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Abstract. We study the Maximum Bipartite Subgraph (MBS) problem,
which is defined as follows. Given a set S of n geometric objects in the
plane, we want to compute a maximum-size subset S′ ⊆ S such that the
intersection graph of the objects in S′ is bipartite. We first show that
the MBS problem is NP-hard on geometric graphs for which the maximum
independent set is NP-hard (hence, it is NP-hard even on unit squares and
unit disks). On the algorithmic side, we first give a simple O(n)-time
algorithm that solves the MBS problem on a set of n intervals. Then, we
give an O(n2)-time algorithm that computes a near-optimal solution for
the problem on circular-arc graphs. Moreover, for the approximability
of the problem, we first present a PTAS for the problem on unit squares
and unit disks. Then, we present efficient approximation algorithms with
small-constant factors for the problem on unit squares, unit disks and
unit-height rectangles. Finally, we study a closely related geometric prob-
lem, called Maximum Triangle-free Subgraph (MTFS), where the objective
is the same as that of MBS except the intersection graph induced by the
set S′ needs to be triangle-free only (instead of being bipartite).

Keywords: Bipartite subgraph · Geometric intersection graphs ·
NP-hardness · Approximation schemes · Triangle-free subgraph

1 Introduction

In this paper, we study the following geometric problem. Given a set S of n
geometric objects in the plane, we are interested in computing a maximum-size
subset S′ ⊆ S such that the intersection graph induced by the objects in S′ is
bipartite. We refer to this problem as the Maximum Bipartite Subgraph (MBS)
problem. The MBS problem is closely related to the Odd Cycle Transversal (OCT)
problem: given a graph G, the objective of the OCT problem is to compute a
minimum-cardinality subset of S ⊆ V (G) such that the intersection of S and
the vertices of every odd cycle of the graph is non-empty. Notice that MBS and OCT
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are equivalent for the class of graphs on which OCT is polynomial-time solvable:
an exact solution S for OCT gives V (G) \ S as an exact solution for MBS within
the same time bound (see below for a summary of the main known results on
the OCT problem). However, on classes of graphs for which OCT is NP-hard, an
α-approximation algorithm for OCT might not provide any information on the
approximability of MBS on the same classes of graphs.

Another problem that is related to MBS is the Feedback Vertex Set (FVS)
problem. The objective of FVS is the same as that of OCT except the set S
has a non-empty intersection with every cycle of the graph (not only the odd
ones). The FVS problem has been extensively studied in graph theory from both
hardness [11,29] and algorithmic [4,9,14,17] points of view.

We also study a simpler variant of MBS, called the Maximum Triangle-free
Subgraph (MTFS) problem. Let S be a set of n geometric objects in the plane.
Then, the objective of the MTFS problem is to compute a maximum-size subset
S′ ⊆ S such that the intersection graph induced by the objects in S′ is triangle
free (as opposed to being bipartite).

Related Work. The MBS problem is NP-complete for planar graphs with maximum
degree four [6]. For graphs with maximum degree three, Choi et al. [6] showed
that for a given constant k there is a vertex set of size k or less whose removal
leaves an induced bipartite subgraph if and only if there is an edge set of size k or
less whose removal leaves a bipartite spanning subgraph. As edge deletion graph
bipartization problem is NP-complete for cubic graphs [28], the MBS problem is
NP-complete for cubic graphs. Moreover, since the maximum edge deletion graph
bipartization problem is solvable in O(n3) time for planar graphs [1,12] where n
is the number of vertices of the input graph, this immediately implies that MBS
is O(n3)-time solvable for planar graphs with maximum degree three. For the
vertex-weighted version of the MBS problem, Baiou et al. [2] showed that the MBS
problem can be solved in O(n3/2 log n) time for planar graphs with maximum
degree three. Finally, Cornaz et al. [8] considered the maximum induced bipartite
subgraph problem: given a graph with non-negative weights on the edges, the
goal is to find a maximum-weight bipartite subgraph. An edge subset F ⊆ E is
called independent if the subgraph induced by the edges in F (incident vertices)
is bipartite; otherwise, it is called dependent. They showed that the minimum
dependent set problem with non-negative weights can be solved in polynomial
time.

The OCT problem is known to be NP-complete on planar graphs with degree at
most 6 [6]. For planar graphs with degree at most 3, OCT can be solved in O(n3)
time [6] (even the weighted version of the problem). There are several results
known concerning the parameterized complexity of OCT (i.e., given a graph G on
n vertices and an integer k, is there a vertex set U in G of size at most k such
that G \ U is bipartite). Reed et al. [26] first gave an algorithm with running
time O(4kkmn). Lokshtanov et al. [19] improved this running time to O(3kkmn).
Lokshtanov et al. [20] provide an algorithm with running time O(2O(k log k)n) for
planar graphs. Moreover, assuming the exponential time hypothesis, the running
time cannot be improved to 2O(k)nO(1).
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The MBS problem is also closely related to the Maximum Independent Set
(MIS) problem. Observe that any feasible solution for MIS is also a feasible solu-
tion for MBS and, moreover, a feasible solution S ⊆ V (G) for the MBS problem
provides a feasible solution of size at least |S|/2 for the MIS problem. Hence,
OPT(MIS) ≤ OPT(MBS) ≤ 2OPT(MIS). This implies that an α-approximation algo-
rithm for MIS on a class of graphs is a 2α-approximation for MBS on the same
class. In particular, the PTASes for MIS on unit disks and unit squares [13] imply
polynomial-time (2+ε)-approximation algorithms for MBS on unit disks and unit
squares. Moreover, we obtain a polynomial-time O(log log n)-approximation [5]
(or, O(log OPT)-approximation [3]) algorithm for MBS on rectangles.

Our Results. In this paper, we present the following results.

• On the hardness side, we show that the MBS problem is NP-hard on the classes
of geometric intersection graphs for which MIS is NP-hard (Sect. 2); this in
particular includes unit disks and unit squares. We also extend this result to
a corresponding W[1]-hardness result.

• On the algorithmic side, we give a linear-time algorithm for MBS on interval
graphs, and an O(n2)-time algorithm that computes a near-optimal solution
for MBS on any circular-arc graph with n vertices (Sect. 3).

• On the approximation side, we obtain a PTAS for the MBS problem on unit disks
and unit squares. For a set of n unit-height rectangles in the plane, we give
an O(n log n)-time 2-approximation algorithm for the problem. Moreover, we
design an O(n2)-time 4-approximation algorithm for the same problem on
unit disks (Sect. 4).

• Finally, we show that the MTFS problem is NP-hard on the intersection graph
of axis-parallel rectangles in the plane (Sect. 5).

2 NP-Hardness

In this section, we show that the MBS problem is NP-complete on the classes of
geometric intersection graphs for which MIS is NP-complete. The MIS problem is
known to be NP-complete on a wide range of geometric intersection graphs, even
restricted to unit disks and unit squares [7], 1-string graphs [16], and B1-VPG
graphs [18]. Let G = (V,E) be an intersection graph induced by a set S of n
geometric objects in the plane. We construct a new graph G′ from the disjoint
union of two copies of G by adding edges as follows. For each vertex in V , we
add an edge from each vertex in one copy of G to the corresponding vertex in
the other copy. For each edge (u, v) ∈ E, we add four edges (u, v), (u′, v′), (u, v′),
and (v, u′) to G′, where u′ and v′ are the corresponding vertices of u and v,
respectively in the other copy. Graph G′ is the intersection graph of 2n geometric
objects S, where each object has occurred twice in the same position. Clearly,
the number of vertices and edges in G′ are polynomial in the number of vertices
of G; hence, the construction can be done in polynomial time.

Lemma 1. G has an independent set of size at least k if and only if G′ has a
bipartite subgraph of size at least 2k.
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Proof. Let U be an independent set of G with |U | ≥ k. Let H be the subgraph
of G′ induced by U along with all the corresponding vertices of U in the other
copy. Then, H is a bipartite subgraph with size at least 2k. Conversely, if G′ has
a bipartite subgraph of size at least 2k, then G′ must have an independent set
of size at least k. By the construction of G′, if G′ has an independent set of size
at least k, then G must have an independent set of size at least k. �

By Lemma 1, we have the following theorem.

Theorem 1. The MBS problem is NP-complete on the classes of geometric inter-
section graphs for which MIS is NP-complete.

Remark. By the definition of parameterized reduction [10], one can verify that
the above reduction is in fact a parameterized reduction and so we have the
following result.

Corollary 1. The MBS problem is W[1]-complete on the classes of geometric
intersection graphs for which MIS is W[1]-complete.

We note that Marx [22,23] proved that MIS is W[1]-complete on unit squares,
unit disks, and even unit line segments. As such, by Corollary 1, the MBS problem
is W[1]-complete on all these geometric intersection graphs.

3 Algorithmic Results

In this section, we present our algorithms for the MBS problem on interval graphs
and circular-arc graphs. We start with interval graphs.

3.1 Interval Graphs

In this section, we consider the MBS problem on a set S of n intervals and give
a linear-time algorithm for the problem. Notice that for interval graphs, the
MBS problem is the same as FVS; to the best of our knowledge, the best-known
algorithm for solving FVS on interval graphs takes O(|V |+ |E|)) time [21]. Since
interval graphs are a subclass of chordal graphs, the MBS problem on interval
graphs reduces to the problem of computing a maximum-size subset of intervals
in S whose induced graph is triangle free. Consequently, a point can “stab” at
most two intervals in any feasible solution for the MBS problem on intervals.
Algorithm1 exploits this property to solve the problem exactly.

In the following, we assume that (i) the endpoints of intervals in S are 2n
distinct points on the real line, and (ii) the intervals are sorted from left to right
by the increasing order of their right endpoint; we denote them as I1, I2, . . . , In.
Moreover, the variable x (resp., y) denotes the x-coordinate of the rightmost
point on the real line such that it is contained in two intervals (resp., one interval)
of the current solution computed by the algorithm. For an interval I, we denote
the left and right endpoints of I by left(I) and right(I), respectively.
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Algorithm 1. BipartiteInterval(S)

1: let initially M = ∅;
2: x := −∞ and y := −∞;
3: for i := 1 to n do
4: if left(Ii) > y then
5: M := M ∪ Ii;
6: y := right(Ii);
7: else if x < left(Ii) < y then
8: M := M ∪ Ii;
9: x := y;

10: y := right(Ii);
11: end if
12: end for
13: return M ;

Correctness. Let Mi, for all 1 ≤ i ≤ n, denote the set M at the end of iteration
i of the for-loop. Consider the following invariant.

Invariant I. For all i = 1, . . . , n, at the end of iteration i of the for-loop, the
set Mi is an optimal solution for the set of intervals {I1, I2, . . . , Ii}.

We prove Invariant I by induction on |S|. If |S| = 1, then M = {I1} by line
5 of the algorithm and we are done. Moreover, if |S| = 2, then there are two
cases depending on whether {I1, I2} form a clique or an independent set. In
either case, M = {I1, I2} and we are done. Now, suppose that Invariant I is
true for all |S| = 1, 2, . . . , n − 1. Let S be a set of n intervals and consider the
set S \ In (where In is the interval with rightmost right endpoint in S). By
induction hypothesis, let Mn−1 be the optimal solution for S \ In computed by
the algorithm and consider the values of x and y before returning Mn−1 in line
13. We must have that either (i) left(In) > y, (ii) x < left(In) < y, or (iii)
left(In) < x. In cases (i) and (ii), the algorithm adds In to Mn−1 resulting in
an optimal solution. In case (iii), the algorithm returns Mn−1 without adding In

to the solution. Observe that this is optimal as no feasible solution can add In.
The algorithm clearly runs in time linear in n and so we have the following

theorem.

Theorem 2. The MBS problem on a set of n intervals can be solved in O(n)
time, assuming that the intervals are already sorted on their right endpoint.

3.2 Circular-Arc Graphs

We now give a near-optimal solution for the MBS problem on circular-arc graphs.
For an optimization problem, a near-optimal solution is a feasible solution whose
objective function value is within a specified range from the optimal objective
function value. A circular-arc graph is the intersection graph of arcs on a circle.
That is, every vertex is represented by an arc, and there is an edge between
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two vertices if and only if the corresponding arcs intersect. Observe that interval
graphs are a proper subclass of circular-arc graphs. For the rest of this section, let
G = (V,E) be a circular-arc graph and assume that a geometric representation
of G (i.e., a set of |V (G)| arcs on a circle C) is given as part of the input. First,
we prove the following lemmas.

Lemma 2. If G is triangle-free, then it can have at most one cycle.

Proof. Suppose for the sake of contradiction that G has more than one cycle.
Let A1 and A2 be two cycles of G. Now, since G is a triangle-free circular-arc
graph, the corresponding arcs of the vertices of any cycle in G together cover the
circle C. So, there must exist three distinct vertices v ∈ A1, u ∈ A1 and w ∈ A2

such that v, u, w are pairwise adjacent. Which is a contradiction to the fact that
G is triangle-free. �
Lemma 3. If B and T are optimal solutions for the MBS and MTFS problems on
G, respectively, then |T | − 1 ≤ |B| ≤ |T |.
Proof. Since a bipartite subgraph contains no triangle, |B| ≤ |T |. Now, if G[T ]
(i.e., the subgraph of G induced by T ) is odd-cycle free, then it induces a bipartite
subgraph. Otherwise, G[T ] can have at most one cycle by Lemma 2. If this cycle
is odd, then by removing any single vertex form the cycle, we obtain a bipartite
subgraph of G with size at least |T | − 1. �

Since G[T ] contains at most one cycle, following lemma trivially holds.

Lemma 4. If H is a maximum-size induced forest in G, then |V (H)| ≥ |T |−1.

By the above lemmas, our goal now is to find a maximum acyclic subgraph
H of G. Notice that there must be a clique K (|K| ≥ 1) in G that is not in
H. Now, for each arc u in the circular-arc representation of G, let l(u) and
r(u) denote the two endpoints of u in the clockwise order of the endpoints u.
Then, we consider two vertex sets S1

u = {w : w ∈ V, l(u) /∈ [l(w), r(w)]} and
S2

u = {z : z ∈ V, r(u) /∈ [l(z), r(z)]}. Both S1
u and S2

u are interval graphs. Since
there are n vertices in G, we compute 2n interval graphs in total. Then, for each
of these interval graphs, we apply Algorithm1 to compute an optimal solution
for MBS, and will return the one with maximum size as the final solution. Since
Algorithm 1 runs in O(n) time, the total time to find H is O(n2); so we have
the following theorem.

Theorem 3. Let OPT be a maximum-size induced bipartite subgraph of a
circular-arc graph G with n vertices. Then, there is an algorithm that computes
an induced bipartite subgraph H of G such that |V (H)| ≥ |OPT | − 1. The algo-
rithm runs in O(n2) time.

4 Approximation Algorithms

Recall that since MIS is NP-complete on unit disks and unit squares, the MBS
problem is NP-complete on these graphs by Theorem 1. In this section, we first
give PTASes for MBS on both unit squares and unit disks, and will then consider
the problem on unit-height rectangles.
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4.1 Unit Disks and Unit Squares

We first show the PTAS for unit disks, and will then discuss it for unit squares
as well as the weighted MBS problem.

Let S be a set of n unit disks in the plane, and let k > 1 be a fixed integer.
A PTAS running in O(nO(1) · nO(1/ε2)) time, for any ε > 0, is straightforward
using the shifting technique of Hochbaum and Maass [13] and the following
packing argument: for an instance of the MBS problem, where the unit disks lie
inside a k × k square, an optimal solution cannot have more than k2 unit disks.
Hence, we can compute an exact solution for such an instance of the problem
in O(nO(1) · nO(k2)) time. Consequently, by setting k = 1/ε, we obtain a PTAS

running in time O(nO(1) · nO(1/ε2)).
To improve the running time to O(nO(1) · nO(1/ε)), we rely on the shifting

technique again, but instead of applying the plane partitioning twice, we only
partition the plane into horizontal slabs and solve the MBS problem for each of
them exactly. This gives us the desired running time for our PTAS. We next
describe the details of how to solve MBS exactly for a slab.

Algorithm for a Slab. Let H be a horizontal slab of height k and let D ⊆ S be
the set of disks that lie entirely inside H. The idea is to build a vertex-weighted
directed acyclic graph G such that finding a maximum-weight path from the
source vertex to the target vertex corresponds to an exact solution for the MBS
problem [24]. To this end, let a and b (a < b) be two integers such that every
disk in D lies inside the rectangle R bounded by H and the vertical lines x = a
and x = b. Partition R vertically into unit-width boxes Bi, where the left side of
Bi has the x-coordinate a + i, for all integers 0 ≤ i < b − a; let Di ⊆ D denote
the set of disks whose centers lie inside Bi. Since Bi has height k and width 1, we
can compute all feasible (not necessarily exact) solutions for the MBS problem on
Di in O(nO(1) · nO(k)) time; let Mi be the set of all such feasible solutions. We
now build a directed vertex-weighted acyclic graph G as follows. The vertex set
of V (G) is V ∪ {s, t}, where V has one vertex for each solution in Mi, for all i.
Moreover, the weight of each vertex is the number of disks in the corresponding
bipartite graph. For every pair i, j, where 1 ≤ i < j < n, consider two solutions
M ∈ Mi and M ′ ∈ Mj . Then, there exists an edge from the vertex of M to that
of M ′ in G if the intersection graph induced by the disks in M ∪M ′ is bipartite.
Finally, for all i and for all M ∈ Mi: there exists an edge from s to M , and
there exists an edge from M to t. The weights of vertices s and t are zero.

Lemma 5. The MBS problem has a feasible solution of size k on G if and only
if there exists a directed path from s to t with the total weight k.

Proof. For a given directed st-path with total weight k, let X be the union
of all the disks corresponding to the interval vertices of this path. Then, the
intersection graph of X is bipartite because the disks in X ∩ Mi are disjoint
from the disks in S ∩ Mj when j > i + 1. Moreover, when j = i + 1, the disks
in X ∩ (Mi ∪ Mj) must form an induced bipartite graph by the definition of
an edge in G. Since the total weight of the vertices on the path is k, we have
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|X| = k. On the other hand, let Y be a feasible solution of size k for the MBS
problem on G. Then, the intersection graph of disks in Y ∩ Di is bipartite, for
all i. Hence, selecting the vertices corresponding to Y ∩ Di for all i gives us a
path with total weight k from s to t. �

By Lemma5, the MBS problem for H reduces to the problem of finding the
maximum-weighted path from s to t on G. The number of vertices of G that
correspond to feasible solutions for the MBS problem on disks in S ∩ Di is bounded
by O(nO(k)), which is the bound on the number of vertices of G that correspond
to these feasible solutions. Hence, we can compute the edge set of G in O(nO(1) ·
nO(k)) time (we can check whether a subset of disks form a bipartite graph in
O(nO(1)) time). Since G is directed and acyclic, the maximum-weighted st-path
problem can be solved in linear time. Therefore, by setting k = 1/ε, we have the
following theorem.

Theorem 4. There exists a PTAS for MBS on unit disks that runs in O(nO(1) ·
nO(1/ε)) time, for any ε > 0.

PTAS on Unit Squares. One can verify that the above algorithm can be applied to
obtain a PTAS for MBS on a set of n unit squares, as well. Moreover, the algorithm
extends to the weighted MBS problem on unit disks and unit squares. The only
modification is, instead of assigning the number of disks (resp., squares) in a
solution as the weight of the corresponding vertex, we assign the total weight of
the disks (resp., squares) in the solution as the vertex weight.

Theorem 5. There exists a PTAS for the MBS problem on unit squares running
in O(nO(1) · nO(1/ε)) time, for any ε > 0. Moreover, the weighted MBS problem
also admits a PTAS running within the same time bound on unit disks and unit
squares.

A 4-Approximation on Unit Disks. Recall from Sect. 1 that OPT(MIS) ≤
OPT(MBS) ≤ 2OPT(MIS). Nandy et al. [25] designed a factor-2 approximation algo-
rithm for the MIS problem on unit disks, which runs in O(n2) time. Consequently,
we obtain an O(n2)-time 4-approximation algorithm for the MBS problem on unit
disks.

4.2 Unit-Height Rectangles

Here, we give an O(n log n)-time 2-approximation algorithm for MBS on a set
of n unit-height rectangles. To this end, suppose that the bottom side of the
bottommost rectangle has y-coordinate a and the top side of the topmost rect-
angle has y-coordinate b. Consider the set of horizontal lines y := a + i + ε for
all i = 0, . . . , b, where ε > 0 is a small constant; we may assume w.l.o.g. that
each rectangle intersects exactly one line. Ordering the lines from bottom to top,
let Si be the set of rectangles that intersect the horizontal line i. We now run
BipartiteInterval(S), once for when S = S1 ∪ S3 ∪ S5 . . . and once for when
S = S2 ∪ S4 ∪ S6 . . . , and will then return the largest of these two solutions.
We perform an initial sorting that takes O(n log n) time, and BipartiteInter-
val(S) runs in O(n) time. This gives us the following theorem.



166 S. Jana et al.

Theorem 6. There exists an O(n log n)-time 2-approximation algorithm for the
MBS problem on a set of n unit-height rectangles in the plane.

5 NP-Hardness of MTFS

Here, we show that MTFS problem is NP-hard when geometric objects are axis-
parallel rectangles. We give a reduction from the independent set problem on
3-regular planar graphs, which is known to be NP-complete [11].

Rim et al. [27] proved that MIS is NP-hard for planar rectangle intersection
graphs with degree at most 3. They also gave a reduction from the independent
set problem on 3-regular planar graphs. Given a 3-regular planar graph G =
(V,E), they construct an instance H = (V ′, E′) of the MIS problem on rectangle
intersection graphs. First we outline their construction of H from G. For any
cubic planar graph G, it is always possible to get a rectilinear planar embedding
of G such that each vertex v ∈ V is drawn as a point pv, and each edge e =
(u, v) ∈ E is drawn as a rectilinear path, connecting the points pu and pv, having
at most four bends, and thus consisting of at most five straight line segments.
They [27] construct a family of rectangles B in the following way. For each point
pvi

where vi ∈ V , a rectangle bi is placed surrounding the point pvi
. In each

rectilinear path connecting pvi
and pvj

, they place six rectangles b1ij , b
2
ij , . . . , b

6
ij

such that (i) bi intersects b1ij , (ii) bj intersects b6ij , (iii) bk
ij intersects bk+1

ij for
k = 1, 2, . . . , 5 (iv) b1ij , b

2
ij , . . . , b

6
ij do not intersect any other rectangles in B. For

an illustration see Fig. 1.

v1

v1

v1 v1

v1

v3

v4v2 b2

b1

b3

b4

b112b212

b312

b412

b512 b612

Fig. 1. (a) A cubic planar graph G. (b) A rectilinear embedding of G. (c) Family of
rectangle B.

Clearly, H(V ′, E′) is an axis-parallel rectangle intersection graph with degree
at most 3 where |V ′| = |V | + 6|E| and |E′| = 7|E|. In their reduction, the
following lemma holds.
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b2

b1

b3

b4

b112b212

b312

b412

b512 b612

Rb1b
1
12

Fig. 2. Construction of an instance of MTFS problem from B. (Color figure online)

Lemma 6. [27] G = (V,E) has an independent set of size ≥ m if and only if
H has an independent set of size m + 3|E|.

Given H, we construct an instance GH of MTFS problem in axis-parallel
rectangles intersection graphs. For the sake of understanding, let all rectangles
corresponding to vertices in H, i.e., all rectangles in B, be colored black. To
get GH , we insert a family R of red rectangles in the following way. For each
pair of adjacent rectangles b and b′ in B, we place a red rectangle Rb,b′ such
that (i) Rb,b′ intersects both b and b′, (ii) Rb,b′ does not intersect any other
rectangles in B ∪R. As per construction of H, it is always possible to place such
a rectangle for each pair of adjacent rectangles in B. See Fig. 2 for an illustration
of this transformation. This completes the construction of our instance of the
MTFS problem on axis-parallel rectangles intersection graphs. Since R contains
7|E| rectangles, the above transformation can be done in polynomial time. Now
GH is an axis-parallel rectangle intersection graph with underlying geometric
objects B ∪ R. Clearly the number of vertices in GH is (|V | + 13|E|). We now
prove the following lemma whose proof is given in the full version of the paper [15]
due to space constraints.

Lemma 7. H has an independent set of size ≥ k if and only if GH has a
triangle-free subgraph on ≥ k + 7|E| vertices.

By Lemmas 6 and 7, we have the following.

Lemma 8. G = (V,E) has an independent set of size ≥ m if and only if GH

has a triangle-free subgraph on m + 10|E| vertices.
We can now conclude the following theorem.

Theorem 7. The MTFS problem is NP-complete on axis-parallel rectangle inter-
section graphs.
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6 Conclusion

In this paper, we studied the problem of computing a maximum-size bipartite
subgraph on geometric intersection graphs. We showed that the problem is NP-
hard on the geometric graphs for which maximum independent set is NP-hard. On
the positive side, we gave polynomial-time algorithms for solving the problem
on interval graphs and circular-arc graphs. We furthermore obtained several
approximation algorithms for the problem on unit squares, unit disks, and unit-
height rectangles. Finally, we showed the NP-hardness of a simpler problem in
which the goal is to compute a maximum-size induced triangle-free subgraph.
We conclude by the following open questions:

• Does MBS admit a PTAS on unit-height rectangles, or is it APX-hard?
• Is there a polynomial-time algorithm for MBS on a set of n unit disks inter-
secting a common horizontal line?

• Can we improve the 4-approximation algorithm for unit disks with the same
time bound O(n2) (or, even better)?

Acknowledgment. We thank Michiel Smid for useful discussions on the problem.

References

1. Aoshima, K., Iri, M.: Comments on F. Hadlock’s paper: finding a maximum cut of
a planar graph in polynomial time. SIAM J. Comput. 6(1), 86 (1977)
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