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Tamer Başar, University of Illinois at Urbana-Champaign, Illinois, USA

Editorial Board
Pierre Bernhard, University of Nice-Sophia Antipolis, France
Maurizio Falcone, Sapienza University of Rome, Italy
Jerzy Filar, University of Queensland, Australia
Alain Haurie, ORDECSYS, Switzerland
Andrzej S. Nowak, University of Zielona Góra, Poland
Leon A. Petrosyan, St. Petersburg State University, Russia
Alain Rapaport, INRIA, France

More information about this series at http://www.springer.com/series/4919

http://www.springer.com/series/4919


David Yeung • Shravan Luckraz • Chee Kian Leong
Editors

Frontiers in Games
and Dynamic Games
Theory, Applications, and Numerical
Methods



Editors
David Yeung
SRS Consortium for Advanced Study
Hong Kong Shue Yan University
Hong Kong, Hong Kong

Center of Game Theory
Saint Petersburg State University
St. Petersburg, Russia

Shravan Luckraz
School of Public Finance and Taxation
Zhejiang University of Finance
and Economics
Hangzhou, China

Chee Kian Leong
School of Economics
University of Nottingham Ningbo China
Ningbo, China

ISSN 2474-0179 ISSN 2474-0187 (electronic)
Annals of the International Society of Dynamic Games
ISBN 978-3-030-39788-3 ISBN 978-3-030-39789-0 (eBook)
https://doi.org/10.1007/978-3-030-39789-0

Mathematics Subject Classification: 91A05, 91A06, 91A10, 91A15, 91A23, 91A25, 91A28, 91A65,
91A80, 49N70, 49N90, 49N30

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This book is published under the imprint Birkhäuser, www.birkhauser-science.com by the registered
company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-39789-0
http://www.birkhauser-science.com


Preface

The ISDG-China Chapter Conference on Dynamic Games and Game Theoretic
Analysis was held from August 3 to 5, 2017, at the Ningbo (China) campus of
the University of Nottingham. The plenary lectures of this conference were given
by David Yeung, Distinguished Research Professor at the Hong Kong Shue Yan
University; Leon Petrosjan, Professor of Applied Mathematics and the Head of the
Department of Mathematical Game theory and Statistical Decision Theory at the St.
Petersburg University, Russia; Georges Zaccour, Professor of Decision Sciences and
Chair in Game Theory and Management at HEC Montréal in Canada; and Shmuel
Zamir, Professor at the Center for the Study of Rationality, The Hebrew University
in Israel.

Following the conference, a call for papers for this volume was announced and
participants of the conference were encouraged to submit papers for consideration.
Each paper was reviewed by at least two experts in game theory, chosen by the
editors. Revisions based on the comments of the reviewers were sought for papers
and acceptance was contingent on papers having revised adequately to meet the
standards required by the reviewers and editors.

This volume is composed of eight accepted papers covering a variety of topics
from theory to applications of games and dynamic games. All contributed papers
submitted for consideration of publication to the Annals were peer reviewed
according to standards of international journal and ISDG Annals.

The first two papers in this volume are based on the plenary lectures and share
the common theme of cooperative dynamic games. They are authored by the two
pioneers and foremost authorities in this field. Both are based on their plenary
lectures during the conference.

In the paper “Dynamically Stable Cooperative Provision of Public Goods Under
Non-transferable Utility”, based on his plenary lecture, David Yeung considers
the cooperative optimization required to deal with the classic case of market
failure, namely the provision of public goods. Cooperation cannot be dynamically
stable unless the participating agents’ cooperative payoffs are guaranteed to be no
less than their non-cooperative payoffs throughout the cooperation duration. His
paper derives dynamically stable cooperative solutions for public goods provision
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by asymmetric agents with non-transferable utility/payoffs in a differential game
framework. The paper examines the dynamically stable subcore under a constant
payoff weight. In the absence of a dynamically stable subcore under a constant
weight, a variable payoff weights scheme leading to a dynamically stable cooper-
ative solution has to be designed. This paper’s key innovation is the provision of
a non-transferable payoff framework for ensuring dynamically stable cooperative
provision of public goods.

Along the same line of cooperative dynamic games, the paper “Strongly Time-
Consistent Solutions in Cooperative Dynamic Games” by Leon Petrosyan inves-
tigates the evolution of dynamic game along the cooperative trajectory. Along
cooperative trajectory at each time instant players find themselves in a new game
which is a subgame of the originally defined game. In many cases the optimal
solution of the initial game restricted to the subgame along cooperative trajectory
fails to be optimal in the subgame. To overcome this difficulty, he and his coauthors
have introduced the special payment mechanism imputation distribution procedure
(IDP), or payment distribution procedure (PDP), but another serious question arises:
under what conditions the initial optimal solution converted to any optimal solution
in the subgame will remain optimal in the whole game. This condition we call
strongly time-consistency condition of the optimal solution. If this condition is not
satisfied players in reality may switch in some time instant from the previously
selected optimal solution to any optimal solution in the subgame, and as a result
realize the solution which will be not optimal in the whole game. This paper
proposes different types of strongly time-consistent solutions for multicriterial
control, cooperative differential and cooperative dynamic games.

The next two papers consider games with hierarchical structure or Stackelberg
games.

In his exhaustive survey entitled “Incentive Stackelberg Games for Stochastic
Systems,” Hiroaki Mukaidani considers dynamic stochastic incentive Stackelberg
games for deterministic and stochastic linear systems with external disturbance.
Although the incentive Stackelberg strategy has been admitted as the hierarchical
strategy that induces the behavior of the decision maker as that of the follower,
the followers optimize their costs under incentives without a specific information.
Therefore, leaders succeed in using the required strategy to induce the behavior of
their followers. This concept is considered very useful and reliable in some practical
cases. The induced features of the hierarchical strategy in the considered models,
including stochastic systems governed by Ito stochastic differential equation,
Markov jump linear systems, and linear parameter varying (LPV) systems, are
explained in detail. Furthermore, basic concepts based on theH2/H∞ control setting
for the incentive Stackelberg games are reviewed. Next, it is shown that the required
set of strategies can be designed by solving higher-order cross-coupled algebraic
Riccati-type equations. Finally, to simulate future research in this areas, some open
problems are discussed.

On the other hand, Olga I. Gorbaneva and Gennady A. Ougolnitsky in their paper
“Social and Private Interests Coordination Engines in Resource Allocation: System
Compatibility, Corruption, and Regional Development” apply static Stackelberg
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and inverse Stackelberg games to model administrative and economic control
mechanisms providing system compatibility in the static game-theoretic models of
resource allocation between social and private activities. Descriptive and normative
approaches to the modeling of corruption in resource allocation in the hierarchical
control systems are proposed and implemented, and applications to the problems of
regional development are outlined.

Games on graphs and networks constitute new frontiers in the field of game
theory, and the next two papers contribute to this new frontier.

Vasily V. Gusev’s paper “A Multi-Stage Model of Searching for Two Mobile
Objects on a Graph” deals with a search game where one searcher looks for two
mobile objects on a graph. The searcher distributes his searching resource so as
to maximize the probability of detecting at least one of the mobile objects. Each
mobile object minimizes its own probability of being found. In this problem, the
Nash equilibrium is defined as the optimal transition probabilities of the mobile
objects and the optimal values of the searcher’s resource. Besides establishing the
Nash equilibrium, the paper also obtains the value of the game in a single-stage
search game with non-exponential payoff functions.

The paper “The Impact of Product Differentiation on Symmetric R&D Net-
works” by Mohamad Alghamdi and his coauthors examines the impact of product
differentiation on R&D networks. They find that when firms produce goods that
are complements or independent, R&D expenditure, prices, firms’ net profits,
and total welfare are always higher under price competition than under quantity
competition. When goods are substitutes, R&D expenditure and profits are higher
under quantity competition than under price competition. Also, when goods are
substitutes and products are sufficiently differentiated, then total welfare is higher
in the Bertrand equilibrium than under the Cournot equilibrium. Beyond this
threshold level of product differentiation, Cournot competition is superior in terms
of social welfare. The key threshold level of product differentiation, determining
the relative superiority of the Cournot and Bertrand equilibrium when goods are
substitutes, depends on the cost efficiency of R&D and the number of collaborative
partnerships that firms participate, relative to the size of the network. When goods
are substitutes, with dense network such that the number of partnerships is large
relative to the number of firms operating in the market, the threshold value of the
product differentiation parameter can be small.

The use of numerical methods in solving games and dynamic games forms the
focus of the final two papers.

In “Global Optimization Approach to Nonzero Sum Six-Person Game,” R.
Enkhbat and his coauthors examine the nonzero sum six-person game, for which
they propose a sufficient condition for a Nash equilibrium based on Mills [1]. The
numerical Nash equilibria are obtained using the Curvilinear Multistart Algorithm
[2] for nonconvex optimization. This was illustrated using a six-person game and
Nash equilibria are found in all cases.

Unfortunately, finding the Nash equilibria is not so trivial for mean field
games, especially for an infinite-horizon mean field games. Most mean field games
are finite-horizon, since finding the mean field game ε-Nash equilibrium can be
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achieved with the help of the boundary conditions. However, there is no boundary
condition for the infinite-horizon mean field games. In “An Infinite-Horizon Mean
Field Game of Growth and Capital Accumulation: A Markov Chain Approximation
Numerical Scheme and Its Challenges,” Chee Kian Leong presents a Markov chain
approximation scheme [3] as potentially useful for obtaining the numerical ε-
Nash equilibrium solution to the infinite-horizon mean field system of equations.
However, the implementation of this scheme involves some challenges, such as
appropriate choices of initial values for the policy function iteration step and the
capital distribution functions in the Fokker–Planck–Kolmogorov forward equation.
Consequently, finding an appropriate and robust numerical scheme to solve infinite-
horizon mean field games remains a challenging research question in the mean field
games literature.

Together, this collection of papers represents the state of the art in games and
dynamic games and their applications. Besides being a testimony to the vitality of
research in this field, these papers will stimulate further research in both theory and
applications of games and dynamic games.

Hong Kong, Hong Kong David Yeung
Hangzhou, China Shravan Luckraz
Ningbo, China Chee Kian Leong
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Dynamically Stable Cooperative
Provision of Public Goods Under
Non-transferable Utility

David W. K. Yeung

Abstract The provision of public goods constitutes a classic case of market
failure which calls for cooperative optimization. However, cooperation cannot be
dynamically stable unless the participating agents’ cooperative payoffs are guaran-
teed to be no less than their non-cooperative payoffs throughout the cooperation
duration. This paper derives dynamically stable cooperative solutions for public
goods provision by asymmetric agents with non-transferable utility/payoffs in a
differential game framework. It examines the dynamically stable subcore under a
constant payoff weight. In the case of the absence of a dynamically stable subcore
under a constant weight, a variable payoff weights scheme leading to a dynamically
stable cooperative solution is designed. This is the first time that dynamically stable
cooperative provision of public goods in a non-transferable payoff framework is
provided, and further research along this line is expected.

Keywords Public goods · Differential games · Dynamic stability ·
Non-transferable payoffs

1 Introduction

The provision of public goods constitutes a classic case of market failure which
calls for cooperative optimization. The non-exclusive and non-rivalrous properties
of public goods constitute a major factor for the failure in their efficient provision
by individual parties. Yet the positive externalities of some public goods are rich
sources for mutual gains. Examples of such public goods include clean environment,
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regional security, scientific knowledge, accessible public capital, transportation
infrastructures, technical know-how, and public information. Analysis on provision
of public goods in a static framework can be found in Chamberlin [2], McGuire [10],
and Gradstein and Nitzan [6]. Given that public goods provision often involves an
intertemporal duration, a differential game approach has to be adopted. Studies on
voluntary provision of public goods in an intertemporal framework were given by
Fershtman and Nitzan [5], Wirl [13], and Wang and Ewald [12]. Dockner et al.
[4] presented a differential game model with two asymmetric agents in which
knowledge is a public good and focused on the non-cooperative equilibria and the
collusive solution that maximizes the joint payoffs of all agents.

Cooperation suggests the possibility of socially efficient solutions to the public
goods provision problem. However, cooperation cannot be sustainable unless the
participating agents’ cooperative payoffs are guaranteed to be not less than their
non-cooperative payoffs throughout the cooperation duration. It is due to the lack of
this kind of guarantee that many cooperation schemes become unstable and may
fail any time within the cooperation duration. A dynamically stable cooperative
solution guarantees that participants will always be better off throughout the entire
cooperation duration under the agreed-upon optimality principle from the beginning
to the end. Yeung and Petrosyan [17] analyzed dynamically stable solutions for
provision of public goods when payoffs are transferable. Yeung and Petrosyan
[18] considered dynamically stable cooperative provision of public goods under
accumulation and payoff uncertainties in a dynamic game framework.

In addition, gains from public or social goods are often non-transferrable.
Construction of dynamically stable cooperative solution in the case where payoffs
are not transferable is much more difficult than in the case where payoffs are
transferable because side payments cannot be used as an instrument. Yeung and
Petrosyan [5] and Yeung et al. [21] examined dynamically stable solution in stochas-
tic differential games with non-transferable payoffs/utility. Yeung and Petrosyan
[19] presented subgame consistent cooperative solution for non-transferable payoff
dynamic games using variable payoff weights. This paper derives dynamically
stable cooperative solutions for public goods provision by asymmetric agents
with non-transferable payoffs in a differential game framework. The dynamically
stable subcore under a constant payoff weight is examined. In the case where the
dynamically stable subcore under a constant weight does not exist, a variable payoff
weights scheme is presented to obtain a dynamically stable cooperative solution.
This is the first time that dynamically stable cooperative provision of public goods
in a non-transferable utility framework is provided.

The paper is organized as follows: Sect. 1.2 provides the theoretical framework
of cooperative provision of public goods when payoffs/utility is not transferable.
In particular, the core, the dynamically stable subcore under constant and variable
weights are examined. A differential game of cooperative provision of public goods
under non-transferrable utility is presented in Sect. 1.3. The Pareto optimal set is
derived and the conditions satisfying individual rationality are presented. Details
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of a dynamically stable cooperative scheme with a set of constant payoff weights
are given in Sect. 1.4. Section 1.5 presents a variable weights cooperative scheme to
guarantee the satisfaction of individual rationality in the case where a set of constant
weights satisfying individual rationality throughout the entire cooperation duration
does not exist. Section 1.6 concludes the paper.

2 Theoretical Framework of Public Goods Provision

Consider the case of n asymmetric agents/nations with a public good. Each agent
makes its own contribution to the building up of the stock of the public good.
The duration of the planning horizon is [0, T]. The payoffs of the agents are not
transferrable. We use K(s) to denote the stock of the public good and Ii(s) the public
capital investment by nation i at time s ∈ [0, T]. The stock accumulation dynamics
is governed by the differential equation:

K̇(s) = f [K(s), I1(s), I2(s), · · · , In(s), s] K(0) = K0. (2.1)

The instantaneous payoff to agent i at time instant s is

ui
{
R
(1)
i

[
q1
i (s), (K(s)) , s

]
, R

(2)
i

[
q2
i (s), s

]
, ci [Ii(s), s]

}

which includes the benefits from the public goods in productive activities and
from the public good itself—R(1)i

[
q1
i (s), (K(s)) , s

]
, the benefit to the agent in

productive activities not involving the public good—R(2)i
[
q2
i (s), s

]
, and investment

costs in the public good—ci[Ii(s), s]. In particular, q1
i (s) are the productive activities

which depend on the public good, and q2
i (s) are the productive activities indepen-

dent of the public good.
The objective of agent i ∈ N is to maximize its payoff over the planning

horizon T.

∫ T

0
ui
{
R
(1)
i

[
q1
i (s), (K(s)) , s

]
, R

(2)
i

[
q2
i (s), s

]
, ci [Ii(s), s]

}
e−rsds

+m1
i [K(T )] e−rT ,

(2.2)

subject to the public capital stock accumulation dynamics (2.1), where r is the
discount rate and m1

i [K(T )] is the terminal payoff at time T.
We use Vi(t, K) to denote the non-cooperative game equilibrium payoff of agent

i ∈ N and
{
q1∗
i (s) = φ1

i (s,K), q
2∗
i (s) = φ2

i (s,K), I
∗
i (s) = φ3

i (s,K), for i ∈ N

and s ∈ [0, T]} to denote the game equilibrium strategies.
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2.1 Pareto Optimality and Individual Rationality under
Cooperation

It is a well-known problem that non-cooperative provision of goods with external-
ities, in general, would lead to inefficiency. Cooperation suggests the possibility of
socially efficient solutions. We first consider the case where the agents agree to set
up a cooperative scheme in public goods provision with a constant payoff weight.
Under cooperation, the agents negotiate to establish an agreement (optimality
principle) on the level of investment in public goods production provided by each
agent. In a non-transferable payoffs framework, the agents’ imputations/payoffs are
directly dictated by the agreed-upon cooperative investment strategies. A necessary
condition for dynamic stability is that the agreed-upon optimality principle must
satisfy individual rationality throughout the cooperation duration.

To obtain the core of the non-transferrable utility (NTU) cooperative dynamic
public goods provision game (2.1)–(2.2), we first derive the Pareto optimal trajecto-
ries by maximizing the weighted sum of payoffs of the agents under different payoff
weights (see Leitmann [8], Dockner and Jørgensen [3], Hamalainen et al. [7], Yeung
and Petrosyan [15, 20] and Yeung et al. [21]). Consider the case in which the agents

adopt a payoff weight vector α = (α1,α2, · · · ,αn) in all stages, where
n∑
j=1
αj = 1.

Conditional upon the weight α, the agents’ optimal cooperative strategies can
be generated by solving the dynamic programming problem of maximizing the
weighted sum of payoffs:

n∑
j=1

αj

( ∫ T

0
uj
{
R
(1)
j

[
q1
j (s), (K(s)) , s

]
, R

(2)
j

[
q2
j (s), s

]
, cj

[
Ij (s), s

]}
e−rsds

+m1
i [K(T )] e−rT

)
(2.3)

subject to (2.1).
We use W(α)(t, K) to denote the maximized weighted sum of payoffs under

cooperation, and
{
q1∗
i (s) = ψ

(α)1
i (s,K), q2∗

i (s) = ψ
(α)2
i (s,K), I ∗i (s) =

ψ
(α)3
i (s,K), for i ∈ N and s ∈ [0, T]} to denote the cooperative strategies under

payoff weight α. Substituting the cooperative investment strategies
{
ψ
(α)3
i (s,K)

}

into the state dynamics (2.1), one can obtain the dynamics of the cooperative
trajectory as:

K̇(s) = f
[
K(s), ψ

(α)3
1 (s,K) , ψ

(α)3
2 (s,K) , · · · , ψ(α)3n (s,K) , s

]
,K(0) = K0.

(2.4)

We use
{
K(α)(s)

}T
s=0 to denote the solution path of (2.4). We also use K(α)s =

K(α)(s) interchangeably if there is no ambiguity.
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2.2 The Core and Dynamically Stable Subcore

The core C (0,K0) of the NTU cooperative dynamic game (2.1)–(2.2) is the set of
imputations:
{W(α)i(0, K0), for i ∈ N} such that.
W(α)i(0, K0) satisfies Pareto optimality and the individual rationality conditions

that

W(α)i (0,K0) ≥ V i (0,K0) , for i ∈ N. (2.5)

Note that non-cooperative equilibria are sub-optimal in general. Therefore, there
always exists a non-empty core C (0,K0), even if the non-cooperative equilibrium
outcome is the only element. The core C (0,K0) does not guarantee that individual
rationality will be satisfied throughout the entire cooperation duration, that is, the

condition W(α)i
(
t, K

(α)
t

)
≥V i

(
t, K

(α)
t

)
, for i ∈ N, t ∈ [0, T]. We use Λ to denote

the set of payoff weights in the core. Frequently, the lack of sustainability of
the cooperation scheme leads to break-up of the scheme as the game evolves. To
overcome the problem, one has to consider a subcore which is dynamically stable.
Let α be an element in Λ such that.

W(α)i
(
t, K

(α)
t

)
≥ V i

(
t, K

(α)
t

)
, for i ∈ N and t ∈ [0, T ] . (2.6)

We use � to denote the set of α that satisfies (2.6).

The dynamically stable subcore C
(
t, K

(α)
t

)
of the NTU cooperative dynamic

game (2.1)–(2.2) is the set of imputations:{
W(α)i

(
t, K

(α)
t

)
, for i ∈ Nand t ∈ [0, T]} such that (2.6) is satisfied.

If � is not an empty set, a weight α̂ ∈� agreed upon by all agents would
yield a cooperative solution which satisfies both individual rationality and Pareto
optimality throughout the cooperation duration. However, a dynamically stable

subcore C
(
t, K

(α)
t

)
may be empty.

2.3 Dynamically Stable Subcore with Variable Weights

To resolve the problem of an empty dynamically stable constant weight core, time
varying payoff weights can be adopted. Sorger [11], Marin-Solano [9], and Yeung
and Petrosyan [19] considered the derivation of solutions for NTU cooperative
dynamic games with variable payoff weights.

To derive a dynamically stable scheme for cooperative provision of public goods
under non-constant payoff weights, the agents have to agree/bargain on a specific
pattern of partitions of the game horizon. Let the agreed-upon partitions of the game
horizon be denoted by the τ partitions: [0, t1), [t1, t2), [t2, t3), · · · , [tτ − 1, T]. In each
of these partitions, there exists a non-empty set of constant payoff weight �k, for
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k ∈ {1, 2, · · · , τ }, which satisfies individual rationality. Then, the agents seek an
agreed-upon weight α̂k ∈ Λk in the time interval [tk − 1, tk), for k ∈ {1, 2, · · · , τ }.

The pros of the variable payoff weights scheme include the flexibility in
accommodating the preferences of the agents according to the initial cooperative
agreement and the resolution of the problem of an empty dynamically stable
constant weight core. On the other hand, the cons thereof is that full Pareto efficiency
is sacrificed for obtaining a dynamically stable solution.

3 An NTU Differential Game of Public Goods Provision

In this section, we present a cooperative game of public goods provision with non-
transferable payoffs. A group of n agents makes continuous contributions of some
inputs or investments to build up a productive stock of a public good. We use K(s)
to denote the level of the productive stock and Ii(s) the contribution or investment
by agent i at time s, the stock accumulation dynamics is

K̇(s) = f [K(s), I1(s), I2(s), · · · , In(s), s] =
n∑
j=1

Ij (s)− δK(s),K(0) = K0,

(3.1)

where δ is the rate of decay of the productive stock.
The benefit to the agent in productive activities including the public good is

R
(1)
i

[
q1
i (s), (K(s)) , s

]
=
[
aie


isq1
i (s)(K(s))

1/2 −
(
q1
i (s)

)2 + eςisgiK(s)
]
.

The benefit to the agent in productive activities not including the public good is

R
(2)
i

[
q2
i (s), s

]
=
[
bie

ωisq2
i (s)−

(
q2
i (s)

)2
]
.

The investment costs in the public good is

Ci [Ii(s), s] = cieκis[Ii(s)]2.

The instantaneous payoff to agent i at time instant s is

[
aie


isq1
i (s)(K(s))

1/2 −
(
q1
i (s)

)2 + eςisgiK(s)
]
+ ξi

[
bie

ωisq2
i (s)−

(
q2
i (s)

)2
]

−cieκi s[Ii(s)]2, i ∈ N,
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where ξ iis a weight reflecting the relative importance of benefits of the two
productive activities to agent i.

The term e
is exhibits the growth/decline of the sector involving the public good.
The term eςis exhibits the growth/decline of the direct impact of the public good.
The term eωis exhibits the growth/decline of the sector not involving the public
good. The term eκis reflects the change in the cost of investment in the public good
over time. The payoffs of the agents are not transferrable.

The objective of agent i is to maximize its payoff over the planning horizon

∫ T

0
{
[
aie


isq1
i (s)(K(s))

1/2−
(
q1
i (s)

)2+eςisgiK(s)
]
+ξi

[
bie

ωisq2
i (s)−

(
q2
i (s)

)2
]

−cieκis[Ii(s)]2 } e−rsds +
[
m1
i K(T )+m2

i

]
e−rT , for i ∈ N, (3.2)

subject to the public capital stock accumulation dynamics (3.1),
where r is the rate of time preference, and

[
m1
i K(T )+m2

i

]
is agent i’s terminal

payoff conditional on the stock of public capital at time T.
Acting on self-interests, the agents are involved in a differential game. In such

a framework, a feedback Nash equilibrium has to be sought. Invoking the standard
techniques for solving differential games, a non-cooperative feedback solution to
the game (3.1)–(3.2) can be characterized as follows: A set of feedback strategies{
q1∗
i (s) = φ1

i (s,K), q
2∗
i (s) = φ2

i (s,K), I
∗
i (s) = φ3

i (s,K), for i ∈ N and

s ∈ [0, T]} constitutes a feedback Nash equilibrium of the game (3.1)–(3.2) if there
exists differentiable functions Vi(t, K) : [0, T] × R → R for i ∈ N satisfying the
following set of Hamilton–Jacobi–Bellman equations (see Basar and Olsder [1];
Yeung and Petrosyan [16, 20])

−V it (t,K)= max
q1
i ,q

2
i ,Ii

{
{
[
aie


i t q1
i K

1/2−
(
q1
i

)2+eςi t giK
]
+ξi

[
bie

ωi t q2
i −
(
q2
i

)2
]

−cieκi t (Ii)2 } e−rs + V iK (t,K)
[ n∑

j = 1
j �= i

φ3
j (t,K)+ Ii − δK

] }
, (3.3)

V i (T ,K) =
[
m1
i K +m2

i

]
e−rT , for i ∈ N. (3.4)

Performing the indicated maximization in (3.3) yields the game equilibrium
strategies:
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q1∗
i (t) = φ1

i (t, K) =
(
aie


i t
)
K1/2/2,

q2∗
i (t) = φ2

i (t, K) =
(
bie

ωi t
)
/2,

I ∗i (t) = φ3
i (t, K) = V iK (t,K) ert /2cieκi t , for i ∈ N (3.5)

The payoff of the agents under non-cooperation can be obtained as:

Proposition 3.1

V i (t,K) = [Ai(t)K + Ci(t)] e−rt , for i ∈ N and t ∈ [0, T ] ; (3.6)

where the value of Ai(t) is generated by the first-order differential equation:

Ȧi(t) = (r + δ)Ai(t)−
(
aie


i t
)2

4
− eςi t gi, Ai(T ) = m1

i ;

and the value of Ci(t) is generated by the following first-order differential equations:

Ċi(t) = rCi(t)+ [Ai(t)]2

4cie2κi t
−
[ n∑
j=1

Ai(t)Aj (t)

2cj eκj t

]
− ξi

(
bie

ωi t
)2

4
,

Ci(T ) = m2
i , for i ∈ N.

Proof See Appendix A.

4 Cooperative Scheme: Constant Payoff Weight Case

Consider the case in which the agents agree to set up a cooperative scheme in public
goods provision with a constant payoff weight.

4.1 Optimal Cooperative Trajectories

To derive a set of optimal cooperative strategies the agents have to agree on a payoff

weight α = (α1,α2, · · · ,αn) for
n∑
j=1
αj = 1. Conditional upon an agreed-upon

weight α, the agents’ optimal cooperative strategies can be generated by solving the
following optimal control problem (See Leitmann [8], Yeung and Petrosyan [15, 20]
and Yeung et al. [21]):
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n∑
j=1

αj

( ∫ T

0
{
[
aj e


j sq1
j (s)(K(s))

1/2 −
(
q1
j (s)

)2 + eςj sgjK(s)
]

+ ξj
[
bj e

ωisq2
j (s)−

(
q2
j (s)

)2
]

−cj eκj s
[
Ij (s)

]2 } e−rsds +
[
m1
jK(T )+m2

j

]
e−rT

)
, (4.1)

subject to dynamics (3.1).
Invoking the standard dynamic programming technique an optimal solution to

the control problem (3.1) and (4.1) can be characterized as follows. A set of controls{
q1∗
i (s) = ψ1(α)

i (s,K), q2∗
i (s) = ψ2(α)

i (s,K), I ∗i (s) = ψ3(α)
i (s,K), for i ∈ N and

s ∈ [0, T]} constitutes an optimal solution to the problem (3.1). (4.1) if there exist
differentiable functions W(α)

i (t, K) : [0, T ] × R → R for i ∈ N satisfying the
following set of partial differential equations (see Basar and Olsder [1]; Yeung and
Petrosyan [16, 20]):

−W(α)
t (t, K) = max

q1
i , q

2
i , Ii ,

i ∈ N

{ n∑
j=1

αj {
[
aj e


j tq1
j K

1/2 −
(
q1
j

)2 + eςj tgjK
]

+ ξj
[
bj e

ωi t q2
j −

(
q2
j

)2
]

−cj eκj s
(
Ij
)2 } e−rs +W(α)

K (t,K)

[ n∑
j=1

Ij − δK
] }

, (4.2)

W(α) (T ,K) =
n∑
j=1

αj

[
m1
jK +m2

j

]
e−rT . (4.3)

Performing the indicated maximization in (4.2) yields

q1∗
i (t) = ψ1(α)

i (t, K) = (aie
i t
)
K1/2/2,

q2∗
i (t) = ψ2(α)

i (t, K) = (bieωi t
)
/2,

I ∗i (t) = ψ3(α)
i (t, K) = W(α)

K (t,K) ert /2cie
κi tαi, for i ∈ N. (4.4)

Condition (4.4) reflects that an optimum investment will be made up to the point
where the magnitude of the product of the marginal disutility of investment cost and
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the marginal cost of investment of agent i equals to the implicit marginal benefit
of the productive stock to all the participating agents divided by agent i’s assigned
weight αi. Therefore, the lower the assigned weight the higher level of public goods
investment, other things being equal.

The value function reflecting the maximized weight sum of the agents’ payoff
W(α)(t, K) in the interval [t, T] can be obtained as:

Proposition 4.1

W(α) (t,K) =
[
A(α)(t)K + C(α)(t)

]
e−rt , for t ∈ [t1, T ] ; (4.5)

where the value of A(α)(t) is generated by the first-order differential equation:

Ȧ(α)(t)= (r+δ)A(α)(t)−
n∑
j=1

αj

[ (
aj e


j t
)2

4
+eςj tgj

]
, A(α)(T )=

n∑
j=1

αjm
1
j ;

and the value of C(α)(t) is generated by the first-order differential equation:

Ċ(α)(t) = rC(α)(t)+
n∑
j=1

[
A(α)(t)

]2
4αjcj e2κj t

−
n∑
j=1

[
A(α)(t)

]2
2αjcj eκj t

−
n∑
j=1

αj ξj
(
bj e

ωis
)2

4
,

C(α)(T ) =
n∑
j=1

αjm
2
j .

Proof See Appendix B.

Substituting the optimal public good strategies
{
ψ

3(α)
i (s,K), for i ∈ N and

s ∈ [0, T]} into (3.1) yields the optimal path of the productive stock dynamics:

K̇(s) =
[ n∑
j=1

A(α)(s)

2cj eκj sαj
− δK(s)

]
,K(0) = K0. (4.6)

We use
{
K(α)(s)

}T
s=0 to denote the solution generated by (4.6). The terms K(α)(s)

and K(α)s are used interchangeably.

4.2 Individual Payoff Under Cooperation

In the cooperation duration s ∈ [0, T], agents will use the cooperative strategies.
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q1∗
i (s) = ψ1(α)

i (s,K) = (aie
is
)
K1/2/2,

q2∗
i (s) = ψ2(α)

i (s,K) = (bieωis
)
/2,

I ∗i (s) = ψ3(α)
i (s,K) = A(α)s (s)/2cieκisαi, for i ∈ N. (4.7)

The payoff of the agent i over the duration [t, T] under cooperation given that the
level of public capital stock is K can be obtained as:

W(α)i (t, K)=
∫ T

t

[
(aie


is)2K(s)

4
+eςisgiK(s)+ξi (bie

ωis)2

4
−
[
A(α)(s)

]2
4cie2κi s(αi)

2

]
e−rsds

+
[
m1
i K(T )+m2

i

]
e−rT , for i ∈ N and t ∈ [0, T ]

}
. (4.8)

Following Yeung [14], we can use a set of partial differential equations similar to
the Hamilton–Jacobi–Bellman equations to characterize the solution of the function
W(α)i(t, K) which allows its derivation in a more direct way.

Proposition 4.2 The value function W(α)i(t, K) can be characterized as:

−W(α)i
t (t, K) =

[ (
aie


i t
)2
K

4
+ eςi t giK + ξi

(
bie

ωi t
)2

4
− W

(α)i
K (t,K)

4cie2κi t (αi)
2

]
e−rt

+W(α)i
K (t,K)

[ n∑
j=1

A(α)(t)

2cj eκj tαj
− δK

]
, (4.9)

W(α)i (T ,K) =
[
m1
i K +m2

i

]
e−rT , for i ∈ N and t ∈ [0, T ] . (4.10)

Proof See Yeung [14].

Therefore, if there exist differentiable functions W(α)i(t, K) : [0, T] × R → R for
i ∈ N satisfying (4.9)–(4.10), the function W(α)i(t, K) yields the payoff of agent i
under the cooperative scheme.

Proposition 4.3 The value function W(α)i(t, K) can be obtained as:

W(α)i (t, K) =
[
A
(α)
i (t)K + C(α)i (t)

]
e−rt , for i ∈ N and t ∈ [0, T ] ; (4.11)
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where the value of A(α)i (t) is generated by the following first-order differential
equation:

Ȧ
(α)
i (t) = (r + δ)A(α)i (t)−

(
aie


i t
)2

4
− eςi t gi, Ai(T ) = m1

i ;

and the value of C(α)i (t) is generated by the following first-order differential
equations:

Ċ
(α)
i (t) = rC(α)i (t)+

A
(α)
i (t, K)

4cie2κi t (αi)
2 − A(

α)
i

n∑
j=1

A(α)(t)

2αj cj eκj t
− ξi

(
bie

ωi t
)2

4
,

C
(α)
i (T ) = m2

i .

Proof See Appendix C.

4.3 Dynamically Stable Core

An essential element for a cooperative scheme to be acceptable to all agents is
the satisfaction of individual rationality, that is, the payoff of each agent under
cooperation is no less than that under non-cooperation. In particular, at the outset

W(α)i (0,K0) ≥ V i (0,K0) , for i ∈ N.

For stability in a dynamic framework, individual rationality has to be satisfied
throughout the cooperation duration along the cooperative state trajectory. Hence
dynamic stability implies

W(α)i
(
t, K

(α)
t

)
=
[
A
(α)
i (t)K

(α)
t + C(α)i (t)

]
e−rt ≥ V i

(
t, K

(α)
t

)

=
[
Ai(t)K

(α)
t + Ci(t)

]
e−rt ,

for i ∈ N and t ∈ [0, T ] . (4.12)

If condition (4.12) is not satisfied for an agent at any time instant within
the cooperation duration, he would opt out of the cooperative scheme and act
independently.

To derive the set of payoff weights which are candidates for weights leading to a
dynamically stable solution, we have to search the set of vectors α such that:
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W(α)i (t, K) =
[
A
(α)
i (t)K + C(α)i (t)

]
e−rt ≥ V i (t,K) = [Ai(t)K + Ci(t)] e−rt ,

for i ∈ N and t ∈ [0, T ] .

Invoking Proposition 3.1 and Proposition 4.2, the difference between W(α)i(t, K)
and Vi(t, K) for agent i can be expressed as:

W(α)i (t, K)− V i (t,K) =
[
C
(α)
i (t)− Ci(t)

]
e−rt , for i ∈ N and t ∈ [0, T ] .

(4.13)

We use � to define the set of weight vectors α = (α1,α2, · · · ,αn) such that.

W(α)i
(
t, K

(α)
t

)
≥ V i

(
t, K

(α)
t

)
, for i ∈ N and t ∈ [0, T ] . (4.14)

Note that the set � can be an empty set. If � is not an empty set, then there
exists a dynamically stable core of the cooperative game (3.1)–(3.2). A vector α̂ =(
α̂1, α̂2, · · · , α̂n

) ∈ Λ agreed upon by all agents would yield a dynamically stable
solution.

Given the closed-form solutions of the functions W(α)i
(
t, K

(α)
t

)
and

V i
(
t, K

(α)
t

)
, we search for the existence of a dynamically stable core. It was

found that time invariant growth parameters—aj e
j s = aj , bj eωj s = bj , and
cj e

κj s = cj , for all agents j ∈ N—generally lead to the case of having a dynamically
stable core. The non-existence of a dynamically stable core arises in some cases
where the growth rates �j and κ j for j ∈ N are significantly different from �� and
κ� for � ∈ N and j �= �.

5 Variable Payoff Weights Scheme

It is possible that there does not exist any constant weight such that the individual
rationality condition in (4.12) is satisfied throughout the game duration. An
alternative scheme is to search for a set of variable weights over the cooperation
duration under which individual rationality is to be maintained at all instants of time.
Adopting variable weights entails a trade-off of Pareto optimality for individual
rationality.

To derive a dynamically stable scheme for cooperative provision of public goods
under non-constant payoff weights the agents adopt the τ agreed-upon partitions:
[0, t1), [t1, t2), [t2, t3), · · · , [tτ − 1, T]. In each of these partitions, there exists a
non-empty set of constant payoffs weight �k, for k ∈ {1, 2, · · · , τ }, which satisfies
individual rationality.
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In the cooperative subgame in the last interval [tτ − 1, T], to achieve Pareto
optimality the agents jointly maximize the weighted sum of payoffs.

n∑
j=1

ατj

( ∫ T

tτ−1

{
[
aj e


j sq1
j (s)(K(s))

1/2 −
(
q1
j (s)

)2 + eςj tgjK(s)
]

+ξj
[
bj e

ωisq2
j (s)−

(
q2
j (s)

)2
]

−cj eκj s
[
Ij (s)

]2 } e−rsds +
[
m1
jK(T )+m2

j

]
e−rT

)
(5.1)

subject to dynamics (3.1).
Note that there exists a set of weights ατ = (

ατ1 , α
τ
2 , · · · , ατn

) ∈ Λτ satisfying
W(ατ )i (t, K) ≥ V i (t,K), for i ∈ N and t ∈ [tτ − 1, T]. Let the agreed-upon weight
for the interval [tτ − 1, T] be α̂τ ∈ Λτ . Invoking Proposition 4.3, one can obtain
individual agents’ payoffs under cooperation as:

W(α̂
τ )i (t, K) =

[
A
(α̂τ )
i (t)K + C(α̂τ )i (t)

]
e−rt , for i ∈ N and t ∈ [tτ−1, T ] .

Now consider the game in the time interval [tτ − 2, tτ − 1). The terminal pay-

off of agent i at time tτ − 1 becomes W(α̂
τ )i (tτ−1,K)=

[
A
(α̂τ )
i (tτ−1)K (tτ−1)

+C(α̂τ )i (tτ−1)
]
e−rtτ−1 for i ∈ N. Under cooperation the agents jointly maximize

the weighted sum of payoffs.

n∑
j=1

ατ−1
j

( ∫ tτ−1

tτ−2

{
[
aj e


j sq1
j (s)(K(s))

1/2 −
(
q1
j (s)

)2 + eςj tgjK(s)
]

+ξj
[
bj e

ωisq2
j (s)−

(
q2
j (s)

)2
]
− cj eκj s

[
Ij (s)

]2 } e−rsds

+
[
A(α̂

τ ) (tτ−1)K (tτ−1)+ C(α̂τ ) (tτ−1)
]
e−rtτ−1

)
(5.2)

subject to dynamics (3.1).
Again in the time interval [tτ − 2, tτ − 1) there exists a set of weights

ατ − 1 ∈ �τ − 1 such that W
(
ατ−1;α̂τ )i (t, Kt ) ≥ V i (t,Kt ), for i ∈ N and

t ∈ [tτ − 2, tτ − 1). Let the agreed-upon weight in the time interval [tτ − 2, tτ − 1)
be α̂τ−1 ∈ Λτ−1. Invoking Proposition 4.3, one can obtain individual agents’
payoffs under cooperation as:
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W
(
α̂τ−1;α̂τ )i (t, K) =

[
A

(
α̂τ−1;α̂τ )
i (t)K + C

(
α̂τ−1;α̂τ )
i (t)

]
e−rt ,

for i ∈ N and t ∈ [tτ−2, tτ−1] .

Following the above analysis, the cooperative subgame in the time interval
[tk − 1, tk) for k ∈ {1, 2, · · · , τ − 3} can be formulated as maximizing:

n∑
j=1

αkj

(∫ tk

tk−1

{
[
aj e


j sq1
j (s)(K(s))

1/2−
(
q1
j (s)

)2
]
+ξj

[
bj e

ωisq2
j (s)−

(
q2
j (s)

)2
]

−cj eκj s
[
Ij (s)

]2 } e−rsds

+
[
A
(
α̂k+1;α̂k+2,α̂k+3,··· ,α̂τ ) (tk)K (tk)+ C

(
α̂k+1;α̂k+2,α̂k+3,··· ,α̂τ ) (tk)

]
e−rtk

)
,

(5.3)

subject to dynamics (3.1).
Again in the time interval [tk − 1, tk) there exists a set of weights αk ∈ �such

that W
(
αk;α̂k+1,α̂k+2,··· ,ατ )i (t, K) ≥ V i (t,K), for i ∈ N and t ∈ [tk − 1, tk). Let the

agreed-upon weight in the time interval [tk − 1, tk) be α̂k ∈ Λk . Invoking Proposition
4.3, one can obtain individual agents’ payoffs under cooperation as:

W
(
α̂k;α̂k+1,α̂k+2,··· ,ατ )i (t, K)

=
[
A

(
α̂k;α̂k+1,α̂k+2,··· ,ατ )
i (t)K + C

(
α̂k;α̂k+1,α̂k+2,··· ,ατ )
i (t)

]
e−rt ,

for i ∈ N, t ∈ [tk−1, tk) , and k ∈ {1, 2, · · · , τ − 3} .

Thus, the agents seek agreed-upon weights α̂k ∈ Λk in the time interval
[tk − 1, tk), for k ∈ {1, 2, · · · , τ }. The cooperative scheme for public goods provi-
sion is guided by the payoff weights

(
α̂1, α̂2, · · · , α̂τ ) with optimal cooperative

strategies:

{
ψ

1
(
α̂k;α̂k+1,α̂k+2,··· ,ατ )

i (s,K) , ψ
2
(
α̂k;α̂k+1,α̂k+2,··· ,ατ )

i (s,K) ,

ψ
3
(
α̂k;α̂k+1,α̂k+2,··· ,ατ )

i (s,K)

}
,

for i ∈ N, s ∈ [tk−1, tk) , and k ∈ {1, 2, · · · , τ } .
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6 Concluding Remarks

Although cooperative provision of public goods is the key to a socially efficient
solution, one may find it hard to be convinced that dynamic cooperation can offer
a long-term solution unless every participating agent will realize a payoff under
cooperation which is no less than that under non-cooperation from the beginning
to the end. In the case where payoffs are non-transferable the formulation of
dynamically stable cooperative schemes becomes more difficult as side payments
are not possible. This paper resolves the classical problem of market failure in the
provision of public goods with a cooperative scheme in a non-transferable payoffs
environment. Various further research and applications are expected.

Acknowledgements Financial support from the SRS Consortium for Advanced Study in Dynamic
Cooperative Games is gratefully acknowledged.

A.1 Proof of Proposition 3.1

Using Proposition 3.1 and the game equilibrium strategies (3.5) the set of Hamilton–
Jacobi–Bellman equations in (3.4) can be expressed as:

r
[
A
(α)
i (t)K + C(α)i (t)

]
−
[
Ȧ
(α)
i (t)K + Ċ(α)i (t)

]

=
(
aie


i t
)2

4
K + eςisgiK + ξi

(
bie

ωi t
)2

4
− [Ai(t)]2

4cie2κi t

+
[ n∑
j=1

Ai(t)Aj (t)

2cj eκj t
− Ai(t)δK

]
, for i ∈ N. (A.1)

For (A.1) to hold it is required that

Ȧi(t) = (r + δ)Ai(t)−
(
aie


i t
)2

4
− eςisgi, Ai(T ) = m1

i ; and

Ċi(t) = rCi(t)+ [Ai(t)]2

4cie2κi t
−
[ n∑
j=1

Ai(t)Aj (t)

2cj eκj t

]
− ξi

(
bie

ωi t
)2

4
,

Ci(T ) = m2
i , for i ∈ N. (A.2)
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B.1 Proof of Proposition 4.1

Using Proposition 4.1 and the optimal control strategies in (4.4) the dynamic
programming equation in (4.2) can be expressed as:

r
[
A(α)(t)K + C(α)(t)

]
−
[
Ȧ(α)(t)K + Ċ(α)(t)

]

=
n∑
j=1

αj

[ (
aj e


j t
)2

4
K + eςj sgjK + ξj

(
bj e

ωis
)2

4
−
[
A(α)(t)

]2
4α2
j cj e

2κj t

]

+A(α)
[ n∑
j=1

A(α)(t)

2cj eκj t
− δK

]
. (B.1)

For (B.1) to hold it is required that

Ȧ(α)(t) = (r + δ)A(α)(t)−
n∑
j=1

αj

[(
aj e


j t
)2

4
+eςj sgj

]
, A(α)(T )=

n∑
j=1

αjm
1
j ; and

Ċ(α)(t) = rC(α)(t)+
n∑
j=1

[
A(α)(t)

]2
4αjcj e2κj t

−
n∑
j=1

[
A(α)(t)

]2
2αjcj eκj t

−
n∑
j=1

αj ξj
(
bj e

ωis
)2

4
,

C(α)(T ) =
n∑
j=1

αjm
2
j .

Ċ(α)(t) = rC(α)(t)−
n∑
j=1

[
A(α)(t)

]2
2αjcj eκj t

−
n∑
j=1

αj ξj
(
bj e

ωis
)2

4
,

C(α)(T ) =
n∑
j=1

αjm
2
j . (B.2)

C.1 Proof of Proposition 4.3

Using Proposition 4.3 and the optimal control strategies in (4.4) the dynamic
programming equation in (4.9) in Proposition 4.2 can be expressed as:
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r
[
A
(α)
i (t)K + C(α)i (t)

]
−
[
Ȧ
(α)
i (t)K + Ċ(α)i (t)

]

=
[ (

aie

i t
)2
K

4
+ eςisgiK + ξi

(
bie

ωi t
)2

4
− A

(α)
i (t, K)

4cie2κi t (αi)
2

]

+A(α)i
[ n∑
j=1

A(α)(t)

2cj eκj t
− δK

]
, for i ∈ N and t ∈ [0, T ] . (C.1)

For (C.1) to hold it is required that

Ȧ
(α)
i (t) = (r + δ)A(α)i (t)−

(
aie


i t
)2

4
− eςi t gi, A(α)i (T ) = m1

i ; and

Ċ
(α)
i (t) = rC(α)i (t)+

A
(α)
i (t, K)

4cie2κi t (αi)
2
− A(α)i

n∑
j=1

A(α)(t)

2αj cj eκj t
− ξi

(
bie

ωi t
)2

4
.

(C.2)
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Strongly Time-Consistent Solutions
in Cooperative Dynamic Games

Leon A. Petrosyan

Abstract In the paper the evolution of dynamic game along the cooperative
trajectory is investigated. Along cooperative trajectory at each time instant players
find themselves in a new game which is a subgame of the originally defined game.
In many cases the optimal solution of the initial game restricted to the subgame
along cooperative trajectory fails to be optimal in the subgame. To overcome this
difficulty we introduced (see Petrosyan and Danilov, Vestnik Leningrad Univ Mat
Mekh Astronom 1:52–59, 1979; Petrosyan and Zaccour, J Econ Control 27(3):381–
398, 2003; Yeung and Petrosyan, Subgame consistent economic optimization.
Birkhauser, 2012) the special payment mechanism—imputation distribution proce-
dure (IDP), or payment distribution procedure (PDP), but another serious question
arises: under what conditions the initial optimal solution converted to any optimal
solution in the subgame will remain optimal in the whole game. This condition we
call strongly time-consistency condition of the optimal solution. If this condition is
not satisfied players in reality may switch in some time instant from the previously
selected optimal solution to any optimal solution in the subgame, and as result
realize the solution which will be not optimal in the whole game. We propose
different types of strongly time-consistent solutions for multicriterial control,
cooperative differential, and cooperative dynamic games.

Keywords Differential game · Time consistency · Dynamic stability · Pareto
optimality · Cooperation

1 What Is Strongly Time-Consistency?

What is strongly time-consistency? Try to explain this notion. Let M ∈ Rn be a
fixed point in Rn. Consider a classical control problem (with one player)
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ẋ = f (x, u), x ∈ Rn, u ∈ U ⊂ CompRl
x(t0) = x0, t ∈ [t0, T ]. (1)

Find the control ū(t), and corresponding trajectory x̄(t) such that at terminal instant
the distance ρ(x̄(T ),M) will be minimal.

Denote this problem by Γ (x0, T − t0). And denote by C(x0, T − t0) the
reachability set of system (1) from initial point x0 at terminal time T .

Suppose for simplicity that M /∈ C(x0, T − t0). The solution of this optimal
control problem we can see on Fig. 1.

Consider the intermediate time instant τ ∈ [t0, T ], and the intermediate control
problem Γ (x̄(τ ), T − τ) with initial condition on the optimal trajectory with
duration T − τ . It is clear that the control ū(t), t ∈ [τ, T ] will be optimal also
in Γ (x̄(τ ), T − τ), so will be also the trajectory x̄(t), t ∈ [τ, T ].

This is Bellman-optimality principle and also time-consistency of optimal control
ū(t), t ∈ [t0, T ]. Suppose now that we have another optimal control ¯̄u(t), t ∈ [τ, T ]
in the problem Γ (x̄(τ ), T − τ). Then it is easy to see that the control

û(t) =
{
ū(t), t ∈ [t0, τ ]
¯̄u(t), t ∈ [τ, T ]

will be also optimal in the problem Γ (x0, T − t0). In other words: “any optimal
continuation of the original problem in the subproblem along optimal trajectory
generates optimal solution of the original problem.” This property we shall call
strongly time-consistency (strongly dynamic stability) (see Fig. 1).

Fig. 1 Classical optimal
control problem
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Consider now a slightly more complicated problem. The motion equations are
the same (1), but the aim of control is different, it is necessary to come as close as
possible to system of pointsM1, . . . ,Mk ,Mi ∈ Rn, i ∈ {1, . . . k}.

Denote as before the problem by Γ (x0, T − t0) and by C(x0, T − t0) the
reachability set of (1) and suppose that C(x0, T − t0) ∩ M̂ = ∅, where M̂ is the
convex hull of points {M1, . . . ,Mk}. As optimal solution here we may consider
Pareto-optimal set which coincides with arc AB, the projection (suppose that
C(x0, T − t0) is convex) of M̂ on C(x0, T − t0) (see Fig. 2).

Consider Pareto-optimal control ū(t), t ∈ [t0, T ] which connects the initial point
x0 ∈ C(x0, T − t0)with the pointM belonging to the Pareto-optimal set (M belongs
to the arc AB which is projection of the set M̂ on C(x0, T − t0)). And let x̄(t),
t ∈ [t0, T ] be the corresponding Pareto-optimal trajectory.

Consider a subproblem Γ (x̄(t), T − t) from initial position x̄(t) on the Pareto-
optimal trajectory. We see that the Pareto-optimal set in Γ (x̄(t), T − t) (arc A′B ′) is
different from the Pareto-optimal set in Γ (x0, T − t0) having only (in our example)
one common pointM . This means that the control ū(t), t ∈ [τ, T ] is Pareto-optimal
in subproblem Γ (x̄(τ ), T − τ), and the Pareto-optimal solution ū(t), t ∈ [t0, T ] is
time-consistent (dynamic stable) [4, 5].

In the same time we can see that the control of the type

û(t) =
{
ū(t), t ∈ [t0, τ ]
¯̄u(t), t ∈ [τ, T ],

Fig. 2 Multicriterial optimal control problem
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where ¯̄u(t) is an arbitrary Pareto-optimal control in subproblem Γ (x̄(τ ), T − τ),
may not be Pareto-optimal in Γ (x0, T − t0).

Which means that in this case the optimal continuation of the motion in the
subproblem with initial conditions on Pareto-optimal trajectory together with initial
Pareto-optimal motion maybe not Pareto-optimal in the original problem. This
means that the Pareto-optimal solution is time-consistent but not strongly time-
consistent (see Fig. 2).

In this special problem there is one approach for constructing strongly time-
consistent solutions on the bases of Pareto-optimal solutions. The idea of this
approach is to consider all possible outcomes which may occur if at each time
instant t on the time interval [tk, tk + δ) the control u(τ) will be selected leading
to one of Pareto-optimal points in the subproblem Γ (x(tk), T − tk). Let t0 < t1 <
. . . < tk < tk+1 < . . . < tn = T be the decomposition of the time interval [t0, T ],
tk+1 − tk = δ > 0. The resulting trajectory will be not Pareto-optimal, but we shall
call it conditionally Pareto-optimal. Denote by P(x(tk), tk) the set of end-points of
these trajectories for all possible controls selected in a described manner. It is clear
that

P(x(t0), t0) ⊃ P(x(t1), t1) ⊃ . . . ⊃ P(x(tk), tk) ⊃ . . . ⊃ P(x(T ), T ).

And the set P(x(t0), t0) is δ-strongly time-consistent if we allow possible
changes of controls only in points tk , k = 0, . . . , n.

For the system

ẋ = u1 + u2 + u3, x(t0) = x0

|ui | ≤ 1, x ∈ R2, t ∈ [t0, T ],

the set P(x(t0), t0) is denoted by D̂ on the Fig. 3 (dashed region).

Fig. 3 Example of strongly
time-consistent solution
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1.1 Cooperative Differential Game

Consider now cooperative differential games with player set N . Motion equations
have the form

ẋ = f (x, u1, . . . , uk), x ∈ Rn, ui ∈ Ui ⊂ CompRl (2)

x(t0) = x0 (3)

and the payoffs of players are defined as

Ki(x0, T − t0; u1, . . . , uk) =
∫ T

t0

hi(x(t))dt, hi > 0, i ∈ N.

Denote this game by Γ (x0, T − t0). Cooperative trajectory x(t), x(t0) = x0,
t ∈ [t0, T ] is defined as

max
u1,...,uk

n∑
i=1

Ki(x0, T − t0; u1, . . . , un) =
n∑
i=1

Ki(x0, T − t0; u1, . . . , un) =

=
n∑
i=1

∫ T

t0

hi(x(t))dt = v(x0, T − t0;N). (4)

We suppose that max in (4) is attained. Let v(x0, T − t0; S), S ⊂ N be the
characteristic function defined in classical way as value of zero-sum game between
coalition S as first player and N\S as second (see [6]), and E(x0, T − t0), the set of
imputations

E(x0, T − t0) = {ξ = {ξi} :
n∑
i=1

ξi = v(x0, T − t0;N),

ξi ≥ v(x0, T − t0; {i}), i ∈ N}. (5)

Denote by C(x0, T − t0) reachability set of the system (1), for y ∈ C(x0, t − t0),
t ∈ [t0, T ] define a subgame Γ (y, T − t) of Γ (x0, T − t0) with characteristic
function v(y, T − t; S), S ⊂ N and imputation set E(y, T − t).

Optimality principle (solution) is a subset of imputation set

C(y, T − t) ⊂ E(y, T − t)

(Core, NM-solution,. . .).
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Consider the family of subgames along the cooperative trajectory Γ (x̄(t), T −
t; S) and also imputation set E(x(t), T − t) and the solution of subgames along this
cooperative trajectory, C(x(t), T − t).

For each ξ ∈ C(x0, T − t0) define the imputation distribution procedure IDP [3]
β(t) = (β1(t), . . . , βi(t), . . . , βn(t))

ξ =
∫ T

t0

β(τ)dτ, ξ ∈ C(x0, T − t0).

The imputation ξ ∈ C(x0, T − t0) is called dynamic stable [3–5] (time-consistent)
if

ξ −
∫ t

t0

β(τ)dτ ∈ C(x(t), T − t), t ∈ [t0, t].

Definition 1 The solution C(x0, T − t0) is called time-consistent if all imputations
ξ ∈ C(x0, T − t0) are time-consistent.

Definition 2 Optimality principle C(x0, T − t0) is called strongly dynamic stable
[11] (strongly time-consistent) if for each ξ ∈ C(x0, T − t0) there exist IDP β(τ)
such that

∫ t

t0

β(τ)dτ ⊕ C(x(t), T − t) ⊂ C(x0, T − t0),

here a ⊕ B(a ∈ Rn,B ⊂ Rn) is defined as {a + b : b ∈ B}.
Since as it is well known time-consistency of cooperative solutions taken from
the classical one-shot game theory takes place only in special cases it is clear
that strongly time-consistency is a very special event. Note that strongly time-
consistency has sense only for multivalued (set-valued) optimality principles (core,
NM-solution).

1.2 Transformation of Characteristic Function

Let v(y, T − t; S) be characteristic function in Γ (y, T − t). Define the following
integral transformation

v(x0, T − t0; S) =
∫ T

t0

v(x(t), T − t; S) ∑
i∈N
hi(x(t))

v(x(t), T − t;N) dt,

here v(x̄(t), T − t; S) is characteristic function computed for subgame Γ (x̄(t), T −
t) along cooperative trajectory. It can be seen that
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v(x0, T − t;N) = v(x0, T − t;N).

Define the imputation set E(x0, T − t0) and the core under the new characteristic
function v(x0, T − t0; S), C(x0, T − t0) ⊂ E(x0, T − t0) and define the integral
transformation of the imputation ξ ∈ E(x0, T − t0) to ξ̄ ∈ E(x0, T − t0) as

ξ̄i =
∫ T

t0

ξi(t)
∑
i∈N
hi(x̄(t))

V (x̄(t), T − t;N)dt, i ∈ N,

where ξ(t) ∈ E(x̄(t), T − t). Similarly let E(x̄(t), T − t) C(x̄(t), T − t) be the set
of imputations and the core in subgame Γ (x̄(t), T − t) along cooperative trajectory
under characteristic function

v(x̄(t), T − t; S) =
∫ T

t

v(x(τ ), T − τ ; S) ∑
i∈N
hi(x(τ ))

v(x(τ ), T − τ ;N) dτ.

Theorem 1 C(x0, T − t0) is strongly time-consistent.

To prove it is sufficient to take for each ξ̄ ∈ E(x0, T − t0) as βi(t)

βi(t) =
ξi(t)

∑
i∈N
hi(x(t))

v(x(t), T − t;N),

where ξ(t) ∈ C(x(t), T − t) is an integrable selector from C(x(t), T − t).
What is the connection between C and C? If there is a nonvoid intersection of C

and C, then this imputation set could be a good preferable optimality principle in
Γ (x0, T − t). Introduce

λ(S) = max
t0≤t≤T

v(x(t), T − t; S)
v(x(t), T − t;N),

λ(N) = 1.

We have

v(x0, T − t0; S) ≤ λ(S)
∫ T

t0

∑
i∈N
hi(x(t))dt = λ(S)v(x0, T − t0;N),

v(x0, T − t0;N) = λ(N)v(x0, T − t0;N) = v(x0, T − t0;N),

λ(S) ≥ v(x0, T − t0; S)
v(x0, T − t0;N),

v(x0, T − t0; S) ≤ λ(S)v(x0, T − t0;N).
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Denote by Ĉ(x0, T − t0) the set of all solutions ξ = {ξ1, . . . , ξn}
∑
i∈S
ξi ≥ λ(S)v(x0, T − t0;N), S ⊂ N,

∑
i∈N
ξi = v(x0, T − t0;N).

From previous considerations it follows

∑
i∈S
ξi ≥ λ(S)v(x0, T − t0;N) ≥ v(x0, T − t0; S).

We see that

Ĉ(x0, T − t0) ⊂ C(x0, T − t0) ∩ C(x0, T − t0)

and

Ĉ(x(t), T − t) ⊂ C(x(t), T − t) ∩ C(x(t), T − t).

The following theorem holds.

Theorem 2

C(x0, T − t0) ⊃
∫ t

t0

ξ(t)

n∑
i=1

hi(x̄(t))

v(x̄(t), T − t;N) ⊕ Ĉ(x̄(t), T − t) (6)

for any integrable selector ξ(t) ∈ C(x(t), T − t).
Proof Theorem 2 follows from the inclusion Ĉ(x̄(t), T − t) ⊂ C̄(x̄(t), T − t) and
strongly time-consistency of C̄(x0, T − t0).

From Theorem 2 it follows that for each imputation ξ0 ∈ C(x0, T − t0) ∩
Ĉ(x0, T − t0) there exist IDP

β(t) =
ξ(t)

n∑
i=1

hi(x̄(t))

v(x̄(t), T − t;N),

where ξ(t0) = ξ0 and ξ(t) is an integrable selector from C(x̄(t), T − t), such that

∫ t

t0

β(τ)dτ ⊕ Ĉ(x̄(t), T − t) ⊂ C̄(x0, T − t0). (7)

��
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Suppose that Ĉ(x0, T − t0) �= ∅. The interpretation of (7) is as follows.
Ĉ(x0, T − t0) is the subset of the original core C(x0, T − t0) and for any imputation
ξ ∈ Ĉ(x0, T − t0) ∩ C(x0, T − t0) from this subset of original core C(x0, T − t0)
one can construct the IDP (the imputation distribution procedure) such that if in
an intermediate time instant t players for some reasons would like to switch to
another optimal imputation (ξ t )′ ∈ Ĉ(x̄(t), T − t) ⊂ C(x̄(t), T − t) from the
subset of original core, they will still get the payments according to the imputation
from C̄(x0, T − t0), resulting from the integral transformation of C(x0, T − t0).

2 Repeated Games

Folk theorems are well known in game theory [1, 2, 6–9]. By using the so-called
punishment strategies they show the possibility to attain in some sense preferable
outcomes. These outcomes are stable against deviations of single players. But
the natural question arises: is it possible to get “good” outcomes stable against
deviations of coalitions (coalition-proofness). Now we try to construct a mechanism
based on the introduction of an analog of characteristic function which makes it
possible (under some conditions on this newly defined characteristic function) to
get coalition-proofness for repeated and multistage games [9]. This will show us
the way of constructing strongly time-consistent optimality principles in multistage
games.

Denote by G the infinity repeated n-person game with the game Γ played on
each stage. For simplicity suppose that the stage game Γ is finite (has finite sets of
strategies).

Γ =< N;U1, . . . , Ui, . . . , Un;K1, . . . , Ki, . . . , Kn > .

If on stage k(1 ≤ k ≤ ∞) strategy profile uk = (uk1, . . . , uki , . . . , ukn) is chosen, the
payoff in G is defined as

Hi(u1(·), . . . , ui(·), . . . , un(·)) =
∞∑
k=1

δk−1Ki(u
k
1, . . . , u

k
i , . . . , u

k
n) =

=
∞∑
k=1

δk−1Ki(u
k) = Hi(u(·)), i ∈ N,

(8)

here u1(·) = (u1
1, . . . , u

k
1, . . .), . . ., ui(·) = (u1

i , . . . , u
k
i , . . .), . . ., un(·) =

(u1
n, . . . , u

k
n, . . .), δ ∈ (0, 1).

Here in the expression ui(·) = (u1
i , . . . , u

k
i , . . .), i ∈ N uki is the strategy chosen

by player i in the game Γ on stage k. We suppose that on stage k when choosing uki
player i knows the choices of other players and remembers his choices on previous
stages. Thus uki is function of history
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hk = (u1
1, . . . , u

k−1
1 ; . . . ; u1

i , . . . , u
k−1
i ; . . . ; u1

n, . . . , u
k−1
n ).

Formally we have to write uki (h
k), i.e. uki depends upon history hk , k = 1, . . . .

However in this paper for convenience we shall write uki instead uki (h
k).

Consider the strategy profile ū(·) = (ū1(·), . . . , ūi (·), . . . , ūn(·)) such that

∑
i∈N
Hi(ū) = max

u(·)
∑
i∈N
Hi(u). (9)

It is evident that such strategy profile always exists.
One can take ūi (·) = (ū1

i , . . . , ū
k
i , . . . , ) i ∈ N such that

∑
i∈N
Ki(ū1, . . . , ūi , . . . , ūn) = max

u1,...,ui ,...,un

∑
i∈N
Ki(u1, . . . , ui, . . . , un) (10)

and since the stage games are the same (G is repeated game) we can take ūki = ūi
for all k = 1, . . . , n. Then from (8)–(10) we get that

∑
i∈N
Hi(ū) =

∑
i∈N

( ∞∑
k=1

δk−1Ki(ū
k
1, . . . , ū

k
n)

)
=

=
∑
i∈N

( ∞∑
k=1

δk−1Ki(ū1, . . . , ūn)

)
= 1

1− δ
∑
i∈N
Ki(ū1, . . . , ūn).

(11)

Introduce characteristic function V (S), S ⊂ N in Γ in classical sense. Then we
shall have

V (N) =
∑
i∈N
Ki(ū1, . . . , ūn) (12)

and it can be easily shown that the characteristic function W(S), S ⊂ N in G will
have the form

W(S) = 1

1− δ V (S), S ⊂ N. (13)

Remind now the definition of strong (or coalition proof) Nash equilibrium.

Definition 3 The n-tuple of strategies (û1, . . . û2, . . . ûn) = û is called strong (or
coalition proof) Nash equilibrium (SNE) if for all S ⊂ N , and all uS = {ui, i ∈ S}
the following inequality holds

∑
i∈S
Ki(û) ≥

∑
i∈S
Ki(û||uS). (14)
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Consider now the core C in Γ , and suppose that C �= ∅, and suppose also that
there exist an imputation α ∈ C such that

∑
i∈S
αi > V (S), S ⊂ N, S �= N. (15)

2.1 Associated Zero-Sum Games

Consider a family of zero-sum games ΓN\i,i with coalition N\{i} as first player
and coalition {i} as second. The payoff of N\{i} is equal to the sum of payoffs of
players from N\{i}. Denote by V (N\i) the value of ΓN\i,i . Let (μ̄N\i , μ̄i ) be the
saddle point (in mixed strategies) in ΓN\i,i .

Consider the n-tuple of strategies μ̄ = (μ̄1, . . . , μ̄n), and define

W(S) = max
μS

∑
i∈S
Ki(μS; μ̄N\S),

here μS = {μi, i ∈ S}, μ̄N\S = {μ̄i , i ∈ N\S}. It is clear that

W(S) ≥ V (S), W(N) = V (N), S ⊂ N.

Suppose, that there exist the solution of the system

∑
i∈S
αi > W(S),

∑
i∈N
αi = W(N) = V (N). (16)

Construct now the modification Gα of the game G. The difference between Gα

and G is in payoffs defined in stage games Γ when the cooperative strategies ū =
(ū1, . . . , ūn) are used and the payoff in this case is equal to α = (α1, . . . , αn), where
α satisfies (16). For all other strategy combinations the payoffs remain as in Γ .

The following theorem holds [10].

Theorem 3 In game Gα there exist δ ∈ (0, 1) and SNE such that payoffs in this

SNE are equal to αi
1

1− δ , which are payoffs in Gα under cooperation.

2.2 Multistage Games

Multistage game G starts from a fixed stage game Γ (z1) which can be considered
as situated in the position (root) z1 of the game tree G.

Γ (z1) =< N;Uz1
1 , . . . , U

z1
i , . . . , U

z1
n ;Kz1

1 , . . . , K
z1
i , . . . , K

z1
n > . (17)
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For simplicity we suppose that the set of playersN is the same in all stage games.
When the gameG develops the infinite sequence of stage games is realized but only
a finite number of them are different since we suppose that the total number of
different stage game Γ (z) is finite. As usual in multistage games we consider the
general case when the next stage game depends upon controls chosen by players
only in previous stage game. Like in previous section denote by ui(·) the strategy of
player i inG (defined as function of histories). The strategy profile which maximizes
the sum of players payoffs in G is called “cooperative” strategy profile and the
corresponding sequence of stage games (or equivalently sequence of positions on
the tree G) “cooperative trajectory.” Suppose that for each stage game Γ (z) the
characteristic function V (z, S) (in classical sense) is defined.

For each stage game Γ (z) consider the family of zero-sum games ΓN\i,i (z) and
corresponding saddle points μ̄zN\i , μ̄

z
i , and μ̄z = (μ̄z1, . . . , μ̄zn), define

W(z, S) = max
μzS

∑
i∈S
Kzi (μ

z
S, μ̄

z
N\S).

Let

W(S) = sup
z
W(z, S).

Suppose that

W(S) < inf
z
W(z,N) = inf

z
V (z,N).

Suppose the core C(z) is not empty in each stage game Γ (z), denote byD(z) the
subcore of C(z) as set of all imputations αz = (αz1, . . . , α

z
n),
∑
i∈S
αzi ≥ W(S), for

all S.
Suppose that for all z ∈ G,D(z) �= ∅ and suppose also that there exist imputation

αz = (αz1, . . . , αzn) such that

∑
i∈S
αzi > W(S) for all S, (18)

inf
S,z

[∑
i∈S
αzi −W(S)

]
= A > 0. (19)

For simplicity we shall consider the special case when V (z,N) = W(N) for all
z the previous conditions (18) and (19) can be written as

∑
i∈S
αi > W(S) for all S, (20)
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inf
S

[∑
i∈S
αi −W(S)

]
= A > 0, (21)

since the number of different stage games is finite and we can select α the same in
all stage games.

Construct now the modification Gα of the game in the same way as it was done
in Sect. 1. Theorem 1 from Sect. 1 holds also for the game Gα .

Theorem 4 In the gameGα there exist δ ∈ (0, 1) and SNE such that payoffs in this
SNE are equal to αi

1
1−δ , which are payoffs in Gα under cooperation.

2.3 Time-Consistency and Strongly Time-Consistency

Consider cooperative version of gameG and subgameG(z). Introduce the following
characteristic function in G and in G(z), respectively,

Ŵ (S) = 1

1− δW(S).

Denote the analog of the core Ĉ and Ĉ(z) in G under the defined above c.f.
Strongly time-consistency in this case means that for each imputation ᾱ ∈ Ĉ(z̄0)

there exist corresponding IDP β̄(1), . . . , β̄(l), . . . such that

l∑
k=0

δkβ̄(k)⊕ δl+1Ĉ(z̄l+1) ⊂ Ĉ(z̄0). (22)

It can be easily seen that if D(z) = D �= ∅, by selecting β̄(k) = β ∈ D(z̄k) we
can guarantee the strongly time-consistency of Ĉ(z̄0).

Suppose α ∈ Ĉ(z̄0), then by definition we have

∑
i∈S
ᾱi ≥ Ŵ (S) = 1

1− δ W̄ (S);
∑
i∈N
ᾱi = Ŵ (N) = 1

1− δ W̄ (N).

Represent ᾱ in the form

ᾱ =
∞∑
k=0

δkβ̄,

since ᾱ ∈ Ĉ(z̄0)
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∑
i∈S
ᾱi =

∑
i∈S

1

1− δ β̄i ≥ Ŵ (S) =
∑
i∈S

1

1− δ W̄ (S),

and

∑
i∈S
β̄i ≥ W̄ (S),

∑
i∈N
β̄i = W̄ (N).

Thus β̄ ∈ D(z̄k) = D, k = 0, 1, . . . , l, . . .. And we get that each imputation

ᾱ ∈ Ĉ(z̄0) can be represented in the form ᾱ =
∞∑
k=0

δkβ̄(k), when β̄(k) = β̄ ∈
D(z̄k) = D.

This will give us also strongly time-consistency of Ĉ(z̄0).
We have seen that for arbitrary ᾱ ∈ Ĉ(z̄0) there exist such IDP β̄(0), β̄(1), . . . ,

β̄(k), . . . (in our case β̄(k) = β̄ ∈ D), that

ᾱ =
∞∑
k=0

δkβ̄(k).

Suppose that α′ ∈
l∑
k=0

δkβ̄(k) ⊕ δl+1Ĉ(z̄l+1). To prove (22) we have to prove

that in this case α′ ∈ Ĉ(z̄0). Consider the stage l then we can write the imputation
α′ in the form

α′ =
l∑
k=0

δkβ̄(k)+ δl+1α′′,

here β̄(k) = β̄ ∈ D), where α′′ ∈ Ĉ(z̄l+1).
Since α′′ ∈ Ĉ(z̄l+1) we have

∑
i∈S
α′′i ≥ Ŵ (S) =

1

1− δ W̄ (S),
∑
i∈N
α′′i = Ŵ (N) =

1

1− δ W̄ (N),

and we can show that similar to previous case when α ∈ Ĉ(z̄0), α′′ can be
represented in the form

α′′ =
∞∑

k=l+1

δk−(l+1)β ′′(k),

where β ′′(k) = β ′′ ∈ D, k = l + 1, . . ..
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Then we get

α′ =
l∑
k=0

δkβ̄(k)+ δl+1
∞∑

k=l+1

δk−(l+1) ¯̄β(k) =
∞∑
k=0

δkβ̃(k),

where β̃(k) ∈ D, β̃(k) = β̄(k) = β̄, k = 1, . . . , l, β̃(k) = ¯̄β(k) = β ′′, k = l+1, . . ..
And we have

∑
i∈S
α′ =

l∑
k=0

δk
∑
i∈S
β̃i(k)+

∞∑
k=l+1

δk
∑
i∈S
β̃i(k) =

l∑
k=1

δk
∑
i∈S
β̄i(k)+

∞∑
k=l+1

δk
∑
i∈S

¯̄βi(k) ≥,

≥
l∑
k=0

δkW̄ (S)+
∞∑

k=l+1

δkW̄ (S) =
∞∑
k=0

δkW̄ (S) = 1

1− δ W̄ (S) = Ŵ (S).

In the similar way we can prove that
∑
i∈N
α′i = Ŵ (S). This proves that α′ ∈ Ĉ(z̄0).
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Part II
Stackelberg Games



Incentive Stackelberg Games for
Stochastic Systems

Hiroaki Mukaidani

Abstract Dynamic games with hierarchical structure have been identified as key
components of modern control systems that enable the integration of renewable
cooperative and/or non-cooperative control such as distributed multi-agent systems.
Although the incentive Stackelberg strategy has been admitted as the hierarchical
strategy that induces the behavior of the decision maker as that of the follower,
the followers optimize their costs under incentives without a specific information.
Therefore, leaders succeed in using the required strategy to induce the behavior of
their followers. This concept is considered very useful and reliable in some practical
cases. In this survey, incentive Stackelberg games for deterministic and stochastic
linear systems with external disturbance are addressed. The induced features of
the hierarchical strategy in the considered models, including stochastic systems
governed by Itô stochastic differential equation, Markov jump linear systems, and
linear parameter varying (LPV) systems, are explained in detail. Furthermore, basic
concepts based on the H2/H∞ control setting for the incentive Stackelberg games
are reviewed. Next, it is shown that the required set of strategies can be designed
by solving higher-order cross-coupled algebraic Riccati-type equations. Finally, as
a partial roadmap for the development of the underdeveloped pieces, some open
problems are introduced.
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1 Introduction

Over the past few decades, a considerable amount of research has been conducted on
various Stackelberg games. It is well known that Stackelberg game is a hierarchical
strategy that involves a first movement by the leader and subsequent movements
by followers [1]. The basic concept of the Stackelberg game is that the leader
determines a strategy in advance and the followers optimize their costs subject to
the leader’s strategy. Finally, the leader optimizes his or her own cost based on the
strategies of the followers. Recently, useful and reliable results on the Stackelberg
games have been obtained by investigating various practical applications. For
example, let us consider the scheduling problem in a packet switch operation in
a ring architecture (Fig. 1) [2].

Incoming packets on each link are stored in a finite capacity buffer and processed
by the central processor when it switches among the links according to a scheduling
policy. Packets are discarded when a buffer becomes full. The buffer dynamics of
that link are controlled locally based on the information about the state of the buffer
when the central processor is serving a particular link. For this real-world situation,
a central processor (called leader) has the ability to decide the strategy such that the
total throughput is maximized by inducing the local controllers for each link (called
follower). Specifically, we define the strategy design problem as choosing a static
output feedback control that minimizes the cost of transient around an equilibrium.
In this case, the objective function for each player that consists of each term in
the integrand penalizes transients on the queue length, queue length rate, and the
fluctuation of the loss probability, respectively [3].

The task of designing a strategy for this scheduling problem is challenging. For
example, a Stackelberg game model was used to describe the situation in which

Leader’s Control Follower’s Control

CP

Fig. 1 Scheduling problem in a packet switch operating in a ring architecture
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a leader and a follower use the same solar heating system to heat a solar storage
and swimming pool, respectively [4]. A Stackelberg game model has been applied
to describe electricity trading between a utility company (leader) and multiple
electricity users (followers) [5].

In general, Stackelberg strategy is a hierarchical equilibrium solution in Stackel-
berg games. In [6], an open-loop Stackelberg strategy and a closed-loop feedback
Stackelberg strategy were developed. Closed-loop Stackelberg strategies for deter-
ministic systems have been extensively discussed for linear quadratic problems [7].
Recently, in the studies of theory and application of Stackelberg strategy, the grow-
ing interest in multi-agent, cooperative, and stochastic systems has led to extensive
research in this direction [8–12]. In Stackelberg strategy, the leader’s strategy can
induce the decision or action of the followers such that the leader’s team-optimal
solution can be achieved. This kind of strategy is called the incentive Stackelberg
strategy, and this has been extensively studied for more than 30 years [13–26].
In [13], incentive problems and corresponding solutions in Stackelberg problems
based on the economic literature have been discussed partially. A new approach to
obtain the closed-loop Stackelberg solution for a class of two-person nonzero-sum
dynamic games characterized by linear quadratic dynamic games was developed in
[14]. Another approach to design the nonzero-sum closed-loop Stackelberg strategy
under the same conditions such that the leader can achieve the infimum of his/her
own criterion was discussed in [15]. In [16], an incentive Stackelberg problem
with perfect or partial dynamic information admitting optimal incentive schemes
with affine in the available information was addressed. The derivation of causal
real-time implementable optimal closed-loop incentive Stackelberg strategies for
a general class of discrete and continuous time was discussed in [17]. Sufficient
conditions for the incentive Stackelberg strategies in linear quadratic differential
games under relaxed conditions on the system parameters were obtained [18]. In
[19–21], necessary and sufficient conditions for the existence of a Stackelberg
solution for the multi-stage Stackelberg games were given. The linear quadratic
incentive Stackelberg game with multi-players in a two-level hierarchy has been
studied in [22, 23]. In [24], the three-level incentive Stackelberg strategy in a
nonlinear differential game was tackled and the sufficient condition for a linear
quadratic differential game was established. In [25], non-cooperative equilibria of
many players with multi-levels of hierarchy in decision making was studied. In
[26], the team-optimal state-feedback incentive Stackelberg strategy was developed
for two-person discrete-time dynamic games that are characterized by linear
state dynamics and quadratic cost functions. The unification of these important
results in the incentive Stackelberg problems has been provided. However, of all
existing problems and corresponding solutions, only a deterministic case has been
investigated. Furthermore, the presence of external disturbances and/or unmodeled
system dynamics over robust control has not been considered.

Recent advances in deterministic and stochastic systems on robust control
theory have resulted in revisiting incentive Stackelberg games [27–38]. In [27], the
incentive Stackelberg game for stochastic systems governed by the Itô differential
equation in a two-level hierarchy was explained and discussed for the first time.
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In [28], the incentive Stackelberg game for deterministic discrete-time systems
with deterministic external disturbance was studied. In [29], the study focused on
the single-leader-follower incentive Stackelberg game for discrete-time stochastic
systems with external deterministic disturbance as an extension of the previous
results. In [30, 33, 37], incentive Stackelberg games with multiple leaders and
followers were investigated. In particular, a novel concept of incentive possibility
has been discussed for a special case [33]. In [31, 35], the incentive Stackelberg
games with one leader and multiple followers under the H∞ constraint for the
discrete- and continuous-time stochastic systems have been investigated. In [32],
the incentive Stackelberg strategy for the infinite-horizon continuous-time Markov
jump stochastic systems with deterministic disturbance was developed. In [34],
the incentive Stackelberg game for discrete-time Markov jump stochastic systems
with external disturbance by means of static output feedback (SOF) strategy has
been addressed. In addition to the above stochastic systems, the H∞ constraint
incentive Stackelberg-Nash and Stackelberg-Pareto strategies for stochastic LPV
systems were studied [36, 38].

In this survey, incentive Stackelberg games for a class of stochastic systems
with external disturbance are explained. Although several references consider
deterministic problems, the stochastic cases are mainly reviewed here. First, after
showing a general method for solving the two-level hierarchical games by a simple
mathematical example to review this important concept, incentive Stackelberg
games with one leader and multiple followers are investigated for a class of
continuous-time stochastic linear systems with H∞ constraint. Unlike the existing
ordinary Stackelberg games, the leader is required to design an incentive Stackelberg
strategy set that can lead to the leader’s team-optimal solution and the follower’s
Nash equilibrium, and attenuate the external disturbance in the system simulta-
neously. Second, an infinite-horizon incentive Stackelberg games for a class of
Markovian jump linear stochastic systems (MJLSSs) governed by the Itô differential
equation are investigated. These games had multiple leaders and followers in a two-
level hierarchy and were investigated in line with the generalization of the existing
result found in [2]. As another important contribution, a novel concept of incentive
possibility is introduced. In contrast to the existing studies, the SOF incentive
Stackelberg strategy with H∞ constraint is studied for the first time. Conversely,
a robust incentive Stackelberg game for a class of stochastic LPV systems with
multiple decision makers is investigated. The aim in this section is to design a robust
incentive Stackelberg strategy in a linear state-feedback format with no scheduling
parameters due to the limitation of the real-time control applications. To determine
the strategy set and the related incentive of the decision makers, it should be noted
that a strategy is designed with a fixed gain and an incentive. Finally, conclusions
and suggestions for future work are presented.

Notation The notations used in this survey are fairly standard. In denotes the n ×
n identity matrix. col denotes a column vector. ‖v‖ denotes the Euclidean norm.
E[·] denotes the expectation operator. L2

F ([0, tf ], R�) (L2
F (R+, R

�)) denotes the

space of nonanticipative stochastic processes y(t) ∈ R
� satisfying E[∫ tf0 ‖y(t)‖2dt]
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(E[∫∞0 ‖y(t)‖2dt]). Ms
n,m represents the space of all A = (A(1), . . . , A(s)) with

A(k) being n×m matrix, k ∈ D, where D = {1, 2, . . . , s}. The component of S+
TU is defined as S+TU = (S(1)+T (1)U(1), . . . , S(s)+T (s)U(s)). L2

F (R+, R
k)

denotes the space consisting of all measurable functions u(t, ω) : R+ ×Ω → R
k ,

which is Ft -measurable for every t ≥ 0, and E[∫∞0 ‖u(t)‖2dt | rt = k] < ∞, i ∈
D. Γi denotes the set of admissible strategies for player Pi , where a strategy set is
said to be admissible if the resultant closed-loop system is asymptotically mean-
square stable (AMSS). Finally, for an N -tuple u = (u1, . . . , uN) ∈ Γ1 × · · · × ΓN
and for given sets Γi , we write

u∗−i := (u∗1, . . . , u∗i−1, ui, u
∗
i+1, . . . , u

∗
N),

u∗−0i := (u01(u
∗
1), . . . , u0(i−1)(u

∗
i−1), u0i (ui), u0(i+1)(u

∗
i+1), . . . , u0N(u

∗
N))

with ui ∈ Γi , where the superscript (∗) is used in the optimal case. me-x stands for
a value of m× 10−x . χA denotes indicator function.

2 The Basic Concept of Incentive Stackelberg Game

In order to summarize the incentive Stackelberg game, let us consider two-level
hierarchical games with one leader and multiple non-cooperative followers. The
hierarchical structure is depicted in Fig. 2. Among multiple players Pi , i =
0, 1, . . . , N , P0 is considered as the leader and P1, . . . ,PN are considered as the
followers, under the specification that each follower acts non-cooperatively.

Fig. 2 Incentive Stackelberg hierarchy
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The cost functionals of the leader and followers are given by

J0 = J0(u0, u1, . . . , uN), (1a)

Ji = Ji (u0, u1, . . . , uN), i = 1, . . . , N, (1b)

where u0 = col
[
u01 · · · u0N

]
.

Definition 1 ([1, 18]) A strategy set (u∗0, u∗1, . . . , u∗N) is called the team-optimal
solution of the game if

J0(u
∗
0, u

∗
1, . . . , u

∗
N) ≤ J0(u0, u1, . . . , uN) (2)

for any u0 and ui , i = 1, . . . , N .

The framework of the incentive Stackelberg games can be described as fol-
lows:

1. The player P0 announces the following strategy in advance to the players Pi :

u0i = u0i (ui). (3)

2. Each player Pi decides his/her own optimal strategy u∗i , i = 1, . . . , N under the
following Nash equilibrium solution concept, considering the announced strategy
of the player P0.

Ji (u∗0, u∗1, . . . , u∗N) ≤ Ji (u∗−0i (u0i ), u
∗−i (ui)). (4)

3. The player P0 finalizes the incentive Stackelberg strategy

u∗0i = u∗0i (u∗i ) (5)

for each player Pi , i = 1, . . . , N so that the team-optimal solution can be
achieved.

In order to gain a deeper understanding, a mathematical academic example of a
static game with N = 3 is solved. Consider the two-level incentive static game with
one leader three non-cooperative followers described by the following form:

J0 = J0(u0, u1, u2, u3) = uT A0u− bT0 u, (6a)

J1 = J1(u01, u1) = u2
1 + 2u2

01, (6b)

J2 = J2(u02, u2) = u2
2 + 3u2

02, (6c)

J3 = J3(u03, u3) = u2
3 + 4u2

03, (6d)

where
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A0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2 1 1 1 1 1
1 2 1 1 1 1
1 1 2 1 1 1
1 1 1 2 1 1
1 1 1 1 2 1
1 1 1 1 1 2

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
> 0, b0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1
2

−3
2
2

−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, u =

⎡
⎢⎢⎣

u0

u1

u2

u3

⎤
⎥⎥⎦ , u0 =

⎡
⎣
u01

u02

u03

⎤
⎦ .

The main steps to find the two-level incentive Stackelberg strategies u0i (ui) of the
players Pi i = 0, 1, . . . , 3 are as follows:

1. Using the well-known optimization technique, the team-optimal solution of P0
can be obtained

u∗ = 1

2
A−1

0 b0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u∗01
u∗02
u∗03
u∗1
u∗2
u∗3

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= 1

14

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

4
11

−24
11
11

−10

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

2. Next, let us consider the two-level incentive Stackelberg strategies u0i (ui) of the
form

u0i = u0i (ui) = u∗0i + ηii
(
ui − u∗i

)
, (8)

where ηii i = 1, . . . , 3 are three undetermined coefficients.
Substituting u∗i and u∗0i from (7) into (8), the following strategy set can be

defined.

u01 = u01(u1) = 4

14
+ η11

(
u1 − 11

14

)
, (9a)

u02 = u02(u2) = 11

14
+ η22

(
u2 − 11

14

)
, (9b)

u03 = u03(u3) = −24

14
+ η33

(
u3 + 10

14

)
. (9c)

3. Solve the following optimization problems:

min
u1

J1(u01(u1), u02(u2), u03(u3), u1, u2, u3)

= min
u1

[
u2

1 + 2

{
4

14
+ η11

(
u1 − 11

14

)}2
]
, (10a)
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min
u2

J2(u01(u1), u02(u2), u03(u3), u1, u2, u3)

= min
u2

[
u2

2 + 3

{
11

14
+ η22

(
u2 − 11

14

)}2
]
, (10b)

min
u3

J3(u01(u1), u02(u2), u03(u3), u1, u2, u3)

= min
u3

[
u2

3 + 4

{
−24

14
+ η33

(
u3 + 10

14

)}2
]
, (10c)

such that (9) holds.
Since Ji (u01(u1), u02(u2), u03(u3), u1, u2, u3) is strictly convex in ui , the

necessary and sufficient conditions for each problem above are given as follows:

∂J1

∂u1
= 2u1 + 4η11

{
4

14
+ η11

(
u1 − 11

14

)}
= 0, (11a)

∂J2

∂u2
= 2u2 + 6η22

{
11

14
+ η22

(
u2 − 11

14

)}
= 0, (11b)

∂J3

∂u3
= 2u3 + 8η33

{
−24

14
+ η33

(
u3 + 10

14

)}
= 0. (11c)

4. When ui = u∗i , i = 1, . . . , 3 are chosen for Eqs. (11), then

η11 = −7

4
u∗1 = −11

8
, (12a)

η22 = −14

33
u∗2 = −1

3
, (12b)

η23 = 7

48
u∗3 = − 5

48
. (12c)

Therefore, the two-level incentive Stackelberg strategies of Pi are obtained as
follows:

u01 = −11

8
u1 + 153

112
, (13a)

u02 = −1

3
u2 + 22

21
, (13b)

u03 = − 5

48
u3 − 601

336
. (13c)

In fact, by the strategies (13) announced ahead of time, the cost functionals of Pi
will become
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J1(u0, u1, u2, u3) = u2
1 + 2

(
−11

8
u1 + 153

112

)2

, (14a)

J2(u0, u1, u2, u3) = u2
2 + 3

(
−1

3
u2 + 22

21

)2

, (14b)

J3(u0, u1, u2, u3) = u2
3 + 4

(
− 5

48
u3 − 601

336

)2

. (14c)

By using the incentive (13), the player Pi’s optimal decision must be u∗i . Thus, the
strategies u0i (ui) given by (8) can be attained by the team-optimal condition, they
are then indeed the two-level incentive Stackelberg strategies announced by P0 in
this game.

The above-mentioned problem is very difficult to solve if the matrix contains
stochastic noise as the disturbance. In such cases, the expected value based on the
appropriate stochastic process should be considered.

It should be noted that some follower may not take the optimal strategy subject
to the leader’s incentive because it would be possible to take the better strategy in
the real-life example. Therefore, it is assumed that the follower cannot take their
optimal strategies by deviating the leader’s incentive such that the leader’s team-
optimal solution is achieved.

3 Incentive Stackelberg Game with One Leader
and Multiple Followers

In this section, the incentive Stackelberg game with one leader and multiple
followers for a class of linear stochastic systems governed by the Itô differential
equation with external deterministic disturbances is explained by using the previous
result in [35]. Since the deterministic disturbances in the systems are also considered
in the games, the incentive Stackelberg strategy with the H∞ constraint is derived.
Different from the deterministic incentive Stackelberg games [13, 17, 18, 23, 24, 26],
the stochastic incentive Stackelberg game with multiple followers in the systems
involving the state-dependent noise and the external deterministic disturbances is
discussed.

The structure of the game is depicted in Fig. 3. The game is conducted under the
stipulation that the followers act non-cooperatively.

The conditions for the existence of the leader’s incentive Stackelberg strategy
with the H∞ constraint are derived on the basis of the existing results for the
finite horizon stochastic H2/H∞ control problem [39]. It is shown that such a
strategy can be obtained by solving a set of the cross-coupled stochastic Riccati
differential equations (CCSRDEs); moreover, the strategies for the followers are
derived in a way that these strategies satisfy the requirement of the leader’s team-
optimal solution. It should be noted that the incentive is included in the hierarchical
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Fig. 3 The incentive Stackelberg strategy with H∞ constraint

structure, and the followers act to achieve the Nash equilibrium. The stochastic
maximum principle plays an important role in the derivation of the incentive
Stackelberg strategy. Furthermore, we extend the results to the infinite-horizon case,
where, in contrast with the finite-horizon case, the incentive Stackelberg strategy set
can be obtained by solving the cross-coupled stochastic algebraic Riccati equations
(CCSAREs). In this case, a simple computational algorithm based on the Lyapunov
iteration is derived to solve the obtained CCSAREs. Finally, simple numerical
examples are provided to illustrate the feasibility and effectiveness of finding the
incentive Stackelberg strategy set.

3.1 Definitions and Preliminaries

In this section, we will introduce some definitions and preliminary results on the
stochastic H2/H∞ control and the LQ control. Firstly, we introduce the team-
optimal solution concept [1, 18], which is the essential concept.

Definition 2 ([1, 18]) Let J0(u0, u1, . . . , uN) be a given cost function of the leader,
where u0 denotes the leader’s control, and ui , i = 1, . . . , N , denotes the ith
follower’s control. A control set (u∗0, u∗1, . . . , u∗N) is called a team-optimal solution
if

J0(u
∗
0, u

∗
1, . . . , u

∗
N) ≤ J0(u0, u1, . . . , uN) (15)

for any u0 and ui , i = 1, 2, . . . , N .
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It should be noted that if J0 is quadratic form and strict convex, then a unique
optimal solution exists [1].

Secondly, a finite horizon stochastic H2/H∞ control problem is introduced [39].
Consider the following linear stochastic system:

dx(t) = [A(t)x(t)+ B(t)u(t)+ E(t)v(t)]dt + Ap(t)x(t)dw(t),
x(0) = x0, (16a)

z(t) = col
[
C(t)x(t) D(t)u(t)

]
, DT (t)D(t) = Im, (16b)

where x(t) ∈ R
n denotes the state vector. u(t) ∈ L2

F ([0, tf ], R
m) denotes

the control input. v(t) ∈ L2
F ([0, tf ], R

nv ) represents the external deterministic
disturbance. w(t) ∈ R denotes a one-dimensional standard Wiener process defined
in the filtered probability space [6]. z(t) ∈ R

nz denotes the controlled output. A(t)
and Ap(t) are n × n dimensional matrices, B(t) is n × m dimensional matrix,
E(t) is n × nv dimensional matrix, C(t) is nz × n dimensional matrix, and D(t)
is nz×m dimensional matrix, respectively. Furthermore, all coefficient matrices are
time-varying with piecewise-continuous elements.

The finite horizon stochastic H2/H∞ control problem can be stated as follows
[39]:

Given the disturbance attenuation level γ > 0, the finite horizon stochastic
H2/H∞ control problem is to find an optimal state feedback control u∗(t) ∈
L2
F ([0, tf ], R

m) and a worst-case disturbance v∗(t) ∈ L2
F ([0, tf ], R

nv ) such
that

1. when the optimal state feedback control u∗(t) = K∗(t)x(t) is applied,

‖L‖[0,tf ] = sup
v ∈ L2

F ([0, tf ], Rnv )
v �= 0, x0 = 0

‖z‖[0,tf ]
‖v‖[0,tf ]

= sup
v ∈ L2

F ([0, tf ], Rnv )
v �= 0, x0 = 0

√
Ju(u∗)√

E

[∫ tf

0
‖v(t)‖2dt

] < γ, (17)

where K∗(t) is the optimal feedback gain and

Ju(u) := E

[∫ tf

0
‖z(t)‖2dt

]

= E

[∫ tf

0

{
xT (t)CT (t)C(t)x(t)+ uT (t)u(t)}dt

]
. (18)

2. when the worst-case disturbance v∗(t) = F ∗(t)x(t) is applied, u∗(t) minimizes
the cost functional Ju(u, v∗) = Ju(u) in (18). It should be noted that F ∗(t)
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denotes the gain of the worst-case disturbance. Here, the so-called worst-case
disturbance means that

v∗(t) = arg min
v
Jv(u

∗, v), (19)

where

Jv(u
∗, v) = E

[∫ tf

0

{
γ 2‖v(t)‖2 − ‖z(t)‖2}dt

]
.

It should be noted that if the previous strategy pair (u∗, v∗) exists, then it is said
that the finite horizon control has Nash equilibrium solution (u∗, v∗).

Lemma 1 ([39]) Finite horizon H2/H∞ control has solution (u∗(t), v∗(t)) =
(K∗(t)x(t), F ∗(t)x(t)) if and only if the following CCSRDEs (20) have solutions
X(t) ≥ 0 and Y (t) ≥ 0 on [0, tf ].

−Ẋ(t) = X(t)Af (t)+ ATf (t)X(t)+ ATp (t)X(t)Ap(t)
+X(t)S(t)X(t)+Q0(t), (20a)

−Ẏ (t) = Y (t)Af (t)+ ATf (t)Y (t)+ ATp (t)Y (t)Ap(t)
−γ−2Y (t)T (t)Y (t)+X(t)S(t)X(t)+Q0(t), (20b)

where

X(tf ) = Y (tf ) = 0,

Af (t) := A(t)− S(t)X(t)+ γ−2T (t)Y (t),

S(t) := B(t)BT (t),
T (t) := E(t)ET (t),
Q0(t) := CT (t)C(t).

In this case, the optimal state feedback control and the worst-case disturbance are
as given below.

u∗(t) = K∗(t)x(t) = −BT (t)X(t)x(t), (21a)

v∗(t) = F ∗(t)x(t) = γ−2ET (t)Y (t)x(t). (21b)

It should be noted that when we consider the infinite-horizon case, the CCSRDEs
(20) changes to the CCSAREs. Similar results can be referred in [39] and the related
proofs can be found there. The results will be considered when we discuss the
infinite-horizon case.
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Thirdly, the existing results of the LQ control problem for the stochastic systems
in [39] is extended. Let us consider the following finite-time stochastic LQ control
problem:

min
u
J (u), (22)

where

J (u) := 1

2
E

[ ∫ tf

0

{
xT (t)Q(t)x(t)+ uT (t)R(t)u(t)+ 2uT (t)U(t)x(t)

}
dt

]
,

Q(t) = QT (t) ≥ 0, R(t) = RT (t) > 0

such that

dx(t) = [A(t)x(t)+ B(t)u(t)]dt + Ap(t)x(t)dw(t), x(0) = x0.

Lemma 2 ([35]) Assume that Q(t) − UT (t)R−1(t)U(t) ≥ 0. Suppose that the
following stochastic differential Riccati equation (SDRE) has a solution X(t) ≥ 0.

−Ẋ(t) = X(t)[A(t)− B(t)R−1(t)U(t)
]

+[A(t)− B(t)R−1(t)U(t)
]T
X(t)+ ATp (t)X(t)Ap(t)

−X(t)B(t)R−1(t)BT (t)X(t)+Q(t)− UT (t)R−1(t)U(t) = 0. (23)

Then, the optimal feedback control is given by

u(t) = −R−1(t)
(
BT (t)X(t)+ U(t))x(t). (24)

It should be noted that the solution is defined in the interval [0, tf ].
Finally, in order to derive our results for the infinite-horizon case, the following

facts will be used.

Definition 3 ([35]) Consider the following stochastic system with multiple deci-
sion makers:

dx(t) =
⎡
⎣Ax(t)+

N∑
j=0

Bjuj (t)

⎤
⎦ dt + Apx(t)dw(t). (25)

If there exist feedback control ui(t) = Kix(t), i = 0, 1, . . . , N such that for any
x(0) = x0, the closed-loop stochastic system (25) is AMSS, the stochastic system
with multiple decision makers is called stabilizable.

Definition 4 ([39, 40]) Consider the following stochastic system with measurement
equation:
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dx(t) = Ax(t)dt + Apx(t)dw(t), x(0) = x0, (26a)

z(t) = Cx(t). (26b)

If z(t) ≡ 0, ∀ t ≥ 0 implies x0 = 0, (A, Ap | C) is called exactly observable.

It may be noted that exact observability of stochastic linear controlled systems
has been well documented [40].

In the next two sections, we will formulate the incentive Stackelberg game with
H∞ constraint for the finite-horizon case, and then solve the game formulated.

3.2 Problem Formulation

Consider a linear stochastic system governed by the Itô differential equation defined
by

dx(t) =
[
A(t)x(t)+

N∑
j=1

[
B0j (t)u0j (t)+ Bj (t)uj (t)

]

+ E(t)v(t)
]
dt + Ap(t)x(t)dw(t), x(0) = x0, (27a)

z(t) = col
[
C(t)x(t) u0(t) u1(t) · · · uN(t)

]
, (27b)

u0(t) = col
[
u01(t) · · · u0N(t)

]
, (27c)

where Bi(t) is n × mi dimensional matrix and B0i (t) is n × m0i dimensional
matrix, respectively. Furthermore, these matrices are time-varying with piecewise-
continuous elements.
u0(t) ∈ L2

F ([0, tf ], Rm0), m0 = ∑N
j=1m0j with u0j (t) ∈ L2

F ([0, tf ], Rm0j )

denotes the leader’s control input. ui(t) ∈ L2
F ([0, tf ], Rmi ), i = 1 , . . . , N denotes

the ith follower’s control input. In the following, we use P0 to represent the leader
and Pi , i = 1 , . . . , N to represent the ith follower. The definitions of the other
variables are the same as those in stochastic system (16).

On the other hand, the cost functions of P0 and Pi , i = 1, 2, . . . , N are given
by

J0(u01, . . . , u0N, u1, . . . , uN , v)

= 1

2
E

[ ∫ tf

0

{
xT (t)Q0(t)x(t)+

N∑
i=1

[
uT0i (t)R00i (t)u0i (t)

+ uTi (t)R0i (t)ui(t)

]}
dt

]
, (28a)
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Ji(u01, . . . , u0N, u1, . . . , uN , v)

= 1

2
E

[ ∫ tf

0

{
xT (t)Qi(t)x(t)+ uT0i (t)R0ii (t)u0i (t)

+ uTi (t)Rii(t)ui(t)
}
dt

]
, i = 1, . . . , N, (28b)

where Q0(t) := CT (t)C(t), Qi(t) = QTi (t) ≥ 0, R00i (t) = RT00i (t) > 0, R0i (t) =
RT0i (t) ≥ 0, R0ii (t) = RT0ii (t) ≥ 0, and Rii(t) = RTii (t) > 0, i = 1, . . . , N are
piece-wise continuous functions of time on the fixed interval [0, tf ].

The leader’s strategy to which optimal response of the follower (obtained by
minimization of his own cost function) coincides with team-optimal strategy is
called incentive Stackelberg strategy, thus yielding the optimal team-trajectory [18].
In fact, the game process to determine the incentive Stackelberg strategy set is as
follows [14, 18]:

1. The team-optimal strategy is computed

u∗0i (t) = K∗
0i (t)x(t), (29a)

u∗i (t) = K∗
i (t)x(t), i = 1, . . . , N, (29b)

where K∗
0i (t) and K∗

i (t) denote the gains of the team-optimal strategy.
2. The leader announces a strategy ahead of time to the followers with the following

feedback pattern:

u0i (t) = u0i (t, x(t), ui) = u∗0i (t)+ ηii(t)
(
ui(t)− u∗i (t)

)

= K∗
0i (t)x(t)+ ηii(t)

(
ui(t)−K∗

i (t)x(t)
)

= η0i (t)x(t)+ ηii(t)ui(t), i = 1, . . . , N, (30)

where η0i (t) = K∗
0i (t) − ηii(t)K

∗
i (t) ∈ R

m0i×n and ηii(t) ∈ R
m0i×mi

are strategy parameter matrices. Moreover, their components are piece-wise
continuous functions of time on the interval [0, tf ].

3. The followers determine their strategies to achieve a Nash equilibrium by
responding to the announced strategy of the leader.

4. The leader determines the incentive Stackelberg strategy

u∗0i (t) = u∗0i (t, x(t), u∗i ) = η∗0i (t)x(t)+ η∗ii (t)u∗i (t) (31)

for i = 1, . . . , N to achieve the team-optimal solution (u∗0, u∗1, . . . , u∗N), which
is associated with the Nash equilibrium strategy u∗i (t) for i = 1, . . . , N of the
followers.

The incentive Stackelberg game under the H∞ constraint with one leader and
multiple followers is formulated as follows:
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For any given γ > 0, 0 < tf < ∞, find an incentive strategy (31) and a state
feedback control u∗i (t) = K∗

i (t)x(t) ∈ L2
F ([0, tf ], R

mi ), i = 1, . . . , N that are
associated with a worst-case disturbance v∗(t) = F ∗γ (t)x(t) ∈ L2

F ([0, tf ], R
mv )

such that

1. the stochastic system (27) attains the team-optimal condition (32a) with H∞
constraint condition (32b)

J0(u
∗
01, . . . , u

∗
0N, u

∗
1, . . . , u

∗
N, v

∗)

= min
u01,...,u0N ,u1,...,uN

J0(u01, . . . , u0N, u1, . . . , uN , v
∗), (32a)

0 ≤ Jv(u∗01, . . . , u
∗
0N, u

∗
1, . . . , u

∗
N, v

∗)

≤ Jv(u∗01, . . . , u
∗
0N, u

∗
1, . . . , u

∗
N, v), (32b)

where

Jv(u01, . . . , u0N, u1, . . . , uN , v) = E

[ ∫ tf

0

{
γ 2‖v(t)‖2 − ‖z(t)‖2}dt

]
,

‖z(t)‖2 = xT (t)Q0(t)x(t)+
N∑
j=0

uTj (t)uj (t)

for ∀v(t) �= 0 ∈ L2
F ([0, tf ], Rmv ),

2. the control set (u∗0i , u∗i ) ∈ R
m0i+mi , i = 1, . . . , N satisfies the inequality:

J ∗i = Ji(u∗01(u
∗
1), . . . , u

∗
0N(u

∗
N), u

∗
1, . . . , u

∗
N, v

∗)

≤ Ji(u∗−0i (u0i ), u
∗−i (ui), v∗)

= Ji((u∗01(u
∗
1), . . . , u

∗
0(i−1)(u

∗
i−1), u0i (ui), u

∗
0(i+1)(u

∗
i+1), . . . , u

∗
0N(u

∗
N),

(u∗1, . . . , u∗i−1, ui, u
∗
i+1, . . . , u

∗
N), v

∗). (33)

It should be noted that F ∗γ (t) denotes the gains of the worst-case disturbance.
Furthermore, it should also be noted that the leader’s strategy u0i depends on the
follower’s strategy ui because the incentive strategy set (30) holds.

It is obvious that inequality (33) defines a Nash equilibrium [1, 41], that is, the
strategy set (u∗0i , u∗i ) ∈ R

m0i+mi , i = 1, . . . , N constitute both the team-optimal
incentive Stackelberg strategy set with H∞ constraint of the leader and the Nash
equilibrium strategies of the followers.
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3.3 Main Results

Let us define the space of admissible strategy Γi for Pi , i = 0, 1, . . . , N . For each
pair (u0i , ui) ∈ Γ0 × Γi , it is supposed that the linear stochastic systems (27) has
a unique solution on [0, tf ] for all initial state x0 and the values of Ji are well
defined. Firstly, the team-optimal solution set with the H∞ constraint (u∗0i , u∗i , v∗)
is derived. By centralizing the control inputs in the stochastic system (27), the
following centralized stochastic systems can be obtained:

dx(t) =
[
A(t)x(t)+ Bc(t)uc(t)+ E(t)v(t)

]
dt

+ Ap(t)x(t)dw(t), x(0) = x0, (34a)

z(t) = col
[
C(t)x(t) uc(t)

]
, (34b)

where

Bc(t) :=
[
B0(t) B1(t) · · · BN(t)

]
,

B0(t) :=
[
B01(t) · · · B0N(t)

]
,

uc(t) := col
[
u0(t) u1(t) · · · uN(t)

]
.

Furthermore, the cost functional (28a) can be changed as:

J0(u01, . . . , u0N, u1, . . . , uN , v)

= 1

2
E

[ ∫ tf

0

{
xT (t)Q0(t)x(t)+ uTc (t)Rc(t)uc(t)

}
dt

]
, (35)

where

Q0(t) := CT (t)C(t),
Rc(t) := block diag

(
R00(t) R01(t) · · · R0N(t)

)
,

R00(t) := block diag
(
R001(t) · · · R00N(t)

)
.

By using Lemma 1, the following conditions via the CCSRDEs can be obtained:

−Ṗ (t) = P(t)Ac(t)+ ATc (t)P (t)+ ATp (t)P (t)Ap(t)
+P(t)Sc(t)P (t)+Q0(t), (36a)

−Ẇ (t) = W(t)Ac(t)+ ATc (t)W(t)+ ATp (t)W(t)Ap(t)
−γ−2W(t)T (t)W(t)+ P(t)Sc(t)P (t)+Q0(t), (36b)
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where

P(tf ) = W(tf ) = 0,

Ac := A(t)− Sc(t)P (t)+ γ−2T (t)W(t),

Sc(t) := Bc(t)R−1
c (t)B

T
c (t).

Furthermore, if P(t) ≥ 0 and W(t) ≥ 0 for ∀t ∈ [0, tf ] hold, the strategy set is as
given below.

u∗c (t) = col
[
u∗0(t) u∗1(t) · · · u∗N(t)

]

= K∗
c (t)x(t) = −R−1

c (t)B
T
c (t)P (t)x(t), (37a)

v∗(t) = F ∗γ (t)x(t) = γ−2ET (t)W(t)x(t), (37b)

where K∗
c (t) is the optimal feedback gain of the team-optimal strategy and

u∗0 := col
[
u∗01(t) · · · u∗0N(t)

]
,

u∗0i (t) = K∗
0i (t)x(t) = −R−1

00i (t)B
T
0i (t)P (t)x(t),

u∗i (t) = K∗
i (t)x(t) = −R−1

0i (t)B
T
i (t)P (t)x(t).

Secondly, the non-cooperative Nash strategy set for the followers is derived. Define
the following matrix functions:

η0i (t) = K∗
0i (t)− ηii(t)K∗

i (t)

= −R−1
00i (t)B

T
0i (t)P (t)+ ηii(t)R−1

0i (t)B
T
i (t)P (t). (38)

For given ηii(t), i = 1, . . . , N which satisfy (31), let us consider the following
optimization problem:

min
u0i (ui ),ui

Ji(u
∗−0i (u0i ), u

∗−i (ui), v∗)

= min
ui
Ji
(
u∗−0i

(
η0i (t)x(t)+ ηii(t)ui(t)

)
, u∗−i (ui), v∗

)
, (39)

such that

dx(t) = F(t, x, ui, ηii)dt + Ap(t)x(t)dw(t), x(0) = x0, (40)

where
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F(t, x, ui, ηii)

:= A(t)x(t)+ B0i (t)
[
η0i (t)x(t)+ ηii(t)ui(t)

]+ Bi(t)ui(t)

+
N∑

j=1,j �=i

[
B0j (t)

[
η0j (t)x(t)+ ηjj (t)u∗j (t)

]+ Bj (t)u∗j (t)
]

+γ−2T (t)W(t)x(t).

In order to apply the maximum principle to this optimization problem, the following
Hamiltonian is defined:

Hi = 1

2

[
xT (t)Qi(t)x(t)+

[
η0i (t)x(t)+ ηii(t)ui(t)

]T
R0ii (t)

×[η0i (t)x(t)+ ηii(t)ui(t)
]+ uTi (t)Rii(t)ui(t)

]

+αTi (t)F (t, x, ui, ηii)+ βTi (t)Ap(t)x(t), i = 1, . . . , N. (41)

Hence, we have the following equations:

dαi(t) = −∂Hi
∂x
dt + βi(t)dw(t)

= −
[(
Qi(t)+ ηT0i (t)R0ii (t)η0i (t)

)
x(t)+ ηT0i (t)R0ii (t)ηii(t)ui(t)

+[A(t)+ B0i (t)η0i (t)
]T
αi(t)

+
N∑

j=1,j �=i

[
B0j (t)η0j (t)+ B̄j (t)

(
∂u∗j (t)
∂x

)]T
αi(t)

+γ−2W(t)T (t)αi(t)+ ATp (t)βi(t)
]
dt + βi(t)dw(t), (42a)

∂Hi

∂ui(t)
= ηTii (t)R0ii (t)[η0i (t)x(t)+ ηii(t)ui(t)]

+Rii(t)ui(t)+ B̄Ti (t)αi(t) = 0, (42b)

where B̄i(t) := Bi(t)+ B0i (t)ηii(t).
It should be ensured that u∗0i (t), u∗i (t), and v∗(t) satisfy the H∞ constraint team-

optimal solution of (37). Without loss of generality, since we consider the linear
stochastic system, it is assumed that

αi(t) = Zi(t)x(t). (43)
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Then, from (42b), we have

ui(t) = u†
i (t) = K†

i (t)x(t)

= −R̂−1
ii (t)

[
ηTii (t)R0ii (t)η0i (t)+ B̄Ti (t)Zi(t)

]
x(t), (44)

where K†
i (t) denotes the optimal feedback gain under the incentive and

R̂ii (t) := Rii(t)+ ηTii (t)R0ii (t)ηii(t).

It should be noted that R̂ii (t) is nonsingular because of Rii(t) > 0. Then, we
assume that the following condition holds:

u∗i (t) = K∗
i (t)x(t) = u†

i (t) = K†
i (t)x(t). (45)

Namely, we have

K∗
i (t) = −R−1

0i (t)B
T
i (t)P (t) = K†

i (t)

= −R̂−1
ii (t)

[
ηTii (t)R0ii (t)η0i (t)+ B̄Ti (t)Zi(t)

]
. (46)

Therefore, from Eq. (46) we have

ηTii (t)
(
BT0i (t)Zi(t)− R0ii (t)R

−1
00i (t)B

T
0i (t)P (t)

)

= Rii(t)R−1
0i (t)B

T
i (t)P (t)− BTi (t)Zi(t), i = 1, . . . , N. (47)

It should be noted that η0i (t) − ηii(t)R−1
0i (t)B

T
i (t)P (t) = −R−1

00i (t)B
T
0i (t)P (t) of

(38) is used.
Furthermore, stochastic system (42a) can be changed as:

dαi(t) =−
[(
Qi(t)+ ηT0i (t)R0ii (t)

[
η0i (t)+ ηii(t)K∗

i (t)
]

+
[
A(t)+

N∑
j=1

B0j (t)η0j (t)+ γ−2T (t)W(t)

]T
Zi(t)

+
N∑

j=1,j �=i
K∗T
j (t)B̄

T
j (t)Zi(t)

)
x(t)+ ATp (t)βi(t)

]
dtβi(t)dw(t).

(48)

On the other hand, from (43), we have
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dαi(t) = ∂αi(t)

∂t
dt + ∂αi(t)

∂x(t)
dx(t)

=
[
Żi(t)+ Zi(t)

(
A(t)

+
N∑
j=1

[
B0j (t)

[
η0j (t)+ ηjj (t)K∗

j (t)
]+ Bj (t)K∗

j (t)
]

+γ−2T (t)W(t)

)]
x(t)dt + Zi(t)Ap(t)x(t)dw(t), (49)

where

dαik(t) = ∂αik

∂t
dt +

n∑
p=1

∂αik

∂xp
dxp + 1

2

n∑
q=1

n∑
p=1

∂2αik

∂xq∂xp
dxpdxq,

x(t) =
⎡
⎢⎣
x1(t)
...

xn(t)

⎤
⎥⎦ , αi(t) =

⎡
⎢⎣
αi1(t)
...

αin(t)

⎤
⎥⎦ , ∂2αik

∂xq∂xp
= 0.

By the term-wise comparison between (48) and (49), we have

−Żi(t) = Zi(t)Â(t)+ ÂT (t)Zi(t)+ ATp (t)Zi(t)Ap(t)
+ Zi(t)B̄i(t)R̂−1

ii (t)B̄
T
i (t)Zi(t)+ Q̂i(t)

− ηT0i (t)R0ii (t)ηii(t)R̂
−1
ii (t)η

T
ii (t)R0ii (t)η0i (t), (50)

where

Â(t) := A(t)−
N∑
j=1

B0j (t)R
−1
00j (t)B

T
0j (t)P (t)

−
N∑
j=1

Bj (t)R
−1
0j (t)B

T
j (t)P (t)+ γ−2T (t)W(t),

Q̂i(t) := Qi(t)+ ηT0i (t)R0ii (t)η0i (t).

We are now in a position to state the main result for the incentive Stackelberg game
with H∞ constraint.

Theorem 1 ([35]) Suppose that the solutions of the CCSRDEs (36), the matrix
algebraic equations (MAEs) (47), and the SDREs (50) exist. Then the strategy set
(31) associated with u∗i (t) = K∗

i (t)x(t) for i = 1, . . . , N constitute the incentive
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Stackelberg strategy set with H∞ constraint as formulated in Section III, where
η∗0i (t) and η∗ii (t) are determined by using (38) and (47), respectively.

It should be noted that η∗0i (t) and η∗ii (t) denote the required incentive.

Remark 1 It should be noted that the unknown variables of the SDREs (50) are
Zi(t) and ηii(t). However, we have the relation from (47). Hence, it is possible to
obtain the solutions Zi(t) and ηii(t) by combining Eqs. (38), (47), and (50).

3.4 Infinite-Horizon Case

In this section, the infinite-horizon incentive Stackelberg game with multiple
followers subject to theH∞ constraint is explained. Consider a time-invariant linear
stochastic system governed by the Itô stochastic differential equation:

dx(t) =
[
Ax(t)+

N∑
j=1

[
B0j u0j (t)+ Bjuj (t)

]+ Ev(t)
]
dt

+ Apx(t)dw(t), x(0) = x0, (51a)

z(t) = col
[
Cx(t) u0(t) u1(t) · · · uN(t)

]
, (51b)

u0(t) = col
[
u01(t) · · · u0N(t)

]
, (51c)

where the dimension of all coefficient matrices is the same as the stochastic system
(27) and they are constant matrices.

Moreover, the cost functions are defined as follows:

J0(u01, . . . , u0N, u1, . . . , uN , v)

= 1

2
E

[ ∫ ∞

0

{
xT (t)Q0x(t)+

N∑
i=1

[
uT0i (t)R00iu0i (t)

+ uTi (t)R0iui(t)

]}
dt

]
, (52a)

Ji(u01, . . . , u0N, u1, . . . , uN , v)

= 1

2
E

[ ∫ ∞

0

{
xT (t)Qix(t)+ uT0i (t)R0iiu0i (t)+ uTi (t)Riiui(t)

}
dt

]
, (52b)

Jv(u01, . . . , u0N, u1, . . . , uN , v)

= E

[ ∫ ∞

0

{
γ 2‖v(t)‖2 − ‖z(t)‖2}dt

]
, (52c)
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where Q0 := CT C, Qi = QTi ≥ 0, R00i = RT00i > 0, R0i = RT0i ≥ 0, R0ii =
RT0ii ≥ 0, and Rii = RTii > 0, i = 1, . . . , N .

The infinite-horizon incentive Stackelberg game with H∞ constraint is formu-
lated as follows:

For any given γ > 0, find the incentive strategy

u0i (t) = u∗0i (t) = η∗0ix(t)+ η∗iiui(t), i = 1, . . . , N, (53)

where η∗0i and η∗ii are the parameters to be determined, and a state feedback strategy
u∗i (t) = K∗

i x(t) ∈ L2
F (R+, R

mi ), i = 1, . . . , N that is associated with a worst-case
disturbance v∗(t) ∈ L2

F (R+, R
mv ) such that

1. the stochastic system (51) attains the team-optimal condition (54a) with H∞
constraint condition (54b)

J0(u
∗
01, . . . , u

∗
0N, u

∗
1, . . . , u

∗
N, v

∗)

= min
u01,...,u0N ,u1,...,uN

J0(u01, . . . , u0N, u1, . . . , uN , v
∗), (54a)

0 ≤ Jv(u∗01, . . . , u
∗
0N, u

∗
1, . . . , u

∗
N, v

∗)

≤ Jv(u∗01, . . . , u
∗
0N, u

∗
1, . . . , u

∗
N, v), (54b)

2. the control set (u∗0i , u∗i ) ∈ R
m0i+mi , i = 1, . . . , N satisfies the following Nash

equilibrium condition:

J ∗i = Ji(u∗01, . . . , u
∗
0N, u

∗
1, . . . , u

∗
N, v

∗)

≤ Ji(u∗−0i (u0i ), u
∗−i (ui), v∗). (55)

It should be noted that if inequality (54b) holds, then we have

‖L‖∞ = sup
v ∈ L2

F (R+, Rnv )
v �= 0, x0 = 0

‖z‖2

‖v‖2
< γ. (56)

Firstly, we are interested to find the solution for the infinite-horizon case. For this
purpose, we rearrange the system (51) as the same as the finite-horizon case.

dx(t) = [Ax(t)+ Bcuc + Ev(t)] dt + Apx(t)dw(t), x(0) = x0, (57a)

z(t) = col
[
Cx(t) uc(t)

]
, (57b)

where

Bc :=
[
B0 B1 · · · BN

]
,
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B0 :=
[
B01 · · · B0N

]
.

The cost functional (52a) is also rearranged as follows:

J0c(uc) = 1

2
E

[ ∫ ∞

0

{
xT (t)Q0x(t)+ uTc (t)Rcuc(t)dt

}]
, (58)

where

Rc := block diag
(
R00 R01 · · · R0N

)
,

R00 := block diag
(
R001 · · · R00N

)
.

Therefore, for the team-optimal solution with the H∞ constraint, the following
result can be obtained from [39]:

For a given γ > 0, suppose the CCSAREs (59):

PAc + ATc P + ATpPAp + PScP +Q0 = 0, (59a)

WAc + ATc W + ATpWAp − γ−2WTW + PScP +Q0 = 0, (59b)

with

Ac := A− ScP + γ−2TW,

Sc := BcR−1
c B

T
c ,

T := EET

have a pair of solutions P > 0 and W > 0. If (A, Ap | C) and (A +
γ−2TW, Ap | C) are exactly observable, then the stochastic team-optimal strategy
with H∞ constraint problem admits a pair of solutions:

u∗c (t) = K∗
c x(t) = −R−1

c B
T
c P

∗x(t) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K∗
01
...

K∗
0N
K∗

1
...

K∗
N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(t), (60a)

v∗(t) = F ∗γ x(t) = γ−2ETW ∗x(t), (60b)

where P = P ∗ > 0 andW = W ∗ > 0 are the solution set of (59).
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Secondly, by substituting the leader’s incentive Stackelberg strategy

u0i (t) = η0ix(t)+ ηiiui(t) (61)

into the stochastic system (51) and the followers’ cost functional (52b), the
following stochastic algebraic Riccati equations (SAREs) (62a) and MAEs (62b)
can be obtained:

ZiÂ+ ÂT Zi + ATpZiAp + ZiB̄iR̂−1
ii B̄

T
i Zi

+ Q̂i − ηT0iR0iiηii R̂
−1
ii η

T
iiR0iiη0i = 0, (62a)

ηTii
(
BT0iZi − R0iiR

−1
00iB

T
0iP

) = RiiR−1
0i B

T
i P − BTi Zi, (62b)

where i = 1, . . . , N ,

Â := A−
N∑
j=1

B0jR
−1
00jB

T
0jP −

N∑
j=1

BjR
−1
0j B

T
j P + γ−2TW,

B̄i := Bi + B0iηii ,

Q̂i := Qi + ηT0iR0iiη0i ,

η0i := −R−1
00iB

T
0iP + ηiiR−1

0i B
T
i P ,

R̂ii := Rii + ηTiiR0iiηii .

From the above discussions, we can now state another important result.

Theorem 2 ([35]) Suppose that the stochastic system (51) is stabilizable, the
CCSAREs (59) admit the solution set (P ∗,W ∗) such that P = P ∗ > 0, W =
W ∗ > 0, and (A, Ap | C) and (A + γ−2TW ∗, Ap | C) are exactly observable.
If the SAREs (62a) and the MAEs (62b) have the solution set (Z∗i , η∗ii ) such that
Zi = Z∗i > 0, the following strategy set (63) and (64) is the incentive Stackelberg
strategy set of the leader and the followers under the H∞ constraint.

u∗0i (t) = η∗0ix(t)+ η∗iiui(t), i = 1, . . . , N, (63)

where η∗0i := −R−1
00iB

T
0iP

∗ + η∗iiR−1
0i B

T
i P

∗.
Moreover, the incentive strategies (63) and the state feedback strategies (64) form

the team-optimal solution for J0.

u∗i (t) = u†
i (t) = −R̂−1

ii

(
η∗Tii R0iiη

∗
0i + B̄Ti Z∗i

)
x(t), i = 1, . . . , N. (64)

One may solve the following CCSAREs (65) instead of the independent SAREs
(62):
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ΞiÃ+ ÃT Ξi + ATpΞiAp +ΞiB̄iR̂−1
ii B̄

T
i Ξi

+ Q̂i − ηT0iR0iiηii R̂
−1
ii η

T
iiR0iiη0i = 0, (65a)

ηTii
(
BT0iΞi − R0iiR

−1
00iB

T
0iP

) = RiiR−1
0i B

T
i P − BTi Ξi, (65b)

where

Ã := A+
N∑
j=1

B0j η0j +
N∑
j=1

B̄j K̃j + γ−2TW,

Q̂i := Qi + ηT0iR0iη0i ,

K̃i := −R̂−1
ii

(
ηTiiR0iiη0i + B̄Ti Ξi

)
.

It should be noted that Ã in CCSAREs (65) depends on Ξi , i = 1, . . . , N . Hence,
these equations are the standard CCSARE of Nash game because Ξi , i = 1, . . . , N
exist in Â. There is no doubt that the computed feedback gains K∗

i and K̃i from the
CCSAREs (62a) and the SAREs (65a) are the same, respectively. This important
feature comes from the team-optimal solution. Namely, since matricesZi andΞi are
constrained by Eqs. (65a) and (65b) for the constant matrix P of (59a), respectively,
the same solutions are obtained. In fact, it can be observed that the same solutions
are yielded in the numerical example and it will be proved in Appendix. Finally, it
should also be noted that SAREs (62) can be solved easily as compared with the
CCSAREs (65) because there are no cross coupling terms. Specifically, although
Ã in CCSARE (65a) includes Ξi , i = 1, . . . , N , Â in SARE (62a) does not
depend on other solutions, which means that CCSARE (65a) is a higher-order
cross-coupled equation. Conversely, SARE (62a) is independent of other SAREs.
Therefore, it is easy to solve N independent SARE (62a) because, when one derives
Newton’s method, it is easy to derive the difference equation. It should be noted it
is quite difficult to derive Newton’s algorithm to solve higher-order cross-coupled
equations [42].

Finally, the design procedure is given below.

Step 1. Calculate the solution set P ∗ > 0 and W ∗ > 0 by solving the CCSAREs
(59) to obtain the team-optimal control with H∞ constraint that is described by
(60).

Step 2. By combining SAREs (62a) and MAEs (62b), compute Z∗i , η∗ii and

calculate η∗0i = −R−1
00iB

T
0iP

∗ + η∗iiR−1
0i B

T
i P

∗ for i = 1, . . . , N .
Step 3. Announce the incentive Stackelberg strategy u∗0i (t) = η∗0ix(t)+ η∗iiui(t)

to the ith follower, i = 1, . . . , N , respectively.

The flowchart of the above mentioned algorithm for calculating the incentive is
shown in Fig. 4.
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Fig. 4 Flowchart of algorithm for calculating the incentive

Although the CCSAREs (59) and the SAREs (62) seem to be very complicated,
one can solve these matrix equations by using an iterative scheme. In order to solve
the CCSAREs (59) and the SAREs (62), the following computational algorithms
that are based on the Lyapunov iterations are given [43]:

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

P (p+1)A
(p)
c + A(p)Tc P (p+1)

+ATpP (p+1)Ap + P (p)ScP (p) +Q0 = 0,

W(p+1)A
(p)
c + ATc W(p+1) + ATpW(p+1)Ap

−γ−2W(p)TW(p) +Q0 + P (p)ScP (p) = 0,

(66a)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Z
(q+1)
i Â(q) + Â(q)T Z(q+1)

i + ATpZ(q+1)
i Ap

+Z(q)i B̄(q)i [R̂(q)ii ]−1B̄
(q)T
i Z

(q)
i + Q̂(q)i

−η(q)T0i R0iiη
(q)
ii [R̂(q)ii ]−1η

(q)T
ii R0iiη

(q)

0i = 0,

η
(q+1)T
ii

(
BT0iZ

(q)
i − R0iiR

−1
00 B

T
0iP

)

= RiiR−1
0i B

T
i P − BTi Z(q)i ,

(66b)

where i = 1, . . . , N , p, q = 0, 1, . . . ,

P (0) = Z(0)i = W(0) = In, η(0)ii = η0
ii ,
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A
(p)
c := A− ScP (p) + γ−2TW(p),

Â(q) := A−
N∑
j=1

B0jR
−1
00jB

T
0jP −

N∑
j=1

BjR
−1
0j B

T
j P + γ−2TW

− B̄(q)i [R̂(q)ii ]−1B̄
(q)T
i Z

(q)
i ,

B̄
(q)
i := Bi + B0iη

(q)
ii ,

Q̂
(q)
i := Qi + η(q)T0i R0iη

(q)

0i ,

η
(q)

0i := −R−1
00iB

T
0iP + η(q)ii R−1

0i B
T
i P ,

R̂
(q)
ii := Rii + η(q)Tii R0iη

(q)
ii ,

P = lim
p→∞P

(p),

W = lim
p→∞W

(p),

Zi = lim
q→∞Z

(q)
i ,

ηii = lim
q→∞ η

(q)
ii .

It should be noted that the initial guess of η(0)ii = η0
ii has to be chosen appropriately.

It should also be noted that the convergence rate of algorithm (66) is unclear.
However, we will find from the numerical examples that this algorithm can work
well in practice.

3.5 Numerical Example

In order to demonstrate the effectiveness of the incentive Stackelberg strategy set, a
simple practical example in infinite-horizon case is investigated.

An R–L–C electrical circuit in Fig. 5 is considered [31]. In this network, Ri ,
ri , i = 1, 2, R and L are the resistances and the inductance, respectively. The
capacitances are denoted by Ci , i = 1, 2. Moreover, E0i (t) and Ei(t), i = 1, 2
denote the applied voltages. i(t) denotes the electric current in inductance L. In this
survey, the leader has the main control inputs that represent the applied voltage,
and the followers are the sub-controller corresponding to the parallel circuit, i.e.,
E01(t) := u01(t), E02(t) := u02(t) and E1(t) := u1(t), E2(t) := u2(t).

For this system, consider Ldi(t)/dt = v(t) of the voltage drop across the
inductor as an external deterministic disturbance. V := x, as a state, denotes
the voltage drop across the circuit. It should be noted that, in any electronic
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Fig. 5 Circuit diagram

device, thermal noise is unavoidable at non-zero temperatures. Thus, the system
can be represented as a stochastic system governed by an Itô stochastic differential
equation. If this noise is treated as a real-valued state-dependent Wiener process
w(t) with coefficient Ap, then the stochastic system can be written.

dx(t) =
[
Ax(t)+

2∑
i=1

[B0iu0i (t)+ Biui(t)] + Ev(t)
]
dt

+ Apx(t)dw(t), x(0) = x0, (67)

where

A = − 1

CT

(
1

R1
+ 1

R2
+ 1

RS

)
, B01 = B02 = 1

CT RS
,

B1 = 1

CT R1
, B2 = 1

CT R2
, E = − 1

CT RS
, Ap = 0.01A,

CT = C1 + C2, RS = R + r1 + r2.

It should be noted that system noise has been added to the deterministic system by
describing it stochastically in the SDE (67). It is assumed that 1% of the magnitude
of the state coefficient can be represented by a Wiener process based on stochastic
perturbations. In this problem, it is assumed that the leader will control the voltage
sources such that the team-optimal solution will be achieved, which will attenuate
the external disturbance v(t) under the H∞ constraint. In contrast, with respect to
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the leader’s incentive Stackelberg strategy, the followers will optimize their own
costs simultaneously using Nash equilibrium strategies.

In order to solve this problem numerically, simulation data are assigned to the
parameters as follows:

R1 = 600 [�], R2 = 200 [�], R = 1000 [�], r1 = 20 [�], r2 = 80 [�],
C1 = 8200 [μF], C2 = 2200 [μF], L = 0.01 [H].

The weight matrices of the cost functionals of the leader and followers can be
defined as

R001 = 2, R002 = 4, R01 = 3, R02 = 2, R011 = 4, R022 = 4,

R11 = 3, R22 = 2, Q0 = 1, Q1 = 2, Q2 = 4.

Next, we select γ = 2 to design the incentive Stackelberg strategy set.
According the flowchart, the strategy set and incentive can be computed as

follows:

u∗c (t) = K∗
c x(t) = −R−1

c B
T
c P

∗x(t),

v∗(t) = F ∗γ x(t) = γ−2ETW ∗x(t),

u0i (t) = η∗0ix(t)+ η∗iiui(t),
u∗i (t) = K∗

i x(t) = u†
i (t) = −R̂−1

ii

(
η∗Tii R0iiη

∗
0i + B̄Ti Z∗i

)
x(t),

where i = 1, 2,

K∗
c =

⎡
⎢⎢⎣

K∗
01
K∗

02
K∗

1
K∗

2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−2.8406e-2
−1.4203e-2
−3.4719e-2
−1.5624e-1

⎤
⎥⎥⎦ ,

F ∗γ = 1.5000e-2,

P ∗ = 6.4994e-1,

W ∗ = 6.8641e-1,

η∗11 = 2.8782e+1,

η∗22 = −6.4766,

η∗01 = 9.7088e-1,

η∗02 = −1.0261,

Z∗1 = Ξ∗
1 = 1.2350,
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Fig. 6 Time history

Z∗2 = Ξ∗
2 = 2.4801.

The result of the time history of this practical example is shown. The initial state is
set to x(0) = 1.0.

Finally, the state variable x(t) = V (t), the voltage drop across the circuit, and
the disturbance v(t) = Ldi(t)/dt are shown in Fig. 6. It can be observed that
v(t) is attenuated subject to the constraint boundary of the external deterministic
disturbance under which the exponential decay of the capacitor’s voltage over time
can be obtained by using the proposed method.

If this technique is applied to the practical case, some drawbacks exist. For
example, the full state information would not be obtained for the players. In this
case, the observer based design or static output feedback strategy is reliable. As
another approach, the decentralized technique seems to be standards. In this case,
the appropriately cost functions and the constraint conditions can be considered.

4 Incentive Stackelberg Games for a Class of Markovian
Jump Linear Stochastic Systems

In this section, an infinite-horizon incentive Stackelberg dynamic game for a class
of continuous-time Markovian Jump Linear Stochastic Systems (MJLSSs) governed
by Itô’s differential equations is considered. It should be noted that in a two-level
hierarchy, this game consists of multiple leaders and multiple followers.
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4.1 Preliminary Results

Throughout this paper, we assume that (Ω,F , {Ft }t≥0, P ) is a given filtered
probability space in which w(t), t ≥ 0 is a one-dimensional standard Wiener
process, and rt , t ≥ 0 is a right continuous homogeneous Markov process with
discrete state-space D = {1, 2, . . . , s}. We also assume that rt is independent of
w(t) and has the probabilities of transition

P {rt+h = m | rt = k} =
{
πkmh+ o(h), if k �= m,
1+ πkkh+ o(h), if k = m, (68)

where

h > 0, lim
h→0

o(h)

h
= 0, πkm ≥ 0, k �= m, πkk = −

s∑
m=1, m�=k

πkm.

The symbol πkm indicates the transition rate from modes k tom from times t to t+h
for all k, m ∈ D. In order to establish the main results, the following definition and
lemmas are required.

First, the H2/H∞ control problem in an infinite-horizon is introduced. Let us
consider the following MJLSS with the deterministic disturbance v(t):

dx(t) =[A(rt )x(t)+ B(rt )u(t)+D(rt )v(t)]dt
+ Ap(rt )x(t)dw(t), x(0) = x0, (69a)

z(t) =
[
E(rt )x(t)

u(t)

]
, (69b)

where x(t) ∈ R
n, u(t) ∈ R

m, v(t) ∈ R
nv , z(t) ∈ R

nz are the state, control input,
external disturbance and controlled output, respectively. The coefficients A, Ap ∈
M
s
n,n, B ∈ M

s
n,m, D ∈ M

s
n,nv

, E ∈ M
s
nc,n

with A(k), B(k), D(k), Ap(k), and E(k)
are constant matrices of compatible dimensions, k ∈ D.

Two associated performances can be defined as follows:

Ju(u, v; x0, k) = E

[ ∫ ∞

0
‖z(t)‖2dt

∣∣ r0 = k
]
, (70a)

Jγ (u, v; x0, k) = E

[ ∫ ∞

0

(
γ 2‖v(t)‖2 − ‖z(t)‖2

)
dt
∣∣ r0 = k

]
, (70b)

where γ > 0 is a given disturbance attenuation level and it is the desired
performance assigned prior by the control designer. The infinite-horizon stochastic
H2/H∞ control of system (69) can be defined as follows [46]:
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Definition 5 Suppose that the strategy pair (u∗(t), v∗(t)) ∈ L2
F (R+, R

m) ×
L2
F (R+, R

nv ) exists such that

(i) when v(t) = 0, the closed-loop MJLSS (69) with some control u∗(t) is
asymptotically mean-square stable,

(ii) the H∞-norm of the perturbed operator Lu∗ satisfies the condition

‖Lu∗‖2∞ = sup
v∈L2

F (R+, Rnv ),
v �=0, u=u∗, x0=0

J̄u(u
∗; x0)

J̄v(u∗, v; x0)
< γ 2, (71)

where

J̄u(u
∗; x0) :=

s∑
k=1

E

[ ∫ ∞

0
‖z(t)‖2dt

∣∣ r0 = k
]
,

J̄v(u
∗, v; x0) :=

s∑
k=1

E

[ ∫ ∞

0
‖v(t)‖2dt

∣∣ r0 = k
]
.

(iii) when the worst-case disturbance v∗(t) ∈ L2
F (R+, R

nv ) is applied, u∗(t) ∈
L2
F (R+, R

m) minimizes the cost functional (70a) with Ju(u, v∗; x0, k).

Then, a solution pair (u∗(t), v∗(t)) is called the infinite-horizon stochastic
H2/H∞ control strategy pair.

Clearly, the solution pair (u∗(t), v∗(t)) seems to be satisfying the Nash equilib-
rium properties

Ju(u
∗, v∗; x0, k) ≤ Ju(u, v∗; x0, k), k ∈ D, (72a)

0 ≤ Jγ (u∗, v∗; x0, k) ≤ Jγ (u∗, v; x0, k), k ∈ D. (72b)

If the admissible control u∗(t) ∈ L2
F (R+, R

m) satisfies conditions (i) and (ii), then
the infinite-horizon H2/H∞ control problem is termed an H∞ control problem.
In this case, consider that the state-feedback optimal control u∗(t) minimizes the
following cost functional:

Ju(u, v
∗; x0, k) = E

[ ∫ ∞

0

{
xT (t)Q(rt )x(t)+ uT (t)R(rt )u(t)

}
dt
∣∣ r0 = k

]
,

(73)

where Q(k) = QT (k) ≥ 0 and R(k) = RT (k) > 0 are constant matrices of
compatible dimensions, k ∈ D. Then Theorem 3.1 in [46] can be written in a
simplified form adopting current notations through the following lemma for easy
application in the main content.
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Lemma 3 ([46]) For MJLSS (69) associated with cost functionals (70), suppose
that there exist solutions P ≥ 0 and W ≥ 0 to the following coupled SAREs:

P(k)AC(k)+ ATE(k)P (k)+ ATp (k)P (k)Ap(k)+
s∑

m=1

πkmP (m)

+ P(k)B(k)R−1(k)BT (k)P (k)+Q(k) = 0, (74a)

W(k)AC(k)+ ATE(k)W(k)+ ATp (k)W(k)Ap(k)

+
s∑

m=1

πkmW(m)− γ−2W(k)D(k)ET (k)W(k)

+ P(k)B(k)R−2(k)BT (k)P (k)+ CT (k)E(k) = 0, (74b)

where

AC(k) := A(k)+ B(k)K(k)+D(k)Kγ (k),
K(k) := −R−1(k)BT (k)P (k),

Kγ (k) := γ−2ET (k)W(k).

If (A, Ap |C) and (A+γ−2EETW, Ap |C) are stochastically detectable, then the
H∞ constrained disturbance attenuation problem has the following pair of solutions
satisfying the conditions of Definition 2,

u∗(t) = K(rt )x(t) =
s∑
k=1

K(k)x(t)χrt=k, (75a)

v∗(t) = Kγ (rt )x(t) =
s∑
k=1

Kγ (k)x(t)χrt=k. (75b)

Second, let us introduce the stochastic LQ control with a jump in the following
form:

min E

[ ∫ ∞

0

{
xT (t)Q(rt )x(t)+ 2xT (t)L(rt )u(t)

+ uT (t)R(rt )u(t)
}
dt
∣∣ r0 = k

]
, (76a)

s.t. dx(t) = [A(rt )x(t)+ B(rt )u(t)]dt
+ Ap(rt )x(t)dw(t), x(0) = x0, (76b)
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where the coefficients Q(k) = QT (k) ≥ 0, L(k) and R(k) = RT (k) > 0 are
constant matrices of compatible dimensions, k ∈ D. In this case, the following
result is known [32, 33].

Lemma 4 ([32, 33]) For LQ problem (76), suppose that there exists a symmetric
solution X ≥ 0 to the following SAREs:

X(k)A(k)+ AT (k)X(k)+ ATp (k)X(k)Ap(k)

+
s∑

m=1

πkmX(m)− [X(k)B(k)+ L(k)]R−1(k)

× [X(k)B(k)+ L(k)]T +Q(k) = 0, ∀ k ∈ D. (77)

If Q− LR−1LT ≥ 0 and
(

A,Ap
∣∣ √Q− LR−1LT

)
is stochastically detectable,

then the optimal feedback control of LQ problem (76) is

u∗(t) = −
s∑
k=1

R−1(k)[X(k)B(k)+ L(k)]T x(t)χrt=k. (78)

4.2 Problem Formulation

Consider the following MJLSS with state-dependent noise:

dx(t) =
[
A(rt )x(t)+

M∑
i=1

N∑
j=1

[
BLij (rt )uLij (t)+ BFji(rt )uFji(t)

]

+D(rt )v(t)
]
dt + Ap(rt )x(t)dw(t), x(0) = x0, (79a)

z(t) = col
[
E(rt )x(t) uc1(t) uc2(t) · · · ucM(t)

]
, (79b)

where

uci(t) = col
[
uLi1(t) · · · uLiN(t) uF1i (t) · · · uFNi(t)

]
.

uLij (t) ∈ R
nLij represents the leader Li’s control input for the follower Fj and

uFji(t) ∈ R
nFji represents the follower Fj ’s control input according to the leader

Li in the sense of incentive Stackelberg strategy; the coefficients A, BLij , BFji , E,
Ap, and C are constant matrices of compatible dimensions, i = 1, . . . ,M, j =
1, . . . , N .
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Cost functionals of the leader Li and the follower Fj are accordingly given by

JLi

(
uLi1, . . . , uLiN , uF1i , . . . , uFNi, v; x0, k

)

= E

[ ∫ ∞

0

{
xT (t)QLi(rt )x(t)+

N∑
j=1

[
uTLij (t)RLij (rt )uLij (t)

+ uTFji(t)RLFji(rt )uFji(t)
]}
dt
∣∣ r0 = k

]
, (80a)

JFj

(
uL1j , . . . , uLMj , uFj1, . . . , uFjM, v; x0, k

)

= E

[ ∫ ∞

0

{
xT (t)QFj (rt )x(t)+

M∑
i=1

[
uTLij (t)RFLij (rt )uLij (t)

+ uTFji(t)RFji(rt )uFji(t)
]}
dt
∣∣ r0 = k

]
, (80b)

whereQLi(k) = QTLi(k) ≥ 0,QFj (k) = QTFj (k) ≥ 0, RLij (k)

= RTLij (k) > 0, RFji = RTFji(k) > 0, RLFji(k) = RTLFji(k)
≥ 0 and RFLij (k) = RTFLij (k) ≥ 0, k ∈ D, i = 1, . . . ,M, j = 1, . . . , N .

For an incentive Stackelberg game, leaders announce the following incentive
strategy to the followers ahead of time:

uLij (t) = ΘLij (rt )x(t)+ΘFji(rt )uFji(t)

=
s∑
k=1

ΘLij (k)x(t)χrt=k +ΘFji(rt )uFji(t), (81)

where the parameters ΘLij (k) and ΘFji(k) are to be determined as associated
with the Nash equilibrium or Pareto optimal strategies uFji(t) of the followers for
k ∈ D, i = 1, . . . , M, j = 1, . . . , N . In this game, leaders will achieve a
Nash equilibrium or Pareto optimal solution attenuating the external disturbance
v(t) with an H∞ constraint. Infinite-horizon multiple leader-follower incentive
Stackelberg games for MJLSSs with anH∞ constraint can be formulated as follows:
As introduced in [32], in an practical system, a hierarchical structure having a large
number of readers and a large number of followers is common.

For a given disturbance attenuation level γ > 0, find, if possible, the state
feedback controls

u∗Lij (t) = K∗
Lij (rt )x(t) =

s∑
k=1

K∗
Lij (k)x(t)χrt=k, (82a)
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u∗Fji(t) = K∗
Fji(rt )x(t) =

s∑
k=1

K∗
Fji(k)x(t)χrt=k (82b)

such that the following hold:

(i) The trajectory of MJLSS (79) satisfies the Nash equilibrium conditions (83a) of
the leaders with an H∞ constraint condition (83b):

JLi(u
∗
c1, . . . , u

∗
cM, v

∗; x0, k) ≤ JLi(γ ∗−i (uci), v∗; x0, k), (83a)

0 ≤ Jγ (u∗c1, . . . , u∗cM, v∗; x0, k) ≤ Jγ (u∗c1, . . . , u∗cM, v; x0, k), (83b)

where i = 1, . . . ,M and

Jγ (uc1, . . . , ucM, v; x0, k)

= E

[ ∫ ∞

0

{
γ 2‖v(t)‖2 − ‖z(t)‖2

}
dt
∣∣ r0 = k

]
, v(t) �= 0,

‖z(t)‖2 = xT (t)CT (rt )E(rt )x(t)+
M∑
i=1

uTci(t)uci(t).

Consider the leader’s incentive strategy (81) and the worst-case disturbance
v∗(t) ∈ L2

F (R+, R
nv ). The follower’s decision u∗Fji(t) ∈ L2

F (R+, RnFji ),
i = 1, . . . ,M can be selected as follows:

(ii-a) If Nash equilibrium as non-cooperative strategy is chosen, find the Nash
strategy set such that the following inequality holds:

JFj (û
∗
F1, . . . , û

∗
FN, v

∗; x0, k) ≤ JFj (γ ∗−j (ûFj )), v∗; x0, k), (84)

where

ûFj (t) = col
[
uFj1(t) · · · uFjM(t)

]
, j = 1, . . . , N.

(ii-b) If the Pareto optimal strategy as cooperative strategy is chosen, the
following objective function should be optimized.

Ĵρ(ûF1, . . . , ûFN , v; x0, k) =
N∑
j=1

ρjJFj (ûF1, . . . , ûFN , v; x0, k),

(85)

where
∑N
j=1 ρj = 1, 0 < ρj < 1, j = 1, . . . , N .
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4.3 Main Results

In this section, the leader’s Nash equilibrium strategy and the follower’s strategy
sets are derived.

4.4 Leader’s Nash Equilibrium Strategy

It is assumed that leaders are regarded as non-cooperative in their group,
and they use Nash equilibrium. Thus, a leader’s Nash equilibrium solutions
(u∗c1(t), . . . , u∗cM(t), v∗(t)) are investigated attenuating the disturbance under an
H∞ constraint. For this purpose, let us configure the MJLSS (79) into the following
centralized system:

dx(t) =
[
A(rt )x(t)+

M∑
i=1

Bci(rt )uci(t)+D(rt )v(t)
]
dt

+ Ap(rt )x(t)dw(t), x(0) = x0, (86a)

z(t) = col
[
E(rt )x(t) uc1(t) uc2(t) · · · ucM(t)

]
, (86b)

where

Bci(k) =
[
BLi1(k) · · · BLiN(k) BF1i (k) · · · BFNi(k)

]
,

i = 1, . . . , M and k ∈ D.

Furthermore, the cost functional (80a) can be changed as follows:

JLi

(
uci; x0, k

)
= E

[ ∫ ∞

0

{
xT (t)QLi(rt )x(t)

+ uTci(t)Rci(rt )uci(t)
}
dt
∣∣ r0 = k

]
, (87)

where

Rci(k) = block diag
(
RLi1(k) · · · RLiN(k) RLF1i (k) · · · RLFNi(k)

)
.

In order to obtain the ith leader’s Nash equilibrium strategies with H∞ disturbance
control, the following result can be derived through Lemma 3.

Corollary 1 For a given disturbance attenuation level γ > 0, suppose that the
following coupled SAREs have solutions Pci > 0, W > 0.
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Pci(k)AC(k)+ ATE(k)Pci(k)+ ATp (k)Pci(k)Ap(k)

+
s∑

m=1

πkmPci(m)+ Pci(k)Sci(k)Pci(k)+QLi(k) = 0, (88a)

W(k)AC(k)+ ATE(k)W(k)+ ATp (k)W(k)Ap(k)

+
s∑

m=1

πkmW(m)− γ−2W(k)T (k)W(k)+QC(k) = 0, (88b)

where i = 1, . . . ,M

AC(k) := A(k)−
M∑
i=1

Sci(k)Pci(k)+ γ−2T (k)W(k),

Sci(k) := Bci(k)R−1
ci (k)B

T
ci(k),

T (k) := D(k)ET (k),

QC(k) :=
M∑
i=1

Pci(k)Bci(k)R
−2
ci (k)B

T
ci(k)Pci(k)+ CT (k)E(k).

It is assumed that (A, Ap | C) and (A + γ−2EETW, Ap | C) are stochastically
detectable. Then, the H∞ constrained disturbance attenuation problem has the
following solutions:

u∗ci(t) = K∗
ci(rt )x(t) =

s∑
k=1

K∗
ci(k)x(t)χrt=k, (89a)

v∗(t) = K∗
γ (rt )x(t) =

s∑
k=1

K∗
γ (k)x(t)χrt=k, (89b)

where

K∗
ci(k) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

K∗
Li1(k)
...

K∗
LiN(k)

K∗
F1i (k)
...

K∗
FNi(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−R−1
Li1(k)B

T
Li1(k)Pci(k)
...

−R−1
LiN (k)B

T
LiN (k)Pci(k)

−R−1
LF1i (k)B

T
F1i (k)Pci(k)
...

−R−1
LFNi(k)B

T
FNi(k)Pci(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K∗
γ (k) = γ−2ET (k)W(k), k ∈ D, i = 1, . . . , M.
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It should be noted that the relation between ΘLij (k) and ΘFij (k), k ∈ D, i =
1, . . . ,M, j = 1, . . . , N can be derived from (81) as

ΘLji(k) = −R−1
Lij (k)B

T
Lij (k)Pci(k)

+ΘFji(k)R−1
LFji(k)B

T
Fji(k)Pci(k). (90)

Using this relationship (90), the leader’s incentive strategy (81) can be written in the
following reduced parameter form:

uLij (t) =− R−1
Lij (rt )B

T
Lij (rt )Pci(rt )x(t)+ΘFji(rt )

×
[
uFji(t)+ R−1

LFji(rt )B
T
Fji(rt )Pci(rt )x(t)

]
, (91)

for i = 1, . . . ,M, j = 1, . . . , N . In order to find the leader’s incentive
strategy (91), we need to determine parameter ΘFji(k), k ∈ D. For this purpose,
optimization problems for the followers should be considered.

4.5 Follower’s Nash Equilibrium Strategy

When the followers do not cooperate with each other, the followers’ Nash equi-
librium is applied based on the leader’s incentive strategy (81) or (91) and the
worst-case disturbance, v∗(t). Centralizing (79a) with respect to the follower’s
inputs, the following stochastic system can be found.

dx(t) =
[
Â−j (rt )x(t)+ Bθj (rt )ûFj (t)

]
dt

+ Ap(rt )x(t)dw(t), (92)

where

ûFj (t) = col
[
uFj1(t) · · · uFjM(t)

]
,

Â−j (k) := A(k)+
M∑
i=1

N∑
j=1

BLij (k)ΘLij (k)

+
N∑

�=1, � �=j
Bθ�(k)K

∗
F�(k)+ γ−2T (k)W(k),

Bθj (k) :=
[
Bθj1(k) · · · BθjM(k)

]
,

Bθji(k) := BFji(k)+ BLij (k)ΘFji(k).
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The cost functional (80b) of the j th follower can be rewritten as

JFj
(
uL1j (ûFj ), . . . , uLMj (ûFj ), ûFj , v

∗; x0, k
)

=E
[ ∫ ∞

0

{
xT (t)Q̂Fj (rt )x(t)+ 2xT (t)Sθj (rt )ûFj (t)

+ ûTFj (t)Rθj (rt )ûFj (t)
}
dt
∣∣ r0 = k

]
, (93)

where

Q̂Fj (k) := QFj (k)+
M∑
i=1

ΘTLji(k)RFLij (k)ΘLji(k),

Rθj (k) := block diag
(
Rθj1(k) · · · RθjM(k)

)
,

Rθji(k) := RFji(k)+ΘTFji(k)RFLij (k)ΘFji(k),
Sθj (k) :=

[
Sθj1(k) · · · SθjM(k)

]
,

Sθji(k) := ΘTLji(k)RFLij (k)ΘFji(k).

Hence, by applying Lemma 4, the j th follower’s Nash equilibrium strategy can be
obtained through the following SAREs.

PFj (k)Â−j (k)+ ÂT−j (k)PFj (k)+ ATp (k)PFj (k)Ap(k)

+
s∑

m=1

πkmPFj (m)− [PFj (k)Bθj (k)+ Sθj (k)]R−1
θj (k)

× [PFj (k)Bθj (k)+ Sθj (k)]T + Q̂Fj (k) = 0. (94)

If Q̂Fj (k) − Sθj (k)R−1
θj (k)S

T
θj (k) ≥ 0 and

(
Â−j ,Ap

∣∣
√

Q̂Fj − ŜFj R̂
−1
Fj ŜTFj

)
is

stochastically detectable, then the follower’s Nash equilibrium strategy set is given
by

ûFj (t) = K̂Fj (rt )x(t) =
s∑
k=1

K̂Fj (k)x(t)χrt=k, (95)

where j = 1, . . . , N ,

K̂Fj (k) := −R−1
θj (k)

[
BTθj (k)PFj (k)+ STθj (k)

]

= col
[
K̂Fj1(k) · · · K̂FjM(k)

]
,
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K̂Fji(k) := −R−1
θji(k)

[
BTθji(k)PFj (k)+ STθji(k)

]
.

In addition, we can find the follower’s matrix gain from the leader’s centralized
matrix gain (89a) as follows:

K∗
Fji(k) = −R−1

LFji(k)B
T
Fji(k)Pci(k). (96)

From (95) and (96), we can establish the equivalence relation K∗
Fji(k) ≡ K̂Fji(k)

through the following MAEs:

− Rθji(k)K∗
Fji(k) = BTθji(k)PFj (k)+ STθji(k),

k ∈ D, i = 1, . . . ,M, j = 1, . . . , N. (97)

From the MAEs (97),ΘFji(k) can be computed through (90). Finally, the following
result can be obtained.

Theorem 3 ([33]) Suppose that the coupled SAREs (88), SAREs (94), and MAEs
(97) have solutions. Then, incentive (91) associated with (89) and (97) constitutes
an incentive Stackelberg strategy set with an H∞ constraint when the followers act
in a non-cooperative.

Remark 2 Substituting ΘLij (k) from relation (90) into the SAREs (94), two
unknown matrices PFj (k) and ΘFji(k) can be obtained by solving SAREs (94)
and MAEs (97).

4.6 Follower’s Pareto Optimal Strategy

When the followers act cooperatively, the follower’s Pareto optimal strategy is
calculated based on the leader’s incentive strategy (81) or (91) and the worst-
case disturbance v∗(t). Centralizing (79a) with respect to the follower’s inputs, the
following system can be found.

dx(t) =
[
Ã(rt )x(t)+ Bθ(rt )ũF (t)

]
dt + Ap(rt )x(t)dw(t), (98)

where

ũF (t) = col
[
ũF1(t) · · · ũFN(t)

]
,

ũFj (t) = col
[
uFj1(t) · · · uFjM(t)

]
,
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Ã(k) := A(k)+
M∑
i=1

N∑
j=1

BLij (k)ΘLij (k)+ γ−2T (k)W(k),

Bθ (k) := [Bθ1(k) · · · BθN(k)].

In order to find the followers’ Pareto optimal strategy, we have the following cost
functional from (80b).

Jρ(ũF , v
∗; x0, k) =

N∑
j=1

ρjJFj

(
ũFj , v

∗; x0, k
)

= E

[ ∫ ∞

0

{
xT (t)Q̃(rt )x(t)+ 2xT (t)S̃(rt )ũF (t)

+ ũTF (t)R̃(rt )ũF (t)
}
dt
∣∣ r0 = k

]
, (99)

where

Q̃(k) :=
N∑
j=1

ρj Q̂Fj (k),

S̃(k) := [ρ1Sθ1(k) · · · ρNSθN(k)] ,
R̃(k) := block diag

(
ρ1Rθ1(k) · · · ρNRθN(k)

)
.

Hence, by applying Lemma 4, the Pareto optimal strategy of the followers can be
obtained through the following SAREs.

PF (k)Ã(k)+ ÃT (k)PF (k)+ ATp (k)PF (k)Ap(k)

+
s∑

m=1

πkmPF (m)− [PF (k)Bθ (k)+ S̃(k)]R̃−1(k)

× [PF (k)Bθ (k)+ S̃(k)]T + Q̃(k) = 0. (100)

If Q̃(k) − S̃(k)R̃−1(k)S̃T (k) ≥ 0 and

(
Ã,Ap

∣∣
√

Q̃− S̃R̃−1S̃T
)

is stochastically

detectable, then the Pareto optimal state feedback control is given by

ũFj (t) = K̃Fj (rt )x(t) =
s∑
k=1

K̃Fj (k)x(t)χrt=k, (101)

where



84 H. Mukaidani

K̃Fj (k) = −ρ−1
j R

−1
θj (k)

[
BTθj (k)PF (k)+ ρjSTθj (k)

]

= col
[
K̃Fj1(k) · · · K̃FjM(k)

]
,

K̃Fji(k) = −ρ−1
j R

−1
θji(k)

[
BTθji(k)PF (k)+ ρjSTθji(k)

]
.

Using the similar step of the Nash games for the previous subsection, we can
establish the equivalence relationK∗

Fji(k) ≡ K̃Fji(k) through the following MAEs:

− ρjRθji(k)K∗
Fji(k) = BTθji(k)PF (k)+ ρjSTθji(k),

k ∈ D, i = 1, . . . ,M, j = 1, . . . , N. (102)

From the MAEs (102), ΘFji(k) can also be computed. We are now in a position to
state other result under the cooperative strategy for the followers.

Theorem 4 ([33]) Suppose that the coupled SAREs (88), SAREs (100), and MAEs
(102) have solutions. Then, incentive (91) associated with (89) and (102) constitutes
an incentive Stackelberg strategy with the H∞ constraint when the followers act in
a cooperatively.

Remark 3 The coupled SAREs (88) can be solved using several numerical methods
such as a linear matrix inequality technique [47], Lyapunov iterations [27], New-
ton’s method [44]. Furthermore, the SAREs (94) with the MAEs (97) or the SAREs
(100) with the MAEs (102) can also be solved using the Lyapunov iterations.

4.7 Numerical Example

In order to demonstrate the efficiency of the proposed strategies numerically, let us
consider an MJLSS with two modes. In this example, two leaders and two followers
are considered and it is assumed that the followers choose the Nash equilibrium.
The matrices of the MJLSS are given below.

M = 2, N = 2, s = 2, π =
[−0.2 0.2

0.8 −0.8

]
,

QL1(k) = 2.5I2, QL2(k) = 2.2I2,

QF1(k) = 1.5I2, QF1(k) = 3.0I2, k = 1, 2,

A(1) =
[

0.9 0
1.2 −2.9

]
, Ap(1) =

[
0 0.2

0.1 0

]
,

BL11(1) =
[

0.13 0.20
−0.55 0.81

]
, BL12(1) =

[
0.31 1.20
−1.25 1.02

]
,
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BL21(1) =
[

0.28 0.12
5.32 0

]
, BL22(1) =

[
0.12 0.56
1.02 0.32

]
,

BF11(1) =
[

0.15 −0.11
0.55 1.32

]
, BF12(1) =

[
0.51 0.54
0.21 1.21

]
,

BF21(1) =
[

0.23 −0.45
0.28 2.96

]
, BF22(1) =

[
0.21 0.21
2.11 1.86

]
,

D(1) =
[

0.54 0.43
0.23 0.13

]
, E(1) = [1 2

]
,

RL11(1) = 2.0I2, RL12(1) = 1.5I2, RL21(1) = 0.5I2,

RL22(1) = 2.2I2, RF11(1) = 3.5I2, RF12(1) = I2,
RF21(1) = 0.2I2, RF22(1) = 3.0I2,

RLF11(1) = diag
[
3.0 2.0

]
, RLF12(1) = diag

[
1.0 1.5

]
,

RLF21(1) = diag
[
2.0 1.2

]
, RLF22(1) = diag

[
1.2 1.5

]
,

RFL11(1) = diag
[
1.0 1.5

]
, RFL12(1) = diag

[
4.0 2.0

]
,

RFL21(1) = diag
[
3.0 1.6

]
, RFL22(1) = diag

[
2.5 1.9

]
,

A(2) =
[ −1 0.2
−0.5 1.5

]
, Ap(2) =

[
0.8 0
0.2 0

]
,

BL11(2) =
[−0.32 0.12

1.23 −0.92

]
, BL12(2) =

[
0.13 3.11
0.53 −1.21

]
,

BL21(2) =
[−0.81 0.28

2.23 −2.82

]
, BL22(2) =

[
0.28 1.61
−3.12 0.22

]
,

BF11(2) =
[

0.52 0.52
−0.51 1.22

]
, BF12(2) =

[
0.18 −1.41
0.18 2.10

]
,

BF21(2) =
[−2.23 1.25
−0.58 1.68

]
, BF22(2) =

[
1.10 1.18
−2.18 1.61

]
,

D(2) =
[

0.21 0.32
0.33 0.84

]
, E(2) = [2 3

]
,

RL11(2) = 1.5I2, RL12(2) = 0.1I2, RL21(2) = 0.2I2,

RL22(2) = 1.5I2, RF11(2) = 3.0I2, RF12(2) = 0.3I2,

RF21(2) = 0.5I2, RF22(2) = 4.0I2,

RLF11(2) = diag
[
1.5 1.3

]
, RLF12(2) = 0.2I2,
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RLF21(2) = 0.6I2, RLF22(2) = diag
[
1.5 1.3

]
,

RFL11(2) = diag
[
1.2 1.4

]
, RFL12(2) = 0.7I2,

RFL21(2) = 0.9I2, RFL22(2) = diag
[
2.5 1.1

]
.

The disturbance attenuation level is chosen as γ = 5. First, the leader’s state-
feedback Nash equilibrium strategies and the worst-case disturbance can be found
through (88) using the following gain matrices:

K∗
c1(1) =

⎡
⎢⎢⎣

K∗
L11(1)
K∗
L12(1)

K∗
F11(1)
K∗
F21(1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1.2511e-1 3.4787e-2
−1.3190e-1 −3.6915e-2
−3.9477e-1 1.0612e-1

−1.2425 −1.5746e-2
−6.7352e-2 −1.6364e-2

1.3711e-1 −7.6100e-2
−1.7551e-1 −6.8776e-3

7.8614e-1 −2.9681e-1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K∗
c2(1) =

⎡
⎢⎢⎣

K∗
L21(1)
K∗
L22(1)

K∗
F12(1)
K∗
F22(1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4.5891e-1 −1.4210
−1.7034e-1 −1.3860e-3
−4.1391e-2 −6.2093e-2
−1.8151e-1 −2.0851e-2
−3.6319e-1 −3.0927e-2
−2.6017e-1 −1.0957e-1
−1.3436e-1 −2.3530e-1
−1.0653e-1 −1.6604e-1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K∗
γ (1) =

[
2.3592e-2 5.1681e-3
1.8501e-2 3.5905e-3

]
,

K∗
c1(2) =

⎡
⎢⎢⎣

K∗
L11(2)
K∗
L12(2)

K∗
F11(2)
K∗
F21(2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.2847e-2 −7.5001e-2
4.6662e-3 5.8566e-2

−3.9759e-1 −5.6783e-1
−5.2046 2.3993e-1

−5.1654e-2 2.3091e-2
−1.0087e-1 −1.0581e-1

6.9680e-1 2.1147e-1
−4.6061e-1 −3.4329e-1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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K∗
c2(2) =

⎡
⎢⎢⎣

K∗
L21(2)
K∗
L22(2)

K∗
F12(2)
K∗
F22(2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4.3616e-3 −1.6256
2.8844e-1 2.1600
4.4060e-2 3.1919e-1

−8.5707e-2 −5.2935e-2
−9.3627e-2 −1.6558e-1

2.4192e-1 −1.4402
−1.5050e-2 2.0614e-1
−1.0369e-1 −2.1858e-1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

K∗
γ (2) =

[
1.1869e-2 1.2445e-2
2.2604e-2 2.8804e-2

]
.

Second, the incentive strategies (91) announced by the leaders can be determined as
follows:

ΘF11(1) =
[−9.8465e-1 5.8400

−1.1403 2.7016

]
,

ΘF12(1) =
[

3.1313e-2 1.1850e-1
−1.9308e-1 6.7643e-1

]
,

ΘF21(1) =
[−6.6324e-1 −2.2493

3.8222 4.5183

]
,

ΘF22(1) =
[−2.1088e + 01 −1.2491e + 01

2.0869 1.1717

]
.

ΘF11(2) =
[

1.1700e + 01 1.8406e + 01
1.5957e + 01 2.6060e + 01

]
,

ΘF12(2) =
[

5.1500e-2 −5.2684e-1
2.3004e-2 −5.3342e-1

]
,

ΘF21(2) =
[−7.7338e-1 7.4665e-1
−5.1018e-1 2.9019e-1

]
,

ΘF22(2) =
[ −1.5696 1.7622
−3.9576e-1 −5.9039e-1

]
.

In fact, it is easy to verify that the proposed incentive strategy can induce the
follower to choose the desired leader’s strategy. On the other hand, it should be
noted that there does not always exist a solution set of Theorems 3 and 4. In this
case, the designers need to declare that no strategy exists.

Finally, the time histories are depicted from Fig. 7. As a result, one can find that
the asymptotic stability can be achieved even if the mode changes.
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Fig. 7 Simulation result for state

4.8 Incentive Possibility

In this section, a novel concept for incentive possibility for the incentive is discussed
for the special case. Incentive possibility is an important concept to guarantee an
existence of the incentive such as controllability for the feedback control systems.
Unless this condition holds, it is impossible to implement the incentive Stackelberg
strategy to the practical plant.

The following special case of one leader and one follower is considered because
it is easy to extend it to the general case. Let us consider the following MJLSS and
the cost functions.

dx(t) =
[
A(rt )x(t)+ B(rt )u(t)+D(rt )v(t)

]
dt

+Ap(rt )x(t)dw(t), x(0) = x0, (103a)

JL(u, v) = J (u, v,QL), (103b)

JF(u, v) = J (u, v,QF), (103c)

where

J (u, v,Q) = 1

2
E

[ ∫ ∞

0

{
xT (t)Q(rt )x(t)+ uT (t)R(rt )u(t)

+vT (t)R(rt )v(t)
}
dt

∣∣∣∣ r0 = k
]
.



Incentive Stackelberg Games for Stochastic Systems 89

It should be noted that all of the weight matrices for the controls are the same. In
this case, the following relations are derived.

[D(k)+ B(k)Ξ(k)]T [X(k)− P(k)] = 0, (104a)

P(k)A(k)+ AT (k)P (k)+ ATp (k)P (k)Ap(k)

+
s∑

m=1

πkmP (m)+ P(k)
[
B(k) D(k)

]

×R−1(k)
[
B(k) D(k)

]T
P (k)+QL(k) = 0, (104b)

X(k)AC(k)+ ATc (k)X(k)+ ATp (k)X(k)Ap(k)

+
s∑

m=1

πkmX(m)− [X(k)DE(k)+ S(k)][RE(k)]−1

×[X(k)DE(k)+ S(k)]T +QC(k) = 0, (104c)

u(k) = Λ(k)x(k)+Ξ(k)v(k), (104d)

where

Λ(k) := K(k)−Ξ(k)F (k),
F (k) := −[RE(k)]−1[X(k)DE(k)+ SE(k)]T ,
F (k) := −R−1(k)DT (k)P (k),

K(k) := −R−1(k)BT (k)P (k),

AC(k) := A(k)+ B(k)Λ(k),
DE(k) := D(k)+ B(k)Ξ(k),
QC(k) := Q(k)+ΛT (k)R(k)Λ(k),
SE(k) := ΛT (k)R(k)Ξ(k),
RE(k) := R(k)+ΞT (k)R(k)Ξ(k).

First, if the dimension of x(t) and u(t) ism = n and B−1(k) exists, the incentive
Ξ(k) can be solved as follows:

Ξ(k) = −B−1(k)D(k). (105)

In such a case, the MJLSS (103a) can be changed as follows:

dx(t) = A(rt )x(t)dt + Ap(rt )x(t)dw(t), x(0) = x0. (106)
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It is obvious that the obtained MJLSS (106) is autonomous and uncontrollable. In
particular, this is called the impossible incentive. Second, ifX(k)−P(k) = 0 holds,
then the following CCSAREs (107) can be derived from the CCSAREs in (104c).

P(k)A(k)+ AT (k)P (k)+ ATp (k)P (k)Ap(k)

+
s∑

m=1

πkmP (m)+ P(k)
[
B(k) D(k)

]

×R−1(k)
[
B(k) D(k)

]T
P (k)+QF (k) = 0. (107)

Therefore, if QL(k) �= QF(k), then X(k) �= P(k) holds. The fact seems to
contradict this result. On the other hand, if QL(k) = QF(k), all weights for the
leader’s and followers’ cost functions in (103b) are the same. This is a weaker
solution concept in team problems, the so-called person-by-person optimality [1]
(p. 196). In this case, since X(k) = P(k) holds, Eq. (104a) is always satisfied,
the incentive is meaningless. Consequently, it should be pointed out that when the
control designers consider the incentive Stackelberg game, they should pay special
attention to the weight matrices of the cost function. It should be noted that the same
problem will hold for the multiple leader and follower.

5 Static Output Feedback Case

In this section, the incentive Stackelberg game for a class of Markov jump linear
stochastic systems (MJLSSs) with external disturbance is addressed. It should be
noted that most of the results in this section are novel. In contrast to the previous
sections, the static output feedback (SOF) incentive Stackelberg strategy with H∞
constraint is studied for the first time.

5.1 Preliminary Results

First, the definitions of stochastic stabilizability and stochastic detectability, which
are essential assumptions in the paper is introduced.

Definition 6 ([45]) Consider the following linear stochastically controlled system
with Markovian jumps:

dx(t) = [A(rt )x(t)+ B(rt )u(t)]dt + Ap(rt )x(t)dw(t), (108a)

y(t) = C(rt )x(t), (108b)

where y(t) ∈ R
p represents the output measurement vector.



Incentive Stackelberg Games for Stochastic Systems 91

First, system (108) or (A,B,Ap) is called stochastic stabilizable (in mean-
square sense) by SOF, if there exists a feedback control u(t) = F(rt )y(t) =
F(rt )C(rt )x(t) with F(1), F(2), . . . , F(s) being constant matrices, such that for
any initial state x(0) = x0, r0 = k, the closed-loop system

dx(t) = [A(rt )+ B(rt )F (rt )C(rt )
]
x(t)dt

+Ap(rt )x(t)dw(t), x(0) = x0, (109)

is AMSS, i.e.

lim
t→∞E

[‖x(t)‖2 | r0 = k
] = 0. (110)

Second, under the condition that B(rt ) ≡ 0 that means autonomous systems,
(A,Ap) is called stable, if Eq. (110) holds.

Definition 7 ([45]) The following state-measurement system:

dx(t) = A(rt )x(t)dt + Ap(rt )x(t)dw(t), (111a)

y(t) = C(rt )x(t) (111b)

or (A,Ap|C) is called stochastically detectable, if there exists a constant matrix X

such that (A+XC,Ap) is asymptotically mean-square stable.

In [45], it should be noted that necessary and sufficient conditions for stochastic
stabilizability and stochastic detectability are provided in terms of solvability of
some systems LMIs. Next, some useful lemmas are introduced.

Lemma 5 ([46, 47]) If (A,Ap|C) is stochastic detectable, then (A,Ap) is stable
iff the stochastic algebraic Lyapunov equation (SALE) (112a) has a unique positive
semi-definite solution P . Moreover, under the assumption that the Markov jump
stochastic system (111a) is governed, (112b) holds.

P(k)A(k)+ AT (k)P (k)+ ATp (k)P (k)Ap(k)

+
s∑
�=1

πk�P (�)+ CT (k)C(k) = 0, (112a)

E

[ ∫ ∞

0
xT (t)CT (rt )C(rt )x(t)dt

∣∣ r0 = k
]

= E
[
xT (0)P (r0)x(0) | r0 = k

] = E[xT (0)P (k)x(0)]. (112b)

The following lemma is an extension of the existing LQ control problem via
the state feedback for infinite-horizon Markov jump linear stochastic systems.
Furthermore, the proof can be done by using the above-mentioned Lemma 5.
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Lemma 6 Consider stochastic linear quadratic (LQ) control with jumps in the
following form:

min
u(t)

[J (u(t), x0, k)], s.t. (108), (113a)

u(t) = F(rt )y(t) = F(rt )C(rt )x(t), (113b)

where

J (u(t), x0, k) = E

[ ∫ ∞

0

[
xT (t)Q(rt )x(t)+ 2xT (t)L(rt )u(t)

+uT (t)R(rt )u(t)
]
dt
∣∣ r0 = k

]
. (114)

Suppose that x(0) is a zero mean random variable satisfying E[x(0)xT (0)] = In.
Assume that there exist P and G that satisfy the following cross-coupled Lyapunov
type equations (CCSALTEs) and that C(k)G(k)CT (k) is nonsingular.

P(k)[A(k)+ B(k)F (k)C(k)] + [A(k)+ B(k)F (k)C(k)]T P (k)

+ATp (k)P (k)Ap(k)+
s∑
�=1

πk�P (�)

+Q(k)+ 2L(k)F (k)C(k)+ CT (k)F T (k)R(k)F (k)C(k) = 0, (115a)

G(k)[A(k)+ B(k)F (k)C(k)]T + [A(k)+ B(k)F (k)C(k)]G(k)

+Ap(k)G(k)ATp (k)+
s∑
�=1

π�kG(�)+ In = 0. (115b)

Then, SOF control is given below.

u(t) = u∗(t) = F ∗(rt )y(t) = F ∗(rt )C(rt )x(t), (116)

where

F ∗(k) = −R−1(k)
[
BT (k)P (k)+ LT (k)]G(k)CT (k)

×[C(k)G(k)CT (k)]−1
.

Moreover,

J (u(t), x0, k) ≥ J (u∗(t), x0, k) = Trace[P(k)]. (117)
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Consider the following stochastic linear system with Markovian jumps:

dx(t) = [A(rt )x(t)+D(rt )v(t)
]
dt + Ap(rt )x(t)dw(t), (118a)

z(t) = E(rt )x(t), (118b)

where v(t) ∈ R
nv and z(t) ∈ R

nz represent the external disturbance and controlled
output, respectively.

The following result is already known as a bounded real lemma.

Lemma 7 ([45]) For a given constant γ > 0, suppose there exists a symmetric
non-negative definite solution Z to the following cross-coupled stochastic algebraic
Riccati equations (CCSAREs)

Z(k)A(k)+ AT (k)Z(k)+ ATp (k)Z(k)Ap(k)+
s∑
�=1

πk�Z(�)

+γ−2Z(k)D(k)DT (k)Z(k)+ ET (k)E(k) = 0. (119)

Then,

(i) The stochastic linear system with Markov jumps (118) is asymptotically mean-
square stable internally.

(ii)

‖L‖2∞ = sup
v ∈ L2

F
([0, ∞), Rnv ),

v �= 0, x0 = 0

J̃1

J2
< γ, (120)

where

v(t) = v∗(t) = F̄ ∗γ (rt )x(t) = γ−2DT (rt )Z(rt )x(t),

J̃1 :=
s∑
i=1

E

[ ∫ ∞

0
‖z(t)‖2dt

∣∣ r0 = k
]
,

J2 :=
s∑
i=1

E

[ ∫ ∞

0
‖v(t)‖2dt

∣∣ r0 = k
]
.

It should be noted that v∗(t) is called the worst-case disturbance.
In this paper, the SOF incentive Stackelberg strategy under H∞ constraint for a

class of stochastic MJLSS with multiple decision makers is solved.
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5.2 Problem Formulation

Consider the following MJLSS with multiple leaders and followers:

dx(t) =
[
A(rt )x(t)+

M∑
i=1

N∑
j=1

[
BLij (rt )uLij (t)+ BFji(rt )uFji(t)

]

+D(rt )v(t)
]
dt + Ap(rt )x(t)dw(t), x(0) = x0, (121a)

z(t) = col
[
E(rt )x(t) uc1(t) uc2(t) · · · ucM(t)

]
, (121b)

yci(t) = Cci(rt )x(t), (121c)

with

uci(t) = col
[
uLi1(t) · · · uLiN(t) uF1i (t) · · · uFNi(t)

]
,

yci(t) = col
[
yLi1(t) · · · yLiN (t) yF1i (t) · · · yFNi(t)

]
,

Cci(rt ) = block diag
(
CLi1(rt ) · · · CLiN(rt ) CF1i (rt ) · · · CFNi(rt )

)
,

where uLij (t) ∈ R
mLij represents the leader Li’s i = 1, . . . ,M control input for

the follower Fj . uFji(t) ∈ R
mFji represents the follower Fj ’s j = 1, . . . , N control

input for the leader Li in the sense of incentive Stackelberg strategy. v(t) ∈ R
nv

represents the external disturbance. yLij (t) ∈ R
pLij represents the leader Li’s

output measurement vector. yFji(t) ∈ R
pFji represents the follower Li’s output

measurement vector. The coefficients A, BLij , BFji , E, Ap, CLij , CFji are constant
matrices of compatible dimensions, i = 1, . . . ,M, j = 1, . . . , N .

Cost functionals of the leader Li and the follower Fj are defined as follows:

JLi

(
uc1, . . . , ucM, v; x0, k

)

= E

[ ∫ ∞

0

{
xT (t)QLi(rt )x(t)+

N∑
j=1

[
uTLij (t)RLij (rt )uLij (t)

+ uTFji(t)RLFji(rt )uFji(t)
]}
dt
∣∣ r0 = k

]
, i = 1, . . . ,M, (122a)

JFj

(
ûF1, . . . , ûFN , v; x0, k

)

= E

[ ∫ ∞

0

{
xT (t)QFj (rt )x(t)+

M∑
i=1

[
uTLij (t)RFLij (rt )uLij (t)
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+ uTFji(t)RFji(rt )uFji(t)
]}
dt
∣∣ r0 = k

]
, j = 1, . . . , N, (122b)

where

ûFj (t) = col
[
uFj1(t) · · · uFjM(t)

]
,

QLi(k) = QTLi(k) ≥ 0,QFj (k) = QTFj (k) ≥ 0,

RLij (k) = RTLij (k) > 0, RFji = RTFji(k) > 0,

RLFji(k) = RTLFji(k) ≥ 0, RFLij (k) = RTFLij (k) ≥ 0,

k ∈ D, i = 1, . . . ,M, j = 1, . . . , N.

For an incentive Stackelberg game, leaders announce the following incentive
strategy to the followers ahead of time:

uLij (t) = FLij (rt )C(rt )x(t)+Ξji(rt )
[
uFji(t)− FLji(rt )C(rt )x(t)

]

= Λji(rt )x(t)+Ξji(rt )uFji(t), (123)

where Λji(k) = F ∗Lij (k)C(k)−Xiji(k)F ∗Lji(k)C(k).
The parameters Λji(k) and Ξji(k) are to be determined as associated with the

Pareto optimal strategies uFji(t) of the followers for k ∈ D, i = 1, . . . , M ,
j = 1, . . . , N . In this game, leaders will achieve a Pareto optimal strategy
attenuating the external disturbance v(t) with an H∞ constraint. Infinite-horizon
multiple leader-follower incentive Stackelberg games for MJLSSs with an H∞
constraint can be formulated as follows:

For a given disturbance attenuation level γ > 0, find, if possible, the SOF
controls

u∗Lij (t) = F ∗Lij (rt )CLij (rt )x(t), (124a)

u∗Fji(t) = F ∗Fji(rt )CFji(rt )x(t), (124b)

such that the following hold:

1. The MJLSS (121) attains the minimization of the centralized cost of (125a) with
an H∞ constraint condition (125b):

Jτ (uc1, . . . , ucM, v
∗; x0, k) =

N∑
j=1

τjJLi(uc1, . . . , ucM, v
∗; x0, k), (125a)

0 ≤ Jγ (u∗c1, . . . , u∗cM, v∗; x0, k) ≤ Jγ (u∗c1, . . . , u∗cM, v; x0, k), (125b)

where i = 1, . . . ,M and
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Jτ (u
∗
c1, . . . , u

∗
cM, v

∗; x0, k) = min
uc1,...,ucM

Jτ (uc1, . . . , ucM, v
∗; x0, k),

M∑
j=1

τj = 1, 0 < τj < 1, j = 1, . . . ,M,

Jγ (uc1, . . . , ucM, v; x0, k)

= E

[ ∫ ∞

0

{
γ 2‖v(t)‖2 − ‖z(t)‖2

}
dt
∣∣ r0 = k

]
, v(t) �= 0,

‖z(t)‖2 = xT (t)ET (rt )E(rt )x(t)+
M∑
i=1

uTci(t)uci(t).

On the other hand, consider the leader’s incentive strategy (123) and the worst-
case disturbance v∗(t) ∈ L2

F (R+, R
nv ). The follower’s decision u∗Fji(t)) ∈

L2
F (R+, RnFji ), j = 1, . . . , N can be selected as follows:

2. If the Pareto optimal strategy as cooperative strategy is chosen, the following
objective function should be minimized.

Ĵρ(ûF1, . . . , ûFN , v; x0, k) =
N∑
j=1

ρjJFj (ûF1, . . . , ûFN , v; x0, k), (126)

where
∑N
j=1 ρj = 1, 0 < ρj < 1, j = 1, . . . , N .

5.3 Main Results

In this section, the Pareto optimal strategies of the leaders and the Pareto strategies
of the followers are derived.

5.3.1 Leader’s Pareto Optimal Strategy

It is assumed that leaders are cooperative within their group, and they will
find the Pareto optimal strategy. Therefore, the Pareto optimal solutions
(u∗c1(t), . . . , u∗cM(t), v∗(t)) of the leaders are investigated in terms of how they
attenuate the disturbance under an H∞ constraint. For this purpose, let us configure
the MJLSS (127) as the following centralized system:

dx(t) =
[
A(rt )x(t)+

M∑
i=1

Bci(rt )uci(t)+D(rt )v(t)
]
dt
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+ Ap(rt )x(t)dw(t), x(0) = x0, (127a)

z(t) = col
[
E(rt )x(t) uc1(t) uc2(t) · · · ucM(t)

]
, (127b)

uci(t) = Fci(rt )yci(t) = Fci(rt )Cci(rt )x(t), (127c)

where i = 1, . . . ,M and k ∈ D.

Bci(k) =
[
BLi1(k) · · · BLiN (k) BF1i (k) · · · BFNi(k)

]
,

F ∗ci(k) = block diag
(
F ∗Li1(k) · · · F ∗LiN (k) F ∗F1i (k) · · · F ∗FNi(k)

)
.

Furthermore, the cost functional (122a) can be changed as follows:

JLi (uc1, . . . , ucM ; x0, k)

= E

[ ∫ ∞

0

{
xT (t)QLi (rt )x(t)+ uTci(t)Rci(rt )uci(t)

}
dt
∣∣r0 = k

]
, (128)

where

Rci(k) = block diag
(
RLi1(k) · · · RLiN (k) RLF1i (k) · · · RLFNi(k)

)
.

To obtain the Pareto optimal strategy of the ith leader under the H∞ constraint, the
following results are provided by using Lemma 6.

Corollary 2 For a given disturbance attenuation level γ > 0, suppose that
there exist P c, Gc, and Z that satisfy the following cross-coupled Lyapunov type
equations (CCSALTEs) and that Cci(k)Gc(k)CTci(k) is nonsingular.

Pc(k)Aγc(k)+ ATγc(k)Pc(k)+ ATp (k)Pc(k)Ap(k)+
s∑
�=1

πk�Pc(�)

+
M∑
j=1

τj
[
QLj (k)+ CTcj (k)F Tcj (k)Rcj (k)Fcj (k)Ccj (k)

] = 0, (129a)

Gc(k)A
T
γ c(k)+ Aγc(k)Gc(k)+ Ap(k)Gc(k)ATp (k)

+
s∑
�=1

π�kGc(�)+ In = 0, (129b)

Z(k)Ac(k)+ ATc (k)Z(k)+ ATp (k)Z(k)Ap(k)+
s∑
�=1

πk�Z(�)

+γ−2Z(k)D(k)DT (k)Z(k)+ ETc (k)Ec(k) = 0, (129c)
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where

Aγc(k) = A(k)+
M∑
j=1

Bci(k)Fcj (k)Ccj (k)+ γ−2D(k)DT (k)Z(k),

Ac(k) = A(k)+
M∑
j=1

Bcj (k)Fcj (k)Ccj (k),

FLij (k) = −[τiRLij ]−1(k)BTLij (k)Pc(k)Gc(k)C
T
Lij (k)

×
[
CLij (k)Gc(k)C

T
Lij (k)

]−1
,

FFj i(k) = −[τiRLFj i]−1(k)BTFj i(k)Pc(k)Gc(k)C
T
Fj i(k)

×
[
CFj i(k)Gc(k)C

T
Fj i(k)

]−1
,

Ec(k) =

⎡
⎢⎢⎢⎣

E(k)

Fc1(k)Cc1(k)
...

FcM(k)CcM(k)

⎤
⎥⎥⎥⎦ , i = 1, . . . ,M and k ∈ D.

Then the H∞ constraint SOF control problem has the following solutions:

uci(t) = u∗ci(t) = Fci(rt )y(t) = F ∗ci(rt )y(t), (130a)

v(t) = v∗(t) = Fγ (rt )x(t) = F ∗γ (rt )x(t) = γ−2DT (rt )Z(rt )x(t). (130b)

5.3.2 Follower’s Pareto Optimal Strategy

In this subsection, each follower’s strategy associated with the incentive strategy
(123) and the incentive parametersΞij (rt ) is thereby established. Substituting (123)
together with Nash strategy set (130) into MJLSS (121a) and the cost function
(122b), the following optimization problem can be obtained:

min
FF
Jρ(uF1, . . . , uFN, v; x0, k)

= E

[ ∫ ∞

0

[
xT (t)QFρ(rt )x(t)+ 2xT (t)LFρ(rt )uF(t)

+ uTF (t)RFρ(rt )uF(t)
]
dt
∣∣r0 = k

]
, (131a)

s.t.
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dx(t) =
[
AFc(rt )x(t)+ BFc(rt )uF(t)

]
dt

+ Ap(rt )x(t)dw(t), x(0) = x0, (131b)

uF(t) =
⎡
⎢⎣
uF1
...

uFN

⎤
⎥⎦ = FFc(rt )yFc(t) = FFc(rt )CFc(rt )x(t), (131c)

yFc(t) =
⎡
⎢⎣
yF1(t)
...

yFN(t)

⎤
⎥⎦ , yFj (t) =

⎡
⎢⎣
yFj1(t)
...

yFjM(t)

⎤
⎥⎦ ,

yFj1(t) = CFj1x(t), (131d)

where

QFρ(k) :=
N∑
j=1

ρj
[
QFj (k)+

M∑
i=1

ΛTji(k)RFLij (k)Λji(k)
]
,

LFρ(k) :=
[
ρ1LF1(k) · · · ρNLFN(k)

]
,

LFj (k) :=
[
ΛTj1(k)RFL1j (k)Ξj1(k)

· · · ΛTjM(k)RFLMj (k)ΞjM(k)
]
,

RFρ(k) := block diag
(
ρ1RF1(k) · · · ρNRFN(k)

)
,

RFj (k) := block diag
(
RFj1(k)+ΞTj1(k)RFL1j (k)Ξj1(k)

· · · RFjM(k)+ΞTjM(k)RFLMj (k)ΞjM(k)
)
,

AFc(k) := A(k)+
M∑
i=1

N∑
j=1

BLij (k)Λji(k)+ γ−2DDT (k)Z(k),

BFc(k) :=
[
BF1(k) · · · BFN(k)

]
,

BFj (k) :=
[
BFcj1(k) · · · BFcjM(k)

]
,

BFcij (k) := BFij (k)+ BLj i(k)Ξij (k).

Using Lemma 6 to the above-mentioned optimization problem, the Pareto optimal
strategy set can be obtained as follows:
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PF(k)
[
AFc(k)+ BFc(k)FFc(k)CFc(k)

]

+[AFc(k)+ BFc(k)FFc(k)CFc(k)
]T
PF(k)

+ATp (k)PF(k)Ap(k)+
s∑
�=1

πk�PF(�)

+LFρ(k)FFc(k)CFc(k)+ CTFc(k)F TFc(k)LTFρ(k)+QFρ(k)

+CTFc(k)F TFc(k)RFρ(k)FFc(k)CFc(k) = 0, (132a)

GF(k)
[
AFc(k)+ BFc(k)FFc(k)CFc(k)

]T

+[AFc(k)+ BFc(k)FFc(k)CFc(k)
]
GF(k)

+ApGF(k)A
T
p (k)+

s∑
�=1

π�kGF(�)+ In = 0. (132b)

Then, SOF strategy based on the incentive (123) is given below.

uF(t) = u†
F(t) = F †

Fc(rt )yFc(t) = F †
Fc(rt )CFc(rt )x(t), (133)

where

F
†
Fc(k) = block diag

(
F

†
F1(k) · · · F †

FN(k)

)
,

F
†
Fj (k) = block diag

(
F

†
Fj1(k) · · · F †

FjM(k)
)
,

F
†
Fj i(k) = −[ρj

(
RFj i(k)+ΞTji(k)RFLij (k)Ξji(k)

)]−1

×[(BFj i(k)+ BLij (k)Ξ
T
ji(k)

)T
PF(k)

+(ρjΛTji(k)RFLij (k)Ξ
T
ji(k)

)T ]
GF(k)C

T
Fj i(k)

×[CFj iGF(k)C
T
Fj i(k)

]−1
.

Moreover, Ξij (k), i = 1, . . . ,M , j = 1, . . . , N satisfy the following linear
algebraic matrix equations (LAMEs):

ΞTij (k)
(
BTLj i(k)PF(k)+ RFLj i(k)F

∗
Lj i(k)CLj i(k)

)

+ RFij (k)F
∗
Fij (k)CFij (k)+ BTFij (k)PF(k) = 0. (134)

It should be noted that LAMEs (134) can be established by using the relation
F ∗Fj i(k) = F †

Fj i(k).
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6 Incentive Stackelberg Strategy for Stochastic LPV Systems

In this section, the incentive Stackelberg-Nash strategy for stochastic LPV systems
with disturbance attenuation is discussed under multiple decision makers. As
compared to previous results, the incentive strategy for a class of stochastic LPV
systems in [36, 38] was investigated here for the first time.

6.1 Preliminary Results

Consider the following stochastic LPV system:

dx(t) = [A(θ(t))x(t)+ Bu(t)+Dv(t)]dt
+[Apx(t)+Dpv(t)

]
dw(t), x(0) = x0, (135a)

z(t) =
[
E(θ(t))x(t)

Gu(t)

]
, GT G = In, (135b)

where x(t) ∈ R
n denotes the state vector. u(t) ∈ R

m denotes the control input.
v(t) ∈ R

nv denotes the external disturbance. z(t) ∈ R
nz+mz (E(θ(t))x(t) ∈ R

nz ,
Gu(t) ∈ R

mz ) denotes the controlled output. w(t) ∈ R denotes a one-dimensional
standard Wiener process defined in the filtered probability space [6, 49, 50].
θ(t) ∈ R

r denotes the time-varying parameters. r is the number of time-varying
parameters. Without loss of generality, it is assumed that the stochastic system
(135) has a unique strong solution x(t) = x(t, ũ, ṽ, x(0)) for any u(t) = ũ(x(t))

and v(t) = ṽ(x(t)). The coefficient matrices A(θ(t)) and Ap(θ(t)) are parameter-
dependent matrices that can be expressed as

A(θ(t)) =
M∑
k=1

αk(t)Ak, E(θ(t)) =
M∑
k=1

αk(t)Ek, (136)

where αk(t) ≥ 0,
∑M
k=1 αk(t) = 1, M = 2r and r is the number of time-varying

parameters [51].
It should be noted that the above-mentioned descriptions are used to simplify the

context. Furthermore, for notational convenience, instead of θ(t), θ will be used,
with similar abbreviations used subsequently.

The following definition of stochastic stability will be required.

Definition 8 ([51]) A stochastic LPV system governed by Itô’s differential equa-
tion (135) is mean-square stable if the trajectories satisfy

lim
t→∞E[‖x(t)‖2] = 0

for any initial condition.
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The H∞ norm, an essential assumption here, is introduced in [51].

Definition 9 ([51]) The H∞ norm of the stochastic LPV system (135) with mean-
square stable is given by

‖L‖2∞ = sup
v ∈ L2

F
([0, ∞), Rnv ),

v �= 0, x0 = 0

Jz

Jv
, (137)

where

Jz := E

[∫ ∞

0
‖z(t)‖2dt

]
, Jv := E

[∫ ∞

0
‖v(t)‖2dt

]
.

Lemma 8 ([36, 38]) Let us consider an autonomous system (135) with u(t) ≡ 0.
For a given attenuation performance level γ > 0, if there exists a matrix Z = ZT >
0 satisfying the following linear matrix inequalities (LMIs) (138), the stochastic
LPV system (135) is mean-square stable with ‖L‖∞ < γ below x0 = 0.

⎡
⎣
Ψk(Z) E

T
k LTγ

Ek −Inz 0
Lγ 0 −Rγ

⎤
⎦ < 0, (138)

where k = 1, . . . ,M , Ψk(Z) := ZAk+ATk Z+ATpZAp, Rγ := γ 2Inv−DTpZDp >
0, Lγ := DTZ +DTpZAp.

Moreover, the worst-case disturbance is given by

v∗(t) := R−1
γ Lγ x(t). (139)

On the other hand, the standard linear quadratic control (LQC) problem for a
stochastic LPV system with v(t) ≡ 0 or D ≡ 0 in (135a) is given [32, 48].

Definition 10 ([32, 48]) Let us consider the stochastic LPV system with v(t) ≡ 0
in (135a). The following cost performance is defined by

J (u, x0) = E

[ ∫ ∞

0

[
xT (t)Qx(t)+ uT (t)Ru(t)]dt

]
, (140)

whereQ = QT > 0, R = RT > 0.
In this situation, the LQC problem is to find a fixed state feedback control

u(t) = Kx(t) (141)

such that the quadratic cost functional (140) is minimized.

The following result can be obtained using a technique similar to that in [48].
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Lemma 9 ([36, 38]) If there exist a matrix X̄ > 0 and Ȳ satisfying the LMIs (142)

⎡
⎢⎢⎣

Ξ̄k(X̄, Ȳ ) X̄ Ȳ T X̄ATp
X̄ −Q−1 0 0
Ȳ 0 −R−1 0
ApX̄ 0 0 −X̄

⎤
⎥⎥⎦ ≤ 0, k = 1, . . . ,M, (142)

where

Ξ̄k(X̄, Ȳ ) := AkX̄ + X̄ATk + BȲ + Ȳ T BT ,
K := Ȳ X̄−1,

then

J (u, x0) ≤ E
[
xT (0)X̄−1x(0)

]
. (143)

It should be noted that the result obtained corresponding to Lemmas 8 and 9 is a
sufficient condition.

6.2 Problem Formulation

Consider the stochastic LPV system governed by Itô’s differential equation with
multiple decision makers defined by

dx(t) =
[
A(θ(t))x(t)+

N∑
j=1

[
B0j u0j (t)+ Bjuj (t)

]

+Dv(t)
]
dt + [Apx(t)+Dpv(t)

]
dw(t), (144a)

z(t) =
[
E(θ(t))x(t)

G̃ũ(t)

]
, (144b)

where

G̃ũ(t) :=

⎡
⎢⎢⎢⎣

G0u0(t)

G1u1(t)
...

GNuN(t)

⎤
⎥⎥⎥⎦ ,

u0(t) = col
[
u01(t) · · · u0N(t)

]
,

u0i (t) = K0ix(t),
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ui(t) = Kix(t),
G0 := block diag

(
G01 · · · G0N

)
,

G0iu0i (t) ∈ R
mz0i , Giui(t) ∈ R

mzi .

u0(t) ∈ R
m0 , m0 = ∑N

j=1m0j with u0j (t) ∈ R
m0j denotes the leader’s control

input. ui(t) ∈ R
mi , i = 1 , . . . , N denotes the ith follower’s control input. In the

following, we use P0 to represent the leader and Pi , i = 1 , . . . , N to represent the
ith follower. Other variables are defined by stochastic equation (135). It should be
noted that Gi does not depend on a time-varying parameter because the controlled
output can be chosen by the controller designer. Hence, without loss of generality,
assume that GTi Gi = Imzi , i = 0, 1, . . . , N , mz0 = ∑N

j=1mz0j , Gi ∈ R
gi×mi .

Furthermore, without loss of generality, to remove this dependence on x(0), suppose
that x(0) is a zero mean random variable satisfying E[x(0)xT (0)] = In.

The cost performances are defined by

Jv(u0, u1, . . . , uN , v, x
0) = E

[ ∫ ∞

0

[
γ 2‖v(t)‖2 − ‖z(t)‖2]dt

]
, (145a)

J0(u0, u1, . . . , uN , v, x
0)

= E

[ ∫ ∞

0

{
xT (t)Q0x(t)+

N∑
i=1

[
uT0i (t)R00iu0i (t)

+uTi (t)R0iui(t)

]}
dt

]
, (145b)

Ji(u1, . . . , uN , v, x
0)

= E

[ ∫ ∞

0

{
xT (t)Qix(t)+ uTi (t)Riiui(t)

}
dt

]
, (145c)

where i = 1, . . . , N ,Q0 := QT0 ,Qi = QTi > 0, R00i = RT00i > 0, R0i = RT0i ≥ 0,
Rii = RTii > 0.

At first glance, there seems to be no input from other players. However, since the
state after implementing the feedback strategy depends on the control inputs of all
the players, the left-hand side of the cost function can be represented as Eq. (145c).

The infinite-horizon incentive Stackelberg-Nash strategy with the H∞ constraint
for the stochastic LPV system (144) is defined as follows:

For any given γ > 0, find a fixed state feedback strategy set ui(t) = u
†
i (t) =

K
†
i x(t) ∈ L2

F ([0, ∞), Rmi ), i = 1, . . . , N such that

1. the leader announces a strategy that minimizes the cost function (145b) ahead of
time to the followers with the following feedback pattern.

u0i (t) = u0i (x, ui) = η0ix(t)+ ηiiui(t) (146)
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for i = 1, . . . , N , where η0i ∈ R
m0i×n and ηii ∈ R

m0i×mi are strategy parameter
matrices.

2. For the closed-loop stochastic LPV system, H∞ norm conditions hold such that
Jv(u

∗
1, . . . , u

∗
N, v, x

0) ≥ 0 and ui(t) = u∗i (t) = K∗
i x(t).

3. When the worst-case disturbance v∗(t) is implemented in (144), ui(t) = u†
i (t),

i = 1, . . . , N satisfies the following Nash equilibrium condition (147):

Ji(u
∗
1, . . . , u

∗
N, v

∗, x0)

≤ Ji(u∗1, . . . , u∗i−1, ui, u
∗
i+1, . . . , u

∗
N, v

∗, x0). (147)

In other words, first, solve the optimization problem (148a). Second, find v(t) =
v∗(t) such that inequality (148b) holds when the team-optimal strategy set
ui(t) = u∗i (t) is applied. Finally, find ηii = η

†
ii and ui(t) = u

†
i (t), where

u0i (t) = u∗0i (t)+ ηii(ui(t)−u∗i (t)) such that the solution set of the optimization

problem (148c) is u†
i (t) = u∗i (t).

J0(u
∗
0, u

∗
1, . . . , u

∗
N, v

∗, x0)

= min
u0,u1,...,uN

J0(u0, u1, . . . , uN , v
∗, x0), (148a)

0 ≤ Jv(u∗0, u∗1, . . . , u∗N, v∗, x0) ≤ Jv(u∗0, u∗1, . . . , u∗N, v, x0), (148b)

Ji(u
†
1, . . . , u

†
N, v

∗, x0)

≤ Ji(u†
1, . . . , u

†
i−1, ui, u

†
i+1, . . . , u

†
N, v

∗, x0). (148c)

The reasons for introducing a fixed gain while introducing the LPV system is based
on the following two concerns. First, when the incentive has a variable structure, the
optimization problem to be solved is a bilinear matrix inequality (BMI), which is
very difficult to solve, or at worst, the solution might not exist. Second, for mounting
on-board computers, such as smart meters, the next generation of electric meters,
there are some cases in which only a fixed gain can be implemented because the
control program must be downsized owing to the limited memory area and the
performance limitations of the central processing unit.

In the next section, we derive the solution of the above-mentioned problem, the
H∞-constraint Nash strategy.

6.3 Main Results

First, the team-optimal solution set with the H∞ constraint is derived. By centraliz-
ing the control inputs in the stochastic LPV system (144), the following centralized
stochastic systems can be obtained:
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dx(t) = [A(θ(t))x(t)+ Bcuc(t)+Dv(t)
]
dt

+[Apx(t)+Dpv(t)
]
dw(t), (149a)

z(t) =
[
E(θ(t))x(t)

Gcuc(t)

]
, (149b)

uc(t) = col
[
u0(t) u1(t) · · · uN(t)

]
, (149c)

where

Bc :=
[
B0 B1 · · · BN

]
,

B0 :=
[
B01 · · · B0N

]
,

Gc := block diag
(
G0 G1 · · · GN

)
.

Furthermore, the cost functional (145b) can be changed as:

J0(u0, u1, . . . , uN , v, x
0)

= E

[ ∫ ∞

0

{
xT (t)Q0x(t)+ uTc (t)Rcuc(t)

}
dt

]
, (150)

where

Rc := block diag
(
R00 R01 · · · R0N

)
,

R00 := block diag
(
R001 · · · R00N

)
.

Using Lemmas 8 and 9, the following conditions can be obtained.

Theorem 5 ([36]) Let us consider the stochastic LPV system (144) with multiple
decision makers ui(t) and the deterministic disturbance v(t). For a given attenua-
tion performance level γ > 0, assume that there exists a solution set for the real
symmetric matrices X > 0, Yk , and W > 0 such that the following CCMIs are
satisfied:

⎡
⎢⎢⎣

Ξ k(X, Y ) X YT XĀTp
X −Q−1

0 0 0
Y 0 −R−1

c 0
ĀpX 0 0 −X

⎤
⎥⎥⎦ ≤ 0, (151a)

⎡
⎢⎣

Θk(W) E
T
Kk LTγW

EKk −Inz 0
LγW 0 −RγW

⎤
⎥⎦ < 0, (151b)
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where k = 1, . . . ,M ,

Ξ k(X, Y ) := AFγ kX +XATFγ k + BcY + YT BTc ,
Θk(W) := WAKk +ATKkW + ATpWAp,

AFγ k := Ak +DF ∗γ , Āp = Ap +DpF ∗γ ,

AKk := Ak +
N∑
j=1

[B0jK
∗
0j + BjK∗

j ],

z̄n := nz +
N∑
j=1

(mz0j +mzj ),

EKk :=

⎡
⎢⎢⎢⎢⎢⎣

ETk
G0K

∗
0

G1K
∗
1

...

GNK
∗
N

⎤
⎥⎥⎥⎥⎥⎦
,

K∗ := YX−1 =

⎡
⎢⎢⎢⎣

K∗
0
K∗

1
...

K∗
N

⎤
⎥⎥⎥⎦ , K

∗
0 :=

⎡
⎢⎣
K∗

01
...

K∗
0N

⎤
⎥⎦ ,

F ∗γ := R−1
γWLγW ,

RγW := γ 2Inv −DTpWDp > 0,

LγW := DTW +DTpWAp.
Then, the following controllers comprise the team-optimal strategy set:

u∗0i (t) = K∗
0ix(t), i = 1, . . . , N, (152a)

u∗i (t) = K∗
i x(t), i = 1, . . . , N, (152b)

v∗(t) = F ∗γ x(t) = R−1
γWLγWx(t). (152c)

Furthermore, the optimal cost bounds are given by

J0(u
∗
1, . . . , u

∗
N, v

∗, x0) ≤ E
[
xT (0)X−1x(0)

] = Tr[X−1]. (153)

As the next step, the conditions of the existence of the follower’s strategy set and
the incentive are derived. The following LQC problem with the incentive (146) and
the worst-case disturbance (152c) is considered:



108 H. Mukaidani

Ji(u
†
1, . . . , u

†
i−1, ui, u

†
i+1, . . . , u

†
N, v

∗, x0)

= E

[ ∫ ∞

0

{
xT (t)Qix(t)+ uTi (t)Riiui(t)

}
dt

]
, (154)

where u†
j , j �= i means the follower’s strategy under the use of the incentive.

In this case, the stochastic system with the incentive (146) is given below.

dx(t) = [A−iηx(t)+ Bηiui(t)
]
dt + Āpx(t)dw(t), (155a)

u0i (t) = η0ix(t)+ ηiiui(t), (155b)

where

A−iη(θ(t)) := A(θ(t))+
N∑
j=1

B0j η0j +
N∑

j=1,j �=i
BηjK

∗
j +DF ∗γ

=
M∑
k=1

αk(t)A−iηk,

Bηi := Bi + B0iηii ,

η0i := K∗
0i − ηiiK∗

i .

Theorem 6 ([36]) Let us consider the stochastic LPV system (144) with multiple
decision makers ui(t) and the deterministic disturbance v(t). For a given attenua-
tion performance level γ > 0, assume that there exists a solution set for the real
symmetric matrices Xηi > 0 and Yηi such that the following CCMIs are satisfied:
If there exists matrix Xηi > 0 satisfying the LMIs (156):

⎡
⎢⎢⎢⎣

Ξ̂ηk(Xηi, Yηi) Xηi Y Tηi XηiĀ
T
p

Xηi −Q−1
i 0 0

Yηi 0 −R−1
ii 0

ĀpXηi 0 0 −Xηi

⎤
⎥⎥⎥⎦ ≤ 0, k = 1, . . . ,M, (156)

where

Ξ̂ηk(Xηi, Yηi) := A−iηkXηi +XηiAT−iηk + BηiYηi + YTηiBTηi,
K

†
ηi := YηiX−1

ηi .

Then, the following controllers comprise the team-optimal strategy set.

u
†
i (t) = K†

ηix(t), i = 1, . . . , N. (157)
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Moreover, we have

Ji(u
†
1, . . . , u

†
N, v

∗, x0) ≤ Tr[X−1
ηi ]. (158)

Finally, the incentive is given below.

u0i (t) = η0ix(t)+ η†
iiui(t), (159a)

η0i = K∗
0i − η†

iiK
†
ηi, i = 1, . . . , N, (159b)

K∗
i = K†

ηi, i = 1, . . . , N. (159c)

It should be noted that the limitations and the disadvantages of the approach is
that there does not always exist a solution set of Theorems 5 and 6.

Finally, calculation of ηii is considered. Let us define the following matrix:

X−1
ηi = Pηi. (160)

Through the use of the relation Kηi = K†
ηi = YηiX−1

η = YηiPηi and application of
the Schur complement, the original optimization problem with the constraint (156)
can be changed to the following optimization problem:

min
Pηi ,Kη1,...,KηM

Tr [Pηi], s.t. Λk(Pηi,Kηi) ≤ 0, (161)

where

Λk(Pηi,Kηi) := Pηi(A−iηk + BηiKηi)+ (A−iηk + BηiKηi)T Pηi
+ ĀTpPηiĀp +Qi +KTηiRiiKηi .

This optimization problem can be solved using the Karush–Kuhn–Tucker condition.
The following Lagrangian L is considered.

L = L(Pηi,Kηi) = Tr [Pηi] +
M∑
k=1

Tr [GηkΛk(Pηi,Kηi)], (162)

where Gηk is the symmetric matrix of the Lagrange multiplier. Using the KKT
conditions, we obtain

GηkΛk(Pηi,Kηi) = 0, (163a)

Gηk ≥ 0, (163b)

Λk(Pηi,Kηi) ≤ 0, (163c)
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∂L

∂Pηi
= In +

M∑
k=1

[
ĀpGηkĀ

T
p + (A−iηk + BηiKηi)Gηk

+Gηk(A−iηk + BηiKηi)T
] = 0, (163d)

1

2
· ∂L
∂Kηi

= (BTηiPηi + RiiKηi)
M∑
k=1

Gηk = 0. (163e)

It immediately follows that the generalized stochastic Lyapunov equations (163d)
have a unique positive definite solution Gηk > 0. Hence, we have BTηiPηi +
RiiK

†
ηi = 0. Furthermore, using Rii > 0 K†

ηi = −R−1
ii B

T
ηiPηi . On the other

hand, using the relation of (159a), we have K∗
i = K

†
ηi ⇔ −(RiiK∗

i + BTi Pηi) =
η

†T
ii B

T
0iPηi , i = 1, . . . , N . Finally, if PηiB0i is nonsingular, ηii can be computed

using the following equation:

η
†
ii = −(PηiB0i )

−1(K∗T
i Rii + PηiBi), i = 1, . . . , N. (164)

6.4 Numerical Algorithm for Solving CCMIs

In order to construct the team-optimal strategy set (152), we must solve the CCMIs
(151). It should be noted that since these matrix inequalities are coupled, the process
is very complicated even if an ordinary iterative scheme such as Newton’s method is
applied. In this section, a numerical algorithm relating to semidefinite programming
problems (SDPs) is considered.

First, the numerical algorithm for solving the CCMIs (151) is given.

Step 1 As the first step, choose any weight ρi for the cost function (148c) and solve
the following SDP.

minimize α(0), (165)

subject to

⎡
⎢⎢⎢⎣

Ξ
(0)
k (X, Y ) X

(0) Y (0)T X(0)ATpk
X(0) −Q−1

0 0 0
Y (0) 0 −R−1

c 0
ApkX

(0) 0 0 −X(0)

⎤
⎥⎥⎥⎦ ≤ 0, (166a)

[−α(0) xT (0)
x(0) −X(0)

]
≤ 0, (166b)
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where k = 1, . . . ,M ,

Ξ
(0)
k (X, Y ) = AkX(0) +X(0)ATk + BcY (0) + Y (0)T BTc ,

K(0) = Y (0)[X(0)]−1.

Choose any γ and solve Z(0), where

Z(0)Ā+ ĀT Z(0) + ĀTpZ(0)Āp + γ−2Z(0)DDT Z(0) + ĒT Ē = 0,

Ā := 1

N

M∑
k=1

Ak, Āp := 1

N

M∑
k=1

Apk, Ē := 1

N

M∑
k=1

Ek,

F (0) = γ−2DZ(0).

Step 2 Solve the following SDP.

minimize α(p), (167)

subject to

⎡
⎢⎢⎢⎣

Ξ
(p)
k (X

(p), Y (p)) X(p) Y (p)T X(p)ATpk
X(p) −Q−1

0 0 0
Y (p) 0 −R−1

c 0
ApkX

(p) 0 0 −X(p)

⎤
⎥⎥⎥⎦ < 0, (168a)

[−α(p) xT (0)
x(0) −X(p)

]
< 0, (168b)

where p = 1, 2, . . . , k = 1, . . . ,M ,

Ξ
(p)
k (X

(p), Y (p)) := A
(p)
FkX

(p) +X(p)A(p)TFk + BcY (p) + Y (p)T BTc ,
A
(p)
Fk := Ak +DF(p−1),

⎡
⎢⎢⎢⎢⎣

K
(p)

0

K
(p)

1
...

K
(p)
N

⎤
⎥⎥⎥⎥⎦
:= Y (p)[X(p)]−1,

K
(p)

0 :=

⎡
⎢⎢⎣
K
(p)

01
...

K
(p)

0N

⎤
⎥⎥⎦ .
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Step 3 Solve the following SDP.

minimize Tr
[
xT (0)Z(p)x(0)

]
, (169)

subject to

⎡
⎢⎣

Θk(W
(p)) W(p)E

(p)T
k W(p)ATpk

E
(p)
k W

(p) −In̄z 0
ApkW

(p) 0 −W(p)

⎤
⎥⎦ < 0, (170)

where p = 1, 2, . . . , k = 1, . . . ,M ,

Θk(W
(p)) := A

(p)
KkW

(p) +W(p)A
(p)T
Kk + γ−2DDT ,

A
(p)
Kk := Ak +

N∑
j=1

[B0jK
(p)

0j + BjK(p)j ],

E
(p)
k :=

[
ETk (G0K

(p)

0 )T (G1K
(p)

1 )T · · · (GNK(p)N )T
]
,

F (p) := γ−2DT [W(p)]−1.

Step 4 If the algorithm converges, then X(p) → X, Y (p) → Y and W(p) → W

as p → ∞. These are the solution of the CCMIs (151), STOP. That is, stop if any
norm of the error of difference between the iterative solutions of (168), (170) and the
exact solutions of the CCMIs (151) is less than a pre-specified precision. Otherwise,
increment p→ p + 1 and go to Step 2. If the algorithm does not converge, declare
that the algorithm has failed.

Second, the numerical algorithm for solving the LMIs (157) is given.

Step 1 As the first step, choose any initial guess η(0) and solve the following SDP.

minimize β(p), (171)

subject to

⎡
⎢⎢⎢⎢⎣

Ξ̂
(p)

ηk (X
(p)
η , Y

(p)
η ) X

(p)
η Y

(p)T
η X

(p)
η A

T
pk

X
(p)
η −Q−1

ρ 0 0

Y
(p)
η 0 −R−1

ρ 0

ApkX
(p)
η 0 0 −X(p)η

⎤
⎥⎥⎥⎥⎦
≤ 0, (172a)

[
−β(p) xT (0)
x(0) −X(p)η

]
≤ 0, (172b)
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where p = 1, 2, . . . , k = 1, . . . ,M ,

Ξ̂
(p)

ηk (X
(p)
η , Y

(p)
η ) := A(p)ηk X(p)η +X(p)η A(p)Tηk + B(p)η Y

(p)
η + Y (p)Tη B(p)Tη ,

A
(p)
ηk := Ak +

N∑
j=1

B0j η
(p)

0j +DF ∗,

B(p)η :=
[
B
(p)

1η · · · B(p)Nη
]
,

B
(p)
iη := Bi + B0iη

(p−1)
ii ,

η
(p)

0i := K∗
0i − η(p−1)

ii K∗
i .

Step 2 Compute the following equation:

η
(p)
ii = −

(
[X(p)η ]−1B0i

)−1(
ρiK

T
i Ri + [X(p)η ]−1Bi

)
. (173)

Step 3 If the algorithm converges, then X(p)η → Xη and η(p)ii → ηii as p → ∞.
These are the solution of the LMIs (157), STOP. Otherwise, increment p → p + 1
and go to Step 2. If the algorithm does not converge, declare that the algorithm has
failed.

6.5 Numerical Example

A simple numerical example is investigated to demonstrate the efficiency of our
proposed three strategies. The system of matrices is as follows:

A1 =
[−1.36 2
−1 −1.55

]
, Ap1 = 0.1A1,

A2 =
[−1.36 0
−1 −1.55

]
, Ap2 = 0.1A2,

α1(t) = sin2 t, α2(t) = cos2 t,

B01 =
[

1 0
1 4.15

]
, B02 =

[
1 0

0.2 1.32

]
,

B1 =
[

1 1
1.2 2.65

]
, B2 =

[
1 0

0.4 1.32

]
,

D =
[

0.1
0.2

]
, E1 = I2, E2 =

[
2 0
0 1

]
,
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G0 =
[
I2 I2

]
, G1 = G2 = I2,

Q1 =
[

2 0
0 0.5

]
, Q2 =

[
1 0
0 2

]
,

R001 = 2I2, R002 = 4I2, R01 = 3I2, R02 = 2I2,

R1 = 2I2, R2 = 3I2.

The disturbance attenuation level γ is chosen as γ = 5. The CCMIs (151) are solved
by using the algorithm of the previous subsection. The strategy set that attains the
Pareto optimal solution with the H∞ constraint is given below.

K∗
1 =

[−1.0225e-1 −1.5130e-1
−8.2875e-2 −3.5027e-1

]
,

K∗
2 =

[−1.6941e-1 −6.2288e-2
2.6458e-2 −2.7170e-1

]
,

K∗
01 =

[−1.5739e-1 −1.8579e-1
8.3182e-2 −8.5420e-1

]
,

K∗
02 =

[−8.6710e-2 −1.0561e-2
1.3229e-2 −1.3585e-1

]
,

F ∗ = [3.7110e-3 1.3905e-3
]
.

The incentive (164) and the related matrices are given below.

η11 =
[−7.4267e-1 −7.6536e-1

5.7613e-2 −6.9769e-2

]
,

η22 =
[−3.9285e-1 −4.6462e-2

9.8427e-2 4.0154e-1

]
,

η01 =
[−3.3440e-1 −4.8297e-1

6.3514e-2 −7.3710e-1

]
,

η02 =
[−1.6417e-1 −4.1802e-2

2.0032e-2 −1.7314e-2

]
,

Pη =
[

4.5636e-1 −5.0334e-3
−5.0334e-3 1.8747e-1

]
.

The proposed SDP algorithm converges to the required solution with an accuracy of
1.0e-7 after eight iterations. The algorithm based on SDPs is easy to implement in
MATLAB. However, it should be noted that there is no proof for the convergence of
the SDP algorithm.
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Finally, after announcing this incentive strategy (160), the strategy set of the
followers can be computed. Indeed, it can be observed that the matrix gain K∗

i

equals K†
ηi , i = 1, . . . , N after the followers have made a decision. Namely, it can

be confirmed that the followers are induced to the team-optimal solution eventually.

7 Conclusion

The incentive Stackelberg game under the H∞ constraint for the stochastic systems
has been reviewed. Unlike the existing deterministic Stackelberg games [13–26],
the stochastic incentive Stackelberg game has been studied for the first time in this
work. Table 1 summarizes the recent contributions by the author. It should be noted
that the results in Sect. 5 are novel because the SOF incentive Stackelberg strategy
withH∞ constraint is investigated for the first time. In this survey, it has been shown
that the proposed incentive Stackelberg strategy set can be computed by solving a set
of cross-coupled stochastic Riccati-type equations or linear matrix inequalities. The
leader’s team-optimal solution with the H∞ constraint can be achieved eventually
under this design. As an important feature of the incentive Stackelberg games, it
is worth noting that multiple followers are subjected to Nash equilibrium or Pareto

Table 1 Recent results in Stochastic Incentive Stackelberg games

Reference Model Player Feedback type Robustness

Journal [27] CSS ML SF

Journal [35] CSS MF SF H∞ control

Journal [31] DSS MF SF H∞ control

Journal [33] CMJSS MLF SF

Journal [34] DMJSS SLF SOF H∞ control

Proc. [28] DDS MF SF H∞ control

Proc. [29] DSS SLF SF H∞ control

Proc. [30] CMJSS MLF SF

Proc. [32] CMJSS MF SF H∞ control

Proc. [37] CMJSS MLF SF H∞ control

Proc. [36] SLPV MF SF H∞ control

Proc. [38] SLPV MF SF H∞ control
CSS: continuous-time stochastic system, DSS: discrete-time stochastic system, DDS: discrete-
time deterministic system, CMJSS: continuous-time Markov jump stochastic system, DMJSS:
discrete-time Markov jump stochastic system, SLPV: stochastic linear parameter varying
systems, ML: multiple-leader, MF: multiple-follower, SLF: single-leader-follower, MLF: multiple
leader-follower, SF: state feedback, SOF: static output feedback
It should be noted that in [36], the followers consider Nash equilibrium solutions, and in [38], the
followers consider Pareto optimal solutions. It should also be noted that the IEEE Control Systems
Letters (L-CSS) offers the opportunity for authors to not only publish a paper in the journal but
also to present the same paper at the flagship conference of the IEEE Control Systems Society: the
IEEE Conference on Decision and Control (CDC).
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optimal conditions via the imposed incentive, whereas the leader achieves a team-
optimal solution under an H∞ constraint.

The incentive Stackelberg game is an important long-standing research area;
however, there are still unsolved problems. First, the existence condition of the
incentive needs to be discussed more deeply. For example, if the decision maker’s
input u0i is a set of multi-variables and the related incentive parameter η1i is a scalar
case, it is easy to observe that there exists no solution. Furthermore, to the best of our
knowledge, incentive Stackelberg games for stochastic systems in cases other than
LQ have not been investigated. Consequently, proof of the existence and uniqueness
of the incentive Stackelberg strategy set in such systems will be challenging. Thus,
it is expected that these problems will be addressed in future studies.
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Social and Private Interests Coordination
Engines in Resource Allocation: System
Compatibility, Corruption, and Regional
Development

Olga I. Gorbaneva and Gennady A. Ougolnitsky

Abstract This paper analyzes conditions of the system compatibility in the static
game-theoretic models of resource allocation between social and private activities.
We describe administrative and economic control mechanisms providing system
compatibility and formalize them as static Stackelberg and inverse Stackelberg
games. Descriptive and normative approaches to the modeling of corruption in
resource allocation in the hierarchical control systems are proposed and imple-
mented. Applications to the problems of regional development are outlined.

Keywords Social and private interests · SPICE-models · Social welfare
functions · Price of anarchy · System consistensy · Administrative and
economical mechanisms · Descriptive and normative approaches.

1 Introduction

The problem of coordination of private and social interests plays a key role in
the analysis of economic relations. There are several directions of research in this
domain considering the resource allocation.

Economics of public goods [6, 7] studies their production and the respective
cost distribution. A pure public good is consumed by all participants of a system
independently of their contribution to its production. This differs it from a pure
private good which can be distributed and sold. Samuelson [26] defined the pure
public good as providing non-excludable and non-competitive profits to all members
of a society on the local, regional, or national level. Warr [27] proved that if
private agents participate in a voluntary production of a public good then this
production does not depend on the redistribution of the income. Bernheim and
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Bagwell [5] and Kemp [18] extended this result for the case of several public goods.
Bergstrom et al. [2] improved the result as follows. A small redistribution of material
goods between investing consumers does not change an equilibrium quantity of
the public good but an essential redistribution changes the set of investors and the
equilibrium distribution as well [2–4]. Some recent results are presented in [9, 17].

It is necessary to notice a seminal paper by Germeier and Vatel [10] which is
improperly ignored by the majority of publications in this domain. In this paper
a game in normal form is studied where the payoff functions are convolutions by
minimum of two terms. The first one represents a private interest of the player and
the second one represents the same common interest of all players. It is proved that
in natural conditions this game has a Pareto-optimal Nash equilibrium. This line of
research was continued, for example, in [19].

Control mechanisms of the resource allocation are analyzed in the theory of
control in organizational systems [8, 20, 21]. A set of the strategy-proof mechanisms
of resource allocation is proposed.

An important place belongs to the phenomenon of corruption in resource
allocation between purpose (social) and non-purpose (private) interests in the
hierarchical systems [16].

At last, in regional development the issues of resource allocation arise in
the context of relations between the federal and regional (or regional and local)
administrations as well as in the trans-frontier unions and state-private partnerships
[25].

Our approach to the problem is based on the following assertions and assump-
tions [11–13].

1. There are n agents. Each of them allocates his resource between his private
activity and the production of a social good.

2. Then the social good is divided between the agents in given or controlled shares.
This defines the difference between the social good and the pure public good.

3. The payoff function of each agent consists of two summands. The first one
represents the agent’s income from his private activity and the second one is
his share in the social good.

4. A concept of system compatibility is introduced which characterizes the degree
of coordination of private and social interests in the system quantitatively.

5. Real economic organizations are system compatible very rarely. So, a special
agent (Center) is introduced which represents the social interests (maximizes the
social welfare) and tries to ensure the system compatibility.

6. The Center (social planner) controls the agents by two methods. First, she can
restrict the amount of resource assigned by agents to their private activity (admin-
istrative mechanisms, compulsion). Second, she can determine their shares in the
social good (economic mechanisms, impulsion). From the mathematical point of
view, these control mechanisms are formalized as Stackelberg games or inverse
Stackelberg games [1, 22, 23]. We call such models Social and Private Interests
Coordination Engines (SPICE-models).

7. We distinguish administrative and economic corruption [14]. In the case of
administrative corruption, the restrictions on the set of feasible strategies of
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an agent can be weakened in exchange for a bribe. In the case of economic
corruption, a bribe permits to increase the share of an agent in the social good. In
both cases corruption is treated as a feedback on the control bribe variable that
creates an inverse Stackelberg game.

The rest of the paper is organized as follows. In Sect. 2 the SPICE-models for
two and several players are defined and the conditions of system compatibility
are analyzed in the cases of independent players, hierarchy, and cooperation.
In Sect. 3 economic and administrative mechanisms of system compatibility are
introduced. Section 4 is dedicated to the economic and administrative corruption
in resource allocation. In Sect. 5 the SPICE-models are applied to the problems
of regional development. The economic, administrative, and resource allocation
control mechanisms are considered. The last section concludes.

2 SPICE-Models and Conditions of System Compatibility

In the basic setup, SPICE-models are static games in normal form which formalize
the following situation. There are n agents, each of them allocates his resource
between his private activity and the production of a social good. Then the social
good is divided between the agents in given or controlled shares. This defines the
difference between the social good and the pure public good. The payoff function of
each agent consists of two summands. The first one represents the agent’s income
from his private activity and the second one is his share in the social good. A concept
of system compatibility is introduced which characterizes the degree of coordination
of private and social interests in the system quantitatively.

The games are considered for different information structures. First, we consider
a standard setup with independent players who choose their control variables
independently and simultaneously, and the solution is a Nash equilibrium. Second,
a hierarchical setup is considered where a solution in the sense of Stackelberg is
searched. Third, the case of cooperation is analyzed where a team solution which is
Pareto optimal is attained.

The cases of SPICE-models with two and several agents are considered sequen-
tially.

2.1 SPICE-Models with Two Agents

The model has the form

g1(u1, u2) = p1(r1 − u1)+ s1(u1, u2)c(u1, u2)→ max
u1
,

g2(u1, u2) = p2(u1, r2 − u2)+ s2(u1, u2)c(u1, u2)→ max
u2
.
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There are evident restrictions 0 ≤ ui ≤ ri and conditions for the functions pi , b, c

pi ≥ 0,
∂pi

∂ui
≤ 0,

∂pi

∂uj �=i
≥ 0, si ≥ 0,

∂si

∂ui
≥ 0,

∂c

∂ui
≥ 0, i = 1, 2.

Here ri is a number of resource of the i-th agent, ui—a share of this number
assigned for the production of a social good (the agent’s control), pi—a function
of the income from private activity of the i-th agent, si is a share of the agent in the
social good; c is a production function of the social good.

Unlike the Germeier–Vatel model [10] we use a linear convolution of the
functions which represent private and social interests. In fact, they are production
functions widely used in mathematical economics. Namely, we use power functions
pi(·) and c(·) with a positive exponent less or equal than one. The following ways
of distribution of the social good between the agents are considered:

1. a constant one s1 = s, s2 = 1− s;
2. a proportional one s1 = u1

u1+u2
, s2 = u2

u1+u2
.

2.1.1 Independence

An economic system consists of two equal agents A1 and A2 having numbers of
resources ri , i = 1, 2. A share ui is assigned for the production of social good,
the rest for a private activity. The structure of the system is presented in Fig. 1. The
model is a game in normal form in which a Nash equilibrium is searched:

g1(u1, u2) = p1(r1 − u1)+ s1(u1, u2)c(u1, u2)→ max
u1
,

g2(u1, u2) = p2(r2 − u2)+ s2(u1, u2)c(u1, u2)→ max
u2
,

with constraints 0 ≤ ui ≤ ri .

Fig. 1 The structure of the modeled system in the case of independence
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The functions pi and c are production functions: p1 = p1(r1−u1), p2 = p2(r2−
u2), c = c(u1 + u2). Here we suppose that the production of a social good depends
on summary investments. The set of Nash equilibria is found for power production
functions [11].

2.1.2 Hierarchy

Now suppose that two agents are hierarchically subordinated. Center A1 has a
resource r . She transfers a part u1 of it to the agent A2 for the production of a social
good using the rest for a private activity. In turn, A1 assigns a part u2 of the received
amount u1 for the production of the social good using the rest for his private activity.
Both agents receive a share from the produced social good (Fig. 2). The model is a
two-player Stackelberg game in the form

g1(u1, u2) = p1(r(1− u1))+ sc(ru1u2)→ max
u1
,

g2(u1, u2) = p2(ru1(1− u2))+ (1− s)c(ru1u2)→ max
u2
,

with constraints 0 ≤ ui ≤ 1, i = 1, 2. The set of Stackelberg equilibria is found for
power production functions. It is shown that from the point of view of the production
of a social good independence is better than hierarchy [11].

Fig. 2 The structure of the modeled system in the case of hierarchy
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2.1.3 Cooperation

Here we consider two subcases: independent and hierarchical cooperation. In the
case of independent cooperation, two equal agents A1 and A2 have amounts of
resource ri and assign a part ui for the production of a social good whether the
rest is used for a private activity. These agents form a coalition, join their resources,
have the summary payoff function, choose their strategies, and then divide the total
payoff together (Fig. 3). The model is an optimization problem that leads to a team
solution which is Pareto-optimal. In the case of independent cooperation, two agents
are initially hierarchically subordinated. Center A1 has a resource r . She transfers
a part u1 of it to the agent A2 for the production of a social good using the rest for
a private activity. In turn, A1 assigns a part u2 of the received amount u1 for the
production of the social good using the rest for his private activity. Then the agents
form a coalition, join their resources, have the summary payoff function, choose
their strategies, and then divide the total payoff together.

The model is an optimization problem

g0(u1, u2) = p1(r(1− u1))+ p2(ru1(1− u2))+ c(ru1u2)→ max
u1,u2

,

with constraints 0 ≤ ui ≤ 1 that leads to a team solution. The results are presented
in [11]. The influence of the information structure to resource allocation is shown
in Tables 1 and 2. Thus, the tables show that from the point of view of a social
planner:

1. independence is more preferable than hierarchy;
2. creation of coalitions is more preferable in both subcases of independent and

hierarchical coalitions.

Fig. 3 The structure of the
modeled system in the case of
independent cooperation
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Table 1 Structural influence

Aspect of comparison Independence Hierarchy

Amount of the resources assigned for the production of a social
good (variable ui )

Greater Less

Probability of complete individualism (all resources of both
agents are assigned for their private activities)

Less Greater

Probability of partial individualism (all resources of at least one
agent are assigned for his private activity)

Less Greater

Table 2 Cooperation influence

Non-coalitional
system

Coalitional
systemAspect of comparison

Amount of the resources assigned for the production of a
social good (variable ui )

Less Greater

Probability of complete individualism (all resources of
both agents are assigned for their private activities)

Greater Less

Probability of partial individualism (all resources of at
least one agent are assigned for his private activity)

Greater Less

2.2 SPICE-Models with Several Agents

Now consider SPICE-models with several agents. The respective game in normal
form is

gi(u1, . . . , un) = pi(ri − ui)+ sic(u1, . . . , un)→ max (1)

0 ≤ ui ≤ ri, ri ≥ 0, si ≥ 0,
n∑
j=1

sj =
{

1, ∃i : si > 0
0, ∀i : si = 0,

, i = 1, . . . , n. (2)

Here N = {1, . . . , n}—a set of players; Ui = [0, ri]—a set of feasible strategies
of the i-th player; ri—a number of resources of the i-th player; gi(u1, . . . , un)—a
payoff function of the i-th player; gi : U → R,U = U1 × . . .× Un; pi(ri − ui)—
a function of income of the i-th player from his private activity; c(u1, . . . , un)—a
function of the production of a social good; si—a share of the social good allocated
to the player i; sic(u1, . . . , un)—the i-th player’s payoff from using the social good.

Function c increases monotonically by all ui , c(0, . . . , 0) = 0, functions pi
increase monotonically by (ri − ui) and decrease monotonically by ui , pi(0) = 0
(when ui = ri); if si > 0, then ui > 0.

Introduce a social welfare function

g(u1, . . . , un) =
n∑
j=1

gj (u1, . . . , un) =
n∑
j=1

pj (rj − uj )+ c(u1, . . . , un). (3)
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Denote NE = {uNE(1) , . . . , uNE(k) }—a set of Nash equilibria in the game (1)–(2),

gNEmin = min{g(uNE(1) ), . . . , g(uNE(k) )}, gmax = maxu∈U g(u) = g(umax). Then the
price of anarchy in the model (1)–(2) is equal to

PA = gNEmin

gmax
. (4)

It is evident that PA ≤ 1. If it is close to one, then the efficiency of equilibria
is high and the need in coordination in the model (1)–(2) is small or absent at all
(when PA = 1); the less PA, the less the need in coordination.

System Compatibility Introduce the following

Definition 1 The model (1)–(3) is system compatible if ∃uNE ∈ NE : uNE =
umax.

As the analysis shows, in the majority of cases PA < 1, i.e. an egoistic behavior
of the agents leads to non-efficient equilibria. It is evident that if PA = 1 then the
model is system compatible. Introduce the following sets:
I = {i : ui = 0}—a set of individualists (they assign all resources for their

private activities).
C = {i : ui = ri}—a set of collectivists (they assign all resources for the

production of a social good). Then the following main result holds.

Theorem 1 ([13]) If n ≥ 2 and pi(0) = 0, c(0) = 0; functions c, pi are increasing
and concave, then the system compatibility holds only if there is a partition of the
set of agents on two classes: individualists and collectivists (N = I∪C, I∩C = ∅).

3 Control Mechanisms of System Compatibility

The condition of system compatibility is satisfied rarely by itself, and it is necessary
to use control mechanisms to ensure it. Suppose that maximization of the social
welfare is the objective of a specific agent (Center, Principal, social planner,
mechanism designer) who can exert influence to the other agents to achieve this
goal. The Center can exert influence to the sets of feasible controls (administrative
mechanism, compulsion) or payoff functions of the other agents (economic mecha-
nism, impulsion). Denote the first possibility by Ui = Ui(qi) and the second one by
gi = gi(pi, ui). Both methods of control may not use or use a feedback by control.
In the first case—a Stackelberg game (a Germeier game of the type Γ 1) arises, in
the second case—an inverse Stackelberg game (a Germeier game of the type Γ 2).
Thus, there are four types of the mechanisms which are presented in Table 3 [24].

Definition 2 A control mechanism in the model (1)–(3) is system compatible if the
best response of the agents to this mechanism makes the model system compatible.
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Table 3 Control mechanisms

Without a feedback
(Stackelberg game, Γ 1)

With a feedback (inverse
Stackelberg game, Γ 2)The Center’s influence

To the sets of feasible
controls of the agents
(administrative, compulsion)

Administrative impact without
a feedback qi = const

Administrative impact with a
feedback qi = qi(ui)

To their payoff functions
(economic, impulsion)

Economic impact without a
feedback pi = const

Economic impact with a
feedback pi = pi(ui)

Table 4 Control mechanisms in SPICE-models

Without a feedback
(Stackelberg game, Γ 1)

With a feedback (inverse
Stackelberg game, Γ 2)The Center’s influence

To the sets of feasible
controls of the agents
(administrative, compulsion)

Administrative impact
without a feedback
q̃i ≤ ui ≤ q̄i ,q̃i , q̄i = const

Administrative impact with a
feedback q̃i (ui) ≤ ui ≤ q̄i (ui)

To their payoff functions
(economic, impulsion)

Economic impact without a
feedback si = const

Economic impact with a
feedback si = si (ui)

Economic control mechanisms are implemented in the SPICE-model (1)–(2) by
a choice of the values si by the Center. For administrative mechanisms it is supposed
additionally that the Center can restrict feasible controls of the agents:

q̃i ≤ ui ≤ q̄i , i ∈ N. (5)

Then the control mechanisms presented in Table 3 can be specified for the model
(1)–(3), (5) as follows (Table 4).

3.1 Economic Mechanisms

Mechanisms Without a Feedback Suppose that ∀i si = const . The first order
conditions show that an internal system compatibility in this model is impossible:
all players should be pure individualists or pure collectivists (Theorem 1).

Mechanisms with a Feedback Now assume that si = si(ui) or si = si(u). The
first order conditions show that an internal system compatibility in this model is
possible only if

∂si(u)

∂ui
c(u) = [1− si(u)] ∂c

∂ui
, i ∈ N. (6)

Two approaches are used for the further investigation: an empirical one and a
theoretical one. The empirical approach analyzes the methods of distribution of
the total income widely spread in practice. Consider, for example, a method of
proportional distribution
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si(u) =
{

ui∑
j∈N uj

, ∃m : um > 0

0, otherwise.

Theorem 2 ([13]) The mechanism of proportional distribution is system compati-
ble only if the function of production of a social good is linear.

Theorem 3 ([13]) A mechanism of distribution can be system compatible if the
function of production of a social good is symmetrical by u−i .

Corollary 1 The mechanism of uniform distribution

si(u) =
{

1
|j :uj=umax

j | , ui = umax
i ,

0, otherwise,
, i = 1, . . . , n,

is not system compatible.

Other economic control mechanisms are also possible. For example, the mechanism

si(u) =
{

1
|j :uj=rj | , ui = ri,

0, otherwise,
(7)

allocates the social good only between pure collectivists. Notice that in this case all
players have only two rational strategies: ∀i : Ui = {0, ri}, so that mechanism (7)
reduces a SPICE-model of the general type to the SPICE-model with binary sets of
strategies.

Now let us formulate the problem of control mechanisms design in a general
form. Assume that the Center maximizing the function of social welfare (3) reports
to all players with payoff functions (1) a control mechanism

si(u) =
{

1
|j :uj=umax

j | , ui = umax
i ,

0, otherwise.
, i = 1, . . . , n, (8)

Then the payers’ payoffs are equal to

gi(u) =
{
pi(ri − umax

i )+ c(umax
i ,u−i )

|j :uj=umax
j | , ui = umax

i ,

pi(ri − ui), otherwise.

It is evident that Ui = {0, umax
i } because if ui > 0, ui �= umax

i then gi(u) =
pi(ri − ui) < pi(ri). Therefore, the mechanism (8) also reduces a SPICE-model of
the general type to the SPICE-model with binary sets of strategies.

The problem is that player i in the moment of his decision does not know u−i and
the set {j : uj = umax

j }, respectively. So, it is not simple to estimate an efficiency of
the mechanism (8) (to compare the payoffs) in the general case. One can assert that
the best response of player i to the mechanism (8) has the form
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u
opt
i =

⎧⎨
⎩
umax
i , ∀u−i ∈ U−i pi(ri) < pi(ri − umax

i )+ c(umax
i ,u−i )

|j :uj=umax
j | ,

0, ∀u−i ∈ U−i pi(ri) ≥ pi(ri − umax
i )+ c(umax

i ,u−i )
|j :uj=umax

j | ,
(9)

i.e. one of the feasible strategies dominates the other and is therefore the dominant
one. But a question about the best response is open if for different u−i the signs of
inequalities are different (i.e. both strategies are non-dominated).

Denote K = |{j : uj = umax
j }| and consider the mechanism

si(u) =
{ 1
K
, ui = umax

i ,

0, otherwise,
, i = 1, . . . , n.

The main trouble is that the value K is unknown because it is impossible to calculate
the number of players who agree with the Center’s requirements (ui = umax

i ) in
advance. The value of K can be estimated approximately given that for the player
who agrees with the Center it is profitable that the number of the same players be as
small as possible.

Step 0. Denote L = {i : ui = umax
i },K = |L|. Numerate the players by

decreasing of pi(ri). The set L does not include the players for whom pi(ri) >

pi(ri − umax
i ) + 1

n
c(umax

1 + umax
2 + . . . + umax

n ). Let the first approximation of
the value K be K0 = n.

Step 1. Denote ūmax 1 = (umax
1 , umax

2 , . . . , umax
n ). Denote L1 the set of players for

whom last inequality is wrong, K1 = |L1|.
Step 2. Then find ūmax 2 = (0, 0, . . . , 0︸ ︷︷ ︸

n−K1

, umax 2
n−K1+1, . . . , u

max 2
n ) as a vector max-

imizing the value of the function g0(0, 0, . . . , 0, un−K1+1, . . . , un). Form a set
L2 of those agents from L1 for whom the inequality pi(ri) > pi(ri − umax 2

i )+
1
K1
c(umax 2

n−K1+1 + umax 2
n−K1+2 + . . .+ umax 2

n ) is wrong, K2 = |L2|.
Step 3. Then find ūmax 3 = (0, 0, . . . , 0︸ ︷︷ ︸

n−K2

, umax 3
n−K2+1, . . . , u

max 3
n ) as a vector max-

imizing the value of the function g0(0, 0, . . . , 0, un−K2+1, un−K2+2, . . . , un),
form a set L3 of those agents from L2 for whom the inequality pi(ri) >
pi(ri − umax 3

i )+ 1
K2
c(umax 3

n−K2+1 + umax 3
n−K2+2 + . . .+ umax 3

n ) is wrong.
Step i. And so on for Li (i= 4, 5, . . .) untilKi = Ki−1. In this case the algorithm

stops and the last found value ūmax i is the optimal solution.

Notice that in the case of a linear function of the production of a social good each
agent knows his critical value K* such that for K ≤ K∗ it is profitable for him to
agree with the Center. Then the problem is solved in one step.

Illustrate the work of this algorithm on numerical examples.

Example 1 Suppose that there are n = 10 agents with linear functions of private
income, and the production of a social good is described by a linear function, too.
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The coefficients are equal, respectively, to p1 = 20, p2 = 18, p3 = 16, p4 = 14,
p5 = 12, p6 = 10, p7 = 8, p8 = 6, p9 = 4, p10 = 2, c = 15, and all ri = 2.

Then the social welfare function has the form

g0 = 20(2− u1)+ 18(2− u2)+ 16(2− u3)+ 14(2− u4)+ 12(2− u5)+
+10(2− u6)+ 8(2− u7)+ 6(2− u8)+ 4(2− u9)+ 2(2− u10)+

+15(u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 + u9 + u10),

and the payoff functions of all agents are

gi = pi(2− ui)+ 15

K
(u1 + u2 + u3 + u4 + u5 + u6 + u7 + u8 + u9 + u10).

Maximization of the social welfare function gives

umax
i =

{
2, pi < c,
0, pi > c.

In this example it means that

umax
1 =umax

2 =umax
3 =0; umax

4 = umax
5 = umax

6 = umax
7 = umax

8 = umax
9 = umax

10 = 2.

For each agent uNEi =
{

2, K < c
pi
,

0, K > c
pi
.

It can be seen that the first, second, and third players agree with the strategy
ui = 0 if K is greater than 15/20, 15/18, and 15/16, respectively. Given K is the
integer, these players agree with the Center’s strategy for any K. The players four,
five, six, and seven agree to assign all their resources ri = 2 for the production
of a social good if K = 1 (i.e., if each of them will receive the total social good).
The player eight agrees to assign all resources for the production of a social good if
K < 15

6 , or K ≤ 2 (he is ready to share the social good with only one other player).
The condition for the player nine is K < 15

4 < 4, or he is ready to allocate the
social good between three players. At last, for the tenth player K < 15

2 < 8, or he
is ready to have six partners. Now from four numbers K = 1, K = 2, K = 3, K = 7 we
choose those which correspond to the number of players pretending for the social
good. When K = 1 this number is equal to ten that is impossible. When K = 7 this
number is equal to four, K = 2—six, K = 3—five. Thus, the only acceptable variant
is K = 7. In this case

g0(u
NE)=20 · 2+18 · 2+16 · 2+14 · 2+12 · 2+ 10 · 2+ 8 · 2+ 6 · 2+ 4 · 2+
+15(0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 2) = 246 < g0(u

max) = 318.
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Example 2 Suppose that there are n = 5 agents, all functions are square roots. The
coefficients are equal to p1 = 14.7, p2 = 14.5, p3 = 14, p4 = 13.5, p5 = 13,
c = 10.5, and all ri = 2. Then the function of social welfare has the form:

g0 = 14.7
√

2− u1 + 14.5
√

2− u2 + 14
√

2− u3 + 13.5
√

2− u4 + 13
√

2− u5 +
+10.5

√
u1 + u2 + u3 + u4 + u5

and the agents’ payoff functions are

gi = pi
√

2− ui + 10.5

K

√
u1 + u2 + u3 + u4 + u5.

Estimate the value K. Start from the maximal valueK0 = 5. Calculate umax
i : umax

1 =
0.0063, umax

2 = 0.0601, umax
3 = 0.1916, umax

4 = 0.3185, umax
5 = 0.4407, and

gmax
0 = 104.1076.

If the agents agree to assign for the production of a social good the number of
resources that is optimal to the center, then they share the produced social good
equally, otherwise the agent does not participate in the consumption of the social
good. So, each agent compares his payoffs in these two variants:

g1(u
max
1 , umax

−1 ) = 22.8744 > 20.7889 = g1(0, u
max
−1 ),

g2(u
max
2 , umax

−2 ) = 22.3134 > 20.5061 = g2(0, u
max
−2 ),

g3(u
max
3 , umax

−3 ) = 20.9447 > 19.7990 = g3(0, u
max
−3 ),

g4(u
max
4 , umax

−4 ) = 19.6239 > 19.0919 = g4(0, u
max
−4 ),

g5(u
max
5 , umax

−5 ) = 18.3512 < 18.3848 = g5(0, u
max
−5 ).

So, only the fifth player refused to collaborate with the Center, and the social welfare
function becomes equal to g0(u

max
1 , umax

2 , umax
3 , umax

4 , 0) = 103.6415.
The next approximation of the value K is K1 = 4. In this case the following

strategies of the agents are optimal for the Center:

umax
1 = 0.1104, umax

2 = 0.1614, umax
3 = 0.2860, umax

4 = 0.4063, umax
5 = 0

and the agents’ payoffs are

g1(u
max 2
1 , umax 2

−1 ) = 22.7844 > 20.7889 = g1(0, u
max 2
−1 ),

g2(u
max 2
2 , umax 2

−2 ) = 22.2387 > 20.5061 = g2(0, u
max 2
−2 ),

g3(u
max 2
3 , umax 2

−3 ) = 20.9062 > 19.7990 = g3(0, u
max 2
−3 ),

g4(u
max 2
4 , umax 2

−4 ) = 19.6201 > 19.0919 = g4(0, u
max 2
−4 ),

g5(u
max 2
5 , umax 2

−5 ) = 18.3848 = 18.3848 = g5(0, u
max 2
−5 ).
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Here the agents from one to four agree with the Center, and her payoff is
g0(u

max 2
1 , umax 2

2 , umax 2
3 , umax 2

4 , 0) = 103.9343. Thus, the final estimate is K = 4.

The theoretical approach is based on Germeier’s theorem [15].

Theorem 4 ([13]) If functions of the private payoff and the production of a social
good are powers with an exponent less or equal than one, then the economic
mechanism is system compatible.

3.2 Administrative Mechanisms

Now suppose that the Center can constrain the sets of feasible controls of the agents.
Consider only a case of the Stackelberg games without a feedback (Γ 1) because
the case of feedback (inverse Stackelberg games, Γ 2) is more applicable for the
formalization of corruption which is considered later. Then the model (1)–(3) takes
the form

gi(q̃i , q̄i , u) = pi(ri − ui)+ sic(u)→ max, q̃i ≤ ui ≤ q̄i , si ∈ [0, 1]; (10)

g0(q̃, q̄, u) =
∑
j∈N

pj (rj − uj )+ c(u)→ max, 0 ≤ q̃i ≤ q̄i ≤ ri, i ∈ N. (11)

It is evident that if the possibilities of the Center are unrestricted then there is a
trivial solution q̃i = q̄i = umax

i , i ∈ N . Therefore an adequate setup of the problem
of system compatible control mechanisms design requires a consideration of the
Center’s cost. Then (11) takes the form

g0(q̃, q̄, u) =
∑
j∈N

pj (rj − uj )+ c(u)− C(q̃, q̄)→ max, 0 ≤ q̃i ≤ q̄i ≤ ri, i ∈ N,

where C(q̃, q̄) is the continuously differentiable and convex by all arguments
Center’s administrative control cost function.

Definition 3 An administrative mechanism q̃max(q̄max) is weakly compatible if
u = q̃max ∈ NE(q̃max) and g0(q̃, q̄, q̃

max) = maxq̃max≤ui≤ri g0(q̃, r, u) (respec-
tively, u = q̄max ∈ NE(q̄max) g0(q̃, q̄, q̄

max) = max0≤ui≤q̄max g0(0, q̄, u)).

Theorem 5 For an administrative mechanism in the model (10)–(11) q̃max
i ≤

umax
i ≤ q̄max

i .

Proof To find umax
i it is necessary to solve the system of equations −p′i (ri − ui)+

c′(u) = 0, to find q̃max
i —the system −p′i (ri − q̃i ) + c′(q̃) = C′

q̃
(q̃, q̄) > 0, and

to find q̄max
i —the system of equations −p′i (ri − q̄i ) + c′(q̄) = C ′̄q(q̃, q̄) < 0. The

same function in the left-hand part in all three cases decreases, and the values in the
right-hand part are strictly ordered. Therefore, q̃max

i ≤ umax
i ≤ q̄max

i . ��
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Corollary 2 It is senseless for the Center to restrict the agents from above.

In fact, Theorem 1 says that uNEi < umax
i , and with consideration of the Theorem 5,

umax
i < q̄max

i . Therefore, the right side of the inequality q̃i ≤ ui ≤ q̄i is evident.
Thus, only models with restrictions from below are considered:

gi(qi, u) = pi(ri − ui)+ sic(u)→ max, qi ≤ ui ≤ ri, si ∈ [0, 1]; (12)

g0(q, u) =
∑
j∈N

pj (rj − uj )+ c(u)− C(q)→ max, 0 ≤ qi ≤ ri, i ∈ N. (13)

As cost functions we use linear C(q) = ∑N
i=1 αiqi , quadratic C(q) = ∑N

i=1 αiq
2
i ,

and hyperbolic C(q) =∑N
i=1

αiqi
ri−qi functions. A case of absence of the costs

gi(qi, u) = pi(ri − ui)+ sic(u)→ max, qi ≤ ui ≤ ri, si ∈ [0, 1];
g0(q, u) =

∑
j∈N

pj (rj − uj )+ c(u)→ max, 0 ≤ qi ≤ ri, i ∈ N

means that the Center maximizes the social welfare function which is already
analyzed in Sect. 2.2. In that case the agent’s optimal strategy without consideration
of the condition qi ≤ ui ≤ ri is u∗i , and the Center’s optimal strategy is qi = umax

i .
It is proved in Theorem 1 that umax

i ≥ u∗; therefore, the agent’s optimal strategy
with consideration of the condition qi ≤ ui ≤ ri is ui = qi = umax

i that gives the
system compatibility.

Theorem 6 An administrative mechanism in the model (12)–(13) is weakly com-
patible if for any i ∈ N one of the following conditions is satisfied:

Argmax
ui∈R

[
pi(ri − ui)+ sic

(
n∑
i=1

ui

)]
≤

Argmax
qi∈R

[
n∑
i=1

pi(ri − qi)+ c
(
n∑
i=1

qi

)
− C(q)

]

or

Argmax
ui∈R

[
pi(ri − ui)+ sic

(
n∑
i=1

ui

)]
> ri,

Argmax
qi∈R

[
n∑
i=1

pi(ri − qi)+ c
(
n∑
i=1

qi

)
− C(q)

]
> ri.

Proof Find the Nash equilibrium. The best response of an agent to the Center’s
strategy is
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uNEi =
⎧⎨
⎩
u∗i , qi < u∗i < ri,
qi, qi > u

∗
i ,

ri , u∗i > ri .
u∗i = Argmax

ui∈R

[
pi(ri − ui)+ sic

(
n∑
i=1

ui

)]
.

From the Center’s point of view the optimal strategy of the agent is

umax
i =

⎧⎨
⎩
u∗∗i , qi < u∗∗i < ri,
qi, qi > u

∗∗
i ,

ri , u∗∗i > ri .

u∗∗i = Argmax
qi∈R

[
n∑
i=1

pi(ri − ui)+ c
(
n∑
i=1

ui

)
− C(q)

]
.

There are unique values u∗i and u∗∗i due to negativity of the second derivatives of
the functions gi and g0, and umax

i ≥ uNEi (Theorem 1). Three cases are possible:

1. ui = ri ⇒ qi = 0 and g0 decreases by qi ;
2. qi < ui < ri ⇒ qi = 0;
3. ui = qi ⇒ the optimal qi is found as a solution of the problem

q∗i = Argmax
qi∈R

[
n∑
i=1

pi(ri − qi)+ c
(
n∑
i=1

qi

)
− C(q)

]
,

and finally

q∗i =
⎧
⎨
⎩
q∗i , 0 < q∗i < ri,
0, 0 > q∗i ,
ri , q∗i > ri .

.

��

4 Corruption in SPICE-Models

An author’s approach to the modeling of corruption in resource allocation in the
hierarchical control systems is proposed in [14]. It is worthwhile to distinguish
administrative and economic corruption. A hierarchical control system with cor-
ruption includes three levels: principal, supervisor, and agents (Fig. 4).

The principal is not corrupted and controls the agents’ activity by an influence
to their sets of feasible strategies or payoff functions. But in fact the principal
delegates his functions to the supervisor who can weaken in exchange for a bribe
from the agents the administrative requirements (administrative corruption) or
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Fig. 4 A hierarchical control
system “principal-supervisor-
agents”

economic requirements (economic corruption). In real organizations there are many
supervisors; we consider only one for simplicity.

4.1 Economic Corruption in SPICE-Models

Suppose that without corruption a social good c(u) in the model (1)–(3) is
distributed between the principal, the supervisor, and the agents in the proportion
t0, r0,

∑n
j=1 s

0
j , where t0 + r0 +∑n

j=1 s
0
j = 1. In the case of economic corruption

the supervisor increases a share of the agents in a social good at the expense of the
principal:

t = t0 −
n∑
j=1

δj , r = r0 +
n∑
j=1

bj δj , si = s0
i + (1− bi)δi, i ∈ N, (14)

and for the new shares of distribution (14) the conditions t + r +∑n
j=1 sj = 1,

t0−∑n
j=1 δj > 0, r0+∑n

j=1 bj δj < 1, si = s0
i + (1− bi)δi < 1, i ∈ N should be

satisfied. Here δi—an increase of the share of a social good for the i-th agent, bi—
a share of “kickback” of δi to the supervisor from the i-th agent. Then the model
(1)–(3) takes the form

gS(b, δ, u) = [r0 +
n∑
j=1

bj δj ]c(u)→ max, 0 ≤ δi ≤ 1; (15)

gi(bi, δi , u) = pi(ri−ui)+[s0
i +(1−bi)δi]c(u)→ max

0≤bi≤1,0≤ui≤ri
, i = 1, . . . , n, (16)

where gS , gi are payoff functions of the supervisor and the i-th agent, respectively.
The model (15)–(16) can be analyzed by two approaches: descriptive and

normative. In the case of descriptive approach the form of a bribery function δi(bi)
is supposed to be known, and the agents play a game in normal form where the
strategies are pairs of control variables (bi, ui). In the normative approach the
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function δi(bi) is built as the optimal strategy of the supervisor in a game of the type
Γ 2 with the agents.

Let us use the descriptive approach with linear and power functions δi(bi) which
are widely spread in the literature. Consider the model in general form:

gi(bi, u) = pi(ri − ui)+ [s0
i + (1− bi)δi(bi)]c(

n∑
j=1

uj ), i = 1, . . . , n.

The first order conditions determine the optimal value bi as the solution of the
equation −δi(bi) + (1 − bi)δ′i (bi) = 0. Note that the optimal value does not
depend on ui , and the conditions t0 − ∑n

j=1 δj > 0, r0 + ∑n
j=1 bj δj < 1,

si = s0
i + (1 − bi)δi < 1, i ∈ N should be satisfied, or the optimal solution is

situated on the boundary of the feasible domain.

Let ui ∈ Argmax
[
pi(ri − ui)+ [s0

i + (1− b∗i )δi(b∗i )]c(
∑n
j=1 uj )

]
.

Thus, the system compatibility is possible only when ui = 0 or ui = ri ,
otherwise si = 1.

In the normative approach define the principal’s payoff function

gP (u) =
n∑
j=1

pj (rj − uj )+ c(u)→ max (17)

and consider the model (16), (17). The condition of system compatibility takes the
form u∗ = umax, where u = (u1, . . . , un), u∗ is a Nash equilibrium in the game
(15), gP (umax) = maxu gP (u).

The following method of the model investigation based on Germeier’s theorem
[15] is proposed. First, the values u∗, umax and the values s0

i such that u∗, umax
are as close as possible are calculated. Second, a solution of the game Γ 2 between
the supervisor and the agent is built: δPi = 0; Ei = {bi = 0}; Li = pi(ri −
u∗i ) + sic(

∑
i∈N u∗i )—the maximal agent’s payoff in the case of punishment, u∗i ∈

Argmaxui
[
pi(ri − ui)+ sic(∑n

j=1 uj )
]
.

K2 = max
δi

min
bi∈Ei

⎡
⎣
⎛
⎝r +

n∑
j=1

bj δj

⎞
⎠ c(u)

⎤
⎦ = max

δi
[rc(u)] = rc(u∗)

K1 = max
δi

max
ui

max
bi

⎡
⎣
⎛
⎝r +

n∑
j=1

bj δj

⎞
⎠ c(u)

⎤
⎦ .

with constraint pi(ri − ui)+ (si + (1− bi)δi)c(u) > pi(ri − u∗i )+ sic(u∗)
To determine K1 it is necessary to solve a maximization problem with two

variables: bi and δi . The above constraint gives the dependence of bi on δi :
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bi = 1− pi(ri − u
∗
i )− pi(ri − ui)+ si

[
c(
∑
i∈N u∗i )− c(

∑
i∈N ui)

]

δic(
∑
i∈N ui)

− εi .

Substitution of this value into
(
r +∑n

j=1 bj

)
c(u)+∑n

j=1 pj (rj − uj ) implies

the maximization problem with one variable δi with constraint
∑n
j=1 δj < 1− r0−∑n

j=1 s
0
j .

Example 3 Suppose that there are three agents, and all model functions are linear
with coefficients p1 = 4, p2 = 6, p3 = 15, c = 14. Let ri = 2, r = 0.02. Then a
social good production function takes the form:

g0 = 4(2− u1)+ 6(2− u2)+ 15(2− u3)+ 14(u1 + u2 + u3).

First, the principal maximizes the social good production function that implies
umax

1 = 2, umax
2 = 2, umax

3 = 0. The respective agents agree with the values if
s1 >

2
7 , s2 > 3

7 , any s3. Let s1 = 0.3, s2 = 0.43, s3 = 0, r = 0.02. Due to
s1 + s2 < 1 the system compatibility is possible. Therefore, u∗1 = 2, u∗2 = 2,
u∗3 = 0, and the total payoff is equal to 14(2 + 2) = 56, the principal’s payoff
g0 = 15 · 2 + 14(2 + 2) = 86, the agents’ payoffs g1 = 0.3 · 14(2 + 2) = 16.8,
g2 = 0.43 · 14(2+ 2) = 24.08, g3 = 15 · 2 = 30.

Now the supervisor solves her problem. She foundsK2 = 0.02 ·56 = 1.12. Then

K1 = max
δi

max
ui

max
bi

[(0.02+ b1δ1 + b2δ2 + b3δ3) · 14 · (u1 + u2 + u3)]

with constraints

(0.03+ (1− b1)δ1) · 14 · (u1 + u2 + u3)+ 4(2− u1) > 16.8,

(0.43+ (1− b2)δ2) · 14 · (u1 + u2 + u3)+ 6(2− u2) > 24.08,

(1− b3)δ3 · 14 · (u1 + u2 + u3)+ 15(2− u3) > 20,

that implies

b1 = 1− 0.3[56− 14(u1 + u2 + u3)] − 4(2− u1)

δ1 · 14(u1 + u2 + u3)
− ε,

b2 = 1− 0.43[56− 14(u1 + u2 + u3)] − 6(2− u2)

δ2 · 14(u1 + u2 + u3)
− ε,

b3 = 1− 30− 15(2− u3)

δ3 · 14(u1 + u2 + u3)
− ε.

Substitution into the supervisor’s payoff function gives
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K1= max
δi

max
ui

[(0.02+ (1− ε)(δ1+ δ2+ δ3) · 14 · (u1+ u2+ u3)−

− 0.3[56− 14(u1+ u2+ u3)]− 4(2− u1)− 0.43[56− 14(u1+ u2+ u3)]
− 6(2− u2)− 15u3] = max

δi
max
ui

[(0.02+ (1− ε)(δ1+ δ2+ δ3) · 14 · (u1+ u2+ u3)−

− 16.8+ 4.2(u1+ u1+ u3)+ 8− 4u1− 24.08+ 6.02(u1+ u2+ u3)+ 12− 6u2−
− 15u3] = max

δi
max
ui

[(0.02+ (1− ε)(δ1+ δ2+ δ3) · 14 · (u1+ u2+ u3)−

− 20.88+ 6.22u1+ 4.22u2− 4.8u3]

and the optimal values are: δ1+δ2+δ3 = 1−0.2−0.3−0.43 = 0.25, u1 = u∗1 = 2,
u2 = u∗2 = 2, u3 = u∗3 = 0. Follow the algorithm, set δ1 = 0.125, δ2 = 0.125,
δ3 = 0. ThenK1 = maxδi maxui [(0.02+(1−ε)·0.125)·14·4−20.88+6.22·2+4.22·
2] = 7(1−ε)+1.12 > K2, the agents choose the controls b1 = b2 = b3 = 1−ε, and
their payoff functions take the values g1 = (0.3+ε ·0.125) ·56 = 16.8+7ε > 16.8,
g2 = (0.43+ε ·0.125) ·56 = 24.08+7ε > 24.08, g3 = 15 ·2 = 30. The principal’s
payoff is equal to g0 = 15 · 2+ 14(2+ 2) = 86.

4.2 Administrative Corruption in SPICE-Models

The analysis of the administrative corruption is based on the SPICE-model in the
form

gS(ε, b, u) = rc(u)+
n∑
j=1

bjpj (rj − uj )→ max, 0 ≤ εi ≤ qi; (18)

gi(εi , bi , u) = (1−bi)pi(ri−ui)+sic(u)→ max
0≤bi≤1,qi−εi≤ui≤ri

, i = 1, . . . , n. (19)

The principal bounds a choice of the agent ui from below by the value qi but
the supervisor weakens the bound on the value εi in exchange to the “kickback”
bipi(ri − ui) from the agent’s payoff.

As in the case of economic corruption, a bribery function εi(bi) can be defined
in two ways. The descriptive approach means that it is given, while in the normative
approach it is calculated as an optimal guaranteeing strategy in a game Γ 2
of the supervisor with the agents. It is natural to suppose that εi(bi) increases
monotonically on the segment [0,1], εi(0) = 0, εi(1) = qi .

The value qi in the model (18)–(19) is determined by the principal. Then the
supervisor defines only a form of the function εi(bi). Except the variable bi , this
function may contain additional parameters which depend or do not depend on the
supervisor’s actions. If a parameter is controllable by the supervisor, she can choose
an optimal value of it. An agent solves the following optimization problem:
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u∗i (bi) ∈ Argmax

⎡
⎣(1− bi)pi(ri − ui)+ sic(

n∑
j=1

uj )

⎤
⎦

or with the consideration of constraints

ui =
⎧
⎨
⎩

u∗i (bi), qi − εi(bi) < u∗i (bi) < ri,
qi − εi(bi), qi − εi(bi) > u∗i (bi),

ri , u∗i (bi) > ri .
.

In the case of the second branch the agent has no need to diminish the bound qi . In
the case of the first branch it is necessary to find the value bi such that qi − εi(bi) =
u∗i (bi). A greater bribe is senseless because ui > qi − εi(bi). If from the very
beginning ui(bi) > qi , then bi = 0.

In the normative approach to the model

gP (ε, b, u) = c(u)+
n∑
j=1

pj (rj − uj )→ max, 0 ≤ qi ≤ ri;

gS(ε, b, u) = rc(u)+
n∑
j=1

bjpj (rj − uj )→ max, 0 ≤ εi(bi) ≤ qi;

gi(εi , bi , u) = (1− bi)pi(ri − ui)+ sic(u)→ max, 0 ≤ bi ≤ 1, qi − εi(bi) ≤ ui ≤ ri ,
i = 1, . . . , n

Germeier’s theorem is applied [15] similar to the previous paragraph that gives

εPi = 0;Ei = {bi = 0};Li = pi(ri − u∗i )+ sic(
∑
i∈N
u∗i )

K2 = max
εi

min
bi∈Ei

⎡
⎣rc(u)+

n∑
j=1

bjpj (rj − uj )
⎤
⎦ = max

εi
[rc(u)] = rc(u)

K1 = max
εi

max
ui

max
bi

⎡
⎣rc(u)+

n∑
j=1

bjpj (rj − uj )
⎤
⎦

with constraint (1− bi)pi(ri − ui)+ sic(u) > pi(ri − u∗i )+ sic(u∗).
To determine K1 it is necessary to solve a maximization problem with two

variables: bi and δi . The above constraint gives the dependence of bi on δi :

bi = pi(ri − ui)− pi(ri − u∗i )+ si
[
c(
∑
i∈N ui)− c(

∑
i∈N u∗i )

]

pi(ri − ui) − εi .
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Substitution of the value into the expression rc(u) +∑n
j=1 bjpj (rj − uj ) gives a

standard optimization problem. If necessary (u∗i < qi), then its solution gives the
optimal value εi , otherwise (u∗i > qi) εi = 0. Thus, an agent needs the supervisor’s
help only if u∗i < qi .

5 SPICE-Models in the Regional Development

Consider an application of the SPICE-models to the problems of the development
of trans-frontier territories. There are two equal agents A1 and A2 with a common
frontier. Each of them has a number of resources r1 and r2, respectively. The
resources are assigned to their private economic activities and to the development of
the trans-frontier territory (joint projects) in a ratio. Payoff functions of the agents
consist of two summands: a private income and a share of the income from the joint
project. The resources r1 and r2 may be fixed by a Center of the development of the
trans-frontier territory who disposes a number of resources R. The Center can also
determine the shares of the agents in the joint income or control a distribution of the
resources by each of them.

The system is presented in Fig. 5. The payoff function of each agent has the form

gi(ri, si , u) = pi(ri − ui)+ sic(u1 + u2)→ max, i = 1, 2,

where pi(ri − ui)—a private income of the i-th agent (from the activity on his
territory); c(u1, u2)—a common income from the joint projects (their activity on
the trans-frontier territory); si—a share of the i-th agent in the common income.

For the purposes of control and coordination of the egoistic interests of the agents
they organize a Center (or this can be done by a control agency of the higher
level, for example, the federal state) and delegate her some administrative and/or
economic power. Thus, the Center can use the following control mechanisms:

Fig. 5 Coordination of
interests in the problem of
control of trans-frontier
territories

R

Coordinator

Agent 1 Agent 2
(region) (region)

r1

q1<=u1
q2<=u2

c(u1+u2)

s2s1

r2
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1. an administrative one when she fixes the lower bound qi for the private use of
resources (qi ≤ ui ≤ ri) that incurs her control cost. In this case the Center’s
problem has the form

g0(q, r, s, u) = g1(r1, s1, u)+ g2(r2, s2, u)− C(q1, q2)→ max

with one of the constraints:

0 ≤ qi ≤ ri; 0 ≤ si ≤ 1, s1 + s2 = 1; 0 ≤ ri ≤ 1, r1 + r2 = R;

2. an economic one in two variants:

(a) the Center fixes a share si of the agent in the common income;
(b) she allocates a number of resources ri to the each agent.

So, we have a hierarchical game of the Center with two agents (in fact, several
agents are possible).

5.1 Administrative Control Mechanisms

The hierarchical game-theoretic model takes the form:

g0(u) = g1(u)+ g2(u)→ max, (20)

gi(ri, u) = pi(ri − ui)+ sic(u1 + u2)→ max, (21)

with constraints:

0 ≤ qi ≤ ri, qi ≤ ui ≤ ri, i = 1, 2. (22)

Notice that the Center’s payoff function g0(u) does not depend explicitly on her
strategy q but a choice of q restricts the sets of feasible strategies of the agents that
can increase her payoff. It is assumed that the production functions pi(·) and c(·)
satisfy the following conditions (on the example of pi(·)):
1. pi(·) ≥ 0, pi(·) = 0;
2. pi(·) is continuous and increases monotonically, i.e. p′i (·) > 0;
3. pi(·) is concave, i.e. p′′i (·) < 0;
4. pi(λ·) = λαpi(·), where α is a coefficient of elasticity of the production process

(assume for simplicity that α1 = α2 = α, 0 < α ≤ 1 because the territories have
close natural and economic characteristics).

These properties are widely used in the economic research and are represented
by power functions with an exponent less or equal than one. Thus, four variants are
convenient to analyze:
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1. functions pi(·), c(·), are linear;
2. functions pi(·) are linear, and the function c(·) is a power one with an exponent

strictly less than one;
3. the functions pi(·) are power ones with an exponent strictly less than one, and

the function c(·) is linear;
4. the functions pi(·), c(·) are power ones with an exponent strictly less than one.

Theorem 7 Suppose that in the model (20)–(22) the functions pi(·), c(·) are
increasing and concave, pi(0) = 0, c(0) = 0, and all functions are not in the
same time power ones with an exponent strictly less than one. Then Nash strategies
of the agents coincide with the Pareto-optimal strategy of the Center: uNEi = umax

i .

Proof

uNEi =
⎧
⎨
⎩
u∗i , 0 < u∗i < ri,
0, u∗i < 0,
ri , u∗i > ri .

. (23)

qi = umax
i =

⎧
⎨
⎩
u∗∗i , 0 < u∗∗i < ri,
0, u∗∗i < 0,
ri , u∗∗i > ri

. (24)

where

u∗i =
(
sic

′
(
n∑
i=1

ui

)
− p′i (ri − ui)

)−1

(0),

u∗∗i =
(
c′
(
n∑
i=1

ui

)
− p′i (ri − ui)

)−1

(0).

As far si ≤ 1 then sic′
(∑n

i=1 ui
) ≤ c′

(∑n
i=1 ui

)
, therefore, sic′

(∑n
i=1 ui

) −
p′i (ri−ui) ≤ c′

(∑n
i=1 ui

)−p′i (ri−ui). Let f (ui) = sic′
(∑n

i=1 ui
)−p′i (ri−ui),

g(ui) = c′
(∑n

i=1 ui
) − p′i (ri − ui). The functions f (ui) and g(ui) decrease,

therefore, their inverse functions also decrease. Thus, the value of the mapping of
the point 0 in the greater function g(ui) is not less of the respective value of the
point 0 in the lesser function f (ui). Therefore, the Nash strategy of the agent i with
consideration of the condition qi ≤ ui ≤ ri is ui = qi = umax

i .

5.2 Economic Control Mechanisms

In this case the model (20)–(21) is investigated with constraints

0 ≤ si ≤ 1, s1 + s2 = 1. (25)
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Denote for convenience s1 = s, s2 = 1− s. If at least one of the functions pi(·)
or c(x) is linear, then the following algorithm of investigation is proposed.

Stage 1 Found all Nash equilibria in the game of agents (21). If there are two
agents, then not more than nine Nash outcomes are possible. The outcomes are
separated from each other by the curves

(
sic

′ (∑n
i=1 ui

)− p′i (ri − ui)
)−1

(0) =
0 and

(
sic

′ (∑n
i=1 ui

)− p′i (ri − ui)
)−1

(0) = ri . Each outcome is defined by the
following two conditions:

1. one of the inequalities

(
s1c

′
(
n∑
i=1

ui

)
− p′1(r1 − u1)

)−1

(0) < 0,

0 <

(
s1c

′
(
n∑
i=1

ui

)
− p′1(r1 − u1)

)−1

(0) < r1

(
s1c

′
(
n∑
i=1

ui

)
− p′1(r1 − u1)

)−1

(0) > r1;

holds,
2. and one of the inequalities

(
s2c

′
(
n∑
i=1

ui

)
− p′2(r2 − u2)

)−1

(0) < 0,

0 <

(
s2c

′
(
n∑
i=1

ui

)
− p′2(r2 − u2)

)−1

(0) < r2,

(
s2c

′
(
n∑
i=1

ui

)
− p′2(r2 − u2)

)−1

(0) > r2.

holds.

Call these inequalities the conditions of feasibility of an outcome.

Stage 2 Solve the Center’s optimization problem (20), (25). As in the previous
stage, if there are two agents, then not more than nine Pareto-optimal out-
comes are possible. The outcomes are separated from each other by the curves(
c′
(∑n

i=1 ui
)− p′i (ri − ui)

)−1
(0) = 0 and

(
c′
(∑n

i=1 ui
)− p′i (ri − ui)

)−1
(0) =

ri . Each outcome is defined by the following two conditions are satisfied:
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1. one of the inequalities

(
c′
(
n∑
i=1

ui

)
− p′1(r1 − u1)

)−1

(0) < 0,

0 <

(
c′
(
n∑
i=1

ui

)
− p′1(r1 − u1)

)−1

(0) < r1

(
c′
(
n∑
i=1

ui

)
− p′1(r1 − u1)

)−1

(0) > r1;

holds;
2. and one of the inequalities

(
s2c

′
(
n∑
i=1

ui

)
− p′2(r2 − u2)

)−1

(0) < 0,

0 <

(
s2c

′
(
n∑
i=1

ui

)
− p′2(r2 − u2)

)−1

(0) < r2,

(
s2c

′
(
n∑
i=1

ui

)
− p′2(r2 − u2)

)−1

(0) > r2

holds.

Call 1 and 2 the conditions of optimality of an outcome. Consider that umax
i > u∗i

we receive not more than 25 possible combinations of the outcomes (u∗1, u∗2) and
(umax

1 , umax
2 ).

Stage 3a In the specific case when the conditions of feasibility do not depend on the
Center’s control variables s, the problem is solved by an enumeration of all possible
25 variants.

Stage 3b If the conditions of feasibility depend on the Center’s control variables,
then the outcomes are ordered by decreasing of the Center’s payoff function, and the
conditions are checked for them sequentially. At least one outcome which satisfies
the conditions exists, for example, when s1 = 0, s2 = 1.

If the model is analytically intractable, then the values of s are chosen by the
following enumeration: for a given s from 0 till 1 with a given step the outcomes
which satisfy the conditions of feasibility and optimality are chosen, and then it is
determined
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s∗ = Arg max
s∈[0;1]

max
ui∈Di

g0(u1(s), u2(s)),

where Di = {ui(s)|ui(s) = Argmax0≤ui(s)≤ri gi(u)}.
Example 4 Suppose that there are two agents, the common interest is expressed by
a linear function, and the private interests are described by power functions with an
exponent less than one. The respective coefficients are p1 = 3, p2 = 5, c = 4,
α = 1/2, r1 = 2, r2 = 2.

The agents’ payoff functions are

g1 = 3
√

2− u1 + 4s(u1 + u2),

g2 = 5
√

2− u2 + 4(1− s)(u1 + u2).

The Center’s payoff function is

g0 = 3
√

2− u1 + 5
√

2− u2 + 4(u1 + u2).

The agents’ strategies which are optimal for the Center (Pareto-optimal):

umax
1 = 2−

(
3

8

)2

= 119

64
, umax

2 = 2−
(

5

8

)2

= 103

64

and it is seen that the system compatibility is unavailable. It is only possible to
maximize the price of anarchy.

The Center’s payoff is g0 = 3

√(
3
8

)2 + 5

√(
5
8

)2 + 4 · 119+103
64 = 18.125.

The Nash-strategies for the agents:

uNE1 =
{

2− 9
64s2 , s >

3
8
√

2
,

0, s ≤ 3
8
√

2
.
uNE2 =

{
2− 25

64(1−s)2 , s < 1− 5
8
√

2
,

0, s ≥ 1− 5
8
√

2
.

Thus, in dependence of the value of s three outcomes are possible:

1.
(

2− 9
64s2 ; 2− 25

64(1−s)2
)

if 3
8
√

2
< s < 1− 5

8
√

2
, or (with precision up to 0.001)

0.265 < s < 0.558.
2.
(

2− 9
64s2 ; 0

)
if s ≥ 1− 5

8
√

2
or (with precision up to 0.001) s ≥ 0.558.

3.
(

0; 2− 25
64(1−s)2

)
if s ≤ 3

8
√

2
or (with precision up to 0.001) s ≤ 0.265.

In the case 1 the Center’s payoff takes the form
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g0 = 3

√
9

64s2 + 5

√
25

64(1− s)2 + 4

(
2− 9

64s2 + 2− 25

64(1− s)2
)
=

= 9

8s
+ 25

8(1− s) + 16− 9

16s2
− 25

16(1− s)2 .

This function attains its maximum when
√

3√
3+√5

≈ 0.436 that satisfies the relation
3

8
√

2
< s < 1− 5

8
√

2
. The Center’s payoff is equal to g0 = 16.25.

In the case 2 the Center’s payoff takes the form

g0 = 3

√
9

64s2 + 5
√

2+ 4

(
2− 9

64s2

)
.

This function attains its maximum when s = 1 that satisfies the relation s ≥ 1− 5
8
√

2
.

The Center’s payoff is equal to g0 = 9
16 + 5

√
2+ 8 ≈ 15.633.

In the case 3 the Center’s payoff takes the form

g0 = 3

√
25

64(1− s)2 + 3
√

2+ 4

(
2− 25

64(1− s)2
)
.

This function attains its maximum when s = 0 that satisfies the relation s ≤ 3
8
√

2
.

The Center’s payoff is equal to g0 = 25
16 + 3

√
2+ 8 ≈ 13.805.

Thus, the maximal value of the Center’s payoff function by s is attained when√
3√

3+√5
≈ 0.436 and is equal approximately to 16.25, and the price of anarchy

is PA = 16.25
18.125 ≈ 0.897. The respective strategies of the agents are: u1 = 2 −

3(4+√15)
32 ≈ 1.262, u2 = 2− 5(4+√15)

32 ≈ 0.770, and their payoffs

g1 = 3

√
3(4+√15)

32
+

√
3√

3+√5
(12−√15) ≈ 6.120,

g2 = 5

√
5(4+√15)

32
+

√
5√

3+√5
(12−√15) ≈ 10.130.

5.3 Mechanisms of Resource Allocation

At last, in the context of the model (Fig. 5) the Center can give subsidies for some
joint projects of the development of trans-frontier territories. Another example is an
implementation of the projects of state-private partnership.
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In this case the Center allocates to each agent a number of resources ri . The
whole received common income is divided among the agents. The model is the
hierarchical game (20)–(21) with constraints

0 ≤ ri ≤ 1, r1 + r2 = 1. (26)

Denote r1 = r , r2 = 1 − r . The algorithm of investigation is similar to the one
described in the previous paragraph. Consider a numerical example.

Example 5 Suppose that there are two agents, the common interest is expressed by
a linear function, and the private interests are described by power functions with an
exponent less than one. The respective coefficients are p1 = 3, p2 = 5, c = 4,
α = 1/2, s1 = 0.4, s2 = 0.6. The agents’ payoff functions are

g1 = 3
√
r − u1 + 1.6(u1 + u2),

g2 = 5
√

1− r − u2 + 2.4(u1 + u2).

The Center’s payoff function is

g0 = 3
√
r − u1 + 5

√
1− r − u2 + 4(u1 + u2).

The agents’ strategies which are optimal for the Center (Pareto-optimal):

umax
1 =

{
r − 9

64 , r >
9

64 ,

0, r ≤ 9
64 .

umax
2 =

{
1− r − 25

64 , r <
39
64 ,

0, r ≥ 39
64 .

Thus, three outcomes are possible:

1.
(
r − 9

64 ; 1− r − 25
64

)
if 9

64 < r <
39
64 ;

2.
(
r − 9

64 ; 0
)

if r ≥ 39
64 ;

3.
(

0; 1− r − 25
64

)
if r ≤ 9

64

and it is seen that the system compatibility is unavailable. It is only possible to
maximize the price of anarchy. The Nash-strategies for the agents:

uNE1 =
{
r − 9

10.24 , r >
9

10.24 ,

0, r ≤ 9
10.24 .

uNE2 = 0.

Thus, two outcomes are possible (in dependence on the value of r):

1.
(
r − 9

10.24 ; 0
)

if r > 9
10.24 ;

2. (0; 0) if r ≤ 9
10.24 .
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In the case 1 the Center’s payoff takes the form

g0 = 3

√
9

10.24
+ 5

√
1− r + 4

(
r − 9

10.24

)
= 5

√
1− r + 4r − 1

12.8
.

This function attains its maximum when r = 39
64 ≈ 0.609 that does not satisfy the

relation r > 9
10.24 . In the case 2 the Center’s payoff takes the form g0 = 3

√
r +

5
√

1− r .
This function attains its maximum when r = 9

34 ≈ 0.265 that satisfies the
relation r < 9

10.24 . The Center’s payoff is g0 =
√

34 ≈ 5.831.
Thus, the maximal value of the Center’s payoff function by r is attained when

r = 9
34 and is equal approximately to 5.831, and the maximal value of the Center’s

payoff when r is fixed (absence of control) is equal to 6.126; therefore, the price
of anarchy is equal to PA = 5.831

6.126 ≈ 0.952. The respective agents’ strategies are:
u1 = 0, u2 = 0, and their payoffs are

g1 = 3

√
9

34
= 9√

34
,

g2 = 5

√
25

34
= 25√

34
.

6 Conclusion

The paper is dedicated to the problem of coordination of private and social interests
in resource allocation. The previous results are presented together with the new ones.

In the considered SPICE-models all agents divide their resources between their
private activities and the production of a common social good. Respectively, the
payoff functions include both an income from the private activity and a share in the
produced social good.

A function of social welfare is defined here as the sum of payoff functions of
all agents. Then the key problem is system compatibility. It means that egoistic
solutions of the agents (for example, their dominant or Nash strategies) in their
totality maximize the social welfare. In other terms, the price of anarchy in
the system should be as close to one as possible. It is proved that the system
compatibility is attained only if the agents are divided into two sets: individualists,
who assign all their resources to the private activities, and collectivists, who allocate
all their resources to the production of a social good.

It is quite evident that the condition is a very strong commitment which does not
hold in real economic and organizational systems as a rule. That is why special
administrative and economic control mechanisms are necessary to provide the
system compatibility. A specific agent (Center) is appointed as a social planner
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who solves the problem. In SPICE-models the Center can bound from below the
sets of feasible strategies of the agents to restrict their egoism (administrative
control mechanisms, compulsion) or fix the shares of the agents in the social good
(economic control mechanisms, impulsion). Some results about the properties of the
mechanisms are presented in the paper.

We consider corruption in hierarchical organizational systems as a feedback by
the value of bribe (a bribery function) that leads to the inverse Stackelberg games. In
the case of administrative corruption, the restrictions on the set of feasible strategies
of an agent can be weakened in exchange for a bribe. In the case of economic
corruption, a bribe permits to increase the share of an agent in a social good. In
the analysis of corruption we use a descriptive approach when a bribery function
is given from the experience, and a normative approach when the value of bribe is
determined as a solution of an optimization problem or a game. The results about
the connection of corruption with system compatibility are presented in the paper.

One of the most prospective domains of applications of the SPICE-models is
the regional development, namely the problems of trans-frontier cooperation, state-
private partnership, and others. Here it is also natural to introduce a Center for
coordination of the agents. The economic, administrative, and resource allocation
control mechanisms of such coordination are considered.

Acknowledgement The paper is supported by the Russian Science Foundation, project #17-19-
01038.
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Part III
Games on Graphs and Networks



A Multi-Stage Model of Searching for
Two Mobile Objects on a Graph

Vasily V. Gusev

Abstract We are dealing with a search game where one searcher looks for two
mobile objects on a graph. The searcher distributes his searching resource so as
to maximize the probability of detecting at least one of the mobile objects. Each
mobile object minimizes its own probability of being found. In this problem the
Nash equilibrium, i.e. the optimal transition probabilities of the mobile objects and
the optimal values of the searcher’s resource, was found. The value of the game in a
single-stage search game with non-exponential payoff functions was found.

Keywords Search theory · Game theory · Search model · Search on the graph ·
Dynamic search · Multi-stage game

1 Problem Statement and Notation

Numerous search models have been developed. In discrete-time models, the search
will most often be run on a graph. We assume there is one searching player and two
hiding players. In [5], on the contrary, there were several searchers and only one
hider. The paper [2] considers a game of search for an immobile object on a cycle.
In this article the graph is a tree and the hiders are mobile. The assumption in [1] is
that hiders can turn around and move backwards. Here, we are dealing with mobile
players who do not return to the nodes they have already been to. There are also
studies [4] where the target is singular, but some noises make the searcher believe
there are several mobile objects. Sometimes, special pathways are analyzed, e.g.
Eulerian paths [3], to investigate the optimal strategies. Probability recalculation
can yield Bayesian search models [6]. A more complete account of search-related
literature can be found in [7].
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Consider a multi-stage non-cooperative search game with three players (two
mobile objects and a searcher) on a tree graph. The mobile objects are hiders
numbered as first and second. Both mobile objects take start from the root vertex of
the graph. We assume the searcher is watching the graph from above. At one stage
each mobile object moves independently from one another from vertex i (mobile
object’s position) to vertex j with some probability. At one stage it is possible to
move only across one edge out of the set E. The searcher is assumed to know the
initial position of the mobile targets. Each next position of the hiders is unknown
to either the searcher or the other mobile object. The game proceeds from step k to
step k-1. The mobile objects do not return to the vertexes they have already been to.

LetG = 〈V,E〉 be a fixed-root directed tree without loops, where V is the vertex
set, E is the edge set. All vertices of the graph are numbered; the root of the tree is
denoted by zero. E = {(i, j)} , i, j ∈ V , where (i, j) ∈ E is a directed edge of the
graph G. If (i, j) ∈ E, then vertex j is called descendant of vertex i. Denote by L
the set of leaf vertices G. Define for any vertex j the offspring set ch(j) of vertex j .
We imply two restrictions for the set E: 1. ∀j ∈ V, j �= 0∃!i ∈ V : (i, j) ∈ E; 2.
(i, i) /∈ E.

The vector of vertices (i1, i2, . . . , ik), where ∀j = 1, 2, . . . , k − 1 : (ij , ij+1) ∈
E, will be termed the path in the graph G. The length of any given edge is
1, |(i1, i2, . . . , ik)| = k − 1 is the length of the path (i1, i2, . . . , ik), ∀(i, j) ∈
E|(i, j)| = 1. Let there be (0, i1, i2, . . . , ik), (0, j1, . . . , j) so we can infer that
∀i, j ∈ L : |(0, i1, . . . , i)| = |(0, j1, . . . , j)| = n is the maximum length of a path
in the graph G. In a multi-stage game the number n is called the number of stages
in the multi-stage game. v(k) = {i|i ∈ V, ∃i2, . . . , ik ∈ V : |(0, i2, . . . , ik, i)| = k}
is the number of vertices situated at distance k from the root.

Image the following situation. It suffices for the searcher to locate at least one
mobile object, after which the search stops. The mobile objects seek to minimize
their own probability of being captured.

At stage 1 (last stage), let the first mobile object occupy vertex g and the second
one vertex l; g, l ∈ v(n− 1), g �= l. Define the game

�(1, g, l, g, l) = 〈I, II, III ;P(g),Q(l),!(g) ∪!(l);H1(·),H2(·),H3(·)〉 ,

where I, II, III are the players. P(g),Q(l),!(g)∪!(l) are the sets of the players’
strategies. Let us determine the set of strategies for the first mobile object.

∀g ∈ V \ L : P(g) =
⎧
⎨
⎩(pi)i∈ch(g)|pi ≥ 0,

∑
i∈ch(g)

pi = 1

⎫
⎬
⎭ ,

where pi is the probability that the first mobile object will move from the
ancestor of vertex i to vertex i. (pi)i∈ch(g) is the vector of dimensionality ch(g).
If ∃i ∈ ch(g) : pi = 1, then (pi)i∈ch(g) is the first player’s pure strategy, otherwise
it is mixed. P(g) is the set of strategies of the first player when at vertex g. For
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brevity, the notation p(g) = (pi)i∈ch(g) is introduced. Let us now describe the set
of strategies for the second player.

∀l ∈ V \ L : Q(l) =
⎧
⎨
⎩(qj )j∈ch(l)|ql ≥ 0,

∑
j∈ch(l)

qj = 1

⎫
⎬
⎭ ,

where qj is the probability that the second mobile object will move from the
ancestor of vertex j to vertex j . (qj )j∈ch(l) is a vector of dimensionality h(g).Q(l)is
the set of strategies of the second player when at vertex l. For brevity, the notation
q(l) = (qj )j∈ch(l) is introduced.

Denote by  the searcher’s budget.  g is the share of Phi distributed among the
vertices with the parent g. The budget allocated to a clique is distributed among
vertices in the clique, i.e.  = ∑

g∈V \B  g,
∑
i∈ch(g) ciϕi =  g ≥ φg > 0.

A game model with a distribution of resource is presented in [8]. Below is the set of
strategies for the searcher.

∀g ∈ V \ L : !(g) =
⎧⎨
⎩(ϕi)i∈ch(g)|ϕi ≥ 0;

∑
i∈ch(g)

ciϕi =  g
⎫⎬
⎭ ,

where ϕi, i ∈ ch(g) is the searching resource allocated for the retrieval of a
hidden object to vertex i; (ϕi)i∈ch(g) is the vector from ϕi, i ∈ ch(g) and the
searcher’s strategy; ci > 0 is the cost of a unit resource allocated to vertex i;∑
i∈ch(g) ciϕi is the costs the searcher spent on detecting the mobile objects among

descendants of vertex j . !(g) is the set of strategies for the searcher when one or
both mobile objects are at vertex g; !(g) ∪ !(l) is the set of strategies for the
searcher when the first mobile object is at vertex g, while the second one is at vertex
l. For brevity, the notation ϕ(g) = (ϕi)i∈ch(g) is introduced.

Suppose that the detection probability of, respectively, the first or the second
mobile object at vertex i is 1 − e−αiϕi , provided that the mobile object is at vertex
i. The searching capacity of the resource ϕi is determined by the factor αi > 0.
The probability of not detecting, respectively, the first or the second mobile object
at vertex i then equals e−αiϕi .

2 Single-Stage Game

Let us determine the players’ payoff functions at stage 1.

H1(1, p(g), ϕ(g)) =
∑
i∈ch(g)

pi(1− e−αiϕi ),
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H2(1, q(l), ϕ(l)) =
∑
j∈ch(l)

qj (1− e−αj ϕj ),

H3(1, p(g), q(l), ϕ(g), ϕ(l)) =
∑
i∈ch(g)

∑
j∈ch(l)

piqj (1− e−αiϕi−αj ϕj ),

p(g) ∈ P(g), q(l) ∈ Q(l), ϕ(g) ∈ !(g), ϕ(l) ∈ !(l), (1)

∀i ∈ ch(g),∀j ∈ ch(l) : pi ≥ 0, qj ≥ 0, ϕi ≥ 0, ϕj ≥ 0, (2)

∑
i∈ch(g)

pi = 1,
∑
j∈ch(l)

qj = 1,
∑
i∈ch(g)

ciϕi =  g,
∑
j∈ch(l)

cjϕj =  l, (3)

whereH1(·),H2(·),H3(·) is the probability of detecting the first, the second, and
at least one mobile object, respectively. The first mobile object moves from vertex
g to a new vertex i, (g, i) ∈ E with probability pi ≥ 0,

∑
i∈ch(g) pi = 1. Similarly,

the second mobile object moves from vertex l to j, (l, j) ∈ E with probability
qj ≥ 0,

∑
j∈ch(l) ql = 1.

The searcher, in turn, allocates a budget of  g, l to the search for at least one
mobile object, with  g allocated for searching among descendants of vertex g, and
 l for searching among descendants of vertex l. The budget  g is used to purchase
resources ϕi ≥ 0, i ∈ ch(g) at ci > 0 per unit resource, and all of  g is spent.
Likewise, the budget  l is used to purchase resources ϕj ≥ 0, j ∈ ch(l) at cj >
0 per unit resource, and  l is fully spent. Since the first mobile object moves to
vertex i with probability pi , and the searcher channels ϕi resources to i, hence
pi(1 − e−αiϕi ) is the probability of detecting the first mobile object at vertex i;
qj (1− e−αj ϕj ) is the probability of detecting the second mobile object at vertex j ;
piqj (1 − e−αiϕi−αj ϕj ) is the probability of detecting at least one mobile object in
the situation where the first mobile object has moved to vertex i, and the second one
to vertex j .

All components of the game �(1, g, l, n) have now been defined for the
situation where the mobile objects are situated at different vertices. If at stage
1 the mobile objects both occupy the same vertex g, the following notations are
introduced:

�(1, g, g) = 〈I, II, III ;P(g),Q(g),!(g);H1(·),H2(·),H3(·)〉 ,

H1(1, p(g), ϕ(g)) =
∑
i∈ch(g)

pi(1− e−αiϕi ),

H2(1, q(g), ϕ(g)) =
∑

j∈ch(g)
qj (1− e−αj ϕj ),
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Fig. 1 Graph G

H3(1, p(g), q(g), ϕ(g)) =
∑
i∈ch(g)

∑
j∈ch(g)

piqj (1− e−αiϕi−αj ϕj ),

p(g) ∈ P(g), q(l) ∈ Q(l), ϕ(g) ∈ !(g), (4)

∀i, j ∈ ch(g) : pi ≥ 0, qj ≥ 0, ϕi ≥ 0, ϕj ≥ 0, (5)

∑
i∈ch(g)

pi = 1,
∑

j∈ch(g)
qj = 1,

∑
i∈ch(g)

ciϕi =  g. (6)

Example 1 Consider the graph in Fig. 1. Probability pi ≥ 0, i ∈ V \ {0} is written
at each edge. It denotes the probability of the first mobile object moving to vertex
i from the ancestor of vertex i. Then p2j−1 + p2j = 1, j = 1, 2, . . . , 7. Similarly,
qi ≥ 0, i ∈ V \ {0} is the probability of the second mobile object moving to vertex i
from the ancestor of vertex i. Then q2j−1+q2j = 1, j = 1, 2, . . . , 7. The following
equalities are true:

ch(0) = {1, 2}, ch(1) = {3, 4}, ch(2) = {5, 6}, ch(3) = {7, 8},
ch(4) = {9, 10}, ch(5) = {11, 12}, ch(6) = {13, 14},
B = {7, 8, . . . , 14}, v(1) = {1, 2}, v(2) = {3, 4, 5, 6}, v(3) = {7, 8, . . . , 14}.

6∑
i=0

 i =  , c1ϕ1 + c2ϕ2 =  0, c3ϕ3 + c4ϕ4 =  1, c5ϕ5 + c6ϕ6 =  2,

c7ϕ7 + c8ϕ8 =  3, c9ϕ9 + c10ϕ10 =  4, c11ϕ11 + c12ϕ12 =  5,

c13ϕ13 + c14ϕ14 =  6.
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If there exists a Nash equilibrium in the game �2(1, g, l, g, l), then there are
strategies p∗(g), q∗(l), ϕ∗(g), ϕ∗(l), such that the inequalities

H1(1, p(g), ϕ
∗(g)) ≥ H1(1, p

∗(g), ϕ∗(g))∀p(g) ∈ P(g),

H2(1, q(l), ϕ
∗(l)) ≥ H2(1, q

∗(l), ϕ∗(l))∀q(l) ∈ Q(l),

H3(1, p
∗(g), q∗(l), ϕ(g), ϕ∗(l)) ≤ H3(1, p

∗(g), q∗(l), ϕ∗(g), ϕ∗(l))∀ϕ(g) ∈ !(g),

H3(1, p
∗(g), q∗(l), ϕ∗(g), ϕ(l)) ≤ H3(1, p

∗(g), q∗(l), ϕ∗(g), ϕ∗(l))∀ϕ(l) ∈ !(l),

hold, so denote H ∗
1 (1, g, g) = H1(1, p∗(g), ϕ∗(g)),H ∗

2 (1; l,  l) = H2(1, q∗(l),
ϕ∗(l)),
H ∗

3 (1, g, l, g, l) = H3(1, p∗(g), q∗(l), ϕ∗(g), ϕ∗(l)).
Similarly, in the game �1(1, g, g) we are interested in the Nash equilibrium,

i.e. such players’ strategies p∗(g), q∗(q), ϕ∗(g) for which the inequalities

H1(1, p(g), ϕ
∗(g)) ≥ H1(1, p

∗(g), ϕ∗(g))∀p(g) ∈ P(g),

H2(1, q(g), ϕ
∗(g)) ≥ H2(1, q

∗(g), ϕ∗(g))∀q(g) ∈ Q(g),

H3(1, p
∗(g), q∗(g), ϕ(g)) ≤ H3(1, p

∗(g), q∗(l), ϕ∗(g))∀ϕ(g) ∈ !(g),

hold. Denote H ∗
3 (1, g, g) = H3(1, p∗(g), q∗(g), ϕ∗(g)).

3 Multi-stage Game

Let us now define the game �2(k, g, l, g, l), �1(k, g, g) at stages 2, 3, . . . , n.
Let at stage k = 2, 3, . . . , n the first and the second mobile objects occupy vertices
g, l ∈ v(n− k − 1), respectively.

�2(k, g, l, g, l) = 〈I, II, III ;P(g),Q(l),!(g) ∪!(l);H1(·),H2(·),H3(·)〉 .

The players’ payoff functions have the form

H1(k, p(g), ϕ(g)) =
∑
i∈ch(g)

pi(1− e−αiϕi )+
∑
i∈ch(g)

pie
−αiϕiH ∗

1 (k − 1, i, i),

H2(k, q(l), ϕ(l)) =
∑
j∈ch(l)

qj (1− e−αj ϕj )+
∑
j∈ch(l)

qj e
−αj ϕj H ∗

2 (k − 1, j, j ),
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H3(k, p(g), q(l), ϕ(g), ϕ(l)) =
∑
i∈ch(g)

∑
j∈ch(l)

piqj (1− e−αiϕi−αj ϕj )+

+
∑
i∈ch(g)

∑
j∈ch(j)

piqj e
−αiϕi−αj ϕj H ∗

3 (k − 1, i, j, i, j ).

The variables are bound by restrictions (1)–(3). Let at stage k = 2, 3, . . . , n− 1
both mobile objects occupy the same vertex g ∈ v(n− k + 1). Consider the game

�1(k, g, k) = 〈I, II, III ;P(g),Q(q),!(g);H1(·),H2(·),H3(·)〉

at this stage. The players’ payoff functions have the form

H1(k, p(g), ϕ(g)) =
∑
i∈ch(g)

pi(1− e−αiϕi )+
∑
i∈ch(g)

pie
−αiϕiH ∗

1 (k − 1, i, i),

H2(k, q(g), ϕ(g)) =
∑

j∈ch(g)
pj (1− e−αj ϕj )+

∑
j∈ch(g)

pj e
−αj ϕj H ∗

2 (k − 1, j, j ),

H3(k, p(g), q(g), ϕ(g)) =
∑
i∈ch(g)

∑
j∈ch(g)

piqj (1− e−αiϕi−αj ϕj )+

+
∑
i∈ch(g)

piqie
−2αiϕiH ∗

3 (k − 1, i, i)+

+
∑
i∈ch(g)

∑
j∈ch(g),i �=j

piqj e
−αiϕi−αj ϕj H ∗

3 (k − 1, i, j, i, j ).

The variables are bound by restrictions (4)–(6).
If there exists a Nash equilibrium in the game �1(k, g, k), then denote

H ∗
1 (k, g, g) = H1(k, p

∗(g), ϕ∗(g)),H ∗
2 (k, g, g) = H2(k, q

∗(g), ϕ∗(g)),H ∗
3 (k,

g, g) = H3(k, p
∗(g), q∗(g), ϕ∗(g)).

If there exists a Nash equilibrium in the game �2(k, g, l, g, l) and the respec-
tive optimal strategies for the players coincide, then denote H ∗

3 (k, g, l, g, l) =
H3(k, p

∗(g), q∗(l), ϕ∗(g), ϕ∗(l)), where (p∗(g), q∗(g), ϕ∗(g)) is the equilibrium
in the game �2(k, g, l, g, l).

4 Existence of Equilibrium

Before looking for equilibrium one has to be sure it exists. The most popular tool
for proving the existence of equilibrium is the Nash theorem, for which convexity
of payoff functions is essential.
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Claim 1 The function f (x1, . . . , xr ) = ∑r
i=1

∑r
j=1 bij e

−aixi−aj xj is convex
downward on the setD = {(x1, . . . , xr )|xi ≥ 0,

∑r
i=1 cixi =  

}
, ai, ci > 0, bij ∈

[0; 1].
Proof It is obvious that the function y = ex is convex downward on the set
∈ (−∞;+∞), then eαx1+(1−α)x2 ≤ αex1 + (1 − α)ex2 ,∀α ∈ [0; 1],∀x1, x2 ∈
(−∞;+∞).

Let x = (x1, . . . , xr ), y = (y1, . . . , yr ). One can show that ∀x, y ∈ D holds
f (αx + (1− α)y) ≤ αf (x)+ (1− α)f (y), α ∈ [0; 1]

f (αx + (1− α)y) = f (αx1 + (1− α)y1, . . . , αxr + (1− α)yr) =

=
r∑
i=1

r∑
i=1

bij e
−ai (αxi+(1−α)yi )−aj (αxj+(1−α)yj ) =

=
r∑
i=1

r∑
i=1

bij e
α(−aixi−aj xj )+(1−α)(−aj yj−aj yj )

≤
r∑
i=1

r∑
i=1

bij (αe
−aixi−aj xj + (1− α)e−aiyi−aj yj ) =

= αf (x)+ (1− α)f (y).

The above equalities and estimates hold for ∀x, y ∈ D. Hence, f (x)in D is convex
downward by definition. ��
Lemma 1 There exists a Nash equilibrium in the games �1(k, g, g) and
�2(k, g, l, g, l).

Proof The functions H1(k, p(g), ϕ(g)),H2(k, q(g), ϕ(g)) are linear on pi, qi, i ∈
ch(g), respectively. −H3(k, p(g), q(g), ϕ(g))is convex upward. Since the players’
payoff functions are convex and continuous, and the set of strategies is a compact
convex set then, according to the Nash theorem, there exists an equilibrium solution.

��

5 Solution for a Single-Stage Game

Now that we know equilibrium exists (Lemma 1), let us find the value of the game
for a single-stage game by non-linear programming methods.

Theorem 1 The following equalities are true in the game �2(1, g, l, g, l)

H ∗
1 (1, g, g) = 1− exp

(
− g∑
i∈ch(g)

ci
αi

)
,H ∗

2 (1, l, l) = 1− exp
(

− l∑
j∈ch(l)

cj
αj

)
,

H ∗
3 (1, g, l, j , l) = 1− exp

(
−  g∑

i∈ch(g)
ci
αi

−  l∑
j∈ch(l)

cj
αj

)
.
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Proof Write down the Kuhn–Tucker conditions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− e−αiϕi − ui + λ1 = 0, i ∈ ch(g);
1− e−αj ϕj − sj + λ2 = 0, j ∈ ch(l);

αi
∑
j∈ch(l) piqj e−αiϕi−αj ϕj − wi + ciλ3 = 0, i ∈ ch(g);

αj
∑
i∈ch(g) piqj e−αiϕi−αj ϕj − wj + cjλ4 = 0, j ∈ ch(l);∑

i∈ch(g) pi = 1;∑
j∈ch(l) qj = 1;∑

i∈ch(g) ciϕi =  g;∑
j∈ch(l) cjϕj =  l;
piui = 0;
qjvj = 0;
ϕiwi = 0;
ϕjwj = 0;

pi, qj , ϕi, ϕj , ui, vj , wi, wj ≥ 0, i ∈ ch(g), j ∈ ch(l).

Suppose that pi, qj , ϕi, ϕj > 0. Then ui = sj = wi = wj = 0 ∀i ∈
ch(g), j ∈ ch(l). Having solved the system of equations were get that p∗i =

ci/αi∑
m∈ch(g) cm/αm

, q∗j = cj /αj∑
m∈ch(l) cm/αm

, ϕ∗i =  g/αi∑
m∈ch(g) cm/αm

, ϕ∗j =  l/αj∑
m∈ch(l) cm/αm

.

Since the resultant transition probabilities of the mobile players and the numerical
value of the resource are non-negative, there is no need to consider other cases of
the sign of the variables ui, sj , wi . Substituting the resultant values of the variables
into the players’ payoff functions we get the required proof. ��
Theorem 2 The following equalities are true in the game �1(1, 0, )

H ∗
1 (1, 0, ) = H ∗

2 (1, 0, ) = 1 − exp

(
− ∑

i∈ch(0)
ci
αi

)
,H ∗

3 (1, 0, ) = 1 −

exp

(
−2 ∑
i∈ch(0)

ci
αi

)
.

Proof Write down the Kuhn–Tucker conditions.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1− e−αiϕi − ui + λ1 = 0, i ∈ ch(0);
1− e−αiϕi − vi + λ2 = 0, i ∈ ch(0);

2αipiqie−2αiϕi + αi∑j∈ch(0),i �=j (piqj + pjqi)e−αiϕi−αj ϕj−
−wi + ciλ3 = 0, i ∈ ch(0);∑

i∈ch(0) pi = 1;∑
i∈ch(0) qi = 1;∑
i∈ch(0) ciϕi =  ;
piui = 0;
qivi = 0;
ϕiwi = 0;

pi, qi, ϕi, ui, vi, si ≥ 0, i ∈ ch(0).
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Suppose that pi, qi, ϕi > 0. Then ui = si = wi = 0∀i ∈ ch(0). Then from the first
2|ch(0)| )| equations of the system we get λ1 = λ2, ϕi = − ln(λ+1)

αi
. Substituting

the resultant values of ϕi into
∑
i∈ch(0) ciϕi =  we find that ϕ∗i =  /αi∑

j∈ch(0) cj /αj
Substitute ϕ∗i hi into the remaining equations of this system.

αi

ci
exp

(
− 2 ∑

j∈ch(0) ci/αi

)⎛
⎝2piqi +

∑
j∈ch(0)

(piqj + pjqi)
⎞
⎠+ λ3 = 0;

αi

ci
(pi + qi) = −λ3 · exp

(
− 2 ∑

j∈ch(0) ci/αi

)
.

The right-hand part of the equation is independent of i, hence ∀i, j ∈ ch(0) :
αi
ci
(pi + qi) = αj

cj
(pj + qj ). Since the sum of probabilities is 1, we find that p∗i =

γi, q
∗
i = 2 · ci/αi∑

j∈ch(0) cj /αj
− γi, where 0 ≤ γi ≤ 2 · ci/αi∑

j∈ch(0) cj /αj
,
∑
j∈ch(0) γj = 1.

Substituting the resultant values of p∗i , q∗i , ϕ∗i into the payoff functions we get the
required proof. Note that the optimal strategies of the players are interdependent.
Since the mobile objects do not know exactly whether they share the same vertex,
the players will choose such γi, i ∈ ch(0) for which p∗i = q∗i = ci/αi∑

j∈ch(0) cj /αj
holds.

��
Example 2 Let us solve a single-stage game for the graph G shown in Fig. 2. The
values of the parameters ci, αi are set in Table 1.

The mobile players were initially deployed at vertex 0. Their next positions
could be either in the same or in different vertices (both in the first, both in the
second, one in the first, and the other one in the second). It follows from Theorem 3
that the searcher need not know how many mobile players there are in the 1st
and 2nd vertices to distribute the searching resource, he just allocates a budget of
ϕi =  g/αi∑

m∈ch(g) cm/αm
, i ∈ ch(g), g ∈ {1, 2} to vertex i. For the numerical value

of ϕ see Table 2. For mobile objects occupying different vertices or the same

Fig. 2 Graph G

Table 1 Values of parameters ci , αi

i 1 2 3 4 5 6 7 8 9 10 11 12

αi 0.9 0.3 0.4 0.5 0.8 0.2 0.6 0.5 0.7 0.2 0.8 0.5

ci 7 4 2 6 8 2 5 3 4 1 8 5
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Table 2 Values of pi, ϕi

i 3 4 5 6 7 8 9 10 11 12

pi 0.110 0.265 0.220 0.220 0.185 0.163 0.155 0.136 0.273 0.273

ϕi 5514 4411 2757 11,029 3676 10,894 7782 27,237 6809 10,893

vertex their probabilities of transition to vertex i are calculated by the formula
pi = ci/αi∑

m∈ch(g) cm/αm
, as shown in Table 2.

6 Solution of the Game for a Linear Graph

Let Ln+1 be a linear graph with n+ 1 vertices, where n is the number of stages. We
assume that at stage k the mobile objects are at vertex k + 1, k = n, n − 1, . . . , 1.
Initially, both mobile objects are at vertex n+1. Since the graph is linear, the players
move to the next vertex with probability 1. For convenience we assume that a budget
of  i, i = 1, 2, . . . , n is allocated to the ith vertex.

Theorem 3 In the game �1(n, n + 1, n) H ∗
3 (n, n + 1, n) = 1 −

e
−2
∑n
i=1

αi
ci
 i
, H ∗

1 (n, n+ 1, n) = H ∗
2 (n, n+ 1, n) = 1− e−

∑n
i=1

αi
ci
 i holds.

Proof Note that for a linear graph vectors p(k), q(k) consist of one component
pk−1, qk−1, respectively.

H3(1, p1, q1, ϕ1) = p1q1(1− e−α1ϕ1).

Since p1 = q1 = 1, c1ϕ1 =  1, then

H ∗
3 (1, 2, 1) = 1− e−

α1
c1
 1 ,

H3(2, p2, q2, ϕ2) = p2q2(1− e−α2ϕ2)+ p2q2e
−α2ϕ2H ∗

3 (1, 2, 1),

H ∗
3 (2, 3, 2) = 1− e−2

α2
c2
 2 + e−2

α2
c2
 2(1− e−2

α1
c1
 1) = 1− e−2(

α2
c2
 2+ α1

c1
 1).

At the kth stage we have

H3(k, pk, qk, ϕk) = pkqk(1− e−αkϕk )+ pkqke−αkϕkH ∗
3 (k − 1, k, k−1)

H ∗
3 (k, k+1, k) = 1−e−2

αk
ck
 k+e−2

αk
ck
 k
(1−e−2

∑k−1
i=1

αi
ci
 i
) = 1−e−2

∑k
i=1

αi
ci
 i
.
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When k = n we get H ∗
3 (n, n+ 1, n) = 1− e−2

∑n
i=1

αi
ci
 i
. Following the same

reasoning we can find thatH ∗
1 (n, n+1, n) = H ∗

2 (n, n+1, n) = 1−e−
∑n
i=1

αi
ci
 i .
��

Knowing the probability of detecting at least one mobile object within n stages,
the searcher can distribute the budget  optimally, e.g. by maximizing H ∗

3 (n, n +
1, n) using the variables  i ≥ 0, i = 1, 2, . . . , n,

∑n
i=1 i =  .

Claim 2 The highest probability of detecting at least one mobile object on a linear

graph is H ∗
3 (n, n+ 1, ) = 1− e−2 max

i=1,...,n

αi
ci

Proof 1 − e−2
∑n
i=1

αi
ci
 i → max ⇔ −e−2

∑n
i=1

αi
ci
 i → max ⇔ e

−2
∑n
i=1

αi
ci
 i →

min⇔ −2
∑n
i=1

αi
ci
 i → min⇔∑n

i=1
αi
ci
 i → max. Let

αj
cj
= max
i=1,...,n

αi
ci
.

We deem the value of j to be fixed. Since we find the maximum of the linear
function with the restrictions  i ≥ 0, i = 1, 2, . . . , n,

∑n
i=1 i =  , so  i ={

0, i �= j ;
 , i = j. , and then H3(n, n + 1, ) = 1 − e−2 max

i=1,...,n

αi
ci , as was to be proved.

In other words, for the detection probability to be the highest possible, the entire
budget is allocated to a single vertex for which the fraction αi

ci
, i ∈ V \ {n} is the

highest. ��

7 Solution for a Two-Stage Game

It follows from Theorems 3 and 5 that in a single-stage game the optimal
probability of detecting the first and the second mobile objects, respectively, is

1 − 1 − e
−  g∑

i∈ch(g)ci /αi , where g is the vertex in which the mobile object is

situated. Denote βg = e
−  g∑

i∈ch(g)ci /αi . Then H ∗
1 (1, g, g) = H ∗

2 (1, g, g) =
1− βg,H ∗

3 (1, g, g) = 1− β2
g,H

∗
3 (1, g, l, g, l) = 1− βgβl.

Let the mobile objects at the second stage be at vertex g, g ∈ v(n − 2), then
the players’ payoff functions in the game �1(2, g, g)=〈I, II, III ;P(g),Q(q),
!(g);H1(·),H2(·),H3(·)〉 will have the form

H1(2, p(g), ϕ(g)) =
∑
i∈ch(g)

pi(1− e−αiϕi )+
∑
i∈ch(g)

pie
−αiϕi

H ∗
1 (1, i, i) = 1−

∑
i∈ch(g)

pie
−αiϕi+

∑
i∈ch(g)

pie
−αiϕi (1−βi) = 1−

∑
i∈ch(g)

βipie
−αiϕi ,

H2(2, p(g), ϕ(g)) = 1−
∑
i∈ch(g)

βiqie
−αiϕi , H3(2, p(g), q(g), ϕ(g)) =
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∑
i∈ch(g)

∑
j∈ch(g)

piqj (1− e−αiϕi−αj ϕj )+
∑
i∈ch(g)

piqie
−2αiϕiH ∗

3 (k − 1, i, i)

+
∑
i∈ch(g)

∑
j∈ch(g),i �=j

piqj e
−αiϕi−αj ϕj H ∗

3 (k − 1, i, j, i, j ) =

= 1−
∑
i∈ch(g)

∑
j∈ch(g)

piqj e
−αiϕi−αj ϕj +

∑
i∈ch(g)

piqie
−2αiϕi (1− β2

i )+

+
∑
i∈ch(g)

∑
j∈ch(g),i �=j

piqj e
−αiϕi−αj ϕj (1− βiβj ) =

= 1−
∑
i∈ch(g)

β2
i piqie

−2αiϕi −
∑
i∈ch(g)

∑
j∈ch(g),i �=j

βiβjpiqj e
−αiϕi−αj ϕj .

Optimal strategies can be found using non-linear programming methods.

Theorem 4 Optimal strategies in the game �1(2, g, g) have the form

ϕ∗i =
⎡
⎣  g/αi∑

j∈M(g)
cj
αj

− 1

αi

∑
j∈M(g)

cj
αj
lnβj

∑
j∈M(g)

cj
αj

+ lnβi
αi

⎤
⎦
+
,

p∗i =
{

ci/αi∑
j∈M(g) cj /αj

, i ∈ M(g);
0, i /∈ M(g). ,

whereM(g)—is the number of vertices for which ϕi > 0, i ∈ ch(g).
Proof Note that the functions H1(2, p(g), ϕ(g)),
H2(2, p(g), ϕ(g)) are symmetric with respect to the variables pi, qi , wherefore
pi = qi∀i ∈ ch(g). Write down the Lagrangian functions.

L1(p(g), ϕ
∗(g), U, λ1) = 1−

∑
i∈ch(g)

βipie
−αiϕ∗i −

∑
i∈ch(g)

piui+λ1

⎛
⎝ ∑
i∈ch(h)

pi − 1

⎞
⎠ ,

L2(p
∗(g), ϕ(g),W, λ2) = −1+

∑
i∈ch(g)

β2
i (p

∗
i )

2e−2αiϕi+

+
∑
i∈ch(g)

∑
j∈ch(g),i �=j

βiβjp
∗
i p

∗
j e
−αiϕi−αj ϕj−

∑
i∈ch(g)

wiϕi+λ2

⎛
⎝ ∑
i∈ch(g)

ciϕi − g
⎞
⎠ .
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Write down the Kuhn–Tacker conditions required for finding the minimum of the
functions L1(·), L2(·), and deem ϕ∗i = ϕi, p∗i = pi for the sake of brevity.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−βie−αiϕi − ui + λ1 = 0, i ∈ ch(g);
−2αiβ2

i p
2
i e
−2αiϕi − 2αiβipie−αiϕi

∑
j∈ch(g),i �=j βjpj e−2αj ϕj−

−wi + ciλ2 = 0, i ∈ ch(g);
piui = 0;
ϕiwi = 0;∑
i∈ch(g) pi = 1;∑

i∈ch(g) ciϕi =  g;
pi, ϕi, ui, wi ≥ 0.

Transform the system of equations to the form

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−βie−αiϕi − ui + λ1 = 0, i ∈ ch(g);
−2αiβipie−αiϕi

(∑
j∈ch(g) βjpj e−αj ϕj

)
− wi + ciλ2 = 0, i ∈ ch(g);

piui = 0;
ϕiwi = 0;∑
i∈ch(g) pi = 1;∑

i∈ch(g) ciϕi =  g;
pi, ϕi, ui, wi ≥ 0.

1. Consider the case where pi > 0, ϕi > 0∀i ∈ ch(g). Then ui = wi = 0∀i ∈
ch(g), βie

−αiϕi = λ1, ϕi = − 1
αi
(lnλ1 − lnβi). Since

∑
i∈ch(g) ciϕi =  g, TO

−lnλ1
∑
i∈ch(g)

ci
αi
+∑i∈ch(g)

ci
αi
lnβi =  g,

ϕi =  g/αi∑
j∈ch(g)

cj
αj

− 1

αi

∑
j∈ch(g)

cj
αj
lnβj

∑
j∈ch(g)

cj
αj

+ lnβi
αi
.

Find the values of pi, i ∈ ch(g).

−2αiβipie
−αiϕi

⎛
⎝ ∑
j∈ch(g)

βjpj e
−αj ϕj

⎞
⎠− wi + ciλ2 = 0;

−2αipiλ1

⎛
⎝ ∑
j∈ch(g)

λ1pj

⎞
⎠+ ciλ2 = 0;

2αiλ
2
1pi = ciλ2;
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αipi

ci
= λ2

2λ2
1

≡ const;

αipi

ci
= αjpj

cj
∀i, j ∈ ch(g).

Since the
∑
i∈ch(g) pi = 1, we get pi = ci/αi∑

j∈ch(g) cj /αj
Since the resultant values of ϕi are not always below zero, we also need to

consider other cases.
2. Denote by M(g) the set of vertices for which ϕi > 0. Since  g is positive,
M(g) is a non-empty set. Then ∀i ∈ M(g) : wi = 0. We also assume that
∀j ∈ v(n − 2) \M(g) : wj > 0, then ϕj = 0. The system of equations then
takes the following form:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−βie−αiϕi − ui + λ1 = 0, i ∈ M(g);
−βj − uj + λ1 = 0, j ∈ v(n− 2) \M(g);
αkβkpke

−αkϕk
ck

= αiβipie
−αiϕi

ci
; k, i ∈ M(g);

−2αjβjpj
(∑

k∈ch(g) βkpke−αkϕk
)
− wj + cjλ2 = 0;∑

i∈ch(g) pi = 1;∑
i∈ch(g) ciϕi =  g;
piui = 0.

Let pi > 0, i ∈ M(g), pj = 0, j ∈ ch(g) \M(g). Then ui = 0, i ∈ M(g),
We deem uj > 0, j ∈ ch(g) \M(g). The system can be rewritten as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−βie−αiϕi + λ1 = 0, i ∈ M(g);
−βj − uj + λ1 = 0, j ∈ ch(g) \M(g);
αkβkpke

−αkϕk
ck

= αiβipie
−αiϕi

ci
, k, i ∈ M(g);

wj = cjλ2;∑
i∈M(g) pi = 1;∑

i∈M(g) ciϕi =  g.

From the equation βie−αiϕi = λ1 we get that ϕi = − 1
αi
(lnλ1 − lnβi) , i ∈

M(g). Find the value of λ1 by analogy with point 1,

ϕi =  g/αi∑
j∈M(g)

cj
αj

− 1

αi

∑
j∈M(g)

cj
αj
lnβj

∑
j∈M(g)

cj
αj

+ lnβi
αi

pi = ci/αi∑
j∈M(g) cj /αj

, where pi is greater than zero. We find that if λ1−βj ≥ 0,

then ϕj = 0. If λ1 − βj < 0, then it follows from point 1 that ϕj =
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− 1
αj

(
lnλ1 − lnβj

)
> 0, hence j ∈ M(g). The final form of the solution is

ϕi =
⎡
⎣  g/αi∑

j∈M(g)
cj
αj

− 1

αi

∑
j∈M(g)

cj
αj
lnβj

∑
j∈M(g)

cj
αj

+ lnβi
αi

⎤
⎦
+
,

pi =
{

ci/αi∑
j∈M(g) cj /αj

, i ∈ M(g);
0, i /∈ M(g).

��
The challenge is that one needs to know in advance which values of ϕi > 0 are

positive. The problem is solved just by searching through the values of ϕi .
There is a peculiarity to be observed in the solution. If the searcher allocates

a resource of ϕi > 0 to vertex i, then the mobile objects also choose this vertex
with non-zero probability. It would be logical for the mobile objects to move to the
vertices to which no searching resource is allocated. The targets, however, do not
move to such vertices, since the detection probability at the next stage would be
rather high.

Example 3 Let the graph G be shown in Fig. 3, ci, αi parameter values as set in
Table 3.

At the first time instant both mobile objects are at vertex zero. Imagine a situation
where the searcher is ordered to allocate at least one unit resource to the putative
position of the mobile objects (i.e., ϕi ≥ 1, i = 1, 2, . . . , 9). Set  = 100. How
should the searcher distribute the budget to maximize the probability of detecting
the mobile players? We first need to find the optimal transition probabilities. Since
it is stipulated than a non-zero resource is allocated to each vertex, then according
to Theorem 3 the values of pi, i = 1, 2, . . . , 9 have the form

p1 = c1/α1
c1
α1
+ c2
α2
+ c3
α3

= 0, 24;p2 = c2/α2
c1
α1
+ c2
α2
+ c3
α3

= 0, 12;

Fig. 3 Graph G

Table 3 Values of
parameters ci , αi

i 1 2 3 4 5 6 7 8 9

αi 0.9 0.8 0.3 0.5 0.4 0.7 0.2 0.8 0.9

ci 9 4 8 5 8 7 9 6 3
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p3 = c3/α3
c1
α1
+ c2
α2
+ c3
α3

= 0, 64;

p4 = c4/α4
c4
α4
+ c5
α5

= 1

3
;p5 = c5/α5

c4
α4
+ c5
α5

= 2

3
;p6 = c6/α6

c6
α6
+ c7
α7

= 2

11
;

p7 = c7/α7
c6
α6
+ c7
α7

= 9

11
;p8 = c8/α8

c8
α8
+ c9
α9

= 9

13
;p9 = c9/α9

c8
α8
+ c9
α9

= 4

13
;

ϕ4 =  1/α4
c4
α4
+ c5
α5

=  1

15
, ϕ5 =  1/α5

c4
α4
+ c5
α5

=  1

12
, ϕ6 =  2/α6

c6
α6
+ c7
α7

= 2 2

77
,

ϕ7 =  2/α7
c6
α6
+ c7
α7

=  2

11
, ϕ8 =  3/α8

c8
α8
+ c9
α9

= 3 2

26
, ϕ9 =  3/α9

c8
α8
+ c9
α9

= 4 2

39
.

The values of β1, β2, β3 will have the form

β1 = exp
(
−  1
c4
α4
+ c5
α5

)
, β2 = exp

(
−  2
c6
α6
+ c7
α7

)
, β3 = exp

(
−  3
c8
α8
+ c9
α9

.

)

The values of the variables ϕ1, ϕ2, ϕ3 are calculated by the formulas

ϕ1 =  0/α1
c1
α1
+ c2
α2
+ c3
α3

− 1

α1
·
c1
α1

(
−  1

c4
α4
+ c5
α5

)
+ c2
α2

(
−  2

c6
α6
+ c7
α7

)
+ c3
α3

(
−  3

c8
α8
+ c9
α9

)

c1
α1
+ c2
α2
+ c3
α3

+

+ 1

α1

(
−  1
c4
α4
+ c5
α5

)

ϕ2 =  0/α2
c1
α1
+ c2
α2
+ c3
α3

− 1

α2
·
c1
α1

(
−  1

c4
α4
+ c5
α5

)
+ c2
α2

(
−  2

c6
α6
+ c7
α7

)
+ c3
α3

(
−  3

c8
α8
+ c9
α9

)

c1
α1
+ c2
α2
+ c3
α3

+

+ 1

α2

(
−  2
c6
α6
+ c7
α7

)

ϕ3 =  0/α3
c1
α1
+ c2
α2
+ c3
α3

− 1

α3
·
c1
α1

(
−  1

c4
α4
+ c5
α5

)
+ c2
α2

(
−  2

c6
α6
+ c7
α7

)
+ c3
α3

(
−  3

c8
α8
+ c9
α9

)

c1
α1
+ c2
α2
+ c3
α3

+
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+ 1

α3

(
−  3
c8
α8
+ c9
α9

)
.

One can also check that c1ϕ1 + c2ϕ2 + c3ϕ3 =  0.. Simplifying the values
ϕ1, ϕ2, ϕ3, we get ϕ1 = 2 0

75 − 19 1
675 + 2 2

825 + 64 3
975 , ϕ2 = 3 0

100 +  1
100− 2

50 + 24 3
325 , ϕ3 =

2 0
25 + 2 1

75 + 2 2
275 − 36 3

325 . Since βie−αiϕi = λ1, the probability of detecting at least
one mobile player is

1−
∑
i∈ch(g)

β2
i (p

∗
i )

2e−2αiϕi −
∑
i∈ch(g)

∑
j∈ch(g),i �=j

βiβjp
∗
i p

∗
j e
−αiϕi−αj ϕj =

= 1−
∑
i∈ch(g)

(p∗i )2λ2
1 −

∑
i∈ch(g)

∑
j∈ch(g),i �=j

p∗i p∗j λ2
1 = 1− λ2

1,

where λ1 = exp
(
− 0+∑j=1,2,3

cj
αj
lnβj

∑
j=1,2,3

cj
αj

)
. The searcher seeks to distribute the budget

so as to maximize the detection probability, i.e. the magnitude 1 − λ2
1. To achieve

this it suffices to minimize − 0 +∑j=1,2,3
cj
αj
lnβj = − 0 −  1

3 −  2
11 − 32 3

13 . To
find  0, . . . ,  3 it is enough to solve the linear programming problem

− 0 −  1

3
−  2

11
− 32 3

13
→ min

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 0
75 − 19 1

675 + 2 2
825 + 64 3

975 ≥ 1,
3 0
100 +  1

100 −  2
50 + 24 3

325 ≥ 1,

2 0
25 + 2 1

75 + 2 2
275 − 36 3

325 ≥ 1
 1
15 ≥ 1,
 1
12 ≥ 1,

2 2
77 ≥ 1,
 2
11 ≥ 1,

3 3
26 ≥ 1,

4 3
39 ≥ 1,

 0 + 1 + 2 + 3 = 100.

Its solution results in  0 = 28, 677; 1 = 15, 000; 2 = 38, 500; 3 =
17, 823.
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8 Solution for a Multi-stage Game

Having solved the single-stage game, one can proceed to a game with two stages.
Knowing the solution of the two-stage game, one can get the solution for the
three-stage game and so forth by mathematical induction. At each stage the payoff
function retains its form, enabling the solution of the multi-stage game.

Theorem 5 Let both mobile objects be at vertex g at stage n. Then, the optimal
strategies for the players have the form

ϕ∗i =
⎡
⎣  g/αi∑

j∈M(j)
cj
αj

− 1

αi

∑
j∈M(g)

cj
αj
lnβj

∑
j∈M(g)

cj
αj

+ lnβi
αi

⎤
⎦
+
,

p∗i =
{

ci/αi∑
j∈M(g) cj /αj

, i ∈ M(g);
0, i /∈ M(g),

whereM(g)—is the offspring set of vertex g, for which ϕi > 0.

Proof Note that the optimal probabilities of detecting players in a two-stage
game can be transformed to the form H ∗

1 (2, g, g) = H ∗
2 (2, g, g) = 1 −

βg,H
∗
2 (2, g, g) = 1 − β2

g . A three-stage game is therefore solved analogously
with a two-stage game. Applying the same reasoning to each stage, we are led by
induction to the solution at stage n written in the form analogous to the solution at
stage 2, as was to be proved. ��

9 Solution for a Single-Stage Game with an Arbitrary
Detection Probability

In most studies the detection probability of a target was equaled to 1 − e−αiϕi .
If the amount of the resource is sent to infinity, such detection probability will
tend rapidly to 1. In practice, however, where the resource amounts are great, the
methods and algorithms of tracking a mobile object may not be as simple, i.e.
other functions setting the capture probability should be considered instead of the
exponential detection probability.

Let f (αiϕi) be the probability of not detecting an object at vertex i. The higher
the ϕi , the lower the probability of not detecting the object. We therefore believe that
f (αiϕi) is a strictly decreasing function. If the resource amount allocated to vertex
i equals zero, the non-detection probability equals 1, i.e. f (0) = 1. The property
of probability dictates that the inequality f (αiϕi) > 0 must hold. The value of the
function f (αiϕi) �= 0∀ϕi because f (αiϕi) is strictly decreasing.
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Let H(P,!) = ∑n
i=1 pif (αiϕi), pi ≥ 0, ϕi ≥ 0, p1 + p2 + . . . + pn =

1, c1ϕ1 + . . .+ cnϕn ≤  
Theorem 6 Let f (x) be a differentiable on the interval [0;+∞), convex
downward, strictly decreasing function. Then, for the zero-sum game � =
〈I, II ;P,!;H(P,!)〉 the value of the game and the equilibrium point have
the form

H ∗(P ∗, !∗) = f
(

 ∑n
i=1

ci
αi

)
, p∗i =

ci/αi∑n
i=1

ci
αi

, ϕ∗i =
 /αi∑n
i=1

ci
αi

.

Proof To find the equilibrium point we write down the required Kuhn–Tacker
conditions.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−f (αiϕi)− Ui + λ1 = 0;
αipif

′ (αiϕi)−Wi + ciλ2 = 0;
Uipi = 0;
Wiϕi = 0;

p1 + . . .+ pn = 1;
c1ϕ1 + . . .+ cnϕn =  ;
pi, ϕi, ui,Wi ≥ 0

where i = 1, 2, . . . , n. Note that there is a minus in front of f (αiϕi) in the first n
equations of the system, since the maximum is found from the variables pi .

If ∀i : Ui = Wi = 0, TO f (αiϕ
∗
i ) = λ1. Since f (x) is a strictly decreasing

function, there exists an inverse function f−1(y). Then αiϕ∗i = f−1(λ1), ϕ
∗
i =

1
αi
f−1(λ1). Since

∑n
i=1 ciϕ

∗
i =  , TO f−1(λ1) =  ∑n

i=1
ci
αi

, f (f−1(λ1)) =

f

(
 ∑n
i=1

ci
αi

)
, λ1 = f

(
 ∑n
i=1

ci
αi

)
. Given the equality f (αiϕ∗i ) = λ1, we get

H ∗(P ∗, !∗) = ∑n
i=1 p

∗
i f (αiϕ

∗
i ) = λ1

∑n
i=1 p

∗
i = λ1 = f

(
 ∑n
i=1

ci
αi

)
. Value

ϕ∗i = 1
αi
f−1(λ1) =  /αi∑n

j=1
cj
αj

.

Find p∗i . αip∗i f ′(αiϕ∗i ) = −ciλ2, αip
∗
i f

′
(
αi ·  /αi∑n

j=1
cj
αj

)
= −ciλ2, f

′
(

 ∑n
j=1

cj
αj

)

= − ci
αip

∗
i
· λ2. The expression on the left in the last equality is independent of i,

hence c1
α1p

∗
1
· λ2 = c2

α2p
∗
2
· λ2 = . . . = cn

αnp∗n
· λ2. Since

∑n
i=1 p

∗
i = 1, we get

p∗i = ci/αi∑n
j=1

cj
αj

. The resultant values of p∗i , ϕ∗i , and Ui = Wi = 0 ∀i satisfy all the

equations in the system. Since the optimized function is convex and restrictions on
the variables are linear, the eventual solution represents an equilibrium point. ��



A Multi-Stage Model of Searching for Two Mobile Objects on a Graph 173

Acknowledgements This work was supported by the Russian Fund for Basic Research (projects
16-01-00183 and 16-51-55006).

References

1. Alpern, Steve. “Hide-and-Seek Games on a Network, Using Combinatorial Search Paths.”
Operations Research 65.5 (2017): 1207–1214.

2. Baston, Vic, and Kensaku Kikuta. “Search games on a broken wheel with traveling and search
costs” Journal of the Operations Research Society of Japan 60.3 (2017): 379–392.

3. Gal S (2005) Strategies for searching graphs. Golumbic M, Hartman I, eds. Graph Theory,
Combinatorics and Algorithms, Vol. 34, Operations Research/Computer Science Interfaces
Series (Springer, New York), 189–214.

4. Kekka, Toshiyuki, and Ryusuke Hohzaki. “A nonlinear model of a search allocation game with
false contacts.” Scienticae Mathematicae Japonicae 76 (2013): 497–515.

5. Hohzaki, Ryusuke. “A cooperative game in search theory.” Naval Research Logistics (NRL)
56.3 (2009): 264–278.

6. Hohzaki, Ryusuke. “A search game with incomplete information on detective capability of
searcher.” Contributions to Game Theory and Management 10.0 (2017): 129–142.

7. Hohzaki, Ryusuke. “Search games: Literature and survey.” Journal of the Operations Research
Society of Japan 59.1 (2016): 1–34.

8. Hohzaki, Ryusuke. “A multi-stage search allocation game with the payoff of detection probabil-
ity.” Journal of the Operations Research Society of Japan 50.3 (2007): 178–200.



The Impact of Product Differentiation
on Symmetric R&D Networks

Mohamad Alghamdi, Stuart McDonald, and Bernard Pailthorpe

Abstract This paper examines the impact of product differentiation on an R&D
network. We find that when firms produce goods that are complements or inde-
pendent, R&D expenditure, prices, firms? net profits and total welfare are always
higher under price competition than under quantity competition. When goods are
substitutes, R&D expenditure and profits are higher under quantity competition
than under price competition. Also, when goods are substitutes and products are
sufficiently differentiated, then total welfare is higher in the Bertrand equilibrium
than under the Cournot equilibrium. Beyond this threshold level of product differ-
entiation, Cournot competition is superior in terms of social welfare. The paper
finds that the key threshold level of product differentiation, determining the relative
superiority of the Cournot and Bertrand equilibrium when goods are substitutes,
depends on the cost efficiency of R&D and the number of collaborative partnerships
that firms participate in relative to the size of the network. We show that when goods
are substitutes, if the network is dense so that the number of partnerships is large
relative to the number of firms operating in the market, then the threshold value of
the product differentiation parameter can be small.
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1 Introduction

There is substantial literature in economics that concentrates on the effect of
imperfect appropriability of knowledge acquired from the innovation process
(spillover) on the incentive to innovate (e.g., [2, 5, 6, 15, 18, 21, 23, 24]). This
non-tournament R&D literature has tried to provide an answer to what extent
research alliance, such as research joint ventures (RJVs) and research cartels, can
facilitate knowledge transfer and cost sharing so as to promote R&D activity in a
way that is welfare enhancing. However, in this literature spillovers are typically
treated as being symmetric, impacting on all firms to the same degree. When
asymmetries are introduced, the models tend to involve only a small number of
firms, with very specific assumptions regarding the costs and productivity of R&D.
As a consequence, this literature on research consortia does not provide an adequate
answer to the problem of quantifying the direction and extent to which R&D activity
spills over to outside firms.

One approach that can address this important question is to combine concepts
from network theory with the economic theory of R&D, so as to explicitly model
R&D alliances by using a network (e.g., [7–9, 17, 22, 25, 26]). Within this class
models, this paper examines the relationship between cooperative R&D agreements
and market structure in an oligopolistic setting, with linear demand and product
differentiation. As in [9] firms strategically form bi-lateral collaborative links with
competing firms, for the purpose of sharing knowledge generated from the R&D
process. The aim of this chapter is to examine the effects of three factors: structure
of the market, cooperative links and knowledge spillover on R&D investment and
profit of firms, and their effects on strategic stability of R&D agreements and on
welfare.

This paper shows that there are qualitative differences between Cournot and
Bertrand competition in terms of R&D effort, profit, and total welfare. These
differences depend on the differentiation degree and number of cooperative links.
If products are complements, Bertrand competition dominates Cournot competition
from the perspective of the firm, since profits are always higher. However, if goods
are substitutes, firms’ profits are always higher under Cournot competition. This is
because R&D effort is higher in Bertrand competition if goods are complements,
but lower if goods are substitutes. In terms of welfare, price is lower and production
is always higher under Bertrand competition than under Cournot, regardless of
number of firms and type of product (complement or substitute), and structure of
the network. Moreover, when goods are complements, it is found that Bertrand
competition is socially preferable because total welfare is higher than under
Cournot.

Our result confirms that consumer surplus is always higher under Bertrand
competition, which is consistent with [12]. However, total welfare is higher under
Bertrand competition except if goods are substitutes and the network is dense, in
the sense that the majority of firms are connected. This result stands apart from the
conventional wisdom that Bertrand competition delivers higher welfare [20]. This



The Impact of Product Differentiation on Symmetric R&D Networks 177

result extends prior works by Singh and Vives [20], Hackner [10], Hsu and Wang
[12] and indicates that the structure of the network is a matter in the comparison
between Cournot and Bertrand in terms of the total welfare.

Within the non-tournament R&D literature the evidence regarding the welfare
effects of R&D alliances are quite mixed. For example, under Cournot competition,
it is known that R&D cooperation raises both equilibrium R&D investments and
social welfare, when the spillover rate in R&D is high [16, 23]. However, [24] has
shown that when the spillover rate is not high predictions regarding the welfare
effects of R&D cooperation are not as conclusive. He shows that cooperative R&D
reduces both equilibrium R&D and social welfare for intermediate spillovers and
that cooperative R&D reduces the investments but has ambiguous effects on social
welfare for low spillovers. More recently [11] have provided a comprehensive
study on the impact of product differentiation on the non-tournament R&D model,
complementing the study in [8] for R&D networks. Our paper extends their results,
showing that when goods are substitutes, there is a threshold effect in the presence
of R&D networks that determines the relative welfare optimality of Bertrand versus
Cournot competition.

2 The Model

This paper focuses on an oligopolistic market in which firms produce a horizontally
differentiated good using an ex ante identical production technology. Prior to
competing in the product market, each firm has the opportunity to invest in the
R&D of a cost-reducing technology. Firms also have the opportunity to choose
to share this R&D by forming a bi-lateral agreements with other firms. As in [9],
these bi-lateral agreements can encompass loose and informal agreements, such as
memorandum of understanding, as well as more formal agreements specifying the
sharing of research costs and ownership of intellectual property, such as research
joint ventures. These bi-lateral R&D agreements between firms define a network of
collaboration—an R&D network—in which the firms constitute the network nodes
and the bi-lateral R&D constitute the edges of the network. The sequence of play
between competing firms in this model, which leads to the formation of this R&D
network, will follow that of [9]:

The First Stage Each firm chooses its research partners. Firms collaborate by
forming bi-lateral (or pairwise) links between themselves and other firms. The firms
and the cooperative links together characterize a network of cooperation in R&D.

The Second Stage Given the R&D network, each firm chooses the amounts of
investment (efforts) in R&D simultaneously and independently in order to reduce
the cost of production. The R&D effort across the network determines the effective
R&D of each firm.
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The Third Stage Given the R&D investments of each firm and the effective R&D
effort (as determined by the R&D network), firms now compete in the product
market by setting quantities (Cournot competition) or prices (Bertrand competition)
in order to maximize their profits.

The structure of the individual components of this model is now defined formally
below.

R&D Networks Throughout this paper an R&D network G is defined as an
undirected graph (N,E) composed of a set of nodes N(G) = {1, 2, . . . , n}
representing the population of firms operating in this market, and a set of edges
or links E(G), where each link ij in this set represents a RJV agreement between
firms i and j ∈ N . If |N | = n is the number of nodes and |E| = m is the
number of links, the density of the network G is D = 2m/n(n − 1). The set
Ni = {j ∈ N; ij ∈ E(G)} is the neighborhood set of firm i and is the set of firms
participating in RJV agreements with firm i [13]. The number of firms participating
in RJV agreements with firm i is given by ki = |Ni |, the degree of node i (i.e., the
number of edges incident to node i). The maximum and minimum degree are given
by kmax(G) and kmin(G), respectively, and denote the highest and lowest number
of collaborations by any firm in the R&D network.

This paper focuses on symmetric R&D networks, in which each firm forms an
identical number of R&D agreements. Formally, a symmetric R&D network of size
k,Gk , is an undirected graph (N,E) in which each node (firm) has the same degree
k (i.e., for each i ∈ N,Ni = k). In the network theory literature the R&D network
Gk is called the k-regular network, where k denotes the common degree size. The
complete network,Kn, is a graph such that for any pair of firms i, j ∈ N , there exists
a RJV agreement linking them. In our notation Gn−1 = Kn, i.e., complete network
is a symmetric R&D network in which each firm (node) has n− 1 connections. The
empty network, En, is composed of firms investing in R&D, but not co-operating;
therefore, En = G0.

Demand Side There are n differentiated products. The utility function of con-
sumers is a generalization of the quadratic utility function given by Singh and Vives
[20] and Hackner [10],

U(q1, q2, . . . , qn) = a
n∑
i=1

qi − 1

2

(
α

n∑
i=1

q2
i + 2λ

∑
j �=i
qiqj

)
+m, −1 ≤ λ ≤ 1 .

(1)
Here the demand parameter a > 0 denotes the willingness of consumers to pay
and a > 0 is the diminishing marginal rate of consumption, while qi is the
quantity consumed of good i and m measures the consumer’s consumption of all
other products. Without loss of generality, it is assumed that α = 1 to simplify
the analysis. The utility function is concave function, so the first order condition
determines the optimal consumption for good i. The inverse demand function for
each good i is given by
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pi = D−1
i (qi, q2, . . . , qn) = a − qi − λ

∑
j �=i
qj , i = 1, 2, . . . , n , (2)

where the domain of λ is as denoted in (1). The demand equation for good i is

qi = Di(pi, p2, . . . , pn) =
(1− λ)a − (1+ (n− 2)λ)pi + λ∑j �=i pj

(1− λ)(1+ (n− 1)λ)
,

i = 1, 2, . . . , n . (3)

Goods are substitutes if λ > 0, if λ < 0 they are complements and they are
independents if λ = 0. If λ = 1, the goods are perfect substitutes and if λ = −1,
the goods are perfect complements.1

Supply Side The supply side of this market is composed of n oligopolistic firms,
where each firm in a market produces a single differentiated product. The profit of
the i’th firm is defined by the following expression:

πi = (pi − ci)Di(pi, p2, . . . , pn)− γ x2
i , i = 1, 2, . . . , n , (4)

where ci is the marginal cost, xi is the R&D investment of the i’th firm, and γ x2
i is

the cost of investment in R&D, with γ > 0 measures the rate of change in the cost
of R&D. We follow [9] and characterize firm i’s marginal cost by

ci = max

⎧⎨
⎩0, c − xi −

∑
j∈Ni

xj − μ
∑
k �=Ni

xk

⎫⎬
⎭ , i = 1, 2, . . . , n , (5)

where c is the marginal cost of production, xi , xj and xk , k, j �= i, denote the cost-
reducing R&D investment of firm i, its partners, and its competitors, Ni is the set
of firms participating in a joint venture with firm i, and μ ∈ [0, 1) is an exogenous
parameter that captures knowledge spillovers acquired from firms not engaged in
a joint venture with firm i. Since the quasi-linear utility function (1) is measured
in money, total welfare must be given by U (as defined by (1)) minus the sum of
production and R&D costs:

TW = U(q1, q2, . . . , qn)−
n∑
i=1

(
ciqi − γ x2

i

)
. (6)

1The differentiation degree also measures the competition rate between firms. When goods are
complements or independent, firms are in a weakly competitive market. Whereas, if goods are
substitutes or homogeneous, firms are in a competitive market where increase λ → 1 leads to
increase the competition intensity between firms.
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Stability and Efficiency of R&D Networks The study of R&D cooperation under
the network game involves the concepts of pairwise stability and efficiency. The
pairwise stability depends on firms’ profit functions and it is a necessary condition
for strategic stability as shown in [14]. The definition of the efficiency of a network is
given as follows and is determined by the total welfare generated from that network.

Definition 1 (Pairwise Stability) For any network G to be stable, the following
two conditions need to be satisfied for any two firms i, j ∈ G:

1. If ij ∈ G, πi(G) ≥ πi(G− ij) and πj (G) ≥ πj (G− ij),
2. If ij /∈ G and if πi(G) < πi(G + ij), then πj (G) > πj (G + ij), where πi(·)

and πj (·) denote the profits firm i and firm j as defined by Eq. (4).

G − ij is the network resulting from deleting a link ij from the network G and
G+ ij is the network resulting from adding a link ij to the network G.

Definition 2 (Network Efficiency) Network G is said to be efficient if no other
network Ǵ can be generated by adding or deleting links, such that TW(Ǵ) >
TW(G), where TW(·) denotes total welfare as defined in Eq. (6).

Strategic Complement and Substitute Players’ strategies are said to be strategic
complements (substitutes) if the best response of player i to the choice of player j
is increasing (decreasing) in the choice parameter of j [3]. Amir and Jin [1] note
that under linear demand, in Cournot competition, production quantities are called
strategic complements if firm j raises its output and the other firms increase their
prices. This is translated into the expression ∂pi

∂qj
≥ 0 for all goods i �= j . In Bertrand

competition, prices of the products are called strategic complements when firm j

raises its price, the other firms increase their outputs. In other words, ∂qi
∂pj

≥ 0 for all
i �= j .

Under Cournot competition, from the inverse demand function, ∂pi
∂qj

= −λ.

Then, if λ > 0, ∂pi
∂qj

< 0 which means if goods are substitutes, the quantities are

strategic substitutes. Whereas if λ ≤ 0, ∂pi
∂qj

≥ 0 which indicates that if goods are
complements or independent, the quantities are strategic complement.

Under Bertrand competition,

qi =
(1− λ)a − (1+ (n− 2)λ) pi + λ∑j �=i pj

(1− λ)(1+ (n−1)λ
) ⇒ ∂qi

∂pj
= λ

(1−λ)(1+ (n−1)λ
) .

Then, if λ ≥ 0, ∂qi
∂pj

≥ 0. This indicates that if products are substitutes or

independent, then the prices are strategic complement. However, if 1
1−n < λ < 0

(see Proposition 4), then ∂qi
∂pj

< 0. This means that if products are complementary,
then the prices are strategic substitutes.
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3 Cournot Competition

This section studies the impact of product differentiation on the R&D network under
Cournot competition. Substituting the inverse demand function, Eq. (2) into Eq. (4)
gives the profit function for firm i

πi =
(
a − qi − λ

∑
j �=i
qj
)
qi − ciqi − γ x2

i , i = 1, . . . , n . (7)

The best response function for firm i, qi = (a−ci−λ∑j �=i qj )/2, i = 1, 2, . . . , n,
can be derived from the first order maximizing condition for Eq. (7). The Nash
equilibrium output for each firm i in the product market stage game is then derived
by solving the resulting system of best response functions:

q∗i =
(2− λ)a − (2+ (n− 2)λ)ci + λ∑j �=i cj

(2− λ)((n− 1)λ+ 2
) . (8)

To find the Nash equilibrium profit, the equilibrium output (8) is substituted into the
profit function which gives

π∗i =
[
(2− λ)a − (2+ (n− 2)λ)ci + λ∑j �=i cj

(2− λ)((n− 1)λ+ 2
)

]2

. (9)

Let the effort of firm i in the R&D network Gk be xi and other firms that linked
to firm i with subscript r invest xr in R&D. Also, the remaining firms n − k − 1,
that are not linked to firm i, are represented with subscript p and invest xp in R&D.
Thus, there are three structures for the production cost function defined in Eq. (5):

ci = c − xi − kxr , cr = c − xr −
∑
l∈Nr

xl, cp = c − xp −
∑
l∈Np

xl . (10)

Substituting these cost functions into the profit function (9) results in the expression
of the profit of firm i as a function of the R&D investment decisions of itself, its k
collaborators, and other n− k − 1 firms contained in the network:

πi =
[
(2−λ)(a−c)+ (2+ (n− (k+2))λ

)
xi+k

(
(n− (k+2))λ+2

)
xr − λ(k + 1) (n−k−1) xp

]2
(
(2−λ)((n− 1)λ+ 2

))2
− γ x2

i .

(11)

The Nash equilibrium of the R&D stage game can be derived by solving the
resulting system first order conditions derived from the profit maximizing problem
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of each firm i and results in a symmetric Nash equilibrium. The Nash equilibrium
for the R&D stage game is expressed by the following formula:

R&D Effort

x∗ =
(
(n− (k + 2)) λ+ 2

)
(a − c)

γ
(
(n− 1)λ+ 2

)2
(2− λ)− (k + 1)

(
(n− (k + 2)) λ+ 2

) . (12)

By substituting this effort function into the cost, quantity, profit, and total welfare
functions, the following equilibria are obtained:

Cost Function

c∗ = cγ
(
(n− 1)λ+ 2

)2
(2− λ)− (k + 1)

(
(n− (k + 2)) λ+ 2

)
a

γ
(
(n− 1)λ+ 2

)2
(2− λ)− (k + 1)

(
(n− (k + 2)) λ+ 2

) , (13)

Quantity Function

q∗ = γ (2− λ)((n− 1)λ+ 2
)
(a − c)

γ
(
(n− 1)λ+ 2

)2
(2− λ)− (k + 1)

(
(n− (k + 2)) λ+ 2

) , (14)

Profit Function

π∗ =
γ
[
γ (2− λ)2((n− 1)λ+ 2

)2 − ( (n− (k + 2)) λ+ 2
)2]
(a − c)2

[
γ
(
(n− 1)λ+ 2

)2
(2− λ)− (k + 1)

(
(n− (k + 2)) λ+ 2

)]2 ,

(15)

Total Welfare Function

TW ∗ =
nγ
[
γ (2− λ)2((n− 1)λ+ 2

)2(3+ (n− 1)λ
)− 2

(
(n− (k + 2))λ+ 2

)2]
(a − c)2

2
[
γ
(
(n− 1)λ+ 2

)2
(2− λ)− (k + 1)

(
(n− (k + 2)) λ+ 2

)]2 .

(16)

The R&D efficiency parameter γ measures the cost effectiveness of firm-level
R&D investment. Lemma 1 shows that to obtain a positive level of investment in
R&D, which also satisfies the sufficient conditions of the Nash equilibrium, the
R&D efficiency parameter γ must exceed a threshold that depends on the size and
structure of the market, the level of cooperation between firms within the R&D
network.
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Lemma 1 (R&D Efficiency Parameter) For Cournot competition with n firms
participating in a k-regular R&D network and spillover parameter μ = 0, R&D
parameter γ must satisfy the following condition:

γ > max

{
(k + 1)

(
(n− (k + 2))λ+ 2

)
a

c
(
(n− 1)λ+ 2

)2
(2− λ)

,

[ (
n− (k + 2)

)
λ+ 2(

(n− 1)λ+ 2
)
(2− λ)

]2
}
.

(17)

The proof is given in the Appendix 1.
The next lemma concerns the impact that λ has on the Nash equilibrium output.

The condition in the lemma implies that when firms produce complementary goods,
the overall size of firms participating in the R&D network is restricted by the degree
of complementarity between products. In particular, when firms produce perfect
complements there can be no more than three firms in the R&D network.

Lemma 2 (Substitution Degree) For Cournot competition with n firms participat-
ing in a k-regular R&D network and zero spillover, the substitution degree should
satisfy the following condition:

λ >
2

1− n.

The proof is given in the Appendix 1.
The Proposition 1 provides a characterization of R&D investment under Cournot

competition. It considers three cases: Case 1 shows that there is a negative
relationship between R&D effort and the product differentiation degree λ. Cases
2 and 3 show the impact of the cooperative activity level k on R&D expenditure.
Case 2 shows that if goods are complements or independent, then firm-level R&D
expenditure will always increase as k increases. Case 3 shows that this relationship
will hold when goods are substitutes if λ ≤ λ. However, if λ > λ, firm-level
R&D expenditure decreases as k increases. Case 2 can be regarded as an extension
of Proposition 1 in [9], which focuses exclusively on the case of independent
markets. However, Case 3 shows that product differentiation degree is important
for determining the impact of the level of cooperation. When λ > λ, the effect
described in Proposition 2 of [9] occurs, where R&D investment declines as k
increases. Moreover, the threshold level of λ depends not only on n and k, but also on
γ , the parameter which governs the cost efficiency of R&D. When combined with
Lemma 1, Case (3) of Proposition 1 shows that when goods are substitutes there
is a non-linear relationship between λ, γ, n, and k. Most importantly, when λ > 0
positive levels of investment in R&D are sustainable only when firms participate in
cooperative research agreements.

Proposition 1 (R&D Effort) For Cournot competition with n firms participating
in a k-regular R&D network,
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1. The R&D investment of firms declines as the differentiation degree λ increases.
2. When outputs are strategic complements, then R&D investment is increasing as

the cooperative activity level k increases in the R&D network.
3. When outputs are strategic substitutes, if the substitution degree λ ≤ λ, then

R&D investment increases with k. For λ > λ, R&D investment decreases with
k—see Example 2 in Appendix 2.

The proof is given in the Appendix 1.
Note that the lower bound λ for Case 3 of Proposition 1 depends on the size

of the network n. Let Gk1 and Gk2 be symmetric networks with k1 and k2 links,
respectively. Assume k1 > k2 and substitute k1 and k2 into the effort function (12).
Then, by assuming (a − c) = 1,

x∗(Gk1)− x∗(Gk2) =
(k1 − k2)

((
n− (k1 + 2)

)
λ+ 2

)

γ
(
(n− 1)λ+ 2

)2
(2− λ)− (k1 + 1)

(
(n− (k1 + 2)) λ+ 2

)

·

((
n− (k2 + 2)

)
λ+ 2

)
− γ λ(2− λ)

(
(n− 1)λ+ 2

))2

γ
(
(n−1)λ+ 2

)2
(2−λ)−(k2 + 1)

(
(n−(k2 + 2)) λ+ 2

) .

(18)

For Eq. (18), we have for the numerator that

((
n− (k1 + 2)

)
λ+ 2

)((
n− (k2 + 2)

)
λ+ 2

)
< γλ(2− λ)((n− 1)λ+ 2

)2
.

Since
((
n− (k + 2)

)
λ+ 2

)
increases as k → 0, then it is maximized when k1 = 1

and k2 = 0. This implies

4 <
(
(n− 3)λ+ 2

)(
(n− 2)λ+ 2

)
< γλ(2− λ)((n− 1)λ+ 2

)2
.

The expression on the right-hand side γ λ(2 − λ)((n − 1)λ + 2
)2 depends on

the network size n, the substitution degree λ, and on the effectiveness γ . From
Lemma 1, the last parameter γ depends on values of n and λ. This means that finding
a lower bound λ for Case 3 in Proposition 1 depends on n, where n associates with
λ to determine the value of γ .

The next proposition shows that the profit of firms is highest for the case
of complementary and independent goods, when the R&D network is complete.
However, it is important to note that by Lemma 2, the overall size of network
n ≤ 2−1/λwhen λ < 0. This implies that although it is natural to think in terms of a
grand coalition of firms conducting R&D on a collection of complementary goods,
the actual size of the grand coalition may be small. When goods are substitutes
and the market size is small, for example, three firms, profit increases as activity
level k increases, which means the highest return is obtained when firms form a
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complete network. However, if the sizes of the market and the substitution degree
are not small, there is a level of cooperation k̂c at which the profit of all firms is
maximized. In [9], Propositions 2 and 7 concern the profit of firms for independent
and homogeneous goods. Those propositions are generalized in cases (2) and (3) of
the following proposition.

Proposition 2 (Profit of Firms) For Cournot competition with n firms participat-
ing in a k-regular R&D network and zero spillover,

1. The profit of firms declines when the substitution degree λ increases.
2. When outputs are strategic complements, the profit is increasing as the coopera-

tive activity k increases.
3. When outputs are strategic substitutes, if the size of the market n and the

substitution degree λ are not small, then there exists an optimal level of
cooperative activity 0 < k̂c < n− 1 in which the profits of firms are maximized.2

The proof is given in the Appendix 1.
Proposition 3 states that the complete network where all firms cooperate is the

stable network regardless of the size of the network and the competition intensity
between firms. This means the incentive of firms to invest in R&D always increases
when cooperative links increase. This result extends the results of Goyal and
Moraga-Gonzalez for independent and homogeneous goods stated in Propositions 2
and 6. Also, this result confirms results of [8] stated in Proposition 3.1 and
Theorem 3.1.

Proposition 3 (Stability of R&D Networks) For Cournot competition with n
firms participating in a k-regular R&D network and zero spillover,

1. When outputs are strategic complements, the complete R&D network is uniquely
stable network.

2. When outputs are strategic substitutes, the complete R&D network is stable
network.

The proof is given in the Appendix 1.
The next proposition shows that total welfare decreases as the substitution degree

increases. This indicates that social benefit is maximized when firms are in a
differentiated product market, whereas the opposite occurs in product markets where
goods are substitutes. Concerning the efficiency of R&D networks, the proposition
states that the complete network is the unique efficient network when goods are
complements or independent. When goods are substitutes, the effect of activity
levels depends on the market size and substitution degree. If market size is small, for
example, three firms, then the complete network is efficient. In contrast, if the size

2The size of the lower bound λ relies on the market size n. If n = 3, the profit of firms increases as
the cooperative activity level k increases for all λ. For n ≥ 4, the profit is maximized at k̂c where
the threshold value of λ such that the result acquires depends on n—see Table 1 in the Appendix
2.
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of the market and the substitution degree are not small, for example, when n = 5
and λ ≥ 0.9, the total welfare is maximized at the activity level 0 < kc < n− 1.

Proposition 4 (Total Welfare) For Cournot competition with n firms participating
in a k-regular R&D network and zero spillover,

1. The total welfare declines when the substitution degree λ increases.
2. When outputs are strategic complements, the total welfare is increasing as the

activity level k increases.
3. When outputs are strategic substitutes, if the size of the market n and the

substitution degree λ are not small, then there exists a cooperative activity level
kc < n− 1 in which the total welfare is maximized.3

The proof is given in the Appendix 1.
Note that the impact of the activity levels on the total welfare (Cases 2 and 3

in Proposition 4) generalizes the results of [9] for independent and homogeneous
products (Propositions 3 and 8, respectively). However, the result differs from [8]
for homogeneous goods. They found that complete network is the unique efficient
network when goods are homogeneous (Proposition 3.3). In addition, Proposition 4
when taken with Proposition 3 shows that the conflict between stability and
efficiency occurs when goods are substitutes and this depends on the size of the
market, with the disparity increasing when the market size increases and as goods
become closer substitutes.

4 Bertrand Competition

Under Bertrand competition, it is shown that for the product market stage game, the
Nash equilibrium price and quantity for good i are given by

p∗i =
(1− λ) (2+ (2n− 3)λ) a(
(2n− 3)λ+ 2

)(
(n− 3)λ+ 2

)

+ (1+ (n− 2)λ)(2+ (n− 2)λ)ci + λ(1+ (n− 2)λ)
∑
j �=i cj(

(2n− 3)λ+ 2
)(
(n− 3)λ+ 2

) (19)

and

q∗i =
(

1+ (n− 2)λ

(1− λ)(1+ (n− 1)λ
)
)[

(1− λ)(2+ (2n− 3)λ
)
a(

(2n− 3)λ+ 2
)(
(n− 3)λ+ 2

)

3Note that if the market size n = 3, the total welfare increases as the activity level k increases for
all λ. If n ≥ 4, the total welfare is maximized at kc where 0 < kc < n− 1. The threshold value of
λ such that the total welfare is maximized at kc changes with n—see Table 1 in the Appendix 2.
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−
(
2+ 3(n− 2)λ+ (n2 − 5n+ 5)λ2

)
ci − λ

(
1+ (n− 2)λ

)∑
j �=i cj(

(2n− 3)λ+ 2
)(
(n− 3)λ+ 2

)
]
.

(20)

The Nash equilibrium profit for the i’th firm is derived by substituting Eqs. (19)
and (20) into Eq. (4)

π∗i =
(
(1− λ)(1+ (n− 1)λ

)

1+ (n− 2)λ

)[
(1− λ)(2+ (2n− 3)λ

)
a(

(2n− 3)λ+ 2
)(
(n− 3)λ+ 2

)

−
(
2+3(n− 2)λ+ (n2−5n+5)λ2

)
ci − λ

(
1+ (n−2)λ

)∑
j �=i cj(

(2n− 3)λ+ 2
)(
(n− 3)λ+ 2

)
]2

− γ x2
i .

(21)

Now, assume the cooperation between n firms in R&D represented by a
symmetric network where each firm has k links (activity level) and spillover is set
at zero (β = 0). Let xi denotes the effort of firm i and xj is the effort of each firm
linked to that firm i. Also, let xm be the R&D effort of the remaining n−k−1 firms
in the network. The Nash equilibrium for the R&D stage game is expressed by the
following formula:

R&D Effort

x∗ = T
(
(n−2)λ+1

)
(a − c)

γ
(
(2n−3)λ+ 2

)(
(n− 1)λ+1

)(
(n−3)λ+ 2

)2 − (k + 1)
(
(n− 2)λ+ 1

)
T
,

(22)

where T = ((n−1)(n−3)−(n−2)(k+1)
)
λ2+(3(n−2)−k)λ+2. Substituting the

R&D effort Eq. (22) into the other economic variables yields the equilibrium cost,
quantity, and profit functions that are expressed in the following equations:

Cost Function

c∗ = cγ
(
(2n−3)λ+2

)(
(n−1)λ+1

)(
(n−3)λ+ 2

)2 − (k + 1)
(
(n− 2)λ+ 1

)
T a

γ
(
(2n−3)λ+2

)(
(n−1)λ+ 1

)(
(n−3)λ+ 2

)2 − (k + 1)
(
(n−2)λ+ 1

)
T

.

(23)

Quantity Function

q∗ = γ
(
1+ (n− 2)λ

)(
2+ (2n− 3)λ

)(
2+ (n− 3)λ

)
(a − c)

γ
(
(2n− 3)λ+ 2

)(
(n−1)λ+ 1

)(
(n−3)λ+ 2

)2 − (k + 1)
(
(n−2)λ+ 1

)
T
.

(24)
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Profit Function

π∗ =
γ
(
1+(n−2)λ

)[
(1−λ)(1+(n−1)λ

)
M−T 2

(
1+(n−2)λ

)]
(a−c)2

[
γ
(
(2n−3)λ+2

)(
(n−1)λ+1

)(
(n−3)λ+2

)2 − (k+1)
(
(n−2)λ+1

)
T
]2
,

(25)

whereM = γ (2+ (2n− 3)λ
)2(2+ (n− 3)λ

)2.

Total Welfare Function

TW ∗ =
γ n
(
1+(n−2)λ

)[(
3+(n−4)λ

)(
1+(n−1)λ

)
M−2

(
1+(n−2)λ

)
T 2
]
(a−c)2

2
[
γ
(
(2n−3)λ+2

)(
(n−1)λ+1

)(
(n−3)λ+2

)2 − (k+1)
(
(n−2)λ+1

)
T
]2 .

(26)

The following proposition puts a restriction on the values of the R&D effec-
tiveness parameter (γ ). This is done in order to have non-negative results in all
economic variables under Bertrand competition.

Lemma 3 (Effectiveness Parameter) For Bertrand competition with n firms par-
ticipating in a k-regular R&D network and zero spillover, the effectiveness (γ )
should satisfy

γ > max

{
(k+1)

(
(n−2)λ+1

)
T a

c
(
(2n−3)λ+2

)(
(n−1)λ+1

)(
(n−3)λ+2

)2 ,

(
1+(n−2)λ

(1−λ)(1+(n−1)λ)

)[(
n2 − (5+k)n+(2k+5)

)
λ2 + (3(n−2)−k)λ+2(

(2n−3)λ+2
)(
(n−3)λ+2

)
]2
}
.

(27)

The proof is given in the Appendix 1.
The demand function (3) in Bertrand competition is not well defined for homo-

geneous goods and the second order condition for maximizing the profit function
is not satisfied for some values of the substitution degree. Thus some restrictions
on the differentiation degree need to be made for this type of competition.4 These
restrictions are captured in the following proposition:

Lemma 4 (Substitution Degree) Under Bertrand competition with n firms, the
values of the substitution degree are restricted as follows:

4See also [10, 20] and [12]. These papers stated these conditions.
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1. For an oligopoly market (n > 2), the demand function (3) is well defined, if the
substitution degree λ �= 1 and λ �= 1

1−n .

2. The second order condition for maximizing profit ( ∂
2πi
∂p2
i

) is satisfied if λ > 1
1−n .

The proof of this proposition is straightforward and a sketch is provided. Case (1)
is for two firms in a market, where the equilibria cannot be calculated if goods are
perfect complements or substitutes. This case is not discussed in this dissertation
since the focus is on oligopolistic markets. For oligopolistic markets, case (2)
implies that equilibria cannot be identified analytically under Bertrand competition
for perfect substitute goods (homogeneous goods) or if goods are complementary
and the substitution degree λ = 1

1−n . Case (3) indicates that for complementary
goods (−1 ≤ λ < 0), if the number of firms increases, then the substitution degree
should increase to 0 (i.e., independent goods); otherwise, the second order condition
for maximizing profit is not satisfied. In other words, the substitution degree is
decisive in determining the size of the market. This problem does not appear when
goods are independent or substitutes. The substitution degree is restricted only when
goods are complements (λ < 0). To investigate case (3), the demand function (3) is
substituted into the profit function (4),

πi = (pi − ci)
[
(1− λ)a − (1+ (n− 2)λ)pi + λ∑j �=i pj

(1− λ)((n− 1)λ+ 1
)

]
− γ x2

i .

The second order condition is satisfied if

−2(1+ (n− 2)λ)

(1− λ)((n− 1)λ+ 1
) < 0 .

This implies that the substitution degree should satisfy the condition λ > 1
1−n .

In general, the observations in Bertrand competition are similar to those reported
for Cournot competition. This does not indicate that the results are the same, but that
comparative static behavior of the R&D network in Bertrand competition is similar
to that under Cournot competition.

Proposition 5 (R&D Effort) For Bertrand competition with n firms participating
in a k-regular R&D network and zero spillover,

1. R&D effort declines when the substitution degree λ increases.
2. When prices are strategic substitutes (i.e., when goods are complements), the

R&D effort increases as the activity level k increases.
3. When prices are strategic complements,

(a) For independent goods, the R&D effort increases as the activity level k
increases.
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(b) For substitute goods where substitution degree is not small for small size of
market n, R&D effort declines as the level of cooperative activity k grows.5

The previous proposition indicates that when firms in a market compete by
setting the price of their product, the R&D effort varies with different structures
of the market and cooperative network. The proposition states that the R&D
effort of firms decreases as the substitution degree increases. This means that
the R&D investment of firms reaches the highest rate when they are in highly
differentiated product markets, whereas the investment is expected to reach the
lowest rate when firms operate in highly substitute product markets. The second part
of Proposition 5 states that when the prices are strategic complements and goods
are independent, the expenditure of firms on R&D attains the maximum amount
when R&D collaboration takes the form of a complete network. However, when the
goods are substitutes, if the substitution degree is not small when n is small (e.g.,
if n = 3, λ ≥ 0.4), then R&D effort declines as the cooperative activity increases.
This means that when goods are substitutes, the expenditure of firms on R&D in a
complete network is at its lowest level. As in Cournot competition, determining a
lower bound λ such that item 3 acquires is a problem. If n = 3 and γ = 2, the R&D
effort decreases as the activity level k increases for λ ≥ 0.3. If n > 3, the R&D
effort decreases as the activity level increases for λ > 0.2.

Proposition 6 (Profit of Firms) For Bertrand competition with n firms participat-
ing in a k-regular R&D network and zero spillover,

1. The profit of firms declines when the substitution degree λ increases.
2. When prices are strategic substitutes, the profit of firms increases as the activity

level k increases.
3. When prices are strategic complements,

(a) For independent goods, the profit of firms increases as the activity level k
increases.

(b) For substitute goods, if the size of the network n and the substitution degree λ
are not small, there is an optimal level of activity, 0 < k̂b < n− 1, for which
the profit of firms is maximized.6

Proposition 6 shows that firms prefer investing in highly differentiated product
markets since they can obtain higher profits. Also, if the prices are strategic
substitutes, firms collectively are expected to form a complete R&D network of
cooperation regardless of the size of the market to obtain higher profit and this is
true if the prices are strategic complements and goods are independent. Figures in

5As in Cournot competition, determining a lower bound λ such that item 3 acquires is based on the
number of firms—see Example 2 in the Appendix 2.
6Note that, the smallness of λ such that the profit function is maximized at k̂b depends on the size
of the market n. If n ≤ 5, the profit of firms increases as the cooperative activity level k increases
for all λ. If n = 7, the profit is maximized at k̂b for λ ≥ 0.4 and if n = 10, this result acquires for
λ ≥ 0.3 (see Table 1 in Appendix 2).
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the Appendix 2 show different values of the activity level for which the profit of
firms is maximized with different sizes of the market and substitution degree. For
substitute goods, maximizing profit function with respect to activity level k depends
on the market size. If the market size is small (n = 5), the profit is maximized at
k = n − 1. However, as long as both the market size and substitution degree are
not small (e.g., n = 7 and λ ≥ 0.5) there exists a level of collaborative activity
0 < k̂b < n− 1 for which all profits are maximized. This activity level k̂b will vary
with the size of the market and the degree of substitution between firms’ products.

Proposition 7 (Stability of R&D Networks) For Bertrand competition with n
firms participating in a k-regular R&D network and zero spillover, then

1. When prices are strategic substitutes or strategic complements where goods are
independent (i.e., λ ≤ 0), the complete network Kn is uniquely stable network.

2. When prices are strategic complements where goods are substitutes (λ > 0), the
complete network Kn is stable network.

3. When goods are homogeneous (λ = 1), the empty network En is uniquely stable
network.

The Proposition 7 concerns the incentive of firms to cooperate in R&D. It shows
that for firms, the desirable network in differentiated product markets (goods are
complements or independent) is obtained when each two firms in the network agree
to collaborate in R&D (a complete networkKn), i.e., the complete network is stable.
Also, since the profit increases as the cooperative activity level k increases (item 2
in Proposition 7), the complete network Kn is uniquely stable. When goods are
substitutes, the complete network is stable. However, proof of the uniqueness seems
a problem since there are arbitrary firms in a network and the proof of the stability
needs to consider each link between any two firms. The problem appears if an
additional (existing) link between any two firms is added (deleted) where then the
equilibria should change and consequently, the profit of these firms will also change.

However, when the goods are homogeneous, the empty network (En) is uniquely
stable network. This is because each firm seeks to reduce its price to the minimum
price (cost of production) to take the market demand. Since this is attained by co-
operating in R&D, firms attempt to delete their links to the firm with minimum
cost and this yields in the end to an empty network. These results for differentiated
and homogeneous goods are consistent with the results of [8] (Proposition 3.2 for
homogeneous goods and Theorem 3.1 for differentiated goods).

Proposition 8 (Total Welfare) For Bertrand competition with n firms participat-
ing in a k-regular R&D network and zero spillover,

1. Total welfare declines when the substitution degree λ increases.
2. When prices are strategic substitutes, the total welfare increases as the activity

level k increases.
3. When prices are strategic complements,
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(a) For independent goods, the total welfare increases as the activity level k
increases.

(b) For substitute goods, if the substitution degree (λ) is not small for small size
of market n, then there exists activity level, 0 < kb < n − 1, in which total
welfare is maximized.7

Propositions 7 and 8 highlight that the conflict between stability and efficiency
of networks does not appear when prices are strategic substitutes or when prices are
strategic complements and goods are independent. However, if goods are substitutes
and the substitution degree increases beyond a threshold, then the conflict between
stability and efficiency occurs. According to Proposition 8, social welfare under
Bertrand competition decreases as the substitution degree λ increases. This indicates
that the marginal social benefit for cooperation of firms in R&D is increasing
when firms are operating in differentiated product markets, or when firms produce
independent or complementary goods. However, when the goods are substitutes and
the substitution degree is larger than a threshold value, then the complete network
is not efficient. There exists an activity level 0 < kb < n− 1 for which total welfare
is maximized. The threshold value of the substitution degree parameter λ depends
on the market size n. If n = 3 and λ < 0.9, then the total welfare increases as
the activity level k increases. However, if n = 5, the total welfare is maximized at
kb for λ ≥ 0.5. If n = 10, the result acquires for λ ≥ 0.2. Table 1 in Appendix
2 shows values of kb for different sizes of n and λ. Goyal and Joshi [8] use a
different model from the model presented in this paper. However, they found that

Table 1 Activity levels for which the profit and total welfare are maximized in Cournot and
Bertrand competition

Type of Size of the Effectiveness Substitution degree

competition market γ λ = 0.1 λ = 0.3 λ = 0.5 λ = 0.9

Activity level k̂ k k̂ k k̂ k k̂ k

Cournot 3 1 2 2 2 2 2 2 2 2

5 2 4 4 4 4 4 4 2 2

7 2 6 6 6 6 4 4 4 4

10 2 9 9 7 7 6 6 6 5

20 2 19 19 13 12 12 11 13 10

Bertrand 3 2 2 2 2 2 2 2 2 0

5 2 4 4 4 4 4 2 4 2

7 2 6 6 6 6 4 4 6 2

10 3 9 9 7 7 6 5 8 4

20 3 18 18 12 12 12 10 16 9

7The threshold value of the substitution degree λ such that item 3 holds depends on the market size
n. If n = 3 and λ < 0.9, then the total welfare increases as the activity level k increases. If n = 5,
the total welfare is maximized at kb for λ ≥ 0.5. If n = 10, the result acquires for λ ≥ 0.2. Table 1
in Appendix 2 shows values of kb for different sizes of n and λ.



The Impact of Product Differentiation on Symmetric R&D Networks 193

the complete and the empty networks are not efficient see [8], Proposition 3.4. Our
results complement and complete their results.

5 Comparison of Cournot and Bertrand Equilibria

When comparing Cournot and Bertrand competition for differentiated goods, it is
found that R&D investments of firms for complementary goods are higher when
there is price competition. However, if goods are substitutes, firms spend more
on R&D under Cournot competition. The result in R&D effort is consistent with
[19] for a duopoly market where goods are substitutes. Also, Bertrand competition
always yields lower prices and higher output. This indicates that the consumer
surplus is always higher in Bertrand competition irrespective of the size of the
market and the structure of the market and the network. This result coincides with
results of [4, 19, 20] for duopoly, and with the result of [12] for oligopoly. Moreover,
if goods are complements, it is found that Bertrand competition is preferable for
firms because profit is higher than under Cournot. However, if goods are substitutes,
Cournot competition is more profitable. This result is consistent with [20] for a
duopoly market and with [10] for an oligopoly market. We also find that when goods
are complements, the total welfare under Bertrand competition is higher than under
Cournot competition. When goods are substitutes and the substitution degree is high
(e.g., n = 10 and λ = 0.9), the social benefit is high under Cournot competition,
but only if the structure of cooperation in the R&D networks is dense (i.e., firms
have a large number of collaborators k relative to the size of the network). Figure 1
illustrates the comparison between Cournot and Bertrand competitions.

Proposition 9 (Comparison Between Cournot and Bertrand Competition) For
n firms participating in a k-regular R&D network with zero spillover, the following
are the differences between Cournot and Bertrand equilibria for complementary
and substitute goods:

1. R&D effort of firms is higher and the cost is lower in Bertrand competition
if goods are complements, whereas if goods are substitutes, the R&D effort is
higher and the cost is lower in Cournot competition.

�

�
Network Connectivity
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Differentiation
degree (λ)Complementary products

λ < 0

xb > xc

qb > qc

πb > πc

TWb > TWc

Highly Connected Network

λ = 0
Independent products

xc > xb

qb > qc

πc > πb

TWb > TWc

TWc > TWb

λ > 0
Substitute products

Cournot and Bertrand are identical

Fig. 1 Cournot versus Bertrand for differentiated goods
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2. For all kinds of products, the output under Bertrand competition is higher than
under Cournot competition. This indicates that the consumer surplus is higher
and the price is lower in Bertrand competition than in Cournot competition.

3. Profit of firms is higher in Bertrand competition if goods are complements,
whereas if goods are substitutes, the profit in Cournot is higher.

4. Total welfare is higher in Bertrand competition if goods are complements and
this statement is true for substitute goods except if the substitution degree is very
high and the activity level k is not small.8

The proof is given in the Appendix 1.

6 Conclusion

This paper examines the impact of product differentiation on an R&D network. This
paper shows that there are differences between Cournot and Bertrand competition
in terms R&D effort, profit, and total welfare. The variations between the two
competition models depend on values of the substitution degree and number of
cooperative links. If products are complements, Bertrand competition is a dominant
strategy, because profit of firms under Bertrand competition always exceeds profit
under Cournot competition. Firms are expected to invest more highly in R&D than
under Cournot competition. However, if goods are substitutes, firms’ investment and
return are high under Cournot competition. For production of firms, price is lower
and production is higher under Bertrand competition than under Cournot regardless
of number of firms and types of products (complement or substitute), and structure
of the network.

This result confirms that consumer surplus is always higher under Bertrand
competition, which is consistent with [12]. In terms of social benefits, total welfare
is higher under Bertrand competition except if goods are substitutes and the network
is dense, in the sense that the majority of firms are connected. This result stands apart
from the conventional wisdom that Bertrand competition delivers higher welfare
where goods are homogeneous [20]. This result extends prior works by Singh and
Vives [20], Hackner [10], and Hsu and Wang [12] and indicates that the structure of
the network is a matter in the comparison between Cournot and Bertrand in terms
of total welfare. Our results can be seen as supporting [11], which have provided a
comprehensive study on the impact of product differentiation on the non-tournament
R&D model and complementing the study in [8] for R&D networks. Our paper
contrasts with these results, showing that when goods are substitutes, there is a
threshold effect that determines the relative welfare optimality of Bertrand versus
Cournot competition.

8The smallness of the activity level depends on the sizes of the market and the substitution degree.
Example 3 in the Appendix 2 shows that for ten firms when λ = 0.9, the total welfare in Bertrand
is higher than in Cournot if the activity level k < 4.



The Impact of Product Differentiation on Symmetric R&D Networks 195

Acknowledgements This research was supported by King Saud University, Deanship of Scientific
Research, College of Science Research Center. We are grateful for useful suggestions and
comments made by Shravan Luckraz and an anonymous referee.

Appendix 1

Proof of Lemma 1

Proof This restriction on values of the effectiveness is made by satisfying the
following conditions:

1. The effort function should be non-negative (x∗ ≥ 0). Then, from the effort
function (12), the effectiveness (γ ) should satisfy

γ >
(k + 1)

(
(n− (k + 2))λ+ 2

)
(
(n− 1)λ+ 2

)2
(2− λ)

.

2. The cost function (13) should give non-negative results. This is obtained if

γ ≥ (k + 1)
(
(n− (k + 2))λ+ 2

)
a

c
(
(n− 1)λ+ 2

)2
(2− λ)

.

3. The second order condition for maximizing profit function ( ∂
2π
∂x2 < 0) is satisfied

if

γ >

[ (
n− (k + 2)

)
λ+ 2(

(n− 1)λ+ 2
)
(2− λ)

]2

.

Since a > c, the requirement set by condition (1) is achieved by satisfied
condition (2). When goods are either complements or independent (i.e., λ ≤ 0), then
condition (2) is necessary and sufficient for R&D effort to be positive valued and
for the second order condition to be satisfied. However, when goods are substitutes,
conditions (2) and (3) are together important in determining the level that γ must
attain for investment in R&D to be positive and satisfy the second order conditions
set by the Nash equilibrium of the R&D stage game. �

Proof of Lemma 2

Proof For appropriate values of R&D effectiveness γ determined by Lemma 1, the
denominator of output function (14) is always positive. However, the numerator,
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γ (2 − λ)((n − 1)λ + 2
)
(a − c), can be either zero or negative. To show this, set

λ = 2/(1− n) and substitute this into the quantity function (14). The result is zero,
which means firms do not produce in the market. When λ < 2/(1− n), the quantity
function gives negative outcomes. To see this, assume λ = 3/(1−n) < 2/(1−n) and
without loss of generality set a − c = 1 (a − c must always be positive; otherwise,
firms will not produce). By substituting λ = 3/(1−n) into the output function (14),

q∗ = −γ (2n+ 1)

γ (2n+ 1)+ (k + 1)(n− 3k − 4)
< 0.

Hence, λ > 2
1−n . �

Proof of Proposition 1

Proof

1. Let x∗λ1
and x∗λ2

be the R&D investments of firms in two distinct R&D networks,
Gk(λ1) andGk(λ2) that are, respectively, associated with substitution degrees λ1
and λ2, such that λ1 < λ2 and satisfy Lemma 2. Without loss of generality, we
set λ1 and λ1 > 0 and (a − c) = 1. Assume that γ satisfies Lemma 1, so that
R&D is non-negative and maximizes profit at the Nash equilibrium. To compare
x∗λ1

and x∗λ2
, we take the difference between them,

x∗λ1
−x∗λ2

= γ

γ
(
(n−1)λ1+2

)2
(2−λ1)−(k+1)

(
(n−(k+2)) λ1+2

)

·
⎡
⎣ (2−λ2)

(
(n−(k+2))λ1+2

)(
(n−1)λ2+2

)2
(
γ
(
(n−1)λ2+2

)2
(2−λ2)− (k+1)

(
(n−(k+2)) λ2+2

))

− (2−λ1)
(
(n−(k+2))λ2+2

)(
(n−1)λ1+2

)2
(
γ
(
(n− 1)λ2+2

)2
(2−λ2)− (k+1)

(
(n−(k+2)) λ2+2

))
⎤
⎦ .

We require for λi > 2/(1 − n), i = 1, 2, each part of x∗1 − x∗2 to be positive.
Since λ1 < λ2,

(2− λ2)
(
(n− (k + 2))λ1 + 2

) ≤ (2− λ1)
(
(n− (k + 2))λ2 + 2

)
, (28)

where the right-hand side of the inequality (28) equals the left-hand side if the
activity level k = n−1. This means as k→ 0, the difference between the left- and
right-hand sides of (28) increases. Also, ((n− 1)λ2 + 2)2 > ((n− 1)λ1 + 2)2

and the difference between the right- and left-hand sides depends on the size of
the market n and the difference between λ1 and λ2. For each n and λ1 < λ2, it
can be found that
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(2− λ2)
(
(n− (k + 2))λ1 + 2

)(
(n− 1)λ2 + 2

)2

> (2− λ1)
(
(n− (k + 2))λ2 + 2

)(
(n− 1)λ1 + 2

)2
.

To prove that this inequality holds, consider the following three cases in terms
of the values of the cooperative activity level k:

(a) If k = n − 1, the right- and left-hand sides of (4.14) are equal. Since
λ1 < λ2, then ((n− 1)λ2 + 2)2 > ((n− 1)λ1 + 2)2. This means the previous
inequality is proved.

(b) If k = n−2,
(
n−(k+2)λ1+2

) = (n−(k+2)λ2+2
)
. Since 0 < λ1 < λ2 ≤ 1,

and 1 ≤ (2− λi) < 2 for i = 1, 2 and ((n− 1)λ2 + 2)2 > ((n− 1)λ1 + 2)2.
This proves the inequality.

(c) If k < n− 2, since λ1 < λ2, then
(
n− (k+ 2)λ1+ 2

)
<
(
n− (k+ 2)λ2+ 2

)
.

Now, since the difference between the two sides in (28) increases as k → 0, let
k = 0. The task is completed by showing that

(2−λ2)
(
(n−2)λ1+2

)(
(n−1)λ2+2

)2
> (2−λ1)

(
(n−2)λ2+2

)(
(n−1)λ1+2

)2
.

If the difference between λ1 and λ2 is large where 0 < λ1 < λ2, then
((n− 1)λ2 + 2)2 > ((n− 1)λ1 + 2)2 and this proves the last inequality. If the
difference between λ1 and λ2 is small, then the difference between (2− λ2) and
(2− λ1) and between

(
(n− 2)λ2 + 2

)
and

(
(n− 2)λ1 + 2

)
is small. This means

that (2− λ2)
(
(n− 2)λ1 + 2

)
< (2− λ1)

(
(n− 2)λ2 + 2

)
with a small difference

that depends on the network size n. Since ((n− 1)λ2 + 2)2 > ((n− 1)λ1 + 2)2,
the inequality holds.9

2. The second result is proved by showing that when goods are complements
or independent, then x∗(Gk1) > x∗(Gk2) where Gk1 and Gk2 are symmetric
networks with k1 and k2 links, respectively. Assume k1 > k2 and substitute k1 and
k2 into the effort function (12). Without loss of generality, assume (a − c) = 1.
To compare between x∗(Gk1) and x∗(Gk2),

x∗(Gk1 )−x∗(Gk2 ) =
k1−k2

γ
(
(n−1)λ+2

)2
(2−λ)− (k1+1)

(
(n−(k1+2)) λ+2

)

·
⎡
⎣

((
n−(k1+2)

)
λ+2

)((
n−(k2+2)

)
λ+2

)

γ
(
(n−1)λ+2

)2
(2−λ)− (k2+1)

(
(n− (k2+2)) λ+2

)

−
γ λ(2−λ)

(
(n−1)λ+2

)2

γ
(
(n−1)λ+ 2

)2
(2− λ)− (k2 + 1)

(
(n− (k2 + 2)) λ+ 2

)

⎤
⎥⎦ .

9This result does not occur if the substitution degree λ→ 1 and the cooperative activity level k is
small. However, the main aim of item 1 in Proposition 1 is to show that in each network structure,
the R&D effort in a weakly competitive market (λ ≤ 0) is higher than in a competitive market
(λ > 0).
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In the case when goods are independent (λ = 0), the fraction (18) becomes

x∗(Gk1)− x∗(Gk2) =
k1 − k2[

4γ − (k1 + 1)
][

4γ − (k2 + 1)
] > 0 ,

as k1 > k2 and the effectiveness γ > n
4 (from Lemma 2). This implies x∗(Gk1) >

x∗(Gk2).
For complementary goods ( 2

1−n < λ < 0), the numerator in the fraction (18)

is positive where
((
n − (ki + 2)

)
λ + 2

)
> 0 for i = 1, 2 (via Lemma 2). The

denominator is always positive from Lemma 1. This means x∗(Gk1) > x
∗(Gk2)

and then the result (2) follows.
3. When goods are substitutes where λ > 0 is not small for n small, the proof is

completed by showing that

((
n− (k1 + 2)

)
λ+ 2

)((
n− (k2 + 2)

)
λ+ 2

)
< γλ(2− λ)

(
(n− 1)λ+ 2

)2
.

Since λ > 0, the term on the left-hand side in the previous inequality decreases
as the cooperative links k1 and k2 increase. Also, for any k2 < k1 ≤ n − 1,((
n− (k1 + 2)

)
λ+ 2

)((
n− (k2 + 2)

)
λ+ 2

)
<
(
(n− 1)λ+ 2

)2
.

On the right-hand side, if 0 < λ ≤ 1, then 1 ≤ (2 − λ) < 2. Also, the
right-hand side is affected by smallness of λ, particularly when n is small. Thus,
for λ > 0 not small where the effectiveness γ is chosen to be sufficiently large
(Lemma 1), the inequality is proved and this implies that x∗(Gk1) < x

∗(Gk2).

�

Proof of Proposition 2

Proof

1. Let π∗1 and π∗2 be profits of firms that are associated with differentiation degrees
λ1 and λ2, respectively, such that λ1 < λ2. Let λ1, λ2 > 0 and (a − c) = 1. It is
found that

sign
{
π∗1−π∗2

} = sign
{
γ 2
[
γ 2(2−λ1)

2(2−λ2)
2((n−1)λ1 + 2

)2(
(n−1)λ2 + 2

)2

·
(
(n− 1)(λ2 − λ1)

(
(n− 1)(λ1 + λ2)+ 4

))

+ (2− λ1)
(
(n− 1)λ1 + 2

)2(
(n− (k + 2))λ2 + 2

)
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·
[(
(n− (k + 2))λ2 + 2

)
P1 − (2− λ1)(k + 1)P2

]

+ (2− λ2)
(
(n− 1)λ2 + 2

)2(
(n− (k + 2))λ1 + 2

)

[
(2− λ2)(k + 1)P3 −

(
(n− (k + 2))λ1 + 2

)
P4

]]}
,

(29)

where

P1 = γ (2− λ1)
(
(n− 1)λ1 + 2

)2 − 2(k + 1)
(
(n− (k + 2))λ1 + 2

)
,

P2 = 2γ (2− λ2)
(
(n− 1)λ2 + 2

)2 − (k + 1)
(
(n− (k + 2))λ2 + 2

)
,

P3 = 2γ (2− λ1)
(
(n− 1)λ1 + 2

)2 − (k + 1)
(
(n− (k + 2))λ1 + 2

)

and

P4 = γ (2− λ2)
(
(n− 1)λ2 + 2

)2 − 2(k + 1)
(
(n− (k + 2))λ2 + 2

)
.

Since λ1 < λ2, then
(
(n−1)λ2+2

)2
>
(
(n−1)λ1+2

)2. Also, from Lemma 2,
the expressions P1, P2, P3, and P4 are positive.

Note that since the negative term in P1 is multiplied by 2 where λ1 < λ2, then
P2 > P1. Similarly, we have P3 > P4 in most cases. Also, these expressions Pi
for i = 1, . . . , 4 are multiplied by other terms and that makes the square brackets
that contain them small or have different signs. In contrast, the first expression

γ 2(2− λ1)
2(2− λ2)

2((n− 1)λ1 + 2
)2

(
(n− 1)λ2 + 2

)2(
(n− 1)(λ2 − λ1)

(
(n− 1)(λ1 + λ2)+ 4

))

is a multiplication of square and positive functions. This implies π∗1 > π∗2 which
means the profit function decreases as the substitution degree λ increases.

2. The second result can be verified by showing that when goods are complements
or independent, if the activity levels k1 > k2, then π∗(Gk1) > π∗(Gk2). Let
(a − c) = 1 and substitute k1 and k2 into the profit function (15).

If goods are independent (λ = 0), then

π∗(Gk1)− π∗(Gk2) =
γ (4γ − 1)

[(
4γ − (k2 + 1)

)2 − (4γ − (k1 + 1)
)2]

(
4γ − (k1 + 1)

)2(4γ − (k1 + 1)
)2 .

From Lemma 1, the effectiveness γ > n
4 . Since k2 < k1 ≤ n − 1, π∗(Gk2) <

π∗(Gk1).
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If goods are complements ( 2
1−n < λ < 0), the required task is to show that

π∗(Gk1) > π
∗(Gk2) for k1 > k2. It is found that

sign
(
π∗(Gk1)− π∗(Gk2)

) = sign
{(
(n− 1)λ+ 2

)

[
γ (2− λ)((n−1)λ+ 2

)(
λ
(
(n+ k2)λ−2(2k2 + 1)

)

+ (4− λ)((n− (k1 + 2))λ+ 2
))

− 2
(
(n− (k1 + 2))λ+ 2

)(
(n− (k2 + 2))λ+ 2

)]

+ (2− λ)(λ(3+ k1 + k2 − n)− 2
))

· ((k1 + 1)
(
(n− (k1 + 2))λ+ 2

)

+ (k2 + 1)
(
(n− (k2 + 2))λ+ 2

))}
. (30)

For λ < 0, then λ
(
λ(n+k2)−2(2k2+1)

)
> 0 and (4−λ)((n−(k1+2))λ+2

)
> 0.

Also, since 2
1−n < λ < 0, then 2 < (2 − λ) < 2n

n−1 . Since
(
(n − 1)λ + 2

)
> 0

and the effectiveness γ is large, particularly when λ < 0 (Lemma 1), then

γ (2− λ)((n− 1)λ+ 2
)(
λ
(
(n+ k2)λ− 2(2k2 + 1)

)

+ (4− λ)((n− (k1 + 2))λ+ 2
))

− 2
(
(n− (k1 + 2))λ+ 2

)(
(n− (k2 + 2))λ+ 2

)
> 0.

The expression (2−λ)(λ(3+k1+k2−n)−2
)(
(k1+1)

(
(n−(k1+2))λ+2

)+(k2+
1)
(
(n− (k2+2))λ+2

))
< 0 since λ(3+k1+k2−n)−2 < 0. However, because

of the term γ
(
(n− 1)λ+ 2

)2 with large effectiveness γ , π∗(Gk1) > π
∗(Gk2).

3. When goods are substitutes (λ > 0), the proof is completed by showing that
π∗(Gn−1) < π

∗(Gn−2). Substituting k = n − 1 and k = n − 2 into the profit
function (15) results in

π∗(Gn−1) =
γ (a − c)2

[
γ
(
(n− 1)λ+ 2

)2 − 1
]

[
γ
(
(n− 1)λ+ 2

)2 − n
]2

,

π∗(Gn−2) =
γ (a − c)2

[
γ (2− λ)2((n− 1)λ+ 2

)2 − 4
]

[
γ (2− λ)((n− 1)λ+ 2

)2 − 2(n− 1)
]2 .

For comparison between the previous two profits, it is found that
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sign
(
π∗(Gn−1)− π∗(Gn−2)

) = sign
{
γ
(
(n− 1)λ+ 2

)2

· [γ ((n− 1)λ+ 2
)2(
(2n− 1)λ2 − 4nλ+ 8

)

− (n2λ2 − 4λ(n2 − n+ 1)+ 4(2n+ 1)
)]

+ 4(2n− 1)
}
. (31)

When λ > 0, the sign of the expression
(
(2n− 1)λ2 − 4nλ+ 8

)
changes with

the size of the market n and the substitution degree λ. If n and λ are not small, it is
found that (2n−1)λ2−4nλ+8 < 0 and because of the term γ ((n− 1)λ+ 2)2,
π∗(Gn−1)− π∗(Gn−2) < 0.

�

Proof of Proposition 3

Proof

1. When output is a strategic complement (λ ≤ 0), Proposition 2 (item 2) shows that
the profit function (15) increases as the activity level k increases. This implies
that the complete network Kn is uniquely stable.

2. When output is a strategic substitute (0 < λ ≤ 1), the required task is to prove
that π∗(Gn−1)− π∗(Gn−1 − ij) > 0.

Here the procedure to prove the stability of the complete network is adopted
from Goyal and Moraga-Gonzalez. The second condition of the stability of
networks (Definition 1) is satisfied since no link can be added to the complete
network. Thus, the proof is completed by showing the first condition. This means
in the complete network, a single link between any two firms will be deleted and
if the gain of at least one of the two firms after deletion decreases, the complete
network is stable. Let Gn−1 denote to the complete network, the profit of each
firm i in that network is

π∗(Gn−1) = γ (a − c)2 [γ ((n− 1)λ+ 2)2 − 1
]

[
γ ((n− 1)λ+ 2)2 − n]2

.

Assume that the link between firms i and j is removed. Then, the resulting
network is Gn−1 − ij . Now, in the network Gn−1 − ij , there are two types of
firms. The first type is firms i and j linked to n−2 firms and the second type is the
remaining firms with each having n−1 links. For symmetric solutions, the effort
of the remaining firms is denoted by xp and the effort of each firm in that group is
denoted by xr . The cost function for firm i inGn−1−ij is ci = c−xi−(n−2)xp



202 M. Alghamdi et al.

and by symmetry, the cost cj can be found. Also, the cost function for firm r is
cr = c − xr − xi − xj − (n− 3)xp.

Thus the profit function for firm i is

π∗i (Gn−1−ij) =
[
(2−λ)(a−c)+ 2xi−λ(n−1)xj + (n−2)(2−λ)xp

(2−λ)((n−1)λ+ 2
)

]2

−γ x2
i .

Similarly, the profit of firm j can be found. Also, the profit of each firm r from
the group of firms that have n− 1 links is

π∗r (Gn−1−ij) =
[
(2−λ)(a−c)+ 2xi + 2xj + (2−λ)xr + (n−3)(2−λ)xp

(2−λ)((n−1)λ+ 2
)

]2

−γ x2
r .

From the profit function for firm i in the network Gn−1 − ij , the first order
condition is

2
(
(2− λ)(a − c)+ 2xi − λ(n− 1)xj + (n− 2)(2− λ)xp

)

− γ ((2− λ)((n− 1)λ+ 2
))2
xi = 0 .

Similarly, the first order condition for firm r is

(
(2− λ)(a − c)+ 2xi + 2xj + (2− λ)xr

+ (n− 3)(2− λ)xp
)− γ (2− λ)((n− 1)λ+ 2

)2
xr = 0 .

By symmetry xi = xj and xr = xp, and by doing some substitution, the R&D
efforts of the different types of firms are

x∗i (Gn−1 − ij) = a − c
Q

2γ (2− λ)A2[γ (2− λ)2A− 2
]
,

x∗p(Gn−1 − ij) = a − c
Q

[
γ 2(2− λ)4A3 − 4(n+ 1)

]
,

where

Q = γ 3(2− λ)4A5 − γ 2(2− λ)2A3(λ(λ− 4)(n− 2)+ 4n
)

− 4γA
(
λ(n− 1)2 − 4

)+ 4(n2 − n− 2)

and A = (n−1)λ+2. By substituting these R&D effort equations into the profit
function of firm i in the network Gn−1 − ij , the optimal profit function of firm i
becomes
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π∗i (Gn−1 − ij) = (a − c)2(
(n− 1)λ+ 2

)2
B2

1

·
[(
B1 + 2γ (2− (n− 1)λ)A2(γ (2− λ)2A− 2

)+ B2

)2

− 4γ 2(2− λ)2A6(γ (2− λ)2A− 2
)2]
,

where

B1 =γ 3(2− λ)4A5 − γ 2(2− λ)2A3(λ(λ− 4)(n− 2)+ 4n
)

− 4γA
(
λ(n− 1)2 − 4

)+ 4(n2 − n− 2),

and

B2 = (n− 2)
(
γ 2(2− λ)4A3 − 4(n+ 1)

)
.

Without loss of generality, let (a − c) = 1. To compare between the profits of
firm i in networks Gn−1 and Gn−1 − ij ,

π∗i (Gn−1)− π∗i (Gn−1 − ij)

= 1( (
γA2 − n)AB1

)2

[
γA2

(
B2

1 (γA
2 − 1)+ 4γ 2(2− λ)2A4(γA2 − n)2(γ (2− λ)2A− 2)2

)

−
(
γA2 − n

)2 (
B1 + 2γA2(2− (n− 1)λ)

(
γ (2− λ)2A− 2

)+ B2

)2
]
.

(32)

For homogeneous goods (λ = 1) with γ = 1, the previous fraction becomes

π∗i (Gn−1)−π∗i (Gn−1−ij) = 4n7+ 15n6−4n5−20n4+ 30n3+ 8n2+ 2n+ 3

(n2 + n+ 1)2(n3 + 4n2 − 2n+ 1)2
.

(33)

The last fraction is positive which implies that π∗i (Gn−1) > π
∗
i (Gn−1−ij). Note

that, for homogeneous goods, the result has been shown by Goyal and Moraga-
Gonzalez [9].

Now, the required task is to prove the statement for 0 < λ < 1. Note that,
the term 2 − (n − 1)λ < 0 if λ > 2

n−1 . This means that as the network size n
increases, the term 2γA2(2 − (n − 1)λ)

(
γ (2 − λ)2A − 2

)
is negative for most

values of λ. Also, the expression B1 decreases because of the negative terms
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where λ(λ − 4)(n − 2) + 4n > 0 and λ(n − 1)2 − 4 < 0 if λ < 4
(n−1)2

which
means that as n increases the previous term is positive for most values of λ.

In contrast, the first expression on the second line of Eq. (32), γA2
(
B2

1 (γA
2−

1)+4γ (2−λ)2A4(γA2−n)2(γ (2−λ)2A−2)2
)

, is a sum and multiplication of

square functions. This means that the numerator of π∗i (Gn−1)− π∗i (Gn−1 − ij)
is positive which implies π∗i (Gn−1) > π

∗
i (Gn−1 − ij).

�

Proof of Proposition 4

Proof

1. The total welfare function is defined by the quantity and the profit functions

TW ∗ = (1− λ)
2

n∑
i=1

q∗ 2
i + λ

2

(
n∑
i=1

q∗i

)2

︸ ︷︷ ︸
Consumer surplus(CS)

+
n∑
i=1

π∗i
︸ ︷︷ ︸

Industry prof it

.

Since the profit function declines with growing the substitution degree, the proof
is completed by showing that the quantity function also decreases with growing
the substitution degree.

Assume that there are two quantities of output q∗1 and q∗2 , for two different
values of the substitution degree λ1 and λ2, respectively, such that 0 < λ1 < λ2.
The required task is to prove that q∗1 > q∗2 . Without loss of generality, assume
(a − c) = 1 and for comparison between the two quantities, it is found that
q∗1 > q∗2 if and only if

γ (n− 1)(λ2 − λ1)(2− λ1)(2− λ2)
(
(n− 1)λ2 + 2

)(
(n− 1)λ1 + 2

)
>

(k + 1)

[
(2−λ1)

(
(n−1)λ1 + 2

)(
(n−(k + 2))λ2 + 2

)

− (2− λ2)
(
(n− 1)λ2 + 2

)(
(n− (k + 2))λ1 + 2

)]
.

(34)

Since λ1 < λ2, then (λ2 − λ1) > 0. This means that the left-hand side of the
inequality (34) is positive. Also, for each n, the term on the right hand of that
inequality is maximized when the activity level k = 0. However, the right-hand
side consists of subtraction of two positive functions compared to the expression
on the left-hand side, which is multiplication of positive functions. This proves
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the inequality (34) which means that the quantity of production declines as the
substitution degree increases.

2. The second result is proved by showing that when the output is a strategic
complement (λ ≤ 0), if the activity levels k1 > k2, then TW ∗(Gk1) >

TW ∗(Gk2). Let (a − c) = 1 and substitute k1 and k2 into the total welfare
function (16).

If goods are independent (λ = 0), then

TW(Gk1)− TW(Gk2) =
nγ (6γ − 1)

[(
4γ − (k2 + 1)

)2 − (4γ − (k1 + 1)
)2]

[
4γ − (k1 + 1)

]2[4γ − (k2 + 1)
]2 .

Since k1 > k2 where γ > n
4 (Lemma 1), then TW ∗(Gk1) > TW

∗(Gk2).
Now, this result is shown for complementary goods ( 2

1−n < λ < 0) for any
k1 > k2. It is found that

sign
{
TW(Gk1)− TW(Gk2)

}

= sign
{(
(n− 1)λ+ 2

)[
2γ (2− λ)((n− 1)λ+ 2

)

·
[
λ
(
(k2 + 1)(λ− 2)

(
(n− 1)λ+ 3

)+ ((n− (k2 + 2))λ+ 2
))

+ ((n− (k1 + 2))λ+ 2
)(
(2− λ)((n− 1)λ+ 3

)+ λ
)]

− 4
(
(n− (k1 + 2))λ+ 2

)(
(n− (k2 + 2))λ+ 2

)]

+ (2− λ)(λ(3+ k1 + k2 − n)− 2
)(
(n− 1)λ+ 3

)

·
(
(k1 + 1)

(
(n− (k1 + 2))λ+ 2

)

+ (k2 + 1)
(
(n− (k2 + 2))λ+ 2

))}
. (35)

Since λ < 0, then (k2 + 1)(λ − 2)
(
(n − 1)λ + 3

)
< 0. For any 0 ≤ k2 <

n − 1,
(
(n − 1)λ + 3

)
>
(
(n − (k2 + 2))λ + 2

)
and this implies (k2 + 1)(λ −

2)
(
(n − 1)λ + 3

) + ((n − (k2 + 2))λ + 2
)
< 0. This means λ

(
(k2 + 1)(λ −

2)
(
(n − 1)λ + 3

) + ((n − (k2 + 2))λ + 2
))
> 0. Also, it can be found that

(
(n− (k1 + 2))λ+ 2

)(
(2− λ)((n− 1)λ+ 3

)+ λ
)
> 0.

Other terms in (35) are negative, but since
(
(n − 1)λ + 2

)2
>
(
(n − (k1 +

2))λ+2
)(
(n− (k2+2))λ+2

)
and the effectiveness γ is large, particularly when

λ < 0 (Lemma 1), then TW(Gk1) > TW(Gk2).
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3. When the output is a strategic substitute (λ > 0), the proof is completed by
showing that TW ∗(Gn−1) < TW

∗(Gn−2). Let (a − c) = 1, then substituting
k = n− 1 and k = n− 2 into the total welfare function (16), respectively, yields

TW ∗(Gn−1) = nγ
[
γ (2+ λ(n− 1))2 (3+ (n− 1)λ)− 2

]

2
[
γ (2+ (n− 1)λ)2 − n]2

,

TW ∗(Gn−2) = nγ
[
γ (2− λ)2 (2+ λ(n− 1))2 (3+ (n− 1)λ)− 8

]

2
[
γ (2− λ) (2+ (n− 1)λ)2 − 2(n− 1)

]2 .

For comparison between the two total welfare functions,

TW ∗(Gn−1)− TW ∗(Gn−2) = nγ

2
[
γ (2+ λ(n− 1))2 − n]2

·
[
γ (2+ (n− 1)λ)2 (F1 + F2)− 8(2n+ 1)

]
[
γ (2− λ) (2+ λ(n− 1))2 − 2(n− 1)

]2 ,

where

F1 =2γ (2+ (n− 1)λ)2
(
n(n− 1)λ3

+(1+ 3n− 2n2)λ2 − 2(n+ 3)λ+ 12
)
− 8(2+ (n− 1)λ)

and

F2 = ((n− 1)λ+ 3)
(

4(1− 2n)+ 4n2λ− n2λ2
)
.

Assume λ > 0 and n is not small, it is found that F1 < 0 because n(n− 1)λ3 +
(1+3n−2n2)λ2−2(n+3)λ+12 < 0, whereas F2 > 0. Since the effectiveness
γ is sufficiently large (Lemma 1) with the term (2+ λ(n− 1))2, F1 − F2 < 0.
This implies TW ∗(Gn−1)− TW ∗(Gn−2) < 0 and the result follows.

�

Proof of Proposition 3

Proof The restriction of the effectiveness is based on satisfying the following
conditions:

1. The R&D effort (22) should be non-negative. Thus, it can be found that
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γ >
(k + 1)

(
(n− 2)λ+ 1

)
T

(
(2n− 3)λ+ 2

)(
(n− 1)λ+ 1

)(
(n− 3)λ+ 2

)2 .

2. The cost function (23) should be non-negative which means effectiveness

γ ≥ (k + 1)
(
(n− 2)λ+ 1

)
T a

c
(
(2n− 3)λ+ 2

)(
(n− 1)λ+ 1

)(
(n− 3)λ+ 2

)2 .

3. The second order condition for maximizing profit function ( ∂
2π
∂x2 < 0) is satisfied

if

γ >
1+ (n− 2)λ

(1− λ)(1+ (n− 1)λ)
[
·
(
n2 − (5+ k)n+ (2k + 5)

)
λ2 + (3(n− 2)− k)λ+ 2(

(2n− 3)λ+ 2
)(
(n− 3)λ+ 2

)
]2

.

Since a > c, condition (2) dominates condition (1). �

Proof of Proposition 9

Proof The proof of this proposition depends on the functions of all variables in
both competitions for symmetric networks. Also, these statements are proved for the
case when the network is complete (k = n− 1). The comparison between Cournot
and Bertrand competition has studied by Singh and Vives [20], Hackner [10], Hsu
and Wang [12], and Qiu [19]. The difference between former works and that in this
paper is that the comparison of Cournot and Bertrand competition is made using
R&D networks. Moreover, items 1, 2, and 3 in Proposition 9 are not affected by
the activity level k, but they are affected by the values of the differentiation degree
λ. Item 4 in the proposition is affected by both the differentiation degree λ and the
activity level k. The total welfare in Cournot exceeds the total welfare in Bertrand
if the substitution degree is very high and the activity level is not small and this is
not consistent with [12]. Therefore, it is sufficient to prove item 4 by assuming that
k = n− 1.

For simplicity, the statements are also shown by assuming that (a− c) = 1. Note
that to have positive equilibrium output in Cournot competition, the substitution
degree should satisfy λ > 2

1−n (Lemma 2). Also, in Bertrand competition λ >
1

1−n because of the second order condition for maximizing the profit function

(Lemma 4). This means that λ > 1
1−n is the sufficient condition to ensure

appropriate equilibria in both competitions. Moreover, to have non-negative results
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for all economic variables, assume that effectiveness (γ ) is appropriate for both
competitions together.10

1. The task here is to prove that for complementary goods, the R&D effort in
Bertrand competition is higher than in Cournot competition. The opposite rela-
tionship holds for substitute goods. Denote the Cournot and Bertrand equilibrium
efforts by x∗c and x∗b , respectively. By substituting k = n − 1 in the R&D effort
functions in Cournot and Bertrand (Eqs. (12) and (22), respectively), this yields

x∗c =
1

γ
(
(n− 1)λ+ 2

)2 − n
,

x∗b =
(1− λ)((n− 2)λ+ 1

)

γ
(
(n− 1)λ+ 1

)(
(n− 3)λ+ 2

)2 − n(1− λ)((n− 2)λ+ 1
) .

To compare between the two efforts, calculate the difference between them which
yields

x∗c − x∗b =
γ λ3(n− 1)2

γ
(
(n− 1)λ+ 2

)2 − n

· (n− 2)λ+ 2

γ
(
(n− 1)λ+ 1

)(
(n− 3)λ+ 2

)2 − n(1− λ)((n− 2)λ+ 1
) .

(36)

For complementary goods ( 1
1−n < λ < 0), the previous fraction (36) is negative

because λ3 < 0. This means x∗c < x∗b which indicates that the R&D effort
is higher and the cost of production is lower in Bertrand competition than in
Cournot competition.11 For substitute goods (λ > 0), the fraction (36) is positive
i.e., x∗c > x∗b which means that the R&D effort is lower and the cost is higher in
Bertrand than in Cournot if goods are substitutes.

2. Let q∗c and q∗b denote quantities of production under Cournot and Bertrand
competition, respectively. For any value of the substitution degree such that
λ > 1

1−n , proved that q∗b > q∗c . Let k = n − 1 in q∗c and q∗b . To compare
the quantities of production under Cournot and Bertrand competition, calculate
q∗c − q∗b . This yields

q∗c − q∗b =−
γ λ2(n− 1)

γ
(
(n− 1)λ+ 2

)2 − n

· γ
(
(n− 3)λ+ 2

)(
(n− 1)λ+ 2

)− n((n− 2)λ+ 1
)

γ
(
(n− 1)λ+ 1

)(
(n− 3)λ+ 2

)2 − n((n− 2)λ+ 1
)
(1− λ)

.

(37)

10From Lemmas 1 and 3, let γ > max {γc, γb} where γc and γb are the effectiveness in Cournot
and Bertrand competition, respectively.
11Since c∗ = c − (k + 1)x∗, if x∗b > x∗c , then c∗b < c∗c where c∗c and c∗b are the equilibrium cost in
Cournot and Bertrand competition, respectively.
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For λ > 1
1−n , each term in the previous fraction is positive and because the

effectiveness γ is large,

γ
(
(n− 3)λ+ 2

)(
(n− 1)λ+ 2

)
> n

(
(n− 2)λ+ 1

)
.

This makes the previous fraction always negative, which indicates that q∗c < q∗b .
This means that the output and then consumer surplus are higher, and the price
is lower in Bertrand competition than in Cournot competition.12

3. Let πc and πb denote the profit functions in Cournot and Bertrand, respectively.
By substituting k = n− 1 in the profit functions in both competitions, calculate
πc − πb which yields

sign
{
πc−πb

} = sign
{([
γ 2((n−1)λ+ 1

)(
(n−1)λ+ 2

)2(
(n−2)λ+ 2

)(
(n−3)λ+ 2

)2

+ n(n−2)(1− λ)((n−2)λ− 2
)(
(n−2)λ+ 1

)]
λ3(n−1)2

− γ
[(
(n− 1)λ+ 1

)2(
(n− 3)λ+ 2

)4

− (1− λ)2((n− 1)λ+ 2
)4(
(n− 2)λ+ 1

)2])
γ 2
}
.

The required proof is that πc < πb for λ < 0. Thus, the proof is completed by
showing the following inequality

λ3(n− 1)2
[
γ 2((n− 1)λ+ 1

)(
(n− 1)λ+ 2

)2(
(n− 2)λ+ 2

)(
(n− 3)λ+ 2

)2

+ n(n− 2)
(
(n− 2)λ− 2

)
(1− λ)((n− 2)λ+ 1

)]
<

γ
[(
(n−1)λ+ 1

)2(
(n− 3)λ+ 2

)4 − (1− λ)2((n−1)λ+ 2
)4(
(n− 2)λ+ 1

)2]
.

(38)

Note that the term n(n− 2)
(
(n− 2)λ− 2

)
(1−λ)((n− 2)λ+ 1

)
< 0 if λ < 2

n−2 ,
which depends on n. This means that if λ < 0, the previous term is always
negative. However, for any 1

1−n < λ < 1,

γ 2((n− 1)λ+ 1
)(
(n− 1)λ+ 2

)2(
(n− 2)λ+ 2

)(
(n− 3)λ+ 2

)2

+ n(n− 2)
(
(n− 2)λ− 2

)
(1− λ)((n− 2)λ+ 1

)
> 0 ,

because of large effectiveness γ and quadrature. With the term λ3(n − 1)2 < 0,
the left-hand side of the inequality (38) is negative and lower than the right-

12Consumer surplus CS∗ = 1−λ
2

∑n
i=1 q

∗ 2
i + λ

2 (
∑n
i=1 q

∗
i )

2 and since q∗c < q∗b , then CS∗c < CS∗b
where CS∗c and CS∗b are consumer surplus in Cournot and Bertrand competition, respectively.
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hand side. This yields π∗c < π∗b . If goods are substitutes (λ > 0), for
increasing n, n(n − 2)

(
(n − 2)λ − 2

)
(1 − λ)((n − 2)λ + 1

)
is positive for

a large range of λ. Also, the left-hand side of the inequality (38) is positive
and higher than when λ < 0. Whereas the right-hand side is reduced by the
term (1− λ)2 ((n− 1)λ+ 2)4 ((n− 2)λ+ 1)2 which makes the right-hand side
lower than the left-hand side. This yields π∗c > π∗b which means that the profit
in Cournot competition is higher than under Bertrand competition if goods are
substitutes.

4. For total welfare, let TW ∗
c and TW ∗

b be the total welfare in Cournot and Bertrand,
respectively. Let k = n− 1, then

TW ∗
c =

nγ
[
γ
(
2+ (n− 1)λ

)2(
(n− 1)λ+ 3

)− 2
]

2
[
γ
(
2+ (n− 1)λ

)2 − n
]2 ,

TW ∗
b =

nγ
(
1+ (n− 2)λ

) [γ (1+ (n− 1)λ
)(

2+ (n− 3)λ
)2(3+ (n− 4)λ

)
−2
(
1+ (n− 2)λ

)
(1− λ)2

]

2
[
γ
(
1+ (n− 1)λ

)(
2+ (n− 3)λ

)2 − n(1+ (n− 2)λ
)
(1− λ)

]2 .

Assuming that goods are complements (λ < 0), prove that TW ∗
c < TW ∗

b . To
show this, the following inequality should be substantiated:

[
γ
(
2+λ(n−1)

)2(
(n−1)λ+3

)−2
][
γ
(
1+ (n−1)λ

)(
2+ (n−3)λ

)2−n(1−λ)(1+ (n−2)λ
)]2

<
(
1+ (n−2)λ

)[
γ
(
1+ (n−1)λ

)(
2+ (n−3)λ

)2(3+ (n−4)λ
)−2

(
1+ (n−2)λ

)
(1−λ)2

]

·
[
γ
(
2+ λ(n−1)

)2−n
]2
. (39)

Note that each term in square bracket in the previous inequality (39) is positive
because of quadrature or because of λ > 1

1−n and the large R&D effectiveness
parameter (γ ). Also, each term is an increasing function with respect to the
substitution degree (λ). This means for small λ < 0, each term in the previous
inequality is small. Assume n large, then the term

[
γ
(
1+ (n− 1)λ

)(
2+ (n− 3)λ

)2 − n(1− λ)(1+ (n− 2)λ
)]2

, (40)

on the left-hand side of the inequality (39) is very small because of n(1 − λ)
compared to [γ (2+λ(n−1)

)2−n]2 on the right-hand side. This makes the left-hand
side small, then TW ∗

c < TW
∗
b .
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For substitute goods (λ > 0), assume that goods are high substitutes. Then each
term in the previous inequality is high and the previous term (40) becomes very
large. This reverses the above inequality, then TW ∗

b < TW
∗
c . �

Appendix 2

Example 1 (Activity Levels) For a = 120 and c = 100, the following example
provides cooperative activity levels k̂ and k for which the profit and total welfare are,
respectively, maximized in Cournot and Bertrand competition for different values of
substitution degree. Note that the effectiveness (γ ) is for λ ∈ [0.1, 0.9].

If n > 3, then the profit function and total welfare for substitute goods are
maximized at different intermediate activity levels k̂ and k, respectively. In Cournot,
see Propositions 2 and 4 on pages 185 and 186, respectively. In Bertrand, see
Propositions 6 and 8 on pages 190 and 191, respectively.
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Fig. 2 R&D effort and profit of firms under Cournot competition with three and five firms
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Fig. 3 R&D effort and profit of firms under Bertrand competition with three and five firms

Example 2 (R&D Effort for Small Size of Market) In Cournot and Bertrand compe-
tition, let a = 120 and c = 100. Figures 2 and 3 show R&D effort for λ ≥ 0.1. With
n = 3, γ = 2 in Cournot competition and γ = 3 in Bertrand competition. With
n = 5, γ = 3 in Cournot competition and γ = 5 in Bertrand competition.

R&D effort does not decrease when the activity level increases if the sizes of
the market n and the substitution degree λ are small as in this example. See item
(3) in Proposition 1 under Cournot competition and in Proposition 5 under Bertrand
competition.
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Table 2 Comparison between Cournot and Bertrand competition

Variables Effort (x) Cost (c) Quantity (q) Price (p) Profit (π ) Total welfare (TW )

λ < 0 xc < xb cc > cb qc < qb pc > pb πc < πb TWc < TWb

λ = 0 xc = xb cc = cb qc = qb pc = pb πc = πb TWc = TWb
λ > 0 xc > xb cc < cb qc < qb pc > pb πc > πb TWc > TWb if λ→ 1

and the network is dense
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Fig. 4 Comparison between profit under Cournot and Bertrand for λ = 0.8, 0.85, 0.9, and 0.95

Example 3 (Cournot and Bertrand Competition) Table 2 summarizes the impact
of λ. Figure 4 shows the outcomes under Cournot and Bertrand competition for
a = 120, c = 100, n = 10, −0.1 ≤ λ ≤ 0.8, and γ = 21. Figure 5 shows the total
welfare under Cournot and Bertrand competition for a = 120, c = 100, n = 10,
0.8 ≤ λ ≤ 0.95, and γ = 2.
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Fig. 5 Comparison between welfare under Cournot and Bertrand for λ = 0.8, 0.85, 0.9, and 0.95
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A Global Optimization Approach to
Nonzero Sum Six-Person Game

Rentsen Enkhbat, S. Batbileg, N. Tungalag, A. Anikin, and A. Gornov

Abstract The nonzero sum six-person game has been examined. It is well known
that nonzero sum n-person game reduces to a nonconvex optimization problem
(Enkhbat et al, IGU Ser Mat 20:109121, 2017). Based on Mills’ result (Mills,
J Soc Ind Appl Math 8(2):397–402, 1960), we derive a sufficient condition
for a Nash equilibrium. To find a Nash equilibrium numerically, we apply the
curvilinear multistart algorithm (Gornov and Zarodnyuk, Mach Learn Data Anal
10(1):1345–1353, 2014) developed for nonconvex optimization. The algorithm was
tested numerically on six-person game. The game data was generated by “Gamut”
(website: http://gamut.stanford.edu/db/generators.html). The number of variables of
the reduced optimization problems was varied from 29 to 33. In all cases, Nash
equilibriums were found.

Keywords Nash equilibrium · Nonzero sum game · Mixed strategies ·
Curvilinear multistart algorithm

1 Introduction

Game theory as a part of operations research plays an important role in science
and technology as well as in decision theory. There are a lot works devoted to
game theory [7, 9–14]. Most of them deal with two person games or nonzero sum
two person games. The two-person nonzero sum game was studied in [4, 5, 12]
based on D.C programming [1]. The three-person game was examined in [3] by
global optimization techniques. So far, less attention has been paid to computational
aspects of game theory, especially n-person game.

R. Enkhbat (�) · S. Batbileg · N. Tungalag
National University of Mongolia, Ulaanbaatar, Mongolia

A. Anikin · A. Gornov
Matrosov Institute for System Dynamics and Control Theory, SB of RAS, Irkutsk, Russian
Federation

© Springer Nature Switzerland AG 2020
D. Yeung et al. (eds.), Frontiers in Games and Dynamic Games, Annals of the
International Society of Dynamic Games 16,
https://doi.org/10.1007/978-3-030-39789-0_7

219

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39789-0_7&domain=pdf
http://gamut.stanford.edu/db/generators.html
https://doi.org/10.1007/978-3-030-39789-0_7


220 R. Enkhbat et al.

This paper examines nonzero sum six-person game. The paper is organized as
follows. In Sect. 2, we formulate nonzero sum n- person game and show that it
can be formulated as a global optimization problem with nonconvex constraints.
An algorithm to finding a Nash equilibrium for nonzero sum six-person game was
proposed in Sect. 3. Section 4 is devoted to computational results.

2 Nonzero Sum n-Person Game

Consider the n-person game in mixed strategies with matrices (Aq, q =
1, 2, . . . , n) for players 1, 2, . . . , n.

Aq =
(
a
q
i1i2...in

)
, q = 1, 2, . . . , n

i1 = 1, 2, . . . , k1, . . . , in = 1, 2, . . . , kn.

Denote by Dp the set

Dp = {u ∈ Rq |
p∑
i=1

ui = 1, ui ≥ 0, i = 1, . . . , p}, p = k1, k2, . . . , kn.

A mixed strategy for player 1 is a vector x1 = (x1
1 , x

1
2 , . . . , x

1
k1
) ∈ Dk1 , where

x1
i represents the probability that player 1 uses a strategy i. Similarly, the mixed

strategies for q-th player are xq = (xq1 , xq2 , . . . , xqkq ) ∈ Dkq , q = 1, 2, . . . , n. Their
expected payoffs are given by for 1-th person :

f1(x
1, x2, . . . , xn) =

k1∑
i1=1

k2∑
i2=1

. . .

kn∑
in=1

a1
i1i2...in

x1
i1
x2
i2
. . . xnin

and for q-th person

fq(x
1, x2, . . . , xn) =

k1∑
i1=1

k2∑
i2=1

. . .

kn∑
in=1

a
q
i1i2...in

x1
i1
x2
i2
. . . xnin ,

q = 1, 2, . . . , n.

Definition 1 A vector of mixed strategies x̃q ∈ Dkq , q = 1, 2, . . . , n is a Nash
equilibrium if
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f1(x̃
1, x̃2, . . . , x̃n) ≥ f1(x

1, x̃2, . . . , x̃n), ∀x1 ∈ Dk1

. . . . . . . . . . . . . . . . . .

fq(x̃
1, x̃2, . . . , x̃n) ≥ fq(x̃1, . . . , x̃q−1, xq, x̃q+1, . . . , x̃n), ∀xq ∈ Dkq

. . . . . . . . . . . . . . . . . .

fn(x̃
1, x̃2, . . . , x̃n) ≥ fn(x̃1, x̃2, . . . , xn), ∀xn ∈ Dkn.

By definition, we have

f1(x̃
1, x̃2, . . . , x̃n) = maxx1∈Dk1 f1(x

1, x̃2, . . . . . . , x̃n),

. . . . . . . . . . . .

fq(x̃
1, x̃2, . . . , x̃n) = maxxq∈Dkq fq(x̃

1, x̃2, . . . , x̃q−1, xq, x̃q+1, . . . , x̃n),

. . . . . . . . . . . .

fn(x̃
1, x̃2, . . . , x̃n) = maxxn∈Dkn fn(x̃

1, x̃2, . . . , x̃n−1, xn).

Denote by

k1∑
i1=1

k2∑
i2=1

. . .

kq−1∑
iq−1=1

kq+1∑
iq+1=1

. . .

kn∑
in=1

a
q
i1i2...in

x1
i1
x2
i2
. . . x

q−1
iq−1
x
q+1
iq+1

. . . xnin �

� ϕiq (x1, x2, . . . , xq−1, xq+1, . . . , xn) = ϕiq (x|xq)

iq = 1, 2, . . . , kq, q = 1, 2, . . . , n.

For further purpose, it is useful to formulate the following statement.

Theorem 1 ([2]) A vector strategy (x̃1, x̃2, . . . , x̃n) is a Nash equilibrium if and
only if

fq(x̃) = ϕiq (x̃|x̃q ) (1)

for

x̃ = (x̃1, x̃2, . . . , x̃n)

iq = 1, 2, . . . , kq,

q = 1, 2, . . . , n.

The proof is similarly [8].

Theorem 2 ([2]) A mixed strategy x̃ is a Nash equilibrium for the nonzero sum n-
person game if and only if there exists vector p̃ ∈ Rn such that vector (x̃, p̃) is a
solution to the following bilinear programming problem :



222 R. Enkhbat et al.

max
(x,p)

F (x, p) =
n∑
q=1

fq(x
1, x2, . . . , xn)−

n∑
q=1

pq (2)

subject to :

ϕiq (x|xq) ≤ pq, iq = 1, 2, . . . , kq . (3)

The proof is the same as in [2].

3 The Curvilinear Multistart Algorithm

In order to solve problem (2)–(3), we use curvilinear multistart algorithm in [6].
The algorithm was originally developed for solving box-constrained optimization
problems; therefore, we convert our problem from the constrained to unconstrained
form using penalty function techniques. For each equality constraint g(x) = 0, we
construct a simple penalty function ĝ(x) = g2(x). For each inequality constraint
q(x) ≤ 0, we also construct the corresponding penalty function as follows:

q̂(x) =
{

0, if q(x) ≤ 0,
q2(x), if q(x) > 0.

Thus, we have the following box-constrained optimization problem:

f̂ (x) = f (x)+ γ
2

∑
i

ĝi (x)+ γ
2

∑
j

q̂j (x)→ min
X
,

X = {x ∈ R
n|xi ≤ xi ≤ xi, i = 1, . . . , n

}
,

where γ is a penalty parameter, x and x are the lower and upper bounds. For
original x-variables the constraint is the box [0, 1]; for p-variables box constraints
are [0, pq ]. Values of pq are chosen from some intervals. An initial value of a
penalty parameter γ is chosen not too large (about 1000) and after finding some
local solutions we increase it for searching another local minimum.

The proposed algorithm starts from some initial point x1 ∈ X. At each k-th
iteration the algorithm performs randomly “drop” of two auxiliary points x̃1 and x̃2

and generating a curve (parabola) which passes through all three points xk , x̃1, and
x̃2. Then we generate some random grid along this curve and try to found all convex
triples inside the grid. For each founded triple we perform refining the triple minima
value with using golden section method. The best triple became an initial point for
local optimization algorithm, the final point of which will be an initial point for the
next iteration of global method. Details are presented in Algorithms 1 and 2.
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Algorithm 1 The curvilinear multistart algorithm

Input: x1 ∈ X—initial (start) point; K > 0—iterations count; δ > 0; N > 0; εα > 0—
algorithm parameters.
Output: Global minimum point x∗ and f ∗ = f (x∗)

1: for k← 1,K do f k ← f (xk)

2: generate stochastic point x̃1 ∈ X
3: generate stochastic point x̃2 ∈ X
4: generate stochastic α-grid:

−1 = α1 ≤ .... ≤ αi ≤ −δ ≤ 0 ≤ δ ≤ αi+1 ≤ ... ≤ αN = 1

5: Let x̂(α) = ProjX
(
α2
(
(x̃1 + x̃2)/2− xk)+ α/2 (x̃2 − x̃1

)+ xk) where ProjX(z) -
projection of point z onto set X.

//note that x̂(−1) = x̂1, x̂(1) = x̂2, x̂(0) = xk .
6: f k∗ ← f k

7: αk∗ ← 0
8: for i ← 1, (N − 2) do

//Convex triplet
9: if f (x̂(αi)) > f (x̂(αi+1)) and f (x̂(αi+1)) < f (x̂(αi+2)) then

//Refining the value of minima using
//Golden-Section search method with accuracy εα

10: αk∗ ← GoldenSectionSearch(f, αi , αi+1, αi+2, εα)

11: if f (x̂(αk∗)) < f k∗ then
12: f k∗ ← f (x̂(αk∗))
13: αk∗ ← αk∗
14: end if
15: end if
16: end for

//Start local optimization algorithm
17: xk+1 ← LOptim(x̂(αk∗))
18: end for
19: x∗ ← xk

20: f ∗ ← f (xk)

Algorithm 2 The local optimization algorithm

Input: x1 ∈ X—initial (start) point; εx > 0—accuracy parameter.
Output: Local minimum point x∗ and f ∗ = f (x∗)

1: repeat
2: dk = xk − ProjX(x

k − ∇f (xk))
//Perform local relaxation step, for example, with using standard convex interval capture
technique.

3: xk+1 = argmin
α≥0

f (xk + αdk)
4: until ‖xk+1 − xk‖2 ≤ εx

4 Computational Experiments

The proposed method was implemented in C language using the GNU Compiler
Collection (GCC, versions: 4.8.5, 4.9.3, 5.4.0), clang (versions: 3.5.2, 3.6.2, 3.7.1,
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3.8), and Intel C Compiler (ICC, version 15.0.6) on both GNU/Linux, Microsoft
Windows, and Mac OS X operating systems.

We have tested the proposed algorithm on following nonzero sum six-person
games. Then problem (2)–(3) is formulated as:

k1∑
i1=1

k2∑
i2=1

. . .

k6∑
i6=1

⎛
⎝

6∑
q=1

a
q
i1i2...i6

⎞
⎠ x1

i1
x2
i2
. . . x6

i6
−

6∑
i=1

pi → max, (4)

k1∑
i1=1

k2∑
i2=1

. . .

kq−1∑
iq−1=1

kq+1∑
iq+1=1

. . .

kn∑
in=1

a
q
i1i2...in

x1
i1
x2
i2
. . . x

q−1
iq−1
x
q+1
iq+1

. . . x6
i6
≤ pq (5)

iq = 1, 2, . . . , k6, q = 1, 2, . . . , 6.

The proposed algorithm was applied for numerically solving of problem with 6
players. In all cases, Nash equilibrium points were found successfully.

Problem 3.1 We generated random 6-player game with GAMUT [15] with size
(2× 3× 3× 4× 4× 5) (totally 27 optimization variables) and the algorithm found
3 Nash equilibriums:

Points xi
∗
q pq F ∗

1 x∗1 = (0.16, 0.84) 67.70 5.02e–06

x∗2 = (0.8, 0.2, 0) 58.30

x∗3 = (0, 0, 1) 64.30

x∗4 = (0.86, 0, 0.14, 0) 67.18

x∗5 = (0, 0.98, 0, 0.02) 73.97

x∗6 = (0, 0, 0, 1, 0) 62.71

2 x∗1 = (0.02, 0.98) 48.77 −3.55e–06

x∗2 = (0.72, 0.28, 0) 50.78

x∗3 = (0, 0, 1) 55.46

x∗4 = (0, 0.2, 0.8, 0) 58.61

x∗5 = (0, 1, 0, 0) 58.72

x∗6 = (0, 0.58, 0.37, 0.05, 0) 73.49

3 x∗1 = (0.51, 0.49) 48.77 −1.30e–06

x∗2 = (1, 0, 0) 50.78

x∗3 = (0, 0, 1) 55.46

x∗4 = (0.76, 0.05, 0, 0.19) 58.63

x∗5 = (0, 0.88, 0, 0.12) 74.14

x∗6 = (0.05, 0.03, 0, 0.92, 0) 58.86
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Problem 3.2 We generated random 6-player game with GAMUT [15] with sizes
(4×5×5×4×3×2) (totally 29 optimization variables) and found three solutions:

Points xi
∗
q pq F ∗

1 x∗1 = (0.81, 0.19, 0, 0) 55.32 −1.02e–05

x∗2 = (0.24, 0, 0, 0, 0.76) 52.30

x∗3 = (0.52, 0.14, 0, 0.05, 0.29) 53.87

x∗4 = (0.45, 0, 0.33, 0.22, ) 53.06

x∗5 = (0, 0, 1) 58.50

x∗6 = (0.37, 0.63) 54.62

2 x∗1 = (0, 0.84, 0.03, 0.14) 49.36 −2.42e–06

x∗2 = (0.06, 0.32, 0.35, 0.26, 0) 51.89

x∗3 = (0.53, 0, 0, 0.47, 0) 53.45

x∗4 = (0.31, 0.35, 0.16, 0.17) 51.76

x∗5 = (0.32, 0.68, 0) 51.56

x∗6 = (0.6, 0.4) 48.28

3 x∗1 = (0, 0, 0, 1) 47.22 −1.00e–04

x∗2 = (0, 0.11, 0.41, 0.14, 0.34) 28.88

x∗3 = (0, 0.16, 0.63, 0, 0.21) 46.00

x∗4 = (0.180.000.780.04) 56.14

x∗5 = (0, 0, 1) 48.13

x∗6 = (0.12, 0.88) 45.88

Problem 3.3 We generated random 6-player game with GAMUT [15] with sizes
(5×2×4×3×6×7) (totally 33 optimization variables) and found three solutions:

Points xi
∗
q pq F ∗

1 x∗1 = (0.15, 0, 0, 0.34, 0.51) 53.18 5.48e–02

x∗2 = (0, 1) 59.33

x∗3 = (0, 0, 0.02, 0.98) 59.33

x∗4 = (0.210.610.17) 38.67

x∗5 = (0, 0, 0, 0, 1, 0) 52.60

x∗6 = (0, 0.30, 0.17, 0, 0.48, 0.05, 0) 58.18

2 x∗1 = (0, 0, 1, 0, 0) 52.30 −9.72e–05

x∗2 = (0.5, 0.5) 36.41

x∗3 = (0.63, 0, 0.37, 0) 51.49

x∗4 = (0.11, 0.08, 0.81) 44.43

x∗5 = (0.37, 0.02, 0, 0, 0.14, 0.47) 54.44

x∗6 = (0.03, 0.2, 0, 0.04, 0.18, 0.13, 0.43) 44.86

3 x∗1 = (0.06, 0.22, 0.4, 10.31, 0) 49.62 1.64e–02

x∗2 = (0.16, 0.84) 48.69

x∗3 = (0.76, 0, 0, 0.24) 56.47

x∗4 = (0, 0.45, 0.55) 50.66

x∗5 = (0.35, 0.11, 0.14, 0.18, 0.22, 0) 51.93

x∗6 = (0.36, 0.0, 80, 0.24, 0.19, 0.12, 0) 50.38
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Problem 3.4 Game [15] with sizes (2× 6× 6× 3× 5× 3) (totally 31 optimization
variables) and found solutions:

Points xi
∗
q pq F ∗

1 x∗1 = (0.73, 0.27) 43.07 −7.00e–05

x∗2 = (0.23, 0.23, 0.22, 0, 0.3, 20) 49.73

x∗3 = (0.21, 0.06, 0.6, 20, 0, 0.1) 51.62

x∗4 = (1, 0, 0) 52.36

x∗5 = (0, 0.23, 0, 0.77, 0) 48.31

x∗6 = (0.36, 0.28, 0.36) 50.86

2 x∗1 = (0.820.18) 51.3 −6.17e–05

x∗2 = (0, 0.38, 0.05, 0, 0.31, 0.26) 51.37

x∗3 = (0.26, 0, 0.43, 0.13, 0.09, 0.1) 52.24

x∗4 = (0.03, 0.63, 0.34) 49.42

x∗5 = (0.16, 0.43, 0.25, 0.1, 60) 48.88

x∗6 = (0.4, 0.31, 0.25) 48.77

3 x∗1 = (0.43, 0.57) 47.35 −1.04e–04

x∗2 = (0.12, 0, 0.33, 0.2, 0.36, 0) 51.0

x∗3 = (0.24, 0, 0.04, 0, 0, 0.71) 49.83

x∗4 = (0.9, 0, 0.1) 51.52

x∗5 = (0.37, 0.52, 0, 0.11, 0) 48.16

x∗6 = (0.77, 0.23, 0) 50.32

Problem 3.5 Game [15] with sizes (3× 5× 5× 2× 6× 4) (totally 31 optimization
variables) and found solutions:

Points xi
∗
q pq F ∗

1 x∗1 = (0, 0, 1) 56.86 −1.18e–04

x∗2 = (0, 0, 0.41, 0, 0.59) 81.04

x∗3 = (0, 1, 0, 0, 0) 79.20

x∗4 = (1, 0) 67.57

x∗5 = (0, 0, 0, 0.82, 0, 0.17) 58.63

x∗6 = (0, 0.57, 0.28, 0.16) 65.37

2 x∗1 = (0.25, 0, 0.75) 86.12 −1.28e–04

x∗2 = (0.25, 0, 0, 0.75, 0) 76.68

x∗3 = (1, 0, 0, 0, 0) 65.84

x∗4 = (0, 1) 67.11

x∗5 = (0, 0, 0, 1, 0, 0) 64.69

x∗6 = (1, 0, 0, 0) 76.99

3 x∗1 = (0.32, 0.59, 0.09) 29.90 6.64e–05

x∗2 = (0.18, 0, 0.38, 0.4, 0.04) 53.91

x∗3 = (0.87, 0, 0, 0.13, 0) 47.53

x∗4 = (1, 0) 38.6

x∗5 = (0, 1, 0, 0, 0, 0) 56.87

x∗6 = (0, 0, 0.63, 0.37) 45.18
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An Infinite-Horizon Mean Field Game of
Growth and Capital Accumulation: A
Markov Chain Approximation Numerical
Scheme and Its Challenges

Chee Kian Leong

Abstract In this paper, we characterize an infinite-horizon mean field game of
growth and capital accumulation. We present a Markov chain approximation scheme
(Kushner, Numerical methods for non-zero-sum stochastic differential games:
convergence of the Markov chain approximation method. In: Chow PL, Yin G,
Mordukhovich B (eds) Topics in stochastic analysis and nonparametric estimation.
The IMA volumes in mathematics and its applications, vol 145. Springer, New York,
2008, pp 51–84) as potentially useful for obtain the numerical ε-Nash equilibrium
solution to the infinite-horizon mean field system of equations and highlight some
of the key challenges in implementing the scheme.

Keywords Mean field games · Markov-chain approximation · ε-Nash
equilibrium

1 Introduction

Games of growth and capital accumulation have been studied extensively in
economics (see, for instance, [17, 21]). Typically, such models are analyzed as
infinite-horizon models, since economic growth is essentially a long-run phe-
nomenon in economics. In this paper, we analyze an infinite-horizon mean field
game of growth and capital accumulation and consider the challenges of applying a
numerical scheme to solve the game.

Mean field games deal with a population of players so large that each player’s
action becomes asymptotically negligible. In the past, such games are modeled as
static games, such as continuum population games (see [3, 23]), or as network games
[2] and classical transport models [6, 7, 24]. On the other hand, the mean field
game approach, pioneered by Jovanovic and Rosenthal [15] and developed further
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by Huang et al. [11, 12] and Lasry and Lions [18–20], is a dynamic one solved
typically within the Hamiltonian–Jacobi–Bellman framework, with the system state
being described by the statistical or probability distribution of the population of
individual states, namely the mean field, hence the term mean field games.

In recent years, mean field games have been applied in economics. For instance,
Lucas and Moll [22] have applied mean field games to examine the role of human
capital whereby individuals invest resources to improve their human capital relative
to other individuals in the labor market, while Chan and Sircar [5] analyze Bertrand
and Cournot games in the production of exhaustible resources. Other applications
include dynamic oligopoly models [1, 25], heterogeneous agent macroeconomic
models [8, 9] and auction theory [4, 14].

The mean field games of growth and capital accumulation we study in this
paper were first studied by Huang and Nguyen [13]. Our current paper is distinct
from Huang and Nguyen [13] in a number of aspects. We opt for an infinite-
horizon economic growth model since economic growth is essentially a long-run
phenomenon. Further, in their paper, Huang and Nguyen [13] make the assumption
that the coefficient of the relative risk aversion is equal to the capital share,
which vastly simplifies the mean field system of equations and its solution. While
mathematically and analytically useful, such assumption may not be economically
tenable since there is no a priori reason that the coefficient of risk aversion is
equal to the capital share. In our paper, we do not resort to this assumption.
This results in a mean field system of equations based on the original set of
parameters of the model. However, solving an infinite-horizon mean field games
can be particularly challenging, even when a numerical scheme is involved, since
unlike the finite-horizon games considered in Huang and Nguyen [13], there is
no boundary condition for the infinite-horizon mean field games. We propose a
numerical scheme based on the Markov chain approximation scheme [16] to derive
the ε-Nash equilibrium in the mean field game. Yet the implementation of this
scheme can be challenging. Some of these challenges are discussed in this paper.

This paper is organized as follows. Section 2 presents the infinite- horizon mean
field game of growth and capital accumulation. Section 3 outlines its solution.
Section 4 presents a potential numerical scheme to solve the infinite-horizon mean
field game and also discusses some of the difficulties. Concluding remarks are
presented in Sect. 5.

2 Mean Field Games of Growth and Capital Accumulation

Consider an economy with households and firms. The economy has an aggregate
production function, with the aggregate output (Y ) being produced according to
technology

Yt = f (Kt , Lt )
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where the aggregate capital Kt = ∑n
i=1 k

i
t and aggregate labor supply Lt =∑n

i=1 l
i
t . In intensive form, this may be written as yt = f (kt ), where yt = Yt/Lt

and kt = Kt/Lt .
There is a finite population of n households, which are heterogeneous in their

capital stock, denoted by ki for the ith household. Each household i determines
its optimal consumption by solving the intertemporal utility maximization problem
with a constant discount rate ρ

max
cit

E

∫ ∞

0
e−ρtu

(
cit , c

E
t

)
dt

where cit is consumption of the ith household and cEt is the expected consumption
in the population. Hence, each household compares its consumption relative to the
expected consumption in the population and thereby derives utility.

Household i owns capital ki , which is provided to the firms in the economy and
earns a competitive interest rate r , which is determined by the aggregate capital in
the economy, that is, K . At the same time, it supplies labor lit competitively at the
wage rate w, which again depends on the aggregate labor supplied in the economy,
that is, Lt . Denote ki0 are the given initial capital stock for household i. Capital is
accumulated via the Ito stochastic differential equation (SDE)

dki = [w + rki − ci]dt + σkidWi

where dWi is the increment of a standard Wiener (white noise) or Brownian motion
processWi , independently and identically distributed across households, while σki

can be interpreted as the uncertainty associated with the capital stock.
All firms are identical, so we assume a representative firm which solves the

(aggregate) profit maximization problem

max
K,L
Af (K,L)− (r + δ)K − wL

where A is fixed productivity (for simplicity, we assume A = 1), K is the capital,
L labor supply, f (·) is an increasing and concave production function satisfying the
Inada condition, δ depreciation rate and r + δ can be interpreted as the user cost
of capital. This problem can be simplified by recasting the optimization problem in
intensive form and normalizing L to 1. In equilibrium, we can characterize k as the
expected value of kit , given some probability density function g

(
kit
)
:

k =
∫
kig

(
ki
)
dki

It is possible to specify this in terms of higher moments of g
(
ki
)
, but for

simplicity, we will only consider the first moment of this distribution.
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Since t does not appear in the objective function and the state dynamics, we are
dealing with an infinite-horizon autonomous mean field game.

Next, we characterize the equilibrium wage and capital rent in terms of this
expected value as follows:

w̃ = f (k)− kf ′(k),
r̃ = f ′(k)− δ.

Using these equilibrium values, we obtain the household’s Hamilton–Jacobi–
Bellman equation (HJB)

ρV (k)− σ
2

2
Vkk (k) = max

c
{u (c)+ Vk (k) [w̃ + r̃k − c]} . (1)

The distribution of capital is described by the Fokker–Planck–Kolmogorov
(FPK) forward equation

∂g (k)

∂t
= − ∂

∂k

[
μk (k) g (k)

]
+ σ

2

2

∂2

∂k2
g (k) , (2)

where

μk (k) = w̃ + r̃k − c̃ (k)

and

c̃ (k) = ϕ
(
k|μk

)
(3)

is the optimal consumption choice derived from the HJB. The feedback control
ϕ
(
k|μk) can be interpreted as the best response for any individual household with

respect to the infinite population, which is represented by the measure μk . Together,
these equations form the mean field system of equations for the infinite-horizon
mean field game of growth and capital accumulation.

3 Solution

There are a variety of solution concepts to mean field games. Huang and Nguyen
[13] employ the Nash certainty equivalence principle [11, 12]. For discrete-time
population dynamic games with Markov decision process, Weintraub et al. [25]
also obtain the closely related concept of oblivious equilibria. Like differential
games, the characterization of the information in a mean field game is important.
There are various ways to characterize information: (1) an open loop control will
be solely a function of the information set containing the time and the initial
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state of that agent or of the global initial state; (2) a Markovian (closed loop or
feedback) control will be a function of current time and the current state. Open-loop
strategies are necessarily static in nature; however, in mean field games with a large
number of small players, open-loop strategies could be useful as an approximation.
The different specifications of the information structure lead to different solution
methods and concepts in the mean field game literature.

Another issue is the information available to an individual agent about other
agent’s dynamics. Typically, an agent has information on its own dynamics (more
specifically, the structure and parameters of the dynamic optimization problem), but
the uncertainty about other agent’s dynamics is captured in the form of a probability
distribution over the population of agents. Thus the individual agent is not able to
identify precisely the dynamics of another specific individual agent. In this case, the
agents will determine their best response in reaction to the best responses of all other
agents based on the system dynamics. Consequently, while the agent can determine
the population control strategy, it cannot determine the specific control action of any
other particular agent, since the state distribution of the latter is not available to the
first agent.

For our infinite-horizon mean field game of growth and capital accumulation, we
consider the ε-Nash equilibria, which can be characterized as follows.

Consider a set of households hi , 1 ≤ i ≤ n, let Cn = C1 × C2 × . . . × Cn
denote the joint admissible consumption space, where each space consists of a set
of consumption strategies ci , 1 ≤ i ≤ n. A joint consumption strategy is denoted by
c = (c1, c2, . . . , cn) .

Definition The joint strategy c∗ = (
c∗1, c∗2, . . . , c∗n

)
is an ε-Nash equilibrium, for

some small ε ≥ 0, if

sup
ci

Ji
(
ci, c

∗−i
) ≤ Ji

(
c∗i , c∗−i

) ≤ Ji
(
c∗i , c∗−i

)+ ε

.

Thus, we are saying that when all households except for household i conforms
to the optimal consumption strategies c∗−i , the unilateral deviation of household i
will yield a gain of at most ε. When ε = 0, we obtain back our closed-loop Nash
equilibrium.

In practice, the approach to solving the mean field game involves specifying some
functional forms for u (ct ) and F(Kt , Lt ). We can specify a CRRA utility and a
Cobb–Douglas production function as follows:

u
(
ct , c

E
t

)
= 1

1− γ
(
ct

cEt

)1−γ
, γ > 0

f (kt ) = kαt , α > 0

with cEt > 0.
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As such, we obtain

w̃ = (1− α) kα,
r̃ = αkα−1 − δ,

where k is obtained via the FPK forward equation for the distribution of capital

∂g
(
k
)

∂t
= − ∂

∂k

[
μ
(
k
)
g
(
k
)]+ σ

2

2

∂2

∂k
2 g
(
k
)

(4)

for some probability distribution g
(
k
)

where

μ
(
k
) = (1− α) kα + r̃t αkα−1 − r̃t δ − c̃ (k)

and

c̃ (k) = ϕ
(
k|μk

)
. (5)

To obtain the optimal c̃ (k), we can solve the HBJ equation in two stages, similar
to that adopted by Huang and Nguyen [13]. In the first stage, we assume that cEt is
fixed as cE and solve for the optimal ĉi given cE . In the second stage, we use the
optimal ĉ to write the state equation

dki = [w̃ + r̃ki − ĉi]dt + σkidWi

while imposing the consistency condition c̄ =∑N
i=1 ĉ

i .
If Vk (k, t) > 0 holds, then the maximum value of

max
c

{
1

1− γ
( c
cE

)1−γ + Vk (k, t)
[
(1− α) kαt +

(
αkα−1
t − δ

)2 − c
]}

will be given by

ĉ =
[(
cE
)1−γ

Vk (k) .

]− 1
γ

We use this value to rewrite the HBJ as follows:

ρV (k)− σ
2

2
Vkk (k) = γ

1− γ
(
cE
) γ−1

γ
[Vk (k)]

γ−1
γ

+ Vk (k)
[
(1− α) kα +

(
αkα−1 − δ

)2
]
,
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and the capital accumulation SDE:

dk =
{
w + rk −

[(
cE
)1−γ

Vk (k)

]− 1
γ

}
dt + σkdW.

Huang and Nguyen [13] employ an ansatz with boundary conditions to obtain
their solution to their finite horizon problem. However, this is not possible for
infinite horizon problems because of the lack of boundary conditions. Moreover, the
ansatz approach introduces two new variable functions, both of which the economic
intuitions may not be so evident.

4 Markov Chain Approximation Scheme

In this section, we consider a numerical approach based on the Markov chain
approximation scheme [16] to derive the ε-Nash equilibrium in the mean field game.

In a nutshell, this Markov chain approximation scheme involves three parts:

1. We replace the state space with a finite grid.
2. The partial derivatives of V are substituted with their finite differences.
3. We approximate the stochastic state trajectory using a Markov chain whose

transition probabilities are derived from the characteristics of the state process.

First, define Rnh as the h-grid on Rn:

Rnh =
{
k : k =

n∑
i=1

zieih

}

for some integer zi and unit vector ei in the ith direction.
We use the following rules for approximating the partial derivatives

Vk (k) =
{
V (k+eih)−V (k)

h
V (k)−V (k−eih)

h

if w̃ + r̃k − ĉ ≥ 0
if w̃ + r̃k − ĉ < 0

Vkk (k) = V (k + eih)− V (k − eih)− 2V (k)

h2 .

Define the interpolation interval

%th (k, c) = h2

Qh (k, c)
,
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where

Qh (k, c) = σ 2 + h
n∑
i=1

∣∣w̃ + r̃k − ĉ∣∣ .

Next, define the transition probability functions in the Markov chain

πh (k, k ± eih) =
σ 2

2 + w̃ + r̃k − ĉ
Qh (k, c)

πh
(
k, k + eih+ ejh

) = πh (k, k − eih− ejh
)

= 0

πh
(
k, k + eih− ejh

) = πh (k, k − eih+ ejh
)

= 0

πh (k, k) = h2

Qh (k, c) .

Substitute and rearrange terms to obtain the following equation

ρV (k)− σ
2

2

[
V (k + eih)− V (k − eih)− 2V (k)

h2

]

= β [Vk (k)]
1
β + Vk (k)

[
(1− α) kα +

(
αkα−1 − δ

)2
]

by setting β = γ
1−γ and using the appropriate Vk (k). For instance, if w̃+ r̃ki− ĉi ≥

0, we have

[
ρ + σ

2

h2 +
g (k)

h

]
V (k) = σ 2

2

[
V (k + eih)− V (k − eih)

h2

]

+ β
(
cE
V (k + eih)− V (k)

h

) 1
β + g (k)

h
V (k + eih) .

This equation can be solved as the fixed point problem of a discrete-state dynamic
programming operator

V (k) = � (k)

with the operator � contracting.
The Markov chain obtained from the scheme described earlier will provide a

converging approximation of the value function for the player i [16]. To establish
the fixed point, Howard’s policy improvement algorithm [10] may be employed.
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Finally, the cE∗ obtained using this numerical scheme could be substituted back

to obtain c̃ (k) =
[(
cE∗

)1−γ
Vk (k)

]− 1
γ

, with which the FPK equation can be solved

to obtain the distribution of the capital in the economy using some appropriate
capital distribution function g (k).

Despite its attractiveness, implementing this numerical scheme is not without
its difficulties. The first is a grid dimensionality issue. The scheme is particularly
sensitive to the fineness of the grid and may not easily converge to a solution.
Another issue is the appropriate initial choice of cE . The choice is currently arbitrary
and the numerical scheme is not yet robust to different choices of cE . This can
be particularly problematic, as in some simulation runs, the numerical scheme
converges to the initial value of cE . Once the cE∗ is obtained, solving the FPK
requires another assumption about the capital distribution function g (k). Deciding
on the appropriate capital distribution function is important since different choices
of g (k) will result in different economic interpretations.

5 Concluding Remarks

In this paper, we consider an infinite-horizon mean field game of growth and capital
accumulation. Finding the ε-Nash equilibrium solutions to the infinite-horizon mean
field games can be particularly challenging, even when a numerical scheme is
involved, since unlike the finite-horizon games considered in Huang and Nguyen
[13], there is no boundary condition for the infinite-horizon mean field games.
Ideally, the mean field system of equations should be solved together and updated
accordingly. In practice, the numerical scheme generally starts with the solution
to the HBJ problem, followed by the FPK problem. In this paper, we present one
possible numerical scheme based on the Markov chain approximation scheme [16]
to derive the ε-Nash equilibrium in the mean field game. However, the imple-
mentation of this scheme involves some challenges, such as grid dimensionality
issue and appropriate choices of initial values and the capital distribution functions.
Consequently, finding an appropriate and robust numerical scheme to solve infinite-
horizon mean field games remains a challenging research question in the mean field
games literature.
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