
M. Sohel Rahman
Kunihiko Sadakane
Wing-Kin Sung (Eds.)

LN
CS

 1
20

49

14th International Conference, WALCOM 2020
Singapore, Singapore, March 31 – April 2, 2020
Proceedings

WALCOM: Algorithms
and Computation

Lecture Notes in Computer Science 12049

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

M. Sohel Rahman • Kunihiko Sadakane •

Wing-Kin Sung (Eds.)

WALCOM: Algorithms
and Computation
14th International Conference, WALCOM 2020
Singapore, Singapore, March 31 – April 2, 2020
Proceedings

123

Editors
M. Sohel Rahman
Department of CSE
BUET
Dhaka, Bangladesh

Kunihiko Sadakane
Mathematical Informatics
University of Tokyo
Tokyo, Japan

Wing-Kin Sung
School of Computing
National University of Singapore
Singapore, Singapore

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-39880-4 ISBN 978-3-030-39881-1 (eBook)
https://doi.org/10.1007/978-3-030-39881-1

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9419-6478
https://orcid.org/0000-0002-8212-3682
https://orcid.org/0000-0001-7806-7086
https://doi.org/10.1007/978-3-030-39881-1

Preface

This proceedings volume contains papers presented at WALCOM 2020, the 14th
International Conference and Workshops on Algorithms and Computation, held during
March 31 – April 2, 2020, at the Institute for Mathematical Science, National
University of Singapore (NUS), Singapore.

WALCOM 2020 was organized in cooperation with the Institute of Mathematical
Sciences (NUS), School of Computing (NUS), Special Interest Group for ALgorithms
(SIGAL) of the Information Processing Society of Japan (IPSJ), and Technical Com-
mittees on Theoretical Foundations of Computing (COMP) of the Institute of Elec-
tronics, Information and Communication Engineers (IEICE).

The range of topics within the scope of WALCOM includes but is not limited to:
Approximation Algorithms, Algorithmic Graph Theory and Combinatorics, Combi-
natorial Algorithms, Combinatorial Optimization, Computational Biology, Computa-
tional Complexity, Computational Geometry, Discrete Geometry, Data Structures,
Experimental Algorithm Methodologies, Graph Algorithms, Graph Drawing, Parallel
and Distributed Algorithms, Parameterized Algorithms, Parameterized Complexity,
Network Optimization, Online Algorithms, Randomized Algorithms, and String
Algorithms.

WALCOM is an annual conference series that provides an international forum for
researchers working in the areas of algorithms and computation. The first edition
(WALCOM 2007) was held on February 12, 2007, in Dhaka, Bangladesh, and was
organized by the Bangladesh Academy of Sciences. WALCOM 2008, WALCOM 2010,
WALCOM 2012, WALCOM 2015, and WALCOM 2018 were held in Bangladesh;
whereas WALCOM 2009, WALCOM 2011, WALCOM 2013, WALCOM 2014, and
WALCOM 2019 were held in India. WALCOM 2016 was held in Nepal and
WALCOM 2017 was held in Taiwan.

WALCOM is led by a strong Steering Committee, whose members are Kyung-Yong
Chwa (KAIST, South Korea), Costas S. Iliopoulos (KCL, UK), M. Kaykobad (BUET,
Bangladesh), Petra Mutzel (TU Dortmund, Germany), Shin-ichi Nakano (Gunma
University, Japan), Subhas Chandra Nandy (Indian Statistical Institute, Kolkata, India),
Takao Nishizeki (Tohoku University, Japan), C. Pandu Rangan (IIT Madras, India),
and Md. Saidur Rahman (BUET, Bangladesh).

The WALCOM Program Committees comprise computer scientists of international
repute from different parts of the globe. Notably, the Program Committee of
WALCOM 2020 comprised 34 eminent researchers from Australia, Bangladesh,
Canada, Finland, France, Greece, Hong Kong, India, Israel, Italy, Japan, the Netherlands,
Poland, Singapore, South Africa, South Korea, Taiwan, the UK, and the USA.

The technical program was finalized by selecting the highest quality papers from
among 66 submitted papers. We had a rigorous review process where all papers had at
least three reviews while most of the papers had four. Followed by an in-depth dis-
cussion by the Program Committee, this year we could only accept 23 full papers and

4 short papers. We selected “Shortest Covers of All Cyclic Shifts of a String” to be the
best paper and “Approximability of the Independent Feedback Vertex Set Problem for
Bipartite Graphs” to be the best student paper. Both paper awards were presented at the
conference.

In addition to the 27 contributed talks, the scientific program of WALCOM 2020
included invited talks by 3 eminent researchers, namely, Prof. Osamu Watanabe
(Tokyo Tech, Japan), Prof. Louxin Zhang (NUS, Singapore), and Prof. Md. Saidur
Rahman (BUET, Bangladesh). We are extremely grateful to our invited speakers for
their excellent talks at the conference. We thank all the authors who submitted their
works for consideration to WALCOM 2020. We deeply appreciate the contribution of
all Program Committee members and external reviewers for handling the submissions
in a timely manner despite their extremely busy schedules. We must acknowledge the
EasyChair conference management system again for providing us with their celebrated
platform for conference administration. We are grateful to Springer for publishing the
proceedings of WALCOM 2020, making the event a grand success.

April 2020 M. Sohel Rahman
Kunihiko Sadakane

Wing-Kin Sung

vi Preface

Organization

Program Committee

Hee-Kap Ahn POSTECH, South Korea
Md. Shamsuzzoha Bayzid BUET, Bangladesh
Guillaume Blin Université de Bordeaux, LaBRI, UMR, CNRS, France
Hans Bodlaender Utrecht University, The Netherlands
Gautam K. Das IIT Guwahati, India
Jackie Daykin Aberystwyth University, UK
Mark de Berg Eindhoven University of Technology, The Netherlands
Naveen Garg IIT Delhi, India
Wing-Kai Hon National Tsing Hua University, Taiwan
Seok-Hee Hong The University of Sydney, Australia
Jesper Jansson The Hong Kong Polytechnic University, Hong Kong,

China
Ralf Klasing CNRS, University of Bordeaux, France
Gad M. Landau University of Haifa, Israel, and NYU, USA
Inbok Lee Korea Aerospace University, South Korea
Giuseppe Liotta University of Perugia, Italy
Takaaki Mizuki Tohoku University, Japan
Debajyoti Mondal University of Saskatchewan, Canada
Krishnendu

Mukhopadhyaya
Indian Statistical Institute, India

Shin-Ichi Nakano Gunma University, Japan
Solon Pissis CWI, The Netherlands
Simon Puglisi University of Helsinki, Finland
Tomasz Radzik King’s College London, UK
Atif Rahman BUET, Bangladesh
M. Sohel Rahman BUET, Bangladesh
Wojciech Rytter University of Warsaw, Poland
Kunihiko Sadakane The University of Tokyo, Japan
William F. Smyth McMaster University, Canada
Paul Spirakis University of Patras, Greece and University

of Liverpool, UK
Wing-Kin Sung National University of Singapore, Singapore
Etsuji Tomita The University of Electro-Communications, Japan
Ryuhei Uehara Japan Advanced Institute of Science and Technology,

Japan
Bruce Watson Stellenbosch University, South Africa
Sue Whitesides University of Victoria, Canada
Hsu-Chun Yen National Taiwan University, Taiwan

Additional Reviewers

Ahn, Taehoon
Akrida, Eleni
Alanko, Jarno
Angelidakis, Haris
Bampas, Evangelos
Bannai, Hideo
Barua, Rana
Basappa, Manjanna
Bernardini, Giulia
Bilò, Davide
Binucci, Carla
Bousquet, Nicolas
Choi, Jongmin
Conte, Alessio
Deligkas, Argyrios
Devismes, Stéphane
Di Giacomo, Emilio
Di Stefano, Gabriele
Diarrassouba, Ibrahima
Epstein, Leah
Fici, Gabriele
Foucaud, Florent
Fuentes, Jose
Förster, Henry
Ghazawi, Samah
Ghosh, Arijit
Ghosh, Sasthi
Gorain, Barun
Goto, Keisuke
Grilli, Luca
Gu, Mei-Mei
Hermelin, Danny
Hoffmann, Michael
Ito, Takehiro
Jallu, Ramesh Kumar
Kamali, Shahin
Kang, Byeongwuk
Kare, Anjeneya Swami
Kaur, Dilpreet
Kawahara, Jun
Kim, Hwi
Kim, Hyeonjun
Kim, Jin Wook

Kim, Mincheol
Kociumaka, Tomasz
Komm, Dennis
Kondratovsky, Eitan
Kowaluk, Miroslaw
Kumar, Nikhil
Kuroki, Yuko
Kurpicz, Florian
Lampis, Michael
Lanir, Joel
Lee, Seungjun
Manlove, David
Marcus, Shoshana
Markou, Euripides
Mehrabi, Saeed
Mhaskar, Neerja
Michail, Othon
Miltzow, Till
Mincu, Radu-Stefan
Mishra, Pawan
Montecchiani, Fabrizio
Mukhopadhyaya, Srabani
Mutzel, Petra
Na, Joong Chae
Nandy, Subhas
Oh, Eunjin
Ortali, Giacomo
Page, Daniel R.
Park, Heejin
Rajendraprasad, Deepak
Rao, S. V.
Saitoh, Toshiki
Seara, Carlos
Sen, Sagnik
Shatabda, Swakkhar
Sikora, Florian
Sim, Jeong Seop
Simpson, Jamie
Sinha Mahapatra, Priya Ranjan
Suzuki, Akira
Takenaga, Yasuhiko
Tappini, Alessandra
Theofilatos, Michail

viii Organization

Toda, Takahisa
Unger, Walter
Uno, Yushi
van der Wegen, Marieke
Wallheimer, Nathan
White, Colin
Woeginger, Gerhard J.

Xiao, Mingyu
Yamanaka, Katsuhisa
Yoshinaka, Ryo
Zamaraev, Viktor
Zehavi, Meirav
Zuba, Wiktor

Organization ix

Contents

Invited Talks

Drawing Planar Graphs . 3
Md. Saidur Rahman and Md. Rezaul Karim

Space Efficient Separator Algorithms for Planar Graphs 15
Osamu Watanabe

Recent Progresses in the Combinatorial and Algorithmic Study
of Rooted Phylogenetic Networks . 22

Louxin Zhang

Long Papers

Optimum Algorithm for the Mutual Visibility Problem 31
Subhash Bhagat

Routing in Histograms . 43
Man-Kwun Chiu, Jonas Cleve, Katharina Klost, Matias Korman,
Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen,
and Max Willert

A Waste-Efficient Algorithm for Single-Droplet Sample Preparation
on Microfluidic Chips . 55

Miguel Coviello Gonzalez and Marek Chrobak

Shortest Covers of All Cyclic Shifts of a String . 69
Maxime Crochemore, Costas S. Iliopoulos, Jakub Radoszewski,
Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and Wiktor Zuba

Packing Trees into 1-Planar Graphs . 81
Felice De Luca, Emilio Di Giacomo, Seok-Hee Hong,
Stephen Kobourov, William Lenhart, Giuseppe Liotta, Henk Meijer,
Alessandra Tappini, and Stephen Wismath

Angle Covers: Algorithms and Complexity. 94
William Evans, Ellen Gethner, Jack Spalding-Jamieson,
and Alexander Wolff

Fast Multiple Pattern Cartesian Tree Matching . 107
Geonmo Gu, Siwoo Song, Simone Faro, Thierry Lecroq,
and Kunsoo Park

Generalized Dictionary Matching Under Substring Consistent
Equivalence Relations . 120

Diptarama Hendrian

Reconfiguring k-path Vertex Covers . 133
Duc A. Hoang, Akira Suzuki, and Tsuyoshi Yagita

Computational Complexity of the Chromatic Art Gallery Problem
for Orthogonal Polygons . 146

Chuzo Iwamoto and Tatsuaki Ibusuki

Maximum Bipartite Subgraph of Geometric Intersection Graphs 158
Satyabrata Jana, Anil Maheshwari, Saeed Mehrabi, and Sasanka Roy

The Stub Resolution of 1-Planar Graphs . 170
Michael Kaufmann, Jan Kratochvil, Fabian Lipp,
Fabrizio Montecchiani, Chrysanthi Raftopoulou, and Pavel Valtr

Dispersion of Mobile Robots on Grids. 183
Ajay D. Kshemkalyani, Anisur Rahaman Molla, and Gokarna Sharma

Packing and Covering with Segments . 198
Joseph S. B. Mitchell and Supantha Pandit

Implicit Enumeration of Topological-Minor-Embeddings
and Its Application to Planar Subgraph Enumeration 211

Yu Nakahata, Jun Kawahara, Takashi Horiyama, and Shin-ichi Minato

Partitioning a Graph into Complementary Subgraphs 223
Julliano Rosa Nascimento, Uéverton S. Souza, and Jayme L. Szwarcfiter

On the Maximum Edge-Pair Embedding Bipartite Matching 236
Cam Ly Nguyen, Vorapong Suppakitpaisarn, Athasit Surarerks,
and Phanu Vajanopath

Packing Arc-Disjoint Cycles in Bipartite Tournaments 249
Ajay Saju Jacob and R. Krithika

Matching Random Colored Points with Rectangles 261
Josué Corujo, David Flores-Peñaloza, Clemens Huemer,
Pablo Pérez-Lantero, and Carlos Seara

Designing Survivable Networks with Zero-Suppressed Binary
Decision Diagrams . 273

Hirofumi Suzuki, Masakazu Ishihata, and Shin-ichi Minato

Approximability of the Independent Feedback Vertex Set Problem
for Bipartite Graphs. 286

Yuma Tamura, Takehiro Ito, and Xiao Zhou

xii Contents

Efficient Enumeration of Non-isomorphic Ptolemaic Graphs 296
Dat Hoang Tran and Ryuhei Uehara

Faster Privacy-Preserving Computation of Edit Distance with Moves. 308
Yohei Yoshimoto, Masaharu Kataoka, Yoshimasa Takabatake,
Tomohiro I, Kilho Shin, and Hiroshi Sakamoto

Short Papers

Parameterized Algorithms for the Happy Set Problem 323
Yuichi Asahiro, Hiroshi Eto, Tesshu Hanaka, Guohui Lin, Eiji Miyano,
and Ippei Terabaru

An Experimental Study of a 1-Planarity Testing
and Embedding Algorithm . 329

Carla Binucci, Walter Didimo, and Fabrizio Montecchiani

Trichotomy for the Reconfiguration Problem of Integer Linear Systems 336
Kei Kimura and Akira Suzuki

Train Scheduling: Hardness and Algorithms . 342
Christian Scheffer

Author Index . 349

Contents xiii

Invited Talks

Drawing Planar Graphs

Md. Saidur Rahman1(B) and Md. Rezaul Karim2

1 Graph Drawing and Information Visualization Laboratory,
Department of Computer Science and Engineering, Bangladesh University

of Engineering and Technology (BUET), Dhaka 1000, Bangladesh
saidurrahman@cse.buet.ac.bd

2 Department of Computer Science and Engineering, University of Dhaka,
Dhaka 1000, Bangladesh

rkarim@du.ac.bd

https://saidurrahman.buet.ac.bd

http://www.cse.du.ac.bd/profile/?faculty=MRK

Abstract. A graph is planar if it can be drawn or embedded in the plane
so that no two edges intersect geometrically except at a vertex to which
they are both incident. A plane graph is a planar graph with a fixed
planar embedding in the plane. A drawing problem X for a plane graph
G asks to determine whether G has a drawing D satisfying a set P of
given properties and to find D if it exists. The corresponding problem for
a planar graph G asks to determine whether G has a planar embedding Γ
such that Γ has a drawing D satisfying the set P of properties and find D
if it exists. If every embedding of G has a drawing D satisfying P , then the
problem is trivial, i.e., the problem for plane graphs and that for planar
graphs are the same. Otherwise, the problem for planar graphs becomes
difficult even if an efficient solution of the problem for a plane graph
exists since a planar graph may have an exponential number of planar
embeddings. Various techniques are found in literature that are used to
solve the drawing problems for planar graphs. In this paper we review
three of the widely used techniques, namely, (i) reduction to planarity
testing, (ii) incremental modification and (iii) SPQR-tree decomposition.

Keywords: Graph drawing · Plane graph · Planar graph · Planarity
testing · SPQR-tree

1 Introduction

A graph is planar if it can be drawn or embedded in the plane so that no
two edges intersect geometrically except at a vertex to which they are both
incident. A planar graph can have more than one planar embeddings. In fact a
planar graph may have an exponential number of planar embeddings. One can
differentiate two planar embeddings of a planar graph by observing the clockwise
or counterclockwise ordering of the edges incident to each vertex. A plane graph
G is a planar graph with a fixed planar embedding in the plane.
c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-39881-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_1

4 M. S. Rahman and M. R. Karim

A drawing problem X for a plane graph G asks to determine whether G has
a drawing D satisfying a set P of given properties and to find D if it exists. For
an example, in a rectangular drawing problem of a plane graph G, it is asked
to determine whether G has a drawing on a two dimensional plane keeping the
embedding fixed such that every edge is drawn as either a horizontal line segment
or a vertical line segment and each face including the outer face of G is drawn
as a rectangle, and find such a drawing if it exists. However, in a rectangular
drawing problem for a planar graph G, it is asked to determine whether G has a
planar embedding Γ which has a rectangular drawing, and find such a drawing of
Γ if it exists. That is, a drawing problem for a planar graph G asks to determine
whether G has a planar embedding Γ such that Γ has a drawing D satisfying the
set P of properties and find D if it exists. Suppose we have an efficient algorithm
for a drawing problem of plane graphs and not every planar embedding has such
a drawing. A straightforward algorithm checking each of all the embeddings by
that efficient algorithm for plane graphs does not lead to an efficient algorithm for
the drawing problem of planar graphs since a planar graph may have exponential
number of planar embeddings.

Several approaches are found in literature for solving drawing problems on
planar graphs. The key idea is to find a desirable embedding which has the
drawing. For finding such a suitable embedding, in many cases the problem is
reduced to planarity testing if some condition for having the drawing depends on
the outer face of the embedding. This approach was first used for finding “convex
drawings” of planar graphs by Chiba et al. in [9]. A convex drawing of a plane
graph G is a drawing of G where each vertex is drawn as a point, each edge is
drawn as a straight line segment and every face is drawn as a convex polygon. We
say a planar graph G has a convex drawing if any of its planar embedding has a
convex drawing. Not every planar graph has a convex drawing. Tutte established
a necessary and sufficient condition for a plane graph to have a convex drawing
[42] which was later slightly generalized by Thomassen [40]. Chiba et al. [9] gave
a constructive proof of the condition of Thomassen and modified the condition
into a form suitable for the convex testing of a plane graph. Using the form they
have shown that the convex testing of a planar graph G can be reduced to the
planarity testing of a certain graph obtained from G. Reduction to planarity
testing also used for rectangular drawings [33], “box-rectangular drawings” [19]
and “orthogonally convex drawings” [18] of planar graphs. In case of convex
drawings of a planar graph, reducing the problem to planarity testing, one can
identify only one embedding (among an exponential number of embeddings)
for which he needs to check the properties of convex drawing [9]. In case of
rectangular drawing one needs to check at most four embeddings [33] and for
“box-rectangular drawing” one needs to check at most 81 (a constant number)
planar embeddings [18].

Another approach is found in literature where starting from an arbitrary
embedding one can find a desirable embedding by changing the embedding incre-
mentally step by step. Hossain and Rahman [23] showed that every planar graph
has a planar embedding which has a monotone drawing defined below, and find

Drawing Planar Graphs 5

such an embedding by this approach. A straight-line drawing of a planar graph
G is a drawing of G in which each vertex is drawn as a point and each edge
is drawn as a straight-line segment without any edge crossing. A path P in a
straight-line drawing of a planar graph is monotone if there exists a line l such
that the orthogonal projections of the vertices of P on l appear along l in the
order induced by P . A straight-line drawing Γ of a planar graph G is a mono-
tone drawing of G if Γ contains at least one monotone path between every pair
of vertices [2,4,23,24]. Note that every plane graph has a straight-line drawing
[10,36], but not every plane graph has a monotone drawing.

Use of the SPQR-tree data structure that compactly represents all planar
embeddings of a biconnected planar graph is also a widely used approach to
find a desirable embedding efficiently. SPQR-tree decomposition has been used
for finding “bend-minimum orthogonal drawing” of restricted classes of planar
graphs [8,14]. An orthogonal drawing of a plane graph G is a drawing of G
where each vertex is drawn as a point and each edge is drawn as a sequence
of horizontal and vertical line segments. A point at which an edge changes its
direction is called a bend. A bend-minimum orthogonal drawing of a plane graph
has the minimum number of bends among all orthogonal drawings of G keeping
the embedding fixed [30,32]. A bend-minimum orthogonal drawing of a planar
graph G has the minimum number of bends among all orthogonal drawings of G
where we are allowed to change the embedding. Note that there are polynomial-
time algorithms for bend-minimum orthogonal drawings of plane graphs [15,39]
whereas the problem of finding bend-minimum orthogonal drawings of planar
graphs is NP-hard [39].

The remainder of the paper is organized as follows. In Sect. 2 we review how
the rectangular drawing problem is solved by reducing to a planarity testing
problem from [33]. In Sect. 3 we present the incremental modification method
from [23] for finding a suitable embedding for monotone drawing of a planar
graph. We describe the SPQR-tree decomposition approach in Sect. 4. Finally
we conclude with future directions of research in Sect. 5. We refer books [26,27]
for terminologies not defined in this paper.

2 Reduction to Planarity Testing

In this section we present the result of Rahman et al. [33] that we can determine
whether a planar graph G has a rectangular drawing by checking at most four
embeddings by the linear algorithm in [31]. The four planar embeddings are
identified by reducing the problem to a planarity testing problem.

We denote by Δ the maximum degree of G. If a plane graph G has a rectan-
gular drawing, then Δ ≤ 4 and G must be biconnected and have four or more
vertices of degree 2 on the outer face. We call a vertex on the outer face of a plane
graph an outer vertex. Thomassen [41] obtained a necessary and sufficient condi-
tion for a plane graph of Δ ≤ 3 to have a rectangular drawing when a quadruplet
of outer vertices of degree two are designated as corners of a rectangular drawing
of the outer face.

6 M. S. Rahman and M. R. Karim

A linear-time algorithms is given in [29] to obtain a rectangular drawing
of such a plane graph based on Thomassen’s condition. Later Rahman et al.
[31] slightly generalized the condition of Thomassen by giving a necessary and
sufficient condition for a plane graph of Δ ≤ 3 to have a rectangular drawing (for
some appropriately chosen quadruplet), and developed a linear-time algorithm
to choose such a quadruplet and find a rectangular drawing of a plane graph for
the chosen corners if they exist.

To present the conditions in Rahman et al. [31] we need some definitions.
For a cycle C in a plane graph G, we denote by G(C) the plane subgraph of G
inside C (including C). An edge which is incident to exactly one vertex of C and
located outside of C is called a leg of C, and the vertex of C to which the leg is
incident is called a leg-vertex of C. A cycle C in G is called a k-legged cycle of G
if C has exactly k legs. A k-legged cycle C is minimal if G(C) does not contain
any other k-legged cycle of G. A cycle C is called regular if G−G(C) contains a
cycle. We say that cycles C and C ′ in a plane graph G are independent if G(C)
and G(C ′) have no common vertex. A set S of cycles is independent if any pair
of cycles in S are independent. We now present the conditions in the following
theorem.

Theorem 1 [31]. Assume that G is a 2-connected plane graph with Δ ≤ 3 and
has four or more outer vertices of degree two. Then four of them can be designated
as the corners so that G has a rectangular drawing with the designated corners
if and only if G satisfies the following three conditions: (a) every 2-legged cycle
in G contains at least two outer vertices of degree two; (b) every 3-legged cycle
in G contains at least one outer vertex of degree two; and (c) if an independent
set S of cycles in G consists of c2 2-legged cycles and c3 3-legged cycles, then
2c2 + c3 ≤ 4.

Not every plane graph has a rectangular drawing. Figures 1(a) and (b) depict
two different planar embeddings of the same planar graph. The embedding in
Fig. 1(a) has a rectangular drawing as illustrated in Fig. 1(c), and hence the
planar graph has a rectangular drawing. On the other hand, the embedding
in Fig. 1(b) does not have a rectangular drawing, because there are 3-legged
cycles indicated by dotted lines which have no outer vertex of degree two. A
straightforward algorithm checking each of all the embeddings by the linear
algorithm in [31] does not run in polynomial time. In the rest of this section
we show from Rahman et al. [33] that it is sufficient to check at most four
embeddings of G which can be found through a planarity testing of a graph
obtained from the input graph.

If the planar graph G is a subdivision of a planar 3-connected cubic graph,
then one can determine whether G has a rectangular drawing or not by inves-
tigating any planar embedding of G [33]. We thus assume that G is a planar
2-connected graph with Δ ≤ 3 but is not a subdivision of a planar 3-connected
cubic graph.

Let Γ be an arbitrary planar embedding of G. If G has at most two ver-
tices of degree three, then one can easily examine whether G has a rectangular

Drawing Planar Graphs 7

n
o p

q

r
stu

a
 b

c
d

e

f
g h

i

j

k
l

m

(a)

n
o
p
q
r

s t u

a
 b

c

d

e
f

g

 h

i
j
k

l
m

(b)

c
d
e

f g h i

j

 k

l m

n
o p

 q

r
s

t

u

b

a

(c)

Fig. 1. (a)–(b) Two different planar embeddings of a same planar graph, (c) a rectan-
gular drawing of the plane graph in (a).

drawing. We may thus assume that G has three or more vertices of degree three.
Then Γ has a regular 2-legged cycle C. The pair of leg-vertices of C is a “critical
separation pair” [26]. Let (x1, y1), (x2, y2), · · · , (xl, yl) be all “critical separation
pairs” of G [26]. Clearly l = O(n). If there is a planar embedding Γ ′ of G hav-
ing a rectangular drawing, then the outer face Fo(Γ ′) must contain all vertices
x1, y1, x2, y2, · · · , xl, yl. Construct a graph G+ from G by adding a dummy ver-
tex z and dummy edges (xi, z) and (yi, z) for all indices i, 1 ≤ i ≤ l. Then G has
a planar embedding whose outer face contains all vertices x1, y1, x2, y2, · · · , xl, yl

if and only if G+ is planar. (Figure 2(b) illustrates G+ for G in Fig. 2(a).)

C

x

y6

C

y2

2

64

4

x5 3yy5

C1

x3 3

(d) Γ *(c)

C

z
Γ

C

1
1

4 6y

3

y3

6x
y5

3x

2x
1 x5

C2
y2

+

3

x

G

1

C1
1

C2
y2

y6

x6
x2
y3 3x

5
4

C

y5

(a) Γand

4

y

x

y

x

(b)

3

1

C1

1
C2

y5
x6 4

x2

y2
4

z

x3
5x

y6

y3y

x

y

x

C

y4

x

y

x

y

x1

1

y

x

x2

+G

Fig. 2. G, Γ , G+, Γ+ and Γ ∗.

We may thus assume that G+ is planar. Let Γ+ be an arbitrary planar
embedding of G+ such that z is embedded on the outer face, as illustrated in
Fig. 2(c). We delete from Γ+ the dummy vertex z and all dummy edges incident
to z, and let Γ ∗ be the resulting planar embedding of G, in which Fo(Γ ∗) contains
all vertices x1, y1, x2, y2, · · · , xl, yl, as illustrated in Fig. 2(d). One can observe
that every 2-legged cycle in Γ ∗ has the leg-vertices on Fo(Γ ∗).

Let p be the largest integer such that a number p of 2-legged cycles in Γ ∗ are
independent with each other. Then p ≥ 2 since Γ and hence Γ ∗ has a regular

8 M. S. Rahman and M. R. Karim

2-legged cycle. In fact p = 2; if p ≥ 3, then any planar embedding of G whose
outer face contains all vertices x1, y1, x2, y2, · · · , xl, yl has three or more indepen-
dent 2-legged cycles, and hence by Theorem 1(c) the embedding has no rectan-
gular drawing, and consequently the planar graph G has no rectangular drawing.

Since p = 2, Γ ∗ has exactly two independent 2-legged cycles C1 and
C2. We may assume without loss of generality that C1 and C2 are minimal
2-legged cycles, as illustrated in Fig. 3(a). By flipping Γ ∗(C1) or Γ ∗(C2) around
the leg-vertices of C1 or C2, we have four different embeddings Γ1(= Γ ∗), Γ2,
Γ3 and Γ4 such that each outer face Fo(Γi), 1 ≤ i ≤ 4, contains all vertices
x1, y1, x2, y2, · · · , xl, yl, as illustrated in Fig. 3. Since only the four embeddings
Γ1, Γ2, Γ3 and Γ4 of G have all vertices x1, y1, x2, y2, · · · , xl, yl on the outer face,
G has a rectangular drawing if and only if at least one of Γ1, Γ2, Γ3 and Γ4 has
a rectangular drawing.

1C 1x 3x x4 x2

C2

y1 y3 4y 2y

1C
1x

y1

3x

y3

x2

2y

C2
1C 1x

y1

3x

y3

x4

4y

x4

4y

C2
x2

2y

1C
1x

y1

3x

y3

x4

4y 2y

x2 C2

(a) =Γ1 Γ * (b) Γ2 (c) Γ3 (d) Γ4

Fig. 3. Γ1, Γ2, Γ3 and Γ4.

3 Incremental Modification

In this approach, starting from an arbitrary planar embedding, the desired planar
embedding is obtained by modifying the embedding step by step. This approach
is used for monotone straight-line drawings of planar graphs. We call a monotone
drawing of a planar graph a monotone grid drawing if every vertex is drawn on
a grid point.

It is known that not every plane graph (with a fixed embedding) admits a
monotone drawing [2]. Hossain and Rahman [23] showed that every connected
planar graph of n vertices has a planar embedding which has a monotone grid
drawing on an O(n)×O(n2) grid, and such a drawing can be computed in O(n)
time. An outline of their algorithm is as follows. First construct an embedding of
G which has a “good spanning tree” T . Then find a monotone drawing of T by
an algorithm in [2]. Finally draw each non-tree edge as a straight-line segment
by shifting the drawing of some subtrees of T , if necessary.

Let G be a connected planar graph and let Gφ be a planar embedding of G.
Let T be an ordered rooted spanning tree of Gφ such that the root r of T is
an outer vertex of Gφ, and the ordering of the children of each vertex v in T
is consistent with the ordering of the neighbors of v in Gφ. Let P (r, v) = u1(=
r), u2, · · · , uk(= v) be the path in T from the root r to a vertex v �= r. The path
P (r, v) divides the children of ui, (1 ≤ i < k), except ui+1, into two groups; the

Drawing Planar Graphs 9

left group L and the right group R. A child x of ui is in the group L and denoted
by uL

i if the edge (ui, x) appears before the edge (ui, ui+1) in clockwise ordering
of the edges incident to ui when the ordering is started from the edge (ui, ui−1),
as illustrated in the Fig. 4(a). Similarly, a child x of ui is in the group R and
denoted by uR

i if the edge (ui, x) appears after the edge (ui, ui+1) in clockwise
order of the edges incident to ui when the ordering is started from the edge
(ui, ui−1). We call T a good spanning tree of Gφ if every vertex v (v �= r) of G
satisfies the following conditions (c1) and (c2) with respect to P (r, v).

(c1) G does not have a non-tree edge (v, ui), i < k; and
(c2) the edges of G incident to the vertex v excluding (uk−1, v) can be parti-

tioned into three disjoint (possibly empty) sets Xv, Yv and Zv satisfying
the following conditions (a)–(c) (see Fig. 4(b)): (a) Each of Xv and Zv is a
set of consecutive non-tree edges and Yv is a set of consecutive tree edges.
(b) Edges of set Xv, Yv and Zv appear clockwise in this order from the edge
(uk−1, v). (c) For each edge (v, v′) ∈ Xv, v′ is contained in TuL

i
, i < k, and

for each edge (v, v′) ∈ Zv, v′ is contained in TuR
i
, i < k.

Xv

Zv

Yv

vu

r

uiui−1

ui+1

(a) (b)

uL
i

uR
i

v

r

Fig. 4. (a) An illustration for P (r, v), L and R groups, (b) an illustration for Xv, Yv

and Zv sets of edges [23].

To find an embedding of G with a good spanning tree T , Hossain and
Rahman [23] used an incremental modification approach which is described using
an illustrative example in Fig. 5. We take an arbitrary planar embedding Gγ of
G and start a breath-first-search (BFS) from an arbitrary outer vertex r of Gγ

and regard r as the root of our desired spanning tree. In Fig. 5(a) the BFS is
started from vertex a, and vertex b, c and d are visited from a in this order, as
illustrated in Fig. 5(b). We next visit e from b, as illustrated in Fig. 5(c). When
we visit a new vertex u, we check whether there is an edge (u, v) such that v
is already visited and there is a (u, v)-split component or a u-component or a
v-component inside the cycle induced by the edge (u, v) which does not contain
the root r. The {e, d}-split component H1 induced by the vertices {d, h, i, j, e}
is such a split component in Fig. 5(c) and the subgraph H2 induced by vertices
d,m, n is such a u-component for u = d which are inside the cycle induced by
the edge (e, d). We move the subgraphs H1 and H2 out of the cycle induced by

10 M. S. Rahman and M. R. Karim

the non-tree edge (e, d), as illustrated in Fig. 5(d). Since (b, e) is a tree edge and
(e, d) is a non-tree edge, according to the definition of a good spanning tree,
the edges (e, f) and (e, k) must be non-tree edges. Similarly, since (a, d) is a tree
edge and (e, d) a non-tree edge, the edge (d, l) must be a non-tree edge. We mark
(e, f), (e, k) and (d, l) as non-tree edges as shown in the Fig. 5(e). We then visit
vertices f, l,m, n, g, h and j, as illustrated in Fig. 5(f). When we visit k, we find
a k-component H induced by vertices {k, p, o} and we move H out of the cycle
induced by (e, k) as shown in Fig. 5(g). The BFS continues in this way and at
the end of the BFS we find a planar embedding Gφ of G and a good spanning
tree T as illustrated in Fig. 5(h), where the edges of the good spanning tree T
are drawn as solid lines, and non-tree edges are drawn as dashed lines.

Fig. 5. Illustration for an outline of construction of a good spanning tree T . White
vertices are visited vertices. Black vertices are not visited. Solid edges are tree edges.
Dashed edges are non-tree edges [23].

Good spanning trees are also used for finding “2-visibility drawings” and
“VPG drawings” of planar graphs [23].

4 SPQR-Tree Decomposition

An SPQR-tree, introduced by Di Battista and Tamassia [12], represents the
decomposition of a biconnected graph with respect to its triconnected compo-
nents. It is a data structure that compactly represents all planar embeddings of
a biconnected planar graph.

Let G = (V,E) be a biconnected planar graph. A pair {u, v} of vertices of G
is a separation pair if there exist two subgraphs G1 = (V1, E1) and G2 = (V2, E2)
satisfying following two conditions: (a) V = V1 ∪ V2, V1 ∩ V2 = {u, v}; and (b)
E = E1 ∪ E2, E1 ∩ E2 = φ, |E1| ≥ 2, |E2| ≥ 2. A split pair of G is either

Drawing Planar Graphs 11

a separation pair or a pair of adjacent vertices. Let {s, t} be a split pair of G
such that the edge (s, t) exists in G. The SPQR-tree T of G with respect to the
reference edge e = (s, t) describes a recursive decomposition of G induced by its
split pairs. Tree T is a rooted ordered tree whose nodes are of four types: S, P,Q,
and R. Each node x of T corresponds to a subgraph of G, called its pertinent
graph Gx. Each node x of T has an associated biconnected multigraph, called the
skeleton of x, and denoted by skeleton(x). The skeleton of a R-node corresponds
to a triconnected graph, the skeleton of an S-node, corresponds to a simple cycle
of length at least three, the skeleton of a P -node corresponds to a bundle of at
least three parallel edges, and a Q-node represents a single edge of the graph
and its skeleton consists of two parallel edges. Figure 6 illustrates an SPQR-tree
decomposition of a graph.

f

d

(b)

(a, b)

a

b

g

c

i h

g f

d
c

f

d

j

f

e

d

(a, i)(b, i)(b, c)(c, h)(h, i)(g, h)(a, g)

(f, g)
(c, d)

(d, j) (j, f) (d, e) (e, f)

a

b

g f

e

d
c

i h

j

g f

e

d
c

j

(c) f

e

d

j

(a)

(d)

r

s

s s

p

1

2 3

1

1

Fig. 6. (a) A biconnected graph G of maximum degree three, (b) SPQR-tree T of G
with respect to reference edge (a, b) and skeleton of the P -, S-, and R-nodes, (c) the
pertinent graph of S-node s1 and (d) the pertinent graph of P -node p1.

The reference edge is a Q node which is the natural root of an SPQR-tree.
However an SPQR-tree can be re-rooted to any other nodes according to problem
solving requirements. In general the problem is solved in bottom up approach
on SPQR-tree, see the case of orthogonal drawings in [8,11]. Starting from leaf
nodes the drawing problem at hand is solved on the pertinent graphs of each
node by merging the solution of its children. Dynamic programming can also be
used by keeping feasible solutions in a table at each node.

Finding a solution for a R-node is relatively easy [28] since the skeleton of
a R-node is a triconnected graph which has a linear number of embeddings.
However, merging the solution of a R-node with the solution of P-nodes or S-
node becomes difficult. So this approach efficiently solve a drawing problem if it
has no R-node, that is, the graph is a series-parallel graph [34,35].

12 M. S. Rahman and M. R. Karim

5 Conclusions

In this paper we have reviewed three approaches for handling drawing problems
of planar graphs. In graph drawing problems where some conditions for having
the drawing depend on the outer face of the embedding, we may choose a smaller
number of the candidate embeddings by reducing the problem to a planarity
testing problem. It is interesting to investigate which of the other graph drawing
problems can be reduced to a planarity testing problem.

There are several linear algorithms for planarity testing [6,17,21,25,37]. How-
ever, these algorithms are not conceptually simple. Finding a linear algorithm for
planarity testing which is conceptually simple is still a need for the community.
Finding planar embeddings of planar graphs with some desired properties is also
an interesting direction of research. Sometimes the quality of a planar embed-
ding of a planar graph can be measured in terms of the maximum distance of
its vertices from the external face [3,5].

If the drawing of the graph depends on the properties of some embedded
subgraph, we may try to solve it by incremental modification like the approach
described in Sect. 3.

It looks that a problem can be solved if we can define a dynamic programming
on SPQR-trees [1]. For graph drawing problems which are NP-hard, like bend-
minimum orthogonal drawing [39] and upward planar drawings of digraphs [16],
can we choose degree, height, treewidth etc. of SPQR-tree as parameters for
developing parameterized algorithms?

We have not exhausted all the approaches for drawing planar graphs in this
paper [22]. Combination of these approaches with some new approaches might
be helpful. Very recently Didimo et. al gave a linear algorithm for orthogonal
drawings of planar graphs of maximum degree 3 which uses SPQR-tree decom-
position together with shape analysis, labeling and counting techniques etc. [13].

For the last few years graph drawing community has focused their interest in
drawing non-planar graphs [7,20]. In some cases, an algorithm for a non-planar
graph first somehow convert the non-planar graph to a planar graph, then find
a drawing using an algorithm for a planar graph and finally modify the drawing
for the original non-planar graph [38]. It is interesting to investigate which of the
planar graph drawing approaches can be extended for the drawings of non-planar
graphs.

Acknowledgement. We thank Debajyoti Mondal and Shin-ichi Nakano for their use-
ful comments on the manuscript of this paper.

References

1. Angelini, P., et al.: Testing planarity of partially embedded graphs. In: Proceedings
of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
202–221. SIAM (2010)

2. Angelini, P., Colasante, E., Di Battista, G., Frati, F., Patrignani, M.: Monotone
drawings of graphs. J. Graph Algorithms Appl. 16(1), 5–35 (2012)

Drawing Planar Graphs 13

3. Angelini, P., Di Battista, G., Patrignani, M.: Finding a minimum-depthembedding
of a planar graph in O(n4) time. Algorithmica 60(4), 890–937 (2011)

4. Angelini, P., et al.: Monotone drawings of graphs with fixed embedding. Algorith-
mica 71(2), 233–257 (2015)

5. Bienstock, D., Monma, C.L.: On the complexity of embedding planar graphs to
minimize certain distance measures. Algorithmica 5(1–4), 93–109 (1990)

6. Boyer, J.M., Cortese, P.F., Patrignani, M., Di Battista, G.: Stop minding your
P’s and Q’s: implementing a fast and simple DFS-based planarity testing and
embedding algorithm. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 25–36.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24595-7 3

7. Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algo-
rithms Appl. 18(3), 421–438 (2014)

8. Chang, Y.J., Yen, H.C.: On bend-minimized orthogonal drawings of planar 3-
graphs. In: Proceedings of 33rd International Symposium on Computational Geom-
etry (SoCG 2017). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017)

9. Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings
of planar graphs. Prog. Graph Theory 173, 153–173 (1984)

10. De Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid.
Combinatorica 10(1), 41–51 (1990)

11. Di Battista, G., Liotta, G., Vargiu, F.: Spirality and optimal orthogonal drawings.
SIAM J. Comput. 27(6), 1764–1811 (1998)

12. Di Battista, G., Tamassia, R.: On-line maintenance of triconnected components
with SPQR-trees. Algorithmica 15(4), 302–318 (1996)

13. Didimo, W., Liotta, G., Ortali, G., Patrignani, M.: Optimal orthogonal drawings
of planar 3-graphs in linear time. arXiv preprint, arXiv:1910.11782 (2019)

14. Didimo, W., Liotta, G., Patrignani, M.: Bend-minimum orthogonal drawings in
quadratic time. In: Biedl, T., Kerren, A. (eds.) GD 2018. LNCS, vol. 11282, pp.
481–494. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04414-5 34

15. Garg, A., Tamassia, R.: A new minimum cost flow algorithm with applications
to graph drawing. In: North, S. (ed.) GD 1996. LNCS, vol. 1190, pp. 201–216.
Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62495-3 49

16. Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear
planarity testing. SIAM J. Comput. 31(2), 601–625 (2001)

17. Haeupler, B., Tarjan, R.E.: Planarity algorithms via PQ-trees. Electron. Notes
Discret. Math. 31, 143–149 (2008)

18. Hasan, M.M., Rahman, M.S.: No-bend orthogonal drawings and no-bend orthogo-
nally convex drawings of planar graphs (extended abstract). In: Du, D.-Z., Duan,
Z., Tian, C. (eds.) COCOON 2019. LNCS, vol. 11653, pp. 254–265. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26176-4 21

19. Hasan, M.M., Rahman, M.S., Karim, M.R.: Box-rectangular drawings of planar
graphs. J. Graph Algorithms Appl. 17(6), 629–646 (2013)

20. Hong, S., Tokuyama, T.: Algorithmics for beyond planar graphs. In: NII Shonan
Meeting Seminar, no. 27, pp. 51–63 (2016)

21. Hopcroft, J., Tarjan, R.: Efficient planarity testing. J. ACM (JACM) 21(4), 549–
568 (1974)

22. Hossain, M., Mondal, D., Rahman, M., Salma, S.: Universal line-sets for drawing
planar 3-trees. J. Graph Algorithms Appl. 17(2), 59–79 (2013)

23. Hossain, M.I., Rahman, M.S.: Good spanning trees in graph drawing. Theor. Com-
put. Sci. 607, 149–165 (2015)

24. Hossain, M.I., Rahman, M.S.: Straight-line monotone grid drawings of series-
parallel graphs. Discrete Math. Algorithms Appl. 7(02), 1550007 (2015)

https://doi.org/10.1007/978-3-540-24595-7_3
http://arxiv.org/abs/1910.11782
https://doi.org/10.1007/978-3-030-04414-5_34
https://doi.org/10.1007/3-540-62495-3_49
https://doi.org/10.1007/978-3-030-26176-4_21

14 M. S. Rahman and M. R. Karim

25. Mehlhorn, K., Mutzel, P.: On the embedding phase of the hopcroft and tarjan
planarity testing algorithm. Algorithmica 16(2), 233–242 (1996)

26. Nishizeki, T., Rahman, M.S.: Planar Graph Drawing, vol. 12. World Scientific
Publishing Company, Singapore (2004)

27. Rahman, M.S.: Basic Graph Theory. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-49475-3

28. Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of subdivi-
sions of planar triconnected cubic graphs. IEICE Trans. Inform. Syst. 88(1), 23–30
(2005)

29. Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular grid drawings of plane
graphs. Comput. Geom. 10(3), 203–220 (1998)

30. Rahman, M.S., Nakano, S., Nishizeki, T.: A linear algorithm for bend-optimal
orthogonal drawings of triconnected cubic plane graphs. J. Graph Algorithms Appl.
3, 31–62 (1999)

31. Rahman, M.S., Nakano, S., Nishizeki, T.: Rectangular drawings of plane graphs
without designated corners. Comput. Geom. 21(3), 121–138 (2002)

32. Rahman, M.S., Nishizeki, T.: Bend-minimum orthogonal drawings of plane 3-
graphs. In: Goos, G., Hartmanis, J., van Leeuwen, J., Kučera, L. (eds.) WG 2002.
LNCS, vol. 2573, pp. 367–378. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-36379-3 32

33. Rahman, M.S., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs.
J. Algorithms 50(1), 62–78 (2004)

34. Samee, M.A.H., Alam, M.J., Adnan, M.A., Rahman, M.S.: Minimum segment
drawings of series-parallel graphs with the maximum degree three. In: Tollis, I.G.,
Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 408–419. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-00219-9 40

35. Samee, M.A.H., Rahman, M.S.: Upward planar drawings of series-parallel digraphs
with maximum degree three. In: Proceedings of WALCOM 2007, pp. 28–45.
Bangladesh Academy of Sciences (2007)

36. Schnyder, W.: Embedding planar graphs on the grid. In: Proceedings of the First
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 138–148. Society for
Industrial and Applied Mathematics (1990)

37. Shih, W.K., Hsu, W.L.: A new planarity test. Theor. Comput. Sci. 223(1), 179–192
(1999)

38. Sultana, S., Rahman, M.S., Roy, A., Tairin, S.: Bar 1-visibility drawings of 1-planar
graphs. In: Gupta, P., Zaroliagis, C. (eds.) ICAA 2014. LNCS, vol. 8321, pp. 62–76.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-04126-1 6

39. Tamassia, R.: On embedding a graph in the grid with the minimum number of
bends. SIAM J. Comput. 16(3), 421–444 (1987)

40. Thomassen, C.: Planarity and duality of finite and infinite graphs. J. Comb. Theory
Ser. B 29(2), 244–271 (1980)

41. Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R.
(eds.) Progress in Graph Theory. Academic Press, New York (1984)

42. Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. 3(1),
304–320 (1960)

https://doi.org/10.1007/978-3-319-49475-3
https://doi.org/10.1007/978-3-319-49475-3
https://doi.org/10.1007/3-540-36379-3_32
https://doi.org/10.1007/3-540-36379-3_32
https://doi.org/10.1007/978-3-642-00219-9_40
https://doi.org/10.1007/978-3-319-04126-1_6

Space Efficient Separator Algorithms
for Planar Graphs

Osamu Watanabe(B)

Tokyo Institute of Technology, Tokyo 152-8550, Japan
watanabe@c.titech.ac.jp

Abstract. The Separator Theorem states that any planar graph G with
n vertices has a separator of size O(

√
n), that is, a set S of O(

√
n) vertices

of G such that by removing S, G is split into disconnected subgraphs of
almost equal size, say, each having more than n/3 vertices. A separator
algorithm is an algorithm that computes a separator for a given planar
graph. We consider two algorithms that have been developed recently by
the author and his colleagues [4,6] for designing a “sublinear-space” and
polynomial-time separator algorithm.

Keywords: Separator Theorem · Space-efficient algorithms

1 Summary

In this talk I explain two algorithms that have been developed by the author
and his colleagues [4,6] to prove the following theorem. (We have not optimized
the constant α and prove the theorem with α = 1/31.)

Theorem 1. For some constant α > 0, there exists an algorithm that takes an
undirected planar graph with n vertices as input and outputs its α-separator of
size O(

√
n) in polynomial-time and ˜O(

√
n)-space. �

The Separator Theorem states that any planar graph G with n vertices has
a separator of size O

(√
n
)

, that is, a set S of O
(√

n
)

vertices of G such that by
removing S, G is split into disconnected subgraphs of almost equal size, say, each
having more than n/3 vertices. In fact, in their seminal work that first proved the
Separator Theorem, Lipton and Tarjan [11] gave an efficient separator algorithm,
an algorithm for computing an O(

√
n)-size separator for planar graphs.

Since the work of Lipton and Tarjan, several versions of separator algorithms
have been proposed, and they have been applied to design various algorithms for
planar graphs. The purpose of our work is to give yet another type of separator
algorithm stated in the above theorem. Its motivation stems from its relation to
the graph reachability problem.

A major part of this work was done during the project “Exploring the Limits of Com-
putation (ELC)” supported by MEXT KAKENHI Grant No. 24106008.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 15–21, 2020.
https://doi.org/10.1007/978-3-030-39881-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_2&domain=pdf
http://orcid.org/0000-0003-0284-7566
https://doi.org/10.1007/978-3-030-39881-1_2

16 O. Watanabe

The graph reachability or the st-connectivity problem asks, for a given directed
graph G and two of its vertices s and t, whether there is a path in G from s
to t or not. This problem is one of the fundamental computational problems
in both algorithm design and in complexity theory. In particular, the O(log n)-
space non-computability of the graph reachability problem is a typical example
of the L �= NL conjecture, one of the fundamental open problems in computa-
tional complexity theory. Interestingly, for its undirected version, that is, for the
undirected graph reachability problem, Reingold [12] gave a remarkable O(log n)-
space algorithm. Note that, by using standard algorithmic techniques such as
BFS or DFS we can design an algorithm that runs in almost linear-space and
in almost linear-time for solving reachability over directed graphs. Savitch gave
an algorithm that solves reachability using O((log n)2)-space. However Savitch’s
algorithm takes super polynomial-time. While the BFS/DFS algorithm is time-
efficient, Savitch’s algorithm is space-efficient. Thus it is natural to ask whether
there exists an algorithm, for the directed graph reachability problem, that runs
in sublinear-space and yet polynomial-time. For this question, the best known
answer is the algorithm given by Barnes et al. [7] that runs in O

(

n/2
√
log n

)

-space
and polynomial-time. Unfortunately, though the bound O

(

n/2
√
log n

)

is “sublin-
ear”, it is quite close to being linear. If we view O

(

n1−ε
)

(for some ε > 0), as
“sublinear”, it has been open whether such a sublinear-space and polynomial-
time algorithm exists for the reachability problem.

Recently, there have been some advancements on this sublinear-space and
polynomial-time computability for restricted graph classes. (Since all algorithms
stated below run in polynomial-time, we omit mentioning “polynomial-time” in
the following.) The first break through was given by Asano and Doerr [2], who
showed an algorithm that solves the reachability problem on directed grid graphs
in ˜O(n1/2+ε)-space. Inspired by this work, Imai, Nakagawa, Pavan, Vinodchan-
dran, and Watanabe [9] gave an ˜O(n1/2+ε)-space algorithm for the reachabil-
ity problem on directed planar graphs. Later Asano et al. [3] gave an improved
˜O(

√
n)-space algorithm. For directed grid graphs, Ashida and Nakano [5] showed

an ˜O(n1/3)-space algorithm. Note that in all of the above algorithms the input
graphs are planar and they all critically rely on the existence of O(

√
n)-size

separator. The last algorithm of Ashida and Nakano is interesting in this sense
because its space bound is much less than the separator size. These algorithms
except for the first one use a separator algorithm proposed by Imai et al. in [9]
that produces a O(

√
n)-size separator in ˜O(

√
n)-space. This separator algorithm

is based on an algorithm of Gazit and Miller [8] that is designed for computing
a separator efficiently on a parallel computation model. Since space-bounded
computation and parallel computation share common features, one can expect
that the algorithm of Gazit and Miller can be modified naturally to obtain an
algorithm that runs in polynomial-time and uses ˜O(

√
n)-space. Unfortunately,

it is not easy to translate Gazit and Miller’s algorithm to obtain a ˜O(
√

n)-space
algorithm for computing a planar separator. The work of [9] provided a sketch
of a ˜O(

√
n)-space, polynomial-time algorithm for computing a planar separator,

however, several nontrivial details have been left unexplained in that work.

Space Efficient Separator Algorithms for Planar Graphs 17

Right after the presentation of [9], the author and his colleagues have been
trying to give a complete and detailed explanation to the algorithm claimed
in [9], and finally, we have been able to publish a report [6] in which we give
an algorithm stated as Theorem 1 in detail. In fact, we needed to give another
separator algorithm [4] as a basis of this algorithm. By our deitaled analysis, we
have realized that the computational relations between the separator problem
and some other generic computational problems. The purpose of this talk is to
explain these two algorithms from this view point.

2 Preliminaries for Our Discussion

We explain basic notions and notation on graphs, in particular, planar graphs.
We also explain our computational model and some algorithms that are used as
key tools in our discussion.

Throughout this paper, by a graph we usually mean an undirected graph.
For any graph G, we formally use V(G) and E(G) to denote the set of vertices of
G and the set of edges of G respectively. On the other hand, we mainly discuss
with some fixed graph G, and in this case, we simply use V and E to denote
V(G) and E(G). Also unless otherwise stated, we use n to denote the number of
vertices of G, which is a typical size parameter for disucssing the complexity of
algorithms.

For any vertex v ∈ V , let NG(v) denote the set of its neighbors, namely,
vertices adjacent to v in G. For any U ⊆ V (resp., D ⊆ E) we use G[U] (resp.,
G[D]) to denote a subgraph of G induced by U (resp., by D).

We assume that an input graph is simple, that is, each pair of vertices has
at most one edge. Though a non-simple graph may be created by our trans-
formations (in particular, in our base dual-graph), all our arguments should be
valid by treating multiple edges (between the same pair of vertices) as different
edges. By a path of G = (V,E), we mean a “simple” path, that is, a sequence
adjacent edges of E where no vertex is visited more than once. Similarly, a cycle
of G = (V,E) is a sequence adjacent edges of E that comes back to the first
vertex where no vertex except for the first one is visited more than once. We
simply represent a path and a cycle by a sequence (v1, . . . , vm) of vertices of
V such that every {vi, vi+1} (and also {vm, v1} for a cycle) is an edge of E.
Although the same sequence could be used for representing both a path and
a cycle, the difference should be clear from the context. We may also use this
sequence representation for indicating the “direction” of a path or a cycle.

We avoid rigorous but tedious topological treatments of planar graphs, and
following the previous work in the literature (see, e.g., [10]), we prepare a frame-
work for discussing plane graphs in a combinatorial way.

Definition 1. A graph G is planar if it has a planar embedding, a way to
arrange the vertices of NG(v) on the plane (i.e., R2) for all v ∈ V and a drawing
of the edges so that no pair of edges intersect each other except at their endpoints.
A planar embedding is specified by a combinatorial embedding, that is, a set π
:= {πv : v ∈ V }, where each πv is an enumeration of vertices of NG(v) in the
clockwise order around v under the embedding.

18 O. Watanabe

[Remark]. Throughout this paper, we use a plane graph to mean a planar graph
that is embedded in the plane following one of such combinatorial embeddings. �

Consider any plane graph G embedded in the plane under a combinatorial
embedding π. One of the keys for discussing plane graphs is a way to define the
faces of G. Intuitively, the graph G (embedded in the plane) separates the plane
into “subplanes,” each of which is a “face” of G. Here we formally define the
notion of “face” in a combinatorial way.

First define the notion of “left-traverse” of G. Consider any edge {v1, v2} of
G, and fix its direction as, e.g., (v1, v2), which we regard as the first directed
edge e1 (of the left-traverse). Consider the enumeration πv2 of adjacent vertices
of v2, and let v3 be the next vertex of v1 in the enumeration, that is, v3 is
clockwise the first vertex adjacent to v2 after v1. Then define e2 = (v2, v3) as
the second directed edge. Continue this process of identifying directed edges
(based on edges of G) until we come back to the first directed edge e1. We
call this process left-traverse process, and a sequence of vertices visited during
the process left-traverse of G started from (v1, v2). Although a left-traverse is a
sequence of vertices, this can be regraded as the sequence of the directed edges
in the order that they are identified by the left-traverse process.

Consider any plane graph G with at least two faces. Then any left-traverse
t = (v1, . . . , vm) of G separates the plane where G is embedded into at least
two “subplanes.” From the choice of directed edges, it is clear that there is no
vertex of G in the “subplane” left of the directed edges of t; that is, a “face”
is identified by this left-traverse. In fact, it has been known that for any plane
graph, all its faces are identified by some left-traverse as stated in Proposition 1
below. In this paper, we regard this proposition as our definition of the notion
of face.

Proposition 1. Consider any plane graph G. Then for any left-traverse of G,
there is a unique subplane, i.e., face, located left of the traverse w.r.t. its direc-
tion. On the other hand, for any face of G, there is a left-traverse of G that
defines it as a subplane located left of the left-traverse w.r.t. its direction.

[Remark]. Since each left-traverse is determined by a starting directed edge, there
are more than one essentially the same left-traverses. Thus, the correspondence
between faces and left-traverses is not one-to-one but one-to-many. �

Note that a left-traverse is not a cycle in general. But if G is 2-connected,
then any left-traverse of G is a cycle. (A graph is 2-connected if every pair {u, v}
of its vertices are connected by two paths not sharing vertices except for {u, v},
or equivalently, it has no cut vertex.)

Proposition 2. Consider any plane graph G that is also 2-connected. Then any
left-traverse is a cycle. That is, every face of G has a boundary consisting of one
cycle, which we call a face boundary cycle. �

We mainly consider 2-connected graphs. Thus, we may identify a face with
its boundary cycle; this gives us a way to represent a face.

Space Efficient Separator Algorithms for Planar Graphs 19

Definition 2. For any 2-connected plane graph G, for any face, its face bound-
ary representation is its face boundary cycle c, or more precisely, a sequence of
vertices of c in the order so that the face is located left of c w.r.t. the order. The
size of a face is the number of vertices of its face boundary cycle. �

We say that two faces are incident (resp., edge-incident) if their boundaries
share some vertex (resp., some edge). In general, we say that two graph objects
are incident if they share some vertex. For example, we say that two paths
are incident if they share some vertex (and possibly more). Here is our way to
describe all faces of a given graph G.

Definition 3. A complete face information of a graph G is the lists of (i) all
face boundary representations of G, (ii) all incident pairs of faces of G, and (iii)
all edge-incident pairs of faces of G. �

We introduce a generalized separator notion, which is mainly used in this
paper. First we define the standard separator notion formally.

Definition 4. For any graph G, and for any parameter α ∈ (0, 1), an α-
separator of G is a set S of vertices of G such that the removal of S creates
two disconnected subgraphs each of which has at least αn vertices. �

A generalized separator notion is defined for weighted graphs. Here a
weighted graph is a plane graph G for which we additionally give a weight
to each face of G. Formally, we may represent a weighted graph G = (V,E) by
V , E, its combinatorial planar embedding, and its complete weighted face infor-
mation where each face representation is also given its weight. By normalizing
weights, we may assume that the total weight is always 1.

Definition 5. For any 2-connected weighted graph, and for any ρ ∈ (0, 1), a
cycle weighted ρ-separator of the graph is a cycle C that creates two subplanes
each of which has weight ≥ ρ.

[Remark]. The weight of a subplane is the sum of the weights of all faces in the
subplane. �

Computational Model
For discussing sublinear-space algorithms, we use the standard multi-tape Turing
machine model. A multi-tape Turing machine consists of a read-only input tape,
a write-only output tape, and a constant number of work tapes. The space
complexity of this Turing machine is measured by the total number of cells
that can be used as its work tapes. As a unit for space complexity, we often
use “word”, by which we mean c0 log n cells, where c0 is a constant large enough
such that index of a vertex (i.e., a number between 1 and n) can be stored in one
word. We use ˜O(s(n)) to mean O(s(n)) words. (Recall that n is the number of
vertices of an input graph, which is the main complexity parameter throughout
this paper.)

20 O. Watanabe

For the sake of explanation, we will follow a standard convention and describe
a sublinear-space algorithm by a sequence of constant number of sublinear-space
subroutines A1, . . . , Ak such that each Ai computes, from its given input, some
output that is passed to Ai+1 as input. Note that some of these outputs cannot
be stored in a sublinear-size work tape; nevertheless, there is a standard way to
design a sublinear-space algorithm based on these subroutines. The key idea is to
compute intermediate inputs every time when they are necessary. For example,
while running Ai, when it is necessary to see the jth bit of the input to Ai, simply
execute Ai−1 (from the beginning) until it yields the desired jth bit on its work
tape, and then resume the computation of Ai using this obtained bit. It is easy
to see that this computation can be executed in sublinear-space. Furthermore,
while a large amount of extra computation time is needed, we can show that
the total running time can be polynomially bounded if all subroutines run in
polynomial-time.

Basic Algorithms
We recall some basic algorithms given by the previous work that are used several
times in our algorithms.

The first one is the algorithm of Lipton and Tarjan [11], which can be stated
as follows.

Proposition 3. For any planar graph with n vertices, there exists a 1/3-
separator of size 2

√
2n. Furthermore, there exists a polynomial-time algorithm

that finds one of such separators by a breadth-first search. The algorithm can
be modified so that when a given (breadth-first search) tree of G is given as an
additional input, then the algorithm runs in polynomial-time w.r.t. n and in
˜O(kbfs)-space where kbfs is the depth of the BFS tree.

We also recall the log-space algorithm of Reingold [12] for the undirected
graph reachability problem. More specifically, we have an O(log n)-space algo-
rithm that determines, for a given graph G and a pair of vertices u and v of
G, whether u is reachable to v in O(log n)-space. This algorithm is used several
places in the following; we call it Reinglod’s algorithm for the undirected graph
reachability test.

We then use Reingold’s algorithm with the algorithmic method of Allender
and Mahajan [1] to design an O(log n)-space algorithm that tests, for a given
graph G, whether it is planar and (if it is so) computes one of its combinatorial
embeddings. We refer this algorithm as the planarity test algorithm of Allender
and Mahajan.

For a given planar graph G, once one of its combinatorial embeddings π
is computed, we can compute from π a triangulation of G w.r.t. π in O(log n)-
space. (Recall that we say that a plane graph is triangulated (w.r.t. π) if addition
of any edge results in a nonplanar graph. For a plane graph, its triangulation
means to add edges to the plane graph until it gets triangulated w.r.t. π.)

Acknowledgements. A major part of this work was done during the project “Explor-
ing the Limits of Computation (ELC).” During the ELC project, many researchers have

Space Efficient Separator Algorithms for Planar Graphs 21

joined our discussion which helped us very much for finding some errors and improv-
ing the presentation of our idea of separator algorithms. In particular, I thank to
Dr. Mohit Garg and Dr. Sebastian Kuhnert for their technical contributions. I would
like to express my deep appliciations to the coauthors of the sequence of papers on this
and related topics; among them, I especially thank to my students, Dr. Ryo Ashida,
Dr. Tatsuya Imai, and Dr. Kotaro Nakagawa, and wish brilliant futures to them.

References

1. Allender, E., Mahajan, M.: The complexity of planarity testing. Inf. Comput.
189(1), 117–134 (2004)

2. Asano, T., Doerr, B.: Memory-constrained algorithms for shortest path problem.
In: Proceedings of the 23rd CCCG (2011)

3. Asano, T., Kirkpatrick, D., Nakagawa, K., Watanabe, O.: ˜O(
√
n)-Space and

polynomial-time algorithm for planar directed graph reachability. In: Csuhaj-Varjú,
E., Dietzfelbinger, M., Ésik, Z. (eds.) MFCS 2014. LNCS, vol. 8635, pp. 45–56.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44465-8 5

4. Ashida, R., Kuhnert, S., Watanabe, O.: A space-efficient separator algorithm for
planar graphs. IEICE Trans. Fundam. E102–A(9), 1007–1016 (2019). A version
with a simplified proof is available from Tokyo Tech Research Repository, search
“T2R2 Osamu Watanabe.”

5. Ashida, R., Nakagawa, K.: ˜O(n1/3)–space algorithm for the grid graph reachability
problem. In: Proceedings of the 34th SoCG, pp. 5:1–5:13 (2018)

6. Ashida, R., Imai, T., Nakagawa, K., Pavan, A., Vinodchandran, N.V., Watanabe,
O.: A sublinear-space and polynomial-time separator algorithm for planar graphs.
Electron. Colloquium Comput. Complex. (ECCC) 26(91) (2019)

7. Barnes, G., Buss, J.F., Ruzzo, W.L., Schieber, B.: A sublinear space, polynomial
time algorithm for directed s-t connectivity. In: Proceedings Structure in Complex-
ity Theory Conference, pp. 27–33. IEEE (1992)

8. Gazit, H., Miller, G.L.: A parallel algorithm for finding a separator in planer graphs.
In: Proceedings of the 28th FOCS, pp. 238–248 (1987)

9. Imai, T., Nakagawa, K., Pavan, A., Vinodchandran, N.V., Watanabe, O.: An

O(n
1
2+ε)-space and polynomial-time algorithm for directed planar reachability. In:

Proceedings of the 28th CCC, pp. 277–286 (2013)
10. Miller, G.L.: Finding small simple cycle separators for 2-connected planar graphs.

J. Comput. Syst. Sci. 32(3), 265–279 (1986)
11. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl.

Math. 36(2), 177–189 (1979)
12. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4), 17 (2008)

https://doi.org/10.1007/978-3-662-44465-8_5

Recent Progresses in the Combinatorial
and Algorithmic Study of Rooted

Phylogenetic Networks

Louxin Zhang(B)

Department of Mathematics, National University of Singapore,
Singapore 119076, Singapore

matzlx@nus.edu.sg

Abstract. Galled trees are studied as a recombination model in theo-
retical population genetics. Tree-child networks, reticulation-visible net-
works and tree-based networks can be considered as the generalizations
of galled trees through relaxing a structural condition. Although these
networks are simple, their topological structures have yet to be fully
understood. Here, recent progresses in the tree and cluster containment
problems and network counting problems are summarized.

Phylogenetic networks have been used to model horizontal gene transfers [2],
recombinations and other reticulate evolutionary event in the past two decades
[9]. A rooted phylogenetic network (RPN) on a set of taxa X (e.g, species, genes,
or individuals in a population) is a directed acyclic digraph (DAG) with a unique
start node called the root, in which all the leaves that are the nodes of indegree 1
and outdegree 0 represent X and the root represents the least common ancestor
of the taxa. In a phylogenetic network, all the nodes other than the leaves and
the root are divided into tree nodes and reticulate nodes. In this short survey,
tree nodes include the root and all the nodes of indegree 1 and outdegree greater
than 1, whereas reticulate nodes include all the nodes of indegree greater than
1 and outdegree 1. Notice that phylogenetic trees are simply RPNs with no
reticulate nodes. A phylogenetic network is binary if the sum of indegree and
outdegree is 1 for its leaves, 2 for its root and 3 for all the other nodes.

The topological properties of RPNs are more complicated and reconstructing
phylogenetic networks are more challenging than phylogenetic trees [9,12,13] and
thus different mathematical issues arise in the study of RPNs. One of the issues
is the relationships between phylogenetic trees and RPNs. Are RPNs uniquely
determined by the set of clusters or phylogenetic trees displayed in them? Are
RPNs uniquely determined by the distances between their nodes? How to deter-
mine whether or not a tree is displayed in a phylogenetic network? How to
determine whether or not a cluster is displayed in a phylogenetic network?

Another issue is the topological structures of RPNs. Different classes of RPNs
have been introduced, including galled trees [10,14], tree-child networks (TCNs)
[1], normal networks [16], reticulation-visible networks [12] and tree-based net-
works [3,18]. Many algorithmic problems that are NP-complete in general become
c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 22–27, 2020.
https://doi.org/10.1007/978-3-030-39881-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_3

Recent Progresses in the Combinatorial and Algorithmic Study 23

tractable on RPNs in these classes, including the tree containment problem and the
cluster containment problem [19]. Recently, we have studied the hierarchical struc-
tures ofRPNs in these special classes. The relatively simple structures of galled net-
works and tree-child networks allows us to count and enumerate these networks.

In this talk, recent progresses in the study of the problems mentioned above
will be discussed.

1 Basic Definitions

In this survey, we focus on binary rooted phylogenetic networks. For such a
network N , we use ρ(N),R(N), T (N) and L(N) to denote the root, the set of
reticulate nodes, the set of tree nodes and the set of leaves of N , respectively.

Let X be a set of taxa and N be a binary rooted phylogenetic network on X.
For two distinct nodes u and v in N , v is a descendant of u if there is a directed
path from ρ(N) to v that contains u. Since N is acyclic, the descendant relation
is asymmetric and transitive. The set of all the leaves that are descendants of u
is said to be the (hard) cluster of u in N .

Since each reticulate node is of indegree 2 and outdegree 1, deleting exactly
one incoming edge for every reticulate node leads to a spanning directed tree T ′

with the root ρ(N) in N . Every leaf of N is a leaf of T ′. However, T ′ may contain
other leaves. In other words, some internal nodes of N become the leaves of T ′.

For a subset L ⊆ L(N) and a spanning tree T ′ obtained by the removal of
one incoming edge for every reticulate node from N , removing all the nodes from
T ′ that are not in the path from ρ(N) to the leaves in L produces a tree on L,
denoted by T ′

L. We call T ′
L the restriction of T ′ on L.

For a phylogenetic tree T on X ′ ⊆ X, T is said to be contained in N if there
is a spanning tree T ′ in N such that T ′

X′ is a subdivision of T .
A subset C ⊆ X is said to be a soft cluster of N if C is the cluster of a node

in some phylogenetic tree contained in N .
For a set S of nodes in N , N − S denotes the subnetwork obtained by the

removal of all the nodes of S from N together with all the edges incident to
these nodes.

2 Component Graphs

Let N be a binary rooted phylogenetic network on X. The connected components
of N − R(N) are said to be the tree-node components of N ; the connected
components of N − [T (N) ∪ L(N)] are said to be the reticulate-node components
of N .

Let N have m tree-node components and p reticulate-node components. The
component graph of N is the graph G(N) with m + p nodes u1, u2, · · · , um and
v1, v2, · · · , vp such that each ui represents a tree-node component Ci and each
vj represents a reticulate node component Cj and an edge (ui, vj) exists if and
only if N contains a directed edge from a node in Ci to a node in Cj . An
illustration of the concept of component graph is given in Fig. 1. Note that the

24 L. Zhang

component graph is a rooted acyclic graph that might contain multiple parallel
edges between two nodes for a phylogenetic network.

The concept of component graph is useful for studying phylogenetic networks
in which each reticulate node component contains exactly a reticulate node.

Fig. 1. A rooted phylogenetic network on X = {1, 2, · · · , 7} (left) that has four tree-
node components (shaded) and three reticulate node components that are each single-
ton (right) and its component graph (right).

3 Network Classes and Inclusion Relations

Let N be a rooted phylogenetic network on X. N is a tree-child network if each
internal node has at least a child that is a tree-node.

N is a normal network if it is tree-child and neither of parents is an ancestor
of the other for any reticulate node.

N is a galled network if the two parents of every reticulate node are contained
in the same tree node component.

For two nodes u and v in N , u is a dominator of v if every path from ρ(N) to
v contains u. N is a reticulation-visible if for every reticulate node r there exists
a leaf �u such that r is a dominator of �u.

N is a tree-based network if the removal of an incoming edge for every reticu-
late node always produces a spanning tree that does not contain a leaf that is not
in X. It can be determine whether a rooted phylogenetic network is tree-based
in a linear time [3,18].

The following inclusion relations can be easily verified (see [21]).

Theorem 1. LetNN k(X), T Ck(X),GN k(X),RVk(X), T Bk(X),Ak(X)denote
the sets of binary normal, tree-child, galled, reticulation-visible, tree-based and arbi-
trary networks that have k reticulation nodes on X.

Recent Progresses in the Combinatorial and Algorithmic Study 25

(1.) For any X and integer k > 0,
{

NN k(X) ⊆ T Ck(X)
GN k(X)

}
⊆ RVk(X) ⊆

T Bk(X) ⊆ Ak(X).

(2.) For any X,
{

NN 2(X) ⊂ T C2(X)
GN 2(X)

}
⊂ RV2(X) ⊂ T B2(X) = A2(X).

(3.) For any X such that |X| > 1, T C1(X) = GN 1(X) = RV1(X) = T B1(X) =
A1(X).

The following connections between different network classes are also inter-
esting.

Theorem 2. (1.) [6,11] The component graph of a galled network is a tree.
(2.) [8] The component graph of a reticulation-visible network is a tree-child

network.

4 Generating and Counting Tree-Child Networks

In [20], a fast procedure was presented for generating all tree-child networks.
It is a generalization of the following well-known procedure for generation of
phylogenetic trees:

For any X such that |X| = k and t ∈ X, all the (2k−2)!
2k−1(n−1)!

phylogenetic
trees on X can be generated by attaching the leaf t into each edge of the
phylogenetic trees on X − {t}.

Using the above generation approach and Theorem 1.3, the following counting
results were obtained in [21].

Theorem 3. Let X be a set of n taxa. Then, the numbers of binary normal
networks and arbitrary networks with a reticulate node are respectively:

|NN 1(X)| =
(n + 2)(2n)!

2nn!
− 3 · 2n−1n!.

|A1(X)| = |T C1(X)| =
n(2n)!
2nn!

− 2n−1n!.

Theorem 4. Let X be a set of n taxa. The numbers of binary tree-child and
galled networks with two reticulations are respectively:

|T C2(X)| =
n!

2n

n−2∑

j=1

(2j
j

)(2n − 2j

n − j

) j(2j + 1)(2n − j − 1)

2n − 2j − 1
+ n(n − 1)2

n−3
n! − (2n − 1)!n

3 · 2n−1(n − 2)!
,

|GN 2(X)| =
n!

2n−1

n−2∑

j=0

(2j
j

)(2n − 2j

n − j

) (j + 1)2(2j + 3)

(n − j)(2n − 2j − 1)
+ n(n − 1)2

n−3
n! − (2n − 1)!n

3 · 2n−1(n − 2)!
.

A phylogenetic network is an one-component network if the unique child of
every reticulate node is a network leaf. For a network class C, we use C1,k to
denote the set of all one-component networks with k reticulations in C.

26 L. Zhang

Theorem 5. Let X be a set of n taxa. The number of binary one-component
tree-child networks with k reticulations on X is

T C1,k(X) =
(

n

k

)
(2n − 2)!

2n−1(n − k − 1)!

Theorem 6. Let gn,k be the number of one-component galled networks with k
reticulate nodes on n taxa. Then,

gn,k+1 =
(n − k)
(k + 1)

(n + k − 1) (gn,k + gn,k−1)

+
n!(n − k)
2(k + 1)

k∑
j=1

(
2j

j

)
(n + 1 − j)gn−j,k−j − (n + 1 − k)gn+1−j,k−j

2j(n + 1 − j)!
.

Finally, Cardona proved the following beautiful fact recently.

Theorem 7. There are twice as many tree-child networks with n − 1 reticula-
tions on X as tree-child networks with n − 2 reticulations on X, where n = |X|.

5 The Cluster and Tree Containment Problems

The cluster containment problem is to determine whether or not N contains X ′

given a rooted phylogenetic network N and a cluster X ′ ⊆ X.
The tree containment problem is to determine whether or not N contains T

given a phylogenetic network N and a phylogenetic tree T on the same set of
taxa.

These two decision problems are NP-complete. Therefore, there are unlikely
polynomial time algorithms for solving the problems. Recently, we developed
fast algorithms for solving the cluster and tree containment problems [7,17].
Additionally, linear-time algorithms exist for the two problems on reticulation-
visible networks or nearly stable phylogenetic networks [4].

Theorem 8. (1.) A linear-time algorithm exists for solving the tree containment
problem [5,15].

(2.) A linear-time algorithm exists for solving the cluster containment problem [4].

Acknowledgments. The author thanks B. DasGupta, P. Gambette, A. Gunawan,
A. Labarre, S. Vialette, BX Liu and HW Yan for their collaboration in studying
the combinatorial and algorithmic aspects of phylogenetic networks. This work was
supported by Singapore-France Institute Merlion project and Singapore’s Ministry of
Education Academic Research Fund Tier-1 [grant R-146-000-238-114].

References

1. Cardona, G., Rossello, F., Valiente, G.: Comparison of tree-child phylogenetic net-
works. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(4), 552–569 (2009)

Recent Progresses in the Combinatorial and Algorithmic Study 27

2. Doolittle, W.F.: Phylogenetic classification and the universal tree. Science 284,
2124–2128 (1999)

3. Francis, A., Steel, M.: Which phylogenetic networks are merely trees with addi-
tional arcs? Syst. Biol. 64(5), 768–777 (2015)

4. Gambette, P., Gunawan, A.D., Labarre, A., Vialette, S., Zhang, L.: Solving the
tree containment problem in linear time for nearly stable phylogenetic networks.
Discret. Appl. Math. 246, 62–79 (2018)

5. Gunawan, A.D.M.: Solving the tree containment problem for reticulation-visible
networks in linear time. In: Jansson, J., Mart́ın-Vide, C., Vega-Rodŕıguez, M.A.
(eds.) AlCoB 2018. LNCS, vol. 10849, pp. 24–36. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-91938-6 3

6. Gunawan, A.D., DasGupta, B., Zhang, L.: A decomposition theorem and two algo-
rithms for reticulation-visible networks. Inform. Comput. 252, 161–175 (2017)

7. Gunawan, A.D., Lu, B., Zhang, L.: A program for verification of phylogenetic
network models. Bioinformatics 32, i503–i510 (2016)

8. Gunawan, A.D., Yan, H., Zhang, L.: Compression of phylogenetic networks and
algorithm for the tree containment problem. J. Comput. Biol. 26, 285–294 (2019)

9. Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination
Graphs and Explicit Phylogenetic Networks. MIT Press, Boston (2014)

10. Gusfield, D., Eddhu, S., Langley, C.: The fine structure of galls in phylogenetic
networks. INFORMS J. Comput. 16(4), 459–469 (2004)

11. Huson, D.H., Klöpper, T.H.: Beyond galled trees - decomposition and computation
of galled networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol.
4453, pp. 211–225. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-71681-5 15

12. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts Algo-
rithms and Applications. Cambridge University Press, Cambridge (2010)

13. Steel, M.: Phylogeny: Discrete and Random Processes in Evolution. SIAM,
Philadelphia (2016)

14. Wang, L., Zhang, K., Zhang, L.: Perfect phylogenetic networks with recombination.
J. Comput. Biol. 8(1), 69–78 (2001)

15. Weller, M.: Linear-time tree containment in phylogenetic networks. In: Blanchette,
M., Ouangraoua, A. (eds.) RECOMB-CG 2018. LNCS, vol. 11183, pp. 309–323.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00834-5 18

16. Willson, S.J.: Unique determination of some homoplasies at hybridization events.
Bull. Math. Biol. 69, 1709–1725 (2007)

17. Yan, H., Gunawan, A.D., Zhang, L.: S-cluster++: a fast program for solving the
cluster containment problem for phylogenetic networks. Bioinformatics 34(17),
i680–i686 (2018)

18. Zhang, L.: On tree-based phylogenetic networks. J. Comput. Biol. 23(7), 553–565
(2016)

19. Zhang, L.: Clusters, trees, and phylogenetic network classes. In: Warnow, T.
(ed.) Bioinformatics and Phylogenetics. CB, vol. 29, pp. 277–315. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-10837-3 12

20. Zhang, L.: Generating normal networks via leaf insertion and nearest neighbor
interchange. BMC Bioinform. 20, article no. 642 (2019)

21. Zhang, L.: Counting tree-child networks and their subclasses. arXiv preprint
arXiv:1908.01917 (2019)

https://doi.org/10.1007/978-3-319-91938-6_3
https://doi.org/10.1007/978-3-319-91938-6_3
https://doi.org/10.1007/978-3-540-71681-5_15
https://doi.org/10.1007/978-3-540-71681-5_15
https://doi.org/10.1007/978-3-030-00834-5_18
https://doi.org/10.1007/978-3-030-10837-3_12
http://arxiv.org/abs/1908.01917

Long Papers

Optimum Algorithm for the Mutual
Visibility Problem

Subhash Bhagat(B)

ACM Unit, Indian Statistical Institute, Kolkata, India
subhash.bhagat.math@gmail.com

Abstract. We consider a distributed system of n ≥ 3 opaque robots
deployed in the Euclidean plane. If three robots lie on a line, the middle
robot obstructs the visions of the two other robots. The mutual visibility
problem requires the robots to form a configuration in which no three
robots are collinear i.e., all the robots in the system are mutually visible.
Robots work without any centralized control. We considers the FSTATE

computational model in which each robot is endowed with an additional
constant amount of persistent memory to retain some information of
their previous states [3]. This information is not available to the other
robots in the system. Except from this persistent memory, the robots
are oblivious i.e., they do not carry forward any other information from
their previous computational cycles. The robots do not have any explicit
message passing capabilities. Under these weak settings, we present a
deterministic distributed algorithm to solve the mutual visibility problem
for a set of synchronous robots using only 1 bit of persistent memory.
The proposed algorithm solves the mutual visibility problem in 2 rounds
and guarantees collision-free movements for the robots. The algorithm is
optimum in terms of round complexity, the amount of memory for the
FSTATE computational model and number of movements for the robots.

Keywords: Swarm robots · Mutual visibility problem · Synchronous ·
Persistent memory.

1 Introduction

A swarm of robots is a distributed multi-robot system consisting of autonomous,
homogeneous, small mobile robots. The robots work cooperatively to achieve
some global task. The robots are represented as points on the Euclidean plane
in which they can move freely. The robots are indistinguishable by their appear-
ances or nature of actions. They have identical capabilities and run the same
distributed algorithm. They do not have any global coordinate system. However,
each robot has its own local coordinate system. The directions and orientations
of the local coordinate axes of a robot may vary from the others. They do not
have any explicit communication skill. The computational cycle of each robot has

Research supported in part by DST INSPIRE Faculty research grant DST/INS-
PIRE/04/2015/002801 from Department of Science & Technology, India.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 31–42, 2020.
https://doi.org/10.1007/978-3-030-39881-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_4

32 S. Bhagat

three phases Look-Compute-Move. Each robot executes the computational cycle
repeatedly. In the Look phase, a robot takes the snapshot of its surroundings to
obtain the positions of the other robots in the system. In the Compute phase, a
robot uses the information gathered in the Look phase to compute a destination
point. Finally, in the Move phase, it moves to its computed destination point.
The activations of the robots are controlled by a synchronous scheduler (FSYNC
model) which activates all the robots in the system in each round.

The robots may be endowed with visible lights. The lights can assume a
constant number of predefined colors to represent different states of the robots.
These visible lights can be used in three different ways by the robots: (i) the
robots use these lights to retain and communicate some constant amount of
information about their states, the lights are visible to all the robots in the
system (we refer, this model as FALL model) or (ii) the light of a robot is visible
to itself only and not to the others (FSTATE model) or (iii) the light of a robot is
visible to all other robots in the system but not to itself, it is used to communicate
with other robots in the system and the robot does not know the color of its light
(FCOMM model) [3]. The lights can be used for communication or for internal
memory or for both. This is one of the ways to implement the persistent memory.
In this work, a robot uses persistent memory only to remember its states (FSTATE

model) and this piece of information is not communicated to the other robots.

1.1 Earlier Works

The study of the mutual visibility problem was initiated by Di Luna et al. [1].
They presented a solution to the problem for a set of semi-synchronous, oblivious
robots when they know n, the total number of robots in the system, and their
algorithm runs in Ω(n2) rounds for synchronous robots. Bhagat et al. presented
a solution to the mutual visibility problem for oblivious asynchronous robots
under the assumption that the robots have an agreement in one coordinate axis
and knowledge of n and it takes O(n) rounds for synchronous robots [4].

All the efficient algorithms in the literature for the mutual visibility problem
for the robots with lights have considered the FALL model. Di Luna et al. were
the first to present a solution to the problem under the FALL model [15]. They
solved the problem for the semi-synchronous robots with 3 colors and for asyn-
chronous robots with 3 colors under one axis agreement. Their algorithm takes
O(n) rounds for synchronous robots. Later, Sharma et al. provided a solution to
the problem which uses only 2 colors for semi-synchronous robots and 2 colors
for asynchronous robots under one-axis agreement [13]. Sharma et al. modified
the algorithm presented in [1] to improve the round complexity of the algorithm
for synchronous robots [14]. Their algorithm uses 3 colors for the lights and runs
in O(n log(n)) rounds. Vaidyanathan et al. proposed a distributed algorithm for
synchronous robots using 12 colors which runs in O(log(n)) rounds for n ≥ 4
robots and assumes common chirality i.e., common notion of clockwise direc-
tion [2]. Sharma et al. presented algorithms which can solve the problem in 13
rounds with 12 colors for semi-synchronous robots and in 9 rounds with 9 colors

Optimum Algorithm for the Mutual Visibility Problem 33

for synchronous robots [12]. Sharma et al. proposed a solution to the problem
which runs in O(log(n)) rounds for asynchronous robots using 25 colors [11].
Sharma et al. further improved the solution which runs in O(1) rounds for a set
of asynchronous robots using 47 colors [6]. Bhagat and Mukhopadhyaya solved
the problem for a set of asynchronous robots using 7 colors [7]. In their solu-
tion, each robot moves exactly once and it takes O(n) for synchronous robots.
In [8], Sharma et al. proposed a solution to the problem for a set of synchronous
robots without lights. Their algorithm uses the knowledge of n and runs in O(n)
rounds. Recently, Bhagat and Mukhopadhyay proposed an algorithm for the
problem under the FSTATE model for semi-synchronous robots using one inter-
nal bit memory [16]. In [17], Bhagat et al. proposed an algorithm to solve the
problem under the FSTATE for asynchronous robots. Their algorithm assumes
knowledge of n and one bit internal memory. The mutual visibility problem has
also been considered under different fault models [5,9,10].

1.2 Our Contribution

This paper presents study of the mutual visibility problem for a set of syn-
chronous robots in the Euclidean plane. A distributed algorithm has been pro-
posed to solve the problem for a set of robots under the FSTATE model which
does not have the communication overhead of the FCOMM model. The persis-
tent memory is used only to remember information about previous states and the
information is not communicated to the other robots. The proposed algorithm
does not assume any other extra assumptions like agreement on the coordinate
axes or chirality, knowledge of n. Our proposed solution to the mutual visibility
problem has the following advantages;

– While all the existing solutions of the mutual visibility problem for the robots
with persistent memory have considered the FALL model (both communication
and internal memory purposes), our approach assumes the FSTATE model.
Thus, our solution does not require explicit message passing capabilities for
the robots.

– The proposed algorithm does not use the value of n which makes the algorithm
easily applicable to any scalable system. This is an improvement over the
algorithm proposed in [8] which uses knowledge of n to solve the problem in
O(n) rounds for synchronous robots.

– The proposed algorithm uses only 1 bit of persistent memory and achieves
mutual visibility within 2 rounds. While the round complexity is optimum
in general, the amount of memory is also optimum for the FSTATE computa-
tional model. This is an improvement over the best known efficient algorithm
presented in [12] which takes 9 colors for the lights of the robots (both for
communication and internal memory purposes) and runs in 9 rounds for syn-
chronous robots.

– In our algorithm, each robot moves at most once. This implies an energy
efficient solution to the mutual visibility problem.

– The solution also provides collision free movements for the robots.

34 S. Bhagat

– Our algorithm also solves the convex hull formation problem which requires
the robots to obtain different vertices of a convex hull. One of the applications
of this problem includes formation and surveillance of a protected region.

2 Model and Notations

This paper considers a set of n homogeneous, autonomous, synchronous robots
in the Euclidean plane. The robots are opaque. They operate under the FSTATE

model. The persistent memory of each robots holds two values: off and on. Let
si(t) denote this value for the robot ri at time t. Initially, all robots have value
off. These values are persistent and do not change automatically. Except for this
persistent memory, the robots are oblivious i.e., they do not remember any other
data from their previous computational cycles. We assume that a robot cannot
be stopped by an adversary before reaching its destination point. Initially all the
robots occupy distinct locations and they are stationary.

– configurations of the robots: Let R = {r1, r2, . . . , rn} denote the set of n
robots and ri(t) denote the position of robot ri at time t ∈ N. If there is no
ambiguity, we use ri to denote both the robot and the location occupied by
it. A configuration of the robot positions, R(t) = {r1(t), r2(t), . . . , rn(t)}, is
the set of distinct positions occupied by the robots at time t. Let ˜CL be the
collection of all configurations in which all the points in R(t) lie on a straight
line and ˜CNL be the set of all configurations in which there exist at least three
non-collinear points in R(t).

– The smallest enclosing circle of the points in R(t) is denoted by SEC. Let O
denote the center of SEC.

– Vision of a robot: If three robots ri, rj and rk are collinear with rj lying in
between ri and rk, then ri and rk are not visible to each other. We define the
vision, Vi(t), of robot ri at time t to be the set of robot positions visible to ri

(excluding ri(t)). The visibility polygon of ri at time t, denoted by VPi(t), is
defined as follows: sort the points in Vi(t) angularly in anti clockwise direction
w.r.t. ri, starting from any robot position in Vi(t). Then connect them in that
order to generate the polygon VPi(t). For a robot ri ∈ R, let Γi(t) be the set
of angles defined as follows:
Γi(t) = {∠rjrirk : rj and rk are two adjacent vertices of ri on VPi(t) }

– A straight line L is called a line of collinearity if it contains more than two
distinct robot positions. Robots occupying distinct positions on L are termed
collinear robots.

– By pq, we denote the closed line segment joining two points p and q, including
the end points p and q. Let (p, q) denote the open line segment joining the
points p and q, excluding the two end points p and q. Let |pq| denote the
length of pq.

– Let CH(t) denote the convex hull of the robot positions in R(t). We partition
the robot positions in R(t) into two sub-classes:

Optimum Algorithm for the Mutual Visibility Problem 35

• Vertex robots: A robot which lie on a vertex of CH(t), is called a vertex
robot. Robot ri lies on a vertex of CH(t) if any one of the following is
true: (i) if R(t) ∈ ˜CNL and the maximum angle in Γi(t) is greater than π

(ii) if R(t) ∈ ˜CL and ri does not lie in between two other distinct robot
positions.

• Interior robots: A robot which lies inside CH(t) or in between two
distinct robot positions on a side of CH(t), is called an interior robot.
Robot ri is a interior robot if any one of the following is true: (i) if
R(t) ∈ ˜CNL and the maximum angle in Γi(t) is less than or equal to π

or (ii) if R(t) ∈ ˜CL and ri lies in between two robot positions.
– dk

ij(t): Let Lij(t) denote the straight line joining ri and rj . The perpendicular
distance of the line Lij(t) from the point rk is denoted by dk

ij(t).
– Di(t): Di(t) is the minimum distance of any two robot positions in {ri(t)} ∪

Vi(t).

Observation 1. Let �ABC be a triangle such that ∠ABC = 90o. Consider a
point D on the side BC. Suppose the bisectors of the angles ∠ACB and ∠ADB
intersect the side AB at the points Pc and Pd. Then, the point Pd lies on the
open segment (B,Pc).

3 Mutual Visibility Under the FSYNC model

This section presents a deterministic distributed algorithm to solve the mutual
visibility problem for a set of fully synchronous robots. The following lemma
shows that any deterministic distributed algorithm for the mutual visibility prob-
lem will take at least 2 rounds.

Lemma 1. Consider an initial robot configuration in which all the robots lie
on exactly one line and they are equally spaced on this line. Starting from this
configuration, any deterministic distributed algorithm will take at least 2 rounds
to solve the mutual visibility problem.

3.1 Algorithm MutualVisibilityFsync()

Consider an initial robot configuration R(t0). The outline of our algorithm is
as follows; to obtain mutual visibility, our algorithm places all the robots on
the vertices of a convex hull. Since robots are opaque, they may not have the
complete view of all the robot positions in R(t0) and hence they cannot compute
CH(t0). We divide our algorithm into two phases.

The phase 1 is the vertex adjustment phase in which all the robots having
positions on the vertices of CH(t0) (i.e., the vertex robots) move in such a way
that (i) they become visible to all the interior robots and (ii) they remain as the
vertex robots on CH(t). The phase 2 is interior adjustment phase in which all
robots lying within or on the edges of CH(t), for some t > t0, move to become
vertex robots on a convex hull CH(t∗), for some t∗ > t. Details of the algorithm
are as follows.

36 S. Bhagat

3.1.1 Different Actions of the Robots
A robot ri acts according to the following:

1. Vertex adjustment phase: If ri is a vertex robot and si = off, then it
changes the value of si to on, computes a destination point and moves to it.
If ri is an interior robot and si = off, then it changes the value of si to on
and does not move.

2. Interior adjustment phase: If ri is a vertex robot with si = on, it does
nothing. If ri is an interior robot and si = on, then it computes a destination
point and move straight to it without changing the value of si.

Note that a robot ri identifies the phase of the algorithm by checking the value
of si. Robots use algorithm ComputeDestination() to compute their destination
points.

3.2 Algorithm ComputeDestination()

This section describes algorithm ComputeDestination() which is used by the
robots to compute destination points. Algorithm ComputeDestination() should
satisfy the following conditions: (i) for two different robots it should return two
distinct destination points and (ii) the paths of movements of two distinct robots
should not intersect each other in between and (iii) the destination points of all
the robots lie on the vertices of a convex hull. Condition (i) guarantees that two
different robots occupy two distinct positions in the final configuration, condition
(ii) provides collision free movements for the robots and condition (iii) guarantees
mutual visibility among all the robots.

(A) Vertex adjustment phase: Consider a vertex robot ri on CH(t0). Robot
ri computes its destination point in the following way:
– The direction of movement: First suppose that R(t0) ∈ ˜CNL. Let rj

and rk be the two adjacent robot positions of ri on CH(t0) (note that rj

and rk may be two interior robot positions lying on the edges of CH(t0)).
Let rayij and rayik be the two rays originated at ri and they lie along the
straight lines Lij and Lik respectively such that they do not contain rj and
rk. Let Wi be the wedge defined by the rays rayij and rayik which does
not contain any robot position. Consider a robot position rm ∈ Vi(t0) and
let θm denote the smallest angle made by Lim with the boundary of Wi.
Consider the set Γ ∗

i (t0) of all such θm such that θm completely lies within
Wi. Let βi be the maximum angle in Γ ∗

i (ties are broken arbitrarily) and
Biseci denote the bisector of βi. The direction of movement of ri is along
Biseci.
Suppose R(t0) ∈ ˜CL. In this case, |Vi(t0)| = 1. Let rj be the visible robot
to ri. Let L∗ be the perpendicular line to the line of collinearity L̂ at the
point rj . The robot ri arbitrarily chooses a direction along L∗ and let L+

denote the ray along this direction. Let vi be a point on L+ such that
∠rjrivi = π

4 . Let rayi be the ray originated at ri and passing through vi.

Optimum Algorithm for the Mutual Visibility Problem 37

The direction of movement of ri is along DIRi(t0) which is defined as
follows:

DIRi(t0) =

{

Biseci if R(t0) ∈ ˜CNL

rayi if R(t0) ∈ ˜CL

– The amount of displacement:
Let di = min{dk

ij(t0), d
j
ik(t0), di

jk(t0) : ∀rj , rk ∈ Vi(t0)}. Let σi denote the
amount of displacement of ri and it is defined as follows,

σi =

{

1
34 min{di,Di(t0)} if R(t0) ∈ ˜CNL

|rivi| if R(t0) ∈ ˜CL

The fraction in the computation of σi(t0) is chosen in such a way that
three initially non-collinear robots do not become collinear after their
movements. Other suitable values will also work.

– The destination point: Let zi be the point on DIRi(t0) at distance σi

from ri. The destination point of ri is zi.
(B) Interior adjustment phase: In this phase, all interior robots move to

become vertices of a convex hull CH(t∗). The interior robots move in such
a way that the existing vertex robots remain the same. First, we consider
the scenario in which R(t) is reached from R(t0) ∈ ˜CL. An interior robot
ri can easily identify this by checking (i) si = on and (ii) |Vi| = 4 (two of
them are from Vi(t0) and two other were the vertex robots in R(t0)). Let
ra and rb be the two distinct robot positions in Vi(t) such that they lie on
perpendicular lines to the line segment rcrd where rc, rd ∈ Vi(t)\{ra, rb}.
Let Cab be the circle having rarb as diameter. Let Li be the perpendicular to
rcrd at ri and it intersects Cab at the points ui and vi. Robot ri arbitrarily
chooses any one of ui, vi as its destination point.
Otherwise, suppose R(t) is reached from R(t0) ∈ ˜CNL. Suppose ri is a
robot not lying on a vertex of CH(t). In this case, ri computes a destination
point to become a vertex of a larger convex hull containing CH. Note that,
in this phase, all the robots lying on the vertices of CH(t) are visible to the
interior robots and thus the interior robots can easily compute the same
SEC. To describe the method, we define the following notations:
Consider the smallest enclosing circle SEC of R(t). For a robot ri ∈ R, not
lying at O, let radi denote the ray originated from O and passing through ri.
We call such half-lines radial rays. Radial ray radi may contain other robot
positions. Let Hrad denote the set of all such distinct radial rays passing
through the robot positions in R(t) not lying at O. Our algorithm places
the interior robots on some circular arcs. These circular arcs have vertices
of CH(t) as their end points and any set of points lying on these circular
arcs are in convex position. We call these arcs as safe arcs. To compute safe
arcs, we use the notion of safe regions used in [2].
Safe region: Consider an edge exy of CH(t) formed by vertex robot posi-
tions rx and ry (Fig. 1). Let rk be the other neighbour of rx on the boundary
of CH(t). Note that both the robots ry and rk are vertex robots and visible

38 S. Bhagat

Fig. 1. An illustration of computation in interior adjustment phase: safe arc

to rx (even if initially they were not visible to rx due to some robot positions
on the edges of CH(t0), after Phase 1 they become visible to rx). Similarly,
consider the other neighbour, say rl, of ry on the boundary of CH(t). Con-
sider αx and αy, the interior angles of CH at rx and ry respectively. Now,
we define the notion of safe region used in [2]. The safe region with respect
to exy is the interior of the triangle �rxhry where h lies outside of CH,
∠ryrxh = π−αx

4 , and ∠rxryh = π−αy

4 . The safe region can be computed
using the positions rx, ry, rk and rl.
Safe arc: For an edge exy of CH(t), a safe arc is a circular arc between rx

and ry lying completely within the intersection area of SEC and the safe
region w.r.t. exy. We constrain all the safe arcs to lie within SEC and this
with the Observation 1 helps us to prove that during movements, no two
paths of two distinct robots cross each other (this is to avoid collisions). In
order to compute such a safe arc, we define a point h∗ as follows: if the safe
region �rxhry, lies completely within SEC, then h∗ = h. Otherwise, h∗ is
the intersection point between SEC and Txy which is closest to exy, where
Txy is the perpendicular bisector of the edge exy. The safe arc lies within the
triangle �rxh∗ry. Since a safe arc is circular and lies within a safe region,
all robots lying on it are in convex positions and thus mutually visibility.
Let Sxy denote the safe arc w.r.t. exy and Cxy be the corresponding circle
of which Sxy is an arc. A safe arc w.r.t. an edge exy of CH(t) is computed
in the following way: let Lx and Ly be the lines perpendicular to the line
segments h∗rx and h∗ry at the points rx and ry respectively (Fig. 1). Let Lx

and Ly intersect Txy at the points vx and vy. These two intersection points
are equally distanced from rx and ry. Draw circles having vx and vy as
centers and passing through rx and ry. It can be easily proven that at least
one of them have arc between rx and ry which completely lies within the
�rxh∗ry. Then Cxy is the circle which has an arc lying within the �rxh∗ry

and closer to exy. Arc Sxy is the portion of Cxy lying within �rxh∗ry.

Optimum Algorithm for the Mutual Visibility Problem 39

Destination point: An interior robot ri computes its destination point in
the following way:
– If ri lies on O, it chooses two arbitrary rays radj and radk which are

adjacent to each other (i.e., there is no other radm lying in between
them). Let Li be the bisector of the angle made by radj and radk at ri.
We consider Li as radi in this case. Let Li intersect Sab at the point pi,
for some vertex robot positions ra and rb on CH. Robot ri marks pi as
its destination point.

– Suppose ri �= O. If there is no other robot position on the line segment
ripi, then the intersection point between ripi and Sab is the destination
point for ri, for some vertex robot positions ra and rb. Otherwise, robot
ri computes its destination in the following way:

• Let rc and rd be the two robot positions, none of them lying on O,
such that the wedge defined by radc and radd contains exactly one
radial ray radi. Let Wc and Wd denote the wedges defined by radi

with radc and radb respectively.
• Without loss of generality, suppose ∠riOrc > ∠riOrd (if tie, broken

arbitrarily). The wedge Wc is divided into four equal parts and the
part closest to radi is considered. We denote this part by W1. Let
Lw1 �= radi be the other half-line which defines W1.

• Let L∗
i be the line perpendicular to radi at the point pi (this line is

a tangent to SEC at pi) and ui denote the intersection point between
L∗

i and Lw1 .
• Let Vi be the bisector of the angle ∠piriui. Let Vi intersect Sab at the

point qi, for some vertex robot positions ra and rb.
• robot ri marks qi as its destination and moves to this point along the

line segment riqi.

A robot terminates the execution of algorithm MutualV isibility() when it finds
itself on a hull vertex with si = on.

3.3 Correctness of MutualVisibilityFsync()

In this section we prove that algorithm MutualVisibilityFsync() solves the mutual
visibility problem in finite time.

Lemma 2. Let ri, rj and rk be three arbitrary robots, which are not initially
collinear. They do not become collinear after the vertex adjustment phase.

Proof. The lemma is obvious if the three robots do not move in the first round.
Suppose at least one of them moves. We prove the lemma by showing that
none of the three values dk

ij(t0), dj
ik(t0) and di

jk(t0) becomes zero. Without loss
of generality, we prove that dk

ij(t0) never vanishes. Robots move in synchronous
round and in each movement a robot can reduce the value of dk

ij(t0) by maximum
an amount of 1

34 dk
ij(t0). In a single round, the maximum reduction in the value

of dk
ij(t0), due to the movements of all the three robots, is bounded above by

40 S. Bhagat

3
34 dk

ij(t0). Thus, in a single round, the three robots can optimally reduce the
value of dk

ij(t0) to (1 − 3
34)dk

ij(t0). This implies that the value of dk
ij(t0) does not

become zero, after the first round.

Lemma 3. If a new line of collinearity Lnew is created after the vertex adjust-
ment phase, then Lnew contains exactly three robots and all these robots were
initially lying on the same line of collinearity.

Proof. In the first round of the algorithm, only the robots on the hull vertices
of CH(t0) move. Since no three non-collinear robots become collinear, all the
robots on Lnew were initially lying on the same line of collinearity. The robots
lying interior of CH(t0) and on the edges of CH(t0) in between two other robots,
do not move in the first round. This imples that from each line of collinearity
at most two robots move and these two robots lie on the two corner robot
positions on that line. These two robots may have directions of movements lying
on two different sides of the line of collinearity. Thus, the line, joining their
new position after the first round, may pass through a robot position which was
initially collinear with them. Hence, the lemma is true.

Lemma 4. Suppose R(t0) ∈ ˜CNL. Then, after the vertex adjustment phase, all
the vertex robots on CH(t) are visible to all the interior robots.

Lemma 5. Algorithm ComputeDestination() returns two distinct destination
point for two different robots. Furthermore, paths to the destination points of
two different robots do not intersect each other in between.

Proof. Consider two distinct robots ri and rj . Following are the different sce-
narios:

– ri and rj move in the vertex adjustment phase: In this scenario, ri and
rj are vertex robots. If initially all the robots are collinear i.e., R(t0) ∈ ˜CL,
then ri and rj move along the parallel lines and hence the lemma is true
in this case. Otherwise, the destination points of these two robots lie within
the distance 1

3dist(ri, rj) from each of the points ri and rj . This implies the
lemma in this scenario.

– ri and rj move in the interior adjustment phase: If the initial configu-
ration R(t0) was in ˜CL, then robots move along parallel lines (these lines are
perpendicular to the initial line of collinearity of the robot positions). This
implies the lemma in this case. Otherwise, first suppose that one of them, say
ri, lies on O. Let the destination point of rj lies in the wedge Wc for some
neighbour robot rc of rj . Since ri lies on O, it moves along a bisector of an
angle in Γi(t). This bisector passes either passes through the middle of Wc or
it does not pass through Wc. The lemma is obvious in the later case. Consider
the former case. The destination point of rj lies in the sub-wedge W1 of Wc

where W1 = 1
4Wc and W1 is adjacent to radj . Thus, the destination points

of ri and rj lie in two completely disjoint wedges. This implies the lemma in
this case. Now suppose that none of them lies at O. Consider the case when
radi and radj are two different lines. Let Wij be the wedge defined by radi

Optimum Algorithm for the Mutual Visibility Problem 41

and radj . If the destination points of these two robots lie in two different
wedges adjacent to them, then we are done. Suppose the destination points
of the both robots lie in Wij . In this case, the destination points of ri and
rj lie in two wedges completely separated by the line passing through the
middle of Wij . Thus the lemma true in this case. Finally, consider the case in
which radi coincides which radj i.e., ri and rj are collinear with O. If their
destination point lies in two different wedges adjacent to radi, then we are
done. Otherwise, Wij contains the destination points of ri and rj . Without
loss of generality, suppose that rj lies in between ri and pi (the intersection
point between radi and SEC). Consider the triangle �piriui (ui is the inter-
section point between the tangent to SEC at pi and the other line defining
the 1

4

th sector of Wij , closest to radi). Since ∠ripiui = π
2 , by observation 1,

the destination point of rj lies within the line segment pihi, where hi is the
intersection point between the bisector of ∠piriui and the line segment piui.
This implies that ri and rj have distinct destination points. Since the segment
piui lies outside the circle SEC and robots move in straight lines, the paths
of ri and rj to their respective destination points do not intersect each other
in between.

Corollary 1. During the whole execution of algorithm MutualVisibilityFsync(),
no two robots collide.

Lemma 6. After the interior adjustment phase, all the interior robots in CH(t0)
become vertex robots on CH(t∗), t∗ > t0.

Proof. The lemma follows from the lemma 5 and the fact that all the safe arcs
are circular and lie in the safe regions.

Lemma 7. Algorithm MutualVisibilityFsync() takes exactly two rounds to place
all the robots on the boundary of CH(t∗), t∗ > t0. Furthermore, during the whole
execution of the algorithm, each robot moves at most once.

Theorem 1. Algorithm MutualVisibilityFsync() solves the mutual visibility
problem for a set of fully-synchronous robots under FSTATE model using 1 bit
persistent memory and within 2 rounds.

References

1. Di Luna, G.A., Flocchini, P., Poloni, F., Santoro, N., Viglietta, G.: The mutual
visibility problem for oblivious robots. In: Proceedings 26th Canadian Conference
on Computational Geometry (CCCG 2014) (2014)

2. Vaidyanathan, R., Busch, C., Trahan, J.L., Sharma, G., Rai, S.: Logarithmic-time
complete visibility for robots with lights. In: Proceedings Parallel and Distributed
Processing Symposium (IPDPS), pp. 375–384 (2015)

3. Flocchini, P., Santoro, N., Viglietta, G., Yamashita, M.: Rendezvous of two robots
with constant memory. In: Moscibroda, T., Rescigno, A.A. (eds.) SIROCCO 2013.
LNCS, vol. 8179, pp. 189–200. Springer, Cham (2013). https://doi.org/10.1007/
978-3-319-03578-9 16

https://doi.org/10.1007/978-3-319-03578-9_16
https://doi.org/10.1007/978-3-319-03578-9_16

42 S. Bhagat

4. Bhagat, S., Chaudhuri, S.G., Mukhopadhyaya, K.: Formation of general posi-
tion by asynchronous mobile robots under one-axis agreement. In: Kaykobad, M.,
Petreschi, R. (eds.) WALCOM 2016. LNCS, vol. 9627, pp. 80–91. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30139-6 7

5. Aljohani, A., Sharma, G.: Complete visibility for mobile robots with lights toler-
ating faults. Int. J. Netw. Comput. 8(1), 32–52 (2018)

6. Sharma, G., Vaidyanathan, R., Trahan, J.L.: Constant-time complete visibility
for asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017.
LNCS, vol. 10616, pp. 265–281. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-69084-1 18

7. Bhagat, S., Mukhopadhyaya, K.: Optimum algorithm for mutual visibility among
asynchronous robots with lights. In: Spirakis, P., Tsigas, P. (eds.) SSS 2017. LNCS,
vol. 10616, pp. 341–355. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-69084-1 24

8. Sharma, G., Busch, C., Mukhopadhyay, S.: Complete visibility for oblivious robots
in O(N) time. In: Podelski, A., Täıani, F. (eds.) NETYS 2018. LNCS, vol. 11028,
pp. 67–84. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05529-5 5

9. Aljohani, A., Poudel, P., Sharma, G.: Fault-tolerant complete visibility for asyn-
chronous robots with lights under one-axis agreement. In: Rahman, M.S., Sung,
W.-K., Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 169–182. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-75172-6 15

10. Sharma, G.: Mutual visibility for robots with lights tolerating light faults. In:
Proceedings IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pp. 829–836 (2018)

11. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: O(log N)-time
complete visibility for asynchronous robots with lights. In: Proceedings Parallel
and Distributed Processing Symposium (IPDPS), pp. 513–522 (2017)

12. Sharma, G., Vaidyanathan, R., Trahan, J.L., Busch, C., Rai, S.: Complete visibility
for robots with lights inO(1) Time. In: Bonakdarpour, B., Petit, F. (eds.) SSS 2016.
LNCS, vol. 10083, pp. 327–345. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-49259-9 26

13. Sharma, G., Busch, C., Mukhopadhyay, S.: Mutual visibility with an optimal num-
ber of colors. In: Bose, P., G ↪asieniec, L.A., Römer, K., Wattenhofer, R. (eds.)
ALGOSENSORS 2015. LNCS, vol. 9536, pp. 196–210. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-28472-9 15

14. Sharma, G., Busch, C., Mukhopadhyay, S.: Bounds on mutual visibility algorithms.
In: Proceedings 27th Canadian Conference on Computational Geometry (CCCG
2015) (2015)

15. Di Luna, G.A., Flocchini, P., Gan Chaudhuri, S., Poloni, F., Santoro, N., Viglietta,
G.: Mutual visibility by luminous robots without collisions. Inf. Comput. 254, 392–
418 (2017)

16. Bhagat, S., Mukhopadhyaya, K.: Mutual visibility by robots with persistent mem-
ory. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW 2019. LNCS, vol. 11458, pp.
144–155. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18126-0 13

17. Bhagat, S., Gan Chaudhuri, S., Mukhopadhyaya, K.: Mutual visibility for asyn-
chronous robots. In: Censor-Hillel, K., Flammini, M. (eds.) SIROCCO 2019. LNCS,
vol. 11639, pp. 336–339. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-24922-9 24

https://doi.org/10.1007/978-3-319-30139-6_7
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-69084-1_18
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-319-69084-1_24
https://doi.org/10.1007/978-3-030-05529-5_5
https://doi.org/10.1007/978-3-319-75172-6_15
https://doi.org/10.1007/978-3-319-49259-9_26
https://doi.org/10.1007/978-3-319-49259-9_26
https://doi.org/10.1007/978-3-319-28472-9_15
https://doi.org/10.1007/978-3-030-18126-0_13
https://doi.org/10.1007/978-3-030-24922-9_24
https://doi.org/10.1007/978-3-030-24922-9_24

Routing in Histograms

Man-Kwun Chiu1, Jonas Cleve1 , Katharina Klost1, Matias Korman2,
Wolfgang Mulzer1 , André van Renssen3 , Marcel Roeloffzen4,

and Max Willert1(B)

1 Institut für Informatik, Freie Universität Berlin, 14195 Berlin, Germany
chiumk@zedat.fu-berlin.de,

{jonascleve,kathklost,mulzerm,willerma}@inf.fu-berlin.de
2 Department of Computer Science, Tufts University, Medford, MA, USA

matias.korman@tufts.edu
3 School of Computer Science, University of Sydney, Sydney, Australia

andre.vanrenssen@sydney.edu.au
4 Department of Mathematics and Computer Science, TU Eindhoven,

Eindhoven, The Netherlands
m.j.m.roeloffzen@tue.nl

Abstract. Let P be an x-monotone orthogonal polygon with n vertices.
We call P a simple histogram if its upper boundary is a single edge; and
a double histogram if it has a horizontal chord from the left boundary to
the right boundary. Two points p and q in P are co-visible if and only if
the (axis-parallel) rectangle spanned by p and q completely lies in P . In
the r-visibility graph G(P) of P , we connect two vertices of P with an
edge if and only if they are co-visible. We consider routing with prepro-
cessing in G(P). We may preprocess P to obtain a label and a routing
table for each vertex of P . Then, we must be able to route a packet
between any two vertices s and t of P , where each step may use only
the label of the target node t, the routing table and the neighborhood of
the current node, and the packet header. The routing problem has been
studied extensively for general graphs, where truly compact and efficient
routing schemes with polylogartihmic routing tables have turned out to
be impossible. Thus, special graph classes are of interest.

We present a routing scheme for double histograms that sends any
data packet along a path of length at most twice the (unweighted) short-
est path distance between the endpoints. The labels, routing tables, and
headers need O(log n) bits. For the simple histograms, we obtain a rout-
ing scheme with optimal routing paths, O(log n)-bit labels, one-bit rout-
ing tables, and no headers.

M.-K. Chiu, J. Cleve and W. Mulzer partially supported by ERC STG 757609. J.
Cleve partially supported by DFG grant MU 3501/1-2. M. Korman partially sup-
ported by MEXT KAKENHI No. 17K12635 and the NSF award CCF-1422311. A. van
Renssen partially supported by JST ERATO Grant Number JPMJER1201, Japan.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 43–54, 2020.
https://doi.org/10.1007/978-3-030-39881-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_5&domain=pdf
http://orcid.org/0000-0001-8480-1726
http://orcid.org/0000-0002-1948-5840
http://orcid.org/0000-0002-9294-9947
https://doi.org/10.1007/978-3-030-39881-1_5

44 M.-K. Chiu et al.

1 Introduction

The routing problem is a classic question in distributed graph algorithms [6,10].
We would like to preprocess a graph G for the following task: given a data packet
located at a source vertex s, route the packet to a target vertex t, identified by
its label. We strive for three main properties: locality (to find the next step of
the packet, the scheme should use only information at the current vertex or in
the packet header), efficiency (the packet should choose a path that is similar to
a shortest path between s and t), and compactness (the space for labels, routing
tables, and packet headers should be as small as possible). The ratio between
the length of the routing path and a shortest path is called stretch factor.

Obviously, we could store at each vertex v of G the complete shortest path
tree of v. This routing scheme is local and perfectly efficient: we can send the
packet along a shortest path. However, the scheme lacks compactness. Thus, the
general challenge is to balance the (potentially) conflicting goals of compactness
and efficiency, while maintaining locality.

There are many routing schemes for general graphs (e.g., [11] and the ref-
erences therein). For example, the scheme by Roditty and Tov [11] stores a
poly-logarithmic number of bits in the packet header, and it routes a packet
from s to t on a path of length O

(
kΔ + m1/k

)
, where k > 2 is any fixed inte-

ger, Δ is the shortest path distance between s and t, and m is the number of
edges. The routing tables use mnO(1/

√
log n) total space, where n is the number

of vertices. In the late 1980’s, Peleg and Upfal [10] proved that in general graphs,
any routing scheme with constant stretch factor must store Ω(nc) bits per ver-
tex, for some constant c > 0. This provides ample motivation to focus on special
graph classes to obtain better routing schemes. For instance, trees admit routing
schemes that always follow the shortest path and that store O(log n) bits at each
node [5,13]. Moreover, in planar graphs, for any fixed ε > 0, there is a routing
scheme with a poly-logarithmic number of bits in each routing table that always
finds a path that is within a factor of 1+ ε from optimal [12]. Similar results are
also available for unit disk graphs [9,14].

Another approach is geometric routing : the graph lies in a geometric space,
and the routing algorithm must find the next vertex for the packet based on
the coordinates of the source and the target vertex, the current vertex, and its
neighborhood; e.g., [3] and the references therein. In contrast to compact routing
schemes, there are no routing tables, and the routing is purely based on the local
geometry (and possibly the packet header). For example, the routing algorithm
for triangulations by Bose and Morin [4] uses the line segment between the source
and the target for its routing decisions. In a recent result, Bose et al. [3] show
that if vertices do not store any routing tables, no geometric routing scheme can
achieve stretch factor o(

√
n). This holds irrespective of the header size.

Here, we combine the approaches from routing in abstract graphs and from
geometric routing. For this, we consider a particularly interesting and practically
relevant class of geometric graphs, namely visibility graphs of polygons. Banyas-
sady et al. [1] presented a routing scheme for polygonal domains with n vertices
and h holes that uses O(log n) bits for the label, O((ε−1 + h) log n) bits for the

Routing in Histograms 45

routing tables, and achieves a stretch of 1 + ε, for any fixed ε > 0. However,
their approach is efficient only if the edges of the visibility graph are weighted
with their Euclidean lengths. Banyassady et al. ask whether there is an effi-
cient routing scheme for visibility graphs with unit weights (the hop-distance).
This setting seems to be more relevant in practice, and similar results have
already been obtained in unit disk graphs for routing schemes [9,14] and for
spanners [2,8].

To address this problem, we use routing tables at the vertices to represent
information about the structure of the graph (as in abstract routing), but we
also assume that the labels of all adjacent vertices are directly visible at a node
in a link table (as in geometric routing). This aligns well with the practical
situation, as a node must be aware of its physical neighbors and their labels for
meaningful communication to be possible. The size of this link table does not
count for the compactness, as it depends on the graph and cannot be influenced
during preprocessing. We focus on r-visibility graphs of orthogonal simple and
double histograms. At first, this may seem a strong restriction. However, even
this case turns out to be quite challenging and reveals the whole richness of
the compact routing problem in unweighted, geometrically defined graphs: on
the one hand, the problem is still highly nontrivial, while on the other hand,
much better results than in general graphs are possible. Histograms constitute
a natural starting point, as they are often crucial building blocks in visibility
problems. Moreover, r-visibility is a popular concept in orthogonal polygons
that enjoys many useful structural properties; see, e.g., [7] and the references
therein for more background on histograms and r-visibility.

A simple histogram is a monotone orthogonal polygon whose upper boundary
consists of a single edge; a double histogram is a monotone orthogonal polygon
that has a horizontal chord that touches the boundary of P only at the left and
the right boundary. Let P be a (simple or double) histogram with n vertices.
Two vertices v and w in P are connected in the visibility graph G(P) by an
unweighted edge if and only if the axis-parallel rectangle spanned by v and w
is contained in the (closed) region P . We say that v and w are co-visible. We
present the first efficient and compact routing schemes for polygonal domains
under the hop-distance. In particular, in simple histograms, we can route along
a shortest path with no headers, O(log n)-bit labels, and O(1)-bit routing tables.
In double histograms, we achieve stretch factor 2 and need labels, routing tables,
and headers of O(log n) bits. The precise results are in Theorems 3.4 and 4.12.
For space reasons, all proofs are deferred to the full version (available at http://
arxiv.org/abs/1902.06599).

2 Preliminaries

Let G = (V,E) be a simple, undirected, unweighted, connected graph. The
(closed) neighborhood N(v) of a vertex v ∈ V is the set containing v and its
adjacent nodes. Let v, w ∈ V . A sequence π : 〈v = p0, p1, . . . , pk = w〉 of vertices
with pi−1pi ∈ E, for i = 1, . . . , k, is called a path of length k between v and w.

http://arxiv.org/abs/1902.06599
http://arxiv.org/abs/1902.06599

46 M.-K. Chiu et al.

The length of π is denoted |π|. We define d(v, w) = minπ |π| as the length of a
shortest path between v and w, where π goes over all paths between v and w.
The distance d(v, w) between two vertices v, w ∈ V is called the hop distance
of v and w. Next, we define a routing scheme. The algorithm that decides the
next step of the packet is modeled by a routing function. During preprocessing,
every node is assigned a (binary) label that identifies it in the network. The
routing function uses local information at the current node, the label of the
target node, and the header stored in the packet. The local information of a
node v has two parts: (i) the link table, a list of the labels of N(v), and (ii) the
routing table, a bitstring chosen during preprocessing to represent relevant topo-
logical properties of G. Formally, a routing scheme of a graph G consists of (a)
a label lab(v) ∈ {0, 1}+ for each node v ∈ V ; (b) a routing table ρ(v) ∈ {0, 1}∗

for each node v ∈ V ; and (c) a routing function f :
({0, 1}∗)4 → ({0, 1}∗)2.

The routing function takes the link table and routing table of a current node
s ∈ V , the label lab(t) of a target t, and a header h ∈ {0, 1}∗. From these,
it determines the label lab(v) of a node adjacent to s and a new header h′.
The local information in the packet is updated to h′, and it is sent to v. The
routing scheme is correct if: for any two sites s, t ∈ V , consider the sequence
(�0, h0) = (lab(s), ε) and (lab(pi+1), hi+1) = f

(
lab

(
N(pi)

)
, ρ(pi), lab(t), hi

)
, for

i ≥ 0. Then, there is a k = k(s, t) ≥ 0 with pk = t and pi �= t, for i = 0, . . . , k−1.
We say the routing scheme reaches t in k steps, and π : 〈p0, . . . , pk〉 is the rout-
ing path from s to t. The routing distance is denoted dρ(s, t) = |π|. Let R be a
correct routing scheme for a graph class G, i.e., R is a correct routing scheme
for every graph in G. There are several measures for the quality of R. For one,
the various pieces of information used for the routing should be small. This is
measured by the maximum label size Lab(n), the maximum routing table size
Tab(n), and the maximum header size H(n), over all graphs in G of a cer-
tain size. They are defined as Lab(n) = max|V |=n maxv∈V |lab(v)|, Tab(n) =
max|V |=n maxv∈V |ρ(v)|, and H(n) = max|V |=n maxs �=t∈V maxi=0,...,k(s,t) |hi|.
Furthermore, the stretch ζ(n) relates the length of the routing path to the short-
est path: ζ(n) = max|V |=n maxs �=t∈V dρ(s, t)/d(s, t).

Let P be a simple orthogonal (axis-aligned) polygon with n vertices V (P)
so that no three vertices in V (P) are on the same vertical or horizontal line.
The vertices are indexed counterclockwise from 0 to n − 1; the lexicographically
largest vertex has index n − 1. For v ∈ V (P), we write vx and vy for the x- and
y-coordinate, and vid for the index. We consider r-visibility : p, q ∈ P see each
other (are co-visible) if and only if the axis-aligned rectangle spanned by p and q
is inside (the closed set) P . The visibility graph G(P) =

(
V (P), E(P)

)
of P has

an edge between two vertices v, w ∈ V (P) if and only if v and w are co-visible.
A histogram is an x-monotone orthogonal polygon where the upper bound-

ary consists of exactly one horizontal edge, the base edge. By our convention, the
endpoints of the base edge have index 0 (left) and n − 1 (right). They are called
the base vertices. A double histogram is an x-monotone orthogonal polygon P
with a base line, a horizontal line segment whose relative interior lies in the inte-
rior of P and whose left and right endpoints are on the left and right boundary

Routing in Histograms 47

edge of P . We assume that the base line lies on the x-axis. Two vertices v, w in
P lie on the same side if both are below or above the base line, i.e., if vywy > 0.
Every histogram is also a double histogram. From now on, we let P denote a
(double) histogram.

Next, we classify the vertices of P . A vertex v in P is incident to exactly one
horizontal edge h. We call v a left vertex if it is the left endpoint of h; otherwise,
v is a right vertex. Furthermore, v is convex if the interior angle at v is π/2;
otherwise, v is reflex. Accordingly, every vertex of P is either �-convex, r-convex,
�-reflex, or r-reflex.

To understand the shortest paths in P , we associate with each v ∈ V (P) three
landmark points in P (not necessarily vertices); see Fig. 1. The corresponding
vertex of v, cv(v), is the unique vertex with the same horizontal edge as v. To
obtain the left point �(v) of v, we shoot a leftward horizontal ray r from v. Let e
be the vertical edge where r first hits the boundary of P . If e is the left boundary
of P ; then if P is a simple histogram, we let �(v) be the left base vertex; and
otherwise �(v) is the point where r hits e. If e is not the left boundary of P , we
let �(v) be the endpoint of e closer to the base line. The right point r(v) of v is
defined analogously, by shooting the horizontal ray to the right.

v

cv(w)w

�(v)
�(w)r(v)

u�(u) t r(t)

I(v)

w

fd(s, t)nd(s, t)
s

Fig. 1. Left and right points, the corresponding vertex, and the near and far domina-
tors. The interval I(v) of v is the set of vertices between �(v) and r(v). The dashed
line is the base line.

Let p and q be two points in P . We say that p is (strictly) to the left of q, if
px ≤ qx (or px < qx). The term (strictly) to the right of is defined analogously.
The interval [p, q] of p and q is the set of vertices in P between p and q, i.e.,
[p, q] =

{
v ∈ V (P) | px ≤ vx ≤ qx

}
. By general position, this corresponds to

index intervals in simple histograms. More precisely, if P is a simple histogram
and p is either an r-reflex vertex or the left base vertex and q is either �-reflex or
the right base vertex, then [p, q] =

{
v ∈ V (P) | pid ≤ vid ≤ qid

}
. The interval of

a vertex v, I(v), is the interval of the left and right point of v, I(v) = [�(v), r(v)].
Every vertex visible from v is in I(v), i.e., N(v) ⊆ I(v). This interval will be
crucial in our routing schemes and gives a very useful characterization of visibility
in double histograms.

48 M.-K. Chiu et al.

Let s and t be two vertices with t ∈ I(s) \ N(s). We define two more land-
marks for s and t. Assume that t lies strictly to the right of s, the other case is
symmetric. The near dominator nd(s, t) of t with respect to s is the rightmost
vertex in N(s) to the left of t. If there is more than one such vertex, nd(s, t) is the
vertex closest to the base line. Since t is not visible from s, the near dominator
always exists. The far dominator fd(s, t) of t with respect to s is the leftmost
vertex in N(s) to the right of t. If there is no such vertex, we set fd(s, t) = r(s),
the projection of s on the right boundary. The interval I(s, t) =

[
nd(s, t), fd(s, t)

]

has all vertices between the near and far dominator; see Fig. 1.

3 Simple Histograms

Let P be a simple histogram with n vertices. The idea for our routing scheme is
as follows: as long as the target vertex t is not in the interval I(s) of the current
vertex s, i.e., as long as there is a higher vertex that blocks visibility between s
and t, we have to leave the interval of s as fast as possible. Once t ∈ I(s), we
have to find the interval containing t. To do this, we must analyze in detail how
shortest paths between vertices in P behave.

Paths in a Simple Histogram. We analyze the (shortest) paths in a simple his-
togram. The following lemma identifies certain “bottleneck” vertices that appear
on any path; see Fig. 2.

Lemma 3.1. Let v, w ∈ V (P) be co-visible vertices such that v is either r-reflex
or the left base vertex and w is either �-reflex or the right base vertex. Let s and
t be two vertices with s ∈ [v, w] and t /∈ [v, w]. Then, any path between s and t
includes v or w.

v
w = r(v)

s

cv(v)

t

t

s

Fig. 2. Left: Any path from s to t includes v or w, since the blue rectangle contains
only v and w as vertices. Right: A shortest path from s to t using the highest vertex.
(Color figure online)

An immediate consequence of Lemma 3.1 is that if t /∈ I(s), then any path
from s to t uses �(s) or r(s). The next lemma shows that if t /∈ I(s), there is a
shortest path from s to t that uses the higher vertex of �(s) and r(s), see Fig. 2.

Lemma 3.2. Let s and t be two vertices with t /∈ I(s). If �(s)y > r(s)y (resp.,
�(s)y < r(s)y), then there is a shortest path from s to t using �(s) (r(s)).

Routing in Histograms 49

The next lemma considers the case where t is in I(s). Then, the near and far
dominator are the potential vertices that lie on a shortest path from s to t (see
also Fig. 3).

Lemma 3.3. Let s and t be two vertices with t ∈ I(s) \ N(s). Then, nd(s, t) is
reflex and either fd(s, t) = �(nd(s, t)) or fd(s, t) = r(nd(s, t)).

The Routing Scheme. We now describe our routing scheme and prove that it
gives a shortest path. Let v ∈ V (P). If v is convex and not a base vertex, it is
labeled with its id, i.e., lab(v) = vid. Otherwise, suppose that v is an r-reflex
vertex or the left base vertex. The breakpoint of v, br(v), is defined as the left
endpoint of the horizontal edge with the highest y-coordinate to the right of and
below v that is visible from v; analogous definitions apply to �-reflex vertices and
the right base vertex. The label of v consists of the ids of v and its breakpoint,
i.e., lab(v) = (vid,br(v)id). Therefore, Lab(n) = 2 · �log n�. The routing table of
v stores one bit, indicating whether �(v)y > r(v)y. Hence, Tab(n) = 1.

We are given the current vertex s and the label lab(t) of the target vertex
t. The routing function does not need a header, i.e., H(n) = 0. If t is visible
from s, i.e., if lab(t) ∈ lab(N(s)), we directly go from s to t on a shortest path.
Thus, assume that t is not visible from s. First, we check if t ∈ I(s). This
is done as follows: we determine the smallest and largest id in the link table
lab(N(s)) of s. The corresponding vertices are �(s) and r(s). Then, we can check
if tid ∈ [�(s)id, r(s)id], which is the case if and only if t ∈ I(s). Now, there are two
cases, illustrated in Fig. 3. First, suppose t /∈ I(s). If the bit in the routing table
of s indicates that �(s) is higher than r(s), we take the hop to �(s); otherwise,
we hop to r(s). By Lemma 3.2, this hop lies on a shortest path from s to t.

s
�(s)

.

r(s)

fd

nd

t t t ttt

Fig. 3. The cases where the vertex t lies and the corresponding vertices where the data
packet is sent to. If t ∈ [�(s), s] we have nd(s, t) = cv(s) and fd(s, t) = �(s).

Second, suppose that t ∈ I(s) \ N(s). This case is slightly more involved.
We use the link table lab(N(s)) of s and the label lab(t) of t to determine
fd(s, t) and nd(s, t). Again, we can do this by comparing the ids. Lemma3.3
states that either fd(s, t) = �(nd(s, t)) or fd(s, t) = r(nd(s, t)). We discuss the
case that fd(s, t) = r(nd(s, t)), the other case is symmetric. By Lemma 3.1, any
shortest path from s to t includes fd(s, t) or nd(s, t). Moreover, due to Lemma 3.3,

50 M.-K. Chiu et al.

nd(s, t) is reflex, and we can use its label to access bid = br(nd(s, t))id. The vertex
b splits I(s, t) = [nd(s, t), fd(s, t)] into two disjoint subintervals [nd(s, t), b] and
[cv(b), fd(s, t)]. Also, b and cv(b) are not visible from s, as they are located strictly
between the far and the near dominator. Based on bid, we can now decide on the
next hop.

If t ∈ [nd(s, t), b], we take the hop to nd(s, t). If t = b, our packet uses a
shortest path of length 2. Thus, assume that t lies between nd(s, t) and b. This
is only possible if b is �-reflex, and we can apply Lemma 3.1 to see that any
shortest path from s to t includes nd(s, t) or b. But since d(s, b) = 2, our data
packet routes along a shortest path.

If t ∈ [cv(b), fd(s, t)], we take the hop to fd(s, t). If t = cv(b), our packet uses
a shortest path of length 2. Thus, assume that t lies between cv(b) and fd(s, t).
This is only possible if cv(b) is r-reflex, so we can apply Lemma 3.1 to see that
any shortest path from s to t uses fd(s, t) or cv(b). Since d(s, cv(b)) = 2, our
packet routes along a shortest path. Thus:

Theorem 3.4. Let P be a simple histogram with n vertices. There is a routing
scheme for G(P) with 1-bit routing tables, no header, and label size 2 · �log n�,
such that we can route between any two vertices on a shortest path.

4 Double Histograms

Let P be a double histogram with n vertices. Similar to the simple histogram
case, we first focus on the structure of shortest paths in P . Again, if the target
vertex t is not in the interval I(s) of the current vertex s, we should widen the
interval (i.e., extend it to include more vertices) as fast as possible. However,
in contrast to simple histograms, we can now change sides arbitrarily often.
Nevertheless, we can guarantee that in each step, the interval comes closer to t.
Once we have reached the case that t is in the interval of the current vertex, we
have to find the sub-interval that contains t. Unlike in simple histograms, this
case is now simpler to describe.

Paths in a Double Histogram. To understand shortest paths in double his-
tograms, we distinguish three cases, depending on where t lies relative to s.
First, if t is close, i.e., if t ∈ I(s), we focus on the near and far dominators. Sec-
ond, if t /∈ I(s) but there is a vertex v visible from s with t ∈ I(v), then we can
find a vertex on a shortest path from s to t. Third, if there is no visible vertex
v from s such that t ∈ I(v), we can apply our intuition from simple histograms:
go as fast as possible towards the base line.

Let s, t be two vertices with t ∈ I(s)\N(s). In contrast to simple histograms,
fd(s, t) now might not be a vertex. Furthermore, fd(s, t) and nd(s, t) might be on
different sides of the base line. In this case, Lemma 3.3 no longer holds. However,
the next lemma establishes a visibility relation between them.

Lemma 4.1. Let s, t ∈ V (P) with t ∈ I(s) \ N(s). Then, nd(s, t) and fd(s, t)
are co-visible.

Routing in Histograms 51

The proof of the next lemma uses Lemma 4.1 to find a shortest path vertex.

Lemma 4.2. One of nd(s, t) or fd(s, t) is on a shortest path from s to t. If
fd(s, t) is not a vertex, then nd(s, t) is on a shortest path from s to t.

Next, we consider the case where fd(s, t) is a vertex but not on a shortest path
from s to t. Then, fd(s, t) cannot see t, and we define fd2(s, t) = fd(fd(s, t), t).
By Lemma 4.1, nd(s, t) and fd(s, t) are co-visible, so fd2(s, t) has to be in the
interval [nd(s, t), t], and therefore it is a vertex. The following lemma states that
fd2(s, t) is strictly closer to t than s.

Lemma 4.3. If fd(s, t) is a vertex but not on a shortest path from s to t, then
we have d(fd2(s, t), t) = d(s, t) − 1.

Let s, t be two vertices so that t /∈ I(s) but there is a vertex v ∈ N(s) with
t ∈ I(v). For clarity of presentation, we will always assume that s is below the
base line. The crux of this case is this: there might be many vertices visible
from s that have t in their interval. However, we can find a best vertex as
follows: once t is in the interval of a vertex, the goal is to shrink the interval
(i.e., reduce it to include fewer vertices) as fast as possible. Therefore, we must
find a vertex v ∈ N(s) whose left or right interval boundary is closest to t
among all vertices in N(s). This leads to the following inductive definition of
two sequences ai(s) and bi(s) of vertices in N(s). For i = 0, we let a0(s) =
b0(s) = s. For i > 0, if the set Ai(s) = {v ∈ N(s) | �(v)x < �(ai−1(s))x}
is nonempty, we define ai(s) = argmin{vx | v ∈ Ai(s)}; and ai(s) = ai−1(s),
otherwise. If the set Bi(s) = {v ∈ N(s) | r(v)x > r(bi−1(s))x} is nonempty,
we define bi(s) = argmax{vx | v ∈ Bi(s)}; and bi(s) = bi−1(s), otherwise. We
force unambiguity by choosing the vertex closer to the base line. Let a∗(s) be
the vertex with a∗(s) = ai(s) = ai−1(s), for an i > 0, and b∗(s) the vertex with
b∗(s) = bi(s) = bi−1(s), for an i > 0. If the context is clear, we write ai instead
of ai(s) and bi instead of bi(s).

Let us try to understand this definition. For i ≥ 0, we write �i for �(ai);
and we write �∗ for �(a∗). Then, we have a0 = s and �0 = �(s). Now, if �(s)
is not a vertex, then a∗ = s, because there is no vertex whose left point is
strictly to the left of the left boundary of P . On the other hand, if �0 is a ver-
tex in P , we have a1 = �0 = �(s), and [�1, a1] is an interval between points
on the lower side of P . Then comes a (possibly empty) sequence of intervals
[�2, a2], [�3, a3], . . . , [�k, ak] between points on the upper side of P ; possibly fol-
lowed by the interval [�(r(s)), r(s)]. There are four possibilities for a∗: it could
be s, �(s), a vertex ai on the upper side of P , or r(s). If a∗ �= s, then the intervals
[�1, a1] ⊂ [�2, a2] ⊂ · · · ⊂ [�∗, a∗] are strictly increasing: �i is strictly to the left
of �i−1 and ai is strictly to the right of ai−1; see Fig. 4. Symmetric observations
apply for the bi; we write ri for r(bi) and r∗ for r(b∗).

Lemma 4.4. For i ≥ 1, the vertices �i−1, ai as well as ri−1, bi are co-visible.

Finally, the next lemma tells us the following: if t ∈ [�∗, r∗] we find a vertex
v ∈ N(s) with t ∈ I(v). Its quite technical proof needs Lemma 4.4.

52 M.-K. Chiu et al.

s

a1, b3�1

a2

a3

a4

�2

�3

�4

b1

b2

r1

r2

r3

Fig. 4. The vertices ai and bi are illustrated. Observe that �(s) = a1 = b3 and r(s) = b1.

Lemma 4.5. If t ∈ [�i, �i−1], for some i ≥ 1, then ai is on a shortest path from
s to t. If t ∈ [ri−1, ri], for some i ≥ 1, then bi is on a shortest path from s to t.

Finally, we consider the case that there is no vertex v ∈ N(s) with t ∈ I(v),
i.e., t /∈ [�∗, r∗]. The intuition now is as follows: to widen the interval, we should
go to a vertex that is visible from s, but closest to the base line. In simple
histograms, there was only one such vertex, but in double histograms there
might be a second one on the other side. These two vertices are the dominators
of s. These two dominators might have their own dominators, and so on. This
leads to the following inductive definition.

For k ≥ 0, we define the k-th bottom dominator bdk(s), the k-th top
dominator tdk(s), and the k-th interval Ik(s) of s. For any set Q ⊂ V (P),
we write Q− (resp. Q+) for all points in Q below (resp. above) the base
line. We set bd0(s) = td0(s) = s and I0(s) = {s}. For k > 0, we set
Ik(s) = I(bdk−1(s)) ∪ I(tdk−1(s)). If Ik(s)− is nonempty, we let bdk(s) be
the leftmost vertex inside Ik(s)− that minimizes the distance to the base line.
If Ik(s)+ is nonempty, we let tdk(s) be the leftmost vertex inside Ik(s)+ that
minimizes the distance to the base line. If one of the two sets is empty, the other
one has to be nonempty, since s ∈ Ik(s). In this case, we let tdk(s) = bdk(s).
We write bd(s) for bd1(s) and td(s) for td1(s). Observe, that I1(s) = I(s) and
I2(s) = [�∗, r∗]. If I(bdk−1(s)) = V (P), we have bdk(s) = bdk−1(s). The same
holds for the top dominator. We provide a few technical properties concerning
the k-th interval as well as the k-th dominators.

Lemma 4.6. For any s ∈ V (P) and k ≥ 0, we have Ik(s) ⊆ I(bdk(s)) ∩
I(tdk(s)) and bdk(s), tdk(s) are co-visible.

The following lemma seems rather specific, but will be needed later to deal
with short paths.

Lemma 4.7. For any s ∈ V (P), we have I3(s) = I2
(
bd(s)

) ∪ I2
(
td(s)

)
.

Intuitively, the meaning of Ik(s) is as follows: let � be the leftmost and r be
the rightmost vertex with hop distance exactly k from s, then, Ik(s) = [�, r]. We
do not really need this property, so we leave it as an exercise for the reader to

Routing in Histograms 53

find a proof for this. Instead, we prove the following weaker statement. For this,
recall that due to its definition, bdk(s) might not be on the lower side of the
histogram (and tdk(s) might not be on the upper side).

Lemma 4.8. Let k ≥ 0 and let s, t ∈ V (P) with d(s, t) ≤ k. Then, t ∈ Ik(s).

Let k ≥ 0 and s ∈ V (P). For i = 1, . . . , k, by Lemma 4.6, bdi−1(s), tdi−1(s) ∈
I(bdi(s)) ∩ I(tdi(s)). Moreover, by definition, bdi(s), tdi(s) ∈ I(bdi−1(s)) ∪
I(tdi−1(s)). As we show in the full version, now both bdi(s) and tdi(s) can see
at least one of bdi−1(s) or tdi−1(s). Therefore, there is a path πb(s, k) : 〈s =
p0, . . . , pk = bdk(s)〉 from s to bdk(s) and a path πt(s, k) : 〈s = q0, . . . , qk =
tdk(s)〉 from s to tdk(s) with pi, qi ∈ {bdi(s), tdi(s)}, for i = 0, . . . , k. We call
πb(s, k) and πt(s, k) the canonical path from s to bdk(s) and from s to tdk(s),
respectively. The following two lemmas show that for every t /∈ Ik+1(s) one of the
canonical paths is the prefix of a shortest path from s to t. To show Lemma 4.10
we need Lemmas 4.8 and 4.9.

Lemma 4.9. Let k ≥ 1 and s ∈ V (P). If I(bdk−1(s)) �= V (P), we have that
d(s, bdk(s)) = k. If I(tdk−1(s)) �= V (P) we have d(s, tdk(s)) = k.

Lemma 4.10. Let s and t be vertices and k ≥ 1 an integer such that t /∈ Ik+1(s).
Then bdk(s) or tdk(s) is on a shortest path from s to t.

Routing Scheme. Let v be a vertex. The label of v consists of its x- and y-
coordinate as well as the bounding x-coordinates of I(v). We do not need vid
since (vx, vy) identifies the vertex in the network. Thus, Lab(n) = 4·�log n� since
we can assume that vx, vy ∈ {0, . . . , n − 1}. In the routing table of v, we store
the bounding x-coordinates of I2(bd(v)) as well as the bounding x-coordinates
of I2(td(v)). Furthermore, we store (bd2(v)x,bd2(v)y, bit) where bit indicates
whether td(v) or bd(v) is on the path πb(v, 2). Thus, Tab(n) = 6 · �log n� + 1.

We are given a current vertex s together with its routing table and link
table, the label of a target vertex t, and a header. If t ∈ N(s), then lab(t) is in
the link table of s, and we send the data packet directly to t. If the header is
non-empty, it will contain the coordinates of exactly one vertex visible from s.
We clear the header and go to this respective vertex. The remaining discussion
assumes that the header is empty and that t �∈ N(s). The routing function now
distinguishes four cases depending on whether t ∈ I(s), t ∈ I2(s) or t ∈ I3(s).
We can check the first and the second condition locally, using the link table of s
as well as the label of t (note that from the link table of s, we can deduce a∗(s)
and b∗(s), and their interval boundaries). To check the third condition locally,
we use Lemma 4.7 which shows that I3(s) = I2(bd(s)) ∪ I2(td(s)). Since we
stored the bounding x-coordinates of these two intervals in the routing table of
s, we can check t ∈ I3(s) easily.

Case 1 (t ∈ I(s) \ N(s)): if fd(s, t) is a vertex, we can determine it by using
the link table and the label of t. The packet is sent to fd(s, t). If fd(s, t) is not
a vertex, we determine nd(s, t) and send the packet there. The header remains
empty.

54 M.-K. Chiu et al.

Case 2 (t ∈ I2(s) \ I(s)): there is an i ≥ 1 with t ∈ [�i, �i−1] or t ∈ [ri−1, ri].
We find i using the link table and lab(t). The packet is sent to ai or bi. The
header remains empty.

Case 3 (t ∈ I3(s) \ I2(s)): if t ∈ I2(bd(s)), we send the packet to bd(s).
Otherwise, t ∈ I2(td(s)), and we send the packet to td(s). In both cases, the
header remains empty.

Case 4 (t /∈ I3(s)): the routing table has the entry (bd2(s)x,bd2(s)y, b). We
store (bd2(s)x,bd2(s)y) in the header and send the packet to bd(s) or td(s), as
indicated by b.

Obviously, H(n) = 2 · �log n�. It remains to analyze the stretch factor. For
this, we use the following lemma:
Lemma 4.11. Let s, t ∈ V (P). After at most two steps of the routing scheme
from s with target label lab(t), we reach a vertex v with d(v, t) ≤ d(s, t) − 1.
This immediately gives a stretch factor of 2 and our main theorem.
Theorem 4.12. Let P be a double histogram with n vertices. There is a routing
scheme for G(P) with routing table, label and header size O(log n), such that we
can route between any two vertices with stretch at most 2.

References

1. Banyassady, B., et al.: Routing in polygonal domains. In: 28th ISAAC, pp. 10:1–
10:13 (2017)

2. Biniaz, A.: Plane hop spanners for unit disk graphs: simpler and better.
arXiv:1902.10051 (2019)

3. Bose, P., Fagerberg, R., van Renssen, A., Verdonschot, S.: Competitive local rout-
ing with constraints. JoCG 8, 125–152 (2017)

4. Bose, P., Morin, P.: Competitive online routing in geometric graphs. TCS 324,
273–288 (2004)

5. Fraigniaud, P., Gavoille, C.: Routing in trees. In: 28th ICALP, pp. 757–772 (2001)
6. Giordano, S., Stojmenovic, I.: Position based routing algorithms for ad hoc net-

works: a taxonomy. In: Cheng, X., Huang, X., Du, D.Z. (eds.) Ad Hoc Wireless
Networking. NETA, vol. 14, pp. 103–136. Springer, Boston (2004). https://doi.org/
10.1007/978-1-4613-0223-0 4

7. Hoffmann, F., Kriegel, K., Suri, S., Verbeek, K., Willert, M.: Tight bounds for
conflict-free chromatic guarding of orthogonal art galleries. CGTA 73, 24–34 (2018)

8. Jacquet, P., Viennot, L.: Remote-spanners: what to know beyond neighbors. In:
23rd IPDPS, pp. 1–10 (2009)

9. Kaplan, H., Mulzer, W., Roditty, L., Seiferth, P.: Routing in unit disk graphs.
Algorithmica 80, 830–848 (2018)

10. Peleg, D., Upfal, E.: A trade-off between space and efficiency for routing tables.
JACM 36, 510–530 (1989)

11. Roditty, L., Tov, R.: Close to linear space routing schemes. Distrib. Comput. 29,
65–74 (2016)

12. Thorup, M.: Compact oracles for reachability and approximate distances in planar
digraphs. JACM 51, 993–1024 (2004)

13. Thorup, M., Zwick, U.: Compact routing schemes. In: 13th SPAA, pp. 1–10 (2001)
14. Yan, C., Xiang, Y., Dragan, F.F.: Compact and low delay routing labeling scheme

for unit disk graphs. CGTA 45, 305–325 (2012)

http://arxiv.org/abs/1902.10051
https://doi.org/10.1007/978-1-4613-0223-0_4
https://doi.org/10.1007/978-1-4613-0223-0_4

A Waste-Efficient Algorithm
for Single-Droplet Sample Preparation

on Microfluidic Chips

Miguel Coviello Gonzalez and Marek Chrobak(B)

University of California at Riverside, Riverside, USA
marek@cs.ucr.edu

Abstract. We address the problem of designing microfluidic chips for
sample preparation, a crucial step in many experimental processes in
chemical and biological sciences. One of the objectives of sample prepa-
ration is to dilute the sample fluid, called reactant, using another fluid
called buffer, to produce desired volumes of fluid with prespecified reac-
tant concentrations. In our model these fluids are manipulated in dis-
crete volumes called droplets. The dilution process is represented by a
mixing graph whose nodes represent 1–1 micro-mixers and edges repre-
sent channels for transporting fluids. We focus on designing such mixing
graphs when the given sample (also referred to as the target) consists of
a single-droplet, and the objective is to minimize total fluid waste. Our
main contribution is an efficient algorithm called RPRIS that guarantees a
better provable worst-case bound on waste and significantly outperforms
state-of-the-art algorithms in experimental comparison.

1 Introduction

Microfluidic chips are miniature devices that manipulate tiny amounts of fluids
on a small chip and can perform various laboratory functions such as dispens-
ing, mixing, filtering and detection. They play an increasingly important role
in today’s science and technology, with applications in environmental or med-
ical monitoring, protein or DNA analysis, drug discovery, physiological sample
analysis, and cancer research.

These chips often contain modules whose function is to mix fluids. One appli-
cation where fluid mixing plays a crucial role is sample preparation for some
biological or chemical experiments. When preparing such samples, one of the
objectives is to produce desired volumes of the fluid of interest, called reactant,
diluted to some specified concentrations by mixing it with another fluid called
buffer. As an example, an experimental study may require a sample that consists
of 6µL of reactant with concentration 10%, 9µL of reactant with concentration
20%, and 3µL of reactant with concentration 40%. Samples of this form are often
required in toxicology or pharmaceutical studies, among other applications.

Supported by NSF grant CCF-1536026.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 55–68, 2020.
https://doi.org/10.1007/978-3-030-39881-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_6

56 M. C. Gonzalez and M. Chrobak

There are different models for fluid mixing in the literature and multiple tech-
nologies for manufacturing fluid-mixing microfluidic chips. (See the survey in [2]
or the recent book [1] for more information on different models and algorithmic
issues related to fluid mixing.) In this work we assume the droplet-based model,
where the fluids are manipulated in discrete quantities called droplets. For con-
venience, we will identify droplets by their reactant concentrations, which are
numbers in the interval [0, 1] with finite binary precision. In particular, a droplet
of reactant is denoted by 1 and a droplet of buffer by 0. We focus on the mixing
technology that utilizes modules called 1–1 micro-mixers. A micro-mixer has two
inlets and two outlets. It receives two droplets of fluid, one in each inlet, mixes
these droplets perfectly, and produces two droplets of the mixed fluid, one on
each outlet. (Thus, if the inlet droplets have reactant concentrations a and b, then
the two outlet droplets each will have concentration 1

2 (a+b).) Input droplets are
injected into the chip via droplet dispensers and output droplets are collected in
droplet collectors. All these components are connected via micro-channels that
transport droplets, forming naturally an acyclic graph that we call a mixing
graph, whose source nodes are fluid dispensers, internal nodes (of in-degree and
out-degree 2) are micro-mixers, and sink nodes are droplet collectors. Graph G1

in Fig. 1 shows an example.

0 1

0

1

1

1

13
16

13
16

13
16

1
8

1
8

1
4

1
4

1
2

3
4

7
8

7
8

1
8

0 1

0

1

1

1

13
16

13
16

13
16

1
8

1
8

1
4

1
2

3
4

7
8

1
8

w

w

G1 G2

Fig. 1. Mixing graph G1 produces droplet set
{

1
8
, 1
8
, 1
4
, 13
16
, 13
16
, 7
8

}
from input set

I = {0, 0, 1, 1, 1, 1}. Numbers on the internal nodes represent droplet concentrations
produced by the corresponding micro-mixers. Mixing graph G2 produces droplets{

1
8
, 1
8
, 13
16
, 13
16

}
. Small black circles labeled “w” on micro-mixers represent droplets of

waste.

Given some target set of droplets with specified reactant concentrations, the
objective is to design a mixing graph that produces these droplets from pure
reactant and buffer droplets, while optimizing some objective function. Some
target sets can be produced only if we allow the mixing graph to also produce
some superfluous amount of fluid that we refer to as waste; see graph G2 in Fig. 1.
One natural objective function is to minimize the number of waste droplets (or
equivalently, the total number of input droplets). As reactant is typically more

Mixing Graphs 57

expensive than buffer, one other common objective is to minimize the reactant
usage. Yet another possibility is to minimize the number of micro-mixers or the
depth of the mixing graph. There is growing literature on developing techniques
and algorithms for designing such mixing graphs that attempt to optimize some
of the above criteria.

State-of-the-Art. Most earlier papers on this topic studied designing mix-
ing graphs for single-droplet targets. This line of research was pioneered by
Thies et al. [11], who proposed an algorithm called Min-Mix that constructs
a mixing graph for a single-droplet target with the minimum number of mix-
ing operations. Roy et al. [10] developed an algorithm called DMRW designed to
minimize waste. Huang et al. [7] considered minimizing reactant usage, and pro-
posed an algorithm called REMIA. Another algorithm called GORMA, for minimizing
reactant usage and based on a branch-and-bound technique, was developed by
Chiang et al. [3].

The algorithms listed above are heuristics, with no formal performance guar-
antees. An interesting attempt to develop an algorithm that minimizes waste,
for target sets with multiple droplets, was reported by Dinh et al. [4]. Their
algorithm, that we refer to as ILP, is based on a reduction to integer linear
programming and, since their integer program could be exponential in the pre-
cision d of the target set (and thus also in terms of the input size), its worst-case
running time is doubly exponential. Further, as this algorithm only considers
mixing graphs of depth at most d, it does not always finds an optimal solution
(see [5]). In spite of these deficiencies, for very small values of d it is still likely
to produce good mixing graphs.

Additional work regarding the design of mixing graphs for multiple droplets
includes Huang et al.’s algorithm called WARA, which is an extension of Algo-
rithm REMIA, that focuses on reactant minimization; see [8]. Mitra et al. [9]
also proposed an algorithm for multiple droplet concentrations by modeling the
problem as an instance of the Asymmetric TSP on a de Bruijn graph.

As discussed in [5], the computational complexity of computing mixing
graphs with minimum waste is still open, even in the case of single-droplet
targets. In fact, it is not even known whether the minimum-waste function is
computable at all, or whether it is decidable to determine if a given target set
can be produced without any waste. To our knowledge, the only known result
that addresses theoretical aspects of designing mixing graphs is a polynomial-
time algorithm in [5] that determines whether a given collection of droplets with
specified concentrations can be mixed perfectly with a mixing graph.

Our Results. Continuing the line of work in [3,7,10,11], we develop a new effi-
cient algorithm RPRIS (for Recursive Precision Reduction with Initial Shift) for
designing mixing graphs for single-droplet targets, with the objective to mini-
mize waste. Our algorithm was designed to provide improved worst-case waste
estimate; specifically to cut it by half for most concentrations. Its main idea
is quite natural: recursively, at each step it reduces the precision of the target
droplet by 2, while only adding one waste droplet when adjusting the mixing
graph during backtracking.

58 M. C. Gonzalez and M. Chrobak

While designed with worst-case performance in mind, RPRIS significantly out-
performs algorithms Min-Mix, DMRW and GORMA in our experimental study (see
Sect. 6), producing on average about 50% less waste than Min-Mix, between 21
and 25% less waste than DMRW (with the percentage increasing with the preci-
sion d of the target droplet), and about 17% less waste than GORMA. (It also
produces about 40% less waste than REMIA.) Further, when compared to ILP,
RPRIS produces on average only about 7% more waste.

Unlike earlier work in this area, that was strictly experimental, we introduce
a performance measure for waste minimization algorithms and show that RPRIS
has better worst-case performance than Min-Mix and DMRW. This measure is
based on two attributes d and γ of the target concentration t. As defined earlier,
d is the precision of t, and γ is defined as the number of equal leading bits in
t’s binary representation, not including the least-significant bit 1. For example,
if t = .00001011 then γ = 4, and if t = .1111 then γ = 3. (Both d and γ
are functions of t, but we skip the argument t, as it is always understood from
context.) In the discussion below we provide more intuition and motivations for
using these parameters.

Algorithm RPRIS produces at most 1
2 (d+ γ)+ 2 droplets of waste (see Theo-

rem 1 in Sect. 5). In comparison, Algorithm Min-Mix from [11] produces exactly
d droplets of waste, independently of the value of t. This means that the waste
of RPRIS is about half that of Min-Mix for almost all concentrations t. (More
formally, for a uniformly chosen random t with precision d the probability that
the waste is larger than (12 − ε)d vanishes when d grows, for any ε > 0.) As
for Algorithm DMRW, its average waste is better than that of Min-Mix, but its
worst-case bound is still d−O(1) even for small values of γ (say, when t ∈ [14 , 3

4]),
while Algorithm RPRIS’ waste is at most d/2 + O(1) in this range.

Regarding time performance, for the problem of computing mixing graphs it
would be reasonable to express the time complexity of an algorithm as a function
of its output, which is the size of the produced graph. This is because the output
size is at least as large as the input size, which is equal to d – the number of
bits of t. Algorithm RPRIS runs in time that is linear in the size of the computed
graph, and the graphs computed by Algorithm RPRIS have size O(d2).

Discussion. To understand better our performance measure for waste, observe
that the optimum waste is never smaller than γ +1. This is because if the binary
representation of t starts with γ 0’s then any mixing graph has to use γ+1 input
droplets 0 and at least one droplet 1. (The case when the leading bits of t are
1’s is symmetric.) For this reasons, a natural approach is to express the waste
in the form γ + f(d − γ), for some function f(). In Algorithm RPRIS we have
f(x) ≈ 1

2x. It is not known whether smaller functions f() can be achieved.
Ideally, one would like to develop efficient “approximation” algorithms for

waste minimization, that measure waste performance in terms of the additive or
multiplicative approximation error, with respect to the optimum value. This is
not realistic, however, given the current state of knowledge, since currently no
close and computable bounds for the optimum waste are known.

Mixing Graphs 59

Note: Due to lack of space, some details of the algorithm and some proofs are
omitted here. They can be found in the extended version of this paper [6].

2 Preliminaries

We use notation prec(c) for the precision of concentration c, that is the number
of fractional bits in the binary representation of c. In other words, prec(c) = d ∈
Z≥0 such that c = a/2d for an odd a ∈ Z.

We will deal with sets of droplets, some possibly with equal concentrations.
We define a configuration as a multiset of droplet concentrations. Let A be an
arbitrary configuration. By |A| = n we denote the number of droplets in A. We
will often write a configuration as A = {f1 : a1, f2 : a2, ..., fm : am}, where each
ai represents a different concentration and fi denotes the multiplicity of ai in A.
(If fi = 1, then, we will write “ai” instead of “fi : ai”.) Naturally,

∑m
i=1 fi = n.

We defined mixing graphs in the introduction. A mixing graph can be thought
of as a linear mapping from the source values (usually 0’s and 1’s) to the sink
values. Yet in the paper, for convenience, we will assume that the source con-
centration vector is part of a mixing graph’s specification, and that all sources,
micro-mixers, and sinks are labeled by their associated concentration values.

We now define an operation of coupling of mixing graphs G1 and G2. Let T1

be the output configuration (the concentration labels of the sink nodes) of G1

and I2 be the input configuration (the concentration labels of the source nodes)
for G2. To construct the coupling of G1 and G2, denoted G2 • G1, we identify
inlet edges of the sinks of G1 with labels from T1 ∩ I2 with outlet edges of the
corresponding sources in G2. More precisely, repeat the following steps as long as
T1 ∩ I2 �= ∅: (1) choose any a ∈ T1 ∩ I2, (2) choose any sink node t1 of G1 labeled
a, and let (u1, t1) be its inlet edge, (3) choose any source node s2 of G2 labeled
a, and let (s2, v2) be its outlet edge, (4) remove t1 and s2 and their incident

0 1

0

1 0 1

0

1

G1 G2 G2 G1

1
4

1
2

3
8

3
8

3
8

1
4

1
4

5
8

5
8

1
2

1
2

1
2

3
8

1
2

1
4

5
8 3

8

1
2

5
8

1
2

1
2

3
8

Fig. 2. Coupling of two mixing graphs G1 and G2. G2 •G1 is obtained by identifying
inlet edges of two sinks of G1, one labelled 1

4
and one 3

8
, with the outlet edges of the

corresponding sources of G2. These new edges are shown as dotted arrows.

60 M. C. Gonzalez and M. Chrobak

0 1

0 1

1
4

1
2

3
4

1
2

0 1

0 1

1
4

1
2

3
4

1
2

1
2

1
4

3
4

1
4

1
4

3
4

3
4

0 1

0 1

1
4

1
2

3
4

1
2

1
2

1
4

3
4

2

2 2

2 2
22

3 3

G1 G2

Fig. 3. Graph G2 is a compact representation of G1. All nodes in G2 (except the last
mixer node with label 1

2
) represent an aggregation of at least two nodes from G1.

edges, and finally, (5) add edge (u1, v2). The remaining sources of G1 and G2

become sources of G2 • G1, and the remaining sinks of G1 and G2 become sinks
of G2 • G1. See Fig. 2 for an example.

We define an (i : α, j : β)-converter as a mixing graph that produces a
configuration of the form T = {i : α, j : β}∪W , where W denotes a set of waste
droplets, and whose input droplets have concentration labels either 0 or 1. For
example, graph G2 in Fig. 1 can be interpreted as a (2 : 1

8 , 2 : 13
16)-converter that

produces two waste droplets of concentrations 1
4 and 7

8 .
If needed, to avoid clutter, sometimes we will use a more compact graphical

representation of mixing graphs by aggregating (not necessarily all) nodes with
the same concentration labels into a single node, and with edges labeled by the
number of droplets that flow through them. (We will never aggregate two micro-
mixer nodes if they both produce a droplet of waste.) If the label of an edge is 1,
then we will simply omit the label. See Fig. 3 for an example of such a compact
representation.

3 Algorithm Description

In this section, we describe our algorithm RPRIS for producing a single-droplet
target of concentration t with precision d = prec(t). We first give the overall
strategy and then we gradually explain its implementation. The core idea behind
RPRIS is a recursive procedure that we refer to as Recursive Precision Reduction,
that we outline first. In this procedure, ts denotes the concentration computed
at the sth recursive step with ds = prec(ts); initially, t0 = t. Also, by B we
denote the set of base concentration values with small precision for which we
give explicit mixing graphs later in this section.

Procedure RPR(ts)
If ts ∈ B, let Gs be the base mixing graph (defined later) for ts, else:
(rpr1) Replace ts by another concentration value ts+1 with ds+1 = ds − 2.
(rpr2) Recursively construct a mixing graph Gs+1 for ts+1.

Mixing Graphs 61

0 1
8

1
4

3
8

1
2

5
8

3
4

7
8 1

S1
S2

S4
S5

S3

Fig. 4. Graphical representation of intervals S1, S2, . . . , S5. The thick shaded part of
each interval Sk = [l, r] marks its “middle section” [l + 1

16
, r− 1

16
]. Each concentration

within interval [1
4
, 3
4
] belongs to the middle section of some Sk.

(rpr3) Convert Gs+1 into a mixing graph Gs for ts, increasing waste by one
droplet.

Return Gs.

The mixing graph produced by this process is G0.
When we convert Gs+1 into Gs in part (rpr3), the precision of the target

increases by 2, but the waste only increases by 1, which gives us a rough bound
of d/2 on the overall waste. However, as it turns out, the above process only
works when t0 ∈ [14 , 3

4]. To deal with values outside this interval, we map t into
t0 so that t0 ∈ [14 , 3

4], next we apply Recursive Precision Reduction to t0, and
then we appropriately modify the computed mixing graph. This process is called
Initial Shift.

We next describe these two processes in more detail, starting with Recursive
Precision Reduction, followed by Initial Shift.

Gs

Gs+1

ts+1

Is+1

Gs+1

ts

Is+1

Gs+1

ts

Is+1

Cs+1

Is

waste waste waste

waste

Fig. 5. Conversion from Gs+1 to Gs. The left image illustrates the computed mixing
graph Gs+1 with input labels Is+1 (consisting of only 0’s and 1’s) that produces ts+1

along with some waste. The middle figure illustrates G′
s+1, which is obtained from

Gs+1 by changing concentration labels.The last figure illustrates the complete mixing
graph Gs = G′

s+1 • Cs+1 for ts, shown within a dotted rectangle.

62 M. C. Gonzalez and M. Chrobak

Recursive Precision Reduction (RPR). We start with concentration t0
that, by applying Initial Shift (described next), we can assume to be in [14 , 3

4].

Step (rpr1): Computing ts+1. We convert ts into a carefully chosen concentration
ts+1 for which ds+1 = ds −2. One key idea is to maintain an invariant so that at
each recursive step, this new concentration value ts+1 satisfies ts+1 ∈ [14 , 3

4]. To
accomplish this, we consider five intervals S1 = [18 , 3

8], S2 = [14 , 1
2], S3 = [38 , 5

8],
S4 = [12 , 3

4], and S5 = [58 , 7
8]. We choose an interval Sk that contains ts “in the

middle”, that is Sk = [l, r] for k such that ts ∈ [l + 1
16 , r − 1

16]. (See Fig. 4.) We
then compute ts+1 = 4(ts − l). Note that ts+1 satisfies both ts+1 ∈ [14 , 3

4] (that
is, our invariant) and ds+1 = ds − 2.

Step (rpr3): Converting Gs+1 into Gs. Let Gs+1 be the mixing graph obtained
for ts+1 in step (rpr2). We first modify Gs+1 to obtain a graph G′

s+1, which
is then coupled with an appropriate converter Cs+1 to obtain mixing graph
Gs = G′

s+1 • Cs+1. Figure 5 illustrates this process.

0 1

1
2

1
2

0 1

0

1
4

1
2

1
4

0 1

0

1
4

1
2

3
8

3
8

0 1

0

1
4

1
2

3
8

5
16

5
16

B1 B2 B3 B4

w w

w w

w w

w

Fig. 6. Mixing graphs B1, B2, B3 and B4 for concentrations 1
2
, 1
4
, 3
8

and 5
16

, respectively.

Graph G′
s+1 consists of the same nodes and edges as Gs+1, only the concen-

tration labels are changed. Specifically, every concentration label c from Gs+1 is
changed to l + c/4 in G′

s+1. Note that this is simply the inverse of the linear func-
tion that maps ts to ts+1. In particular, this will map the 0- and 1-labels of the
source nodes in Gs+1 to the endpoints l and r of the corresponding interval Sk.

The converter Cs+1 used in Gs needs to have sink nodes with labels equal
to the source nodes for G′

s+1. That is, if the labeling of the source nodes of
G′

s+1 is I ′
s+1 = {i : l, j : r}, then Cs+1 will be an (i : l, j : r)-converter. As

a general rule, Cs+1 should produce at most one waste droplet, but there will
be some exceptional cases where it produces two. (Nonetheless, we will show
that at most one such “bad” converter is used during the RPR process.) The
construction of these converters is somewhat intricate, and is deferred to the
next section.

Mixing Graphs 63

The Base Case. We now specify the set of base concentration values and
their mixing graphs. Let B =

{
1
2 , 1

4 , 3
4 , 3

8 , 5
8 , 5

16 , 11
16

}
. Figure 6 gives the graphs for

concentrations 1
2 , 1

4 , 3
8 , and 5

16 ; the graphs for the remaining concentrations are
symmetric.

Initial Shift (IS). We now describe the IS procedure. At the fundamental level,
the idea is similar to a single step of RPR. We can assume that t < 1

4 (because
for t > 3

4 the process is symmetric). Thus the binary representation of t starts
with γ ≥ 2 fractional 0’s. Since 2γ−1t ∈ [14 , 1

2), we could use this value as the
result of the initial shift, but to improve the waste bound we refine this choice
as follows: If 2γ−1t ∈ (38 , 1

2) then let t0 = 2γ−1t and σ = 1. Otherwise, we
have 2γ−1t ∈ [14 , 3

8], in which case we let t0 = 2γt and σ = 0. In either case,
t0 = 2γ−σt ∈ [14 , 3

4] and d0 = d − γ + σ.
Let G0 be the mixing graph obtained by applying RPR to t0. It remains to

show how to modify G0 to obtain the mixing graph G for t. This is analogous to
the process shown in Fig. 5. We first construct a mixing graph G′

0 that consists
of the same nodes and edges as G0, only each concentration label c is replaced
by c/2γ−σ. In particular, the label set of the source nodes in G′

0 will have the
form I ′

0 = {i : 0, j : 1/2γ−σ}. We then construct a (i : 0, j : 1/2γ−σ)-converter
C0 and couple it with G′

0 to obtain G; that is, G = G′
0 • C0. This C0 is easy

to construct: The 0’s don’t require any mixing, and to produce the j droplets
1/2γ−σ we start with one droplet 1 and repeatedly mix it with 0’s, making sure
to generate at most one waste droplet at each step. Specifically, after z steps we
will have jz droplets with concentration 1/2z, where jz = 	j/2γ−σ−z
. In step
z, mix these jz droplets with jz 0’s, producing 2jz droplets with concentration
1/2z+1. We then either have jz+1 = 2jz, in which case there is no waste, or
jz+1 = 2jz − 1, in which case one waste droplet 1/2z+1 is produced. Overall, C0

produces at most γ − σ waste droplets.

4 Construction of Converters

We now detail the construction of our converters. We can assume that ts ∈ [14 , 1
2],

because the case ts ∈ (12 , 3
4] is symmetric. Recall that for a ts in this range, in

Step (rpr1) we will chose an appropriate interval Sk, for some k ∈ {1, 2, 3}. Let
Sk = [l, r] (that is, l = k · 1

8 and r = l + 1
4). For each such k and all i, j ≥ 1 we

give a construction of an (i : l, j : r)-converter that we will denote Ck
i,j .

4.1 (i : 1
4
, J : 1

2
)-Converters C2

i,j

Here we only show how to construct, for all i, j ≥ 1, our (i : 1
4 , j : 1

2)-converter
C2

i,j . (The construction of converters C1
i,j and C3

i,j is given in the full version
of this paper [6].) These converters are constructed via an iterative process. We
first give initial converters C2

i,j , for some small values of i and j, by providing
specific graphs. Other converters are obtained from these initial converters by
repeatedly coupling them with other mixing graphs that we refer to as extenders.

64 M. C. Gonzalez and M. Chrobak

Let J2
init = {(i, j)}i,j∈{1,2}. The initial converters C2

i,j are defined for the four
index pairs (i, j) ∈ J2

init. Figure 7 illustrates the initial converters C2
2,1, C

2
1,2 and

two extenders X2
1 ,X2

2 . Converter C2
1,2 produces one waste droplet and converter

C2
2,1 does not produce any waste. Converter C2

1,1 can be obtained from C2
2,1 by

designating one of the 1
4 outputs as waste. Converter C2

2,2 is defined as C2
2,2 =

X2
1 • C2

2,1, and produces one waste droplet of 1
2 . (Thus C2

2,2 is simply a disjoint
union of C2

2,1 and X2
1 with one output 1

2 designated as waste.)

0 1

0

0 1

0 1

0 1 0

1
4

1
2

1
2

1
4

1
4

1
4

1
2

1
2

1
4

1
2

1
2

1
2

1
4

3
4

1
2

1
2

1
2

1
4

1
4

C1,2
2 X1

2 X2
2

w

C2,1
2

Fig. 7. Initial converters and extenders for the case I =
{
i : 1

4
, j : 1

2

}
.

The construction of other converters C2
i,j is based on the following observa-

tion: Suppose that we already have constructed some C2
i,j . Then (i) X2

1 • C2
i,j is

a C2
i,j+2 converter that produces the same waste as C2

i,j , and (ii) provided that
j ≥ 2, X2

2 • C2
i,j is a C2

i+2,j−1 converter that produces the same waste as C2
i,j .

Let now i, j ≥ 1 with (i, j) /∈ J2
init be arbitrary. To construct C2

i,j , using and
the above observation, express the integer vector (i, j) as (i, j) = (i′, j′)+φ(0, 2)+
ψ(2,−1), for some i′, j′ ∈ J2

init and integers ψ = 	 i
2
 − 1 and φ = 	 j+ψ

2
 − 1.
Then C2

i,j is constructed by starting with C2
i′,j′ and coupling it φ times with

X2
1 and then ψ times with X2

2 . (This order of coupling is not unique but is also
not arbitrary, because each extender X2

2 requires a droplet of concentration 1
2 as

input.) Since X2
1 and X2

2 do not produce waste, C2
i,j will produce at most one

waste droplet.

5 Performance Bounds

We now give the analysis of Algorithm RPRIS, including the bounds on produced
waste, the size of computed mixing graphs, and the running time.

Waste Bound. We first estimate the number of waste droplets. Let G be the
mixing graph constructed by RPRIS for a target concentration t with its corre-
sponding values d = prec(t) and γ (see Sect. 1). We prove the following theorem.

Mixing Graphs 65

Theorem 1. The number of waste droplets in G is at most 1
2 (d + γ) + 2.

To prove Theorem 1, we show that the total number of sink nodes in G is at
most 1

2 (d + γ −σ)+ 3. (This is sufficient, as one sink node is used to produce t).
Following the algorithm description in Sect. 3, let G = G′

0 • C0. From our
construction of C0 (at the end of Sect. 3), we get that C0 contributes at most
γ − σ sink nodes to G. (Each waste droplet produced by C0 represents a sink
node in G.) Therefore, to prove Theorem 1 it remains to show that G′

0 contains
at most 1

2 (d − γ + σ) + 3 sink nodes. This is equivalent to showing that G0

contains at most 1
2d0 + 3 sink nodes, where d0 = prec(t0) = d − γ + σ. This fact

is established in [6].

Size of Mixing Graphs and Running Time. Let G = G′
0 •C0 be the mixing

graph computed by Algorithm RPRIS for t; C0 is constructed by process IS while
G′

0 is obtained from G0 (constructed by process RPR) by changing concentration
labels appropriately. We claim that the running time of Algorithm RPRIS is
O(|G|), and that the size of G is O(d2), for d = prec(t). We give bounds for G0

and C0 individually, then we combine them to obtain the claimed bounds.
First, following the description of process RPR in Sect. 3, suppose that at

recursive step s, Gs+1, G′
s+1 and converter Cs+1 = Ck

i,j are computed. The size
of Ck

i,j is O(i + j) and it takes time O(i + j) to assemble it (as the number of
required extenders is O(i+j)). Coupling Cs+1 with G′

s+1 also takes time O(i+j),
since I ′

s+1 (the input for G′
s+1) has cardinality O(i + j) as well. In other words,

the running time of each recursive RPR step is proportional to the number of
added nodes. Thus the overall running time to construct G0 is O(|G0|).

Now, let t0 be the target concentration for the RPR process, with d0 =
prec(t0). Then, the size of G0 is O(d20). This is because the depth of recursion
in the RPR process is O(d0), and each converter used in this process has size
O(d0) as well. The reason for this bound on the converter size is that, from a
level of recursion to the next, the number of source nodes increases by at most
one (with an exception of at most one step, as explained earlier in this section),
and the size of Ck

i,j used at this level is asymptotically the same as the number
of source nodes at this level.

Regarding the bounds for C0, we note that the running time to construct C0

is O(|C0|), because in step s there are 2js droplets being mixed, which requires
js nodes; thus the entire step takes time O(js). We next show that the size of
C0 is O(d2). Let I0 be the input configuration for G0. From the analysis for G0,
we get that |I0| = O(d0), so the last step in C0 contains O(d0) nodes. Therefore,
as the depth of C0 is γ − σ, the size of C0 is O(γd0) = O(d20).

Combining the bounds from G0 and C0, we get that the running time of
Algorithm RPRIS is O(|G|) and the size of G is O(d2).

6 Experimental Study

In this section, we compare the performance of our algorithm with algorithms
Min-Mix, REMIA, DMRW, GORMA and ILP. (A brief description for each of these

66 M. C. Gonzalez and M. Chrobak

algorithms is given in [6].) We carried out four experiments. Each experi-
ment consisted on generating all concentration values with precision d, for
d ∈ {7, 8, 15, 20}, and comparing the outputs of each of the algorithms. The
results for GORMA and ILP are shown only for d ∈ {7, 8}, since for d ∈ {15, 20}
the running time of both GORMA and ILP is prohibitive.

Fig. 8. The number of waste droplets of algorithms Min-Mix, REMIA, DMRW, GORMA, ILP,
and our algorithm RPRIS, for all concentrations with precision 7 (top-left), 8 (top-right),
15 (bottom-left) and 20 (bottom-right). All graphs are smoothed using MATLAB’s smooth
function.

Figure 8 illustrates the experiments for concentrations of precision 7, 8, 15
and 20. In all figures, the data was smoothed using MATLAB’s smooth function to
reduce clutter and to bring out the differences in performance between different
algorithms. As can be seen from these graphs, RPRIS significantly outperforms
algorithm Min-Mix, REMIA, DMRW and GORMA: It produces on average about 50%
less waste than Min-Mix (consistently with our bound of 1

2 (d + γ) + 4 on waste
produced by RPRIS), and 40% less waste than REMIA. It also produces on average
between 21 and 25% less waste than DMRW, with this percentage increasing with
d. Additionally, for d = 7, 8, RPRIS produces on average about 17% less waste
than GORMA and only about 7% additional waste than ILP.

Mixing Graphs 67

Among all of the target concentration values used in our experiments, there
is not a single case where RPRIS is worse than either Min-Mix or REMIA. When
compared to DMRW, RPRIS never produces more waste for precision 7 and 8.
For precision 15, the percentage of concentrations where RPRIS produces more
waste than DMRW is below 2%, and for precision 20 it is below 3.5%. Finally, when
compared to GORMA, the percentage of concentrations where RPRIS produces more
waste is below 4%.

7 Final Comments

Many questions about mixing graphs remain open. We suspect that our bound
on waste can be significantly improved. It is not clear whether waste linear in d
is needed for concentrations not too close to 0 or 1, say in [14 , 3

4]. In fact, we do
not know even a super-constant lower bound on waste for concentrations in this
range.

For single-droplet targets it is not known whether minimum-waste mixing
graphs can be effectively computed. The most fascinating open question, in our
view, is whether it is decidable to determine if a given multiple-droplet target
set can be produced without any waste.

Another interesting problem is about designing mixing graphs for produc-
ing multiple droplets of the same concentration. Using perfect-mixing graphs
from [5], it can be shown that if the number of droplets exceeds a certain thresh-
old then such target sets can be produced with at most one waste droplet.
However, this threshold value is very large and the resulting algorithm very
complicated.

It would also be interesting to extend our proposed worst-case performance
measure to reactant minimization. It is quite possible that our general approach
of recursive precision reduction could be adapted to this problem.

References

1. Bhattacharjee, S., Bhattacharya, B.B., Chakrabarty, K.: Algorithms for Sample
Preparation with Microfluidic Lab-on-Chip. River Publishers, Delft (2019)

2. Bhattacharya, B.B., Roy, S., Bhattacharjee, S.: Algorithmic challenges in digital
microfluidic biochips: protocols, design, and test. In: Gupta, P., Zaroliagis, C. (eds.)
ICAA 2014. LNCS, vol. 8321, pp. 1–16. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-04126-1 1

3. Chiang, T.W., Liu, C.H., Huang, J.D.: Graph-based optimal reactant minimiza-
tion for sample preparation on digital microfluidic biochips. In: 2013 International
Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–4. IEEE
(2013)

4. Dinh, T.A., Yamashita, S., Ho, T.Y.: A network-flow-based optimal sample prepa-
ration algorithm for digital microfluidic biochips. In: 19th Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 225–230. IEEE (2014)

https://doi.org/10.1007/978-3-319-04126-1_1
https://doi.org/10.1007/978-3-319-04126-1_1

68 M. C. Gonzalez and M. Chrobak

5. Coviello Gonzalez, M., Chrobak, M.: Towards a theory of mixing graphs: a charac-
terization of perfect mixability (extended abstract). In: Heggernes, P. (ed.) CIAC
2019. LNCS, vol. 11485, pp. 187–198. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-17402-6 16

6. Gonzalez, M.C., Chrobak, M.: A waste-efficient algorithm for single-droplet sample
preparation on microfluidic chips. CoRR abs/1908.09618 (2019)

7. Huang, J.D., Liu, C.H., Chiang, T.W.: Reactant minimization during sample
preparation on digital microfluidic biochips using skewed mixing trees. In: Pro-
ceedings of the International Conference on Computer-Aided Design, pp. 377–383.
ACM (2012)

8. Huang, J.D., Liu, C.H., Lin, H.S.: Reactant and waste minimization in multitarget
sample preparation on digital microfluidic biochips. IEEE Trans. Comput. Aided
Des. Integr. Circuits Syst. 32(10), 1484–1494 (2013)

9. Mitra, D., Roy, S., Chakrabarty, K., Bhattacharya, B.B.: On-chip sample prepara-
tion with multiple dilutions using digital microfluidics. In: IEEE Computer Society
Annual Symposium on VLSI (ISVLSI), pp. 314–319. IEEE (2012)

10. Roy, S., Bhattacharya, B.B., Chakrabarty, K.: Optimization of dilution and mixing
of biochemical samples using digital microfluidic biochips. IEEE Trans. Comput.
Aided Des. Integr. Circuits Syst. 29(11), 1696–1708 (2010)

11. Thies, W., Urbanski, J.P., Thorsen, T., Amarasinghe, S.: Abstraction layers for
scalable microfluidic biocomputing. Nat. Comput. 7(2), 255–275 (2008)

https://doi.org/10.1007/978-3-030-17402-6_16
https://doi.org/10.1007/978-3-030-17402-6_16

Shortest Covers of All Cyclic Shifts
of a String

Maxime Crochemore1 , Costas S. Iliopoulos1 , Jakub Radoszewski2 ,
Wojciech Rytter2 , Juliusz Straszyński2 , Tomasz Waleń2 ,

and Wiktor Zuba2(B)

1 Department of Informatics, King’s College London, London, UK
{maxime.crochemore,c.iliopoulos}@kcl.ac.uk

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
{jrad,rytter,jks,walen,w.zuba}@mimuw.edu.pl

Abstract. A factor W of a string X is called a cover of X, if X can
be constructed by concatenations and superpositions of W . Breslauer
(IPL, 1992) proposed a well-known O(n)-time algorithm that computes
the shortest cover of every prefix of a string of length n. We show an
O(n log n)-time algorithm that computes the shortest cover of every
cyclic shift of a string and an O(n)-time algorithm that computes the
shortest among these covers. A related problem is the number of different
lengths of shortest covers of cyclic shifts of the same string of length n.
We show that this number is Ω(log n).

1 Introduction

We consider strings as finite sequences of letters from an integer alphabet Σ. The
notion of periodicity in strings and its many variants have been well-studied in
many fields like combinatorics on words, pattern matching, data compression,
automata theory, formal language theory, and molecular biology. A typical regu-
larity, the period U of a given string X, grasps the repetitiveness of X since X is
a prefix of a string constructed by concatenations of U . If X = AWB, for some,
possibly empty, strings A,W,B, then W is called a factor of X and, respectively,
X is a superstring of W . A factor W of X is called a cover of X, if X can be con-
structed by concatenations and superpositions of W . A factor W of X is called
a seed of X, if there exists a superstring of X which is constructed by concatena-
tions and superpositions of W . For example, abc is a period of abcabcabca, abca
is a cover of abcabcaabca, and abca is a seed of bcabcaabc. The notions “cover”
and “seed” are generalizations of periods in the sense that superpositions as well
as concatenations are considered to define them, whereas only concatenations
are considered for periods.

In computation of covers, two problems have been considered in the literature.
The shortest-cover problem (also known as the superprimitivity test) is that of

J. Radoszewski, J. Straszyński, T. Waleń and W. Zuba—Supported by the Polish
National Science Center, grant no. 2018/31/D/ST6/03991.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 69–80, 2020.
https://doi.org/10.1007/978-3-030-39881-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_7&domain=pdf
http://orcid.org/0000-0003-1087-1419
http://orcid.org/0000-0003-3909-0077
http://orcid.org/0000-0002-0067-6401
http://orcid.org/0000-0002-9162-6724
http://orcid.org/0000-0003-2207-0053
http://orcid.org/0000-0002-7369-3309
http://orcid.org/0000-0002-1988-3507
https://doi.org/10.1007/978-3-030-39881-1_7

70 M. Crochemore et al.

computing the shortest cover of a given string of length n, and the all-covers
problem is that of computing all the covers of a given string. Apostolico et al. [1]
introduced the notion of covers and gave a linear-time algorithm for the shortest-
cover problem. Breslauer [4] proposed an on-line algorithm for computing the
shortest cover that works in linear time. In particular, his algorithm computes
the shortest cover of every prefix of a string. The other direction was taken
by Moore and Smyth [20,21] and by Li and Smyth [19] who computed all the
covers of a string and a representation of all the covers of all prefixes of a string,
respectively.

Covers of circular strings were also considered. It is implicit in [13] that covers
of a circular string S are exactly seeds of S2 (see also [15]).

a

ab

b

circular string

a b a b

a b a b
b a b a

b a b a

cyclic shifts

Fig. 1. The string aba is a cover of the string S = abab treated as a single circular
string, but is not a cover of any of cyclic shifts of S.

All the seeds of a string of length n can be represented in O(n) space as a
collection of a linear number of disjoint paths in the suffix trees of the string and
of its reversal. This representation can be computed in O(n log n) time [13] and
even in O(n)-time [16]. Recently it was also shown in [17] that all the seeds can
also be represented as a linear number of disjoint paths in just the suffix tree of
the string. This implies the following fact:

Lemma 1. The problem of computing the shortest cover of a circular string can
be solved in linear time.

We say that a string Y is a cyclic shift of a string X if X = AB and Y = BA
for some strings A and B; in this case we also write Y = rot |A|(X). It seems that
the problem of computing shortest covers of all cyclic shifts of a string is harder
than that of computing the shortest cover of a circular string. A straightforward
application of any of the aforementioned algorithms for computing covers of a
string yields an O(n2)-time solution to the problem. One should note that covers
of circular strings are a different notion than that of covers of cyclic shifts of a
string; see Fig. 1.

The shortest covers of cyclic shifts of a string can behave rather irregularly.
For example, the length of the shortest cover of S = abaabababababababa equals
3, whereas the shortest cover of rot1(S) has length 18.

We consider the following problem.

Shortest Covers of All Cyclic Shifts of a String 71

Shortest Covers of All Cyclic Shifts of a String

Input: A string S of length n.
Output: The lengths of the shortest covers of all cyclic shifts of S.

Let S be a string of length n and ShCov(S) denote the shortest cover of S. We
introduce an array CyCoS of length n such that CyCoS [i] = |ShCov(rot i(S))|.
Our main result is computing this array. We also denote

CyCoSet(S) = {CyCoS [i] : i = 0, . . . , n − 1}.

Example 2. For the Fibonacci strings S1 = abaab, S2 = abaababaabaab we have:

CyCoS1
= [5, 5, 5, 3, 5], CyCoS2

= [5, 5, 13, 3, ...]
CyCoSet(S1) = {3, 5}, CyCoSet(S2) = {3, 5, 8, 13}.

Our Results. We show that the whole array CyCoS and mini CyCoS [i] for
a string S of length n can be computed in O(n log n) time and O(n) time,
respectively. For this we use a characterization of covers of cyclic shifts of a
string by seeds and squares, i.e., strings of the form W 2, and the suffix tree data
structure. We also show that there exists a (known) infinite family of strings for
which |CyCoSet(S)| = Θ(log |S|).
Structure of the Paper. In Sect. 2 we recall the definition and basic properties
of a suffix tree of a string. Then in Sect. 3 we present characterizations of shortest
covers of cyclic shifts of a string, which lead us to the main algorithmic results in
Sect. 4. The lower bound on the size of the CyCoSet set is shown using Fibonacci
strings in Sect. 5. We conclude and mention some open problems in Sect. 6.

2 Applications of the Suffix Tree

Recall that a suffix tree of a string S is a compact trie of all the suffixes of S#,
where # is a special end marker. The root, branching nodes, and leaves of the
tree are explicit. All the remaining nodes are implicit in the tree. Each leaf is
labeled with the starting position of the corresponding suffix. Every factor of S
is represented as an explicit or implicit node of the tree. A suffix tree of a string
of length n over an integer alphabet can be constructed in O(n) time [10].

Observation 1. Let S be a string of length n. After O(n)-time preprocessing,
all the occurrences of a factor of S, represented as a node in the suffix tree of S,
can be reported in linear time w.r.t. the number of these occurrences.

Proof. It suffices to store a list L of leaves of the suffix tree in a left-to-right
order. Then for every explicit node v of the tree, we precompute the endpoints
of the sublist of L that corresponds to the occurrences of the string v. This
precomputation is done bottom-up in O(n) time. ��

72 M. Crochemore et al.

We also use the following lemma.

Lemma 3 ([17]). Given a collection of factors U1, . . . , Uk of a string S of length
n, each represented by an occurrence in S, in O(n+k) time we can compute the
implicit or explicit node in the suffix tree of S that corresponds to each factor
Ui. Moreover, all these nodes can be made explicit in O(n + k) time.

The set (possibly of a quadratic size) of all seeds of a string can be represented
as a collection of linearly many disjoint paths in the suffix tree [17]. It can be
assumed that each path belongs to a single edge of the suffix tree. The endpoints
of the paths can be implicit nodes. For an example, see Fig. 2.

a b
#

a
b

#

a
a

#

b

a
b

a
a

b
a

#

a
b

a
#

#

a

a
b

#
a

a
#

b
a

a
b

a
a

#a

a

Fig. 2. The string S = ababaabaa has the following seeds: aba, abaab, baaba, abaaba,
ababaaba, babaabaa, ababaabaa. They can be represented on the (uncompressed) suffix
tree of S as shown in the figure. Each seed is a path from root to marked node. In
some cases, e.g. abaab, abaaba, multiple seeds are represented on a single path.

3 Covers of Cyclic Shifts

A string X is called primitive if X = Y k for positive integer k implies that
k = 1. A string of the form Z2 is called a square; it is called primitively rooted
if Z is primitive. We denote by Squares(S) the set of factors Z of S such that
the square Z2 is also a factor of S and by PSquares(S) the subset of Squares(S)
that consists only of primitive strings. We further denote by Seeds(S) the set of
factors which are seeds of S. We use these sets of S3 in order to characterize
covers of all cyclic shifts of S.

Shortest Covers of All Cyclic Shifts of a String 73

Lemma 4. Let S be a string of length n and C be a string of length up to n.
Then C is a cover of rot i(S) if and only if C ∈ Seeds(S3) ∩ Squares(S3) and C2

occurs with its center at position j ≡ i (mod n) in S3.
Moreover, if C is the shortest cover of rot i(S), then C ∈ Seeds(S3) ∩

PSquares(S3).

Proof.
(⇒) String C is a cover of (rot i(S))4, and thus a seed of its factor S3. Moreover,
S3[j − |C|, j + |C| − 1], that is, the factor of S3 of length 2|C| with center at
position j, is equal to C2 for j = i + n.
(⇐) The square C2 occurs in S3 with its center at position j ≡ i (mod n). Thus
C is a prefix and a suffix of rotj(S) = rot i(S) as |C| < n. C is also a seed of
rot i(S) which is a factor of S3, hence it is a cover of rot i(S).

As for the “moreover” part, it suffices to note that the shortest cover of a
string is obviously primitive. ��
Example 5. In the above lemma, one could not take S2 instead of S3. Indeed,
for S = abaaaaba we have that rot4(S) = aabaabaa has the shortest cover aabaa,
but S2 = abaaaabaabaaaaba does not contain the square (aabaa)2 (Fig. 3).

a b a a a a b a a b a a a a b a

Fig. 3. Illustration of Example 5.

Let T (S3) be the suffix tree of S3 in which we distinguish the nodes v cor-
responding to strings Z2 for Z ∈ Seeds(S3) ∩ PSquares(S3). These nodes are
called candidate nodes. Some of these nodes could be implicit nodes in the suffix
tree. Then they are made explicit. Denote by CandAnc(v) the set of ancestor
nodes of v in T (S3) which are candidate nodes. Let |v| be the length of the string
corresponding to the node v.

We can reformulate Lemma 4 as follows (see Fig. 4):

Lemma 6. CyCoS [i], i.e., the length of the shortest cover of rot i(S), equals

min
j,v

{ k : k = |v|/2, i = (j + k) mod n, j ∈ Leaves(T (S3)), v ∈ CandAnc(j)}.

Clearly if C is a cover of rot i(S), then C is a cover of S treated as a circular
string. As we have already noted in Fig. 1, the converse is not necessarily true.
However, we show that every shortest cover of the circular string S is a cover of
the corresponding cyclic shift of S.

74 M. Crochemore et al.

root

seed Z

candidate v=Z2

k

k

leaf j

Fig. 4. Illustration of Lemma 6. The situation when CyCoS [i] = k. We have that
i = (j + k) mod n and Z2 is a primitively rooted square of length 2k; it corresponds to
the node v which is possibly inside an edge of the suffix tree.

Lemma 7. A shortest cover of a circular string is always a (shortest) cover of
some cyclic shift.

Proof. We need the following claim.

Claim (See [13]). String C is a cover of S considered as a circular string iff it is
a seed of S2, hence also iff it is a seed of S3.

Consider a cover C of a circular string S, such that C2 does not occur in it.
Consider the last position covered by any occurrence of C in the string.

The position must be also covered by another occurrence of C (the next
position must be covered and cannot be the first position of some C). Thus by
erasing the last position of C we obtain a shorter cover. Hence if C is a shortest
cover then C2 must appear in the circular string S.

By Lemma 4 it is a cover of some cyclic shift of the string. ��
By computing the shortest cover of the circular string S using Lemma 1 we

obtain the following preliminary result.

Corollary 8. For a string S of length n, minCyCoS can be computed in O(n)
time.

4 Main Algorithm

First we have to show how to compute efficiently the tree T (S3). We denote
by OccPSquares(S) the set of all occurrences of primitively rooted squares in S.
Each occurrence is represented in O(1) space as a factor of S. A direct conse-
quence of the Three-square-prefix Lemma, see [8], is that a string of length n
has no more than log n prefixes that are primitively rooted squares.

Shortest Covers of All Cyclic Shifts of a String 75

Lemma 9 ([8]). For a string S of length n, |OccPSquares(S)| = O(n log n).

a b c d a b c d a b c d a b
runa b c d a b c d

a b c d a b c d a
a b c d a b c d a b
a b c d a b c d a b c
a b c d a b c d a b c d
a b c d a b c d a b c d a
a b c d a b c d a b c d a b

squares

Fig. 5. Primitive squares can be derived from runs (maximal repetitions), knowing the
shortest periods of runs.

Lemma 10. For a string S of length n, |PSquares(S)| = O(n) and this set can
be computed in O(n) time.

Proof. Let us start with efficient computation of squares.

Claim ([7,9,11,12]). For a string S of length n, |Squares(S)| = O(n) and this
set can be computed in O(n) time.

By the claim, |PSquares(S)| = O(n) since PSquares(S) ⊆ Squares(S).
The set PSquares(S) can be computed by filtering out the factors from

Squares(S) that are not primitive. This can be done in O(1) time per factor after
O(n)-space and time preprocessing using so-called Two-Period queries [3,18]. A
more direct approach would be to (effortlessly) adapt the algorithm for comput-
ing different square factors from [7] using relations between primitive squares
and runs (maximal repetitions); see Fig. 5. ��
Lemma 11. The tree T (S3) can be computed in O(n) time.

Proof. We use a version of a minimal augmented suffix tree (MAST, in short),
a data structure that was initially introduced in [2].

Let us recall that Lemma 3 can be used to augment the suffix tree with
nodes that correspond to a set of factors of S3. We first apply the lemma to the
collection of factors PSquares(S3), which can be efficiently computed due to the
previous lemma.

Then we compute a representation of all the seeds of S3 in the suffix tree using
the algorithm from [17]. The representation consists of a collection of disjoint
paths, each located on a single edge in the suffix tree; see Fig. 2. The endpoints
of the paths that are implicit nodes can also be made explicit using the lemma.

For every node v corresponding to an element in PSquares(S3), we check if it
is located on some path that belongs to the representation of Seeds(S3). Finally,
we again use Lemma 3 for the original suffix tree of S3 and set of factors Z2 that
correspond to all such elements Z ∈ PSquares(S3) ∩ Seeds(S3) to obtain the set
of candidate nodes. This completes the proof. ��

76 M. Crochemore et al.

The number of integers (j + k) equal modulo n is constant, hence we can
forget about computing modulo n and for each 0 ≤ i < 3n we are to compute:

min
j,v

{ k : k = |v|/2, i = j + k, j ∈ Leaves(T (S3)), v ∈ CandAnc(j)}. (1)

Algorithm ComputeCyCo

1. Initialize each entry of CyCo to +∞
2. Compute T (S3)
3. for each candidate node v in T (S3) do

for each occurrence S3[j, j + |v| − 1] of v in S3 do
i := (j + |v|) mod n
CyCo[i] := min (CyCo[i], |v|)

4. return CyCo

Theorem 12. The algorithm ComputeCyCo computes the lengths of shortest
covers for all cyclic shifts of a string in O(n log n) time.

Proof. In the third paragraph we simply implement (1). This proves correct-
ness. The occurrences of a node are computed using Observation 1. The required
complexity follows from Lemmas 9 and 11. ��

5 Strings with Arbitrarily Large Size of CyCoSet(S)

We show that the size of CyCoSet(S), for a binary alphabet, is not bounded by
a constant. It grows at least logarithmically.

Recall that the Fibonacci strings are defined as Fib0 = b, Fib1 = a, Fibk =
Fibk−1Fibk−2 for k ≥ 2. In other words, Fibk = φk(Fib0), where φ is a morphism

φ(a) = ab, φ(b) = a.

Hence

Fib2 = ab, Fib3 = aba, Fib4 = abaab, Fib5 = abaababa,

We denote Fk = |Fibk|, the k-th Fibonacci number.
We use the following well known properties of Fibonacci strings.

Observation 2. Fibk does not contain the factors aaa and bb.

Fact 1 (see [14,22]). For every non-empty factor U2 of Fibk, U is a cyclic shift
of Fibm for some m.

An example for the theorem below can be found in Fig. 6.

Theorem 13. For k ≥ 3, CyCoSet(Fibk) = {F3, . . . , Fk}.

Shortest Covers of All Cyclic Shifts of a String 77

Fib2

cyclic shift shortest cover length

ab ab 2
ba ba 2

Fib3

aba aba 3
baa baa 3
aab aab 3

Fib4

abaab abaab 5
baaba baaba 5
aabab aabab 5
ababa aba 3
babaa babaa 5

Fib5

abaababa aba 3
baababaa baababaa 8
aababaab aababaab 8
ababaaba aba 3
babaabaa babaabaa 8
abaabaab abaab 5
baabaaba baaba 5
aabaabab aabaabab 8

Fib6

cyclic shift shortest cover length

abaababaabaab abaab 5
baababaabaaba baaba 5
aababaabaabab aababaabaabab 13
ababaabaababa aba 3
babaabaababaa babaabaababaa 13
abaabaababaab abaab 5
baabaababaaba baaba 5
aabaababaabab aabaababaabab 13
abaababaababa aba 3
baababaababaa baababaa 8
aababaababaab aababaab 8
ababaababaaba aba 3
babaababaabaa babaababaabaa 13

Fig. 6. Shortest covers of cyclic shifts of Fibonacci strings.

Proof. We show two inclusions.

Proof of the inclusion {F3, . . . , Fk} ⊇ CyCoSet(Fibk).
By Lemma 4, every element of the set CyCoSet(Fibk) is a square half of

length at most Fk in Fib3k. By Fact 1, the lengths of square halves in a Fibonacci
string are Fibonacci numbers. It suffices to note that, for k ≥ 3, Fib3k is a factor
of Fibk+5 since

Fib8 = abaababaabaababaababaabaababaabaab

contains a cube Fib33 (underlined). It can be readily verified that no string of
length F1 = 1 and F2 = 2 covers Fibk for k ≥ 3.

Proof of the inclusion {F3, . . . , Fk} ⊆ CyCoSet(Fibk).
We will prove that for every i = 3, . . . , k, there exists a cyclic shift S of Fibk

such that |ShCov(S)| = Fi and S �= aaXbab for a binary string X. The proof
goes by induction over k. For k = 3 the conclusion is straightforward. Assume
now that the conclusion holds for k − 1.

Let us consider i ∈ {3, . . . , k − 1} and let S be a cyclic shift of Fibk−1 such
that |ShCov(S)| = Fi and S is not of the form aaXbab. We use the following
observation.

78 M. Crochemore et al.

Observation 3. Let S1,1 = abXb, S1,2 = bXba, S2,1 = baaXaa, and S2,2 =
aaXaab be cyclic shifts of a Fibonacci string, where X is a binary string. For
every i = 1, 2 and string C, C is a cover of Si,1 if and only if rot1(C) is a cover
of Si,2.

Proof. Any cover C of S1,1 starts with the letter a and ends with the letter b.
By Observation 2, each of its occurrences except for the occurrence as a suffix
is followed by the letter a. Hence, rot1(C) is a cover of S1,2. Similarly, a cover
C ′ of S1,2 starts with the letter b and ends with the letter a, so each of its
occurrences except for the occurrence as a prefix is preceded by the letter a.
Hence, rot |C′|−1(C ′) is a cover of S1,1.

The proof for S2,1 and S2,2 is analogous. ��
If S ends with the letter b, we either move its first letter to its end to obtain

a string that matches S1,2 or the last letter to the start to obtain a string
that matches S2,1. We use the additional property that S is not of the form
aaXbab, in which case none of the shifts would be possible. After the potential
transformation, |ShCov(S)| did not change and S starts with the letter b.

Now S′ = φ(S) is a cyclic shift of Fibk that ends with φ(a) = ab.

Observation 4. Assume that S′ = φ(S) and S′ ends with the letter b. Let C ′

be a cover of S′. Then there exists a unique cover C of S such that φ(C) = C ′.

By the observation, if C = ShCov(S), then C ′ = φ(C) is the shortest cover
of S′. By Lemma 4, C2 occurs in Fib3k−1. Hence, Fact 1 implies that C is a cyclic
shift of Fibi, so C ′ is a cyclic shift of Fibi+1 and |C ′| = Fi+1.

Thus we have obtained that {F4, . . . , Fk} ⊆ CyCoSet(Fibk). To conclude,
we notice that rot3(Fibk) starts and ends with Fib2 = aba, so aba is its cover
by Observation 2 (and the shortest cover by the first inclusion). Thus F3 ∈
CyCoSet(Fibk).

Consequently, {F3, F4, . . . , Fk} ⊆ CyCoSet(Fibk). ��

6 Conclusions and Open Problems

Breslauer [4] proposed a linear-time algorithm for computing the shortest cover
of every prefix of a string. We have proposed an O(n log n)-time algorithm for
computing the shortest cover of every cyclic shift of a string. It remains an open
problem if these values can be computed in O(n) time.

O(n), O(n log n) and O(n2)-time algorithms for computing the shortest left
seed, right seed, and seed, respectively, of all the prefixes of a string are known;
see [5,6]. Here left and right seed are notions that are intermediate between cover
and seed. It remains an open problem if the shortest left seed, right seed, and
seed can be computed efficiently for all the cyclic shifts of a string.

Based on computer experiments we make the following conjecture.

Conjecture 1. For a string S of length n, |CyCoSet(S)| = O(log n).

Shortest Covers of All Cyclic Shifts of a String 79

References

1. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing
for strings. Inf. Process. Lett. 39(1), 17–20 (1991). https://doi.org/10.1016/0020-
0190(91)90056-N

2. Apostolico, A., Preparata, F.P.: Data structures and algorithms for the string
statistics problem. Algorithmica 15(5), 481–494 (1996). https://doi.org/10.1007/
BF01955046

3. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.:
The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017). https://doi.org/
10.1137/15M1011032

4. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6),
345–347 (1992). https://doi.org/10.1016/0020-0190(92)90111-8

5. Christou, M., Crochemore, M., Guth, O., Iliopoulos, C.S., Pissis, S.P.: On left and
right seeds of a string. J. Discrete Algorithms 17, 31–44 (2012). https://doi.org/
10.1016/j.jda.2012.10.004

6. Christou, M., et al.: Efficient seed computation revisited. Theor. Comput. Sci. 483,
171–181 (2013). https://doi.org/10.1016/j.tcs.2011.12.078

7. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń,
T.: Extracting powers and periods in a word from its runs structure. Theor. Com-
put. Sci. 521, 29–41 (2014). https://doi.org/10.1016/j.tcs.2013.11.018

8. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string search-
ing. Algorithmica 13(5), 405–425 (1995). https://doi.org/10.1007/BF01190846

9. Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain?
Discrete Appl. Math. 180, 52–69 (2015). https://doi.org/10.1016/j.dam.2014.08.
016

10. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual
Symposium on Foundations of Computer Science, FOCS 1997, Miami Beach,
Florida, USA, 19–22 October 1997, pp. 137–143. IEEE Computer Society (1997).
https://doi.org/10.1109/SFCS.1997.646102

11. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.
Theory Ser. A 82(1), 112–120 (1998). https://doi.org/10.1006/jcta.1997.2843

12. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004). https://
doi.org/10.1016/j.jcss.2004.03.004

13. Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string. Algorithmica 16(3),
288–297 (1996). https://doi.org/10.1007/BF01955677

14. Iliopoulos, C.S., Moore, D.W.G., Smyth, W.F.: A characterization of the squares
in a Fibonacci string. Theor. Comput. Sci. 172(1–2), 281–291 (1997). https://doi.
org/10.1016/S0304-3975(96)00141-7

15. Iliopoulos, C.S., Moore, D.W.G., Smyth, W.F.: The covers of a circular Fibonacci
string. J. Comb. Math. Comb. Comput. 26, 227–236 (1998)

16. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear time
algorithm for seeds computation. In: Rabani, Y. (ed.) Proceedings of the Twenty-
Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto,
Japan, 17–19 January 2012, pp. 1095–1112. SIAM (2012). https://doi.org/10.1137/
1.9781611973099.86

17. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear time
algorithm for seeds computation. CoRR abs/1107.2422v2 (2019). http://arxiv.org/
abs/1107.2422v2

https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1007/BF01955046
https://doi.org/10.1007/BF01955046
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
https://doi.org/10.1016/0020-0190(92)90111-8
https://doi.org/10.1016/j.jda.2012.10.004
https://doi.org/10.1016/j.jda.2012.10.004
https://doi.org/10.1016/j.tcs.2011.12.078
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1007/BF01190846
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.1109/SFCS.1997.646102
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1016/j.jcss.2004.03.004
https://doi.org/10.1016/j.jcss.2004.03.004
https://doi.org/10.1007/BF01955677
https://doi.org/10.1016/S0304-3975(96)00141-7
https://doi.org/10.1016/S0304-3975(96)00141-7
https://doi.org/10.1137/1.9781611973099.86
https://doi.org/10.1137/1.9781611973099.86
http://arxiv.org/abs/1107.2422v2
http://arxiv.org/abs/1107.2422v2

80 M. Crochemore et al.

18. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern matching
queries in a text and applications. In: Indyk, P. (ed.) Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, 4–6 January 2015, pp. 532–551. SIAM (2015). https://doi.org/
10.1137/1.9781611973730.36

19. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95–106 (2002). https://doi.org/10.1007/s00453-001-0062-2

20. Moore, D.W.G., Smyth, W.F.: An optimal algorithm to compute all the covers of
a string. Inf. Process. Lett. 50(5), 239–246 (1994). https://doi.org/10.1016/0020-
0190(94)00045-X

21. Moore, D.W.G., Smyth, W.F.: A correction to “an optimal algorithm to compute
all the covers of a string”. Inf. Process. Lett. 54(2), 101–103 (1995). https://doi.
org/10.1016/0020-0190(94)00235-Q

22. Séébold, P.: Propriétés combinatoires des mots infinis engendrés par certains mor-
phismes. Report no. 85-16, LITP, Paris (1985)

https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1007/s00453-001-0062-2
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1016/0020-0190(94)00235-Q

Packing Trees into 1-Planar Graphs

Felice De Luca1 , Emilio Di Giacomo2 , Seok-Hee Hong3 ,
Stephen Kobourov1 , William Lenhart4 , Giuseppe Liotta2 , Henk Meijer5,

Alessandra Tappini2(B) , and Stephen Wismath6

1 Department of Computer Science, University of Arizona, Tucson, USA
2 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy

alessandra.tappini@studenti.unipg.it
3 School of Computer Science, University of Sydney, Sydney, Australia

4 Department of Computer Science, Williams College, Williamstown, USA
5 Department of Computer Science, University College Roosevelt,

Middelburg, The Netherlands
6 Department of Computer Science, University of Lethbridge, Lethbridge, Canada

Abstract. We introduce and study the 1-planar packing problem: Given
k graphs with n vertices G1, . . . , Gk, find a 1-planar graph that contains
the given graphs as edge-disjoint spanning subgraphs. We mainly focus
on the case when each Gi is a tree and k = 3. We prove that a triple
consisting of three caterpillars or of two caterpillars and a path may not
admit a 1-planar packing, while two paths and a special type of caterpil-
lar always have one. We then study 1-planar packings with few crossings
and prove that three paths (resp. cycles) admit a 1-planar packing with
at most seven (resp. fourteen) crossings. We finally show that a quadru-
ple consisting of three paths and a perfect matching with n ≥ 12 vertices
admits a 1-planar packing, while such a packing does not exist if n ≤ 10.

1 Introduction

In the graph packing problem we are given a collection of n-vertex graphs
G1, . . . , Gk and we are requested to find a graph G that contains the given
graphs as edge-disjoint spanning subgraphs. Various settings of the problem can
be defined depending on the type of graphs that have to be packed and on the
restrictions put on the packing graph G. The most general case is when G is the
complete graph on n vertices and there is no restriction on the input graphs.
Sauer and Spencer [17] prove that any two graphs with at most n − 2 edges
can be packed into Kn; Woźniak and Wojda [19] give sufficient conditions for
the existence of a packing of three graphs. The setting when G is Kn and each
Gi is a tree (i = 1, 2, . . . , k) has been intensively studied. Hedetniemi et al. [10]
show that two non-star trees can always be packed into Kn. Notice that, the

This work started at the Bertinoro Workshop on Graph Drawing 2019 and it is par-
tially supported by: (i) MIUR grant 20174LF3T8, (ii) Dipartimento di Ingegneria -
Università degli Studi di Perugia grants RICBASE2017WD and RICBA18WD, (iii)
NFS grants CCF-1740858, CCF-1712119, DMS-1839274, DMS-1839307.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 81–93, 2020.
https://doi.org/10.1007/978-3-030-39881-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_8&domain=pdf
http://orcid.org/0000-0001-5937-7636
http://orcid.org/0000-0002-9794-1928
http://orcid.org/0000-0003-1698-3868
http://orcid.org/0000-0002-0477-2724
http://orcid.org/0000-0002-8618-2444
http://orcid.org/0000-0002-2886-9694
http://orcid.org/0000-0001-9192-2067
http://orcid.org/0000-0002-9632-3247
https://doi.org/10.1007/978-3-030-39881-1_8

82 F. De Luca et al.

hypothesis that the trees are not stars is necessary for the existence of the pack-
ing because each vertex must have degree at least one in each tree, which is not
possible if a vertex is adjacent to every other vertex as it is the case for a star.
Wang and Sauer [18] give sufficient conditions for the existence of a packing of
three trees into Kn, while Mahéo et al. [13] characterize the triples of trees that
admit such a packing.

Garćıa et al. [7] consider the planar packing problem, that is the case when the
graph G is required to be planar. They conjecture that the result of Hedetniemi
et al. extends to this setting, i.e., that every pair of non-star trees can be packed
into a planar graph. Notice that, when G is required to be planar, two is the
maximum number of trees that can be packed (because three trees have more
than 3n−6 edges). Garćıa et al. prove their conjecture for some restricted cases,
namely when one of the trees is a path and when the two trees are isomorphic.
In a series of subsequent papers the conjecture has been proved true for other
pairs of trees. Oda and Ota [14] prove it when one tree is a caterpillar or it is
a spider of diameter four. Frati et al. [6] extend the last result to any spider,
while Frati [5] considers the case when both trees have diameter four. Geyer et
al. show that a planar packing always exists for a pair of binary trees [8] and for
a pair of non-star trees [9], thus finally settling the conjecture.

In the present paper we initiate the study of the 1-planar packing problem,
i.e., the problem of packing a set of graphs into a 1-planar graph. A 1-planar
graph is a graph that can be drawn so that each edge has at most one crossing. 1-
planar graphs have been introduced by Ringel [16] and have received increasing
attention in the last years in the research area called beyond planarity (see,
e.g., [4,11]). Since any two non-star trees admit a planar packing, a natural
question is whether we can pack more than two trees into a 1-planar graph. On
the other hand, since each 1-planar graph has at most 4n − 8 edges edges [15],
it is not possible to pack more than three trees into a 1-planar graph. Thus, our
main question is whether any three trees with maximum vertex degree n − 3
admit a 1-planar packing. The restriction to trees of degree at most n − 3 is
necessary because a vertex of degree larger than n − 3 in one tree cannot have
degree at least one in the other two trees. Our results can be listed as follows.

– We show that there exist triples of structurally simple trees that do not admit
a 1-planar packing (Sect. 3). These triples consist of three caterpillars with at
least 10 vertices and of two caterpillars and a path with 7 vertices.

– Motivated by the above results, we study triples consisting of two paths and
a caterpillar (Sect. 4). We characterize the triples consisting of two paths and
a 5-legged caterpillar (a caterpillar where each vertex of the spine has no
leaves attached or it has at least five) that admit such a packing. We also
characterize the triples that admit a 1-planar packing and that consist of two
paths and a caterpillar whose spine has exactly two vertices.

– The packing technique of the results above is constructive and it gives rise
to 1-plane graphs (i.e., 1-planar embedded graphs) with a linear number of
crossings. This naturally raises the question about the number of edge cross-
ings required by a 1-planar packing. We show that any three paths with at

Packing Trees into 1-Planar Graphs 83

least six vertices can be packed into a 1-plane graph with seven edge cross-
ings in total (Sect. 5). We also extend this technique to three cycles obtaining
1-plane graphs with fourteen crossings in total.

– We finally consider the 1-planar packing problem for quadruples of acyclic
graphs (Sect. 6). Since, as already observed, four paths cannot be packed into
a 1-planar graph, we consider three paths and a perfect matching. We show
that when n ≥ 12 such a quadruple admits a 1-planar packing and that when
n ≤ 10 a 1-planar packing does not exist.

Preliminary definitions are given in Sect. 2 and open problems are listed in
Sect. 7. Some proofs are sketched or removed and can be found in [3].

2 Preliminaries

Given a graph G and a vertex v of G, degG(v) denotes the vertex degree of v in G.
Let G1, . . . , Gk be k graphs with n vertices; a packing of G1, . . . , Gk is an n-vertex
graph G that has G1, . . . , Gk as edge-disjoint spanning subgraphs. We consider
the case when G is a 1-planar graph; in this case we say that G is a 1-planar pack-
ing of G1, . . . , Gk. If G1, . . . , Gk admit a (1-planar) packing G, we also say that
G1, . . . , Gk can be packed into G. We mainly concentrate on the case when each
Gi is a tree (1 ≤ i ≤ k). In this case (and generally when each Gi is connected),
we have restrictions on the values of k and n for which a packing exists.

Property 1. A 1-planar packing of k connected n-vertex graphs G1, . . . , Gk exists
only if k ≤ 3 and n ≥ 2k. Moreover, degGi

(v) ≤ n − k for each vertex v.

A caterpillar T is a tree such that removing all the leaves results in a path
called the spine. A backbone of T is a path v0, v1, v2, . . . , vk, vk+1 of T where
v1, v2, . . . , vk is the spine of T and v0 and vk+1 are two leaves adjacent in T to
v1 and vk, respectively. T is h-legged if every vertex of its spine has degree either
2 or at least h + 2 in T .

3 Trees that Do Not Admit 1-Planar Packings

In this section we describe triples of trees that do not admit a 1-planar packing.

Theorem 1. For every n ≥ 10, there exists a triple of caterpillars that does not
admit a 1-planar packing.

Proof. The triple consists of three isomorphic caterpillars T1, T2, T3 with n ≥ 10
vertices. Each Ti has a backbone of length 5 and n − 5 leaves all adjacent to the
middle vertex of the spine, which we call the center of Ti. First, notice that each
Ti satisfies Property 1, i.e., degTi

(v) ≤ n − 3. Namely, the vertex with largest
degree in Ti is its center, which has degree n−3. Let G be any packing of T1, T2,
and T3 and let v1, v2, and v3 be the three vertices of G where the three centers
of T1, T2, T3, respectively, are mapped. The three vertices v1, v2, and v3 must

84 F. De Luca et al.

be distinct because otherwise they would have degree larger than n − 1 in G,
which is impossible. For each vi we have degTi

(vi) = n−3 and degTj
(vi) ≥ 1, for

j �= i. This implies that degG(vi) = n − 1 for each vi. In other words, each vi is
adjacent to all the other vertices of G. Thus, G contains K3,n−3 as a subgraph.
Since n ≥ 10 and K3,7 is not 1-planar [2], G is not 1-planar. ��

Motivated by Theorem 1, we consider triples where one of the caterpillars is
a path. Also in this case there exist triples that do not have a 1-planar packing.

Theorem 2. There exists a triple consisting of a path and two caterpillars with
n = 7 vertices that does not admit a 1-planar packing.

Proof. Let Ti (i = 1, 2) be a caterpillar with a backbone of length four such that
one of the two internal vertices has degree three and the other one has degree
four. Let G be a packing of T1, T2 and a path P of 7 vertices. Let v1, v2, v3,
and v4 be the four vertices of G where the internal vertices of the backbones
of T1 and T2 are mapped to. We first observe that v1, v2, v3, and v4 must be
distinct. Suppose, as a contradiction, that two of them coincide, say v1 and v2;
then degT1

(v1) + degT2
(v1) ≥ 6. On the other hand degP (v1) ≥ 1, and therefore

degG(v1) ≥ 7, which is impossible (since G has only 7 vertices). Denote by G1,2

the subgraph of G containing only the edges of T1 and T2. Two vertices among
v1, v2, v3, and v4, say v1 and v2, have degree 5 in G1,2, while the other two
have degree 4 in G1,2. Consider now the edges of P . Since the maximum vertex
degree in a graph of seven vertices is six, v1 and v2 must be the end-vertices of
P , while v3 and v4 are internal vertices. This means that they all have degree
6 in G. The vertices distinct from v1, v2, v3, and v4 have degree 2 in G1,2 and
degree 4 in G. Thus in G there are four vertices of degree 6 and three vertices
of degree 4. The only graph of seven vertices with this degree distribution is the
graph obtained from K7 by deleting all the edges of a 3-cycle, which is known
to be non-1-planar [12]. ��

4 1-Planar Packings of Two Paths and a Caterpillar

In this section we prove that a triple consisting of two paths P1 and P2 and a
5-legged caterpillar T with at least six vertices admits a 1-planar packing. Let
P be the backbone of T and let P ′

1 and P ′
2 be two paths with the same length

as P . We first show how to construct a 1-planar packing of P , P ′
1 and P ′

2. We
then modify the computed packing to include the leaves of the caterpillar; this
requires transforming some edges of P ′

1 and P ′
2 to sub-paths that pass through

the added leaves. The resulting packing is a 1-planar packing of P1, P2 and T .
Let Γ be a 1-planar drawing, possibly with parallel edges, and let e be an

edge of Γ . If e has one crossing c, then each of the two parts in which e is divided
by c are called sub-edges of e; if e has no crossing, e itself is called a sub-edge of
e. Let v be a vertex of Γ ; a cutting curve of v is a Jordan arc γ such that: (i) γ
has v as an end-point; (ii) γ intersects two edges e1 = (u1, v1) and e2 = (u2, v2)
(possibly u1 = u2 and/or v1 = v2); (iii) γ does not intersect any other edge of

Packing Trees into 1-Planar Graphs 85

v

e1

e2

u1=u2

v1

v2

γ

v

u1=u2

v1

v2
w1

w5
w4

w3w2

(a) (b)

Fig. 1. A 5-leaf addition operation. The cutting curve is shown with a zig-zag pattern
on it.

Γ ; (iv) e1 and e2 do not cross each other; (v) if e1 and e2 are parallel edges
(i.e., u1 = u2 and v1 = v2), they have no crossings. The stub of ei with respect
to γ is the sub-edge of ei intersected by γ (i = 1, 2). Given a cutting curve γ
of a vertex v, and an integer k ≥ 5, a k-leaf addition operation adds k vertices
w1, w2, . . . , wk and the edges (v, w1), (v, w2), . . . , (v, wk) to Γ in such a way that:
(i) the added vertices subdivide the stubs of both e1 and e2 with respect to γ;
(ii) the subgraph induced by u1, u2, v1, v2, w1, w2, . . . , wk has no multiple edges
(see Fig. 1 for an example). In other words, a leaf addition adds a set of vertices
adjacent to v and replaces the stubs of e1 and e2 with two edge-disjoint paths.
This operation will be used to modify the 1-planar packing of P , P ′

1 and P ′
2 to

include the leaves of the caterpillar. When the value of k is not relevant, a k-leaf
addition will be simply called a leaf addition.

Lemma 1. Let Γ be a 1-planar drawing possibly with parallel edges, let v be a
vertex of Γ and let γ be a cutting curve of v. It is possible to execute a k-leaf
addition for every k ≥ 5 in such a way that the resulting drawing is still 1-planar.

Proof. Denote by e1 and e2 the two edges crossed by γ. If one of them or both
are crossed in Γ replace their crossing points with dummy vertices. Let e′

i be
the stub of ei with respect to γ (if ei is not crossed in Γ , e′

i coincides with ei).
After the replacement of the crossings with the dummy vertices the two stubs
e′
1 and e′

2 have no crossing. Since γ does not cross any edge distinct from e1 and
e2, the drawing Γ ′ obtained by removing e′

1 and e′
2 has a face f whose boundary

contains the vertex v and all the end-vertices of e′
1 and of e′

2 (there are at least
two and at most four such vertices). The idea now is to insert into the face
f , without creating any crossing, a gadget that realizes the k-leaf addition for
the desired value of k ≥ 5. A gadget has k vertices that will be added to Γ , a
vertex that will be identified with v, and four vertices a, b, c, and d that will
be identified with the end-vertices of e′

1 and e′
2. The four vertices a, b, c, and

d will be called attaching vertices and the edges incident to them will be called
attaching edges. In order to guarantee that the leaf addition is valid and that the
drawing Γ ′′ obtained by the insertion of the gadget inside f is 1-planar, we have
to pay attention to two aspects: (i) if an attaching edge is crossed in the gadget,

86 F. De Luca et al.

v

a ≡ b c ≡ d

(a) k = 5
v

a ≡ b c ≡ d

(b) k = 6
v

a ≡ b c ≡ d

(c) k = 7

. . .

v

a ≡ b c ≡ d

(d) k > 6 even

a c

v

b d

(e) k = 5
v

a

b
c

d

(f) k = 6
v

b

a
d

c

(g) k = 7

. . .

v

a

b
c

d

(h) k > 6 even

.

v

a ≡ b c ≡ d

(i) k > 7 odd

.

v

b

a
d

c

(j) k > 7 odd

Fig. 2. Gadgets for the proof of Lemma 1. (a)–(d) and (i) are used for parallel edges;
(e)–(h) and (j) are used for non-parallel edges.

then its attaching vertex cannot be identified with a dummy vertex (otherwise
when we remove the dummy vertex we obtain an edge that is crossed twice); (ii)
if two attaching vertices of the gadget are coincident (because two end-vertices
of e′

1 and e′
2 coincide), then the corresponding attaching edges must not have

the second end-vertex in common in the gadget (otherwise the leaf addition is
not valid because it creates multiple edges). We use different gadgets depending
on whether e1 and e2 are parallel edges or not. If they are parallel edges, we use
the gadgets of Figs. 2(a)–(d) and (i). Notice that in this case, e1 and e2 are not
crossed by definition of cutting curve. It follows that f has no dummy vertex and
(i) is guaranteed. On the other hand, both end-vertices of e1 and e2 coincide and
therefore the end-vertices of the attaching edges that are not attaching vertices
must be distinct. This is true for the gadgets used in this case. If e1 and e2 are
non-parallel, we use the gadgets of Figs. 2(e)–(h) and (j). All these gadgets have
only one attaching edge that is crossed (labeled d in the figure); also, vertex
d can be identified with vertex c without creating multiple edges. If e1 and e2
are non-parallel, at most two end-vertices of e′

1 and e′
2 are dummy; they cannot

belong to the same stub, and they cannot coincide (because e1 and e2 do not

Packing Trees into 1-Planar Graphs 87

(a) n′ = 4k (b) n′ = 4k + 1 (c) n′ = 4k + 2 (d) n′ = 4k + 3

Fig. 3. 1-planar packings of three paths with n′ ≥ 8 vertices (case k = 3); A cutting
curve is shown (zig-zag pattern) for each internal vertex of the black path.

cross each other). Thus we can identify d with a non-dummy vertex and we can
identify c and d if needed. ��

We are ready to describe our construction of a 1-planar packing of P1, P2,
and T . We use different techniques for different lengths of the backbone of T .

Lemma 2. Two paths and a 5-legged caterpillar whose backbone contains n′ ≥ 6
vertices admit a 1-planar packing.

Proof. We start with the construction of a 1-planar packing of the three paths
P ′
1, P ′

2 and P . Let n′ be the number of vertices of P ′
1, P ′

2 and P , assume first that
n′ ≥ 8 and n′ ≡ 0 (mod 4). A 1-planar packing of P ′

1, P ′
2 and P for this case is

shown in Fig. 3(a) for n′ = 16 and it is easy to see that it can be extended to any
n′ multiple of 4. Assume that the backbone P of T is the path shown in black
in Fig. 3(a). To add the leaves of T to the construction we define a cutting curve
for each vertex that has some leaves attached; we then execute a leaf addition
operation for each such vertex. By Lemma 1, it is possible to execute each leaf
addition so to guarantee the 1-planarity of the resulting drawing. The cutting
curve for each internal vertex of P is shown in Fig. 3(a) with a zig-zag pattern.
Note that, regardless of the order in which the leaf additions are executed, the
cutting curves remain valid.

Suppose that n′ ≥ 8 and n′ �≡ 0 (mod 4). We first construct a 1-planar pack-
ing of three paths with n′′ = 4k vertices (with k = �n′

4) using the same construc-
tion as in the previous case and then we add one, two or three vertices as shown
in Figs. 3(b)–(d), which also show the cutting curves for each internal vertex of
P . If n′ is 6 or 7, we use the same approach; the difference is in the construction
of the 1-planar packing of P ′

1, P ′
2 and P . The construction for such a packing

and the cutting curves for the internal vertices of P are in Figs. 4(a)–(b). ��
Lemma 3. Two paths and a 5-legged caterpillar T whose backbone contains
n′ = 5 vertices admit a 1-planar packing, unless T is a path.

Proof. If T is a path, then P1, P2 and T are all paths of length five, and by
Property 1, a 1-planar packing of P1, P2 and T does not exist. Suppose therefore
that at least one internal vertex of the backbone P of T has some leaves attached.

88 F. De Luca et al.

(a) n′ = 7 (b) n′ = 6 (c) n′ = 5

Fig. 4. 1-planar packings of three paths with n′ ∈ {5, 6, 7} vertices, with a cutting
curve (zig-zag pattern) for each internal vertex of the black path.

We use an approach similar to the one of Lemma 2. However, as just explained,
a 1-planar packing of P ′

1, P ′
2 and P does not exist in this case. We start with a

1-planar packing with two pairs of parallel edges. For each pair, one edge belongs
to P ′

1 and the other one to P ′
2. We will remove the parallel edges by performing

the leaf addition operations. To this aim we must guarantee that there is a
cutting curve for each pair of parallel edges. The 1-planar packing P ′

1, P ′
2 and

P and the cutting curves for the internal vertices of P are shown in Fig. 4(c),
for the case when at least two vertices have leaves attached. Indeed, if only two
vertices have leaves attached, they are either consecutive along the backbone or
not. In the first case, these two vertices are mapped to the vertices labeled a and
b in Fig. 4(c) and the depicted cutting curves will remove the parallel edges; in
the second case, the two vertices are mapped to the vertices labeled a and c and
also in this case the depicted cutting curves will remove the parallel edges.

If only one vertex of P has leaves attached, we have only one cutting curve
and thus it is not possible to intersect both pairs of parallel edges. To handle
this case we use an ad-hoc technique which can be found in [3]. ��

The next theorem gives a complete characterization for the case in which the
backbone of T has length four.

Theorem 3. Two paths and a caterpillar T whose backbone contains n′ = 4
vertices admit a 1-planar packing if and only if n ≥ 6 and degT (v) ≤ n − 3 for
every vertex v.

Lemmas 2 and 3, together with Theorem 3 imply the next theorem.

Theorem 4. Two paths and a 5-legged caterpillar T with n vertices admit a
1-planar packing if and only if n ≥ 6 and degT (v) ≤ n − 3 for every vertex v.

5 1-Planar Packings with Constant Edge Crossings

The technique described in the previous section constructs 1-planar drawings
that have a linear number of crossings. A natural question is whether it is possible
to compute a 1-planar packing with a constant number of crossings. In this
section we prove that seven (resp. fourteen) crossings suffice for packing three

Packing Trees into 1-Planar Graphs 89

u0,k

u1,k
u2,k

u0,1

u2,1 u1,1

r0

r1r2

u0,1

u1,1
u2,1

v0

w0 v1

w1

w2v2
w

u0,k

u1,ku2,k

v

(a) (b) (c)

Fig. 5. Illustration for the proof of Theorem 5.

paths (resp. cycles). It is worth remarking that a 1-planar packing of three paths
has at least three crossings (because it has 3n−3 edges), while a 1-planar packing
of three cycles has at least six crossings (because it has 3n edges).

Theorem 5. Three paths with n ≥ 6 vertices can be packed into a 1-plane graph
with at most 7 edge crossings.

Proof. We prove the statement by showing how to construct a 1-planar drawing
with at most 7 crossings of a graph that is the union of three paths. Suppose
first that n = 7 + 3k for k ∈ N. If k = 0, we draw the union of the three paths
with 7 vertices as shown in Fig. 4(a). The drawing is 1-planar and has three
crossings in total. Suppose now that k > 0. We consider three rays r0, r1, r2
with a common origin pairwise forming a 120◦ angle and we place k vertices
on each line. We denote by ui,1, ui,2, . . . , ui,k the vertices of line ri (i = 0, 1, 2)
in the order they appear along ri starting from the origin (see Fig. 5(a)). In
the following, indices will be taken modulo 3 when working with the indices
of the rays ri. To draw path Pi (i = 0, 1, 2) we draw the edges (ui,1, ui+1,1),
(ui,j , ui+1,j−1), and (ui,j , ui+1,j) (for j = 2, . . . , k) as straight-line segments.
Notice that, these edges form a zig-zagging path between the vertices of rays
ri and ri+1, so Pi passes through all vertices of ri and ri+1 but not through
the vertices of ri+2. To include these missing vertices in Pi, we add to Pi edges
(ui+2,j , ui+2,j+1) (for j = 1, 2, . . . , k − 1). In this way we draw two disjoint sub-
paths for each path Pi, namely a zig-zagging path between ri and ri+1 and a
straight-line path along ri+2. Moreover, we only draw 3k edges and therefore
there are still 7 missing vertices (and 8 missing edges) in each path. To add the
missing vertices and edges and to connect the two sub-paths of each path, we
construct a drawing Γ0 of three paths P ′

0, P
′
1, P

′
2 with seven vertices as in the

case when k = 0. Denote with vi and wi the end-vertices of P ′
i in Γ0. We place

Γ0 inside the triangle u0,1, u1,1, u2,1 and add the edges (vi, ui,1) and (wi, ui+2,1).
It is easy to see (see also Fig. 5(b)) that these six edges can be added so that
the drawing is still 1-planar and so that the total number of crossings is 6. This
concludes the proof for n = 7 + 3k. If n = 7 + 3k + 1 we start with the same
construction as in the previous case and then add an extra vertex v outside the

90 F. De Luca et al.

triangle u1,k, u2,k, u3,k. Notice that each of these three vertices is the end-vertex
of two of the three paths with 7 + 3k vertices. Thus we can extend each path to
include v by connecting it to each of the three vertices u1,k, u2,k, u3,k in a planar
way (see Fig. 5(c) ignoring vertex w). If n = 7 + 3k + 2, then we add two extra
vertices outside the triangle u0,k, u1,k, u2,k and connect both of them to the three
vertices u0,k, u1,k, u2,k (recall that each of these three vertices is the end-vertex
of two distinct paths with 7 + 3k vertices). In this case however the addition of
the two extra vertices causes the creation of one crossing. Thus the final drawing
is 1-planar and the total number of crossings is at most 7 (see Fig. 5(c)). This
concludes the proof for n ≥ 7. If n = 6 we construct a 1-planar packing of three
paths with three crossings in total as shown in Fig. 4(b). ��

The construction of Theorem 5 can be extended to three cycles.

Theorem 6. Three cycles with n ≥ 20 vertices can be packed into a 1-plane
graph with at most 14 edge crossings.

6 From Triples to Quadruples

In this section we extend the study of 1-planar packings from triples of graphs to
quadruples of graphs. By Property 1, a 1-planar packing of four graphs does not
exist if all graphs are connected, because the number of edges of the four graphs
is higher than the number of edges allowed in a 1-planar graph. We consider
therefore a quadruple consisting of three paths and a perfect matching. Notice
that, in this case the number of vertices n has to be even.

Theorem 7. Three paths and a perfect matching with n ≥ 12 vertices admit a
1-planar packing. If n ≤ 10, the quadruple does not admit a 1-planar packing.

Proof. Three paths and a perfect matching have a total of 3(n−1)+ n
2 = 7n

2 −3
edges. Since a 1-planar graph has at most 4n − 8 edges, a 1-planar packing of
three paths and a perfect matching exists only if 7n

2 − 3 ≤ 4n− 8, i.e., if n ≥ 10.
If n = 10, we have 7n

2 − 3 = 32 and 4n − 8 = 32, which means that any 1-
planar packing of three paths and a perfect matching with n = 10 vertices is an
optimal 1-planar graph. It is known that every optimal 1-planar graph has at
least eight vertices of degree exactly six [1]. On the other hand, in any 1-planar
packing of three paths and a perfect matching all vertices, except the at most six
end-vertices of the three paths, have degree seven, which implies that a 1-planar
packing of three paths and a perfect matching does not exist.

We now prove that a 1-planar packing exists if n ≥ 12. We only discuss here
the case when n ≥ 24; the cases in which 12 ≤ n ≤ 22 are described in [3]. Based
on the fact that in any 1-planar packing of three paths and a perfect matching at
least n−6 vertices have degree seven, we construct the desired 1-planar packing
starting from a 1-planar graph G such that at least n−6 vertices have degree at
least seven; we then partition the edges of G into five sets; three of these sets form
a spanning path each, the fourth one forms a perfect matching, and the fifth one

Packing Trees into 1-Planar Graphs 91

(a) (b) n = 8k (c) n = 8k + 2

(d) n = 8k + 4 (e) n = 8k + 6

u0

u1 u2

u3

v1,0 v1,7

v1,1

v1,2

v1,3 v1,4

v1,5

v1,6

v3,0

v3,1

v3,2

v3,3 v3,4

v3,5

v3,6

v3,7w0 w3

w1
w2

Fig. 6. (a) Graph G′ used in the proof of Theorem 7 (n = 8k, k = 3). (b)–(e) 1-planar
packings of three paths and a perfect matching obtained starting from G′.

contains edges that will not be part of the 1-planar packing. For every n = 8k and
k ≥ 3 it is possible to construct a 1-planar graph with n vertices each having
degree at least seven as follows. We start with k − 1 cycles C1, C2, . . . , Ck−1.
Each cycle Ci (1 ≤ i ≤ k − 1) has eight vertices vi,j with 0 ≤ j ≤ 7. Cycle Ci,
for 1 ≤ i ≤ k − 2, is embedded inside Ci+1 and is connected to it with edges
(vi,j , vi+1,j) for each 0 ≤ j ≤ 7. We have a cycle with four vertices u0, u1, u2, u3

embedded inside C1 and connected to it with edges (uj , v1,2j) and (uj , v1,2j+1).
Finally, we have a cycle with four vertices w0, w1, w2, w3 embedded outside Ck−1

and connected to it with edges (wj , vk−1,2j) and (wj , vk−1,2j+1). The graph G′

described so far has n vertices, is planar, all its vertices have degree four, and
each vertex is incident to at most one face of size three (see Fig. 6(a)). By adding
two crossing edges inside each face of size four, we obtain a 1-planar graph G
with n vertices having degree at least seven. The graph G and the partition
of the edges of G in five sets defining three paths and a matching is shown in
Fig. 6(b). If n is not a multiple of 8, then it will be n = 8k + r, with 0 < r < 8
and r even (because n is even). In this case we construct G′ as explained above
and then we extend the paths u0, v1,1, . . . , vk−1,1 and u1, v1,2, . . . , vk−1,2 to the
left with 1, 2 or 3 vertices each; we then suitably rearrange the edges of G′. The
graph G is then obtained, as in the previous case, by adding a pair of crossing
edges inside each face of size four. The resulting graph G and a partition of its

92 F. De Luca et al.

edges in five sets defining three paths and a matching is shown in Figs. 6(c), (d),
and (e), for the cases when r = 2, r = 4, and r = 6, respectively. ��

7 Open Problems

We find that the 1-planar packing problem is a fertile and still largely unex-
plored research subject. We conclude the paper with a list of open problems.(i)
Theorem 2 holds only for n = 7. Do two caterpillars (or more general trees)
and a path admit a 1-planar packing if they have more than 7 vertices? (ii) Can
Theorem 4 be extended to general caterpillars? What about two paths and a tree
more complex than a caterpillar, for example a binary tree? (iii) Is it possible to
compute a 1-planar packing of three paths or cycles with the minimum number
of crossings (three and six, respectively)? Can we compute 1-planar packings
with few crossings for triples of other types of trees?

References

1. Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorith-
mica 80(1), 1–28 (2018)

2. Czap, J., Hudák, D.: 1-planarity of complete multipartite graphs. Discrete Appl.
Math. 160(4), 505–512 (2012)

3. De Luca, F., et al.: Packing trees into 1-planar graphs. CoRR abs/1911.01761
(2019)

4. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019)

5. Frati, F.: Planar packing of diameter-four trees. In: Proceedings of the 21st Annual
Canadian Conference on Computational Geometry, pp. 95–98 (2009)

6. Frati, F., Geyer, M., Kaufmann, M.: Planar packing of trees and spider trees. Inf.
Process. Lett. 109(6), 301–307 (2009)

7. Garćıa Olaverri, A., Hernando, M.C., Hurtado, F., Noy, M., Tejel, J.: Packing trees
into planar graphs. J. Graph Theory 40(3), 172–181 (2002)

8. Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D.: Planar packing
of binary trees. In: Dehne, F., Solis-Oba, R., Sack, J.R. (eds.) WADS 2013. LNCS,
vol. 8037, pp. 353–364. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40104-6 31

9. Geyer, M., Hoffmann, M., Kaufmann, M., Kusters, V., Tóth, C.D.: The planar tree
packing theorem. JoCG 8(2), 109–177 (2017)

10. Hedetniemi, S., Hedetniemi, S., Slater, P.: A note on packing two trees into Kn.
Ars Combin. 11, 149–153 (1981)

11. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49–67 (2017)

12. Korzhik, V.P.: Minimal non-1-planar graphs. Discrete Math. 308(7), 1319–1327
(2008)

13. Mahéo, M., Saclé, J., Wozniak, M.: Edge-disjoint placement of three trees. Eur. J.
Comb. 17(6), 543–563 (1996)

14. Oda, Y., Ota, K.: Tight planar packings of two trees. In: 22nd European Workshop
on Computational Geometry (2006)

https://doi.org/10.1007/978-3-642-40104-6_31
https://doi.org/10.1007/978-3-642-40104-6_31

Packing Trees into 1-Planar Graphs 93

15. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

16. Ringel, G.: Ein sechsfarbenproblem auf der kugel. Abh. Math. Semin. Univ. Ham-
burg 29(1–2), 107–117 (1965)

17. Sauer, N., Spencer, J.: Edge disjoint placement of graphs. J. Comb. Theory Ser. B
25(3), 295–302 (1978)

18. Wang, H., Sauer, N.: Packing three copies of a tree into a complete graph. Eur. J.
Comb. 14(2), 137–142 (1993)

19. Wozniak, M., Wojda, A.P.: Triple placement of graphs. Graphs Comb. 9(1), 85–91
(1993)

Angle Covers:
Algorithms and Complexity

William Evans1 , Ellen Gethner2, Jack Spalding-Jamieson1(B),
and Alexander Wolff3

1 Department of Computer Science, University of British Columbia,
Vancouver, B.C., Canada

will@cs.ubc.ca,jacketsj@alumni.ubc.ca
2 Department of Computer Science and Engineering, University of Colorado, Denver,

CO, U.S.A.
ellen.gethner@ucdenver.edu

3 Universität Würzburg, Würzburg, Germany

Abstract. Consider a graph with a rotation system, namely, for every
vertex, a circular ordering of the incident edges. Given such a graph,
an angle cover maps every vertex to a pair of consecutive edges in the
ordering – an angle – such that each edge participates in at least one
such pair. We show that any graph of maximum degree 4 admits an angle
cover, give a poly-time algorithm for deciding if a graph with no degree-3
vertices has an angle-cover, and prove that, given a graph of maximum
degree 5, it is NP-hard to decide whether it admits an angle cover. We
also consider extensions of the angle cover problem where every vertex
selects a fixed number a > 1 of angles or where an angle consists of more
than two consecutive edges. We show an application of angle covers to
the problem of deciding if the 2-blowup of a planar graph has isomorphic
thickness 2.

1 Introduction

A well-known problem in combinatorial optimization is vertex cover : given an
undirected graph, select a subset of the vertices such that every edge is incident to
at least one of the selected vertices. The aim is to select as few vertices as possible.
The problem is one of Karp’s 21 NP-complete problems [7] and remains NP-hard
even for graphs of maximum degree 3 [1]. Moreover, vertex cover is APX-hard [2]
and while it is straightforward to compute a 2-approximation (take all endpoints
of a maximal matching), the existence of a (2 − ε)-approximation for any ε > 0
would contradict the so-called Unique Games Conjecture [8]. Vertex cover is the
“book example” of a fixed-parameter tractable problem.

Note that in vertex cover, a vertex covers all its incident edges. In this paper
we alter the problem by restricting the covering abilities of the vertices. We

The full version of this article is available at ArXiv [3]. The authors acknowledge
support by NSERC Discovery Grant (W.E.), Simons Foundation Collaboration Grant
for Mathematicians #311772 (E.G.), and DFG grant WO 758/10-1 (A.W.).

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 94–106, 2020.
https://doi.org/10.1007/978-3-030-39881-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_9&domain=pdf
http://orcid.org/0000-0002-7611-507X
http://orcid.org/0000-0001-5872-718X
https://doi.org/10.1007/978-3-030-39881-1_9

Angle Covers: Algorithms and Complexity 95

assume that the input graph has a given rotation system, that is, for every vertex,
a circular ordering of its incident edges. In the basic version of our problem, the
angle cover problem, at each vertex we can cover one pair of its incident edges
that are consecutive in the ordering (i.e., form an angle at the vertex), and every
edge must be covered. An example of a planar graph with a vertex cover and an
angle cover is shown in Fig. 1.

Fig. 1. A graph with a minimum
vertex cover (black vertices) and
an angle cover (gray arcs)

In this paper, we mainly treat the decision
version of angle cover, but various optimiza-
tion versions are interesting as well; see Sect. 5.
Clearly, a graph that admits an angle cover can-
not have too many edges, both locally and glob-
ally and we formalize this notion as follows: we
say that a graph G has low edge density if, for
all k, every k-vertex subgraph has at most 2k
edges. Observe that only graphs of low edge den-
sity can have an angle cover. Whether G has low
edge density can be easily checked by testing whether the following bipartite aux-
iliary graph Gmat has a matching of size at least |E|. The graph Gmat has one
vertex for each edge of G, two vertices for each vertex of G, and an edge for
every pair (v, e) where v is a vertex of G and e is an edge of G incident to v.

Example classes of graphs with low edge density are outerplanar graphs and
maximum-degree-4 graphs (both of which always admit angle covers; see below),
Laman graphs (graphs such that for all k, every k-vertex subgraph has at most
2k − 3 edges), and pointed pseudo-triangulations. Given a set P of points in the
plane, a pseudo-triangulation is a plane graph with vertex set P and straight-line
edges that partitions the convex hull of P into pseudo-triangles, that is, simple
polygons with exactly three convex angles. A pseudo-triangulation is pointed if
the edges incident to a vertex span an angle less than π. Thus every vertex has
one large angle (greater than π) but these angles do not necessarily form an angle
cover. It is known that every pointed pseudo-triangulation is a planar Laman
graph [10] and that every planar Laman graph can be realized as a pointed
pseudo-triangulation [5]. In the full version [3], we show that not all Laman
graphs have an angle cover.

Our interest in angle covers arose from the study of graphs that have isomor-
phic thickness 2. The thickness, θ(G), of a graph G is the minimum number of
planar graphs whose union is G. By allowing each edge to be a polygonal line
with bends, we can draw G on θ(G) parallel planes where each vertex appears in
the same position on each plane and within each plane the edges do not cross [6].
The isomorphic thickness, ι(G), of a graph G is the minimum number of iso-
morphic planar graphs whose union is G. The k-blowup of a graph G = (V,E)
is the graph Bk(G) with k|V | vertices

⋃k
a=1 Va and edges

⋃
1≤a,b≤k Eab, where

Va = {va : v ∈ V } and Eab = {(ua, vb) : (u, v) ∈ E}. As we will show, it is NP-
hard to determine if a graph has isomorphic thickness 2, but all graphs that are
the 2-blowup of a plane graph with an angle cover have isomorphic thickness 2.

96 W. Evans et al.

As a warm-up, we observe that every outerplane graph has an angle cover.
(Recall that an outerplane graph is an outerplanar graph with a given embed-
ding and, hence, fixed rotation system.) The statement can be seen as follows.
Any n-vertex outerplane graph has at most 2n − 4 edges, and outerplanarity is
hereditary, so outerplane graphs have low edge density. Additionally, every such
graph has an ear decomposition, that is, an ordering (v1, v2, . . . , vn) of the vertex
set V = {v1, v2, . . . , vn} such that, for i = n, n − 1, . . . , 2, vertex vi is incident to
at most two edges in G[v1, . . . , vi]. Due to outerplanarity, the ear decomposition
can be chosen such that for each vertex the at most two “ear edges” are con-
secutive in the ordering around the vertex. This shows the existence of an angle
cover for any outerplane graph.

Our Contribution. We first consider a few concrete examples that show that not
every planar graph of low edge density admits an angle cover. We then show
that any graph of maximum degree 4 does admit an angle cover and give a
polytime algorithm to decide if a graph with no degree 3 vertex admits an angle
cover (Sect. 3). Then we prove that, given a graph of maximum degree 5, it is
NP-hard to decide whether it admits an angle cover (Sect. 4). We also consider
two extensions of the angle cover problem where (i) every vertex is associated
with a fixed number a > 1 of angles or (ii) an angle consists of more than two
consecutive edges (Sect. 5). Finally, we show that the 2-blowup of any plane
graph with an angle cover has isomorphic thickness 2 (Sect. 6).

2 Preliminaries and Examples

In this section we show that even graphs with several seemingly nice properties
do not always admit an angle cover. All our examples are plane graphs, that is,
they are planar and their rotation system corresponds to a planar drawing.

Observation 1. There is a plane graph (Fig. 2a) of maximum degree 5 and with
low edge density that does not admit an angle cover.

Proof. Consider the graph in Fig. 2a. We have oriented its edges so that each
vertex has outdegree 2. Hence, the graph has low edge density. The graph has
n = 21 vertices and 2n edges. Due to the way the two degree-2 vertices (filled
black) are arranged around the central vertex (square) of degree 4, one of the
horizontal edges incident to the central vertex is covered twice. This implies that
the n vertices cover at most 2n − 1 edges. Thus, there is no angle cover. ��

Note that the counterexample critically exploits the use of degree-2 vertices.
Next we show that there are also counterexamples without such vertices.

Observation 2. There is a plane graph (Fig. 2b) of low edge density with vertex
degrees in {3, 4, 5} that does not admit an angle cover.

Angle Covers: Algorithms and Complexity 97

(a) example with vertex degrees 2–5 (b) example with vertex degrees 3–5

Fig. 2. Two plane graphs that do not admit angle covers. Edges are oriented such that
each vertex has outdegree 2 (hence both graphs have low edge density) (Color figure
online).

Proof. Consider the graph in Fig. 2b. Again, we oriented the edges such that
every vertex has outdegree 2, which shows that the graph has low edge density.
The graph is the same as the one in Fig. 2a except we replaced the two degree-2
vertices by copies of K4 (light blue). Since the number of edges is 2n and K4 has
four vertices and six edges, the two edges that connect each copy of K4 to the
rest of the graph, must necessarily be directed away from K4. As a result, the
two copies of K4 behave like the degree-2 vertices in Fig. 2a: they cover one of
the horizontal edges incident to the central vertex twice. Thus, there is no angle
cover. ��

Note that the counterexamples so far were not strongly connected (w.r.t. the
chosen edge orientation). But strongly connected counterexamples exist, too.

sa

b

c

d

f

g

Fig. 3. A plane graph of low edge density that has a strongly connected orientation of
its edges but does not admit an angle cover.

Observation 3. There is a plane graph (Fig. 3) of low edge density with vertex
degrees in {3, 4, 5} and a strongly connected edge orientation that does not admit
an angle cover.

Proof. Consider the graph depicted in Fig. 3. We assume that it has an angle
cover and show that this yields a contradiction. Clearly, one of the horizontal
edges incident to s must be covered by s. Due to symmetry, we can assume that
it is the edge to vertex a on the left. Since a has degree 3, it must cover its other
two edges, to vertices b up and to c down. Let d be the vertex adjacent to both b
and c and let b, f, g, c be the neighbors of d in counterclockwise order. We have
the following four cases, each of which leads to a contradiction.

98 W. Evans et al.

1. d covers db and dc: Then b covers bf , f covers fg (since f must cover fd), and
g covers gc (since g must cover gd). But then c has only one edge to cover.

2. d covers db and df : Again, b covers bf and (since only two edges remain
uncovered at f) f covers fg and (as before) g covers gc. But then c has two
non-consecutive edges to cover.

3. d covers df and dg: Then b must cover bd and bf , f must cover fg, g must
cover gc. But then c has two non-consecutive edges to cover.

4. d covers dg and dc: Then c must cover cg, g must cover gf , f must cover fb.
But then b has two non-consecutive edges to cover.

��

Fig. 4. A graph with two embeddings; one
without and one with an angle cover.

u

v

xy

u

v

xy
e

f w

Fig. 5. Any topological graph (left)
admits an angle cover if and only if its
planarization (right) admits an angle
cover.

Observation 4. There is a planar maximum-degree-5 graph (Fig. 4) with two
embeddings such that one admits an angle cover, but the other does not.

Thus, when determining whether a graph (of maximum degree greater than 4)
has an angle cover, we must consider a particular embedding, which determines
a rotation system. This applies to non-planar graphs as well. However, if we have
a topological embedding of a non-planar graph, we can decide whether it has an
angle cover by considering its planarization. By a topological graph we mean a
graph together with a drawing of that graph where any pair of edges (including
their endpoints) has at most one (crossing not touching) point in common and
any point of the plane is contained in at most two edges. By the planarization
of a topological graph we mean the plane graph that we get if we replace, one
by one, in arbitrary order, each crossing by a new vertex that is incident exactly
to the four pieces of the two edges that defined the crossing. We define the order
of the four new edges around the new vertex to be the same as the order of the
four endpoints of the old edges around the crossing.

Proposition 1. Any topological graph admits an angle cover if and only if its
planarization admits an angle cover.

Proof. We show the equivalence for the first step of the planarization procedure
defined above. Then, induction proves our claim.

Angle Covers: Algorithms and Complexity 99

Let G be a topological graph, and let G′ be the graph that we obtain from G
by replacing an arbitrary crossing of two edges e = uv and f = xy by a new ver-
tex w that is incident to u, v, x, and y; see Fig. 5. (Let the order of the endpoints
around the crossing in G and around the new vertex in G be 〈u, x, v, y〉.)

Suppose that G has an angle cover α. Edges e and f , say, must be covered
by angles incident to vertices u and x. Then it is simple to extend α to G′ by
mapping w to the angle {wv,wy} incident to w.

Now suppose that G′ has an angle cover α′ with, say, α′(w) = {vw, yw}.
Since w does not cover uw and xw, u must cover uw and x must cover xw. Now
we restrict α′ to G: we replace uw by uv and xw by xy. Hence, both uv and xy
are covered. Finally, we remove w (with vw and yw). Clearly, the resulting map
is an angle cover for G. ��

3 Algorithms for Graphs with Restricted Degrees

Theorem 1. Any maximum-degree-4 n-vertex graph with any rotation system
admits an angle cover, and such a cover can be found in O(n) time.

Proof. We can assume that the given graph is connected since we can treat
each connected component independently. If the given graph is not 4-regular,
we arbitrarily add dummy edges between vertices of degree less than 4 until the
resulting (multi)graph is 4-regular or there is a single vertex, say v, of degree
less than 4. If one vertex remains with degree less than 4, we add self-loops to
that vertex until it has degree 4. This is always possible since all other vertices
have degree 4, which is even, hence the last vertex must also have even degree.
An angle cover in the new graph implies an angle cover in the original, where
the assigned angle at a vertex in the original graph is the angle that contains
the assigned angle at the same vertex in the new graph.

We find a collection of directed cycles in the now 4-regular graph, similarly to
the algorithm for finding an Eulerian cycle. We follow the rule to exit a degree-4
vertex always on the opposite edge from where we enter it. Whenever we close
a cycle and there are still edges that we have not traversed yet, we start a new
cycle from one of these edges. In this way we never visit an edge of the input
graph twice, which establishes the linear running time.

The algorithm yields a partition of the edge set into (directed) cycles with the
additional property that pairs of cycles may cross each other (or themselves), but
they never touch without crossing. Hence, in every vertex the two outgoing edges
are always consecutive in the circular ordering around the vertex. We assign to
each vertex the angle formed by this pair of edges. ��
Theorem 2. The angle cover problem for n-vertex graphs with no vertices of
degree 3 and any rotation system can be solved in O(n2) time.

Proof. Given a graph G = (V,E) with no vertices of degree 3, at most 2n edges,
and a corresponding rotation system, we create a 2SAT instance in conjunctive
normal form. For each vertex v and edge e adjacent to v, create a variable xve. In

100 W. Evans et al.

our potential assignments, the variable xve is true if and only if in a corresponding
angle cover, the edge e is covered by the angle at the vertex v. For each edge
e = (u, v), add a clause (xve∨xue), where the clause is true if and only if the edge
is covered. For each vertex v with incident edges e1, e2, . . . , ed (d > 3), create
clauses (¬xvei

∨ ¬xvej
) for any pair ei, ej that are not adjacent in the circular

ordering around v. This guarantees that there can be at most 2 true variables
for v, and that they must be adjacent in the circular ordering. Furthermore,
given any satisfying assignment, we can force v to have exactly 2 such variables,
which then specify an angle for v in an angle cover. A vertex v with degree ≤ 2
can always cover all of its edges. Thus, G with its rotation system has an angle
cover if and only if the constructed 2SAT instance is satisfiable. The number of
clauses is bounded above by |E| + |E|2 where |E| ∈ O(n). Since 2SAT can be
solved in linear time [4], the algorithm takes O(n2) time. ��

4 NP-Hardness for Graphs of Maximum Degree 5

Theorem 3. The angle cover problem is NP-hard even for graphs of maximum
degree 5.

Proof. We reduce from 3-colouring. Given a graph G = (V,E), we construct a
graph H = (U,F) with a rotation system f : U → F ∗ such that (H, f) admits
an angle cover if and only if G has a 3-colouring. Note that f is a function that,
given a vertex u, will provide a circular order of the edges around u.

For each vertex v ∈ V , let E1(v), . . . , Edeg(v)(v) be its adjacent edges in some
arbitrary order. We create a graph, called a gadget, for vertex v that contains
1 + 9deg(v) vertices. The centre of the gadget is a vertex c(v) that is adjacent
to the first vertex in three paths, ek

1(v), ek
2(v), . . . , ek

deg(v)(v), one for each of the
three colours k ∈ {0, 1, 2}. Each vertex ek

j (v), for j = 1, . . . ,deg(v), is adjacent
to two degree-1 vertices ak

j (v) and bk
j (v) (as well as its neighbours in the path)

that are part of the gadget (see Fig. 6). In addition, if Ei(u) = Ej(v), that is,
(u, v) is an edge in G and is the ith edge adjacent to u and the jth edge adjacent
to v, then the vertex ek

j (v) is adjacent to ek
i (u) (see Fig. 7). The circular order

of edges around ek
j (v) is [ek

j−1(v), ak
j (v), ek

i (u), ek
j+1(v), bk

j (v)], where ek
j−1(v) is

c(v) if j = 1 and ek
j+1(v) does not exist if j = deg(v). The separator edges

(ek
j (v), ak

j (v)) and (ek
j (v), bk

j (v)) prevent an angle cover at ek
j (v) from (i) covering

both (ek
j (v), ek

j−1(v)) and (ek
j (v), ek

j+1(v)) or (ii) covering both (ek
j (v), ek

j−1(v))
and (ek

j (v), ek
i (u)). The graph containing all of the gadgets and the edges between

them along with the specified rotation system is then (H = (U,F), f). Observe
that the maximum degree of H is 5 and that the construction takes polynomial
time.

It remains to show that G is 3-colourable if and only if (H = H(G), f) has
an angle cover. We start with the “only if” direction.

“⇒”: G is 3-colourable implies that (H, f) has an angle cover:
Let t : V → {0, 1, 2} be a 3-colouring of G. We construct an angle cover α : U →
F × F . For each vertex v ∈ V , if t(v) = k, then set α(c(v)) = ((c(v), ek+1

1 (v)),

Angle Covers: Algorithms and Complexity 101

e01(v)

e04(v)

e02(v)

e03(v)

e14(v)

e21(v)
e22(v)

c(v)

e24(v)
e23(v)

e11(v)
e12(v)

e13(v)
a1
4(v)

a1
1(v)

a1
2(v)

a1
3(v)

b14(v)

b11(v)
b12(v)

b13(v)

Fig. 6. Gadget for a degree-4 vertex v; the
edge incident to c(v) that is not covered by
the angle cover corresponds to the colour of v.

c(v)

c(u)

Fig. 7. The edge (u, v) of G is rep-
resented by the three curved edges
in H. Here, (u, v) is the third edge
of u and the second edge of v;
deg(u) = 3 and deg(v) = 4.

(c(v), ek+2
1 (v))), where all superscripts are taken modulo 3. Also, for j = 1, . . . ,

deg(v), set α(ek
j (v)) =

(
(ek

j (v), ek
j−1(v)), (ek

j (v), ak
j (v))

)
, where ek

j−1(v) is c(v)
for j = 1. Furthermore, for � �= k (i.e., � ∈ {k + 1, k + 2}), and (u, v) ∈ E,
set α(e�

j(v)) =
(
(e�

j(v), e�
j+1(v)), (e�

j(v), e�
i(u))

)
, where Ei(u) = Ej(v). Since any

vertex of degree at most 2 covers all its adjacent edges, all edges in the construc-
tion, except for possibly (ek

j (v), ek
i (u)) where Ei(u) = Ej(v), are covered. Since t

is a 3-colouring, we know that t(u) �= t(v) = k. Therefore, the edge (ek
j (v), ek

i (u))
is covered by ek

i (u) by the construction above, so all edges are covered by the
constructed angle cover.

“⇐”: (H, f) has an angle cover implies that G is 3-colourable:
For every vertex v ∈ V , if c(v) covers edges (c(v), ek+1

1 (v)) and (c(v), ek−1
1 (v)) in

the angle cover then set t(v) = k (i.e., the colour given by the edge not covered
by c(v)). Suppose for the sake of contradiction that an edge (u, v) in G is not
properly coloured and t(u) = t(v) = k. The edge (c(u), ek

1(u)) is not covered by
c(u) and the edge (c(v), ek

1(v)) is not covered by c(v). Then, those edges must
be covered by ek

1(u) and ek
1(v), respectively, so ek

1(u) and ek
1(v) cannot cover the

edges (ek
1(u), ek

2(u)) and (ek
1(v), ek

2(v)), respectively, nor the edges (ek
1(u), ek

i (w))
where E1(u) = Ei(w) = (u,w) and (ek

1(v), ek
j (x)) where E1(v) = Ej(x) = (v, x),

respectively. Let Ei∗(u) = Ej∗(v) = (u, v). Repeating this argument, we see that
the edge (ek

i∗(u), ek
j∗(v)) is neither covered by ek

i∗(u) nor by ek
j∗(v). This is a

contradiction since we assumed that (H, f) has an angle cover. ��
Now we apply Proposition 1 to a drawing of the graph in the above reduction.

102 W. Evans et al.

Corollary 1. The angle cover problem is NP-hard even for planar graphs of
maximum degree 5.

5 Generalizations

In this section we consider two natural generalizations of the basic angle cover
problem. First we consider the a-angle cover problem where every vertex v covers
a angles, where an angle is (as before) a pair of edges incident to v that are
consecutive in the circular ordering around v. We start with a positive result.

Theorem 4. For even d, any maximum-degree-d graph with any rotation system
admits an a-angle cover for a ≥ d/2 − �d/6�, and such an angle cover can be
found in linear time.

Proof. The proof is similar to that of Theorem 1. As in that proof, we can assume
that the given graph is connected and d-regular.

We again direct the edges of the graph to form a directed Eulerian cycle.
To this end, we number the edges incident to each vertex from 0 to d − 1 in
circular order. For i = 0, . . . , �d/6� − 1, we call the group of edges 6i, . . . , 6i + 5
a sextet. In creating the directed cycle, when entering a vertex v, our goal is to
exit (directing an outgoing edge) in such a way that we obtain two consecutive
outgoing edges in each sextet at v. This proves the theorem since every vertex
v is then able to cover all of its d/2 outgoing edges (and thus all edges in the
graph are covered) using at most d/2 − �d/6� angles.

The rule we follow to ensure that every sextet contains two consecutive out-
going edges is when an incoming edge to v enters a sextet for the first time, we
exit v on an edge e in the same sextet that is consecutive with two undirected
edges (edges that are not part of the cycle yet). Since the sextet contains six
edges, such an edge exists. When the cycle next enters v on an edge in this
sextet, we exit on one of the remaining undirected edges consecutive to e. ��

Theorem 4 above yields, for d = 4, 6, 8, a-angle covers with a = 2, 2, 3,
respectively. For d = 4, Theorem 1 shows that a = 1 suffices. For d = 6, a = 1
certainly does not suffice, so a = 2 is optimal. For d = 8, Theorem 6 shows that
we cannot decide efficiently (unless P = NP) whether a 2-angle cover exists, so
a = 3 is optimal.

Theorem 5. For any a ≥ 1 the a-angle cover problem is NP-hard even for
graphs of maximum degree 4a + 1. ��
Proof. If every vertex can select a > 1 angles, we can use the same NP-hardness
reduction described in the proof of Theorem 3 but attach 2(a − 1) adjacent
edges, each connected to its own copy of K4a+1, to every vertex ek

j (v) to force
the vertex to “waste” a − 1 of its angles on these edges. These edges precede
the edge (ek

j (v), ak
j (v)) in the circular order at vertex ek

j (v). Now, d(ek
j (v)) =

2a + 3 < 4a + 1. For the centre vertex c(v), we similarly attach 2(a − 1) edges,

Angle Covers: Algorithms and Complexity 103

each connected to its own copy of K4a+1, to c(v) so that these edges lie between
(c(v), e01(v)) and (c(v), e11(v)). Now, d(c(v)) = 2a + 1 < 4a + 1.

Finally, since the maximum degree in each of these attached K4a+1 copies is
4a + 1, the maximum degree of the graph is 4a + 1. ��

Theorem 6. The 2-angle cover problem is NP-hard even for graphs of maxi-
mum degree 8.

Proof. The maximum degree given by the construction described in the proof of
Theorem 5 is as a result of the use of K9. To decrease the maximum degree to
8, instead of attaching two copies of K9 to a vertex, we attach one copy of the
following graph, T , using two edges . The graph T contains a copy of K7 and
two vertices b1 and b2 that are connected to all seven vertices of the copy of K7.
The graph T is attached to an external vertex v (not in T) by edges (b1, v) and
(b2, v). Thus every vertex in T has degree 8. Including these edges, T contains
37 edges and nine vertices. Since each vertex can cover at most four edges, at
least one edge must be covered by v in any valid angle cover. Furthermore, all
edges except for one of the external outgoing edges can be covered; see Fig. 8.

For each vertex ek
j (v) in the original NP-hardness reduction, we now instead

attach three new edges, using a copy of T , and another isolated vertex x.
Similarly to the high-degree construction, these edges, in the order (ek

j (v), b1),
(ek

j (v), b2), (ek
j (v), x), directly precede the edge (ek

j (v), ak
j (v)) in the circular order

at vertex ek
j (v). As a result, ek

j (v) must “waste” one of its angles on either
(ek

j (v), b1) or (ek
j (v), b2), and hence, it cannot use this angle on any other edge

connected to a non-isolated vertex. Now d(ek
j (v)) = 8. For the centre vertex

c(v), we similarly attach four edges using two copies of T , to c(v) so that their
edges lie between (c(v), e01(v)) and (c(v), e11(v)). Now, d(c(v)) = 7. If c(v) covers

b2b1

Fig. 8. The graph T with a 2-angle cover
that covers all edges except the outgoing edge
from b2. A symmetric cover leaves only the
outgoing edge from b1 uncovered.

T

T

T

T

T

T

Fig. 9. The three cases of c(v) with
the new added edges to copies of T .

Fig. 10. An example of how the exis-
tence of an angle cover on a graph G
implies that the 2-blowup of G has iso-
morphic thickness 2.

104 W. Evans et al.

two of these new edges, then c(v) cannot cover all three of its original edges,
since it can only cover a total of four. Furthermore, assuming that the edges to
each copy of T are consecutive in the edge-ordering of c(v), we can cover any
two of the original edges alongside one edge from each copy of T . All three cases
are depicted in Fig. 9. ��

Another obvious generalization of angle covers is to consider “wider” angles.
In the m-wide angle cover problem every vertex v can cover m consecutive edges
in their circular order around v. In the full version [3], we show the following.

Theorem 7. For m ≥ 3, the m-wide angle cover problem is NP-hard even for
graphs of maximum degree 3m − 3.

We now turn to a relaxation of angle cover where each vertex can select a
different number of (2-wide) angles, and still, all edges must be covered. We call
this an angle allocation and it is optimal if it uses the minimum number of angles
among all allocations.

Theorem 8. Given a graph G = (V,E) with a rotation system, an optimal
angle allocation can be computed in O(|E|3/2) time.

Proof. Consider the medial graph Gmed = (E,A) associated with the given
graph G = (V,E) and its rotation system. The vertices of Gmed are the edges
of G, and two vertices of Gmed are adjacent if the corresponding edges of G are
incident to the same vertex of G and consecutive in the circular ordering around
that vertex. The medial graph is always 4-regular. If G has no degree-1 vertices,
Gmed has no loops. If G has minimum degree 3, Gmed is simple.

Find a maximum matching M in Gmed using O(
√|E||A|) time [9]. The

edges in M correspond to independent angles that collectively single-cover 2|M |
edges of G (i.e., these edges are covered by only one of their adjacent vertices).
Add additional angles, one for every uncovered edge of G, to obtain an alloca-
tion α : V → 2E×E of total size |M |+(|E|−2|M |) = |E|− |M |. We claim that α
minimizes the number of angles. Indeed, suppose that there were an optimal
angle allocation with fewer angles that covered all edges of G, and then, since
no angle will double-cover two edges, there would be a larger set of independent
angles (a set of angles that do not double-cover any edge), contradicting the
maximality of M . ��

6 Isomorphic Thickness

Our motivation for considering angle covers was the observation that an angle
cover of a plane graph can be used to place the duplicate vertices in its 2-blowup
to show that the original graph is the union of two isomorphic planar graphs.

Theorem 9. If a plane graph G has an angle cover then the 2-blowup of G has
isomorphic thickness at most 2.

Angle Covers: Algorithms and Complexity 105

Proof. Let V and E be the vertices and edges of G. Let Va = {va : v ∈ V }
for a = 1, 2. Let Eab = {(ua, vb) : (u, v) ∈ E} for all a, b ∈ {1, 2}. Let λ be
an angle cover for G. Let H be the graph with vertices V1 ∪ V2 and edges
E11 ∪ ⋃

v∈V {(v2, x1), (v2, y1) : λ(v) = {(v, x), (v, y)}}, however, if for some edge
(u, v) in E, both λ(u) and λ(v) contain (u, v) then add only (u2, v1) or (u1, v2)
(not both) to H. Note that since λ is an angle cover for G, for every edge
(u, v) ∈ E, either (u2, v1) or (u1, v2) is an edge in H. Let H̃ be the graph
isomorphic to H where vertex va maps to vb with b = 3 − a. We claim that H
and H̃ are planar graphs whose union is the 2-blowup of G.

To see that H (and hence H̃) is planar, fix a planar straight-line drawing of
G realizing the embedding for which λ is the angle cover for G. Place v2 close
enough to v in the angle formed by the edges λ(v) = {(v, x), (v, y)}, so that
the segments (v2, x) and (v2, y) do not cross any edge segments of G. Such a
placement exists since the straight lines (v, x) and (v, y) do not cross any edge
segments of G. Relabel each vertex v in G as v1 and add the edges (u2, v1) in H
to the drawing. This creates a planar drawing of H (see Fig. 10).

The graph H contains all edges (u1, v1) for (u, v) ∈ E. It also contains the
edge (u1, v2) or (u2, v1) for every (u, v) ∈ E since λ is an angle cover. Hence, H̃
contains, for every (u, v) ∈ E, the edge (u2, v2) and the edge (u1, v2) or (u2, v1)
that is not in H. Thus the union of H and H̃ equals the 2-blowup of G. ��

As one would expect, not every planar graph whose 2-blowup has isomor-
phic thickness 2 has a plane embedding that admits an angle cover. In the full
version [3], we provide a small example.

7 Conclusion and Open Problems

For even d, we have shown that every maximum-degree-d graph with a rotation
system admits an a-angle cover for a ≈ �d/3�; see Theorem 4. This is optimal for
d = 6 and d = 8 (see Theorem 6). For d = 4, however, we need only one angle
per vertex, so we pose the following questions: For even d, does every graph of
maximum degree d with a rotation system admit an a-angle cover for a ≈ �δd�,
where δ < 1/3? What about graphs of maximum degree d if d is odd?

References

1. Alimonti, P., Kann, V.: Some APX-completeness results for cubic graphs.
Theor. Comput. Sci. 237(1), 123–134 (2000). https://doi.org/10.1016/S0304-
3975(98)00158-3

2. Dinur, I., Safra, S.: On the hardness of approximating vertex cover. Ann. Math.
162(1), 439–485 (2005). https://doi.org/10.4007/annals.2005.162.439

3. Evans, W., Gethner, E., Spalding-Jamieson, J., Wolff, A.: Angle covers: algorithms
and complexity. Arxiv (2019). http://arxiv.org/abs/1911.02040

4. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM J. Comput. 5(4), 691–703 (1976). https://doi.org/10.1137/
0205048

https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.1016/S0304-3975(98)00158-3
https://doi.org/10.4007/annals.2005.162.439
http://arxiv.org/abs/1911.02040
https://doi.org/10.1137/0205048
https://doi.org/10.1137/0205048

106 W. Evans et al.

5. Haas, R., et al.: Planar minimally rigid graphs and pseudo-triangulations. Comput.
Geom. 31(1), 31–61 (2005)

6. Kainen, P.C.: Thickness and coarseness of graphs. Abh. Math. Semin. Univ.
Hambg. 39(1), 88–95 (1973). https://doi.org/10.1007/BF02992822

7. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R., Thatcher,
J., Bohlinger, J. (eds.) Complexity of Computer Computations, IBM Research
Symposia, pp. 85–103. Springer, Boston (1972). https://doi.org/10.1007/978-1-
4684-2001-2

8. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε.
J. Comput. Syst. Sci. 74(3), 335–349 (2008). https://doi.org/10.1016/j.jcss.2007.
06.019

9. Micali, S., Vazirani, V.V.: An O(
√

|V ||E|) algorithm for finding maximum match-
ing in general graphs. In: Proceedings 21st Annual Symposium on Foundations
of Computer Science (FOCS), pp. 17–27. IEEE (1980). https://doi.org/10.1109/
SFCS.1980.12

10. Streinu, I.: A combinatorial approach to planar non-colliding robot arm motion
planning. In: Proceedings 41st Annual Symposium on Foundations of Computer
Science (FOCS), pp. 443–453. IEEE (2000). https://doi.org/10.1109/SFCS.2000.
892132

https://doi.org/10.1007/BF02992822
https://doi.org/10.1007/978-1-4684-2001-2
https://doi.org/10.1007/978-1-4684-2001-2
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1016/j.jcss.2007.06.019
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/SFCS.1980.12
https://doi.org/10.1109/SFCS.2000.892132
https://doi.org/10.1109/SFCS.2000.892132

Fast Multiple Pattern Cartesian Tree
Matching

Geonmo Gu1, Siwoo Song1, Simone Faro2, Thierry Lecroq3,
and Kunsoo Park1(B)

1 Seoul National University, Seoul, Korea
{gmgu,swsong,kpark}@theory.snu.ac.kr
2 University of Catania, Catania, Italy

faro@dmi.unict.it
3 Normandie University, Rouen, France

thierry.lecroq@univ-rouen.fr

Abstract. Cartesian tree matching is the problem of finding all sub-
strings in a given text which have the same Cartesian trees as that of a
given pattern. In this paper, we deal with Cartesian tree matching for
the case of multiple patterns. We present two fingerprinting methods,
i.e., the parent-distance encoding and the binary encoding. By combin-
ing an efficient fingerprinting method and a conventional multiple string
matching algorithm, we can efficiently solve multiple pattern Cartesian
tree matching. We propose three practical algorithms for multiple pattern
Cartesian tree matching based on the Wu-Manber algorithm, the Rabin-
Karp algorithm, and the Alpha Skip Search algorithm, respectively. In
the experiments we compare our solutions against the previous algorithm
[18]. Our solutions run faster than the previous algorithm as the pattern
lengths increase. Especially, our algorithm based on Wu-Manber runs
up to 33 times faster.

Keywords: Multiple pattern Cartesian tree matching ·
Parent-distance encoding · Binary encoding · Fingerprinting methods

1 Introduction

Cartesian tree matching is the problem of finding all substrings in a given text
which have the same Cartesian trees as that of a given pattern. For instance,
given text T = (6, 1, 5, 3, 6, 5, 7, 4, 2, 3, 1) and pattern P = (1, 4, 3, 4, 1) in Fig. 1a,
P has the same Cartesian tree as the substring (3, 6, 5, 7, 4) of T . Among many
generalized matchings, Cartesian tree matching is analogous to order-preserving

A full version of this paper is available at https://arxiv.org/abs/1911.01644. Gu, Song,
and Park were supported by Collaborative Genome Program for Fostering New Post-
Genome industry through the National Research Foundation of Korea (NRF) funded
by the Ministry of Science ICT and Future Planning (No. NRF-2014M3C9A3063541).

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 107–119, 2020.
https://doi.org/10.1007/978-3-030-39881-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_10&domain=pdf
https://arxiv.org/abs/1911.01644
https://doi.org/10.1007/978-3-030-39881-1_10

108 G. Gu et al.

0

1

2

3

4

5

6

7

•

•

•

•

•

•

•

•

•

•

••

•

•

•

•

Text

Pattern

(a) Cartesian tree matching (b) Left: double-top patterns. Right:
corresponding Cartesian trees.

Fig. 1. Cartesian tree matching: multiple Cartesian trees are required for the double-
top pattern.

matching [5,9,13,15] in the sense that they deal with relative order between num-
bers. Accordingly, both of them can be applied to time series data such as stock
price analysis, but Cartesian tree matching can be sometimes more appropriate
than order-preserving matching in finding patterns [18].

In this paper, we deal with Cartesian tree matching for the case of multi-
ple patterns. Although finding multiple different patterns is interesting by itself,
multiple pattern Cartesian tree matching can be applied in finding one mean-
ingful pattern when the meaningful pattern is represented by multiple Cartesian
trees: Suppose we are looking for the double-top pattern [17]. Two Cartesian
trees in Fig. 1b are required to identify the pattern, where the relative order
between S[1] and S[5] causes the difference. In general, the more complex the
pattern is, the more Cartesian trees having the same lengths are required. (e.g.,
the head-and-shoulder pattern [17] requires four Cartesian trees.)

Recently, Park et al. [18] introduced (single pattern) Cartesian tree match-
ing, multiple pattern Cartesian tree matching, and Cartesian tree indexing with
their respective algorithms. They proposed the parent-distance representation
that has a one-to-one mapping with Cartesian trees, and gave linear-time solu-
tions for the problems, utilizing the representation and existing string algorithms,
i.e., KMP algorithm, Aho-Corasick algorithm, and suffix tree construction algo-
rithm. Song et al. [19] proposed new representations about Cartesian trees, and
proposed practically fast algorithms for Cartesian tree matching based on the
framework of filtering and verification.

Extensive works have been done to develop algorithms for multiple pat-
tern matching, which is one of the fundamental problems in computer sci-
ence [11,16,20]. Aho and Corasick [1] presented a linear-time algorithm based
on an automaton. Commentz-Walter [6] presented an algorithm that combines
the Aho-Corasick algorithm and the Boyer-Moore technique [3]. Crochemore
et al. [8] proposed an algorithm that combines the Aho-Corasick automaton and
a Directed Acyclic Word Graph, which runs linear in the worst case and runs in

Fast Multiple Pattern Cartesian Tree Matching 109

O((n/m) log m) time in the average case, where m is the length of the shortest
pattern. Rabin and Karp [12] proposed an algorithm that runs linear on average
and O(nM) in the worst case, where M is the sum of lengths of all patterns.
Charras et al. [4] proposed an algorithm called Alpha Skip Search, which can
efficiently handle both single pattern and multiple patterns. Wu and Manber
[22] presented an algorithm that uses an extension of the Boyer-Moore-Horspool
technique.

In this paper we present practically fast algorithms for multiple pattern
Cartesian tree matching. We present three algorithms based on Wu-Manber,
Rabin-Karp, and Alpha Skip Search. All of them use the filtering and veri-
fication approach, where filtering relies on efficient fingerprinting methods of a
string. Two fingerprinting methods are presented, i.e., the parent-distance encod-
ing and the binary encoding. By combining an efficient fingerprinting method
and a conventional multiple string matching algorithm, we can efficiently solve
multiple pattern Cartesian tree matching. In the experiments we compare our
solutions against the previous algorithm [18] which is based on the Aho-Corasick
algorithm. Our solutions run faster than the previous algorithm. Especially, our
algorithm based on Wu-Manber runs up to 33 times faster.

2 Problem Definition

2.1 Notation

A string is a sequence of characters drawn from an alphabet Σ, which is a set
of integers. We assume that a comparison between any two characters can be
done in constant time. For a string S, S[i] represents the i-th character of S,
and S[i..j] represents the substring of S starting from i and ending at j.

A Cartesian tree [21] is a binary tree derived from a string. Specifically, the
Cartesian tree CT (S) for a string S can be uniquely defined as follows:

– If S is an empty string, CT (S) is an empty tree.
– If S is not empty and S[i] is the minimum value in S[1..n], CT (S) is the tree

with S[i] as the root, CT (S[1..i − 1]) as the left subtree, and CT (S[i + 1..n])
as the right subtree. If there is more than one minimum value, we choose the
leftmost one as the root.

Given two strings T [1..n] and P [1..m], where m ≤ n, we say that P matches
T at position i if CT (T [i − m + 1..i]) = CT (P [1..m]). For example, given
T = (6, 1, 5, 3, 6, 5, 7, 4, 2, 3, 1) and P = (1, 4, 3, 4, 1) in Fig. 1a, P matches T
at position 8. We also say that T [4..8] is a match of P in T .

Cartesian tree matching is the problem of finding all the matches in the text
which have the same Cartesian trees as a given pattern.

Definition 1. (Cartesian tree matching [18]) Given two strings text T [1..n]
and pattern P [1..m], find every m ≤ i ≤ n such that CT (T [i − m + 1..i]) =
CT (P [1..m]).

110 G. Gu et al.

2.2 Multiple Pattern Cartesian Tree Matching

Cartesian tree matching can be extended to the case of multiple patterns. Mul-
tiple pattern Cartesian tree matching is the problem of finding all the matches
in the text which have the same Cartesian trees as at least one of the given
patterns.

Definition 2. (Multiple pattern Cartesian tree matching [18]) Given a text
T [1..n] and patterns P1[1..m1], P2[1..m2], ..., Pk[1..mk], find every position in the
text which matches at least one pattern, i.e., it has the same Cartesian tree as
that of at least one pattern.

3 Fingerprinting Methods

Fingerprinting is a technique that maps a string to a much shorter form of
data, such as a bit string or an integer. In Cartesian tree matching, we can use
fingerprints to filter out unpromising matching positions with low computational
cost.

In this section we introduce two fingerprinting methods, i.e., the parent-
distance encoding and the binary encoding, for the purpose of representing infor-
mation about Cartesian tree as an integer. The two encodings make use of the
parent-distance representation and the binary representation, respectively, both
of which are strings that represent Cartesian trees.

3.1 Parent-Distance Encoding

In order to represent Cartesian trees efficiently, Park et al. proposed the parent-
distance representation [18], which is another form of the all nearest smaller
values [2].

Definition 3. (Parent-distance representation) Given a string S[1..n], the
parent-distance representation of S is an integer string PD(S)[1..n], which is
defined as follows:

PD(S)[i] =

{
i − max1≤j<i{j : S[j] ≤ S[i]} if such j exists
0 otherwise

(1)

Intuitively, PD(S)[i] stores the distance between S[i] and the parent of S[i]
in CT (S[1..i]). For example, the parent-distance representation of string S =
(11, 14, 13, 15, 12) is PD(S) = (0, 1, 2, 1, 4), where PD(S)[3] = 3 − 1 = 2 stores
the distance between S[3] and S[1] (S[1] is the parent of S[3] in CT (S[1..3])). The
parent-distance representation has a one-to-one mapping to the Cartesian tree
[18], and so if two strings have the same parent-distance representations, the two
strings also have the same Cartesian trees. The parent-distance representation
of a string can be computed in linear time [18]. Note that PD(S)[i] holds a value
between 0 to i − 1 by definition, and PD(S)[1] = 0 at all times.

Fast Multiple Pattern Cartesian Tree Matching 111

With the parent-distance representation, we can define a fingerprint encoding
function that maps a string to an integer, using the factorial number system [14].

Definition 4. (Parent-distance Encoding) Given a string S[1..n], the encoding
function f(S), which maps S into an integer within the range [0..n! − 1], is
defined as follows:

f(S) =
n∑

i=2

(PD(S)[i]) · (i − 1)!. (2)

The parent-distance encoding maps a string into a unique integer according to its
parent-distance representation. That is, given two strings S1 and S2, CT (S1) =
CT (S2) if and only if f(S1) = f(S2). This is because if PD(S1) �= PD(S2)
then f(S1) �= f(S2) due to the fact that PD(S)[i] < i. The encoding function
f(S[1..n]) can be computed in O(n) time, since PD(S) can be computed in
linear time. For a long string, the fingerprint may not fit in a word size, so we
select a prime number by which we divide the fingerprint, and use the residue
instead of the actual fingerprint. A similar encoding function was used to solve
the multiple pattern order-preserving matching problem [10].

3.2 Binary Encoding

For order-preserving matching, the representation of a string as a binary string
is first presented by Chhabra and Tarhio [5]. Recently, Song et al. make use of
the binary representation for Cartesian tree matching as follows [19].

Definition 5. (Binary representation) Given an n-length string S, binary rep-
resentation β(S) of length n − 1 is defined as follows: for 1 ≤ i ≤ n − 1,

β(S)[i] =

{
1 if S[i] ≤ S[i + 1]
0 otherwise.

(3)

Given two strings S1[1..n] and S2[1..n], the binary representations β(S1) and
β(S2) are the same if the Cartesian trees CT (S1) and CT (S2) are the same
[19]. Obviously, the Cartesian tree has a many-to-one mapping to the binary
representation. Thus, two strings whose binary representations are the same
may not have the same Cartesian trees, but two strings whose Cartesian trees
are the same have the same binary representations.

A fingerprint encoding function f(S) can be defined using the binary repre-
sentation.

Definition 6. (Binary Encoding) Given a string S[1..n], encoding function
f(S), which maps S into an integer within the range [0..2n−1 − 1], is defined
as follows:

f(S) =
n−1∑
i=1

(β(S)[i] · 2n−1−i). (4)

112 G. Gu et al.

Since f(S) is a polynomial, it can be efficiently computed in linear time using
Horner’s rule [7]. Moreover, a fingerprint computed by the binary encoding can
be reused when two strings overlap, which is discussed in the full version of this
paper. Like the parent-distance encoding, in case the fingerprint does not fit in
a word size, we select a prime number by which we divide the fingerprint, and
use the residue instead of the actual fingerprint.

4 Fast Multiple Pattern Cartesian Tree Matching
Algorithms

In this section we introduce three algorithms for multiple pattern Cartesian tree
matching. Each of them consists of preprocessing and search. In the prepro-
cessing step, hash tables are built using fingerprints of patterns. In the search
step, the filtering and verification approach is adopted. To filter out unpromising
matching positions, a fingerprinting method is applied to either length-m sub-
strings of the text, where m is the length of the shortest pattern, or much shorter
length-b substrings of the text (we will discuss how to set b in Sect. 4.4). Then
each candidate pattern is verified by an efficient comparison method (which is
described in the full version of this paper).

Algorithm 1. Algorithm based on Wu-Manber
1: input: text T [1..n] and patterns P1[1..m1], P2[1..m2], ..., Pk[1..mk]
2: output: every position in T that matches at least one of the patterns
3: procedure Preprocessing
4: m ← min(m1,m2, ...,mk)
5: b ← log2(km)
6: Initialize each entry of SHIFT to m − b + 1
7: for i ← 1 to k do
8: for j ← b to m − 1 do
9: fp ← f(Pi[j − b + 1..j])

10: if SHIFT[fp] > m − j then
11: SHIFT[fp] ← m − j

12: fp ← f(Pi[m − b + 1..m])
13: HASH[fp].add(i)

14: procedure Search
15: index ← m
16: while index ≤ n do
17: fp ← f(T [index − b + 1..index])
18: for i ∈ HASH[fp] do
19: if Pi matches T [index − m + 1..index − m + mi] then
20: output index − m + mi

21: index ← index + SHIFT[fp]

Fast Multiple Pattern Cartesian Tree Matching 113

4.1 Algorithm Based on Wu-Manber

Algorithm 1 shows the pseudo-code of an algorithm for multiple pattern Carte-
sian tree matching based on the Wu-Manber algorithm [22]. The algorithm uses
two hash tables, HASH and SHIFT. Both tables use a fingerprint of length-b
string, called a block. Either the parent-distance encoding or the binary encod-
ing is used to compute the fingerprint. Given patterns P1, P2, ..., Pk, let m be
the length of the shortest pattern. HASH maps a fingerprint fp of a block to the
list of patterns Pi such that the fingerprint of the last block in Pi’s length-m
prefix is the same as fp. For a block B[1..b] and a fingerprint encoding function
f , HASH is defined as follows:

HASH[f(B)] = {i : f(Pi[m − b + 1..m]) = f(B), 1 ≤ i ≤ k} (5)

SHIFT maps a fingerprint fp of a block to the amount of a valid shift when
the block appears in the text. The shift value is determined by the rightmost
occurrence of a block in terms of the fingerprint among length-(m − 1) prefixes
of the patterns. For a block B[1..b] and a fingerprint encoding function f , we
define the rightmost occurrence rB as follows:

rB =

{
maxb≤j≤m−1{j : f(Pi[j − b + 1..j]) = f(B), 1 ≤ i ≤ k} if such j exists
0 otherwise

(6)
Then SHIFT is defined as follows:

SHIFT[f(B)] = m − rB (7)

In the preprocessing step, we build HASH and SHIFT (as described in
Algorithm 1). In the search step, we scan the text from left to right, comput-
ing the fingerprint of a length-b substring of the text to get a list of patterns
from HASH. Let index be the current scanning position of the text. We compute
fingerprint fp of T [index − b + 1..index], and get a list of patterns in the entry
HASH[fp]. If the list is not empty, each pattern is verified by an efficient compari-
son method (see the full version). Consider Pi[1..mi] in the list. The comparison
method verifies whether Pi matches T [index − m + 1..index − m + mi]. After
verifying all patterns in the list, the text is shifted by SHIFT[fp].

The worst case time complexity of Algorithm 1 is O((M + b)n), where M
is the total pattern length, b is the block size, and n is the length of the text
(consider T = 1n and the patterns of which prefixes are 1m). On the other hand,
the best case time complexity of Algorithm 1 is O(bn

m−b).

4.2 Algorithm Based on Rabin-Karp

The second algorithm for multiple pattern Cartesian tree matching is based
on the Rabin-Karp algorithm [12]. The algorithm uses one hash table, namely
HASH. HASH is similarly defined as in Algorithm 1 except that we consider

114 G. Gu et al.

length-m prefixes instead of blocks and we use only binary encoding for fin-
gerprinting. For a string S[1..m] and the binary encoding function f , HASH is
defined as follows:

HASH[f(S)] = {i : f(Pi[1..m]) = f(S), 1 ≤ i ≤ k} (8)

In the preprocessing step, we build HASH. In the search step, we shift one
by one, and compute the fingerprint of a length-m substring of the text to get
candidate patterns by using HASH. Again, each candidate pattern is verified by
an efficient comparison method.

Given a fingerprint at position i of the text, the next fingerprint at position
i + 1 can be computed in constant time if we use the binary encoding as a
fingerprinting method. Let the former fingerprint be fpi = f(T [i−m+1..i]) and
the latter one be fpi+1 = f(T [i − m + 2..i + 1]). Then,

fpi+1 = 2(fpi − 2m−2β(T)[i − m + 1]) + β(T)[i] (9)

Subtracting 2m−2β(T)[i − m + 1] removes the leftmost bit from fpi, multiplying
the result by 2 shifts the number to the left by one position, and adding β(T)[i]
brings in the appropriate rightmost bit.

The worst case time complexity of the algorithm is O(Mn) (consider T = 1n

and patterns of which prefixes are 1m). The best case time complexity is O(n)
since fingerprint fi at position i, m + 1 ≤ i ≤ n, can be computed in O(1) time
using Eq. (9).

4.3 Algorithm Based on Alpha Skip Search

The third algorithm for multiple pattern Cartesian tree matching is based on
Alpha Skip Search [4]. Recall that a length-b string is called a block. The algo-
rithm uses a hash table POS that maps the fingerprint of a block to a list of
occurrences in all length-m prefixes of the patterns. Either the parent-distance
encoding or the binary encoding is used for fingerprinting. For a block B[1..b]
and a fingerprint encoding function f , POS is defined as follows:

POS[f(B)] = {(i, j) : f(Pi[j − b + 1..j]) = f(B), 1 ≤ i ≤ k, b ≤ j ≤ m} (10)

In the preprocessing step, we build POS. In the search step, we scan the
text from left to right, computing the fingerprint of a length-b substring of the
text to get the list of pairs (i, j), meaning that the fingerprint of Pi[j − b + 1..j]
is the same as that of the substring of the text. Verification using an efficient
comparison method is performed for each pair in the list. Note that the algorithm
always shifts by m − b + 1.

The worst case time complexity of the algorithm is O((M + b)n), where M
is the total pattern length, b is the block size, and n is the length of the text
(consider T = 1n and patterns of which prefixes are 1m). On the other hand,
the best case time complexity of the algorithm is O(bn

m−b) since the algorithm
always shifts by m − b + 1.

Fast Multiple Pattern Cartesian Tree Matching 115

4.4 Selecting the Block Size

The size of the block affects the running time of the presented algorithms based
on Wu-Manber and Alpha Skip Search. A longer block size leads to a lower
probability of candidate pattern occurrences, so it decreases verification time.
On the other hand, a longer block size increases the overhead required for com-
puting fingerprints. Thus, it is important to set a block size appropriate for each
algorithm.

In order to set a block size, we first study the matching probability of two
strings, in terms of Cartesian trees. Assume that numbers are independent and
identically distributed, and there are no identical numbers within any length-n
string.

Lemma 1. Given two strings S1[1..n] and S2[1..n], the probability p(n) that S1

and S2 have the same Cartesian tree can be defined by the recurrence formula,
where p(0) = 1 and p(1) = 1, as follows:

p(n) =
p(0)p(n − 1) + p(1)p(n − 2) + · · · + p(n − 1)p(0)

n2
(11)

We have the following upper bound on the matching probability.

Theorem 1. Assume that numbers are independent and identically distributed,
and there are no identical numbers within any length-n string. Given two strings
S1[1..n] and S2[1..n], the probability that the two strings match, in terms of
Cartesian trees, is at most 1

2n−1 , i.e., p(n) ≤ 1
2n−1 .

We set the block size b = log2(km) if log2(km) ≤ m; otherwise we set b = m,
where k is the number of patterns and m is the length of the shortest pattern,
in order to get a low probability of match and a relatively short block size with
respect to m. By Theorem 1, if we set b = log2(km), p(b) ≤ 2

km .

5 Experiments

We conduct experiments to evaluate the performances of the proposed algorithms
against the previous algorithm. We compare algorithms based on Aho-Corasick
(AC) [18], Wu-Manber (WM), Rabin-Karp (RM), and Alpha Skip Search (AS).
By default, all our algorithms use optimization techniques described in the full
version of this paper, except the min-index filtering method which is evaluated
in the experiments. Particularly, in order to compare the fingerprinting methods
and see the effect of min-index filtering method, we compare variants of our
algorithms. The following algorithms are evaluated.

– AC: multiple Cartesian tree matching algorithm based on Aho-Corasick [18].
– WMP: algorithm based on Wu-Manber that uses the parent-distance encoding

as a fingerprinting method.
– WMB: algorithm based on Wu-Manber that uses the binary encoding as

a fingerprinting method. The algorithm reuses fingerprints when adjacent
blocks overlap b − 1 characters (i.e., when the text shifts by one position),
where b is the block size.

116 G. Gu et al.

– WMBM: WMB that exploits additional min-index filtering.
– RK: algorithm based on Rabin-Karp that uses the binary encoding as a fin-

gerprinting method.
– ASB: algorithm based on Alpha Skip Search that uses the binary encoding

as a fingerprinting method. The algorithm reuses fingerprints when adjacent
blocks overlap b − 1 characters.

All algorithms are implemented in C++. Experiments are conducted on a
machine with Intel Xeon E5-2630 v4 2.20 GHz CPU and 128 GB memory running
CentOS Linux.

The total time includes the preprocessing time for building data structures
and the search time. To evaluate an algorithm, we run it 100 times and measure
the average total time in milliseconds.

We randomly build a text of length 10,000,000 where the alphabet size is
1,000. A pattern is extracted from the text at a random position.

5.1 Evaluation on the Equal Length Patterns

We first conduct experiments with sets of patterns of the same length.
Figures 2a, 2c, and 2e show the results, where k is the number of patterns and
x-axis represents the length of the patterns, i.e., m. As the length of the patterns
increases, WMB, WMBM, and ASB become the fastest algorithms due to a long
shift length, low verification time, and light fingerprinting method. WMBM and
WMB outperforms AC up to 33 times (k = 100 and m = 256). ASB outperforms
AC up to 28 times (k = 10 and m = 256). RK outperforms AC up to 3 times
(k = 50, 100 and m = 16). When the length of the patterns is extremely short,
however, AC is the clear winner (m = 4). In this case, other algorithms näıvely
compare the greatest part of patterns for each position of the text. WMP works
visibly worse when m = 8 due to the extreme situation and overhead of the
fingerprinting method. Since short patterns are more likely to have the same
Cartesian trees, the proposed algorithms are sometimes faster when m = 4 than
when m = 8 due to the grouping technique described in the full version of this
paper. Comparing WMB and WMBM, the min-index filtering method is more
effective when there are many short patterns (k = 100 and m = 4, 8).

5.2 Evaluation on the Different Length Patterns

We compare algorithms with sets of patterns of different lengths. Figures 2b,
2d, and 2f show the results. The length is randomly selected in an interval, i.e.,
[8, 32], [16, 64], [32, 128], and [64, 256]. After a length is selected, a pattern
is extracted from the text at a random position. When there are many short
patterns, i.e., k = 100 and patterns of length 8–32, AC is the fastest due to the
short minimum pattern length.

When the length of the shortest pattern is sufficiently long, however, the
proposed algorithms outperform AC. Specifically WMB outperforms AC up to
20 times (k = 10, 50, 100 and patterns of length 64–256). ASB outperforms AC

Fast Multiple Pattern Cartesian Tree Matching 117

(a) k = 10 (b) k = 10

(c) k = 50 (d) k = 50

(e) k = 100 (f) k = 100

Fig. 2. Evaluation on the length of pattern. Left: patterns of equal length. Right:
patterns of different lengths.

up to 14 times (k = 10 and patterns of length 64–256). RK outperforms AC
up to 4 times (k = 100 and patterns of length 16–64).

5.3 Evaluation on the Real Dataset

We conduct experiment on a real dataset, which is a time series of Seoul tem-
peratures. The Seoul temperatures dataset consists of 658,795 integers referring
to the hourly temperatures in Seoul (multiplied by ten) in the years 1907–2019
[19]. In general, temperatures rise during the day and fall at night. Therefore,
the Seoul temperatures dataset has more matches than random datasets when
patterns are extracted from the text. Figure 3 shows the results on the Seoul
temperatures dataset with sets of patterns of the same length. As the pattern
length grows, the proposed algorithms run much faster than AC. For short pat-
terns (m = 4, 8), AC is the fastest algorithm, and AC is up to twice times faster

118 G. Gu et al.

(a) k = 10 (b) k = 50 (c) k = 100

Fig. 3. Evaluation on the Seoul temperatures dataset.

than WMBM (m = 4 and k = 100) and 1.7 times faster than RK (m = 8 and
k = 100). For moderate-length patterns (m = 16, 32), RK is up to 2.8 times
faster than AC (m = 16 and k = 10), and WMB is up to 4 times faster than
AC (m = 32 and k = 10). For relatively long patterns (m = 64, 128, 256), all
the proposed algorithms outperform AC. Specifically, WMB, WMBM, ASB, and
WMP outperform AC up to 28, 26, 11, and 10 times, respectively (m = 256 and
k = 10), and RK outperforms AC up to 2.9 times (m = 256 and k = 100).

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Berkman, O., Schieber, B., Vishkin, U.: Optimal doubly logarithmic parallel algo-
rithms based on finding all nearest smaller values. J. Algorithms 14(3), 344–370
(1993)

3. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM 20(10),
762–772 (1977)

4. Charras, C., Lecroq, T., Pehoushek, J.D.: A very fast string matching algorithm
for small alphabets and long patterns. In: Farach-Colton, M. (ed.) CPM 1998.
LNCS, vol. 1448, pp. 55–64. Springer, Heidelberg (1998). https://doi.org/10.1007/
BFb0030780

5. Chhabra, T., Tarhio, J.: Order-preserving matching with filtration. In:
Gudmundsson, J., Katajainen, J. (eds.) SEA 2014. LNCS, vol. 8504, pp. 307–314.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07959-2 26

6. Commentz-Walter, B.: A string matching algorithm fast on the average. In: Maurer,
H.A. (ed.) ICALP 1979. LNCS, vol. 71, pp. 118–132. Springer, Heidelberg (1979).
https://doi.org/10.1007/3-540-09510-1 10

7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms
second edition. The Knuth-Morris-Pratt Algorithm (2001)

8. Crochemore, M., Czumaj, A., Gasieniec, L., Lecroq, T., Plandowski, W., Rytter,
W.: Fast practical multi-pattern matching. Inf. Process. Lett. 71(3–4), 107–113
(1999)

9. Ganguly, A., Hon, W.K., Sadakane, K., Shah, R., Thankachan, S.V., Yang, Y.:
Space-efficient dictionaries for parameterized and order-preserving pattern match-
ing. In: 27th Annual Symposium on Combinatorial Pattern Matching (CPM), pp.
2:1–2:12. LIPIcs (2016)

https://doi.org/10.1007/BFb0030780
https://doi.org/10.1007/BFb0030780
https://doi.org/10.1007/978-3-319-07959-2_26
https://doi.org/10.1007/3-540-09510-1_10

Fast Multiple Pattern Cartesian Tree Matching 119

10. Han, M., Kang, M., Cho, S., Gu, G., Sim, J.S., Park, K.: Fast multiple order-
preserving matching algorithms. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015.
LNCS, vol. 9538, pp. 248–259. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-29516-9 21

11. Hua, N., Song, H., Lakshman, T.: Variable-stride multi-pattern matching for scal-
able deep packet inspection. In: IEEE INFOCOM 2009, pp. 415–423. IEEE (2009)

12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

13. Kim, J., et al.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79 (2014)
14. Knuth, D.E.: The Art of Computer Programming, volume 2: Seminumerical algo-

rithms. Addison-Wesley Professional, Boston (2014)
15. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A linear

time algorithm for consecutive permutation pattern matching. Inf. Process. Let.
113(12), 430–433 (2013)

16. Liao, H.J., Lin, C.H.R., Lin, Y.C., Tung, K.Y.: Intrusion detection system: a com-
prehensive review. J. Netw. Comput. Appl. 36(1), 16–24 (2013)

17. Liu, J.N., Kwong, R.W.: Automatic extraction and identification of chart patterns
towards financial forecast. Appl. Soft Comput. 7(4), 1197–1208 (2007)

18. Park, S., Amir, A., Landau, G.M., Park, K.: Cartesian tree matching and indexing.
In: 30th Annual Symposium on Combinatorial Pattern Matching (CPM), pp. 16:1–
16:14. LIPIcs (2019)

19. Song, S., Ryu, C., Faro, S., Lecroq, T., Park, K.: Fast cartesian tree matching. In:
Brisaboa, N.R., Puglisi, S.J. (eds.) SPIRE 2019. LNCS, vol. 11811, pp. 124–137.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32686-9 9

20. Song, T., Zhang, W., Wang, D., Xue, Y.: A memory efficient multiple pattern
matching architecture for network security. In: IEEE INFOCOM 2008-The 27th
Conference on Computer Communications, pp. 166–170. IEEE (2008)

21. Vuillemin, J.: A unifying look at data structures. Commun. ACM 23(4), 229–239
(1980)

22. Wu, S., Manber, U.: A fast algorithm for multi-pattern searching. Technical report.
TR-94-17, Department of Computer Science, University of Arizona (1994)

https://doi.org/10.1007/978-3-319-29516-9_21
https://doi.org/10.1007/978-3-319-29516-9_21
https://doi.org/10.1007/978-3-030-32686-9_9

Generalized Dictionary Matching Under
Substring Consistent Equivalence

Relations

Diptarama Hendrian(B)

Graduate School of Information Sciences, Tohoku University, Sendai, Japan
diptarama@tohoku.ac.jp

Abstract. Given a set of patterns called a dictionary and a text, the
dictionary matching problem is a task to find all occurrence positions
of all patterns in the text. The dictionary matching problem can be
solved efficiently by using the Aho-Corasick algorithm. Recently, Mat-
suoka et al. [TCS, 2016] proposed a generalization of pattern matching
problem under substring consistent equivalence relations and presented
a generalization of the Knuth-Morris-Pratt algorithm to solve this prob-
lem. An equivalence relation ≈ is a substring consistent equivalence rela-
tion (SCER) if for two strings X, Y , X ≈ Y implies |X| = |Y | and
X[i : j] ≈ Y [i : j] for all 1 ≤ i ≤ j ≤ |X|. In this paper, we propose a
generalization of the dictionary matching problem and present a general-
ization of the Aho-Corasick algorithm for the dictionary matching under
SCER. We present an algorithm that constructs SCER automata and
an algorithm that performs dictionary matching under SCER by using
the automata. Moreover, we show the time and space complexity of our
algorithms with respect to the size of input strings.

Keywords: Dictionary matching · Aho-Corasick algorithm · Substring
consistent equivalence relation

1 Introduction

The pattern matching problem is one of the most fundamental problems in string
processing and extensively studied due to its wide range of applications [7,8].
Given a text T of length n and a pattern P of length m, the pattern matching
problem is to find all occurrence positions of P in T . A naive approach to solve
this problem is by comparing all substrings of T whose length is m to P which
takes O(nm) time. One of the algorithms that can solve this problem in linear
time and space is the Knuth-Morris-Pratt (KMP) algorithm [15]. The KMP
algorithm constructs an O(m) space array as a failure function by preprocessing
the pattern in O(m) time, then uses the failure function to perform pattern
matching in O(n) time.

This research was supported by JSPS KAKENHI Grant Number JP19K20208.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 120–132, 2020.
https://doi.org/10.1007/978-3-030-39881-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_11&domain=pdf
http://orcid.org/0000-0002-8168-7312
https://doi.org/10.1007/978-3-030-39881-1_11

Generalized Dictionary Matching Under SCERs 121

Many variants of pattern matching problems are studied for various appli-
cations such as parameterized pattern matching [6] for detecting duplication in
source code, order-preserving pattern matching [14,16] for numerical analysis,
permuted pattern matching [13] for multi sensor data, and so on [18]. In order
to solve these problems efficiently, the KMP algorithm is extended for the above
mentioned pattern matching problems [3,9,11,14,16,18].

Table 1. The time complexity of the proposed algorithm on some dictionary matching
problems.

ξ(n) φ(�) π Preprocessing Searching

Exact O(1) O(1) |Σ| O(m log |Σ|) O(n log |Σ| + occ)

Parameterized O(n) O(1) |Σ| O(m log |Σ|) O(n log |Σ| + occ)

Order-preserving O(1) O(log �) � O(m log �) O(n log � + occ)

Recently, Matsuoka et al. [17] defined a general pattern matching problem
under a substring consistent equivalence relation. An equivalence relation ≈ for
two strings X ≈ Y is a substring consistent equivalence relation (SCER) [17]
if for two strings X,Y , X ≈ Y implies |X| = |Y | and X[i : j] ≈ Y [i : j] for
all 1 ≤ i ≤ j ≤ |X|. The equivalence relations used in parameterized pattern
matching, order-preserving pattern matching, and permuted pattern matching
are SCERs. Matsuoka et al. proposed a generalized KMP algorithm that can
solve any pattern matching under SCER and showed the time complexity of the
algorithm. They also show periodicity properties on strings under SCERs.

The dictionary matching problem is a task to find all occurrence positions of
multiple patterns in a text. Given a set of patterns called a dictionary D, we can
find the occurrence positions of all patterns in a text T by performing pattern
matching for each pattern in the dictionary. However, we need to read the text
multiple times in this approach. Aho and Corasick [1] proposed an algorithm
that can perform dictionary matching in linear time by extending the failure
function of the KMP algorithm. The Aho-Corasick (AC) algorithm constructs
an automaton (we call this automaton as an AC-automaton) from D and then
uses this automaton to find the occurrences of all patterns in the text. The AC-
automaton of D uses O(m) space and can be constructed in O(m log |Σ|) time,
where m is the sum of the length of all patterns in D and |Σ| is the alphabet
size. By using an AC-automaton, all occurrences of patterns in T can be found
only by reading T once, which takes O(n log |Σ|) time. Similarly to the KMP
algorithm, the AC algorithm is also extended to perform dictionary matching
on some variant of strings [10–14]. In order to perform dictionary matching
efficiently, the extended AC algorithms encode the patterns in a dictionary and
create an automaton from the encoded patterns instead of the patterns itself.

In this paper, we propose a generalization of the Aho-Corasick algorithm for
dictionary matching under SCER. The proposed algorithm encodes the patterns
in the dictionary, and then constructs an automaton with a failure function called

122 D. Hendrian

a b b a

a b

ab

b

a

b

{aabba,bba}

{abab}

{bba}

Fig. 1. The AC-automaton of D = {aabba, abab, bba}. The solid arrows represent the
goto function, the dashed blue arrows represent the failure function, and the sets of
strings represent the output function.

a substring consistent equivalence relation automaton (SCER automaton) from
the encoded strings. We present an algorithm to construct SCER automata and
show how to perform dictionary matching by using SCER automata. Suppose
we can encode a string X in ξ(|X|) time and re-encode X[i : j][j − i + 1] in
φ(|X[i : j]|) time, we show that the size of SCER automaton is O(m) and can be
constructed in O(ξ(m)+m·(φ(�)+log π)) time, where m is the sum of the length
of all patterns in the dictionary, � is the length of the longest patterns in the
dictionary, and π is the maximum number of possible outgoing transitions from
any state. Moreover, we show that the dictionary matching under SCER can be
performed in O(ξ(n) + n · (φ(�) + log π)) time by using SCER automata, where
n is the length of the text. By using our algorithm, we can perform dictionary
matching under any SCER. Table 1 shows the time complexity of our algorithm
on some dictionary matching problems.

2 Preliminaries

Let Σ and Π be integer alphabets, and Σ∗ (resp. Π∗) be the set of all strings
over Σ (resp. Π). The empty string ε is the string of length 0. We assume that
the size of any symbol in Σ and Π is constant and a comparison of any two
symbols in Σ or Π can be done in constant time in word RAM model. For a
string T ∈ Σ∗, |T | denotes the length of T . For 1 ≤ i ≤ j ≤ |T |, T [i] denotes
the i-th character of T and T [i : j] denotes the substring of T that starts at i
and ends at j. Let T [: j] = T [1 : j] denote the prefix of T that ends at j and
T [i :] = T [i : |T |] denote the suffix of T that starts at i. For convenience we
define T [i : j] = ε if j < i. Note that ε is a substring, a prefix, and a suffix of
any string. For a string T , let Pref(T) denote the set of all prefixes of P . For two
strings X and Y , we denote by XY or X · Y the concatenation of X and Y .

Let D = {P1, P2, ..., Pd} be a set of patterns, called a dictionary. Let |D|
denote the number of patterns in D and ‖D‖ = Σ

|D|
k=1|Pk| denote the total length

Generalized Dictionary Matching Under SCERs 123

of the patterns in D. For a dictionary D, Pref(D) =
⋃|D|

k=1 Pref(Pk) is the set of
all prefixes of the patterns in D.

The Aho-Corasick automaton [1] AC(D) of D consists of a set of states and
three functions: goto, failure, and output functions. Each state of AC(D) cor-
responds to a prefix in Pref(D). The goto function δD of AC(D) is defined so
that δD(Pk[: i], Pk[i + 1]) = Pk[: i + 1], for any Pk ∈ D and 1 ≤ i < |Pk|. The
failure fuction failD of AC(D) is defined so that failD(Pk[: i]) = Pk[j : i] where
j = min{l | l > 1, Pk[l : i] ∈ Pref(D)}. The output fuction outD of AC(D)
is defined as outD(Pk[: j]) = {P ∈ D | P = Pk[i : j] for some 1 ≤ i ≤ j}.
Figure 1 shows an example of AC-automaton. We will define a generalization of
AC-automata later in Sect. 3.

Next, we define the class of equivalence relations that we consider in this
paper called substring consistent equivalence relations.

Definition 1 (Substring consistent equivalence relation (SCER) [17]).
An equivalence relation ≈ ⊆ Σ∗ × Σ∗ is a substring consistent equivalence
relation (SCER) if for two string X and Y , X ≈ Y implies |X| = |Y | and
X[i : j] ≈ Y [i : j] for all 1 ≤ i ≤ j ≤ |X|.
We say X ≈-matches Y iff X ≈ Y . For instance, the matching relations in
parameterized pattern matching [6], order-preserving pattern matching [14,16],
and permuted pattern matching [13] are SCERs, while the matching relations
in indeterminate string pattern matching [5] and function matching [2] are not.

Matsuoka et al. [17] define occurrences of a pattern in a text under an SCER
≈, which is used to define the pattern matching under SCERs as follows.

Definition 2 (≈-occurrence). For two strings T and P , a position i, 1 ≤ i ≤
|T | − |P | + 1, is an ≈-occurrence of P in T iff P ≈ T [i : i + |P | − 1].

By using the above definition we define the dictionary matching under SCERs.

Definition 3 (Dictionary matching under SCERs). Given a dictionary
D = {P1, P2, . . . , Pd} and a text T , the dictionary matching with respect to an
SCER ≈ (≈-dictionary matching) is a task to find all ≈-occurrences of Pk in T
for all Pk ∈ D.

In order to perform some variants of dictionary matching fast, encodings are
used on strings. For instance, the prev-encoding is used for parameterized pattern
matching [12] and the nearest neighbor encoding is used for order-preserving pat-
tern matching [14]. Following the previous research, we generalize these encod-
ings for SCERs as follows.

Definition 4 (≈-prefix encoding). Let Σ and Π be alphabets. We say an
encoding function f : Σ∗ → Π∗ is a prefix encoding with respect to an SCER ≈
(≈-prefix encoding) if (1) for a string X, |X| = |f(X)|, (2) f(X[: i]) = f(X)[: i],
and (3) for two strings X and Y , f(X) = f(Y) iff X ≈ Y .

124 D. Hendrian

We can easily confirm that both the prev-encoding [6] and the nearest neighbor
encoding [14] are prefix encodings. Amir and Kondratovsky [4] show that there
exists a prefix encoding for any SCER. By using a ≈-prefix encoding, if X[: i] ≈
Y [: i] we can check whether X[: i + 1] ≈ Y [: i + 1] just by checking whether
f(X)[i + 1] = f(Y)[i + 1]. Therefore, ≈-dictionary matching can be performed
fast by using prefix encoded strings.

For a string P and prefix encoding f , let we denote f(P) by 〈P 〉 for simplicity.
For a dictionary D = {P1, P2, . . . , Pd}, let 〈D〉 = {〈P1〉, 〈P2〉, . . . , 〈Pd〉} and
〈Pref(D)〉 = Pref(〈D〉) =

⋃d
k=1 Pref(〈Pk〉).

Throughout the paper, let T be a text of length n, D be a dictionary, d =
|D|, m = ‖D‖, and � = max{|Pk| | Pk ∈ D}. Let Π∗ be the co-domain of
a ≈-prefix encoding. For a string X, suppose that 〈X〉 can be computed in
ξ(|X|) time. Assuming that 〈X〉 has been computed, suppose we can re-encode
〈X[i : j]〉[j − i + 1] in φ(|X[i : j]|) time.

3 SCER Automata

In this section, we propose automata for the ≈-dictionary matching problem
called substring consistent equivalence relation automata (SCERAs). First, we
describe the definition and properties of the SCERA for a dictionary D, then
show the size of the SCERA of D with respect to the size of D. After that,
we propose a ≈-dictionary matching algorithm by using SCERAs and show the
time complexity of the proposed algorithm. Last, we present an algorithm to
construct SCERAs and show its time complexity.

3.1 Definition and Properties

For a dictionary D = {P1, P2, . . . , Pd}, the substring consistent equivalence rela-
tion automaton SCERA(D) of D consists of a set of states and three functions,
namely goto, failure, and output functions.

The set of states SD of SCERA(D) defined as follows.

SD = {S | S ∈ Pref(〈D〉)}

Each state of SCERA(D) corresponds to a prefix of 〈Pk〉 for some Pk ∈ D, thus we
can identify each state by the corresponded prefix. Since the number of prefixes
of Pk is |Pk| + 1 and |Pk| = |〈Pk〉|, the number of states of SCERA(D) is as
follows.

Lemma 1. For a dictionary D, the number of states |SD| of SCERA(D) is O(m).

Next, we define the functions in SCERA(D). First, the goto function δD of
SCERA(D) is defined as follows.

Generalized Dictionary Matching Under SCERs 125

Definition 5 (Goto function). The goto function δD : SD ·Π → SD ∪{NULL}
of SCERA(D) is defined by

δD(S, c) =

{
S · c if (S · c) ∈ SD,

NULL otherwise.

Intuitively, δD(〈Pk〉[: j], 〈Pk〉[j + 1]) = 〈Pk〉[: j + 1], for any Pk ∈ D and 0 ≤ j <
|Pk|. The states and goto function form a trie of all encoded patterns in 〈D〉. For
two states S and S′ such that S′ = δD(S, c) for some c ∈ Π, we call S the parent
of S′ and S′ a child of S. For convenience, for a state S and a string X ∈ Π∗,
let δD(S,X) = δD(δD(S,X[1]),X[2 :]) and δD(S, ε) = S. Here we denote by π,
the maximum number of possible outgoing transitions from any state.

Next, the failure function failD of SCERA(D) is defined as follows.

Definition 6 (Failure function). The failure function failD : SD → SD ∪
{NULL} of SCERA(D) is defined by failD(ε) = NULL and failD(〈Pk〉[: j]) =
〈Pk[i : j]〉 for 1 ≤ j ≤ |Pk|, where i = min{l | l > 1, 〈Pk[l : j]〉 ∈ Pref(〈D〉)}.
In other words, for any state 〈Pk〉[: j], failD(〈Pk〉[: j]) = 〈Pk[i : j]〉 iff Pk[i : j] is
the longest suffix of Pk[: j] such that 〈Pk[i : j]〉 ∈ Pref(〈D〉). Moreover, by the
definition of prefix encoding, Pk[i : j] is also the longest suffix of Pk[: j] that ≈-
matches a prefix in Pref(D). For convenience, assume that failD(NULL) = NULL,
we define failD recursively, namely failkD(S) = failk−1

D (fail(S)) and fail0D(S) = S.
The failure function has the following properties.

Lemma 2. For any state 〈Pk〉[: j], if 〈Pk[i : j]〉 is a state, there is q ≥ 0 such
that failqD(〈Pk〉[: j]) = 〈Pk[i : j]〉.
Proof. Straightforward by induction on j. �
Lemma 3. Consider two states 〈Pk〉[: j] and 〈Pk〉[: j+1]. If failD(〈Pk〉[: j+1]) �=
ε, there is q ≥ 0 such that failqD(〈Pk〉[: j]) is the parent of failD(〈Pk〉[: j + 1]).

Proof. Let 〈Pk[i : j + 1]〉 = failD(〈Pk〉[: j + 1]). From the condition failD(〈Pk〉[:
j + 1]) �= ε, we have i ≤ j + 1. Since 〈Pk[i : j + 1]〉 ∈ Pref(〈D〉), clearly
〈Pk[i : j]〉 ∈ Pref(〈D〉) and 〈Pk[i : j]〉 is the parent of 〈Pk[i : j +1]〉. By Lemma 2,
〈Pk[i : j]〉 = failqD(〈Pk〉[: j]) for some q ≥ 0. �
Lemma 2 implies that any re-encoded suffix 〈Pk[i : j]〉 of 〈Pk〉[: j] such that
〈Pk[i : j]〉 ∈ Pref(〈D〉) can be found by executing failure function recursively
starting from failD(〈Pk〉[: j]). Moreover, Lemma 3 implies that for any state
〈Pk〉[: j+1] such that failD(〈Pk〉[: j+1]) �= ε, the parent of failD(〈Pk〉[: j+1]) can
be found by executing failure function recursively starting from failD(〈Pk〉[: j]).

Last, the output function outD of SCERA(D) is defined as follows.

Definition 7 (Output function). The output function outD of SCERA(D) is
defined by outD(〈Pk〉[: j]) = {P ∈ D | P ≈ Pk[i : j] for some 1 ≤ i ≤ j}.

126 D. Hendrian

For a state 〈Pk〉[: j], outD(〈Pk〉[: j]) is the set patterns that ≈-match some suffix
of Pk[: j].

The output function has the following properties.

Lemma 4. For any P ∈ outD(〈Pk〉[: j]), 〈P 〉 = failqD(〈Pk〉[: j]) for some q ≥ 0.

Proof. From the definition of outD and prefix encoding, P ≈ Pk[i : j] and 〈P 〉 =
〈Pk[i : j]〉 for some i. By Lemma 2, 〈Pk[i : j]〉 = failqD(〈Pk〉[: j]) for some q ≥ 0. �
Lemma 5. For any state S �= ε, if S ∈ 〈D〉, outD(S) = {S} ∪ outD(failD(S)).
Otherwise, outD(S) = outD(failD(S)).

Proof. Assume there is a pattern P such that P ∈ outD(failD(S)) but P �∈
outD(S). By Lemma 4, there exists q such that 〈P 〉 = failqD(failD(S)). Since
failqD((failD(S)) = failq+1

D (S), we have P ∈ outD(S) which contradicts the
assumption.

Next, assume there exists a pattern P such that P ∈ outD(S) but P �∈
outD(failD(S)). By Lemma 4, there is q such that 〈P 〉 = failqD(S). If q > 0, 〈P 〉 =
failq−1

D (fail(S)) implies P ∈ outD(failD(S)) which contradicts the assumption.
Therefore, the remaining possibility is q = 0 which implies S = 〈P 〉 ∈ 〈D〉. �
Lemma 5 implies that we can compute outD(S) by copying outD(failD(S)) and
adding S if S ∈ D. We will utilize Lemma 5 to construct the output function
efficiently.

Implementation and Space Complexity

We will describe how to implement SCER automata and show its space com-
plexity. First, The goto function δD can be implemented by using an associative
array on each state. We have the following lemma for the required space and
time to implement the goto function of SCERA(D).

Lemma 6. Assume that the size of any symbol in Π is constant. The goto
function δD of SCERA(D) can be implemented in O(m) space.

Proof. The number of associative arrays used to implement δD is O(|S|). Since
for each S′ there only exists one pair (S.c) ∈ S · Π such that δ(S, c) = S′ , the
total size of associative arrays is O(|S|). Therefore, δD can be implemented in
O(m) space by Lemma 1. �

Next, the failure function can be implemented by using a state pointer on
each state.

Lemma 7. For a dictionary D, failD can be implemented in O(m) space.

Proof. Since failD is defined for each state, failD can be implemented using O(|S|)
space. Therefore, failD can be implemented in O(m) space by Lemma 1. �

Last, similarly to the original AC-automata, the output function outD can
be implemented in linear space by using a list.

Generalized Dictionary Matching Under SCERs 127

Algorithm 1: A ≈-dictionary matching algorithm using SCERA(D)
1 Function Matching(T)
2 compute 〈T 〉;
3 v ← root ;
4 for i ← 1 to |T | do
5 while δ(v, 〈T [i − dep(v) : i]〉[dep(v) + 1]) = NULL do v ← fail(v);
6 v ← δ(v, 〈T [i − dep(v) : i]〉[dep(v) + 1]);
7 for j ∈ out(v) do output (j, i − |Pj | + 1);

Lemma 8. For a dictionary D, outD can be implemented in O(m) space.

Proof. Each state S stores a pair (i, p), where i is the pattern number if S ∈ 〈D〉
or NULL otherwise and p is a pointer to a state S′ = failqD(〈Pk〉[: j]) for the
smallest q > 0 such that S′ ∈ 〈D〉 if it exists or NULL otherwise. Since |S| is
O(m) by Lemma 1, outD can be implemented in O(m) space. �
From Lemmas 1, 6, 7, and 8, we get the following theorem.

Theorem 1. Assume that the size of any symbol in Π is constant. For a dictio-
nary D = {P1, P2, . . . , Pd} of total size ‖D‖ = m, SCERA(D) can be implemented
in O(m) space.

3.2 Dictionary Matching Using SCERA

In this section, we describe how to use SCER automata for dictionary matching.
The proposed algorithm for ≈-dictionary matching is shown in Algorithm 1. For
any state S, let dep(S) be the depth of S i.e. the length of the shortest path
from root to S. In order to simplify the algorithm we use an auxiliary state ⊥
where δ(⊥, c) = root for any c ∈ Π, fail(root) = ⊥, and dep(⊥) = 0.

The algorithm starts with root as the active state and 1 as the active position.
The algorithm reads the encoded text from the left to the right, while updating
the active state and the active position. Let v = 〈T [i−dep(v) : i−1]〉 be the active
state and i be the active position. The algorithm finds 〈T [i − dep(v) : i]〉[dep(v)]
transition from v. If 〈T [i − dep(v) : i]〉[dep(v)] transition exists, the algorithm
updates the active state to δ(v, 〈T [i − dep(v) : i]〉[dep(v)]) and increments i.
After the algorithm updates the active state, it outputs all patterns in out(v).
Otherwise if 〈T [i − dep(v) : i]〉[dep(v)] transition does not exist, the algorithm
updates the active state to fail(v) without updating i. The algorithm repeats
these operations until it reads all the text.

Lemma 9. Let v = 〈T [i − dep(v) : i − 1]〉 be the active state and i be the
active position. T [i − dep(v) : i − 1] is the longest suffix of T [: i − 1] such that
v ∈ Pref(〈D〉).

128 D. Hendrian

Proof. We will prove by induction. Initially, v = root and i = 1, thus v = ε is
the longest suffix of 〈T [: 0]〉 = ε. Assume that v = T [i − dep(v) : i − 1] is the
longest suffix of T [: i−1] such that v ∈ Pref(〈D〉). Let u be the next active state
and i be the next active position. From the algorithm, u = δ(failq(v), 〈T [i −
dep(failq(v)) : i]〉[dep(failq(v)) + 1]), where q is the smallest integer such that
δ(failq(v), 〈T [i − dep(failq(v)) : i]〉[dep(failq(v)) + 1]) �= NULL. Let T [i − j : i] be
the longest suffix of T [: i] such that 〈T [i− j : i]〉 ∈ Pref(〈D〉). If 〈T [i− j : i]〉 = ε,
we have δ(〈T [i − l : i − 1]〉, 〈T [i − l : i]〉[l + 1]) = NULL for any l, 0 ≤ l ≤ dep(v),
such that 〈T [i− l : i− 1]〉 ∈ Pref(〈D〉). Thus, we have failq(v) = ⊥ and u = root .
Otherwise if 〈T [i − j : i]〉 �= ε, we have 〈T [i − j : i − 1]〉 ∈ Pref(〈D〉). Moreover,
〈T [i−j : i−1]〉 = failq

′
(v) for some q′ by Lemma 2 and δ(〈T [i−j : i−1]〉, 〈T [i−j :

i]〉[j + 1]) �= NULL. Since T [i − j : i] is the longest suffix of T [: i] such that
〈T [i − j : i]〉 ∈ Pref(〈D〉), δ(〈T [i − l : i − 1]〉, 〈T [i − l : i]〉[l + 1]) = NULL, for any
l, j < l ≤ dep(v), such that 〈T [i− l : i−1]〉 ∈ Pref(〈D〉). Therefore, q′ = q which
implies the correctness of Lemma 9. �
Theorem 2. Given SCERA(D) and a text T of length n, Algorithm 1 outputs
all occurrence positions of all patterns in T correctly in O(ξ(n) + n · (φ(�) +
log π) + occ) time, where � is the length of the longest pattern in D, ξ(n) is the
time required to encode T , φ(�) is the time required to re-encode a symbol of a
substring of T whose length is � or less, π is the maximum number of possible
outgoing transitions from any state, and occ is the number of occurrences of the
patterns in T .

Proof. First, we show the correctness of the algorithm. Assume there is an occur-
rence position o of Pk in T that has not been output by the algorithm. Let o+|Pk|
be the active position. By Lemma 9, the active state v = 〈T [j : o + |Pk| − 1]〉 is
the longest suffix of T [: o + |Pk| − 1] such that 〈T [j : o + |Pk| − 1]〉 ∈ Pref(〈D〉).
Since 〈T [o : o + |Pk| − 1]〉 ∈ Pref(〈D〉), we have j ≤ o. By the definition of the
output function, Pk ∈ out(〈T [j : o+ |Pk|−1]〉). Therefore, the algorithm outputs
Pk ∈ out(〈T [j : o + |Pk| − 1]〉) which contradicts the assumption. Moreover, for
any active state 〈T [i : j]〉 the algorithm only outputs an occurrence position of
Pk iff Pk ≈-matches a suffix of T [i : j] by Lemma 5.

Next, we show the time complexity of the algorithm. The encoding 〈T 〉 can
be computed in ξ(n). For each position i, the depth of the active position is
increased by one, thus the depth of the active position is increased by n in total.
Since the depth of the active position is decreased by at least one each time
fail is executed, fail is executed at most n times. Next, each time δ is executed,
either the depth of the active position is increased by one or fail is executed, thus
δ is executed O(n) times. Since we need to re-encode a symbol each time δ is
executed and δ can be executed in O(log π) time by binary search, the algorithm
takes O(n · (φ(�) + log π)) time to execute δ in total. In order to output the
occurrence positions, the algorithm takes O(n) time to check whether there is
any occurrence and O(occ) time to output the occurrence positions. �

Generalized Dictionary Matching Under SCERs 129

Algorithm 2: Computing goto function of SCERA(D)
1 Function constructGoto(D)
2 compute 〈D〉;
3 create states root and ⊥;
4 dep(root) ← 0; dep(⊥) ← 0;
5 δ(⊥, c) ← root for any symbol c;
6 for k ← 1 to d do
7 v ← root ;
8 for j ← 1 to |Pk| do
9 if δ(v, 〈Pk〉[j]) 	= NULL then v ← δ(v, 〈Pk〉[j]);

10 else
11 create a state u;
12 δ(v, 〈Pk〉[j]) ← u;
13 label(u) ← i; dep(u) ← dep(v) + 1;
14 v ← u;

Algorithm 3: Computing failure function of SCERA(D)
1 Function constructFailure(D)
2 compute 〈D〉; fail(root) ← ⊥; push root to queue;
3 while queue 	= ∅ do
4 pop v from queue;
5 for c such that δ(v, c) 	= NULL do
6 u ← δ(v, c); push u to queue;
7 s ← fail(v); k ← label(u);
8 while δ(s, 〈Pk[dep(u) − dep(s) : dep(u)]〉[dep(s) + 1]) = NULL do
9 s ← fail(s);

10 fail(u) ← δ(s, 〈Pk[dep(u) − dep(s) : dep(u)]〉[dep(s) + 1)]));

3.3 Constructing SCERA

In this section, we describe an algorithm to construct SCERA(D). We divide the
algorithm into three parts: goto function, failure function, and output function
construction algorithms.

First, the goto function construction algorithm is shown in Algorithm 2.
Initially, the algorithm computes 〈Pk〉 for all Pk ∈ D; then it constructs the
root state root and the auxiliary state ⊥. Next, for each pattern 〈Pk〉 ∈ 〈D〉, the
algorithm finds the longest prefix of 〈Pk〉 that exists in the current automaton.
After that, the algorithm creates states corresponding to the remaining prefixes
from the shortest to the longest. After creating each state, the algorithm updates
the goto function, adds a label i to the state, and compute the depth of the state.

Lemma 10. Given a dictionary D, Algorithm 2 constructs the goto function of
SCERA(D) in O(ξ(m) + m log π) time.

130 D. Hendrian

Algorithm 4: Computing output function of SCERA(D)
1 Function constructOutput(D)
2 compute 〈D〉;
3 for k ← 1 to d do
4 v ← root ;
5 for j ← 1 to |Pk| do
6 v ← δ(v, 〈Pk〉[j]);
7 if j = |Pk| then out(v) ← out(v) ∪ {k};

8 push root to queue;
9 while queue 	= ∅ do

10 pop v from queue; out(v) ← out(v) ∪ out(fail(v));
11 for c such that δ(v, c) 	= NULL do
12 u ← δ(v, c); push u to queue;

Proof. By assumption, each pattern |Pk| in the dictionary can be encoded in
ξ(|Pk|) time. The operations in the inner loop are executed O(m) times. δ(v, c)
can be computed in O(log π) by binary search. �

Next, we describe how to compute the failure function of SCERA(D). Algo-
rithm 3 shows the algorithm for computing the failure function. The algorithm
computes the failure function recursively by the breadth-first search. The algo-
rithm uses the property in Lemma 3 to compute the failure function.

Consider computing fail(〈Pk〉[: j]). Since the algorithm computing fail by
the breadth-first search, fail(〈Pk〉[: j − 1]) has been computed. By Lemma 3,
there is q ≥ 1 such that failqD(〈Pk〉[: j − 1]) is the parent of failD(〈Pk〉[: j]) or
failD(〈Pk〉[: j]) = ε. We can find q by executing the failure function recursively
from 〈Pk〉[: j − 1] and checking whether δ(〈Pk[i : j]〉, 〈Pk[i :]〉[j − i+1]) = NULL.

Lemma 11. Given a dictionary D and goto function of SCERA(D), Algorithm
3 constructs the failure function of SCERA(D) in O(ξ(m) + m · (φ(�) + log π))
time.

Proof. The dictionary can be encoded in ξ(m) time. The running time of Algo-
rithm 3 is bounded by the number of executions of fail. Let xk,j be the number
of executions of fail when finding fail(〈Pk[: j]〉). Since xk,j ≤ dep(fail(〈Pk[: j −
1]〉))−dep(fail(〈Pk[: j]〉))+2, we can compute Σd

k=1Σ
|Pk|
j=1xk,j ≤ Σd

k=12|Pk| = 2m.
The goto function δ is executed each time fail be executed. Since we need to re-
encode a substring each time δ be executed and δ can be executed in O(log π)
time, the algorithm takes O(ξ(m) + m · (φ(�) + log π)) time in total. �

Last, Algorithm 4 shows an algorithm to compute the output function of
SCERA(D). The algorithm first adds k to out(〈Pk〉) for each Pk ∈ D. Next, the
algorithm updates the output function recursively by the breadth-first search.
The algorithm uses the property in Lemma 5 to compute the output function.

Generalized Dictionary Matching Under SCERs 131

Consider computing out(〈Pk〉[: j]). Since the algorithm computes out by the
breadth-first search, out(fail(〈Pk〉[: j])) has been computed. By Lemma 5, we can
compute out(〈Pk〉[: j]) by just adding k to out(fail(〈Pk〉[: j])) if j = |Pk| or by
copying out(fail(〈Pk〉[: j])) if j �= |Pk|. Note that it can be done efficiently by
using pointers as described in Sect. 3.1 instead of copying the set.

Lemma 12. Given a dictionary D, the goto function, and the failure func-
tion of SCERA(D), Algorithm 4 constructs the output function of SCERA(D)
in O(ξ(m) + m · log π) time.

Proof. The dictionary can be encoded in ξ(m) time. Clearly the loops are exe-
cuted O(|S|) times in total. The goto function can be executed in O(log π) time.
Therefore, Algorithm 4 runs in O(ξ(m) + m · log π) time. �

From Lemmas 10, 11, and 12, we get the following theorem.

Theorem 3. Given a dictionary D, SCERA(D) can be constructed in O(ξ(m)+
m · (φ(�) + log π)) time, where � is the length of the longest pattern in D, ξ(m)
is the time required to encode D, φ(�) is the time required to re-encode the last
symbol of a substring of Pk ∈ D, and π is the maximum number of possible
outgoing transitions from any state.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975)

2. Amir, A., Aumann, Y., Lewenstein, M., Porat, E.: Function matching. Soc. Ind.
Appl. Math. 35(5), 1007–1022 (2006)

3. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49(3), 111–115 (1994)

4. Amir, A., Kondratovsky, E.: Sufficient conditions for efficient indexing under dif-
ferent matchings. In: 30th Annual Symposium on Combinatorial Pattern Matching
(CPM 2019), pp. 6:1–6:12 (2019)

5. Antoniou, P., Crochemore, M., Iliopoulos, C., Jayasekera, I., Landau, G.: Conser-
vative string covering of indeterminate strings. In: Prague Stringology Conference,
vol. 2008, pp. 108–115 (2008)

6. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996)

7. Crochemore, M., Rytter, W.: Text Algorithm. Oxford University Press, Oxford
(1994)

8. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing
Co. Pte. Ltd., Singapore (2002)

9. Diptarama, U.Y., Narisawa, K., Shinohara, A.: KMP based pattern matching algo-
rithms for multi-track strings. In: Proceedings of Student Research Forum Papers
and Posters at SOFSEM 2016, pp. 100–107 (2016)

10. Diptarama, Y.U., Yoshinaka, R., Shinohara, A.: Fast full permuted pattern match-
ing algorithms on multi-track strings. In: Prague Stringology Conference (PSC)
2016, pp. 7–21 (2016)

132 D. Hendrian

11. Hendrian, D., Ueki, Y., Narisawa, K., Yoshinaka, R., Shinohara, A.: Permuted
pattern matching algorithms on multi-track strings. Algorithms 12(4), 73:1–73:20
(2019)

12. Idury, R.M., Schäffer, A.A.: Multiple matching of parameterized patterns. Theor.
Comput. Sci. 154(2), 203–224 (1996)

13. Katsura, T., Narisawa, K., Shinohara, A., Bannai, H., Inenaga, S.: Permuted pat-
tern matching on multi-track strings. In: van Emde Boas, P., Groen, F.C.A., Ital-
iano, G.F., Nawrocki, J., Sack, H. (eds.) SOFSEM 2013. LNCS, vol. 7741, pp.
280–291. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35843-
2 25

14. Kim, J., et al.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79 (2014)
15. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM

J. Comput. 6(2), 323–350 (1977)
16. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A linear

time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.
113(12), 430–433 (2013)

17. Matsuoka, Y., Aoki, T., Inenaga, S., Bannai, H., Takeda, M.: Generalized pattern
matching and periodicity under substring consistent equivalence relations. Theor.
Comput. Sci. 656, 225–233 (2016)

18. Park, S.G., Amir, A., Landau, G.M., Park, K.: Cartesian tree matching and index-
ing. In: 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019),
pp. 16:1–16:14 (2019)

https://doi.org/10.1007/978-3-642-35843-2_25
https://doi.org/10.1007/978-3-642-35843-2_25

Reconfiguring k-path Vertex Covers

Duc A. Hoang1 , Akira Suzuki2 , and Tsuyoshi Yagita1(B)

1 Kyushu Institute of Technology, Fukuoka, Japan
hoanganhduc@ces.kyutech.ac.jp, yagita.tsuyoshi307@mail.kyutech.jp

2 Tohoku University, Sendai, Japan
a.suzuki@ecei.tohoku.ac.jp

Abstract. A vertex subset I of a graph G is called a k-path vertex
cover if every path on k vertices in G contains at least one vertex from
I. The k-Path Vertex Cover Reconfiguration (k-PVCR) prob-
lem asks if one can transform one k-path vertex cover into another
via a sequence of k-path vertex covers where each intermediate mem-
ber is obtained from its predecessor by applying a given reconfiguration
rule exactly once. We investigate the computational complexity of k-
PVCR from the viewpoint of graph classes under the well-known recon-
figuration rules: TS, TJ, and TAR. The problem for k = 2, known as
the Vertex Cover Reconfiguration (VCR) problem, has been well-
studied in the literature. We show that certain known hardness results for
VCR on different graph classes including planar graphs, bounded band-
width graphs, chordal graphs, and bipartite graphs, can be extended for
k-PVCR. In particular, we prove a complexity dichotomy for k-PVCR
on general graphs: on those whose maximum degree is 3 (and even pla-
nar), the problem is PSPACE-complete, while on those whose maximum
degree is 2 (i.e., paths and cycles), the problem can be solved in polyno-
mial time. Additionally, we also design polynomial-time algorithms for
k-PVCR on trees under each of TJ and TAR. Moreover, on paths, cycles,
and trees, we describe how one can construct a reconfiguration sequence
between two given k-path vertex covers in a yes-instance. In particular,
on paths, our constructed reconfiguration sequence is shortest.

Keywords: Combinatorial Reconfiguration · Computational
complexity · k-path vertex cover · PSPACE-completeness ·
Polynomial-time algorithms

1 Introduction

For the last decade, a collection of problems called Combinatorial Reconfiguration
has been extensively studied. Work in this research area specifically aims to
model dynamic situations where one needs to transform one feasible solution
of a computational problem into another by locally changing a solution while

This work is partially supported by JSPS KAKENHI Grant Numbers JP17K12636,
JP18H04091, and JP19K24349, and JST CREST Grant Number JPMJCR1402.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 133–145, 2020.
https://doi.org/10.1007/978-3-030-39881-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_12&domain=pdf
http://orcid.org/0000-0002-8635-8462
http://orcid.org/0000-0002-5212-0202
https://doi.org/10.1007/978-3-030-39881-1_12

134 D. A. Hoang et al.

keeping its feasibility along the way. In a reconfiguration setting, two feasible
solutions of a computational problem (e.g., Satisfiability, Independent Set,
Vertex Cover, Dominating Set, etc.) are given, along with a reconfiguration
rule that describes an adjacency relation between solutions. A reconfiguration
problem asks whether one feasible solution can be transformed into the other
via a sequence of adjacent feasible solutions where each intermediate member is
obtained from its predecessor by applying the given reconfiguration rule exactly
once. Such a sequence, if exists, is called a reconfiguration sequence. One may
recall the classic Rubik’s cube puzzle as an example of a reconfiguration problem,
where each configuration of the Rubik’s cube corresponds to a feasible solution,
and two configurations (solutions) are adjacent if one can be obtained from the
other by rotating a face of the cube by either 90, 180, or 270◦. The question is
whether one can transform an arbitrary configuration to the one where each face
of the cube has only one color. For an overview of this research area, readers are
referred to the recent surveys by van den Heuvel [16] and Nishimura [22].

The k-Path Vertex Cover Reconfiguration Problem. Let G = (V,E) be
a simple graph. A vertex cover of G is a subset I of V where each edge contains
at least one vertex from I. The Vertex Cover (VC) problem, which asks
whether there is a vertex cover of G whose size is at most some positive integer
s, is one of the classic NP-complete problems in the computational complexity
theory [14].

Let k ≥ 2 be a fixed positive integer. A subset I of V is called a k-path vertex
cover if every path on k vertices in G contains at least one vertex from I. The k-
Path Vertex Cover (k-PVC) problem asks if there is a k-path vertex cover of
G whose size is at most some positive integer s. Motivated by the importance of
a problem related to secure communication in wireless sensor networks, Brešar
et al. initiated the study of k-PVC in [8] (as a generalized concept of vertex
cover). It is known that k-PVC is NP-complete for every k ≥ 2 [1,8]. Subsequent
work regarding the maximum variant [21] and weighted variant [9] of k-PVC has
also been considered in the literature. Recently, the study of k-PVC and related
problems has gained a lot of attraction from both theoretical aspect [19,23,24]
and practical application [3,13].

In this paper, we initiate the study of k-PVC from the viewpoint of recon-
figuration. Given two distinct k-path vertex covers I and J of a graph G and
a single reconfiguration rule, the k-Path Vertex Cover Reconfiguration
(k-PVCR) problem asks whether there is a reconfiguration sequence between I
and J . We study the computational complexity of k-PVCR with respect to dif-
ferent graph classes under the well-known reconfiguration rules: Token Sliding,
Token Jumping, and Token Addition or Removal. They are informally defined as
follows. Imagine that a token is placed at each vertex of a k-path vertex cover in
G. For each of the following rules, a common requirement is that the resulting
token-set forms a k-path vertex cover of G.

– Token Sliding (TS): A TS-step involves moving a token on some vertex v to
one of its unoccupied neighbors.

Reconfiguring k-path Vertex Covers 135

– Token Jumping (TJ): A TJ-step involves moving a token on v to any unoc-
cupied vertex.

– Token Addition or Removal (TAR): A TAR-step involves either adding or
removing a single token such that the resulting token-set is of size at most
given positive integer u. We sometimes write “TAR(u)” instead of “TAR” to
emphasize the upper bound u on the size of each token-set in a reconfiguration
sequence under TAR.

Related Work. The reoptimization framework is closely related to reconfigu-
ration. Roughly speaking, given an optimal solution of a problem instance I,
and some perturbations that change I into a new instance I ′, a reoptimiza-
tion problem aims to find an optimal solution for the changed instance I ′.
Recently, Kumar et al. [19] initiated the study of reoptimization problems for
(both weighted and unweighted) k-PVC with k ≥ 3, extending some known
reoptimization paradigms for the well-known VC problem [2]. The perturbation
they considered in [19] is changing the input graph of the current instance by
inserting new vertices.

The Vertex Cover Reconfiguration (VCR) problem is one of the most
well-studied reconfiguration problems, from both classical and parameterized
complexity viewpoints (e.g., see [22] for a quick summary of known results). It is
well-known that if I is a vertex cover of a graph G = (V,E) then V \I is an inde-
pendent set of G, i.e., a vertex-subset whose members are pairwise non-adjacent.
Consequently, from classical complexity viewpoint, results of Independent Set
Reconfiguration (ISR) and Vertex Cover Reconfiguration are inter-
changeable.

We now mention some known complexity results of VCR (which are mostly
interchanged with ISR) for some graph classes. It is well-known that VCR is
PSPACE-complete under each of TS, TJ, and TAR for general graphs [17], planar
graphs of maximum degree 3 [15], perfect graphs [18], and bounded bandwidth
graphs [25]. Even on bipartite graphs, VCR remains PSPACE-complete under TS,
and NP-complete under each of TJ and TAR [20]. On chordal graphs, VCR is
known to be PSPACE-complete under TS [4]. On the positive side, polynomial-
time algorithms have been designed for VCR on even-hole-free graphs (and
therefore chordal graphs) under each of TJ and TAR [18], on bipartite per-
mutation graphs and bipartite distance-hereditary graphs [12] under TS, on
cographs [6,18], claw-free graphs [7], interval graphs [5,18], and trees [10,18]
under each of TS, TJ, and TAR.

Our Results. In this paper, we investigate the complexity of k-PVCR with
respect to different input graphs. More precisely, we show that:

– Several hardness results for VCR remain true for k-PVCR. More precisely,
we show the PSPACE-completeness of k-PVCR on general graphs under each
rule TS, TJ, and TAR using a reduction from a variant of VCR. As our reduc-
tion preserves some nice graph properties, we claim (as a consequence of our
reduction) that the hardness results for VCR on several graphs (namely pla-
nar graphs, bounded bandwidth graphs, chordal graphs, bipartite graphs) can

136 D. A. Hoang et al.

be converted into those for k-PVCR. Using a reduction from the Nondeter-
ministic Constraint Logic [15,26], we also show that k-PVCR remains
PSPACE-complete even on planar graphs of bounded bandwidth and maximum
degree 3. (Our reduction from VCR does not preserve the maximum degree.)

– On the positive side, we design polynomial-time algorithms for k-PVCR on
some restricted graph classes: trees (under each of TJ and TAR), paths and
cycles (under each of TS, TJ, and TAR). Our algorithms are constructive,
i.e., we explicitly show how a reconfiguration sequence can be constructed in
a yes-instance. On paths, we claim that our algorithm constructs a shortest
reconfiguration sequence. As a result, we obtain a complexity dichotomy for
k-PVCR on (planar) graphs with respect to their maximum degree.

Due to the page limitation, we omit almost all the proofs from this paper.

2 Preliminaries

In this section, we define some useful notation and terminology. For standard con-
cepts on graphs, readers are referred to [11]. Let G be a simple graph with vertex-
set V (G) and edge-set E(G). For two vertices u, v, we denote by distG(u, v) the
distance between u and v in G, i.e., the length of a shortest path between them.
For a vertex v ∈ V (G), we denote by G − v the graph obtained from G by
removing v. For two vertex-subsets I and J , we denote by G[IΔJ] the subgraph
of G induced by their symmetric difference IΔJ = (I \ J) ∪ (J \ I). For a fixed
integer k ≥ 2, we say that a vertex v covers a k-path (i.e., a path on k vertices)
Pk in G if v ∈ V (Pk). A vertex-subset I is called a k-path vertex cover if every
k-path in G contains at least one vertex from I. In other words, vertices of I
cover all k-paths in G. We denote by ψk(G) the size of a minimum k-path vertex
cover of G. Trivially, for n ≥ k ≥ 2, ψk(Pn) = �n/k� and ψk(Cn) = �n/k� for a
path Pn and a cycle Cn on n vertices.

Throughout this paper, we denote by (G, I, J,R) an instance of k-PVCR
under a reconfiguration rule R ∈ {TJ,TS,TAR}, where I and J are two k-path
vertex covers of G. We shall respectively call a reconfiguration sequence under
each of TS, TJ, and TAR by a TS-sequence, TJ-sequence, and TAR(u)-sequence.
Formally, let S = 〈I0, I1, . . . , I�〉 be an ordered sequence of k-path vertex covers
of G. The length of S is defined as �, i.e., if S is a reconfiguration sequence then its
length is exactly the number of steps it performs under the given reconfiguration
rule. Imagine that a token is placed at each vertex of a k-path vertex cover of
G. We may sometimes identify a token with the vertex where it is placed on
and say “a token in a k-path vertex cover”. We say that S is a TS-sequence
between two k-path vertex covers I0 and I� if for each i ∈ {0, . . . , � − 1}, there
exist two vertices xi and yi such that Ii \ Ii+1 = {xi}, Ii+1 \ Ii = {yi}, and
xiyi ∈ E(G). Roughly speaking, Ii+1 is obtained from Ii by sliding the token
placed on xi to yi along an edge xiyi. Similarly, we say that S is a TJ-sequence
between I0 and I� if for each i ∈ {0, . . . , � − 1}, there exist two vertices xi and
yi such that Ii \ Ii+1 = {xi}, Ii+1 \ Ii = {yi}. Intuitively, Ii+1 is obtained from
Ii by jumping the token placed on xi to yi. Now, if max{|Ii| : 0 ≤ i ≤ �} ≤ u

Reconfiguring k-path Vertex Covers 137

for some positive integer u, and for each i ∈ {0, . . . , � − 1}, there exists a vertex
xi such that IiΔIi+1 = {xi} then we say that S is a TAR(u)-sequence between
I0 and I�. Roughly speaking, Ii+1 is obtained from Ii by either adding a token
to xi or removing a token from xi. If a TS-, TJ-, or TAR(u)-sequence between
two k-path vertex covers I and J exists, we say that I and J are reconfigurable
under TS, TJ, or TAR, respectively.

Using a similar argument as in [18, Theorem 1], we can show that

Lemma 1. There exists a TJ-sequence of length � between two k-path vertex
covers I, J of a graph G with |I| = |J | = s if and only if there exists a TAR(s+1)-
sequence of length 2� between them.

A reconfiguration sequence of minimum length is called a shortest reconfig-
uration sequence. For a reconfiguration sequence S = 〈I0, I1, . . . , Ip〉, we denote
by revS the reverse of S, i.e., the reconfiguration sequence 〈Ip, . . . , I1, I0〉. For
two reconfiguration sequences S = 〈I0, I1, . . . , Ip〉 and S′ = 〈I ′

0, I
′
1, . . . , I

′
q〉 under

the same reconfiguration rule, if Ip = I ′
0 then we say that they can be con-

catenated and define their concatenation S ⊕ S′ as the reconfiguration sequence
〈I0, I1, . . . , Ip, I

′
1, . . . , I

′
q〉. We assume for convenience that if S′ is empty then

S ⊕ S′ = S′ ⊕ S = S.

3 Hardness Results

In this section, we show the hardness of k-PVCR on some well-known graph
classes. First of all, we show that

Theorem 2. k-PVCR is PSPACE-complete under each of TS, TJ, and TAR even
when the input graph is a planar graph of maximum degree 4, or a bounded band-
width graph. Additionally, k-PVCR is PSPACE-complete under TS on chordal
graphs and bipartite graphs. Under each of TJ and TAR, k-PVCR is NP-hard on
bipartite graphs.

Proof (sketch). Using a similar reduction as in [8], we can show the PSPACE-
completeness of k-PVCR under TJ. Combining the above result, the known
results for VCR, and Lemma 1, we can also show the hardness results on several
graphs under each of TJ and TAR as mentioned in Theorem 2. Finally, we show
that the hardness results under TS hold via the same reduction. �

In the above discussion, we show the PSPACE-completeness for planar graphs
of maximum degree 4. Furthermore, using a reduction from the Nondetermin-
istic Constraint Logic [15,26], we can improve this result as follows.

Theorem 3. k-PVCR remains PSPACE-complete under each of TS, TJ, and
TAR even on planar graphs of bounded bandwidth and maximum degree 3.

138 D. A. Hoang et al.

4 Polynomial-Time Algorithms

4.1 Trees

In this section, we show polynomial-time algorithms for k-PVCR on trees under
each of TJ and TAR. We first show a polynomial-time algorithm for the problem
under TJ. Then, using Lemma 1 and the above result, we show a polynomial-time
algorithm for the problem under TAR.

First, in order to solve the problem under TJ, we claim that for an instance
(T, I, J,TJ) of k-PVCR on a tree T , if |I| = |J |, one can construct in polynomial
time a TJ-sequence between I and J . The idea is to construct a canonical k-path
vertex cover I� such that both I and J can be reconfigured to I� under TJ.

Before constructing I�, we prove the following lemma, which describes an
useful algorithm for partitioning a tree into subtrees satisfying certain conditions.

Lemma 4. Let T be a tree on n vertices rooted at a vertex r. Assume that
ψk(T) ≥ 1. Then, in O(n) time, one can partition T into ψk(T) subtrees
T1(r), . . . , Tψk(T)(r) such that for each i ∈ {1, . . . , ψk(T)},
(i) Each k-path vertex cover I satisfies I ∩ V (Ti(r)) �= ∅.
(ii) There is a vertex that covers all k-paths in Ti(r).

Proof. To construct a partition P (T) = {T1(r), . . . , Tψk(T)(r)} of T satisfying the
described conditions, we slightly modify the algorithm PVCPTree(T, k) in [8] as
follows. A properly rooted subtree Tv of T is a subtree of T induced by the vertex
v and all its descendants (with respect to the root r) satisfying the following
conditions

1. Tv contains a path on k vertices;
2. Tv − v does not contain a path on k vertices.

The modified algorithm Partition(T, k, r) systematically searches for a properly
rooted tree Tv, decides whether Tv belongs to a solution P (T), and if so, add Tv

to P (T), and remove Tv from the input tree T .
From [8], it follows that Partition(T, k, r) runs in O(n) time. From the

construction of P (T), it is clear that (i) always holds. We show (ii) by induction
on ψk(T).

For a tree T with ψk(T) = 1, let Tv be a properly rooted subtree of T .
Since any k-path vertex cover of T contains a vertex from Tv, it follows that
ψk(T − Tv) = ψk(T) − 1 = 0, which implies that T − Tv does not contain any
properly rooted subtree, and therefore P (T) = {T}. To see that (ii) holds, note
that v must cover all k-paths in Tv, and therefore it also covers all k-paths in
T ; otherwise, T − Tv contains a k-path that is not covered by v, and then must
contain a properly rooted subtree, which is a contradiction.

Assume that (ii) holds for any tree T with ψk(T) < c, for some constant
c > 1. For a tree T rooted at some vertex r with ψk(T) = c, let Tv be a
properly rooted subtree of T , where v is some vertex of T . From the algorithm

Reconfiguring k-path Vertex Covers 139

Algorithm 1: Partition(T, k, r).
Input: A tree T on n vertices rooted at r and a positive integer k;
Output: A partition of T into ψk(T) subtrees;

1 i := 1;
2 while T contains a properly rooted subtree Tv do
3 if T − Tv contains a properly rooted subtree then
4 Ti(r) := Tv;
5 i := i + 1;

6 else
7 Ti(r) := T ;
8 T := T − Tv;

9 P (T) = {T1(r), . . . , Ti(r)};
10 return P (T);

Partition, it follows that v must cover all k-paths in Tv = T1(r). Since c > 1,
the tree T − Tv contains a properly rooted subtree. By inductive hypothesis,
for each i ∈ {2, 3, . . . , ψk(T)}, there is a vertex that covers all k-paths in Ti(r).
Therefore, (ii) holds for any tree T with ψk(T) ≥ 1. �

We are now ready to show that

Theorem 5. For any instance (T, I, J,TJ) of k-PVCR on a tree T , I and J
are reconfigurable if and only if |I| = |J |. Moreover, a reconfiguration sequence
between them, if exists, can be constructed in O(n) time. Consequently, k-PVCR
under TJ can be solved in linear time on trees.

Proof. Clearly, if I and J are reconfigurable under TJ, they must be of the same
size. To prove this theorem, it suffices to show that for an instance (T, I, J,TJ)
of k-PVCR on a tree T , one can construct in polynomial time a TJ-sequence
between I and J .

A minimum k-path vertex cover Ir can be easily constructed in linear time
by modifying Partition as follows: Initially, Ir = ∅. In each iteration of the
while loop, add to Ir the vertex v of the properly rooted subtree Tv that is
currently considering. Let I� be any k-path vertex cover of size |I| = |J | such
that Ir ⊆ I�. We claim that both I and J can be reconfigured to I� under TJ.
As a result, a TJ-sequence between I and J can be constructed by reconfiguring
I to I�, and then I� to J .

We now show how to construct a TJ-sequence between I and I�. Let
P (T) = {T1(r), . . . , Tψk(T)(r)} be a partition of T resulting from the algorithm
Partition and let I0 = I.

– Step 1: For each i ∈ {1, . . . , ψk(T)}, let vi ∈ Ir ∩ V (Ti(r)). If vi does not
contain a token in Ii−1, we jump a token from some vertex xi ∈ Ii−1∩V (Ti(r))
to vi. Otherwise, we do nothing. Let Ii be the resulting set. Note that any
k-path in T covered by xi must also be covered by some vj with j ≤ i. A
simple induction shows that Ii = Ii−1 \ {xi} ∪ {vi} forms a k-path vertex
cover of T .

140 D. A. Hoang et al.

– Step 2: For x ∈ Iψk(T) \ I� and y ∈ I� \ Iψk(T), we simply jump the token on
x to y, and repeat the process with Iψk(T) \{x} and I� \{y} instead of Iψk(T)

and I�, respectively. Since Ir ⊆ Iψk(T) ∩ I� is already a minimum k-path
vertex cover, any TJ-step described above results a k-path vertex cover of T .

Since each token in I is jumped at most once, the above construction can be
done in linear time. We have described how to construct a TJ-sequence from J
to I�. In a similar manner, a TJ-sequence between J and I� can be constructed.
Our proof of Theorem 5 is complete. �

Consequently, combining Theorem 5 and Lemma 1, we have

Theorem 6. For any instance (T, I, J,TAR(u)) of k-PVCR on a tree T , one
can decide if I and J are reconfigurable in polynomial time.

4.2 Paths and Cycles

Here, we describe polynomial-time algorithms for k-PVCR on paths and cycles.
As paths and cycles are the only (planar) graphs of maximum degree 2, by com-
bining Theorem 3 and our results, we have a complexity dichotomy of k-PVCR
on (planar) graphs. Additionally, on paths, we claim that one can construct a
shortest reconfiguration sequence between any two given k-path vertex covers
(if exists) under each reconfiguration rule TS, TJ, and TAR. Due to the page
limitation, we omit several technical details.

k-PVCR on Paths. By Theorems 5 and 6, clearly k-PVCR on paths can be
solved in polynomial time under each of TJ and TAR. In this section, we slightly
improve this result by showing that one can construct a shortest reconfiguration
sequence between two k-path vertex covers on a path not only under each of TJ
and TAR but also under TS.

Given an instance (P, I, J,TJ) of k-PVCR where |I| = |J | = s, one can
construct a shortest TJ-sequence between I and J . Suppose that vertices in I =
{vi1 , . . . , vis} and J = {vj1 , . . . , vjs} are ordered such that 1 ≤ i1 < · · · < is ≤ n
and 1 ≤ j1 < · · · < js ≤ n. In each step of the algorithm, we move a token
on the “rightmost” vertex vip ∈ I \ J to the “rightmost” vertex vjp ∈ J \ I if
ip > jp or vice-versa otherwise, for p ∈ {1, . . . , s}. As a reconfiguration sequence
is reversible, one can easily form a TJ-sequence between I and J . Note that each
step of the algorithm reduces |IΔJ |/2 by exactly 1. Finally, we obtain a shortest
TJ-sequence between I and J of length exactly |IΔJ |/2.

Theorem 7. Given an instance (P, I, J,TJ) of k-PVCR on a path P , the k-
path vertex covers I and J are reconfigurable if and only if |I| = |J |. Moreover,
we can compute a shortest reconfiguration sequence in O(n) time.

By Theorem 7 and Lemma 1, we obtain the following result on k-PVCR on
a path P under TAR.

Theorem 8. For any instance (P, I, J,TAR(u)) of k-PVCR on a path P on n
vertices, one can decide if I and J are reconfigurable in linear time.

Reconfiguring k-path Vertex Covers 141

Now we sketch the idea for solving the problem under TS in polynomial
time. Given an instance (P, I, J,TS) of k-PVCR where |I| = |J | = s, one can
construct a shortest TS-sequence between I and J . Suppose that vertices in I =
{vi1 , . . . , vis} and J = {vj1 , . . . , vjs} are ordered such that 1 ≤ i1 < · · · < is ≤ n
and 1 ≤ j1 < · · · < js ≤ n. Our goal is to construct a shortest TS-sequence (of
length

∑s
p=1 distP (vip , vjp)) that repeatedly slides the token on the “leftmost”

vertex vip ∈ I to the “leftmost” vertex vjp ∈ J if ip < jp or vice-versa otherwise,
for p ∈ {1, . . . , s}.

The key point is, in certain conditions, one can construct in polynomial time
a function Push(P, I, i, j) whose task is to output a TS-sequence that moves the
token placed at some vertex vi of the k-path vertex cover I to vertex vj in a
given path P = v1v2 . . . vn, where 1 ≤ i < j ≤ i + k ≤ n. Roughly speaking,
Push(P, I, i, j) slides the token t on vi toward vj along the path Pij = vivi+1 . . . vj

until either t ends up at vj or there is some index p ∈ {i, . . . , j − 1} where t is
already placed at vp but cannot immediately move to vp+1 because there is
already some token t′ placed there. In the latter case, one can recursively call
Push to slide t′ from vp+1 to vp+2 and therefore enabling t (which is currently
placed at vp) to slide to vp+1. Now, the same situation happens again with t and
t′, and the resolving procedure can be done in the same manner as before. This
process stops when t is finally placed at vj .

The following lemma says that if certain conditions are satisfied, the output
of Push(P, I, i, j) is indeed a TS-sequence that reconfigures the k-path vertex
cover I to some other k-path vertex cover of P .

Lemma 9. Let P = v1v2 . . . vn be a path on n vertices, and let I be a k-
path vertex cover of P . Let i ∈ {1, . . . , n} be such that either i ≤ k + 1 or
{vi−1, . . . , vi−k} ∩ I �= ∅. If {vi, vi+1, . . . , vi+p} ⊆ I and vi+p+1 /∈ I for some
integer p satisfying 0 ≤ p ≤ n − i − 1, then there exists a TS-sequence in P that
reconfigures I to I \{vi, vi+1, . . . , vi+p}∪{vi+1, . . . , vi+p+1}. Consequently, if the
assumption is satisfied, the output of Push(P, I, i, j) is indeed a TS-sequence in
P that reconfigures I to some k-path vertex cover of P .

Clearly, the function Push(P, I, ip, jp) can be used to slide a token on vip to
vjp for p ∈ {1, . . . , s} and ip < jp. Thus, we have the following theorem.

Theorem 10. Given an instance (P, I, J,TS) of k-PVCR on a path P , the k-
path vertex covers I and J are reconfigurable if and only if |I| = |J |. Moreover,
we can compute a shortest reconfiguration sequence in O(n2) time.

k-PVCR on Cycles. Let C = v0v1 . . . vn−1v0 be a given n-vertex cycle, and
let (C, I, J,R) be a k-PVCR instance on C under a reconfiguration rule R ∈
{TJ,TS,TAR(u)}. We remark that if |I| = |J | = �n/k� and n = c · k for some c,
then (C, I, J,R) where R ∈ {TS,TJ} is a no-instance. This is because no tokens
can be moved in such instances.

Here we assume that the indices of vertices on the cycle increase in the
clockwise manner. We claim that it is possible to apply the algorithms for paths
to cycles, by cutting a cycle into a path with a vertex in I ∩ J . Our algorithms

142 D. A. Hoang et al.

do not always achieve the shortest reconfiguration sequence. However, we later
show that achieving the shortest sequence even on cycles under TJ might not
be trivially easy, since we can systematically create the instances such that the
length of the shortest reconfiguration sequence is not equal to |IΔJ |/2.

Now, we describe the sketch how to cut C under TJ, TS, and TAR. In the
TS case, without loss of generality, we can assume that either |I| �= �n/k� or
n �= c · k holds. If v is already in I ∩ J , we cut C by removing v. The following
lemma ensures that if I and J are reconfigurable in C − v, then I ∪ {v} and
J ∪ {v} are reconfigurable in C.

Lemma 11. Let C be an n-vertex cycle and v be a token in I ∩ J of C. Then,
for any k-path vertex cover I ′ of C − v, I ′ ∪ {v} is a k-path vertex cover of C.

If I ∩ J = ∅, there exists at least one token movable in the clockwise or
counterclockwise direction. Here, we say a token u is movable if and only if (i)
there exists a neighbor v of u such that no token is placed on v, and (ii) moving
a token on u to v results a k-path vertex cover.

Lemma 12. If either |I| �= �n/k� or n �= c·k holds, then there exists at least one
token movable by at least one step in the clockwise or counterclockwise direction.
Furthermore, we can find such a token in linear time.

After finding such a movable token, we can use rotate operation repeatedly
until obtaining at least one vertex in I ∩ J . Here, the rotate operation takes a
token-set, a movable token which can be slid at least one step towards direction
d ∈ {clockwise, counterclockwise} as input, and outputs a TS-sequence that
slides all tokens one step towards d. After obtaining at least one vertex in I ∩ J ,
we can perform the cutting operation as before.

Next, we consider the TJ case. Since any TS-sequence is also a TJ-sequence,
we can perform the same cutting operation as in the TS case. Then, using this
cutting operation, we can show that

Theorem 13. Given an instance (C, I, J,R) of k-PVCR on a cycle C where
R ∈ {TS,TJ}, if |I| = |J | = �n/k� and n = c · k for some c, then (C, I, J,R) is
a no-instance. Otherwise, the k-path vertex covers I and J are reconfigurable if
and only if |I| = |J |. Moreover, we can compute a reconfiguration sequence for
TJ rule in O(n) time, and for TS rule in O(n2) time.

For the TAR case, we can use the result for the TJ case and Lemma 1 to
show that

Theorem 14. For any instance (C, I, J,TAR(u)) of k-PVCR on a cycle C,
one can decide if I and J are reconfigurable in linear time.

Consequently, we have

Theorem 15. k-PVCR on cycles under each of TJ and TAR(u) can be solved
in O(n) time, and under TS can be solved in O(n2) time.

Reconfiguring k-path Vertex Covers 143

To conclude this section, we give an example showing that even in a yes-
instance (C, I, J,TJ) of k-PVCR (k ≥ 3) under TJ on a cycle C, one may need to
use more than |IΔJ |/2 TJ-steps even in a shortest TJ-sequence. Intuitively, the
lower bound |IΔJ |/2 seems to be easy to achieve under TJ, simply by jumping
tokens one by one from I\J to J\I. However, as we show in the following lemma,
to keep the k-path vertex cover property, sometimes a token in I may need to
jump to some vertex not in J \ I beforehand. This implies the non-triviality of
finding a shortest reconfiguration sequence even under TJ.

Lemma 16. For k-PVCR (k ≥ 3) yes-instances (C, I, J,TJ) on cycles where
C = v0v1 . . . v3k−2v0, I = {v0, vk, v2k} and J = {v3k−2, v2k−2, vk−1}, the length
of a shortest reconfiguration sequence from I to J is greater than |IΔJ |/2.

5 Concluding Remarks

In this paper, we have investigated the complexity of k-PVCR under each of
TS, TJ, and TAR for several graph classes. In particular, several known hardness
results for VCR (i.e., k = 2) can be generalized for k-PVCR when k ≥ 3.
Additionally, we proved a complexity dichotomy for k-PVCR by showing that
it remains PSPACE-complete even if the input (planar) graph is of maximum
degree 3 (using a reduction from NCL) and can be solved in polynomial time
when the input (planar) graph is of maximum degree 2 (i.e., it is either a path
or a cycle). On the positive side, we designed polynomial-time algorithms for k-
PVCR on trees under each of TJ and TAR. We also showed how to construct a
shortest reconfiguration sequence on paths, and presented an example showing
the nontriviality of finding shortest reconfiguration sequences on cycles even
under TJ. The question of whether one can solve k-PVCR on trees under TS
in polynomial time remains open. Another target graphs may be chordal graphs
(under each of TJ and TAR), cographs, and graphs of treewidth at most 2. Even
on graphs of treewidth at most 2, the complexity of VCR remains open.

References

1. Acharya, H.B., Choi, T., Bazzi, R.A., Gouda, M.G.: The k-observer problem in
computer networks. Networking Sci. 1(1–4), 15–22 (2012)

2. Ausiello, G., Bonifaci, V., Escoffier, B.: Complexity and approximation in reopti-
mization. In: Computability in Context: Computation and Logic in the Real World,
pp. 101–129. World Scientific, Singapore (2011)

3. Beck, M., Lam, K.Y., Ng, J.K.Y., Storandt, S., Zhu, C.J.: Concatenated k-path
covers. In: Proceedings of ALENEX 2019, pp. 81–91 (2019)

144 D. A. Hoang et al.

4. Belmonte, R., Kim, E.J., Lampis, M., Mitsou, V., Otachi, Y., Sikora, F.: Token
sliding on split graphs. In: Niedermeier, R., Paul, C. (eds.) Proceedings of STACS
2019. LIPIcs, vol. 126, pp. 13:1–13:7 (2019). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik

5. Bonamy, M., Bousquet, N.: Token sliding on chordal graphs. In: Bodlaender, H.L.,
Woeginger, G.J. (eds.) WG 2017. LNCS, vol. 10520, pp. 127–139. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-68705-6 10

6. Bonsma, P.S.: Independent set reconfiguration in cographs and their generaliza-
tions. J. Graph Theor. 83(2), 164–195 (2016)

7. Bonsma, P., Kamiński, M., Wrochna, M.: Reconfiguring independent sets in claw-
free graphs. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp.
86–97. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6 8

8. Brešar, B., Kardoš, F., Katrenič, J., Semanǐsin, G.: Minimum k-path vertex cover.
Discrete Appl. Math. 159(12), 1189–1195 (2011)

9. Brešar, B., Krivoš-Belluš, R., Semanǐsin, G., Šparl, P.: On the weighted k-path
vertex cover problem. Discrete Appl. Math. 177, 14–18 (2014)

10. Demaine, E.D., et al.: Linear-time algorithm for sliding tokens on trees. Theor.
Comput. Sci. 600, 132–142 (2015)

11. Diestel, R.: Graph Theory, Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2010)

12. Fox-Epstein, E., Hoang, D.A., Otachi, Y., Uehara, R.: Sliding token on bipartite
permutation graphs. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS,
vol. 9472, pp. 237–247. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48971-0 21

13. Funke, S., Nusser, A., Storandt, S.: On k-path covers and their applications. In:
Proceedings VLDB Endowment, vol. 7, no. 10, pp. 893–902 (2014)

14. Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory
of NP-Completeness. W.H. Freeman & Co., New York (1990)

15. Hearn, R.A., Demaine, E.D.: PSPACE-completeness of sliding-block puzzles and
other problems through the nondeterministic constraint logic model of computa-
tion. Theor. Comput. Sci. 343(1–2), 72–96 (2005)

16. van den Heuvel, J.: The complexity of change. In: Surveys in Combinatorics. Lon-
don Mathematical Society Lecture Note Series, vol. 409, pp. 127–160. Cambridge
University Press, Cambridge (2013)

17. Ito, T., et al.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011)

18. Kamiński, M., Medvedev, P., Milanič, M.: Complexity of independent set recon-
figurability problems. Theor. Comput. Sci. 439, 9–15 (2012)

19. Kumar, M., Kumar, A., Pandu Rangan, C.: Reoptimization of path vertex cover
problem. In: Du, D.-Z., Duan, Z., Tian, C. (eds.) COCOON 2019. LNCS, vol.
11653, pp. 363–374. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26176-4 30

20. Lokshtanov, D., Mouawad, A.E.: The complexity of independent set reconfigura-
tion on bipartite graphs. ACM Trans. Algorithms 15(1), 7:1–7:19 (2019)

21. Miyano, E., Saitoh, T., Uehara, R., Yagita, T., van der Zanden, T.C.: Complexity
of the maximum k -path vertex cover problem. In: Rahman, M.S., Sung, W.-K.,
Uehara, R. (eds.) WALCOM 2018. LNCS, vol. 10755, pp. 240–251. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-75172-6 21

https://doi.org/10.1007/978-3-319-68705-6_10
https://doi.org/10.1007/978-3-319-08404-6_8
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1007/978-3-662-48971-0_21
https://doi.org/10.1007/978-3-030-26176-4_30
https://doi.org/10.1007/978-3-030-26176-4_30
https://doi.org/10.1007/978-3-319-75172-6_21

Reconfiguring k-path Vertex Covers 145

22. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(4), 52 (2018). (arti-
cle 52)

23. Ran, Y., Zhang, Z., Huang, X., Li, X., Du, D.Z.: Approximation algorithms for
minimum weight connected 3-path vertex cover. Appl. Math. Comput. 347, 723–
733 (2019)

24. Tsur, D.: Parameterized algorithm for 3-path vertex cover. Theor. Comput. Sci.
783, 1–8 (2019)

25. Wrochna, M.: Reconfiguration in bounded bandwidth and treedepth. J. Comput.
Syst. Sci. 93, 1–10 (2018)

26. Zandenvan der Zanden, T.C.: Parameterized complexity of graph constraint logic.
In: Proceedings of IPEC 2015. LIPIcs, vol. 9076, pp. 282–293 (2015)

Computational Complexity
of the Chromatic Art Gallery Problem

for Orthogonal Polygons

Chuzo Iwamoto(B) and Tatsuaki Ibusuki

Hiroshima University, Higashi-Hiroshima 739-8521, Japan
chuzo@hiroshima-u.ac.jp

https://home.hiroshima-u.ac.jp/chuzo/

Abstract. The art gallery problem is to find a set of guards who together
can observe every point of the interior of a polygonP .We study a chromatic
variant of the problem,where each guard is assigned one of k distinct colors.
The chromatic art gallery problem is to find a guard set for P such that
no two guards with the same color have overlapping visibility regions. We
study the decision version of this problem for orthogonal polygons with r-
visibility when the number of colors is k = 2. Here, two points are r-visible
if the smallest axis-aligned rectangle containing them lies entirely within
the polygon. In this paper, it is shown that determining whether there is an
r-visibility guard set for an orthogonal polygon with holes such that no two
guards with the same color have overlapping visibility regions is NP-hard
when the number of colors is k = 2.

Keywords: Chromatic art gallery problem · Orthogonal polygons ·
r-visibility · NP-hard

1 Introduction

The art gallery problem is to determine the minimum number of guards who
can observe the interior of a gallery. Chvátal [3] proved that �n/3� guards are
the lower and upper bounds for this problem; namely, �n/3� guards are always
sufficient and sometimes necessary for observing the interior of an n-vertex sim-
ple polygon. This �n/3�-bound is replaced by �n/4� if the instance is restricted
to a simple orthogonal polygon [8].

Another perspective to the art gallery problem is to study the complexity
of locating the minimum number of guards in a polygon. The NP-hardness and
APX-hardness of this problem were shown by Lee and Lin [12] and by Eiden-
benz et al. [4], respectively. Furthermore, Schuchardt and Hecker [16] proved that
this problem remains NP-hard if we restrict our attention to simple orthogonal
polygons. Even guarding the vertices of a simple orthogonal polygon was shown
to be NP-hard [11].

This work was supported by JSPS KAKENHI Grant Number 16K00020.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 146–157, 2020.
https://doi.org/10.1007/978-3-030-39881-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_13&domain=pdf
http://orcid.org/0000-0003-0152-2233
https://doi.org/10.1007/978-3-030-39881-1_13

Chromatic Art Gallery Problem for Orthogonal Polygons 147

(c)
v

u

(d)

x

vv
(a) (b)

w

Fig. 1. (a) Orthogonal polygon with a hole. (b) Two points v and u are r-visible. (c) v
and x are not r-visible. (d) v and w are not r-visible.

(c)

(a)

(d)

(b)

Fig. 2. (a) Orthogonal polygon P . (b, c) Every point in P can be observed by a 2-color
guard set. Every point in P is observed by either a single guard or two guards having
different colors. (d) Orthogonal polygon which can be observed by a 3-color guard set,
but not by any 2-color guard set.

We study a chromatic variant of the art gallery problem, where each guard
is assigned one of k distinct colors. The chromatic art gallery problem is to find
a guard set for a polygon such that no two guards with the same color have
overlapping visibility regions. We study the decision version of this problem for
orthogonal polygons with r-visibility when the number of colors is k = 2. Here,
two points u and v are r-visible if the smallest axis-aligned rectangle containing
them lies entirely within the polygon (see Figs. 1 and 2). In this paper, it is shown
that determining whether there is an r-visibility guard set for an orthogonal
polygon with holes such that no two guards with the same color have overlapping
visibility regions is NP-hard when the number of colors is k = 2.

The computational complexity of the chromatic art gallery problem was
firstly investigated in [6]; the NP-hardness was proved for deciding whether there
is a chromatic guard set for a given polygon with holes when the number of col-
ors is k = 2. This result is for general (non-orthogonal) polygons under standard
visibility (and not r-visibility). Recently, the NP-hardness of the chromatic art
gallery problem was proved for finding a conflict-free guard set under the vertex-
to-vertex guarding condition [2]. Here, a colored guard set is called conflict-free if
each point of the polygon is seen by some guard whose color appears exactly once

148 C. Iwamoto and T. Ibusuki

g

e

a

b

c

d

ix

ixix

f

qi ri

si

Fig. 3. Variable gadget for xi.(Color figure online)

among the guards visible to that point. Several results on the lower and upper
bounds of the minimum number of colors can be found in [1,5,9] for general and
orthogonal polygons under standard and orthogonal visibility conditions. The r-
visibility guard set problem for orthogonal polygons with holes was shown to be
NP-hard [10]; this result is on the standard (non-chromatic) art gallery problem
with r-visibility.

2 Definitions and Results

The definition of visibility is mostly from [17]. Two points v and u in a polygon P
are said to be r-visible if the smallest axis-aligned rectangle containing them lies
entirely within P (see Fig. 1). Here, the rectangle must not contain any hole of
the polygon. A point v is said to observe a region if every point of the region is
r-visible from v.

The definitions of a polygon and a polygon with holes are mostly from [13,15].
A polygon is defined by a finite set of segments such that every segment extreme
is shared by exactly two edges and no subset of edges has the same property.
The segments are the edges and their endpoints are the vertices of the polygon.

Chromatic Art Gallery Problem for Orthogonal Polygons 149

(a)

(e)

h k

(f)

j

(g)

i

ch k
j

i

(b)

i

(c)

j

(d)

j

i

(h) (i)

Fig. 4. (a) Area c and its surrounding regions h, i, j, and k. (b)–(g) If no guard is
place on area c, then there remain white regions which are observed by no guards. (h,
i) If a guard is placed on area c, every point on regions c and h, i, j, k is observed by
either a single guard or two guards having different colors. (Color figure online)

If each edge of a polygon is perpendicular to one of the coordinate axes, then the
polygon is called orthogonal. If no non-consecutive pair of edges overlap, then
the polygon is said to be simple.

A polygon with holes is a polygon P enclosing several other polygons
H1,H2, . . . , Hh, the holes. None of the boundaries of P , H1,H2, . . . , Hh may
intersect, and each of the holes is empty. P is said to bound a multiply-connected
region with h holes: the region of the plane interior to or on the boundary of P ,
but exterior to or on the boundary of H1,H2, . . . , Hh. Similarly, we define an
orthogonal polygon with holes to be an orthogonal polygon with orthogonal holes,
with all edges aligned with the same pair of orthogonal axes.

An instance of the chromatic art gallery problem for orthogonal polygons
with holes is (P,H1,H2, . . . , Hh; k), where P is an orthogonal polygon with
holes H1,H2, . . . , Hh, and k is the number of colors. The problem asks whether
there is a set of colored guards with r-visibility for P with holes such that no two
guards with the same color have overlapping visibility regions when the number
of colors is k.

Theorem 1. The chromatic art gallery problem for orthogonal polygons with
holes is NP-hard when the number of colors is two.

150 C. Iwamoto and T. Ibusuki

ix = 0

(a)

qi ri ix = 0

ix = 1 si

ix = 1

(b)

qi ri ix = 1

ix = 0 si

g

e

a

b

c

d

f

g

e

a

b

c

d

f

Fig. 5. Variable gadget for xi. There are two types of colored guard sets: (a) Point si
is observed by a blue guard, which corresponds to the assignment xi = 1. (b) Point si
is observed by a red guard, which corresponds to xi = 0. (Color figure online)

3 NP-Completeness

3.1 3SAT Problem

The definition of 3SAT is mostly from [7] and [14]. Let U = {x1, x2, . . . , xn} be a
set of Boolean variables. Boolean variables take on values 0 (false) and 1 (true).
If x is a variable in U , then x and x are literals over U . The value of x is 1 (true)
if and only if x is 0 (false). A clause over U is a set of literals over U , such as
{x1, x3, x4}. A clause is satisfied by a truth assignment if and only if at least
one of its members is true under that assignment.

An instance of Planar 3SAT is a collection C = {c1, c2, . . . , cm} of clauses
over U such that (i) |cj | = 3 for each cj ∈ C and (ii) the graph G = (V,E),
defined by V = U ∪C and E = {(xi, cj) | xi ∈ cj ∈ C or xi ∈ cj ∈ C}, is planar.
Planar 3SAT asks whether there exists some truth assignment for U that
simultaneously satisfies all the clauses in C. If E is replaced with

E1 = E ∪ {(cj , cj+1) | 1 ≤ j ≤ m − 1},

Chromatic Art Gallery Problem for Orthogonal Polygons 151

pj

cj

oj

xi1 xi2 xi3

Fig. 6. Clause gadget transformed from cj = {xi1 , xi2 , xi3}.

then the problem is called Clause-Linked Planar 3SAT. This problem is
NP-complete, since Variable-Clause-Linked Planar 3SAT was shown to
be NP-complete in [14], where the edge set E2 is defined as

E2 = E ∪ {(xi, xi+1) | 1 ≤ i ≤ n − 1} ∪ {(xn, c1)}
∪ {(cj , cj+1) | 1 ≤ j ≤ m − 1} ∪ {(cm, x1)}.

For example, U = {x1, x2, x3, x4}, C = {c1, c2, c3}, and c1 = {x1, x2, x3}, c2 =
{x1, x2, x4}, c3 = {x2, x3, x4} provide an instance of Clause-Linked Planar
3SAT. For this instance, the answer is “yes,” since there is a truth assignment
(x1, x2, x3, x4) = (1, 1, 0, 1) satisfying all clauses.

3.2 Transformation from an Instance of Clause-Linked Planar
3SAT to an Orthogonal Polygon

We present a polynomial-time transformation from an arbitrary instance C of
Clause-Linked Planar 3SAT to an orthogonal polygon P with holes such
that C is satisfiable if and only if there is a set of colored guards with r-visibility
for P such that no two guards with the same color have overlapping visibility
regions, where each guard is assigned one of two distinct colors (see Fig. 11).

Each variable xi ∈ {x1, x2, . . . , xn} is transformed into the variable gad-
get as illustrated in Fig. 3. (In this figure, we suppose that variable xi appears
once positively and twice negatively in C.) There are seven yellow rectangle

152 C. Iwamoto and T. Ibusuki

x = 0i1 x = 0i2 x = 0i3
(a)

cj

pj

x = 0i1 x = 0i2 x = 0i3
(b)

a

b

pj

d

c a

b

e f

g

h

cj

pj

x = 0i1 x = 0i2 x = 0i3

a

b

(c)

h

l

m

k

cj

pj

x = 0i1 x = 0i2 x = 0i3

a

b

(d)

h
m

cj

oj oj oj

oj

(e)

cj

pj

x = 1i x = 1i x = 1i1 2 3

oj

k

Fig. 7. (a)–(d) If xi1 = xi2 = xi3 = 0, then points oj and pj will be observed by red
guards. (e) If xi1 = xi2 = xi3 = 1, then points oj and pj will be observed by blue
guards. (Color figure online)

areas a, b, . . . , g and three points qi, ri, and si. At least one guard must be placed
in each of the seven yellow areas; the reason is given in the next paragraph.

Consider area c (see also Fig. 4(a)). Assume that there is no guard in area c.
In this case, even if a blue guard and a red guard are placed on two of the four
grey areas h, i, j, and k (see Figs. 4(b)–(g)), there exists a point (see white areas
in the figure) which can be observed by neither a blue guard nor a red guard.
Therefore, at least one guard must be placed on area c (see Figs. 4(h) and (i)).

By a similar observation, one can see that at least one guard must be placed
in each of the seven yellow areas a, b, . . . , f (see Fig. 5). The visibility regions
of the guards on areas a, d, e, f overlap the visibility regions of the guards on
areas b, c, g. There are two types of guard sets, which correspond to assignment
xi = 1 and xi = 0 (see Fig. 5(a) and (b), respectively). If point si is observed

Chromatic Art Gallery Problem for Orthogonal Polygons 153

(a) (b)

(d) (e)

cj

pj

x = 1i x = 0i x = 0i1 2 3

oj

x = 0i x = 1i x = 0i1 2 3

cj

pj

x = 1i x = 1i x = 0i1 2 3

oj

cj

pj

oj

(c)
x = 0i x = 0i x = 1i1 2 3

cj

pj

oj

cj

pj

x = 1i x = 0i x = 1i1 2 3

oj

x = 0i x = 1i x = 1i1 2 3

cj

pj

oj

(f)

Fig. 8. If at least one of the variables xi1 , xi2 , and xi3 is 1, then points oj and pj can
be observed by blue guards. For the case xi1 = xi2 = xi3 = 1, see Fig. 7(e). (Color
figure online)

by a blue guard (resp. a red guard), then points qi and ri are observed by red
guards (resp. blue guards). This corresponds to the assignment xi = 1 (resp.
xi = 0).

Clause cj ∈ {c1, c2, . . . , cm} is transformed into the clause gadget as illus-
trated in Fig. 6. Let cj = {xi1 , xi2 , xi3}. If xi1 = xi2 = xi3 = 0 (resp.
xi1 = xi2 = xi3 = 1) as illustrated in Fig. 7(d) (resp. Fig. 7(e)), then points oj
and pj must be observed by red guards (resp. blue guards) because of the fol-
lowing reason.

In Fig. 7(a), we need two blue guards in order to observe grey areas a and b.
If a blue guard is placed at c (resp. d), then area b (resp. a) can be observed
by neither a blue guard nor a red guard. Thus, two blue guards must be placed
in areas a and b (see (b)). (b) If a red guard is placed at e in order to observe

154 C. Iwamoto and T. Ibusuki

t

(a) (b)

(c)

t

(d)

cc

tj, j+1

j cj+1 c = 1c = 1

tj, j+1

j cj+1

c = 1c = 0

tj, j+1

j cj+1 c = 0c = 0

tj, j+1

j cj+1

Fig. 9. XNOR gadget. (Color figure online)

area h, then a blue guard must be placed at f . In this case, neither a red guard
nor a blue guard can be placed at g. Thus, the red guard is placed at h (see
the red guard h in (c)). (c) If a blue guard is placed at l in order to observe
area k, then area m can be observed by neither a blue guard nor a red guard.
Thus, the blue guard is placed in area k (see (d)). Hence, points oj and pj are
observed by red guards when xi1 = xi2 = xi3 = 0. By the same observation, if
xi1 = xi2 = xi3 = 1, then points oj and pj must be observed by blue guards (see
Fig. 7(e)).

On the other hand, if at least one of the variables xi1 , xi2 , and xi3 is 1 (see
Fig. 8), then points oj and pj can be observed by blue guards.

Figure 9 is an XNOR gadget, which connects clause gadgets cj and cj+1 for
every j ∈ {0, 1, . . . ,m − 1} (see Fig. 11). Clauses cj and cj+1 have two distinct
colors (see Fig. 9(c)) if and only if point tj,j+1 can be observed by neither a
blue guard nor a red guard. Figures 10(a, c) and (b, d) are Z-turn and U-turn
gadgets, respectively. They connect clause and variable gadgets or clause and
XNOR gadgets.

Figure 11 is an orthogonal polygon P with holes transformed from U =
{x1, x2, x3, x4} and C = {c1, c2, c3}, where c1 = {x1, x2, x3}, c2 = {x1, x2, x4},
and c3 = {x2, x3, x4}. In this figure, c0 = {x0, x0, x0} is a dummy clause, where
x0 is a dummy variable.

Lemma 1. The instance C of 3SAT is satisfiable if and only if there is a set of
2-colored guards with r-visibility for P with holes such that no two guards with
the same color have overlapping visibility regions.

Chromatic Art Gallery Problem for Orthogonal Polygons 155

(d)(c)

(b)(a)

Fig. 10. (a, c) Z-turn gadget. (b, d) U-turn gadgets.

Proof. (⇒) Suppose that the instance C of 3SAT is satisfiable. In Fig. 11,
start point s0 can be observed by a blue guard, since the dummy clause c0 =
{x0, x0, x0} is satisfied if the dummy variable x0 = 1. Then, target point t0,1 can
be observed by a red guard if c1 is satisfied. Suppose that c0 and c1 are satisfied.
Then, target point t1,2 can be observed by a red guard if c2 is satisfied. By con-
tinuing this observation, one can see that all target points t0,1, t1,2, . . . , tm−1,m

can be observed by red guards if all of c1, c2, . . . , cm are satisfied.
(⇐) Suppose that the instance C of 3SAT is not satisfiable. Consider an

arbitrary assignment (b1, b2, . . . , bn) ∈ {0, 1}n for (x1, x2 . . . , xn). Since C is
not satisfiable, there exists at least one clause cj = {xij1

, xij2
, xij3

} such that
xij1

= xij2
= xij3

= 0 when the assignment is (b1, b2, . . . , bn).
Furthermore, for the assignment (b1, b2, . . . , bn), there exists at least one

clause ck = {xik1
, xik2

, xik3
} such that xik1

= xik2
= xik3

= 1 because of the
following reason: Assume for contradiction that there is no ck = {xik1

, xik2
, xik3

}
such that xik1

= xik2
= xik3

= 1. Then, every clause contains at least one lit-
eral x whose value is 0. Now, consider the “inverted” assignment (b1, b2, . . . , bn).
For the inverted assignment, every clause contains at least one literal of value x =
1. This implies that C is satisfiable, a contradiction.

Therefore, in any unsatisfiable instance C of 3SAT, there are two clauses
cj = {xij1

, xij2
, xij3

} and ck = {xik1
, xik2

, xik3
} such that xij1

= xij2
= xij3

= 0
and xik1

= xik2
= xik3

= 1 for every assignment (b1, b2, . . . , bn). The 2-color

156 C. Iwamoto and T. Ibusuki

XNOR(c , c)

c3

x = 02

x = 12

x = 11

x = 04

x = 14

x = 13

x = 03

t1,2

1 2

XNOR(c , c)2 3

t2,3

x = 10

s0

t0,1

0 1

c0

c2

c1

XNOR(c , c)

Fig. 11. Orthogonal polygon with holes transformed from C = {c1, c2, c3}, where c1 =
{x1, x2, x3}, c2 = {x1, x2, x4}, and c3 = {x2, x3, x4}. In this figure, c0 = {x0, x0, x0} is
a dummy clause, where x0 is a dummy variable. From the positions of red and blue
guards, one can see that (x1, x2, x3, x4) = (1, 1, 0, 1) satisfies all the clauses. (Color
figure online)

Chromatic Art Gallery Problem for Orthogonal Polygons 157

guard sets of cj and ck are given in Figs. 7(d) and (e), respectively. If j < k,
there exists an integer j′ ∈ {j, j + 1, . . . , k − 1} such that the point tj′,j′+1 is
observed by neither a blue guard nor a red guard (see Fig. 9(c)). The case k < j
is similar. This completes the proof of Lemma 1.

References

1. Bärtschi, A., Suri, S.: Conflict-free chromatic art gallery coverage. In: 29th Inter-
national Symposium on Theoretical Aspects of Computer Science, pp. 160–171
(2012)

2. Çağırıcı, O., Ghosh, S.K., Hliněný, P., Roy, R.: On conflict-free chromatic guarding
of simple polygons. arXiv:1904.08624, 26 pages (2019)

3. Chvátal, V.: A combinatorial theorem in plane geometry. J. Comb. Theory B 18,
39–41 (1975)

4. Eidenbenz, S.J., Stamm, C., Widmayer, P.: Inapproximability results for guarding
polygons and terrains. Algorithmica 31, 79–113 (2001)

5. Erickson, L.H., LaValle, S.M.: A chromatic art gallery problem. Technical report,
Department of Computer Science, University of Illinois at Urbana-Champaign
(2011)

6. Fekete, S.P., Friedrichs, S., Hemmer, M., Mitchell, J.B.M., Schmidt, C.: On the
chromatic art gallery problem. In: 30th Canadian Conference on Computational
Geometry, Halifax, pp. 73–79 (2014)

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W.H. Freeman, New York (1979)

8. Hoffmann, F.: On the rectilinear art gallery problem. In: Paterson, M.S. (ed.)
ICALP 1990. LNCS, vol. 443, pp. 717–728. Springer, Heidelberg (1990). https://
doi.org/10.1007/BFb0032069

9. Hoffman, F., Kriegel, K., Suri, S., Verbeek, K., Willert, M.: Tight bounds for
conflict-free chromatic guarding of orthogonal art galleries. Comput. Geom. Theory
Appl. 73, 24–34 (2018)

10. Iwamoto, C., Kume, T.: Computational complexity of the r-visibility guard set
problem for polyominoes. In: Akiyama, J., Ito, H., Sakai, T. (eds.) JCDCGG 2013.
LNCS, vol. 8845, pp. 87–95. Springer, Cham (2014). https://doi.org/10.1007/978-
3-319-13287-7 8

11. Katz, M.J., Roisman, G.S.: On guarding the vertices of rectilinear domains. Com-
put. Geom. Theory Appl. 39(3), 219–228 (2008)

12. Lee, D.T., Lin, A.K.: Computational complexity of art gallery problems. IEEE
Trans. Inf. Theory 32(2), 276–282 (1986)

13. O’Rourke, J.: Art Gallery Theorems and Algorithms. Oxford University Press,
New York (1987)

14. Pilz, A: Planar 3-SAT with a clause-variable cycle. In: 16th Scandinavian Sympo-
sium and Workshops on Algorithm Theory, pp. 31:1–31:13 (2018)

15. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. MCS.
Springer, New York (1985). https://doi.org/10.1007/978-1-4612-1098-6

16. Schuchardt, D., Hecker, H.-D.: Two NP-hard art-gallery problems for ortho-
polygons. Math. Logic Q. 41(2), 261–267 (1995)

17. Worman, C., Keil, J.M.: Polygon decomposition and the orthogonal art gallery
problem. Int. J. Comput. Geom. Appl. 17(2), 105–138 (2007)

http://arxiv.org/abs/1904.08624
https://doi.org/10.1007/BFb0032069
https://doi.org/10.1007/BFb0032069
https://doi.org/10.1007/978-3-319-13287-7_8
https://doi.org/10.1007/978-3-319-13287-7_8
https://doi.org/10.1007/978-1-4612-1098-6

Maximum Bipartite Subgraph
of Geometric Intersection Graphs

Satyabrata Jana1, Anil Maheshwari2, Saeed Mehrabi2(B), and Sasanka Roy1

1 Indian Statistical Institute, Kolkata, India
satyamtma@gmail.com, sasanka.ro@gmail.com

2 School of Computer Science, Carleton University, Ottawa, Canada
anil@scs.carleton.ca, saeed.mehrabi@carleton.ca

Abstract. We study the Maximum Bipartite Subgraph (MBS) problem,
which is defined as follows. Given a set S of n geometric objects in the
plane, we want to compute a maximum-size subset S′ ⊆ S such that the
intersection graph of the objects in S′ is bipartite. We first show that
the MBS problem is NP-hard on geometric graphs for which the maximum
independent set is NP-hard (hence, it is NP-hard even on unit squares and
unit disks). On the algorithmic side, we first give a simple O(n)-time
algorithm that solves the MBS problem on a set of n intervals. Then, we
give an O(n2)-time algorithm that computes a near-optimal solution for
the problem on circular-arc graphs. Moreover, for the approximability
of the problem, we first present a PTAS for the problem on unit squares
and unit disks. Then, we present efficient approximation algorithms with
small-constant factors for the problem on unit squares, unit disks and
unit-height rectangles. Finally, we study a closely related geometric prob-
lem, called Maximum Triangle-free Subgraph (MTFS), where the objective
is the same as that of MBS except the intersection graph induced by the
set S′ needs to be triangle-free only (instead of being bipartite).

Keywords: Bipartite subgraph · Geometric intersection graphs ·
NP-hardness · Approximation schemes · Triangle-free subgraph

1 Introduction

In this paper, we study the following geometric problem. Given a set S of n
geometric objects in the plane, we are interested in computing a maximum-size
subset S′ ⊆ S such that the intersection graph induced by the objects in S′ is
bipartite. We refer to this problem as the Maximum Bipartite Subgraph (MBS)
problem. The MBS problem is closely related to the Odd Cycle Transversal (OCT)
problem: given a graph G, the objective of the OCT problem is to compute a
minimum-cardinality subset of S ⊆ V (G) such that the intersection of S and
the vertices of every odd cycle of the graph is non-empty. Notice that MBS and OCT

This work is supported in part by Natural Sciences and Engineering Research Council
of Canada (NSERC).

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 158–169, 2020.
https://doi.org/10.1007/978-3-030-39881-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_14

Maximum Bipartite Subgraph of Geometric Intersection Graphs 159

are equivalent for the class of graphs on which OCT is polynomial-time solvable:
an exact solution S for OCT gives V (G) \ S as an exact solution for MBS within
the same time bound (see below for a summary of the main known results on
the OCT problem). However, on classes of graphs for which OCT is NP-hard, an
α-approximation algorithm for OCT might not provide any information on the
approximability of MBS on the same classes of graphs.

Another problem that is related to MBS is the Feedback Vertex Set (FVS)
problem. The objective of FVS is the same as that of OCT except the set S
has a non-empty intersection with every cycle of the graph (not only the odd
ones). The FVS problem has been extensively studied in graph theory from both
hardness [11,29] and algorithmic [4,9,14,17] points of view.

We also study a simpler variant of MBS, called the Maximum Triangle-free
Subgraph (MTFS) problem. Let S be a set of n geometric objects in the plane.
Then, the objective of the MTFS problem is to compute a maximum-size subset
S′ ⊆ S such that the intersection graph induced by the objects in S′ is triangle
free (as opposed to being bipartite).

Related Work. The MBS problem is NP-complete for planar graphs with maximum
degree four [6]. For graphs with maximum degree three, Choi et al. [6] showed
that for a given constant k there is a vertex set of size k or less whose removal
leaves an induced bipartite subgraph if and only if there is an edge set of size k or
less whose removal leaves a bipartite spanning subgraph. As edge deletion graph
bipartization problem is NP-complete for cubic graphs [28], the MBS problem is
NP-complete for cubic graphs. Moreover, since the maximum edge deletion graph
bipartization problem is solvable in O(n3) time for planar graphs [1,12] where n
is the number of vertices of the input graph, this immediately implies that MBS
is O(n3)-time solvable for planar graphs with maximum degree three. For the
vertex-weighted version of the MBS problem, Baiou et al. [2] showed that the MBS
problem can be solved in O(n3/2 log n) time for planar graphs with maximum
degree three. Finally, Cornaz et al. [8] considered the maximum induced bipartite
subgraph problem: given a graph with non-negative weights on the edges, the
goal is to find a maximum-weight bipartite subgraph. An edge subset F ⊆ E is
called independent if the subgraph induced by the edges in F (incident vertices)
is bipartite; otherwise, it is called dependent. They showed that the minimum
dependent set problem with non-negative weights can be solved in polynomial
time.

The OCT problem is known to be NP-complete on planar graphs with degree at
most 6 [6]. For planar graphs with degree at most 3, OCT can be solved in O(n3)
time [6] (even the weighted version of the problem). There are several results
known concerning the parameterized complexity of OCT (i.e., given a graph G on
n vertices and an integer k, is there a vertex set U in G of size at most k such
that G \ U is bipartite). Reed et al. [26] first gave an algorithm with running
time O(4kkmn). Lokshtanov et al. [19] improved this running time to O(3kkmn).
Lokshtanov et al. [20] provide an algorithm with running time O(2O(k log k)n) for
planar graphs. Moreover, assuming the exponential time hypothesis, the running
time cannot be improved to 2O(k)nO(1).

160 S. Jana et al.

The MBS problem is also closely related to the Maximum Independent Set
(MIS) problem. Observe that any feasible solution for MIS is also a feasible solu-
tion for MBS and, moreover, a feasible solution S ⊆ V (G) for the MBS problem
provides a feasible solution of size at least |S|/2 for the MIS problem. Hence,
OPT(MIS) ≤ OPT(MBS) ≤ 2OPT(MIS). This implies that an α-approximation algo-
rithm for MIS on a class of graphs is a 2α-approximation for MBS on the same
class. In particular, the PTASes for MIS on unit disks and unit squares [13] imply
polynomial-time (2+ε)-approximation algorithms for MBS on unit disks and unit
squares. Moreover, we obtain a polynomial-time O(log log n)-approximation [5]
(or, O(log OPT)-approximation [3]) algorithm for MBS on rectangles.

Our Results. In this paper, we present the following results.

• On the hardness side, we show that the MBS problem is NP-hard on the classes
of geometric intersection graphs for which MIS is NP-hard (Sect. 2); this in
particular includes unit disks and unit squares. We also extend this result to
a corresponding W[1]-hardness result.

• On the algorithmic side, we give a linear-time algorithm for MBS on interval
graphs, and an O(n2)-time algorithm that computes a near-optimal solution
for MBS on any circular-arc graph with n vertices (Sect. 3).

• On the approximation side, we obtain a PTAS for the MBS problem on unit disks
and unit squares. For a set of n unit-height rectangles in the plane, we give
an O(n log n)-time 2-approximation algorithm for the problem. Moreover, we
design an O(n2)-time 4-approximation algorithm for the same problem on
unit disks (Sect. 4).

• Finally, we show that the MTFS problem is NP-hard on the intersection graph
of axis-parallel rectangles in the plane (Sect. 5).

2 NP-Hardness

In this section, we show that the MBS problem is NP-complete on the classes of
geometric intersection graphs for which MIS is NP-complete. The MIS problem is
known to be NP-complete on a wide range of geometric intersection graphs, even
restricted to unit disks and unit squares [7], 1-string graphs [16], and B1-VPG
graphs [18]. Let G = (V,E) be an intersection graph induced by a set S of n
geometric objects in the plane. We construct a new graph G′ from the disjoint
union of two copies of G by adding edges as follows. For each vertex in V , we
add an edge from each vertex in one copy of G to the corresponding vertex in
the other copy. For each edge (u, v) ∈ E, we add four edges (u, v), (u′, v′), (u, v′),
and (v, u′) to G′, where u′ and v′ are the corresponding vertices of u and v,
respectively in the other copy. Graph G′ is the intersection graph of 2n geometric
objects S, where each object has occurred twice in the same position. Clearly,
the number of vertices and edges in G′ are polynomial in the number of vertices
of G; hence, the construction can be done in polynomial time.

Lemma 1. G has an independent set of size at least k if and only if G′ has a
bipartite subgraph of size at least 2k.

Maximum Bipartite Subgraph of Geometric Intersection Graphs 161

Proof. Let U be an independent set of G with |U | ≥ k. Let H be the subgraph
of G′ induced by U along with all the corresponding vertices of U in the other
copy. Then, H is a bipartite subgraph with size at least 2k. Conversely, if G′ has
a bipartite subgraph of size at least 2k, then G′ must have an independent set
of size at least k. By the construction of G′, if G′ has an independent set of size
at least k, then G must have an independent set of size at least k. �

By Lemma 1, we have the following theorem.

Theorem 1. The MBS problem is NP-complete on the classes of geometric inter-
section graphs for which MIS is NP-complete.

Remark. By the definition of parameterized reduction [10], one can verify that
the above reduction is in fact a parameterized reduction and so we have the
following result.

Corollary 1. The MBS problem is W[1]-complete on the classes of geometric
intersection graphs for which MIS is W[1]-complete.

We note that Marx [22,23] proved that MIS is W[1]-complete on unit squares,
unit disks, and even unit line segments. As such, by Corollary 1, the MBS problem
is W[1]-complete on all these geometric intersection graphs.

3 Algorithmic Results

In this section, we present our algorithms for the MBS problem on interval graphs
and circular-arc graphs. We start with interval graphs.

3.1 Interval Graphs

In this section, we consider the MBS problem on a set S of n intervals and give
a linear-time algorithm for the problem. Notice that for interval graphs, the
MBS problem is the same as FVS; to the best of our knowledge, the best-known
algorithm for solving FVS on interval graphs takes O(|V |+ |E|)) time [21]. Since
interval graphs are a subclass of chordal graphs, the MBS problem on interval
graphs reduces to the problem of computing a maximum-size subset of intervals
in S whose induced graph is triangle free. Consequently, a point can “stab” at
most two intervals in any feasible solution for the MBS problem on intervals.
Algorithm1 exploits this property to solve the problem exactly.

In the following, we assume that (i) the endpoints of intervals in S are 2n
distinct points on the real line, and (ii) the intervals are sorted from left to right
by the increasing order of their right endpoint; we denote them as I1, I2, . . . , In.
Moreover, the variable x (resp., y) denotes the x-coordinate of the rightmost
point on the real line such that it is contained in two intervals (resp., one interval)
of the current solution computed by the algorithm. For an interval I, we denote
the left and right endpoints of I by left(I) and right(I), respectively.

162 S. Jana et al.

Algorithm 1. BipartiteInterval(S)

1: let initially M = ∅;
2: x := −∞ and y := −∞;
3: for i := 1 to n do
4: if left(Ii) > y then
5: M := M ∪ Ii;
6: y := right(Ii);
7: else if x < left(Ii) < y then
8: M := M ∪ Ii;
9: x := y;

10: y := right(Ii);
11: end if
12: end for
13: return M ;

Correctness. Let Mi, for all 1 ≤ i ≤ n, denote the set M at the end of iteration
i of the for-loop. Consider the following invariant.

Invariant I. For all i = 1, . . . , n, at the end of iteration i of the for-loop, the
set Mi is an optimal solution for the set of intervals {I1, I2, . . . , Ii}.

We prove Invariant I by induction on |S|. If |S| = 1, then M = {I1} by line
5 of the algorithm and we are done. Moreover, if |S| = 2, then there are two
cases depending on whether {I1, I2} form a clique or an independent set. In
either case, M = {I1, I2} and we are done. Now, suppose that Invariant I is
true for all |S| = 1, 2, . . . , n − 1. Let S be a set of n intervals and consider the
set S \ In (where In is the interval with rightmost right endpoint in S). By
induction hypothesis, let Mn−1 be the optimal solution for S \ In computed by
the algorithm and consider the values of x and y before returning Mn−1 in line
13. We must have that either (i) left(In) > y, (ii) x < left(In) < y, or (iii)
left(In) < x. In cases (i) and (ii), the algorithm adds In to Mn−1 resulting in
an optimal solution. In case (iii), the algorithm returns Mn−1 without adding In

to the solution. Observe that this is optimal as no feasible solution can add In.
The algorithm clearly runs in time linear in n and so we have the following

theorem.

Theorem 2. The MBS problem on a set of n intervals can be solved in O(n)
time, assuming that the intervals are already sorted on their right endpoint.

3.2 Circular-Arc Graphs

We now give a near-optimal solution for the MBS problem on circular-arc graphs.
For an optimization problem, a near-optimal solution is a feasible solution whose
objective function value is within a specified range from the optimal objective
function value. A circular-arc graph is the intersection graph of arcs on a circle.
That is, every vertex is represented by an arc, and there is an edge between

Maximum Bipartite Subgraph of Geometric Intersection Graphs 163

two vertices if and only if the corresponding arcs intersect. Observe that interval
graphs are a proper subclass of circular-arc graphs. For the rest of this section, let
G = (V,E) be a circular-arc graph and assume that a geometric representation
of G (i.e., a set of |V (G)| arcs on a circle C) is given as part of the input. First,
we prove the following lemmas.

Lemma 2. If G is triangle-free, then it can have at most one cycle.

Proof. Suppose for the sake of contradiction that G has more than one cycle.
Let A1 and A2 be two cycles of G. Now, since G is a triangle-free circular-arc
graph, the corresponding arcs of the vertices of any cycle in G together cover the
circle C. So, there must exist three distinct vertices v ∈ A1, u ∈ A1 and w ∈ A2

such that v, u, w are pairwise adjacent. Which is a contradiction to the fact that
G is triangle-free. �
Lemma 3. If B and T are optimal solutions for the MBS and MTFS problems on
G, respectively, then |T | − 1 ≤ |B| ≤ |T |.
Proof. Since a bipartite subgraph contains no triangle, |B| ≤ |T |. Now, if G[T]
(i.e., the subgraph of G induced by T) is odd-cycle free, then it induces a bipartite
subgraph. Otherwise, G[T] can have at most one cycle by Lemma 2. If this cycle
is odd, then by removing any single vertex form the cycle, we obtain a bipartite
subgraph of G with size at least |T | − 1. �

Since G[T] contains at most one cycle, following lemma trivially holds.

Lemma 4. If H is a maximum-size induced forest in G, then |V (H)| ≥ |T |−1.

By the above lemmas, our goal now is to find a maximum acyclic subgraph
H of G. Notice that there must be a clique K (|K| ≥ 1) in G that is not in
H. Now, for each arc u in the circular-arc representation of G, let l(u) and
r(u) denote the two endpoints of u in the clockwise order of the endpoints u.
Then, we consider two vertex sets S1

u = {w : w ∈ V, l(u) /∈ [l(w), r(w)]} and
S2

u = {z : z ∈ V, r(u) /∈ [l(z), r(z)]}. Both S1
u and S2

u are interval graphs. Since
there are n vertices in G, we compute 2n interval graphs in total. Then, for each
of these interval graphs, we apply Algorithm1 to compute an optimal solution
for MBS, and will return the one with maximum size as the final solution. Since
Algorithm 1 runs in O(n) time, the total time to find H is O(n2); so we have
the following theorem.

Theorem 3. Let OPT be a maximum-size induced bipartite subgraph of a
circular-arc graph G with n vertices. Then, there is an algorithm that computes
an induced bipartite subgraph H of G such that |V (H)| ≥ |OPT | − 1. The algo-
rithm runs in O(n2) time.

4 Approximation Algorithms

Recall that since MIS is NP-complete on unit disks and unit squares, the MBS
problem is NP-complete on these graphs by Theorem 1. In this section, we first
give PTASes for MBS on both unit squares and unit disks, and will then consider
the problem on unit-height rectangles.

164 S. Jana et al.

4.1 Unit Disks and Unit Squares

We first show the PTAS for unit disks, and will then discuss it for unit squares
as well as the weighted MBS problem.

Let S be a set of n unit disks in the plane, and let k > 1 be a fixed integer.
A PTAS running in O(nO(1) · nO(1/ε2)) time, for any ε > 0, is straightforward
using the shifting technique of Hochbaum and Maass [13] and the following
packing argument: for an instance of the MBS problem, where the unit disks lie
inside a k × k square, an optimal solution cannot have more than k2 unit disks.
Hence, we can compute an exact solution for such an instance of the problem
in O(nO(1) · nO(k2)) time. Consequently, by setting k = 1/ε, we obtain a PTAS

running in time O(nO(1) · nO(1/ε2)).
To improve the running time to O(nO(1) · nO(1/ε)), we rely on the shifting

technique again, but instead of applying the plane partitioning twice, we only
partition the plane into horizontal slabs and solve the MBS problem for each of
them exactly. This gives us the desired running time for our PTAS. We next
describe the details of how to solve MBS exactly for a slab.

Algorithm for a Slab. Let H be a horizontal slab of height k and let D ⊆ S be
the set of disks that lie entirely inside H. The idea is to build a vertex-weighted
directed acyclic graph G such that finding a maximum-weight path from the
source vertex to the target vertex corresponds to an exact solution for the MBS
problem [24]. To this end, let a and b (a < b) be two integers such that every
disk in D lies inside the rectangle R bounded by H and the vertical lines x = a
and x = b. Partition R vertically into unit-width boxes Bi, where the left side of
Bi has the x-coordinate a + i, for all integers 0 ≤ i < b − a; let Di ⊆ D denote
the set of disks whose centers lie inside Bi. Since Bi has height k and width 1, we
can compute all feasible (not necessarily exact) solutions for the MBS problem on
Di in O(nO(1) · nO(k)) time; let Mi be the set of all such feasible solutions. We
now build a directed vertex-weighted acyclic graph G as follows. The vertex set
of V (G) is V ∪ {s, t}, where V has one vertex for each solution in Mi, for all i.
Moreover, the weight of each vertex is the number of disks in the corresponding
bipartite graph. For every pair i, j, where 1 ≤ i < j < n, consider two solutions
M ∈ Mi and M ′ ∈ Mj . Then, there exists an edge from the vertex of M to that
of M ′ in G if the intersection graph induced by the disks in M ∪M ′ is bipartite.
Finally, for all i and for all M ∈ Mi: there exists an edge from s to M , and
there exists an edge from M to t. The weights of vertices s and t are zero.

Lemma 5. The MBS problem has a feasible solution of size k on G if and only
if there exists a directed path from s to t with the total weight k.

Proof. For a given directed st-path with total weight k, let X be the union
of all the disks corresponding to the interval vertices of this path. Then, the
intersection graph of X is bipartite because the disks in X ∩ Mi are disjoint
from the disks in S ∩ Mj when j > i + 1. Moreover, when j = i + 1, the disks
in X ∩ (Mi ∪ Mj) must form an induced bipartite graph by the definition of
an edge in G. Since the total weight of the vertices on the path is k, we have

Maximum Bipartite Subgraph of Geometric Intersection Graphs 165

|X| = k. On the other hand, let Y be a feasible solution of size k for the MBS
problem on G. Then, the intersection graph of disks in Y ∩ Di is bipartite, for
all i. Hence, selecting the vertices corresponding to Y ∩ Di for all i gives us a
path with total weight k from s to t. �

By Lemma5, the MBS problem for H reduces to the problem of finding the
maximum-weighted path from s to t on G. The number of vertices of G that
correspond to feasible solutions for the MBS problem on disks in S ∩ Di is bounded
by O(nO(k)), which is the bound on the number of vertices of G that correspond
to these feasible solutions. Hence, we can compute the edge set of G in O(nO(1) ·
nO(k)) time (we can check whether a subset of disks form a bipartite graph in
O(nO(1)) time). Since G is directed and acyclic, the maximum-weighted st-path
problem can be solved in linear time. Therefore, by setting k = 1/ε, we have the
following theorem.

Theorem 4. There exists a PTAS for MBS on unit disks that runs in O(nO(1) ·
nO(1/ε)) time, for any ε > 0.

PTAS on Unit Squares. One can verify that the above algorithm can be applied to
obtain a PTAS for MBS on a set of n unit squares, as well. Moreover, the algorithm
extends to the weighted MBS problem on unit disks and unit squares. The only
modification is, instead of assigning the number of disks (resp., squares) in a
solution as the weight of the corresponding vertex, we assign the total weight of
the disks (resp., squares) in the solution as the vertex weight.

Theorem 5. There exists a PTAS for the MBS problem on unit squares running
in O(nO(1) · nO(1/ε)) time, for any ε > 0. Moreover, the weighted MBS problem
also admits a PTAS running within the same time bound on unit disks and unit
squares.

A 4-Approximation on Unit Disks. Recall from Sect. 1 that OPT(MIS) ≤
OPT(MBS) ≤ 2OPT(MIS). Nandy et al. [25] designed a factor-2 approximation algo-
rithm for the MIS problem on unit disks, which runs in O(n2) time. Consequently,
we obtain an O(n2)-time 4-approximation algorithm for the MBS problem on unit
disks.

4.2 Unit-Height Rectangles

Here, we give an O(n log n)-time 2-approximation algorithm for MBS on a set
of n unit-height rectangles. To this end, suppose that the bottom side of the
bottommost rectangle has y-coordinate a and the top side of the topmost rect-
angle has y-coordinate b. Consider the set of horizontal lines y := a + i + ε for
all i = 0, . . . , b, where ε > 0 is a small constant; we may assume w.l.o.g. that
each rectangle intersects exactly one line. Ordering the lines from bottom to top,
let Si be the set of rectangles that intersect the horizontal line i. We now run
BipartiteInterval(S), once for when S = S1 ∪ S3 ∪ S5 . . . and once for when
S = S2 ∪ S4 ∪ S6 . . . , and will then return the largest of these two solutions.
We perform an initial sorting that takes O(n log n) time, and BipartiteInter-
val(S) runs in O(n) time. This gives us the following theorem.

166 S. Jana et al.

Theorem 6. There exists an O(n log n)-time 2-approximation algorithm for the
MBS problem on a set of n unit-height rectangles in the plane.

5 NP-Hardness of MTFS

Here, we show that MTFS problem is NP-hard when geometric objects are axis-
parallel rectangles. We give a reduction from the independent set problem on
3-regular planar graphs, which is known to be NP-complete [11].

Rim et al. [27] proved that MIS is NP-hard for planar rectangle intersection
graphs with degree at most 3. They also gave a reduction from the independent
set problem on 3-regular planar graphs. Given a 3-regular planar graph G =
(V,E), they construct an instance H = (V ′, E′) of the MIS problem on rectangle
intersection graphs. First we outline their construction of H from G. For any
cubic planar graph G, it is always possible to get a rectilinear planar embedding
of G such that each vertex v ∈ V is drawn as a point pv, and each edge e =
(u, v) ∈ E is drawn as a rectilinear path, connecting the points pu and pv, having
at most four bends, and thus consisting of at most five straight line segments.
They [27] construct a family of rectangles B in the following way. For each point
pvi

where vi ∈ V , a rectangle bi is placed surrounding the point pvi
. In each

rectilinear path connecting pvi
and pvj

, they place six rectangles b1ij , b
2
ij , . . . , b

6
ij

such that (i) bi intersects b1ij , (ii) bj intersects b6ij , (iii) bk
ij intersects bk+1

ij for
k = 1, 2, . . . , 5 (iv) b1ij , b

2
ij , . . . , b

6
ij do not intersect any other rectangles in B. For

an illustration see Fig. 1.

v1

v1

v1 v1

v1

v3

v4v2 b2

b1

b3

b4

b112b212

b312

b412

b512 b612

Fig. 1. (a) A cubic planar graph G. (b) A rectilinear embedding of G. (c) Family of
rectangle B.

Clearly, H(V ′, E′) is an axis-parallel rectangle intersection graph with degree
at most 3 where |V ′| = |V | + 6|E| and |E′| = 7|E|. In their reduction, the
following lemma holds.

Maximum Bipartite Subgraph of Geometric Intersection Graphs 167

b2

b1

b3

b4

b112b212

b312

b412

b512 b612

Rb1b
1
12

Fig. 2. Construction of an instance of MTFS problem from B. (Color figure online)

Lemma 6. [27] G = (V,E) has an independent set of size ≥ m if and only if
H has an independent set of size m + 3|E|.

Given H, we construct an instance GH of MTFS problem in axis-parallel
rectangles intersection graphs. For the sake of understanding, let all rectangles
corresponding to vertices in H, i.e., all rectangles in B, be colored black. To
get GH , we insert a family R of red rectangles in the following way. For each
pair of adjacent rectangles b and b′ in B, we place a red rectangle Rb,b′ such
that (i) Rb,b′ intersects both b and b′, (ii) Rb,b′ does not intersect any other
rectangles in B ∪R. As per construction of H, it is always possible to place such
a rectangle for each pair of adjacent rectangles in B. See Fig. 2 for an illustration
of this transformation. This completes the construction of our instance of the
MTFS problem on axis-parallel rectangles intersection graphs. Since R contains
7|E| rectangles, the above transformation can be done in polynomial time. Now
GH is an axis-parallel rectangle intersection graph with underlying geometric
objects B ∪ R. Clearly the number of vertices in GH is (|V | + 13|E|). We now
prove the following lemma whose proof is given in the full version of the paper [15]
due to space constraints.

Lemma 7. H has an independent set of size ≥ k if and only if GH has a
triangle-free subgraph on ≥ k + 7|E| vertices.

By Lemmas 6 and 7, we have the following.

Lemma 8. G = (V,E) has an independent set of size ≥ m if and only if GH

has a triangle-free subgraph on m + 10|E| vertices.
We can now conclude the following theorem.

Theorem 7. The MTFS problem is NP-complete on axis-parallel rectangle inter-
section graphs.

168 S. Jana et al.

6 Conclusion

In this paper, we studied the problem of computing a maximum-size bipartite
subgraph on geometric intersection graphs. We showed that the problem is NP-
hard on the geometric graphs for which maximum independent set is NP-hard. On
the positive side, we gave polynomial-time algorithms for solving the problem
on interval graphs and circular-arc graphs. We furthermore obtained several
approximation algorithms for the problem on unit squares, unit disks, and unit-
height rectangles. Finally, we showed the NP-hardness of a simpler problem in
which the goal is to compute a maximum-size induced triangle-free subgraph.
We conclude by the following open questions:

• Does MBS admit a PTAS on unit-height rectangles, or is it APX-hard?
• Is there a polynomial-time algorithm for MBS on a set of n unit disks inter-
secting a common horizontal line?

• Can we improve the 4-approximation algorithm for unit disks with the same
time bound O(n2) (or, even better)?

Acknowledgment. We thank Michiel Smid for useful discussions on the problem.

References

1. Aoshima, K., Iri, M.: Comments on F. Hadlock’s paper: finding a maximum cut of
a planar graph in polynomial time. SIAM J. Comput. 6(1), 86 (1977)

2. Bäıou, M., Barahona, F.: Maximum weighted induced bipartite subgraphs and
acyclic subgraphs of planar cubic graphs. SIAM J. Discrete Math. 30(2), 1290–
1301 (2016)

3. Bose, P., et al.: Computing maximum independent set on outerstring graphs and
their relatives. In: Proceedings of the 16th International Symposium on Algorithms
and Data Structures (WADS 2019), Edmonton, AB, Canada (2019)

4. Brandstädt, A.: On improved time bounds for permutation graph problems. In:
Mayr, E.W. (ed.) WG 1992. LNCS, vol. 657, pp. 1–10. Springer, Heidelberg (1993).
https://doi.org/10.1007/3-540-56402-0 30

5. Chalermsook, P., Chuzhoy, J.: Maximum independent set of rectangles. In: Pro-
ceedings of the 20th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2009), New York, NY, USA, 4–6 January 2009, pp. 892–901 (2009)

6. Choi, H., Nakajima, K., Rim, C.S.: Graph bipartization and via minimization.
SIAM J. Discrete Math. 2(1), 38–47 (1989)

7. Clark, B.N., Colbourn, C.J., Johnson, D.S.: Unit disk graphs. Discrete Math. 86(1–
3), 165–177 (1990)

8. Cornaz, D., Mahjoub, A.R.: The maximum induced bipartite subgraph problem
with edge weights. SIAM J. Discrete Math. 21(3), 662–675 (2007)

9. Daniel Liang, Y., Chang, M.S.: Minimum feedback vertex sets in cocomparability
graphs and convex bipartite graphs. Acta Informatica 34(5), 337–346 (1997)

10. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Com-
puter Science. Springer, New York (1999)

11. Garey, M.R., Johnson, D.S.: Computers and Intractability, vol. 29. W.H. Freeman,
New York (2002)

https://doi.org/10.1007/3-540-56402-0_30

Maximum Bipartite Subgraph of Geometric Intersection Graphs 169

12. Hadlock, F.: Finding a maximum cut of a planar graph in polynomial time. SIAM
J. Comput. 4(3), 221–225 (1975)

13. Hochbaum, D.S., Maass, W.: Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM 32(1), 130–136 (1985)

14. Honma, H., Nakajima, Y., Sasaki, A.: An algorithm for the feedback vertex set
problem on a normal helly circular-arc graph. J. Comput. Commun. 4(08), 23
(2016)

15. Jana, S., Maheshwari, A., Mehrabi, S., Roy, S.: Maximum bipartite subgraph of
geometric intersection graphs. CoRR abs/1909.03896 (2019)

16. Kratochv́ıl, J., Nešetřil, J.: Independent set and clique problems in intersection-
defined classes of graphs. Commentationes Mathematicae Universitatis Carolinae
31(1), 85–93 (1990)

17. Kratsch, D., Müller, H., Todinca, I.: Feedback vertex set on AT-free graphs. Dis-
crete Appl. Math. 156(10), 1936–1947 (2008)

18. Lahiri, A., Mukherjee, J., Subramanian, C.R.: Maximum independent set on B1-
VPG graphs. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.) COCOA 2015.
LNCS, vol. 9486, pp. 633–646. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-26626-8 46

19. Lokshtanov, D., Saurabh, S., Sikdar, S.: Simpler parameterized algorithm for OCT.
In: Combinatorial Algorithms, 20th International Workshop, IWOCA 2009, Hradec
nad Moravićı, Czech Republic, 28 June–2 July 2009, Revised Selected Papers. pp.
380–384 (2009)

20. Lokshtanov, D., Saurabh, S., Wahlström, M.: Subexponential parameterized odd
cycle transversal on planar graphs. In: IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2012, Hyder-
abad, India, 15–17 December 2012, pp. 424–434 (2012)

21. Lu, C.L., Tang, C.Y.: A linear-time algorithm for the weighted feedback vertex
problem on interval graphs. Inf. Process. Lett. 61(2), 107–111 (1997)

22. Marx, D.: Efficient approximation schemes for geometric problems? In: 13th
Annual European Symposium on Algorithms - ESA 2005, Palma de Mallorca,
Spain, 3–6 October 2005, Proceedings, pp. 448–459 (2005)

23. Marx, D.: Parameterized complexity of independence and domination on geomet-
ric graphs. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS,
vol. 4169, pp. 154–165. Springer, Heidelberg (2006). https://doi.org/10.1007/
11847250 14

24. Matsui, T.: Approximation algorithms for maximum independent set problems
and fractional coloring problems on unit disk graphs. In: Akiyama, J., Kano, M.,
Urabe, M. (eds.) JCDCG 1998. LNCS, vol. 1763, pp. 194–200. Springer, Heidelberg
(2000). https://doi.org/10.1007/978-3-540-46515-7 16

25. Nandy, S.C., Pandit, S., Roy, S.: Faster approximation for maximum independent
set on unit disk graph. Inf. Process. Lett. 127, 58–61 (2017)

26. Reed, B.A., Smith, K., Vetta, A.: Finding odd cycle transversals. Oper. Res. Lett.
32(4), 299–301 (2004)

27. Rim, C.S., Nakajima, K.: On rectangle intersection and overlap graphs. IEEE
Trans. Circ. Syst. I Fundam. Theory Appl. 42(9), 549–553 (1995)

28. Yannakakis, M.: Node- and edge-deletion NP-complete problems. In: Proceedings
of the 10th Annual ACM Symposium on Theory of Computing, San Diego, Cali-
fornia, USA, 1–3 May 1978, pp. 253–264 (1978)

29. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput.
10(2), 310–327 (1981)

https://doi.org/10.1007/978-3-319-26626-8_46
https://doi.org/10.1007/978-3-319-26626-8_46
https://doi.org/10.1007/11847250_14
https://doi.org/10.1007/11847250_14
https://doi.org/10.1007/978-3-540-46515-7_16

The Stub Resolution of 1-Planar Graphs

Michael Kaufmann1, Jan Kratochvil2, Fabian Lipp3,
Fabrizio Montecchiani4(B), Chrysanthi Raftopoulou5, and Pavel Valtr2

1 Universität Tübingen, Tübingen, Germany
mk@informatik.uni-tuebingen.de

2 Charles University, Prague, Czech Republic
{honza,valtr}@kam.mff.cuni.cz

3 Universität Würzburg, Würzburg, Germany
fabian.lipp@uni-wuerzburg.de

4 Università degli Studi di Perugia, Perugia, Italy
fabrizio.montecchiani@unipg.it

5 National Technical University of Athens, Athens, Greece
crisraft@mail.ntua.gr

Abstract. The resolution of a drawing plays a crucial role when defining
criteria for its quality. In the past, grid resolution, edge-length resolution,
angular resolution and crossing resolution have been investigated. In this
paper, we investigate the stub resolution, a recently introduced criterion
for nonplanar drawings. A crossed edge is divided into parts, called stubs,
which should not be too short for the sake of readability. Thus, the stub
resolution of a drawing is defined as the minimum ratio between the
length of a stub and the length of the entire edge, over all the edges
of the drawing. We consider 1-planar graphs and we explore scenarios
in which near optimal stub resolution, i.e. arbitrarily close to 1

2
, can

be obtained in drawings with zero, one, or two bends per edge, as well
as further resolution criteria, such as angular and crossing resolution.
In particular, our main contributions are as follows: (i) Every 1-planar
graph with independent crossing edges has a straight-line drawing with
near optimal stub resolution; (ii) Every 1-planar graph has a 1-bend
drawing with near optimal stub resolution.

1 Introduction

The question of drawing graphs with high resolution is one of the most prominent
when it comes to better understanding of a diagram. We quote from an early
graph drawing tutorial by Cruz and Tamassia (1994): “Display devices and the
human eye have only finite resolution”. This viewpoint inspired the convention

Research by J. Kratochv́ıl and P. Valtr was supported by the Czech Science Founda-
tion (GAČR) grant no. 18-19158S. Research by F. Montecchiani partially supported
by: (i) MIUR, under Grant 20174LF3T8 AHeAD: efficient Algorithms for HArnessing
networked Data. (ii) Dipartimento di Ingegneria dell’Università degli Studi di Perugia,
under grant RICBA18WD: “Algoritmi e sistemi di analisi visuale di reti complesse e
di grandi dimensioni”.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 170–182, 2020.
https://doi.org/10.1007/978-3-030-39881-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_15

The Stub Resolution of 1-Planar Graphs 171

to use an integer underlying grid for the drawings, which guarantees a certain
minimum distance between any two vertices, as well as criteria like the ratio
between the shortest and the longest edge (known as edge-length resolution) [26].

The angular resolution of a drawing is the minimum angle that occurs at a
vertex (often called vertex angle), and it is expressed as a function of the max-
imum vertex degree of the graph. This branch has been started by Formann
et al. [19]. Important contributions on planar graphs have been made by Malitz
and Papakostas [27], and by Duncan and Kobourov [18]. An early work by Di
Battista and Vismara [12] characterized the realizability of planar straight-line
drawings for a given set of vertex angles and lead the way for the minimization
of the largest vertex angle. Special graph classes, e.g., trees, allow more direct
approaches to get a good angular resolution, especially with respect to the used
area (see, e.g., [17,20]). From there, the research line on the planar slope num-
ber developed, where only a fixed set of slopes can be used to draw the edges
of a graph. While this approach does not lead to good angular resolution for
planar straight-line drawings [24], Angelini et al. [2] showed how to compute
planar drawings with one bend per edge using a set of slopes that guarantees
asymptotically optimal angular resolution.

Huang et al. [22] experimentally showed the detrimental effect on readability
when crossing angles are “sharp”. This, together with the seminal paper by
Didimo et al. [14], started a line of research on nonplanar graph drawings where
sharp angles are forbidden, i.e., with good crossing resolution. The ultimate
goal are right-angle crossing (RAC) drawings, where crossing edge segments
always form right angles. Angelini et al. [3] studied the effect of drawing planar
graphs with large or right crossing angles. Di Giacomo et al. [13] considered RAC
drawings on 2 parallel lines. Most notably on the RAC model are the results on
maximum edge density when allowing zero, one or two bends per edge [6,14], as
well as the NP-hardness result by Argyriou et al. [4].

Vertex and crossing resolutions have been considered together only for very
restricted types of graphs and drawings [5,15].

Fig. 1. Two RAC drawings of the same 1-planar graph. The drawing in (b) has better
stub resolution (equal to 1

2
) than the one in (a).

In this paper we investigate a recent criterion for nonplanar drawings, called
stub resolution [23]. A crossed edge is divided into parts, called stubs, which
should not be too short to guarantee adequate readability. Hence, the stub res-
olution of a drawing is defined as the minimum ratio between the length of the

172 M. Kaufmann et al.

shortest stub of an edge and the length of the entire edge. As we indicate in
Fig. 1, not only the crossing resolution is helpful for the sake of readability, but
good stub resolution is essential as well. An earlier research direction in the same
spirit is partial edge drawing (see, e.g., [9]), which follows the idea that for the
effective display of a crossed edge, only long enough end segments are important,
while the crossings might lead to visual clutter and could be omitted.

Contribution and Paper Organization. After a formal introduction of the
model and an overview of our approach (Sect. 2), we consider 1-planar graphs
as a meaningful graph class where crossings are naturally involved. A graph is
1-planar if it can be drawn with at most one crossing per edge (refer to [25]
for a survey). This family of graphs is among the most investigated ones in the
rapidly growing literature about graph drawing beyond planarity [16]. A natural
question is whether 1-planar graphs admit 1-planar drawings with bounded stub
resolution. As a preliminary result, we proved in [23] that a class of maximal
1-planar graphs allow straight-line 1-planar drawings with stub resolution 1

5 .
Our contribution is as follows. (1) We first study 1-planar straight-line draw-

ings (Sect. 3), and we show that stub resolution equal to 1
2 (i.e., optimal) cannot

be always achieved, while stub resolution arbitrarily close to 1
2 is possible for

1-planar graphs with independent crossings. (2) We then study 1-planar draw-
ings with at most one bend per edge (Sect. 4), and we show that stub resolution
arbitrarily close to 1

2 , or angular resolution that is lower bounded by a func-
tion of the maximum vertex degree of the graph (similar as the one in [27]) is
always possible. Note that the study of 1-bend drawings is also motivated by
the fact that there exist 1-planar graphs that do not admit a 1-planar straight-
line drawing [21,28], while 1-planar 1-bend RAC drawings exist for all 1-planar
graphs [7,10]. (3) Finally, we study 1-planar drawings with at most two bends
per edge (Sect. 4), and we show that stub resolution arbitrarily close to 1

2 and
right-angle crossings can be achieved simultaneously.

Proofs whose statements are marked with (*) have been omitted.

2 Preliminaries and Proof Strategy

Drawings and Embeddings. We consider simple undirected graphs. A draw-
ing Γ of a graph G maps the vertices of G to distinct points in the plane and the
edges of G to simple Jordan arcs connecting their endpoints. Γ is planar if no
edges cross, and 1-planar if each edge is crossed at most once. Γ is IC-planar if
it is 1-planar and there are no two crossed edges that share a vertex (i.e., the set
of crossing edges is a matching in G). In the following, we shall not distinguish
between a vertex (an edge) of G and its corresponding point (arc) in Γ .

A planar drawing Γ of a graph G induces an embedding, which is the class
of topologically equivalent drawings. In particular, an embedding specifies the
regions of the plane, called faces, whose boundary consists of a cyclic sequence of
edges. The unbounded face is called the outer face. For a 1-planar drawing, we
can still derive an embedding by allowing the boundary of a face to consist also
of edge segments from a vertex to a crossing point. A graph with a given planar

The Stub Resolution of 1-Planar Graphs 173

(1-planar, IC-planar) embedding is called a plane (1-plane, IC-plane) graph. A
kite K = {a, b, c, d} is a graph isomorphic to K4 with an embedding such that
there is a crossing-free 4-cycle 〈a, b, c, d〉, and the two edges (a, c) and (b, d) cross
inside this cycle; see Fig. 2(a). Let G be a 1-plane graph, and let K = {a, b, c, d}
be a kite such that K ⊆ G. K is an empty kite, if there is no vertex of G inside
the 4-cycle 〈a, b, c, d〉. An outer kite K = {a, b, c, d} is a graph isomorphic to K4

with an embedding such that there is a crossing-free 4-cycle 〈a, b, c, d〉, and the
two edges (a, c) and (b, d) cross outside this cycle; see Fig. 2(b).

Fig. 2. (a)–(b) Crossing configurations. (c) Unique 1-planar embedding of K5.

Drawing Resolutions. A drawing Γ of a graph G is straight-line if all edges are
segments, while it is b-bend (b > 0) if each edge is a polyline with at most b + 1
segments. Drawing Γ is right-angle crossing (RAC) if the angles at any crossing
point are right angles. The angular resolution of Γ is the minimum angle that
any two incident edges form at a vertex. Note that for a graph with maximum
vertex degree Δ, the angular resolution cannot be larger than 2π

Δ . We recall the
following result concerning the angular resolution of planar drawings.

Lemma 1 (Theorem 2.2 in [27]). Every triangulated planar graph with max-
imum vertex degree Δ admits a planar straight-line drawing with angular reso-
lution Ω(0.15Δ).

We shall assume (and ensure) that no more than two edges cross at any point
of a drawing Γ . An edge e of Γ that is crossed k times is divided into k+1 parts
called stubs. Let le and se be the length of e and of its shortest stub, respectively.
The stub resolution of e is sre = se

le
. The stub resolution of Γ is the minimum

stub resolution over all edges of Γ , i.e., srΓ = mine∈Γ sre.

Observation 1. A drawing in which the maximum number of crossings per edge
is k ≥ 0 has stub resolution at most 1

k+1 .

3 Straight-Line Drawings

We first show that K5 has no 1-planar straight-line drawing with optimal stub
resolution, and so this is the case for any 1-planar graph having K5 as a subgraph.

Observation 2. Let Γ be a 1-planar straight-line drawing of a graph G with
srΓ = 1

2 , and let (a, c) and (b, d) be a pair of edges crossing in Γ . Then vertices
a, b, c, d form a parallelogram in Γ .

174 M. Kaufmann et al.

Lemma 2 (*). Let Γ be a straight-line drawing of K5. Then srΓ < 1
2 .

The next theorem proves that IC-planar graphs can be realized with 1-planar
straight-line drawings with worst-case optimal stub resolution. We remark that
IC-planar graphs also admit straight-line RAC drawings [8].

Theorem 1 (*). Every IC-planar graph G has a 1-planar straight-line drawing
Γ with stub resolution srΓ = 1

2 − ε, for any fixed ε > 0.

Proof sketch: If G is a subgraph of K5 the statement immediately follows as we
can use the embedding of Fig. 2(c) and draw 〈a, b, c, d〉 almost as a square (placing
vertex e sufficiently far). Hence, we assume that G has at least six vertices.
Start from an IC-planar embedding of G = (V,E) and use the transformation
by Brandenburg et al. [8, Lemma 1] to obtain a 3-connected IC-plane graph
G′ = (V,E′) with E ⊆ E′ such that each pair of crossing edges induces an
empty kite (hence there is no outer kite) and all faces are triangles. We prove
that G′ admits a 1-planar straight-line drawing Γ ′ with stub resolution 1

2 − ε,
with the additional property that the outer face of Γ ′ is a prescribed triangle
T . Removing the edges in E′ \ E from Γ ′ cannot decrease the stub resolution
of the drawing, and hence the drawing obtained by removing these edges is the
desired representation of G.

The proof is by induction on the number of empty kites. In the base case G′

has no empty kites, i.e., G′ is a plane graph. Then we can apply the algorithm
by Chiba et al. [11] to compute a planar straight-line drawing Γ ′ of G′ such that
the outer face of G′ corresponds to the prescribed triangle T . By induction, if
G′ has k ≥ 0 empty kites, then our claim holds. We shall prove that the claim
still holds in the case where G′ has k + 1 empty kites. We first distinguish two
cases, based on whether G′ contains a separating triangle or not.

CASE A: G′ contains a separating triangle C = {a, b, c}. We claim that
the three edges of C are all crossing-free or they can be redrawn (interpreting
an embedding as a drawing) to be crossing-free. Suppose for a contradiction
that one edge of C, say (b, c), is crossed and it cannot be redrawn without
crossings. Observe that in this case no other edge of C is crossed, as otherwise
G′ would not be IC-plane. Let c1 and c2 be two components of G′ \ C such that
c1 contains the edge that crosses (b, c). Since the other two edges of C are not
crossed, c2 lies completely inside or outside the closed curve defined by C, say
inside; in particular, vertices a, b, c all lie on the outer face of c2 ∪ C. Consider
the inner face of c2 ∪ C that contain edge (b, c). Since we cannot reroute edge
(b, c) inside this face without creating new crossings, it means that an edge
of c2 is crossed by an edge of another component. Hence there exists a kite
merging the two components; contradicting the fact that the two components are
distinct. Denote by Cin (resp., Cout) the subgraph of G′ that lies in the interior
(resp., exterior) of C. Note that C is the outer face (resp., an empty face) of Cin

(resp., Cout). If Cout has no empty kites, then we draw it with the algorithm of
Chiba et al. [11] inside the prescribed triangle T . Note that Cin contains k + 1
kites, and it must be drawn inside the triangle defined by C, that is, we can
assume that G′ corresponds to Cin, and that the prescribed triangle T is C.

The Stub Resolution of 1-Planar Graphs 175

Similarly, if Cin has no empty kites, then we assume that G′ corresponds to Cout

and that it must be drawn inside the prescribed triangle T . Once we obtain a
drawing of Cout, we can again use the algorithm of Chiba et al. [11] for Cin

with the drawing of C as prescribed outer face. By the above discussion, we
can assume that both Cin and Cout have at least one empty kite. Then by the
induction hypothesis Cout and Cin can be drawn with stub resolution 1

2 − ε, as
desired.

CASE B: G′ has no separating triangles. We distinguish two further cases
depending on whether there exists an empty kite K such that none of its edges
is part of the outer face of G′ or not. Note that if an edge of K belongs to the
outer face of G′, then this edge is not crossed.

CASE B.1: Suppose first that G′ contains an empty kite K = {a, b, c, d}
such that none of its crossing-free edges belongs to the outer face of G′. Let f1,
f2, f3, and f4 denote the faces incident to the crossing-free edges of K. Recall
that these faces are triangles, and denote as vi the vertex of fi that does not
belong to K, for i = 1, 2, 3, 4. Some of these vertices can coincide, but not all of
them, otherwise K would be a K5 in G′ and there would be a separating triangle
in G′ (recall that no edge of K belongs to the outer face of G′). For the same
reason, any crossing-free edge of K belongs to at most one triangle of G′, and
this triangle is a face of G′ distinct from the outer face. The general idea is that
we collapse K into a single vertex r. The derived graph G′′ has fewer empty kites
than G′ and therefore we can obtain a drawing Γ ′′ of G′′ with stub resolution
1
2 − ε and straight-line edges, inside the prescribed triangle T . Then, we can
reinsert the kite as a parallelogram and connect its vertices to their neighbours
with crossing-free straight-line segments; to this aim, we distinguish three main
cases, based on whether some of v1, . . . , v4 coincide.

CASE B.2: Suppose now that every empty kite of G′ has a non-crossing
edge on the outer face of G′. Since every face of G′ is a triangle and G′ is IC-
planar, it follows that in this case G′ has only one empty kite K = {a, b, c, d} so
that an edge of K, say (c, d) belongs to the outer face of G′; see Fig. 3(a). Let e
be the third vertex of the outer face of G′. Also, let u1 be the common neighbor
of vertices a and d, and u2 be the common neighbor of vertices b and c. Then,
we contract edge (a, d) to a single vertex w1 and edge (b, c) to vertex w2. After
removing parallel edges, the derived graph G′′ has no kites and remains fully
triangulated. Hence, by the base case of our induction, we can compute a planar
drawing Γ ′′ of G′′ with vertices w1, w2 and e on its outer face.

Suppose that edge (w1, w2) is drawn as a horizontal segment (up to a rotation
of the drawing); refer to Fig. 3(b). We want to draw kite K = {a, b, c, d} as an
isosceles trapezoid P with |ab| < |cd| as its two parallel bases and so that a and
b are drawn at the points of vertices w1 and w2 in Γ ′′. Consider vertex w1. In
a clockwise traversal of the edges incident at w1 and starting from edge (w1, e),
first we encounter the neighbors of d in the same order as they appear in G′, and
once we encounter u1 the neighbors of a follow in the same order as they appear
in G′. We need to ensure that we can redraw the edges of d as straight lines and
without introducing any crossing in the drawing. Let C1(w1, r1) be a circle with
center w1 and radius r1, for a value of r1 that is sufficiently small as explained
below; refer to Fig. 3(b). Consider the sector of C1 that is bounded above by

176 M. Kaufmann et al.

Fig. 3. Illustration for CASE B.2.

the line through w1 and w2 and the line through w1 and u1 (gray shaded in
Fig. 3(b)). We choose r1 to be sufficiently small such that by drawing vertex d
on the arc of this sector, we have that d can be connected to all its neighbors in
G′ with straight lines without introducing any new crossings (blue thick edges in
Fig. 3(b)). Observe that such a choice is always feasible because as r1 decreases,
the difference between the slopes of the edges incident to d, and the slopes of
the edges incident to w1 also decreases. A similar argument holds for vertex w2.
We draw a circle C2(w2, r2), where r2 is again sufficiently small such that there
exists an arc of C2 where we can draw vertex c and connect c to its neighbors
in G′ without introducing any crossings. Let r < min{r1, r2} and let φ be the
smaller angle of the two arcs (on C1 and C2). We draw an isosceles trapezoid P
so that |ab| < |cd| are its two parallel bases, and its base angles are equal to φ

2 ;
refer to Fig. 3(c). We draw edges (a, c) and (b, d) as straight lines and let m be
their crossing point. Since P is isosceles, we have that |am|

|mc| = |bm|
|md| = |ab|

|cd| . We
want to prove that by appropriately choosing the radius r, the stub-resolution of
edges (a, c) and (b, d) is at least 1

2 −ε. Actually, we chose a value ε′ ≤ ε such that
r = 2ε′|ab|

(1−2ε′) cos φ
2
. On the one hand, this choice guarantees that |ab| = |cd|1−2ε′

1+4ε′ ,

and hence that the stub-resolution is equal to 1
2 −ε′ ≥ 1

2 −ε. On the other hand,
by choosing ε′ small enough we can ensure that r < min{r1, r2} (observe that r
decreases as ε′ decreases). This concludes the proof of Theorem 1. �	

4 Polyline Drawings

While there exist 1-planar graphs that do not admit a 1-planar straight-line
drawing [21,28], every 1-planar graph has a 1-planar 1-bend RAC drawing [7,10].
This section shows that for 1-planar 1-bend drawings, it is possible to optimize
also the stub-resolution (Theorem 2), and the angular resolution (Theorem 3).
In particular, the main contribution of this section is the following theorem.

Theorem 2 (*). Every 1-planar graph has a 1-planar 1-bend drawing Γ with
stub resolution srΓ ≥ 1

2−ε, for any fixed 0 < ε < 1
2 . Furthermore all crossing-free

edges are drawn straight-line.

The Stub Resolution of 1-Planar Graphs 177

We begin by proving how to construct a drawing with near-optimal stub
resolution. The proof is based on a constructive argument that uses the next
two technical lemmas as building blocks.

Lemma 3. Let K = {a, b, c, d} be an empty kite and let P be a convex polygon
with four corners. There exists an embedding-preserving drawing Γ of K such
that: (i) srΓ = 1

2 ; (ii) Vertices {a, b, c, d} are placed at the corners of P; (iii)
The two crossing edges (a, c) and (b, d) are drawn with at most one bend each,
while the crossing-free edges are straight-line; (iv) The bend point of one of the
two crossing edges is at the crossing point.

Fig. 4. (a)–(e) Configurations of Lemma 3. (f) Configuration of Lemma 4.

Proof. Let {A,B,C,D} be the corners of P. We start by placing vertices a, b, c, d
at corners A,B,C,D respectively, and draw the crossing-free edges of K on the
boundary of P as straight-line. Let BAC and BBD be the perpendicular bisectors
of the diagonals AC and BD, respectively. We consider two cases depending on
whether BAC and BBD cross in the interior of P or not.

If BAC and BBD cross in the interior of P at point O (refer to Fig. 4(a)),
we draw edge (a, c) and edge (b, d) with a bend at point O. Since O ∈ BAC

and O ∈ BBD, we have that |AO| = |OC| and |BO| = |OD|. Hence (a, c) and
(b, d) cross at O with stub resolution equal to 1

2 . Furthermore, the bend of both
crossing edges is at their crossing point as claimed.

Suppose now that BAC and BBD cross in the exterior of P (note that they
cannot be parallel because P is convex); refer to Fig. 4(c). In the following we

178 M. Kaufmann et al.

prove that we can draw edges (a, c) and (b, d) with one bend each so that: (i) the
bend point, say O, of one of the two edges, say (a, c), is along its bisector BAC ,
and (ii) edge (b, d) crosses (a, c) at O with stub resolution 1

2 . For the sake of
contradiction, suppose that this is not true. W.l.o.g. we can assume that bisector
BAC separates vertices A and D from vertex C (note that we do not make any
assumption about the relative position of vertex B and bisector BAC). We claim
that we can also assume that BBD separates B and C from D as in Fig. 4(c).
Suppose momentarily that this is not true, i.e. BBD separates B from D and C;
see Fig. 4(b). This case is symmetric to the previous one, if we rename points
{A,B,C,D} as {B,C,D,A}.

Hence we have the configuration of Fig. 4(c). This implies that for any point
X of BAC in the interior of P it is |XB| < |XD|, and for any point X ′ of BBD in
the interior of P it is |X ′A| < |X ′C|. Furthermore, BAC and BBD both cross the
boundary edge AD of P. Consider first edge (a, c); similar arguments hold also
for edge (b, d). Let O be the crossing point of BAC with CD and M its crossing
point with AC. For any point O′ ∈ MO we draw edge (b, d) as follows: we start
from point D with a straight line through point O′ until we cross diagonal AC,
we add a bend point, say P , on AC and continue with a straight line up to B
(see the thick green edge in Fig. 4(c)). If |DO′| < |O′P | + |PB|, we have that
the midpoint of edge (b, d) is not on DO′. As we move the bend point of (a, c)
from P towards O′, the midpoint of (b, d) also changes, and when the bend point
coincides with O′ the midpoint is on DO′ (since |DO′| > |O′B|). Hence, one can
find a bend-point on O′P , so that the midpoint of (b, d) is O′ and the lemma
holds. So, we can assume that |DO′| > |O′P |+ |PB| for any point O′ ∈ MO. For
O′ = O the bend point P coincides with C and we have |DO| > |OC|+|CB|. We
draw the parallel of BAC through point A that crosses line CD at point Q; refer
to Fig. 4(d). Then |QO| = |OC| and from the previous inequality |DO| > |QO|,
i.e. Q ∈ CD. In particular we have that |DO| > |QO| + |CB| ⇒ |DQ| > |CB|.
We also draw the perpendicular line of CD through point A crossing CD at point
Q′. Looking at triangle {A,C,D} we have that |DQ| < |DQ′|, and considering
the orthogonal triangle {A,D,Q′} it is |AD| > |DQ′|. Combining the above:

|AD| > |DQ′| > |DQ| > |CB| ⇒ |AD| > |CB|. (1)

Arguing similarly for edge (b, d), we can either conclude that the lemma holds
or that |CB| > |AD| as shown in Fig. 4(e), contradicting Eq. 1. �	
Lemma 4. Let K = {a, b, c, d} be an outer kite, let T = {A,B,C} be an isosce-
les triangle, and let 0 < ε < 1

2 . There exists an embedding-preserving drawing Γ
of K such that: (i) srΓ = 1

2 − ε; (ii) Vertices {a, b, c, d} are placed at the corners
of a trapezoid P such that its larger base coincides with AB, and its smaller base
is inside T ; (iii) The two crossing edges (a, c) and (b, d) are drawn with at most
one bend each, while the crossing-free edges are straight-line.

Proof. Suppose that T is drawn so that its base AB is horizontal, and let φ be
the value of its base angles. We draw an isosceles trapezoid P = {A,B,D,E}
so that DE < AB are its two parallel bases, and ∠B,A,D = ∠A,B,E = φ

2 ;

The Stub Resolution of 1-Planar Graphs 179

refer to Fig. 4(f). Vertices a, b, c, d of K are placed on the corners A,B,E,D
of P respectively, so that uncrossed edges of K are drawn on the boundary of
P as straight lines. In order to draw edge (a, c) we start from point E parallel
to BC until we cross AC at point A′, we bend at A′ and follow A′A up to
point A. Edge (b, d) is drawn symmetrically, and let F be the crossing point of
(a, c) and (b, d). Since triangle T ′ = {D,E, F} is similar to triangle T , the stub
resolution of (a, c) and (b, d) is the same. Now edge (a, c) has two stubs: the
first one consists of segments AA′ and A′F , and the second one only of segment
FE, where |AA′| + |A′F | > |FE|. We want to prove that by appropriately
choosing the height h of trapezoid P, the stub-resolution of (a, c) is equal to
1
2 − ε. Since |A′F | = |A′C| and cos φ

2 = |DE|
2|FE| = |AB|

2|AC| the stub-resolution equals
|FE|

|FE|+|AC| = |DE|
|DE|+|AB| . For h = 2ε|AB|

1+2ε tan φ
2 , we have that |DE| = |AB| 1−2ε

1+2ε ,
and stub-resolution is equal to 1

2 − ε, therefore completing the proof. �	
We first describe how to construct drawings for 3-connected 1-planar graphs,

and then extend our technique to all 1-planar graphs. We assume an embedding
is given in input, although our technique may need to change it.

Lemma 5. Every 3-connected 1-plane graph G has a 1-planar 1-bend drawing Γ
with srΓ = 1

2 , except for at most one pair of crossing edges whose stub resolution
is 1

2 − ε, for any fixed 0 < ε < 1
2 . All crossing-free edges are drawn straight-line.

Proof. After possibly changing the embedding of G, we may assume that all
pairs of crossing edges of G induce an empty kite, except for at most one pair of
crossing edges that are part of the outer face and form an outer kite [1].

Let G′ be the plane graph obtained from G by removing all pairs of crossing
edges. We say that a quadrangular face f = {u,w, v, z} of G′ is marked, if (u, v)
and (w, z) are two crossing edges of G. We first compute a straight-line drawing
Γ ′ of G′ by using the algorithm of Chiba et al. [11]. The algorithm in [11] has
two main properties. First, it produces a drawing in which all faces are convex.
Second, it allows to specify any convex polygon P to represent the outer face
of the input graph. We now describe how to specify the outer polygon. If the
outer face of G′ is not marked, then we can use any convex polygon. Else, the
outer face of G′ is the 4-cycle of an outer kite K of G. In this case we let T be
any isosceles triangle, and we apply Lemma 4 to obtain a drawing of K. This
drawing fixes a trapezoid P for the four vertices of K, which we use as input
polygon. It remains to show how to reinsert all edges in G \ G′ that belong to
a marked inner face. For each such face f = {u,w, v, z} of Γ ′, we reinsert the
pair of crossing edges (u, v) and (w, z) by applying Lemma 3, where the convex
polygon is the drawing of f in Γ ′. This concludes the proof. �	
Proof sketch for Theorem 2: We exploit a decomposition in 3-connected compo-
nents for 1-planar graphs [7], and we apply a variant of Lemma 5 that allows to
merge distinct components attached to a same separation pair of G. �	

The next theorem states that angular resolution bounded from below by a
function of the maximum vertex degree of the graph and independent of its size

180 M. Kaufmann et al.

can be obtained. Also, if two bends per edge are allowed, right-angle crossings
and stub resolution close to 1

2 can be simultaneously achieved.

Theorem 3 (*). Every 1-plane graph G with maximum degree Δ has a 1-planar
1-bend drawing with angular resolution Ω(0.156Δ). Also, all crossing-free edges
are drawn straight-line.

Theorem 4 (*). Every 3-connected 1-plane graph G has a 1-planar 2-bend RAC
drawing Γ with srΓ = 1

2 , except for at most one pair of edges whose stub resolu-
tion is 1

2 − ε, for any fixed 0 < ε < 1
2 . All crossing-free edges are straight-line.

5 Open Problems

Interesting open problems arise from our research, among them: (i) Is there
a constant δ > 2 such that every straight-line drawable 1-planar graph has a
1-planar straight-line drawing with stub resolution at least 1

δ ? (ii) Does every
1-planar graph with maximum vertex degree Δ admit a 1-planar 1-bend drawing
with Ω(1

Δ) angular resolution? (iii) Can we generalize our results to k-planar
graphs? In this direction, we have preliminary results showing that 2-planar
drawings with bounded stub resolution are possible for optimal 2-planar graphs if
we allow a constant number of bends for the crossing edges. (iv) Finally, it would
be interesting to study stub resolution in combination with other aesthetics, such
as compact area or few slopes for the edge segments.

Acknowledgments. Research started at the 2017 Bertinoro Workshop on Graph
Drawing, we thank all participants for fruitful discussions.

References

1. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of
3-connected 1-planar graphs. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS,
vol. 8242, pp. 83–94. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
03841-4 8

2. Angelini, P., Bekos, M.A., Liotta, G., Montecchiani, F.: Universal slope sets for
1-bend planar drawings. Algorithmica 81(6), 2527–2556 (2019)

3. Angelini, P., et al.: Large angle crossing drawings of planar graphs in subquadratic
area. In: Márquez, A., Ramos, P., Urrutia, J. (eds.) EGC 2011. LNCS, vol. 7579, pp.
200–209. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34191-
5 19

4. Argyriou, E.N., Bekos, M.A., Symvonis, A.: The straight-line RAC drawing prob-
lem is NP-hard. J. Graph Algorithms Appl. 16(2), 569–597 (2012)

5. Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of
graphs. Comput. J. 56(7), 887–900 (2013)

6. Arikushi, K., Fulek, R., Keszegh, B., Moric, F., Tóth, C.D.: Graphs that admit
right angle crossing drawings. Comput. Geom. 45(4), 169–177 (2012)

7. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC
drawings of 1-planar graphs. Theor. Comput. Sci. 689, 48–57 (2017)

https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.1007/978-3-642-34191-5_19
https://doi.org/10.1007/978-3-642-34191-5_19

The Stub Resolution of 1-Planar Graphs 181

8. Brandenburg, F.J., Didimo, W., Evans, W.S., Kindermann, P., Liotta, G., Montec-
chiani, F.: Recognizing and drawing IC-planar graphs. Theor. Comput. Sci. 636,
1–16 (2016)

9. Bruckdorfer, T., Cornelsen, S., Gutwenger, C., Kaufmann, M., Montecchiani, F.,
Nöllenburg, M., Wolff, A.: Progress on partial edge drawings. J. Graph Algorithms
Appl. 21(4), 757–786 (2017)

10. Chaplick, S., Lipp, F., Wolff, A., Zink, J.: Compact drawings of 1-planar graphs
with right-angle crossings and few bends. In: Biedl, T., Kerren, A. (eds.) GD 2018.
LNCS, vol. 11282, pp. 137–151. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-04414-5 10

11. Chiba, N., Yamanouchi, T., Nishizeki, T.: Linear algorithms for convex drawings
of planar graphs. Prog. Graph Theory 173, 153–173 (1984)

12. Di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete
Math. 9(3), 349–359 (1996)

13. Di Giacomo, E., Didimo, W., Eades, P., Liotta, G.: 2-layer right angle crossing
drawings. Algorithmica 68(4), 954–997 (2014)

14. Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings.
Theor. Comput. Sci. 412(39), 5156–5166 (2011)

15. Didimo, W., Kaufmann, M., Liotta, G., Okamoto, Y., Spillner, A.: Vertex angle
and crossing angle resolution of leveled tree drawings. Inf. Process. Lett. 112(16),
630–635 (2012)

16. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019)

17. Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.:
Drawing trees with perfect angular resolution and polynomial area. Discrete Com-
put. Geom. 49(2), 157–182 (2013)

18. Duncan, C.A., Kobourov, S.G.: Polar coordinate drawing of planar graphs with
good angular resolution. J. Graph Algorithms Appl. 7(4), 311–333 (2003)

19. Formann, M., et al.: Drawing graphs in the plane with high resolution. SIAM J.
Comput. 22(5), 1035–1052 (1993)

20. Garg, A., Tamassia, R.: Planar drawings and angular resolution: algorithms and
bounds (extended abstract). In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855,
pp. 12–23. Springer, Heidelberg (1994). https://doi.org/10.1007/BFb0049393

21. Hong, S.-H., Eades, P., Liotta, G., Poon, S.-H.: Fáry’s theorem for 1-planar graphs.
In: Gudmundsson, J., Mestre, J., Viglas, T. (eds.) COCOON 2012. LNCS, vol.
7434, pp. 335–346. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32241-9 29

22. Huang, W., Eades, P., Hong, S.: Larger crossing angles make graphs easier to read.
J. Vis. Lang. Comput. 25(4), 452–465 (2014)

23. Kaufmann, M., Kratochv́ıl, J., Lipp, F., Montecchiani, F., Raftopoulou, C., Valtr,
P.: Bounded stub resolution for some maximal 1-planar graphs. In: Panda, B.S.,
Goswami, P.P. (eds.) CALDAM 2018. LNCS, vol. 10743, pp. 214–220. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-74180-2 18

24. Keszegh, B., Pach, J., Pálvölgyi, D.: Drawing planar graphs of bounded degree
with few slopes. SIAM J. Discrete Math. 27(2), 1171–1183 (2013)

25. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49–67 (2017)

26. Krug, M., Wagner, D.: Minimizing the area for planar straight-line grid drawings.
In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp.
207–212. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-77537-
9 21

https://doi.org/10.1007/978-3-030-04414-5_10
https://doi.org/10.1007/978-3-030-04414-5_10
https://doi.org/10.1007/BFb0049393
https://doi.org/10.1007/978-3-642-32241-9_29
https://doi.org/10.1007/978-3-642-32241-9_29
https://doi.org/10.1007/978-3-319-74180-2_18
https://doi.org/10.1007/978-3-540-77537-9_21
https://doi.org/10.1007/978-3-540-77537-9_21

182 M. Kaufmann et al.

27. Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. SIAM
J. Discrete Math. 7(2), 172–183 (1994)

28. Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341
(1988)

Dispersion of Mobile Robots on Grids

Ajay D. Kshemkalyani1, Anisur Rahaman Molla2, and Gokarna Sharma3(B)

1 University of Illinois at Chicago, Chicago, USA
ajay@uic.edu

2 Indian Statistical Institute, Kolkata, India
molla@isical.ac.in

3 Kent State University, Kent, USA
sharma@cs.kent.edu

Abstract. The dispersion problem on graphs asks k ≤ n robots initially
placed arbitrarily on the nodes of an n-node anonymous graph to repo-
sition autonomously to reach a configuration in which each robot is on a
distinct node of the graph. This problem is of significant interest due to
its relationship to many other fundamental robot coordination problems,
such as exploration, scattering, load balancing, relocation of self-driven
electric cars (robots) to recharge stations (nodes), etc. The objective in
this problem is to simultaneously minimize (or provide trade-off between)
two fundamental performance metrics: (i) time to achieve dispersion and
(ii) memory requirement at each robot. The existing algorithms for trees
and arbitrary graphs either minimize time or memory but not both. In
this paper, we consider for the very first time the dispersion problem on
a grid graph embedded in the Euclidean plane and present solutions that
simultaneously minimize both the metrics. The grid graph is appealing
as it naturally discretizes the 2-dimensional Euclidean plane and finds
applications in many real-life robotic systems. Particularly, we provide
two deterministic algorithms on an anonymous grid graph that achieve
simultaneously optimal bounds for both the metrics.

1 Introduction

The dispersion of autonomous mobile robots to spread them out evenly in a
region is a problem of significant interest in distributed robotics, e.g., see [4,5].
Recently, this problem has been formulated in the context of graphs as follows:
Given any arbitrary initial configuration of k ≤ n robots positioned on the nodes
of an n-node graph, the robots reposition autonomously to reach a configuration
where each robot is positioned on a distinct node of the graph (which we call
the Dispersion problem) [1]. This problem has many practical applications,
for example, in relocating self-driven electric cars (robots) to recharge stations
(nodes), assuming that the cars have smart devices to communicate with each
other to find a free/empty charging station [1,6]. This problem is also important
due to its relationship to many other well-studied autonomous robot coordina-
tion problems, such as exploration, scattering, and load balancing [1,6].

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 183–197, 2020.
https://doi.org/10.1007/978-3-030-39881-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_16

184 A. D. Kshemkalyani et al.

Table 1. Results on Dispersion for k ≤ n robots on n-node square grids (for grids,
maximum degree Δ = 4 and diameter D = O(

√
n)). Time always remains sub-optimal

on a grid applying the arbitrary graph algorithms for Dispersion from the litera-
ture. Theorem 1 is simultaneously time-memory optimal for grid when k = Ω(n) and
Theorem 2 is for any k ≤ n.

Algorithm Memory/robot
(in bits)

Time
(in rounds)

Communication
model

Lower bound Ω(log k) Ω(
√

k) Local/global

Applying first algorithm of [6] O(k) O(n) Local

Applying second algorithm of [6] O(D) = O(
√

n) O(4D) = O(4
√
n) Local

Applying third algorithm of [6] O(log k) O(nk) Local

Applying algorithm of [7] O(logn) O(k log k) Local

Theorem 1 (this paper) O(log k) O(min(k,
√

n)) Local

Applying algorithm of [8] O(log k) O(k) Global

Theorem 2 (this paper) O(log k) O(
√

k) Global

The objective in this problem is to simultaneously minimize (or provide trade-
off between) two fundamental performance metrics: (i) time to achieve dispersion
and (ii) memory requirement at each robot. Several papers studied this problem
recently on trees and arbitrary graphs giving algorithms with increasingly better
bounds on both the metrics [1,6–8]. However, the existing algorithms (for trees
and arbitrary graphs) are only able to minimize either time or memory but not
both (details in related work). Particularly, some of the existing algorithms
obtained optimal memory bounds but no algorithm established optimal time
bounds. Therefore, the following question naturally arises: Is it possible to solve
Dispersion on some graph classes simultaneously minimizing both time and
memory? In this paper, we answer this question in the affirmative, considering
for the very first time Dispersion on a grid graph embedded in the Euclidean
plane. Surprisingly, we are not only able to simultaneously minimize both the
metrics but also able to achieve optimal bounds for both. Grid graph setting
is simple yet appealing as it naturally discretizes the 2-dimensional Euclidean
plane and finds applications in many real-life robotic systems, for example,
see [9,12].

Specifically, we provide two novel deterministic algorithms for Dispersion
on an anonymous grid graph (Table 1). Our first algorithm works in the local
communication model where a robot can only communicate with other robots
that are present at the same node. Our second algorithm works in the global
communication model where a robot can communicate with any other robot in
the graph possibly at different nodes (but the graph structure is not known to
robots). The global communication model seems stronger than the local model
at first sight, however many challenges that occur in the local model carryover
to the global model. For example, two robots in two neighboring nodes of G
cannot figure out just by communicating which edge of the nodes leads to each
other. Therefore, the robots still need to explore through the edges as in the

Dispersion of Mobile Robots on Grids 185

local model. The global communication model has been of much interest in the
past in distributed robotics, e.g., see [2,3,11]. Among the previous works [1,6–8]
on Dispersion, papers [1,6,7] considered the local communication model and
[8] considered the global communication model. Applying the arbitrary graph
results of [6–8] to a grid, memory bound obtained is optimal but time remains
sub-optimal.

Overview of the Model and Results. We consider a system of k ≤ n robots
are operating on an n-node graph G. G is assumed to be a connected, undirected
graph with m edges, diameter D, and maximum degree Δ. In addition, G is
anonymous, i.e., nodes have no unique IDs and hence are indistinguishable but
the ports (leading to incident edges) at each node have unique labels from [1, δ],
where δ is the degree of that node. The robots are distinguishable, i.e., they have
unique IDs in the range [1, k]. The robot activation setting is synchronous – all
robots are activated in a round and they perform their operations simultaneously
in synchronized rounds. Runtime is measured in rounds (or steps). We establish
the following result in the local model.

Theorem 1. Given any initial configuration of k ≤ n mobile robots on
an anonymous n-node square grid graph G, Dispersion can be solved in
O(min(k,

√
n)) time with O(log k) bits memory at each robot in the local com-

munication model.

Theorem 1 is simultaneously time-memory optimal when k = Ω(n)
since a time lower bound of Ω(D) trivially holds for Dispersion of n
robots on any graph [1] and the diameter of a n-node grid is D =
Ω(

√
n). Furthermore, Ω(log k) bits are necessary at a robot to distinguish

the robots from each other. We also extend Theorem 1 on a rectangular
grid G. We establish the following result in the global model.

Theorem 2. Given any initial configuration of k ≤ n mobile robots on an
anonymous n-node square grid graph G, Dispersion can be solved in O(

√
k)

time with O(log k) bits memory at each robot in the global communication model.

Theorem 2 is simultaneously time-memory optimal for Dispersion for any
k ≤ n. We also extend Theorem 2 for Dispersion on a rectangular grid graph
G.

Challenges and Techniques. The solutions proposed in the literature in the
local [1,6,7] and global [8] communication models for Dispersion on arbitrary
graphs and trees (grids were not considered before) heavily use a DFS (depth
first search) traversal approach. The best bound so far for grid in the local model
is obtained while applying the arbitrary graph algorithm of [7] (the bounds
obtained in [7] for arbitrary graphs are given in related work): O(k log k) time
with O(log k) bits at each robot (see Table 1). However, for a grid, the time lower
bound is Ω(D) = Ω(

√
k) for any k ≤ n and memory lower bound is obviously

Ω(log k) at each robot to distinguish the robots from each other (consider the
case of all k robots are at a single node of G initially). Therefore, we develop two

186 A. D. Kshemkalyani et al.

techniques for grids, one specific to the local model and another to the global
model. The technique for the local model uses the grid properties (instead of
a DFS traversal). Particularly, the grid technique in the local model uses the
idea of repositioning first all robots to the boundary nodes of G using the grid
properties (despite the grid being anonymous), then collect them to a boundary
corner node of G, and finally distribute them to the nodes of G leaving one
robot on each node. The technique for the global model uses the grid properties
with a limited use of the DFS traversal tailored specifically to the information
available to robots during execution due to the global model. Particularly, the
grid technique in the global model uses the DFS traversal for O(

√
k) time, then

forms a square boundary of perimeter 4(
√

k − 1), and disperses all k robots
within that boundary in O(

√
k) time. Although the techniques above seem rather

straightforward in high level, we need to overcome many challenges for them to
correctly work while putting together to solve Dispersion.

Related Work. As discussed above, for Dispersion, there are three previous
studies [1,6,7] in the local communication model. For k = n, Augustine and
Moses Jr. [1] proved a memory lower bound of Ω(log n) bits at each robot and
a time lower bound of Ω(D) (Ω(n) on arbitrary graphs) for any determinis-
tic algorithm on any graph. They then provided two algorithms for arbitrary
graphs for k = n: (i) The first algorithm with O(mn) time using O(log n) bits
at each robot and (ii) The second algorithm with O(m) time using O(n log n)
bits at each robot. Kshemkalyani and Ali [6] provided an Ω(k) time lower bound
for arbitrary graphs for any k ≤ n. They then provided three deterministic
algorithms for arbitrary graphs: (i) The first algorithm with O(m) time using
O(k log Δ) bits at each robot, (ii) The second algorithm with O(ΔD) time using
O(D log Δ) bits at each robot, and (iii) The third algorithm with O(mk) time
using O(log(max(k,Δ))) bits at each robot. Recently, Kshemkalyani et al. [7] pro-
vided an algorithm for arbitrary graphs that runs in O(min(m, kΔ) · log k) time
using O(log n) bits at each robot. There is one previous study [8] for Dispersion
in the global communication model, which provides a deterministic algorithm for
arbitrary graphs that runs in O(min(m, kΔ)) time using O(log(max(k,Δ))) bits
at each robot, improving the time in [7] in the local model by an O(log k) factor.
Randomized algorithms for Dispersion are presented in [10] where the random
bits are used to reduce the memory requirement. Other closely related works to
Dispersion are omitted due to space constraints.

Roadmap. We discuss model details in Sect. 2. We present an algorithm in the
local model in Sect. 3. We present an algorithm in the global model in Sect. 4.
Finally, we conclude in Sect. 5 with a short discussion on possible future work.
Due to space constraints, many details and proofs are deferred to a full version.

2 Model Details and Preliminaries

Grid Graph. Let G = (V,E) be an n-node grid graph embedded in the
2-dimensional Euclidean plane, i.e., |V | = n and |E| = m = O(n). G is assumed

Dispersion of Mobile Robots on Grids 187

to be connected, unweighted, and undirected with no holes. G is anonymous, i.e.,
nodes do not have identifiers but, at any node, its incident edges are uniquely
identified by a label (aka port number) in the range [1, δ], where δ ≤ 4 is the
degree of that node. The maximum degree of G is Δ = 4, which is the maxi-
mum among the degree δ of the nodes in G. Any edge e connecting two nodes
u, v ∈ G has two port numbers associated with it, one at the end of e towards
u and another at the end of e towards v. We assume that there is no correla-
tion between two port numbers of an edge. For a grid graph G, the nodes on
2 boundary rows and 2 boundary columns are called boundary nodes and the 4
corner nodes on boundary rows (or columns) are called boundary corner nodes.
In an n-node square grid graph G, there are exactly 4

√
n − 4 boundary nodes.

Any number of robots are allowed to move along an edge at any time. The grid
nodes do not have memory, i.e., they are not able to store any information.

Robots. Let R = {r1, r2, . . . , rk} be a set of k ≤ n robots residing on the nodes
of G. For simplicity, we sometime use i to denote robot ri. No robot resides on
the edges of G, but one or more robots can occupy the same node of G. Each
robot has a unique �log k�-bit ID taken from [1, k]. When a robot moves from
node u to node v in G, it is aware of the port of u it used to leave u and the port
of v it used to enter v. Furthermore, it is assumed that each robot is equipped
with memory to store information, which may also be read and modified by
other robots present on the same node.

Communication Model. We have two communication models: local and
global. In the local communication model, a robot can only communicate with
other robots present on the same node. In contrast, in the global communication
model, a robot is capable to communicate with any other robot in the graph
G, irrespective of their positions in the graph. However, they will not have the
position information as graph nodes are anonymous and there is no correlation
between two port numbers of an edge.

Cycle. At any time a robot ri ∈ R could be active or inactive. When a robot
ri becomes active, it performs the “Communicate-Compute-Move” (CCM) cycle
as follows.
– Communicate: ri can communicate with and observe the memory of some

other robot rj ∈ R (at the same node or a different node) depending on the
communication model used. Robot ri can also observe its own memory.

– Compute: ri may perform an arbitrary computation using the information
observed during the “communicate” portion of that cycle. This includes deter-
mination of a (possibly) port to use to exit vi and the information to store
in the robot rj at vi.

– Move: At the end of the cycle, ri writes new information (if any) in the
memory of rj at vi, and exits vi using the computed port to reach to a
neighbor v′

i of vi. After entering v′
i, it will keep track of the port at v′

i from
which it entered v′

i.

Time and Memory Complexity. We consider the synchronous setting where
every robot is active in every CCM cycle and they perform the cycle in a syn-

188 A. D. Kshemkalyani et al.

Algorithm 1: Grid Disperse(k) in the local communication model
1 Input: An n-node square grid G with k ≤ n robots positioned arbitrarily on its

nodes.
2 if k ≥ √

n then
3 Stage 1: the robots not already on the boundary nodes move to the

boundary nodes;
4 Stage 2: the robots not on the boundary corner nodes move to the corner

nodes;
5 Stage 3: the robots not on the boundary corner nodes move to a corner node;

6 Stage 4: the robots distribute on the nodes of a grid side, at most
√

k on
each node;

7 Stage 5: the robots disperse with one robot on a node;
8 else
9 The robots move in a direction from their position to find a free node to

settle;

chrony. Therefore, time is measured in rounds or steps (a cycle is a round or
step). Another parameter is memory which comes from a single source – the
number of bits stored at each robot.

Mobile Robot Dispersion. Dispersion can be formally defined as follows.

Definition 1 (Dispersion). Given any n-node anonymous grid G = (V,E)
having k ≤ n mobile robots positioned initially arbitrarily on its nodes, the robots
reposition autonomously to reach a configuration where each robot is on a distinct
node of G.

The goal is to optimize two performance metrics: (i) Time – the number of
rounds (steps), and (ii) Memory – the number of bits stored at each robot.

3 Algorithm in the Local Communication Model
(Theorem 1)

We present and analyze an algorithm, Grid Disperse(k), that solves Disper-
sion for k ≤ n robots on n-node square grid graphs in O(min(k,

√
n)) time using

O(log k) bits at each robot in the local communication model. The high level
pseudocode is given in Algorithm 1. We discuss algorithm Grid Disperse(k), k =
Ω(n), here. Grid Disperse(k), k ≤ o(n), and the algorithm for rectangular grid
graphs for any k ≤ n are omitted here and discussed in a full version due to
space constraints.

High Level Overview of the Algorithm. Grid Disperse(k), k = Ω(n), for n-
node square grid graphs has five stages, Stages 1–5 (Algorithm 1), which execute
sequentially one after another. The goal in Stage 1 is to move all the robots (not
already on boundary nodes) to position them on the boundary nodes of G. The
goal in Stage 2 is to move the robots, now all on the boundary nodes, to the

Dispersion of Mobile Robots on Grids 189

four boundary corner nodes of G. The goal in Stage 3 is to collect all robots,
now on four corner nodes, at one corner node of G. The goal in Stage 4 is to
distribute robots equally on the nodes of a boundary row or column of G. The
goal in Stage 5 is to distribute the robots, now on the nodes of a boundary row
or column, so that each node of G has exactly one robot positioned on it. We will
show that each stage can be performed correctly in O(

√
n) rounds, giving overall

O(
√

n) time complexity for Grid Disperse(k). Algorithm Grid Disperse(k) for
k ≤ o(n) differentiates the cases of

√
n ≤ k ≤ o(n) and k <

√
n and handles

them through separate algorithms. For
√

n ≤ k ≤ o(n), we provide a O(
√

n)-
time algorithm, and for k <

√
n, we provide a O(k)-time algorithm, giving

overall O(min(k,
√

n)) runtime for any k ≤ n. We then extend all these ideas for
Dispersion on rectangular grid graphs.

Algorithm for Square Grid Graphs, k = Ω(n). We describe in detail how
Stages 1–5 of Grid Disperse(k) are executed for square grids. The high level
pseducode is in Algorithm 1. Figure 1 illustrates the working principle of
Grid Disperse(k) for n = k = 49. Each robot ri ∈ R stores five variables
ri.round (initially 0), ri.stage (values 1 to 5, initially null), ri.port entered
(values 1 to 4, initially null), ri.port exited (values 1 to 4, initially null), and
ri.settled (values 0 and 1, initially 0). We assume that in each round ri updates
ri.round ← ri.round + 1. Moreover, we denote the rounds of each stage by α.β,
where α ∈ {1, 2, 3, 4, 5} denotes the stage and β denotes the round within the
stage. Therefore, the first round (α+1).1 for Stage α+1 is the next round after
the last round of Stage α.

Stage 1. The goal in Stage 1 is to reposition the robots that are not already
on boundary nodes of G to the boundary nodes of G. The robots that are
already on (or reach during Stage 1) the boundary nodes do nothing until Stage
1 finishes. The idea here is, for each robot independently, to choose a port of a
non-boundary node to exit in the current round based on the port from which it
entered that non-boundary node in the previous round. Pick a robot ri ∈ R at
some node v ∈ G which is not the boundary node. In round 1.1, ri does not have
information on the port of v from which it entered v (ri has not moved yet).
Therefore, it randomly picks one of the four ports at v and exits v. Suppose, in
the beginning of round 1.2, ri reaches a neighbor of v, say w. If w is a boundary
node, we are done as ri can differentiate a boundary node from a non-boundary
node (a boundary node has three ports instead of four ports at a non-boundary
node). While reaching w, the model provides ri with the information on the
port p at w from which ri entered w. That means, in round 1.2 and after, ri
has information on port from which it entered the node in the previous round
where it is positioning in the current round. Therefore, in round 1.2, ri moves
as follows. Besides port p, w has three other ports. ri orders (in clockwise or
counterclockwise direction) the three remaining ports at w starting from p. It
then picks the second port in either order and exits w using that port. The
process is then repeated by ri in round 1.3 and after until it reaches a boundary
node.

190 A. D. Kshemkalyani et al.

Fig. 1. An illustration of the five stages of algorithm Grid Disperse(k) for n = k = 49:
(a) An initial configuration, (b) Stage 1 that moves robots to boundary nodes of G,
(c) Stage 2 that moves robots to four boundary corner nodes of G, (d) Stage 3 that
moves the robots to one boundary corner node of G, (e) Stage 4 that distributes robots
equally in a row (or a column) with each node having

√
n robots, and (f) Stage 5 that

distributes robots so that each node of G having exactly one robot each. The numbers
denote the number of robots positioned at that node.

Lemma 1. Pick a robot ri at non-boundary node v ∈ G. Let ri moves to a
neighbor node w of v in round 1.1. Let L−→vw be a line with one end v and passing
through w. In round 1.2 and after (until ri reaches a boundary node), ri moves
following the nodes of G that are on L−→vw in the same direction in each round.

Proof. Let the four ports of v be pv1, pv2, pv3, and pv4. Suppose ri exits v using
pv1 in round 1.1 and reaches node w in the beginning of round 1.2. If w is a
boundary node, we are done. Otherwise, it remains to show that in round 1.2
and after, ri always moves on the nodes of L−→vw in the same direction. Let pw1

be the port at w from which ri entered w in round 1.1. The three remaining
ports at w are pw2, pw3, and pw4. Since ri picks second port in the clockwise (or
counterclockwise) order in round 1.2 and after, the port ri picks at w is always
opposite port of port pw1 that it used to enter w from v in round 1.1. Notice
that ri is aware of pw1 while at w. Therefore, in the beginning of round 1.3,
ri reaches a neighbor node of w on L−→vw (opposite of v). Continuing this way,
the move decision in round 1.3 (and after) resembles the approach of round 1.2,
takes ri farther way from v on L−→vw in each subsequent round. �	
Lemma 2. At the end of Stage 1, all k = Ω(n) robots in any initial configura-
tion are positioned on boundary nodes of G. Stage 1 finishes in

√
n − 1 rounds.

Stage 2. The goal in Stage 2 is to collect all k = Ω(n) robots on boundary
nodes of G to four boundary corners of G. Let Lab be a boundary row or column
of G passing through boundary corners a, b of G. For the rest three bound-
ary row or columns the ideas are analogous and run in parallel. In Stage 2,
Grid Disperse(k) collects the robots on the nodes on Lab to either node a or
node b or some on a and some on b. The idea here is to move each robot inde-
pendently in a direction on the boundary row or column of the grid until the

Dispersion of Mobile Robots on Grids 191

robot reaches a boundary corner node. In this process, while selecting a port to
leave from a current node to the next node in the boundary row or column, the
robot may reach to a non-boundary node, in which case it will return back to the
boundary node in the next round using the same port from which it entered the
non-boundary node. Details are in a full version. We have the following lemma.

Lemma 3. At the end of Stage 2, all k = Ω(n) robots in G are positioned on
(at most) 4 boundary corner nodes of G. Stage 2 finishes in 3(

√
n − 1) rounds

after Stage 1.

Stage 3. The goal in Stage 3 is to collect all k = Ω(n) robots on a boundary
corner node of G. Let a, b, c, d be the four boundary corner nodes of G. Suppose
the smallest ID robot r1 ∈ R is positioned on a. Pick any robot ri
= r1. If ri
is already on a, it does nothing in Stage 3. Otherwise, it is on b, c, or d (say b)
and it moves in Stage 3 to reach a. Since ri needs to move on the boundary of
G, the technique of Stage 2 can be modified for ri so that it reaches a following
the boundary nodes (details omitted).

Lemma 4. At the end of Stage 3, all k = Ω(n) robots in G are positioned on a
boundary corner nodes of G. Stage 3 finishes in 9(

√
n − 1) rounds after Stage 2.

Stage 4. The goal is Stage 4 is to distribute k = Ω(n) robots (that are at a
boundary corner node a after Stage 3) to a boundary row or column so that there
will be no more than

√
n robots on each node. In the first round, the smallest

ID robot r1 moves to pick a direction (i.e., row or a column). From the second
round onwards, the idea similar to Stage 2 is used to move the robots on the
boundary row or column leaving

√
n robots on each node of that row or column.

Details are omitted.

Lemma 5. At the end of Stage 4, all k = Ω(n) robots in G are distributed on a
boundary row or column of G so that there will be exactly

√
n or less robots on

a node. Stage 4 finishes in 3
√

n − 1 rounds after Stage 3.

Stage 5. The goal in Stage 5 is to distribute robots to nodes of G so that there
will be at most one robot on each node. Let c be a boundary node with

√
n or

less robots on it and ri is on c. In round 5.1, if ri is the largest ID robot rmax

among the robots on c, it settles at c assigning ri.settled ← 1. Otherwise, in
round 5.1, ri moves as follows. While executing Stage 4, ri stores the port of
c it used to enter c (say ri.port entered = pc1) and the port of c used by the
robot that left c exited through (say ri.port exited = pc2). Robot ri then exits
through port pc3, which is not ri.port entered and ri.port exited. This way ri
reaches a non-boundary node c′. All other robots except rmax also reach c′ in
the beginning of round 5.2. In round 5.2, the largest ID robot rmax′ settles at c′.
The other at most

√
n−2 robots exit c′ using the port of c′ selected through the

port ordering technique described in Stage 1. This process then continues until
a single robot remains at a node z, which settles at z.

192 A. D. Kshemkalyani et al.

Lemma 6. At the end of Stage 5, all k = Ω(n) robots in G are distributed such
that there is exactly one robot on a node of G. Stage 5 finishes in

√
n rounds

after Stage 4.

Theorem 3. Grid Disperse(k) solves Dispersion correctly for k = Ω(n)
robots on an n-node square grid graph G in O(

√
n) rounds with O(log n) bits

at each robot.

Proof. Each stage of Grid Disperse(k) executes sequentially one after another.
Therefore, the correctness of Grid Disperse(k) follows combining the correct-
ness proofs of Lemmas 2–6. The time bound of O(

√
n) rounds also follows

summing up the O(
√

n) rounds of each stage. Regarding memory, variables
port entered, port exited, settled, and stage take O(1) bits (Δ = 4 for grids),
and round takes O(log n) bits. Moreover, two or more robots at a node can be
differentiated using O(log k) bits, for k = Ω(n). Therefore, a robot needs in total
O(log n) bits. �	

We have the following theorem for k ≤ o(n). Details are omitted.

Theorem 4. Grid Disperse(k) solves Dispersion correctly for k ≤ o(n) robots
on a square grid G in O(min(k,

√
n)) rounds with O(log k) bits at each robot.

Proof of Theorem 1: Theorems 3 and 4 together prove Theorem 1 for any
k ≤ n. �	

Algorithm 2: Grid Disperse Global(k) in the global communication
model
1 Input: An n-node square grid G with k ≤ n robots positioned arbitrarily on its

nodes.
2 Stage 1: For each node of G with two or more robots, run a DFS traversal

algorithm of Kshemkalyani et al. [8] for W = 48
√

kΔ rounds;
3 Stage 2: If a DFS traversal tree component formed in Stage 1 has 14

√
k or

more nodes, then (i) divide the component into sub-components having 6
√

k to
14

√
k − 1 nodes, and (ii) collect all the robots on each sub-component into a

node in that sub-component;
4 Stage 3: The nodes in G with at least 6

√
k robots positioned on them form a

square boundary of length 4(
√

k − 1) having 4(
√

k − 1) robots on the boundary
(the remaining nodes of G has at most one robot on each);

5 Stage 4: If two or more square boundaries overlap, make them non-overlapping
by coalescing some square boundaries with others;

6 Stage 5: If there are robots, if any, in the interior of each square boundary,
collect those robots to a corner of that boundary such that only that corner has
multiple robots;

7 Stage 6: Disperse the multiple robots on a single corner of each square
boundary to the nodes in the interior of that boundary;

Dispersion of Mobile Robots on Grids 193

4 Algorithm in the Global Communication Model
(Theorem 2)

We present and analyze an algorithm, Grid Disperse Global(k), that solves
Dispersion for k ≤ n robots on n-node square grid graphs in O(

√
k)

time with O(log k) bits at each robot in the global model. We discuss
Grid Disperse Global(k) for square grids here. The algorithm for rectangular
grid graphs is in a full version.

High Level Overview of the Algorithm. Grid Disperse Global(k) for
square grid graphs has six stages, Stage 1–6, which execute sequentially one
after another. Grid Disperse Global(k) works for any k ≤ n. Each stage runs
for O(

√
k) rounds, giving overall O(

√
k) runtime. Stage 1 runs a DFS traversal

in parallel for the nodes of G with at least two robots in the initial configu-
ration. Stage 1 forms one or more DFS traversal tree components. Each DFS
traversal tree component is a graph. Stage 2 divides each DFS traversal tree
component with 14

√
k or more nodes into sub-components containing between

6
√

k to 14
√

k − 1 nodes. The robots on a sub-component (say CC) are then
collected to a node (say vCC) on that sub-component. Stage 3 is then initiated
by the nodes of grid G (for example, node vCC of sub-component CC) having
at least 6

√
k robots. They create a square boundary of length 4(

√
k − 1) so that

there will be exactly 4(
√

k−1) robots positioned on the square boundary. If there
is overlapping between two or more square boundaries constructed in Stage 3,
Stage 4 makes them non-overlapping through merging all the square boundaries
to one. Stage 5 collects the robots, if any, that are in the interior of each square
boundary to a boundary corner node of the square boundary (again the node is
vCC for the sub-component CC). Finally, Stage 6 first distributes the robots on
the boundary corner node (vCC for sub-component CC) equally to the nodes on
a row or a column of the square boundary and then disperses those robots to the
nodes inside the square boundary, one on each node, achieving a Dispersion
configuration.

Algorithm for Square Grid Graphs, k ≤ n. We now describe in detail
how Stages 1–6 of Grid Disperse Global(k) are executed for n-node square grid
graphs. The high level pseudocode is given in Algorithm 2. We also abstract some
details on what variables are used and how they are used to provide better read-
ability for the overall algorithm. The techniques are highly involved compared
to Sect. 3.

Stage 1. Stage 1 is for the nodes of G which have at least two robots positioned
on them in the initial configuration. Stage 1 runs a DFS traversal algorithm for
arbitrary graphs developed Kshemkalyani et al. [8] in the global communication
model. Kshemkalyani et al. [8] run this DFS traversal until a Dispersion config-
uration is achieved, and hence the runtime becomes min (2 · 4m, 2 · 2kΔ) rounds
for arbitrary graphs. In grid, running this algorithm until reaching a Dispersion
configuration needs 16k rounds (in a n-node square grid m ≤ 4n, Δ = 4, and
k ≤ n), which is clearly sub-optimal. Recall that our goal is to achieve optimal

194 A. D. Kshemkalyani et al.

runtime of O(
√

k) rounds in grids. Therefore, we run the DFS traversal of [8]
in the global communication model only for 48

√
kΔ rounds and derive some

properties to achieve a O(
√

k)-round algorithm for a grid.

Lemma 7. Let W = 48
√

kΔ. If the DFS traversal forming a DFS tree compo-
nent stops before W rounds, there is exactly one robot on each node of that DFS
tree component. IF the DFS traversal does not stop until W rounds, there will be
≥ 6

√
k nodes (with at least a robot on each node) on the DFS tree component.

Stage 2. Consider a connected DFS tree component CCi with ID CIDi formed
in Stage 1. Stage 2 will run for CCi if it has at least a node with two
or more robots on it. For simplicity, we denote such DFS tree components
by CCi(not settled). Robots in the component CCi(not settled) have knowl-
edge of the component ID CIDi of CCi(not settled). We have from Lemma 7
that CCi(not settled) must have at least 6

√
k nodes. Suppose CCi(not settled)

has Xi ≥ 6
√

k nodes. Then, CCi(not settled) must have Yi > Xi robots. If
CCi(not settled) has 6

√
k ≤ Xi < 14

√
k − 1 nodes, we collect all the robots

of CCi(not settled) to the node of CCi(not settled) that is CIDi. If there
are Xi ≥ 14

√
k nodes on CCi(not settled), we partition CCi(not settled) into

sub-components CCsub,j
i (not settled) such that each CCsub,j

i (not settled) has
between 6

√
k and 14

√
k − 1 nodes on it. After this, the robots on the nodes of

each sub-component CCsub,j
i (not settled) are collected to a node in that sub-

component. Note that we collect only for sub-components CCsub,j
i (not settled)

which have Yi > Xi (or at least a node on that sub-component has two robots
on it). It remains to discuss two techniques:
(a) How the partitioning of a connected DFS tree component CCi(not settled)

into sub-components CCsub,j
i (not settled) is achieved.

(b) How the collection of the robots on the nodes of each sub-component
CCsub,j

i (not settled) into a node in that sub-component is achieved.
The details are in a full version. We have the following lemma after Stage 2.

Lemma 8. At the end of Stage 2, there is either no, one, or at least 6
√

k robots
on the nodes of grid G. Stage 2 finishes in O(

√
k) rounds.

Stage 3. Stage 3 is initiated in parallel by the grid nodes which have at least
6
√

k robots positioned on them at the end of Stage 2 (Lemma 8). Consider a
node w ∈ G which has at least 6

√
k robots on it at the end of Stage 2. The goal

is to form a square boundary SBw of length 4(
√

k−1) containing one robot each
on the boundary nodes (except node w which will have at least 2

√
k +1 robots).

This boundary helps to disperse all k robots in the interior. Details are omitted
on how the square boundary is formed.

Lemma 9. At the end of Stage 3, for each node of G with at least 6
√

k robots
on it at end of Stage 2, a square boundary of length 4(

√
k−1) is correctly formed

with each boundary node having one robot positioned on it, with only exception of
a node on the boundary which has at least 2

√
k + 1 robots on it. Stage 3 finishes

in O(
√

k) rounds.

Dispersion of Mobile Robots on Grids 195

Stage 4. The goal in Stage 4 is make the square boundaries SBw non-
overlapping. Consider a square boundary SBi with ID SIDi (the smallest ID
robot on node w for the square boundary SBw). All the robots on the boundary
of SBi know they belong to the boundary SBi. In the first round of Stage 4, if
any robot ri of SBi has some other robot rj with SIDj colocated on the same
node, it broadcasts a Overlap(SIDi, SIDj) message. This is to indicate that the
square boundary SBi has met the square boundary SBj , j
= i. All the robots
listen to such broadcasts and build an undirected square boundary overlapping
graph SB Overlap(B,E′), where B is the set of square boundary IDs, and edge
(SIDi, SIDj) indicates that Overlap(SIDi, SIDj) message has been received.
There might be one or more SB Overlap(B,E′) components and Stage 4 runs
in parallel for each of those. A maximal independent set (MIS) is computed for
each component and the square boundaries which are not part of the MIS will
merge with the neighboring square boundary that is part of the MIS. Details are
omitted.

Lemma 10. At the end of Stage 4, all square boundaries are non-overlapping.
The 4(

√
k−1) boundary nodes in each square boundary have a robot each, except

a node which has at least 2
√

k + 1 robots. Stage 4 finishes in O(
√

k) rounds.

Stage 5. At the end of Stage 4, all the remaining square boundaries are non-
overlapping. The only problem might be that there are robots in the interior of
the square boundaries. This is particularly because of DFS traversal trees that
stopped before W rounds in Stage 1 and the robots of square boundaries from
Stage 4 not collected yet. The goal in Stage 5 is to collect those robots, if any,
inside each square boundary SBi to the SIDi node so that at the end of Stage
5, there are robots only the boundary of each SBi. A challenge is how to collect
robots if any in the interior of SBi in O(

√
k) rounds. For this,

√
k−2 robots first

move in a row or column of SBi and then to the interior of SBi until reaching the
opposite row or column, collecting all the robots that are found on the traversal.
They then return to SIDi with all the robots (if any) in the interior of SBi.
Details are in a full version. We have the following lemma.

Lemma 11. At the end of Stage 5, there will be no robot in the interior of the
non-overlapping square boundaries obtained in Stage 4. Only a corner of square
boundaries have at least 2

√
k + 1 robots. Stage 5 finishes in O(

√
k) rounds.

Stage 6. At the end of Stage 5, we have the following: (i) All square boundaries
SBi are non-overlapping, (ii) There is no robot in the interior of the square
boundaries, and (iii) Each boundary node of SBi has exactly one robot on it
except one corner SIDi which has at least Ti ≥ 2

√
k + 1 robots. The goal in

Stage 6 is to disperse Ti − 1 robots to the interior nodes in SBi. Stage 6 uses
the ideas as in Stages 4 and 5 of Sect. 3 modified appropriately. Details are in a
full version.

196 A. D. Kshemkalyani et al.

Lemma 12. At the end of Stage 6, all k ≤ n robots are distributed such that
there is at most one robot on a node of G. Stage 6 finishes in O(

√
k) rounds.

Theorem 5. Grid Disperse Global(k) solves Dispersion correctly for k ≤ n
robots on an n-node square grid G in O(

√
k) rounds with O(log k) bits at each

robot.

Proof. The correctness and runtime of Grid Disperse Global(k) follows com-
bining Lemmas 7–12. Regarding memory, Grid Disperse Global(k) uses O(1)
number of different variables to be stored by each robot, taking O(log k) bits for
each variable. �	

Proof of Theorem 2: Theorem 5 proves Theorem 2 for any k ≤ n. �	

5 Concluding Remarks

We have studied the robot Dispersion problem on graphs with the object
of simultaneously minimizing two fundamental performance metrics: time and
memory at each robot. We have presented two algorithms for Dispersion of
k ≤ n robots considering for the very first time grid graphs that find applications
in many real-life robotic systems and provide simultaneously optimal bounds for
both the metrics. The first result is for the local communication model and the
second result is for the global communication model. The existing results in the
literature were only for trees and arbitrary graphs and they were not able to
simultaneously minimize both the metrics.

For future work, it will be interesting to solve Dispersion on grids with time
O(

√
k) in the local model for any k ≤ n. Another interesting direction will be to

extend our algorithms to semi-synchronous and asynchronous settings.

References

1. Augustine, J., Moses Jr., W.K.: Dispersion of mobile robots: a study of memory-
time trade-offs. In: ICDCN, pp. 1:1–1:10 (2018)

2. Das, S., Dereniowski, D., Karousatou, C.: Collaborative exploration of trees by
energy-constrained mobile robots. Theory Comput. Syst. 62(5), 1223–1240 (2018)

3. Fraigniaud, P., Gasieniec, L., Kowalski, D.R., Pelc, A.: Collective tree exploration.
Networks 48(3), 166–177 (2006)

4. Hsiang, T., Arkin, E.M., Bender, M.A., Fekete, S.P., Mitchell, J.S.B.: Algorithms
for rapidly dispersing robot swarms in unknown environments. In: WAFR, pp.
77–94 (2002)

5. Hsiang, T.-R., Arkin, E.M., Bender, M.A., Fekete, S., Mitchell, J.S.B.: Online
dispersion algorithms for swarms of robots. In: SoCG, pp. 382–383 (2003)

6. Kshemkalyani, A.D., Ali, F.: Efficient dispersion of mobile robots on graphs. In:
ICDCN, pp. 218–227 (2019)

7. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Fast dispersion of mobile robots on
arbitrary graphs. CoRR, abs/1812.05352 (2018). (Accepted to ALGOSENSORS
2019)

Dispersion of Mobile Robots on Grids 197

8. Kshemkalyani, A.D., Molla, A.R., Sharma, G.: Dispersion of mobile robots in the
global communication model. CoRR, abs/1909.01957 (2019). (Accepted to ICDCN
2020)

9. Martnez, H., Cnovas, J.P., Zamora, M.A., Skarmeta, A.G.: i-Fork: a flexible AGV
system using topological and grid maps. In: ICRA, pp. 2147–2152 (2003)

10. Molla, A.R., Moses Jr., W.K.: Dispersion of mobile robots: the power of random-
ness. In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 481–
500. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6 30

11. Ortolf, C., Schindelhauer, C.: Online multi-robot exploration of grid graphs with
rectangular obstacles. In: SPAA, pp. 27–36 (2012)

12. Sharma, G., Dutta, A., Kim, J.-H.: Optimal online coverage path planning with
energy constraints. In: AAMAS, pp. 1189–1197 (2019)

https://doi.org/10.1007/978-3-030-14812-6_30

Packing and Covering with Segments

Joseph S. B. Mitchell1 and Supantha Pandit2(B)

1 Stony Brook University, Stony Brook, NY, USA
joseph.mitchell@stonybrook.edu

2 Dhirubhai Ambani Institute of Information and Communication Technology,
Gandhinagar, Gujarat, India
pantha.pandit@gmail.com

Abstract. We study three fundamental geometric optimization prob-
lems – independent set, piercing set, and dominating set – on sets of
axis-parallel segments in the plane. We consider special cases in which
the segments are either unit length or they are anchored on an inclined
line (a line with slope −1). When the segments are anchored on both
sides, we prove that all three problems are NP-complete (Throughout,
we refer to NP-completeness of problems, as the decision versions of the
NP-hard optimization problems we consider are all readily seen to be in
NP.); NP-completeness was known for the corresponding problems with
axis-parallel rectangles anchored on an inclined line (Correa et al. [4],
Mudgal and Pandit [9], Pandit [10]). Further, we prove that the dominat-
ing set problem with unit segments in the plane is NP-complete. When
the input segments are anchored on one side of the inclined line, there
are polynomial-time algorithms for the independent set and piercing set
problems.

Keywords: Geometric set cover · Piercing set · Dominating set ·
Segments · Inclined line · NP-complete

1 Introduction

We study three fundamental network optimization problems – independent set,
piercing set and dominating set – in a geometric setting. Specifically, we consider
the intersection graph of a set S of axis-parallel segments in the plane, with each
segment having one of its endpoints on an inclined line, L (a line with slope −1);
we say that such segments are anchored on L. We distinguish between the case
of S being anchored on one side of L (S lies in one of the two closed halfplanes
defined by L) or anchored on both sides of L (segments of S can be in either of
the closed halfplanes). In the independent set problem, the objective is to find
a subset S′ ⊆ S such that no two segments in S′ intersect. In the piercing set
problem, we seek a minimum cardinality set P ′ of points in the plane such that

Partially supported by the National Science Foundation (CCF-1526406), the US-Israel
Binational Science Foundation (project 2016116), and DARPA.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 198–210, 2020.
https://doi.org/10.1007/978-3-030-39881-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_17

Packing and Covering with Segments 199

each segment is hit by at least one point from P ′. Finally, in the dominating set
problem, the objective is to select a minimum-cardinality subset S′ ⊆ S such
that any segment in S \ S′ has a nonempty intersection with a segment in S′.

1.1 Related Work

Katz et al. [6] studied various dominating set problems associated with sets of
line segments, rays, and lines in the plane. In particular, they considered the
dominating set problem on axis-parallel segments in the plane, proving that
it is NP-complete. Fekete et al. [5] considered the piercing set problem with
different types of line segments (infinite lines, segments, rays, and combina-
tions of them) in the plane. They provide some polynomial-time algorithms and
NP-completeness results, as well as efficient approximation algorithms for some
variations.

Chepoi and Felsner [3] studied the independent set and piercing set problems
on a set of rectangles in the plane, each of which intersects an axis-monotone
curve; they provide approximation algorithms for both problems. Later, Correa
et al. [4] considered independent set and piercing set problems on rectangles,
each intersecting an inclined line; they proved that the independent set problem
is NP-complete when the rectangles are anchored on an inclined line from both
sides (meaning that each rectangle has a vertex on the line and lies in either of
the two halfplanes defined by the line), while giving a polynomial-time algorithm
when rectangles are all anchored on one side (i.e., all rectangles lie in the same
halfplane defined by the line, each having a vertex on the line). For the piercing
set problem they provide an approximation algorithm. Their results were fur-
ther extended by Mudgal and Pandit [9], who show that the piercing set problem
with rectangles anchored on an inclined line from both sides is NP-complete. In
addition, [9] also considered the set cover and hitting set problems with rect-
angles and squares. Pandit [10] studied the dominating set problem on a set of
rectangles each of which intersects an inclined line; he shows that the problem is
NP-complete for rectangles, but gives a polynomial-time algorithm in the case of
squares (intersecting an inclined line). Recently, Bandyapadhyay et al. [1] con-
sidered the dominating set problem with rectangles anchored on an inclined line;
actually, their results apply to L-shaped objects, since it can be noted that, in
this setting, rectangles and L-shaped objects are indistinguishable.

1.2 Our Contributions

Our contributions include the following:

➣ Independent Set problem: We prove that the independent set problem
with axis-parallel segments anchored on both sides of an inclined line is NP-
complete; in contrast, it is polynomially solvable for axis-parallel segments
and rectangles anchored on an inclined line from one side. In fact, for general
connected regions (i.e., outerstring graphs, with a given realization) it is also
polynomially solvable (see Keil et al. [7]), even for a topological line (there
is no need for it to be a straight, inclined line).

200 J. S. B. Mitchell and S. Pandit

➣ Piercing Set problem: We prove that the piercing set problem with axis-
parallel segments anchored on an inclined line is NP-complete. This problem
can be solved in polynomial time if the segments are anchored on an inclined
line from one side.

➣ Dominating Set problem: We prove that the dominating set problem with
axis-parallel segments anchored on an inclined line is NP-complete. We also
prove that the dominating set problem with (non-anchored) axis-parallel
unit segments in the plane is NP-complete.

2 Preliminaries

We first define the Rectilinear Planar Monotone 3SAT (RPM3SAT) problem.
We are given a 3SAT formula φ with n variables x1, x2, . . . , xn and m clauses
C1, C2, . . . , Cm. Each clause contains exactly 3 literals such that all of them are
either positive (positive clause) or negative (negative clause). For each variable
or clause we take a horizontal segment. The variable segments are on a hor-
izontal line. The positive clause segments are above the horizontal line, while
the negative clause segments are below. The clauses connect to the correspond-
ing three variables by vertical line segments. A formula φ is an instance of
the RPM3SAT problem if and only if the complete construction can be done
while keeping it planar. See Fig. 1(a) for an instance of the RPM3SAT problem.
The objective is to determine if there is a truth assignment to the variables
that satisfies φ. We consider a modified version of the RPM3SAT problem, the
Mod-RPM3SAT problem. Instead of placing the variable segments on a hori-
zontal line, we place them on an inclined line L. Let C be a positive clause
in the RPM3SAT problem (Fig. 1(a)) that contains variables xi, xj , and xk.
We directly connect the clause segment of C with the variable segment of xi.
Further, we extend the vertical segments corresponding to xj and xk such that
they connect to the variable segments of xj and xk respectively. A symmet-
ric construction is done for the negative clauses. See Fig. 1(b) for the modified
instance of the RPM3SAT problem instance in Fig. 1(a). de Berg and Khosravi
[2] proved that the RPM3SAT problems is NP-complete. This implies that the
Mod-RPM3SAT problem is also NP-complete.

We now define some terminology that is used in this paper. Let us consider
a variable xi. Order the positive clauses from left to right that connect to xi.
Now let C� be a positive clause that contains xi, xj , and xk and assume that the
variables are also ordered from left to right. Then by the above ordering of the
positive clauses we say that, C� is a �1-th, �2-th, and �3-th clause for the variables
xi, xj , and xk respectively. For example the clause C2 is a 1-st, 2-nd, and 1-st
clause for x1, x3, and x4 respectively. This is true for both RPM3SAT and Mod-
RPM3SAT problems. A similar ordering is possible for the negative clauses.

Packing and Covering with Segments 201

(a) (b)

Fig. 1. (a) An instance of the RPM3SAT problem. (b) After modification of Fig. 1(a).

3 Algorithms: Segments Anchored from One Side

3.1 The Independent Set Problem

The independent set problem with segments anchored on an inclined line from
one side (ISSIL1 problem) can be solved in polynomial time; in fact, more
generally, the maximum independent set problem in outerstring graphs has a
polynomial-time solution [7].

We make a simple observation that yields a more direct and efficient solution
in the special setting of our problem, by reducing the problem to an instance
of independent set in a bipartite graph. Let S = {s1, s2, . . . , sn} be a set of n
horizontal/vertical segments that are anchored on an inclined line L from the
right side of L. We observe:

Observation 1. For any two overlapping segments, we can discard the larger
of the two segments from the input.

Assume now that no two segments in S overlap. This implies that no two
vertical (resp., horizontal) segments in S intersect. Consider the bipartite graph
G(A,B,E), with A (resp., B) being the set of vertical (resp., horizontal) seg-
ments of S, and edges E corresponding to intersecting pairs of segments. Now
observe that finding a solution to the ISSIL1 problem is equivalent to finding
a maximum independent set of vertices in the corresponding bipartite graph
instance, which is solved in polynomial time.

3.2 The Piercing Set Problem

The piercing set problem with segments anchored on an inclined line from one
side (PSSIL1 problem) can also be solved in polynomial time. We reduce the
PSSIL1 problem to an equivalent problem, the edge cover problem in a bipar-
tite graph. Note that Observation 1 holds for the PSSIL1 problem. Then, our
problem is exactly that of computing a minimum-size set of edges that covers

202 J. S. B. Mitchell and S. Pandit

the vertices in the bipartite graph G(A,B,E). Since the latter problem can be
solved in polynomial time (see, e.g., [8]), the PSSIL1 problem also can be solved
in polynomial time.

4 Independent Set Problem

In this section we prove that the independent set problem with segments
anchored on an inclined line from both sides (ISSIL problem) is NP-complete by
giving a reduction from the Mod-RPM3SAT problem.

Variable Gadget: The gadget for variable xi is shown in Fig. 2(a). Let L be
an inclined line. We take 20m + 6 segments {s1, s2, . . . , s20m+6} in a cycle like
structure such that one endpoint of each segment touches the line L, and any
two consecutive segments along the cycle intersect. From this structure it is
easy to observe that there are exactly two optimal independent sets of segments,
Si = {s1, s3, . . . , s20m+5} and T i = {s2, s4, . . . , s20m+6}, for the gadget of xi.
Note that on the right side of L there are 2m gaps {g1, g2, . . . , g2m}, where the
gap gj , for 1 ≤ j ≤ 2m is the portion of L between the two points pj and qj on
L, where pj is the intersection point of the bottom endpoint of s5j−3 and L and
qj is the intersection point of the left endpoint of s5j+1 and L.

Clause Gadget: For each clause gadget we take 9 segments {t1, t2, . . . , t9} (see
Fig. 2(b)). The three segments t1, t2, and t3 are responsible for the interaction
with the three literals that the clause contains.

We now explain how the clause gadgets interact with the variable gadgets.
As we defined in the preliminaries, for a positive clause C� that contains the
variables xi, xj , and xk, we assume that C� is the �1-th, �2-th, and �3-th clause
for xi, xj , and xk, respectively. For this clause, the 9 segments {t1, t2, . . . , t9}
touch the line L (see Fig. 2(b)). The right endpoint of t4 and the top endpoint
of t5 meet at a point, and the left endpoint of t4 touches the line L in the gap
g2�1−1, and the bottom endpoint of t5 touches the line L in the gap g2�3−1. A
similar construction is made for t6 and t7 (the right and top endpoints of t6 and
t7, respectively, meet at a point, the left endpoint of t6 touches L in the gap
g2�1−1, the bottom endpoint of t7 touches L in the gap g2�2−1) and t8 and t9
(the right and top endpoints of t8 and t9 respectively meet at a point, the left
endpoint of t8 touches L in the gap g2�2−1, the bottom endpoint of t9 touches L
in the gap g2�3−1). Also note that the bottom endpoint of t7 and left endpoint
of t8 meet at a point on L in the gap g2�2−1. Now the bottom endpoint of the
segment t1 meet the left endpoint of s10�1−4 on L and intersect t4 and t6. The
bottom endpoint of t2 touches the segment s10�1−6 and the top endpoint meets
the intersection point of the bottom endpoint of t7 and the left endpoint of t8 on
L. Finally, the left endpoint of t3 touches the line L and intersects the segments
s10�3−8, t9, and t5. See the construction for a positive clause in Fig. 2(b). A
similar construction can be made for the negative clauses also.

Clearly, the above construction can be done in polynomial time. We now
have the following theorem.

Packing and Covering with Segments 203

(a) (b)

Fig. 2. (a) Structure of a variable gadget. (b) A clause gadget and its interaction with
the variable gadgets.

Theorem 1. The independent set problem with segments anchored on an
inclined line from both sides (ISSIL problem) is NP-complete.

Proof. It is sufficient to prove that φ is satisfiable if and only if the ISSIL problem
instance Sφ has a solution with n(10m + 3) + 4m segments.

Assume that φ is satisfiable, i.e., that there is a truth assignment to the
variables of φ. Now for the gadget of xi, we select the set Si if xi is true.
Otherwise, we select the set T i. Clearly, we select a total of n(10m+3) segments
from all of the variables. Now, for any clause gadget, if all three literals are false
then none of t1, t2, and t3 can be selected. As a result, there will be at most 3
independent segments in this clause. However, if at least one literal is true, there
will be 4 independent segments in that clause. Thus, a total of n(10m+3)+4m
independent segments are selected from a satisfiable assignment of φ.

On the other hand, assume that Sφ has a solution with n(10m + 3) + 4m
segments. Now, for each variable gadget, at most (10m+3) independent segments
can be selected. Since the variable gadgets are disjoint we can select at most
n(10m+3) independent segments. From each clause gadget, at most 4 segments
can be part of an independent set. Also, the clause gadgets are disjoint. Since
the solution size is n(10m+3)+4m, from each variable gadget exactly (10m+3)
and from each clause gadget exactly 4 independent segments can be selected.
Clearly there are two solutions of (10m+3) independent segments in the gadget
of xi; either Si or T i. We set xi to be true if Si is selected in the gadget of xi;
otherwise, set xi to be false. It is easy to show that this is a satisfying assignment.
��

204 J. S. B. Mitchell and S. Pandit

5 Piercing Set Problem

In this section we prove that the piercing set problem with segments anchored
on an inclined line from both sides (PSSIL problem) is NP-complete. We give a
reduction from the Mod-RPM3SAT problem.

Variable Gadget: The gadget for the variable xi is shown in Fig. 3(a). We take
8m + 8 segments in a circular fashion such that all of them touch an inclined
line L. Only two consecutive segments along the cycle intersect. In Fig. 3(a)
a set C of canonical points {p1, p2, . . . , p8m+8} are also shown. Observe that
any optimal piercing set can selects points from C. Also observe that, there
are exactly two optimal sets of canonical points, Pi = {p1, p3, . . . , p8m+7} and
Qi = {p2, p4, . . . , p8m+8} that hit all the segments in the gadget of xi.

Clause Gadgets: Each clause gadget consists of five segments {t1, t2, t3, t4, t5}
(see Fig. 3(b)). The two segments t4 and t5 are horizontal and parallel. The three
segments t1, t2 and t3 are vertical and responsible for the interaction with the
three literals the clause contains. All the segments touch L from right side.

We now describe how the clause gadgets interact with the variable gadgets.
Let C� be a positive clause containing the variables xi, xj , and xk. Also assume
that C� be the �1-th, �2-th, and �3-th clause for xi, xj , and xk respectively. For
this clause the two parallel horizontal segments t4 and t5 touch the line L from
right side between the points p4�1−1 and p4�1+1 of the gadget of xi. The lowest
end-point of the vertical segment t1 touches the point p4�1+1 of the gadget of xi

and intersect t4 and t5. Similarly, the lowest end-point of the vertical segment t2
(resp. t3) touches the point p4�2+1 (resp p4�3+1) of the gadget of xj (resp xk) and

(a) (b)

Fig. 3. (a) Structure of a variable gadget. (b) A clause gadget and its interaction with
the variable gadgets.

Packing and Covering with Segments 205

intersect t4 and t5. See Fig. 3(b) for this construction. Clearly this construction
can be done in polynomial time. We now prove the following theorem.

Theorem 2. The piercing set problem with segments anchored on an inclined
line from both sides (PSSIL problem) is NP-complete.

Proof. We prove that an instance φ of the RPM3SAT problem is satisfiable
if and only if the instance Sφ of the PSSIL problem has a piercing set with
n(4m + 4) + 2m points.
(⇐) Assume that φ is satisfiable and let π : {x1, x2, . . . , xn} → {0, 1} be a
satisfying assignment. We select the point set Pi from the gadget of xi if π(xi) =
1. Otherwise select the point set Qi. Since each clause is satisfiable then at least
one of t1, t2, and t3 is hit by these selected points. To hit the remaining segments
two points are needed. Hence, overall we need n(4m + 4) + 2m points.
(⇒) Assume that Pφ has a solution with n(4m + 4) + 2m points. To hit all the
segments in a variable gadget requires 4m+4 points, either the set Pi or Qi. Set
the variable xi to be true if Pi is picked from the gadget of xi. Otherwise picked
the set Qi. Now we show that this is a satisfying assignment. Notice that, in the
gadget of C�, containing xi, xj , and xk, at least 2 points are needed to stab the
segments t4 and t5. Now if none of t1, t2, or t3 is stabbed by a variable gadget
then we need at least 3 points. So we have to choose at least one of the Pi, Pj

or Pk from their corresponding gadgets. ��

6 Dominating Set Problem

6.1 Segments Anchored on a Line with Slope −1

In this section we prove that the dominating set problem with segments anchored
on an inclined line from both sides (DSSAIL problem) is NP-complete. We give
a reduction from the Mod-RPM3SAT problem.

Fig. 4. A graph G.

Variable Gadget: To construct a variable gadget, we first consider an auxiliary
result on a graph G that is shown in Fig. 4. The following lemma can be proved
easily on G.

206 J. S. B. Mitchell and S. Pandit

Lemma 1. There exist exactly two minimum dominating sets of vertices in G,
either all red colored or all blue colored.

We encode the graph G as a variable gadget. The gadget for xi is shown
in Fig. 5. Now, using Lemma 1, we say that there are exactly two minimum
dominating sets of segments, either all blue (Si = {s2, s5, . . . , s12m−1}) or all
red (T i = {s3, s6, . . . , s12m}), for the gadget of xi that interpret truth values of
xi.

Fig. 5. Variable gadget for the variable xi.

Clause Gadget: The gadget of C�, for 1 ≤ � ≤ m consists of a single
segment, s�. This segment coincides with the clause segment of C� in the
RPM3SAT instance. We now describe how the segments corresponding to the
positive clauses interact with the segments corresponding to the variables. Since
the interaction for negative clauses is similar, we omit its description here.

Let C� be a positive clause that contains xi, xj , and xk in left to right order.
As defined in the preliminaries, let C� be a �1-, �2-, and �3-th clause for xi,
xj , and xk respectively. For the variable xi, we place the segment s� such that
it intersects with the segment s6�1−4 in the gadget of xi. For xj , we extend
the segment s6�2−4 from the gadget of xj in the upward orientation such that
it intersects with s�. Similarly, for xk we extend the segment s6�3−4 from the
gadget of xk in the upward orientation such that it intersects s�. See Fig. 6(a) for
the construction. A similar/symmetric construction (slightly different and easily
visualized) can be done for the negative clauses (see Fig. 6(b)). This completes
the construction, and clearly the construction can be done in polynomial time
with respect to the number of variables and clauses in φ.

Theorem 3. The dominating set problem with segments anchored on an
inclined line from both sides (DSSAIL problem) is NP-complete.

Packing and Covering with Segments 207

(a) (b)

Fig. 6. Variable-clause interaction for (a) a positive clause and (b) a negative clause.

Proof. It is sufficient to prove that the formula φ is satisfiable if and only if Sφ,
the DSSAIL instance constructed from φ, has a dominating set of 4mn segments.
(⇐) Assume that φ is satisfiable. Let π : {x1, x2, . . . , xn} → {0, 1} be a satisfying
assignment. We select the set Si of segments from the gadget of xi if π(xi) = 1.
Otherwise, we select the set T i. Clearly, we select 4mn segments. Now since φ
is a satisfying assignment, by the construction the clause segment is dominated
by a selected segment from a variable gadget.
(⇒) Assume that Sφ has a dominating set of 4mn segments. For each variable
gadget we need at least 4m segments. Since the variable gadgets are disjoint, we
need at least 4mn segments in total. Since the size of the solution is 4mn, for
each variable gadget exactly 4m segments are needed. Note that there are exactly
two optimal dominating sets of segments each size exactly 4m for each variable
gadget. Therefore, we set xi to be true if Si is in the solution, otherwise we set xi

to be false. We now show that each clause of φ is satisfied. Note that to dominate
a clause segment at least one of the three red segments to be selected form the
corresponding variable gadgets of that clause, and we select that variable to be
true whose red segment is selected. Therefore, the clause is satisfied, and hence
the formula is also satisfied. ��

6.2 Unit Segments in the Plane

In this section, we prove that the dominating set problem with unit length axis-
parallel segments (DSUS problem) is NP-complete. We give a reduction from the
RPM3SAT problem (see Fig. 1(a)). We slightly modify the RPM3SAT problem
as follows. For each positive clause we take a small square instead of a horizontal
segment, and the three legs of shapes “ ”, “ ”, and “ ” connect the clause square
with its corresponding variable horizontal segments (see Fig. 7(a)).

208 J. S. B. Mitchell and S. Pandit

Variable Gadget: We encode the graph in Fig. 4 as a variable gadget for any
variable xi, for 1 ≤ i ≤ n. Each gadget has two components, a rectangular chain
and at most m leg-chains of segments. Each leg-chain corresponds to a clause
leg through which a clause connects to the variable in the RPM3SAT problem.
Note that for each variable, there are at most m such clause legs.

Rectangular Chain: In Fig. 7(b), a rectangular chain of segments is depicted. We
take 12m unit segments s1, s2, . . . , s12m in a rectangular fashion. We also take
additional 8m segments t1, t2, . . . , t8m such that the two segments ti and ti+1

overlap with the two segments s6i−4 and s6i−3, for 1 ≤ i ≤ 2m.

(a) (b)

Fig. 7. (a) An instance of the RPM3SAT problem. (b) A rectangular chain of segments.
The segments ti are slightly shifted vertically for better visibility.

Leg-Chains: There are three types of leg-chains: left (see Fig. 8(a)), middle (see
Fig. 8(b)), and right (vertical flip of left chain). Notice that each leg-chain has
three special segments, s′, s′′, and s′′′. The two segments s′ and s′′ in each chain
are responsible to connect with the rectangular chain, and the segment s′′′ is
responsible to interact with the clause gadget.

Connecting a Rectangular and a Leg-Chain: As defined before, for the variable
xi, order the positive clauses left to right that connect to xi. Let C� be a �1-th
positive clause for xi. Then, (i) remove the segment s6�−1 from the rectangular
chain of xi, (ii) connect the right endpoint of s6�−2 with the bottom endpoint of
s′, and (iii) connect the left endpoint of s6� with the bottom endpoint of s′′.

The variable gadget is the rectangular chain along with at most 2m leg-chains
attached to it. This makes a big-chain of segments. Observe that this big-chain
mimics the graph in Fig. 4. Note that the big-chain of xi contains Gi = 8δi

segments, where δi > 2m is a positive integer. Clearly, there are exactly two
optimal solutions, either all red or all blue segments, such that each of their
sizes is 2δi. Let us assume that G =

∑n
i=1 Gi and Δ =

∑n
i=1 2δi.

Clause Gadget: Let C� = (xi ∨ xj ∨ xk) be a positive clause. For this clause
the gadget consists of 7 segments {si, sj , sk, s1, s2, s3, s4} (see Fig. 8(c)). The 4
segments {s1, s2, s3, s4} forms a square shape corresponding to the square of C�

in the modified RPM3SAT formula. The left endpoint of si is attached with s′′′

Packing and Covering with Segments 209

(a) (b) (c)

Fig. 8. (a) A left leg-chain. (b) A middle leg-chain. (c) A clause gadget and its inter-
action with the variable gadgets.

of the gadget of xi and the right endpoint of si is attached with s2. Similarly, the
bottom and right endpoints of sj and sk are attached with s′′′ of the gadgets of
xj and xk, respectively, and the top and left endpoints of sj and sk are attached
with s4 and s3, respectively. A similar construction is made for negative clauses.

The overall construction takes time polynomial in n and m.

Theorem 4. The dominating set problem with unit length axis-parallel segments
(DSUS problem) is NP-complete.

Proof. We prove that φ, an instance of the RPM3SAT problem, is satisfiable
if and only if Tφ, the instance of the DSUS problem generated from φ, has a
solution with Δ + 2m segments.

Assume that φ is satisfiable. For the gadget of xi, select red segments if xi

is true; otherwise, select blue segments. As a result, in each clause gadget one of
si, sj , and sk is dominated from the variable gadgets. Then, at least 2 segments
from each clause gadget dominate the remaining clause segments. Therefore, we
select a total of Δ + 2m segments.

Assume that there is a solution to Tφ with Δ+2m segments. For the gadget
of xi we need at least 2δi segments. For each clause gadget we need at least 2
segments. Since Tφ contains Δ + 2m segments, from the gadget of xi we pick
exactly 2δi segments, and from each clause we pick exactly 2 segments. Since
there are exactly two optimal solutions for the gadget of xi, we set variable xi to
be true if all red segments are selected; otherwise, we set xi to be false. It is easy
to see that this assignment satisfies all of the clauses and hence the formula. ��

References

1. Bandyapadhyay, S., Maheshwari, A., Mehrabi, S., Suri, S.: Approximating domi-
nating set on intersection graphs of rectangles and L-frames. Comput. Geom. 82,
32–44 (2019)

2. de Berg, M., Khosravi, A.: Optimal binary space partitions for segments in the
plane. Int. J. Comput. Geom. Appl. 22(03), 187–205 (2012)

3. Chepoi, V., Felsner, S.: Approximating hitting sets of axis-parallel rectangles inter-
secting a monotone curve. Comput. Geom. 46(9), 1036–1041 (2013)

210 J. S. B. Mitchell and S. Pandit

4. Correa, J.R., Feuilloley, L., Pérez-Lantero, P., Soto, J.A.: Independent and hitting
sets of rectangles intersecting a diagonal line: algorithms and complexity. Discrete
Comput. Geom. 53(2), 344–365 (2015)

5. Fekete, S.P., Huang, K., Mitchell, J.S., Parekh, O., Phillips, C.A.: Geometric hit-
ting set for segments of few orientations. Theory Comput. Syst. 62(2), 268–303
(2018)

6. Katz, M.J., Mitchell, J.S.B., Nir, Y.: Orthogonal segment stabbing. Comput.
Geom. Theory Appl. 30(2), 197–205 (2005)

7. Keil, J.M., Mitchell, J.S.B., Pradhan, D., Vatshelle, M.: An algorithm for the max-
imum weight independent set problem on outerstring graphs. Comput. Geom. 60,
19–25 (2017)

8. Lawler, E.L.: Combinatorial Optimization: Networks and Matroids. Dover,
New York (2001)

9. Mudgal, A., Pandit, S.: Covering, hitting, piercing and packing rectangles inter-
secting an inclined line. In: Lu, Z., Kim, D., Wu, W., Li, W., Du, D.-Z. (eds.)
COCOA 2015. LNCS, vol. 9486, pp. 126–137. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-26626-8 10

10. Pandit, S.: Dominating set of rectangles intersecting a straight line. In: Canadian
Conference on Computational Geometry, CCCG, pp. 144–149 (2017)

https://doi.org/10.1007/978-3-319-26626-8_10
https://doi.org/10.1007/978-3-319-26626-8_10

Implicit Enumeration
of Topological-Minor-Embeddings

and Its Application to Planar
Subgraph Enumeration

Yu Nakahata1(B) , Jun Kawahara1 , Takashi Horiyama2,
and Shin-ichi Minato1

1 Kyoto University, Kyoto, Japan
{nakahata.yu.27e@st,jkawahara@i,minato@i}kyoto-u.ac.jp

2 Hokkaido University, Sapporo, Japan
horiyama@ist.hokudai.ac.jp

Abstract. Given graphsG andH, we propose a method to implicitly enu-
merate topological-minor-embeddings of H in G using decision diagrams.
We show a useful application of our method to enumerating subgraphs
characterized by forbidden topologicalminors, that is, planar, outerplanar,
series-parallel, and cactus subgraphs. Computational experiments show
that our method can find all planar subgraphs in a given graph at most
five orders of magnitude faster than a naive backtracking-based method.

Keywords: Graph algorithm · Enumeration problem · Decision
diagram · Frontier-based search · Topological minor

1 Introduction

Subgraph enumeration is a fundamental task in several areas of computer science.
Many researchers have proposed dedicated algorithms for subgraph enumeration
to solve various problems. However, the number of subgraphs can be exponentially
larger than the size of an input graph. In such cases, it is unrealistic to enumerate all
subgraphs explicitly. To overcome this difficulty, we focus on implicit enumeration
algorithms [7,9,13]. Such an algorithm constructs a decision diagram (DD) [2,11]
representing the set of subgraphs instead of explicitly enumerating the subgraphs.
DDs are tractable representations of families of sets. By regarding a subgraph of a
graph as the subset of edges, DDs can represent a set of (edge-induced) subgraphs.
The efficiency of implicit enumeration algorithms does not directly depend on the
number of subgraphs but rather on the size of the output DD [7]. The size of a DD
can be much (exponentially in some cases) smaller than the number of subgraphs,
and thus, in such cases, we can expect that the implicit algorithms will work much

This work was supported by JSPS KAKENHI Grant Numbers JP15H05711, JP18-
H04091, JP18K04610, JP18K11153, and JP19J21000.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 211–222, 2020.
https://doi.org/10.1007/978-3-030-39881-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_18&domain=pdf
http://orcid.org/0000-0002-8947-0994
http://orcid.org/0000-0001-7208-044X
http://orcid.org/0000-0002-1397-1020
https://doi.org/10.1007/978-3-030-39881-1_18

212 Y. Nakahata et al.

Table 1. Relationship between graph classes and forbidden topological minors. K4 − e
is the graph obtained by removing an arbitrary edge from K4.

Graph class Forbidden topological minors

Planar graphs K5,K3,3

Outerplanar graphs K4,K2,3

Series-parallel graphs K4

Cactus graphs K4 − e

faster than explicit ones. The framework to construct a DD representing a set of
constrained subgraphs is called frontier-based search (FBS) [7]. Recently, Kawa-
hara et al. [8] proposed an extension of FBS, colourful FBS (CFBS). Especially,
they proposed an algorithm to enumerate isomorphic subgraphs, that is, given
graphs G and H, it constructs a DD representing the set of subgraphs of G that
are isomorphic to H.

To extend types of subgraphs that can be implicitly enumerated, we focus
on topological-minor-embeddings (TM-embeddings) [3]. A subgraph G′ of G is a
TM-embedding of H in G if G′ is isomorphic to a subdivision of H. A subdivision
of H is a graph obtained by replacing each edge in H with a path. A TM-
embedding is a generalization of an isomorphic subgraph, where each edge must
be replaced with a path with length one. An application of TM-embeddings
is forbidden topological minor characterization (FTM-characterization) [3]. For
example, a graph is planar if and only if it contains neither K5 nor K3,3 as a
topological minor [3], where Ka is the complete graph with a vertices and Kb,c

is the complete bipartite graph with the two parts of b and c vertices. Other
examples are shown in Table 1 (see [1] for details).

Our Contribution. In this paper, when graphs G and H are given, we propose
an algorithm to implicitly enumerate all TM-embeddings of H in G. Using our
algorithm and some additional DD operations, we can also implicitly enumerate
subgraphs having FTM-characterizations, that is, planar, outerplanar, series-
parallel, and cactus subgraphs. Our contributions are:

– Given graphs G and H, we propose an algorithm to implicitly enumerate all
TM-embeddings of H in G (Sect. 3.1).

– We propose more efficient algorithms when H is in specific graphs that are
used in FTM-characterizations of graph classes in Table 1, that is, complete
graphs, complete bipartite graphs, and K4 − e (Sect. 3.2).

– Combining our algorithm with DD operations, we show how to implicitly enu-
merate subgraphs having FTM-characterization, that is, planar, outerplanar,
series-parallel, and cactus subgraphs (Sect. 3.3).

– We evaluate our method by computational experiments. We apply our method
to implicitly enumerating all planar subgraphs in a graph. The results show
that our method runs up to five orders of magnitude faster than a naive
backtracking-based method (Sect. 4).

Implicit Enumeration of Topological-Minor-Embeddings 213

Our Techniques. Our key contribution is to extend the algorithm for implicitly
enumerating isomorphic subgraphs [8] to TM-embeddings. We first explain the
algorithm of Kawahara et al. [8] briefly. They reduced isomorphic subgraph enu-
meration to enumeration of “colored degree specified subgraphs”. Let us consider
K2,3 in Fig. 1(a). It has the degree multiset

{
23, 32

}
, where 23 means that there

are three vertices with degree 2. The graph in Fig. 1(b) has the same degree
multiset although it is not isomorphic to K2,3. Thus, the degree multiset is not
enough to characterize K2,3 uniquely. Let us consider the edge-colored graph in
Fig. 1(c). For an edge-colored graph with k colors, we consider a colored degree
of a vertex v, that is, a k-tuple of integers such that its i-th element is the
number of color-i edges incident to v. The edge-colored graph in Fig. 1(c) has
the colored-degree multiset M =

{
(3, 0), (0, 3), (1, 1)3

}
, where red and green are

respectively colors 1 and 2. Observe that every edge-colored graph with colored-
degree multiset M is isomorphic to the graph. Therefore, enumerating subgraphs
of G that are isomorphic to K2,3 is equivalent to finding all 2-colored subgraphs
of G whose degree multisets equal M and then “decolorizing” them.

In TM-embedding enumeration, the size of subgraphs we want to find is
not fixed, which makes difficult to identify the subgraphs only by a colored
degree multiset. Therefore, we extend the algorithm of Kawahara et al. in two
directions: (a) we allow some colored degrees to exist arbitrary many times and
(b) we introduce the constraint that each colored subgraph is connected. Using
such constraints, we can reduce TM-embeddings enumeration to enumerating
subgraphs satisfying the constraints. We propose a framework to enumerate
TM-embeddings based on such constraints that can be applied to every query
graph. Since the complexity of CFBS heavily depends on the number of colors
used in the constraint, we discuss how to reduce the number of colors.

2 Preliminaries

2.1 Graphs and Colored Graphs

Let G = (V (G), E(G)) be a graph. We define n = |V (G)| and m = |E(G)|.
Graphs G and H are isomorphic if there exists a bijection f : V (G) → V (H)
such that, for all u, v ∈ V (G), {u, v} ∈ E(G) ⇔ {f(u), f(v)} ∈ E(H). For a
positive integer k, we define [k] = {1, . . . , k}. For a positive integer c and a finite
set E, a c-colored subset over E is a c-tuple (D1, . . . , Dc) such that (a) for each
i ∈ [c], Di ⊆ E holds and (b) for all i, j ∈ [c], if i �= j, then Di ∩ Dj = ∅. A
c-colored graph Hc is a tuple of a finite set U and a c-colored subset (D1, . . . , Dc)
over the set {{u, v} | u, v ∈ U, u �= v}. Here, U is the vertex set and (D1, . . . , Dc)
is the colored edge set. The color-i degree of u ∈ U in Hc is the number of color-i
edges incident to u. The colored degree of u in Hc is a c-tuple (δ1, . . . , δc) of
integers, where δi is the color-i degree of u. The colored degree multiset of Hc,
which is denoted by DS(Hc), is the multiset of the colored degrees of all the
vertices in Hc. Hc is a c-colorized graph of H if the underlying graph of Hc

is isomorphic to H, where the underlying graph of Hc is a graph obtained by

214 Y. Nakahata et al.

ignoring the colors of the edges in Hc. A c-colored subgraph of G is a c-colored
graph whose underlying graph is isomorphic to a subgraph of G.

3 3

2 2 2

(a) K2,3.

3

2

3

2 2

(b) Graph whose degree
multiset is the same as
K2,3 but is not isomorphic
to K2,3.

(3, 0)(0, 3)

(1, 1)(1, 1)(1, 1)

red
green

(c) 2-colorized graph of K2,3.

Fig. 1. Graphs and a colored graph.

2.2 Topological Minors and Characterizations of Graphs

Subdividing an edge {u, v} of a graph H means removing the edge {u, v} from H,
introducing a new vertex w, and adding new edges {u,w} and {v, w}. If a graph is
obtained by subdividing each edge of H arbitrary times, it is a subdivision of H.
A graph F is homeomorphic to a graph H if F is isomorphic to some subdivision
of H.1 If a graph F is homeomorphic to a graph H, the original vertices of H
are the branch vertices of F and the other vertices are the subdividing vertices.
Note that the degree of a branch vertex equals the original degree in H while
the degree of a subdividing vertex is 2. (The degree of a branch vertex can be 2
when its original degree in H is 2). For graphs G and H, H is a topological minor
(TM) of G if G contains a subgraph homeomorphic to H. A subgraph G′ of G
is a TM-embedding of H in G if G′ is homeomorphic to H. For families G and
H of graphs, G is forbidden-TM-characterized (FTM-characterized) by H when
a graph G belongs to G if and only if, for any subgraph G′ of G and H ∈ H, G′

is not homeomorphic to H. For example, the family of planar graphs is FTM-
characterized by {K5,K3,3} [10]. The same characterization goes to several graph
classes (Table 1).

2.3 Decision Diagram (DD)

A (c+1)-decision diagram ((c+1)-DD) [8] represents a family of c-colored subsets
over a finite set. Let E = {e1, . . . , em}. A (c+1)-DD over E is a directed acyclic
graph with the unique root node2 and the two terminal nodes 	 and ⊥. Nodes
1 In another definition, F is homeomorphic to H if some subdivision of F is isomorphic

to some subdivision of H. However, we allow subdividing only for H because H is
“contracted enough” when it is a forbidden topological minor, that is, H does not
contain redundant vertices with degree 2.

2 To avoid confusion, we use the terms “node” and “arc” for a (c + 1)-DD and use
“vertex” and “edge” for an input graph.

Implicit Enumeration of Topological-Minor-Embeddings 215

1

2 2 2

3 3 3

0-arc

1-arc

2-arc

Fig. 2. 3-DD. A square is a terminal node and circles are non-terminal nodes. An
integer in a circle is the label of the node. For simplicity, we omit ⊥ and the arcs
pointing at it.

other than the terminal nodes are the non-terminal nodes. Each non-terminal
node has a label, an integer in [m], and c + 1 arcs. The arcs are the 0-arc, 1-arc,
. . . , and c-arc. For each arc, the label of its tail is larger than its head if the tail
is non-terminal. In a (c + 1)-DD, each path from the root node to 	 represents
a c-colored subset over E. For each path and j ≥ 1, descending the j-arc of a
non-terminal node with label i corresponds to including ei in a colored subset
as a color j element. Descending the 0-arc corresponds to excluding ei from
a colored subset. The set of such paths corresponds to the family of c-colored
subsets represented by the (c + 1)-DD. Figure 2 shows an example of a 3-DD
over a set {e1, e2, e3}. The 3-DD represents the family of the 2-colored subsets
each of which contains exactly one element for each color, that is, {({e1} , {e2}),
({e1} , {e3}), ({e2} , {e1}), ({e2} , {e3}), ({e3} , {e1}), ({e3} , {e2})}. In the rest of
the paper, Zc+1 denotes a (c+1)-DD and �Zc+1� denotes the family of c-colored
subsets represented by Zc+1. When c = 1, we omit the superscript from Zc+1

and write Z, that is, Z is a 2-DD.

2.4 Colorful Frontier-Based Search (CFBS)

Colorful frontier-based search (CFBS) [8] is a framework of algorithms to con-
struct a DD representing the set of constrained subgraphs. An important appli-
cation of CFBS is the isomorphic subgraph enumeration problem. In the problem,
given two graphs, a host graph G and a query graph H, we output all subgraphs
of G that are isomorphic to H. CFBS does not explicitly enumerate subgraphs
but constructs a 2-DD representing the set of them. By regarding a subgraph of
G as the subset of E(G), 2-DD can represent a set of (edge-induced) subgraphs.

The crux of CFBS is to identify the query graph by a colored degree multiset.

Definition 1 (profile). A multiset M of c-colored degrees is a profile of H if
the following are equivalent:

– A graph F is isomorphic to H.
– There exists a c-colorized graph F c of F that satisfies the constraint CM ,

where CM is a function from c-colored graphs to {0, 1} such that CM (F c) =
1 ⇔ DS(F c) = M .

216 Y. Nakahata et al.

For example, for K2,3 in Fig. 1(a),
{
(3, 0), (0, 3), (1, 1)3

}
is a profile as shown

in Fig. 1(c). In the following, Gc(C) denotes the family of c-colored subgraphs
of G that satisfy the constraint C. G(H) denotes the family of subgraphs
of G that are isomorphic to H. Zc+1(C) and Z(H) respectively denote the
(c+1)-DD representing Gc(C) and the 2-DD representing G(H). The framework
of algorithms for implicit isomorphic subgraph enumeration based on CFBS is
as follows:

1. Find a profile M of H. Let c be the number of the colors used in M .
2. Construct Zc+1(CM).
3. By decolorizing Zc+1(CM), we obtain Z(H).

Here, for a family Fc of c-colored subsets, its decolorization is the family F ={⋃
i∈[c] Di | (D1, . . . , Dc) ∈ Fc

}
, that is, the family obtained by ignoring the

colors from Fc. For DDs, the decolorization of the (c + 1)-DD representing Fc

is the 2-DD representing F . We can decolorize a DD by a recursive operation
utilizing the recursive structure of the DD [8]. To construct a DD efficiently,
CFBS uses dynamic programming. The i-th frontier Fi is the set of vertices
incident to both the edges in {e1, . . . , ei−1} and {ei, . . . , em}. CFBS constructs
a DD in a breadth-first manner from the root node and merges two nodes with
the same label and states with respect to the frontier. See [8] for details.

CFBS can deal with every finite query graph H in isomorphic subgraph
enumeration if we use |E(H)| colors [8]. However, since the complexity of CFBS
exponentially depends on the number of colors [8], it is important to find a profile
with as few colors as possible. The following theorem states that, for every graph
H, it suffices to use τ(H) colors, where τ(H) is the minimum size of vertex covers
of H. For a graph H, a subset S ⊆ V (H) is a vertex cover of H if, for every
edge e ∈ E(H), at least one of its endpoints belongs to S. A star is a graph
isomorphic to K1,a for some positive integer a.

Theorem 1 [4]. Let H be a graph and Hc be a c-colored graph of H such that,
for every i ∈ [c], the subgraph of Hc induced by color-i edges is isomorphic to a
star. A graph F is isomorphic to H if and only if there exists a c-colored graph
F c of F such that DS(F c) = DS(Hc). It follows that, for every H, there is a
profile using τ(H)-colored degrees.

3 Algorithms

Due to space limitations, proofs in this section are omitted.

3.1 Implicit Enumeration of TM-Embeddings

Given graphs G and H, we propose an algorithm to construct the 2-DD Z(Ĥ)
representing the set of all TM-embeddings of H in G. In the following, S(H)
denotes the family of subdivisions of H. In an algorithm to enumerate isomorphic
subgraphs based on existing CFBS, finding a profile of H is essential. However,

Implicit Enumeration of Topological-Minor-Embeddings 217

as for TM-embeddings, since S(H) is an infinite set, it seems difficult to identify
S(H) with a single colored degree multiset. Therefore, we define an extended
profile for an infinite family S(H) by extending a profile for a graph H.

Let Δc =
{−−→

δ〈i〉 | i ∈ [c]
}

, where
−−→
δ〈i〉 = (δ1, . . . , δc), δi = 2, j �= i ⇒ δj = 0.

Definition 2 (extended profile). Let c be a positive integer. A multiset M of
c-colored degrees is an extended profile of S(H) if the following are equivalent:

– A graph F belongs to S(H).
– There exists a c-colorized graph F c of F that satisfies the constraint C∗

M , where
C∗

M (F c) = 1 if and only if (a) DS(F c) is obtained by adding an arbitrary
number of elements (allowing duplication) of Δc to M and (b) each colored
subgraph of F c is connected.

Our method of implicit TM-embedding enumeration is written as follows:

1. Find an extended profile M of S(H). Let c be the number of colors in M .
2. Construct Zc+1(C∗

M).
3. By decolorizing Zc+1(C∗

M), we obtain Z(Ĥ).

Decolorization in Step 3 can be done in the same way as existing CFBS. To
construct Zc+1(C∗

M) in Step 2, we add the constraints “there are an arbitrary
number of vertices whose degrees are in Δc” and “each colored subgraph is con-
nected” to existing CFBS. In fact, we propose an algorithm for a more general
problem. For a multiset s and a set t of c-colored degrees, let Ct

s be the corre-
sponding constraint where we replace Δc by t in the definition of C∗

s . In other
words, for each δ ∈ s, the number of δ in a subgraph must equal its multiplicity
in s. In addition, there can be an arbitrary number of vertices whose colored
degrees are in t. Given s and t, we propose an algorithm to construct a DD
Zc+1(Ct

s).
To assess the efficiency of algorithms based on CFBS, it is usual to analyze

the width of the output DD [12,13]. The width of a DD is the maximum number
of nodes with the same label. It is a measure of both the size of the DD and the
time complexity to construct the DD. Let w = maxi∈[m] |Fi|. N denotes the set
of non-negative integers. For a c-tuple δ, δi denotes the i-th element of δ. For
c-tuples δ and γ of integers, we define δ ≤ γ if, for all i ∈ [c], δi ≤ γi holds.
When δ ≤ γ, we say that δ is dominated by γ. For a multiset s and a set t of
c-tuples, s ∪ t denotes the set of tuples that appear in s or t. (When a tuple
is contained in s, its multiplicity is ignored in s ∪ t.) For a set M of c-colored
degrees, D (M) denotes the set of tuples in N

c that are dominated by a tuple in
M , that is, D (M) = {χ ∈ N

c | ∃δ ∈ M,χ ≤ δ}. For δ ∈ s, the multiplicity of δ
in s is denoted by s(δ).

Theorem 2. Given a multiset s and a set t of c-colored degrees, there is an
algorithm to construct a DD Zc+1(Ct

s) with width

2O(cw log w) |D (s ∪ t)|w
∏

δ∈s

(s(δ) + 1). (1)

218 Y. Nakahata et al.

The theorem shows that the complexity of the algorithm mainly depends on w
and c. Although w is determined by the host graph G, we can reduce the value
of c by finding an extended profile of the query graph H using as few colors as
possible. We discuss how to find such an extended profile for general H in the
rest of this subsection and for specific graphs in the right column in Table 1 in
the next subsection.

We discuss the complexity for general H. We assume that H has at least two
vertices. Similarly to CFBS for isomorphic subgraph enumeration, we show that
there is an extended profile for every graph H using |E(H)| and τ(H) colors.
Recall that τ(H) is the minimum size of vertex covers of H. Although the latter
is better in most cases, we show both theorems for comparison.

Theorem 3. For a graph H, let H |E(H)| be a |E(H)|-colorized graph obtained
by coloring the edges of H with distinct colors. Then, M = DS(H |E(H)|) is an
extended profile of S(H). There is an algorithm to construct a DD Z|E(H)|+1(C∗

M)
with width

2O(|E(H)|w log w)+|V (H)|
(
2|E(H)| + |E(H)|

)w

. (2)

Theorem 4. For a graph H, let Hτ(H) be a τ(H)-colorized graph whose each
colored subgraph is isomorphic to a star and the set of the centers is a minimum
vertex cover of H. Then, M = DS(Hτ(H)) is an extended profile of S(H). There
is an algorithm to construct a DD Zτ(H)+1(C∗

M) with width

2O(τ(H)w log w)+|V (H)|
(
2τ(H)τ(H)

)w

. (3)

3.2 Constraints for Forbidden Topological Minors

We derive specific extended profiles for the subdivisions of the graphs in the
right column of Table 1: complete graphs, complete bipartite graphs, and K4−e.
While the results for complete bipartite graphs and K4 − e follow directly from
Theorem 4, we can reduce one color for complete graphs. In the following, we
discuss complete bipartite graphs first, which is easier than complete graphs.

Theorem 5. Let a, b (a ≤ b) be positive integers. A multiset Ma,b = M1
a,b∪M2

a,b

consisting of a-colored degrees is an extended profile of S(Ka,b), where

M1
a,b =

{
(δ1, . . . , δa)

∣
∣
∣
∣

∃i ∈ [a], δi = b,
j �= i ⇒ δj = 0

}
, M2

a,b =

⎧
⎨

⎩
(1, . . . , 1
︸ ︷︷ ︸

a

)b

⎫
⎬

⎭
. (4)

There is an algorithm to construct a DD Za+1(C∗
Ma,b

) with width

2O(aw log w)(2a + ab)w(b + 1). (5)

Figure 3(a) shows a representation of a subdivision of K3,3 based on Theorem 5.
Next, we consider the subdivisions of complete graphs. Since the size of a

minimum vertex cover of Ka is a − 1, there exists an extended profile of S(Ka)

Implicit Enumeration of Topological-Minor-Embeddings 219

(3, 0, 0) (0, 3, 0) (0, 0, 3)

(1, 1, 1) (1, 1, 1) (1, 1, 1)

red
green
blue

(a) Representation of a subdivision of K3,3

based on Theorem 5.

(0, 3, 1)

(0, 0, 4)

(2, 1, 1)

(2, 1, 1) (2, 1, 1)

(b) Representation of a subdivision of K5

based on Theorem 6.

Fig. 3. Representations of subdivisions of K3,3 and K5. In each figure, a filled and non-
filled vertex represent a branch and subdividing vertex, respectively. A tuple beside a
vertex means the colored degree of the vertex.

with a−1 colors by Theorem 4. The extended profile is obtained by decomposing
Ka into K1,1,K1,2, . . . , and K1,a−1 and coloring the subgraphs with distinct
colors. In this coloring, if we color K1,2 with the same color as K1,1, the obtained
subgraph is K3. We show that the colored degree multiset obtained from this
coloring is also an extended profile of S(Ka).

Theorem 6. Let a ≥ 3 be an integer. A multiset Ma−2 = M1
a−2 ∪ M2

a−2 con-
sisting of (a − 2)-colored degrees is an extended profile of S(Ka), where

M1
a−2 =

⎧
⎨

⎩
(2, 1, . . . , 1

︸ ︷︷ ︸
a−3

)3

⎫
⎬

⎭
,M2

a−2 =

⎧
⎪⎪⎨

⎪⎪⎩
(δ1, . . . , δa−2)

∣
∣
∣
∣
∣
∣
∣
∣

∃i ∈ {2, . . . , a − 2} ,
j < i ⇒ δj = 0,
δi = i + 1,
j > i ⇒ δj = 1

⎫
⎪⎪⎬

⎪⎪⎭
.

(6)
There is an algorithm to construct a DD Za−1(C∗

Ma
) with width

2O(aw log w)
(
3 · 2a−2 − a

)w
. (7)

Figure 3(b) shows a representation of a subdivision of K5 based on Theorem 6.

3.3 Enumerating Subgraphs Having FTM-Characterizations

We show how to implicitly enumerate subgraphs having FTM-characterization.
We combine DD operations with our algorithm to implicitly enumerate TM-
embeddings. Union [11] is a function whose inputs are two 2-DDs Z1 and Z2

and output is the 2-DD representing �Z1� ∪ �Z2�. NonSupset [9] is a function
whose input is a 2-DD Z over a finite set E and output is the 2-DD representing
the family

{
A ⊆ 2E | ∀B ∈ �Z�, A �⊇ B

}
. G(Ĥ) denotes the set of subgraphs of

G that are homeomorphic to H and Z(Ĥ) denotes the 2-DD representing G(Ĥ).
The following algorithm constructs the 2-DD representing the set of subgraphs
of G that is FTM-characterized by H.

220 Y. Nakahata et al.

1. Initialize a 2-DD Zsubd by the 2-DD representing the empty set.
2. Choose an arbitrary graph H from H and remove it from H.
3. Update Zsubd by Union(Zsubd,Z(Ĥ)).
4. If H is not empty, go back to Step 2. If empty, go on to Step 5.
5. We obtain the final 2-DD Zans by NonSupset(Zsubd).

For example, let us consider the case where we want to implicitly enumer-
ate all planar subgraphs of G. In this case, H is {K5,K3,3}. We construct
Z(K̂5) and Z(K̂3,3) and take their union, which is Zsubd. Now Zsubd repre-
sents the set of all subgraphs of G that are homeomorphic to K5 or K3,3.
Zans = NonSupset(Zsubd) represents the family of all subgraphs of G that is
FTM-characterized by H = {K5,K3,3}. Therefore, Zans represents the family of
all planar subgraphs of G. Other types of subgraphs such as outerplanar, series-
parallel, and cactus subgraphs can be implicitly enumerated only by changing
H according to Table 1.

4 Computational Experiments

4.1 Settings

We compared several methods to enumerate planar subgraphs. For input graphs,
we used complete graphs Kn and 3×b king graphs X3,b as synthetic data. As real
data, we used Rome graph3, which is often used in studies on graph drawing.
We implemented all the code in C++ and compiled them by g++5.4.0 with
-O3 option. To handle DDs, we used TdZdd [6] and SAPPORO BDD inside
Graphillion [5]. We used a machine with Intel Xenon E5-2637 v3 CPU and 1 TB
RAM. For each case, we set the timeout to one day.

4.2 Comparing Several Methods to Enumerate Planar Subgraphs

We compare the following three methods for planar subgraph enumeration.

– Backtrack: It explicitly enumerates subgraphs based on backtracking.
– DDEdge: It implicitly enumerates subgraphs using DDs. It uses |E(H)| col-

ors based on Theorem 3. In other words, it uses ten colors for S(K5) and nine
colors for S(K3,3).

– DDVertex: It implicitly enumerates subgraphs using DDs. It uses τ(H)
colors based on Theorems 4–6. In other words, it uses three colors both for
S(K5) and S(K3,3).

As a subroutine of Backtrack, we used a planarity test in C++ Boost4. For
fairness, Backtrack does not output solutions but only counts the number
of solutions. DDEdge and DDVertex construct DDs representing the set of
solutions. Once a DD is constructed, we can count the number of solutions in
linear time to the number of nodes in the DD [9].

3 http://www.graphdrawing.org/data.html.
4 https://www.boost.org/doc/libs/1 71 0/libs/graph/doc/boyer myrvold.html.

http://www.graphdrawing.org/data.html
https://www.boost.org/doc/libs/1_71_0/libs/graph/doc/boyer_myrvold.html

Implicit Enumeration of Topological-Minor-Embeddings 221

Table 2. Experimental results. Each column shows the name of graphs, the number
of vertices and edges, the running time of the three methods (in seconds), and the
number of planar subgraphs. “T/O” and “M/O” mean time out and memory out,
respectively. “–” means all the methods failed. The number of solutions for K10 is from
OEIS A066537, which is marked by ‘*’. We write the fastest time for each input graph
in bold.

Graph |V | |E| Backtrack DDEdge DDVertex # Solutions

K5 5 10 <0.01 0.14 <0.01 1023

K6 6 15 <0.01 2.12 0.21 32071

K7 7 21 28.28 35.02 2.73 1823707

K8 8 28 3113.64 620.84 66.34 163947848

K9 9 36 T/O 15623.11 4694.41 20402420291

K10 10 45 T/O T/O T/O *3209997749284

X3,4 12 29 11029.38 16.83 0.09 5.33× 108

X3,5 15 38 T/O 53.93 1.67 2.70× 1011

X3,10 30 83 T/O 665.65 5.62 8.93× 1024

X3,50 150 443 T/O M/O 37.28 1.29× 10133

X3,100 300 893 T/O M/O 76.99 2.03× 10268

X3,500 1500 4493 T/O M/O 405.04 7.95× 101349

X3,1000 3000 8993 T/O M/O M/O –

G1 (grafo1764.20) 20 25 792.16 1.09 0.06 3.35× 107

G2 (grafo1760.28) 28 39 T/O 96.81 3.76 5.49× 1011

G3 (grafo10000.38) 38 52 T/O 787.98 29.43 4.50× 1015

G4 (grafo10008.42) 42 61 T/O 38647.96 668.15 2.30× 1018

G5 (grafo1378.46) 46 62 T/O M/O 796.48 4.61× 1018

G6 (grafo1395.61) 61 78 T/O M/O 11992.12 3.02× 1023

G7 (grafo5287.61) 61 88 T/O M/O M/O –

G8 (grafo9798.76) 76 91 T/O M/O 1709.64 2.48× 1027

G9 (grafo10006.98) 98 136 T/O M/O M/O –

Table 2 shows the experimental results. In all the cases, all the methods out-
put the same number of solutions. Among the three methods, DDVertex ran
fastest except for K6. Backtrack finished in a day only when the number
of solutions is small (less than 109). Although DDEdge solved more instances
than Backtrack, it ran out of memory when the size of input or the number
of solutions grows. In contrast, DDVertex succeeded even for such instances.
For example, for X3,4, DDVertex is 122,544 and 187 times faster than
Backtrack and DDEdge. In addition, for X3,500, DDVertex succeeded in
implicitly enumerating 7.95×101349 planar subgraphs only in 405.04 s (less than
seven minutes). These results demonstrate the outstanding efficiency of DDVer-
tex.

222 Y. Nakahata et al.

5 Conclusion

Given graphs G and H, we have proposed a method to implicitly enumerate
topological-minor-embeddings of H in G using decision diagrams. We also have
shown a useful application of our method to enumerating subgraphs character-
ized by forbidden topological minors, that is, planar, outerplanar, series-parallel,
and cactus subgraphs. Computational experiments show that our method can
find all planar subgraphs up to 122,544 times faster than a naive backtracking-
based method and could solve more problems than the backtracking-based
method. Future work is extending our method from topological minors to general
minors.

References

1. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. Society for
Industrial and Applied Mathematics (1999)

2. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE
Trans. Comput. C–35(8), 677–691 (1986)

3. Diestel, R.: Graph Theory. Graduate Texts in Mathematics, vol. 173, 4th edn.
Springer, Heidelberg (2012)

4. Horiyama, T., Kawahara, J., ichi Minato, S., Nakahata, Y.: Decomposing a graph
into unigraphs (2019). arXiv:1904.09438

5. Inoue, T., Iwashita, H., Kawahara, J., Minato, S.: Graphillion: software library
for very large sets of labeled graphs. Int. J. Softw. Tools Technol. Transfer 18(1),
57–66 (2016)

6. Iwashita, H., Minato, S.: Efficient top-down ZDD construction techniques using
recursive specifications. TCS Technical Reports TCS-TR-A-13-69, pp. 1–28 (2013)

7. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enu-
merating all constrained subgraphs with compressed representation. IEICE Trans.
Fundam. Electron. Commun. Comput. Sci. E100–A(9), 1773–1784 (2017)

8. Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Colorful frontier-based search:
implicit enumeration of chordal and interval subgraphs. In: Kotsireas, I., Pardalos,
P., Parsopoulos, K.E., Souravlias, D., Tsokas, A. (eds.) SEA 2019. LNCS, vol.
11544, pp. 125–141. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
34029-2 9

9. Knuth, D.E.: The Art of Computer Programming. Combinatorial Algorithms, Part
1, vol. 4A, 1st edn. Addison-Wesley Professional, Boston (2011)

10. Kuratowski, C.: Sur le problème des courbes gauches en topologie. Fundamenta
Mathematicae 15(1), 271–283 (1930)

11. Minato, S.: Zero-suppressed BDDs for set manipulation in combinatorial problems.
In: Proceedings of the 30th ACM/IEEE Design Automation Conference (DAC
1993), pp. 272–277. ACM, New York (1993)

12. Nakahata, Y., Kawahara, J., Horiyama, T., Kasahara, S.: Enumerating all spanning
shortest path forests with distance and capacity constraints. IEICE Trans. Fundam.
Electron. Commun. Comput. Sci. E101–A(9), 1363–1374 (2018)

13. Sekine, K., Imai, H., Tani, S.: Computing the Tutte polynomial of a graph of
moderate size. In: Staples, J., Eades, P., Katoh, N., Moffat, A. (eds.) ISAAC 1995.
LNCS, vol. 1004, pp. 224–233. Springer, Heidelberg (1995). https://doi.org/10.
1007/BFb0015427

http://arxiv.org/abs/1904.09438
https://doi.org/10.1007/978-3-030-34029-2_9
https://doi.org/10.1007/978-3-030-34029-2_9
https://doi.org/10.1007/BFb0015427
https://doi.org/10.1007/BFb0015427

Partitioning a Graph into Complementary
Subgraphs

Julliano Rosa Nascimento1(B), Uéverton S. Souza2, and Jayme L. Szwarcfiter3,4

1 INF, Universidade Federal de Goiás, Goiânia, GO, Brazil
julliano@inf.ufg.br

2 IC, Universidade Federal Fluminense, Niterói, RJ, Brazil
ueverton@ic.uff.br

3 IM, COPPE, and NCE, UFRJ, Rio de Janeiro, RJ, Brazil
jayme@nce.ufrj.br

4 IME, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, RJ, Brazil

Abstract. In the Partition Into Complementary Subgraphs
(Comp-Sub) problem we are given a graph G = (V, E), and an edge set
property Π, and asked whether G can be decomposed into two graphs,
H and its complement H, for some graph H, in such a way that the edge
cut-set (of the cut) [V (H), V (H)] satisfies property Π. Such a problem is
motivated by the fact that several parameterized problems are trivially
fixed-parameter tractable when the input graph G is decomposable into
two complementary subgraphs. In addition, it generalizes the recognition
of complementary prism graphs, and it is related to graph isomorphism
when the desired cut-set is empty, Comp-Sub(∅). In this paper we are
particularly interested in the case Comp-Sub(∅), where the decomposi-
tion also partitions the set of edges of G into E(H) and E(H). We show
that Comp-Sub(∅) is GI-complete on chordal graphs, but it becomes more
tractable than Graph Isomorphism for several subclasses of chordal
graphs. We present structural characterizations for split, starlike, block,
and unit interval graphs. We also obtain complexity results for permu-
tation graphs, cographs, comparability graphs, co-comparability graphs,
interval graphs, co-interval graphs and strongly chordal graphs. Further-
more, we present some remarks when Π is a general edge set property
and the case when the cut-set M induces a complete bipartite graph.

Keywords: Partition · Graph partitioning · Complementary
subgraphs · Graph isomorphism

1 Introduction

Partition problems in graphs play an indispensable role in Graph Theory. Several
algorithms perform steps of decomposing a graph into smaller pieces, in a way
that ensures that a large instance becomes smaller and more tractable.

Vertex Coloring is a classical graph partition problem. To determine
whether a graph G has a proper k-vertex coloring is nothing but determining
c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 223–235, 2020.
https://doi.org/10.1007/978-3-030-39881-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_19

224 J. R. Nascimento et al.

whether V (G) can be partitioned into k independent sets. Another classical
example of a partition problem is Clique Cover, in which we are given a graph
G = (V,E) and an integer k, and asked whether there is a set of k subgraphs
of G, such that each subgraph is a clique and each vertex of G is contained in
exactly one of these subgraphs.

Feder et al. [8] consider the problem of partitioning the vertex set V of a
graph G into k parts V1, V2, . . . , Vk with a fixed “pattern” of requirements as to
which Vi induces either an independent set or a clique, and which pairs Vi, Vj

are completely adjacent or nonadjacent. Churchley and Huang [5] study polarity
and monopolarity of graphs. A graph G is called polar if its vertex set can be
partitioned into A and B in such a way that the subgraphs induced by A and B
are respectively a complete multipartite graph and a disjoint union of cliques (i.e.
the complement of a complete multipartite graph); when A is an independent
set (which is a special complete multipartite graph), G is called monopolar.

The notion of partition is present in the definition of several classes of graphs,
such as split and bipartite graphs. A split graph G is one whose vertex set admits
a partition V (G) = C ∪ I into a clique C and an independent set I, and a graph
G is bipartite if its vertex set admits a partition V (G) = A ∪ B such that A and
B are independent sets. Complementary prisms, introduced in 2007 by Haynes
et al. [10], also use the underlying concept of partition, in special, complementary
partitions. Let G be a graph and G its complement. For every vertex v ∈ V (G)
we denote v ∈ V (G) as its corresponding vertex. The complementary prism GG
of a graph G arises from the disjoint union of the graph G and G by adding the
edges of a perfect matching between the corresponding vertices of G and G.

In this sense, motivated by the existence of several variations of partition
problems, and the definitions of polarity and complementary prisms, we intro-
duce the problem that concerns our study.

Definition 1. We say that a graph G = (V,E) is decomposed into two graphs G1

and G2 if V (G) can be partitioned into V1 and V2, where G[V1] = G1 and G[V2] =
G2. In addition, the cut-set of [V1, V2] is said cut-set of this decomposition.

Partition Into Complementary Subgraphs (Comp-Sub)

Instance: A graph G = (V,E), and an edge set property Π.
Question: Can G be decomposed into two graphs, H and its complement H,
for some graph H, in such a way that the cut-set M of the decomposition
satisfies the property Π?

We write Comp-Sub(Π) as a shorthand for Partition Into Complemen-
tary Subgraphs with the edge set property Π for the cut-set M . For con-
venience, we use G ∈ Comp-Sub(Π) to denote that G is a yes-instance of
Comp-Sub(Π).

Let C be the class of graphs decomposable into two graphs, H and its com-
plement H, for some graph H. Recognizing that a graph G belongs to C can
be of great interest. Suppose we aim to solve k-Coloring, if G ∈ C then, by
Ramsey’s theory, either G is a no-instance or G has size bounded by a function

Partitioning a Graph into Complementary Subgraphs 225

of k. More precisely, for every decision problem P where a k-clique, or an inde-
pendent set of size k is sufficient to certify either yes or no, it follows that P is
trivially solvable in FPT-time when parameterized by k.

By Ramsey’s theory we obtain a primary result when Π is an arbitrary edge
set property (see Proposition 1). When Π is taken as a perfect matching M
between corresponding vertices in H and H, Comp-Sub(Π) coincides with the
recognition of complementary prism graphs, that can be done in polynomial
time [2]. In consequence, we are particularly interested in other natural edge set
properties Π such as M is empty and M induces a complete bipartite graph.

In the case M is empty, denoted as Comp-Sub(∅), the decomposition also
forms a partition the set of edges of G into two parts, that is, V (G) =
V (H) ∪ V (H) and E(G) = E(H) ∪ E(H). We show characterizations for split,
starlike, block, and unit interval graphs decomposable into two graphs H and
its complement H, in such a way that the cut-set M of the decomposition is
empty. We also obtain complexity results for chordal, permutation and partially
for strongly chordal graphs. Furthermore, we present some remarks for Comp-
Sub(Π) when Π is M induces a complete bipartite graph.

The rest of the paper is organized as follows. Section 2 consists of general
remarks on the problem. Section 3 contains our results on subclasses of chordal
graphs. Section 4 contains observations on the problem when M induces a com-
plete bipartite graph.

2 Preliminaries

We consider only finite, simple, and undirected graphs, and we use standard
terminology and notation.

Let P and P ′ be two decision problems. Problem P is polynomially reducible
to P ′, denoted P ∝ P ′, if there exists an algorithm R that maps any instance I
of P into an equivalent instance I ′ of P ′, in which R runs in polynomial time on
|I|. Problems P and P ′ are polynomially equivalent if P ∝ P ′ and P ′ ∝ P . We
say that P is trivial if every yes-instance of P has size bounded by a constant.

Proposition 1. Let C be a graph class such that either none of whose graphs
contain a k-clique or none of whose graphs contain a k-independent set. It holds
that Comp-Sub restricted to C is trivial.

Proposition 1 implies that Comp-Sub is trivially solvable in polynomial time
on bipartite, planar or cubic graphs, since all of these graph classes are K5-free.
Next we deal with M = ∅.

2.1 M Is Empty

This subsection contains auxiliary results, intended to map relevant questions
on the problem. In Proposition 2, we show necessary conditions related to edges
and vertices of the yes-instances of Comp-Sub(∅).

226 J. R. Nascimento et al.

Proposition 2. Let G be a graph of order 2n. If G ∈ Comp-Sub(∅), then
1. G has exactly n(n−1)

2 edges.
2. G has a connected component with exactly n vertices.

Given Proposition 2, it is easy to see that Comp-Sub(∅) on general graphs
is equivalent to Graph Isomorphism, as stated in Theorem 1. However, we
remark a contrast between the complexities of Comp-Sub and Graph Iso-
morphism considering, for example, bipartite graphs. On this class of graphs,
we know that Graph Isomorphism is GI-complete [1], while Comp-Sub is triv-
ially solvable in polynomial time (cf. Proposition 1).

Theorem 1. Comp-Sub(∅) is GI-complete.

In Lemmas 1 and 2 we present classes of graphs where the equivalence
between Comp-Sub(∅) and Graph Isomorphism holds.

Lemma 1. Let C be a hereditary class of graphs closed under complement and
closed with respect to taking disjoint union. It holds that Comp-Sub(∅) on C is
polynomially equivalent to Graph Isomorphism on C.

Since Graph Isomorphism can be solved in linear time for permutation
graphs [6], from Lemma 1 the following holds.

Corollary 1. Comp-Sub(∅) can be solved in linear time for permutation graphs.

Lemma 2. Let C be a class of graphs closed under complement. The problem
of determining whether a graph G can be decomposed into two graphs H and H
such that H ∈ C and M = ∅ is polynomially equivalent to Graph Isomorphism
on the class C.

Lemma 2 implies Corollaries 2 and 3.

Corollary 2. Comp-Sub(∅) can be solved in linear time for comparability and
co-comparability graphs.

Since the class of permutation graphs contains the cographs [7], and interval
(resp. co-interval) graphs is a subclass of co-comparability (resp. comparability)
graphs [9], by Corollaries 1 and 2 we remark that Comp-Sub(∅) can be solved
in linear time for cographs, interval graphs, and co-interval graphs.

Corollary 3. Comp-Sub(∅) on chordal graphs remains GI-complete.

Proof. Let G be a chordal graph. Suppose that G ∈ Comp-Sub(∅). Then, G
can be decomposed into H and its complement H, for some graph H, such that
the cut-set M of the decomposition is empty. Since chordality is a hereditary
property, it follows that H and H are also chordal. According to Golumbic [9],
a graph H and its complement H are chordal if and only if H and H are split
graphs. In addition, H is split if and only if its complement H is split [9].

Partitioning a Graph into Complementary Subgraphs 227

Note that if a graph G can be decomposed into two graphs H and H such that
H and H are both split graphs, then G is chordal. Therefore, by Lemma 2, we
have that Comp-Sub(∅) on chordal graphs is polynomially equivalent to Graph
Isomorphism on split graphs. Since Graph Isomorphism on split graphs is GI-
complete [4], then Comp-Sub(∅) on chordal graphs is GI-complete. ��

In view of the hardness result of Corollary 3 we proceed with Comp-Sub(∅)
on subclasses of chordal graphs.

3 Comp-Sub(∅) on Subclasses of Chordal Graphs

We consider in this section Comp-Sub(∅) for unit interval, strongly chordal,
starlike, block, and split graphs.

3.1 Unit Interval Graphs

A sunn is a graph on 2n vertices, n ≥ 3, whose vertex set can be partitioned
into W = {w1, . . . , wn} and U = {u1, . . . , un} such that W is independent, U
is a clique and ui is adjacent to wj if and only if i = j or i = (j + 1) mod n.
A unit interval graph is a {Cn+4, sun3,K1,3, net}-free graph, for every n ≥ 0. A
bull graph is a K3 with two non-incident pendent edges. The join of two graphs
G and H is denoted G + H.

Proposition 3. Let G be a unit interval graph with 2n vertices. It holds that
G ∈ Comp-Sub(∅) if and only if G ∈ {(P � + Kn−�) ∪ (P� ∪ Kn−�), 2bull}, for
1 ≤ � ≤ 4.

Proof. First, suppose that G ∈ {(P �+Kn−�)∪(P�∪Kn−�), 2bull}, for 1 ≤ � ≤ 4.
Notice that P � + Kn−� is the complement of P� ∪ Kn−�, for 1 ≤ � ≤ 4, and bull
is self-complementary. Hence G ∈ Comp-Sub(∅).

Suppose that G ∈ Comp-Sub(∅). By Proposition 2, there exists a connected
component of G, say H, with exactly n vertices. Since G is a unit interval graph,
then so are H and H. Then, H (resp. H) is chordal and {sun3,K1,3, net}-free.
Consequently, H (resp. H) is {K1,3} = {K3 ∪ K1}-free. Since H and H are
chordal, we have that H and H are split. Let C ∪ I be a split partition of V (H),
where C is a maximal clique and I is an independent set. Since H is a connected
split unit interval graph, we have that |I| ≤ 2 [12]. We consider three cases:
|I| ∈ {0, 1, 2}.

Case 1. |I| = 0.

In this case we have that H = C = Kn. Thus, for � = 1, we have G =
(P � + Kn−�) ∪ (P� ∪ Kn−�).

228 J. R. Nascimento et al.

Case 2. |I| = 1.

Let I = {v}. Since H is connected, there exists x ∈ C such that vx ∈ E(H).
Since C is maximal, we have that there exists y ∈ C such that vy /∈ E(H). We
show that |C \NH(v)| ≤ 2. Suppose for contradiction that |C \NH(v)| ≥ 3. This
implies that (C \NH(v))∪{v} has an induced subgraph K3 ∪K1, contradiction.

Suppose that C \ NH(v) = {y}. We have that {v, y} induces a P 2 and con-
sequently H = P 2 + Kn−2. Hence (P � + Kn−�) ∪ (P� ∪ Kn−�), for � = 2.

Now suppose that C \ NH(v) = {y, y′}. We have that {v, y, y′} induces a P 3

and consequently H = P 3 + Kn−3. Hence G = (P � + Kn−�) ∪ (P� ∪ Kn−�), for
� = 3.

Case 3. |I| = 2.

Let I = {x, y}, X = NH(x) \ NH(y) and Y = NH(y) \ NH(x). We show first
that |X| ≤ 1 and |Y | ≤ 1. Suppose, for contradiction, that either |X| ≥ 2 or
|Y | ≥ 2. We may consider u, v ∈ X. We have that {u, v, x, y} induces a K3 ∪K1,
contradiction. The case |Y | ≥ 2 is analogous. Now, we consider two sub-cases.

Case 3.1. NH(x) ∩ NH(y) �= ∅.

Recall that |X|, |Y | ∈ {0, 1}. Since H is K1,3-free, we have that C \
NH({x, y}) = ∅. First, let |X| = 0 and |Y | = 0. We have that H =
G[{x, y}] + Kn−2 = P 2 + Kn−2. Therefore G = (P � + Kn−�) ∪ (P� ∪ Kn−�),
for � = 2.

Let |X| = 1 and |Y | = 0, with X = {v}. In this case, we have that H =
G[{v, x, y}] + Kn−3 = P 3 + Kn−3. Hence, G = (P � + Kn−�) ∪ (P� ∪ Kn−�), for
� = 3. The case |X| = 0 and |Y | = 1 is similar.

Now let |X| = 1 and |Y | = 1, with X = {v} and Y = {u}. We have
that H = G[{u, v, x, y}] + Kn−4 = P4 + Kn−4 = P 4 + Kn−4. Hence, G =
(P � + Kn−�) ∪ (P� ∪ Kn−�), for � = 4.

Case 3.2. NH(x) ∩ NH(y) = ∅.

We know that |X|, |Y | ≤ 1. Since H is connected, then |X|, |Y | = 1.
Let W = C\NH({x, y}). If |W | = 0, since |X|, |Y | = 1, we have that H = P4.

Hence, G = (P 4 + K0) ∪ (P4 ∪ K0).
If |W | = 1, since |X|, |Y | = 1, we have that H = bull. Hence G = 2bull.
Finally, consider |W | ≥ 2. Let w,w′ ∈ W and NH(y) = {u}. Since u,w,w′ /∈

NH(x) and u,w,w′ ∈ C, {u,w,w′, x} induces a K3 ∪ K1, contradiction. ��

3.2 Strongly Chordal Graphs

A graph G is strongly chordal if G is chordal and sunk-free, for every k ≥ 3.

Proposition 4. Comp-Sub(∅) for strongly chordal graphs is polynomially
equivalent to Graph Isomorphism for split {sun3, sun4, net}-free graphs.

Partitioning a Graph into Complementary Subgraphs 229

Let G = (C ∪ I, E) be a split graph. We define the component graph of G as
the graph G′ obtained by removing all edges between the vertices of C from G.
We denote by cnt(G′) the number of nontrivial components of G′.

To the best of our knowledge, Graph Isomorphism on split {sun3, sun4,
net}-free graphs remains an open problem. Despite this, we show how to solve
Graph Isomorphism for split {sun3, sun4, net}-free graphs G1 and G2, when
the number of nontrivial components of G′

1 and of G′
2 is equal to 2. Such result

follows by Theorem 2. We remark that if cnt(G′
1) ≥ 3, then G′

1 contains 3K2 as
induced subgraph. Consequently G1 is not net-free, which is not our case.

Theorem 2. Let G = H ∪ H be a strongly chordal graph. If cnt(H ′) = 2, then
Comp-Sub(∅) can be solved in polynomial time.

Proof. Let G = H∪H be a strongly chordal graph. Considering that G ∈ Comp-
Sub(∅), we know from Proposition 4 that H and H are also split {sun3, sun4,
net}-free graphs. Let C ∪ I be a split partition of V (H) such that C is a clique
and I is an independent set. Let A and B be the nontrivial components of H ′.
Since H is net-free, it follows that H ′ is 3K2-free. Since cnt(H ′) = 2, we have
that A and B are 2K2-free graphs. We claim that H is a split permutation graph.

Claim 1. H is a split permutation graph.

Let C be the class of split permutation graphs. Since C is closed under com-
plement, and Graph Isomorphism on C is solvable in polynomial time [6],
Lemma 2 implies that Comp-Sub(∅) on C can be solved in polynomial time. ��

A graph G is 2-threshold if it is the edge union of two threshold graphs.
We prove in Theorem 4 that split {sun3, sun4, net}-free graphs form a subclass
of split 2-threshold graphs. We first present some useful results and define the
conflict graph G∗ of a graph G. Two edges of a graph G are said to conflict if
their endpoints induce in G a C4, a P4 or a 2K2. In a split graph G = (C ∪ I, E),
if two edges e and f of G are in conflict, then e (and f) has exactly one endpoint
in C and one in I.

Definition 2 [11]. The conflict graph G∗ of a graph G is constructed as follows:

V (G∗) = E(G), E(G∗) = {ef : e and f conflict in G}.

Theorem 3 [11]. A graph G is 2-threshold if and only if the conflict graph G∗

is bipartite.

Definition 3. Let G = (C ∪ I, E) be a split graph, G∗ the conflict graph of G,
and Ck an induced cycle in G∗, for k ≥ 3. In addition, let V (Ck) = {e1, . . . , ek},
where ei = uivi ∈ E(G), and ui ∈ I, vi ∈ C, for every 1 ≤ i ≤ k.

Let Kk,k be a complete bipartite graph with vertex set {ui ∈ I, vi ∈ C : 1 ≤
i ≤ k}. We construct a graph Kk,k by removing the edges {upvp+1, up+1vp : 1 ≤
p ≤ k − 1} ∪ {ukv1, u1vk} from Kk,k. We denote E(Kk,k) = E0 ∪ E+ ∪ E− in
which, for every i, j ∈ {1, . . . , k}, and � ∈ {1, . . . , k2−3k

2 },
E0 = {ei = uivj : i = j}, E+ = {e�+ = uivj : i < j}, E− = {e�− = uivj : i > j}.

230 J. R. Nascimento et al.

Let G′ be the component graph of G. The induced subgraph X (Ck) of G′ is
defined by:

X (Ck) = G′[E(G′) ∩ E(Kk,k)].

Definition 3 of the induced subgraph X (Ck) of G′, for k ≥ 3, expresses the
edges that conflict in an induced cycle Ck in G∗. Figure 1 contains an example
of K5,5. In Theorem 4 we analyze mainly edges that can be present or missing
in X (C5). So, we define a representation of E(X (C5)) in terms of a vector ν.

Fig. 1. Induced subgraph K5,5 with respective conflict vector ν = [2, 2, 2, 2, 2].

Definition 4. A conflict vector ν = [ε1, . . . , ε5] of the graph X (C5) is defined by:

ε�
�∈{1,...,5}

=

⎧
⎪⎨

⎪⎩

0, if e�− ∈ E(X (C5)) and e�+ /∈ E(X (C5))
1, if e�+ ∈ E(X (C5)) and e�− /∈ E(X (C5))
2, if e�−, e�+ ∈ E(X (C5)).

Now, we define some transformations on a conflict vector ν.

Lemma 3. Let ν = [ε1, . . . , ε5] be a conflict vector. The following holds:

(i) Let f be the x-reflection function f(ν) = [f ′(ε1), . . . , f ′(ε5)] in which

f ′(ε�)
�∈{1,...,5}

=

⎧
⎪⎨

⎪⎩

1, if ε� = 0,
0, if ε� = 1,
2, otherwise.

The graphs induced by ν and f(ν) are isomorphic.
(ii) Let g be the y-reflection function g(ν) = [ε5, ε4, ε3, ε2, ε1] where ν =

[ε1, . . . , ε5].
The graphs induced by ν and g(ν) are isomorphic.

(iii) The graphs induced by ν and f(g(ν)) (resp. g(f(ν))) are isomorphic.

Finally, we can proceed with Theorem 4.

Partitioning a Graph into Complementary Subgraphs 231

Theorem 4. Let G be a split {sun3, sun4, net}-free graph. Then G is a split
2-threshold graph.

Proof. Let G = (C ∪ I, E) be a split {sun3, sun4, net}-free graph. Notice that G
is a split {sun3, sun4, net}-free graph if and only if G′ = G \ E(C) is a bipartite
{C6, C8, 3K2}-free graph. In view of that, we may argue based on the forbidden
subgraphs of G′.

Suppose, for contradiction, that G is not a 2-threshold graph. Then, by The-
orem 3, the conflict graph G∗ is not bipartite. This implies that G∗ contains an
induced subgraph Ck, for some odd k ≥ 3. Let X (Ck) be an induced subgraph
of G′ as in Definition 3.

Suppose k = 3. It follows that, for every distinct i, j ∈ {1, 2, 3}, there is a
conflict between ei, ej ∈ E(X (C3)). Recall that, since G is a split graph, G does
not contain 2K2 nor C4 as induced subgraph. Hence, if there is a conflict between
two edges of G their endpoints induce a P4 in G, and a 2K2 in G′. Then, we have
that the pair of edges ei, ej , for every distinct i, j ∈ {1, 2, 3}, induces a 2K2 in
X (C3). Consequently, {e1, e2, e3} induces a 3K2 in X (C3). Since G′ is 3K2-free
and X (C3) is an induced subgraph of G′, we reach a contradiction.

Suppose k = 5. This implies that {ei, ei+1} induces a 2K2 in X (C5), for every
i ∈ {1, . . . , 4}, as well as {e1, e5}. We know that there is no conflict between ei, ej ,
for i ∈ {1, . . . , 4}, j �= i+ 1, and i = 5, j �= 1. Then, we have that at least one of
the edges e�+, e�− belong to E(X (C5)), for every � ∈ {1, . . . , 5}. For the proof,
we consider all the possible cases of edges in E(X (C5)), expressed in a conflict
vector ν = [ε1 . . . , ε5] as in Definition 4.

According to Lemma 3(i), we have that all the cases where ε1 = 0, that is, ν =
[0, ε2, . . . , ε5], have an isomorphic graph induced by f(ν) = [1, f ′(ε2) . . . , f ′(ε5)].
Thus, we disregard the cases when ε1 = 1. The cases where ε1 = 2, and ε5 = 0,
which means ν = [2, ε2, ε3, ε4, 0], reduce to the cases g(ν) = [0, g′(ε2), g′(ε3),
g′(ε4), 2], by Lemma 3(ii). Finally, the cases where ε1 = 2, and ε5 = 1, which
means ν = [2, ε2, ε3, ε4, 1], reduce to the cases f(g(ν)) = [0, f ′(g′(ε2)), f ′(g′(ε3)),
f ′(g′(ε4)), 2], by Lemma 3(iii).

Putting everything together, this means evaluating [0, ε2 . . . , ε5], with 81
cases, and [2, ε2, ε3, ε4, 2], with 27 cases. We remark that many of these 108
cases could be solved applying functions of Lemma 3, and from the observation
that the addition of nonchord edges on the forbidden subgraphs C6, C8 in X (C5)
maintain the same forbidden subgraph in X (C5).

For instance, let ν1 = [0, 0, 0, 0, 1], see Fig. 2(a). We have that ν1 induces a C6

(in bold edges) in X (C5). Applying f(ν1) (Fig. 2(b)), g(ν1) (Fig. 2(c)), f(g(ν1))
(Fig. 2(d)), and adding edges e3−, e5+ to E(X (C5)) (Fig. 2(e)), we also have an
induced C6 in X (C5). Notice that this argumentation is possible since |C| = |I|,
for any forbidden subgraph F ∈ {C6, C8, 3K2}.

We proceed with the 108 cases, written down in Table 1. Notice that, with the
abovementioned argumentation, the analysis of the 108 cases could be reduced to
the analysis of 10 cases, specified in the first column of Table 1. For short, we omit
the brackets and the commas of the notation of ν = [ε1, . . . , ε5]. Each case has a

232 J. R. Nascimento et al.

corresponding graph X (C5), see Fig. 3, illustrating in bold edges the forbidden
subgraph F ∈ {C6, C8, 3K2} found. In all cases we reach a contradiction.

Now, let k ≥ 6. Notice that the set of vertices {u1, u2, u3, uk−1, uk, v1, v2, v3,
vk−1, vk} induces a X (C5) in X (Ck). Then, we find forbidden subgraphs C6, C8 or
3K2 in X (Ck) reaching a contradiction as in case k = 5. Therefore, we conclude
that G is a 2-threshold graph, and additionally G∗ is chordal bipartite. ��

From Theorems 2 and 4, the following Corollary 4 holds. We remark that, as
far as we know, Graph Isomorphism on 2-threshold graphs is an open problem.

Corollary 4. Let G be a strongly chordal graph. There exists a polynomial time
algorithm that, either decides whether G ∈ Comp-Sub(∅), or concludes that G is
the disjoint union of two split 2-threshold graphs G1 and G2 of the same order,
such that cnt(G1) = cnt(G2) = 1, and G∗

1 and G∗
2 are chordal bipartite.

3.3 Starlike, Block, and Split Graphs

Starlike graphs are the intersection graphs of substars of a star [3]. A starlike
graph G is a {P5, C4, C5,H1,H2, 2P3}-free graph (see H1 and H2 in Fig. 4) [3].

Proposition 5. Let G be a starlike graph with 2n vertices. It holds that G ∈
Comp-Sub(∅) if and only if G = (Kp + Kq) ∪ (Kp ∪ Kq), in which p + q = n.

Proof. It is clear that G = (Kp + Kq) ∪ (Kp ∪ Kq) (for p + q = n) is a
yes-instance of Comp-Sub(∅). Now, consider that G is a yes-instance of Comp-
Sub(∅). Then, G can be decomposed into two graphs, H and its complement
H, for some graph H, such that the cut-set M of the decomposition is empty.
Furthermore, by Proposition 2, there exists a connected component of G, say H,
with exactly n vertices.

(a) ν1 = [0,0,0,0,1] (b) f(ν1) = [1, 1, 1, 1, 0] (c) g(ν1) = [1, 0, 0, 0, 0]

(d) f(g(ν1)) = [0, 1, 1, 1, 1] (e) ν2 = [0,0,2,0,2]

Fig. 2. Cases exemplifying functions of Lemma 3 and nonchord additions.

Partitioning a Graph into Complementary Subgraphs 233

Table 1. Cases considered for Theorem 4.

Case ν Forbidden induced
subgraph F in X (C5)

Cases that contain an induced forbidden subgraph
isomorphic to F

00000 C6, Fig. 3(a) 00002, 00020, 00022, 00200, 00202, 00220, 00222,
02000, 02002, 02020, 02022, 02200, 02202, 02220,
02222, 20002, 20022, 20202, 20222, 21112, 21212,
22002, 22022, 22202, 22212, 22222

00001 C6, Fig. 2(a) 00021, 00201, 01111, 01112, 01121, 01211, 01212,
01221, 02001, 02112, 02121, 02122, 02211, 02212,
02221

00010 C8, Fig. 3(b) 01000, 01002, 01020, 01200, 01202, 01220, 01222,
02010

00011 C6, Fig. 3(c) 00012, 00111, 00112, 00121, 00122, 00211, 00212,
00221, 02011, 02012, 02111, 20012, 20112, 20122,
20212, 21002, 21022, 21102, 21122, 21202, 21222,
22012, 22102, 22112, 22122

00100 C8, Fig. 3(d) 00102, 00120, 02100, 20102
00101 C8, Fig. 3(e) 01011, 01012, 01021, 01022, 02101, 21012
00110 C8, Fig. 3(f) 01100, 01102, 01120, 01122, 00210, 02102, 02110,

02120
01001 C8, Fig. 3(g) 01101, 01201, 02201, 02021
01010 3K2, Fig. 3(h) ∅

01110 C8, Fig. 3(i) 01210, 02210

(a) 00000 (b) 00010 (c) 00011

(d) 00100 (e) 00101 (f) 00110

(g) 01001 (h) 01010 (i) 01110

Fig. 3. Forbidden induced subgraphs in X (C5).

234 J. R. Nascimento et al.

Fig. 4. Two forbidden subgraphs of a starlike graph.

Since G is a starlike graph, then so are H and H. By definition, H and H
are {P5, C4, C5,H1,H2, 2P3}-free. Since H is C4-free, then H is 2K2-free. Thus,
H is split and so is H. Consider a split partition C ∪ I of V (H), where C is a
maximal clique and I is an independent set.

If I = ∅, then H = C and H = C. Since |V (H)| = |C| = n, we have that
H = Kn and H = Kn, hence G = (Kp +Kq) ∪ (Kp ∪ Kq), for p = n and q = 0.

Now, consider that I �= ∅. Since C is maximal, |C| ≥ 2. We show in Claim 2
that H is a cluster graph, that is, a P3-free graph, or equivalently, a disjoint
union of cliques. Next, we show that H has at most one clique with two or more
vertices.

Claim 2. H is a cluster graph.

By Claim 2, we have that H is a disjoint union of cliques. Let H1, . . . ,H� be
the connected components of H. Since H is split, we have that H is 2K2-free.
This implies that there exists at most one i ∈ {1, . . . , �}, such that |V (Hi)| ≥ 2.
Since |V (H)| = n, for p + q = n, we define

∑
j∈{1,...,�}\{i} |V (Hj)| = p and

|V (Hi)| = q. Hence H = Kp ∪ Kq and H = Kp ∪ Kq = Kp + Kq. Therefore,
G = (Kp + Kq) ∪ (Kp ∪ Kq), completing the proof. ��

A diamond graph is the graph obtained by removing exactly one edge from
K4. A block graph is a {diamond,Cn+4}-free graph, for every n ≥ 0. A star
Sn is the complete bipartite graph K1,n−1. In Proposition 6, we characterize
yes-instances of Comp-Sub(∅) when G is a block graph.

Proposition 6. Let G be a block graph with 2n vertices. It holds that G ∈
Comp-Sub(∅) if and only if G ∈ {Kn ∪ Kn, Sn ∪ Sn, 2P4, 2bull, (Sn−1 ∪ K1) ∪
(Sn−1 ∪ K1)}.

While Graph Isomorphism is GI-complete on split graphs [1], we show in
Proposition 7 a characterization of split graphs G in which G ∈ Comp-Sub(∅).
Proposition 7. Let G ∈ Comp-Sub(∅) be a split graph. Then G = Kn ∪ Kn.

4 M Induces a Complete Bipartite Graph

Most of the results of Comp-Sub(∅) can be applied to Comp-Sub(G[M] =
Kn,n). Lemma 4 shows such equivalence.

Lemma 4. Let C be a class of graphs. It holds that Comp-Sub(∅) on C is polyno-
mially equivalent to Comp-Sub(G[M] = Kn,n) on the complementary class of C.

Partitioning a Graph into Complementary Subgraphs 235

References

1. Booth, K.S., Colbourn, C.J.: Problems polynomially equivalent to graph isomor-
phism. Technical report CS-77-04, University of Waterloo (1979)

2. Cappelle, M.R., Penso, L., Rautenbach, D.: Recognizing some complementary
products. Theoret. Comput. Sci. 521, 1–7 (2014)

3. Cerioli, M.R., Szwarcfiter, J.L.: Characterizing intersection graphs af substars of a
star. Ars Combinatoria 79, 21–31 (2006)

4. Chung, F.R.K.: On the cutwidth and the topological bandwidth of a tree. SIAM
J. Algebraic Discrete Methods 6(2), 268–277 (1985)

5. Churchley, R., Huang, J.: On the polarity and monopolarity of graphs. J. Graph
Theory 76(2), 138–148 (2014)

6. Colbourn, C.J.: On testing isomorphism of permutation graphs. Networks 11, 13–
21 (1981)

7. Corneil, D.G., Perl, Y., Stewart, L.K.: A linear recognition algorithm for cographs.
SIAM J. Comput. 14(4), 926–934 (1985)

8. Feder, T., Hell, P., Klein, S., Motwani, R.: Complexity of graph partition prob-
lems. In: Proceedings of the Thirty-First Annual ACM Symposium on Theory of
Computing, pp. 464–472. ACM (1999)

9. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, vol. 57. Elsevier,
Amsterdam (2004)

10. Haynes, T.W., Henning, M.A., Slater, P.J., van der Merwe, L.C.: The complemen-
tary product of two graphs. Bull. Inst. Comb. Appl. 51, 21–30 (2007)

11. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs and Related Topics, vol. 56.
Elsevier, Amsterdam (1995)

12. Ortiz, Z.C., Maculan, N., Szwarcfiter, J.L.: Characterizing and edge-colouring split-
indifference graphs. Discrete Appl. Math. 82(1–3), 209–217 (1998)

On the Maximum Edge-Pair Embedding
Bipartite Matching

Cam Ly Nguyen1, Vorapong Suppakitpaisarn2(B), Athasit Surarerks3,
and Phanu Vajanopath3

1 Toshiba Corporation, Kawasaki, Japan
camly.nguyen@toshiba.co.jp

2 The University of Tokyo, Tokyo, Japan
vorapong@is.s.u-tokyo.ac.jp

3 Chulalongkorn University, Bangkok, Thailand
athasit@cp.eng.chula.ac.th, phanu.vajanopath@gmail.com

Abstract. Given a set of edge pairs in a bipartite graph, we want to find
a bipartite matching that includes a maximum number of those edge
pairs. While the problem has many applications to wireless localization,
to the best of our knowledge, there is no theoretical work for the problem.
In this work, unless P = NP , we show that there is no constant approx-
imation for the problem. Suppose that k denotes the maximum number
of input edge pairs such that a particular node can be in. Inspired by
experimental results, we consider the case that k is small. While there is
a simple polynomial-time algorithm for the problem when k is one, we
show that the problem is NP-hard when k is greater than one. We also
devise an efficient O(k)-approximation algorithm for the problem.

Keywords: Wireless localization · Computational complexity ·
Approximation algorithm · Network optimization

1 Introduction

Wireless localization [10] is one of the most important issues in the Internet
of Things (IoT). In this problem, one wants to calculate geo-locations of spe-
cific wireless devices. Traditional wireless localization systems, for instance, an
indoor positioning system, estimate the location of a device through its wireless
signals to multiple devices of which locations are known. We can approximate
the distance between a wireless access point and a mobile device or between
two mobile devices based on wireless signal strength, also called received signal
strength indicator (RSSI), between them. Then, we find locations of the mobiles
based on those approximated distances. There are a lot of techniques proposed
for the problem including the technique based on semi-definite programming in
[2] and the technique based on machine learning in [13].

Recently, the authors of [11,12] have defined a new localization problem found
in many IoT applications: the wireless localization matching problem (WLMP).
c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 236–248, 2020.
https://doi.org/10.1007/978-3-030-39881-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_20

On the Maximum Edge-Pair Embedding Bipartite Matching 237

Unlike traditional localization problems, the set of locations of wireless devices
is known a priori. However, they do not know which location a specific wireless
device is at. Because there is at most one device at each location, they want to
find a bipartite matching between a set of wireless devices and a set of locations.

WLMP has numerous potential applications. For instance, in wireless lighting
systems, a set of bulb locations can be obtained from floor plan blueprints.
Workers install bulbs at the specified locations. However, the installation process
can be very long with a lot of confirmations if the installed positions for all of
the bulbs are specified. Because of that, instead of specifying a position for each
bulb, the authors proposed to give a set of bulb positions to the workers, have
them install a random bulb at each position, and use the algorithm developed
in [12] to automatically match the positions with the devices.

The bipartite matching in this problem is different from the regular maximum
bipartite matching problem. For the regular problem, each edge has a score. The
problem aims to find a set of edges which forms a bipartite matching and the
sum of the edges’ scores is maximized [9]. On the other hand, in the setting
in [11,12], the authors do not directly know how much likely that a sensor s
should be matched to a position p. They know a distance between two positions
and, by signal strengths, an approximate distance between two sensors. If the
approximate distance between s and s′ is close to the distance between p and
p′, they know that the likelihood of matching s with p and s′ with p′ should be
large. The likelihood score is then not defined on a single edge but on a pair of
edges. For each pair of edges ei, ej , a score f(ei, ej) is given. They want to find
a bipartite matching M that maximizes

∑

ei,ej∈M

f(ei, ej).

In [7,11,12], the authors proposed several heuristics to solve the problem.
However, to the best of our knowledge, there is no theoretical work for it.

1.1 Our Contribution

Informally, our contribution is as follows:

1. We show that there does not exist a constant-factor approximation algorithm
for the WLMP.

2. For particular instances that we find in practice, we give an approximation
algorithm that almost matches the inapproximability result, and we show
that there does not exist a fixed-parameter tractability for those instances.

To be more precise, we consider a simplified version of the problem, where
the score f(ei, ej) can be only 0 and 1. This simplification is quite intuitive,
as we can give f({s(ei), p(ei)}, {s(ej), p(ej)}) = 1 if the approximated distance
between p(ei) and p(ej) is close to the distance between s(ei) and s(ej). We
then can give f({s(ei), p(ei)}, {s(ej), p(ej)}) = 0 otherwise. Our problem is then
reduced to be the following:

We want to find a bipartite matching that embeds the maximum number of
edge pairs {ei, ej} such that f(ei, ej) = 1. In other words, we want to find
a bipartite matching M that maximizes |{{ei, ej} ⊆ M : f(ei, ej) = 1}|.

238 C. L. Nguyen et al.

Our first contribution is, we show that there is no constant-factor approx-
imation algorithm for the problem unless P = NP . Also, for all 0 < ε < 1
there is no O(2log

1−ε n)-approximation algorithm for this problem unless NP ⊆
DTIME(npolylog(n)). This inapproximability result also applies for the general
problem when f(ei, ej) can be any real number not just 0 or 1. We have this
result by our reduction which preserves approximation ratio from the label cover
problem (maximum repetition version) [3] to this problem.

As it is not possible to solve a general problem, we consider particular
instances which we found in our previous experimental results in [11]. Let D
be a set of edge pairs {ei, ej} such that f(ei, ej) = 1, and let k be the max-
imum number of edge pairs in D that a particular node is incident to, i.e.
kv := |{{ei, ej} ∈ D : v ∈ ei or v ∈ ej}| for all node v and k is the maxi-
mum of kv. We found from the data that the number k is usually small. Thus,
for the second contribution, we consider the problem with a bounded value of k.

We show that the problem is hard for any k greater than one, while it is quite
trivial to find a solution for the problem when k is one. Our result is based on
the fact that the independent set problem is NP-hard even when input graph
is 4-regular [5]. We calculate an Eulerian path from the input graph and, based
on the Euler path, construct an input for our problem with k = 2. The result
illustrates that there is no fixed-parameter tractability for this problem.

One can consider the value of k as a graph degree. Our reduction technique
reduces the graph degree from four to two, to show that our problem is hard even
when the degree is two. As there are many combinatorial problems of which the
hardness on graphs with bounded degree is unknown (such as [15]). We hope
that the technique using Eulerian paths introduced in this paper can help to
show the hardness of those combinatorial problems.

In addition, we also provide an O(k)-approximation algorithm based on an
approximation algorithm for the maximum independent set problem.

By the two results for small k, one might think that our problem is similar to
the maximum independent set and this problem might not be very interesting
for theoretical studies. However, a direct reduction from the maximum indepen-
dent set, which does not preserve the approximation ratio, only gives us an
NP-hardness result for the instance that k is larger than that in practice.
Although it is known that there does not exist an o(n/ log n)-approximation
algorithm for the maximum independent set problem, we cannot easily use that
result for our problem. Our reduction works only from instances of the prob-
lem with a small degree and, for those instances, there is an approximation
algorithm with small approximation ratio. When the reduction starts from a
maximum independent set instance with a large degree, the input function f
obtained from the reduction does not take only a pair of edges but an arbitrary
number of edges. Therefore, for the first contribution, we cannot use the inap-
proximability of the maximum independent set, to show the inapproximability
of our algorithm.

On the Maximum Edge-Pair Embedding Bipartite Matching 239

2 Problem Definition

Suppose that there are n sensors and m positions, S = {s1, ..., sn} is a set of
sensors, and P = {p1, ..., pm} is a set of positions. Consider a complete bipartite
graph G = (S, P,E). We are given a set of edge pairs D ⊆ {{ei, ej} : ei, ej ∈
E and ei �= ej}. Our problem, called as the Maximum Edge-pair Embedding
Bipartite Matching (MEEBM), asks for a bipartite matching M ⊆ E that embeds
the maximum number of the edge pairs in D. The edge pair {ei, ej} is embedded
in M if and only if M includes both ei and ej . In other words, we want to find

arg max
M :matching of G

|{d ⊆ M : d ∈ D}|.

For all node v, define kv as the number of edge pairs in D that the node v
appear at, i.e. kv = {{ei, ej} ∈ D : v ∈ ei or v ∈ ej}|, and define k := max

v
kv.

Fig. 1. An example instance of the problem. The instance is shown on the left. We
want to find a matching that embeds as many edge pairs (marked by different colors)
as possible. An optimal solution is {{s1, p3}, {s2, p4}, {s3, p1}, {s4, p2}} as shown on
the right, which embeds the red dotted, the violet dot-dash, and the black solid edge
pairs.

Example 1. Consider the graph in Fig. 1 and a set of edge pairs D = {d1, d2,
d3, d4, d5, d6, d7}, where d1 = {{s1, p1}, {s2, p2}}, d2 = {{s1, p3}, {s2, p4}}, d3 =
{{s3, p3}, {s2, p4}}, d4 = {{s3, p3}, {s4, p4}}, d5 = {{s3, p1}, {s4, p2}}, d6 =
{{s1, p1}, {s3, p4}}, and d7 = {{s1, p3}, {s3, p1}}. A bipartite matching M∗

that embeds the maximum number of edge pairs in D is {{s1, p3}, {s2, p4},
{s3, p1}, {s4, p2}}. It embeds three edge pairs d2, d5, and d7 in the matching. By
the definition of k, we have k = 5 because the node s3 appears five times in D.

3 Inapproximability Results

We show a reduction from the label cover problem (maximum repetition ver-
sion) [3] which preserves an approximation ratio in this section. The label cover
problem is defined as in the following definition:

240 C. L. Nguyen et al.

Definition 1. Given a bipartite graph G = (V,W, E) such that |V| = |W| = N ,
and an integer K such that N is divisible by K. Also, given disjoint partitions of
V and W, denoted by V1, . . . ,VK and W1, . . . ,WK, such that |Vi| = |Wi| = N/K
for all 1 ≤ i ≤ K. We want to find a set V ′ and W ′ such that |V ′ ∩ Vi| =
|W ′ ∩ Wi| = 1 for all 1 ≤ i ≤ K and the number of edges in the subgraph of G
induced by V ′ and W ′ is maximized.

The following results are proved for the label cover problem.

Theorem 1 [1]. It is not possible to have a constant-factor approximation algo-
rithm for the label cover problem unless P = NP . Also, for all 0 < ε < 1, it
is not possible to have an O(2log

1−ε N)-approximation algorithm for the problem
unless NP ⊆ DTIME(npolylog(N)).

We construct an instance of MEEBM, (G = (S, P,E),D), in the follow-
ing way. We have S = {V1, . . . ,VK,W1, . . . ,WK}, P = V ∪ W, and D =
{{Vi, ν}, {Wj , w} : ν ∈ Vi, w ∈ Wj and {ν, w} ∈ E}. The construction is illus-
trated in Fig. 2. We show in the following theorem that the reduction in this
paragraph preserves approximation ratio.

Fig. 2. Reduction from a label cover instance to an MEEBM instance which preserves
approximation ratio.

Lemma 1. If there exists an α-approximation algorithm for MEEBM, then
there exists an α-approximation algorithm for the label cover problem.

Proof. Suppose that M is a solution of the above MEEBM instance which
includes q edge pairs of D. We denote the set of those q edge pairs by D′.
Let P ′ be the set of nodes in P that are incident to edges in M , V ′ = V ∩ P ′,
and W ′ = W ∩ P ′. For each {{Vi, ν}, {Wj , w}} ∈ D′, by the construction of D,
we know that {ν, w} ∈ E . As ν ∈ V ′ and w ∈ W ′, we know that a subgraph of
G induced by V ′ ∪ W ′ contains at least q edges. Because M is a matching on
G, the set V ′ and W ′ contains at most one node in Vi or Wi for all 1 ≤ i ≤ K.
We can choose to add an arbritary member from all the set Vi and Wi that
have no member in V ′ and W ′. As a result, from the solution of MEEBM M

On the Maximum Edge-Pair Embedding Bipartite Matching 241

in polynomial time, we can have a solution of the label cover problem (V ′,W ′)
that contains at least q edges in E .

Conversely, suppose that we have a solution of the label cover problem
(V ′,W ′) containing q edges in E . We denote the set of edges of this solution
by E ′, for each node ν ∈ V ′, we set f(ν) = i if ν is in the partition Vi, and,
for each node w ∈ W ′, denote g(w) = j if w is in the partition Wj . Let
M = {{Vf(ν), ν}, {Wg(w), w} : {ν, w} ∈ E ′}. The set M is a matching and a
solution of MEEBM because there is exactly one node of Vi and Wj in any solu-
tion of the label cover (V ′,W ′). We know that, for each member {ν, w} of E ′,
the matching M includes an edge pair {Vf(ν), ν}, {Wg(w), w} in D. Therefore,
from a solution of the label cover that embeds q edges in E , we can construct a
solution of MEEBM that embeds q edge pairs in D.

By the discussions in the above paragraph, we can conclude that the optimal
value of the label cover and the optimal value of the MEEBM instances are the
same. Also, if there is a polynomial-time algorithm which can give an MEEBM
solution that can embed q edge pairs in D, we can have a polynomial-time algo-
rithm which can give a label cover solution that include q edges in E . Therefore,
our reduction preserves the approximation algorithm. �	

By Theorem 1 and Lemma 1, we have the following theorem:

Theorem 2. It is not possible to have a constant-factor approximation algo-
rithm for MEEBM unless P = NP . Also, when n is the number of nodes in
G, for all 0 < ε < 1, it is not possible to have an O(2log

1−ε n)-approximation
algorithm for the problem unless NP ⊆ DTIME(npolylog(n)).

Proof. We know that N ≤ n = 2N + 2K ≤ 4N . Therefore, O(2log
1−ε N) =

O(2log
1−ε n) and DTIME(N polylog(N)) = DTIME(npolylog(n)). �	

4 Results for Small k

In this section, we first show that it is trivial to have a polynomial-time algorithm
for MEEBM when k is one (Sect. 4.1), then we show that the problem is NP-hard
when k is greater than one (Sect. 4.2). Finally, we give an O(k)-approximation
algorithm for the problem (Sect. 4.3).

4.1 Polynomial Time Algorithm for k = 1

If k is one, all nodes appear in D at most once. We know that there exists a
bipartite matching M∗ ⊇ ⋃

d∈D d which we can find in polynomial time. The
matching embeds all edge pairs in D. Hence, it is an optimal solution to this
problem.

242 C. L. Nguyen et al.

4.2 NP-Hardness for k ≥ 2

The problem for any k greater than one is shown to be NP-hard based on the
hardness of the maximum independent set problem, which is formally defined as
follows:

Definition 2. Given a graph G = (V, E). Find a set S ⊆ V such that |S| is
maximized and, for any ε ∈ E, ε �⊆ S.

In this paper, we use the following hardness result.

Theorem 3 [5]. The maximum independent set problem is NP-hard even when
G is a 4-regular graph.

Consider an instance of the maximum independent set with a 4-regular graph
G = (V, E) as an input. We will construct an input of the MEEBM prob-
lem, denoted by G and D with k = 2, in polynomial time using the following
algorithm:

1. Find an Eulerian circuit Q = (ν′
1, ε

′
1, ν

′
2, ε

′
2, . . . , ν

′
|E|, ε

′
|E|, v

′
1) of G using

Fluery’s [6] or Hierholzer’s [4] algorithm, which are polynomial-time
algorithms.

2. Construct a cyclic graph C|E| with |E| different nodes {ν1, . . . , ν|E|} and |E|
different edges {ε1 = {ν1, ν2}, ε2 = {ν2, ν3}, . . . , ε|E| = {ν|E|, ν1}}. Define
functions f, g such that f(νi) = ν′

i and g(εi) = epsilon′
i for all i. As ν′

i = ν′
j

for some i �= j, f is not bijective, while g is bijective as ε′
1, . . . , ε

′
|E| are all

different. As G is a 4-regular graph, the number of edges in the graph is 2|V|,
which is always even. Because any cyclic graph with an even number of nodes
is bipartite [14], the graph C|E| is a bipartite graph.

3. As G is 4-regular graph, there are exactly 2 edges ε′
i and ε′

j in Q such that
ν′

i = ν′
j . Let D =

{{ε′
i, ε

′
j} : ν′

i = ν′
j

}
. The intersection of any two mem-

bers of D is empty set. Because the function g is bijective, the members
of the following set D are also disjunctive: D =

{{g(ε′
i), g(ε′

j)} : ν′
i = ν′

j

}
=

{{εi, εj} : f(νi) = f(νj)} . Because all edges appear once in D and all vertices
in C|E| are incident to two edges, all vertices in C|E| appear twice in D.

4. Our input to the MEEBM problem is a complete bipartite graph G =
(S, P,E) such that S and P are two partitions of the graph C|E|, and the
set D is previously defined. Because all the nodes in G appear in D twice, k
is equal to two for this input.

Example 2. Consider a graph G as shown in Fig. 3a.

1. A circuit Q = (ν′
1, {ν′

1, ν
′
2}, ν′

2, {ν′
2, ν

′
3}, . . . , ν′

24, {ν′
24, ν

′
1}, ν′

1) where
ν′
1, ..., ν

′
24 = 1, 3, 4, 6, 11, 10, 12, 7, 9, 10, 8, 4, 5, 3, 2, 1, 6, 8, 9, 5, 7, 2, 12, 11 is one

of the Eulerian circuits of the graph G. We show the Eulerian circuit in
Fig. 3b.

2. We have the following cyclic graph and function f :
C24 = ({ν1, . . . , ν24}, {ε1 = {ν1, ν2}, . . . , ε24 = {ν24, ν1}}) , f(ν1), ..., f(ν24) =
1, 3, 4, 6, 11, 10, 12, 7, 9, 10, 8, 4, 5, 3, 2, 1, 6, 8, 9, 5, 7, 2, 12, 11.

On the Maximum Edge-Pair Embedding Bipartite Matching 243

Fig. 3. Reduction from the independent set problem for regular graphs degree four to
MEEBM problem when k = 2.

3. The set D contains d1 = {ε1, ε16} as f(ν1) = f(ν16) = 1. It also contains
d2 = {ε15, ε22}, d3 = {ε2, ε14}, d4 = {ε3, ε12}, d5 = {ε13, ε20}, d6 = {ε4, ε17},
d7 = {ε8, ε21}, d8 = {ε11, ε18}, d9 = {ε9, ε19}, d10 = {ε6, ε10}, d11 = {ε5, ε24},
and d12 = {ε7, ε23}.

4. We have a complete bipartite graph G = (S, P,E) where the vertex set S =
{s1 = ν1, s2 = ν3, . . . , s12 = ν23}, P = {p1 = ν2, p2 = ν4, . . . , p12 = ν24}. We
will obtain an instance of MEEBM for k = 2, if we replace all νi in C24

defined in 2 with s�i/2� or pi/2. The resulting graph can be seen in Fig. 3c.

In the following lemma, we will prove a property of the previous construction.

Lemma 2. Let G,D be an input of MEEBM constructed from a 4-regular graph
G = (V, E) and the optimal solution of MEEBM for the input is M∗. We can
construct a maximum independent set of G, denoted by S∗, in polynomial time.

Proof. Consider an independent set S of the graph G. We will now show that a
bipartite matching of G that contains at least |S| edge pairs of D can be found
in polynomial time. Recall the function f in the construction of G,D. Let M ′ =
{{ei : f(vi) = σ} : σ ∈ S} . As all nodes will appear in M ′ only once, we can use
the algorithm in Sect. 4.1 to construct a matching M ⊇ M ′ in polynomial time if
such a matching exists. Also, because for each σ ∈ V, the set {ei : f(vi) = σ} is
a different member of D, we know that M and M ′ contain at least |S| members
of D.

In order to show that M exists, we assume a contradictory statement that
there does not exist such an M , and in M ′, there is more than one edge incident

244 C. L. Nguyen et al.

to a node. Let the edges be ei and ej and the node be vp. Because G is a cyclic
graph, the edges are either ei = e|E|, ej = e0 or ei = eq, ej = eq+1 for some q. We
prove for the case that ei = eq and ej = eq+1 but we can use the same argument
for the case that ei = e|E| and ej = e0. We know that eq and eq+1 are included in
M ′ because f(vq), f(vq+1) ∈ S. Therefore, there exist v′

q, v
′
q+1 ∈ S. As v′

q, v
′
q+1

are next to each other in the Eulerian path Q, {v′
q, v

′
q+1} ∈ E . This contradicts

the fact that S is an independent set.
Next, consider a bipartite matching M . Suppose that D′ = {d ∈ D : d ⊆ M}.

We can construct an independent set S of G with size |D′| in polynomial time
in the following way: S = {f(vi) : {ei, ej} ∈ D′} . Note that, as f(vi) = f(vj), it
does not matter what we choose: f(vi) or f(vj). As the value of f(vi) is different
for each edge pair {ei, ej} in D′, |S| is |D′|.

We now show that S is an independent set. Assume a contradictory statement
that there exists v′

i and v′
j in S such that {v′

i, v
′
j} ∈ E . Because all edges appear

in the Eulerian circuit Q, we know that one of the following two cases must be
satisfied: (1) There exist p, vp and vp+1 such that f(vp) = v′

i and f(vp+1) = v′
j .

(2) f(v0) = v′
i and f

(
v|E|

)
= v′

j .
We will work on case 1, but all of the arguments can be also applied to case

2. We know that v′
i and v′

j are both in the set S only if all eq such that f(vq) = v′
i

or f(vq) = v′
j are in the set D′. Therefore, we have both ep and ep+1, which are

incident to each other, in M ′ and also M . This contradicts the assumption that
M is a bipartite matching.

As we have an independent set with size K in G if and only if we can embed
K edge pairs in G. We know that the size of the maximum independent set
equals the maximum number of edge-pairs embedding. If there exists a bipar-
tite matching that embeds a maximum number of edge pairs K∗, the bipartite
matching can be converted to an independent set with size K∗, which is an
optimal solution to the independent set problem in polynomial time. �	

By the previous lemma, we can prove the following theorem.

Theorem 4. MEEBM is NP-hard for any k greater than one.

Proof. As finding a maximum independent set of 4-regular graphs is NP-hard
and the input of MEEBM in Lemma 1 has k = 2, we know from Lemma 1 that
MEEBM is NP-hard when k = 2.

We will now show that if MEEBM is NP-hard for k = k′ it is also NP-hard
for k = k′ + 1. Thus, MEEBM is also NP-hard for all k > 2. Given an input
of MEEBM Gk′ and Dk′ with k = k′. We can construct an input of MEEBM
Gk′+1 and Dk′+1 with k = k′ + 1 by applying the following steps.
(1) From Gk′ = (Sk′ , Pk′ , Ek′) and Dk′ , choose nodes u and v where u ∈ S,
v ∈ P such that one of them occurs k′ times in Dk′ . We know that there exists
such a node because k = k′.
(2) Set Gk′+1 = (Sk′+1 = Sk′ ∪ {sx, sy}, Pk′+1 = Pk′ ∪ {px, py}, Sk′+1 × Pk′+1) .
(3) Let dx = {{u, px}, {sx, v}} and dy = {{sx, px}, {sy, py}}. Set Dk′+1 = Dk′ ∪
{dx, dy} .

On the Maximum Edge-Pair Embedding Bipartite Matching 245

By the construction, u or v will appear k′ + 1 times in the input Gk′+1, Dk′+1.
Thus, we have k = k′ + 1 here.

Suppose that an optimal solution of MEEBM when its inputs are Gk′ and
Dk′ , denoted by M∗

k′ , embeds K∗
k′ edge pairs of Dk′ . Then, we know that the

bipartite matching M∗
k′ ∪ {dy} embeds K∗

k′ + 1 edge pairs of Dk′+1. We now
argue that an optimal solution of MEEBM when its inputs are Gk′+1 and Dk′+1

embeds K∗
k′ + 1 edge pairs of Dk′+1. Let us assume a contradictory statement

that there exists a bipartite matching M ′
k′+1 that embeds at least K∗

k′ + 2 edge
pairs in Dk′+1. As K∗

k′ is the maximum number of edge pairs in Dk′ we can
embed in a particular matching, we know that M ′

k′+1 must embed both dx, dy

to have the number of embeddings no smaller than K∗
k′ +2. However, dx and dy

cannot be embedded in the same matching. We know it is not possible to have
such a matching.

Thus, we know that all optimal solutions of MEEBM can embed K∗
k′ + 1

edge pairs of Dk′+1. As it cannot embed more than K∗
k′ edge pairs of Dk, we

know that it must include exactly one of the edge pairs dx or dy.
If we have an algorithm that can give us an optimal solution when the input

has k = k′ + 1, we can give Gk′+1, Dk′+1 to the algorithm and takes dx or dy

from the solution. By that, we will have a solution that embeds K∗
k′ edge pairs

of Dk′ , an optimal solution when the inputs are Gk′ and Dk′ . We then can solve
the problem for k = k′. When solving the problem for k = k′ is NP-hard, solving
the problem for k = k′ + 1 is also NP-hard. �	

4.3 Approximation Algorithm

Consider an instance of MEEBM (G,D). Assume that for any member of D,
d = {{si, pj}, {si′ , pj′}}, there does not exist a case that si = si′ and pj �= pj′ .
Clearly, it is not possible to have a bipartite matching that embeds both {si, pj}
and {si, pj′} for pj �= pj′ . If that happened, the condition for d was not able to
be satisfied and it could be excluded from our consideration. Similarly, we can
also exclude an edge pair d = {{si, pj}, {si′ , pj}} such that si �= si′ and pj = pj′

from our consideration. Our reduction is based on the following definition:

Definition 3. Suppose that d = {{si, pj}, {sx, py}} and d′ = {{si′ , pj′}, {sx′ ,
py′}} be members of D. Let δ = d ∪ d′. We say that d and d′ conflict with each
other if there is u ∈ S ∪ P such that |{e ∈ δ : u ∈ e}| > 1.

Note that by Definition 3, for edge pairs d = {{u, v}, {a, b}} and d′ =
{{u, v}, {c, d}}, they do not conflict with each other because d ∪ d′ =
{{u, v}, {a, b}, {c, d}} which every nodes appear once.

Consider a set D′ ⊆ D. If there exist two members in D′ conflicting with each
other, it is straightforward to see that there is no bipartite matching embedding
D′. On the other hand, if every two members of D′ do not conflict with each
other, we can easily find a bipartite matching embedding D′.

Our task is then to find a set D′ ⊆ D such that |D′| is maximized and
all two members do not conflict with each other. To do that, we construct a
graph (D,Σ) where Σ = {{d, d′} ∈ D : d and d′ conflict with each other}. A

246 C. L. Nguyen et al.

bipartite matching that embeds all members of D′ ⊆ D can be constructed if
and only if D′ is an independent set. An algorithm for the maximum independent
set problem, a problem defined in Definition 2, can be used to find the set D′

with the largest size. We show how to construct an instance of the maximum
independent set problem from an instance of MEEBM in Fig. 4.

Fig. 4. Instance of the independent set problem constructed from an instance of
MEEBM

The following lemma shows that the graph (D,Σ) has small degree.

Lemma 3. The degree of (D,Σ) is not more than 4k − 4.

Proof. An edge pair d conflicts with another edge pair d′, if there exist e ∈ d
and e′ ∈ d′ that have at least one common vertex. Consider an edge pair d =
{{si, pj}, {sx, py}}. Since si can appear at most k times in D, d can violate with
at most k − 1 other edge pairs due to the vertex si. Similarly, d can violate with
at most k−1 other edge pairs due to the other vertices associating to d. As there
are four nodes in d, degree of d in the instance of the maximum independent set
problem is no larger than 4(k − 1) = 4k − 4. �	

It is discussed in [8] that there exists a greedy algorithm with approximation
ratio Δ+2

3 when Δ is a maximum degree of the input graph. We thus have the
following theorem.

Theorem 5. There exists a
(
4k−2

3

)
-approximation algorithm for the MEEBM

problem.

Proof. From Lemma 3, the graph of the maximum independent set problem
constructed from MEEBM has the degree at most 4k − 4. Applying the Δ+2

3

approximation algorithm gives us 4k−2
3 for the independent set problem. Because

the size of the largest independent set equals the maximum number of embedding
edge pairs, the application also gives us a

(
4k−2

3

)
-approximate solution for the

MEEBM problem. �	

On the Maximum Edge-Pair Embedding Bipartite Matching 247

5 Conclusion

In this work, we consider a problem called the maximum edge-pair embedding
bipartite matching (MEEBM) motivated from the wireless localization problems.
We show two negative results for this problem. The first result is the inapprox-
imability result where we show that an approximation ratio of MEEBM cannot
be better than that of the label cover problem. We currently know that, for all
0 < ε < 1 it is unlikely to have an O(2log

1−ε n)-approximation algorithm for both
of the problems. As O(2log

1−ε n) is O(nc) when ε = 1, it is widely believed that
there is a constant c such that O(nc)-approximation algorithm does not exist [3].
The second result shows that there does not exist a fixed-parameter tractability
algorithm for the problem for an MEEBM instance with a small degree. The
problem is NP-hard even when the degree is only two, but, when the instance
degree is k, we propose an O(k)-approximation algorithm for the problem.

Acknowledgement. Parts of the work had been done when Phanu Vajanopath was
conducting an internship at The University of Tokyo. The internship was supported by
the GSI Internship program, Faculty of Science, The University of Tokyo. He was hosted
by Prof. Reiji Suda during the program. Also, the authors want to thank reviewers of
WALCOM 2020 who kindly gave comments that significantly improve this paper.

References

1. Arora, S., Babai, L., Stern, J., Sweedyk, Z.: The hardness of approximate optima
in lattices, codes, and systems of linear equations. J. Comput. Syst. Sci. 54(2),
317–331 (1997)

2. Biswas, P., Lian, T.C., Wang, T.C., Ye, Y.: Semidefinite programming based algo-
rithms for sensor network localization. ACM Trans. Sens. Netw. (TOSN) 2(2),
188–220 (2006)

3. Charikar, M., Hajiaghayi, M., Karloff, H.: Improved approximation algorithms for
label cover problems. ESA 2009, 23–34 (2009)

4. Fleischner, H.: X. 1 algorithms for Eulerian trails. In: Eulerian Graphs and Related
Topics: Part 1. Annals of Discrete Mathematics, vol. 50, pp. 1–13 (1991)

5. Fleischner, H., Sabidussi, G., Sarvanov, V.I.: Maximum independent sets in 3-and
4-regular Hamiltonian graphs. Discrete Math. 310(20), 2742–2749 (2010)

6. Fleury, M.: Deux problemes de geometrie de situation. Journal de mathematiques
elementaires 2(2), 257–261 (1883)

7. Ghafourian, A., Georgiou, O., Barter, E., Gross, T.: Wireless localization with
diffusion maps. arXiv preprint arXiv:1908.05216 (2019)

8. Halldórsson, M.M., Radhakrishnan, J.: Greed is good: approximating independent
sets in sparse and bounded-degree graphs. Algorithmica 18(1), 145–163 (1997)

9. Hopcroft, J.E., Karp, R.M.: An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput. 2(4), 225–231 (1973)

10. Hu, L., Evans, D.: Localization for mobile sensor networks. In: MobiCom 2004, pp.
45–57 (2004)

11. Nguyen, C.L., Georgiou, O., Yonezawa, Y., Doi, Y.: The wireless localisation
matching problem and a maximum likelihood based solution. In: ICC 2017, pp.
1–7 (2017)

http://arxiv.org/abs/1908.05216

248 C. L. Nguyen et al.

12. Nguyen, C.L., Georgiou, O., Yonezawa, Y., Doi, Y.: The wireless localization
matching problem. IEEE Internet Things J. 4(5), 1312–1326 (2017)

13. Nguyen, L., Georgiou, O., Suppakitpaisarn, V.: Improved localization accuracy
using machine learning and refining RSS measurements. In: GLOBECOM Work-
shops 2018 (2018)

14. Skiena, S.: Coloring bipartite graphs, chap. 5.5.2. In: Skiena, S. (ed.) Implementing
Discrete Mathematics: Combinatorics and Graph Theory with Mathematica, p.
213. Addison-Wesley, Reading (1990)

15. Suppakitpaisarn, V., Dai, W., Baffier, J.F.: Robust network flow against attackers
with knowledge of routing method. In: HPSR 2015, pp. 40–47 (2015)

Packing Arc-Disjoint Cycles in Bipartite
Tournaments

Ajay Saju Jacob1 and R. Krithika2(B)

1 Indian Institute of Technology Madras, Chennai, India
ee16b129@smail.iitm.ac.in

2 Indian Institute of Technology Palakkad, Palakkad, India
krithika@iitpkd.ac.in

Abstract. An r-partite tournament is a directed graph obtained by
assigning a unique orientation to each edge of a complete undirected
r-partite simple graph. Given a bipartite tournament T on n vertices,
we explore the parameterized complexity of the problem of determining
if T has a cycle packing (a set of pairwise arc-disjoint cycles) of size k.
Although the maximization version of this problem can be seen as the
linear programming dual of the well-studied problem of finding a mini-
mum feedback arc set (a set of arcs whose deletion results in an acyclic
graph) in bipartite tournaments, surprisingly no algorithmic results seem
to exist. We show that this problem can be solved in 2O(k log k)nO(1) time
and admits a kernel with O(k2) vertices.

1 Introduction

A tournament is a directed graph in which there is exactly one arc between every
pair of distinct vertices. Equivalently, a tournament is a directed graph obtained
by assigning a unique orientation to each edge of a complete undirected simple
graph. More generally, a r-partite tournament is a directed graph obtained by
assigning a unique orientation to each edge of a complete undirected r-partite
simple graph. These graphs naturally model the results of competitions; tourna-
ments represent round-robin competitions while r-partite tournaments represent
competitions between r teams. Due to this modelling ability, tournaments and
r-partite torunaments have proven to be tremendously useful in understanding
important problems in machine learning, search engine ranking, voting systems,
social choice theory and ontologies. In particular, problems on tournaments and
bipartite tournaments (r-partite torunaments for r = 2) have several applica-
tions in these areas. One such problem is Feedback Arc Set. A feedback arc
set is a set of arcs whose deletion results in an acyclic graph. Given a directed
graph and a positive integer k, Feedback Arc Set is the problem of deter-
mining if the graph has a set of at most k arcs whose deletion results in an
acyclic graph. Feedback Arc Set on tournaments finds applications in rank
aggregation and this problem on bipartite tournaments is useful in ontologies
mappings [17,18,24].

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 249–260, 2020.
https://doi.org/10.1007/978-3-030-39881-1_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_21&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_21

250 A. S. Jacob and R. Krithika

Feedback Arc Set is known to be NP-hard on tournaments and bipartite
tournaments [1,6,7,15]. Feedback Arc Set has a 4-approximation algorithm
on bipartite tournaments [27] and a polynomial-time approximation scheme on
tournaments [19]. Feedback Arc Set on tournaments and bipartite tourna-
ments is well-studied in the parameterized complexity framework too. In this
framework, each problem instance is associated with a non-negative integer k
called parameter, and a problem is said to be fixed-parameter tractable (FPT) if
it can be solved in f(k)nO(1) time for some function f , where n is the input size.
For convenience, the running time f(k)nO(1) where f grows super-polynomially
with k is denoted as O�(f(k)). A kernelization algorithm is a polynomial-time
algorithm that transforms an arbitrary instance of the problem to an equiva-
lent instance of the same problem whose size is bounded by some computable
function g of the parameter of the original instance. The resulting instance is
called a kernel and if g is a polynomial function, then it is called a polynomial
kernel and we say that the problem admits a polynomial kernel. Kernelization
typically involves applying a set of rules (called reduction rules) to the given
instance to produce another instance. A reduction rule is said to be safe if it is
sound and complete, i.e., applying it to the given instance produces an equiva-
lent instance. In order to classify parameterized problems as being FPT or not,
the W-hierarchy is defined: FPT ⊆ W[1] ⊆ W[2] ⊆ . . . ⊆ XP. It is believed that
the subset relations in this sequence are all strict, and a parameterized problem
that is hard for some complexity class above FPT in this hierarchy is said to be
fixed-parameter intractable. Further details on parameterized algorithms can be
found in [8,9,12].

Feedback Arc Set is FPT when parameterized by k on both tournaments
and bipartite tournaments [2,13,16]. Further, Feedback Arc Set has a ker-
nel with O(k) vertices on tournaments [5] and a kernel with O(k2) vertices on
bipartite tournaments [23,26]. Though Feedback Arc Set is extensively stud-
ied in tournaments and bipartite tournaments, its dual, namely Arc-disjoint
Cycles, has surprisingly not been considered in the literature until recently [4].
Given a directed graph G and a positive integer k, the Arc-disjoint Cycles
problem is to determine whether G has k arc disjoint cycles. This problem is
W[1]-hard in general [20,25]. However, Arc-disjoint Cycles on tournaments
is FPT via an 2O(k log k)nO(1)-time algorithm and admits a kernel with O(k) ver-
tices [4]. In this paper, we investigate the parameterized complexity of packing
arc-disjoint cycles in bipartite tournaments.

Arc-disjoint Cycles in Bipartite Tournaments (ACBT)
Input: A bipartite tournament B and a positive integer k.
Question: Do there exist k arc-disjoint cycles in B?
Parameter: k

We show that ACBT is FPT and admits a polynomial kernel. En route, we
discover an interesting min-max relation analogous to the classical Erdös-Pósa
theorem [10]. It is easy to verify that a bipartite tournament B that has k arc-
disjoint cycles need not necessarily have k arc-disjoint 4-cycles. However, we can

Packing Arc-Disjoint Cycles in Bipartite Tournaments 251

show that if B has k arc-disjoint cycles, then B has k arc-disjoint cycles each
of length at most 4k. This observation is the starting point of our study. Using
this observation and the standard color-coding technique [3,8,22], it is easy to
show that ACBT is FPT and can be solved in O�(2O(k2)) time. We improve this
result and show the following.

Theorem 1. ACBT can be solved in O�(2O(k log k)) time.

This result crucially uses the following Erdös-Pósa type result.

Theorem 2. Every bipartite tournament B either contains k arc-disjoint
4-cycles or has a feedback arc set of size at most 8(k − 1).

Theorem 2 leads to the following kernelization results which is in turn used
in the proof of Theorem1.

Theorem 3. ACBT admits a kernel with O(k2) vertices.

Road Map. The paper is organized as follows. In Sect. 2, we give some defi-
nitions related to directed graphs, cycles and bipartite tournaments. In Sect. 3,
we show that ACBT is FPT via an O�(2O(k2)) time algorithm. In Sect. 4, we
show the claimed combinatorial result on bipartite tournaments (Theorem2). In
Sect. 5, we show that ACBT admits a quadratic vertex kernel and in Sect. 6, we
describe an O�(2O(k log k)) time algorithm for ACBT using Theorems 2 and 3.
Finally, we conclude with some remarks in Sect. 7.

2 Preliminaries

The set {1, 2, . . . , n} is denoted by [n]. A directed graph (or digraph) is a pair
consisting of a set V of vertices and a set A of arcs. An arc is specified as an
ordered pair of vertices. We will consider only simple unweighted digraphs. For
a digraph D, V (D) and A(D) denote the set of its vertices and the set of its
arcs, respectively. Two vertices u, v are said to be adjacent in D if (u, v) ∈ A(D)
or (v, u) ∈ A(D). For an arc e = (u, v), h(e) denotes v and t(e) denotes u.
For a vertex v ∈ V (D), its out-neighborhood, denoted by N+(v), is the set
{u ∈ V (D) | (v, u) ∈ A(D)} and its in-neighborhood, denoted by N−(v), is the
set {u ∈ V (D) | (u, v) ∈ A(D)}. For a set of arcs F , V (F) denotes the union of
the sets of endpoints of arcs in F . For a set X ⊆ V (D) ∪ A(D), D − X denotes
the digraph obtained from D by deleting X.

A path P in D is a sequence (v1, . . . , vk) of distinct vertices such that for each
i ∈ [k − 1], (vi, vi+1) ∈ A(D). The set {v1, . . . , vk} is denoted by V (P) and the
set {(vi, vi+1) | i ∈ [k − 1]} is denoted by A(P). A path P is called an induced
(or chordless) path if there is no arc in D that is between two non-consecutive
vertices of P . A cycle C in D is a sequence (v1, . . . , vk) of distinct vertices such
that (v1, . . . , vk) is a path and (vk, v1) ∈ A(D). The set {v1, . . . , vk} is denoted
by V (C) and the set {(vi, vi+1) | i ∈ [k − 1]} ∪ {(vk, v1)} is denoted by A(C).

252 A. S. Jacob and R. Krithika

A cycle C = (v1, . . . , vk) is called an induced (or chordless) cycle if there is no
arc in D that is between two non-consecutive vertices of C with the exception
of the arc (vk, v1). The length of a path or cycle X is the number of vertices in
it and is denoted by |X|. For a set C of paths or cycles, A(C) denotes the set
{e ∈ A(D) | ∃C ∈ C, e ∈ A(C)}. A cycle on three vertices is called a triangle.
A cycle of length q is called a q-cycle. A digraph is said to be triangle-free if it
has no triangles. A digraph is called a directed acyclic graph if it has no cycles.
Any directed acyclic graph D has an ordering σ called topological ordering of its
vertices such that for each (u, v) ∈ A(D), σ(u) < σ(v) holds. A feedback vertex
(arc) set is a set of vertices (arcs) whose deletion results in an acyclic graph.

A bipartite digraph is a digraph B whose vertex set can be partitioned into
two sets X and Y such that every arc in B has one endpoint in X and the other
endpoint in Y . Equivalently, a bipartite digraph is a digraph that is obtained
by assigning a unique orientation to each edge of an undirected bipartite graph.
We denote B as B[X,Y] where X and Y form the bipartition of the underlying
bipartite graph. It is easy to see that a bipartite digraph has no triangle and
any 4-cycle is an induced 4-cycle. A bipartite tournament is a bipartite digraph
B[X,Y] in which for every pair u, v of distinct vertices with u ∈ X, v ∈ Y either
(u, v) ∈ A(B) or (v, u) ∈ A(B) but not both.

3 An FPT Algorithm Using Color Coding

Consider an instance I = (B, k) of ACBT. First, we show that it suffices to
determine if B has k arc-disjoint cycles each of length at most 4k in order to
determine if (B, k) is an yes-instance of ACBT or not.

Observation 4. Let k and r be positive integers such that r ≤ k. If a bipartite
tournament B contains a set C of r arc-disjoint cycles, then it also contains a
set C∗ of r arc-disjoint cycles each of length at most 4k.

Proof. Let C be a set of r arc-disjoint cycles in B that minimizes
∑

C∈C |C|. If
every cycle in C is a 4-cycle, then the claim holds. Otherwise, let C ′ be the longest
cycle in C and let 2� be its length (� > 2). Let vi, vj be two non-consecutive
vertices of the cycle such that vi ∈ X and vj ∈ Y . Then, either (vi, vj) ∈ A(B)
or (vj , vi) ∈ A(B). In any case, the arc e between vi and vj along with A(C)
forms a cycle C ′ of length less than � with A(C ′) \ {e} ⊂ A(C). By our choice of
C, this implies that e is an arc in some other cycle Ĉ ∈ C. This property is true
for the arc between any pair of non-consecutive vertices in C. Hence, every edge
between two non-consecutive vertices of C ′ must be part of some other cycle in
C. That is, �(� − 2) ≤ 2�(k − 1) implying that 2� ≤ 4k. �	

Let n denote |V (B)| and m denote |A(B)|. Suppose I is a yes-instance and
C is a set of k arc-disjoint cycles in B. From Observation 4, we may assume
that the total number of arcs that are in cycles in C is at most 4k2. Using this
observation, we proceed as follows. We color the arcs of B uniformly at random
from the color set [�] where � = 4k2. Let χ : A(B) → [�] denote this coloring.

Packing Arc-Disjoint Cycles in Bipartite Tournaments 253

Proposition 1 ([3]). If E is a subset of A(B) of size �, then the probability
that the arcs in E are colored with pairwise distinct colors is at least e−�.

Next, we define two notions of a colorful solution for our problem.

Definition 1 (Colored set of arc-disjoint cycles). A set C of arc-disjoint
cycles in B that satisfies the property that for any two distinct cycles C,C ′ ∈ C
and for any two arcs e ∈ A(C), e′ ∈ A(C ′), χ(e) �= χ(e′) holds is said to be a
colored set of arc-disjoint cycles.

Definition 2 (Colorful set of arc-disjoint cycles). A set C of arc-disjoint
cycles in B that satisfies the property that for any two (not necessarily distinct)
cycles C,C ′ ∈ C and for any two distinct arcs e ∈ A(C), e′ ∈ A(C ′), χ(e) �= χ(e′)
holds is said to be a colorful set of arc-disjoint cycles.

Observe that a colorful set of arc-disjoint cycles is also a colored set of arc-
disjoint cycles. Rephrasing Proposition 1 in the context of our problem, we have
the following observation.

Observation 5. If C is a solution of I with the property that for each C ∈ C,
|C|≤ 4k, then C is a colorful set of arc-disjoint cycles in B with probability at
least e−�.

Armed with the guarantee that a solution (if one exists) of I is colorful with
sufficiently high probability, we focus on determining if there is a colorful set of
cycles in B.

Lemma 1. If B has a colorful set of k arc-disjoint cycles, then a colored set of
k arc-disjoint cycles in B can be obtained in 2O(k2)nO(1) time.

Proof. Let � = 4k2. For i ∈ [�], let Ai denote the set of arcs of B that are
colored with color i. For a subset S of [�], let BS denote the subgraph of B
with V (BS) = V (B) and A(BS) =

⋃
i∈S Ai. For a subset S of [�] and a positive

integer r ≤ k, define Γ(S, r) to be 1 if B has a set C of r cycles such that
A(C) ⊆ S and 0 otherwise. Also, Γ(S, 1) is 1 if BS has a cycle. Further, for
r > 1, Γ(S, r) =

∨
X Γ(S \X, r−1) where X ⊆ S and BX has a cycle. Therefore,

for each S ⊆ [�], Γ(S, k) can be computed in 2O(k2)nO(1) time. Clearly, B has a
colored set of k arc-disjoint cycles if and only if Γ(S, k) = 1 for some S ⊆ [�] and
this can be determined in 2O(k2)nO(1) time. �	

Using the standard technique of derandomization of color coding based algo-
rithms [3,8,22], we have the following result by taking m = |A(B)|.
Proposition 2 ([3,8,22]). Given integers m, � ≥ 1, there is a family Fm,� of
coloring functions χ : A(T) → [�] of size e��O(log �) log m that can be constructed
in e��O(log �)m log m time satisfying the following property: for every set E ⊆
A(B) of size �, there is a function χ ∈ Fm,� such that χ(e) �= χ(e′) for any two
distinct arcs e, e′ ∈ E.

254 A. S. Jacob and R. Krithika

Then, we have the following result.

Theorem 6. ACBT can be solved in O�(2O(k2)) time.

Proof. Consider an instance I = (B, k) of ACBT. Let � = 4k2. First, we
compute the family Fm,� of e��O(log �) log m coloring functions using Proposi-
tion 2 where m is the number of arcs in B. Then, for each coloring function
χ : A(B) → [�] in Fm,�, we determine if B has a coloredl set of k cycles using
Lemma 1. Due to the properties of Fm,� guaranteed by Proposition 2, it follows
that I is a yes-instance if and only if B has a set of k cycles that is colorful
with respect to at least one of the coloring functions. The overall running time
is O�(2O(k2)). �	

4 An Erdös-Pósa Type Theorem

The classical Erdös-Pósa theorem for cycles in undirected graphs states that
there exists a function f(k) = O(k log k) such that for each non-negative integer
k, every undirected graph either contains k vertex-disjoint cycles or has a feed-
back vertex set consisting of f(k) vertices [10]. An interesting consequence of
this theorem is that it leads to an FPT algorithm for Vertex-Disjoint Cycle
Packing (see [21] for more details). Recently, an analogous result for arc-disjoint
cycles in tournaments [4] has been used to give an 2O(k log k)nO(1) time algorithm
and a kernel with O(k) vertices for finding k arc-disjoint cycles in tournaments.

In this section, we show that for each non-negative integer k, every bipartite
tournament either contains k arc-disjoint cycles or has a feedback arc set con-
sisting of at most 8k arcs. We use this result to design an 2O(k log k)nO(1) time
algorithm and a kernel with O(k2) vertices for ACBT.

For a bipartite digraph D[X,Y], let Λ(D) denote the number of pairs u, v of
vertices in D with u ∈ X, v ∈ Y and niether (u, v) ∈ A(D) nor (v, u) ∈ A(D).

Lemma 2. Let D[X,Y] be a bipartite digraph in which for every pair u ∈ X,
v ∈ Y of distinct vertices, at most one of (u, v) or (v, u) is in A(D). Then, if
D has no 4-cycle, then we can compute a feedback arc set of D of size at most
Λ(D) in polynomial time.

Proof. We will prove the claim by induction on |V (D)|. The claim trivially holds
for |X|< 2 or |Y |< 2 as in these cases, the empty set is a feedback arc set. Hence,
assume that |X|≥ 2 or |Y |≥ 2.

First we apply a simple preprocessing rule on D. If D has a vertex v that
either has no in-neighbours or no out-neighbours then delete v from D. As v is
not in any cycle of D, any feedback arc set of D′ is an feedback arc set of D.

Next, for a vertex v ∈ V (D), define first(v) to be the number of induced
paths of length 4 with v as the first vertex. Similarly, define sec(v) to be the
number of induced paths of length 4 with v as the second vertex. We claim
that

∑
v∈V (D) first(v) =

∑
v∈V (D) sec(v). Any induced path P = (u, v, w, z) of

length 4 in D contributes 1 to first(u) and 1 to sec(v). Further, P does not

Packing Arc-Disjoint Cycles in Bipartite Tournaments 255

contribute to first(x) for any x �= u and P does not contribute to sec(x) for
any x �= v. Therefore, P contributes 1 to

∑
v∈V (D) first(v) and

∑
v∈V (D) sec(v).

Hence,
∑

v∈V (D) first(v) =
∑

v∈V (D) sec(v). It now follows that there is a vertex
u ∈ V (D) such that first(u) ≤ sec(u).

Without loss of generality assume that u ∈ X. Consider the following sets of
vertices of D: Y1 = N−(u), Y2 = N+(u), Y3 = Y \ (Y1 ∪ Y2), X2 = N+(Y2) and
X1 = X \ (X2 ∪ {u}). Following are the properties of these sets.

– Y1 and Y2 are non-empty due to the preprocessing.
– There is no arc from a vertex x ∈ X2 to a vertex y ∈ Y1. Otherwise, (u, y′, x, y)

is a 4-cycle where x ∈ N+(y′) and y′ ∈ Y2.
– By the definition of X1, there is no arc from a vertex y ∈ Y2 to a vertex

x ∈ X1.

Let D1 denote the subgraph D[X1, Y1 ∪ Y3] and D2 denote the subgraph
D[X2, Y2]. As D1 and D2 are vertex-disjoint subgraphs of D, we have Λ(D) ≥
Λ(D1) + Λ(D2). Any induced path P = (a, u, b, c) of length 4 in D with u as
the second vertex satisfies the property that a ∈ Y1 and c ∈ X2. Further, a and
c are non-adjacent as P is an induced path and D has no 4-cycle. Therefore,
sec(u) is the number of non-adjacent pairs a, b such that a ∈ Y1 and c ∈ X2. As
a ∈ V (D1) and c ∈ V (D2), we have Λ(D) ≥ Λ(D1) + Λ(D2) + sec(u).

Let E denote the set of arcs (x, y) such that x ∈ X2 and y ∈ Y3. Let F1 and F2

be feedback arc sets of D1 and D2, respectively. We claim that F = F1∪F2∪E is
a feedback arc set of D. If there exists a cycle C in the graph obtained from D by
deleting the arcs in F , then C has an arc (p, q) with p ∈ V (D1) and q ∈ V (D2)
and an arc (r, s) with r ∈ V (D2) and s ∈ V (D1). Following are the properties
of vertices r and s.

– It is not possible that r ∈ Y2 and s ∈ X1 by the definition of X1.
– It is not possible that r ∈ X2 and s ∈ Y1 as D has no 4-cycle.

Therefore, it follows that (r, s) ∈ E which leads to a contradiction. Therefore,
F is a feedback arc set of D of size |F |= |F1|+|F2|+|E|. As any induced path
P = (u, a, b, c) has b ∈ X2 and c ∈ Yr, we have |E|= first(u) and by the choice of
u, we have first(u) ≤ sec(u). Hence, we can conclude that |F |≤ |F1|+|F2|+ sec(u)
and by induction hypothesis, |F1|≤ Λ(D1) and |F2|≤ Λ(D2). It now follows that
|F |≤ Λ(D). �	

This leads to the following main result of this section.

Theorem 2 (restated). For every non-negative integer k, every bipartite tour-
nament B either contains k arc-disjoint 4-cycles or has a feedback arc set of size
at most 8(k − 1) that can be obtained in polynomial time.

Proof. Suppose C is a maximal set of arc-disjoint 4-cycles in B with |C|≤ k − 1.
Let D denote the digraph obtained from B by deleting the arcs that are in some
4-cycle in C. Clearly, D has no 4-cycle and Λ(D) ≤ 4(k − 1). From Lemma 2,
we know that D has a feedback arc set of size at most 4(k − 1). Also, if F is a
feedback arc set of D, then F ∪ A(C) is a feedback arc set of B. Therefore, B
has a feedback arc set of size at most 8(k − 1). �	

256 A. S. Jacob and R. Krithika

We will use this result crucially in showing that ACBT can be solved in
O�(2O(k log k)) time and admits a kernel with O(k2) vertices.

5 A Polynomial Kernel

In this section, we show that ACBT admits a quadratic vertex kernel. Let
(B[X,Y], k) be an instance of ACBT. From Theorem 2, we know that B has
either k arc-disjoint 4-cycles or a feedback arc set F of size at most 8(k − 1).
If the former case holds, then we return a trivial yes-instance of constant size
as the kernel. In the latter case, let S = V (F) be a feedback vertex set of B of
size at most 16k. Let D denote the acyclic bipartite tournament B − S and let
δ denote a topological ordering of D.

As every cycle in B has at least 2 vertices in S, we have the following obser-
vation.

Observation 7. For every v ∈ S, the subgraph of B induced by V (D) ∪ {v} is
also acyclic.

As every arc in B is between a vertex in X and a vertex in Y , we have the
following observation.

Observation 8. The subgraphs of B induced by V (D) ∪ (S ∩ X) and V (D) ∪
(S ∩ Y) are both acyclic.

For a vertex v ∈ S, define the following sets.

– R+(v) is the set of first (with respect to δ) (2k + 1) vertices in N+(v).
– R−(v) is the set of last (with respect to δ) (2k + 1) vertices in N−(v).
– R(v) = R+(v) ∪ R−(v).

Let B′ be the subgraph of B induced by S ∪ {R(v) | v ∈ S}.

Lemma 3. B has a set of k arc-disjoint cycles if and only if B′ has a set of k
arc-disjoint cycles.

Proof. As B′ is a subgraph of B, the reverse direction of the claim holds. Suppose
B has a set of k arc-disjoint cycles. Among all such sets, let C be the one that
maximizes

∑
C∈C |V (C) ∩ V (B′)|.

Suppose there is a cycle C ∈ C that is not in B′. Then, there is a vertex
vi ∈ V (C) that is not in B′. As the feedback vertex set S is the set of endpoints
of the arcs of a feedback arc set of B, any cycle in B has at least two vertices from
S. Let a and b be two such vertices in C where (a, v1, . . . , vi, . . . , vq, b) is a path
in C from a to b such that v1, v2, . . . , vq ∈ V (D). Note that δ(a) < δ(vi) < δ(b) as
B[{a, v1, . . . , vi, . . . , vq}] and B[{v1, . . . , vi, . . . , vq, b}] are acyclic. Without loss
of generality assume that vi ∈ X.

Case (a ∈ X and b ∈ Y): In this case, vi−1 ∈ Y . Also, (a, vi−1) ∈ A(B) and
(vi, b) ∈ A(B). As vi ∈ N−(b) and vi �∈ V (B′), we have |R−(b)|= 2k + 1 and

Packing Arc-Disjoint Cycles in Bipartite Tournaments 257

there exists a vertex z ∈ R−(b) such that arcs (z, b) and (vi−1, z) are not part of
any cycle in C. As z, vi ∈ N−(b), z ∈ R−(b), (vi−1, vi) ∈ A(B) and vi �∈ R−(b),
it follows that (vi−1, z) ∈ A(B). If vi−1 ∈ V (B′) then we can replace the path
(a, v1, . . . , vi, . . . , vq, b) with (a, vi−1, z, b) to obtain another set C′ of k arc-disjoint
cycles such that

∑
C∈C′ |V (C) ∩ V (B′)|> ∑

C∈C |V (C) ∩ V (B′)| which leads to
a contradiction. If vi−1 �∈ V (B′) there exists a vertex r ∈ R+(a) such that arcs
(a, r) and (r, z) are not part of any cycle in C. As r ∈ R+(a) and vi �∈ R+(a),
we have (r, z) ∈ A(B). Hence, we can replace path (a, v1, . . . , vi, . . . , vq, b) with
(a, r, z, b) to obtain another set C′ of k arc-disjoint cycles such that

∑
C∈C′ |V (C)∩

V (B′)|> ∑
C∈C |V (C) ∩ V (B′)| which leads to a contradiction.

Case (a ∈ Y and b ∈ X): Then, vi+1 ∈ Y , (vi+1, b) ∈ A(B) and (a, vi) ∈ A(B).
As vi �∈ V (B′) there exists a vertex z ∈ R+(a) such that arcs (a, z) and (z, vi+1)
are not part of any cycle in C. As z ∈ R+(a) and vi �∈ R+(a), we have (z, vi+1) ∈
A(B). If vi+1 ∈ V (B′) then we can replace the path (a, v1, . . . , vi, . . . , vq, b)
with (a, z, vi+1, b) to obtain another set C′ of k arc-disjoint cycles such that∑

C∈C′ |V (C) ∩ V (B′)|> ∑
C∈C |V (C) ∩ V (B′)| which leads to a contradiction. If

vi+1 �∈ V (B′), then there exists a vertex r ∈ R−(b) such that arcs (r, b) and (z, r)
are not part of any cycle in C. As r ∈ R−(b) and vi �∈ R−(b), we have (z, r) ∈
A(B). Hence in this case also we can replace path (a, v1, . . . , vi, . . . , vq, b) with
(a, z, r, b) to obtain another set C′ of k arc-disjoint cycles such that

∑
C∈C′ |V (C)∩

V (B′)|> ∑
C∈C |V (C) ∩ V (B′)| which leads to a contradiction.

Case (a ∈ Y and b ∈ Y): We know that (vi, b) ∈ A(B) and (a, vi) ∈ A(B). As
vi �∈ V (B′) there exists a vertex z ∈ R+(a) such that arcs (a, z) and (z, b) are not
part of any cycle in C. As z ∈ R+(a) and vi �∈ R+(a), we have (z, b) ∈ A(B). We
can replace the path (a, v1, . . . , vi, . . . , vq, b) with (a, z, b) to obtain another set C′

of k arc-disjoint cycles such that
∑

C∈C′ |V (C) ∩ V (B′)|> ∑
C∈C |V (C) ∩ V (B′)|

which leads to a contradiction.
Case (a ∈ X and b ∈ X): In this particular case, we have vi−1, vi+1 ∈ Y . Also,
(a, vi−1), (vi−1, b), (a, vi+1), (vi+1, b) ∈ A(B). If vi−1 ∈ V (B′) (or vi+1 ∈ V (B′))
then we can replace (a, v1, . . . , vi, . . . , vq, b) with (a, vi−1, b) (or (a, vi+1, b)) to
obtain another set C′ of k arc-disjoint cycles such that

∑
C∈C′ |V (C) ∩ V (B′)|>∑

C∈C |V (C)∩V (B′)| which leads to a contradiction. If vi−1, vi+1 �∈ V (B′), then
there exists a vertex z ∈ R+(a) such that (a, z) and (z, b) are not part of any cycle
in C. As z ∈ R+(a), vi−1 �∈ R+(a) and (vi−1, b) ∈ A(B), we have (z, b) ∈ A(B).
Then we can replace (a, v1, . . . , vi, . . . , vq, b) with (a, z, b) to obtain another set C′

of k arc-disjoint cycles such that
∑

C∈C′ |V (C) ∩ V (B′)|> ∑
C∈C |V (C) ∩ V (B′)|

which leads to a contradiction. �	
Thus, we have the following result.

Theorem 3 (restated). ACBT admits a kernel with O(k2) vertices.

Proof. Given an instance (B[X,Y], k) of ACBT, return (B′, k) as the resulting
instance where B′ is as defined above. From Lemma 3 and from the fact that B′

has O(k2) vertices, it follows that (B′, k) is a kernel of (B, k). �	

258 A. S. Jacob and R. Krithika

6 An Improved FPT Algorithm

In this section, we show that ACBT can be solved in O�(2O(k log k)) time. The
idea is to reduce the problem to the following Arc-Disjoint Paths problem in
directed acyclic graphs.

Arc-Disjoint Paths
Input: A digraph D on n vertices and k ordered pairs (s1, t1), . . . , (sk, tk) of
vertices of D.
Question: Do there exist arc-disjoint paths P1, . . . , Pk in D such that Pi is
a path from si to ti for each i ∈ [k]?
Parameter: k

On directed acyclic graphs, Arc-Disjoint Paths is known to be NP-complete
[11], W[1]-hard [25] and solvable in nO(k) time [14]. Despite its fixed-parameter
intractability, we will show that we can use the nO(k) algorithm to describe
another (and faster) FPT algorithm for ACBT.

Theorem 1 (restated). ACBT can be solved in O�(2O(k log k)) time.

Proof. Consider an instance (B, k) of ACBT. Using Theorem 3, we obtain a
kernel I = (B̂, k̂) such that B̂ has O(k2) vertices in polynomial time. Further,
k̂ = k. By definition, (B, k) is a yes-instance if and only if (B̂, k̂) is a yes-instance.
Using Theorem 2, we know that B̂ either contains k̂ arc-disjoint 4-cycles or has
a feedback arc set of size at most 8(k̂ − 1) that can be obtained in polynomial
time. If Theorem 2 returns a set of k̂ arc-disjoint 4-cycles in B̂, then we declare
that (B, k) is a yes-instance.

Otherwise, let F̂ be the feedback arc set of size at most 8(k̂ − 1) returned
by Theorem 2. Let D denote the (acyclic) digraph obtained from B̂ by deleting
F̂ . Observe that D has O(k2) vertices. Suppose B̂ has a set C = {C1, . . . , Ĉk}
of k̂ arc-disjoint cycles. For each C ∈ C, we know that A(C) ∩ F̂ �= ∅ as F̂ is a
feedback arc set of B̂. We can guess that subset F of F̂ such that F = F̂ ∩A(C).
Then, for each cycle Ci ∈ C, we can guess the arcs Fi from F that it contains
and also the order σi in which they appear. This information is captured as a
partition F of F into k̂ sets, F1 to F

̂k and the set {σ1, . . . , σ̂k} of permutations
where σi is a permutation of Fi for each i ∈ [k̂]. Any cycle Ci that has Fi ⊆ F
contains a (v, x)-path between every pair (u, v), (x, y) of consecutive arcs of Fi

with arcs from A(D). That is, there is a path from h(σ−1
i (j)) and t(σ−1

i ((j + 1)
mod |Fi|)) with arcs from D for each j ∈ [|Fi|]. The total number of such paths
in these k̂ cycles is O(|F |) and the arcs of these paths are contained in D which
is a (simple) directed acyclic graph.

The number of choices for F is 2| ̂F | and the number of choices for a par-
tition F = {F1, . . . , F̂k} of F and a set X = {σ1, . . . , σ̂k} of permutations
is 2O(| ̂F |log| ̂F |). Once such a choice is made, the problem of finding k̂ arc-
disjoint cycles in B̂ reduces to the problem of finding k̂ arc-disjoint cycles

Packing Arc-Disjoint Cycles in Bipartite Tournaments 259

C = {C1, . . . , Ĉk} in B̂ such that for each 1 ≤ i ≤ k̂ and for each 1 ≤ j ≤ |Fi|, Ci

has a path Pij between h(σ−1
i (j)) and t(σ−1

i ((j + 1) mod |Fi|)) with arcs from
D = B̂ − F̂ . This problem is essentially finding r = O(|F̂ |) arc-disjoint paths in
D and can be solved in |V (D)|O(r) time using the algorithm in [14]. Therefore,
the overall running time of the algorithm is O�(2O(k log k)) as |V (D)|= O(k2)
and r = O(k). �	

7 Conclusion

We initiated the parameterized complexity study of the problem of packing arc-
disjoint cycles in bipartite tournaments. We showed that it is FPT when param-
eterized by the solution size and admits a quadratic vertex kernel. However, the
classical complexity status of the problem is still open, i.e, we do not know if it
is NP-hard or not. Resolving the same is a natural future research direction. We
conjecture that it is indeed NP-hard.

References

1. Alon, N.: Ranking tournaments. SIAM J. Discrete Math. 20(1), 137–142 (2006)
2. Alon, N., Lokshtanov, D., Saurabh, S.: Fast FAST. In: 36th International Collo-

quium on Automata, Languages, and Programming (ICALP), pp. 49–58 (2009)
3. Alon, N., Yuster, R., Zwick, U.: Color-coding. J. ACM 42(4), 844–856 (1995)
4. Bessy, S., et al.: Packing arc-disjoint cycles in tournaments. In: 44th International

Symposium on Mathematical Foundations of Computer Science (MFCS 2019), pp.
27:1–27:14 (2019)

5. Bessy, S., et al.: Kernels for feedback arc set in tournaments. J. Comput. Syst. Sci.
77(6), 1071–1078 (2011)

6. Charbit, P., Thomassé, S., Yeo, A.: The minimum feedback arc set problem is
NP -hard for tournaments. Comb. Probab. Comput. 16(1), 1–4 (2007)

7. Conitzer, V.: Computing slater rankings using similarities among candidates. In:
21st National Conference on Artificial Intelligence, vol. 1. pp. 613–619 (2006)

8. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

9. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity.
Springer, London (2013). https://doi.org/10.1007/978-1-4471-5559-1

10. Erdős, P., Pósa, L.: On independent circuits contained in a graph. Can. J. Math.
17, 347–352 (1965)

11. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity
flow problems. SIAM J. Comput. 5(4), 691–703 (1976)

12. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

13. Fomin, F., Pilipczuk, M.: Subexponential parameterized algorithm for computing
the cutwidth of a semi-complete digraph. In: 21st Annual European Symposium
on Algorithms (ESA 2013), vol. 8125, pp. 505–516 (2013)

14. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theor. Comput. Sci. 10(2), 111–121 (1980)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X

260 A. S. Jacob and R. Krithika

15. Guo, J., Hüffner, F., Moser, H.: Feedback arc set in bipartite tournaments is NP -
complete. Inf. Process. Lett. 102(2), 62–65 (2007)

16. Karpinski, M., Schudy, W.: Faster algorithms for feedback arc set tournament,
kemeny rank aggregation and betweenness tournament. In: Cheong, O., Chwa, K.-
Y., Park, K. (eds.) ISAAC 2010. LNCS, vol. 6506, pp. 3–14. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17517-6 3

17. Kemeny, J.: Mathematics without numbers. Daedalus 88(4), 577–591 (1959)
18. Kemeny, J., Snell, J.: Mathematical Models in the Social Sciences. Blaisdell,

New York (1962)
19. Kenyon-Mathieu, C., Schudy, W.: How to rank with few errors. In: Proceedings of

the 39th Annual ACM Symposium on Theory of Computing (STOC), pp. 95–103
(2007)

20. Krivelevich, M., Nutov, Z., Salavatipour, M.R., Yuster, J.V., Yuster, R.: Approx-
imation algorithms and hardness results for cycle packing problems. ACM Trans.
Algorithms 3(4), 48 (2007)

21. Lokshtanov, D., Mouawad, A., Saurabh, S., Zehavi, M.: Packing cycles faster Than
Erdős-Pósa. In: 44th International Colloquium on Automata, Languages, and Pro-
gramming (ICALP), pp. 71:1–71:15 (2017)

22. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomiza-
tion. In: Proceedings of IEEE 36th Annual Foundations of Computer Science, pp.
182–191 (1995)

23. Paul, C., Perez, A., Thomassé, S.: Conflict Packing yields linear vertex-kernels for
Rooted Triplet Inconsistency and other problems. CoRR abs/1101.4491 (2011)

24. Sanghvi, B., Koul, N., Honavar, V.: Identifying and eliminating inconsistencies in
mappings across hierarchical ontologies. In: Meersman, R., Dillon, T., Herrero, P.
(eds.) OTM 2010. LNCS, vol. 6427, pp. 999–1008. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-16949-6 24

25. Slivkins, A.: Parameterized tractability of edge-disjoint paths on directed acyclic
graphs. SIAM J. Discrete Math. 24(1), 146–157 (2010)

26. Xiao, M., Guo, J.: A quadratic vertex kernel for feedback arc set in bipartite
tournaments. Algorithmica 71(1), 87–97 (2015)

27. van Zuylen, A.: Linear programming based approximation algorithms for feedback
set problems in bipartite tournaments. Theoret. Comput. Sci. 412(23), 2556–2561
(2011)

https://doi.org/10.1007/978-3-642-17517-6_3
https://doi.org/10.1007/978-3-642-16949-6_24

Matching Random Colored Points
with Rectangles

Josué Corujo1,2, David Flores-Peñaloza3, Clemens Huemer4, Pablo
Pérez-Lantero5, and Carlos Seara4(B)

1 Université Paris-Dauphine, Paris, France
corujo@ceremade.dauphine.fr

2 Facultad de Matemática y Computación, Universidad de La Habana,
Havana, Cuba

3 Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional
Autónoma de México, Mexico City, Mexico

dflorespenaloza@gmail.com
4 Departament de Matemàtiques, Universitat Politècnica de Catalunya,

Barcelona, Spain
clemens.huemer@upc.edu, carlos.seara@upc.edu

5 Departamento de Matemática y Ciencia de la Computación, USACH,
Santiago, Chile

pablo.perez.l@usach.cl

Abstract. Let S ⊂ [0, 1]2 be a set of n points, randomly and uniformly
selected. Let R∪B be a random partition, or coloring, of S in which each
point of S is included in R uniformly at random with probability 1/2. We
study the random variable M(n) equal to the number of points of S that
are covered by the rectangles of a maximum strong matching of S with
axis-aligned rectangles. The matching consists of closed rectangles that
cover exactly two points of S of the same color. A matching is strong
if all its rectangles are pairwise disjoint. We prove that almost surely
M(n) ≥ 0.83n for n large enough. Our approach is based on modeling
a deterministic greedy matching algorithm, that runs over the random
point set, as a Markov chain.

D. Flores-Peñaloza—Research supported by project PAPIIT IN117317 (UNAM, Mex-
ico).
C. Huemer—Research supported by projects MTM2015-63791-R (MINECO/FEDER)
and Gen. Cat. DGR 2017SGR1336.
P. Pérez-Lantero—Partially supported by projects CONICYT FONDECYT/Regular
1160543 (Chile), DICYT 041933PL Vicerrectoŕıa de Investigación, Desarrollo e Inno-
vación USACH (Chile), and Programa Regional STICAMSUD 19-STIC-02.
C. Seara—Research supported by projects MTM2015-63791-R MINECO/FEDER and
Gen. Cat. DGR 2017SGR1640.

This work has received funding from the European Union’s Horizon 2020
research and innovation programme under the Marie Sk�lodowska-Curie
grant agreement No 734922.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 261–272, 2020.
https://doi.org/10.1007/978-3-030-39881-1_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_22&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_22

262 J. Corujo et al.

1 Introduction

Given a point set S ⊂ R
2 of n points, and a class C of geometric objects, a

geometric matching of S is a set M ⊆ C such that each element of M contains
exactly two points of S and every point of S lies in at most one element of M .
A geometric matching is strong if the geometric objects are pairwise disjoint,
and perfect if every point of S belongs to (or is covered by) some element of M .
This type of geometric matching problems was considered by Ábrego et al. [1],
who studied the existence and properties of matchings for point sets in the plane
when C is the class of axis-aligned squares, or the class of disks.

(a) (b)

Fig. 1. (a) A perfect, strong bichromatic matching of 10 red points and 10 blue points
with segments. (b) A perfect, strong monochromatic matching of 6 red points and 4
blue points with axis-aligned rectangles. (Color figure online)

Let S = R∪B ⊂ R
2 be a set of n colored points in the plane, each point col-

ored red or blue, where R and B are the sets of red and blue points, respectively.
A geometric matching of S is called monochromatic if all matching objects cover
points of the same color, and bichromatic if all matching objects cover points
of different colors. For example, monochromatic matchings of two-colored point
sets in the plane with straight segments have been studied [4,5]. In the case
of bichromatic matchings with straight segments, a classical result in discrete
geometry asserts that for any planar point set S consisting of n red points and
n blue points in general position (i.e., no three points of S are collinear) there
exists a perfect, strong bichromatic matching of S with straight segments [6] (see
Fig. 1a).

In this paper, we consider strong monochromatic matchings with axis-aligned
rectangles. Refer to Fig. 1b for an example of a perfect matching of this type.
Throughout the paper, every rectangle will be considered axis-aligned and a
closed subset of the plane.

Caraballo et al. [2] studied both monochromatic and bichromatic strong
matchings of S with rectangles from the algorithmic point of view. That is,
they studied two combinatorial optimization problems for given S = R∪B: find
a monochromatic strong matching of S with the maximum number of rectangles,

Matching Random Colored Points with Rectangles 263

and find a bichromatic strong matching of S with the maximum number of rect-
angles; proving that both problems are NP-hard and giving a polynomial-time
4-approximation algorithm in each case. As noted by Caraballo et al., these two
problems are special cases of the Maximum Independent Set of Rectangles prob-
lem (MISR): Given a finite set R of rectangles in the plane, find a subset R′ ⊆ R
of maximum cardinality, denoted α(R), such that every pair of rectangles in R′

are disjoint.
Indeed, suppose that we want to find a monochromatic matching of S with

the maximum number of rectangles. For every distinct p, q ∈ R
2, let D(p, q)

denote the minimum axis-aligned rectangle (i.e., the rectangle such that both
dimensions are minimum) that encloses p and q. Let R(S) be the set of all
rectangles D(p, q) such that p, q ∈ S, p and q have the same color, and D(p, q)
contains no points of S different from p and q. Finding a monochromatic strong
matching of S with the maximum number of rectangles is equivalent to finding in
R(S) a maximum subset of pairwise disjoint rectangles, whose size is α(R(S)),
that is, solving the MISR problem in R(S).

In this paper, we study monochromatic strong matchings of S with rectangles
from the combinatorial point of view. From this point forward, every rectangle
will cover precisely two points of S. Point sets S = R ∪ B exist in which no
matching rectangle is possible (e.g., S is a color-alternating sequence of points on
the line y = x), and point sets in which a perfect strong matching with rectangles
exists (e.g., an even number of red points in the negative part of the line y = x,
and an even number of blue points in the positive part). These two extreme
cases show that it is not worth studying the number α(R(S)) for fixed, or given,
colored point sets S. This does not happen, for example, for monochromatic
strong matchings with segments for fixed sets of red and blue points: Dumitrescu
and Kaye [4] proved that every two-colored point set S = R ∪ B of n points in
general position admits a strong matching with segments that covers at least
6
7n − O(1) of the points; furthermore, there exist n-point sets such that every
strong matching with segments covers at most 94

95n + O(1) points. Instead, we
want to study α(R(S)) when S is a random point set in the square [0, 1]2, in
which the positions of the n points of S are random and the color of each point
of S is also random. Formally:

Let n > 0 be an integer, and let S ⊂ [0, 1]2 be a set of n points, randomly
and uniformly selected. Let R ∪ B be a random partition (i.e., coloring) of S in
which each point of S is included in R uniformly at random with probability
1/2. We study the random variable M(n) = 2 · α(R(S)) equal to the number
of points of S that are covered by the rectangles of a maximum monochromatic
strong matching of S with rectangles.

Given a set S of n points, randomly and uniformly selected in the square
[0, 1]2, Chen et al. [3] studied a similar variable: the random variable α(D(S)),
where D(S) is the random graph with vertex set S and two points p, q ∈ S define
an edge if and only if D(p, q) ∩ S = {p, q}. Here, α(D(S)) denotes the size of a
maximum independent set of D(S).

264 J. Corujo et al.

One result of Chen et al. [3, Theorem 1] states that if n tends to infinity,
then α(D(S)) = O(n(log2 log n)/ log n) with probability tending to 1. This result
implies that if C(n) denotes the number of points of S that are covered by a
maximum monochromatic matching of S with rectangles, where the rectangles
may overlap (i.e., the matching is not necessarily strong), then C(n) = n − o(n)
with probability tending to 1. In fact, let M ′ be a maximum monochromatic
matching of S with rectangles, where M ′ is not necessarily strong, and let S′ ⊂ S
be the points not covered by M ′. Note that at least |S′|/2 points of S′ have
the same color, and they form an independent set in the graph D(S). Then,
with probability tending to 1, we have that M ′ covers at least n − |S′| = n −
O(n(log2 log n)/ log n) = n − o(n) points.

2 Preliminaries

Since for matching S with rectangles, only the left-to-right and bottom-to-top
orders of S are relevant, and since the probability that two points of S are in
the same vertical or horizontal line is zero, we consider S equal to the point
set Sπ = {(i, π(i)) | i = 1, 2, . . . , n}, where π : {1, 2, . . . , n} → {1, 2, . . . , n} is a
randomly and uniformly selected permutation. This assumption was also done
by Chen et al. [3].

We have implemented a Python program that, given n, generates a uni-
form random permutation π, and selects the color of each p ∈ Sπ (red or blue)
randomly and uniformly with probability 1/2. The program then runs a deter-
ministic algorithm on Sπ = R ∪ B that greedily finds a maximum independent
subset of rectangles in R(Sπ). The greedy algorithm iterates the points of Sπ

from left to right, and for each point p in the iteration, it performs the following
action: If p is not matched with any point prior to p in the iteration, it finds
(if it exists) the first point q to the right of p such that D(p, q) ∈ R(Sπ) and
D(p, q) has empty intersection with all matching rectangles already reported. If
q exists, then the algorithm reports D(p, q) as a matching rectangle. In any case,
regardless of whether q exists, the algorithm continues the iteration to the next
unmatched point p.

For large n, say n = 10000, the implemented algorithm reports a matching
covering approximately 97

100n of the points. In fact, we run the algorithm N = 100
times for n = 10000, and average the outputs (i.e., the percentage of matched
points) and computed the standard deviation. The average output is 0.978 and
the standard deviation 0.0022. See in Table 1 the row k = ∞, where k is a
parameter that will be explained later.

Then, it seems that M(n) ≥ 97
100n for n large enough and probability close

to 1. More formally, using the Central Limit theorem, we have that(
0.9780 − 0.0022√

N
z0.99, 1

]
⊂ (0.97, 1]

is a 99% confidence interval for the expected value of M(n)/n. We denote by
z0.99 ≈ 2.33 the real value which satisfies Prob(Z ≤ z0.99) = 0.99, for Z a normal
random variable with mean 0 and variance 1.

Matching Random Colored Points with Rectangles 265

Table 1. The table shows the experimental results obtained when running the
greedy matching algorithm for n ∈ {1000, 10000} points, parameterized with k ∈
{1, 2, 3, . . . , 8}, or not parameterized (k = ∞). For each combination of n, k, we run
the algorithm 100 times, and measured the mean and standard deviation of the ratio
between the total number of matched points and n.

n = 1000 n = 10000

k mean sdev mean sdev

1 0.6653 0.0175 0.6673 0.0052

2 0.7948 0.0104 0.7934 0.0036

3 0.8301 0.0097 0.8304 0.0034

4 0.8555 0.0094 0.8562 0.0028

5 0.8727 0.0090 0.8736 0.0026

6 0.8860 0.0087 0.8864 0.0026

7 0.8953 0.0084 0.8962 0.0026

8 0.9031 0.0079 0.9041 0.0025

∞ 0.9724 0.0062 0.9780 0.0022

Analyzing the algorithm, when run over the random Sπ, seems to be a good
approach for obtaining a high lower bound for M(n). One way to analyze the
algorithm is to consider a parameterized version of it, with a parameter k, such
that each unmatched point p finds its match point q among only the next k
points of Sπ to the right of p. Let Ak denote this parameterized algorithm. For
further experimental results, see Table 1.

In the next two sections, we show how to model (an adaptation of) Ak as a
Markov chain, for any fixed k ∈ {1, 2, 3, . . .}. Then, we show that the algorithm
A3 almost surely guarantees M(n) ≥ 83

100n, for n large enough, by computing the
stationary distribution of the Markov chain and applying the Ergodic theorem.
For the theory on Markov chains, refer to Norris [7].

3 The Markov Chains

From this point forward, we also consider S = Sπ, and whenever we say point i,
for i ∈ {1, 2, . . . , n}, or just i when it is clear from the context, we are referring
to the point pi := (i, π(i)) ∈ S. Let color(i) ∈ {R,B} be the color of point i.

Let k ∈ {1, 2, 3, . . .} be a constant, and let Ãk be the following adaptation of
algorithm Ak, consisting in the next idea:

Suppose that Ak matches points i and j, with i < j ≤ i + k, when the
iteration of Sπ is on point i. Algorithm Ãk iterates Sπ from left to right, and
will also match i and j but, in contrast with Ak, when the iteration is on j, or on
a point to the right of j. Using Ãk instead of Ak, allows us to describe in a more
compact way the states of the memory of the algorithm during the iteration of
the elements of Sπ.

266 J. Corujo et al.

Let E(j) be the data structure associated with point j ∈ {1, 2, . . . , n}, that
is maintained by Ãk during the iteration of Sπ. For any j, let i = i(j) be the
smallest element in the set {max(1, j − (k − 1)), . . . , j} such that the point i is
not matched, and each point in {i + 1, . . . , j} is matched with a point to the
left of i or is not yet matched. If i exists, then E(j) consists of the following
elements:

– The set U(j) ⊆ {i, i + 1, . . . , j} of the points that are not matched, with
i ∈ U(j).

– The set Rect(j) of the (pairwise disjoint) rectangles that match the points in
{i + 1, . . . , j}\U(j) with points to the left of i.

– The number f(j) of points of Sπ that are matched while the iteration is at
point j.

Otherwise, if i does not exist, then E(j) consists of the same three above
elements with U(j) = ∅ and Rect(j) = ∅.

For j = 1, we have U(1) = {1}, Rect(1) = ∅, and f(1) = 0. We show now
how to obtain E(j + 1) from E(j), for any j ∈ {1, . . . , n − 1}.

First, we match points i and j + 1 if and only if j + 1 ≤ i + k, color(i) =
color(j + 1), and the rectangle D(pi, pj+1) does not overlap any rectangle in
Rect(j).

After that, we match other points in (U(j)\{i}) ∪ {j + 1} if and only if i
was matched in the previous step, or we have finished with point i. We say
that we have finished with point i if there do not exist more chances for point
i to be matched, which is equivalent to i + k ≤ j + 1. This final matching
procedure consists in running the original algorithm Ak with input the points
{i + 1, . . . , j, j + 1}, but with the extra condition that the algorithm terminates
if the current point t on the iteration of {i + 1, . . . , j, j + 1} from left to right,
cannot be matched with any other one to its right (i.e., the matching on points
in (U(j)\{i})∪{j +1} is performed by running the original algorithm Ak). This
is because t must find its match among the points in {j + 2, . . . , t + k}, before
any matching between points in {t + 1, . . . , j + 1} occurs.

We set f(j + 1) equal to the total number of points matched at iteration j.
Obtaining U(j + 1) and Rect(j + 1) is straightforward.

Let j ∈ {1, 2, . . . , n}. The state of E(j) is a 2-tuple formed by:
As first component, (a certificate of) the relative positions between the points

of U(j) and the rectangles of Rect(j), together with the color of each point of
U(j). If the leftmost point is colored blue, then we switch the color of every
point such that the leftmost one is always red.

As second component, the number f(j) of matched points. We say that two
states e and e′ are equal (i.e., e = e′) if: (i) the first components are equal, or
one first component is symmetric to the other in the vertical direction, and (ii)
the second components are equal.

Let E = {e1, e2, . . . , eN} denote the set of all possible states of E(j), which
is a finite set, and let Xj ∈ E be the random variable equal to the state of
E(j). Let e ∈ E be a state, and assume that e is the state of E(j) for some j.

Matching Random Colored Points with Rectangles 267

Let f(e) = f(j) (with abuse of notation), and let N(e) be the neighborhood of
e, which is the multiset consisting of the state of E(j + 1) for every color and
every different relative position, with respect to the elements of both U(j) and
Rect(j), of point j + 1. See for example Fig. 2.

Lemma 1. Let e, e′ ∈ E be two states. For every j ≥ 2, we have:

Prob(Xj+1 = e′ | Xj = e) =
m

2 (|U(j)| + 2|Rect(j)| + 1)
,

where m is the multiplicity of e′ in N(e).

j + 1

i

j + 1

i

j + 1
i

j + 1

i

j + 1

i

j + 1
i

i

j

E(j), Xj

E(j + 1) Xj+1

e3

e4

e5

e6

e6

e8

e7

E(j), Xj

E(j + 1) Xj+1

e5

e10

j

i

j + 1

i

e10
j + 1

i

e11
j + 1

i

e11

j + 1
i

∅

∅

e10

j + 1

i

(a) (b)

Fig. 2. (a) Example of the data structure E(j), its state Xj = e3, and the states
in the neighborhood N(e3) = {e4, e5, e6, e6, e7, e8} corresponding to E(j + 1), for
each position and color of point j + 1. Note that f(e6) = 2, and f(ei) = 0 for
all ei ∈ {e4, e5, e7, e8}. (b) Example of E(j) and its state Xj = e5, with N(e5) =
{e10, e10, e10, e10, e10, e10, e11, e11}. Note that f(e10) = 2 and f(e11) = 4. For every of
the four positions of the blue point j + 1, the resulting state is e10.

Proof. Through each point of U(j) draw a horizontal line, and for each rectangle
of Rect(j) draw a horizontal line through the top side and a horizontal line
through the bottom side. Each of these K = |U(j)|+2|Rect(j)| lines goes through
a different element of Sπ, and they subdivide the plane into K + 1 strips. Since
the point j + 1 is to the right of both every point of U(j) and every rectangle of

268 J. Corujo et al.

Rect(j), the relative position of point j + 1 with respect to the elements of U(j)
and Rect(j) is to be in one of these strips, and this happens with probability
1/(K +1). Furthermore, the color of point j +1 is given with probability 1

2 . The
lemma follows. ��

Note that the value of Xj+1 depends on the value of Xj , and does not depend
in any of the values of X1,X2, . . . , Xj−1. Formally,

Prob(Xj+1 = xj+1 | Xj = xj , . . . , X1 = x1) = Prob(Xj+1 = xj+1 | Xj = xj)

for all x1, . . . , xj+1 ∈ E such that Prob(Xj = xj , . . . , X1 = x1) > 0.
Thus, the sequence (Xn)n≥1 is a Markov chain, denoted Ck, over the set

E = {e1, e2, . . . , eN} of states. Let P denote the transition matrix, of dimensions
N × N , such that Pi,j = Prob(X�+1 = ej | X� = ei). The key observation is
that the total number of points matched by the algorithm Ãk, denoted Mk(n),
is precisely

Mk(n) =
n∑

j=1

f(Xj).

A Markov chain is irreducible if with positive probability any state can be reached
from any other state [7]. We need that this property holds in Ck, as stated in
the next lemma.

Lemma 2. The Markov chain Ck is irreducible.

Proof. Assume without loss of generality that e1 is the state of E(1), which
consists of a single red point and ensures f(e1) = 0. Let e ∈ E \ {e1} be any
other state, which by definition is the state of E(j) for some j. Then, in Ck the
state e can be reached from e1 with positive probability (Lemma 1).

We prove now that also with positive probability, the state e1 can be reached
from e, which implies that Ck is irreducible. Note that with positive probability,
the point j+1 may be matched with point i(j) in E(j+1). Then, for some point
t ≥ j + 1 we have with positive probability that for � = j + 1, . . . , t the points
i(� − 1) and � are matched in E(�), and U(t) = ∅ and Rect(t) = ∅.

Let e′ denote the state of E(t), and we have Prob(Xt+1 = e1 | Xt = e′) = 1.
Hence, the state e1 can be reached from e with positive probability, and Ck is
thus irreducible. ��

Since Ck is irreducible (Lemma 2) and has a finite set of states, it has a
unique stationary distribution s = (s1, s2, . . . , sN), which is the solution of the
system

s = s · P, s1 + s2 + · · · + sN = 1

of linear equations [7]. Furthermore, since f(e) ∈ {
0, 2, 4, . . . , 2�k+1

2 �} for all
e ∈ E , the function f is bounded and then the Ergodic theorem ensures

lim
n→∞

Mk(n)
n

= lim
n→∞

1
n

n∑
j=1

f(Xj) =
N∑

i=1

sif(ei),

Matching Random Colored Points with Rectangles 269

almost surely [7]. Let αk =
∑N

i=1 sif(ei). We then arrive to the main result of
this paper:

Theorem 1. Let π : {1, 2, . . . , n} → {1, 2, . . . , n} be a uniform random permu-
tation. Let

Sπ = {(i, π(i)) | i = 1, 2, . . . , n}
be a random point set, where the color (red or blue) of each point of Sπ is selected
randomly and uniformly with probability 1/2. Let k ∈ {1, 2, 3, . . .} be a constant.
For all constant ε > 0 and n large enough, almost surely the number Mk(n) of
points of Sπ that are matched by the algorithm Ãk satisfies Mk(n) ≥ (αk − ε)n.

4 The Markov Chain for k = 3

In this section, we consider the algorithm Ã3 and give a precise value for α3.
In Table 2, we describe the states, and the transitions between the states, of the
Markov chain C3. The transition matrix P is in Fig. 3.

Since f(e) = 2 for all e ∈ {e2, e6, e9, e10, e16, e17, e18}, f(e11) = 4, f(e) = 0
for all other state e, and the stationary distribution s = (s1, . . . , s18) satisfies

s2 =
167959
816233

, s6 =
69640
816233

, s9 =
6800

816233
, s10 =

58650
816233

,

s11 =
13600
816233

, s16 =
5950

816233
, s17 =

1360
816233

, s18 =
1190

816233
,

we obtain

α3 = 2(s2 + s6 + s9 + s10 + s16 + s17 + s18) + 4s11 =
677498
816233

≈ 0.830030151.

By Theorem 1, taking ε = α3 − 0.83 > 0, for n large enough we have almost
surely that

M(n) ≥ M3(n) ≥ 0.83n.

It can be noted in Table 1 that in practice this lower bound is satisfied. Then,
we obtain our second result:

Theorem 2. Let n > 0 be an integer, and let S ⊂ [0, 1]2 be a set of n points,
randomly and uniformly selected. Let R∪B be a random partition (i.e., coloring)
of S in which each point of S is included in R uniformly at random with proba-
bility 1/2. For n large enough, almost surely we have that the maximum number
M(n) of points of S that are covered by a monochromatic strong matching of S
with rectangles satisfies M(n) ≥ 0.83n.

270 J. Corujo et al.

Table 2. The table shows the 18 states of the Markov chain for k = 3. In the second
column we show the first component of ei, and in the third column we show the second
component f(ei). In the last column we show the neighbor states of ei as a list of tuples
of the form (ej , Pi,j), where Pi,j = Prob(X�+1 = ej | X� = ei) > 0 is the transition
probability from ei to ej .

ei elem. of ei f(ei) neighbors of ei

e1 0 (e2, 1/2), (e3, 1/2)

e2 ∅ 2 (e1, 1)

e3 0 (e4, 1/6), (e5, 1/6), (e6, 1/3), (e7, 1/6), (e8, 1/6)

e4 0 (e4, 1/8), (e5, 1/8), (e6, 3/8), (e7, 1/8), (e9, 1/4)

e5 0 (e10, 3/4), (e11, 1/4)

e6 2 (e2, 1/4), (e12, 1/8), (e13, 1/8), (e14, 1/4), (e15, 1/4)

e7 0 (e10, 3/4), (e11, 1/4)

e8 0 (e10, 3/4), (e16, 1/4)

e9 2 (e2, 3/10), (e12, 1/10), (e14, 1/5), (e15, 1/5), (e17, 1/5)

e10 2 (e2, 1/2), (e3, 1/2)

e11 ∅ 4 (e1, 1)

e12 0 (e2, 1/2), (e3, 3/10), (e6, 1/5)

e13 0 (e2, 1/2), (e3, 3/10), (e6, 1/5)

e14 0 (e2, 3/10), (e3, 1/2), (e6, 1/5)

e15 0 (e2, 1/2), (e3, 3/10), (e6, 1/5)

e16 2
(e2, 1/5), (e12, 1/10), (e13, 1/10),
(e14, 1/10), (e15, 3/10), (e18, 1/5)

e17 2 (e1, 5/6), (e2, 1/6)

e18 2 (e1, 5/6), (e2, 1/6)

Matching Random Colored Points with Rectangles 271

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1/1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 0 1/6 1/6 1/3 1/6 1/6 0 0 0 0 0 0 0 0 0 0
4 0 0 0 1/8 1/8 3/8 1/8 0 1/4 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 3/4 1/4 0 0 0 0 0 0 0
6 0 1/4 0 0 0 0 0 0 0 0 0 1/8 1/8 1/4 1/4 0 0 0
7 0 0 0 0 0 0 0 0 0 3/4 1/4 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0 3/4 0 0 0 0 0 1/4 0 0
9 0 3/10 0 0 0 0 0 0 0 0 0 1/10 0 1/5 1/5 0 1/5 0
10 0 1/2 1/2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
11 1/1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
12 0 1/2 3/10 0 0 1/5 0 0 0 0 0 0 0 0 0 0 0 0
13 0 1/2 3/10 0 0 1/5 0 0 0 0 0 0 0 0 0 0 0 0
14 0 3/10 1/2 0 0 1/5 0 0 0 0 0 0 0 0 0 0 0 0
15 0 1/2 3/10 0 0 1/5 0 0 0 0 0 0 0 0 0 0 0 0
16 0 1/5 0 0 0 0 0 0 0 0 0 1/10 1/10 1/10 3/10 0 0 1/5
17 5/6 1/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
18 5/6 1/6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Fig. 3. The transition matrix P of the Markov chain for k = 3.

5 Discussion and Open Problems

Using the theory of Markov chains, by modeling a deterministic greedy match-
ing algorithm that runs over the random colored n-point set, we have proved
that almost surely at least 0.83n points can be matched with pairwise disjoint
axis-aligned rectangles, that is, M(n) ≥ 0.83n. This lower bound was obtained
from the stationary distribution of a Markov chain for the parameter k = 3.
Building the Markov chain for any k ≥ 4 and computing its stationary distri-
bution will give, by Theorem 1, higher lower bounds, as the results of Table 1
suggest. Experimental results suggest that we may be able to prove the bound
M(n) ≥ 0.97n.

The trivial upper bound for M(n) is M(n) ≤ n. Obtaining tighter lower
and upper bounds for M(n) seems to be more challenging. There are cases in
which we must consider matching strategies more general than that of the greedy
algorithm. Hence, the main open question here is whether limn→∞ M(n)/n = 1
or limn→∞ M(n)/n < 1.

References

1. Ábrego, B.M., et al.: Matching points with squares. Discrete Comput. Geom. 41(1),
77–95 (2009)

2. Caraballo, L.E., Ochoa, C., Pérez-Lantero, P., Rojas-Ledesma, J.: Matching colored
points with rectangles. J. Comb. Optim. 33(2), 403–421 (2017)

3. Chen, X., Pach, J., Szegedy, M., Tardos, G.: Delaunay graphs of point sets in the
plane with respect to axis-parallel rectangles. Random Struct. Algorithms 34(1),
11–23 (2009)

272 J. Corujo et al.

4. Dumitrescu, A., Kaye, R.: Matching colored points in the plane: some new results.
Comput. Geom. 19(1), 69–85 (2001)

5. Dumitrescu, A., Steiger, W.L.: On a matching problem in the plane. Discrete Math.
211, 183–195 (2000)

6. Larson, L.C.: Problem-Solving Through Problems. Springer, New York (1983).
https://doi.org/10.1007/978-1-4612-5498-0

7. Norris, J.R.: Markov Chains, 2nd edn. Cambridge University Press, Cambridge
(1998)

https://doi.org/10.1007/978-1-4612-5498-0

Designing Survivable Networks with
Zero-Suppressed Binary Decision

Diagrams

Hirofumi Suzuki1,4P(B), Masakazu Ishihata2, and Shin-ichi Minato3

1 Graduate School of Information Science and Technology, Hokkaido University,
Sapporo, Japan

h-suzuki@ist.hokudai.ac.jp,
2 NTT Communication Science Laboratories, Kyoto, Japan

ishihata.masakazu@lab.ntt.co.jp
3 Graduate School of Informatics, Kyoto University, Kyoto, Japan

minato@i.kyoto-u.ac.jp
4 Fujitsu Laboratories Ltd., Kanagawa, Japan

suzuki-hirofumi@fujitsu.com

Abstract. Various network systems such as communication networks
require survivability that is tolerance of attacks, failures, and accidents.
Designing a network with high survivability is formulated as a survivable
network design problem (SNDP). The input of the SNDP is a pair of
an edge-weighted graph and a requirement of topology and survivability.
For an edge subset of the graph, if it satisfies the requirement, we call
it a desired edge subset (DES). The output of the SNDP is the mini-
mum weight DES. Although the SNDP is an optimization problem, to
simply solve it is not always desired in terms of the practical use: Design-
ers sometimes want to test multiple DESs including non-optimal DESs,
because the theoretical optimal DES is not always the practical best.

In this paper, instead of the optimization, we propose a method to
enumerate all DESs with a compact data structure, called the zero-
suppressed binary decision diagram (ZDD). Obtained ZDDs support
practical network design by performing optimization, sampling, and fil-
tering of DESs. The proposed method combines two typical techniques
constructing ZDDs, called the frontier-based search (FBS) and the family
algebra, and includes a novel operation on ZDDs. We demonstrate that
our method works on various real-world instances of practical scales.

Keywords: Network design · Survivable network · Decision diagram

1 Introduction

Network systems are necessary in various real-life scenarios such as communi-
cation, power distribution, and transportation. Generally, they are susceptible
to attacks, failures, and accidents. For example, communication networks are
demanded to work even if some equipment failure. In the area of network design,
c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 273–285, 2020.
https://doi.org/10.1007/978-3-030-39881-1_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_23&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_23

274 H. Suzuki et al.

the tolerance to such incidents is defined as the survivability [1]. Namely, real-
world network systems require high survivability.

The survivable network design problem (SNDP) is to design a network system
with high survivablity [2]. The input of the SNDP is a pair of an edge-weighted
graph and a requirement: the edge-weighted graph represents available resources
and their costs, and the requirement is a graph property representing required
topology and survivability. For an edge subset of the input graph, if it satisfies
the requirement, we call it a desired edge subset (DES). The output of the SNDP
is the minimum weight DES. The literature [2] introduces various requirements
of the SNDP for example, hop-constrained paths, edge-disjoint paths, and bounded
rings. Figure 1 shows an example SNDP with bounded rings.

Fig. 1. Example SNDP with bounded rings.

The integer linear programming (ILP) formulation and the branch-and-cut
algorithm have been commonly used to solve the SNDP. Such algorithms have
been proposed for various settings independently [3–7]. However, they are not
always desired in terms of the practical use: Actual network design is an iterative
process including topological design, network-synthesis, and network-realization
[8], and the SNDP applies to topological design. This implies the following issues.

– In many cases, because mathematical models include some inaccuracy and
approximations, the theoretical optimal DES is not always the practical best.

– In many cases, because some requirements are too vague and complex to
formalize, it is hard to incorporate such requirements in the SNDP.

Therefore, designers often want to test multiple DESs which may not be optimal.
In this study, instead of finding an optimal DES, we aim to enumerate

all the DESs. Since the number of DESs is exponentially huge in general, we
should avoid the explicit enumeration and management of DESs. Therefore, we
implicitly enumerate DESs by using the zero-suppressed binary decision diagram
(ZDD) [9], which is a compressed and reusable data structure representing set
families including DESs. Once a ZDD of all DESs is obtained, we can use various
practical operations over the ZDD such as obtaining an optimal DES, uniform
sampling of DESs, and filtering DESs by specified conditions. They are useful
to solve not only the SNDP but also the issues above as follows.

– By sampling of DESs, we obtain various DESs which may not be optimal.

Designing Survivable Networks 275

– By filtering DESs iteratively, we have a chance to obtain much better DESs
fitting non-formalized requirements.

Therefore, designer can easily test multiple DESs with various possibilities.
Our main contribution is to propose a practical method to construct ZDDs for

DESs. For the ZDD construction, there are two representative approaches which
are based on the family algebra [10] and the frontier-based search (FBS) [11],
respectively. The family algebra is the general term of set family operations which
are efficiently executed on ZDDs. The FBS is a direct construction method for
ZDDs representing specific constrained subgraphs. Historically, they have often
been used for separate purposes, for example, the maximal clique enumeration by
the family algebra [12] and the graph partition enumeration by the FBS [13]. In
contrast, the proposed method uses both of the family algebra and the FBS. The
main idea is to describe DESs by the set family operations in the family algebra
where the FBS can construct a ZDD for each set family. Moreover, to partially
accelerate the method, we also propose a novel set family operation executed on
ZDDs named the multinomial disjoint join, which is the multinomial version of
a binary operation called the disjoint join [14].

We conduct computational experiments to evaluate the proposed method.
In our purpose, the multinomial disjoint join is empirically faster than iterative
version. The other results show that, for various real-world instances of practical
scales, our method succeeds to construct ZDDs of all DESs in reasonable time.

2 Preliminaries

Here, we introduce the notation for the graph structure used in this paper. In
addition, we formulate the SNDP and introduce the ZDD that is a data structure
used in our approach. Here, for a positive integer k ∈ N, let [k] := {1, . . . , k}.

2.1 Notation

Let G = (V,E,w) be a weighted graph with a vertex set V , an edge set E,
and an edge weight function w : E → R+

1. For any edge subset X ⊆ E, V [X]
denotes the induced vertices that is the set of the end points of each edge in X,
i.e., V [X] :=

⋃
{u,v}∈X{u, v}. Similarly, G[X] denotes the edge induced subgraph

such that G[X] := (V [X],X). Let w(X) be the total weight of all the elements
in X, i.e., w(X) :=

∑
e∈X w(e).

An edge subset P ⊆ E denotes a path if it restores a vertex sequence
(v1, . . . , v|P |+1) where vi �= vj (i �= j) and {vi, vi+1} ∈ P for all i ∈ [|P |]. Suppose
that v1 = s and vp+1 = t, P is called an s-t path. An edge subset R ⊆ E denotes
a cycle if it restores a vertex sequence (v1, . . . , v|R|) where vi �= vj (i �= j),
{vi, vi+1} ∈ R for all i ∈ [|R| − 1], and {vr, v1} ∈ R.

1 Although our approach can handle both directed and undirected graphs, we describe
only the undirected version (i.e., E ⊆ {{u, v} | u, v ∈ V }) in this paper.

276 H. Suzuki et al.

2.2 Survivable Network Design Problem

Given a weighted graph G and a requirement C : 2E → {True,False}, if C(X) =
True for an edge subset X ⊆ E, we say X satisfies C. If X satisfies C, we call
X desired edge subset (DES). Let EC be the set family of all the DESs, i.e.,
EC := {X ⊆ E | C(X) = True}.

Let us suppose that C can be decomposed into two distinct requirements Ctop

and Csur where EC = ECtop ∩ ECsur . We call Ctop and Csur the topology require-
ment and the survivability requirement, respectively. A topology requirement
describes a base structure of subgraphs. In contrast, a survivability requirement
describes connectivity or path length among specified vertices. Then the SNDP
is a problem to find a DES defined as follows:

X∗ ∈ arg min
X∈ECtop∩ECsur

w(X). (1)

Although the SNDP is an optimization problem, we aim to enumerate all the
DESs EC . Generally, the number of DESs (i.e., |EC |, |ECtop |, and |ECsur |) is expo-
nentially huge in |E|. Therefore, naive algorithms such as an exhaustive search
often do not work. In the following, we introduce some examples of topology
requirements and survivability requirements.

Examples of The Topology Requirement

– Steiner Subgraph: If G has an s-t path for any vertex pair s, t ∈ V (s �= t), G
is said to be connected. Given a vertex subset T ⊆ V , if a subgraph contains
T , it is said to be Steiner. Let Css

T be a requirement defined as:

Css
T (X) := T ⊆ V [X], (G[X] is connected). (2)

– Steiner Tree: If G is connected and has no cycles, G is said to be a tree. For
a vertex subset T ⊆ V , if a subgraph contains T and is a tree, it is said to be
a Steiner tree. Let Cst

T be a requirement defined as:

Cst
T (X) := T ⊆ V [X], (G[X] is a tree). (3)

Examples of The Survivability Requirement

– Hop-Constrained Paths: For a positive integer h ∈ N, a path P ⊆ E is said
to be h-hop-constrained iff |P | ≤ h. For two distinct vertices s, t ∈ V and an
edge subset X ⊆ E, let Ps,t[X] ⊆ 2X be the set of all the s-t paths on G[X].
Given a set of tuples Q ⊆ V × V × N, let Chcp

Q be a requirement defined as:

Chcp
Q (X) := ∀(s, t, h) ∈ Q (∃P ∈ Ps,t[X] (|P | ≤ h)). (4)

– Edge-Disjoint Paths: Given a positive integer k ∈ N, k paths P1, . . . , Pk ⊆ E
are said to be k-edge-disjoint iff they are pairwise disjoint, i.e., Pi ∩ Pj = ∅

Designing Survivable Networks 277

for all i, j ∈ [k] (i �= j). Here, we introduce the following notation for a tuple
of k sets F = (F1, . . . , Fk):

disjoint(F) := ∀i, j ∈ [k] (i �= j ⇐⇒ Fi ∩ Fj = ∅). (5)

Given a set of tuples Q ⊆ V × V × N, let Cedp
Q be a requirement defined as:

Cedp
Q (X) := ∀(s, t, k) ∈ Q (∃P ∈ Ps,t[X]k (disjoint(P))). (6)

– Bounded Rings: Given a positive integer r ∈ N, a cycle R ⊆ E is said to be
r-bounded iff |R| ≤ r. For an edge subset X ⊆ E, let R[X] ⊆ 2X be the set
of all the cycles on G[X]. Let Cbr

r be a requirement defined as:

Cbr
r (X) := ∀e ∈ X (∃R ∈ R[X] (e ∈ R)). (7)

2.3 Zero-Suppressed Binary Decision Diagrams

As mentioned above, our aim is to enumerate all the DESs. Therefore, we handle
exponentially huge set families of DESs by using the ZDD, which is a compressed
data structure representing set families. If the universal set is U which is totally
ordered, ZDDs can represent any set families F ⊆ 2U . Here we assume that
U = E = {e1, . . . , em} (i < j ⇐⇒ ei < ej).

A ZDD is a rooted directed acyclic graph denoted by Z = (N,A) with a node
set N , and an arc set A. It has exactly one root node ρ and exactly two terminal
nodes ⊥ and �. Each non-terminal node α ∈ N has a label �(α) ∈ [m], which
indicates that the node α is associated with an edge e�(α). Each non-terminal
node also has exactly two descending arcs called the 0-arc and the 1-arc. The
node pointed by the x-arc of α is called the x-child, and denoted by αx where
�(α) < �(αx) if αx is not a terminal.

A ZDD represents a set family as follows: For any node α ∈ N , a directed
path from a node α to � represents a subset. If the path descends the 1-arc of
α, the edge e�(α) is included, otherwise excluded.

Any ZDD has the unique reduced form. A ZDD is reduced if the following
two rules are applied as long as possible: (i) Delete α if α1 = �. If α has been
the head of an arc, its new head becomes ⊥. (ii) Share any two nodes β, β′ where
�(β) = �(β′), β0 = β′

0 and β1 = β′
1. These rules eliminate the redundant nodes

in the ZDD. Hereinafter, we use the terms “ZDD” for reduced ZDDs unless
otherwise noted. Figures 2 and 3 shows examples of ZDDs.

As discussed in Sect. 3, we need to manage multiple ZDDs. We can share any
nodes, whose descendants are equivalent, among managed ZDDs [9,15].

3 Proposed Method

In this section, we present a method to construct ZDDs of all the DESs with
various requirements.

278 H. Suzuki et al.

Fig. 2. ZDD of a power set Fig. 3. ZDD of {{e1, e2, e3}, {e1, e3},
{e2, e3}}

3.1 ZDD Construction

We propose a three-step method constructing a ZDD of EC . The method uses two
important techniques over the ZDD, which are called the frontier-based search
(FBS) and the family algebra, respectively. Each step of the method is as follows:

1. Construct ZDDs of DESs with the topology requirement and some supporting
ZDDs for the survivability requirement by using the FBS.

2. Construct a ZDD of DESs with the survivability requirement by using the
family algebra.

3. Construct a ZDD of DESs with both of the topology requirement and the
surivivability requirement by using the family algebra.

Frontier-Based Search. The FBS is a technique for constructing ZDDs of
various constrained edge subsets in a given graph, such as edge subsets with less
than or equal to h edges Eh := {X ⊆ E | |X| ≤ h}, s-t paths Ps,t[E] (s, t ∈ V),
cycles R[E], steiner trees ECst

T
, and steiner subgraphs ECss

T
. Therefore, we can

obtain the ZDDs of DESs with the topology requirements Cst
T and Css

T . The
ZDDs for the subgraphs above are used in the next step.

As for the time complexity of the FBS, the results in the literature [16]
includes the following observation: If the constrained subgraphs are described
by the class of monadic-second order formula (MSO) and the input graph has
bounded path-width, the FBS is performed with linear time in m. Here, s-t paths,
cycles, steiner trees, and steiner subgraphs are described by MSO. On the other
hand, although edge subsets with h edges cannot be described by MSO, the ZDD
construction for Eh is performed with pseudo polynomial time O(hm).

Family Algebra. Various set family operations, which are collectively called
the family algebra, can be efficiently executed on ZDDs. Let two ZDDs Z1 and
Z2 represent F1 and F2, respectively, and ◦ is an operator for a set family
operation. Then, we can efficiently obtain the new ZDD of F1 ◦F2 by the family
algebra on Z1 and Z2. The family algebra includes the union ∪, the intersection
∩, the difference \, and the rest. The following two operations are characteristic
operations included in the family algebra, and used in the proposed method.

Designing Survivable Networks 279

– Restriction �: F1 � F2 := {F1 ∈ F1 | ∃F2 ∈ F2 (F2 ⊆ F1)}
– Disjoint Join �̇: F1 �̇ F2 := {F1 ∪ F2 | F1 ∈ F1, F2 ∈ F2, F1 ∩ F2 = ∅}

As for the time complexity of the family algebra, the results in [17] say that
the union, the intersection, and the difference can be computed with polynomial
time in the number of nodes in the input ZDDs. Although restriction and disjoint
join have no known results for the time complexity, the family algebra tends to
work in fast if the ZDDs are small enough.

In the following lemmas, we show some formulas using the family algebra
to obtain the ZDDs of ECtop with the survivability requirement Chcp

Q , Cedp
Q , and

Cbr
r . We omit the proofs of the lemmas, because they are straightforward.

Lemma 1. For any Q ⊆ V × V × N, we have

EChcp
Q

=
⋂

(s,t,h)∈Q

(2E � (Ps,t[E] ∩ Eh)). (8)

Lemma 2. We define the disjoint join among k same set families δ(F , k) as:

δ(F , k) =

{
F (k = 1),
F �̇ δ(F , k − 1) (otherwise).

(9)

Then, for any Q ⊆ V × V × N, we have

ECedp
Q

=
⋂

(s,t,k)∈Q

(2E � δ(Ps,t[E], k)). (10)

Lemma 3. Let us simply denote the restriction with a singleton F � {{x}} by
F � x. For any r ∈ N, we have

ECbr
r

=
⋂

e∈E

(2E\{e} ∪ (2E � ((R[E] ∩ Er) � e))). (11)

Therefore, since we can obtain all ZDDs of set families in the lemmas, we also
obtain ZDDs of ECsur with the survivability requirements Chcp

Q , Cedp
Q , and Cbr

r .
Finally, we obtain a ZDD of EC = ECtop ∩ ECsur by the intersection on ZDDs.

3.2 Multinomial Disjoint Join

Here we propose a new operation over the ZDD, named the multinomial disjoint
join. Its concept is to compute the disjoint join among k set families at a time,
and it empirically improves the performance of the computation of ECedp

Q
.

Let S be a totally ordered set and F = (F1, . . . ,Fk) be a tuple of set families
where k ≥ 2, Fi ⊆ 2S for all i ∈ [k]. Then we define the multinomial disjoint
join Δ(F) as follows:

Δ(F) := {∪i∈[k]Fi | F ∈
∏

i∈[k]

Fi, disjoint(F)} (12)

280 H. Suzuki et al.

Then we compute Δ(F) recursively. Let e = max{s ∈ S | ∃i ∈ [k],∃F ∈ Fi, s ∈
F}. We define F−

i := {F | F ∈ Fi, e /∈ F}, F+
i := {F \ {e} | F ∈ Fi, e ∈ F},

F− := (F−
1 , . . . ,F−

k), and F+
i = (F−

1 , . . . ,F−
i−1,F+

i ,F−
i+1, . . . ,F−

k) for all i ∈
[k]. Here we have the following lemma.

Lemma 4. Δ(F) is described by the recursive formula as follows:

Δ(F) =

⎧
⎪⎨

⎪⎩

∅ (∃i ∈ [k] (Fi = ∅))
{∅} (∀i ∈ [k] (Fi = {∅}))
Δ(F−) ∪ (e · ⋃i∈[k] Δ(F+

i)) (otherwise).
(13)

The proof of Lemma 4 is easily done by an induction.
Lemma 4 indicates that the multinomial disjoint join can be computed recur-

sively on ZDDs. Suppose that the ZDD Zi represents Fi for all i ∈ [k]. Let Z−
i

and Z+
i be a ZDD of F−

i and F+
i . We obtain Z−

i and Z+
i in a constant time

because they are equal to Zi or the descendants of the root node of Zi. Let Z =
(Z1, . . . ,Zk) be a tuple of the ZDDs and Δ′(Z) be the multinomial disjoint join
on Z. We define Z− := (Z−

1 , . . . ,Z−
k) and Z+

i = (Z−
1 , . . . ,Z−

i−1,Z
+
i ,Z−

i+1, . . . ,Z
−
k)

for all i ∈ [k]. Then Δ′(Z) can be computed by the following recursive formula:

Δ′(Z) =

⎧
⎪⎨

⎪⎩

A ZDD having only ⊥ (∃i ∈ [k] (Zi is equal to ⊥))
A ZDD having only � (∀i ∈ [k] (Zi is equal to �))

Δ′(Z−) ∪ (e · ⋃
i∈[k] Δ

′(Z+
i)) (otherwise).

(14)

For two ZDDs Z1 and Z2, The operation Z1 ∪ Z2 computes the ZDD of their
union. For an element e and a ZDD Z, the operation e · Z computes the ZDD
with a new root node whose label, 0-child, and 1-child are e, ⊥, and the root
node of Z, respectively.

Here we can use a memo cache technique to reduce redundant computations.
Let λ(F) := {Fi | i ∈ [k]} and λ′(Z) := {The root node of Zi | i ∈ [k]}. For
two tuples of set families F1 and F2, Δ(F1) = Δ(F2) if λ(F1) = λ(F2). This
implies that, for two tuples of ZDDs Z1 and Z2, Δ′(Z1) = Δ′(Z2) if λ′(Z1) =
λ′(Z2). Therefore, the result of Δ′(Z) can be memorized with the key λ′(Z).

4 Experiments

We conducted computational experiments to evaluate the proposed method.
All the code was implemented in C++ (g++7.4.0 with the -O3 option).
All the experiments were conducted on a 64-bit Ubuntu 18.04 LTS with
an Intel(R) Xeon(R) E-2174G 3.80 GHz CPU and 64 GB RAM. All the
graphs used in the experiments were obtained from SNDlib (http://sndlib.
zib.de/home.action) that provides various medium scale real-world graphs for
the SNDP. We select the graphs where the exhaustive search does rather not
work on it realistically (|E| ≥ 40) and it has no bridges. Table 1 shows the data
of all the graphs.

http:/\penalty \exhyphenpenalty /\penalty \exhyphenpenalty sndlib.zib.de/\penalty \exhyphenpenalty home.action
http:/\penalty \exhyphenpenalty /\penalty \exhyphenpenalty sndlib.zib.de/\penalty \exhyphenpenalty home.action

Designing Survivable Networks 281

Table 1. The data of all the graphs used in the experiments

Name |V | |E| Name |V | |E| Name |V | |E| Name |V | |E|
cost266 37 57 france 25 45 janos-us 26 42 norway 27 51

dfn-bwin 10 45 germany50 50 88 janos-us-ca 39 61 pioro40 40 89

dfn-gwin 11 47 giul39 39 86 newyork 16 49 sun 27 51

di-yuan 11 42 india35 35 80 nobel-eu 28 41 ta1 24 51

4.1 Performance of Multinomial Disjoint Join

First we evaluated the performance of the multinomial disjoint join for comput-
ing ZDDs of k-edge-disjoint paths. We used eight graphs dfn-bwin, dfn-gwin,
di-yuan, germany50, giul39, india35, newyork, and pioro40 each of which has
minimum cuts with enough size. For each k ∈ {3, 4, 5}, we randomly selected
distinct 50 vertex pairs. Then we tried to compute the k-edge disjoint paths of
each pair by the multinomial disjoint join and the iterative disjoint join, respec-
tively. The time limit is 300 s on all the cases.

The results are shown in Table 2. For three graphs dfn-bwin, dfn-gwin, and
di-yuan, we failed the computation on all the cases. This suggests that the pro-
posed method does not work on dense graphs. For the graph giul39, whereas the
iterative disjoint join failed on almost all the cases, the multinomial disjoint join
succeeded on almost all the cases. All the failures were caused because of time
limitation. On other many cases, the multinomial disjoint join works equal to
or faster than the iterative disjoint join. This result shows an advantage of the
multinomial disjoint join.

Table 2. Results of computing the multinomial disjoint join. #S and “Time” denotes
the number of success cases and the median of computation time (s) on them. The
format is “iterative : multinomial”.

Name k = 3 k = 4 k = 5

#S Time #S Time #S Time

germany50 50 : 50 0.46 : 0.23 50 : 50 0.70 : 0.34 50 : 50 0.48 : 0.11

giul39 0 : 50 – : 17.92 1 : 50 28.63 : 33.34 1 : 48 145.75 : 43.50

india35 48 : 50 3.76 : 1.63 50 : 50 7.08 : 4.62 50 : 50 6.48 : 9.26

newyork 50 : 50 1.48 : 0.83 50 : 50 3.12 : 3.73 50 : 50 4.24 : 8.90

pioro40 50 : 50 0.13 : 0.10 50 : 50 0.18 : 0.17 50 : 50 0.16 : 0.07

4.2 Performance of Proposed Method

Second we evaluated the performance of the proposed method for constructing
ZDDs of DESs. The target DESs are as follows: (a) ECst

T
∩ EChcp

Q
where |Q| ∈

282 H. Suzuki et al.

Table 3. Results for ECst
T

∩ E
C

hcp
Q

. #S, Time, and #Sol denotes the number of success

cases, the median of computation time (s) in success cases, the median of the number
of solutions in success cases, respectively.

Name |Q| = 5 |Q| = 10 |Q| = 20

#S Time #Sol #S Time #Sol #S Time #Sol

cost266 50 0.006 2.6e+12 50 0.037 1.4e+10 50 0.098 4.4e+04

dfn-bwin 50 0.062 3.1e+05 50 0.202 0 50 0.841 0

dfn-gwin 48 0.070 1.2e+06 48 0.606 4.7e+02 47 5.591 0

di-yuan 50 0.060 1.4e+06 50 0.235 7.5e+02 50 1.969 0

france 50 0.003 1.4e+09 50 0.008 3.0e+07 50 0.021 4.7e+04

germany50 47 0.236 4.7e+19 43 5.752 3.3e+17 40 12.609 1.3e+12

giul39 42 1.178 3.1e+18 32 6.551 1.7e+16 13 29.533 0

india35 46 0.175 1.1e+17 39 14.509 2.3e+14 29 38.921 2.2e+09

janos-us 50 0.003 2.7e+08 50 0.008 3.4e+06 50 0.021 3.8e+03

janos-us-ca 50 0.013 7.8e+12 50 0.063 1.1e+11 50 0.345 2.1e+07

newyork 50 0.064 2.3e+08 50 0.286 7.5e+05 50 2.628 0

nobel-eu 50 0.002 2.0e+08 50 0.005 5.4e+06 50 0.011 4.8e+03

norway 50 0.012 3.5e+10 50 0.080 9.3e+08 50 0.145 8.6e+04

pioro40 47 0.146 2.2e+19 34 12.732 4.6e+16 27 66.810 1.2e+10

sun 50 0.010 5.3e+10 50 0.065 3.2e+08 50 0.332 1.2e+05

ta1 50 0.004 1.7e+10 50 0.012 1.7e+08 50 0.036 2.6e+05

{5, 10, 20} and T =
⋃

(s,t,h)∈Q{s, t}. Let d(s, t) be the distance between s and t.
We randomly generated 50 cases where d(s, t) ≤ h ≤ 2d(s, t) for all (s, t, h) ∈ Q.
(b) ECss

T
∩ ECedp

Q
where |Q| ∈ {5, 10, 20} and T =

⋃
(s,t,k)∈Q{s, t}. We randomly

generated 50 cases where 2 ≤ k ≤ 5 and the size of the minimum cut between s
and t is not less than k for all (s, t, k) ∈ Q. (c) ECss

V
∩ ECbr

r
where r ∈ {5, 10,∞}.

The time limit is 300 s on all the cases.
The results are shown in Tables 3, 4, and 5. On almost all cases of four graphs

dfn-bwin, dfn-gwin, di-yuan, and giul39, we failed the computation of ECss
T

∩ECedp
Q

and ECss
V

∩ECbr
r

. In contrast, on other many cases, we succeeded the computation
in a few minutes. Especially, the number of their solutions is exponentially huge.
Thus, except for dense graphs, the proposed method tends to work enough on
medium scale real-world graphs.

Designing Survivable Networks 283

Table 4. Results for ECss
T

∩ E
C

edp
Q

. #S, Time, and #Sol denotes the number of success

cases, the median of computation time (s) in success cases, the median of the number
of solutions in success cases, respectively.

Name |Q| = 5 |Q| = 10 |Q| = 20

#S Time #Sol #S Time #Sol #S Time #Sol

cost266 50 0.012 1.9e+08 50 0.021 4.4e+04 50 0.039 4.5e+02

france 50 0.005 6.1e+06 50 0.009 6.0e+03 50 0.018 4.6e+01

germany50 50 2.818 6.5e+15 50 4.234 1.0e+11 50 6.364 1.4e+06

giul39 2 245.390 3.9e+18 0 − − 0 − −
india35 50 54.712 9.0e+17 50 91.423 1.6e+13 50 178.498 4.3e+09

janos-us 50 0.003 1.6e+05 50 0.005 1.2e+03 50 0.008 3.2e+01

janos-us-ca 50 0.009 5.0e+08 50 0.016 4.3e+05 50 0.027 1.6e+03

newyork 50 41.622 3.4e+11 50 65.939 8.8e+09 47 146.826 3.1e+07

nobel-eu 50 0.002 1.5e+04 50 0.003 1.2e+02 50 0.004 2.0e+00

norway 50 0.033 5.8e+07 50 0.058 3.4e+04 50 0.107 4.2e+02

pioro40 50 1.382 2.6e+18 50 2.063 3.0e+13 50 3.555 1.6e+08

sun 50 0.033 5.4e+07 50 0.059 4.4e+04 50 0.109 4.4e+02

ta1 50 0.008 3.1e+09 50 0.013 5.5e+06 50 0.023 3.2e+04

Table 5. Results for computing ECss
V

∧Cbr
r

. Time and #Sol denotes the computation

time (s) and the number of solutions, respectively.

Name r = 5 r = 10 r = ∞
Time #Sol Time #Sol Time #Sol

cost266 0.012 1.6e−03 0.043 1.1e−07 0.051 4.2e−07

france 0.009 4.8e−05 0.035 3.2e−06 0.015 3.3e−06

germany50 0.098 0 6.681 1.7e−15 5.918 2.0e−16

giul39 1.088 3.3e−06 − − 48.473 5.8e−20

india35 1.175 5.3e−16 − − 7.677 6.3e−18

janos-us 0.005 3.2e−03 0.016 9.8e−05 0.015 1.9e−06

janos-us-ca 0.013 0 0.047 2.0e−08 0.065 1.0e−09

newyork 2.830 1.8e−13 146.643 2.7e−13 1.322 2.7e−13

nobel-eu 0.004 1.2e−02 0.010 9.2e−04 0.011 1.6e−05

norway 0.016 0 0.196 2.9e−10 0.069 5.4e−10

pioro40 0.121 7.2e−16 55.087 1.5e−22 4.187 2.4e−22

sun 0.016 0 0.221 2.9e−10 0.069 5.4e−10

ta1 0.014 1.0e−10 0.071 3.8e−10 0.022 3.8e−10

284 H. Suzuki et al.

5 Conclusion

In this paper, we proposed a practical method to enumerate all DESs of the
SNDPs by using ZDDs. The proposed method uses both of the FBS and the
family algebra, which are independently used for constructing ZDDs historically.
We also proposed a novel operation over ZDDs named the multinomial disjoint
join. Moreover, obtained ZDDs can be used for various applications such as
optimization, sampling, and filtering. They support much better network design.
The results of computational experiments showed that our method efficiently
constructed ZDDs of all DESs on various medium scale real-world instances.

Acknowledgement. This work was supported by JSPS KAKENHI Grant Number
15H05711.

References

1. Ellison, R., Linger, R., Longstaff, T., Mead, N.: Survivable network system analysis:
a case study. IEEE Software 16, 70–77 (1999)

2. Kerivin, H., Mahjoub, A.R.: Design of survivable networks: a survey. Networks
46(1), 1–21 (2005)

3. Akgün, I.: New formulations for the hop-constrained minimum spanning tree prob-
lem via sherali and driscoll’s tightened miller-tucker-zemlin constraints. Comput.
Oper. Res. 38(1), 277–286 (2011)

4. Diarrassouba, I., Gabrel, V., Ridha Mahjoub, A., Gouveia, L., Pesneau, P.: Inte-
ger programming formulations for the k-edge-connected 3-hop-constrained network
design problem. Networks 67, 148–169 (2015)

5. Fortz, B.: Design of survivable networks with bounded rings. In: Network Theory
and Applications (2000)

6. Gouveia, L., Simonetti, L., Uchoa, E.: Modeling hop-constrained and diameter-
constrained minimum spanning tree problems as steiner tree problems over layered
graphs. Math. Program. 128(1), 123–148 (2011)

7. Rodriguez-Martin, I., Salazar Gonzlez, J.J., Yaman, H.: The ring/κ-rings net-
work design problem: model and branch-and-cut algorithm. Networks 68, 130–140
(2016)

8. Penttinen, A.: Chapter 10 - Network planning and dimensioning. Lecture Notes:
S-38.145 - Introduction to Teletraffic Theory. Helsinki University of Technology
(1999)

9. Minato, S.: Zero-suppressed BDDS for set manipulation in combinatorial problems.
In: DAC, pp. 272–277 (1993)

10. Knuth, D.E.: The Art of Computer Programming: Bitwise tricks & Techniques.
Binary Decision Diagrams, vol. 4, fascicle 1. Addison-Wesley Professional, Boston
(2009)

11. Kawahara, J., Inoue, T., Iwashita, H., Minato, S.: Frontier-based search for enu-
merating all constrained subgraphs with compressed representation. IEICE Trans.
Fundam. E100–A(9), 1773–1784 (2017)

12. Coudert, O.: Solving graph optimization problems with ZBDDS. In: Proceedings
of the 1997 European Conference on Design and Test, EDTC 1997, p. 224 (1997)

Designing Survivable Networks 285

13. Kawahara, J., Horiyama, T., Hotta, K., Minato, S.I.: Generating all patterns of
graph partitions within a disparity bound. In: WALCOM: Algorithms and Com-
putation, pp. 119–131 (2017)

14. Kawahara, J., Saitoh, T., Suzuki, H., Yoshinaka, R.: Solving the longest oneway-
ticket problem and enumerating letter graphs by augmenting the two representative
approaches with ZDDs. In: Phon-Amnuaisuk, S., Au, T.-W., Omar, S. (eds.) CIIS
2016. AISC, vol. 532, pp. 294–305. Springer, Cham (2017). https://doi.org/10.
1007/978-3-319-48517-1 26

15. Minato, S., Ishiura, N., Yajima, S.: Shared binary decision diagram with attributed
edges for efficient boolean function manipulation. In: 27th ACM/IEEE Design
Automation Conference, pp. 52–57 (1990)

16. Amarilli, A., Bourhis, P., Jachiet, L., Mengel, S.: A circuit-based approach to
efficient enumeration. In: 44th International Colloquium on Automata, Languages,
and Programming (ICALP 2017), vol. 80, pp. 111:1–111:15 (2017)

17. Yoshinaka, R., Kawahara, J., Denzumi, S., Arimura, H., Ichi-Minato, S.: Coun-
terexamples to the long-standing conjecture on the complexity of BDD binary
operations. Inf. Process. Lett. 112, 636–640 (2012)

https://doi.org/10.1007/978-3-319-48517-1_26
https://doi.org/10.1007/978-3-319-48517-1_26

Approximability of the Independent
Feedback Vertex Set Problem for

Bipartite Graphs

Yuma Tamura(B), Takehiro Ito, and Xiao Zhou

Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05,
Sendai 980-8579, Japan

yuma.tamura.t5@dc.tohoku.ac.jp, {takehiro,zhou}@ecei.tohoku.ac.jp

Abstract. Given a graph G with n vertices, the independent feedback
vertex set problem is to find a vertex subset F of G with the mini-
mum number of vertices such that F is both an independent set and
a feedback vertex set of G, if it exists. This problem is known to be
NP-hard for bipartite planar graphs. In this paper, we study the approx-
imability of the problem. We first show that, for any fixed ε > 0, unless
P = NP, there exists no polynomial-time n1−ε-approximation algorithm
even for bipartite planar graphs. This gives a contrast to the existence of
a polynomial-time 2-approximation algorithm for the original feedback
vertex set problem on general graphs. We then give an α(Δ − 1)/2-
approximation algorithm for bipartite graphs G of maximum degree Δ,
which runs in O(t(G)+Δn) time, under the assumption that there is an
α-approximation algorithm for the original feedback vertex set problem
on bipartite graphs which runs in O(t(G)) time.

1 Introduction

A feedback vertex set F of an undirected graph G = (V,E) is a vertex subset
of G such that the subgraph of G induced by V \ F is a forest. (See Fig. 1(b)
as an example.) For a given graph G, the feedback vertex set problem is to find
a feedback vertex set of G with the minimum number of vertices. The feedback
vertex set problem is one of the most classical NP-hard problems, and many
algorithms have been developed from various viewpoints over the years.

Misra et al. [13] introduced an independence variant of the feedback vertex
set problem. An independent set I of a graph G = (V,E) is a vertex subset of G
such that the subgraph of G induced by I contains no edge. A vertex set F ′ of G
is said to be an independent feedback vertex set of G if it is both an independent
set and a feedback vertex set of G. (See Fig. 1(c)) Note that an independent
feedback vertex set of a graph does not always exist; for example, consider a

T. Ito—Partially supported by JST CREST Grant Number JPMJCR1402, and JSPS
KAKENHI Grant Numbers JP18H04091 and JP19K11814, Japan.
X. Zhou—Partially supported by JSPS KAKENHI Grant Number JP19K11813, Japan.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 286–295, 2020.
https://doi.org/10.1007/978-3-030-39881-1_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_24&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_24

Approximability of the Independent Feedback Vertex Set Problem 287

(a) (b) (c)

Fig. 1. (a) A graph G, (b) a minimum feedback vertex set of G, and (c) a minimum
independent feedback vertex set of G, where each vertex in the feedback vertex sets is
depicted by a black circle.

complete graph with four or more vertices. For a given graph G, the independent
feedback vertex set problem is to find an independent feedback vertex set of G
with the minimum number of vertices, if it exists. For convenience, we sometimes
call the feedback vertex set problem the original problem, and the independent
feedback vertex set problem the independence variant.

1.1 Related Results and Known Results

The original problem is APX-complete for general graphs [2]. This means
that the problem is unlikely to have a polynomial-time approximation scheme
(PTAS). Moreover, it remains NP-hard even for bipartite planar graphs of max-
imum degree four [14]. The original problem has been intensively studied from
various viewpoints, such as of approximation [1,2,4], fixed-parameter tractability
(FPT) [10], and tractability on special graph classes [8,9,15].

As Misra et al. pointed out in [13], by inserting a new vertex in every edge of
a graph, the original problem can be reduced to the independence variant with-
out changing the size of optimal solutions. This implies that the independence
variant is APX-hard for bipartite graphs, and remains NP-hard even for bipar-
tite planar graphs of maximum degree four. In the same paper, Misra et al. also
developed a fixed-parameter algorithm whose running time is O(5knO(1)), where
n is the number of vertices in a graph and k is the solution size as the parameter.
Recently, Li and Pilipczuk improved this running time to O(3.619knO(1)) [11].
The independence variant has been studied also from the viewpoint of graph
classes; for example, it is solvable in polynomial time for bounded treewidth
graphs [16], chordal graphs [16], P5-free graphs [7], and graphs of diameter
two [6]. Interestingly, for the latter two graph classes, their polynomial-time
solvabilities of the original problem remain open.

The independence variant is strongly related to the near-bipartiteness prob-
lem [5,7,17]. In the problem, for a given graph G, our task is to decide whether
G has at least one independent feedback vertex set. Therefore, the intractability
of the independence variant is inherited from the near-bipartiteness problem. It
is known that the near-bipartiteness problem is NP-complete even for graphs
of maximum degree four [17], graphs of diameter at most three [5], and for line

288 Y. Tamura et al.

graphs of bipartite planar subcubic graphs [7]. Note that, since any bipartite
graph has an independent feedback vertex set, the near-bipartiteness problem is
trivially solvable for bipartite graphs.

1.2 Our Contribution

In this paper, we study the approximability of the independent feedback vertex
set problem for bipartite graphs.

We first show that, unless P = NP, the independence variant admits no
polynomial-time approximation algorithm within a factor n1−ε for any fixed
ε > 0, even on bipartite planar graphs, where n is the number of vertices in a
graph. This gives a contrast to the existence of polynomial-time 2-approximation
algorithms for the original problem on general graphs [2,4]. One might think that
this hardness result is straightforward, because the independence variant has the
constraint of independent sets. In fact, the independent set problem, which finds
a maximum-size independent set of a given graph, is also hard to approximate
within a factor n1−ε in polynomial time, for any fixed ε > 0 [18]. However, since
the independent set problem is a maximization problem whereas the independent
feedback vertex set problem is a minimization problem, it is not straightforward
to give our hardness result. We also point out that the independent set problem
admits a PTAS for planar graphs [3], and is solvable in polynomial time for
bipartite graphs (from König’s theorem).

We then give an α(Δ − 1)/2-approximation algorithm for bipartite graphs
G of n vertices and maximum degree Δ, which runs in O(t(G) + Δn) time,
under the assumption that there is an α-approximation algorithm for the orig-
inal problem on bipartite graphs which runs in O(t(G)) time. As we will show
later, this result yields a polynomial-time O(Δ)-approximation algorithm for the
independence variant on bipartite graphs. Notice that, from our inapproxima-
bility result, unless P = NP, there is no polynomial-time Δ1−ε-approximation
algorithm for any fixed ε > 0. In this sense, our approximation factor is best
possible with respect to the exponent of Δ.

The proofs for the claims marked with (∗) are postponed to the full version.

2 Preliminaries

In this paper, we assume that graphs are undirected, unweighted, simple and
connected. Let G = (V,E) be a graph; we sometimes denote by V (G) and E(G)
the vertex set and edge set of G, respectively. For a vertex v in G, we denote by
N(v) the set of all neighbors of v in G, that is, N(v) = {w ∈ V (G) : vw ∈ E(G)}.
For a vertex subset V ′ of a graph G = (V,E), let G[V ′] be the subgraph of G
induced by V ′. For a subset W ⊆ V , we denote simply by G − W the induced
subgraph G[V \ W].

For a graph G, a vertex subset I of G is called an independent set of G if
G[I] contains no edge, and a vertex subset F of G is called a feedback vertex set

Approximability of the Independent Feedback Vertex Set Problem 289

of G if G − F is a forest. We sometimes say that a feedback vertex set F of G
is independent if G[F] forms an independent set of G. Let

OPT(G) = min{|F | : F is an independent feedback vertex set of G};

we let OPT(G) = +∞ if G has no independent feedback vertex set. Given a graph
G, the independent feedback vertex set problem is to find an independent feedback
vertex set F of G such that |F | = OPT(G). Analogously, we define OPTFVS(G)
for feedback vertex sets; notice that OPTFVS(G) < |V (G)| − 1 always holds.

3 Inapproximability

As mentioned before, the independent feedback vertex set problem is APX-hard
even for bipartite graphs. In this section, we give the following stronger result.

Theorem 1. Let ε > 0 be any fixed constant. The independent feedback vertex
set problem admits no polynomial-time approximation algorithm within a factor
n1−ε for bipartite planar graphs of n vertices, unless P = NP.

We prove the theorem in the remainder of this section, by giving a gap-
producing reduction from the planar 3-satisfiability problem.

Recall that the 3-satisfiability problem (3-SAT, for short) is the problem of
asking if there exists a satisfying assignment for a given 3-CNF formula φ. The
associated graph Gφ = (X ∪ C,E) of φ is a bipartite graph such that

(i) each vertex in X corresponds to a variable in φ, and each vertex in C corre-
sponds to a clause of φ; and

(ii) two vertices v ∈ X and w ∈ C are joined by an edge in E if and only if the
variable corresponding to v appears in the clause corresponding to w.

The formula φ is said to be planar if its associated graph is planar. Given a
planar 3-CNF formula φ, the planar 3-satisfiability problem (PLANAR 3-SAT,
for short) is to determine whether there exists a satisfying assignment of φ.
PLANAR 3-SAT is known to be NP-complete [12].

3.1 Gadgets

In this subsection, we construct five kinds of gadgets for our reduction.
We first define a forbidding gadget, which consists of three parts: a root ver-

tex, a core vertex, and petals. (See Fig. 2(a)) The root vertex will be identified
with a vertex of another gadget defined later. Each petal is a cycle of four ver-
tices, and the forbidding gadget have p petals that share the core vertex. We
use the simplified illustration shown in Fig. 2(b) for the forbidding gadget. The
forbidding gadget forbids adding the root vertex to a minimum independent
feedback vertex set, and forces to choose the center vertex. To see this, notice
that we cannot choose both root and center vertices at the same time, because
they are adjacent. Therefore, if we choose the root vertex, we must choose at

290 Y. Tamura et al.

root
core

petals

root

(a) (b)

Fig. 2. (a) A forbidding gadget, where some petals are omitted. (b) The simplified
illustration of a forbidding gadget, where the core vertex and all petals are simply
illustrated as a black triangle.

least p vertices additionally, each of which comes from a petal in the forbidding
gadget. An independent feedback vertex set is said to be proper if it contains
the core vertex for every forbidding gadget.

Using the forbidding gadget, we will define the other gadgets. The variable
gadget Xi is illustrated in Fig. 3(a), and corresponds to a variable xi of a given
3-CNF formula φ. Every proper independent feedback vertex set must contain vi

or v′
i of Xi. As we will explain later, we regard vi ∈ F as setting xi = true, and

say that Xi is the true-state. Conversely, we regard vi /∈ F as setting xi = false,
and say that Xi is the false-state.

The clause gadget Cj is illustrated in Fig. 3(b). This gadget corresponds to
a clause (cj,1 ∨ cj,2 ∨ cj,3) in φ, and the three vertices uj,1, uj,2 and uj,3 of Cj

correspond to the three literals in the clause. Every proper independent feedback
vertex set must contain at least one of uj,1, uj,2, and uj,3.

The positive edge gadget and the negative edge gadget are illustrated in
Fig. 3(c) and (d), respectively. The purpose of these edge gadgets is to prop-
agate the state of a variable gadget to a clause gadget; note that the negative
edge gadget propagates the opposite state of the variable gadget. The positive
edge gadget has only two proper independent feedback vertex sets, as shown
in Fig. 4. Similarly, the negative edge gadget has only two proper independent
feedback vertex sets {v�} and {u�} (together with all core vertices of forbid-
ding gadgets). Observe that for every proper independent feedback vertex set F ,
v� ∈ F if and only if u� ∈ F for the positive edge gadget, and v� ∈ F if and only
if u� /∈ F for the negative edge gadget.

3.2 Reduction

In this subsection, we construct the corresponding graph Gφ,p for the indepen-
dent feedback vertex set problem, from a given instance φ of PLANAR 3-SAT.

Let Gφ = (X ∪ C,E) be the associated graph of a given 3-CNF formula
φ for PLANAR 3-SAT. We fix a plane embedding of Gφ arbitrarily. Then, we
replace each vertex xi ∈ X with a variable gadget Xi, and each vertex cj ∈ C
with a clause gadget Cj . Next, consider an edge xicj ∈ E, and assume that xicj

appears as the k-th edge, where k ∈ {1, 2, 3}, if we see the three edges incident to

Approximability of the Independent Feedback Vertex Set Problem 291

v′
i

vi

(a)

uj,1

uj,2

uj,3

(b)

v�

u�

(c)

v�

u�

(d)

Fig. 3. (a) A variable gadget, (b) a clause gadget, (c) a positive edge gadget, and (d)
a negative edge gadget.

cj in the clockwise direction. We replace the edge xicj ∈ E with a positive edge
gadget if the corresponding variable of xi appears as a positive literal; otherwise
we replace xicj with a negative edge gadget. In either case, we identify the vertex
v� in the edge gadget with vi of Xi, and also identify the vertex u� with uj,k

of Cj . Let Gφ,p be the resulting graph, where p is the number of petals in each
forbidding gadget. Since Gφ and all gadgets are bipartite and planar, Gφ,p is
also a bipartite planar graph. In addition, we can construct Gφ,p in polynomial
time.

Let qφ be an arbitrary integer such that qφ ≥ 81(s + t), where s and t are
the numbers of variables and clauses in φ, respectively. We denote by nφ,p the
number of vertices in Gφ,p. Then, we have the following lemma.

Lemma 1 (∗). It holds that nφ,p < (p + 1)qφ.

The following lemma is the key for the proof of Theorem 1.

Lemma 2 (∗). For any integer p ≥ qφ, the following (I) and (II) hold:

(I) if OPT(Gφ,p) < p + 1, then φ has a satisfying assignment; and
(II) if OPT(Gφ,p) > qφ, then φ has no satisfying assignment.

We now prove Theorem 1. Assume for a contradiction that there exists a
polynomial-time approximation algorithm within a factor n1−ε for some fixed
ε > 0, where n is the number of vertices in a given graph. Observe that ε ≤ 1
must hold. We denote by APX(Gφ,p) the size of a solution for Gφ,p produced by
the approximation algorithm. Then, we have

OPT(Gφ,p) ≤ APX(Gφ,p) ≤ n1−ε
φ,p · OPT(Gφ,p). (1)

292 Y. Tamura et al.

v�

u�

(a)

v�

u�

(b)

Fig. 4. The two proper independent feedback vertex sets of the positive edge gadget,
formed by the black vertices together with all core vertices of forbidding gadgets.

We set
p =

⌈
q
(2−ε)/ε
φ

⌉
− 1.

Consider the case where APX(Gφ,p) < p+1 holds. By (1) it holds in this case that
OPT(Gφ,p) < p + 1. Then, Lemma 2(I) says that φ has a satisfying assignment.
Consider the other case, where APX(Gφ,p) ≥ p + 1 holds. By (1) it holds in this
case that n1−ε

φ,p · OPT(Gφ,p) ≥ p + 1. Then, by Lemma 1 we have

OPT(Gφ,p) ≥ p + 1
n1−ε

φ,p

>
p + 1

((p + 1)qφ)1−ε
=

(p + 1)ε

q1−ε
φ

≥
(
q
(2−ε)/ε
φ

)ε

q1−ε
φ

= qφ.

Then, Lemma 2(II) says that φ has no satisfying assignment.
In this way, APX(Gφ,p) < p + 1 if and only if φ has a satisfying assignment.

Since we have assumed that APX(Gφ,p) can be computed in polynomial time,
this means that we can solve PLANAR 3-SAT in polynomial time. This is a
contradiction unless P = NP. This completes the proof of Theorem 1.
�

4 Approximation Algorithm

We note that the independent feedback vertex set problem is solvable in linear
time for graphs of maximum degree at most two, because each connected com-
ponent of such a graph is either a path or a cycle. In this section, we give the
following theorem.

Theorem 2. Let G be a bipartite graph of n vertices and maximum degree
Δ ≥ 3. Suppose that, for the feedback vertex set problem, there is an
α-approximation algorithm which outputs a solution of G in O(t(G)) time.

Approximability of the Independent Feedback Vertex Set Problem 293

Algorithm 1
Input: A bipartite graph G = (A ∪ B, E)
Output: An independent feedback vertex set F of G
1: Apply the α-approximation algorithm for the original problem to G, and obtain a

feedback vertex set F ′ of G
2: Let FA = F ′ ∩ A and FB = F ′ ∩ B; assume that |FA| ≤ |FB | without loss of

generality
3: while there is an edge vAvB such that vA ∈ FA and vB ∈ FB do
4: FA ← FA \ {vA}
5: if N(vA) \ FB �= ∅ then
6: Choose an arbitrary vertex u ∈ N(vA) \ FB

7: FB ← (FB ∪ N(vA)) \ {u}
8: end if
9: end while

10: Return F = FA ∪ FB

Then, for the independent feedback vertex set problem, there exists an approxi-
mation algorithm which outputs a solution of G within a factor α(Δ − 1)/2 in
O(t(G) + Δn) time.

As a proof of Theorem 2, we give Algorithm 1 below. To avoid confusion, we
sometimes denote by F i

A and F i
B the sets FA and FB after Algorithm 1 executes

the while loop of the lines 3–9 exactly i times, respectively. For notational con-
venience, let F 0

A = F ′ ∩A and F 0
B = F ′ ∩B. Furthermore, let F f

A and F f
B be the

sets FA and FB when Algorithm 1 terminates, respectively. Let F i = F i
A ∪ F i

B,
and hence Algorithm 1 outputs F f = F f

A ∪ F f
B .

Lemma 3 (∗). Algorithm 1 outputs an independent feedback vertex set F of the
input bipartite graph G.

We now estimate the approximation factor of Algorithm 1. Specifically, we
will prove that the output F of Algorithm 1 satisfies

|F | ≤ α · Δ − 1
2

· OPT(G). (2)

To verify (2), we first note that Algorithm 1 adds at most |N(vA)| − 2 ≤ Δ − 2
vertices to FB in line 7, for each execution of the whole loop; recall that two
vertices vB, u ∈ N(vA) were not added to FB . Since Algorithm 1 executes the
whole loop exactly |F 0

A \ F f
A| times, we have |F f

B | ≤ |F 0
B | + (Δ − 2)|F 0

A \ F f
A| and

hence

|F | = |F f
A| + |F f

B |
≤ (|F 0

A| − |F 0
A \ F f

A|) + (|F 0
B | + (Δ − 2)|F 0

A \ F f
A|)

= |F 0
A| + |F 0

B | + (Δ − 3)|F 0
A \ F f

A|
≤ |F ′| + (Δ − 3)|F 0

A|. (3)

294 Y. Tamura et al.

Since we have assumed that |F 0
A| ≤ |F 0

B | without loss of generality, it holds that
|F 0

A| ≤ |F ′|/2. Therefore, since Δ − 3 ≥ 0, by (3) we have

|F | ≤ |F ′| +
Δ − 3

2
|F ′| =

Δ − 1
2

|F ′|. (4)

Recall that F ′ is the α-approximate solution for the original problem, and hence
it holds that |F ′| ≤ α·OPTFVS(G). In addition, since every independent feedback
vertex set of G is also a feedback vertex set of G, we have OPTFVS(G) ≤ OPT(G).
Thus, together with (4), we can conclude that

|F | ≤ Δ − 1
2

· α · OPTFVS(G) ≤ Δ − 1
2

· α · OPT(G),

as claimed in (2).
Finally, we estimate the running time of Algorithm 1. Let n = |V (G)|. By

assumption, the line 1 takes t(G) time. The whole loop of lines 3–9 can be
executed in O(Δn) time in total, by using an appropriate data structure such
as a queue. Therefore, the total running time of Algorithm 1 is O(t(G) + Δn).
This completes the proof of Theorem 2.
�

We now obtain two approximation algorithms for the independence variant
on bipartite graphs, by applying Theorem 2 to two known approximation algo-
rithms for the original problem. First, Bafna et al. [1] gave an algorithm whose
approximation factor is 2 − 2/(3Δ − 2) and running time is O(n2). Then, we
have the following corollary.

Corollary 1. The independent feedback vertex set problem for bipartite graphs
of n vertices and maximum degree Δ ≥ 3 admits an algorithm whose approxi-
mation factor is 3(Δ − 1)2/(3Δ − 2) and running time is O(n2).

Second, Becker and Geiger [4] gave a 2-approximation algorithm for the orig-
inal problem which runs in O(m + n log n) time, where m is the number of
edges in a graph. Using this algorithm, we can obtain a faster and easily imple-
mentable approximation algorithm for the independence variant, although its
approximation factor is slightly worse than that of Corollary 1.

Corollary 2. The independent feedback vertex set problem for bipartite graphs
of n vertices and maximum degree Δ ≥ 3 admits a (Δ − 1)-approximation algo-
rithm which runs in O(n log n + Δn) time.

5 Conclusion

In this paper, we have shown that the independent feedback vertex set problem
for bipartite planar graphs of n vertices admits no polynomial-time approxi-
mation algorithm within a factor n1−ε, for any fixed ε > 0, unless P = NP.
This gives a contrast to the fact that the original problem admits a polynomial-
time 2-approximation algorithm for general graphs. We also have developed an
α(Δ − 1)/2-approximation algorithm for the independence variant on bipartite
graphs of maximum degree Δ, where α is the approximation factor of an algo-
rithm for the original problem on bipartite graphs.

Approximability of the Independent Feedback Vertex Set Problem 295

References

1. Bafna, V., Berman, P., Fujito, T.: Constant ratio approximations of the weighted
feedback vertex set problem for undirected graphs. In: Staples, J., Eades, P.,
Katoh, N., Moffat, A. (eds.) ISAAC 1995. LNCS, vol. 1004, pp. 142–151. Springer,
Heidelberg (1995). https://doi.org/10.1007/BFb0015417

2. Bafna, V., Berman, P., Fujito, T.: A 2-approximation algorithm for the undirected
feedback vertex set problem. SIAM J. Discrete Math. 12, 289–297 (1999)

3. Baker, B.S.: Approximation algorithms for NP-complete problems on planar
graphs. J. ACM 41(1), 153–180 (1994)

4. Becker, A., Geiger, D.: Optimization of Pearl’s method of conditioning and greedy-
like approximation algorithms for the vertex feedback set problem. Artif. Intell.
83(1), 167–188 (1996)

5. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Recog-
nizing graphs close to bipartite graphs. In: Proceedings of the 42nd International
Symposium on Mathematical Foundations of Computer Science (MFCS 2017),
Leibniz International Proceedings in Informatics, vol. 83, pp. 70:1–70:14 (2017)

6. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Indepen-
dent feedback vertex sets for graphs of bounded diameter. Inf. Process. Lett. 131,
26–32 (2018)

7. Bonamy, M., Dabrowski, K.K., Feghali, C., Johnson, M., Paulusma, D.: Indepen-
dent feedback vertex set for P5-free graphs. Algorithmica 81(4), 1342–1369 (2019)

8. Festa, P., Pardalos, P.M., Resende, M.G.C.: Feedback Set Problems. Handbook of
Combinatorial Optimization, pp. 209–258. Springer, Boston (1999). https://doi.
org/10.1007/978-1-4757-3023-4 4

9. Kloks, T., Lee, C.M., Liu, J.: New algorithms for k -face cover, k -feedback vertex
set, and k -disjoint cycles on plane and planar graphs. In: Goos, G., Hartmanis,
J., van Leeuwen, J., Kučera, L. (eds.) WG 2002. LNCS, vol. 2573, pp. 282–295.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36379-3 25

10. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Pro-
cess. Lett. 114(10), 556–560 (2014)

11. Li, S., Pilipczuk, M.: An improved FPT algorithm for independent feedback vertex
set. In: Brandstädt, A., Köhler, E., Meer, K. (eds.) WG 2018. LNCS, vol. 11159, pp.
344–355. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00256-5 28

12. Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343
(1982)

13. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent
feedback vertex set. Theoret. Comput. Sci. 461, 65–75 (2012)

14. Speckenmeyer, E.: On feedback vertex sets and nonseparating independent sets in
cubic graphs. J. Graph Theory 12, 405–412 (1988)

15. Takaoka, A., Tayu, S., Ueno, S.: On minimum feedback vertex sets in bipartite
graphs and degree-constraint graphs. IEICE Trans. Inf. Syst. E96–D(11), 2327–
2332 (2013)

16. Tamura, Y., Ito, T., Zhou, X.: Algorithms for the independent feedback vertex
set problem. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E98–A(6),
1179–1188 (2015)

17. Yang, A., Yuan, J.: Partition the vertices of a graph into one independent set and
one acyclic set. Discrete Math. 306(12), 1207–1216 (2006)

18. Zuckerman, D.: Linear degree extractors and the inapproximability of max clique
and chromatic number. Theory Comput. 3(1), 103–128 (2007)

https://doi.org/10.1007/BFb0015417
https://doi.org/10.1007/978-1-4757-3023-4_4
https://doi.org/10.1007/978-1-4757-3023-4_4
https://doi.org/10.1007/3-540-36379-3_25
https://doi.org/10.1007/978-3-030-00256-5_28

Efficient Enumeration of Non-isomorphic
Ptolemaic Graphs

Dat Hoang Tran and Ryuhei Uehara(B)

School of Information Science, Japan Advanced Institute of Science
and Technology (JAIST), Nomi, Ishikawa, Japan

{tran.hoangdat,uehara}@jaist.ac.jp

Abstract. Recently, a general framework for enumerating every ele-
ment in a graph class was given. The main feature of this framework
was that it was designed to enumerate only non-isomorphic graphs in a
graph class. Applying this framework to the classes of interval graphs
and permutation graphs, we gave efficient enumeration algorithms for
these graph classes such that each element in the class was output in
polynomial time delay. In this paper, we investigate the class of Ptole-
maic graphs that consists of graphs that satisfy Ptolemy inequality for
the distance. From the viewpoint of graph classes, it is an intersection of
the class of chordal graphs and the class of distance-hereditary graphs.
To enumerate Ptolemaic graphs, we need more tricks for applying the
general framework. We develop an efficient enumeration algorithm for
non-isomorphic Ptolemaic graphs.

1 Introduction

Recently we have to process huge amounts of data in the area of data mining,
bioinformatics, etc. When we solve some problems on them, we sometimes use
some certain structure common in data since we cannot solve the problems
efficiently otherwise. When we deal with such a structure, essentially different
instances have to be enumerated efficiently. From the viewpoint of graphs, it is
natural to consider that two graphs are different when they are non-isomorphic.
However, in general, it is unknown whether graph isomorphism can be solved
efficiently, even on quite restricted graph classes (see [12]). On the other hand,
even if we restrict ourselves to the graph classes that allow us to solve graph
isomorphism efficiently, such graph classes still have certain structures with many
applications.

We investigate the enumeration of all graphs that belong to a graph class from
this viewpoint in this paper. In this context, there are two early results [9,10].
In these papers, the authors gave efficient enumeration algorithms for proper
interval graphs and bipartite permutation graphs. Later, these algorithms have
been implemented [3,5], and the lists of these graphs are published on a website1.
For example, proper interval graphs are enumerated up to n = 23 so far, where
1 http://www.jaist.ac.jp/∼uehara/graphs.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 296–307, 2020.
https://doi.org/10.1007/978-3-030-39881-1_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_25&domain=pdf
http://www.jaist.ac.jp/~uehara/graphs
https://doi.org/10.1007/978-3-030-39881-1_25

Efficient Enumeration of Non-isomorphic Ptolemaic Graphs 297

n is the number of vertices. Since these graph classes have simple structures, the
amount of hard disk drive is the bottleneck to publish on the website for them.

On the other hand, a general framework that gives us to enumerate all non-
isomorphic graphs in some graph classes such that the graph isomorphism can
be solved efficiently on the class is investigated recently [15]. In this context,
enumeration algorithms for interval graphs and permutation graphs have been
developed, and the data sets of these graph classes are on public on the above
website. The class of permutation graphs is enumerated up to n = 8, and the
class of interval graphs is enumerated up to n = 12 on the website. Recently, the
result is updated to n = 15 for interval graphs [8]. For these graph classes, since
they have richer structure, the computation time is the bottleneck to enumerate.

From the viewpoint of graph theory, the graph classes above have natural
geometric representations, and these properties help to design the enumeration
algorithms (see, e.g., [13] for further details). In this paper, we focus on Ptolemaic
graphs. A graph is Ptolemaic if and only if any four vertices satisfy Ptolemaic
inequality, which is originally defined in Euclidean geometry. This geometric
property, however, does not give us any geometric representations. In the context
of the graph classes, the class of Ptolemaic graphs is an intersection of the classes
of chordal graphs and distance-hereditary graphs. The graph isomorphism prob-
lem is intractable for chordal graphs, while it is tractable for distance-hereditary
graphs. From these graph classes, Ptolemaic graphs inherit useful properties,
and based on these properties, a laminar structure of maximal cliques has been
proved [14], and it admits us to solve the graph isomorphism efficiently. In this
paper, we give an enumeration algorithm for Ptolemaic graphs. More precisely,
our enumeration algorithm outputs all non-isomorphic Ptolemaic graphs with n
vertices for a given integer n, and the time complexity of the interval between
two consecutive Ptolemaic graphs is bounded above by a polynomial time.

2 Preliminaries

We only consider simple graphs G = (V,E) with no self-loop and multi edges.
We assume V = {v1, v2, . . . , vn} for some n and |E| = m. Let Kn denote the
complete graph of n vertices and Pn denote the path of n vertices of length
n − 1. We define a graph isomorphism between two graphs G1 = (V1, E1) and
G2 = (V2, E2) as follows. The graph G1 is isomorphic to G2 when there is a
one-to-one mapping φ : V1 → V2 such that for any pair of vertices u, v ∈ V1,
{u, v} ∈ E1 if and only if {φ(u), φ(v)} ∈ E2. We denote by G1 ∼ G2 for two
isomorphic graphs G1 and G2.

The neighborhood of a vertex v in a graph G = (V,E) is the set NG(v) =
{u ∈ V | {u, v} ∈ E}, and the degree of a vertex v is |NG(v)| and it
is denoted by degG(v). For a subset U of V , we denote by NG(U) the set
{v ∈ V | v ∈ N(u) for some u ∈ U}. If no confusion can arise, we will omit the
index G. We denote the closed neighborhood N(v)∪{v} by N [v]. Given a graph
G = (V,E) and a subset U of V , the induced subgraph by U , denoted by G[U], is
the graph (U,E′), where E′ = {{u, v} | u, v ∈ Uand {u, v} ∈ E}. Given a graph

298 D. H. Tran and R. Uehara

G = (V,E), its complement is defined by Ē = {{u, v} | {u, v} �∈ E}, which is
denoted by Ḡ = (V, Ē). A vertex set I is an independent set if G[I] contains no
edges, and then the graph Ḡ[I] is said to be a clique. Two vertices u and v are
said to be a pair of twins if N(u) \ {v} = N(v) \ {u}. For a pair of twins u and
v, we say that they are strong twins if {u, v} ∈ E, and weak twins if {u, v} �∈ E.

Given a graph G = (V,E), a sequence of the distinct vertices v1, v2, . . . , vl
is a path, denoted by (v1, v2, . . . , vl), if {vj , vj+1} ∈ E for each 1 ≤ j < l. The
length of a path is the number of edges on the path. For two vertices u and v, the
distance of the vertices, denoted by d(u, v), is the minimum length of the paths
joining u and v. A cycle is a path beginning and ending at the same vertex.

An edge which joins two vertices of a cycle but it is not an edge of the cycle
is a chord of the cycle. A graph is chordal if each cycle of length at least 4 has
a chord. Given a graph G = (V,E), a vertex v ∈ V is simplicial in G if G[N(v)]
is a clique in G.

It is also known that a graph G = (V,E) is chordal if and only if it is the
intersection graph of subtrees of a tree T (see [2, Section 1.2] for further details).
Let Tv denote the subtree of T corresponding to the vertex v in G. Then we can
assume that each node c in T corresponds to a maximal clique C of G such that
C contains v on G if and only if Tv contains c on T 2. Such a tree T is called
a clique tree of G. From a perfect elimination ordering of a chordal graph G,
we can construct a clique tree of G in linear time [11]. We sometimes identify a
node c of a clique tree T with a maximal clique (or a vertex set) C of G.

Given a graph G = (V,E) and a subset U of V , an induced connected sub-
graph G[U] is isometric if the distances in G[U] are the same as in G. A graph
G is distance-hereditary if G is connected and every induced path in G is iso-
metric. In other words, a connected graph G is distance-hereditary if and only
if all induced paths are shortest paths.

A connected graph G is Ptolemaic if for any four vertices u, v, w, x of G,
d(u, v)d(w, x) ≤ d(u,w)d(v, x) + d(u, x)d(v, w). The following characterization
of Ptolemaic graphs is due to Howorka [4]:

Theorem 1. The following conditions are equivalent: (1) G is Ptolemaic; (2)
G is distance-hereditary and chordal; (3) for all distinct non-disjoint maximal
cliques P,Q of G, P ∩ Q separates P \ Q and Q \ P .

By Theorem 1(2), we can obtain the following:

Corollary 1 (Folklore). Any Ptolemaic graph G can be obtained from K1 by
repeating the following two operations: (1) adding a leaf (of degree 1), and (2)
split a vertex v into two strong twins v and v′ with N [v] = N [v′].

Let V be a set of n vertices. Two sets X and Y are said to be overlapping if
X ∩ Y �= ∅, X \ Y �= ∅, and Y \ X �= ∅. A family F ⊆ 2V \ {∅}} is said to be
laminar if F contains no overlapping sets; that is, for any pair of two distinct

2 We use two terms “node” and “vertex” to indicate an element in a graph. When
we use “vertex,” it indicates a vertex in the original chordal graph G. On the other
hand, when we use “node,” it indicates a node of the clique tree.

Efficient Enumeration of Non-isomorphic Ptolemaic Graphs 299

sets X and Y in F satisfy either X ∩Y = ∅, X ⊂ Y , or Y ⊂ X. Given a laminar
family F , we define laminar digraph

−→
T (F) = (F ,

−→
E F) as follows;

−→
E F contains

an arc (X,Y) if and only if X ⊂ Y and there are no other subset Z such that
X ⊂ Z ⊂ Y , for any sets X and Y . We denote the underlying graph of

−→
T (F) by

T (F) = (F , EF). The following two lemmas for the laminar digraph are known
(see, e.g., [7, Chapter 2.2]);

Lemma 1. Let F be a laminar family over V . Then, (1) T (F) is a forest, and
(2) |F| ≤ 2|V | − 1.

Hence, hereafter, we call T (F) (
−→
T (F)) a (directed) laminar forest. We regard

each maximal (directed) tree in the laminar forest T (F) (
−→
T (F)) as a (directed)

tree rooted at the maximal set, whose outdegree is 0 in
−→
T (F).

We define a label of each node S0 in
−→
T (F), denoted by �(S0), as follows:

If S0 is a leaf, �(S0) = S0. If S0 is not a leaf and has children S1, S2, . . . , Sh,
�(S0) = S0 \ (S1 ∪ S2 ∪ · · · ∪ Sh). That is, each vertex v in V appears in �(S)
where S is the minimal set containing v. Since F is laminar, each vertex in V
appears exactly once in �(S) for some S ⊆ V , and its corresponding node is
uniquely determined. We note that internal nodes in

−→
T (F) have a label ∅ when

it is partitioned completely by its subsets in F . (For example, for V = {a, b}
and F = {X = {a, b}, Y = {a}, Z = {b}}, we have �(X) = {∅}, �(Y) = {a}, and
�(Z) = {b}.)

2.1 Tree Structure for a Ptolemaic Graph

Uehara and Uno characterized the class of Ptolemaic graphs by the laminar
structure of maximal cliques [14]. We here describe the detail of the notion of
clique laminar tree, CL-tree for short, and some properties which are not shown
in [14] and that will be used in our algorithm. For a Ptolemaic graph G = (V,E),
let M(G) be the set of all maximal cliques, i.e.,

M(G) := {M | M is a maximal clique in G},

and C(G) be the set of nonempty vertex sets defined below:

C(G) :=
⋃

S⊆M(G)

{C | C = ∩M∈SM,C �= ∅}.

That is, each vertex set C ∈ C(G) is a nonempty intersection of some maximal
cliques. Hence, C(G) contains all maximal cliques, and each C in C(G) induces
a clique. We also denote by L(G) the set C(G) \ M(G). That is, each vertex set
L ∈ L(G) is an intersection of two or more maximal cliques, and hence L is a
non-maximal clique.

Theorem 2. [14] Let G = (V,E) be a Ptolemaic graph. Let F be a family of
sets in L(G) such that ∪L∈FL ⊂ M for some maximal clique M ∈ M(G). Then
F is laminar.

300 D. H. Tran and R. Uehara

For a given Ptolemaic graph G = (V,E), we generalize the notion of the
(directed) laminar forest of a laminar family to a directed graph

−→
T (G) =

(C(G), A(G)) as follows; two nodes C1, C2 ∈ C(G) are joined by an arc (C1, C2)
if and only if C1 ⊂ C2 and there is no other C in C(G) such that C1 ⊂ C ⊂ C2.
We denote by T (G) the underlying graph of

−→
T (G). Then a Ptolemaic graph can

be characterized as follows:

Theorem 3. [14] A graph G = (V,E) is Ptolemaic if and only if the graph T (G)
is a tree. Moreover,

−→
T (G) is canonical; that is,

−→
T (G) is uniquely determined by

G up to isomorphism.

Given a Ptolemaic graph G = (V,E), we call T (G) (
−→
T (G)) a (directed) CL-tree

of G. We note that
−→
T (G) can contain two or more nodes of indegree 0. The

nodes of indegree 0 in
−→
T (G) are called roots. If an arc (C,C ′) is in

−→
T (G), we say

C is a parent of C ′, and C ′ is a child of C. We note that a node may have two
or more parents. Ancestors and descendants are defined as in a normal way.

Hereafter, to simplify, we assume that a Ptolemaic graph G is not Kn. In this
special case, its CL-tree contains one node. In the other cases below, we assume
that any CL-tree contains at least two nodes without loss of generality.

We extend the label of a laminar forest to the directed CL-tree in a natural
way: Each node C0 in C(G) has a label �(C0) := C0 \ (C1 ∪C2 ∪ · · · ∪Ch), where
(Ci, C0) is an arc on

−→
T (C(G)) for 1 ≤ i ≤ h. Intuitively, we additionally define

the label of a maximal clique as follows; the label of a maximal clique is the set
of vertices which are not contained in any other maximal cliques. For the

−→
T (G),

each node of degree 1 in T (G) is said to be a leaf, and the other nodes are called
inner nodes.

a

b

c

d

e

f

g

h

i

j

k

l

m

n

o

Fig. 1. An example of a Ptolemaic graph G.

For a Ptolemaic graph G = (V,E) given in Fig. 1, its CL-tree
−→
T (G) is illus-

trated in Fig. 2. In Fig. 2, a black square represents a maximal clique, while a
white square represents a non-maximal clique. Each upper label describes the
clique C, and lower label describes its label �(C). We note that the number of
nodes of the CL-tree is at most 2|V |, and each vertex in V appears exactly once
in a label �(C) for some node C which corresponds to a clique in G.

Efficient Enumeration of Non-isomorphic Ptolemaic Graphs 301

{a, b}
{a, b, e, f}

{c}

{d}

{e}

{f}

{g}

{h}

{i}

{j}

{i, k}

{l}

{l, m, o}

{n}

{o}

{e, f}{c, e, f}

{d, f}

{f}

{e, f, g, h, i}

{h, j}
{h}

{i}

{h, i}
{φ}

{k}

{l}
{φ}

{h, i, l}
{m}
{l, o}

{l, n, o}

: Nonmaximal clique
: Maximal clique

Label of clique (C)
Clique C

Fig. 2. The CL-tree of G.

1

1 1

1

0

1
1

1 01

1

2

1

1

1

1

1

Fig. 3. The directed labeled tree induced by the CL-tree.

Here we show a lemma which is useful from the algorithmic point of view:

Lemma 2. Let G = (V,E) be a Ptolemaic graph, and
−→
T (G) the CL-tree of G.

Then we have the following;

(1) each node in L(G) has outdegree at least 2 in
−→
T (G),

(2) each node in M(G) has outdegree 0 in
−→
T (G), and

(3) each leaf in
−→
T (G) corresponds to a maximal clique in M(G), and hence the

node of degree 1 in T (G) has indegree 1 in
−→
T (G).

Proof. We first remind that M contains all maximal cliques, and L contains all
cliques that are intersections of 2 or more cliques in M. Since there is no clique
that properly contains a maximal clique M , the node M in M(G) has outdegree
0 in

−→
T (G), which states (2).

Now we show that there is no clique in C = M∪L with outdegree 1 in
−→
T (G).

This fact implies (1) and (3). To derive contradictions, we assume that there is
a node C in C with outdegree 1 in

−→
T (G). Let C ′ be the unique node with an arc

(C,C ′) in
−→
T (G). Then C ′ properly contains C. Hence C cannot be a maximal

clique (and hence we have (3)). Thus, from the definition, C can be represented
by C1 ∩ C2 ∩ · · · ∩ Ck for some maximal cliques Ci with 1 ≤ i ≤ k. If C ′ �⊂ Ci

for some i, letting C ′′ := C ′ ∩ Ci, we have C ⊂ C ′′ ⊂ C ′, which contradicts

302 D. H. Tran and R. Uehara

that (C,C ′) is an arc in
−→
T (G). Hence we have C ′ ⊂ Ci for all i, which implies

that C ′ ⊂ C1 ∩ C2 ∩ · · · ∩ Ck. Hence we have C1 ∩ C2 ∩ · · · ∩ Ck = C ⊂ C ′ ⊂
C1 ∩ C2 ∩ · · · ∩ Ck, which is a contradiction. Hence we have (2). �

We note that some maximal cliques in M(G) are not leaves (in Fig. 2, the
maximal cliques {e, f, g, h, i} and {h, i, l} are in the case); they properly contain
some independent cliques, have indegree greater than 1, and are inner nodes in−→
T (G).

Let
−→
T (G) be the CL-tree for a Ptolemaic graph G. Then, by Lemma 2(1)

and (2), we can determine if each node is maximal clique or not; maximal clique
has outdegree 0 and non-maximal clique has outdegree at least 2. Hence we have
the following observation:

Observation 1. A CL-tree contains the following four kinds of nodes; (1) nodes
C1 of indegree 0 and of outdegree ≥ 2, which are roots of tree, (2) nodes C2 of
indegree ≥ 1 and of outdegree > 2, (3) nodes C3 of indegree > 1 and of outdegree
0, which are maximal cliques that contain two or more distinct cliques in L, and
(4) nodes C4 of indegree 1 and of outdegree 0, which are maximal cliques and
leaves in

−→
T (G).

We here define size of each node C by the number of vertices in the clique
C, and it is denoted by |C|. Let C be any node and P1, P2, . . . , Pk the parents
of C. We say C is consistent if |C| ≥ ∑k

i=1 |Pi| when k ≥ 2 or |C| > |P1| when
k = 1. The following fact is easy but important:

Fact 1. Let
−→
T be a directed graph such that its underlying graph T is a tree.

We also assume that some integer size is assigned to each node C in T , which is
denoted by |C|. Then −→

T is the CL-tree of some Ptolemaic graph G if and only
if

−→
T contains four kinds of nodes stated in Observation 1 and each node C in−→

T is consistent.

Proof. The only-if part is easy. The if part can be shown by a simple induction
for the number of nodes in

−→
T . �

We define a directed labeled tree
−→
LT (G) induced by

−→
T (G) as follows (Fig. 3):

The tree itself is the same as
−→
T (G), and each label of a node C in

−→
LT (G) is

the number �(C). By Theorem 3 and Fact 1, we can observe that two Ptolemaic
graphs G1 and G2 are isomorphic if and only if

−→
LT (G1) is isomorphic to

−→
LT (G2).

3 Enumeration Algorithms

As shown in Sect. 2.1, a Ptolemaic graph G = (V,E) is identified by a directed
labeled tree

−→
LT (G) induced by

−→
T (G) up to isomorphism. Therefore, basically,

enumeration of Ptolemaic graphs is done by enumeration of non-isomorphic
directed labeled trees. For the labels of nodes of a directed labeled tree, we
have the following lemma (when G is not Kn):

Efficient Enumeration of Non-isomorphic Ptolemaic Graphs 303

Lemma 3. A CL-tree contains the following four kinds of nodes; (1) nodes C1

of indegree ≤ 1 and of outdegree ≥ 2 with �(C1) ≥ 1, (2) nodes C2 of indegree
≥ 2 and of outdegree ≥ 2 with �(C2) ≥ 0, (3) nodes C3 of indegree ≥ 2 and of
outdegree 0 �(C3) ≥ 0, and (4) nodes C4 of indegree ≤ 1 and of outdegree 0 with
�(C4) ≥ 1. We note that C1 and C2 are non-maximal cliques, and C3 and C4

are maximal cliques. Especially, C4 is a leaf. (The indegree of C4 is 0 if and only
if the graph is Kn; otherwise, it is 1.)

Proof. Combining Lemma 2, Observation 1, and Fact 1, the claims follow. �
We call a Ptolemaic graph G minimal if each node satisfies �(C1) = 1, �(C2) =

0, �(C3) = 0, or �(C4) = 1 according to its type in Lemma 3 in its directed labeled
tree

−→
LT (G) induced by the CL-tree

−→
T (G). Intuitively, a minimal Ptolemaic graph

G has the minimum number of vertices in the Ptolemaic graphs having the
isomorphic directed labeled tree regardless of labels. For example, we can obtain
a minimal Ptolemaic graph from the graph in Fig. 1 by removing the vertices
b and g. For a minimal Ptolemaic graph, we also call its CL-tree and directed
labeled tree of it minimal.

Now we are ready to give an outline of our enumeration algorithm for Ptole-
maic graphs:

1. Enumerate all minimal CL-trees
−→
T that contain at most n vertices.

2. For each
−→
T , we add extra vertices into cliques to make it have n vertices.

Since these two steps can be considered separately, we first show the enumeration
algorithm for minimal CL-trees, and we next show how we can distribute extra
vertices into each CL-tree having less than n vertices. Due to space limitation,
we only give the outline of each algorithm without proofs.

3.1 Enumeration of Minimal CL-trees

In this section, we enumerate minimal CL-trees. In order to do that efficiently,
we maintain each CL-tree

−→
T by a directed tree (without labels) with the total

number of vertices in it. Remind that we can distinguish maximal cliques from
non-maximal cliques in a CL-tree by Lemma 2 by their degrees. We use reverse
search technique to enumerate minimal CL-trees (see [1] for the details about
reverse search). In reverse search, we define a family tree T̂ over the CL-trees−→
T (G) by introducing a parent-child relationship between two CL-trees

−→
T (G)

and
−→
T (G′). In the class of minimal CL-trees, we first fix the root vertex3 GR in

the family tree. The root node GR is defined by GR = K1, which is a vertex. In
this case, the minimal CL-tree also consists of one node with label 1. In order
to define a parent-child relationship, we need two notions.

3 In this context, when we use terms “node” in a minimal CL-tree
−→
T (G) and “vertex”

in a family tree T̂ to distinguish with them.

304 D. H. Tran and R. Uehara

Canonical Representation: The first notion is a canonical representation of
a CL-tree

−→
T (G), which is a directed tree. In this paper, we define a canonical

representation of a CL-tree
−→
T (G) as follows. We first consider the underlying

(undirected) tree T (G). Then we pick up central nodes of T (G) which are given
by the farthest nodes from leaves. It is well known that any undirected tree has
at most two central nodes. Thus we have two cases; one central node and two
central nodes.

We first consider the case that the tree T (G) has one central node c. From
this root node c, we perform the depth first search (DFS) on T (G). Then we draw
T (G) in the left-heavy manner (see [6] for the notion of left-heavy). We here note
that it is easy to extend the notion of the left-heavy defined on undirected trees
to directed trees. On this tree, by the DFS of depths (or integers) of nodes, we
can obtain a canonical string representation of T (G).

Next we consider the case that the tree T (G) has two central nodes c1 and
c2. In this case, c1 and c2 are neighbors on T (G). We then define the parent by
the arc on

−→
T (G). That is, if (c1, c2) is an arc in

−→
T (G), c1 is the parent of c2.

Otherwise, c2 is the parent of c1.

Table 1. Three operations to generate minimal CL-trees

Operation

of vertices +2 +1
+1 (if node has 1 child)
+2 (otherwise)

Rules for Generation of CL-trees: Now we consider generation rules for
CL-trees:

Lemma 4. From GR, applying one of the three operations given in Table 1, we
can generate any minimal CL-tree

−→
T (G).

Proof. (Sketch) Intuitively, these operations correspond to Corollary 1(1), and
they add a leaf to the current graph. However, to update the laminar property,
we sometimes need to add an extra vertex. Therefore, the number of vertices in
the Ptolemaic graph increases 1 or 2 according to the case. In the third operation,
we add two nodes into the CL-tree and add two vertices to the Ptolemaic graph
if the clique has 0, 2 or more children. If it has only one child, we add two nodes
into the CL-tree and add two vertices to the Ptolemaic graph, but we have to
remove one vertex from the original clique. Therefore, the number of vertices is
increased by +1(= +2 − 1) in total. �

Efficient Enumeration of Non-isomorphic Ptolemaic Graphs 305

We note that we can apply the first operation on G = GR. That is, GR

has the unique child by applying the first operation, and we obtain a path of
length 2. Precisely, from a clique {v0}, we obtain two maximal cliques {v0, v1}
and {v0, v2}.

Now we are ready to define the parent-child relationship in the class of CL-
trees. For each graph G ∈ C \ {GR}, we have the corresponding CL-tree

−→
T (G).

Then, since G is not GR, the corresponding undirected labeled tree T (G) has at
least two leaves. Let L1, L2, . . . be these leaves. For each leaf, we can remove it
by applying the reverse of the generating operation shown in Table 1. Now, in
the canonical string representation of T (G), each leaf Li appears exactly once
since the string is generated in the DFS manner. We apply the reverse operation
on the last leaf Li in the string. Let G′ be the new graph obtained by this
reverse operation. Intuitively, G′ is obtained by removing one maximal clique
from G. (Precisely, we remove one pendant vertex or one pendant vertex with
its neighbor from G.) We define the unique parent of G by this G′.

We now show the main theorem in this section:

Theorem 4. All minimal Ptolemaic graphs with at most n vertices can be enu-
merated in polynomial time delay.

Proof. By the definitions and discussion above, for any Ptolemaic graph G ∈
C \ {GR}, we can compute its unique parent G′ in polynomial time. Therefore,
using the same framework in [15], we can enumerate all non-isomorphic children
of any minimal Ptolemaic graph G in polynomial time delay. Thus we have the
theorem. �

3.2 Distribution of Extra Vertices

In this section, we consider how we can add extra n − n′ vertices into a minimal
CL-tree

−→
T having n′ vertices. That is, we are given a minimal CL-tree

−→
T , and

its corresponding Ptolemaic graph G has n′ vertices with n′ < n for given n. Let
m be the number of nodes in

−→
T . Since each clique C satisfies 0 ≤ �(C) ≤ 1 in a

minimal CL-tree, we have m ≥ n′.
The basic idea is simple: we distribute n−n′ extra vertices of G into m nodes

in the minimal CL-tree
−→
T . When a vertex v is added into a clique C in

−→
T , the

clique has one more vertex. If �(C) contains another vertex u, we make v as a
strong twin of u. That is, we have N [u] = N [v] after adding. When �(C) is ∅,
each vertex in C is shared by some other maximal cliques. However, it is not
difficult to see that N(v) is given by ∪u∈CN [u].

The considerable point is the inner automorphism of the minimal CL-tree
−→
T .

When n−n′ = 1 and
−→
T has two isomorphic directed subtrees

−→
T1 and

−→
T2, adding

one extra vertex into T1 and adding one extra vertex into T2, the algorithm

306 D. H. Tran and R. Uehara

may enumerate one Ptolemaic graph twice. However, this happens only when T1

and T2 share the same parent. Therefore, the algorithm avoids the duplicates as
follows:

1. We fix the central vertex of
−→
T .

2. For each inner node, check if it has isomorphic subtrees.
3. When it has two or more subtrees

−→
T1,

−→
T2, . . ., we assume that #

−→
T1 < #

−→
T2 <

· · · , where #
−→
Ti is the number of extra vertices put into this subtree.

After checking the inner automorphism, the distribution of the extra vertices is
not difficult to do that in polynomial time for n − n′ and m. Since m = O(n′),
we have the following theorem:

Theorem 5. Let
−→
T be a minimal CL-tree, and n′,m be the number of total

vertices in
−→
T and the number of nodes of

−→
T , respectively. For a given integer

n with n > n′, we can enumerate all CL-trees that contain exactly n vertices
in total in polynomial time delay.

In fact, the delay can be linear of n′ and n, which is omitted here.
By Theorems 4 and 5, we can enumerate all Ptolemaic graphs with n vertices

in polynomial time delay.

4 Concluding Remarks

In this paper, we show that we can enumerate non-isomorphic Ptolemaic graphs
with n vertices in polynomial time delay. As described in Introduction, we have
already published some catalogs of some graph classes. The implementation of
our algorithm and publishing the catalog of Ptolemaic graphs are future work.
We also mention that the graph isomorphism is tractable on distance-hereditary
graphs. Therefore, enumeration of distance-hereditary graphs is the next reason-
able target.

Acknowledgements. This work is partially supported by KAKENHI grant numbers
17H06287 and 18H04091.

References

1. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65,
21–46 (1996)

2. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: A Survey. SIAM, Philadel-
phia (1999)

3. Harasawa, S., Uehara, R.: Efficient enumeration of connected proper interval
graphs. IEICE Technical report COMP2018-44, IEICE, pp. 9–16, March 2019.
(in Japanese)

4. Howorka, E.: A characterization of ptolemaic graphs. J. Graph Theory 5, 323–331
(1981)

Efficient Enumeration of Non-isomorphic Ptolemaic Graphs 307

5. Ikeda, S., Uehara, R.: Implementation of enumeration algorithm for connected
bipartite permutation graphs. IEICE Technical report COMP2018-45, IEICE, pp.
17–23, March 2019. (in Japanese)

6. Nakano, S., Uno, T.: Constant time generation of trees with specified diameter.
In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp.
33–45. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30559-0 3

7. Korte, B., Vygen, J.: Combinatorial Optimization. AC, vol. 21. Springer, Heidel-
berg (2018). https://doi.org/10.1007/978-3-662-56039-6

8. Mikos, P.: Efficient enumeration of non-isomorphic interval graphs.
arXiv:1906.04094, June 2019

9. Saitoh, T., Otachi, Y., Yamanaka, K., Uehara, R.: Random generation and enu-
meration of bipartite permutation graphs. J. Discrete Algorithms 10, 84–97 (2012).
https://doi.org/10.1016/j.jda.2011.11.001

10. Saitoh, T., Yamanaka, K., Kiyomi, M., Uehara, R.: Random generation and enu-
meration of proper interval graphs. IEICE Trans. Inf. Syst. E93(D(7)), 1816–1823
(2010)

11. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society,
Providence (2003)

12. Uehara, R., Toda, S., Nagoya, T.: Graph isomorphism completeness for chordal
bipartite graphs and strongly chordal graphs. Discrete Appl. Math. 145(3), 479–
482 (2004)

13. Uehara, R.: The graph isomorphism problem on geometric graphs. Discrete Math.
Theoret. Comput. Sci. 16(2), 87–96 (2014)

14. Uehara, R., Uno, Y.: Laminar structure of ptolemaic graphs with applications.
Discrete Appl. Math. 157(7), 1533–1543 (2009)

15. Yamazaki, K., Saitoh, T., Kiyomi, M., Uehara, R.: Enumeration of nonisomorphic
interval graphs and nonisomorphic permutation graphs. Theoret. Comput. Sci.
(2019, accepted). https://doi.org/10.1016/j.tcs.2019.04.017

https://doi.org/10.1007/978-3-540-30559-0_3
https://doi.org/10.1007/978-3-662-56039-6
http://arxiv.org/abs/1906.04094
https://doi.org/10.1016/j.jda.2011.11.001
https://doi.org/10.1016/j.tcs.2019.04.017

Faster Privacy-Preserving Computation
of Edit Distance with Moves

Yohei Yoshimoto1, Masaharu Kataoka1, Yoshimasa Takabatake1, Tomohiro I1,
Kilho Shin2, and Hiroshi Sakamoto1(B)

1 Kyushu Institute of Technology, 680-4 Kawazu, Iizuka, Fukuoka 820-8502, Japan
y yoshimoto@donald.ai.kyutech.ac.jp, m kataoka@donald.ai.kyutech.ac.jp,

takabatake@ai.kyutech.ac.jp, tomohiro@ai.kyutech.ac.jp,

hiroshi@ai.kyutech.ac.jp
2 Gakushuin University, 1-5-1 Mejiro, Toshimaku, Tokyo 171-8588, Japan

kilhoshin314@gmail.com

Abstract. We consider an efficient two-party protocol for securely
computing the similarity of strings w.r.t. an extended edit distance mea-
sure. Here, two parties possessing strings x and y, respectively, want
to jointly compute an approximate value for EDM(x, y), the minimum
number of edit operations including substring moves needed to transform
x into y, without revealing any private information. Recently, the first
secure two-party protocol for this was proposed, based on homomorphic
encryption, but this approach is not suitable for long strings due to its
high communication and round complexities. In this paper, we propose
an improved algorithm that significantly reduces the round complexity
without sacrificing its cryptographic strength. We examine the perfor-
mance of our algorithm for DNA sequences compared to previous one.

1 Introduction

1.1 Motivation

As the number of strings containing personal information has increased,
privacy-preserving computation has become more and more important. Secure
computation based on public key encryption is one of the great achievements
of modern cryptography, as it enables untrusted parties to compute a function
based on their private inputs while revealing nothing but the result.

In addition, edit distance is a well-established metric for measuring the
similarity or dissimilarity of two strings. The rapid progress of gene sequenc-
ing technology has expanded the range of edit distance applications to include
personalized genomic medicine, disease diagnosis, and preventive treatment (for
example, see [1]). A person’s genome is, however, ultimately individual informa-
tion that uniquely identifies its owner, so the parties involved should not share
their personal genomic data as plaintext.

Thus, we consider a secure multi-party edit distance computation based on
the public key encryption model. Here, untrusted two parties generating their
c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 308–320, 2020.
https://doi.org/10.1007/978-3-030-39881-1_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_26&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_26

Faster Privacy-Preserving Computation of Edit Distance with Moves 309

own public and private keys have strings x and y, respectively, and want to
jointly compute f(x, y) for a given metric f without revealing anything about
their individual strings.

1.2 Related Work

Homomorphic encryption (HE) based on the public key encryption model is an
emerging technique that is being used for secure multi-party computation. The
Paillier encryption system [20] possesses additive homomorphism, enabling us to
perform additive operations on two encrypted integers without decryption. This
means that parties can jointly compute the encrypted value E(x + y) directly
based only on two encrypted integers E(x) and E(y). HE is also probabilistic,
i.e., an adversary can hardly predicts x given E(x), even if they can observe
some number of (x′, E(x′)) pairs for any x′.

By taking advantage of these characteristics, researchers have proposed
several HE-based privacy-preserving protocols for computing the Levenshtein
distance d(x, y). For example, Inan et al. [16] designed a three-party protocol
where two parties securely compute d(x, y) by enlisting the help of a reliable third
party. Rane and Sun [21] then improved this three-party protocol to develop the
first two-party one.

In this paper, we focus on an interesting metric called the edit distance with
moves (EDM), where we allow any substring to be moved with unit cost in addi-
tion to the standard Levenshtein distance operations. Based on the EDM, we
can find a set of approximately maximal common substrings appearing in two
strings, which can be used to detect plagiarism in documents or long repeated
segments in DNA sequences. As an example, consider two unambiguously sim-
ilar strings x = aNbN and y = bNaN , which can be transformed into each
other by a single move. Whereas the exact EDM is simply EDM(x, y) = 1, the
Levenshtein distance has the undesirable value d(x, y) = 2N . The n-gram
distance is preferable to the Levenshtein’s in this case, but it requires huge
time/space complexity depending on N .

Although computing EDM(x, y) is NP-hard [22], Cormode and Muthukr-
ishnan [8] were able to find an almost linear-time approximation algorithm for
it. Many techniques have been proposed for computing the EDM; for exam-
ple, Ganczorz et al. [12] proposed a lightweight probabilistic algorithm. In these
algorithms, each string x is transformed into a characteristic vector vx consist-
ing of nonnegative integers representing the frequencies of particular substrings
of x. For two strings x and y, we then have the approximate distance guar-
anteeing L1(vx, vy) = O(lg∗ N lg N)EDM(x, y) for N = |x| + |y|.1 Since lg∗ N
increases extremely slowly2, we employ L1(vx, vy) as a reasonable approximation
to EDM(x, y).
1 In Appendix A of [10], the authors point out that there is a subtle flaw in the

ESP algorithm [8] that achieves this O(lg∗ N lg N) bound. However, this flaw can be
remedied by an alternative algorithm called HSP [10].

2 lg∗ N is the number of times the logarithm function lg must be iteratively applied
to N until the result is at most 1.

310 Y. Yoshimoto et al.

Recently, Nakagawa et al. proposed the first secure two-party protocol for
EDM (sEDM) [19] based on HE, but, their algorithm suffers from a bottleneck
during the step where the parties construct a shared labeling scheme. This moti-
vated us to improve the previous algorithm to make it easier to use in practice.

Table 1. Comparison of the communication and round complexities of secure EDM
computation models. Here, N is the total length of both parties’ input strings, n is
the number of characteristic substrings determining the approximate EDM, and m
is the range of the rolling hash H(·) for the substrings satisfying m > n. “Naive”
is the baseline method that uses H(·) as the labeling function for the characteristic
substrings. In this table, we omit the security parameter or the unit cost of encryption
and decryption because the models use a same key length (e.g., 256-bit).

Method Communication Round

Ours O(n lg n + m) O(1)

Naive O(m lg m) O(1)

sEDM [19] O(n lg n) O(lg N)

1.3 Our Contribution

The complexities of our algorithm and related ones are summarized in Table 1.
Computing the approximate EDM involves two phases: the shared labeling of
characteristic substrings (Phase 1) and the L1-distance computation of charac-
teristic vectors (Phase 2). First, we outline those phases below. Let the parties
have strings x and y, respectively. In the offline case (i.e., there is no need for
privacy-preserving communication), they construct the respective parsing trees
Tx and Ty by the bottom-up parsing called ESP [8] where the node labels must
be consistent, i.e., two labels are equal if they correspond to the same substring.
In such an ESP tree, a substring derived by an internal node is called a charac-
teristic substring. In a privacy-preserving model, the two parties should jointly
compute such consistent labels without revealing whether or not a characteristic
substring is common to both of them (Phase 1). After computing all the labels
in Tx and Ty, they jointly compute the L1-distance of two characteristic vectors
consisting the frequencies of all labels in Tx and Ty (Phase 2).

As reported in [19], in terms of usefulness, a bottleneck exists in Phase 1.
The task is to design a bijection f : X ∪ Y → {1, 2, . . . , n} where X and Y
(|X ∪ Y | = n) are the sets of characteristic substrings for the parties, respectively.
Since X and Y are computable without communication, the goal is to jointly
compute f(w) for any w ∈ X without revealing whether or not w ∈ Y . Here,
this problem is closely related to the private set operation (PSO) where parties
possessing their private sets want to obtain the results for several set operations,
e.g., intersection or union. Applying the Bloom filter [4] and HE techniques,
various protocols for PSO have been proposed [3,9,18]. However, these protocols

Faster Privacy-Preserving Computation of Edit Distance with Moves 311

cannot be directly applicable to our problem because these protocols require at
least three parties for the security constrained. Thus, we propose a novel secure
two-party protocol for Phase 1.

As shown in Table 1, we eliminate the O(lg N) round complexity using the
proposed method that can achieve O(1) round complexity while maintaining the
efficiency of communication complexity. Furthermore, we examine the practical
performance of our algorithm for real DNA sequences.

Fig. 1. Example of approximate EDM computation for strings S and S′. Here, the
ESP trees TS and TS′ are constructed by applying a shared labeling scheme for all
internal nodes. After constructing TS and TS′ , the corresponding characteristic vectors
vS and vS′ are computed offline. Finally, the exact EDM(S, S′) is approximated by
L1(vS , vS′) = 2.

2 Preliminaries

2.1 EDM

Let Σ be a finite set of alphabet symbols and Σ∗ be its closure. Denote the
set of all strings of the length N by ΣN and the length of a string S by |S|.
For simplicity, we also denote the cardinality of a set U by |U |. In addition, S[i]
denotes the i-th symbol of S and S[i..j] denotes the substring S[i]S[i+1] · · · S[j].

Next, we define EDM(S, S′) as the length of the shortest sequence of edit
operations that transforms S into S′, where the permitted operations (each with
unit cost) are inserting, deleting, or renaming one symbol at any position and
moving an arbitrary substring. Unfortunately, as Theorem 1 shows, computing
EDM(S, S′) is NP-hard even if renaming operations are not allowed [22], so
we focus on an approximation algorithm for EDM, called ESP (Edit-Sensitive
Parsing) [8].

Theorem 1 (Shapira and Storer [22]). Determining EDM(x, y) is NP-hard even
if only three unit-cost operations namely inserting or deleting a character and
moving a substring are allowed.

312 Y. Yoshimoto et al.

To illustrate the ESP algorithm, we consider a string S ∈ Σ∗. First, S is
deterministically partitioned into blocks as S = s1s2 · · · sk such that 2 ≤ |si| ≤ 3.
Here, we omit the details since partitions are determined based on S alone,
without communication. Next, a consistent label �(si) is assigned to each block
si, where �(x) = �(y) if x = y. The resulting string L = �(s1) · · · �(sk) is then
processed recursively until |L| = 1. Finally, a parsing tree TS is obtained for S,
which can be used to approximate EDM(S, S′) by applying the following result.

Theorem 2 (Cormode and Muthukrishnan [8]). Let TS and TS′ be consistently
labeled ESP trees for S, S′ ∈ Σ∗, and let vS be the characteristic vector for S,
where vS [k] is the frequency of label k in TS. Then,

1
2

EDM(S, S′) ≤ L1(vS , vS′) = O(lg∗ N lg N)EDM(S, S′)

for L1(vS , vS′) =
k∑

i=1

|vS [i] − vS′ [i]|.

Figure 1 shows an example of applying consistent labeling to the trees TS

and TS′ , together with the resulting characteristic vectors. The strings S and S′

are partitioned offline, so the problem of preserving privacy reduces to designing
secure protocol for creating consistent labels and computing the L1-distance
between the trees. In this study, we propose a novel HE-based algorithm for the
former problem.

2.2 Homomorphic Encryption

Here, we briefly review the framework of homomorphic encryption. Let (pk, sk)
be a key pair for a public-key encryption scheme, and let Epk(x) be the encrypted
values of message x and Dsk(C) be the decrypted value of ciphertext C, respec-
tively. We say that the encryption scheme is additively homomorphic if we have
the properties: (1) There is an operation h+(·, ·) for Epk(x) and Epk(y) such
that Dsk(h+(Epk(x), Epk(y))) = x + y. (2). For any r, we can compute the
scalar multiplication such that Dsk(r · Epk(x)) = r · x.

An additive homomorphic encryption scheme allowing sufficient number of
these operations is called an additive HE3. Paillier’s encryption scheme [20] is
the first secure additive HE, but we cannot evaluate many functions by only the
additive homomorphism and scalar multiplication.

On the other hand, the multiplication Dsk(h×(Epk(x), Epk(y))) = x · y is
another important homomorphism. If we allow both additive and multiplica-
tive homomorphism as well as scalar multiplication (called a fully homomorphic
encryption, FHE [13] for short), it follows that we can perform any arithmetic
operation on ciphertexts. For example, if we can use sufficiently number of addi-
tive operations and a single multiplicative operation over ciphertexts, we obtain
the inner-product of two encrypted vectors.
3 In general, the number of applicable operations over ciphertexts is bounded by the

size of (pk, sk).

Faster Privacy-Preserving Computation of Edit Distance with Moves 313

However, there is a tradeoff between the available homomorphic operations
and their computational cost. To avoid this difficulty, we focus on the Leveled HE
(LHE) where the number of homomorphic multiplications is restricted before-
hand. In particular, two-level HE (Additive HE that allows a single homomorphic
multiplication) has attracted a great deal of attention. BGN encryption system
is the first two-level HE invented by Boneh et al. [5] assuming a single multi-
plication and sufficient numbers of additions. Using the BGN, we can securely
evaluate formulas in disjunctive normal form (DNF). After this pioneering study,
many practical two-level HE protocols have been proposed [2,7,11,15].

For the EDM computation, Nakagawa et al. [19] introduced an algorithm for
computing the EDM based on two-level HE, but their algorithm is very slow for
large strings. So, we propose another novel secure computation of EDM for large
strings based on the faster two-level HE proposed by Attrapadung et al. [2]. As
far as we know, there are no secure two-party protocols for the EDM computation
that only use additive homomorphic property. Whether we can compute EDM
on a two-party protocol based on additive HE only is an interesting question.

3 Two-Party Secure Consistent Labeling

3.1 Hash Function

In our protocol, two parties, A (Alice) and B (Bob), agree to use a shared hash
function to assign tentative labels to their ESP trees. First, we consider the
conditions that a hash function should satisfy. One desirable property of any
hash function used for our algorithm is that its hash value should be uniformly
distributed, and we assume this is true in this paper. In addition, the function
involves a parameter m that represents the number of possible hash values,
and this affects our algorithm’s computational complexity, as well as the hash
function’s conflict resistance and one-wayness.

Computational Complexity. In our algorithm, A encrypts m individual bits
and sends the resulting m ciphertexts to B, who then adds or multiplies
pairs of ciphertexts. Thus, our first requirement is that m be small enough
for these computation to be performed efficiently.

Conflict Resistance. The hash function’s conflict resistance affects the accu-
racy of the edit distance estimated by Algorithm 1. We say that a conflict
occurs when two distinct texts happen to be hashed to the same value. Very
roughly, if conflicts occur with probability p, the average proportional error
in the edit distances is also O(p). That said, we can create conditions where
the probability of conflict is below some threshold p, as follows. Let n denote
the number of labels (hash values) computed by the algorithm. To avoid
conflicts, n must be sufficiently small relative to m. After computing n hash
values at random, we can estimate the probability of at least one conflict
having occurred as follows.

314 Y. Yoshimoto et al.

Pr[Conflicts] = 1 − Pr[No conflict]

= 1 −
(

1 − 1
m

) (
1 − 2

m

)
· · ·

(
1 − n − 1

m

)

≈ 1 − exp
(

− n2

2m

)
.

Thus, to ensure this probability is below a given (small) threshold p, we
require

n ≤ − ln (1 − p)
√

2m. (1)
One-wayness. One-wayness is important for security. For example, if A hap-

pens to have two texts with hash values h and h+2, respectively, but does not
have a text with hash value h+1, then A would know that B has a text with
hash value h+1. If the hash function is not one-way, A could then guess the
next. A function is theoretically one-way if it is computationally difficult to
find an x such that H(x) = y given y with non-negligible probability. Given
an ideal hash oracle that selects H(x) uniformly at random from {1, . . . , m}
for any x, the probability of any guess x′ being correct for an unknown x is
exactly 1

m . Thus, to ensure the function is effectively one-way, m must be
sufficiently large.

It is known that, if the problem of finding a pair of distinct inputs that hash
to the same value is computationally intractable (strong conflict-resistance), the
hash function is also one-way. For cryptographic hash algorithms, such as, MD5
and SHA-1, strong conflict-resistance is required and the conflict probability
must be negligibly small, such as less than 1

2100 . This indeed requires that m be
very large (2128 and 2160 for MD5 and SHA-1, respectively), so it would be com-
putationally unfeasible to use a cryptographic hash function in our algorithm.

Nevertheless, if we relax the requirements somewhat, it is not difficult in
practice to select an m that meets our needs. For example, if n = 100 and p =
0.05, then m = 1, 900, 416 satisfies inequality (1). Generating and transmitting so
many ciphertexts would be time-consuming but still feasible, and would reduce
the probability of breaking one-wayness to a very low value.

We should, however, note that these requirements on m are merely necessary
conditions for conflict resistance and one-wayness. Even under these conditions,
using a well-designed hash algorithm is still crucial.

The rolling hash algorithm [17], defined as follows based on two param-
eters m and b, is expected to be sufficiently conflict-resistant and one-way.
For a given input x = (s1, . . . , s�) ∈ [0, b)�, the hash function is given by
H(x) =

∑�
i=1 si · b�−i mod m. This algorithm has the useful advantage that

we can compute H(xy) from H(x) and H(y) in constant time, independent of
the lengths of x and y.

3.2 Algorithm

Two parties A and B have strings SA and SB, respectively. First, they compute
the corresponding ESP trees TA and TB offline, using the rolling hash function to

Faster Privacy-Preserving Computation of Edit Distance with Moves 315

generate (tentative) consistent labels, thereby defining a set X ⊆ {0, 1, . . . ,m} of
n different labels in TA and TB with a fixed m. The algorithm’s goal is to securely
relabel X using by a bijection: X → {1, 2, . . . , n}, as described in Algorithm 1,
where A and B have their own public and private keys.

In our algorithm, we assume a FHE (LHE) system supporting both additive
and multiplicative operations. Since these operations are usually implemented
by AND (·) and XOR (⊕) logic gates (e.g. [6]), we introduce several notations
using such gates as follows. First, EA(x) denotes the ciphertext generated by
encrypting plaintext x with A’s public key, and EA(x, y, z) is an abbreviation for
the vector (EA(x), EA(y), EA(z)). Here, EA(x, y, z) · EA(a, b, c) denotes (EA(x ·
a), EA(y · b), EA(z · c)) and EA(x, y, z) ⊕ EA(a, b, c) denotes (EA(x ⊕ a), EA(y ⊕
b), EA(z ⊕ c)) for each bits x, y, z, a, b, c ∈ {0, 1}. Using these notations, we
describe the proposed protocol in Algorithm 1.

Algorithm 1 for consistently labeling TA and TB

Preprocessing (tentative labeling): Parties A and B agree to use a shared hash
function H with a range {0, . . . , m}, where m is chosen so as to meet the requirements
given in Section 3.1. Both parties compute the ESP trees TA and TB corresponding
to their respective strings offline, then assign labels H(w) to all the nodes in their
trees based on their computed blocks w. Now, parties A and B have tentative label
sets [TA], [TB] ⊆ {0, . . . , m}, respectively.

Goal: Change all the labels using a bijection: [TA]∪ [TB] → {1, . . . , n} without either
party having to reveal anything about their private strings.

Notations: EA(x) denotes the ciphertext of a message x encrypted by a two-level
HE with A’s public key.

Sharing a dictionary:
Step 1: Party A computes the bit vector X[1..m] such that X[�] = 1 iff � ∈ [TA].
Similarly, party B computes Y[1..m] such that Y[�] = 1 iff � ∈ [TB].
Step 2: A sends EA(X) to B and B sends EB(Y) to A.
Step 3: B computes (EA(X) ⊕ EA(Y)) ⊕ (EA(X) · EA(Y)) = EA(X ∪ Y) and A
computes (EB(X) ⊕ EB(Y)) ⊕ (EB(X) · EB(Y)) = EB(X ∪ Y).

Relabeling [TA] using EA(X ∪ Y) ([TB] is relabeling in the symmetrical way)

Step 4: A computes EB(L�) = EB

(
�∑

i=1

(X ∪ Y)[i]

)
for all � ∈ [TA].

Step 5: A sends all EB(L� + r�) to B choosing r� uniformly at random from N.
Step 6: B decrypts all L� + r� and sends them back to A.
Step 7: A recreates L� ∈ {1, . . . , n} for all � ∈ [TA] by subtracting r�.

Next, we define our protocol’s security based on a model where we assume
that both parties are semi-honest, i.e., corrupted parties merely cooperate to

316 Y. Yoshimoto et al.

gather information out of the protocol, but do not deviate from the protocol
specification. The security is defined as follows.

Definition 1 (Semi-honest security [14]). A protocol is secure against semi-
honest adversaries if each party’s observation of the protocol can be simulated
using only the input they hold and the output that they receive from the protocol.

Intuitively, this definition tells us that a corrupted party is unable to learn any
extra information that cannot be derived from the input and output explicitly
(For details, see [14]). Under this assumption, since the algorithm is symmetric
with respect to A and B, the following theorem proves our algorithm’s security
against semi-honest adversaries.

Theorem 3. Let [TA] be the set of labels appearing in TA. The only knowledge
that a semi-honest A can gain by executing Algorithm 1 is the distribution of
the labels {L� | � ∈ [TA]} over [1, . . . , n].

Proof. First, the preprocessing phase gives A no new information, since it is
conducted offline. Second, the dictionary sharing phase does not provide any new
knowledge either, since all the information that A receives from B is encrypted
using B’s public key. Third, when A is relabeling [TA], they only receive L� for
� ∈ [TA]. Finally, when B is relabeling [TB], A knows L� + r� for � ∈ [TB], but
the r� are secret random numbers that B has generated uniformly at random,
and A cannot know their values. Hence, the L� + r� are distributed uniformly at
random from A’s perspective. �

Although A can guess n as being either max{L� | � ∈ [TA]} or a value
just above this, and can obtain knowledge about B’s labels by investigating
{1, . . . , n} \ {L� | � ∈ [TA]}, since we have assumed that the hash function is
(probabilistically) one-way, this does not give A any knowledge about B’s text.

Theorem 4. Algorithm 1 assigns consistent labels using the injection: [TA] ∪
[TB] → {1, 2, . . . , n} without revealing the parties’ private information. Its round
and communication complexities are O(1) and O(α(n lg n + m + rn)), respec-
tively, where n = |[TA] ∪ [TB]|, m is the modulus of the rolling hash used for
preprocessing, r = max{r1, . . . , rn} is the security parameter, and α is the cost
of executing a single encryption, decryption, or homomorphic operation.

Proof. A two-level HE scheme allows sufficient number of additions and a sin-
gle multiplication of encrypted integers. Thus, we can securely represent the set
[TA] ∪ [TB] by EA(X∪Y) = (EA(X) ⊕ EA(Y)) ⊕ (EA(X) · EA(Y)), and assign
consistent labels L� = rank1(�,X ∪ Y) for all � ∈ [TA] ∪ [TB]. Thus, the par-
ties can securely obtain consistent labels, with the security level depending on
the encryption strength. Regarding the communication complexity, the plain-
texts sent have size of m bits (Step2) and n lg n bits (Step5), from which we
can immediately derive the complexity using the other parameters. The round
complexity is evident. �

Faster Privacy-Preserving Computation of Edit Distance with Moves 317

Table 2. Execution time (seconds) comparison for Phase 1, showing the preprocess-
ing and relabeling time per label for the number n of characteristic substrings to be
relabeled. Here, “Preprocessing” denotes the time required to construct the shared dic-
tionary and “Relabeling (per label)” denotes the time needed to change a single label
using the dictionary.

n sEDM [19] Ours

Preprocessing 100 9.772 3.147

1000 76.996 31.150

10000 725.463 304.314

100000 7264.354 3030.031

Relabeling (per label) 100 13.977 0.010

1000 160.995 0.047

10000 1066.259 0.319

100000 NA (>10000) 2.124

Table 3. Execution time (seconds) of approximated EDM computation for Escherichia
coli (100MB). Here, n is the number of characteristic substrings used for EDM and
the same rolling hash in Table 2 is used for each n. L1-distance is computed by the
sEDM [19].

Detail of EDM computation n time

Relabeling by our algorithm (Phase 1) 100 4.055

1000 63.597

10000 2506.431

L1-distance computation by sEDM [19] (Phase 2) 100 4.097

1000 4.135

10000 4.689

4 Experimental Results

Finally, we compared the practical performance of our algorithm with that of
sEDM [19]. Both algorithms were implemented in C++ based on the two-level
HE [2] and library available from GitHub4, and compiled using Apple LLVM
version 8.0.0 (clang-800.0.42.1) under MacOS Mojave 10.14.5. The algorithm’s
performance was evaluated on a system with a 2.7 GHz Intel Core i5 CPU and
8 GB 1867 MHz DDR3 RAM.

Table 2 shows the results for generating n ∈ {100, 1000, 10000, 100000} differ-
ent labels shared by the parties. The key length of encryption is fixed to 256 bits.
Our algorithm uses the rolling hash modulo p ∈ {1031, 10313, 103123, 1031347}
for each n, respectively. This shows the running times for each n, where “Pre-
processing” gives the time t1 required to construct the shared dictionary and
4 https://github.com/herumi/mcl.

https://github.com/herumi/mcl

318 Y. Yoshimoto et al.

“Relabeling (per label)” gives the response time t2 needed to change a single
label. Thus, the total time for each algorithm is t1 + nt2 for each n. Note that
the total time is mainly occupied by the relabeling time for both algorithms.
Therefore, these results confirm that our algorithm’s computation was signifi-
cantly lower than that of sEDM in all cases.

Table 3 shows the total time of approximate EDM computation for real
DNA sequence available from Pizza&Chili Corpus5. From this corpus, we use
Escherichia coli, known as highly repetitive string where 110MB original string
is compressed to 5 MB by 7-zip6. This means that the number of characteristic
substrings is relatively smaller, so the restriction of the examined n up to 10000
is reasonable. However, in reality, we cannot execute the sEDM [19] even for
these repetitive strings due to the cost of relabeling shown in Table 2. By the
results in Tables 2 and 3, we confirm the efficiency of our algorithm for large-scale
data.

5 Conclusion

In this paper, we have presented an improvement to a previously proposed HE-
based secure two-party protocol for computing approximate EDM. The problem
we tackled is reduced to jointly assigning minimum consistent labels from X ∪
Y ⊆ {1, 2, . . . ,m} to {1, 2, . . . , n}. The fact that recent two-level HE systems
allow sufficient number of additions and a single multiplication over ciphertexts
enabled us to significantly improve the execution time. From a cryptographic
point of view, m should be sufficiently large (i.e., we assume that X ∪ Y is
sparse) so that it is difficult for Alice to learn about Bob’s labels from the
distribution of ones in his label vector. In contrast, m should be smaller for
saving the communication cost. We plan to investigate this problem further in
future work.

To the best of our knowledge, existing two-party protocols for consistent
labeling need both additive and multiplicative homomorphic operations over
the ciphertexts. Since an HE system that only involves additive operations is
computationally less taxing, whether or not we can solve the relabeling problem
by only exploiting additive homomorphism is an important practical question.

Acknowledgments. This work was supported by JST CREST (JPMJCR1402),
KAKENHI (16K16009, 17H01791, 17H00762 and 18K18111) and Fujitsu Laboratories
Ltd. The authors thank anonymous reviewers for their helpful comments.

5 http://pizzachili.dcc.uchile.cl.
6 https://www.7-zip.org/.

http://pizzachili.dcc.uchile.cl
https://www.7-zip.org/

Faster Privacy-Preserving Computation of Edit Distance with Moves 319

References

1. Akgün, M., Bayrak, A.O., Ozer, B., Sağiroğlu, M.S.: Privacy preserving processing
of genomic data: a survey. J. Biomed. Inform. 56, 103–111 (2015)

2. Attrapadung, N., Hanaoka, G., Mitsunari, S., Sakai, Y., Shimizu, K., Teruya, T.:
Efficient two-level homomorphic encryption in prime-order bilinear groups and a
fast implementation in webassembly. In: ASIACCS, pp. 685–697 (2018)

3. Blanton, M., Aguiar, E.: Private and oblivious set and multiset operations. In:
ASIACCS, pp. 40–41 (2012)

4. Bloom, B.H.: Space/time trade-offs in hash coding with allowable errors. Commun.
ACM 13(7), 422–426 (1970)

5. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF formulas on ciphertexts. In:
Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg
(2005). https://doi.org/10.1007/978-3-540-30576-7 18

6. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic
encryption without bootstrapping. In: ITCS, pp. 309–325 (2012)

7. Catalano, D., Fiore, D.: Using linearly-homomorphic encryption to evaluate degree-
2 functions on encrypted data. In: CCS, pp. 1518–1529 (2015)

8. Cormode, G., Muthukrishnan, S.: The string edit distance matching problem with
moves. ACM Trans. Algor. 3(1), 1–19 (2007). Article 2

9. Davidson, A., Cid, C.: An efficient toolkit for computing private set operations.
In: Pieprzyk, J., Suriadi, S. (eds.) ACISP 2017. LNCS, Part II, vol. 10343, pp.
261–278. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59870-3 15

10. Fischer, J., I, T., Köppl, D.: Deterministic sparse suffix sorting on rewritable texts.
In: Kranakis, E., Navarro, G., Chávez, E. (eds.) LATIN 2016. LNCS, vol. 9644, pp.
483–496. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49529-
2 36

11. Freeman, D.M.: Converting pairing-based cryptosystems from composite-order
groups to prime-order groups. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS,
vol. 6110, pp. 44–61. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-
642-13190-5 3

12. Ganczorz, M., Gawrychowski, P., Jez, A., Kociumaka, T.: Edit distance with block
operations. In: ESA, pp. 33:1–33:14 (2018)

13. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: STOC, pp. 169–
178 (2009)

14. Goldreich, O.: Foundations of Cryptography, vol. II. Cambridge University Press,
New York (2004)

15. Herold, G., Hesse, J., Hofheinz, D., Ràfols, C., Rupp, A.: Polynomial spaces: a new
framework for composite-to-prime-order transformations. In: Garay, J.A., Gennaro,
R. (eds.) CRYPTO 2014, Part I. LNCS, vol. 8616, pp. 261–279. Springer, Heidel-
berg (2014). https://doi.org/10.1007/978-3-662-44371-2 15

16. Inan, A., Kaya, S., Saygin, Y., Savas, E., Hintoglu, A., Levi, A.: Privacy preserv-
ing clustering on horizontally partitioned data. Data Knowl. Eng. 63(3), 646–666
(2007)

17. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

18. Kissner, L., Song, D.: Privacy-preserving set operations. In: Shoup, V. (ed.)
CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005).
https://doi.org/10.1007/11535218 15

https://doi.org/10.1007/978-3-540-30576-7_18
https://doi.org/10.1007/978-3-319-59870-3_15
https://doi.org/10.1007/978-3-662-49529-2_36
https://doi.org/10.1007/978-3-662-49529-2_36
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-642-13190-5_3
https://doi.org/10.1007/978-3-662-44371-2_15
https://doi.org/10.1007/11535218_15

320 Y. Yoshimoto et al.

19. Nakagawa, S., Sakamoto, T., Takabatake, Y., I, T., Shin, K., Sakamoto, H.:
Privacy-preserving string edit distance with moves. In: Marchand-Maillet, S., Silva,
Y.N., Chávez, E. (eds.) SISAP 2018. LNCS, vol. 11223, pp. 226–240. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-02224-2 18

20. Paillier, P.: Public-key cryptosystems based on composite degree residuosity
classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48910-X 16

21. Rane, S., Sun, W.: Privacy preserving string comparisons based on Levenshtein
distance. In: WIFS, pp. 1–6 (2010)

22. Shapira, D., Storer, J.A.: Edit distance with move operations. J. Discrete Algo-
rithms 5(2), 380–392 (2007)

https://doi.org/10.1007/978-3-030-02224-2_18
https://doi.org/10.1007/3-540-48910-X_16

Short Papers

Parameterized Algorithms for the Happy
Set Problem

Yuichi Asahiro1, Hiroshi Eto2, Tesshu Hanaka3, Guohui Lin4, Eiji Miyano5(B),
and Ippei Terabaru5

1 Kyushu Sangyo University, Fukuoka, Japan
asahiro@is.kyusan-u.ac.jp

2 Kyushu University, Fukuoka, Japan
h-eto@econ.kyushu-u.ac.jp

3 Chuo University, Tokyo, Japan
hanaka.91t@g.chuo-u.ac.jp

4 University of Alberta, Edmonton, Canada
guohui@ualberta.ca

5 Kyushu Institute of Technology, Iizuka, Japan
miyano@ces.kyutech.ac.jp, terabaru.ippei704@mail.kyutech.jp

Abstract. In this paper we introduce the Maximum Happy Set prob-
lem (MaxHS) and study its parameterized complexity: For an undirected
graph G = (V,E) and a subset S ⊆ V of vertices, a vertex v is happy if
v and all its neighbors are in S; and otherwise unhappy. Given an undi-
rected graph G = (V,E) and an integer k, the goal of MaxHS is to find
a subset S ⊆ V of k vertices such that the number of happy vertices is
maximized. In this paper we first show that MaxHS is W[1]-hard when
parameterized by k. Then, we prove the fixed-parameter tractability of
MaxHS when parameterized by the tree-width, the clique-width and k,
the neighborhood diversity, or the twin-cover number.

1 Introduction

A social network is represented by a graph, where a vertex corresponds to a
person in the network, and an edge between two vertices denotes that corre-
sponding persons are connected with the network. In [15], Easley and Kleinberg
mentioned that one of the most basic laws governing the structure of social net-
works is homophily, that is, the principle that in social networks people are more
likely to connect with people sharing similar interests with them. Motivated by a
study of algorithmic aspects of the homophily laws in social networks, Zhang and
Li [25] introduced an optimization problem in terms of graph coloring, called the
Maximum Happy Vertices problem (MaxHV): We are given an unweighted,
undirected graph G = (V,E), a color set C = {1, 2, . . . , �}, and a partial vertex
coloring function c : V → C. That is, c assigns colors only to a part of the
vertices in V . A vertex is happy if it shares the same color with all its neighbors.
The goal of MaxHV is to color all the uncolored vertices such that the number
of happy vertices is maximized.
c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 323–328, 2020.
https://doi.org/10.1007/978-3-030-39881-1_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_27&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_27

324 Y. Asahiro et al.

1.1 Our Problem and Contributions

In this paper we introduce a new variant of MaxHV; we express the happy
problem motivated by the homophily laws as a “vertex-subset” problem like
the Maximum Independent Set and the Minimum Dominating Set prob-
lems [18]: For an undirected graph G = (V,E) and a subset S ⊆ V of vertices, a
vertex v is happy if v and all its neighbors are in S. Our new problem, called the
Maximum Happy Set problem (MaxHS), is formally defined as follows: Given
an undirected graph G = (V,E) and an integer k, the goal of MaxHS is to find a
subset S ⊆ V of k vertices such that the number of happy vertices is maximized.

In this paper we mainly focus on the parameterized complexity and the fixed-
parameter tractability (FPT) for MaxHS on several graph parameters such as
the tree-width, the clique-width, the neighborhood diversity, and the twin-cover
number of an input graph G. Let n and m be the number of vertices and the
number of edges of an input graph, respectively. In this paper we show the
following results (but all the proofs are omitted, due to page limitation):

1. The problem MaxHS is W[1]-hard with respect to k even if an input graph
is restricted to split graphs. Furthermore, MaxHS on split graphs cannot
be solved in time f(k)no(

√
k) for any computable function f unless the

Exponential-Time Hypothesis (ETH) fails.
2. Given a tree decomposition of width tw for an input graph, MaxHS can be

solved in time O(3tw · tw · k2 · n).
3. Suppose that the clique-width of an input graph is cw. Given the cw-expression

tree of the graph, MaxHS can be solved in time O(8cw ·k3(cw+1) ·n), i.e., MaxHS
is FPT when parameterized by the clique-width and k; on the other hand,
MaxHS is in XP when parameterized only by the clique-width.

4. The problem MaxHS can be solved in time O(2nd · nd3 + n + m) for an input
graph of neighborhood diversity nd.

5. The problem MaxHS can be solved in time O(3tc(tc+k2)n+m) for an input
graph of twin-cover number tc.

1.2 Related Work

In [25], Zhang and Li also introduced an “edge-variant” of MaxHV as one of
the vertex coloring problems, called the Maximum Happy Edges problem
(MaxHE). In a vertex-colored graph, an edge is happy if its two endpoints have
the same color. Then, the goal of MaxHE is to color all the uncolored vertices
in a partially vertex-colored input graph such that the number of happy edges
is maximized. By straightforwardly following this formulation, we can define an
edge-variant of our new problem MaxHS: Given an (uncolored) graph G = (V,E)
and an integer k, the goal of Maximum Edge Happy Set problem (MaxEHS) is
to find a subset S ⊆ V of k vertices such that the number of happy edges is max-
imized. Actually, however, MaxEHS is identical to the Densest k-Subgraph
problem (DkS), which is defined as a problem of finding a subgraph of the given
graph with exactly k vertices such that the number of edges in the subgraph

Parameterized Algorithms for the Happy Set Problem 325

is maximized. The problem DkS is well known in the literature under various
names, such as the k-Cluster problem [12], the Heaviest Unweighted Sub-
graph problem [20], and the k-Cardinality Subgraph problem [9]. The prob-
lem MaxEHS is generally NP-hard since it is a generalization of the Maximum
Clique problem [18]. Moreover, it is NP-complete even to decide if there exists
a solution with at least k1+ε happy edges for any positive constant ε [4]. In [16] it
was shown that MaxEHS is NP-hard for graphs whose maximum degree is equal
to three. The problem MaxEHS is NP-hard even for very restricted classes of
graphs, such as bipartite and chordal graphs [12], or planar graphs [19]. Fortu-
nately, however, MaxEHS is solvable in polynomial time on graphs whose maxi-
mum degree is equal to two, cographs, split graphs, and k-trees [12]. As for the
parameterized complexity, Cai proved [10] that MaxEHS is not FPT, i.e., it is
W[1]-hard, with respect to k even for regular graphs. This result implies that
MaxEHS is W[1]-hard with respect to the size of the solution since any solution
cannot contain more than k(k − 1)/2 edges. Bourgeois, Giannakos, Lucarelli,
Milis, and Paschos proposed [7] two FPT algorithms; one algorithm is parame-
terized by the tree-width tw(G) of the input graph G and uses exponential space
and the other is parameterized by the size vc(G) of the minimum vertex cover
and uses polynomial space. In [8], Broersma, Golovach, and Patel proved that
for an n-vertex graph G, MaxEHS can be solved in time kO(cw(G)) × n, but it
cannot be solved in time 2o(cw(G) log k) × nO(1) unless the ETH fails. As surveyed
previous results above, there are a huge number of previous results for MaxEHS.
To the best of our knowledge, however, there are no previously known results
for the vertex-variant MaxHS.

Recently, the original, coloring variants MaxHV and MaxHE have attracted
growing attention and thus there is a large literature [1–3,11,22,24–26]: First
of all, one sees that if an input graph G is an uncolored graph, then MaxHV
and MaxHE become trivial, i.e., it must be the optimal solution to assign an
unique color to all the vertices in V (G). Zhang and Li [25] proved that MaxHV
and MaxHE can be solved in polynomial time if the color number � is (at most)
two [25]. Unfortunately, however, MaxHV and MaxHE are NP-hard for general
graphs if � ≥ 3 [25]. Misra and Reddy [23] proved that MaxHV and MaxHE
remain NP-hard even if an input graph is restricted to split graphs or bipartite
graphs. On the other hand, Aravind, Kalyanasundaram, and Kare [2] showed
that MaxHV and MaxHE can be solved in O(nk log k) and in O(nk) time, respec-
tively, if an input graph is a tree. Also, a lot of results on the parameterized com-
plexity and FPT algorithms of MaxHV and MaxHE were shown in [1–3,5,11,23].
For example, MaxHV is FPT when parameterized by the solution size, by the
tree-width tw(G) and the number � of colors, or the neighborhood diversity nd;
but, MaxHV is W[1]-hard with respect to only tw(G). On the other hand, the
complexity parameterized by the clique-width cw(G) is still unknown. As for
the approximability, Zhang et al. [26] showed that MaxHV can be approximated
within 1

Δ+1 , where Δ is the maximum degree of the input graph, and MaxHE can

be approximated within 1
2 +

√
2
4 f(k), where f(k) = (1−1/k)

√
k(k−1)+1/

√
2

k−1+1/2k ≤ 1.

326 Y. Asahiro et al.

2 Preliminaries

In this paper, we consider several graph parameters including tree-width, clique-
width, neighborhood diversity, twin-cover number, and vertex cover number [13,
14,17]. Let tw(G), cw(G), nd(G), tc(G) and vc(G) be the tree-width, the clique-
width, the neighborhood diversity, the twin-cover number, and the vertex cover
number of an input graph G, respectively. For simplicity, however, we omit “(G)”
of cw(G), tw(G), nd(G), tc(G), and vc(G) since the graph G is clear in the
following.

For those parameters, the following relations are known [6,13,17,21]:

Proposition 1 ([6,13,17,21]). Let tw, cw, nd, tc, vc be the tree-width, the
clique-width, the neighborhood diversity, the twin-cover number, and the ver-
tex cover number of a graph G, respectively. Then the following inequalities
hold: (i) cw ≤ 2tw+1 + 1; (ii) tw ≤ vc; (iii) cw ≤ nd + 1; (iv) nd ≤ 2vc + vc;
(v) cw ≤ 2tc + tc; and (vi) tc ≤ vc.

3 Parameterized Complexity of MaxHS

In this section we study the parameterized complexity and FPT algorithms for
the vertex variant MaxHS when parameterized by the solution size, tree-width,
clique-width, neighborhood diversity, and twin-cover number.

(Solution size). Recall that if an input graph is restricted to split graphs, then
the edge variant MaxEHS can be solved in polynomial time as shown in [12]. On
the other hand, we can show that MaxHS on split graphs is more difficult even
when an input integer k is a small constant:

Theorem 1. The problem MaxHS is W[1]-hard with respect to k even for split
graphs. Furthermore, MaxHS on split graphs cannot be solved in time f(k)no(

√
k)

for any computable function f unless the ETH fails.

(Tree-width). One sees that the edge variant MaxEHS is very trivial on trees
since the optimal solution-size of MaxEHS must be k−1 and thus any connected
subtree of k vertices is an optimal solution. In contrast, MaxHS is not so triv-
ial, but, we can design a polynomial-time algorithm for trees and also an FPT
algorithm parameterized by the tree-width:

Theorem 2. Given a tree decomposition of width tw for an input graph, MaxHS
can be solved in time O(3tw · tw · k2 · n).

(Clique-width). We design a parameterized algorithm for MaxHS by the clique-
width. Our algorithm runs in time O(8cw · kO(cw) · n) when a cw-expression tree
of an input graph G of clique-width cw is given. This means that MaxHS is FPT
when parameterized by the clique-width cw and an input integer k; on the other
hand MaxHS is in XP when parameterized only by the clique-width cw.

Parameterized Algorithms for the Happy Set Problem 327

Theorem 3. Given a cw-expression tree of an input graph of clique-width cw,
MaxHS can be solved in time O(8cw · k3(cw+1) · n).

(Neighborhood diversity). We consider the neighborhood diversity as a graph
parameter in the following:

Theorem 4. The problem MaxHS can be solved in time O(2nd ·nd3 +n+m) for
an input graph of neighborhood diversity nd.

(Twin-cover number). We can design the following FPT algorithm:

Theorem 5. The problem MaxHS can be solved in time O(3tc(tc + k2)n + m)
for an input graph of twin-cover number tc.

Acknowledgments. This work was partially supported by the Natural Sciences and
Engineering Research Council of Canada, the Grants-in-Aid for Scientific Research of
Japan (KAKENHI) Grant Numbers JP17K00016 and JP17K00024, JP19K21537, and
JST CREST JPMJR1402.

References

1. Agrawal, A.: On the parameterized complexity of happy vertex coloring. IWOCA
2017, 103–115 (2017)

2. Aravind, N., Kalyanasundaram, S., Kare, A.: Linear time algorithms for happy
vertex coloring problems for trees. IWOCA 2016, 281–292 (2016)

3. Aravind, N., Kalyanasundaram, S., Kare, A., Lauri, J.: Algorithms and hardness
results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)

4. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Dis-
crete Appl. Math. 121, 15–26 (2002)

5. Bliznets, I., Sagunov, S.: On happy colorings, cuts, and structual parameteriza-
tions. arXiv preprint arXiv:1907.06172 (2019)

6. Bodlaender, H.L., Gilbert, J.R., Hafsteinsson, H., Kloks, T.: Approximating
treewidth, pathwidth, frontsize, and shortest elimination tree. J. Algorithms 18(2),
238–255 (1995)

7. Bourgeois, N., Giannakos, A., Lucarelli, G., Milis, I., Paschos, V.: Exact and
approximation algorithms for densest k-subgraph. WALCOM 2013, 114–125
(2013)

8. Broersma, H., Golovach, P., Patel, V.: Tight complexity bounds for FPT sub-
graph problems parameterized by the clique-width. Theor. Comput. Sci. 485, 69–
84 (2013)

9. Bruglieri, M., Ehrgott, M., Hamacher, H., Maffioli, F.: An annotated bibliography
of combinatorial optimization problems with fixed cardinality constraints. Discrete
Appl. Math. 154(9), 1344–1357 (2006)

10. Cai, L.: Parameterized complexity of cardinality constrained optimization prob-
lems. Comput. J. 51, 102–121 (2007)

11. Choudhari, J., Reddy, I.: On structual parameterizations of happy coloring, empire
coloring and boxicity. WALCOM 2018, 228–239 (2018)

12. Corneil, D., Perl, Y.: Clustering and domination in perfect graphs. Discrete Appl.
Math. 9(1), 27–39 (1984)

http://arxiv.org/abs/1705.08282
http://arxiv.org/abs/1907.06172

328 Y. Asahiro et al.

13. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Appl. Math. 101(1), 77–114 (2000)

14. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

15. Easley, D., Kleinberg, J.: Networks Crowds and Markets: Reasoning about a Highly
Connected World. Cambridge University Press, Cambridge (2010)

16. Feige, U., Seltser, M.: On the densest k-subgraph problem. Technical report CS97-
16, Weizmann Institute, Rehovot (1997).http://www.wisdom.weizmann.ac.il

17. Ganian, R.: Improving vertex cover as a graph parameter. Discrete Math. Theor.
Comput. Sci. 17(2), 77–100 (2015)

18. Garey, M., Johnson, D.: Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman & Co., New York (1979)

19. Keil, J., Brecht, T.: The complexity of clustering in planar graphs. J. Comb. Math.
Comb. Comput. 9, 155–159 (1991)

20. Kortsarz, G., Peleg, D.: On choosing a dense subgraph. FOCS 1993, 692–701
(1993)

21. Lampis, M.: Algorithmic meta-theorems for restrictions of treewidth. Algorithmica
64(1), 19–37 (2012)

22. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: an analysis of the max-
imum happy vertices problem. Comput. Oper. Res. 103, 265–276 (2019)

23. Misra, N., Reddy, I.: The parameterized complexity of happy colorings. IWOCA
2017, 142–153 (2017)

24. Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum
happy vertices and edges problems. COCOON 2015, 159–170 (2015)

25. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theor. Comput.
Sci. 593, 117–131 (2015)

26. Zhang, P., Xu, Y., Jiang, T., Li, A., Lin, G., Miyano, E.: Improved approximation
algorithms for the maximum happy vertices and edges problems. Algorithmica
80(5), 1412–1438 (2018)

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
http://www.wisdom.weizmann.ac.il

An Experimental Study of a 1-Planarity
Testing and Embedding Algorithm

Carla Binucci(B) , Walter Didimo , and Fabrizio Montecchiani

Università degli Studi di Perugia, Perugia, Italy
{carla.binucci,walter.didimo,fabrizio.montecchiani}@unipg.it

Abstract. A graph is 1-planar if it can be drawn in the plane with
at most one crossing per edge. The 1-planarity testing problem is NP-
complete, even for restricted classes of graphs. We present the first gen-
eral 1-planarity testing and embedding algorithm, and we experimentally
investigate its feasibility in practice. The results suggest that our app-
roach can be successfully applied to graphs with up to 30 vertices, while
more sophisticated techniques are needed to attack larger graphs.

1 Introduction

One of the most studied families of sparse nonplanar graphs, whose definition
naturally extends that of planar graphs, is the family of 1-planar graphs, i.e.,
graphs that can be drawn in the plane with at most one crossing per edge. An
n-vertex 1-planar graph has O(n) edges, O(

√
n) separators and treewidth, and

O(1) stack and queue number. Refer to [14,18] for recent surveys on 1-planar
graphs and related families. Despite these similarities with planar graphs, testing
whether a graph is 1-planar is NP-complete [15,19], even for restricted classes
of graphs [4,9] and for graphs with a fixed rotation system [3]. The problem is
fixed-parameter tractable in the vertex-cover number, the cyclomatic number,
or the tree-depth [4]. Polynomial-time testing algorithms are known only for
subfamilies of 1-planar graphs (e.g., [2,7,8,17]). In contrast to this rich set of
theoretical results, there is a lack of general 1-planarity testing algorithms that
can be effectively implemented and adopted in applications. Our research goes
in the direction of filling this gap by investigating practical approaches and by
providing indications for further advances. Namely:

(i) We describe an easy to implement 1-planarity testing strategy based on a
backtracking approach. If the test is positive, the algorithm returns a 1-planar
embedding of the graph.
(ii) We report the results of an experimental study on two well-established real-
world graph benchmarks, the Rome and North graphs [1,12]. They suggest that
our approach can be successfully applied to the majority of instances with up to
30 vertices, while more sophisticated techniques are needed for larger graphs.

Work partially supported by MIUR, under Grant 20174LF3T8 AHeAD: efficient Algo-
rithms for HArnessing networked Data.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 329–335, 2020.
https://doi.org/10.1007/978-3-030-39881-1_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_28&domain=pdf
http://orcid.org/0000-0002-5320-9110
http://orcid.org/0000-0002-4379-6059
http://orcid.org/0000-0002-0543-8912
https://doi.org/10.1007/978-3-030-39881-1_28

330 C. Binucci et al.

(iii) We make publicly available the solved instances (http://mozart.diei.unipg.
it/montecchiani/1planarity/labels.xlsx), with a labeling that specifies whether
each instance is 1-planar or not. An interesting finding is that most of the solved
instances in the Rome and North sets are 1-planar.

For space restrictions, several details are omitted and can be found in [5].

Preliminaries. We assume familiarity with basic concepts of graph drawing
and planarity [11]. We only consider simple drawings, where adjacent edges do
not cross and two independent edges cross at most in one of their interior points.
For a graph G, we denote by V (G) and E(G) the sets of vertices and edges of
G, respectively. A plane graph is a graph with a given planar embedding. If G
is not planar, the planarization of a drawing of G is a plane graph obtained by
replacing each crossing point with a dummy vertex. An embedding of G is an
equivalence class of drawings of G whose planarizations yield the same planar
embedding. A 1-planar drawing is a drawing where each edge is crossed at most
once. A 1-planar embedding is the embedding induced by a 1-planar drawing. A
1-plane graph is a graph with a given 1-planar embedding. A kite is a 1-plane
graph isomorphic to K4, in which the outer face is bounded by a cycle composed
of four vertices and four crossing-free edges, called kite edges, while the remaining
two edges cross (see, e.g., [6,13]). As for planar graphs, a graph G is 1-planar if
and only if all its subgraphs are 1-planar; also, the following property holds.

Property 1. G is 1-planar if and only if every block (biconnected component) of
G is 1-planar. If G is 1-planar, a 1-planar embedding of G can be obtained in
linear time by suitably merging the 1-planar embeddings of its blocks.

2 Algorithm Design and Experiments

Our algorithm, called 1PlanarTester, takes as input a connected graph G and,
based on Property 1, it processes each block of G independently. For each block
C, with nC vertices and mC edges, it executes a quick preliminary test to
check if C can be immediately labeled as 1-planar (when C is planar or has
less than 7 vertices) or as not 1-planar (when mC > 4nC − 8 [20]). In the for-
mer case, 1PlanarTester processes the next block, while in the latter case it
halts and returns that G is not 1-planar. If none of these conditions applies,
1PlanarTester runs a backtracking procedure on C; it returns either a negative
answer, which means that C (and thus G) is not 1-planar, or a 1-planar embed-
ding of C if it exists. At the end, 1PlanarTester either outputs an embedding
for each block of G or it returns a block that is not 1-planar.

Backtraking Procedure. Let C be a block of G such that mC ≤ 4nC − 8
edges. We define as candidate solution for the 1-planarity testing problem on
C a set of pairs of crossing edges. Namely, let E be the set of all (unordered)
pairs of edges that can cross in some embedding of C, i.e., the pairs {e1, e2} such
that e1 ∈ E(C) and e2 ∈ E(C) are independent. Let k = |E| and observe that
k = O(n2

C) because mC ≤ 4nC − 8. Let σ be any ordering of E, and let σ(i)

http://mozart.diei.unipg.it/montecchiani/1planarity/labels.xlsx
http://mozart.diei.unipg.it/montecchiani/1planarity/labels.xlsx

An Experimental Study of a 1-Planarity Testing and Embedding Algorithm 331

a b

g d

cf

σ(0) = {(a, g), (c, f)}
σ(1) = {(b, g), (d, f)}
. . .
σ(k − 1) = {(c, d), (g, f)}

(a)

11 0 · · · 0y

a b

g d

cf

(b)

00 0· · ·

0 1

1 100

· · · · · ·
11 1· · ·

10 1 0

(c)

Fig. 1. (a) A block C and an ordering σ of E. (b) A planarization C∗ of C (dummy
vertices are gray squares) with the corresponding TRUE solution. (c) The search tree T .

denote the i-th pair of edges in such an ordering. We encode a candidate solution
by a binary array y of length k such that y[i] = 0 (resp. y[i] = 1) means that
the two edges σ(i) do not cross (resp. cross) in a 1-planar embedding of C (if it
exists). Refer to Fig. 1(a) for an illustration. We say that y is a TRUE solution of
C if: (1) each edge is crossed at most once, and (2) by replacing each crossing
with a dummy vertex, the resulting graph C∗ is planar (see also Fig. 1(b)). Else,
we say that y is a FALSE solution. Note that Condition (2) is well defined because
each edge is crossed at most once and hence we do not need to know the order
of the crossings along the edges. It is easy to see that C is 1-planar if and only
if the set of candidate solutions contains a TRUE solution.

The backtracking procedure generates the set of candidate solutions incre-
mentally, by computing a binary search tree T as follows, see also Fig. 1(c). Each
node ν of T is equipped with an index iν < k and with an array yν of length
iν that represents a partial candidate solution. Node ν has two children, ν0 and
ν1, such that iν0 = iν1 = iν + 1, yν0 [i] = yν1 [i] = yν [i], for i < iν , yν0 [iν] = 0,
and yν1 [iν] = 1. We say that yμ extends yν if μ is a descendant of ν in T . Tree
T is visited top-down starting from the root. When visiting a node ν of T , the
backtracking procedure runs a routine called VerifyNode(yν ,C), which returns
one of three possible values: (i) SOL, if yν is a TRUE solution or can be extended
to a TRUE one; in this case the algorithm returns a 1-planar embedding of C;
(ii) CUT, if yν is either a FALSE solution or cannot be extended to a TRUE one; in
this case the algorithm will not visit the children of ν (i.e., the whole subtree of
T rooted at ν is pruned); (iii) CNT, if none of the previous condition applies; in
this case the routine adds the two children of ν to the set of nodes to be visited.

To describe how the VerifyNode(yν ,C) routine works, we need some defini-
tions. An edge is crossed in yν if it is in a pair σ(j), with j < iν , such that
y[j] = 1. An edge e is saturated in yν if at least one of the following conditions
applies: (a) e is crossed in yν ; (b) the greatest index j such that σ(j) contains e
is smaller than iν ; (c) every pair of edges of E that contains e is such that the
other edge of the pair is crossed in yν .

332 C. Binucci et al.

Lemma 1. Let e be a saturated edge in yν . Then e is either crossed in yν or it
is not crossed in every array yμ that extends yν .

First of all, if VerifyNode(yν ,C) finds an edge crossed twice in yν , it returns
CUT. Else, it computes the graph Cν induced by the edges saturated in yν , and
the graph C∗

ν obtained from Cν by replacing each crossing with a dummy vertex.

Lemma 2. If yμ extends yν and is a TRUE solution, then C∗
ν is planar.

The routine verifies whether Cν coincides with C. Note that this happens if
|yν | = k, or if |yν | < k and all edges of C are part of Cν because are all
saturated in yν . If Cν ≡ C, based on Lemma 2, the routine tests if C∗

ν is planar.
In the positive case, it returns SOL and a 1-planar embedding of C is obtained
from a planar embedding of C∗

ν by replacing the dummy vertices with crossing
points. In the negative case, it returns CUT because yν cannot be extended to a
TRUE solution. If Cν �≡ C, the routine computes an arbitrary extension of yν and
verifies whether it is a TRUE solution. This corresponds to exploring a leaf of the
subtree of T rooted at ν. If such a leaf is a TRUE solution, a 1-planar embedding
is computed and returned. Else CNT is returned and the traversal of T continues.

Further Optimizations. To speed-up the backtracking algorithm in some
cases, we consider some additional issues. An edge is a kite edge inyν if it is
a kite edge with respect to a pair of edges that cross in yν . In the VerifyNode
routine, we extend the definition of a saturated edge e by adding a fourth condi-
tion: (d) e is a kite edge in yν . In fact, an array yμ that extends yν and in which
a kite edge is crossed can be discarded by the routine, because kite edges can
always be redrawn without crossings. This allows us to increase the number of
edges in Cν and hence to increase the probability that Cν coincides with C or
that C∗

ν is not planar. Further optimization criteria are described in [5].

Experimental Analysis. We implemented 1PlanarTester in the C# language
and we exploit some planarity testing subroutines of the OGDF library [10]
(written in C++). In our implementation, the search tree T is traversed by a
depth-first search, which guarantees that the space complexity of the algorithm
is O(n2) (with a breadth-first-search the space requirement may be 2Ω(n2)).

Our experiments have two main objectives: G1 - Performance Analysis: Eval-
uating the largest instances that our algorithm can handle in a reasonable time.
For those instances that are 1-planar, we also want to compare the total num-
ber of crossings produced by 1PlanarTester with respect to a state-of-the-art
planarizer that is allowed to cross an edge more than once. G2 - Labeling of
Popular Graph Benchmarks: Labeling as 1-planar or not 1-planar the instances of
well-established benchmarks in graph drawing. Our ultimate goal is to stimulate
further practical research on beyond-planar graphs [14].

We ran the experiments on a set of computers, each having 16 GB of RAM,
an Intel i7 CPU, and the Windows 10 operating system. We used the Rome and
the North graphs as benchmarks for answering both G1 and G2. We preliminary
removed the planar instances from these two sets of graphs, as they are of no
interest for us. Table 1 reports some information about the considered nonplanar

An Experimental Study of a 1-Planarity Testing and Embedding Algorithm 333

Table 1. Instances and Labeling.

Instances AVG AVG Solved Label

Density # Blocks Number % 1-planar Not 1-planar

Rome 10-20 91 1.49 5.8 83 91.2% 100.0% 0.0%

Rome 21-30 164 1.37 12.4 114 69.5% 100.0% 0.0%

Rome 31-40 388 1.31 15.7 170 43.8% 100.0% 0.0%

Rome 41-50 119 1.29 25.1 45 37.8% 100.0% 0.0%

North 10-20 121 2.05 4.6 89 73.6% 88.8% 11.2%

North 21-30 69 2.07 12.4 27 39.1% 77.8% 22.2%

North 31-40 55 2.00 14.0 21 38.2% 57.1% 42.9%

North 41-50 32 1.79 18.2 6 18.8% 83.3% 16.7%

instances grouped by size. The first columns contain the number of instances
in each sample, the average density (i.e., the average ratio between number of
edges and number of vertices), and the average number of blocks (recall that the
algorithm processes each block independently). We halted the computations that
took more than 3 h. As state-of-the-art planarizer, we used an implementation
available in the OGDF library and discussed in [16].

Concerning G1, Table 1 summarizes the performance of 1PlanarTester in
terms of number of solved instances. Our algorithm could solve a high percentage
of instances up to 20 vertices (91.2% of Rome and 73.6% of North). For the
larger instances up to 40 vertices, the North graphs become more challenging,
with a percentage of solved instances that is stable around 39%. The percentage
of solved instances on the Rome graphs is higher, namely above 69% for the
instances with 21–30 vertices, and above 43% for the instances with 31–40 ver-
tices. The results are much worse for larger graphs. The better performance of
our algorithm on the Rome graphs is partly justified by their lower density with
respect to the North graphs. On average, a computation took less than 4 min,
while the slowest solved instance took about 115 min. The instances for which
the algorithm needed to run the backtracking procedure, i.e., those for which
the preliminary tests did not suffice, are mainly in the subsets Rome 21–30,
Rome 31–40, and North 10–20. Concerning the positive instances, we report
that most frequently they were found by running the completion subroutine on
yν and by checking that C∗

ν was planar. Also, during the backtracking procedure,
the most frequent type of cuts was an edge crossed twice. About the number
of crossings, both 1PlanarTester and OGDF produced drawings with very few
crossings on average. The average over all ratios between the crossings made by
1PlanarTester and those made by the OGDF planarizer is below 1.78.

Concerning G2, Table 1 reports the percentage of solved instances divided by
1-planar and not. All solved instances in the Rome set are 1-planar, while the
North graphs contain a percentage of non-1-planar instances varying between
11% and 43% over the different samples. The fact that in both sets the percentage

334 C. Binucci et al.

of 1-planar graphs is greater than the percentage of not 1-planar graphs may also
suggest that the unsolved instances are more likely to be not 1-planar.

3 Open Problems

The main bottleneck of our algorithm is its O(n2) encoding scheme. Can we
reduce this size by using a balanced separating curves approach like that in [4]?
Also, more sophisticated rules can be studied to prune a subtree or to complete
a partial solution during a backtracking execution. For example, can we use
SPQR-trees to test different triconnected components independently?

References

1. http://www.graphdrawing.org/data.html. Accessed June 2019
2. Auer, C., et al.: Outer 1-planar graphs. Algorithmica 74(4), 1293–1320 (2016)
3. Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-planarity of graphs

with a rotation system. J. Graph Algorithms Appl. 19(1), 67–86 (2015)
4. Bannister, M.J., Cabello, S., Eppstein, D.: Parameterized complexity of 1-planarity.

J. Graph Algorithms Appl. 22(1), 23–49 (2018)
5. Binucci, C., Didimo, W., Montecchiani, F.: An experimental study of a 1-planarity

testing and embedding algorithm. CoRR arXiv:1911.00573 (2019)
6. Brandenburg, F.J.: 1-visibility representations of 1-planar graphs. J. Graph Algo-

rithms Appl. 18(3), 421–438 (2014)
7. Brandenburg, F.J.: Recognizing optimal 1-planar graphs in linear time. Algorith-

mica 80(1), 1–28 (2018)
8. Brandenburg, F.J.: Characterizing and recognizing 4-map graphs. Algorithmica

81(5), 1818–1843 (2019)
9. Cabello, S., Mohar, B.: Adding one edge to planar graphs makes crossing number

and 1-planarity hard. SIAM J. Comput. 42(5), 1803–1829 (2013)
10. Chimani, M., Gutwenger, C., Jünger, M., Klau, G.W., Klein, K., Mutzel, P.: The

open graph drawing framework (OGDF). In: Handbook of Graph Drawing and
Visualization, pp. 543–569. Chapman and Hall/CRC (2013)

11. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice-Hall, Upper Saddle River (1999)

12. Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An
experimental comparison of four graph drawing algorithms. Comput. Geom. 7,
303–325 (1997)

13. Di Giacomo, E., et al.: Ortho-polygon visibility representations of embedded
graphs. Algorithmica 80(8), 2345–2383 (2018)

14. Didimo, W., Liotta, G., Montecchiani, F.: A survey on graph drawing beyond
planarity. ACM Comput. Surv. 52(1), 4:1–4:37 (2019)

15. Grigoriev, A., Bodlaender, H.L.: Algorithms for graphs embeddable with few cross-
ings per edge. Algorithmica 49(1), 1–11 (2007)

16. Gutwenger, C., Mutzel, P.: An experimental study of crossing minimization heuris-
tics. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 13–24. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24595-7 2

17. Hong, S., Eades, P., Katoh, N., Liotta, G., Schweitzer, P., Suzuki, Y.: A linear-time
algorithm for testing outer-1-planarity. Algorithmica 72(4), 1033–1054 (2015)

http://www.graphdrawing.org/data.html
http://arxiv.org/abs/1911.00573
https://doi.org/10.1007/978-3-540-24595-7_2

An Experimental Study of a 1-Planarity Testing and Embedding Algorithm 335

18. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-
planarity. Comput. Sci. Rev. 25, 49–67 (2017)

19. Korzhik, V.P., Mohar, B.: Minimal obstructions for 1-immersions and hardness of
1-planarity testing. J. Graph Theory 72(1), 30–71 (2013)

20. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica
17(3), 427–439 (1997)

Trichotomy for the Reconfiguration
Problem of Integer Linear Systems

Kei Kimura1(B) and Akira Suzuki2

1 Saitama University, Saitama-city, Saitama 338-8570, Japan
kkimura@mail.saitama-u.ac.jp

2 Tohoku University, Aoba-ku, Sendai 980-8579, Japan
a.suzuki@ecei.tohoku.ac.jp

Abstract. In this paper, we consider the reconfiguration problem of
integer linear systems. In this problem, we are given an integer linear
system I and two feasible solutions s and t of I, and then asked to
transform s to t by changing a value of only one variable at a time,
while maintaining a feasible solution of I throughout. Z(I) for I is the
complexity index introduced by Kimura and Makino (Discrete Applied
Mathematics 200:67–78, 2016), which is defined by the sign pattern of the
input matrix. We analyze the complexity of the reconfiguration problem
of integer linear systems based on the complexity index Z(I) of given I.
We show that the problem is (i) solvable in constant time if Z(I) is less
than one, (ii) weakly coNP-complete and pseudo-polynomially solvable
if Z(I) is exactly one, and (iii) PSPACE-complete if Z(I) is greater than
one. Since the complexity indices of Horn and two-variable-par-inequality
integer linear systems are at most one, our results imply that the reconfig-
uration of these systems are in coNP and pseudo-polynomially solvable.
Moreover, this is the first result that reveals coNP-completeness for a
reconfiguration problem, to the best of our knowledge.

Keywords: Combinatorial reconfiguration · Integer linear systems ·
Complexity index

1 Introduction

In reconfiguration problem we are asked to transform the current configuration
into a desired one by step-by-step operations. Formally, in this problem, we are
given two feasible solutions of a combinatorial problem, then we find the trans-
formation between them, such that all intermediate results are also feasible, and
each step conforms to an adjacency relation defined on feasible solutions. The

The first author is partially supported by JSPS KAKENHI Grant Number
JP17K12636. The second author is partially supported by JST CREST Grant Number
JPMJCR1402, and JSPS KAKENHI Grant Numbers JP17K12636 and JP18H04091,
Japan.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 336–341, 2020.
https://doi.org/10.1007/978-3-030-39881-1_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_29&domain=pdf
https://doi.org/10.1007/978-3-030-39881-1_29

Trichotomy for the Reconfiguration Problem of Integer Linear Systems 337

reconfiguration problem investigates the properties of solution spaces of combina-
torial problems, and has a deep relationship to the optimization variants of them.
After Ito et al. [9] introduced this reconfiguration framework, many researchers
applied this framework to a variety of combinatorial problems, including not only
graph problems such as independent set, vertex cover, and coloring, but also set
cover, knapsack problem, and general integer programming problem. For recent
surveys, see [7,15].

In this paper, we investigate the reconfiguration problem of integer linear sys-
tem (ILS) through the complexity index for ILS introduced in [11]. In an ILS, we
are given a matrix A = (Aij) ∈ Q

m×n, a vector b ∈ Q
m, and a positive integer

d, where m and n denote positive integers and Q denotes the set of rational
numbers. We denote an ILS by I = (A, b, d). For an ILS I = (A, b, d), the com-
plexity index Z(I) of I is the optimal value of the following linear programming
problem (LP) with variables Z,α1, . . . , αn.

minimize Z

subject to
∑

j:sgn(Aij)=+

αj +
∑

j:sgn(Aij)=−
(1 − αj) ≤ Z (i = 1, . . . ,m)

0 ≤ αj ≤ 1 (j = 1, . . . , n),

(1)

where for a real number a, sgn(a) = +, 0,− if a > 0, = 0, < 0, respectively.
The complexity index extends a complexity index for SAT introduced in [3], and
classifies the complexity of the feasibility problem of ILS in terms of the sign
structure of the input matrix; see Table 1 for the results. We note that LP (1)
depends only on the sign pattern of A, and captures the sign structure of ILSes.
In particular, if the index is at most one, an ILS can be decomposed to Horn
and two-variable-per-inequality (TVPI) ILSes in a certain way [11]. Here, a Horn
ILS is an ILS where each row of the input matrix contains at most one positive
element, and a TVPI ILS is an ILS where each row of the input matrix contains at
most two nonzero elements. These subclasses arise in, e.g., program verification
and scheduling, respectively, and many algorithms have been devised to solve
the feasibility problems of these subclasses [1,5,8,14]. For γ ≥ 0, we denote by
ILS(γ) the family of ILSes I with Z(I) ≤ γ.

In this paper, we consider the reconfiguration problem of ILS. Namely, we are
given an ILS I and two feasible solutions s and t of I, and then asked to transform
s to t by changing a value of only one variable at a time, while maintaining a
feasible solution of I throughout. We analyze the complexity of this problem
using the complexity index defined above and show the following three results:
the reconfiguration problem of ILS is (i) always yes if the complexity index
is less than one, (ii) weakly coNP-complete and pseudo-polynomially solvable,
and (iii) PSPACE-complete if the complexity index is greater than one. Thus,
we obtain a complexity trichotomy for the reconfiguration problem of ILS. See
also Table 1. In Table 1, “pseudo-P” stands for “pseudo-polynomially solvable”,
i.e., solvable in polynomial time in the numeric value of the input. Moreover,
a problem is weakly NP-complete (resp., weakly coNP-complete) if it is NP-
complete (resp., coNP-complete) in the usual sense, and strongly NP-complete

338 K. Kimura and A. Suzuki

Table 1. Results for integer linear systems (results of this paper are in bold). Here, n
is the number of variables and d is the upper bound of the values of the variables.

ILS(γ) Feasibility [11] Reconfiguration Diameter

γ < 1 P (linear time) P (always yes) Θ(n)

γ = 1 weakly NP-complete
pseudo-P

weakly coNP-complete
pseudo-P

Θ(dn)

γ > 1 strongly NP-complete PSPACE-complete Ω(d · 3
√

(γ −1)n
8)

if it is NP-complete even when all of its numerical parameters are bounded by
a polynomial in the size of the input.

We also analyze how far two feasible solutions can be, namely, the maximum
of the minimum number of value changes between any two feasible solutions.
This also can be cast as the analysis of diameter of solution graph of ILS, which
will be defined in next section. See Table 1 for the results.

Finally, we obtain some positive results complementing the hardness results
for ILS(1). An ILS I = (A, b, d) is called unit if A ∈ {0,±1}m×n for positive
integers m and n. We show that the reconfiguration problem of unit ILS(1) is
solvable in polynomial time. We also show that unit ILS(γ) is PSPACE-complete
for γ > 1. Therefore, we obtain a dichotomy result for unit ILS. Interestingly,
the diameter of the solution graph of an ILS in unit ILS(1) is still Θ(dn) and
thus the minimum number of value changes between two feasible solutions can
be exponential in the input size, where we note that d is a part of the input and
its input size is log d.

To the best of our knowledge, our result for unit ILS(1) provides the first
example that the reconfiguration problem is in P even if the diameter of the solu-
tion graph can be exponential in the input size and the reconfiguration problem
is not always yes. Furthermore, we obtain the first coNP-completeness result for
reconfiguration problems as far as we know. We hope that our results give a new
insight to the complexity of reconfiguration problems.

The rest of the paper is organized as follows. Section 2 formally defines the
reconfiguration problem of ILS. Sections 3 and 4 consider the case of Z(I) = 1.
Section 5 presents our results for Z(I) < 1 and Z(I) > 1.

Due to the space limitation, we omit proofs of most results.

2 Preliminaries

We assume that the reader is familiar with the standard graph theoretic termi-
nology as contained, e.g., in [2].

For an ILS I = (A, b, d), a feasible solution of I is an integer vector x ∈ Dn

satisfying Ax ≥ b, where D = {0, 1, . . . , d}. Note that the bounds on variables,
i.e., the domain D, allow us to analyze the problem in more details, and also
ensure that the solution graph defined below is finite.

For an integer n, a subset R ⊆ Dn is called an (n-ary) relation on D.

Trichotomy for the Reconfiguration Problem of Integer Linear Systems 339

Definition 1 (Solution graph). For a relation R ⊆ Dn, we define the solution
graph G(R) = (V (R), E(R)) as follows: V (R) := R and E(R) := {{x,y} |
x,y ∈ V (R),dist(x,y) = 1}, where dist(x,y) := |{j | xj �= yj}| is the Hamming
distance of x and y. For an ILS I = (A, b, d), we denote by G(I) the solution
graph of the set of the feasible solutions of I, that is, G(R) with R := {x ∈ Dn |
Ax ≥ b}.

We call a path from s to t an s-t path. Using this definition, we can treat
the reconfiguration problem of ILS as following: in the reconfiguration problem
of ILS, we are given an ILS I and two feasible solutions s and t of I, and then
we are asked whether there exists an s-t path in G(I) or not.

For an ILS, a feasible solution x∗ is called a unique minimal solution of the
ILS if it satisfies x∗ ≤ x for all the feasible solutions x of the ILS. Here, for two
vectors x and y, x ≥ y holds if xj ≥ yj for all j.

3 The General Case of Z(I) = 1

Our pseudo-polynomial solvability is based on the decomposition of any ILS
in ILS(1) into Horn and TVPI ILSes introduced in [11]. In fact, we first show
that the reconfiguration problems of these two ILSes are pseudo-polynomially
solvable. For Horn ILS, this is done by extending the greedy algorithm for Horn
SAT [6], using the fact that the set of solutions of any Horn ILS is closed under a
minimum operation. On the other hand, for TVPI ILS, extending the algorithm
for 2-SAT in [6] is not straightforward. We reveal that the solution sets of any
TVPI ILS are closed under a median operation. Using this closedness property,
we can induce a partial order on the set of solutions and devise an algorithm
that changes values of variables according to this partial order. Finally, using
the decomposition and the algorithms for Horn and TVPI ILSes, we obtain the
following result.

Theorem 1. The reconfiguration problem of ILS(1) is pseudo-polynomially
solvable.

Since each solution of a Horn ILS is connected to the unique minimal solution
in the same component by a monotone path of length at most dn, the diameter
of the solution graph of a Horn ILS is at most 2dn. By a similar argument, we
can also have that the diameter of G(I) with Z(I) = 1 is at most 2dn. On the
other hand, we can construct a family of instances of ILS(1) with the diameter
of G(I) at least dn. Thus, we obtain the following.

Theorem 2. The diameter of each component of G(I) is Θ(dn) for the case
where I is in ILS(1).

For our coNP-completeness result, we use the reduction by Lagarias [12] that
shows the weak NP-hardness of the feasibility problem of monotone quadratic
ILS, showing the following theorem.

Theorem 3. The reconfiguration problem of ILS(1) is weakly coNP-complete.

340 K. Kimura and A. Suzuki

4 Tractable Subclass of Z(I) = 1

In this section, we show that the reconfiguration problem of unit ILS(1) is
solvable in polynomial time. Recall that an ILS I = (A, b, d) is called unit if
A ∈ {0,±1}m×n holds for positive integers m and n. For the feasibility problem,
it is known that unit ILS(1) is polynomially solvable [11]. In this subsection, we
consider the reconfiguration problem of unit ILS(1). We note that unit ILS(1)
includes a well-studied subclass of ILS such as unit Horn ILS (e.g., [4,16]) and
unit TVPI (UTVPI) ILS (e.g., [10,13]).

We can show that the reconfiguration problem of unit Horn and UTVPI
ILSes are polynomially solvable. Using the decomposition of any instance unit
ILS(1) into unit Horn and UTVPI ILSes, we obtain the following.

Theorem 4. The reconfiguration problem of unit ILS(1) is polynomially solv-
able.

For the diameter of ILSes in unit ILS(1), we can show the following result.

Theorem 5. The diameter of each component of G(I) is Θ(dn) for the case
where I is in ILS(1).

5 The Cases of Z(I) < 1 and Z(I) > 1

To show the results for the case of Z(I) < 1, we use the following lemma.

Lemma 1. Let I be an ILS which has at least one feasible solution, and with
Z(I) < 1. Let x∗ be a unique minimal solution of I and s be any feasible solution
of I. Then, there exists a path from s to x∗ on G(I). Consequently, G(I) is a
connected graph.

Using Lemma 1, we show the following theorems.

Theorem 6. The reconfiguration problem of ILS(γ) is always yes for any γ < 1.

Theorem 7. The diameter of G(I) is Θ(n) if Z(I) < 1.

For the case of Z(I) > 1, we show that the reconfiguration problem is
PSPACE-complete even for SAT. Note that ILS can formulate SAT by rep-
resenting each clause (

∨
j∈L+ xj ∨ ∨

j∈L− xj) as
∑

j∈L+ xj +
∑

j∈L−(1 − xj) ≥ 1
and setting d = 1. Through this formulation, we can also define a complexity
index for SAT, and this index actually coincides with the complexity index for
SAT introduced by Boros et al. [3]. Using the structural expression introduced
in [6], we show the following results.

Theorem 8. For any γ > 1, the reconfiguration problems of SAT(γ) and ILS(γ)
are respectively PSPACE-complete.

Theorem 9. For infinitely many n, d ≥ 2, and γ > 1, there exists an ILS In in

ILS(γ) with n variables such that G(In) has diameter 2(d + 2) · 3
√

(γ−1)n
8 −1 − 2.

Trichotomy for the Reconfiguration Problem of Integer Linear Systems 341

6 Conclusion

This paper investigates the complexity of the reconfiguration problem of ILS
based on the complexity index introduced in [11] and obtains a complexity tri-
chotomy. On the way of showing this result, we also reveal the complexity of the
reconfiguration problems of Horn and TVPI ILSes, ones of the most studied sub-
classes of ILSes. We also obtain a complexity dichotomy for the reconfiguration
problem of unit integer linear systems and Boolean satisfiability problem.

References

1. Bar-Yehuda, R., Rawitz, D.: Efficient algorithms for integer programs with two
variables per constraint. Algorithmica 29(4), 595–609 (2001)

2. Bondy, J.A., Murty, U.S.R.: Graph Theory. Springer, London (2008)
3. Boros, E., Crama, Y., Hammer, P.L., Saks, M.: A complexity index for satisfiability

problems. SIAM J. Comput. 23(1), 45–49 (1994)
4. Chandrasekaran, R.: Integer programming problems for which a simple rounding

type algorithm works. Prog. Comb. Optim. 8, 101–106 (1984)
5. Glover, F.: A bound escalation method for the solution of integer linear programs.

Cahiers du Centre d’Etudes de Recherche Operationelle 6(3), 131–168 (1964)
6. Gopalan, P., Kolaitis, P.G., Maneva, E., Papadimitriou, C.H.: The connectivity of

Boolean satisfiability: computational and structural dichotomies. SIAM J. Comput.
38, 2330–2355 (2009)

7. van den Heuvel, J.: The complexity of change. In: Surveys in Combinatorics
2013, London Mathematical Society Lecture Note Series, vol. 409, pp. 127–160.
Cambridge University Press (2013)

8. Hochbaum, D.S., Megiddo, N., Naor, J.S., Tamir, A.: Tight bounds and 2-
approximation algorithms for integer programs with two variables per inequality.
Math. Program. 62, 69–83 (1993)

9. Ito, T., Demaine, E.D., Harvey, N.J., Papadimitriou, C.H., Sideri, M., Uehara,
R., Uno, Y.: On the complexity of reconfiguration problems. Theor. Comput. Sci.
412(12–14), 1054–1065 (2011)

10. Jaffar, J., Maher, M.J., Stuckey, P.J., Yap, R.H.C.: Beyond finite domains. In:
Borning, A. (ed.) PPCP 1994. LNCS, vol. 874, pp. 86–94. Springer, Heidelberg
(1994). https://doi.org/10.1007/3-540-58601-6 92

11. Kimura, K., Makino, K.: Trichotomy for integer linear systems based on their sign
patterns. Disc. Appl. Math. 200, 67–78 (2016)

12. Lagarias, J.C.: The computational complexity of simultaneous diophantine approx-
imation problems. SIAM J. Comput. 14(1), 196–209 (1985)

13. Lahiri, S.K., Musuvathi, M.: An efficient decision procedure for UTVPI constraints.
In: Proceedings of the 5th International Workshop on Frontiers of Combining Sys-
tems, pp. 168–183 (2005)

14. van Maaren, H., Dang, C.: Simplicial pivoting algorithms for a tractable class of
integer programs. J. Comb. Optim. 6(2), 133–142 (2002)

15. Nishimura, N.: Introduction to reconfiguration. Algorithms 11(52), 1–25 (2018)
16. Subramani, K., Worthington, J.: Feasibility checking in Horn constraint systems

through a reduction based approach. Theor. Comput. Sci. 576, 1–17 (2015)

https://doi.org/10.1007/3-540-58601-6_92

Train Scheduling: Hardness
and Algorithms

Christian Scheffer(B)

Department of Computer Science, TU Braunschweig, 38106 Braunschweig, Germany
c.scheffer@tu-bs.de

Abstract. We introduce the Train Scheduling Problem which can
be described as follows: Given m trains via their tracks, i.e., curves in the
plane, and the trains’ lengths, we want to compute a schedule that moves
collision-free and with limited speed the trains along their tracks such that
the maximal travel time is minimized. We prove that there is no FPTAS for
the Train Scheduling Problem unless P= NP. Furthermore, we pro-
vide near-optimal runtime algorithms extending existing schedules.

Keywords: Motion planning · Path coordination · Reparametrization

1 Introduction

In this paper, we introduce a new parallel motion planning problem, the Train
Scheduling Problem defined as follows: Consider k given trains each one
defined as a pair which is made up of a curve in the plane, called the track of the
train and a value, called the length of the train. We want to compute a schedule
moving collision-free and with bounded speed all trains along their tracks from
their start points to their end points such that the maximal travel time called
the makespan is minimized.

Furthermore, we consider the situation that there is a fixed schedule for m
trains which has been established over several years. Such an established sched-
ule causes that arrival and departure times of the existing trains at intermedi-
ate stops are fixed which means that we are given fixed reparametrizations of
the k given trains. The problems ExtMinTime and ExtMaxLength ask for
a collision-free schedule of a new train avoiding collisions with the other already
existing trains and their fixed schedules. In particular, ExtMinTime considers
a fixed length of the new train and asks for its smallest possible travel time.
Furthermore, ExtMaxLength considers a fixed travel time of the new train
and asks for its largest possible length.

1.1 Our Results

1. We prove that there is no FPTAS for the Train Scheduling Problem
unless P = NP , see Theorem 1.

2. We provide algorithms with near-optimal runtime for both ExtMinTime and
ExtMaxLength, see Theorems 2 and 3.

c© Springer Nature Switzerland AG 2020
M. S. Rahman et al. (Eds.): WALCOM 2020, LNCS 12049, pp. 342–347, 2020.
https://doi.org/10.1007/978-3-030-39881-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39881-1_30&domain=pdf
http://orcid.org/0000-0002-3471-2706
https://doi.org/10.1007/978-3-030-39881-1_30

Train Scheduling: Hardness and Algorithms 343

1.2 Related Work

Multi-robot coordination is one of the most famous and traditional interfaces
between robotics and computational geometry. Due to the amazingly large land-
scape of parallel motion planning topics and corresponding results, we refer to
surveys as [5–7] for detailed overviews.

In their pioneering work, Hopcroft, Schwartz, and Sharir [3] show that even
the simple Warehouseman’s Problem which requires to coordinate a set of
rectangles from a start configuration to a target configuration inside a rectan-
gular box is PSPACE-hard.

O’Donnell and Lozano-Perez [8] consider a problem setting in which disks
have to be moved along given tracks. They give a O(q2 log q) runtime algo-
rithm for coordinating two robots at which only forward movements are allowed
and q is the maximal number of segments on the considered curves. Akella and
Hutchinson [1] consider a problem variant in which both the curves and the
speed at which the disks traverse the curves are known. They showed that it is
NP-complete to compute departure times for arbitrarily many disks such that a
minimum-time collision-free coordination is achieved.

Reif and Sharir [9] consider dynamic movers problems in which a given poly-
hedral body B has to be moved collision-free within some 1D, 2D, or 3D space
by translation and rotation from a start position to a target position amid a
set of obstacles that rotate and move along known trajectories. They provide
PSPACE-hardness of the 3D dynamic movement problem if the body B has to
hold a velocity bound and NP-hardness if the body’s velocity is unbounded. Fur-
thermore, Reif and Sharir [9] consider asteroid avoidance problems as a special
variant of dynamic movers problems. In particular, they require that neither the
moving body B nor the obstacles may rotate and provide a near-linear time
algorithm for the 1-dimensional asteroid avoidance problem in which each of the
obstacles is a polyhedron traveling with fixed (possible distinct) translational
velocity along a 1-dimensional line. The 1-dimensional asteroid avoidance prob-
lem assumes the obstacles and the body B moving along 1-dimensional lines
where our Train Schedule Extension Problem considers all trains to move
along curves in the two-dimensional plane which is an important difference. Reif
and Sharir provide a polynomial time algorithm for the 2D asteroid avoidance
problem if the number of the obstacles is a constant and for the three-dimensional
asteroid avoidance problem a single exponential time and a polynomial space
algorithm for a convex polyhedron B and arbitrary many obstacles.

Kant and Zucker [4] consider a problem that is equivalent to the Train
Schedule Extension Problem arising in the context of computing shortest
trajectories among a set of moving obstacles. Let w be the complexity of the
parameter space. Their algorithm computes a shortest path in the whole visibility
graph of the corresponding parameter space with complexity w which leads to
running time of Ω(w2) while our algorithm has a running time of O(w log w).

344 C. Scheffer

2 Preliminaries

A train is a pair (H,Lh) where Lh ∈ R>0 is the length of the train and H is
the track of the train which is defined as a polygonal curve H : [0, 1] → R

2.
We simultaneously denote by H, the function H : [0, 1] → R

2 and its image
{p ∈ R

2 | there is a t ∈ [0, 1] with p = H(t)}. The length |T | of a track T :
[0, 1] → R

2 in the ambient space is defined as the total length of its segments
w.r.t. the Euclidean norm. A k-fleet is a k-tuple of trains. Two trains (H,Lh)
and (X,Lx) collide for the parameters λh and λx if the subcurves of H and X
with midpoints H(λh) and X(λx) and lengths Lh and Lx are intersecting each
other. A reparametrization of a train (H,Lh) is a continuous and piecewise linear
function α : [0,M] → [0, 1] such that (1) α(0) = 0, (2) there is a minimal
value λ ≥ 0 with α(μ) = 1 for all μ ≥ λ, and (3) the speed of the train is
upper-bounded by 1, i.e., for each point in time t ∈ [0,M], both left and right
derivative of H(α(·)) have Euclidean length of at most 1. A schedule for a k-fleet
((T1, L1), . . . , (Tk, Lk)) is a tuple (α1 : [0,M1] → [0, 1], . . . , αk : [0,Mk → [0, 1])
such that (1) αi is a reparametrization for the train (Ti, Li) for all i ∈ {1, . . . , k}
and (2) Ti and Tj do not collide for the parameters αi(t) and αj(t) for all
i �= j ∈ {1, . . . , k} and t ≥ 0. The makespan of the schedule (α1 : [0,M1] →
[0, 1], . . . , αk : [0,Mk → [0, 1]) is defined as the maximal Mmax of M1, . . . ,Mk.
W.l.o.g., we assume that all travel times are equal to Mmax. If this is not the
case, we extend αi with αi(t) = αi(Mi) for all Mi < t < Mmax. Given a k-fleet F ,
the Train Scheduling Problem asks for a schedule with minimal makespan.

The parameter space P of a k-fleet ((T1, L1), . . . , (Tk, Lk)) is defined as P :=
[0, |T1|] × · · · × [0, |Tk|]. The forbidden or black space B of P is the set of all
parameter points p = (λ1, . . . , λk) ∈ P such that there are two trains Ti and
Tj that collide with the parameters λi and λj . The allowed or white space W is
the closure of P \B. The free-space diagram is the partitioning of the parameter
space into the allowed and the forbidden space.

A path is a curve π : [0, 1] → P and the length �(π) of π is the length of π

w.r.t. the maximum metric, i.e., �(π) :=
∫ 1

0
||π′(t)||∞ dt. An a-b-path in the free

space diagram of ((T1, L1), . . . , (Tk, Lk)) is a path π ⊂ W between a and b. If
not other stated, a path in the free space diagram is a path π ⊂ W connecting
the points (0, . . . , 0) and (|T1|, . . . , |Tk|).

3 Hardness of Scheduling Trains

In this section, we show that there is no hope for an FPTAS solving the Train
Scheduling Problem for arbitrary many trains, Train for short.

Theorem 1. There is no FPTAS for Train unless P = NP .

In order to prove Theorem 1, we provide a polynomial time reduction of the
3-SAT Problem to an (1 + ε)-approximation of Train.

Let Φ be an arbitrarily chosen 3-SAT formula made up of m clauses Ci :=
(�i,1 ∨ �i,2 ∨ �i,3) and v1, . . . , vn the variables appearing in Φ. We construct an

Train Scheduling: Hardness and Algorithms 345

Fig. 1. (a) Reduction of Theorem 1 for a 3-SAT formula Φ = (¬v1 ∨ v2 ∨ ¬v3) ∧
(v1 ∨ v3 ∨ v4). Each variable vi is modeled by two tracks moving from left to right
and representing the two literals vi and ¬vi. Each clause is modeled by a clause track
moving from bottom to top. Literal crossings are crossings of a long delay gadget and
a medium delay gadget, and variable value mergers are crossings of two long delay
gadgets. (b) The gadgets used in the hardness construction of Theorem 1. The long
delay gadget, the medium delay gadget, and the short delay gadget enforcing delays
of 6, 3, and 2 by inserting corresponding detours into the addressed literal or clause
track.

(2n + m)-fleet F such that there is schedule for F with makespan M + 6 if Φ
is satisfiable where M ∈ Θ(poly(n + m)), see Fig. 1. If Φ is not satisfiable, there
will be at least one train (Ti, Li) with travel time M + 9.

Next, we give the construction of the fleet F := F (Φ), see Fig. 1(a). We
define the length of each train as 2. All tracks of F have their start points on
a diagonal line � with slope −1. Furthermore, we construct all tracks having

346 C. Scheffer

the same length M . In particular, we construct the tracks in two steps. Step
1: Initially, we construct the tracks of F as segments. Step 2: We modify the
segments of Step 1 by substituting subsegments by curves, called delay gadgets,
see Fig. 1. Due to space constraints, technical details of the construction and the
corresponding analysis are omitted.

4 Extending Schedules Within Near-Optimal Runtime

Let (α1, . . . , αk) be a given schedule of a given k-fleet ((T1, L1), . . . , (Tk, Lk))
and Lk+1 an additional track. We consider the two following problem variants:

(1) Given a train length Lk+1, the ExtMinTime problem asks for the smallest
travel time Mk+1 of the train (Tk+1, Lk+1) such that (Tk+1, Lk+1) does not
collide with the existing k trains and their fixed schedule.

(2) Given a travel time Mk+1, the ExtMaxLength problem asks for the max-
imal train length Lk+1 such that there is a reparametrization αk+1 with
travel time Mk+1 such that collisions with the existing k trains and their
fixed schedule are avoided.

In the remainder of this section, we give near-optimal runtime algorithms solving
ExtMinTime and ExtMaxLength.

Let q and τ be the maximal numbers of segments of an input track
and of an input reparametrization, respectively. We give an algorithm solv-
ing ExtMinTime in O(τkq2 log(τkq)) time. We observe that Ω(τkq2) is
a lower bound for the runtime of an algorithm solving ExtMinTime or
ExtMaxLength implying that our runtimes are near-optimal.

Theorem 2. There is an O (
τkq2 log (τkq)

)
runtime algorithm for

ExtMinTime.

Based on Theorem 2, we prove the following:

Theorem 3. ExtMaxLength can be solved in O (
τkq2 log2 (τkq)

)
time.

Next we give the proof for Theorem 3. In order to do this, we observe that
we have to compute a maximal train length Lmax such that there is a regular
path π ⊂ W connecting (0, 0) and (|Tk+1|,Mk+1). We first define critical values
such that Lmax has to be a critical value.

Train Scheduling: Hardness and Algorithms 347

Definition 1. We define types of critical values for
Lk+1:

– Type 1: Largest Lk+1 with (0, 0), (|Tk+1|,Mk+1) ∈ W.
– Type 2: A maximal value for Lk+1 such that ci.x = aj

for a pair (bi, bj) of blocks with ei.y ∈ [aj .y, dj .y] or
ci.y ∈ [aj .y, dj .y] (a vertical passage closes between
two neighboring blocks, i.e., that share a common y-
coordinate), see Fig. 2(b).

– Type 3: A maximal value for Lk+1 such that |ai.x −
ej .x| = dj .y − ai.y for a pair (bi, bj) of blocks (a diag-
onal passage closes between two blocks), see Fig. 2(c).

Fig. 2. Critical values

While the number of Type 1 and Type 2 values are upper-bounded by 1 and
O(τkq2), there may be O(τ2k2q4) critical values of Type 3 where each value
could be computed in O(1) time. It is obvious that Lmax has to be a critical
value. Finally, we apply Theorem 2 as a subroutine in the improved parametric
search framework introduced by Cole [2] concluding the proof of Theorem 3.

References

1. Akella, S., Hutchinson, S.: Coordinating the motions of multiple robots with spec-
ified trajectories. In: Proceedings of the 2002 IEEE International Conference on
Robotics and Automation, ICRA 2002, Washington, DC, USA, 11–15 May 2002,
pp. 624–631 (2002)

2. Cole, R.: Slowing down sorting networks to obtain faster sorting algorithms. J. ACM
34(1), 200–208 (1987)

3. Hopcroft, J.E., Schwartz, J.T., Sharir, M.: On the complexity of motion planning for
multiple independent objects; PSPACE-hardness of the warehouseman’s problem.
Int. J. Rob. Res. 3(4), 76–88 (1984)

4. Kant, K., Zucker, S.W.: Toward efficient trajectory planning: the path-velocity
decomposition. Int. J. Rob. Res. 5(3), 72–89 (1986)

5. Kavraki, L.E., LaValle, S.M.: Motion planning. In: Siciliano, B., Khatib, O. (eds.)
Springer Handbook of Robotics, pp. 139–162. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-32552-1 7

6. Latombe, J.C.: Robot Motion Planning. Kluwer Academic Publishers, Norwell
(1991)

7. LaValle, S.M.: Planning Algorithms. Cambridge University Press, Cambridge (2006)
8. O’Donnell, P.A., Lozano-Pérez, T.: Deadlock-free and collision-free coordination of

two robot manipulators. In: Proceedings of the 1989 IEEE International Conference
on Robotics and Automation, Scottsdale, Arizona, USA, 14–19 May 1989, pp. 484–
489 (1989)

9. Reif, J.H., Sharir, M.: Motion planning in the presence of moving obstacles. J. ACM
41(4), 764–790 (1994)

https://doi.org/10.1007/978-3-319-32552-1_7
https://doi.org/10.1007/978-3-319-32552-1_7

Author Index

Asahiro, Yuichi 323

Bhagat, Subhash 31
Binucci, Carla 329

Chiu, Man-Kwun 43
Chrobak, Marek 55
Cleve, Jonas 43
Corujo, Josué 261
Crochemore, Maxime 69

De Luca, Felice 81
Di Giacomo, Emilio 81
Didimo, Walter 329

Eto, Hiroshi 323
Evans, William 94

Faro, Simone 107
Flores-Peñaloza, David 261

Gethner, Ellen 94
Gonzalez, Miguel Coviello 55
Gu, Geonmo 107

Hanaka, Tesshu 323
Hendrian, Diptarama 120
Hoang, Duc A. 133
Hong, Seok-Hee 81
Horiyama, Takashi 211
Huemer, Clemens 261

I, Tomohiro 308
Ibusuki, Tatsuaki 146
Iliopoulos, Costas S. 69
Ishihata, Masakazu 273
Ito, Takehiro 286
Iwamoto, Chuzo 146

Jacob, Ajay Saju 249
Jana, Satyabrata 158

Karim, Md. Rezaul 3
Kataoka, Masaharu 308
Kaufmann, Michael 170
Kawahara, Jun 211
Kimura, Kei 336
Klost, Katharina 43
Kobourov, Stephen 81
Korman, Matias 43
Kratochvil, Jan 170
Krithika, R. 249
Kshemkalyani, Ajay D. 183

Lecroq, Thierry 107
Lenhart, William 81
Lin, Guohui 323
Liotta, Giuseppe 81
Lipp, Fabian 170

Maheshwari, Anil 158
Mehrabi, Saeed 158
Meijer, Henk 81
Minato, Shin-ichi 211, 273
Mitchell, Joseph S. B. 198
Miyano, Eiji 323
Molla, Anisur Rahaman 183
Montecchiani, Fabrizio 170, 329
Mulzer, Wolfgang 43

Nakahata, Yu 211
Nascimento, Julliano Rosa 223
Nguyen, Cam Ly 236

Pandit, Supantha 198
Park, Kunsoo 107
Pérez-Lantero, Pablo 261

Radoszewski, Jakub 69
Raftopoulou, Chrysanthi 170
Rahman, Md. Saidur 3
Roeloffzen, Marcel 43
Roy, Sasanka 158
Rytter, Wojciech 69

Sakamoto, Hiroshi 308
Scheffer, Christian 342
Seara, Carlos 261
Sharma, Gokarna 183
Shin, Kilho 308
Song, Siwoo 107
Souza, Uéverton S. 223
Spalding-Jamieson, Jack 94
Straszyński, Juliusz 69
Suppakitpaisarn, Vorapong 236
Surarerks, Athasit 236
Suzuki, Akira 133, 336
Suzuki, Hirofumi 273
Szwarcfiter, Jayme L. 223

Takabatake, Yoshimasa 308
Tamura, Yuma 286
Tappini, Alessandra 81
Terabaru, Ippei 323
Tran, Dat Hoang 296

Uehara, Ryuhei 296

Vajanopath, Phanu 236
Valtr, Pavel 170
van Renssen, André 43

Waleń, Tomasz 69
Watanabe, Osamu 15
Willert, Max 43
Wismath, Stephen 81
Wolff, Alexander 94

Yagita, Tsuyoshi 133
Yoshimoto, Yohei 308

Zhang, Louxin 22
Zhou, Xiao 286
Zuba, Wiktor 69

350 Author Index

	Preface
	Organization
	Contents
	Invited Talks
	Drawing Planar Graphs
	1 Introduction
	2 Reduction to Planarity Testing
	3 Incremental Modification
	4 SPQR-Tree Decomposition
	5 Conclusions
	References

	Space Efficient Separator Algorithms for Planar Graphs
	1 Summary
	2 Preliminaries for Our Discussion
	References

	Recent Progresses in the Combinatorial and Algorithmic Study of Rooted Phylogenetic Networks
	1 Basic Definitions
	2 Component Graphs
	3 Network Classes and Inclusion Relations
	4 Generating and Counting Tree-Child Networks
	5 The Cluster and Tree Containment Problems
	References

	Long Papers
	Optimum Algorithm for the Mutual Visibility Problem
	1 Introduction
	1.1 Earlier Works
	1.2 Our Contribution

	2 Model and Notations
	3 Mutual Visibility Under the FSYNC model
	3.1 Algorithm MutualVisibilityFsync()
	3.2 Algorithm ComputeDestination()
	3.3 Correctness of MutualVisibilityFsync()

	References

	Routing in Histograms
	1 Introduction
	2 Preliminaries
	3 Simple Histograms
	4 Double Histograms
	References

	A Waste-Efficient Algorithm for Single-Droplet Sample Preparation on Microfluidic Chips
	1 Introduction
	2 Preliminaries
	3 Algorithm Description
	4 Construction of Converters
	4.1 (i:14, J:12)-Converters Ci,j2

	5 Performance Bounds
	6 Experimental Study
	7 Final Comments
	References

	Shortest Covers of All Cyclic Shifts of a String
	1 Introduction
	2 Applications of the Suffix Tree
	3 Covers of Cyclic Shifts
	4 Main Algorithm
	5 Strings with Arbitrarily Large Size of CyCoSet(S)
	6 Conclusions and Open Problems
	References

	Packing Trees into 1-Planar Graphs
	1 Introduction
	2 Preliminaries
	3 Trees that Do Not Admit 1-Planar Packings
	4 1-Planar Packings of Two Paths and a Caterpillar
	5 1-Planar Packings with Constant Edge Crossings
	6 From Triples to Quadruples
	7 Open Problems
	References

	Angle Covers: Algorithms and Complexity
	1 Introduction
	2 Preliminaries and Examples
	3 Algorithms for Graphs with Restricted Degrees
	4 NP-Hardness for Graphs of Maximum Degree 5
	5 Generalizations
	6 Isomorphic Thickness
	7 Conclusion and Open Problems
	References

	Fast Multiple Pattern Cartesian Tree Matching
	1 Introduction
	2 Problem Definition
	2.1 Notation
	2.2 Multiple Pattern Cartesian Tree Matching

	3 Fingerprinting Methods
	3.1 Parent-Distance Encoding
	3.2 Binary Encoding

	4 Fast Multiple Pattern Cartesian Tree Matching Algorithms
	4.1 Algorithm Based on Wu-Manber
	4.2 Algorithm Based on Rabin-Karp
	4.3 Algorithm Based on Alpha Skip Search
	4.4 Selecting the Block Size

	5 Experiments
	5.1 Evaluation on the Equal Length Patterns
	5.2 Evaluation on the Different Length Patterns
	5.3 Evaluation on the Real Dataset

	References

	Generalized Dictionary Matching Under Substring Consistent Equivalence Relations
	1 Introduction
	2 Preliminaries
	3 SCER Automata
	3.1 Definition and Properties
	3.2 Dictionary Matching Using SCERA
	3.3 Constructing SCERA

	References

	Reconfiguring k-path Vertex Covers
	1 Introduction
	2 Preliminaries
	3 Hardness Results
	4 Polynomial-Time Algorithms
	4.1 Trees
	4.2 Paths and Cycles

	5 Concluding Remarks
	References

	Computational Complexity of the Chromatic Art Gallery Problem for Orthogonal Polygons
	1 Introduction
	2 Definitions and Results
	3 NP-Completeness
	3.1 3SAT Problem
	3.2 Transformation from an Instance of Clause-Linked Planar 3SAT to an Orthogonal Polygon

	References

	Maximum Bipartite Subgraph of Geometric Intersection Graphs
	1 Introduction
	2 NP-Hardness
	3 Algorithmic Results
	3.1 Interval Graphs
	3.2 Circular-Arc Graphs

	4 Approximation Algorithms
	4.1 Unit Disks and Unit Squares
	4.2 Unit-Height Rectangles

	5 NP-Hardness of MTFS
	6 Conclusion
	References

	The Stub Resolution of 1-Planar Graphs
	1 Introduction
	2 Preliminaries and Proof Strategy
	3 Straight-Line Drawings
	4 Polyline Drawings
	5 Open Problems
	References

	Dispersion of Mobile Robots on Grids
	1 Introduction
	2 Model Details and Preliminaries
	3 Algorithm in the Local Communication Model (Theorem 1)
	4 Algorithm in the Global Communication Model (Theorem 2)
	5 Concluding Remarks
	References

	Packing and Covering with Segments
	1 Introduction
	1.1 Related Work
	1.2 Our Contributions

	2 Preliminaries
	3 Algorithms: Segments Anchored from One Side
	3.1 The Independent Set Problem
	3.2 The Piercing Set Problem

	4 Independent Set Problem
	5 Piercing Set Problem
	6 Dominating Set Problem
	6.1 Segments Anchored on a Line with Slope -1
	6.2 Unit Segments in the Plane

	References

	Implicit Enumeration of Topological-Minor-Embeddings and Its Application to Planar Subgraph Enumeration
	1 Introduction
	2 Preliminaries
	2.1 Graphs and Colored Graphs
	2.2 Topological Minors and Characterizations of Graphs
	2.3 Decision Diagram (DD)
	2.4 Colorful Frontier-Based Search (CFBS)

	3 Algorithms
	3.1 Implicit Enumeration of TM-Embeddings
	3.2 Constraints for Forbidden Topological Minors
	3.3 Enumerating Subgraphs Having FTM-Characterizations

	4 Computational Experiments
	4.1 Settings
	4.2 Comparing Several Methods to Enumerate Planar Subgraphs

	5 Conclusion
	References

	Partitioning a Graph into Complementary Subgraphs
	1 Introduction
	2 Preliminaries
	2.1 M Is Empty

	3 Comp-Sub() on Subclasses of Chordal Graphs
	3.1 Unit Interval Graphs
	3.2 Strongly Chordal Graphs
	3.3 Starlike, Block, and Split Graphs

	4 M Induces a Complete Bipartite Graph
	References

	On the Maximum Edge-Pair Embedding Bipartite Matching
	1 Introduction
	1.1 Our Contribution

	2 Problem Definition
	3 Inapproximability Results
	4 Results for Small k
	4.1 Polynomial Time Algorithm for k = 1
	4.2 NP-Hardness for k 2
	4.3 Approximation Algorithm

	5 Conclusion
	References

	Packing Arc-Disjoint Cycles in Bipartite Tournaments
	1 Introduction
	2 Preliminaries
	3 An FPT Algorithm Using Color Coding
	4 An Erdös-Pósa Type Theorem
	5 A Polynomial Kernel
	6 An Improved FPT Algorithm
	7 Conclusion
	References

	Matching Random Colored Points with Rectangles
	1 Introduction
	2 Preliminaries
	3 The Markov Chains
	4 The Markov Chain for k=3
	5 Discussion and Open Problems
	References

	Designing Survivable Networks with Zero-Suppressed Binary Decision Diagrams
	1 Introduction
	2 Preliminaries
	2.1 Notation
	2.2 Survivable Network Design Problem
	2.3 Zero-Suppressed Binary Decision Diagrams

	3 Proposed Method
	3.1 ZDD Construction
	3.2 Multinomial Disjoint Join

	4 Experiments
	4.1 Performance of Multinomial Disjoint Join
	4.2 Performance of Proposed Method

	5 Conclusion
	References

	Approximability of the Independent Feedback Vertex Set Problem for Bipartite Graphs
	1 Introduction
	1.1 Related Results and Known Results
	1.2 Our Contribution

	2 Preliminaries
	3 Inapproximability
	3.1 Gadgets
	3.2 Reduction

	4 Approximation Algorithm
	5 Conclusion
	References

	Efficient Enumeration of Non-isomorphic Ptolemaic Graphs
	1 Introduction
	2 Preliminaries
	2.1 Tree Structure for a Ptolemaic Graph

	3 Enumeration Algorithms
	3.1 Enumeration of Minimal CL-trees
	3.2 Distribution of Extra Vertices

	4 Concluding Remarks
	References

	Faster Privacy-Preserving Computation of Edit Distance with Moves
	1 Introduction
	1.1 Motivation
	1.2 Related Work
	1.3 Our Contribution

	2 Preliminaries
	2.1 EDM
	2.2 Homomorphic Encryption

	3 Two-Party Secure Consistent Labeling
	3.1 Hash Function
	3.2 Algorithm

	4 Experimental Results
	5 Conclusion
	References

	Short Papers
	Parameterized Algorithms for the Happy Set Problem
	1 Introduction
	1.1 Our Problem and Contributions
	1.2 Related Work

	2 Preliminaries
	3 Parameterized Complexity of MaxHS
	References

	An Experimental Study of a 1-Planarity Testing and Embedding Algorithm
	1 Introduction
	2 Algorithm Design and Experiments
	3 Open Problems
	References

	Trichotomy for the Reconfiguration Problem of Integer Linear Systems
	1 Introduction
	2 Preliminaries
	3 The General Case of Z(I) = 1
	4 Tractable Subclass of Z(I) = 1
	5 The Cases of Z(I) < 1 and Z(I) > 1
	6 Conclusion
	References

	Train Scheduling: Hardness and Algorithms
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Hardness of Scheduling Trains
	4 Extending Schedules Within Near-Optimal Runtime
	References

	Author Index

