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Abstract In this study, sliding mode controller (SMC) with PID surface is designed
for the trajectory tracking control of robot manipulator using antlion optimization
algorithm (ALO) compared with another technique called gray wolf optimizer
(GWO). The idea is to determine optimal parameters (Kp, Ki, Kd, and lamda)
ensuring best performance of robot manipulator system minimizing the integral
time absolute error (ITAE) criterion or the integral time square error (ISTE) criterion;
the modeling and the control of the robot manipulator were realized in MATLAB
environment. The simulation results prove the superiority of ALO in comparison
with GWO algorithm.

Keywords Sliding mode control · PID sliding surface · Nonlinear control · Robot
manipulator

1 Introduction

The use of robotic arms in industrial applications has significantly been increased.
The robot motion tracking control which required high accuracy, stability, and safety
is one of the challenging problems due to highly coupled and nonlinear dynamic. In
the presence of model uncertainties such as dynamic parameters (e.g., inertia and
payload conditions), dynamic effects (e.g., complex nonlinear frictions), and
unmodeled dynamics, conventional controllers have many difficulties in treating
these uncertainties. Sliding mode control (SMC) is one of the most robust
approaches to overcome this problem. The most distinguished property of the sliding
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mode control lies in its insensitivity to dynamic uncertainties and external
disturbances.

However, this approach exhibits high-frequency oscillations called chattering
when the system state reaches the sliding surface, which has negative effects on
the actuator control and excite the undesirable unmodeled dynamics.

Recently, sliding mode, integral sliding mode controllers (ISMC), and propor-
tional integral sliding mode controllers (PI-SMC) were examined by many
researchers as a powerful nonlinear controller in [1–7]. An adaptive sliding mode
control is designed in several papers [8–12]. The proportional integral derivative
sliding mode controller (PID-SMC) was designed to control the robot manipulator in
several works. The investigation of fuzzy logic and neuro-fuzzy logic control to
design an adaptive sliding mode control are found in [13–16].

Currently, evolutionary algorithms have appeared as an alternative design method
for robotic manipulator. M. Vijay and Debaschisha design a PSO-based
backstepping sliding mode controller and observer for robot manipulators
[17]. This authors used PSO to tune the sliding surface parameters of SMC coupled
with artificial neuro-fuzzy inference system (ANFIS) [18].

The optimization of the PID-SMC parameters using ALO is outperformed in
comparison with GA and PSO algorithms by Mokeddem and Draidi to control a
nonlinear system [19].

This paper presents the use of novel optimization algorithms to tune SMC with
PID surface for the trajectory tracking control of robot manipulator. These algo-
rithms are described in Sect. 3. Section 2 designates the mathematical model of robot
manipulator. The principle of SMC and its application on the robot manipulator are
titled in Sect. 4. The simulation results are presented in Sect. 5.

2 Dynamic Model of Robot Manipulator

By applying Lagrange’s principle, the dynamic model of two-degree-of-freedom
(2DOF) robot manipulator is given by

τ ¼ M qð Þ€qþ C q, _qð Þ _qþ G qð Þ þ F _qð Þ ð1Þ

where qi, _qi , and €qi present the link position, velocity, and acceleration vectors,
respectively. M(q) is the matrix inertia given by

M qð Þ ¼ M11 M12

M21 M22

� �

where
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M11 ¼ m1 ∙ l21 þ m2 ∙ l21 þ 2l1 ∙ l2 ∙ cos q2ð Þ þ l22
�

M12 ¼ M12 ¼ m2 ∙ l2 l2 þ l1 ∙ cos q2ð Þð Þ
M22 ¼ m2 ∙ l22

C q, _qð Þ is the Coriolis centripetal force matrix given by

C qð Þ ¼ C11 C12

C21 C22

� �

where

C11 ¼ �m2 ∙ l1 ∙ l2 ∙ sin q2ð Þ ∙ 2 _q2
C12 ¼ �m2 ∙ l1 ∙ l2 ∙ sin q2ð Þ ∙ _q2
C21 ¼ m2 ∙ l1 ∙ l2 ∙ sin q2ð Þ ∙ _q1

C22 ¼ 0

The gravity vector G qð Þ ¼ G11 G12½ �T

is given by

G11 ¼ m1 þ m2ð Þ ∙ g ∙ l1 ∙ cos q1ð Þ þ m2 ∙ g ∙ l2 ∙ cos q1 þ q2ð Þ
G12 ¼ m2 ∙ g ∙ l2 ∙ cos q1 þ q2ð Þ

Finally, F _qð Þ ¼ F11F21½ �T is the friction force vector given by

F11 ¼ 2 ∙ _q1 þ 0:8 sign _q1ð Þ
F21 ¼ 4 ∙ _q2 þ 0:1 sign _q2ð Þ

and τ is the vector of the torque control signal, where mi and li are the link mass and
length, respectively.

3 Evolutionary Algorithms

3.1 Gray Wolf Optimizer (GWO)

GWO is a recent meta-heuristic optimizer inspired by gray wolves and proposed by
[20]. It mimics the leadership hierarchy and the hunting mechanism of gray wolves
in nature.
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As described in literature, the GWO algorithm includes two mathematical
models: encircling prey and hunting prey.

The encircling behavior: During the hunting, the gray wolves encircle prey. The
mathematical model is presented in the following equations:

*D ¼ *C ∙*Xp tð Þ �*X tð Þ�� �� ð2Þ
*X t þ 1ð Þ ¼ *Xp tð Þ �*A*D ð3Þ

where D is the distance, *Xp tð Þ is the position vector of prey, *X tð Þ indicates the
position of the gray wolf, t indicates the current iteration, and*A and*C are coefficient
vectors calculated as follows:

*A ¼ 2*a*r1 �*a ð4Þ
*C ¼ 2*r2 ð5Þ

where components of a are linearly decreased from 2 to 0 over the course of
iterations and r1 and r2 are random vectors in [0 1].

The hunting model: Four types of gray wolves participate in chasing prey; alpha,
beta, delta, and omega denote the wolf group and are employed as solutions (fittest,
best, and candidate) for simulating the leadership hierarchy.

The optimization algorithm is guided by α, β, and δ; with three best solutions
obtained so far, the other search agents follow them and update their positions
according to the best search agent as follows:

*Dα ¼ *C1 ∙
*Xα tð Þ �*X tð Þ�� �� ð6Þ

*Dβ ¼ *C2 ∙
*Xβ tð Þ �*X tð Þ�� �� ð7Þ

*Dδ ¼ *C3 ∙
*Xδ tð Þ �*X tð Þ�� �� ð8Þ

*X1 ¼ *Xα tð Þ �*A1 ∙
*Dα ð9Þ

*X2 ¼ *Xβ tð Þ �*A2 ∙
*Dβ ð10Þ

*X3 ¼ *Xδ tð Þ �*A3 ∙
*Dδ ð11Þ

and*X t þ 1ð Þ ¼
*X1 þ*X2 þ *X3

3
ð12Þ

3.2 The Ant Lion Optimizer

Another novel nature-inspired algorithm called ant lion optimizer (ALO) mimics the
hunting mechanism of antlions in nature [21]. Five main steps of hunting prey such
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as the random walk of ants, building traps, entrapment of ants in traps, catching
preys, and rebuilding traps are implemented in this algorithm.

Since ants move stochastically in nature when searching for food, a random walk
is chosen for modeling ants’ movement as follows:

X tð Þ ¼ 0, cumsum 2r t1 � 1ð Þð Þ, cumsum 2r t2 � 1ð Þð Þ, . . . , cumsum 2r tn � 1ð Þð Þ½ �
ð13Þ

where cumsum calculates the cumulative sum, n is the maximum number of
iteration, t shows the step of random walk (iteration in this study), and r(t) is a
stochastic function defined as follows:

r tð Þ ¼ 1 if rand > 0:5

0 if rand � 0:5

� �
ð14Þ

and rand is a random number generated with uniform distribution in the interval of
[0,1]. The position of ants is saved and utilized during optimization in the following
matrix:

MAnt ¼

A1:1 A1:2 . . .A1:d

A2:1 A2:2 . . .A2:d

:

An:1 An:2 . . .An:d

2
6664

3
7775 ð15Þ

where Ai. j shows the value of the j
th variable (dimension) of ith ant, n is the number

of ants, and d is the number of variables. The position of an ant refers to the
parameters for a particular solution. A fitness (objective) function is utilized during
optimization, and the following matrix stores the fitness value of all ants:

MOA ¼

f A1:1,A1:2, . . . ,A1:d½ �ð Þ
f A2:1,A2:2, . . . ,A2:d½ �ð Þ

:

f An:1,An:2, . . . ,An:d½ �ð Þ

2
6664

3
7775 ð16Þ

where f is the objective function. In addition to ants, we assume the antlions are also
hiding somewhere in the search space. In order to save their positions and fitness
values, the following matrices are utilized:
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MAntlion ¼

AL1:1 AL1:2 . . .AL1:d
AL2:1 AL2:2 . . .AL2:d

:

ALn:1 ALn:2 . . .ALn:d

2
6664

3
7775

MOAL ¼

f AL1:1,AL1:2, . . . ,AL1:d½ �ð Þ
f AL2:1,AL2:2, . . . ,AL2:d½ �ð Þ

:

f ALn:1,ALn:2, . . . ,ALn:d½ �ð Þ

2
6664

3
7775 ð17Þ

ALi. j shows the jth dimension value of ith antlion, n is the number of antlions, and
d is the number of variables (dimension), where MOAL is the matrix for saving the
fitness of each antlion.

Random walks of ants: Random walks are all based on the Eq. (1). Ants update
their positions with random walk at every step of optimization, which is normalized
using the following equation (min–max normalization) in order to keep it inside the
search space:

Xt
i ¼

Xt
i � ai

� � � di � cti
� �

dti � ai
� � þ ci ð18Þ

where ai is the minimum of random walk, di is the maximum of random walk, cti is
the minimum, and dti indicates the maximum of ith variable at tth iteration.

Trapping in antlion’s pits: The ants walk in a hypersphere defined by the
vectors c and d around a selected antlion are affected by antlions’ traps. In order to
mathematically model this supposition, the following equations are proposed:

cti ¼ Antliontj þ ct ð19Þ
dti ¼ Antliontj þ dt ð20Þ

where ct is the minimum of all variables at tth iteration, dt indicates the vector
including the maximum of all variables at tth iteration, cti is the minimum of all
variables for ith ant, dti is the maximum of all variables for ith ant, and Antliontj
shows the position of the selected jth antlion at tth iteration.

Building trap: In order to model the antlions’s hunting capability, a roulette
wheel is employed for selecting antlions based of their fitness during optimization.
Ants are assumed to be trapped in only one selected antlion. This mechanism gives
high chances to the fitter antlions for catching ants.

Sliding ants towards antlion: Once antlions realize that an ant is in the trap they
shoot sands outwards the center of the pit. This behavior slides down the trapped ant
that is trying to escape. For mathematically modelling this behavior, the radius of
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ants’s random walks hyper-sphere is decreased adaptively. The following equations
are proposed in this regard:

ct ¼ ct

I
ð21Þ

dt ¼ dt

I
ð22Þ

where I is a ratio, ct is the minimum of all variables at tth iteration, and dt indicates
the vector including the maximum of all variables at tth iteration. In Eqs. (21) and
(22), I ¼ 10W t

T where T is the maximum number of iterations and w is a constant
defined based on the current iteration. Basically, the constant w can adjust the
accuracy level of exploitation.

Catching prey and rebuilding the pit: For mimicking the final stage of hunt this
process, it is assumed that catching prey occur when ants becomes fitter (goes insides
and) than its corresponding antlion, which is required to update its position to the
latest position of the hunted ant. The following equation is proposed in this regard:

Antliontj ¼ Antti if f Anttj

	 

> f Antliontj

	 

ð23Þ

where Antliontj shows the position of selected jth antlion at tth iteration and Antti
indicates the position of ith ant at tth iteration.

Elitism: In this algorithm the best antlion obtained so far in each iteration is saved
and considered as an elite.

Since the elite is the fittest antlion, it should be able to affect the movements of all
the ants during iterations. Therefore, it is assumed that every ant randomly walks
around a selected antlion by the roulette wheel and the elite simultaneously as
follows:

Antti ¼
Rt
A þ Rt

E

2
ð24Þ

where Rt
A is the random walk around the antlion selected by the roulette wheel at tth

iteration, Rt
E is the random walk around the elite at tth iteration, and Antti indicates

the position of ith ant at tth iteration.

4 Sliding Mode Control

The principle of this type of control consists in bringing, whatever the initial
conditions, the representative point of the evolution of the system on a hypersurface
of the phase space representing a set of static relationships between the state
variables.
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The sliding mode control generally includes two terms:

U ¼ Ueq þ Un ð25Þ

Ueq: A continuous term, called equivalent command. Un: a discontinuous term,
called switching command.

4.1 Equivalent Command

The method, proposed by Utkin, consists to admit that in sliding mode, everything
happens as if the system was driven by a so-called equivalent command. The latter
corresponds to the ideal sliding regime, for which not only the operating point
remains on the surface but also for which the derivative of the surface function
remains zero _S tð Þ ¼ 0 (that mean, invariant surface over time).

4.2 Switching Control

The switching command requires the operating point to remain at the neighborhood
of the surface. The main purpose of this command is to check the attractiveness
conditions:

Un ¼ λsign Sð Þ ð26Þ

The gain λ is chosen to guarantee the stability and the rapidity and to overcome
the disturbances which can act on the system. The function sign (S(x, t)) is defined as

Sign S x, tð Þð Þ ¼ 1 si S > 0

�1 si S < 0

� �
ð27Þ

The PID sliding surface for the sliding mode control can be indicated using the
following equation:

S tð Þ ¼ kd _e tð Þ þ kpe tð Þ þ ki

Ztf

0

e tð Þdt ð28Þ

with kp, ki, and kd mentioned as PID parameters. e tð Þ ¼ qd � q, _e tð Þ ¼ _qd � _q:
qd and q are the desired and actual position of the robot articulations. _qd and _q are the
desired and actual speed of the robot articulations.
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According to Eq. (26)

Un ¼ λsign kpe tð Þ þ ki

Z
e tð Þdt þ kd _e tð Þ

� �

To calculate Ueq, it is necessary that _S tð Þ ¼ 0

kp _e tð Þ þ kie tð Þ þ kd€e tð Þ ¼ 0:

€e tð Þ ¼ kd
�1 kp _e tð Þ þ kie tð Þ� �

with

€e tð Þ ¼ €qd � €q

€q ¼ M qð Þ�1 Ueq � H q, _qð Þ _q� G qð Þ � F _qð Þ� � ¼ €qd þ kd
�1 kp _e tð Þ þ kie tð Þ� �

Ueq ¼ M qð Þ €qd þ kd
�1 kp _e tð Þ þ kie tð Þ� �� �þ H q, _qð Þ _qþ G qð Þ þ F _qð Þ

Finally, the PID-SMC torque presented as in [18], with the demonstration of the
Lyapunov stability condition, becomes

U ¼ M qð Þ €qd þ kd
�1 kp _e tð Þ þ kie tð Þ� �� �þ H q, _qð Þ _qþ G qð Þ þ F _qð Þ

þM qð Þkd�1 λsign kp e tð Þ þ ki

Ztf

0

e tð Þdt þ kd _e tð Þ
0
@

1
A ð29Þ

5 Simulation and Results

The main goal of this work is to optimize the parameters of SMC with PID surface
for the trajectory control of 2DOF robot manipulator by the minimization of ITAE
and ISTE objective functions mentioned as

J1 ¼ ITAE ¼
Ztf

t1

e tð Þj jdt ð30Þ

J2 ¼ ISTE ¼
Ztf

t1

e tð Þ2dt ð31Þ

The parameters of the robot that have been taken in application are m1 ¼ 10 kg,
m2 ¼ 5 kg, l1 ¼ 1 m, l2 ¼ 0.5 m, and the gravity g ¼ 9.8 m/s2. First, we apply the
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algorithms described above to tune SMC controller. The objective function values
for different optimization algorithms obtained with ITAE and ISTE criteria, defined
in Eqs. (30) and (31), respectively, have been shown in Table 1.

It can be seen from the Table 1 that ALO algorithm gives minimum to the
objective function compared with those of GWO, which means that ALO algorithm
gives the best optimum that has minimum objective function better then GWO
algorithm. The corresponding optimum parameters of PIDSMC were recapitulated
in Table 2.

Figure 1 shows the control input applied to the first and second articulations
obtained so far by both optimization algorithms. In order to avoid the chattering

Table 1 Cost function for the first and second articulation without disturbance

Cost functions

ITAE ISTE

First Second First Second

SMC_PID_ALO 9.669 � 10�5 3.896 � 10�5 5.519 � 10�11 3.951 � 10�7

SMC_PID_GWO 82.2 � 10�5 300.9 � 10�5 2.095 � 10�8 8.118 � 10�8

Table 2 SMCPID parameters for the first and second articulation

ISTE Kp1 Ki1 Kd1 λ1 Kp2 Ki2 Kd2 λ2
SMC_PID_ALO 500 45.22 1.18 58.5 500 16.5 17.135 34.83

SMC_PID_GWO 500 49.89 15.75 43.01 603 37 46 48

ITAE Kp1 Ki1 Kd1 λ1 Kp2 Ki2 Kd2 λ2
SMC_PID_ALO 500 10.97 1 2.86 500 7.33 1 1

SMC_PID_GWO 500 65.91 12.72 59.8 507 63.79 79 40
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Fig. 1 Control torque of link 1 and link 2 with (sign) function ITAE criteria
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effect of the “sign” function, used in Eq. (29), the latter is replaced by the “tanh”
(hyperbolic tangent) function. It can be seen from Fig. 2 that the resulting torque was
almost close for both chosen criteria and the two optimization algorithms.

Figures 3 and 4 show the error of the robot manipulator to track the desired
trajectory by the minimization of ISTE and ITAE criteria, respectively. We can see
from the figures that ALO algorithm, which has smaller cost function, outperforms
GWO algorithm even if we change the objective function. The convergence curve of
the used functions was represented in Fig. 5. The corresponding position of robot
manipulator controlled by SMCPID controller optimized by the two algorithms was
shown in Fig. 6.
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Fig. 2 Control torque signal of SMCPID controller with (tanh) function: (a) ISTE criteria and (b)
ITAE criteria

(a) (b)

0 1 2 3 4 5 6 7 8 9 10

-2

0

2

4

6

8

10 x 10-4

Tr
ac

ki
ng

 e
rr

or
1 

(r
ad

)

Time(s)

GWO-optim 
ALO-optim

0 1 2 3 4 5 6 7 8 9 10-5

0

5

10

15

20 x 10-4

Tr
ac

ki
ng

 e
rr

or
2 

(r
ad

)

Time(s)

GWO-optim
ALO-optim

Fig. 3 Tracking error of both articulations with ISTE criteria and (tanh) function

Sliding Mode Control with PID Surface for Robot Manipulator Optimized by. . . 29



6 Conclusion

In this paper the optimization of the SMC with PID surface was realized with new
techniques of optimization called ALO and GWO algorithms; the ALO presents
more robustness in trajectory tracking control of 2DOF robot manipulator, regarding
the convergence curve of the cost function, even if we change the objective function.
From the observations of the simulations, we can realize the benefits of using
evolutionary algorithms to tune the controller parameters than the traditional
methods, especially when the system is highly nonlinear or in presence of distur-
bances where an online optimization is recommended.
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