
Can We Use the Relationship Between
Within-Field Elevation and NDVI
as an Indicator of Drought-Stress?

Bernardo Maestrini(&), Matthijs Brouwer, Thomas Been,
and Lambertus A. P. Lotz

Wageningen University and Research, Wageningen, The Netherlands
Bernardo.maestrini@wur.nl

Abstract. Large farmers’ datasets can help shed light on agroecological pro-
cesses if used in the context of hypothesis testing. Here we used an anonymized set
of data from the geoplatform Akkerweb to better understand the correlation
between within-field elevation and normalized differential vegetation index
(NDVI, a proxy for biomass). The dataset included 3249 Dutch potato fields, for
each of which the cultivar, the field polygon, the year of cultivation and the soil
type (clay or sandy) was known. We hypothesize that under dry conditions such
correlation is negative, meaning that the lowest portions of the field have more
biomass because of water redistribution. From the data, we observed that in dry
periods, such as the summer of 2018, the correlation was negative in sandy soils.
Furthermore, we observed that early cultivars show a weaker correlation between
NDVI and elevation than late cultivars, possibly because early cultivar escape part
of the long dry summer spells. We conclude that the correlation between NDVI
and elevation may be a useful indicator of drought stress, and deviations from the
norm may be useful to evaluate the resistance to drought of individual cultivars.
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1 Introduction

The analysis of farmers data is an important opportunity to advance our knowledge of
the ecology of agrosystems. One of the most promising approaches to synthesize these
data is the use of data-driven approaches where the data drive the construction of
models for predictive purposes [1]. Though this approach is powerful for predictive
purposes we believe that such large datasets can also be successfully used in the
context of traditional hypothesis confirmation studies. Here we seek confirmation in the
data for the hypothesis that within-field NDVI variability is driven—also—by the
micro-topography (elevation). We do this using a large set of data obtained from
“Akkerweb”—a geoplatform popular with Dutch farmers (2,akkerweb.eu).

Our main working hypothesis is that the lowest portions of a field are generally
more wet and therefore crop growing there is less water-limited. This hypothesis is not
novel, for example Kravchenko et al. [3, 4] found that yield variability at within-field
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level in corn and soybean fields in the Midwest of the US was associated to topog-
raphy. Timlin et al., [5] found in the context of a rainfed maize experiment that in dry
years the concave parts of the field were more productive than convex parts whereas
the effect of terrain curvature disappeared in wet years. Da Silva et al. [6, 7] found that
in a Portuguese irrigated maize field, characterized by a high elevation range, topog-
raphy was driving within-field yield variability and showed that maize yield was higher
near the flow lines. These findings on yield-topography correlation were extended by
Maestrini and Basso [8] who observed that not only the yield average but also yield
temporal variability (stability) was influenced by topography, with the more concave
portions of the field being characterized by a higher variability as a result of being
either waterlogged in wet years or relatively more wet in dry years.

Here we attempt to prove that elevation is a driver of within-field crop-growth
variability even in the Netherlands, a land that is notoriously flat. Further we extend
these findings by examining how different soil types and cultivar earliness influence
such correlation. We believe that the correlation between NDVI and elevation—once
sufficiently corroborated with data—could be used as an indicator of drought stress and
deviations from such correlation may help us understand which management strategies
(e.g. cultivar choice) alleviate drought stress.

In this study we focus on potatoes,—a major crop in the Netherlands—well rep-
resented in our farmers’ dataset. Potatoes have been generally regarded as a crop with a
shallow root system [9, 10] that makes them vulnerable to drought stress, however
there are empirical evidences that their roots can reach one meter [11] and beyond [12].

Therefore, here we hypothesize that also for the Netherlands we can establish a
correlation between relative within-field elevation and crop-growth and that such
correlation is influenced by both soil type and cultivar earliness. We expect that potato
crops on sandy soils as well as late cultivars are more sensitive to dry spells. The sandy
soils will be more sensitive because they have a low water holding capacity whereas
late cultivars will suffer more when exposed to summer dry spells for longer periods.
We apply our hypothesis to a dataset of Dutch farms where the location of the field, the
cultivar, the soil type (clay or sandy) is known and the biomass throughout the season
is proxied by the normalized difference vegetation index (NDVI) retrieved from
satellite images, is known, along with elevation.

2 Materials and Methods

2.1 Data from Akkerweb

Data were collected from farmers’ data input to the geo-platform Akkerweb [2] (akker-
web.eu). Through this platform farmers can enter the information about their fields
(polygon, crop and cultivar, and sowing dates) and receive information to support their
decision making on—among others—in-season fertilization, crop protection, pests like
plant-parasitic nematodes and variable rate applications like haulm killing for potatoes.

We received the anonymized data, supplied by the farmers to the Akkerweb geo-
platform, through a query that returned the dataset records for which the cultivar, the start
and end date of themanagement plan, and the polygonwere available. The query returned
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the following fields: a key identifier for each field, the field polygon (in well-known text
format), the area, the cultivar, the purpose (e.g. for potato consumption, starch, table or
seed potatoes), start and end date of the management plan and soil type. The total number
of unique records returned was over 100 k.We produced a subset of the dataset where the
crop was potato, the purpose was not production of seed potato and the field area was
larger than 2 ha and smaller than 100 ha. The fields smaller than 2 ha were excluded
because often after the removal of a 10 m buffer there wouldn’t be enough pixels left to
perform the analysis (particularly if they were characterized by an elongated form). The
fields were cultivated in the years 2015 to 2019. Here we will focus on the analysis of the
years 2016, 2017 and 2018 because these years are representative of very different
weather conditions, particularly 2016 was a wet year, 2017 was a dry spring and a wet
summer, and that 2018 was characterized by a very dry summer.

For this analysis we used only a randomly selected subset of records of 3249 fields
located on soils classified either as sandy or clay, cultivated with potato (excluding seed
potatoes) in the years 2016, 2017 and 2018.

2.2 Publicly Available Data

For each field we retrieved the images from the satellites Landsat 8 and Sentinel 2. For
the years before 2017 we only retrieved images from Landsat 8. For each field we also
used information from the Dutch digital elevation model (DEM) Actueel Hoogtebe-
stand. This digital elevation was produced using airborn lidar data collected between
2007 and 2012 (AHN2). We used the version of the dataset interpolated at a resolution
of 0.5 m. This DEM has “an accuracy of 20 cm for 99.7% of the points. The average
point density for AHN2 is between 6 and 10 points per square meter” [13].

For each cultivar we tried to retrieve data on the cultivar performance, e.g. earliness
score or susceptibility to late blight, reported by the cultivar vendor and available on
the Akkerweb platform. The performance of individual cultivars are usually scored on a
number of indicators on a scale from 1 to 9 (for earliness 1 corresponding to the latest
varieties and 9 to the earliest varieties). In this context we used the score on cultivar
earliness to make inferences about the influence of the cultivar earliness on the cor-
relation elevation-NDVI.

We used Google Earth Engine [14] to perform calculations on satellite images
(Landsat 8 and Sentinel 2) and the Dutch DEM (AHN2 interpolated to 0.5 m). For each
polygon we applied the following algorithm (pseudocode):

1. Import the polygon to Google Earth Engine. The information about the polygon
were passed in the form of a list of coordinates.

2. Remove a 10 m buffer from the border to make sure that we did not include pixels
that were not heterogenous in land cover (e.g. half road and half field).

3. Check the images available in the Landsat 8 and Sentinel 2 surface reflection
collection.

4. Remove the clouds and cirrus from Sentinel 2 and clouds and cloud shadows from
Landsat 8 using the respective pixel quality bands.

5. Clip the raster regions to the clip polygon setting to “not available” the pixels out of
the field.
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6. Calculate for each image the following quantities were calculated through a reducer
function:
a. Standard deviation of elevation.
b. Sperman correlation between NDVI and elevation. To calculate the correlation

the elevation dataset was resampled to match the resolution of the vegetation
index dataset because this was coarser than the DEM(0.5 m vs 30 m for Landsat
8 and 10 m for Sentinel 2).

If an image was completely covered by clouds, cirrus (for Landsat 8) or cloud
shadows (for Sentinel 2) the calculated quantities were set to “not available”. The cloud
coverage in the images was calculated from the quality band pixels in the two satellites
(namely pixel_qa for Landsat8, and QA60 for Sentinel 2).

We retrieved cumulative rain from weather data using the set of weather stations of
the Royal Netherlands Meteorological Institute (KNMI, 45 stations). For the purpose of
this study we calculated an average Dutch weather for the Netherlands by averaging the
values of all the weather stations (Fig. 1 left).

To approximate the temporal variability of correlation between NDVI and day of the
year (DOY) we fitted a 3rd degree polynomial model to the data. This was intended more
as a tool to visually interpolate the data rather than a predictive tool or an inferential tool.

Fig. 1. Here we represent the correlation among over the growing season for the years 2016 to
2018 in contrasting soil types (clay vs sandy). The continuous lines represent the average
measured across all the fields in a certain date. The dashed lines and the colored area represent
the prediction and the 95% CI interval of the mean calculated using a 3rd degree polynomial
equation. (Color figure online)
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2.3 Descriptive Statistics on the Retrieved Dataset

The cultivars present in our subset for which we performed calculations on satellite
images are presented—anonymized—in Fig. 2 along with the earliness score.

Fig. 2. Number of fields for the cultivars (anonymised) by year used in this study. The total
number of fields analyzed was 3249

Fig. 3. Geographical distribution of clay and sandy soils in the fields represented in this study.
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We analyzed the influence of earliness scores on NDVI-elevation correlation and
found that the distribution of cultivar earliness was the following in sandy soils, 3–335
fields, 4–180 fields, 5–548 fields, 6–449, the other earliness classes (1, 2, 7, 8, 9) had
less 30 fields. To represent as evenly as possible the late and early classes we defined as
late the cultivars with earliness score lower or equal to 5 (6 cultivars with more than 10
fields) and as late the other (3 cultivars with more than 10 fields).

The soil types on the investigated fields are presented in Fig. 3. The main soil types
are sandy (in the eastern part of country) and clay (in the western part of the country)
for sake of simplicity we excluded the other soil types from the analysis.

Figure 4 shows the distribution of the within-field variability of elevation in the
Netherlands. It is well known that fields in the NL are generally very flat. The most
uneven fields are located in the western part of the country and in the southern province
of Limburg (median standard deviation of elevation being 20 cm) whereas as expected
the fields in the region of Flevoland, reclaimed from the sea in the sixties and sev-
enties of last century were the most flat (median standard deviation of elevation
typically < 10 cm).

Fig. 4. Median of the standard deviation of the elevation within-fields across the Netherlands.
The grey dots represent the field randomly sampled in this study.

Can We Use the Relationship Between Within-Field Elevation and NDVI 127



3 Results

The correlations that we found were generally weak as the absolute value of the
Spearman correlation was on average well below 0.2, but thanks to the high number of
observations we were to observe ecologically meaningful trends in them. We found
that NDVI was negatively correlated with elevation in sandy soil and dry periods
(spring 2017, summer 2018), whereas such negative correlation was not observed for
clay soils in all the years and in sandy soil for 2016 (a wet year, Fig. 1).

In clay soils the correlation was positive at the beginning of the season whereas no
correlation was observed on average for the rest of the season.

Fig. 5. These figures refer to the NDVI-elevation correlation observed in the different years of
late cultivars (earliness score 1 to 5) and early cultivars (earliness score 5 to 9) over the course of
the season in three different years (2016, wet, 2017 dry in the spring and 2018 dry in the
summer). The colored areas indicate the confidence interval of the mean predicted using a third
degree polynomial. The black line indicates cumulative rainfall (referred to the first right axis)
and the dashed lines represent the median NDVI over the season (referred to the left axis). (Color
figure online)
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Also, the earliness score of the cultivar influenced the correlation. In fact the early
varieties showed a neutral or positive correlation in wet years (indicating that higher
biomasses were observed at relatively higher location), whereas the late developing
varieties indicated a predominance of negative correlation in the dry years (Fig. 5).

4 Discussion

The correlations that we observed between the Normalized Difference Vegetation
Index (NDVI, a good proxy for biomass) and elevation were generally weak suggesting
that their use for prediction purposes at within-field scale is limited, nonetheless on a
larger scale the correlation elevation-NDVI may be a useful indicator of cultivars
sensitivity to drought stress. We observed that the correlation was negative in dry
periods in sandy soils, whereas we hardly observed a negative correlation between
within-field elevation and NDVI in clay soils (Fig. 1). The negative correlation for
sandy soils may be easily explained by within-field water rerouting and/or distance
from the water table and has generally been reported before for different crops (see
introduction). The lack of correlation in the clay soils may be explained by geo-
graphical position of clay soils. In fact, in our dataset clay soils exhibit the lowest
within-field elevation variability because they are mostly located in reclaimed areas
(Flevoland province, Fig. 4) and are notoriously very flat. Moreover, clay soil has a
higher water holding capacity and is therefore less prone to induce drought stress in the
crops, and it has been shown that roots of potatoes in clay soils may grow as deep as
one meter possibly because their growth can be facilitated by the presence of cracks in
the subsoil [11].

Interestingly we observed a weak positive correlation in the clay at the beginning of
the season, irrespective of the year. This could be due to the fact that the higher
portions of the fields are less wet and thus warmer at emergence and as a consequence
they develop more rapidly.

Our data on the within-field correlation between elevation and NDVI also offer a
first insight on how large data from farmers could be used to evaluate differences
between cultivars. An evaluation of this correlation for individual cultivars goes
beyond the scope of this small study as it would require an evaluation of the perfor-
mance of the different cultivars under drought for validation. Such scoring is not
available to us at the present stage. However, we were able to evaluate how the cultivar
earliness score influences the correlation in sandy soils. We found that late cultivars had
a stronger negative correlation between NDVI and elevation than early ones. We
suggest that early cultivars may escape dry spells because in the summer they have
already developed deeper roots, nonetheless we have not yet data to validate this
hypothesis.
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5 Limitations of This Study

An important factor which we did not consider in this study was irrigation. It is likely
that irrigation strongly influenced the correlation between NDVI and elevation, pos-
sibly also in unexpected direction. It could be that higher water availability levels-out
the differences between the different parts of the field (as the difference in the corre-
lation between wet and dry years would suggest) or it could also be that surface water
rerouting exacerbates such differences. We were not able to investigate this aspect with
the current dataset, but we believe that information on elevation could be useful to
drive precision irrigation.

As we said this methodology has the potential to obtain information about cultivar
differences for drought sensitivity. However to be usefully deployed such capability
should be made available to breeders, whose plots are too small to be sensed using
Landsat or Sentinel. Nonetheless the deployment of new satellites (e.g. Worldview)
with finer resolution can open important opportunities in this direction.

An important aspect is that the AHN2 dataset has an accuracy (20 cm) that is lower
than the field elevation in many cases. This would lower our correlation between
vegetation indices and elevation and therefore not impair the validity of our correlation
estimates.

6 Conclusion

Using farmers’ data we were able to observe a negative correlation—although weak—
between NDVI and elevation, and show how this correlation is stronger during dry
periods. Because the correlation between the two variables was generally low, eleva-
tion has limited predictive power for within-field variability of growth in the Nether-
lands. Nonetheless we were able to depict how cultivars earliness influences such
correlation. The correlation between altitude and vegetation is a parameter that can be
virtually measured for every crop and deviations from this parameter, when measured
over sufficiently large samples may carry important information about agroecological
processes such as cultivars sensitivity to drought-stress.
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