
Packing Trees into 1-Planar Graphs

Felice De Luca1 , Emilio Di Giacomo2 , Seok-Hee Hong3 ,
Stephen Kobourov1 , William Lenhart4 , Giuseppe Liotta2 , Henk Meijer5,

Alessandra Tappini2(B) , and Stephen Wismath6

1 Department of Computer Science, University of Arizona, Tucson, USA
2 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy
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Abstract. We introduce and study the 1-planar packing problem: Given
k graphs with n vertices G1, . . . , Gk, find a 1-planar graph that contains
the given graphs as edge-disjoint spanning subgraphs. We mainly focus
on the case when each Gi is a tree and k = 3. We prove that a triple
consisting of three caterpillars or of two caterpillars and a path may not
admit a 1-planar packing, while two paths and a special type of caterpil-
lar always have one. We then study 1-planar packings with few crossings
and prove that three paths (resp. cycles) admit a 1-planar packing with
at most seven (resp. fourteen) crossings. We finally show that a quadru-
ple consisting of three paths and a perfect matching with n ≥ 12 vertices
admits a 1-planar packing, while such a packing does not exist if n ≤ 10.

1 Introduction

In the graph packing problem we are given a collection of n-vertex graphs
G1, . . . , Gk and we are requested to find a graph G that contains the given
graphs as edge-disjoint spanning subgraphs. Various settings of the problem can
be defined depending on the type of graphs that have to be packed and on the
restrictions put on the packing graph G. The most general case is when G is the
complete graph on n vertices and there is no restriction on the input graphs.
Sauer and Spencer [17] prove that any two graphs with at most n − 2 edges
can be packed into Kn; Woźniak and Wojda [19] give sufficient conditions for
the existence of a packing of three graphs. The setting when G is Kn and each
Gi is a tree (i = 1, 2, . . . , k) has been intensively studied. Hedetniemi et al. [10]
show that two non-star trees can always be packed into Kn. Notice that, the
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hypothesis that the trees are not stars is necessary for the existence of the pack-
ing because each vertex must have degree at least one in each tree, which is not
possible if a vertex is adjacent to every other vertex as it is the case for a star.
Wang and Sauer [18] give sufficient conditions for the existence of a packing of
three trees into Kn, while Mahéo et al. [13] characterize the triples of trees that
admit such a packing.

Garćıa et al. [7] consider the planar packing problem, that is the case when the
graph G is required to be planar. They conjecture that the result of Hedetniemi
et al. extends to this setting, i.e., that every pair of non-star trees can be packed
into a planar graph. Notice that, when G is required to be planar, two is the
maximum number of trees that can be packed (because three trees have more
than 3n−6 edges). Garćıa et al. prove their conjecture for some restricted cases,
namely when one of the trees is a path and when the two trees are isomorphic.
In a series of subsequent papers the conjecture has been proved true for other
pairs of trees. Oda and Ota [14] prove it when one tree is a caterpillar or it is
a spider of diameter four. Frati et al. [6] extend the last result to any spider,
while Frati [5] considers the case when both trees have diameter four. Geyer et
al. show that a planar packing always exists for a pair of binary trees [8] and for
a pair of non-star trees [9], thus finally settling the conjecture.

In the present paper we initiate the study of the 1-planar packing problem,
i.e., the problem of packing a set of graphs into a 1-planar graph. A 1-planar
graph is a graph that can be drawn so that each edge has at most one crossing. 1-
planar graphs have been introduced by Ringel [16] and have received increasing
attention in the last years in the research area called beyond planarity (see,
e.g., [4,11]). Since any two non-star trees admit a planar packing, a natural
question is whether we can pack more than two trees into a 1-planar graph. On
the other hand, since each 1-planar graph has at most 4n − 8 edges edges [15],
it is not possible to pack more than three trees into a 1-planar graph. Thus, our
main question is whether any three trees with maximum vertex degree n − 3
admit a 1-planar packing. The restriction to trees of degree at most n − 3 is
necessary because a vertex of degree larger than n − 3 in one tree cannot have
degree at least one in the other two trees. Our results can be listed as follows.

– We show that there exist triples of structurally simple trees that do not admit
a 1-planar packing (Sect. 3). These triples consist of three caterpillars with at
least 10 vertices and of two caterpillars and a path with 7 vertices.

– Motivated by the above results, we study triples consisting of two paths and
a caterpillar (Sect. 4). We characterize the triples consisting of two paths and
a 5-legged caterpillar (a caterpillar where each vertex of the spine has no
leaves attached or it has at least five) that admit such a packing. We also
characterize the triples that admit a 1-planar packing and that consist of two
paths and a caterpillar whose spine has exactly two vertices.

– The packing technique of the results above is constructive and it gives rise
to 1-plane graphs (i.e., 1-planar embedded graphs) with a linear number of
crossings. This naturally raises the question about the number of edge cross-
ings required by a 1-planar packing. We show that any three paths with at
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least six vertices can be packed into a 1-plane graph with seven edge cross-
ings in total (Sect. 5). We also extend this technique to three cycles obtaining
1-plane graphs with fourteen crossings in total.

– We finally consider the 1-planar packing problem for quadruples of acyclic
graphs (Sect. 6). Since, as already observed, four paths cannot be packed into
a 1-planar graph, we consider three paths and a perfect matching. We show
that when n ≥ 12 such a quadruple admits a 1-planar packing and that when
n ≤ 10 a 1-planar packing does not exist.

Preliminary definitions are given in Sect. 2 and open problems are listed in
Sect. 7. Some proofs are sketched or removed and can be found in [3].

2 Preliminaries

Given a graph G and a vertex v of G, degG(v) denotes the vertex degree of v in G.
Let G1, . . . , Gk be k graphs with n vertices; a packing of G1, . . . , Gk is an n-vertex
graph G that has G1, . . . , Gk as edge-disjoint spanning subgraphs. We consider
the case when G is a 1-planar graph; in this case we say that G is a 1-planar pack-
ing of G1, . . . , Gk. If G1, . . . , Gk admit a (1-planar) packing G, we also say that
G1, . . . , Gk can be packed into G. We mainly concentrate on the case when each
Gi is a tree (1 ≤ i ≤ k). In this case (and generally when each Gi is connected),
we have restrictions on the values of k and n for which a packing exists.

Property 1. A 1-planar packing of k connected n-vertex graphs G1, . . . , Gk exists
only if k ≤ 3 and n ≥ 2k. Moreover, degGi

(v) ≤ n − k for each vertex v.

A caterpillar T is a tree such that removing all the leaves results in a path
called the spine. A backbone of T is a path v0, v1, v2, . . . , vk, vk+1 of T where
v1, v2, . . . , vk is the spine of T and v0 and vk+1 are two leaves adjacent in T to
v1 and vk, respectively. T is h-legged if every vertex of its spine has degree either
2 or at least h + 2 in T .

3 Trees that Do Not Admit 1-Planar Packings

In this section we describe triples of trees that do not admit a 1-planar packing.

Theorem 1. For every n ≥ 10, there exists a triple of caterpillars that does not
admit a 1-planar packing.

Proof. The triple consists of three isomorphic caterpillars T1, T2, T3 with n ≥ 10
vertices. Each Ti has a backbone of length 5 and n − 5 leaves all adjacent to the
middle vertex of the spine, which we call the center of Ti. First, notice that each
Ti satisfies Property 1, i.e., degTi

(v) ≤ n − 3. Namely, the vertex with largest
degree in Ti is its center, which has degree n−3. Let G be any packing of T1, T2,
and T3 and let v1, v2, and v3 be the three vertices of G where the three centers
of T1, T2, T3, respectively, are mapped. The three vertices v1, v2, and v3 must
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be distinct because otherwise they would have degree larger than n − 1 in G,
which is impossible. For each vi we have degTi

(vi) = n−3 and degTj
(vi) ≥ 1, for

j �= i. This implies that degG(vi) = n − 1 for each vi. In other words, each vi is
adjacent to all the other vertices of G. Thus, G contains K3,n−3 as a subgraph.
Since n ≥ 10 and K3,7 is not 1-planar [2], G is not 1-planar. ��

Motivated by Theorem 1, we consider triples where one of the caterpillars is
a path. Also in this case there exist triples that do not have a 1-planar packing.

Theorem 2. There exists a triple consisting of a path and two caterpillars with
n = 7 vertices that does not admit a 1-planar packing.

Proof. Let Ti (i = 1, 2) be a caterpillar with a backbone of length four such that
one of the two internal vertices has degree three and the other one has degree
four. Let G be a packing of T1, T2 and a path P of 7 vertices. Let v1, v2, v3,
and v4 be the four vertices of G where the internal vertices of the backbones
of T1 and T2 are mapped to. We first observe that v1, v2, v3, and v4 must be
distinct. Suppose, as a contradiction, that two of them coincide, say v1 and v2;
then degT1

(v1) + degT2
(v1) ≥ 6. On the other hand degP (v1) ≥ 1, and therefore

degG(v1) ≥ 7, which is impossible (since G has only 7 vertices). Denote by G1,2

the subgraph of G containing only the edges of T1 and T2. Two vertices among
v1, v2, v3, and v4, say v1 and v2, have degree 5 in G1,2, while the other two
have degree 4 in G1,2. Consider now the edges of P . Since the maximum vertex
degree in a graph of seven vertices is six, v1 and v2 must be the end-vertices of
P , while v3 and v4 are internal vertices. This means that they all have degree
6 in G. The vertices distinct from v1, v2, v3, and v4 have degree 2 in G1,2 and
degree 4 in G. Thus in G there are four vertices of degree 6 and three vertices
of degree 4. The only graph of seven vertices with this degree distribution is the
graph obtained from K7 by deleting all the edges of a 3-cycle, which is known
to be non-1-planar [12]. ��

4 1-Planar Packings of Two Paths and a Caterpillar

In this section we prove that a triple consisting of two paths P1 and P2 and a
5-legged caterpillar T with at least six vertices admits a 1-planar packing. Let
P be the backbone of T and let P ′

1 and P ′
2 be two paths with the same length

as P . We first show how to construct a 1-planar packing of P , P ′
1 and P ′

2. We
then modify the computed packing to include the leaves of the caterpillar; this
requires transforming some edges of P ′

1 and P ′
2 to sub-paths that pass through

the added leaves. The resulting packing is a 1-planar packing of P1, P2 and T .
Let Γ be a 1-planar drawing, possibly with parallel edges, and let e be an

edge of Γ . If e has one crossing c, then each of the two parts in which e is divided
by c are called sub-edges of e; if e has no crossing, e itself is called a sub-edge of
e. Let v be a vertex of Γ ; a cutting curve of v is a Jordan arc γ such that: (i) γ
has v as an end-point; (ii) γ intersects two edges e1 = (u1, v1) and e2 = (u2, v2)
(possibly u1 = u2 and/or v1 = v2); (iii) γ does not intersect any other edge of
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Fig. 1. A 5-leaf addition operation. The cutting curve is shown with a zig-zag pattern
on it.

Γ ; (iv) e1 and e2 do not cross each other; (v) if e1 and e2 are parallel edges
(i.e., u1 = u2 and v1 = v2), they have no crossings. The stub of ei with respect
to γ is the sub-edge of ei intersected by γ (i = 1, 2). Given a cutting curve γ
of a vertex v, and an integer k ≥ 5, a k-leaf addition operation adds k vertices
w1, w2, . . . , wk and the edges (v, w1), (v, w2), . . . , (v, wk) to Γ in such a way that:
(i) the added vertices subdivide the stubs of both e1 and e2 with respect to γ;
(ii) the subgraph induced by u1, u2, v1, v2, w1, w2, . . . , wk has no multiple edges
(see Fig. 1 for an example). In other words, a leaf addition adds a set of vertices
adjacent to v and replaces the stubs of e1 and e2 with two edge-disjoint paths.
This operation will be used to modify the 1-planar packing of P , P ′

1 and P ′
2 to

include the leaves of the caterpillar. When the value of k is not relevant, a k-leaf
addition will be simply called a leaf addition.

Lemma 1. Let Γ be a 1-planar drawing possibly with parallel edges, let v be a
vertex of Γ and let γ be a cutting curve of v. It is possible to execute a k-leaf
addition for every k ≥ 5 in such a way that the resulting drawing is still 1-planar.

Proof. Denote by e1 and e2 the two edges crossed by γ. If one of them or both
are crossed in Γ replace their crossing points with dummy vertices. Let e′

i be
the stub of ei with respect to γ (if ei is not crossed in Γ , e′

i coincides with ei).
After the replacement of the crossings with the dummy vertices the two stubs
e′
1 and e′

2 have no crossing. Since γ does not cross any edge distinct from e1 and
e2, the drawing Γ ′ obtained by removing e′

1 and e′
2 has a face f whose boundary

contains the vertex v and all the end-vertices of e′
1 and of e′

2 (there are at least
two and at most four such vertices). The idea now is to insert into the face
f , without creating any crossing, a gadget that realizes the k-leaf addition for
the desired value of k ≥ 5. A gadget has k vertices that will be added to Γ , a
vertex that will be identified with v, and four vertices a, b, c, and d that will
be identified with the end-vertices of e′

1 and e′
2. The four vertices a, b, c, and

d will be called attaching vertices and the edges incident to them will be called
attaching edges. In order to guarantee that the leaf addition is valid and that the
drawing Γ ′′ obtained by the insertion of the gadget inside f is 1-planar, we have
to pay attention to two aspects: (i) if an attaching edge is crossed in the gadget,
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Fig. 2. Gadgets for the proof of Lemma 1. (a)–(d) and (i) are used for parallel edges;
(e)–(h) and (j) are used for non-parallel edges.

then its attaching vertex cannot be identified with a dummy vertex (otherwise
when we remove the dummy vertex we obtain an edge that is crossed twice); (ii)
if two attaching vertices of the gadget are coincident (because two end-vertices
of e′

1 and e′
2 coincide), then the corresponding attaching edges must not have

the second end-vertex in common in the gadget (otherwise the leaf addition is
not valid because it creates multiple edges). We use different gadgets depending
on whether e1 and e2 are parallel edges or not. If they are parallel edges, we use
the gadgets of Figs. 2(a)–(d) and (i). Notice that in this case, e1 and e2 are not
crossed by definition of cutting curve. It follows that f has no dummy vertex and
(i) is guaranteed. On the other hand, both end-vertices of e1 and e2 coincide and
therefore the end-vertices of the attaching edges that are not attaching vertices
must be distinct. This is true for the gadgets used in this case. If e1 and e2 are
non-parallel, we use the gadgets of Figs. 2(e)–(h) and (j). All these gadgets have
only one attaching edge that is crossed (labeled d in the figure); also, vertex
d can be identified with vertex c without creating multiple edges. If e1 and e2
are non-parallel, at most two end-vertices of e′

1 and e′
2 are dummy; they cannot

belong to the same stub, and they cannot coincide (because e1 and e2 do not
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(a) n′ = 4k (b) n′ = 4k + 1 (c) n′ = 4k + 2 (d) n′ = 4k + 3

Fig. 3. 1-planar packings of three paths with n′ ≥ 8 vertices (case k = 3); A cutting
curve is shown (zig-zag pattern) for each internal vertex of the black path.

cross each other). Thus we can identify d with a non-dummy vertex and we can
identify c and d if needed. ��

We are ready to describe our construction of a 1-planar packing of P1, P2,
and T . We use different techniques for different lengths of the backbone of T .

Lemma 2. Two paths and a 5-legged caterpillar whose backbone contains n′ ≥ 6
vertices admit a 1-planar packing.

Proof. We start with the construction of a 1-planar packing of the three paths
P ′
1, P ′

2 and P . Let n′ be the number of vertices of P ′
1, P ′

2 and P , assume first that
n′ ≥ 8 and n′ ≡ 0 (mod 4). A 1-planar packing of P ′

1, P ′
2 and P for this case is

shown in Fig. 3(a) for n′ = 16 and it is easy to see that it can be extended to any
n′ multiple of 4. Assume that the backbone P of T is the path shown in black
in Fig. 3(a). To add the leaves of T to the construction we define a cutting curve
for each vertex that has some leaves attached; we then execute a leaf addition
operation for each such vertex. By Lemma 1, it is possible to execute each leaf
addition so to guarantee the 1-planarity of the resulting drawing. The cutting
curve for each internal vertex of P is shown in Fig. 3(a) with a zig-zag pattern.
Note that, regardless of the order in which the leaf additions are executed, the
cutting curves remain valid.

Suppose that n′ ≥ 8 and n′ �≡ 0 (mod 4). We first construct a 1-planar pack-
ing of three paths with n′′ = 4k vertices (with k = �n′

4 	) using the same construc-
tion as in the previous case and then we add one, two or three vertices as shown
in Figs. 3(b)–(d), which also show the cutting curves for each internal vertex of
P . If n′ is 6 or 7, we use the same approach; the difference is in the construction
of the 1-planar packing of P ′

1, P ′
2 and P . The construction for such a packing

and the cutting curves for the internal vertices of P are in Figs. 4(a)–(b). ��
Lemma 3. Two paths and a 5-legged caterpillar T whose backbone contains
n′ = 5 vertices admit a 1-planar packing, unless T is a path.

Proof. If T is a path, then P1, P2 and T are all paths of length five, and by
Property 1, a 1-planar packing of P1, P2 and T does not exist. Suppose therefore
that at least one internal vertex of the backbone P of T has some leaves attached.
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(a) n′ = 7 (b) n′ = 6 (c) n′ = 5

Fig. 4. 1-planar packings of three paths with n′ ∈ {5, 6, 7} vertices, with a cutting
curve (zig-zag pattern) for each internal vertex of the black path.

We use an approach similar to the one of Lemma 2. However, as just explained,
a 1-planar packing of P ′

1, P ′
2 and P does not exist in this case. We start with a

1-planar packing with two pairs of parallel edges. For each pair, one edge belongs
to P ′

1 and the other one to P ′
2. We will remove the parallel edges by performing

the leaf addition operations. To this aim we must guarantee that there is a
cutting curve for each pair of parallel edges. The 1-planar packing P ′

1, P ′
2 and

P and the cutting curves for the internal vertices of P are shown in Fig. 4(c),
for the case when at least two vertices have leaves attached. Indeed, if only two
vertices have leaves attached, they are either consecutive along the backbone or
not. In the first case, these two vertices are mapped to the vertices labeled a and
b in Fig. 4(c) and the depicted cutting curves will remove the parallel edges; in
the second case, the two vertices are mapped to the vertices labeled a and c and
also in this case the depicted cutting curves will remove the parallel edges.

If only one vertex of P has leaves attached, we have only one cutting curve
and thus it is not possible to intersect both pairs of parallel edges. To handle
this case we use an ad-hoc technique which can be found in [3]. ��

The next theorem gives a complete characterization for the case in which the
backbone of T has length four.

Theorem 3. Two paths and a caterpillar T whose backbone contains n′ = 4
vertices admit a 1-planar packing if and only if n ≥ 6 and degT (v) ≤ n − 3 for
every vertex v.

Lemmas 2 and 3, together with Theorem 3 imply the next theorem.

Theorem 4. Two paths and a 5-legged caterpillar T with n vertices admit a
1-planar packing if and only if n ≥ 6 and degT (v) ≤ n − 3 for every vertex v.

5 1-Planar Packings with Constant Edge Crossings

The technique described in the previous section constructs 1-planar drawings
that have a linear number of crossings. A natural question is whether it is possible
to compute a 1-planar packing with a constant number of crossings. In this
section we prove that seven (resp. fourteen) crossings suffice for packing three
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Fig. 5. Illustration for the proof of Theorem 5.

paths (resp. cycles). It is worth remarking that a 1-planar packing of three paths
has at least three crossings (because it has 3n−3 edges), while a 1-planar packing
of three cycles has at least six crossings (because it has 3n edges).

Theorem 5. Three paths with n ≥ 6 vertices can be packed into a 1-plane graph
with at most 7 edge crossings.

Proof. We prove the statement by showing how to construct a 1-planar drawing
with at most 7 crossings of a graph that is the union of three paths. Suppose
first that n = 7 + 3k for k ∈ N. If k = 0, we draw the union of the three paths
with 7 vertices as shown in Fig. 4(a). The drawing is 1-planar and has three
crossings in total. Suppose now that k > 0. We consider three rays r0, r1, r2
with a common origin pairwise forming a 120◦ angle and we place k vertices
on each line. We denote by ui,1, ui,2, . . . , ui,k the vertices of line ri (i = 0, 1, 2)
in the order they appear along ri starting from the origin (see Fig. 5(a)). In
the following, indices will be taken modulo 3 when working with the indices
of the rays ri. To draw path Pi (i = 0, 1, 2) we draw the edges (ui,1, ui+1,1),
(ui,j , ui+1,j−1), and (ui,j , ui+1,j) (for j = 2, . . . , k) as straight-line segments.
Notice that, these edges form a zig-zagging path between the vertices of rays
ri and ri+1, so Pi passes through all vertices of ri and ri+1 but not through
the vertices of ri+2. To include these missing vertices in Pi, we add to Pi edges
(ui+2,j , ui+2,j+1) (for j = 1, 2, . . . , k − 1). In this way we draw two disjoint sub-
paths for each path Pi, namely a zig-zagging path between ri and ri+1 and a
straight-line path along ri+2. Moreover, we only draw 3k edges and therefore
there are still 7 missing vertices (and 8 missing edges) in each path. To add the
missing vertices and edges and to connect the two sub-paths of each path, we
construct a drawing Γ0 of three paths P ′

0, P
′
1, P

′
2 with seven vertices as in the

case when k = 0. Denote with vi and wi the end-vertices of P ′
i in Γ0. We place

Γ0 inside the triangle u0,1, u1,1, u2,1 and add the edges (vi, ui,1) and (wi, ui+2,1).
It is easy to see (see also Fig. 5(b)) that these six edges can be added so that
the drawing is still 1-planar and so that the total number of crossings is 6. This
concludes the proof for n = 7 + 3k. If n = 7 + 3k + 1 we start with the same
construction as in the previous case and then add an extra vertex v outside the
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triangle u1,k, u2,k, u3,k. Notice that each of these three vertices is the end-vertex
of two of the three paths with 7 + 3k vertices. Thus we can extend each path to
include v by connecting it to each of the three vertices u1,k, u2,k, u3,k in a planar
way (see Fig. 5(c) ignoring vertex w). If n = 7 + 3k + 2, then we add two extra
vertices outside the triangle u0,k, u1,k, u2,k and connect both of them to the three
vertices u0,k, u1,k, u2,k (recall that each of these three vertices is the end-vertex
of two distinct paths with 7 + 3k vertices). In this case however the addition of
the two extra vertices causes the creation of one crossing. Thus the final drawing
is 1-planar and the total number of crossings is at most 7 (see Fig. 5(c)). This
concludes the proof for n ≥ 7. If n = 6 we construct a 1-planar packing of three
paths with three crossings in total as shown in Fig. 4(b). ��

The construction of Theorem 5 can be extended to three cycles.

Theorem 6. Three cycles with n ≥ 20 vertices can be packed into a 1-plane
graph with at most 14 edge crossings.

6 From Triples to Quadruples

In this section we extend the study of 1-planar packings from triples of graphs to
quadruples of graphs. By Property 1, a 1-planar packing of four graphs does not
exist if all graphs are connected, because the number of edges of the four graphs
is higher than the number of edges allowed in a 1-planar graph. We consider
therefore a quadruple consisting of three paths and a perfect matching. Notice
that, in this case the number of vertices n has to be even.

Theorem 7. Three paths and a perfect matching with n ≥ 12 vertices admit a
1-planar packing. If n ≤ 10, the quadruple does not admit a 1-planar packing.

Proof. Three paths and a perfect matching have a total of 3(n−1)+ n
2 = 7n

2 −3
edges. Since a 1-planar graph has at most 4n − 8 edges, a 1-planar packing of
three paths and a perfect matching exists only if 7n

2 − 3 ≤ 4n− 8, i.e., if n ≥ 10.
If n = 10, we have 7n

2 − 3 = 32 and 4n − 8 = 32, which means that any 1-
planar packing of three paths and a perfect matching with n = 10 vertices is an
optimal 1-planar graph. It is known that every optimal 1-planar graph has at
least eight vertices of degree exactly six [1]. On the other hand, in any 1-planar
packing of three paths and a perfect matching all vertices, except the at most six
end-vertices of the three paths, have degree seven, which implies that a 1-planar
packing of three paths and a perfect matching does not exist.

We now prove that a 1-planar packing exists if n ≥ 12. We only discuss here
the case when n ≥ 24; the cases in which 12 ≤ n ≤ 22 are described in [3]. Based
on the fact that in any 1-planar packing of three paths and a perfect matching at
least n−6 vertices have degree seven, we construct the desired 1-planar packing
starting from a 1-planar graph G such that at least n−6 vertices have degree at
least seven; we then partition the edges of G into five sets; three of these sets form
a spanning path each, the fourth one forms a perfect matching, and the fifth one
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(a) (b) n = 8k (c) n = 8k + 2

(d) n = 8k + 4 (e) n = 8k + 6
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u3
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v1,1
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v1,3 v1,4

v1,5
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v3,0

v3,1

v3,2

v3,3 v3,4

v3,5

v3,6

v3,7w0 w3

w1
w2

Fig. 6. (a) Graph G′ used in the proof of Theorem 7 (n = 8k, k = 3). (b)–(e) 1-planar
packings of three paths and a perfect matching obtained starting from G′.

contains edges that will not be part of the 1-planar packing. For every n = 8k and
k ≥ 3 it is possible to construct a 1-planar graph with n vertices each having
degree at least seven as follows. We start with k − 1 cycles C1, C2, . . . , Ck−1.
Each cycle Ci (1 ≤ i ≤ k − 1) has eight vertices vi,j with 0 ≤ j ≤ 7. Cycle Ci,
for 1 ≤ i ≤ k − 2, is embedded inside Ci+1 and is connected to it with edges
(vi,j , vi+1,j) for each 0 ≤ j ≤ 7. We have a cycle with four vertices u0, u1, u2, u3

embedded inside C1 and connected to it with edges (uj , v1,2j) and (uj , v1,2j+1).
Finally, we have a cycle with four vertices w0, w1, w2, w3 embedded outside Ck−1

and connected to it with edges (wj , vk−1,2j) and (wj , vk−1,2j+1). The graph G′

described so far has n vertices, is planar, all its vertices have degree four, and
each vertex is incident to at most one face of size three (see Fig. 6(a)). By adding
two crossing edges inside each face of size four, we obtain a 1-planar graph G
with n vertices having degree at least seven. The graph G and the partition
of the edges of G in five sets defining three paths and a matching is shown in
Fig. 6(b). If n is not a multiple of 8, then it will be n = 8k + r, with 0 < r < 8
and r even (because n is even). In this case we construct G′ as explained above
and then we extend the paths u0, v1,1, . . . , vk−1,1 and u1, v1,2, . . . , vk−1,2 to the
left with 1, 2 or 3 vertices each; we then suitably rearrange the edges of G′. The
graph G is then obtained, as in the previous case, by adding a pair of crossing
edges inside each face of size four. The resulting graph G and a partition of its
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edges in five sets defining three paths and a matching is shown in Figs. 6(c), (d),
and (e), for the cases when r = 2, r = 4, and r = 6, respectively. ��

7 Open Problems

We find that the 1-planar packing problem is a fertile and still largely unex-
plored research subject. We conclude the paper with a list of open problems.(i)
Theorem 2 holds only for n = 7. Do two caterpillars (or more general trees)
and a path admit a 1-planar packing if they have more than 7 vertices? (ii) Can
Theorem 4 be extended to general caterpillars? What about two paths and a tree
more complex than a caterpillar, for example a binary tree? (iii) Is it possible to
compute a 1-planar packing of three paths or cycles with the minimum number
of crossings (three and six, respectively)? Can we compute 1-planar packings
with few crossings for triples of other types of trees?
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