraint sets is not taken into account.
Moreover, decomposition algorithms may generate a large variety of decompositions
that are semantically equivalent but pragmatically and technologically different. Typical
normalisation algorithms are deterministic for a given set of functional dependencies,
for an order of attributes and an order of the dependencies. Changes in the the last two
orders result in different solutions of those algorithms.

2.4 Infomorphisms Among Schemata

We use the notion of infomorphisms as the general foundation for schema optimisation.
Infomorphisms have been used for schema modernisation in [15,38]. A typical example
of an infomorphism is the association of a relational database schema and a sophisti-
cated XML schema (with a good number of additional constraints since XML uses list
(or tree) and reference types instead of values). The relational database schema that is
obtained by the classical forgetful mapping from an entity-relationship schema is not
an infomorphism since the ER structuring is richer than the relational structuring.

Let us consider two database schemata S1 and S2 consisting of database types of
the form T = (struc(T), Σ,Σ∗) with a structure definition, inner integrity constraints
Σ defined on the type, and outer integrity constraints Σ∗ that constrain the type by
means of other types. Structure elements of types that are not defined by constructors
are called basic.

Let us consider only complete schemata, i.e. those which types are complete relative
to the outer constraints. Given furthermore, basic domain types B for the value founda-
tion of the database. We use the abstract data type approach for basic domain types and
presume for these types their value collections, their operations, and their predicates.

An extended database schema D = (S,B,DOM) consists of a database schema
and an assignment DOM of basic elements of its types to basic domain types.

292 B. Thalheim

The set of all MOD((S,B,DOM)) of all finite databases on M consists of finite
collections of classes for each type for which all constraints are valid, which values of
objects in a class are given by DOM .

Let us now associate databases for different extended database schemata D1 and
D2 by mappings mappings ̂put1,2 and ̂put2,1. These two mappings form an infomor-
phism of MOD(D1) and MOD(D2) if for i, j with {i, j} = {1, 2}, i �= j and for each
database DBi on MOD(Di) there exists a database DBj and on MOD(Dj) such that
̂puti,j(DBi) = DBj from one side and ̂putj,i(DBj) = DBi from the other side.

We may extend this notion also to views defined on each of the database schemata.
The association among views can be based on the extract-transform-load (ETL) app-
roach where extraction is based on a query language of the first schema, transformation
is given by an infomorphism, and loading uses views which allow updates on the second
database schema.

This notion is very general one. Infomorphisms are essentially transformations of
one database to another one. These transformations are information-invariant in the
sense that any database object collection can be associated with one and only one
database object collection from the other extended database schema.

The infomorphism notion can be based on HERM schema operations ([31], Chapter
9.2.) in the case that we consider only classes with set semantics. The Σ∗ dependence
among types also includes inclusion constraints. Therefore, vertical normalisation can
be directly expressed in this approach. In this case, we can represent transformations
as graph-grammar rules which are defined on sub-schemata. Horizontal normalisation
uses separating selection σαi

predicates which define a partition of singleton classes.
Deductive normal forms use for the mapping a reduction operation from one side and a
chase-like completion procedure for the second mapping.

Observation 3. Vertical normalisation, horizontal normalisation, and deductive nor-
malisation are specific variants of infomorphisms.

We conclude now that a theory of infomorphisms can subsume the classical rela-
tional normalisation theory, especially vertical normalisation. It is, moreover, better
since the pairwise inclusion constraints after decomposition must be integrated into the
decomposed schema. Infomorphisms can be partially supported by schema construction
rules for extended entity-relationship schemata. These rules follow the graph grammar
approach.

2.5 Global and Local Vertical Normalisation

The synthesis algorithm is also based on structure minimality, i.e. the type structures
form a Sperner set in the sense that struct(T1) �� struct(T2) is not valid for any two
types T1 and T2 of a schema S. Structure minimality reduces the maintenance. It might,
however, provide its advantages as we already illustrated for the RM/V2 approach.
Moreover, additional structures such as overlapping and subtype indexes (as hedges
of indexes) may support performance of computation and also input-output to a real
essential extent.

Global normalisation concurrently and coherently considers all types of a database
schema. The example in [31] allows to derive five different results of a normalisation of
a small schema. Each of these schemata have their advantage.

Schema Optimisation 293

We may define a result of a normalisation process that is applied to an entity-
relationship schema as a type-wise transformation of the given schema by an info-
morphism, i.e. the types of a schema are (vertically or horizontally) decomposed to a
schema in which all types are in certain α-normal form (α ∈ {1, 2, 3, 4, 5, 6, BCNF}).
Since decomposed types may be a substructure of another one, we use these types only
once. Entity, cluster, and relationship types are transformed by graph grammar rules
[31]. The decomposition of a relationship type follows the procedure developed in [22].

A schema S is a global α-normal form schema if all its types are in α-normal form
and if the schema is structure-minimal. Within a platform setting P, we add the require-
ment that all its integrity constraints can be supported by declarative means provided
by the platform. Otherwise, the schema is called (α,P)-unnormalised.

Observation 4. Global normalisation is based on an infomorphism.

3 Denormalisation

... There are many database experts, particularly the more academic ones, who
feel that any talk about denormalising a database is like a race car driving – a
great way to mangle or kill yourself even if you know what your are doing. [8]

3.1 State-Of-the-Art for Denormalisation

We observe two camps where the first one is well acknowledged.

No denormalisation at all! Almost all6 textbooks and monographs in the database area
require strict normalisation. Local (vertical) normalisation of a singleton database
type is well reflected in most database books (e.g. [1,5,19,41]) and publications,
most database courses, and in actual database practice. It is considered as one of the
pearls of database research and known to almost everybody who knows database
technology. The provenance and acknowledgement is based on the facility it pro-
vides: keeping as much as possible locally and globally supporting only those pro-
cesses that are inherently global. Both independence concepts of databases (con-
ceptual independence and implementation independence) are based on localisation.
[11] advocates lazy normalisation based on relevant and quickly to capture FD’s,
i.e. somehow liberal normalisation7 for which not all functional dependencies that
are valid in database schema are considered but only the really important ones8.
Additionally, almost valid FD’s might be more important than FD’s that happens to
be valid. The treatment of such dependencies would be based on the introduction

6 We know so far only less than a handful books that do not require such.
7 Many constraints can be omitted since integrity is also often managed through proper interfac-

ing and exchange procedures without a chance for inconsistency as long as the data modifica-
tion is exclusively based on interface or exchange view data. The development of a theory for
this approach is one of the lacunas of database theory.

8 We avoid the exponential size trap for sets of functional dependencies with this toleration of
incompleteness of constraint sets. We consider only essential ones and completely or partially
neglect others. This approach can be extended to a theory of robust normalisation.

294 B. Thalheim

of artificial identifiers, i.e. a heavy object identity pollution. A far better solution is
horizontal decomposition with a class for which all identities are valid and an excep-
tion class in which the few exceptions are recorded. Horizontal decomposition can
be combined with union views as long as the exceptions are disjoint from the normal
case.

Liberal and controlled denormalisation whenever it is really necessary: Very few
papers and books advocate or consider at least to some extent denormalisation (e.g.
[6–8] or the discussion in [31]). The three central quality criteria for database instal-
lations are, however, performance, performance, and performance. The classical ver-
tical local normalisation is useful as long as any casual user may query by any casual
query at any time without considering performance. However, a database system
contains of a (or a number of) DBMS with a number of databases on top of which a
large massive of business procedures has been developed. These business procedures
form the main part of the profile of the database. Casual queries are rather excep-
tions. The definition that is used for denormalisation is typically based on application
of the natural join operator to relational types9.
Our consulting experience and also observations on the why’s for OLAP and data
warehouse applications drives us to a completely different picture in many appli-
cations. The first setting of a database application is very often based on normali-
sation. This database becomes then step by step denormalised after the database is
fully populated and operating. Already after one year of full operation, the database
is partially normalised and also partially denormalised.

3.2 A Matter of Definition

Denormalisation has not yet been defined in the literature despite [4]. Essentially, we
find two approaches (e.g. in [6,8,10] for simple forms):

Denormalisation as the inverse of normalisation: Given a schema with α-normalised
types. Any non-trivial combination (typically by a join operation) of two or more
types that defines an infomorphism is a denormalisation.

Denormalisation as the extension of a schema: Given a schema S. Any extension of
the schema that is defined by an infomorphism is called denormalisation.

Typical extension operations are [8]: prejoined types for types with complex queries,
reports added to the schema, mirrored types, type splitting by horizontal decomposition,
partial combination of types, introduction of controlled redundancy for data, repeating
groups, hierarchy tables, and overloading of types.

Given a (α,P)-normalised schema. Any infomorphism transformation of this
schema to an unnormalised one is called denormalisation. Index and other support-
ing means thus do not change the normalisation status of a schema.

We may consider at the same time normalised and denormalised schemata. A theory
and techniques for denormalisation for physical schemata based on normalised concep-
tual (or logical) schemata have been developed in [29]. [20] lists some key effects of
thoughtful denormalisation: definite improvement in query time, a potential increase in

9 The validity of pairwise inclusion constraints is also neglected in this case.

Schema Optimisation 295

update time or in storage space, a potential loss of data integrity due to certain dele-
tions, the necessity for program transformations for all relevant queries and the over-
head needed to reorganise some tables. Strict local normalisation may be inadequate.
Denormalisation may result in a more complex maintenance complexity. It may also
lead to complications for query formulation. It becomes easier to formulate incorrectly
a query to a request meaning that the query does not correspond to the request. Often
tricky view creation is used for denormalised tables. The denormalisation is considered
a method for performance improvement despite discussed so far advantages of normal-
isation.

Our definition of denormalisation does not allow composition by equi-join since we
have to avoid the NULL marker problem. NULL markers must be treated depending on
their specific meaning, their occurrence, and their impact on computation. We however
support co-existence of vertical and horizontal normalisation and denormalisation.

Therefore, it seems that normalisation is the best way for optimisation of database
behaviour. A theory of denormalisation has not yet been proposed as far as we know.

Question 5.What are the denormalisation criteria? Is there any theory for it? Is there
any ‘playground’ approach for consideration of (de)normalisation?

Instead, a number of heuristic rules for denormalisation are provided. These rules
are based on observations for performance traps for some of the platforms and often use
the 80/20% rule.

3.3 Denormalisation Driven by Optimisation

We base our approach on essentials of database performance forecasting, tuning tech-
niques, and database distribution into fragments [4,26]. Our approach has been imple-
mented in an industrial setting and for performance improvement for a very large cluster
of databases [4,37].

Let us first define the performance portfolio of a database application and the profile
of a DBMS. A portfolio consists of a set or collection of tasks. A profile of a DBMS
specifies the services and the capability of a DBMS. The extended database application
schema consists of the database schema, the business processes and the characterisation
of the application demand by a characterisation of the kind of computation based on
the description of the operations involved, the operation support, and the data volumina
transferred for support of computation, the visibility description of processes for the
business user that includes frequency of operations and their relation to business pro-
cesses, the description of the modes of computation such as online, batch and interactive
mode of computation or deferrable and immediate application of computation, the per-
formance properties and quality based on the expected execution time for online etc.
modes, based on the throughput expectation for queries, modifications and transactions,
based on restrictions such as suitability or response time, and based on priority claims
issued by the business user, the criticality level of the processes.

We derive now the measures for this application, a database schema, and a DBMS:

Datamodification costs: Given a set M of modification operations mi with their weight
wmi in the application, the frequency of application hmi of each operation, their

296 B. Thalheim

complexity of realisations m∗
i in the DBMS P , and the complexity of integrity main-

tenance smi for the operation mi.
The complexity m∗

i can be computed type-wise for types T from the schema S, i.e.
by m∗

iT .
The modification complexity modify(S,P,M) is given by the formula:

∑

mi∈M

((
∑

T

(m∗
iT + smi) × wmi) × hmi)

Query cost: Given a set Q of queries qj with their weight wqj in the application, the
frequency of application hqj of the query qj , the complexity q∗

j of the realisation of
qj , and the complexity of integrity query imposed integrity maintenance sqj for the
query qj .
The complexities can be computed type-wise for the types T from the schema S, i.e.
by q∗

iT .
The query complexity querymodify(S,P, Q) is given by the formula:

∑

qj∈Q

((
∑

T

(q∗
jT + sqj) × wqj) × hqj)

The schema complexity complexity(S,P,M,Q) is the sum of the modification com-
plexity and of the query complexity.

An infomorphism can be now extended to the modification and to the query operations
under consideration of the base types and the domain assignments (B,DOM).

We can now compare the complexity of the schema according to the modification
and the query portfolio of a given application.

Given two extended database schemata D1 = (S1,B1,DOM1) and D2 =
(S2,B2,DOM2) and an infomorphism (̂put1,2, ̂put2,1) for these two schemata; fur-
ther, given a platform P , and a modification and query portfolio.

The extended database schema D1 performs better than the database schema D2 in
a given setting P for a portfolio M ∪ Q if

complexity(S1,P,M,Q) << complexity(S2,P,M,Q) .

We use << as a denotation for an essential discrepancy of the two complexities.
We may thus derive the normalisation and denormalisation criterion for schema

optimisation for given schemata where S1 is (α,P)-normalised and S2 is (α,P)-de-
normalised:

Use the normalised schema S1 if S1 performs better than S2 in the given setting.
Use the denormalised schema S2 if S2 performs better than S1 in the given setting.

We neglect within this approach the existence of casual queries and of casual data
modification. This approach, however, supports typical applications where the retrieval
and also the modification is well-defined at the development or at later maintenance
time.

Observation 5. The optimisation approach to normalisation and denormalisation
allows to coherently meet demands for the six reasons why we should normalise.

Schema Optimisation 297

4 Conclusion

4.1 Summarising

Normalisation is considered to be one of the pearls of database theory and technology.
We mainly consider, however, local vertical normalisation instead of global normalisa-
tion or horizontal normalisation. It seems that normalisation theory is a body of knowl-
edge that is completely settled and well understood in most of its aspects. We discuss
on the basis of simple examples that this impression is not valid. Normalisation is not
well understood. It needs a lot of extensions and corrections. It must also be completely
revised for the modern DBMS technology. One essential revision is the flexible choice
for set-based or multi-set-based semantics. This extension opens the path towards list,
pointer, multi-list, etc. semantics that is supported nowadays by systems.

Normalisation is often a performance bottleneck. Repairing this bottleneck is often
done on the fly. In practice, skilled consultancy uses here a hands-on, experience-backed
approach. The DAMA10 community and database forums widely discuss in closed
groups the experience some people got. We claim that most larger database applica-
tions allow coexistence of partial normalisation (in both vertical and horizontal style)
and partial denormalisation.

This paper aims now to highlight the path to a coherent theoretical underpinning
for this kind of coexistence. We first discussed problems of classical normalisation
based on the verticality and locality approach for simple constraints such as functional
and multivalued dependencies. The problems discussed can be resolved by pragmatical
approaches. Some of them are discussed in the paper. We are not capable to present a
full theory which would require a two-volume monograph. So, we restricted only on
some parts of this theory.

Normalisation can be understood as a special kind of optimisation. As such it
should be treated as “a commandment” [10] unless the database application requires
high query performance. Optimisation of schemata is based on some kind of equiva-
lence. We use infomorphisms as one solution for treatment of equivalence. This solu-
tion requires deep knowledge of the the given database application. It can be extended
to handling of robust constraint sets what is, however, an open issue. It can also be
extended to handling by basic-structure normalisation that is neatly supported by inter-
face and exchange tolerance as long as the interfaces and the exchange means provide
a support for the other optimisation (or more specifically normalisation) requirements.

4.2 Open Problems

The list of open problems is slowly shrinking and quickly expanding at the same time.
We have collected open problems since MFDBS’8711, have extended this list, and
observed whether some of them have been resolved. The latest version in [33] contains
22 open problems which are directly related to normalisation theory.

10 https://www.dama.org.
11 With 21 open problems from which 13 are not yet solved.

https://www.dama.org

298 B. Thalheim

Normalisation theory is currently a theory for system structures in the small. Global
normalisation will be theory for system structures in the large. The world is now chang-
ing to systems in the web and systems that are based on completely different perfor-
mance challenges such as big data massives. Normalisation in the world is a really big
issue for future research. It goes far beyond theories we know for distributed databases.

Revolution Instead of Unworthy Extension. Already research on the OO identifier and
the OID pollution has been demonstrating that parts and pieces of database theory must
be revised. Many assumptions taken for granted are not valid anymore and will never be
valid again for challenging applications such as big data massives. Set semantics was a
nice tool in the past. It is not the right one - at least for SQL applications and multi-sets
in practice. we might ask why not also to use multi-list semantics. Big data requires a
different FD logic.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley, Reading
(1995)

2. Beeri, C., Thalheim, B.: Identification as a primitive of database models. In Proceedings of
the FoMLaDO 1998, pp. 19–36. Kluwer, London (1999)

3. Benczúr, A.A., Kiss, A., Markus, T.: On a general class of data dependencies in the relational
model and its implication problems. Comput. Math. Appl. 21(1), 1–11 (1991)

4. Bick, M.: Denormalisierung. Master’s thesis, CAU Kiel, Department of Computer Science
(2015)

5. Biskup, J.: Foundations of Information Systems. Vieweg, Wiesbaden (1995). (in German)
6. Buxton, S., et al.: Database Design - Know It All. Morgan Kaufmann, Burlington (2008)
7. Celko, J.: Joe Celko’s SQL for Smarties - Advanced SQL Programming. Morgan Kaufmann,

San Francisco (1995)
8. Celko, J.: Joe Celko’s Data and Databases: Concepts in Practice. Morgan Kaufmann,

Burlington (1999)
9. Codd, E.F.: The Relational Model for Database Management (Version 2). Addison-Wesley,

Reading (1991)
10. Date, C.J.: Database Design and Relational Theory - Normal Forms and All That Jazz.

O’Reilly, Sebastopol (2012)
11. Date, C.J.: Go Faster - The TransRelational Approach to DBMS Implementation. C.J. Date

& Ventus Publishing ApS, Frederiksberg (2011)
12. Demetrovics, J., Molnar, A., Thalheim, B.: Graphical and spreadsheet reasoning for sets

of functional dependencies. In: Proceedings of the ER 2004, LNCS, vol. 3255, pp. 54–66
(2004)

13. Demetrovics, J., Molnar, A., Thalheim, B.: Graphical and spreadsheet reasoning for sets of
functional dependencies. Technical Report 0402, Kiel University, Computer Science Institute
(2004). http://www.informatik.uni-kiel.de/reports/2004/0402.html

14. Kiss, A., Markus, T.: Functional and inclusion dependencies and their implication problems.
In: 10th International Seminar on DBMS, Cedzyna, Poland, pp. 31–38 (1987)

15. Klettke, M., Thalheim, B.: Evolution and migration of information systems. In: Embley, D.,
Thalheim, B. (eds.) The Handbook of Conceptual Modeling: Its Usage and Its Challenges,
pp. 381–420. Springer, Berlin (2011). https://doi.org/10.1007/978-3-642-15865-0 12

http://www.informatik.uni-kiel.de/reports/2004/0402.html
https://doi.org/10.1007/978-3-642-15865-0_12

Schema Optimisation 299

16. Koehler, H.: Autonomous sets – a method for hypergraph decomposition with applications
in database theory. In: Hartmann, S., Kern-Isberner, G. (eds.) FoIKS 2008. LNCS, vol. 4932,
pp. 78–95. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77684-0 8

17. Köhler, H.: Autonomous sets for the hypergraph of all canonical covers. Ann. Math. Artif.
Intell. 63(3–4), 257–285 (2011)

18. Köhler, H., Link, S.: SQL schema design: foundations, normal forms, and normalization. Inf.
Syst. 76, 88–113 (2018)

19. Leonard, M.: Database Design Theory. MacMillan, Houndsmills (1992)
20. Lightstone, S., Teorey, T., Nadeau, T.: Physical Database Design. Morgan Kaufmann,

Burlington (2007)
21. Makowsky, J.A., Ravve, E.V.: Dependency preserving refinements and the fundamental

problem of database design. DKE 24(3), 277–312 (1998). Special Issue: ER 1996 (ed. B.
Thalheim)

22. Mannila, H., Räihä, K.-J.: The Design of Relational Databases. Addison-Wesley, Woking-
ham (1992)

23. Paredaens, J., De Bra, P., Gyssens, M., Van Gucht, D.: The Structure of the Relational
Database Model. Springer, Berlin (1989). https://doi.org/10.1007/978-3-642-69956-6

24. Popkov, G.P., Popkov, V.K.: A system of distributed data processing. Vestnik Buryatskogo
Gosudarstvennogo Universiteta 9, 174–181 (2013). (in Russian)

25. Schewe, K.-D., Thalheim, B.: NULL value algebras and logics. In: Information Modelling
and Knowledge Bases, vol. XXII, pp. 354–367. IOS Press (2011)

26. Shasha, D.E., Bonnet, P.: Database Tuning - Principles, Experiments, and Troubleshooting
Techniques. Elsevier, Amsterdam (2002)

27. Simsion, G., Witt, G.C.: Data Modeling Essentials. Morgan Kaufmann, San Francisco (2005)
28. Sörensen, O., Thalheim, B.: Semantics and pragmatics of integrity constraints. In: Schewe,

K.-D., Thalheim, B. (eds.) SDKB 2011. LNCS, vol. 7693, pp. 1–17. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-36008-4 1

29. Steeg, M.: RADD/raddstar - a rule-based database schema compiler, evaluator, and opti-
mizer. Ph.D. thesis, BTU Cottbus, Computer Science Institute, Cottbus, October 2000

30. Thalheim, B.: Dependencies in Relational Databases. Teubner, Leipzig (1991)
31. Thalheim, B.: Entity-Relationship Modeling - Foundations of Database Technology.

Springer, Berlin (2000). https://doi.org/10.1007/978-3-662-04058-4
32. Thalheim, B.: Conceptual treatment of multivalued dependencies. In: Song, I.-Y., Liddle,

S.W., Ling, T.-W., Scheuermann, P. (eds.) ER 2003. LNCS, vol. 2813, pp. 363–375. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-39648-2 29

33. Thalheim, B.: Open problems of information systems research and technology. In:
Kobyliński, A., Sobczak, A. (eds.) BIR 2013. LNBIP, vol. 158, pp. 10–18. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-40823-6 2

34. Thalheim, B.: Conceptual models and their foundations. In: Schewe, K.-D., Singh, N.K.
(eds.) MEDI 2019. LNCS, vol. 11815, pp. 123–139. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-32065-2 9

35. Thalheim, B.: Semiotics in databases. In: Schewe, K.-D., Singh, N.K. (eds.) MEDI 2019.
LNCS, vol. 11815, pp. 3–19. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32065-2 1

36. Thalheim, B., Tropmann-Frick, M.: The conception of the conceptual database model. In:
ER 2015. LNCS, vol. 9381, pp. 603–611. Springer, Berlin (2015)

37. Tropmann, M., Thalheim, B.: Performance forecasting for performance critical huge
databases. In: Proceedings of the EJC 2010, Jyväskylä, pp. 214–233 (2010)

38. Wang, Q., Thalheim, B.: Data migration: a theoretical perspective. DKE 87, 260–278 (2013)
39. Webster, B.F.: Pitfalls of Object-Oriented Development: A Guide for the Wary and Entusi-

astic. M&T Books, New York (1995)

https://doi.org/10.1007/978-3-540-77684-0_8
https://doi.org/10.1007/978-3-642-69956-6
https://doi.org/10.1007/978-3-642-36008-4_1
https://doi.org/10.1007/978-3-662-04058-4
https://doi.org/10.1007/978-3-540-39648-2_29
https://doi.org/10.1007/978-3-642-40823-6_2
https://doi.org/10.1007/978-3-030-32065-2_9
https://doi.org/10.1007/978-3-030-32065-2_9
https://doi.org/10.1007/978-3-030-32065-2_1
https://doi.org/10.1007/978-3-030-32065-2_1

300 B. Thalheim

40. Wei, Z., Link, S.: Embedded functional dependencies and data-completeness tailored
database design. PVLDB 12(11), 1458–1470 (2019)

41. Yang, C.-C.: Relational Databases. Prentice-Hall, Englewood Cliffs (1986)

Strongly Minimal MapReduce
Algorithms: A TeraSort Case Study

Daniel Xia, Michael Simpson(B), Venkatesh Srinivasan, and Alex Thomo

University of Victoria, Victoria, Canada
daniel.f.xia@gmail.com, {simpsonm,srinivas,thomo}@uvic.ca

Abstract. MapReduce is a widely used parallel computing paradigm for
the big data realm on the scale of terabytes and higher. The introduction
of minimal MapReduce algorithms promised efficiency in load balancing
among participating machines by ensuring that partition skew (where
some machines end up processing a significantly larger fraction of the
input than other machines) is prevented. Despite minimal MapReduce
algorithms guarantee of load-balancing within constant multiplicative
factors, the constants are relatively large which severely diminishes the
theoretical appeal for true efficiency at scale.

We introduce the notion of strongly minimal MapReduce algorithms
that provide strong guarantees of parallelization up to a small additive
factor that diminishes with an increasing number of machines. We show
that a strongly minimal MapReduce algorithm exists for sorting; this
leads to strongly minimal algorithms for several fundamental database
algorithms and operations that crucially rely on sorting as a primitive.
Our techniques are general and apply beyond the analysis of strongly
minimal MapReduce algorithms; we show that given a sufficiently high,
but still realistic, sampling rate, the approximate partitions obtained
from a particular sampling strategy are almost as good as the partitions
produced by an ideal partitioning.

Keywords: Distributed sorting · Minimal MapReduce algorithms ·
Sample-Partition problem

1 Introduction

Data is being generated at an increasing pace that leads to an enormous volume
being created and stored each year. As a result, there has been a strong push
towards big data analytics as industry and governments around the world aim to
keep pace with the explosion of information. This has led database organizations
to build massive parallel computing platforms that rely upon huge numbers of
commodity machines. Among these platforms, MapReduce has emerged as the
popular choice after years of improvement and advancement.

At a high level, MapReduce algorithms instruct how these machines can
perform a given task collaboratively. Typically, the input data is distributed

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 301–317, 2020.
https://doi.org/10.1007/978-3-030-39951-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-39951-1_18

302 D. Xia et al.

across the machines and the algorithm executes in rounds made up of map and
reduce phases. The map phase prepares data to be exchanged to other machines
and the reduce phase has the machines perform isolated computations on its local
storage. Rounds proceed until the given task is complete after a reduce phase.
Ideally, MapReduce algorithms should aim for the minimization of space, CPU,
I/O, and network costs for each machine as well as even load balancing. Despite
these principles guiding the design of MapReduce algorithms, most previous
work has relied upon heuristic approaches or been driven by an experimental
performance basis where less emphasis is placed on enforcing rigorous constraints
on these performance metrics.

Tao et al. [24] introduced minimal MapReduce algorithms that promise effi-
ciency in multiple aspects simultaneously. The notion of minimal MapReduce
algorithms bounds the storage space and the amount of information sent over
the network of each machine to be optimal up to a constant multiplicative factor.
In addition, a constraint is placed that the algorithm terminates in a constant
number of rounds and that the algorithm achieves a speedup of a factor t when
using t machines in parallel. One of the benefits of designing minimal algorithms
includes guaranteeing that partition skew (where some machines end up process-
ing a significantly larger fraction of the input than other machines) is prevented.
Tao et al. [24] conclude that TeraSort1, the state-of-the-art MapReduce sorting
algorithm, is load-balanced within constant multiplicative factors and thus satis-
fies their minimality definition. However, the multiplicative factor in the proof is
relatively large, up to 32; such a factor severely diminishes the theoretical appeal
due to a large imbalance in the workload of machines. Our work is motivated
by the question of whether the notion of minimal MapReduce algorithms can be
strengthened even further?

The main contributions of our work are as follows: (1) We propose a strength-
ening of the notion of minimality by introducing an additional requirement called
balanced partition that restricts the number of objects processed by each machine
to be evenly balanced up to an additive factor that diminishes with the num-
ber of machines. We say such MapReduce algorithms are strongly minimal. (2)
As a core result, we prove that sorting, which is a backbone primitive for many
algorithms and operations in databases and beyond, has a strongly minimal algo-
rithm, i.e. the workload is evenly distributed across machines up to an additive
term rather than a multiplicative factor. This is important because in large data
centers of similar machines having an overloaded machine is a critical bottleneck
(referred to by practitioners as “the curse of the last reducer”, see [23]).

More specifically, we aim for a more accurate analysis of the performance
of TeraSort. We give a series of bounds which describes the trade-off between
the number of machines and the partition skew (hence the worst case maximum
workload on a single machine). We conclude that a larger number of available

1 We use the name TeraSort in this paper to refer to the Sample-Partition-Sort
paradigm for distributed sorting. We would like to emphasize that the version imple-
mented in Hadoop (a popular MapReduce implementation), while following the gen-
eral paradigm, is not minimal (please see Sect. 3).

Strongly Minimal MapReduce Algorithms: A TeraSort Case Study 303

machines allows for more even partitions. In particular, we show that as the
number of machines grows, the partition skew approaches its optimal value with
high probability.

Our techniques are general and apply beyond TeraSort; we show that given
a sufficiently high, but still realistic, sampling rate, the approximate partitions
obtained from a particular sampling strategy are almost as good as the par-
titions produced by an ideal partitioning. The sampling strategy we analyze,
self-sampling, has appealing probabilistic properties that we are able to leverage
through a more extensible probabilistic method that is capable of generating a
series of tight bounds for partition evenness. We use a new and refined analysis
technique by an interesting bucketing argument that allows overlapping buckets
in contrast to the non-overlapping scheme of [24].

1.1 Strongly Minimal MapReduce Algorithms

Instead of mappers and reducers, we refer to the workers as machines. To accom-
modate the statelessness of mappers and reducers, we assume that unmentioned
data in the algorithm is “carried forward” implicitly to the reducer with the
same index in the next round.

Let A be the input for the underlying problem, n be the number of objects
in A, and t be the number of machines in the network. Define m = n/t as the
number of objects per machine when A is evenly distributed across the machines.
Then, as defined in [24], a minimal MapReduce algorithm for a problem on A
has the following properties:

– Minimal footprint: each machine uses O(m) storage at all times.
– Bounded net-traffic: every machine sends and receives at most O(m) words

of information over the network in each round.
– Constant round: the algorithm terminates after a constant number of rounds.
– Optimal computation: the algorithm achieves a speedup of t when using t

machines in parallel. Precisely, each machine performs O(Tseq/t) work in total
over all rounds where Tseq is the time required by a fixed algorithm A to solve
the problem on a single machine.

Now, we introduce the notion of a strongly minimal MapReduce algorithm
which strengthens the minimality conditions above by adding an additional con-
dition that we refer to as balanced partition. A strongly minimal MapReduce
algorithm for a problem on A has the following property:

– Balanced partition: each machine processes m(1 + o(1)) objects.

Remark: Here, o(1) denotes a lower order term that is independent of the input
and goes to 0 as t grows. Note that strong minimality implies that, as t grows,
the number of objects processed by each machine approaches the optimal value.
As a consequence, the hidden constant in footprint and net-traffic in strongly
minimal MapReduce algorithms is substantially smaller than 32, typically close
to 1.

304 D. Xia et al.

In the following sections, we prove that TeraSort is strongly minimal by
showing that the balanced partition condition is satisfied using an interesting
bucketing argument.

2 Related Work

The existing investigation on MapReduce can be broadly classified into two cat-
egories: (1) a focus on improving the internal working of the framework, and
(2) developing novel MapReduce algorithms to solve interesting problems. On
the framework implementation side there has been a variety of work that typi-
cally focuses on performing well on a subset of the minimality conditions. These
range from specialized methods to rectify skewness [11,14,16] to optimizing the
network traffic by keeping relevant data at the same machine [6,12]. On the algo-
rithms side, there has been extensive work dedicated to developing MapReduce
algorithms for important database problems [1,4,18,19,26], graph processing
[2,13,17,23,25], and statistical analysis [5,7,9,10,21].

Tao et al. [24] justify theoretically the good performance of TeraSort [20]
(the state-of-the-art MapReduce sorting algorithm) observed in practice which
inspired the new definition of minimal MapReduce algorithms. Their goal is
accomplished by specifying how to set a crucial parameter of TeraSort that
ensures minimality. Designing minimal algorithms is highly sought after since a
minimal algorithm excels on all the minimality conditions simultaneously. Often,
it is easy to perform well on certain aspects, while failing on others. Furthermore,
Tao et al. [24] point out that even a minimal algorithm can benefit from clever
optimization at the system level, and the minimality property may considerably
simplify such optimizations. For instance, as the minimality requirements already
guarantee good load balancing in storage, computation, and communication,
there would be less skewness to deserve specialized optimization.

Studying the minimality of MapReduce algorithms is similar in goal to other
models of theoretical parallel computing. We give two such examples now. Karloff
et al. [13] put forth the notion of MRC, a class of MapReduce algorithms com-
putable by a MapReduce system characterized by a certain amount of resources.
Further, class MRCi runs in O(logi n) rounds and MRC is defined by the union
of MRCi over i. When the algorithm is randomized, it must output the correct
answer with probability at least 3/4. The deterministic subset of MRC is called
DMRC. Note, not all algorithms in MRC are efficient; rather it only offers to
characterize them. One would expect efficient algorithms in MRC0 and MRC1

since they consist of constant rounds and logarithmic rounds, respectively. [13]
shows that a variety of problems have solutions in MRC0 and MRC1, such as
finding an MST in dense graphs, frequency moments, and undirected s-t con-
nectivity. Recent work following the MRC model include [3,15,22].

Massive, unordered, distributed (MUD) is a class of MapReduce algorithms
proposed by [8] to compute a distributed stream. The MUD algorithms consist
of three components: a local function, an aggregator, and post-processing. The
algorithm designer must ensure that the overall output is independent of the

Strongly Minimal MapReduce Algorithms: A TeraSort Case Study 305

order of application of the aggregator. A connection between MUD algorithms
and the MapReduce framework can be established where the local function can
be implemented by mappers, and the independence of the post-processing and
the order of application implies that we can divide and conquer the output of
the local function in a series of rounds. From this construction, it is easy to see
that MUD algorithms can be computed very efficiently in a MapReduce system
and mostly independent of the underlying computing capability.

3 Sorting with MapReduce

For sorting, the input is a set A of n objects drawn from an ordered domain.
Suppose that t machines store A and are indexed from 1 to t, namely M1, ...,Mt.
A parallel algorithm that solves the sorting problem should terminate with all
the objects distributed across the t machines in a (total) sorted fashion. That is,
for each machine Mi, the objects that end up in Mi are in sorted order. Further,
this implies that all objects in Mi precede those in Mj for all 1 ≤ i < j ≤ t.

It is well known that sorting can be solved in O(n log n) time on a single
machine, while there has been a substantial amount of progress on sorting in
parallel. TeraSort is the state-of-the-art MapReduce algorithm for sorting and
the work of [24] proves that it is minimal when a crucial parameter of the algo-
rithm is set appropriately.

3.1 Sampling and Partitioning

Sampling and partitioning form the central idea behind TeraSort. TeraSort con-
ceptually consists of three steps: Sample, Partition, and Sort. First, the algorithm
extracts a random sample set from the input and then computes t partition ele-
ments from the sample. The partition elements, referred to as boundary elements,
divide A into t partitions. In the second round, each machine receives all the ele-
ments from a distinct partition and sorts them locally using an apriori fixed
algorithm A. As the performance of TeraSort is sensitive to the quality of the
partition, it is worth examining potential sampling strategies. We describe two
such sampling strategies below.

In the current implementation of TeraSort included in Hadoop, the sample is
created by reading a elements in total from b locations which are evenly spread
across the input dataset. a and b are configurable by users. At each location, a

b
elements are read. No guarantee exists that such sampling scheme yields good
partitioning. In fact, there are bad cases for every a, b in which the partitions are
extremely unbalanced. When the sample comprises elements concentrated in a
few small ranges, it may lead to uneven buckets.

Tao et al. [24] discuss the strategy of self-sampling, where each element is
selected into the sample independently with the same probability. Self-sampling
is a good fit for the MapReduce framework as mappers are assumed to have no
other knowledge than the input item currently being processed. As we will show
later, self-sampling has very appealing probabilistic properties and it achieves

306 D. Xia et al.

asymptotically optimal evenness with high probability. [24] also report the exper-
imental results of another strategy: sampling without replacement. The results
are promising and comparable to self-sampling: the unevenness remains low when
the sample size is no less than the expected size of self-sampling, regardless of
how much it exceeds the latter. However, there is no further investigation on
how the evenness is affected by the layout of the input dataset, nor is any bound
provided for all input layouts.

In this paper, we focus on analyzing TeraSort with self-sampling. However,
our techniques are general and apply beyond TeraSort; we show that given a
sufficiently high, but still realistic, sampling rate, the approximate partitions
obtained from self-sampling are almost as good as the partitions produced by
an ideal partitioning.

3.2 Even Partitions

In TeraSort, we use the notion of an ordered even t-partition which divides a set
as evenly as possible.

Definition 1 (ordered t-partition). An ordered t-partition divides an
ordered set of n elements into t partitions. Elements of partition i are smaller
than those of partition j for all i < j. The first element of every partition except
for the first one is called a t-partition element as they describe the partitions in
full.

Definition 2 (ordered even t-partition). An ordered even t-partition is an
ordered t-partition in which the sizes of the partitions differ by at most 1.

An ordered even partition always exists for any dataset. In fact, we may
construct one in the following way. Let n = ts1 + s2 where s1 =

⌊
n
t

⌋
. The

indices of the partition elements are dj = dj−1 + (s1 + 1) for 1 ≤ j ≤ s2 and
dj = dj−1 + s1 for s2 ≤ j ≤ t with d0 = s1.

3.3 TeraSort

Recall, TeraSort consists of three steps: Sample, Partition, and Sort. First, the
algorithm extracts a random sample set from the input and then computes t par-
tition elements from the sample. The partition elements, referred to as boundary
elements, divide A into t partitions. In the second round, each machine receives
all the elements from a distinct partition and sorts them locally using a fixed
algorithm A. Importantly, the construction of the sample is crucial to efficiency
since the partition elements may be insufficiently scattered among the input lead-
ing to partition skew in the second round. On the other hand, while it usually
implies better partitioning, large samples could incur expensive overheads. We
measure the unevenness of the partitions in TeraSort as a ratio of the maximum
partition size to the optimal size m.

Tao et al. [24] conclude that TeraSort is load-balanced within constant mul-
tiplicative factors and thus satisfies their minimality definition. However, the

Strongly Minimal MapReduce Algorithms: A TeraSort Case Study 307

multiplicative factor in the proof is relatively large (16 to 32). Moreover, the
proof itself does not extend to substantially smaller bounds. In this work, we
seek a more accurate description of the performance of TeraSort. We give a
series of bounds which describes the trade-off between the number of machines
and the evenness of the partition (hence the worst case maximum workload on a
single machine). We conclude that a larger number of available machines allows
for more even partitions. In particular, we show that as t grows, the evenness
approaches exactly m with high probability.

Initially, the n elements are distributed evenly across the machines, each
storing m or m + 1 elements. Parameterized by ρ ∈ (0, 1], TeraSort runs as
follows:

Map 1
Each element is selected into the sample S with probability ρ.

Reduce 1
S is sent to M1. M1 uses A to compute an ordered even t-partition of S
made up of bi, i = 1, ..., t − 1. Each bi is a boundary element.

Map 2
(Assume that bi’s have been broadcast to all machines.) Element x is sent to
Mi if bi−1 ≤ x < bi, where b0 := −∞ and bn := +∞.

Reduce 2
On each machine, sort elements locally using A.

In [24], it was shown that TeraSort is minimal when ρ = 1
m ln nt using a

detailed analysis of the minimum footprint and bounded net-traffic conditions.
Note that the broadcast assumption in the algorithm may incur a network out-
flow of size O(t2) (or O(t) depending on the size of message) at M1, which would
make TeraSort non-minimal when t2 is no longer O(m). However, in practice the
broadcast can be implemented in Hadoop as M1 writing to a shared file which
is then read by all machines. This way, the broadcast cost is evenly distributed
among machines. This is an approach that [24] follows as well. Furthermore,
[24] shows in Sect. 3.3 that this is not a restrictive constraint because it can be
overcome by additional techniques. Finally, the experimental analysis provided
in [24] for pure TeraSort (their implementation of TeraSort with ρ = 1

m ln nt)
exhibits very even partitions. Specifically, it can be observed that the load bal-
ancing ratio does not exceed a factor of 2 across all the datasets considered.
Therefore, our results can be viewed as giving a sound theoretical explanation
for the experimental observations in [24].

In the following sections, we prove that TeraSort is strongly minimal by
showing that the balanced partition condition is satisfied, using an interesting
bucketing argument.

4 A New Proof of TeraSort’s Minimality

In this section we give a new proof of the results in [24] that prove the minimality
of TeraSort, but using a different and a more extensible probabilistic method that
is capable of proving that TeraSort is strongly minimal.

308 D. Xia et al.

4.1 Probability Tools

Chernoff bounds restrict from above the tail probability of sums of independent
Bernoulli random variables. There are several forms/variants of Chernoff bounds
of similar restrictive power. In this work, we use the following form:

Pr

[
n∑

i=1

Xi > (1 + δ)μ

]

≤ exp
{

− δ2μ

δ + 2

}
, δ > 0

Pr

[
n∑

i=1

Xi < (1 − δ)μ

]

≤ exp
{

−δ2μ

2

}
, 0 < δ < 1

where the Xi’s are independent and Xi = 1, 0 with probability pi, 1 − pi respec-
tively. The mean is μ =

∑n
i=1 pi.

4.2 Minimality

The minimality of TeraSort is equivalent to the following claims.

Claim 1. In Map 1: |S| = O(m)

Claim 2. In Reduce 2: every machine ends up with O(m) elements

Claim 1 limits the size of the sample S and thus the amount of traffic that
machines send and receive in the first round. Claim 2 limits the machine sizes
and the network input in the second round, since the map phase of round 2
never violates minimality as long as every machine holds O(m) elements at the
beginning of the algorithm. In the following we show Claims 1 and 2 hold with
high probability (at least 1 − O(1

n)). It is straightforward to show Claim 1.

Lemma 1. Pr [|S| > knρ] ≤ (1
nt

)t when ρ ≥ 1
m ln nt and k ≥ 3.

Proof. |S| is the sum of n Bernoulli random variables of probability ρ; E [|S|] =
nρ. By Chernoff bounds, we have

Pr [|S| > knρ] ≤ exp
{

− (k−1)2

k+1 nρ
}

(1)

For the lemma to hold, we require that the exponent on the RHS be bounded
above by

(
1
nt

)t. To show this, we take the minimal values satisfying the inequal-
ities given in the lemma statement: ρ = 1

m ln nt and k = 3. It is easy to verify
that under these parameter settings the RHS is exp

{−n · t
n ln nt

}
=
(

1
nt

)t.

Theorem 1 (Claim 1). By setting ρ ≥ 1
m ln nt and assuming m ≥ t ln nt,

Claim 1 holds with probability 1 − (1
nt

)t.

Strongly Minimal MapReduce Algorithms: A TeraSort Case Study 309

Proof. By Lemma 1,

Pr [|S| > 3m] ≤ Pr [|S| > 3t ln nt] ≤ Pr [|S| > 3nρ] ≤
(

1
nt

)t

The event that Claim 1 holds is given by complement of the above. Therefore
the claim holds with high probability.

In reality, typically m � t, namely, the memory size of a machine is signifi-
cantly greater than the number of machines. More specifically, m is at the order
of at least 106 (this is using only a few megabytes per machine), while t is at
the order of 104 or lower. Therefore, m ≥ nρ = t ln(nt) is a (very) reasonable
assumption, which explains why TeraSort has excellent efficiency in practice.

Next, we present our approach to the proof of Claim 2 in the form of a few
interesting lemmas. First, we formulate a problem closely related to Claim 2.

Problem 1 (Sample-Partition). Let A denote a set of n elements from an ordered
universe; aj denotes the (j+1)-th smallest element in A. Construct a sample S ⊆
A by independently picking each element with probability ρ. Let b1, b2, ..., bt−1 ∈
S be the ordered even t-partition elements of S. Question: how evenly do the
bi’s partition A?

Problem 1 captures the probabilistic structure of TeraSort. Clearly, the set
of the elements on Mi in Reduce 2 is exactly A ∩ [bi−1, bi), independent of how
the input dataset is spread across machines at the outset. An answer to Problem
1 that the partitions are all O(m) in size proves Claim 2.

The approach of [24] is to suppose we have an ordered partition of A and
refer to every partition as a bucket. It is easy to observe that if every bucket con-
tains a boundary element, then the distance between any two adjacent boundary
elements is less than the sum of the sizes of the buckets in which they exist. This
observation will lead to Claim 2 if we additionally ensure that buckets are O(m)
in size.

We make a stronger observation: if we allow buckets to overlap with one
another, we have a promise of shorter distances between adjacent boundary
elements. Formally, consider an ordered even t-partition of A. Let d(i) be the
index in A of the i-th smallest partition element; and manually set d(0) := 1.
Our notion of a bucket is defined by the intervals Ij := [ad(j), ad(j)+lm). The
variable l ≥ 0 controls the length of the interval. The Ij ’s are well defined for
all j ≥ 0 with d(j) + lm ≤ n − 1. We cover the largest few elements with one
additional interval [an−lm, an]. Notice that the intervals form a cover of A if
l ≥ 1 and under this condition there can be at most t intervals.

Lemma 2. If every interval Ij has at least one boundary element, then no two
boundary elements are more than (l + 1)m away from each other.

Proof. We prove the contrapositive. Suppose that |[bi, bi+1]| > (l+1)m for some
i ∈ {1, t − 1}, then there exists an interval Ij ⊆ [bi, bi+1] which contains no
boundary element.

310 D. Xia et al.

Consider we start at bi and walk towards larger elements in steps of size
(l + 1)m. Since |[bi, bi+1]| > (l + 1)m, we must have not met another boundary
elements yet. The interval after the one containing bi starts at most m away from
bi (due to the spacing of intervals), so its end cannot pass the current element.
Therefore, this interval contains no boundary element.

Now, we only need to put a ceiling on the probability that some interval
contains no boundary element to conclude Claim 2. This is shown in Lemmas 3
and 4. First, Lemma 3 considers a more generalized notion in which we consider
an arbitrary subset of A instead of the intervals of sequential elements considered
in the definition of buckets.

Lemma 3. Fix an arbitrary subset B(x) of size x of A. Then B(x) ∩S denotes
the set of sampled elements in B(x). With ρ ≥ 1

m ln nt and l ≥ 7,

Pr
[
|B(lm) ∩ S| <

|S|
t

]
≤ 1

nt
+
(

1
nt

)t

(2)

Proof. Condition on the event |S| > 3nρ and decompose the probability as
follows,

Pr
[
|B(lm) ∩ S| <

|S|
t

]
≤ Pr

[
|B(lm) ∩ S| <

|S|
t

and |S| ≤ 3nρ

]

+ Pr
[
|B(lm) ∩ S| <

|S|
t

and |S| > 3nρ

]

≤ Pr
[
|B(lm) ∩ S| <

3nρ

t

]
+ Pr [|S| > 3nρ]

By Lemma 1 we can bound the second term in the last line above. Then,
we apply Chernoff bounds to the first term of the same line noting that
E [|B(lm) ∩ S|] = lm

n ·nρ = lmρ. We show an upper bound on the RHS by taking
the minimal value satisfying the inequality given in the lemma statement: l = 7.

Pr
[
|B(lm) ∩ S| <

|S|
t

]
≤ exp

{
− (l − 3)2

2l
mρ

}
+
(

1
nt

)t

≤ 1
nt

+
(

1
nt

)t

This bound proves the lemma.

Now, we are ready to bound the probability that a bucket does not cover a
boundary element.

Lemma 4. For any 0 ≤ j ≤ t − 1,

Pr [Ij has no boundary element] ≤ O

(
1
n

)
(3)

Strongly Minimal MapReduce Algorithms: A TeraSort Case Study 311

Proof. In A, if a block of consecutive ordered elements contains no boundary
element, then it must contribute no more than

⌈
|S|
t

⌉
to the sample S (since a

boundary element is taken every
⌈

|S|
t

⌉
consecutive samples). Then, Lemma 3

gives us,

Pr [Ij has no boundary element] ≤ Pr
[
|B(lm) ∩ S| <

⌈ |S|
t

⌉]

= Pr
[
|B(lm) ∩ S| <

|S|
t

]

≤ 1
nt

+
(

1
nt

)t

By the union bound, with probability 1−O
(
1
n

)
every interval covers at least

one boundary element given l ≥ 7.

As a result, we have that no bucket can fall between two consecutive boundary
elements, hence every A∩ [bi−1, bi) can contain objects in at most 2 buckets. So,
by Lemma 2 and setting l ≥ 7 we have that Pr [|A ∩ [bi, bi+1]| ≥ 8m] ≤ O

(
1
n

)
.

Finally, we have the following theorem,

Theorem 2 (Claim 2). By setting ρ ≥ 1
m ln nt, Claim 2 holds with probability

at least 1 − O
(
1
n

)
.

5 Proof of TeraSort’s Strong Minimality

A natural question is whether a fixed constant factor on m is the farthest we
could go with the tools in hand. In other words, can we achieve better guarantees
of evenness? Towards this goal, we consider the problem of Sample-Partition as
a simple, generic routine potentially used for a variety of problems and so it is
worthwhile in pushing the bound further.

Our new analysis is based on a re-examination of the proof of Lemmas 3 and
4. We focus on tighter bounds in Claim 2 (the evenness of partition), though as
shown later the choice of parameters also ensures Claim 1.

Please note that in the statement of the following theorem, k and l are free
parameters, for which we will later choose appropriate values that will satisfy
conditions (4).

Theorem 3. Given t and ρ ≥ 1
m ln nt, for any choice of k and l satisfying the

constraints below, ⎧
⎪⎪⎨

⎪⎪⎩

(k − 1)2(t − l) ≥ (k + 1)
((t − 1)l − (t − l)k)2 ≥ 2l
(t − 1)l > (t − l)k
k, t > 1, l > 0

(4)

we have,

Pr
[
|B(lm) ∩ S| <

|S|
t

]
≤ 2

nt
(5)

312 D. Xia et al.

Proof. Let Yj be the indicator random variable representing whether element
aj ∈ A is sampled into S. Let W (x) denote the sum of x independent
Bernoulli(ρ) random variables. Note, we require that there is no dependency
between the random variables underlying two W (·) expressions.

Pr
[
|B(lm) ∩ S| <

|S|
t

]
= Pr

⎡

⎣
∑

j:aj∈B(lm)

Yj <
1
t

n−1∑

j=0

Yj

⎤

⎦

= Pr

⎡

⎣(t − 1)
∑

j:aj∈B(lm)

Yj <
∑

j:aj /∈B(lm)

Yj

⎤

⎦

= Pr [(t − 1)W (lm) < W (n − lm)] (6)

To establish an upper bound on (6), we use the same decoupling technique
as in Lemma 3 again. Let,

W1 = W (lm)
W2 = W (n − lm)

we have,

Pr [(t − 1)W (lm) < W (n − lm)] ≤ Pr

[
W1 <

W2

t − 1
, W2 ≤ k(n − lm)ρ

]

+ Pr

[
W1 <

W2

t − 1
, W2 > k(n − lm)ρ

]

≤ Pr

[
W1 <

k(n − lm)ρ

t − 1

]
+ Pr [W2 > k(n − lm)ρ]

By Chernoff bounds, given k > 1 and (t − 1)l > (t − l)k, we get

Pr [W2 > k(n − lm)ρ] ≤ exp
{

− (k − 1)2

k + 1
(t − l)mρ

}
(7)

Pr
[
W1 <

k(n − lm)ρ
t − 1

]
≤ exp

{

− lmρ

2

(
1 − (t − l)k

(t − 1)l

)2
}

(8)

Next, we can bound the probability of each of W1 and W2 independently. We
make the initial observation that ρ ≥ 1

m ln nt implies mρ ≥ ln nt.
First, using the observation above, the RHS of (7)

exp
{

− (k − 1)2

k + 1
(t − l)mρ

}
≤ exp

{
− (k − 1)2

k + 1
(t − l) ln nt

}
(9)

Therefore, the probability that W2 > k(n− lm)ρ is less than 1
nt exactly when

(k−1)2

k+1 (t − l) ≥ 1, or (k − 1)2(t − l) ≥ (k + 1). The resulting inequality yields the
second set of constraints from (4).

Strongly Minimal MapReduce Algorithms: A TeraSort Case Study 313

Second, again using the observation above, the RHS of (8)

exp

{

− lmρ

2

(
1 − (t − l)k

(t − 1)l

)2
}

≤ exp

{

− l

2

(
1 − (t − l)k

(t − 1)l

)2

ln nt

}

(10)

Therefore, the probability that W1 < k(n−lm)ρ
t−1 is less than 1

nt exactly when
l
2

(
1 − (t−l)k

(t−1)l

)2
≥ 1, or ((t− 1)l − (t− l)k)2 ≥ 2l. The resulting inequality yields

the third set of constraints from (4). Finally, we enforce the sanity conditions
given in the third inequality from (4) to ensure that the RHS of (8) remains
positive.

We remark that although Theorem 3 focuses on Claim 2, the system of
equations given by (4) also ensures that Claim 1 holds, because (k − 1)2(t −
l) ≥ (k + 1) is a stronger condition than that required for Claim 1 to hold:
(k − 1)2t ≥ (k + 1) (see Eq. 1).

Theorem 3 describes a family of bounds for (l + 1)m given admissible values
for l, t and k. The choices of l and t dictates the trade-off between the evenness
and number of partitions. For a fixed k, as t increases, lower l is accessible
and therefore a greater number of partitions implies better evenness. First, we
present the following corollary.

Corollary 1. Let 0 < ε < 1
2 be a parameter and set k := 1 + 1

tε and l := 1 + 2
tε .

Given ρ ≥ 1
m ln nt, it holds that

Pr
[
|B(lm) ∩ S| <

|S|
t

]
≤ 2

nt
(11)

It can be verified that the chosen values for k and l satisfy the system of
equations given by (4) for 0 < ε < 1

2 and t large enough. Furthermore, the
system of equations given by (4) is always satisfied for large enough t given fixed
ε, k and l. Therefore, we obtain arbitrarily strong evenness as long as t is allowed
to be sufficiently large. Given our chosen value of l and Corollary 1 we arrive at
the following.

Corollary 2. With probability at least 1 − O(1
n), the size of every partition is

less than (2 + 2
tε)m where 0 < ε < 1

2 .

In fact, it can be shown that for ε = 1
4 , we can satisfy the system of equations

given by (4) when t > 10. By combining all of above, we arrive at Corollary 3.

Corollary 3. Given ρ ≥ 1
m ln nt and t > 10,

Pr
[
|A ∩ [bi, bi+1]| >

(
2 +

2
4
√

t

)
m

]
≤ O

(
1
n

)
(12)

for 0 ≤ i ≤ t − 1 and where b0 := −∞ and bt := +∞.

Finally, we observe that a stronger version of Theorem 1 (Claim 1) exists by
noting that plugging k := 1 + 1

4√t
into Lemma 1 yields an analog to Theorem 1

that bounds the probability that |S| >
(
1 + 1

4√t

)
m to at most O

(
1
n

)
.

314 D. Xia et al.

5.1 Tightening the Bound

Given the memory available in modern machines and typical values for t, we
observe that probabilities of failure to produce strongly even partitions on the
order of O(1

m) are negligible. This is reasonable since current main memories of
computation nodes are on the order of gigabytes. If we consider m (the average
workload) to be safely within the capacity of main memory (e.g. m is on the
order of 220), then 1

m is very small.
Thus, we are able to further restrict the size of the intervals which corresponds

to partitions that are more even. The trick is to construct the intervals { Ij }j
by placing the left endpoint of the interval j +1 a distance m

t away from the left
endpoint of interval j (see Fig. 1). As a result,

– Lemma 2 has a stronger form: no two adjacent boundary elements are more
than (l + 1

t) away from each other.
– When we apply union bound with the at most t2 intervals, we obtain a prob-

ability of failure no larger than O(1
nt) × t2 = O(1

m).

Fig. 1. With m
t

spacing, Lemma 2 is strengthened to ensure adjacent boundary ele-
ments are within (l + 1

t
) of each other with high probability.

This argument applies to every bound shown in the previous section. We
phrase the counterpart of Corollary 3 as an example.

Theorem 4. Given ρ ≥ 1
m ln nt and t > 10,

Pr
[
|A ∩ [bi, bi+1]| >

(
1 +

2
4
√

t
+

1
t

)
m

]
≤ O

(
1
m

)
(13)

for 0 ≤ i ≤ t − 1 and where b0 := −∞ and bt := +∞.

As a result, we see that as the number of machines increases, the evenness
of the partitions approach its optimal value m with high probability.

Strongly Minimal MapReduce Algorithms: A TeraSort Case Study 315

Remark: Strongly Minimal Algorithms for Databases. As mentioned in
the introduction, Tao et al. [24] show how a minimal algorithm for sorting leads
to minimal algorithms for other database problems by using a single additional
round after sorting. The problems considered include ranking, group-by, semi-
join, and 2D skyline. As a result of our analysis for TeraSort, these problems
have strongly minimal MapReduce algorithms.

6 Conclusions

Despite the great variety of algorithms developed for MapReduce, few are able
to achieve the ideal goal of parallelization: balanced workload across the partic-
ipating machines, network traffic bounded by the total input data size, and a
speedup over sequential algorithms linear in the number of machines available.

In this paper we introduce the new notion of strongly minimal MapRe-
duce algorithms. Our definition strengthens the minimality criteria of minimal
MapReduce algorithms as defined in [24]. Precisely, strongly minimal algorithms
have partitions that approach the optimal evenness value of m as the number
of machines t grows with high probability. We prove that the popular parallel
sorting paradigm, TeraSort, is strongly minimal under the self-sampling strategy
with a sampling rate ρ = 1

m ln nt. Additionally, this leads to strongly minimal
algorithms that settle an array of important database problems.

Finally, our techniques are general and apply beyond the analysis of strongly
minimal MapReduce algorithms to any setting that fits the Sample-Partition
problem model; we show that given a sufficiently high sampling rate the approxi-
mate partitions obtained from self-sampling as the number of partitions increases
approach the partition sizes obtained from an ideal partitioning with high prob-
ability. We believe that the refined bucketing arguments we use in our analysis
are of independent interest and are likely to have other applications.

In future work, our goal is to continue this line of research and identify other
fundamental problems that have strongly minimal algorithms.

References

1. Afrati, F.N., Ullman, J.D.: Optimizing multiway joins in a map-reduce environ-
ment. IEEE Trans. Knowl. Data Eng. 23(9), 1282–1298 (2011)

2. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
mapreduce. Proc. VLDB Endow. 5(5), 454–465 (2012)

3. Behnezhad, S., Derakhshan, M., Hajiaghayi, M., Karp, R.M.: Massively parallel
symmetry breaking on sparse graphs: MIS and maximal matching. arXiv preprint
arXiv:1807.06701 (2018)

4. Blanas, S., Patel, J.M., Ercegovac, V., Rao, J., Shekita, E.J., Tian, Y.: A com-
parison of join algorithms for log processing in MapReduce. In: Proceedings of
the 2010 ACM SIGMOD International Conference on Management of data, pp.
975–986. ACM (2010)

5. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable
online collaborative filtering. In: Proceedings of the 16th International Conference
on World Wide Web, pp. 271–280. ACM (2007)

http://arxiv.org/abs/1807.06701

316 D. Xia et al.

6. Eltabakh, M.Y., Tian, Y., Özcan, F., Gemulla, R., Krettek, A., McPherson, J.:
Cohadoop: flexible data placement and its exploitation in hadoop. Proc. VLDB
Endow. 4(9), 575–585 (2011)

7. Ene, A., Im, S., Moseley, B.: Fast clustering using MapReduce. In: Proceedings
of the 17th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 681–689. ACM (2011)

8. Feldman, J., Muthukrishnan, S., Sidiropoulos, A., Stein, C., Svitkina, Z.: On dis-
tributing symmetric streaming computations. ACM Trans. Algorithms (TALG)
6(4), 66 (2010)

9. Ferreira Cordeiro, R.L., Traina Junior, C., Machado Traina, A.J., López, J., Kang,
U., Faloutsos, C.: Clustering very large multi-dimensional datasets with MapRe-
duce. In: Proceedings of the 17th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 690–698. ACM (2011)

10. Ghoting, A., Kambadur, P., Pednault, E., Kannan, R.: NIMBLE: a toolkit for
the implementation of parallel data mining and machine learning algorithms on
mapreduce. In: Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 334–342. ACM (2011)

11. Gufler, B., Augsten, N., Reiser, A., Kemper, A.: Load balancing in mapreduce
based on scalable cardinality estimates. In: 2012 IEEE 28th International Confer-
ence on Data Engineering, pp. 522–533. IEEE (2012)

12. He, Y., et al.: RCFile: a fast and space-efficient data placement structure in
mapreduce-based warehouse systems. In: 2011 IEEE 27th International Confer-
ence on Data Engineering (ICDE), pp. 1199–1208. IEEE (2011)

13. Karloff, H., Suri, S., Vassilvitskii, S.: A model of computation for mapreduce.
In: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete
Algorithms, pp. 938–948. SIAM (2010)

14. Kolb, L., Thor, A., Rahm, E.: Load balancing for mapreduce-based entity res-
olution. In: 2012 IEEE 28th International Conference on Data Engineering, pp.
618–629. IEEE (2012)

15. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
mapreduce and streaming. ACM Trans. Parallel Comput. (TOPC) 2(3), 14 (2015)

16. Kwon, Y., Balazinska, M., Howe, B., Rolia, J.: SkewTune: mitigating skew in
mapreduce applications. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pp. 25–36. ACM (2012)

17. Lattanzi, S., Moseley, B., Suri, S., Vassilvitskii, S.: Filtering: a method for solv-
ing graph problems in mapreduce. In: Proceedings of the Twenty-Third Annual
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 85–94. ACM
(2011)

18. Lin, Y., Agrawal, D., Chen, C., Ooi, B.C., Wu, S.: Llama: leveraging columnar
storage for scalable join processing in the mapreduce framework. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of data, pp.
961–972. ACM (2011)

19. Okcan, A., Riedewald, M.: Processing theta-joins using mapreduce. In: Proceedings
of the 2011 ACM SIGMOD International Conference on Management of Data, pp.
949–960. ACM (2011)

20. O’Malley, O.: Terabyte sort on apache hadoop, pp. 1–3, May 2008. Yahoo. http://
sortbenchmark.org/Yahoo-Hadoop.pdf

21. Panda, B., Herbach, J.S., Basu, S., Bayardo, R.J.: Planet: massively parallel learn-
ing of tree ensembles with mapreduce. Proc. VLDB Endow. 2(2), 1426–1437 (2009)

22. Roughgarden, T., Vassilvitskii, S., Wang, J.R.: Shuffles and circuits (on lower
bounds for modern parallel computation). J. ACM (JACM) 65(6), 41 (2018)

http://sortbenchmark.org/Yahoo-Hadoop.pdf
http://sortbenchmark.org/Yahoo-Hadoop.pdf

Strongly Minimal MapReduce Algorithms: A TeraSort Case Study 317

23. Suri, S., Vassilvitskii, S.: Counting triangles and the curse of the last reducer. In:
Proceedings of the 20th International Conference on World Wide Web, pp. 607–
614. ACM (2011)

24. Tao, Y., Lin, W., Xiao, X.: Minimal mapreduce algorithms. In: Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data, pp.
529–540. ACM (2013)

25. Tsourakakis, C.E., Kang, U., Miller, G.L., Faloutsos, C.: DOULION: counting
triangles in massive graphs with a coin. In: Proceedings of the 15th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pp. 837–846.
ACM (2009)

26. Zhang, X., Chen, L., Wang, M.: Efficient multi-way theta-join processing using
mapreduce. Proc. VLDB Endow. 5(11), 1184–1195 (2012)

Event Sequence Interpretation
of Structural Geomodels: A
Knowledge-Based Approach

for Extracting Tectonic Sequences

Xianglin Zhan1 , Cai Lu1(B), and Guangmin Hu2

1 School of Information and Communication Engineering,
University of Electronic Science and Technology of China, Chengdu 611731,

People’s Republic of China
xianglin zhan@163.com, lucai@uestc.edu.cn

2 School of Resources and Environment,
University of Electronic Science and Technology of China, Chengdu 611731,

People’s Republic of China
hgm@uestc.edu.cn

Abstract. The tasks of obtaining past event occurrences and their tem-
poral order information are important parts of the cognition of the exter-
nal world. We call this kind of tasks Event Sequence Interpretations (ESI).
In this work, we focus in the ESI in structural geomodels and propose
a knowledge-based approach for extracting tectonic sequences, which is
crucial for the cognition of structural geomodels.

As a cognitive task, tectonic sequence interpretation has not been
highly automated due to the need to use a large amount of expert knowl-
edge for recognition and reasoning. Meanwhile, artificial ESI may intro-
duce cognitive biases that ultimately lead to subjective uncertainty in the
results, which affects the credibility of the interpretations and increases
risks in oil and gas production. One potential solution is making personal
knowledge better available for computers so that computers can also
do ESI. Therefore, we proposed a meta-model for formally representing
expert knowledge. The instance of the knowledge representation (KR)
meta-model is called an Event Pattern (EP), which describes the associ-
ations between event occurrences and geometric features in the models.
Moreover, we proposed a new pattern matching model called Joint Pro-
totype Model (JPM) to find evidences of event occurrences from the raw
geological data. The temporal relations of the events can be extracted
according to the spatial topology of the geological objects. Our approach
can also be extended from structural geomodels to other spatial geomet-
ric models. We show the effectiveness of the approach by an application
to a real structural geomodel dataset.

Keywords: Spatial cognition · Knowledge representation ·
Knowledge-based approach · Event sequence interpretation

c© Springer Nature Switzerland AG 2020
A. Herzig and J. Kontinen (Eds.): FoIKS 2020, LNCS 12012, pp. 318–333, 2020.
https://doi.org/10.1007/978-3-030-39951-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39951-1_19&domain=pdf
http://orcid.org/0000-0003-2859-6590
https://doi.org/10.1007/978-3-030-39951-1_19

Event Sequence Interpretation of Structural Geomodels 319

1 Introduction

Trying to let machines cognize the physical world is a difficult problem of arti-
ficial intelligence [14,16,25,28]. The inference of the occurrences of past events
and the temporal relations of the events from the current state is an important
part of the cognition [20–22]. We call this kind of tasks Event Sequence Inter-
pretations (ESI). The ESI aims at understanding how the current state of the
system was produced and by which events. It comprises the recognition process
that starts with the perception of evidences of past event occurrences, and the
reasoning process that infers the chronological order of the past events. In this
paper, we focus on the ESI of structural geomodels, and propose a knowledge-
based approach to extract tectonic sequences from raw structural geological data.
Geological structures refer to the forms left by deformations of rock masses under
the actions of tectonic events [9]. A tectonic sequence is a sequence of tectonic
events in which each event is sorted by their time order, indicating the evolu-
tion of the structural geomodel. The tectonic sequence interpretation is crucial
for the cognition of structural geomodels, since the tectonic sequences actually
determine the morphology and spatial distributions of geological objects. Geo-
logical structural data is a typical kind of spatial geometric data, which describes
the geometry of geological structures by point coordinates in 3D space, so our
approach of ESI can also be extended to other spatial geometric models.

It can be seen form many examples of ESI that the geological ESI mainly
relies on manual solutions [4,7,10,24,26,30]. In traditional ESI processes, geol-
ogists first derive geological interfaces form geophysical measurements such as
seismic data (Fig. 1(a)). Nowadays, some deep learning algorithms can also per-
form intelligent geological interface identification, such as the examples shown in
Fig. 1(b) and (c) [11,19,27]. After the extraction of geological interfaces, which
tectonic events have occurred can be learnt according to the morphology of the
interfaces. Then, the spatial topological relations between the geological objects
can be determined through geological observations (e.g. outcrop, well logs etc.)
and spatial positions showed in seismic images. Geological events can be ordered
by time based on the spatial topological relations that contain the time order
meanings. However, ESI as a cognitive task is usually not a narrow task with
clear protocols, and manual interpretation relies heavily on personal experience,
which inevitably bring cognitive bias into the results. Even for the same raw
data, there may have multiple interpretations, as shown in [23]. With the reduc-
tion of petroleum resources, the structures faced in geological explorations are
more complicated. Manual ESI is becoming time-consuming and error-prone.

In an overview, we propose: (1) a workflow of ESI in structural geomodels; (2)
an ontology-based meta-model to formally representing event knowledge; (3) an
event pattern matching model called Joint Prototype Model (JPM) to recognize
events and (4) a set of time relationships related to time scales to describe the
time order of tectonic events. To our knowledge, our work is the first to make
computers do event sequence interpretation in structural geomodels. In partic-
ular, our approach works directly on raw geological structural data rather than
symbolic data, which is a challenge to recognize evidences of event occurrences.

320 X. Zhan et al.

Proposing a computer method to do ESI provides the following benefits: (1) The
interpretations form computers can serve as inspirations to help experts get a
higher level of expertise or provide an assistance. (2) Letting computers per-
form ESI can reduce the possibility of human error. (3) ESI promotes computer
cognition of the structural geomodels.

Fig. 1. The examples of (a) geological interfaces identified by manual interpretation
in seismic images; (b) interfaces identified by intelligent horizon tracking; (c) faults
identified by CNN.

The workflow for EI is shown in Fig. 2. Some explanations for this workflow
are as follows: 1© Raw geological structural data can be point clouds, meshes,
and volumetric data representing geological interfaces or bodies. In this paper,
we will use the point clouds; 2© Determine geological objects in the raw data,
and geological objects refer to geological interfaces in this paper, which are three-
dimensional surfaces; 3© The basic features are the “level-0” geometric features
that inherent in geological objects. We will describe it in detail in Sect. 2; 4©
Event pattern matching is to interpret basic features as the event feature with
high-level semantics. The new matching model is call JPM and described in
Sect. 3; 5© Event patterns are instances of the KR model, representing the event
semantics of a group of geometric features of the geological interface; 6© The
spatio-temporal relation table shows the temporal relation meaning of the spatial
topological relations of geological objects; 7© Spatial relation refers to the spatial
topological relation between interfaces; 8© Transform the spatial relations of
interfaces to temporal relations of the events related to the interfaces;

Works such as Abel et al. and Carbonera et al. are similar to ours [1,6], since
both of them deal with problems of event interpretation and their approaches
are also based on knowledge. In [1], it presented the PetroGrapher system to
support visual analysis tasks. The system was developed based on knowledge
inspired by perceptual chunks. The knowledge is used to manage heterogeneous

Event Sequence Interpretation of Structural Geomodels 321

Tectonic Events

Spatial relation analysis

Event ordering

Extract basic features of
each geological object

Temporal relations

Match event patterns by
JPM

Raw geological
structural data

Tectonic sequence

Spatio-temperal
relation transformation

Spatio-temporal
relation table

Event pattern base

support

support

Identify geological
objects of raw data

External knowledge base

Output

Input

Fig. 2. The workflow of Event Sequence Interpretation.

data and perceptual chunk are the knowledge representation primitives. Our
approach is also inspired by organizing knowledge as chunks (the event patterns
in our work). However, the chunks in our work are knowledge representation
structures, instead of knowledge representation primitives. Our structures are
explicit and have rich internal contents. In [6], an expert system for automating
the task of visual interpretation of depositional processes within the domain
of sedimentary stratigraphy is proposed. This approach combines a meta-model
for representing inferential knowledge with foundational ontologies such as UFO.
However, we consider the parthood relations in UFO are not completely suitable
to describe the logic relations of features. Because although the visual chunks
describe visual features, the visual features are still event-centered, and the logic
describing the visual information should better conform to the event logic. Our
approach enhances the representation of logical relations within the chunks by
defining a correlation coefficient and refining three logical relations (subsumption,
concurrency, and composition instead of partOf). Besides, our approach can deal
directly with raw data, while Abel and Carbonera emphasize that their methods
are only used to process symbolic representations. Besides, the above two works
only interpret the events themselves, while we also analyze the time relations of
the events. Both of the above two works apply their approaches in sedimentary
stratigraphy domain while we develop our approach within structural geology
domain. Compared to considering only depositional events in well processes, the
geometric information contained in a structural geomodel is significantly more
complex, and the cognition of events is more challenging.

322 X. Zhan et al.

2 Knowledge Representation

In this section, we present a reusable meta-model for knowledge representation.
The significance of the meta-model is to assign explicit roles to the elements
in knowledge. We call each instance of the meta-model an Event Pattern (EP).
The elements of KR model are defined under the constraints of ontological meta-
properties provided by DOLCE, which is a foundational ontology [5]. It ensures
that our model conforms to a widely accepted framework. This approach facili-
tates communication in the field and the possibility of the model being expanded
in the future. The content of each EP is specified in terms of the concepts pro-
vided by specific domain ontologies. For example, reusing the classes of Struc-
turalGeoOntology, such as the Fold class, to describe the concepts in the event
pattern of folding [3]. The knowledge we want to represent in event patterns is
the correlation between geometric features of geological objects and the tectonic
event occurrences, that is, what geometric features can be considered as the evi-
dences of tectonic events. In other words, the event patterns explicitly show the
external manifestations of tectonic events in structural geomodels.

We define the EP as a triple consisting of an GeoObject (GO), an Tecton-
icEvent (TE), and an EventFeature (EF): EP = 〈GO,TE,EF 〉. The Object
refers to the conceptual mapping of an observed object that is the participant
of the event. The Event is the event semantics of this EP. The nature of Event-
Feature is a collection of geometric features that represents the geometric per-
formance of the event. Each instance of Event Pattern Elements (EPE) has a
mapping to some specific type of concepts or relations of the foundational ontol-
ogy, respecting constraints of meta-properties. The entities involved in DOLCE
can be called particulars (P). DOLCE partitions particulars into six basic cat-
egories: objects (O), events (E), individual qualities (Q), regions (R), concepts
(C), and arbitrary sums (AS) [5]. These three elements of EP can map to the
categories of object, event, and arbitrary sum respectively according to DOLCE.
AS collects mixed entities that are obtained as sum of elements in different basic
categories. The internal elements of EventFeature will be described below.

In EP, the internal structure of EventFeature is the focus of our research. In
[12,13], there is a determinate-determinable relation (dD) used to assign partial
orders to properties. We consider that the property mentioned here can be con-
sidered equal to the individual quality in DOLCE. dD(F,G) means that entities
that have the property F also have the (more general) property G and entities
that have the property G have at least one of the (more specific) properties that
are the determinates (D) of G, among which there is F [5]. This relation allows
us to organize properties in a hierarchical way (tree-leaves structure). The most
specific properties are called basic properties. Except the basic properties, other
properties (called general properties) are all composed of basic properties, which
express a higher level of semantics. In EP, we call each property a feature (all
features can be mapped to individual qualities of DOLCE). Then features can
also be divided into basic features (BF) and general features (GF). However, as
a whole element, EF should contain another kind of elements to combine those
features together. This element is the relation that describe the logical relation

Event Sequence Interpretation of Structural Geomodels 323

between features. There are three kinds of relations defined for entities in mixed
entities (aka AS) in DOLCE: P(x,y) stands for “x is part of y”, O(x,y) for “x
overlaps with y”, and SUM(z,x,y) for “z is the mereological sum of x and y”.
When they are mapped to EP, we can define the corresponding relations as sub-
sumption relation (SubR), concurrency relation (ConR), and composition relation
(ComR). The three redefined relations are given event-related semantics. SubR,
ConR, and ComR map to part of, overlap, and sum respectively.

– Subsumption relation: A feature can subsume or be subsumed by other fea-
tures; a feature subsumed by another is called a sub-feature (subf) of the
super-feature (supf).

– Concurrency relation: If feature fi is accompanied with feature fj at above
a specified probability threshold, there is a concurrency relation between fi
and fj .

– Composition relation: If a feature f can be decomposed to several features
fi(i > 0) with smaller granularity, and while all fi exist means the existence
of f , there exists composition relation between f and fi.

In summary, EventFeature can be partitioned into two categories: features, and
relations, which is the reason EF maps to the AS category in DOLCE. We
have the representation EF = 〈SF, SR〉, where SF refers to the set of fea-
tures and SR refers to the set of relations. SF = {gf0, . . . , gfn, bf0, . . . , bfm},
where gfi and bfi represent the instances of general and basic feature. SR =
{subr0, . . . , subrn, conr0, . . . , conrm, comr0, . . . , comrk}, where subri, conri, and
comri represent instances of subsumption relations, concurrency relations, and
composition relations respectively. To enhance the representation of logical infor-
mation in EP, here we provide a numerical measurement to measure the strength
of the correlation between two features. The measurement is called correla-
tion coefficient (r). The correlation coefficient of two features fi and fj is
r(fi, fj) ∈ [0, 1]. It is obvious that correlation coefficient corresponds to the
category quality (Q). For the subsumption relation, the correlation coefficient
represents the probability of the existence of the super-feature when the sub-
feature exists. For concurrency relations, the correlation coefficient represents
the probability of one feature existence when another feature exists. For composi-
tion relations, the correlation coefficient represents the probability of the feature
existence when the smaller feature exists. We have more specific representations
of relations: SubR = 〈supf, subf, r〉,ConR = 〈fi, fj , r〉, and ComR = 〈f, fi, r〉.

We mentioned above that all features are specifically described at the most
basic level by basic features, and of course with specific values. We consider that
a basic feature is universally applicable to a domain and basic features can be
extracted from all objects in the domain. When the domain is within geometric
objects, the type of basic feature includes point, edge, plane, location, direction,
type, size, angle, vector . Each basic feature is associated with a quale structure
(QS), which defines the data type (quale type, QT) and possible values the basic
feature can assume (value domain, VD). The types of data include point, vector,
angle, symbol . Therefore, we have the representations that the basic feature
contains a feature type (FT) and a quale structure (QS): BF = 〈FT,QS〉 where

324 X. Zhan et al.

QS = 〈QT, V D〉. The basic features also bridge the data and the event pattern
(provide the way to map data to conceptual domain). General features can be
represented as a pair: GF = 〈SD,SAF 〉. SD refers to the set of determinates of
the GF while SAF is a set of associated features that have logical relations with
the GF. SAF and SD could contain both general features and basic features:
SAF = {gf0, . . . , gfn, bf0, . . . , bfm}, SD = {gf0, . . . , gfn, bf0, . . . , bfm}.

Synthetically speaking, the overall structure of the KR meta-model is
described in UML manner as shown in Fig. 3. The proposed meta-model dif-
fers from the traditional ontology based KR model. Traditional ontologies are
concept-centered, there exist deficiencies while modeling knowledge: (1) sepa-
rateness of concepts (the observed entity, event, features and logical relations
of features are not organized as a whole knowledge unit); (2) lack of the direct
representation of inference knowledge (traditional conceptual relations like con-
stitution, dependence, parthood etc. are not enough to express the event-level
associations among features); (3) lack of the constraints from foundational ontol-
ogy, which leads to the significant differences between some KR models, even in
the same domain. These differences can make it difficult to share and manage
knowledge. To our knowledge, our approach is the first to propose the pattern
of the performances of events (not describing the event itself). Event patterns
organize two kinds of semantics (event and geometry) as a knowledge unit. Our
meta-model provides an easily reusable and well-founded framework to model
event-performance knowledge in spatial geometric models.

Here we take the representation of the folding event knowledge as an example.
Folding is a common tectonic event that widely exist in subsurface and one of
the major tectonic deformation events. The event pattern of folding is shown
in Fig. 4 (at the end of the document). Domain concepts in the event pattern
are provided by the StructuralGeoOntology [3]. Composition relations can be
directly extracted form the memberships of features, so we did not express them
in the UML graph. Event patterns can be easily produced through concepts and
concept hierarchies provided by specific domain ontologies.

3 Recognition of Events

In this section, we will present our approach to events recognition by pattern
matching techniques. We want to emphasize that it is almost impossible to cap-
ture the complete tectonic sequence in some situations. Because the evidences
of event occurrences may be completely overprinted by later events and cannot
be found in the current state.

3.1 Events and Objects

Before describing the specific method of event recognition, we need to clarify
which events and objects are within our scope of discussion. According to the
affects to rock masses, tectonic events are inherited by three subclasses: rock
generation, rock destruction, and rock deformation. Rock generation represents

Event Sequence Interpretation of Structural Geomodels 325

Event Pattern

+ geological object: GeoObject
+ tectonic event: TectonicEvent
+ event feature: EventFeature

EventFeature

+ set of features: BasicFeature and GeneralFeature
+ set of logical relations: LogicalRelation

GeneralFeature

+ set of associated features: BasicFeature and
GeneralFeature
+ set of determinates: BasicFeature and
GeneralFeature

CompositionRelation

+ feature: BasicFeature or GeneralFeature
+feature_i: BasicFeature or GeneralFeature
+ correlation coefficient: float

SubsumptionRelation

+ correlation coefficient: float

LogicalRelation

1

1

0..*

1..*

1

1

1

0..*

BasicFeature

+ quale structure: QualeStructure
+ feature type: FeatureType

QualeStructure

+ quale type: QualeType
+ value domain: ValueDomain

0..*

1..*

1 0..*

0..* 0..*

+ sub-feature: BasicFeature or GeneralFeature

+ sup-feature: BasicFeature or GeneralFeature

1

ConcurrencyRelation

+ feature_i: BasicFeature or GeneralFeature
+ feature_j: BasicFeature or GeneralFeature
+ correlation coefficient: float

0..*

10..*

0..*

0..*

0..*

12

<<enumeration>>

FeatureType

+ point
+ plane
+ edge
+ location
+ direction
+ type
+ size
+ angle
+ vector

<<enumeration>>

QualeType

+ point
+ vector
+ angle
+ label

Fig. 3. The knowledge representation meta-model described by UML.

Event Pattern

+ horizon: Geoobject
+ folding: TectonicEvent
+ folding feature: EventFeature

Extreme_Point

+ x coordinate: float
EventFeature

(folding)

:: GeneralFeatures:
+ fold size: Fold_Size
+ fold attitude: Fold_Attitude
+ fold location: Fold_Location
+ fold shape: Fold_Shape
+ fold mechanism: Fold_Mechanism
+ profile plane: Profile_Plane

+ crest line: Ridge_Line
+ trough line: Ridge_Line
+ hinge line: Hinge_Line
+ fold limb:Fold_ Limb
+ fold facing: Fold_Facing

General_Location

+ region_name: string

Fold_Shape

+ fold tightness: Fold_Tightness

Ridge_Line

+ set of points: Extreme_Point

Angle

+ degree: float

Edge

+ point ID: int

+ y coordinate: float
+ y coordinate: float

+ point type: Point_Type

+ tolerance: float Plane
(ax+by+cz+d=0)

+ a: float
+ b: float

+ c: float

Direction

+ angle: Angle
+ orientation: Orientation

General_Size

+ volume: float
+ area: float

+ size class: Size_Class

+ set of edges: Edge

Profile_Plane

+ set of planes: Plane

Hinge_Line

+ set of points: Maxcurvature_Point
+ set of edges: Edge

Maxcurvature_Point

+ x coordinate: float
+ y coordinate: float
+ y coordinate: float

+ curvature: float

+ is_cylindrical: boolean

+ mountain_range: string
+ canyon: string

+ is_symmetric: boolean

Tightness

+ tightness type: Tightness_Type

Curve

+ curve type: Curve_Type

+ fold type: Fold_Type

+ is_harmonic: boolean

Fold_Mechanism

+ mechnism type: Mechnism

Mechanism

+ mechanism type: Mechanism_Type

Fold_Attitude

+ dip: Direction
+ dip angle: Angle
+ trend: Plane

+ strike: Direction

Fold_Size

+ amplitude: float
+ wavelength: float

+ general size: General_Size

<<enumeration>>

Size_Class

+ microscopic: string
+ mesoscopic: string
+ macroscopic: string

<<enumeration>>

Curve_Type

+ anticline: string
+ syncline: string

+ d: float

<<enumeration>>

Orientation

+ N: string
+ NE: string
+ E: string
+ SE: string
+ S: string
+ SW: string
+ W: string
+ NW: string

<<enumeration>>

Tightness_Type

+ gentle: string
+ open: string
+ tight: string
+ isoclinal: string

<<enumeration>>

Mechanism_Type

+ buckling: string
+ bending: string
+ passive: string

Fold_Location

+ layer location: Layer_Location
+ general location: General_Location

Fold_Limb

+ interlimb angle: Angle
+ limb type: Limb

Limb

+ limb type: Limb_Type

<<enumeration>>

Limb_Type

+ straight: string
+ curved: string+ monocline: string

+ synformal anticline: string
+ antiformal syncline: string

+ fold type: Fold_Type
+ fold tightness: Fold_Tightness

<<enumeration>>

Point_Type

+ mininum: string
+ maxinum: string

Fold_Type

+ curve type: Curve

Fold_Tightness

+ tightness type: Tightness

+ fold facing: Fold_facing

Fold_Facing

+ facing type: Facing
+ normal vector: Vector

Vector

+ x coordinate: float
+ y coordinate: float

+ y coordinate: float

+ feature type: point

+ feature type: point

<<enumeration>>

Facing_Type

+ upward: string
+ downward: string

Layer_Location

+ depth: float
+ thickness: float

Facing

+ facing type: Facing_type

:: BasicFeatures
+ edge: Edge
+ extreme point: Extreme_Point
+ maxcurvature point: Maxcurvature_Point
+ facing type: Facing
+ vector: Vector
+ limb type: Limb
+ layer location: Layer_Location
+ general location: Gerneral_location
+ angle: angle
+ thghtness type: Tightness
+ curve type: Curve
+ direction: Direction
+ plane: Plane
+ general size: General_Size
+ mechanism type: Mechanism

+ feature type:vector

+ feature type:type

+ feature type:type

+ angle: Angle

+ feature type:type

+ feature type:type

+ feature type:type

+ feature type:location

+ feature type:location

+ feature type: edge

+ feature type: angle

+ feature type:plane

+ feature type:size

+ feature type:direction

+ strike: Angle
+ dip: Angle

:: ConcurrencyRelations
+ (trough, crest, 1)
:: SubsumptionRelations
+ (profile_plane, plane,1)
+ (fold mechanism, mechanism, 1)
:: CompositionRelations

Fig. 4. The event pattern of folding.

326 X. Zhan et al.

processes in which non-rock mass materials (magma and sediment) are converted
into rock masses. This subclass includes two events: crystallization, and sedimen-
tation. Rock destruction refers to processes in which of rock mass is transformed
into non-rock mass material, including dissolution, erosion. Rock deformation
corresponds to processes with only the shape or volume of the rock changes,
including faulting, folding and diapirism. The above six events are the main
considerations in this paper. For the sake of simplicity of descriptions, structural
geomodels usually use geological interfaces to represent geological structures.
These geological interfaces are the objects to be observed. Table 1 shows the
correspondence between the events and the observed objects.

Table 1. Events with their corresponding geological objects.

Event Object (geological interface)

Crystallization Intrusion interface

Sedimentation Horizon

Dissolution Karst cave interface

Erosion Unconformity

Faulting Fault

Folding Fold

Diapirism Diaper interface

3.2 Event Pattern Matching Model

In cognitive psychology, there are two most used models that can explain the
human recognition process: the template matching model, and the prototype
matching model [17]. The template matching model states that copies of external
models, called templates, are stored in the knowledge base. They have one-to-one
correspondences with external models. Prototype matching model states that a
prototype is an internal representation of a class of objects, that is, a general
representation of all individuals of a category [8]. Template matching model
demands that the input object must be highly compliant with the template to
be recognized, which is a strong condition and unsuitable for cognitive tasks such
as ESI. We also consider that the external manifestations of a type of events has
no fixed “form”, but it should have a fixed “structure”. This fixed structure is
the event pattern, which is essentially a complex prototype. At the same time, we
have pointed out that in EP, the event feature is composed of multiple features
(general and basic features). Each feature is also a highly general description of
a class of geometric features, so the features in the event patterns should also be
prototypes of the class of geometric features. Matching of multiple prototypes is
involved in the matching process of an event pattern. Therefore, we proposed a
new pattern matching model called the joint prototype model (JPM).

Event Sequence Interpretation of Structural Geomodels 327

Latecki et al. have mentioned human perception of shape is based on the
visual part of the object, making a single important visual part sufficient to
identify the entire object [15]. Therefore, as a task similar to human perception
of shape, what we need to do is to identify key features in the observed object to
identify the whole object. Here comes the problem of determining which features
can lead to the matching of the pattern. Obviously, different features should have
different degrees of influence on the pattern matching. We divide the features of
the pattern into three categories (not on the ontological level): exclusive features
(EF), strong features (SF), and common features (CF). The exclusive feature is
a feature that exists only in a certain pattern and can directly determine the
recognition of this pattern. The strong features appear only in a small number
of patterns, and the matching of a strong feature can greatly reduce the search
range of the patterns. The common feature widely appears in multiple patterns,
and other features need to be matched to recognize patterns. We construct a
Bayesian network shown in Fig. 5 to determine whether an event pattern is
matched. Each directed edge in the network can be assigned to a conditional
probability by users. The given conditional probability meets the following rules:
P (EP | EF) = 1, 1 > P (EP | SF) � P (EP | CF) > 0. If two features have
cc = 1, then P (fa | fb) = 1. The patterns are also associated with a probability
threshold value provided by users that indicates probability requirement for the
recognition of the pattern.

As for the matching of individual prototypes, due to the limit of space, we
will not dwell on specific methods. The matching of each prototype can follow
the method proposed in [18].

Folding

Hinge
line

Crest line Trough
line

Fold size

Fold limb

Fold
attitude

Fold
location

Fold
shape

Fold
mechanism

Profile
plane Fold typeFold

tightness

Fold
facing

exclusive feature

strong feature

common feature

EdgeExtreme
point

Maxcurvature
point Facing

Vector

Limb

Layer
location

General
locationAngle

Tightness CurveDirection PlaneGeneral
size

Mechanism

Fig. 5. The Bayesian network example of the folding event pattern.

4 Events Ordering

One of the main steps of ESI is to determine the temporal relations of the events
according to the spatial relations of the observed objects. First, the binary tem-
poral relations between events needs to be clearly defined. Although all tectonic

328 X. Zhan et al.

events take place in a time interval, the formation of geological models takes a
long time. When the occurrence time of events is very short relative to the history
of the entire model, they can be considered to occur at a certain moment. For
example, people are accustomed to not considering the fault formation process,
and the formation time of the stratum is still significant compared to the his-
tory of the entire model. So in the definition of time relations, we must not only
consider the relations between two time periods, but also the relations between
a time period and a moment and two moments to account for the complete-
ness. Therefore, time relations can be divided into three categories: interval to
interval, interval to moment, and moment to moment. Allen has already intro-
duced an interval-based temporal logic [2]. The whole temporal relation series are
expressed in Fig. 6. The spatial topological relations can be extracted according
to the positional status of the point clouds. The GIS software ArcGIS provides
the Aggregate Points tool to create polygons around clusters of proximate points,
which can be used to find the boundaries of point clouds. By computing the inter-
sections of these closed boundary polygons, the spatial topological relations of
interfaces are obtained.

E1

E2

E2

E1

E1

E2

E2

E1

E2

E1

me

E1

E2

E1 before E2

E1 startWith E2

E1 during E2

E1 synchronousTo E2

E1 notBefore E2

E1 finishWith E2

E2

E2

E2

me

E1 before E2

E1 during E2

E1

me

E1 before E2
E1

E2

E1

E2
E1 incomparableTo E2

E1

E2

E1
E1 startWith E2

E2

E1
E1 finishWith E2

E2

E1
E1 incomparableTo E2

E1
E1 notBefore E2

E1

E2
E1 notBefore E2

E1 synchronousTo E2

E1

E2
E1 incomparableTo E2

E1E2 E1 follow E2

E2 E1 follow E2

E2

E2

E1

E1 E1 follow E2

E1

Fig. 6. Binary relations that describe the temporal order between events.

According to the correspondence between temporal relations and spatial
topological relations of geological interfaces as shown in Fig. 7 (topological rela-
tions are described in [29]), the temporal relations of objects can be derived from
the spatial relations. DOLCE states that there are different ways for objects and
events of being in time: existing in time vs. occurring in time. So there should
be a conceptual transformation from the temporal relations of objects to the
temporal relations of events. Previously we have performed event recognition
on each object, and each object has been mapped to the events that create it

Event Sequence Interpretation of Structural Geomodels 329

according to Table 1. An object may map to two types of events: the event that
generated the object (called the formation event) and the events that deformed
the object (called the deformation event). An object must have one and only
one formation event, and can have multiple deformation events. Obviously, the
object is directly associated with its formation event, so the time order of the
formation events is exactly the time order of the objects. For deformation events,
they must occur after the formation events (i.e. deformation events notBefore
formation events). We assume that the deformation events do not affect subse-
quent formation events.

Fig. 7. The correspondences of spatial topological relations and temporal relations of
geological interfaces.

5 Experiment

In this section, we apply our approach to the raw structural data of Hashan sur-
vey (located Zhungeer Basin, Xinjiang province, China) to show the effectiveness
of our approach. The recognition of folding event is one of the most challenging
tasks in EI, and our approach is the first to consider folding in event interpreta-
tion. Due to lack of space, we will show only the recognition of folding events in
detail. In the Hashan dataset, the folds are identified as shown in Fig. 8. There
are 7 horizons (namely H1–H7) and 4 faults (namely F1–F4) as in Fig. 8(a). The
basic properties extracted in Fig. 8(b) are the extreme points on the point clouds
of horizons, where the basic properties of H7, H6 and H5 are matched to crest
line features and trough line features by prototype matching. According to the
Bayesian network in Fig. 5, the prototype matching results lead to the matching
of folding event pattern of H7, H6 and H5 (related to the specific conditional
probabilities in the Bayesian network).

When combining tectonic events into tectonic sequences, our general idea is
first to find the formation sequence of strata. Because the formation of strata (i.e.
the formation of horizons) are the most basic tectonic events. Intuitively, other
events occur on the basis that the strata have formed. Then find the relationships
between other events and the formation events of strata. The horizon sequence
is a linear sequence without branches because the relations between strata for-
mations are determinate (not incomparableTo), and the process of events does
not overlap. Steps are as follows:

1. According to the geologic age of each stratum (usually provided in raw data),
the order of the horizons can be obtained.

2. Extract the spatial topological relations among interfaces.

330 X. Zhan et al.

3. According to the spatial topological relations between the interfaces, the pre-
order and post-order surfaces of horizons and unconformable surfaces can be
determined.

4. Determine whether the surfaces are folded surfaces. If the surface is folded,
insert a folding event after the surface formation event.

Fig. 8. The recognition of folding events in Hasan survey. (a) The raw point cloud
data of geological interfaces. (b) The extracted basic properties of horizons. (c) The
identified crest lines (connected red dots) and trough lines (connected green dots).
(Color figure online)

We finally obtained the tectonic sequence of Hashan survey as shown in
Fig. 9. The time order cannot be determined between parallel events, like F1,
F2, F3 and F4. Symbols H1-H7 refer to the sedimentation events that form the
corresponding horizons. Symbols F1-F4 refer to the faulting events that form
the corresponding faults. Symbols Fold1-Fold3 refer to the folding events that
deform H7, H6 and H5.

H7 H6

Fold1

Fold2

H5

Fold3

H4

F1 F3 F2

F4

H3 H2 H1 END

follow
before

notBefore

period event

moment event

START

Fig. 9. The tectonic sequence of Hashan survey.

Event Sequence Interpretation of Structural Geomodels 331

6 Conclusions

In this paper, we present a knowledge-based approach for the event sequence
interpretation task in structural geomodels. Its supported by event patterns
that instantiated from an ontology-based KR model. When working in event
interpretation problems, we face that the interpretation of tectonic events is a
kind of cognitive task without clear protocols, which relies heavily on expert
knowledge. Therefore, we proposed a KR meta-model to make personal knowl-
edge better available for computers to address issues of subjective uncertainty
of manual interpretation. Our KR meta-model is built on the constraints of the
foundational ontology DOLCE, and the content is provided by specific domain
ontologies. Thus, our work explores the roles that foundational ontologies played
in problem solving methods involving visual information. We applied the pro-
posed model to build a well-founded representation of the knowledge about
the geometric performances of tectonic events. Instances of the proposed meta-
model are called event patterns that are used to recognize the evidences of event
occurrences.

References

1. Abel, M., Silva, L.A., De Ros, L.F., Mastella, L.S., Campbell, J.A., Novello, T.:
Petrographer: managing petrographic data and knowledge using an intelligent
database application. Expert Syst. Appl. 26(1), 9–18 (2004)

2. Allen, J.F.: Maintaining knowledge about temporal intervals. In: Readings in Qual-
itative Reasoning About Physical Systems, pp. 361–372. Elsevier (1990)

3. Babaie, H.A., Oldow, J.S., Babaei, A., Lallemant, H.G.A., Watkinson, A.J., Sinha,
A.: Designing a modular architecture for the structural geology ontology. In: Special
Papers-Geological Society of America, vol. 397, p. 269 (2006)

4. Boote, D.R.: The geological history of the Istria ‘depression’, Romanian Black Sea
shelf: tectonic controls on second-/third-order sequence architecture, vol. 464, no.
1, pp. 169–209. Geological Society, London, Special Publications (2018)

5. Borgo, S., Masolo, C.: Foundational choices in DOLCE. In: Staab, S., Studer, R.
(eds.) Handbook on Ontologies. IHIS, pp. 361–381. Springer, Heidelberg (2009).
https://doi.org/10.1007/978-3-540-92673-3 16

6. Carbonera, J.L., Abel, M., Scherer, C.M.: Visual interpretation of events in
petroleum exploration: an approach supported by well-founded ontologies. Expert
Syst. Appl. 42(5), 2749–2763 (2015)

7. Chen, D., Tucker, M.E., Jiang, M., Zhu, J.: Long-distance correlation between
tectonic-controlled, isolated carbonate platforms by cyclostratigraphy and
sequence stratigraphy in the devonian of South China. Sedimentology 48(1), 57–78
(2001)

8. Gero, J.S.: Design prototypes: a knowledge representation schema for design. AI
Mag. 11(4), 26–26 (1990)

9. Groshong Jr., R.H.: 3-D Structural Geology. Springer, Heidelberg (2006). https://
doi.org/10.1007/978-3-540-31055-6

10. Haproff, P.J.: Tectonic evolution of the easternmost Himalayan collisional system.
Ph.D. thesis, University of California, Los Angeles (2018)

https://doi.org/10.1007/978-3-540-92673-3_16
https://doi.org/10.1007/978-3-540-31055-6
https://doi.org/10.1007/978-3-540-31055-6

332 X. Zhan et al.

11. Hoyes, J., Cheret, T.: A review of “global” interpretation methods for automated
3D horizon picking. Lead. Edge 30(1), 38–47 (2011)

12. Johansson, I.: Determinables as universals. Monist 83(1), 101–121 (2000)
13. Johnson, W.E.: Logic. University Press (1921)
14. Kiefer, P., Giannopoulos, I., Raubal, M., Duchowski, A.: Eye tracking for spatial

research: cognition, computation, challenges. Spatial Cogn. Comput. 17(1–2), 1–19
(2017)

15. Latecki, L.J., Lakämper, R., Wolter, D.: Shape similarity and visual parts. In:
Nyström, I., Sanniti di Baja, G., Svensson, S. (eds.) DGCI 2003. LNCS, vol. 2886,
pp. 34–51. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39966-
7 3

16. Li, J., Li, Z., Chen, F., Bicchi, A., Sun, Y., Fukuda, T.: Combined sensing, cog-
nition, learning and control to developing future neuro-robotics systems: a survey.
IEEE Trans. Cogn. Dev. Syst. 11, 148–161 (2019)

17. Lin, H.Y.S., Liao, H.Y.M., Li, J.C.: A cognitive psychology-based approach for 3-D
shape retrieval. In: 2005 IEEE International Conference on Multimedia and Expo.
IEEE (2005). pp. 4-pp

18. Lladós, J., Mart́ı, E., Villanueva, J.J.: Symbol recognition by error-tolerant sub-
graph matching between region adjacency graphs. IEEE Trans. Pattern Anal.
Mach. Intell. 23(10), 1137–1143 (2001)

19. Lomask, J., Clapp, R.G., Biondi, B.: Application of image segmentation to tracking
3D salt boundaries. Geophysics 72(4), P47–P56 (2007)

20. Malik, J., Binford, T.O.: Reasoning in time and space. IJCAI 83, 343–345 (1983)
21. Mastella, L.S., Abel, M., De Ros, L.F., Perrin, M., Rainaud, J.F.: Event ordering

reasoning ontology applied to petrology and geological modelling. In: Castillo, O.,
Melin, P., Ross, O.M., Sepúlveda Cruz, R., Pedrycz, W., Kacprzyk, J. (eds.) The-
oretical Advances and Applications of Fuzzy Logic and Soft Computing. Advances
in Soft Computing, vol. 42, pp. 465–475. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-72434-6 46

22. Mastella, L.S., Abel, M., Lamb, L.C., De Ros, L.F.: Cognitive modelling of event
ordering reasoning in imagistic domains. In: International Joint Conference on
Artificial Intelligence, vol. 19, p. 528. Lawrence Erlbaum Associates Ltd. (2005)

23. Perrin, M., Zhu, B., Rainaud, J.F., Schneider, S.: Knowledge-driven applications
for geological modeling. J. Petrol. Sci. Eng. 47(1–2), 89–104 (2005)

24. Rey, J., Somoza, L., Mart́ınez-Fŕıas, J.: Tectonic, volcanic, and hydrothermal event
sequence on deception Island (Antarctica). Geo-Mar. Lett. 15(1), 1–8 (1995)

25. Silvey, P.E., Norman, M.D.: Embodied cognition and multi-agent behavioral emer-
gence. In: Morales, A.J., Gershenson, C., Braha, D., Minai, A.A., Bar-Yam, Y.
(eds.) ICCS 2018. SPC, pp. 189–201. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-96661-8 20

26. Smalley, I., O’Hara-Dhand, K., Wint, J., Machalett, B., Jary, Z., Jefferson, I.:
Rivers and loess: the significance of long river transportation in the complex event-
sequence approach to loess deposit formation. Quatern. Int. 198(1–2), 7–18 (2009)

27. Wu, X.: Directional structure-tensor-based coherence to detect seismic faults and
channels. Geophysics 82(2), A13–A17 (2017)

https://doi.org/10.1007/978-3-540-39966-7_3
https://doi.org/10.1007/978-3-540-39966-7_3
https://doi.org/10.1007/978-3-540-72434-6_46
https://doi.org/10.1007/978-3-540-72434-6_46
https://doi.org/10.1007/978-3-319-96661-8_20
https://doi.org/10.1007/978-3-319-96661-8_20

Event Sequence Interpretation of Structural Geomodels 333

28. Xu, Y., et al.: High performance large scale face recognition with multi-cognition
softmax and feature retrieval. In: Proceedings of the IEEE International Conference
on Computer Vision, pp. 1898–1906 (2017)

29. Zhan, X., Liang, J., Lu, C., Hu, G.: Semantic description and complete computer
characterization of structural geological models

30. Zhang, Z., Wang, S., Yang, X., Jiang, F., Shen, J., Li, X.: Evidence of a geological
event and environmental change in the catchment area of the Yellow River at 0.15
Ma. Quatern. Int. 117(1), 35–40 (2004)

Author Index

Aït-Ameur, Yamine 263
Alattar, Munqath 1

Beierle, Christoph 22
Benyagoub, Sarah 263
Brijder, Robert 42

Dvořák, Wolfgang 79

Ferrarotti, Flavio 90

Galliani, Pietro 106
Ghilezan, Silvia 122
González, Senén 90
Grant, John 140
Gyssens, Marc 42

Haldimann, Jonas 22
Hu, Guangmin 318

Ivetić, Jelena 122

Kašterović, Simona 122

Lu, Cai 318

Mahmood, Yasir 157
Medved, Dennis 175
Meier, Arne 157
Mittelmann, Munyque 191
Murai, Ryo 211

Nilsson, Johan 175
Nugues, Pierre 175

Ognjanović, Zoran 122

Pandžić, Stipe 222
Parisi, Francesco 140
Perrussel, Laurent 191

Rapberger, Anna 79
Ravve, Elena V. 242

Sali, Attila 1
Sano, Katsuhiko 211
Santos, Yuri David 58
Savić, Nenad 122
Schewe, Klaus-Dieter 90, 263
Simpson, Michael 301
Srinivasan, Venkatesh 301

Thalheim, Bernhard 281
Thomo, Alex 301
Turull-Torres, José María 90

Väänänen, Jouko 106
Van den Bussche, Jan 42

Wallner, Johannes P. 79
Woltran, Stefan 79

Xia, Daniel 301

Zhan, Xianglin 318

	Preface
	Organization
	Abstracts of Invited Talks
	First-Order Logic of Information Flows: Expressibility, Primitivity, Input-Output Properties, and Limited Access Patterns
	Implicit Coordination of Mobile Agents
	Computation on Structures: Behavioural Theory, Logic and Complexity
	Description Logics for Typicality and Nonmonotonic Reasoning
	Contents
	Functional Dependencies in Incomplete Databases with Limited Domains
	1 Introduction
	2 Basic Definitions
	2.1 Strongly Possible Worlds
	2.2 NULL-Free Subschema

	3 Related Work
	4 Complexity of Strongly Possible Keys
	5 Strongly Possible Functional Dependencies
	5.1 Basic Properties of spFD's

	6 Conclusions
	References

	Normal Forms of Conditional Knowledge Bases Respecting Entailments and Renamings
	1 Introduction
	2 Background: Conditional Logic
	3 Reduced Antecedentwise Normal Form
	4 Transforming Knowledge Bases into Reduced ANF
	5 Renamings and Renaming Normal Form (NF)
	6 Generating Knowledge Bases in RANF and NF
	6.1 Basic Algorithm KBbasicra
	6.2 Improved Algorithm KBra

	7 Conclusions and Further Work
	References

	On Matrices and K-Relations
	1 Introduction
	2 Annotated-Relation Algebra
	3 Composition and Equivalence
	3.1 Connection with FO(k)

	4 Matrices
	4.1 MATLANG
	4.2 Simulating MATLANG in (ARA+2)(2)
	4.3 Simulating (ARA+2)(2) in MATLANG
	4.4 Relationship with ARA(3) and Complexity

	5 Conclusion
	References

	Social Consolidations: Rational Belief in a Many-Valued Logic of Evidence and Peerhood
	1 Introduction
	2 Syntax and Semantics
	2.1 Syntax
	2.2 Semantics

	3 Rationality Conditions for Consolidations
	3.1 Epistemic Autonomy Versus Epistemic Authority
	3.2 Rationality Postulates

	4 Social Consolidations
	4.1 Preliminaries
	4.2 Consolidation Policies

	5 Dynamics
	6 Related Work
	7 Conclusions and Future Work
	References

	ASPARTIX-V19 - An Answer-Set Programming Based System for Abstract Argumentation
	1 Introduction
	2 Preliminaries
	2.1 Abstract Argumentation
	2.2 Tracks of ICCMA'19

	3 The ASPARTIX System and Its V19 Edition
	4 Implementation Details
	4.1 Conditional Literals
	4.2 Domain Heuristics
	4.3 Multi-shot Methods

	5 Discussion
	References

	Proper Hierarchies in Polylogarithmic Time and Absence of Complete Problems
	1 Introduction
	2 Polylogarithmic Time Complexity Classes
	3 Logics for Polylogarithmic Time
	4 Problems that Lead to Proper Hierarchies
	5 Proper Hierarchies in Polylogarithmic Time
	6 On Polylogarithmic-Time and Complete Problems
	7 Concluding Remarks
	References

	Diversity, Dependence and Independence
	1 Introduction
	2 Diversity Rank in a General Setting
	3 Examples
	4 From Diversity to Dependence
	5 From Diversity to Independence
	5.1 Dependence/Independence Axioms

	6 Conclusions
	References

	Towards Probabilistic Reasoning in Type Theory - The Intersection Type Case
	1 Introduction
	2 Preliminaries
	2.1 Probabilistic Logic
	2.2 Intersection Type Assignment

	3 Probabilistic Logical System for Lambda Terms with Intersection Types P
	3.1 Syntax of P
	3.2 Semantics of P

	4 The Axiomatization AxP
	5 The Logic PFr(n)
	6 Conclusion
	References

	Measuring Inconsistency in a General Information Space
	1 Introduction
	2 Brief Background on Inconsistency Measures for Propositional Knowledge Bases
	3 General Information Spaces
	4 Transforming a General Information Space to a Propositional Knowledge Base
	5 Examples of Instantiation
	5.1 A Relational Database as a General Information Space
	5.2 A Graph Database as a General Information Space
	5.3 A Blocks World Configuration as a General Information Space

	6 Conclusions and Future Work
	References

	Parameterised Complexity of Model Checking and Satisfiability in Propositional Dependence Logic
	1 Introduction
	2 Preliminaries
	2.1 Parameterised Complexity
	2.2 Propositional Dependence Logic
	2.3 Representation of Inputs as Graphs
	2.4 Considered Parameterisations

	3 Parameterised Complexity of Model Checking in PDL
	4 Satisfiability
	5 Conclusion
	References

	Utilizing Deep Learning and RDF to Predict Heart Transplantation Survival
	1 Introduction
	2 Related Works
	3 Medical Registries
	4 Resource Description Framework
	5 Representing the Data in RDF
	6 Querying the Database
	7 Deep Learning Models
	8 Applications
	8.1 Explore and Understand the Data
	8.2 Predict the Survival Before Transplant
	8.3 Predict the Survival After Transplant
	8.4 Simulating the Impact of Allocation Policies

	9 Conclusion
	10 Future Work
	References

	Game Description Logic with Integers: A GDL Numerical Extension
	1 Introduction
	2 Game Description Logic with Integers
	2.1 Syntax
	2.2 Semantics
	2.3 Model Checking

	3 Translation Between GDLZ and GDL
	3.1 From GDLZ Paths and Models to GDL Models
	3.2 From Finite GDLZ Model to GDL Model
	3.3 From GDL to GDLZ
	3.4 Succinctness

	4 Conclusion
	References

	Craig Interpolation of Epistemic Logics with Distributed Knowledge
	1 Introduction
	2 Overview of Epistemic Logics with Distributed Knowledge Operators
	2.1 Language
	2.2 Kripke Semantics
	2.3 Hilbert Systems

	3 Sequent Calculi of Epistemic Logics with Distributed Knowledge
	4 Main Proof-Theoretic Results
	4.1 Cut Elimination
	4.2 Craig Interpolation Theorem

	5 Concluding Remark
	References

	On the Dynamics of Structured Argumentation: Modeling Changes in Default Justification Logic
	1 Introduction
	2 Logic of Default Reasons
	2.1 Logic of Factive Reasons JTCS
	2.2 Logic of Default Reasons

	3 Dynamic Operations for Default Theories: Introducing Undermining Attack
	3.1 Default Theory Expansion
	3.2 Default Theory Contraction
	3.3 Default Theory Revision
	3.4 The Notion of Undermining

	4 Related Work and Conclusions
	References

	Logic-Based Approach to Incremental Monitoring and Optimization on Strongly Distributed Data Streams
	1 Introduction
	1.1 Monitoring and Optimization on Streams: Related Work
	1.2 A Motivating Example: Alternation of Data Streams
	1.3 Novelty of the Contribution: Logical Tools
	1.4 Incremental Monitoring and Optimization on Strongly Distributed Data Streams
	1.5 Structure of the Contribution

	2 Quantitative Querying
	2.1 Weighted Monadic Second Order Logic
	2.2 Expressive Power of WMSOL

	3 Weighted Translation Schemes
	4 Incremental Analysis of Quantitative Properties of Strongly Distributed Streams
	4.1 Disjoint Union of Weighted Labeled Words
	4.2 Strongly Distributed Systems
	4.3 The General Approach

	5 Conclusion and Discussion
	References

	Realisability of Choreographies
	1 Introduction
	2 P2P Communication Systems and Choreographies
	2.1 Composition of Peers
	2.2 Trace Semantics
	2.3 Choreography-Defined P2P Systems

	3 Characterisation of Realisability
	3.1 The Sequence Condition
	3.2 The Choice Condition
	3.3 Sufficient Conditions for Realisability
	3.4 Choreography Repair

	4 Conclusion
	References

	Schema Optimisation Instead of (Local) Normalisation
	1 Normalisation - the Good, the Bad, the Ugly
	1.1 Local Vertical Normalisation Based on Functional and Other Dependencies
	1.2 Local Vertical Normalisation
	1.3 Inclusion Constraint Maintenance After Decomposition
	1.4 Constraint Sets Instead of Sets of Constraints
	1.5 The Storyline of the Paper

	2 Solutions for Classical Normalisation Approaches
	2.1 Refining Synthesis Algorithms
	2.2 Balancing Between Conceptualisation and Programming Adequacy
	2.3 Accuracy of the Internal Database Structure
	2.4 Infomorphisms Among Schemata
	2.5 Global and Local Vertical Normalisation

	3 Denormalisation
	3.1 State-Of-the-Art for Denormalisation
	3.2 A Matter of Definition
	3.3 Denormalisation Driven by Optimisation

	4 Conclusion
	4.1 Summarising
	4.2 Open Problems

	References

	Strongly Minimal MapReduce Algorithms: A TeraSort Case Study
	1 Introduction
	1.1 Strongly Minimal MapReduce Algorithms

	2 Related Work
	3 Sorting with MapReduce
	3.1 Sampling and Partitioning
	3.2 Even Partitions
	3.3 TeraSort

	4 A New Proof of TeraSort's Minimality
	4.1 Probability Tools
	4.2 Minimality

	5 Proof of TeraSort's Strong Minimality
	5.1 Tightening the Bound

	6 Conclusions
	References

	Event Sequence Interpretation of Structural Geomodels: A Knowledge-Based Approach for Extracting Tectonic Sequences
	1 Introduction
	2 Knowledge Representation
	3 Recognition of Events
	3.1 Events and Objects
	3.2 Event Pattern Matching Model

	4 Events Ordering
	5 Experiment
	6 Conclusions
	References

	Author Index

