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Preface

We welcome you to the 9th Pacific-Rim Symposium on Image and Video Technology
(PSIVT 2019) Workshops. PSIVT is a premier level biennial series of symposiums that
aim at providing a forum for researchers and practitioners who are involved in, or
contributing to, theoretical advances or practical implementations for image and video
technology. Following the editions held at Hsinchu, Taiwan (2006), Santiago, Chile
(2007), Tokyo, Japan (2009), Gwangju, South Korea (2011), Singapore (2010),
Guanajuato, Mexico (2013), Auckland, New Zealand (2015), and Wuhan, China
(2017), this year, PSIVT was held in Sydney, Australia, during November 18–22,
2019. The following four workshops were held at PSIVT 2019:

Vision-Tech: A Workshop on Challenges, Technology, and Solutions in the
Areas of Computer Vision: vision technology and their applications have evolved
significantly over the past decades. Along with new technology and applications, there
has been a rise in new challenges. In this workshop, we bring together the new
challenges, technology, and potential solutions to those challenges in the areas of
computer vision.

Passive and Active Electro-Optical Sensors for Aerial and Space Imaging:
advances in the miniaturization, performance, and low cost sensors, has allowed
researchers access to camera technology for wide-ranging applications. Developments
in sensor fusion and the proliferation of platforms offers researchers opportunities to
extend the range of devices available. However, there is still a need to provide quality
assurance of sensors, such as calibration, to minimize artefacts and bias in the data
received and facilitate high-quality processing. The workshop will focus on new and
improved methods, techniques, and applications of (electro-optical) sensors on airborne
and space platforms. The aim of this workshop was to bring together engineers and
scientists from academia, industry, and government to exchange results and ideas for
future applications of electro-optical remote sensing.

International Workshop on Deep Learning and Image Processing Techniques
for Medical Images: the recent advancements in deep learning algorithms and image
processing techniques have provided a wealth of opportunities in the field of medical
image analysis. This workshop aims to gather high quality research papers on novel
work and start-of-the-art approaches that advance this field. These include papers that
use approaches such as image processing, artificial intelligence, computer vision, tra-
ditional machine learning, and deep learning to analyze medical images such as retinal
images, ultrasound images, brain images, and breast cancer scans.

International Workshop on Deep Learning for Video and Image Analysis: there
has been a surge of opportunities for the development of deep learning algorithms and
platforms for advanced vision systems. This has been boosted by the availability of
large amounts of visual data (i.e., big data) and high performance computing systems.
These systems will reduce the expensive costs associated with elder’s health and home
care expenses, and enhance competitiveness in agriculture and marine economies.



This workshop aims to gather high quality research papers on state-of-the-art deep
learning techniques for video and image analysis.

Over all workshops, a total of 26 papers were received and underwent a full
double-blind review process. Of these 26 papers, 16 have been published in this
proceedings. Each workshop arranged its own set of reviewers and reviews were
conducted independently of other workshops.

We hope that you found the workshops at PSIVT 2019 enjoyable, enlightening, and
thought provoking. We hope you had a very memorable PSIVT.

November 2019 Joel Dabrowski
Ashfaqur Rahman
Manoranjan Paul

vi Preface
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Rain Streak Removal with Well-Recovered
Moving Objects from Video Sequences Using

Photometric Correlation

Muhammad Rafiqul Islam(B) , Manoranjan Paul , and Michael Antolovich

School of Computing and Mathematics, Charles Sturt University, Bathurst, NSW, Australia
{muislam,mpaul,mantolovich}@csu.edu.au

Abstract. The main challenge in a rain removal algorithm is to differentiate rain
streak from moving objects. This paper addresses this problem using the spa-
tiotemporal appearance technique (STA). Although the STA-based technique can
significantly remove rain from video, in some cases it cannot properly retain all
the moving object regions. The photometric feature of rain streak was used to
solve this issue. In this paper, a new algorithm combining STA and the photo-
metric correlation between rain streak and background is proposed. Rain streak
and moving objects were successfully detected and separated by combining both
techniques, then fused to obtain well-recovered moving objects with rain-free
video. The experimental results reveal that the proposed algorithm significantly
outperforms the state-of-the-art methods for both real and synthetic rain streak.

Keywords: Rain removal · Photometric correlation · Spatiotemporal
appearance · Video cleaning

1 Introduction

In an outdoor computer vision system like a surveillance video system, several atmo-
spheric interferences such as rain streak, snow, etc. affect the video contents and fea-
tures[1, 2]. In challenging weather, these unwanted interferences degrade the perfor-
mance of video content analysis (VCA) algorithm such as scene analysis [3], event
detection [4], object detection [5] and tracking [6] of various computer vision system
[7]. Rain streak removal in the video (RSRV) has lots of importance in several computer
vision applications i.e. driverless car, surveillance camera, traffic surveillance, and other
relevant applications.

The RSRV has recently got lots of attention in the computer vision research area
due to its new challenging applications. Various numeric methods have been proposed
to remove rain streaks in a video sequence to increase the visibility of video content
[8–10]. Garg et al. [8] initially introduced to an RSRV technique with a comprehensive
analysis of the visual characteristic of the rain streak in a video sequence. Since then
many techniques have been proposed for the RSRV tasks and achieved good results in
various rain conditions. An extensive summarization of video-based rain streak removal
is included in [9]. Chen et al. [10] have been proposed an RSRV technique for the highly

© Springer Nature Switzerland AG 2020
J. J. Dabrowski et al. (Eds.): PSIVT 2019 Workshops, LNCS 11994, pp. 3–13, 2020.
https://doi.org/10.1007/978-3-030-39770-8_1
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dynamic scenes. Considering the directional properties of rain streak, a tensor-based
rain streak removal method has been proposed in [11]. In Wei et al. [12], authors have
modelled the rain streak stochastically using a mixture of Gaussian technique while Li
et al. [13] proposed multiscale convolutional filters to separate different size of rain
streaks.

In recent time, a technique using spatiotemporal appearance (STA) properties of rain
streak has been proposed to remove rain streak in a video sequence [14]. The method
counts moving objects including rain appearances at the pixel level for a number of
frames and assumes that if the counts of the appearance of moving objects are within
a mid-range then the pixel is identified as a rain pixel, otherwise, the pixel is identified
as a background or foreground object (not rain). Normally, the pixel is a part of the
background if the count is zero or the pixel is a part of the foreground object if the count
is very high. This method is very successful to remove rain streak but it loses some
parts of the moving object especially the short appearance part of the foreground. In this
technique, authors have assumed that the appearance of moving object in a pixel exists
for several frames. Sometimes, the appearance of moving objects in some pixels exists
for a very short time only e.g. one or two frames and these pixels are excluded by the STA
technique as a moving object. Figure 1(a) shows the generated mask of frame 72 of a
video sequence “Traffic” by applying the STA properties of the rain streak. In this figure,
the yellow marked pixels of moving object are missed by this method. The appearance
of moving objects in these pixels exist for current few frames only. The corresponding
original frame is given in Fig. 1(b).

(a) Moving objects mask for the 72nd frame 
of the video sequence “Traffic”

(b) The original 72nd frame of the 
video sequence “Traffic”

Fig. 1. Moving objects mask generated by STA and Photometric Correlation

In this paper, we address this problem and proposed a new method which uses
the photometric correlation properties of rain streak in a video sequence. Photometric
features already introduced in Garg et al. [8], based on their observation that a rain
streak appears brighter than the background they have been proposed two photometric
constraints. Here they consider the background as stationary, the candidate pixels which
may include a rain streak should comply with the equation below

�I = In − In−1 = In − In+1 > c, c = 3 (1)
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where In is the current frame image, In-1 and In+1 are the adjacent previous and next
frame respectively.C is a thresholdwhich indicates theminimum intensity change due to
rain streak. In Eq. (1) authours have used a future frame, that is not possible for real-time
application. The second photometric constraint proposed in Garg et al. [8] is

�I = −β Ib + α, β = τ

T
, α = τ Ed (2)

where authors consider Ib= In-1, and photometric constraint β is calculated as
(0 < β < 0.039). Since the maximum value of α = 3.5×10−3, where Ed is the average
irradiance. β involved with camera exposure time T and time τ that a drop projects onto
a pixel. τ depends on the physical properties of the rain. τ can vary with the various
size of rain streak. The range of τ obtained as 0 < τ < 1.18. Camera exposure time T
also can vary in different video sequence captured by a different camera. In this paper,
we propose a novel algorithm by combining the STA properties of rain streak and the
photometric correlation of rain streak with the background to improve the recovered
moving objects in rain-free videos.

We have applied the proposed algorithm on four different video sequences including
real and synthetic rain streak to observe the performance and compare themwith the state-
of-the-art methods. The overall performance of the proposed algorithm is significantly
better than the state-of-the-art methods for both real and synthetic rain streaks.

2 Proposed Method

This section will describe the details of the proposed methodology. We divide our
methodology into four sections and describe separately. This method has been pro-
posed by combining the photometric features of rain streak with the STA property of
rain streak. In this method, firstly we have applied background modelling to separate
background and foreground including the rain of a video frame. The STA properties of
rain streak are used to separate moving objects and rain streaks from the foreground of
the video frame. In parallel, we have applied the photometric correlation of rain streak to
separate the moving objects and rain streaks from the rainy frame. Then, we have fused
the output results of both different features of the rain streak and generated a rain-free
frame of the video sequence.

2.1 GMM Background Modelling and Foreground Generation

GMM is a well-known algorithm in the field of computer vision. We use this algorithm
to generate the background of every frame and subtract the background to find the
foreground of the frame. Generally, the GMM technique is used in video processing to
detect moving objects. Here, all moving substances (including rain streak) in a video has
been considered asmoving objects and separated from the frame to generate background.
In this technique, each pixel is modelled independently by a mixture of K Gaussian
distributions (usual setting K = 3) [15, 16]. In our proposed technique, we assume that
at time t, the value of kth Gaussian intensity = ηk,t , mean = μk,t , variance = σ 2

k,t , and
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weight in the mixture= ωk,t , so that
K∑

k=1
ωk,t = 1. In the first step of our experiment, the

parameters are initialized as follows: standard deviation (σk)= 2.5, weight (ωk)= 0.001
and learning rate, α = 0.1. α is used for balancing the contribution between current and
previous values and the value is 0 < α<1 [17].

In the second step, after initializing the parameters, the current pixels are used to
matchwith kth Gaussian for every newobservation if the condition

∣
∣Xt − μk,t

∣
∣ ≤ 2.5σk,t

is satisfied against existing models, where Xt is the new pixel intensity at time t. If a
model matches, the Gaussian model will be updated as follows:

μk,t ← (1 − α)μk,t−1 + αXt (3)

σ 2
k,t ← (1 − α)σ 2

k,t−1 + α(Xt − μk,t )
T (Xt − μk,t ); (4)

ωk,t ← (1 − α)ωk,t−1 + α, (5)

and the weights of other Gaussians models are updated as

ωk,t ← (1 − α)ωk,t−1 (6)

In the third step, the values of weights are normalized among all models in such

a way that
K∑

k=1
ωk,t = 1. On the other hand, if a model fails to match, then a new

model is introduced with initial parameter values. If it has already crossed the maximum
allowable number of models, based on the value of weight/standard deviation, a new
model substitutes the existing model. At each frame, we generate a background frame
using the mean value of the stable model. The model is considered stable if the ratio
of weight and the standard deviation is the minimum compared to other models of the
pixel. We use the background frame to find rain streak and other foregrounds and as well
to generate the rain-free video in the proposed method.

Initially, we have generated foreground by subtracting the background from the input
frame,

Fn = |In − B| (7)

where F is foreground image of the nth frame and I is the original image of the nth frame.
This image contains rain streak and moving objects.

2.2 STA Properties of Rain

The rain streak appearance is temporary in a frame. This temporary appearance property
has been used to separate rain streak and moving objects from the foreground in [14]. To
apply this property, authors first apply an intensity threshold 20 [15, 18, 19] to generate
a binary image of foreground contains rain streak and moving objects. To separate rain
streak and moving objects, a mask has been generated using STA properties of rain
streak.

Mn =
n−m∑

i=n

Fi ; (i = n, n − 1, n − 2, . . . n − m) (8)
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Where M is the mask for nth frame generated by summing the binary foreground
images F of m number adjacent frame. The mask contains value 0 to m for every pixel
and this value represents the appearance value of moving objects and rain in a pixel. İf
an appearance value in a pixel is more than 20% of the maximum value m, this pixel is
considered as moving object. Using this phenomenon, moving objects and rain streak
can be separated in a frame.

2.3 Photometric Correlation

The rain streaks produce a positive fluctuation of the intensities in the pixels of a frame.
The rain streak intensity depends on the brightness of the drop as well as the background
scene radiance [8]. The fluctuation of positive intensity for rain streaks is not very
high, because the rain streak intensity includes the background radiance. On the other
hand, the moving object intensity does not depend on the background radiance. Thus,
the moving objects can produce a high-intensity fluctuation in the pixels of a frame.
Here we have applied this different photometric property of the rain streak and moving
objects to separate them. We observe that moving objects produce intensity fluctuation
significantly high in most of the scenario. Here we used an intensity correlation for each
pixel which is obtained between background B and separated foreground F.

γ = F(i, j)

B(i, j)
(9)

Where γ is photometric correlation constraint. The candidate pixels which may
contain the moving objects should comply with the condition γ > 1. Otherwise, it will
consider as rain streak or background.

2.4 Rain Free Video Generation

Here we have fused the output of both features and generate an object mask for the
processing frame. To generate rain-free video we have used a background image and
input image of the processing frame. The moving objects have been generated from the
input image and the other part of the frame have been generated from the background
image of the processing frame.

3 Experimental Results

We have applied the proposed algorithm on four different video sequences including
two synthetic rain streak and two real rain streak. For synthetic rain streak dataset, we
have compared results in objectively and subjectively as ground truth is known in these
cases while the results of the real rain streak datasets have been compared in subjectively
only. Here we have compared the performance of the proposed method with two other
methods [12, 14]. We have obtained the results of these methods by implementing their
software on the datasets. The software ofWei et al. [12] has been downloaded from their
website [20] whereas we have collected the software of [14] by personal communication.
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3.1 Results on Videos with Synthetic Rain Streaks

To evaluate the performance of the proposed method on video sequences with synthetic
rain streak, we have used two video sequences with heavy rain and dense rain respec-
tively. The first video sequence named “truck” has been downloaded from CDNET
dataset [21] which contains a moving truck and externally added heavy rain streak.
Figure 2 shows the visual performance comparison of the state-of-the-art methods with
the proposed method in one of the important frame (Frame 65) of the video sequence.
In Fig. 2, the red circle indicates the rain streak removal performance by all methods
respectively. The proposed method outperforms Wei et al’s method [12] whereas the
method in [14] performs better than the proposed method by a small number of rain
streaks. However, the method in [14] losses more part of the moving object than the
proposed method. The rectangle indicates the loss of moving objects in the frame.

(a) Input frame (b) Groundtruth

(c) Wei et al [12] (d) [14] (e) Proposed method

Fig. 2. Rain removal results on video sequence with synthetic rain.

Figure 3 shows the performance comparison in objectively. The calculated PSNR
value of every frame of the video sequence “truck” for all methods are shown in the
graph. The PSNR graph in Fig. 3 shows that Wei et al. [12] perform better than the
proposed method for the first few frames. The proposed method outperforms all other
methods after the first 30 frames. The proposed algorithm processes input video frames
as it comes in, typicallywithout storing input frames of the video and the learning process
is also real-time. Thus, the proposed algorithm needs the first few frames to learn and
then delivers a better result for the rest. That is the main reason why the proposedmethod
struggles for the first few frames. The advantage of this algorithm is that it can serve in
a real-time application with the consideration of required processing time.
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Fig. 3. Comparison graph of PSNR calculated against ground truth of full video sequence with
synthetic rain streak in frame level.

(a) Input frame (b) Groundtruth

(c) Wei et al [12] (d) [14] (e) Proposed method

Fig. 4. Rain removal results on video sequence with synthetic rain.

Figure 4 shows the subjective performance comparison of the state-of-the-art meth-
ods with the proposed method for the video sequence “Highway”. This video sequence
includes a moving car and externally added dense rain streaks. The proposed method
shows better performance in subjective comparison. The circle indicates the rain streaks
those are removed by the proposed method and [14] but missed by Wei et al’s method
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[12]. The rectangle marked area shows the distortion of moving objects by the RSRV
process. The method in [14] provides the maximum distortion of the moving objects.

The objective performance of the synthetic video sequence is listed inTable 1. Table 1
represents the PSNR and SSIMvalue of the frame that is shown in Figs. 2 and 4 for visual
comparison. Thus, we can evaluate the methods in terms of objective and subjective in
the same manner. For the frame shown in Fig. 2, the proposed method outperforms the
state-of-the-art method. On Fig. 4, the method in [14] and the proposed method shows
almost the same PSNR value which is higher than Wei et al. [12]. In terms of SSIM, the
proposed method outperform all the state-of-the-art methods.

Table 1. Performance comparison of the different methods on video with synthetic rain in terms
of PSNR and SSIM against ground truth

Fig. 2 Fig. 4

PSNR SSIM PSNR SSIM

Original Input frames with rain 31.94 0.8845 27.09 0.9257

Wei et al. [12] 33.65 0.9265 26.96 0.9481

STA Properties [14] 33.83 0.9381 28.40 0.9542

Proposed Method 35.18 0.9523 28.40 0.9557

3.2 Results on Videos with Natural Rain Streaks

To observe the performance on a video sequence with natural rain streaks, we show the
experiments on two different video sequences. One of them includes moving objects and
the other does not have any moving object. The rain streaks are varied from moderate to
dense in these different video sequences.

In Fig. 5, we represent the experimental results of the video sequence denoted as
‘traffic’ [22] by implementing both methods. Input video includes two moving objects,
one moving car and one pedestrian with dense rain. The subjective comparison of the
proposed method shows better performance compared to the state-of-the-art methods.
The proposed method outperforms Wei et al. [12] and [14] by removing rain streak and
maintaining moving objects in a better way.

Figure 6 clearly shows the performance comparison of all methods on the video
sequence denoted as ‘wall’ [22] of size 288× 368× 171 in terms of subject quality. The
video sequence ‘wall’ consists of a regular pattern in the background. The input frame
represents moderate rain streaks. The proposed method and [14] both outperform Wei
et al.’s method [12] for almost complete rain streak removal.
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(a) Input frame (b) Wei et al [12]

(c) [14] (d) Proposed Method

Fig. 5. RSRV methods performance comparison of a video sequence with real rain streaks.

(a) Input frame (b) Wei et al [12] 

(c) [14] (d) Proposed method

Fig. 6. RSRVmethods performance comparison of a video sequence with real rain streaks where
no moving objects exist.
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4 Conclusion

This paper proposed a new algorithm combining STA properties of rain streak and
photometric features to remove rain streak in videos. This method uses photometric
correlation of rain streakwith background intensity as a photometric feature. Thismethod
can separate moving objects and rain streak from the foreground of the video frame.
This method successfully exploits the duration trend of the rain and the moving objects
through the STA features and the amount of pixel intensity variations of the rain and
moving objects and then combines them to separate rain and other moving regions
for better performance. The results on real and synthetic rains in videos reveal that the
proposedmethod outperforms the state-of-the-artmethods by removing rain and keeping
other moving objects in better quality. In future, we will investigate a wider range of
moving objects and rains.
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Abstract. In face analysis, the task is to identify a subject appearing
in an image as a unique individual and to extract facial attributes like
age, gender, and expressions from the face image. Over the last years,
we have witnessed tremendous improvements in face analysis algorithms
developed by the industry and by academia as well. Some applications,
that might have been considered science fiction in the past, have become
reality now. We can observe that nowadays tools are far from perfect,
however, they can deal with very challenging images such as pictures
taken in an unconstrained environment. In this paper, we show how
easy is to build very effective applications with open source tools. For
instance, it is possible to analyze the facial expressions of a public figure
and his/her interactions in the last 24 h by processing images from Twit-
ter given a hashtag. Obviously, the same analysis can be performed using
images from a surveillance camera or from a family photo album. The
recognition rate is now comparable to human vision, but computer vision
can process thousands of images in a couple of hours. For these applica-
tions, it is not necessary to train complex deep learning networks, because
they are already trained and available in public repositories. In our work,
we show that anyone with certain computer skills can use (or misuse)
this technology. The increased performance of facial analysis and its easy
implementation have enormous potential for good, and –unfortunately–
for ill too. For these reasons, we believe that our community should
discuss the scope and limitations of this technology in terms of ethical
issues such as definition of good practices, standards, and restrictions
when using and teaching facial analysis.

Keywords: Face analysis · Social networks · Social and ethical
challenges

1 Introduction

Nowadays, it is very easy to download thousands of images from social networks
and build a database with information extracted from all faces that are present
in the images as illustrated in Fig. 1. Thus, we can build a relational database of
c© Springer Nature Switzerland AG 2020
J. J. Dabrowski et al. (Eds.): PSIVT 2019 Workshops, LNCS 11994, pp. 14–29, 2020.
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Fig. 1. Proposed approach for facial analysis in social networks.

the images with their faces and facial attributes. In this database, we can store
for all detected faces: the bounding box, size, quality, location, age, gender,
expressions, landmarks, pose, face descriptor and face cluster. With a simple
query on this database, we can retrieve very useful and accurate information.
Having this powerful database and a query image of a person, for example from
a woman called Emily, some questions could naturally arise:

1. Is it possible to find Emily in the majority of the images (even in uncon-
strained environments with different poses, expressions and some degree of
occlusion)?

2. Is it possible to extract the age, gender and facial expressions of Emily?
3. Using metadata of the pictures of the database, is it possible to establish

when and where Emily was present (or absent)?
4. Is it possible to analyze the gender, age, and expressions of James and Louise

that appears in the same picture with Emily?
5. Is it possible to search in the whole database those pictures in which Emily

appears with other persons and select the person that most frequently co-
occurred with Emily? And can we add a constraint to this person (it must
be a man, or a woman, or a boy, or a girl, etc.)?

6. Is it possible to use the head poses of Emily and Gabriel (present in the same
picture) and find if they are looking to each other?

7. Is it possible to build a graph of connections of Emily with other subjects
that co-occurred in the pictures of the database?

8. Is it possible to determine from the face of James if he is criminal? or part of
the LGTBQ community?

This is the wrong paper, if the reader is looking for the answer of the last
question1, however, for the remaining questions (#1 to #7), the answer is: yes, it
1 We hope that our community will not research on fields related to question #8.
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is possible. Over the last decade, the focus of face recognition algorithms shifted
to deal with unconstrained conditions. In recent years, we have witnessed tremen-
dous improvements in face recognition by using complex deep neural network
architectures trained with millions of face images (see for example advances in
face recognition [4,9,13] and in face detection [19,21]), and in many cases, algo-
rithms are better at recognizing faces than human beings. In addition, there are
very impressive advances in face clustering [12,18], and in the recognition of age
[16], gender [20], (FER) facial expressions [2] and facial landmarks [23].

In this field, many works deal with applications that can be developed using
the face analysis tools. Here, some examples, just to cite a few. In [15], social
networks are built by detecting and tracking faces in news videos, the idea is to
establish how much and with whom a politician appears on TV news. In [3], for
example, facial behavior analysis is presented. The method can extract expres-
sions and action units (facial movements such as ‘inner portion of the brows
is raised’ or ‘lips are relaxed and closed’), that could be used to build interac-
tive applications. In [22], ‘social relations’ (defined as the association like warm,
friendliness and dominance, between two or more persons) are detected in face
images in the wild. In [7], face-based group-level emotion recognition is proposed
to study the behavior of people participating in social events. Similar advances
have been made in video analysis using the information of the location and
actions of people in videos. See for example [6], where a ‘context aware’ config-
uration model is proposed for detecting groups of persons and their interactions
(e.g., handshake, hug, etc.) in TV material. Nowadays, some applications, that
might have been considered science fiction in the past, have become reality now.
Nevertheless, it is worthwhile to note that we are able to develop applications for
a ‘good cause’ (e.g., personal applications like searching the happiest faces in a
family photo album; applications for history research like searching people in old
archives of pictures; forensic applications like detection of pornographic material
with children, etc.) and applications for a ‘bad cause’ (e.g., security applications
that collect privacy-sensitive information about the persons that appears in a
surveillance video) as well.

In this paper, our main contribution is to show that anyone with certain
computer skills can use (or misuse) this technology. The open-source tools are
available on public repositories, and it is not necessary to train complex deep
learning networks, because they are already trained. We will show that the state
of the art is able now to do very accurate facial analysis in very complex sce-
narios (like mentioned in the first seven questions) with outstanding results as
shown in Figs. 3, 4, 5, 6, 7, 8, 9. We believe that these two results, accurate
and easy implementation of facial analysis, should challenge us to discuss possi-
ble restrictions and good practices. For this reason, in this paper, we give some
ethical principles that can be considered when using this technology.
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2 Open Source Tools

2.1 Tools for Social Networks

1. Image download: Images from social networks can be downloaded in a
very simple way by using Application Program Interfaces (API’s) or dedicated
software. For example, there are API’s for Twitter2, Instagram3 and Flickr4.
For YouTube, there are some websites that offer the download service in an easy
way. On the other hand, GitHub is a repository for code and datasets in which
the datasets can be downloaded directly.

2. Data cleaning: Data cleaning is very relevant in these kind of problems. In
our experiments, it has been mandatory to eliminate duplicated images when
dealing with images that have been downloaded from twitter with a common
hashtag (because there are many retweeted or copied images). In order to elim-
inate the duplicate images, we follow a simple strategy with very good results
as follows: For a set of K images, {Ik}, for k = 1 · · · K, we convert each image
Ik to a grayscale image Yk and we resize it to a 64 × 64-pixel image Zk using
bicubic interpolation [5]. In addition, the gray values of the resized image is
linearly scaled from 0 to 255. The resulting image is converted into a column
vector zk of 642 = 4096 elements with uni-norm. Thus, we remove from the
set of images those duplicated images that have a dot product zTi zj > 0.999
for all i �= j. In our experiments, from 1/4 to 1/3 of the images were eliminated
because they were duplicated. This method removes efficiently and quickly those
duplicated images that have been scaled, however, this method does not remove
those rotated or translated images (approx. 1 ∼ 2% of the images). In case it is
necessary to remove rotated or translated images, a strategy using SIFT points
can be used [10].

3. Metadata extraction: Usually, the downloaded images have associated
metadata, e.g., date and time of capture, or date and time of the tweet, or
GPS information that can be used as geo-reference. In many images, the meta-
data information is stored in the same image file as EXIF data (Exchangeable
Image File Format).

2.2 Computer Vision Tools

1. Face Detection: Face detection identifies faces in an image. In our work,
the goal is to detect all faces that are present in an image independent on the
expression, pose and size. For this end, we use the method called Multi-task
Cascaded Convolutional Networks (MTCNN) [21]5 that has been demonstrated
to be very robust in unconstrained environments against poses, illuminations,
expressions and occlusions. The output of the face detection function (h) of a
2 https://developer.twitter.com.
3 https://www.instagram.com/developer/.
4 https://www.flickr.com/services/api/ or software Bulkr.
5 https://github.com/kpzhang93/MTCNN face detection alignment.

https://developer.twitter.com
https://www.instagram.com/developer/
https://www.flickr.com/services/api/
https://github.com/kpzhang93/MTCNN_face_detection_alignment
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Fig. 2. Landmarks of a face and estimation of its pose vector.

given image I is bounding box B which defines a rectangle that contains the
face:

{Bk}Nk=1 = h(I). (1)

For N faces detected in image I, we define the founding box Bk = (x1, y1, x2, y2)k,
where (x1, y1)k are the coordinates of the top-left corner and (x2, y2)k the coordi-
nates of the bottom-right corner of detected face image k. From these coordinates,
it is possible to extract face image Fk, i.e., the rectangular window of I defined by
the mentioned two corners.

2. Face Location and size: From the bounding box of the face detected in
previous step, it is possible to establish the location and the size of the face
image. Typically, the center of mass of the bounding box is used: m̄k = (x̄k, ȳk),
with x̄k = (x1 + x2)k/2 and ȳk = (y1 + y2)k/2. This information can be used
to establish the closeness between two faces i and j as dij = ||(mi − mj)||. In
addition, the size of an image can be computed as the geometric mean of the
length of the sides of the rectangle: sk =

√
(x2 − x1)k(y2 − y1)k.

3. Quality: Typically, face images that are smaller than 25 × 25 pixels, i.e., sk <
25, are not so confident because of the low quality and low resolution. In addition,
for the measurement of quality of a face image, we use a score based on the ratio
between the high-frequency coefficients and the low-frequency coefficients of the
wavelet transform of the image [14]. We call this quality measurement qk for
face image k. Low score values indicate low quality. For this end, we resized
all face images to 64 × 64 pixels before the blurriness score is computed. It is
recommended to remove those face images that are too small or too blur.

4. Age, gender, expressions: The age, gender and facial expressions of a per-
son can be estimated from the face image. Many models based on convolutional
neural networks have been trained in the last years with promising results. The
library py-agender6 offers very good results for age and gender estimation. The
age, given in years, is estimated as a real number and can be stored in vari-
able ak for face k. On the other hand, the gender is estimated as a real number
between 0 and 1 (greater than 0.5 means female, otherwise male). The gender
value for face k can be stored in variable gk. Finally, the facial expressions are

6 https://pypi.org/project/py-agender/.

https://pypi.org/project/py-agender/
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typically defined as a vector of seven probabilities for the seven main expressions
[2]: angry, disgust, scared, happy, sad, surprised, and neutral. Thus, ek can be
defined as the 7-element vector of expression for face k. It can be established,
for example, that if the fourth element of vector ek is maximal, then face image
k shows a smily face.

5. Face Landmarks: In the same way, using a large dataset of face images with
different poses, models have been trained to extract landmarks in a face image.
Typically, 68 facial landmarks can be extracted from a face image. They give
the coordinates (x, y) of the eyebrows (left and right), eyes (left and right), nose,
mouth and jawline. For each of them several salient points are given (see Fig. 2).
For this end, we use the library Dlib7 with very good results. The landmarks of
image k are stored in the 68-element vector lk.

6. Face Pose: We use a simple and fast method to establish the pose of the face
given its 68 landmarks as follows (see Fig. 2): we define a quadrilateral with the
four corners defined by the center of mass of each eye and the extrema points
of the mouth, we compute the center of this quadrilateral and we define the
vector that starts at this central points and goes through the point of the tip
of the nose. The vector is shifted and located between the eyes. We call this
vector vk for face image k. The direction of the vector indicates approximately
the direction the face is looking to.

7. Face Descriptor: Face recognition by using complex deep neural network
architectures trained with millions of face images has achieved a tremendous
improvement in the last years. The models have been trained with thousands of
identities, and each of them with thousands of face images. The idea is to use
these models and extract the descriptor embedded in one of the last layers. These
kind of descriptors are very discriminative for faces that have not been used in the
training. That means descriptors extracted from face images of same/different
subjects are similar/different. Thus, the idea is to extract a descriptor x, a
column vector of d elements, for every face image:

xk = f(Fk) (2)

We use descriptor with uni-norm, i.e., ||xk|| = 1. In our experiments, we used
many trained models (like VGG [13], FaceNet [17], OpenFace [1], Dlib [8] and
ArcFace [4]). Our conclusion is that ArcFace, that computes an embedding of
d = 512 elements, has achieved outstanding results comparing its performance
to human vision in many complex scenarios. Thus, we can establish that for
face images i and j of the same person the dot product xT

i xj is greater than a
threshold. For ArcFace, in our experiments we set the threshold to 0.4.

8. Face Clustering: The idea of face clustering is to build subsets (clusters) of
faces that belong to the same identity. Typically, face clustering works using a
similarity metric of the face descriptors, because face images of the same identity

7 http://dlib.net/face landmark detection.py.html.

http://dlib.net/face_landmark_detection.py.html
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should have similar face descriptors. Thus, the task is to assign –in an unsuper-
vised way– all similar face faces to one cluster considering that different faces
must belong to different clusters. For a set of m face images, in which face image
Fk has a face descriptor xk computed by (2), face clustering assigns each descrip-
tor xk to a cluster ck, for i = 1 · · · m. Thus, face images of the same identity
have the same cluster number (e.g., if face images 10, 35 and 221 are from the
same subject, then c10 = c35 = c221). For this end, we use an agglomerative
hierarchical clustering [12]. Since our descriptors has unit norm, we use cosine
similarity as metric, the closer to one is the dot product xT

kxj , the more simi-
lar are the faces Fk and Fj . The algorithms of face clustering is as follows: (i)
each face image starts in its own cluster, (ii) we merge cluster i with cluster j
if the maximal cosine similarity of all combinations of members of both clusters
is maximal for all i �= j and i < j, (iii) last step is repeated until the maximal
cosine similarity is below to a threshold.

2.3 Facial Analysis

In this section, we present our proposed facial analysis. We assume that the
images have been downloaded from the social network, the duplicated images
have been removed and the existing metadata has been stored as explained in
Sect. 2.1. Before we perform the analysis, it is necessary to do some preliminary
computations as explained in Sect. 2.2 to generate a relational database of two
tables, one for the images and one for the faces. For each face image of all images
we have following information, bounding box, size, quality, location, age, gender,
expressions, landmarks, pose, face descriptor and face cluster.

0. Preliminary Computations: The idea of our approach is to analyze a set I
of n images {Ii}, for i = 1 · · · n. The images of set I should not be duplicated. It
is recommended to follow the procedure explained in sub-section 2.1.2 for images
downloaded from Twitter to avoid duplicate ones. We detect all faces of I using
function h of (1) explained in sub-section 2.2.1. All detected faces are stored as
set F of m face images {Fk}, for k = 1 · · · m. In addition, we store in vector
z of m elements the image index of the detected face image, i.e., zk = i, if
face image Fk was detected in image Ii. Furthermore, the m bounding boxes of
the detected faces are stored in matrix B of m × 4 elements with coordinates
bk = (x1, y1, x2, y2)k for face image k.

After face detection is performed, for each face image k, we compute the size
(sk) and the quality (qk) as explained in sub-sections 2.2.2 and 2.2.3. It is highly
recommended to remove from F those images that are too small of too blur.
Afterwards, we compute for the remaining face images the age (ak), the gender
(gk), the seven expressions (ek), the 68 landmarks (lk), the pose vector (vk)
the face descriptor of d elements (xk) as explained in sub-sections from 2.2.4 to
2.2.7. It is very useful to define matrix X as a matrix of d × m elements (one
column per face descriptor), in which column k stores descriptor xk. Finally,
we compute the cluster of each face image (ck) following the face clustering
algorithm explained in sub-section 2.2.8.
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1. Search for subjects (recognition): There are two typical ways to search
a person in the set of m face images (with m face descriptors stored in matrix
X of d × m elements). The first one is using an enrolled picture E and its
corresponding descriptor computed by (2) as xe = f(E). The second one is
using a detected face of the group of images. For instance, we find a face in an
image of the set and we want to know where is this person in the rest of images.
In this case, we define xe = xj , where j is the number of the detected face in
the group, and we delete this face from the gallery by setting column j of X
to zero. There are three main approaches that can be used to find the enrolled
person in the images of set I. (a) Similar faces: It is necessary to compute the
similarity between ‘enrolled image’ and ‘gallery images’ as y = XTxe. Thus, we
find all elements yk > θ, that means, images Fk, that are located in bounding
box Bk in image Izk . (b) Clustered face images: using last approach (a), we look
for the most similar face image in the gallery as k = argmax(yk) and we find all
face images that belong to the cluster of face image k, that means the subset of
images that have cluster number ci = ck for i = 1 · · · m. c) Refine: In addition,
we could find those face images that are similar enough to those already selected
face images in previous steps (a) or (b). The output is a list k = (k1 · · · kp) of
the indices of p face images that belong to the person being searched.

2. Analysis of expressions: From list k of face images (that belong to the same
person) we could analyze the expression of each face image of the list. There are
two simple ways to analyze them: a) Average: we compute the average of the
expressions: ē = (ek1 + · · · ekp

)/p. An histogram of ē show the distribution of
expressions across the p face images. b) Predominant expression: we can define
vector ê, in which the element j of this vector is the ratio of face images of k
that have the expression j maximal. For instance, if we have p = 20 face images,
and in 5 of them the expression ‘happy’ (the fourth expression) is maximal, then
ê4 = 5/20 = 25%. Obviously, we could find the happiest picture, by looking for
the face image that have the maximal value in the fourth element of vector e.

3. Analysis of age: Similarly to the analysis of expression, we can compute the
average of the age, we can select the oldest one, or we can sort the face image
according to the estimated ages.

4. Co-occurrences: Using the clustering information we could analyze the other
faces that are present in the images where the person being searched appears. It
is easy to count the number of co-occurrences. For instance, if the person being
searched belongs to cluster ci, it is easy to count the number of images in which
faces from cluster ci and faces from cluster cj are present. We can find the pair
(ci, cj) that has the maximal co-occurrence. In our experiments in family albums,
this pair corresponds typically to couples. In addition, it is very simple to add
some constraints to person cj in the co-occurrence, for example the gender of cj
must be female or male, or the age must be older or younger than a certain age,
or we can select the happiest pictures of persons ci and cj . Moreover, we can
select co-occurrence pairs of face images that are very close to each other, e.g.,
||m̄i − m̄j || < 3(si + sj)/2, and in order to avoid perspective problem, both face
images should have similar size, e.g., |1 − si/sj | < 0.15.
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5. Connections: We can use the pose information in a picture as follows: if we
have a picture with two faces (face i and face j), it is possible to analyze the
face poses (vectors vi and vi) by estimating if the intersection of both vectors
are between of in front of the faces. The distance of the intersection point to the
faces can be used to determine how connected are to each other. In addition, if
the vectors are parallel to each other it can be established that both persons are
looking at the same direction.

6. Attendance: If we have pictures of the same place in different days, and we
have the metadata of the date of the images, it is easy to establish if a person
was present across the days. This is very typical in a student attendance system.

3 Experimental Results

In this section, we report the experiments that we used to validate the pro-
posed approaches. For this end, we used sets of images download from Twitter,
YouTube, Flickr and GitHub. On these sets of images, we tested the following
facial analysis techniques: recognition, expressions, ages, co-occurrences, connec-
tions and attendance.

3.1 Datasets

In order to test our algorithms, we used the following datasets:

1. Twitter - The Beatles: On July 9th, 2019, we downloaded images from
Twitter given the hashtags #TheBeatles and #Beatles, and from the accounts
@TheBeatles and @BeatleHeadlines. In these images, we can observe many
pictures of the famous English rock band ‘The Beatles’ and its members (Paul
McCartney, John Lennon, George Harrison and Ringo Starr) in many poses,
facial expressions and with different ages. This dataset has 1266 images, 452
were removed because they were duplicated, and 2228 faces were detected.

2. Twitter - Donald Trump: On July 19th, 2019, we downloaded images from
Twitter given the hashtags #Trump and #DonaldTrump. In those days, Trump
suggested on Twitter that the legislators that “originally came from countries
whose governments are a complete and total catastrophe” should “go back” to
those “totally broken and crime infested places”8. In the downloaded images,
we can observe many reactions for and against the four mentioned Democratic
congresswomen. This dataset has 494 images, 126 were removed because they
were duplicated, and 677 faces were detected.

3. Flickr - Family Album: On July 18th, 2019, we downloaded from Flickr
twelve different family albums of pictures taken by Sandra Donoso (username
sandrli)9. The pictures are licensed under a Creative Commons “Attribution-
NonCommercial-NoDerivs 2.0 Generic”. In these pictures, we can observe the
8 https://time.com/5630316/trump-tweets-ilhan-omar-racist-conspiracies/.
9 https://www.flickr.com/photos/sandreli/albums.

https://time.com/5630316/trump-tweets-ilhan-omar-racist-conspiracies/
https://www.flickr.com/photos/sandreli/albums
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members of the family in celebrations and visiting vacation places in the last
5 years. This dataset has 1478 images, and 2838 faces were detected.

4. Flickr - Volleyball Game: On July 2nd, 2019, we downloaded from
Flickr the album “VBVBA RVC 2 2010” of pictures taken by Bruce A Stock-
well (username bas68)10. The pictures are licensed under a Creative Com-
mons “Attribution-NonCommercial-NoDerivs 2.0 Generic”. In these pictures, we
observe pictures of different volleyball games played on April 2010 by teenage
players. This dataset has 1131 images, and 4550 faces were detected.

5. YouTube - Films of the 90s: We downloaded the summaries done by
WatchMojo.com of the “Top 10 Most Memorable Movies of 199” and the“Top
10 Movies of the 1990s” (12 min each)11 and took one frame per second to build
the set of images. In these images, we can observe movies like ‘Matrix’, ‘Schindler
List’, ‘Pulp Fiction’, ‘Ghost’,etc. This dataset has 1492 images, and 1449 faces
were detected.

6. GitHub - Classroom: A dataset for student attendance system in crowded
classrooms was built in [11] with pictures taken in 25 sessions. The dataset
contains pictures of a classroom with around 70 students12. In each dataset,
approx. 6 pictures have been taken per session. Very useful for this dataset is the
metadata of the dates on which each picture was taken. With this information, it
is possible to establish the attendance record of each student previously enrolled
(an enrolled face image is available for all students). This dataset has 153 images,
and 5805 faces were detected.

3.2 Experiments

For all datasets mentioned in previous section, we performed the preliminary
computations of section 2.3.0. For each analysis mentioned in Sect. 2.3, we show
in this section at least one example.

1. Search for subjects: Given a face image of a volleyball player, in this
example we show how this person was searched in all images of dataset ‘Flickr-
Volleyball Game’. The person was found in 170 images, twelve of them are
shown in Fig. 3. We can see that the person was perfectly found in very complex
scenarios with different facial expressions, poses and occlusion. The reader can
check the effectiveness of the method by recognizing the number ‘15’ in her
T-shirt.

2. Analysis of expression: Given a face image of Paul McCartney, in this
example we show how he was searched in all images of dataset ‘Twitter-The
Beatles’, his facial expressions were analyzed and the happiest pictures was dis-
played. 100 face images were sorted in a descending way from more to less happy
(see Fig. 4). We can see that after this analysis, in 21% of the pictures in which
he appears, the expression ‘Happy’ was maximal.
10 https://www.flickr.com/photos/bas68/albums/72157624234584197.
11 https://youtu.be/5GvBPtlb-Ms and https://youtu.be/dA-KcQ5BzUw.
12 https://github.com/mackenney/attendance-system-wacv19.

https://www.flickr.com/photos/bas68/albums/72157624234584197
https://youtu.be/5GvBPtlb-Ms
https://youtu.be/dA-KcQ5BzUw
https://github.com/mackenney/attendance-system-wacv19
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3. Analysis of age: Given a face image of each member of The Beatles, in this
example we show how they were searched in all images of dataset ‘Twitter-The
Beatles’, their ages were analyzed and 100 face images of each one were sorted
in ascending way from younger to older (see Fig. 5). We can see that the method
is able to recognize and sort face images of Ringo Starr and Paul McCartney
when they were very young (around 20 years old) and how they are now (older
than 75 years old).

4. Co-occurrence: Given a face image of a young man, in this example, we
search pictures in which he appears with other persons in all images of dataset
‘Flickr-Family Album’. We select from them the most present woman and show
the pictures in which he and she appears together. The result is shown in Fig. 6.
It is very impressive to see that the pictures correspond to a couple in different
moments of its life.

5. Connections: Given pictures extracted from dataset ‘YouTube - Films of
the 90s’, it is possible to analyze the pose vectors of the faces as shown in Fig. 7.
In another experiment, given a face of Donald Trump, in this example we show
how he was searched in all images of dataset ‘Twitter-Trump’. We select one
picture and we analyze the connections, that means which persons are close to
each other, and which pairs are looking to each other (see Fig. 8). In addition,
we can cluster them by closeness and compute a graph of connections: ‘A → B’
means person A is looking to person B, ‘A - - - B’ means the intersection of pose
vectors of A and B is close to the faces of A and B. Moreover, the expressions
of each person can be estimated.

6. Student Attendance: Given pictures of enrolled students, we can establish
the attendance record of each student in dataset ‘GitHub-Classroom’. In this

Fig. 3. Searching a volleyball player in dataset ‘Flickr-Volleyball’.
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Fig. 4. The happiest pictures of Paul McCartney, and his expression analysis.

Fig. 5. 100 face images of each member of The Beatles sorted from younger to older.

Fig. 6. Female co-occurrences of young man in dataset ‘Flickr-Family Album’.
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Fig. 7. Connections in face images of dataset ‘YouTube - Films of the 90s’.

Fig. 8. Connections and expressions in a picture of dataset ‘Twitter-Trump’ (see text).

Fig. 9. Student attendance record of three students in 25 sessions.

example, we search three students in 25 sessions. The results are shown in Fig. 9,
in which the attendance was 100%, 96% and 68%. It is very easy to see when
students 2 and 3 were absent.
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4 Final Discussion

In this paper, we presented how easy is to develop very effective applications
with open source tools. From a group of pictures (downloaded for example from
social networks), we can build a relational database of the images with their
faces and facial attributes. With a simple query on this database we can retrieve
very accurate information, e.g., we can search very quickly a person, extract age,
gender, and facial expressions, find the person that most frequently co-occurred
with him/her, the connections and the other persons that he/she is watching,
etc. Surprisingly, no training is necessary, because the required deep learning
models are already trained and available in public repositories. Thus, anyone
with certain computer skills can use (or misuse) this technology.

Face analysis has been assimilating into our society with surprising speed.
However, privacy concerns and false identification problems in facial recognition
software have gathered an anti-surveillance movement13. The city of San Fran-
cisco, for example, recently banned facial recognition technology by the police
and other agencies14. We think that the warnings are clear and it is time to
discuss the social and ethical challenges in facial analysis technologies. In this
way, we can reduce errors that have severe social and personal consequences.

In this direction, some ethical principles that can be considered when using
and teaching a technology based on facial analysis are the following:

• It must respect human and civil rights such as privacy and non-discrimination.
• It must not decide autonomously in cases that require human analy-

sis/criteria.
• It must be developed and implemented as a trustworthy system15.
• Its pros and cons, such as recognition rates and false matching rates, must

be rigorously evaluated before operational use.
• It must be lawful, that means capturing, processing, analyzing and storing of

images must be regulated and accepted by the individuals.

Since there is no clear regulation in this field, we believe that our community
should discuss the scope and limitations of this technology in terms of the defi-
nition of good practices, standards, and restrictions when using facial analysis.
It is time to deepen our understanding of the ethical impact of facial analysis
systems, in order to regulate and audit these processes.

Acknowledgments. This work was supported by Fondecyt Grant No. 1191131 from
CONICYT, Chile.

13 https://www.biometricsinstitute.org/facial-recognition-systems-and-error-rates-is-
this-a-concern/.

14 https://edition.cnn.com/2019/07/17/tech/cities-ban-facial-recognition.
15 https://ec.europa.eu/digital-single-market/en/news/ethics-guidelines-trustworthy-

ai.
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Abstract. Customer satisfaction is very important to keep customer
retention for any food and retail stores. Waiting time has been found
is one of the most important factors to influence customers’ shopping
experience and purchase termination rate and customers’ perceptions of
retailer service offerings. Increasing customer retention can be achieved
by avoiding long waiting time queuing at the checkouts. This paper inves-
tigates the current different types of sensor-based technologies in location
detection to capture the customers’ behavior and then provides a funda-
mental optimization mechanism to avoid the long waiting time econom-
ically. Various approaches to identify a person’s location are compared
in terms of principle and operation. Each makes its contribution to con-
trolling the resources in a better way depending on the expected number
of customers at checkout. Through an experiment on a supermarket,
this paper contributes value to the improvement of operational resource
planning, overcapacity avoiding while not increasing or reducing queues
and waiting time of customers. The recommendation that waiting time
is perceived by customers as a factor of lower service quality to business
managers is given finally.

Keywords: Customer satisfaction · Sensor · Location detection ·
Waiting time optimisation

1 Introduction

Food and retail stores have been aware that increasing customer retention would
also increase customer satisfaction [1]. Waiting time is critical to influence cus-
tomers’ shopping experience and purchase termination rate and more generally
customers’ perceptions of retailer service offerings [2]. Paper [3] found that the
psychological factors at the checkout area may influence perception, called the
irritation of waiting. To increase customer retention can be achieved by avoiding
waiting queues at the checkouts [4].

A custom-designed optimum is required to avoid waiting queues of customers
at checkouts, also required to attend to them as economically as possible. Obvi-
ously, cost-effectiveness increases when the customers experience reduced wait-
ing and dwell times, and when this is achieved with an optimal attend capacity.
c© Springer Nature Switzerland AG 2020
J. J. Dabrowski et al. (Eds.): PSIVT 2019 Workshops, LNCS 11994, pp. 30–41, 2020.
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Apparently, optimization of waiting time and the needed resources at the check-
outs requires a forecast of the customers’ inflow into the checkout area. A various
sensor-based technologies have been developed to get more dynamic customers’
information for better business decision-making. For this reason, the supermar-
ket can be divided into shopping and a checkout area. The inflow into both areas
is measured to get the number of customers separated. This paper investigates
the current different sensor technologies applied in location prediction systems
to provide fundamental data for further customer satisfaction optimization.

The paper is organized as follows. Section 2 introduces various sensor plat-
forms. Section 3 discusses the location prediction methods developed so far.
Section 4 summaries their applications for the retail environment. Then experi-
mental results are presented in Sect. 4. Finally, we conclude in Sect. 5.

2 Sensor Technologies

A variety of sensor technologies is available for collecting dynamic informa-
tion about customers’ numbers in the supermarket or other community areas.
Mechanical systems were the first generation of counting systems. For exam-
ple, a turnstile counts the customers when passing. Because of the separation of
the customers, these counting systems have high accuracy. But it is not possi-
ble to pass the entrance simultaneously. Later on, electronic counting systems
appeared. The electronic counting systems are divided into categories: Those
mounted at floor or ceiling and “active” or “passive” sensors. In the following,
we give a short introduction of these technologies in terms of the principle of
operation and measurement, operational conditions and features of each type.

2.1 Photoelectric Sensor Systems

Photoelectric sensor systems are used in a pair of transmitter and receiver. The
transmitter sends a horizontal linear light beam to a photosensitive sensor ele-
ment - the receiver. When a person breaks this light beam a signal is sent to the
electronic device and interprets this as counting an object. Photoelectric sensor
systems are “passive” systems. In retail stores or supermarkets the transmitter
and the receiver can be installed directly at the entrance. Customers have to cross
the light beam of the photoelectric counting system. To avoid miss detection,
multiple paired need to be used in an unobstructed detection zone. This system
is cheap, but its light beam limited by distance, and blind spots. Accuracy of
detection decreases depending on the width of entrances.

2.2 Radar and Laser Systems

Radar and Laser systems are “active” systems. The sensor sends an active signal
and this signal is interpreted by reflecting the environment. In the case of radar
systems, the signals are electromagnetic waves (radar beam). Laser systems use
a focused light beam (laser beam). The respective environment of the object
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generates a specific reflective characteristic which can be interpreted as an entry
of a person. The field of view is diversified by using a rotating mirror inside
the laser system. If two or more parallel laser beams are used, grid flooring is
applied to the area, in which case the direction of motion can be determined.
Radar systems determine the direction of motion by using the Doppler Effect.
It is the change in frequency of a radar wave for an observer moving relative to
its source. Both sensor types can be installed at ceiling height. The accuracy of
these systems depends on the surface texture of the environment or objects.

2.3 Infrared Systems

Infrared systems differ between “active” and “passive”. Active infrared sys-
tems are similar to radar systems. They send an infrared beam and analyse the
reflected beam. An evaluation unit interprets this as an object. These active sen-
sors are called “position sensitive devices” (PSD-sensors). The passive infrared
systems detect heat sources by measuring the temperature of the environment.
Since the body temperatures of humans have a different temperature compared
with the surrounding environment, the sensor can detect people easily.

These systems are typically mounted at the ceiling height of an entrance.
They are usually used for door openers or revolving doors. Its advantage is that
the passive system will not count objects or anything else that is not human
body temperature. But the passive system is affected by sudden temperature
and light changes. Furthermore, the passive system is affected by immobile per-
sons because the person becomes part of the background. That means the passive
system is affected by changes in the background, especially in quick tempera-
ture changes and strong sunlight. But active systems are unaffected by sudden
temperature and light changes. Furthermore, they are unaffected by immobile
passengers. These active systems are more accurate than passive systems. To
cover wide entrances, an array installation can be set up.

2.4 Video-Based Two-Dimensional (2D) Systems

Video-based systems are composed of a video camera and a downstream pro-
cessing unit. Video-based two dimensional counting systems are mounted at the
ceiling height of the entrance.

Fig. 1. Background and head counting (Vitracom AG)
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This processing unit provides the images continuously. The counting soft-
ware evaluates the counting events by a virtual counter line, which is placed
in the field of view. Either background counting based or head counting based
can be seen in Fig. 1. The counting results are stored at the processing unit
and can be fetched for further processing by the network. However, if an object
does not move anymore, the object becomes part of the background and will
not be detected anymore. The counting system using IP camera can be main-
tained and validated remotely. The accuracy of such systems is very high, even
in crowded situations. Characteristics like shape, colour, velocity and size or
kinetics behaviour can separate objects or pets from people. Such video sensors
can also evaluate more features such as dwell time of people in certain areas or
detection of the walking path in a store of customers. But they are affected by
vibrations and changing light conditions, etc. The image quality and the image
processing software influences accuracy.

2.5 Video-Based Three Dimensional Systems

One camera can only capture 2-D information. So it faces the difficulty when
occlusion happens. 3D systems provide not just punctuate or area information,
but 3D distance or height information about the object. 3D sensor systems sim-
ulate humans’ binocular vision. Two camera lenses that are calibrated with each
other have a different perspective of the scene. By triangulating the virtual visual
beam, the distance between each pixel can be reconstructed. Figure 2 shows the
stereoscopic camera of Hella Aglia. Another possibility of 3D measurement is
Photo-Mixing-Devices (PMD). This camera system measures the time of flight
of a light signal between the camera and the subject for each point of the image.
These “time-of-flight”-cameras use a coordinate infrared beam. The reflection
of this infrared beam is measured by an optical sensor chip. Using the time
of flight, the distance of the environment point of the image is continuously
determined. Video-based three-dimensional counting systems were mounted at
the ceiling height of the entrance. More rich information can improve the accu-
racy of video-based three-dimensional sensor systems who are less affected by
vibrations and changing light conditions, etc.

2.6 IoT Based Wireless Sensor Networks

The rapid progress of the Internet of Things (IoT) has accelerated the devel-
opment of wireless sensor networks dramatically. With the advances in wireless
communication, now it is possible to utilise wireless signals to track people who
are with a smartphone. Meshlium Scanner [5] is a new product of the Libelium
which allows detecting iPhone and Android devices or any device which works
with WiFi or Bluetooth interfaces. The devices can be detected without the
need of being connected to a specific Access Point, enabling the detection of any
smart phone, laptop or hands-free device which comes into the coverage area of
Meshlium AP scanner. Thus such a product can be applied in the supermarket
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Fig. 2. Video-based three-dimensional system in the supermarket (A stereoscopic cam-
era)

to detect the number of people at a specific time. Hence, the data collected can
be used to evaluate and analyse the real traffic of people.

3 Existing Location Detection Methods

Location can be identified later by checking the captured sensors’ data. There
are several location detection techniques developed: a topological graph-based,
grid searching based, Markov Models or Hidden Markov Models, Bayesian Net-
works, self-organized maps, Neural Network approaches and the state predictor
methods. Following we compare and contrast these various methods in details.

A topological graph-based method [6] requires sensors that relate to the lay-
out of an environments. Topological graphs seem to be robust to the fragility
of purely geometrical methods. Due that the topological approach depends on
the semantics of the environments, it is more capable than others in managing
reactive behaviors, especially in large-scale cases [7]. However, this approach is
the coarseness of its representation. Thus these methods may lack the details of
an environment. It only provides rough information about the person’s location.
To overcome its shortcomings, Shi et al. [7] proposed a hybrid map combin-
ing topological and the metric paradigm of the grid-based approaches. Their
research showed that the positive characteristics of both can be integrated to
compensate for the weakness of each single approach. Moreover, Shi et al. [7]
combined the topological paradigm with the grid-based paradigm. They used
the topological map to represent the building map and the grid-based approach
for the localization.

While grid-based approaches [8] can represent arbitrary distributions over
the discrete state space. However, the requirement of computational and space
complexity to keep the position grid in memory and to update it for predictions.
The complexity grows exponentially with the number of dimensions and supposes
using a grid-based approach for low-dimensional estimations [6]. They apply
the Bayesian Filtering to the Voronoi graph has the advantage that they can
represent arbitrary probability densities.

Furthermore, various machine learning-based methods have been integrated
into location detection for higher accuracy. Gellert et al. [9] improved accuracy
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of 84.81% by using the Hidden Markov model. They predicted the next location
of person movements. Ashbrook and Starner [10] used in their study a Markov
chain model and K-means clustering algorithm to predict future movements.
They clustered the GPS data by K-means algorithm to find significant locations
at which persons stayed for a long time. They designed a Markov chain model
with the historical movements among these locations. They found in their study
that changes in routine take longer in their developed model. For that reason,
they propose a way of weighting certain updates. Zhou [11] proposed the Markov
object location prediction to get the initial position of the object for compressive
tracking. This method can locate the object accurately and quickly, and the
classifier parameter adaptive updating strategy is given based on the confidence
map.

On the other hand, the Bayesian filter can converge to the true posterior
probability even in nonlinear dynamic systems. Furthermore, they claim that the
Bayesian filtering approach compared with the grid-based (cellular automaton)
approaches are more efficient because their focus is on their resources (parti-
cles) on regions in state space with high probability. Nevertheless, the efficiency
depends on the number of samples used for filtering [6].

The complexity grows exponentially in the dimensions of the state space in
all of the presented methods. Furey et al. [8] noticed that a researcher applying
these methods has to be careful with high-dimensional estimation problems. This
complexity of cellular automaton can be avoided by representing the area in a
non-metric way using a topological approach [6]. The researcher claimed that
motion models in general use topological approaches and give a discrete or fixed
number of probabilities. Furthermore, they notice that the efficiency increases
in areas where no sensors are available for measuring people.

Furey et al. [8] compared different filter implementations to measure how
well the different approaches can estimate the location of people given appropri-
ate sensors. It seems that cellular automaton or grid-based approaches can reach
arbitrary accuracy. High accuracy means on the other handy high computational
costs. Using Bayesian Kalman filters means robustness and efficiency regarding
computation and memory. Han et al. [12] tried to use a Self-Organising Map
based on Ashbrook and Starner [8] for learning without any prior knowledge.
Self-Organising Maps overcome the gap of missing prior knowledge of moving
patterns. Such Self-Organising Maps are learning neural networks that can pre-
serve the topology of a map as they create it.

Applying it to a Markov chain Han et al. [12] converted GPS data into
a significant pattern. Hence the researcher can predict the next location of a
person by the output from the Self-Organising Maps. Jiang et al. [13] designed a
multi-order Markov Chains to take consideration of users’ current location and
associated historical mobility data to predict human mobility.

A further way to predict the movement of persons is neural networks. Vintan
et al. [9] suggested a prediction technique to anticipate a person’s next move
by using neural networks. In their study, they used neural predictors of the
multi-layer perceptron with backpropagation. Their results show an up to 92%
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accuracy of pre-trained cases of next location prediction. Mantyjarvi et al. [14]
applied the same multi-layer perceptron classifier to recognize a human’s motion
by using neural networks.

Assam [15] proposed a robust location predictor for check-in data by using
Wavelets and Conditional Random Fields (CRF) with an assumption that check-
in generation is governed by the Poisson distribution. In [16] a novel model called
Space Time Features-based Recurrent Neural Network (STF-RNN) was pro-
posed for predicting people’s next movement based on mobility patterns obtained
from GPS devices logs. Through extracting the internal representation of space
and time features automatically, this model improves the capability of RNN and
shows good performance to discover useful knowledge about people’s behavior
in a more efficient way.

So, location detection does play a key role in various retail environments.
[17,18] processed and characterise queuing data of inflow and outflow through
distribution models. [19–22] focused their study about queuing control theory
on retail stores. The research [23] calculates a deterministic model dependent
on the current in- and outflow also at the shop area and the checkout area. The
methods mentioned before present researches that measure just the inflow and
outflow of a supermarket [23,24]. The customer’s dwell time is estimated from the
captured data. Therefore, the system developed should control the operational
resources depending on the expected number of customers at the checkout desk
in a supermarket. Our proposed approach considers monitoring of inflow and
outflow of the service area together with monitoring of queue length and inflow
to the checkouts, to better differentiate between dwell time in the shop area and
processing in the checkout area.

4 Experiment and Results

4.1 Setup

Based on the video-based counting system, we investigate a supermarket that
has the following settings as an example.

The selected sale area is approximately 8000 m2, which includes a mall with
a bakery, dry cleaner, post office, bank, a pharmacy and a newspaper kiosk. The
building has two main entrances. The supermarket has 12 checkouts and 4 self-
scanning checkouts. To reach the entrances of the supermarket area, customers
have to pass the mall area first and then use one of the two entrances into the
supermarket which are available. The width of each main entrance is 8 m, the
width of each entrance into the supermarket is 3.10 m, and the width of the
checkout line is approximately 28 m.

The research assumes that the inflow of subjects arrives in an observed time
interval with a fixed time lag. One more assumption is that the checkout time
during the time interval at the checkout is constant. That means the system
is deterministic. The research assumes if the rate of inflow and checkout rate is
balanced, the waiting queue length doesn’t change. In reality, this is not possible,
because with regard to the waiting queue theory the randomized interruptions of



Location Analysis Based Waiting Time Optimisation 37

events are continuously increasing. According to the state of the waiting queue
theory, the present challenge is an interaction between multiple processes which
are characterized by non-steady Poisson processes. This is the basis of the waiting
queue models which are formally defined in the waiting queue theory.

In this paper, to leave the supermarket, all customers have to pass through
one of these checkouts. The selected 3D video technology has to be installed at
the point of entering/leaving the main shop (includes the mall) and the point of
entering into the supermarket area. Furthermore, the counting sensors should be
placed at the checkout area in order to count the customers entering this area,
to observe the waiting queue and to count the leaving customers of the checkout
area.

4.2 Results and Analysis

To achieve a good and realistic forecast of dwell times, the sample supermarket
area has to be divided into the shop area and the checkout area. By the entering
of the customers into the checkout area, it can be assumed that the operational
resources requested are to be used. If the customers are not in the checkout area
and just in the flow field, no staff are requested at the checkouts. Besides the
inward counting of customers in the supermarket, this research also counts the
inward flow of customers to the checkout area. Furthermore, the length of the
waiting queue in front of each checkout is monitored. In our experiment, the
inflow, outflow of customers have to be prepared for presentation, analysis and
interpretation. To handle the huge amount of data, the average of the queue
length of all checkouts during one day will be considered. In addition, to avoid
the irregular behavior of customers, a variation of the number of customers, the
minimum measured period time is one week (Monday to Saturday) without any
holiday.

Table 1 presents the average inflow and outflow values from Monday to Sat-
urday of 12 months monitored. We noticed that Fridays and Saturdays have the
most customers. The supermarket has fewer customers on other days. External
effects and different situations like public holidays, bridging days, seasons (e.g.
Christmas, Easter) influence the behavior of customers. The proposed system
treats these as the new situation.

Table 1. Average values of each weekday

Average inflow Average outflow

Monday 7923 8134

Tuesday 7353 7445

Wednesday 8007 8169

Thursday 8005 8133

Friday 10026 10174

Saturday 13796 14255
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Fig. 3. A sample in- and out- flow trend of customers

Also, Fig. 3 presents the structure of the trend of inflow and outflow during
a weekday for three weeks in April. We compared three weeks daily data across
different months, we found similar buying behavior of customers. The summary
of the system performance is shown in Table 2.

Table 2. Overview of system performance

Terms Value

Dwell time (mins.) 6–55

Handling rate (seconds) 10–60

Opening hours 7 am–10 pm

Average handling rate (seconds) 21

Conversion rate 81%

According to our proposed counting method, the dwell time is not affected
by the purchase process, and can be evaluated separately. In general, considering
the desired customer satisfaction which is expressed in the waiting queue length,
we set the maximum queue length is 3 customers. We noticed that there is a
difference between inflow and outflow. The reason for this was introduced by the
counting system. The variance between the inflow and outflow would represent
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the dwell time. Based on the estimation of the dwell time, the opening and
closing of checkouts have been scheduled in a better way. Thus it helps relief the
stress of staff. With our current counting system, it is not accurate enough. In
the future, people tracking and trolley tracking system can increase the accuracy.

Depending on the captured dynamic process data, a forecasting model has
been developed. Process data are the inflows of customers at the entrance, num-
ber of customers entering the checkout area, current waiting queue length and
the number of available checkouts. With these parameters staffing has to be
sufficient in order to keep the waiting queue time short.

The principle of making the decision is to provide additional or less opera-
tional resources is a cost-benefit calculation. On one hand, the personnel costs
at the checkout area should be as low as possible, and on the other hand, the
waiting queues length or respectively the waiting time should not be too long
to annoy the customers. For that reason, the optimum value of the number of
available resources has to be determined using the following cost function K:

#   »

NB : K(
#   »

NB = min(K(NB , jA, jO, L,
#»

Z) (1)

where (
#   »

NB) is the amount of requested resources, NB the available resources,
jA the inward flow into the checkout area, jO the outward flow of the shop, L
the length of the waiting queue and the vector

#»

Z as a combination of boundary
conditions. Boundary conditions can be, for instance, a minimum time period
for operational resources. This boundary condition is important because an eval-
uation unit based on the inward flow, the outward flow and the waiting queue
length is necessary to cover short-term fluctuations. Otherwise this could result
in a very high number of opening and closing of checkouts (as Fig. 4 shows),
which would be neither economical nor reasonable for the staff which has to deal
with the customer.

To avoid this fluctuation, the controller has to evaluate if it is necessary to
change the status in a new state which is persistent for relevant time periods,
or transient just for short time periods. If such a trend is not persistent, there
is no change in the actual number of open checkouts.

Fig. 4. Long-term-view of the numbers of openings and closings

5 Conclusions

This paper investigates the problem of how to avoid waiting queues of cus-
tomers at checkouts as economically as possible. We found that cost effectiveness
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increases when the customers experience reduced waiting and dwell times, and
when this is achieved with an optimal attend capacity. Since these requirements
conflict, the best optimisation could be achieved through the opening and clos-
ing checkouts. Thus, it helps to improve the staff and customers’ satisfaction;
improve work processes/stress reduction and control waiting time, checkout effi-
ciency and conversion rate. Moreover, similar problems and solutions can be
applied to different other fields such as telephone switching systems, comput-
ers and communication systems, telecommunication systems, SAN (storage area
network) and recovery systems, economy, quality control, transportation systems
and much more.
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Abstract. The German Aerospace Center (DLR) has developed and launched
two small satellites (TET-1 and BIROS) as part of the FireBIRD mission. Both
are capable to detect and observe fire related high temperature events (HTE) from
space with infrared cameras. To enable a quick localization of the fires direct
georeferencing of the images is required. Therefore the camera geometry mea-
surements with laboratory set-up on ground have to be verified and validated using
real data takes. This is achieved using ground control points (GCPs), identifiable
in all spectral bands, allowing the investigations of the whole processing chain
used for georeferencing. It is shown how the accuracy of direct georeferencing
was significantly improved by means of in-orbit calibration using GCPs and how
the workflow for processing and reprocessing was developed.

Keywords: Small satellite · Geometric calibration · Line sensor · Infra-red (IR) ·
Accuracy assessment · FireBIRD

1 Introduction

Different scientific studies have been made investigating relevant optical sensor system
parameter and technical concepts using small satellite systems for mapping high tem-
perature events starting in the early 1990 [1, 2]. In order to detect and observe fire from
space, the German Aerospace Center (DLR) developed and launched two small satel-
lites (TET-1, BIROS) in the context of the FireBIRD (Fire Bispectral InfraRed Detector)
Mission. The mission aims to significantly improve detection, mapping and analysis of
HTE [3] compared to currently existing sensor systems.

The FireBIRD IR sensor systems are based on cooled photodetectors. Various meth-
ods for HTE detection and quantification have been developed. While single band meth-
ods rely on the robust demarcation of background pixels and higher temperature pix-
els, considered as being anomalous, the FireBIRD systems facilitate the application
of the widely used bi-spectral algorithm approach introduced by Dozier [4], using the
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mid-infrared (MWIR) and longwave-infrared (LWIR) channels. While this meanwhile
proven concept has shown its capabilities successfully in various case studies [5–8],
multi-channel data processing approaches require an accurate co-registration of the data
(Fig. 1).

Fig. 1. TET-BIROS constellation (animated)

Each of the highly agile satellites with up to 30° off-nadir pointing is equipped with
three line cameras, one in the visible and near-infrared (VIS/NIR) spectral range with
high spatial resolution, used to detect sun glint; one in the MWIR range to measure
high temperatures and one in the LWIR to derive the background temperature with high
precision (Fig. 2).

Fig. 2. Camera sub-assembly. Left: MWIR, center: VIS, right: LWIR, parameters see Table 1
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The main camera parameters are shown in Table 1.

Table 1. The main parameters of the three line cameras

VIS/NIR (three CCD lines FPA) 2 IR cameras (different spectral
ranges)

Center wavelengths 0.51, 0.65, 0.86 μm
(green, red, NIR)

MWIR: 3.8 μm
LWIR: 8.9 μm

Focal length 90.9 mm 46.39 mm

Field of view 19.6° 19°

Detector type CCD array HgCdTe array

No of pixels 3 × 5164 2 × 512, staggered

Quantization 14 bit 14 bit

Pixel width 42.4 m 356 m

Sample width 42.4 m 178 m (staggered)

Swath width 211 km 178 km

This configuration and the corresponding radiometric calibration and processing
allowfire to be detected reliably directly after downlink.Additionally, to be able to inform
the relevant authorities about a detected fire, it is necessary to determine the location of
the fire accurately and quickly. To that end, the FireBIRD satellites have the capability of
directly georeferencing their images. This relies on the position and (exterior) orientation
of the satellite, provided by the Attitude and Orbit Control System (AOCS), as well as
the geometric camera calibration (interior orientation). The AOCS data are mainly based
on GPS (position) and a system of star-trackers and Inertial-Measurement Units (IMU)
for the orientation.

Although the cameras’ interior geometries have already been measured in a labo-
ratory set-up on ground, verification and in this case re-calibration in orbit was neces-
sary. This was necessitated by the occurrence of small changes in the cameras viewing
geometry, possibly caused by the structural loads during launch.

A usual setup for in-flight calibration of a (push-broom) line camera is a set of strips
(line images) of a test field scanned in different directions with ground control points
(GCPs) [9–11]. For a satellite based camera the flight direction cannot be changed
significantly, resulting in a less constrained geometry for calibration. Fortunately the
required accuracy for georeferencing is an order of magnitude lower than the accuracy
of the GPS, allowing us to take the position as given. Also the lever arm between the
satellite’s origin and the cameras’ centers of projections is negligible compared to the
much larger ground sampling distance.

What remains to be determined is the boresight alignment of each camera as well as
the refined interior orientations.
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A special case in terms of line geometry are the MWIR and LWIR cameras, which
enhance the spatial resolution using two staggered lines as shown in Fig. 3 and discussed
in Sect. 2.

For geometric calibration only scenes with highly accurate exterior orientation were
selected. The georeferencing chain was verified using GCPs. The so-called boresight of
each camera (angular misalignment relative to the satellite coordinate system used by
the AOCS) was determined and improved via bundle adjustment. The new boresights
were introduced into the processing configuration and the scenes were reprocessed.

The issue and the proposed solution described in this paper are of special importance
for small, micro and nano satellites. Satellites of these classes have small mass budgets
implying higher sensitivities and instabilitieswith respect to thermal and structural loads.
Approaches for in-orbit re-calibrations are a precondition for such satellite systems.

In the following chapter the in-orbit calibration procedure used for both satellites is
described. The results are shown in Sect. 3 and the lessons learned in Sect. 4. Conclusions
and an outlook are given in Sect. 5.

2 Calibration

For every detector array of every camera a set of geometric calibration parameters is
defined. These are based on the definition of the pointing view of each individual pixel,
with respect to (i) the camera coordinate system, known due to laboratorymeasurements,
(ii) definition of the mounting position of the camera system. With these parameters and
the calculation specification (described below) it is possible to calculate the line of sight
in satellite coordinates for each physical pixel. Using the absolute satellite position and
orientation obtained by the AOCS and the time to synchronize them with the imagery,
the line of sight can be transformed into a global coordinate system, e.g. WGS84 or a
local space rectangular coordinate system, thus allowing direct georeferencing of the
imagery.

In the following the special geometry of FireBIRD’s line cameras are explained. The
parameters of the interior orientation and distortion were not optimized during the in-
orbit calibration because they did not contribute significantly to the achieved accuracy.
However, for the understanding of the geometry of rather unusual focal plane arrays
with staggered lines the following paragraphs may be helpful.

The IR-detector consists of a pair of adjacent lines with 512 imaging pixel each,
where the second line is shifted by a half pixel in line direction (Fig. 3). In combination
with a doubled temporal sampling rate the ground sampling distance is half the size of
the pixel size.

Each of the two staggered line detectors is regarded as one single detector with a spe-
cial geometry. It is described by the following calibration parameters (see Figs. 3 and 4).

• FocalLength c
• FirstPixelX x0 (along track) and FirstPixelY y0 (across track): Position of the first
active pixel of the swath in the detector line coordinate system

• StaggeringOffsetX sx and StaggeringOffsetY sy: Offset of the shifted detector line
with respect to the position in the ideal (non-staggered) case
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• PixelPitch si: Distance between pixel mid-points along the detector line
• LineAngle α: Angle of rotation of the detector line with respect to the image plane
• Distortion k1, k2, k3: Radial symmetric distortion parameters
• AlignmentAngles qR: Rotation of the camera with respect to the satellite coordinate

system (AOCS).

For the VIS/NIR camera the same set of parameters is used with neutral staggering
offsets.

Geometric Calculation: The input for the calculation is the pixel index i, starting with
the value 0 for the first pixel of the swath running over all subsequent pixels in line
direction. For staggered lines, i alternates between the pixels of the two detector lines.
The pixel index refers to the order of pixels within the detector array. This means that in
case of subsampled images, the appropriate scale factors between the image pixel and
the physical pixel have to be applied in order to get the correct position.

Interior Orientation: The position (x, y) of a pixel i on the detector line coordinate
system is calculated as follows:

r = i modulo 2
x = x0 + r sx
y = y0 + si + sy

xs

...
...

y0x0

sx

si

sy

ys

1

0 2

3

4

5

Fig. 3. Parameters of the detector line coordinate system (xs, ys) (Color figure online)

Some pixel indices are denoted in the corresponding symbols for the pixels (blue
boxes). For cameraswithmultiple detector lines on the focal plane (e.g. VIS), the rotation
of the detector line around the optical axis is expressed by the parameter α. The position
of the pixel on the image plane (x′, y′) is then

x ′ = xcos(α) − y sin(α)

y′ = x sin(α) + y cos(α)

Image Distortion: The radial symmetric distortion of the image is modeled according
to Brown’s distortion model [12] with the three radial symmetric parameters k1, k2 and
k3. The distorted pixel coordinate (x′′, y′′) is calculated in the following way from the
undistorted coordinate in the image coordinates (x′, y′).

x ′′
y′′ = x ′

y′ + x ′
y′

(
k1r

2 + k2r
4 + k3r

6
)

wi th r2 = x
′2 + y

′2
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Fig. 4. Rotation of the detector line coordinate system (xs, ys) with respect to the image plane
coordinate system (xi, yi)

Camera Coordinates: The corresponding camera coordinate (X′, Y′, Z′) of the
distorted pixel coordinate (x′′, y′′) is defined to be

⎛
⎝

X ′
Y ′
Z ′

⎞
⎠ =

⎛
⎝

x ′′
y′′
−c

⎞
⎠,

where c is the focal length of the camera. As the focal plane is at a negative z-coordinate
of the camera coordinate system, it is located at the negative z-coordinate −c.

Sensor Alignment: The next step is the transformation of the camera coordinate to the
satellite coordinate system. This is performed in two steps. First, the sensor alignment is
corrected and second, the resulting coordinates are flipped into the satellite coordinate
system.

The camera coordinate system is intended to be almost identical to the flipped satellite
coordinate system, but they are translated and rotated anyway. Whereas the translation
is assumed to be negligible, the rotation is determined during the geometric calibration
procedure. It is a three-dimensional rotation qR.

The satellite coordinates (X, Y, Z) of the camera coordinates vector (X ′, Y ′, Z ′) can
be determined by rotating it with the inverse rotation q−1

R .

Exterior Orientation: Finally, the exterior orientation of the satellite is necessary to
define the geometric relation between the camera and the world (Fig. 5). The exterior
orientation is provided by the AOCS (attitude and orbiting control system), measuring
the satellites position and orientation mainly with a GPS-receiver, two star trackers
and an IMU. While the position is already given in earth centered, earth fixed (ECEF)
coordinates, the orientation has to be transformed from the stellar coordinate system to
the moving earth. This complex system is an elementary part of the georeferencing chain
and was investigated in-depth in the context of the geometric calibration and is beyond
the scope of this paper.

The vector (X, Y, Z) is now given in satellite coordinates and is defined as pointing
in the direction of the pixel i, corresponding to the line of sight.

Using the exterior orientation the vector (X, Y, Z), as well as the center of projection,
can be transformed into the earth centered and earth fixed WGS84 coordinate system.
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Fig. 5. Image and camera coordinates with respect to the satellite coordinate system

The exterior orientation is obtained from the AOCS and is already transformed into
WGS84 coordinates.

Test Field: For almost every part of the world well georeferenced satellite imagery is
available with a much higher ground resolution than the resolution of the cameras of
TET-1/BIROS. So the ground control points can be arbitrary stationary points where the
height is available via SRTM. The challenge is to find points that are clearly visible in
all spectral bands.

For GCP selection the images are mapped on to a reference plane at average ter-
rain height with the nominal camera parameters to obtain unstaggered and roughly
undistorted images (Fig. 6).

Points on waterlines make for good GCPs, as water and land differ in the visual
spectral range as well as having different temperatures and hence a good contrast in
the infrared range. The disadvantage is that water lines can change over time, so care
must be taken to (visually) ensure that the water level was similar at the time when the
reference images were taken.



52 J. Wohlfeil et al.

Fig. 6. ExemplaryGCPs (crosses) clearly identifiable in the different spectral bands. Scene: TET1
Demmin, 1.8.2014 (Table 2). The displayed part shows the Baltic coast line around Stralsund and
Greifswald

Bundle Adjustment: Given the camera model; the exterior orientation and the GCPs,
a bundle adjustment was performed to determine the unknown boresight alignments and
camera model parameters [13].

Relevant Calibration Parameters: During the calibration of TET-1 it became clear
that just determining the boresight of each individual camera clearly improves georef-
erencing accuracy (as expected). However, no significant gain could be achieved by
simultaneously determining the other camera parameters defined in the beginning of
this section. An explanation for this is that the nominal camera parameters are accu-
rate enough for the rather low resolution and/or that they are highly correlated with the
boresight (e.g. x0, y0, and α). This was confirmed at the calibration of BIROS.

Geometric Processing: For the generation of the final data products a geometric pro-
cessing chain was established following the radiometric correction. It uses the exterior
orientation from the AOCS and the interior orientation obtained by the in-orbit calibra-
tion. The interior orientation if the cameras shall remain constant under normal circum-
stances. However, these can vary throughout the life time of the satellite. Therefore it is
essential to keep the optical parameter configurable for data processing, in order to allow
re-adjusting these parameters to the real state of the sensor at a time. For monitoring
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Fig. 7. Overview of geometric processing of TET-1 and BIROS imagery

and especially for maintenance it is crucial to transfer some of the original and derived
parameters used as well as meta information to the final product, e.g. selection parameter
and versioning or simply ground sampling distance. During processing additional plau-
sibility checks are involved and derived dynamic parameters are provided, e.g. ground
track etc. On demand additional geometric data can be generated. Standard metadata are
produced in XML files allowing for simple tools to derive information either to generate
statistics or to look for specific constellations. Such parameters are AOCS state, sensor
state, illumination conditions, or geolocation and orbit parameter, e.g. orbit direction,
roll angle (Fig. 7).

3 Results

TET-1
The calibration of TET-1 was performed on a test field around Demmin, Germany on
1.8.2014 during day time. Mostly on the coast to the Baltic Sea, 23 GCPs were manually
selected and used for the bundle adjustment (top row of Table 2).
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Table 2. TET-1 scenes direct georeferencing accuracies (RMS). The first scene was used for
calibration. The following were used for verification. The lower four scenes were night scenes
where only the LWIR and MWIR cameras were imaging

TET-1 scene #GCPs RMS Use

Demmin (2014/08/01) 23 201 m Calibration

Dominic. Rep. (8.8.2014) 3 545 m Verification

Demmin (2014/09/09) 4 437 m Verification

Italy (2014/10/10) 3 622 m Verification

Kazakhstan (2014/10/23) 11 278 m Verification

Indonesia (2014/10/0) 4 756 m Verification

Darwin (2014/10/22) 3 609 m Verification

Indonesia (2014/10/23) 4 230 m Verification

Table 3. Determined boresight for day scenes with rotation expressed as Euler angles around the
axes X (flight direction), Y (right) and Z (up)

TET-1 camera LWIR MWIR VIS/NIR

Boresight rx −0.157° 0.026° 0.348°

Boresight ry −1.268° −1.242° −1.253°

Boresight rz 2.142° −0.222° 0.253°

The following lines show the accuracy reached with the above calibration at
other scenes. The GCPs were only used as check points for the accuracy of direct
georeferencing. In Table 3 the corresponding boresight alignment angles are listed.

BIROS
Consequently, the same approach was used for calibration and verification of the geo-
metric status and accuracy of BIROS images. A set of 140 BIROS scenes was used
to determine the on-board calibration values of the MWIR and LWIR sensors onboard
of the BIROS satellite and to evaluate the influences of possible error sources on the
direct georeferencing, which had not previously been investigated in detail for the TET
data sets. The scenes were divided into two sets depending on the availability of star
tracker information which serves as highly precise input for the exterior orientation of
the system. This separation revealed that the set with at least one star tracker available
produced a far more consistent set of boresight angles in comparison to scenes with no
contemporaneous star tracker information available. To further reduce complexity of the
data takes and a possible error source, scenes with off-nadir pointing angles larger than
10° were removed, which further reduced the RMS. By clustering the remaining bore-
sight angles, two distinct sets of angles differing by 0.8° in pitch direction (ry) became
evident, which cannot be explained by changes in the boresight. This difference can be
resolved by a positional error along track of 7.8 km. By analyzing the timing events
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and the metadata an irregularly occurring timing error of 1 s in the metadata could be
identified and removed, so the two clusters could be merged into one consistent set of
boresight angles, which is given in Table 4.

Table 4. Determined boresight for BIROS, rotation expressed as Euler angles around the axes X
(flight direction), Y (right) and Z (up)

BIROS camera LWIR MWIR

Boresight rx −0.151° −0.260°

Boresight ry −3.204° −3.824°

Boresight rz −1.089° 1.068°

Using scenes with highest quality exterior orientation (at least one star tracker avail-
able) and exact timing, a direct georeferencing mean accuracy of 419.2 m was achieved
for 32 selected scenes; the best scenes showing an RMS with sub-pixel accuracy. This
solution allows for a significant improvement of the geometric accuracy of the individual
data sets during reprocessing and an automatic mosaicking of the scenes, as observed
by [14] (Table 5).

Table 5. Statistics for direct georeferencing using the determined boresight angles and timing
correction for 32 BIROS scenes with star trackers, MWIR and LWIR

Source #GCPs RMS Use

Mean 32 scenes 4 419 m

Median 32 scenes 4 397 m Calibration

Persian Gulf (2019/05/24), showing minimum RMS 4 156 m Verification

Chile (2018/06/22) showing maximum RMS 5 792 m Verification

4 Lessons Learned

The experiences with real space missions show that even obvious issues and challenges
are often underestimated, e.g. providing a common time base for different subsystems or
defining coordinate systems and their transition matrices. Additionally, the complexity
of an entire system is often underestimated. Companies or research institutes focus
on single units, the overall view goes short, and e.g. the positioning of a star tracker
should be optimized knowing mission operation conditions to maximize star-fix of the
trackers. System simulators can help to overcome this issue. The investigations show the
important role of image quality (IQ) assessment as an integral part of a mission, as the
image reveals the behavior and status of the sensor system (satellite) directly. This begins
with simulation of representative images before launch, the definition of requirements for
the processing software, including updates during the mission and ends with validation
of images taken during the mission.
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For calibration of optical sensors for small satellites a few notes shall summarize the
lessons learned:

• Be aware of the limitations of the on ground calibration processes.
• Include specialists for system design, calibration and data processing into a calibration
team from the very beginning.

• Design an optical system in a way that it can be calibrated in-flight.
• A validation procedure must be an inherent part of the design.

5 Conclusions

Direct georeferencing involves a whole chain of satellite subsystems, such as star track-
ers, IMU, time synchronization, camera, read out electronics, on-board data processing,
and the camera with its subcomponents. A complete verification of the functionality
and performance can only be made under flight conditions. Even though all subsystems
were tested before launch it turned out, that additional work hat do be done to reach the
desired performance (Fig. 8).

Based on detailed investigations, these existing problems, the interior geometry as
well the timing regime could have been detected, analyzed. The described solution was
developed to solve these problems to reach an operational state of both satellites, TET-1
and BIROS, including direct georeferencing. Using high quality AOCS data, subpixel
accuracy can be reached with direct georeferencing,

The presented investigations show the necessity to consider and implement validation
procedures as an integral part of the data processing chain. These tasks in combination
with data quality assessment procedures are the prerequisite for standardized product
development activities within further mission activities.
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Fig. 8. Mosaic of twoBIROSscenes fromKuwait (MWIR, 2018.05.13 and2018.08.29) processed
using direct georeferencing with optimized boresight angles (Table 4)
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Abstract. Effective image resolution is an important image quality fac-
tor for remote sensing sensors and significantly affects photogrammet-
ric processing tool chains. Tie points, mandatory for forming the block
geometry, fully rely on feature points (i.e. SIFT, SURF) and quality
of these points however is significantly correlated to image resolution.
Spatial resolution can be determined in different ways. Utilizing bar
test charts (e.g. USAF51), slanted edges (ISO 12233) and Siemens-Stars
are widely accepted techniques. The paper describes these approaches
and compares all in one joint experiment. Moreover, Slanted-Edge and
Siemens-Star method is evaluated using (close to) ideal images convolved
with known parameters. It will be shown that both techniques deliver
conclusive and expected results.

Keywords: Resolving power · Image quality · Siemens-Star ·
Slanted-Edge · USAF51 test-chart

1 Introduction

Ground resolved distance (GRD) or true ground sample distance (tGSD) is an
essential parameter of imaging systems [4,9], as it defines the detail of informa-
tion in any image taken by remote sensing sensors. The effective geometric res-
olution significantly affects photogrammetric processing tool chains. Tie points,
mandatory for forming the block geometry, fully rely on feature points (SIFT,
SURF, etc.) and the quality parameters of these points however are significantly
correlated to image resolution [7]. This is why resolution determination is of such
importance to quantify the potential of a sensor-lens-combination.

Although acquisition of resolving power is a well-studied field of research,
there are still some scientific questions to be answered when it comes to a stan-
dardized (eventually absolute) determination. This is also research object of a
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committee of the “German Institute for Standardization” and the given con-
tribution outlines the current state of investigation concerning remote sensing
sensors.

Orych [9] provided a description of calibration targets used for high-resolution
remote sensing imaging equipment and concluded: “Based on a preliminary anal-
ysis, three types of test patterns were selected as possible choices for evaluating
the quality of imagery acquired by UAV sensors: bar target, Slanted Edge Test
and Siemens Star.” Extending the perspective from UAV-context to a general
remote sensing perspective all three approaches must deliver similar or ideally
the exact same results for identical images and image regions.

Furthermore, implementations of Slanted-Edge and Siemens-Star method can
be tested for validity by using known (model) parameters for a Gaussian-kernel
and subsequent convolution with (close to ideal) images. Then it must be possible
to extract (resp. measure) the predefined parameters with both approaches.

Therefore, all techniques (USAF51, Slanted-Edge, Siemens-Star) will be
described with mathematical detail in Sect. 2 followed by introducing a model-
based approach to simulate distinct image resolution in Sect. 3. Related experi-
ment description and obtained results are given in Sect. 4.

2 Structures and Techniques

Sharpness as an image property is characterized by the modulation transfer
function (MTF) which is the spatial frequency response of an imaging system to
a given illumination. “High spatial frequencies correspond to fine image detail.
The more extended the response, the finer the detail - the sharper the image.”
[8]. Inverse Fourier-transforming MTF, directly delivers the point spread func-
tion (PSF) [10]. The parameter σ (standard deviation) of the PSF (assumed
Gaussian-shape function) is one criterion. It directly relates to image space and
can be seen as objective measure to compare different camera performances.
Another criterion is the spatial frequency where the MTF reaches a certain
(minimal-) value (i.e. 10%, MTF10). The reciprocal of that frequency is the
approximation for size of the smallest line per pixel. The width of PSF at half
the height of the maximum is another criterion (full width half maximum -
FWHM) and is related to σ of PSF as follows [14]. Starting by assuming a
Gaussian-shape function (Eq. 1).

H (x) =
1

σ
√

2π
· e− (x−μ)2

2·σ2 (1)

The constant scaling factor 1
σ

√
2π

can be ignored. Applying H(x) = 0.5 leads to
Eq. (2):

e− x0−μ

2·σ2 = 2−1 (2)

Solving Eq. (2) and assuming function value H(xmax) occurs at μ = 0 half-
maximum points x0 are found (Eq. 3):

x0 = ±σ
√

2 ln 2 (3)
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The full width at half maximum is then given by:

FWHM = x+ − x− = 2
√

2 ln 2σ ≈ 2.3548σ (4)

A similar measure exists in frequency domain. The effective instantaneous field-
of-view (EIFOV) for MTF at 50% contrast level [3]. Assuming a Gaussian-shape
function for PSF (Eq. 1) the Fourier-transformed H̃(ν) (MTF, Eq. 5) is formu-
lated as follows [5]. Again, the constant scaling factor can be ignored.

H̃ (ν) = e−2·π2·σ2·ν2
= 0.5 (5)

By setting H̃(ν) equal to = 0.5 Eq. (5) can be written as:

2 · π2 · σ2 · ν2 = − log(0.5) (6)

Subsequent transposing then gives:

ν =

√
− log(0.5)
2 · π2 · σ2

=

√−log(0.5)/2
π · σ

(7)

Substituting with C

C =

√−log(0.5)/2
π

(8)

gives the formula for νδ (Eq. 9) similar to Eq. (3) and x0.

ν · δ = νδ =
C

σδ
(9)

Finally EIFOV can be calculated with the following equation:

EIFOV =
σδ

2C
= 2.67 · σδ (10)

By comparing Eqs. (4) and (10) it is noticeable that both image quality param-
eters (FWHM & EIFOV) depend in their related domain (image- or frequency-
domain) only on parameter σ (PSF or MTF) and a similar constant factor.

Aforementioned image quality parameters can be determined with different
structures of patterns and different techniques and will be described in the fol-
lowing sub sections.

2.1 Bar Target

A classic approach is to use defined test targets (e.g. USAF resolution test chart,
see Fig. 1, left) with groups of bars [12]. “The resolving power target used on all
tests shall be as follows: The target shall consist of a series of patterns decreasing
in size as the

√
2, 3

√
2, 6

√
2, with a range sufficient to cover the requirements [. . . ].

The standard target element shall consist of two patterns (two sets of lines) at
right angles to each other. Each pattern shall consist of three lines separated by
spaces of equal width. Each line shall be five times as long as it is wide.”
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Images of test targets fulfilling these requirements are directly linked to object
space metric resolution (see Fig. 1, right). There, the identified resolution cor-
responds to the distance between bars of the least discriminable group. The
decision whether a group still is discriminable or not strongly relies on viewers’
perception. To diminish subjective influence statistically the number of viewers
n is chosen to be significant (e.g. n ≥ 10) and the resulting resolution Gr (GRD,
tGSD) is calculated (11) as mean of all independent observations Gi.

Gr =
1
n

n∑
i=1

Gi (11)

With knowledge about interior camera parameters (focal length f , pixel size s)
and distance between camera system and test target d the theoretical resolution
Gt is calculated as:

Gt =
s

f
d (12)

While Gr is equivalent to GRD or tGSD, the quotient Gq according to Eq. (13)
provides another measure for image resolving power.

Gq =
Gr

Gt
(13)

Usually values for Gq greater than 1 are expected to be calculated. In this case
theoretical resolution Gt is better than ultimately determined resolution Gr.
Values Gq ≤ 1 either result due to loss-less transition from object space to image
space or indicate image enhancement (e.g. edge-sharpening, color refinement or
super resolution).

Besides the disadvantage of subjective influence included in this acquisition
method values for resolving power are discrete instead of continuous.

2.2 Slanted-Edge

The presented approach uses an edge-step technique [1,6]. It evaluates the tran-
sition between a very homogeneous dark area to a very homogeneous bright area
along an extremely sharp, straight edge within the image. The most challenging
part of the algorithm is to identify suitable horizontal and vertical edges [6] and
to make sure that their position is known to sub-pixel accuracy [1]. Identification
of the edges is done automatically either by using a line segment detector [13]
or by using a Canny edge detector followed by a Hough transform. Each edge is
refined to match the actual transition in the current image as closely as possible,
using a custom-built refinement procedure.

After the edges have been located and confirmed to meet the quality stan-
dards, their complete profile, spanning their entire length, has to be derived. For
each point on the edge, moving along the edge pixel by pixel, the profile following
the image’s pixel grid is extracted and projected onto the perpendicular to the
edge. An alternative approach is to scan and combine multiple perpendicular
lines by applying bi-cubic or bi-linear interpolations methods [11].
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Fig. 1. Aerial image of USAF bar test target (left), corresponding ground resolution
[cm] in object space (right)

(a) Edge Spread Function (b) Line Spread Function (c) Normalized Fourier
Transform of the LSF

Fig. 2. ESF, LSF and normalized FFT of an edge.

The thus obtained projected edge profile is cleaned from blunders, filtered
and approximated with a Sigmoid function. The resulting Edge Spread Func-
tion (ESF), i.e. the response of the system to this edge [1,6], is shown in Fig. 2(a).
The numerical derivative of the ESF yields the Line Spread Function (LSF), the
response of the system to a line target [1,6], an example of which is displayed
in Fig. 2(b). Finally, a Fast Fourier Transform (FFT) is applied to the LSF
(Fig. 2(c)) and the normalized magnitude of the result evaluated at the Nyquist
frequency (0.5 cycles per pixel) yields the MTF.

2.3 Siemens-Star

Using a priori knowledge of the original scene (well-known Siemens-Star target)
contrast transfer function CTF, MTF and PSF are approximated by a Gaussian
shape function [7]. Coordinate axis X for CTF and MTF is the spatial frequency
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f (Eq. 14) and is calculated as target frequency fs divided by current scan radius
r multiplied by π. Target frequency fs is constant and equivalent to the number
of black-white segments of the well-known Siemens-Star.

f =
fs

πr
(14)

Related (initially discrete) values for contrast transfer function Cd (f) are derived
using intensity maxima Imax and minima Imin for every scanned circle (Eq. 15).
Simultaneously the function value is normalized to contrast level C0 at spatial
frequency equal to 0 (infinite radius).

Cd (f) =
Imax (f) − Imin (f)
Imax (f) + Imin (f)

∗ 1
C0

(15)

Continuous function values C are derived by fitting a Gaussian function into
discrete input data (Eq. 16).

C =
1

σ
√

2π
e− 1

2 ( x−μ
σ )2 (16)

According to [2] the obtained CTF describes the system response to a square
wave input while MTF is the system response to a sine wave input. The pro-
posed solution is a normalization with π

4 followed by series expansion using odd
frequency multiples (Eq. 17).

MTF (f) =
π

4

[
C (f) +

C (3f)
3

+
C (5f)

5
+ . . .

]
(17)

MTF describes the effective resolving power in frequency domain while PSF is
the image domain equivalent. For this reason both functions are linked directly
by fourier transform (Eq. 18).

PSF � � MTF (18)

3 Model-Based PSF and MTF

A conclusive validation of Slanted-Edge (Sect. 2.2) and Siemens-Star technique
(Sect. 2.3) is to apply predefined modulation (MTF) or spread parameters (PSF)
to an ideal representation of resolving patterns (see Fig. 3). This can be done
in both domains. In image-domain it can be done by forming a convolution
of mathematical-ideal image-intensity values of an image (I), a Gaussian-shape
model PSF (Hm) and a mathematical-ideal sensor PSF (Hs). Simulated PSF
(Hsim) then can be formulated as follows:

Hsim(ρ) = I(ρ) ∗ Hm(ρ) ∗ Hs(ρ) (19)

In frequency-domain calculation gets simpler, only the product of image spec-
trum (Ĩ) with a predefined model-based MTF (H̃M ) and (mathematical-ideal)
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Fig. 3. Original image (upper left) continuous and discrete Gaussian PSF convolution
kernel (upper mid) and convolution result (upper right), ideal MTF, close to ideal MTF
and model-based MTF (lower left), related products in frequency domain (lower right)

sensor MTF (H̃S) has to be calculated. Therefore, simulated-image MTF (H̃Sim)
can be formulated as follows:

H̃Sim(ν) = Ĩ(ν) · H̃M (ν) · H̃S(ν) (20)

The derived hypothesis is, if both algorithms (Slanted-Edge and Siemens-Star)
described in Sect. 2 provide measurements of absolute value then model-MTF
(H̃M ) respectively model-PSF (Hm) must directly be confirmed by measurement
of simulated-image MTF (H̃Sim) respectively PSF (Hsim).

Mathematical-ideal sensor-MTF H̃S(ν) with ν ∈ R is characterized as being
equal to 1 for all frequencies (see Fig. 3, dotted line). However, when an ideal
pattern is rendered to a pixel grid the resulting (Nyquist-limited) sensor-PSF and
sensor-MTF unavoidably will differ from ideal shape. An example of (close to)
ideal sensor-MTF can be seen in Fig. 3 (dashed-dotted line) with Nyquist-limit
1.0 line per pixel.

As a result, obtained MTF values (H̃Sim) measure the product of (close
to) ideal sensor-MTF (H̃S) and model-MTF (HM ) and therefore are expected
to be smaller than the product of ideal sensor-MTF (H̃S(ν) = 1, ν ∈ R) and
model-MTF (HM ) (see Fig. 3, magenta and cyan line).

Considering that, PSF and MTF are directly linked by (inverse) Fourier
transformation (Eq. 18), it can be assumed that for increasing values σm (Hs)
respectively for decreasing values σM (H̃S) simulated images and corresponding
measured quality parameter σSLE and σStar of Hsim will be continuously less
affected by the difference of ideal and (close to) ideal sensor- PSF or MTF. This
assumption can be verified (empirically) by an experiment in Sect. 4.2.
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4 Experiments

Algorithms for standardized (eventually absolute) determination of resolving
power under consideration for norm-description (e.g. by a committee of the
“German Institute for Standardization”) need to be validated with respect to
conditions described in Sects. 2 and 3.

Every method to determine effective resolving power of remote sensing sen-
sors described in Sect. 2 for itself has individual advantages. Slanted-Edge is
a well studied approach and has been transferred to a norm-description (ISO
12233, [15]). Bar charts (e.g. USAF51) are very intuitive and responsive. Slanted-
Edge uses the first derivative of ESF between intensity maxima and minima, in
contrast the Siemens-Star approach uses exact those maxima and minima and
calculates CTF (Eq. 14) and MTF. Empirical observations indicate that due
to this difference measurements of the Siemens-Star approach are more robust
against influence of widely used sharpening filters.

4.1 Simultaneous Resolving Power Determination

Given the variety of approaches and techniques it is consistently necessary to
compare their respective results and answer the question if used techniques do
or do not perform equivalently and what are reasons for particular observations.
Therefore, all described approaches have been applied simultaneously for iden-
tical images and image regions (example Fig. 4). Used image quality parameter
is ground resolved distance (GRD in cm). For USAF51 bar chart GRD is cal-
culated according to Eq. (11) with number of observers n ≥ 10. Reciprocal of
MTF10 is the approximation for size of the smallest line per pixel. Multiplying
reciprocal of MTF10-values from Slanted-Edge and Siemens-Star measurement
with calculated ground sample distance (GSD, Eq. 12) delivers GRD for both
algorithms. Seven images (example see Fig. 4), showing bar chart and Siemens-
Star simultaneously and GSD between 1.24 cm and 1.27 cm, have been taken to
obtain following results (Table 1):

The fourth column (Δ SLE-Star) shows the absolute difference between
Slanted-Edge and Siemens-Star approach in percent. Except for one outlier,
both techniques seem to measure very similar at an overall mean difference of
3.3%.

Values obtained by independent human observers and USAF51 tend to be
more static compared to the other methods. This effect could be caused by huge
resolution steps between groups of bars. Rearranging the target, including more
groups with finer descent, may weaken the effect.

Even when comparing all three approaches at once (Δ Min-Max) the overall
mean difference of 7.1% still can be considered very low.

4.2 Measurement of Model-Based MTF and PSF

As described in Sect. 3, a conclusive validation of Slanted-Edge and Siemens-Star
technique is to apply predefined modulation (MTF) or spread parameters (PSF).
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Fig. 4. Simultaneous determination of ground resolved distance (GRD) for USAF51
(left), Slanted-Edge (upper right) and Siemens-Star (lower right)

Table 1. Simultaneous determination of ground resolved distance (GRD) for USAF51,
Slanted-Edge and Siemens-Star

Bar chart Slanted E. SiemStar Δ SLE-Star [%] Δ Min-Max [%]

Image Nr. 1 1.45 1.49 1.52 2.0 4.6
Image Nr. 2 1.48 1.51 1.52 0.7 2.6
Image Nr. 3 1.55 1.45 1.45 0.0 6.5
Image Nr. 4 1.39 1.32 1.34 1.5 5.0
Image Nr. 5 1.43 1.38 1.30 5.8 9.1
Image Nr. 6 1.45 1.24 1.39 10.8 14.5
Image Nr. 7 1.42 1.50 1.53 2.0 7.2

Then, the used model parameters σm must be reproduced by both methods dur-
ing measurement (σSLE and σStar of Hsim). For this reason, an image showing a
Siemens-Star including (close to) ideal sensor PSF (Hs) has been convolved with
different σm starting at 0.500 and rising to 1.750. Subsequently, σ of Hsim has
been calculated with both Slanted-Egde and Siemens-Star approach. Obtained
results can be found in following table (Table 2):

Values in column ΔA show the difference between model parameter σm and
measured parameter σSLE in absolute percentage [%]. Values of column ΔB
provide results for difference between σm and measured σStar. Similar to the
comparison of both techniques in preceding experiment Sect. 4.1 column ΔC
reflects the absolute difference between σSLE and σStar in absolute percentage
[%].
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Table 2. Model-PSF compared to measured PSF of Slanted-Edge and Siemens-Star

σm of (Hm) σ Slanted Edge σ Siemens Star ΔA [%] ΔB [%] ΔC [%]

0.500 0.609 0.598 17.8 16.4 1.7
0.750 0.894 0.856 16.1 12.4 4.2
1.000 1.093 1.076 8.5 7.1 1.6
1.250 1.301 1.306 3.9 4.3 0.4
1.500 1.546 1.532 3.0 2.1 0.9
1.750 1.739 1.748 0.7 0.1 0.5

Two observations can be emphasized. First, the difference between Slanted-
Edge and Siemens-Star technique again is small. In contrast to experiment
Sect. 4.1 overall mean difference of 1.6% here is even smaller and measurements
deliver no outliers. Second observation regards constructed hypothesis in Sect. 3:
“. . . it can be assumed that for increasing values σm (PSF) . . . simulated images
and corresponding quality parameter . . . will be continuously less affected by the
difference of ideal and (close to) ideal sensor- PSF”. Columns ΔA and ΔB indi-
cate that this hypothesis is true. With rising σm the absolute difference of both
methods tend to approach zero.

5 Conclusion and Outlook

Mathematically detailed descriptions of three different techniques for determina-
tion of resolving power were presented. A model-based approach and its underly-
ing theory has been introduced to verify two acquisition methods (Slanted-Edge
and Siemens-Star). Moreover, two experiments have been conducted to verify
similar and correct measurements of all techniques. It can be concluded that
all methods deliver expected, similar and mathematical predictable results. In
particular, experimental results for difference of Slanted-Edge (ISO 12233) and
Siemens-Star deliver very similar output and thus both approaches can be consid-
ered for further evaluation regarding standardized norm-description. Presented
results highly indicate that both methods can be seen complementary to each
other.

Previous work [7] already described influence of used de-mosaicing methods
on resolving power and related measurements. Future work and final contribution
is going to conclude the investigation and thoroughly clarify further open issues
as support to research of the “German Institute for Standardization”.

These open issues are: Siemens-Star center position (determination and asso-
ciated confidence), normalization of contrast magnitude and related require-
ments of the test pattern layout, exposure time dependency, influence of motion
blur, influence of used interpolation methods during signal-scan (e.g. nearest-
neighbour, bi-linear, bi-cubic), different mathematical models for PSF/MTF
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(Gaussian-shape, polynomial-shape, piece-wise linear) and influence of test tar-
get inclination during acquisition.
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Abstract. This paper presents a method for reconstructing 3D image
from multi-focus microscopic images captured with different focuses. We
model the multi-focus imaging by a microscopy and produce the 3D
image of a target object based on the model. The 3D image reconstruc-
tion is done by minimizing the difference between the observed images
and the simulated images generated by the imaging model. Simulation
and experimental result shows that the proposed method can generate
the 3D image of a transparent object efficiently and reliably.

Keywords: 3D imaging · Microscopy · Multi-focus images ·
Transparent object

1 Introduction

Cell observation by optical microscopy is widely used in biology, medicine, and
so on. For example, cytodiagnosis and iPS cells culture are based on the cell
observation. A regular microscopy acquires a 2D image of a target cell with
a 3D structure. However, only a part of slices of the 3D cell structure can be
observed as a focused image because the depth of field of the general microscope
is narrow. Under such circumstances, various applications can be expected for
the measurement technology of 3D cell structure. As specific examples of the
applications, there are accurate diagnosis by stereoscopic observation of cells
and improvement of cell identification performance by machine learning using
3D shape information.

A simple way to get the 3D structure using a microscopy is to stack mul-
tiple slice images with different focuses. Various methodologies [1] have been
proposed to measure the multi-focus images. However, the simple stacked multi-
focus images include many unclear regions because of reflections of front and
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backside of the focus. To solve this problem, a confocal microscope is often used.
In a confocal microscope, a pinhole in front of a light detector cuts off light that
is out of focus while allowing only the fluorescence light from the in-focus spot
to enter the light detector. Thus, a confocal microscope is a useful and powerful
tool to obtain clear images of only in-focus regions.

In computer vision, there are Depth from Focus (DFF) [2] and Depth from
Defocus (DFD) [3,4] as methods for estimating the 3D shape from a multi-focus
images. DFF specifies the most focused image from the multi-focus images, and
the depth of the object from the position on focused image. DFD estimates the
depth of a target object from two images which have different blur. Moreover, a
method for estimating the depth of the object from a single image using DFD
has also been proposed [5]. These DFF and DFD generally estimate the surface
shape of an opaque object. Therefore, even if these methods are directly applied
to a transparent object, the 3D shape of the object is not measured well under
the influence from the texture information of slices before and after the focused
slice.

Another approach for imaging the 3D object structure is a computed tomog-
raphy (CT) [6]. In CT scanning, when X-rays is irradiated to a target object, an
X-ray detector on opposite sides of the object detects the X-ray passing through
the object. Here, it is assumed that X-ray is absorbed and attenuated by the
object in the irradiation. On the assumption, many intensities of X-ray are mea-
sured by rotating a pair of X-ray source and detector around the object. When
a target object is represented with a set of voxels, the measured intensities are
used to estimate the attenuation coefficient of each voxel.

Similar to X-ray CT, optical projection tomography (OPT) [7] has been pro-
posed for a microscopic 3D imaging. Using a regular light, lens optics and a
silicon image sensor, OPT estimates the light attenuation of each voxel. How-
ever, since the imaging systems of X-ray and OPT require rotation mechanisms,
the methodology of X-ray CT and OPT is directly inapplicable to regular micro-
scopes with no rotation mechanism.

In this paper, we propose a method for reconstructing 3D image from multi-
focus microscopic images obtained with different focuses. We model an imaging
system for acquiring the multi-focus microscopic images with different focuses.
In the imaging system, the microscopic images are produced by the light emitted
from its light source. When the light passes through the transparent object, the
light is attenuated depending on the transmittance of the object material. This
means that each pixel in the microscopic image is related to these attenuated
light. Considering this, we reconstruct the 3D image of the object by minimizing
the difference between the observed images and the simulated images generated
by the imaging model.

Similar with our method, there are two approaches for 3D imaging using
multi-focus images. The first is the reconstruction of 3D image which contains
appearance of inner slices of transparent objects [8]. The 3D image is gen-
erated by simply piling these discrete slices acquired by CCD cameras. The
second approach is to reconstruct 3D image of a target object’s luminescence
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Fig. 1. Imaging system model

from multi-focus images obtained by a fluorescence microscope [9]. Unlike the
two approaches, we aim to reconstruct the 3D image as a set of voxels having
transmittance values from multi-focus images obtained by a general bright field
microscopy.

The contribution of the proposed method is two folded. The proposed method
estimates from only multi-focus microscopic images with no special equipments
or measurement methods. Therefore, the proposed method is applicable to vari-
ous applications using microscopic images. In addition, although the target is a
cell in this paper, this method can also be applied to general translucent objects
other than cells.

2 3D Image Reconstruction from Multi-focus Images

2.1 Imaging Model for Multi-focus Microscopic Images

Figure 1 shows how the pixel intensity is observed by a microscopy. We denote
as Iα (x, y, s) an intensity value of an arbitrary pixel (x, y) in the s-th image in
the sequence of the multi-focus microscopic images. Here, it is assumed that a
target space including one or more than cells is represented by a set of voxels.
3D image is estimated as transmittances of the voxels αi (i = 0, 1, · · · , Nv − 1)
as shown in Fig. 1.

An incident light is emitted from a light source under a stage. The incident
light is discretized as a set of Nr discrete rays. The intensity lj of the j-th
(j = 0, 1, · · · , Nr − 1) ray is attenuated every time the ray passes through each
voxel. The attenuation is affected by the transmittance of the voxel and the
length of the ray through the voxel. Hence, we model the relationship between
lj and the attenuated ray l′j by

l′j = lj ×
∏

i

α
dji

i , (1)
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where dji is the length of the j-th ray in the i-th voxel if the ray passes through
the i-th voxel. Otherwise, dji = 0.

By taking the log of both side in Eq. (1) and expanding the log, Eq. (1) is
rewritten as

log l′j = log lj +
∑

i

dji log αi. (2)

By collecting all relationships between the incident ray and attenuated ray, lj
and l′j using Eq. (2), we obtain the following formulation:

L′ = DA + L, (3)

where

L =

⎡

⎢⎣
log l0

...
log lNr−1

⎤

⎥⎦ , L′ =

⎡

⎢⎣
log l′0

...
log l′Nr−1

⎤

⎥⎦ , A =

⎡

⎢⎣
log α0

...
log αNv−1

⎤

⎥⎦ ,

D =

⎡

⎢⎣
d00 · · · d0(Nv−1)

...
. . .

...
d(Nr−1)0 · · · d(Nr−1)(Nv−1)

⎤

⎥⎦ .

Here, we assume that aperture of the light source and objective lens are enough
large to the target cell. On this assumption, an arbitrary pixel Iα (x, y, s) can be
similarly expressed by shifting the stage along with (x, y, s) coordinates. There-
fore, D and L are regarded as the function of the three parameters x, y, and s.
Therefore, by rewriting D as a function of (x, y, s), Eq. (3) is described as

L′(x, y, s) = D(x, y, s)A + L. (4)

Finally, Iα (x, y, s) is calculated by the total amount of the attenuated rays l′j :

Iα (x, y, s) =
∑

j

l′j(x, y, s). (5)

2.2 Estimation of the Voxel Transmittance

Using the model as mentioned in Sect. 2.1, we simulate the observed multi-focus
images. When the estimated transmittances of the target voxels are close to
the real ones, the intensity value of the simulated multi-focus images Iα (x, y, s)
should be the same as the intensity value of the observed images I(x, y, s) by
the microscopy. Considering this, the 3D image is reconstructed by minimizing
an objective function F :

F (α) = E(α) + wTV (α), (6)

where α = (α0, α1, · · · , αNv−1) is a vector composed of all the transmittances.
The parameter w is a weighted coefficient as a regularization parameter. The gra-
dient descent method is applied to find optimal transmittances which minimize
F (α).
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The function E(α) in Eq. (6) represents the difference between the intensity
value I(x, y, s) in the observed image and Iα (x, y, s) in the simulated image by
Eq. (5). The function E is defined as

E(α) =
∑

s

∑

x

∑

y

(Iα (x, y, s) − I(x, y, s))2. (7)

On the contrary, TV (α) is a regularization function base on a total variation
(TV) norm to reconstruct the 3D image smoothly. Practically, the value of
TV (α) is calculated by the total transmittance difference between the target
voxels and its six neighbor voxels:

TV (α) =
∑

k∈Φi

(αi − αk)2, (8)

where Φi is the set of the six neighbors of the target i-th voxel.

2.3 Efficient Search of Optimal Transmittances

From Eq. (6), our proposed method finds the optimum transmittances by itera-
tively updating the transmittances. To find the optimum efficiently and robustly,
we introduce the two followings.

2.3.1 Initialization from Input Images
The initial values of the transmittances are important to find the optimum trans-
mittances robustly by the conjugate gradient method. Given a sequence of Ns

multi-focus images, we determine the initial transmittances based on the inten-
sity value I(x, y, s) of the original image sequence.

Let us consider that all rays are intersected at the i-th voxel when the inten-
sity I(x, y, s) is calculated. In this case, since all rays pass through the i-th voxel,
the transmittance αi of the i-th voxel strongly influences on the calculation of
I(x, y, s) compared with other voxels. Moreover, in our imaging system model,
each ray passes through at least Ns voxels. Therefore, the optimal transmittance
value of the i-th voxel is approximately regarded as the Ns-th root of I(x, y, s).
Considering these, the initial transmittance value α

(0)
i of the i-th voxel is calcu-

lated by
α
(0)
i = Ns

√
I(x, y, s). (9)

2.3.2 Coarse-to-Fine Search
From Eqs. (1)–(5), the computational burden in our method depends on the
number of rays. When the small number of the rays is used, the estimation of
the transmittances can be speeded up. However, the light is discretized roughly
by the small number of the rays. Therefore, the use of such rays results in
the low accuracy of estimating the transmittances. On the other hand, in the
case of using many rays, although the estimation of the transmittances is time-
consuming, the reliable transmittances can be obtained.
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Fig. 2. (a) An artificial 3D cell model; (b) multi-focus images of the cell model (Color
figure online).

Fig. 3. 3D image of the cell model estimated by our method.

Considering the trade-off between the efficiency and accuracy of estimating
the transmittances, we introduce a coarse-to-fine strategy. Firstly, in the coarse
step, the transmittances are roughly estimated by using a small number of the
rays (in our case, Nr = 25). The obtained transmittances in the coarse step are
used as the initial values of the transmittances in the following fine step. In the
fine step, we find the optimal values of the transmittances by using many rays
(in our case, Nr = 533).

3 Experimental Results

To evaluate the performance of the proposed method, we made a simulation
using synthetic images and experiments using real cell images.

3.1 Simulation Using Synthetic Images

In the simulation, we generate two virtual 3D cell models. Figure 2(a) shows one
of them. It consists of a nucleus (red in Fig. 2(a)), a cytoplasm (light blue) and
a cell membrane (blue). From real cell images, it is observed that the transmit-
tance values of the nucleus tend to be lower than those of the cytoplasm and
the membrane. Based on the observation, the transmittance values of the three
components are set to 0.80 (the nucleus), 0.95 (the cytoplasm), and 0.98 (the
membrane), respectively.
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In addition, Shepp-Logan phantom was used to increase simulation varia-
tions. Three types of models were created by randomly changing the position of
the ellipse. Figure 4(a) shows one of them.

The imaging system model (Sect. 2.1) is applied to generate the synthetic
images of the virtual cells and Shepp-Logan phantom. Here, the number Nr of
the rays used in the 3D image reconstruction is set to 533 so that for each voxel
shown in Fig. 1, at least one ray passes through the voxel when the maximum
blur is occurred in the model. Finally, we obtain 11 multi-focus images with
50 × 50 [pixel] (Figs. 2(b) and 4(b)).

Fig. 4. (a) An artificial 3D Shepp-Logan phantom; (b) multi-focus images of Shepp-
Logan phantom.

We verify initialization from input images and coarse-to-fine search
(Sect. 2.3.2). In the verification, the 3D images are reconstructed by the pro-
posed methods. The parameter w in Eq. (6) is set to w = 0.125. Moreover, the
proposed methods are compared by the two methods. First one is the method
in which all initial values of the transmittances are set to 0.5. Second one is the
method which uses 25 or 533 rays to reconstruct the 3D image.

To measure the accuracy of the reconstructed 3D image, we use the root mean
square error (RMSE) between the reconstructed 3D image and their ground truth

Fig. 5. 3D image of Shepp-Logan phantom estimated by our method.
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values. Table 1 shows the average of RMSE and computational time between five
3D models for the each method (Fig. 5).

In the verification about the initialization, from Table 1, the initialization
from input images improves the accuracy of reconstructing 3D image compared
with the method in which all initial values of transmittances are set to 0.5. If all
initial values of transmittances are set to 0.5, the optimal solution could not be
obtained at all because of local minimum. Therefore, it is important to set the
initial value as close as possible to the optimal solution in our method. Moreover,
the computational time for the initialization from input images is shorter than
that of the method in which all initial values of transmittances are set to 0.5 using
same number of the rays. From these results, the initialization from input images
is useful for obtaining the reliable transmittances. In the verification about the
coarse-to-fine search, from Table 1, the proposed method using the coarse-to-fine
search improves the accuracy of the reconstructing 3D image compared with the
methods using only 25 or 533 rays. Moreover, the computational time of the
methods using the coarse-to-fine search is shorter than the methods using only
533 rays.

Table 1. Ablation study for initialization and coarse-to-fine methods.

Initial values Nr RMSE [×10−2] Time [sec]

Initialization from input images coarse-to-fine (25 to 533) 2.074 575

Initialization from input images 25 2.098 107

Initialization from input images 533 2.087 3,080

Constant value (α
(0)
i = 0.50) coarse-to-fine (25 to 533) 37.39 762

Constant value (α
(0)
i = 0.50) 25 37.86 687

Constant value (α
(0)
i = 0.50) 533 37.78 19,031

The computational time in the 3D image reconstruction increases according
to the number of the used rays in the reconstruction. In the coarse-to-fine search,
the first coarse step is to search the optimal transmittances roughly by using a
small number of the rays. In the second fine step, we find the optimal values of the
transmittances by using many rays. Therefore, the coarse-to-fine search reduces
the total number of the used rays in the reconstruction. Moreover, the coarse
search enables to find the values of the transmittances closed to the optimal ones
while avoiding local minimum. Owing to these, the proposed method using the
coarse-to-fine search can find the optimal transmittances efficiently and stably.

Thus, the proposed method using the initialization from input images and the
coarse-to-fine search achieves the best accuracy of the 3D images reconstruction
while reducing the computational time drastically compared with the methods
using only 533 rays. Figure 3 shows the 3D image of the virtual cell estimated by
the proposed method using the initialization from input images and the coarse-
to-fine search.
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(a) σ=0 (b) σ=5 (c) σ=8 (d) σ=10

(e)
Reconstructed

from (a)

(f)
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from (b)

(g)
Reconstructed

from (c)

(h)
Reconstructed

from (d)

Fig. 6. Noise analysis for virtual cell model. (a)–(d) are a slice of input image with
different noise level. (e)–(h) are the corresponding slice of reconstructed 3D image.

3.1.1 Noise Analysis
We evaluated the reconstruction accuracy under the different noise level in the
input images. Practically, zero mean Gaussian noise with standard deviation
σ = 5, σ = 8, and σ = 10 is added the 8bit, 255 levels, of the input images.
We reconstruct 3D images from these images by using the initialization from
the noisy images and the coarse-to-fine approach (Sect. 2.3.2). Moreover, the
parameter w in Eq. (6) is set to w = 1.5.

Firstly, Figs. 6 and 7 show input images with Gaussian noise and the esti-
mated 3D images. These images are the 5-th images of the 11 multi-focus images.
Figures 6 and 7(a), (e) are original input image and the estimated transmittance
image. Similarly, the standard deviation σ = 5 in (b)(f), σ = 8 in (c)(g), and
σ = 10 in (d)(h). Moreover, Figs. 8 and 9 show 3D images of a virtual cell and
Shepp-Logan phantom. It appears that the noise in the estimated transmittance
images is less than the noise in input images due to TV norm.

(a) σ=0 (b) σ=5 (c) σ=8 (d) σ=10

(e)
Reconstructed

from (a)

(f)
Reconstructed

from (b)

(g)
Reconstructed

from (c)

(h)
Reconstructed

from (d)

Fig. 7. Noise analysis for Shepp-Logan phantom. (a)–(d) are a slice of input image with
different noise level. (e)–(h) are the corresponding slice of reconstructed 3D image.
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Fig. 8. 3D images of a virtual cell

Secondly, Table 2 shows the average of RMSE and computational time
between the five 3D models for the each input image (the original images, and
the images with noise (σ = 5, σ = 8, and σ = 10)). In Table 2, it is quantita-
tively confirmed that when the noise of the input image increases, the accuracy
of reconstructing the 3D image decreases while the calculation time increases.

Table 2. Results of simulation using images with noise.

Standard deviation σ RMSE [×10−2] Time [sec]

Original images 2.745 407

σ = 5 3.050 735

σ = 8 3.278 943

σ = 10 3.403 1147

From the results, it is confirmed that the proposed method can reconstruct
the 3D images while reducing the noise effect in the input images by the TV
norm. However, in the cases of the images with much noise like Fig. 9(c) and (d),
the accuracy of reconstructing 3D image in the contour part tends to be lower.
Therefore, the determination of the suitable TV norm according to the image
quality is one of our future works.
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Fig. 9. 3D images of Shepp-Logan Phantom

3.2 Experiment Using Real Cell Images

In the experiment, the proposed method is applied to the multi-focus images of
real cell images to reconstruct the 3D image of the real cells. Figure 10(a) and
(b) show the multi-focus image sequences of normal and cancer cells. The size
and spatial resolution of each cell image is 62 × 62 [pixel] and 0.92µm/1 pixel.
To apply the proposed method, the color cell images are converted into the gray
scale images.

Figure 11(a) and (b) show the 3D image of the normal and cancer cells recon-
structed from Fig. 10, respectively. From the cell images, it is observed that the
transmittance in the cell cytoplasm is higher than that of the cell nucleus. The
estimated 3D cell image has the same tendency as the real cell images. Since we
have no ground-truth of the 3D cell image, from this qualitative evaluation, the
proposed method produces the 3D image which capture the characteristic of the
cell transmittance.

Fig. 10. Multi-focus images of real cells: (a) a normal cell; (b) a cancer cell.
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Fig. 11. Reconstructed 3D images of (a) the normal and (b) cancer cells.

It takes about 1,650 [sec] on average to reconstruct 3D image. The average
computational time in the experiments is longer than that in the simulation
because of the following reason. In the simulation, we assume that the cytoplasm
is homogeneous with no other components. In other words, all the voxels in the
artificial cell model have almost the same transmittance values. On the contrary,
a real cell contain other components such as mitochondria. This means that there
are the voxels with various transmittance values in the real cells. Owing to the
complex structure of the cell, reconstructing the 3D image of the real cells is
time-consuming. One of our future works is to speed up the estimation of the
transmittances of real cells with complex structures.

4 Conclusion

We proposed a method for reconstructing the 3D image of a transparent object
from multi-focus microscopic images. To achieve this, we model a microscopic
imaging system for acquiring the multi-focus microscopic images with different
focuses. The optimal values of the transmittances are determined by minimizing
the difference between the intensities of the observed image and the simulated
image by our model. From the simulation using the virtual cells, it is confirmed
that the proposed method can reconstruct the optimal 3D image efficiently and
stably. In addition, the 3D image reconstruction from the real cell images is
achieved with these proposed methods.
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Abstract. Digital images are used to transfer most critical data in areas like med-
ical, research, business, military, etc. The images transfer takes place over an
unsecured Internet network. Therefore, there is a need for reliable security and
protection for these sensitive images. Medical images play an important role in
the field of Telemedicine and Tele surgery. Thus, before making any diagnostic
decisions and treatments, the authenticity and the integrity of the received medical
images need to be verified to avoid misdiagnosis. This paper proposes a block-
wise and blind fragile watermarking mechanism for medical image authentication
and recovery. By eliminating embedded insignificant data and considering differ-
ent content complexity for each block during feature extraction and recovery, the
capacity of data embedding without loss of quality is increased. This new embed-
ding watermark method can embed a copy of the compressed image inside itself
as a watermark to increase the recovered image quality. In our proposed hybrid
scheme, the block features are utilized to improve the efficiency of data concealing
for authentication and reduce tampering. Therefore, the scheme can achieve better
results in terms of the recovered image quality and greater tampering protection,
compared with the current schemes.

Keywords: Medical images · Image authentication · Watermarking · Tamper
detection · Image recovery · Medical image security

1 Introduction

Today, Patients who live in remote areas are able to be diagnosed by experts with the
help of telemedicine. However, this advancement of technology has led to some serious
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security concerns. Medical imagery transmission between experts and patients is an
important task in this regard. During the data transfer, this data may be altered by some
attacks intentionally or unintentionally. Thus, the authentication and content verification
of this kind of important digital data is essential. Furthermore, recent studies show
that, due to the rise of software capabilities for editing and modifying digital images,
manipulation of radiography data is a serious issue; For example, modified images could
be used in illegal claim for medical insurance of a patient or in publishing fraudulent
results. The present security frameworks are either using encryption or steganography,
or the combination of both to protect against unauthorized access. While these image
encryptions are useful for protection against unauthorized access, they are unable to
safeguard the authenticity and integrity of the transmitted imagewhen the key is revealed.
Furthermore, these methods are not able to reconstruct the original image when it is
attacked. It is obvious that integrity and confidentiality are the main issues, because
damaging of themedical image during transmission leads to serious problems inmedical
treatments, like the damage of decisive information, misdiagnosis by physicians and
potentially calling into question the reliability of the health care center [1, 2].

Due to the high sensitivity to the modification in some images such as medical
imagery, fragile watermarking schemes can be used where authentication is required.
Fragile watermarking could be considered as two main groups: pixel-based and block-
based schemes. In the pixel-based fragile watermarking approaches, the data pertaining
to thewatermark is produced utilising the host pixel values. These are then embedded into
the host pixels as well. In case of the block-based fragile watermarking approaches, the
host image is first segmented into multiple blocks. Each block contains individual data
for the watermark, which can be used for authentication through detection and verifica-
tion of the watermark data. If detection of the watermark data is unsuccessful, it indicates
that the image may have been changed. Subsequently the block is then marked as tam-
pered or invalid. From the embedding point of view, watermarking can be categorized
into frequency or spatial based. The frequency-based approaches apply various transfer
functions such as the Fast Fourier Transformation (FFT), Discrete Cosine Transforma-
tion (DCT), and Discrete Wavelet Transformation (DWT) to change pixel values from
spatial domain to the coefficients of the frequency domain. Then the watermark data is
hidden into those. But the spatial domain uses the pixel values to embed the watermark
data directly. Spatial domain usually embed hidden data in the Least Significant Bits
(LSBs) of pixels’ value in order to avoid damaging the image [3–10].

1.1 Related Work

Self-embedding fragile watermarking can be useful in order to identify and then recover
after any tampering. In this method the watermark data can be a copy of the compressed
image or features of original image itself. The basic features of an image which are
chosen as watermark data should include enough information to recover the original
image, with higher recovery in the tamper region. A dual watermarking method has
been proposed by Lee and Lin to detect tampering within an image and then to recover
the original image [5]. In their method tampered area can be recovered by extracting
watermarked data from the other intact blocks. This method is appropriate for minor
tampering cases only.
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Some of watermarking methods suffer from false image production after recovery
by using a reference table, because of the block autonomous aspect of image water-
marking. Those kinds of watermarking that have not involved any block dependency
may be damaged with some special attacks like Vector Quantization (VQ) attack [6].
To overcome VQ attack, some block-wise watermarking methods are introduced, such
as a fragile watermarking method for verifying and recovering medical images [6]. An
image needs to be segmented into same size blocks in order to compute authentication
and recovery codes by their method. Singular value decomposition is applied to attain a
block authentication code for every 4 × 4 block. The recovery code is the mean value of
every 2 × 2 block. Arnold transform is applied to distinguish where these codes should
be embedded but embedding both codes in the same block can cause an increase in the
rate of false detection. A blind image watermarking method utilising the DWT and the
Singular Value Decomposition (SVD) has been developed by Thakkar and Srivastava
[7]. They used DWT on selecting the region of interest in medical images and produced
separate frequency sub-bands for decomposition of these areas. Then the results are
combined by the applying SVD on the LL sub-band. Their method is robust and has
produced good results in terms of watermarked image quality and in extracting water-
marked data successfully, but it is not capable of recovering the medical images when it
is altered.

Qin et al. [8] developed a new scheme of compressing the image, named as Optimal
Iterative Block Truncation coding (OIBTC), which achieved better quality than the
traditional Block Truncation Coding (BTC). They applied OIBTC to achieve recovery.
They have used 4 × 4 block size and 8 × 8 block size. In higher tampering rates, the
quality of a recovered image by bigger block size is higher because of more redundancy
of the recovery code but in lower tampering rate the block size of 4 × 4 has higher
performance, since the recovery code has not been so compressed. In most of the block-
wise methods, an image is segmented into the same sized blocks and all blocks are
treated equally. It is obvious that the volume of data that can be concealed in a block is
limited by the size of the block. A big block size can convey more data, leading to more
recovery data. But the ability of detecting and locating of the exact area is less.

Therefore, the size of block can be an important option to have efficient authentica-
tion and recovery since there is a trade-off between the size of the block and effective
authentication and recovery. In addition, the features of a block can be exploited to
enhance the efficiency of data concealing and authentication. It may be better to encode
recovery data related to the blocks with small changes and fewer bits. Instead recovery
data of the blocks with big changes could be encoded by more bits to boost the quality
of the recovered image. This could mean a bigger capacity to hide the recovery data of
the smooth blocks is pointless. This capacity can be reserved for hiding the recovery
data of more complex blocks. In the proposed method, the complexity of the block has
been used to understand the types of the blocks to design different plans of embedding
and extracting data to increase the efficiency of authentication and recovery. In the other
word, some blocks do not need much capacity for embedding their features, and their
dedicated capacities can then be used for other purposes.
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2 Proposed Method

The first step for self-embedding watermarking is obtaining the basic features from the
image, then embedding this data into the image itself. Thus, an image can be recovered
after tampering by extracting and using the watermarked data from intact areas of the
image. On one hand, since the data is embedded into the image as watermarked data, the
amount of this data should be as minimum as possible so to minimize the decrease in the
watermarked image quality. On the contrary, if the amount of data entrenched into the
image is larger, the recovered image will be of better quality. Therefore, there is a trade-
off between the watermarked and recovered images in terms of their quality. To address
this problem and have high quality for both the watermarked and the recovered images,
the following steps should be considered: firstly, the selected data as watermarked data
should be as efficient as possible, so thatwatermarked data is able to recover the tampered
image with higher quality. Secondly, watermarked data should be as compressed as
possible so that embedding them as watermark data into the image decreases the original
image quality as little as possible.

To achieve this aim, a new hybrid method for compressing and obtaining the efficient
features of an image will be introduced. This method discovers and pinpoints modifica-
tions in an image and recovers the altered areas. The information hidden in the image
or the watermark data are divided into authentication code and recovery code, leading
to greater accuracy. The authentication code is used to identify and trace the regions of
tampered areas, and the recovery code can be used in case of tampering to recover the
original image. In some cases, not only some areas of the image are destroyed but also
their recovery codes may have been lost as well as a result of tampering. Therefore, these
regions cannot be salvaged, and the quality of the recovered image will decrease. For this
reason, as well as obtaining a better quality of a recovered image, two different copies
of a compressed image will be embedded into the original image as the watermark data.

Three kinds of the watermark data should be provided for every block of size 8 ×
8. The first kind of watermark data is named as the authentication code (16 bits) which
can be used to identify the tampered blocks, the second and third kinds of watermark
data are recovery codes, which are applied for recovery of the damaged content of the
tampered image. The authentication code is entrenched inside the block itself and the
recovery codes are entrenched into the mapped block of the image in order to have block
dependency and being able to deal with the VQ attack. Due to the fact that replacing
only two LSBs of pixels in image may not decrease the quality of the image noticeably,
these two LSBs in all blocks are reserved for embedding data. Recovery codes can be
achieved with the help of OIBTC and average pixels values of the block.

The Block Truncation Coding (BTC) is an effective image compressing algorithm.
In this algorithm an original image with size n × n should be divided into m × m
non-overlapping blocks. The average value (μ) and the standard deviation (σ ) will be
calculated for every block using (1, 2):

μ = 1

m

∑m

i=1
xi (1)

σ =
√

1

m

∑m

i=1
(xi − μ)2 (2)
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All pixels in the block are categorized into two sets, in a way that when the intensity of a
pixel is more than the mean value of the block, it is considered as the first set. Otherwise,
it belongs to the other set. There is a bit map for every block as well. The corresponding
bit for the pixels of the first set are zeros and for the second set pixels are ones. Any
block in the image can be compressed by following above steps. Then an image block
will be decompressed by substituting the ones with high reconstruction level (M1) and
the zeros by low reconstruction level (M0) using the following Eqs. (3, 4) [11–16].

M0 = μ − σ

√
m+
m− (3)

M1 = μ + σ

√
m−
m+ (4)

Wherem+ is the number of pixels for which their values are greater thanμ andm− is the
number of pixels that are less than. To improve the visual quality of BTC-decompressed
image, [8] has proposed a new OIBTC algorithm for compressing an image. In OIBTC
new low and high reconstruction levels have been introduced as Ml and Mh , which can
be calculated by minimizing the distortion for each block through following steps:

1. Every block is arranged in ascending order of its pixels’ values, i.e.,

S = {p1, p2, . . . , pm}
In which pi are the pixels in the block and p1 < p2 < . . . < pm

2. Each block should be divided into two segments, and for each segment the mean
value should be calculated as

Skl = {p1, p2, . . . , pk}, Skh = {pk+1, pk+2, . . . , pm}

In which Skl and Skh are these two segments.
3. In each block, the mean values of the two above sets

(
Mk

l and Mk
h

)
are considered

as low and high reconstruction levels and the distortion should be computed for the
block by (5):

dk = dkl + dkh =
∑k

i=1
(pi − Mk

l )2 +
∑i=m

i=k+1
(pi − Mk

h )
2 (5)

The distortion for the whole block is dk while dkl and dkh are distortion for each
segment and pi are the real amount of pixels in the block.

4. Steps 2 and 3 should be repeated to obtain minimum distortion. Where the distortion
is minimum, Mk

l and Mk
h can be used as the low and high reconstruction levels

(Ml and Mh) of the block.

After generating the recovery codes (it will be introduced in Sect. 2.1 and 2.2), these
codes should be embedded in other blocks. Arnold transformation can be applied as a
mapping function to find the suitable block for embedding the recovery codes. Using this
function helps with distributing the recovery data into different blocks. A digital image
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is partitioned into blocks and each block has the address of (x, y). Arnold transform
maps one block to another block using (6).

[
x

′

y
′

]
=

[
1 K1

K2 K1K2 + 1

][
x
y

]
modN (6)

Where “N” is the number of all blocks in the image. K1 and K2 are used as keys. The
embedding locations of two recovery codes of each block are different and are calculated
by two keys.

2.1 Producing Authentication and Recovery Data

The first and the second LSBs of all pixels should be replaced with zero during the
process of authentication code calculation, since LSBs will be substituted with water-
marked data and must not be assessed. The authentication code for each block is 16 bits
and can be generated through a Hash function. All 64 pixels which are inside the 8 × 8
block and the ordering numbers of them should be included in the hash function. The
authentication code is then included in the block itself.

To obtain the recovery code, a distortion criteria D has been used to select which
option of compression is more suitable for each block (unlike as presented in [8]). Each
block has been treated differently regarding its complexity in our work. Some blocks
do not need as much capacity to embed their features. These blocks are considered
as smooth blocks. But some other blocks need more capacity to embed their features
as they are more complex or textured. Since every smooth block can be recovered by
less information, their dedicated locations can be reserved for embedding another copy
related to the other blocks. For every 8 × 8 block these following four compression
methods are available to choose in order (methods are arranged in order of descending
compression rates):

1. An average pixels values of the 8 × 8 block
2. Four average pixels values related to four 4 × 4 blocks inside the 8 × 8 block
3. An 8 × 8 OIBTC compression
4. Four 4 × 4 OIBTC compression related to four 4 × 4 blocks inside the 8 × 8 block

In order to efficiently exploit the available capacity and to embed more data, as well
as having a high-quality watermarked image, a threshold for distortion should be set.
Each block should have its own limitation to extract its basic features depending on its
content complexity. Hence any of the four compression methods above whose distortion
is less than the distortion threshold level and having greater compression rate, should be
applied for selecting the first recovery data. Thus, the option that presents the highest
compression rate is the priority if its calculated distortion is less than the threshold.
These kinds of blocks are very smooth and the first copy in this case is just the mean
value of the 8 × 8 block. Otherwise, the distortion should be calculated for the second
option in a way that the block should be divided into four 4 × 4 blocks. The average
mean value for each 4 × 4 block and their distortion should be calculated and if their
total distortion is not less than threshold as well, the next option is our next priority using
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a similar procedure. The last priority is four 4 × 4 OIBTC which may be selected when
the block is quite complex.

The value of threshold can be selected according to the complexity of the image and
predicted tampering rate. If the threshold is selected at a lower level the distortion for the
first copy will be low. Consequently the quality of the recovered block by the first copy
will be high. But it should be considered that in the higher tampering rate because of high
probability of losing the first copy, we have to use the backup recovery data therefore
reasonable quality for the second copy is also important. Hence enough room should
be created for better backup recovery as well. In this work, in order to find the suitable
threshold, a copy of the compressed image by 8 × 8 OIBTC should be calculated then
average value of distortion for all 8 × 8 blocks in the image can be set as a threshold.
Two bits are also allocated as indicators to demonstrate which compression method has
been used. The distortion is calculated by (7) for each 8 × 8 block.

D =
∑i=8

i=1

∑ j=8

j=1
(pi, j − ci, j )

2 (7)

Where D denotes the distortion for each 8 × 8 block, pi, j , and ci, j are the original pixel
value and the value of pixel after compression.

2.2 Reducing the Number of Bits for Embedding

Reducing the number of bits which are needed to embed as watermark data is possible by
exploiting the differences between nearby values. Since any of Ml and Mh (low and high
reconstruction levels in OIBTC compression) can be displayed by 6 bits separately and
both belong to the same image block, 10 bits should be sufficient for both. Here 6 bits are
required for the mean values of Ml and Mh and 4 bits for the absolute difference between
their mean values and any value of Ml or Mh . Instead of real values of Ml and Mh the
mean value and the absolute difference value can be embedded. Then in the receiver
side, the real values for Ml and Mh can be calculated conveniently by subtracting and
adding the difference value with the mean value separately. Hence, it is not required to
embed all 12 bits for every block and more capacity will be remaining to embed more
useful data (unlike [8]).

2.3 Watermark Embedding Process

Every 8× 8 block has 64 pixels which watermarked data is embedded in 2 LSBs of these
pixels. The 16 bits of the LSBs are earmarked for authentication purposes. Two bits of
the LSBs are dedicated for distinguishing which compression method has been done.
The rest of the LSBs (which are 110 bits) are reserved for recovery purposes including
the first and backup recovery codes. After embedding the first copy with the help of
reduced bit numbers, and considering texture of every block, there are still spaces for
embedding the other copy for each block. It should be mentioned that, the type of the
other copy is dependent on the first copy and how much capacity is still available for
embedding more data. The total capacity in each block for embedding data is restricted
to 128 bits to be able to have high quality watermarked image. The vacant capacity to
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embed the second copy can be calculated by considering the occupied capacity that has
been used by the first copy. In this way one of the embedded copies will have better
quality and the other one is more compressed in every block. Thus to efficiently use the
remaining capacity of the block, there are four options as follows:

• First copy is 8 × 8 OIBTC compression, second copy should be four average pixels
value of four 4 × 4 blocks.

• First copy is four 4× 4 OIBTC compression, second copy should be an average pixels
value of 8 × 8 block.

• First copy is an average pixels value of 8 × 8 block, second copy should be four 4 ×
4 OIBTC compression.

• First copy is four average pixels value of four 4 × 4 blocks, second copy should be 8
× 8 OIBTC compression.

2.4 Detecting and Localizing Tampered Area

For detection of tampering and trace the location of tampered area, the image is divided
into 8 × 8 blocks and the 2 LSBs of all pixels are replaced with zeros. For each of the
blocks the information associated with the current block should be supplied into the hash
function. Clearly all the 64 pixels which are inside the 8 × 8 block and the ordering
numbers of them should be included in the hash function. The obtained authentication
code from each block is compared with the amount of Hash function related to that block
to recognize if the block is tampered. If this information is not identical it shows that the
block has been tampered with. Since hash function is sensitive to even a one bit change
of input, any modification will be detected for every block. If tampering is detected,
extraction of the recovery code from destination blocks is required.

2.5 Recovery of Tampered Image

If a block is detected as tampered by comparing its authentication code with the content,
it can be recovered by extracting the recovery information from the intact areas of the
image. Recovery data include first and backup recovery data. As the probability of losing
first recovery data related to a tampered block, there is a second opportunity to recover
the tampered block with the assistance of the backup recovery data. In case of tampering,
the addresses of destinations for the first recovery data and the backup recovery data
can be calculated by the reverse of Arnold transformation with previous keys. Then the
other authentication checks should be done to ensure that the blocks that contained the
first and backup data are still intact. If both are intact in regard to the indicator bits, the
copy which is more detailed will be chosen for obtaining better results. Otherwise any
of the copies which is available and intact can be used. If both copies had been tampered
with, the recovery of the block is done with the help of mean values of their obtainable
undamaged neighbouring blocks. Through the above steps and decompression of the
relevant tampered blocks pixels could be recovered. Then by combining the intact blocks
and the recovered blocks the recovered image can be reconstructed.
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3 Experimental Results

Performance evaluation of our proposed scheme has been conducted on thewatermarked
image quality and recovered image quality. The experiment has been conducted on some
standard 512 × 512 images when tampering rates (t) were below 50% and the results
are shown in Table 1. The watermarked image quality is more than 43 dB for all images.
The quality of recovered images has been compared with the watermarked image quality
with two standard quality measurements (The Structural SIMilarity (SSIM) and Peak
Signal-to-Noise Ratio (PSNR)). Figures 1 2, 3 and 4 show the results of encoding. In
these figures, three encoded images are presented to demonstrate that in the proposed
hybrid method some useless data has been eliminated during preparation of data for
the first copy in order to make room for embedding one more but different copy as
backup recovery data. As it can clearly be seen in the figures, more textured blocks have
more data to embed, but the dedicated capacity for a smooth block has been used by
embedding one more complete backup copy related to another block. Smooth blocks in
hybrid method encoded figures are shown white.

Fig. 1. (a) Pepper image, (b) OIBTC (4 × 4) encoded, (c) OIBTC (8 × 8) encoded, (d) Proposed
Hybrid Scheme encoded for the first copy

Fig. 2. (a) Lake Image, (b) OIBTC (4 × 4) encoded, (c) OIBTC (8 × 8) encoded, (d) Proposed
Hybrid Scheme encoded for the first copy
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Fig. 3. (a) Lena image, (b) OIBTC (4 × 4) encoded, (c) OIBTC (8 × 8) encoded, (d) Proposed
Hybrid Scheme encoded for the first copy

Fig. 4. (a) Plane image, (b) OIBTC (4 × 4) encoded, (c) OIBTC (8 × 8) encoded, (d) Proposed
Hybrid Scheme encoded for the first copy

Figures 5 and 6 show the results of tampering detection, localization and recovery
by the proposed hybrid method. The 512× 512 standard medical images are included in
our figure results also since the proposed method can work on medical images as well.
Figure 7 shows the results of watermarking on the original medical image and the results
of recovery after tampering using the proposed method.

Fig. 5. (a) Original image (b) Tampered image (tampering rate = 19%), (c) Detected tampering
(d) Recovered image

In the proposed hybrid method, two different copies of each block are available as
the watermark data. While in 8 × 8 OIBTC method, according the amount of capacity
of 2 LSBs and redundancy of data, at most one half of the blocks can have a second
opportunity of another copy. In 4× 4OIBTCmethod, there is no second chance of having
another copy. For this reason themethod presented here could bemore suitable for higher
tampering rates since the probability of losing the first copy is higher. Furthermore, it can
be more suitable for less textured images as presented in Table 1. Images which are more
textured, e.g. Barbara and Mandril, the quality of recovered image is lower especially
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Fig. 6. (a) Original image (b) Tampered image (tampering rate = 25%), (c) Detected tampering
(d) Recovered image

Fig. 7. (a) Original image (b) Watermarked image (c) Tampered image (d) Recovered image

when tampering rate is low compared with using just OIBTC. It is demonstrated that
for most images with different tampering rates the proposed hybrid method has better
performance.
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Table 1. Comparison the results of Proposed Hybrid Scheme with 4 × 4 OIBTC [8] and 8 × 8
OIBTC [8] in terms of SSIM and PSNR for different standard images when tampering rates are
different (the minimum values are shown for all SSIMs and PSNRs)

Standard images 8 × 8 OIBTC [8] 4 × 4 OIBTC [8] Proposed Hybrid
Scheme

(t)
Tampering
rate %SSIM PSNR

(dB)
SSIM PSNR

(dB)
SSIM PSNR

(dB)

Lena 0.9036 30.16 – – 0.9162 31.84 45 < t < 50

Lena 0.9534 33.92 0.9580 35.08 0.9581 35.69 25 < t < 30

Lena 0.9812 39.26 0.9855 41.66 0.9839 42.02 10 < t < 12

Barbara 0.8645 25.08 – – 0.8935 26.19 45 < t < 50

Barbara 0.9384 28.98 0.9425 29.14 0.9422 29.02 25 < t < 30

Barbara 0.9721 32.99 0.9766 33.43 0.9701 32.24 10 < t < 12

Mandril 0.8474 26.66 – – 0.8550 27.01 45 < t < 50

Mandril 0.9058 27.78 0.9232 28.68 0.9288 28.92 25 < t < 30

Mandril 0.9469 30.03 0.9527 31.28 0.9501 30.89 10 < t < 12

Woman-Darkhair 0.9383 35.29 – – 0.9521 38.13 45 < t < 50

Woman-Darkhair 0.9673 38.29 0.9766 41.41 0.9759 41.52 25 < t < 30

Woman-Darkhair 0.9784 38.45 0.9816 38.14 0.9842 40.15 10 < t < 12

Woman-Blonde 0.8799 29.10 – – 0.8950 30.01 45 < t < 50

Woman-Blonde 0.9405 33.73 0.9389 33.85 0.9482 35.01 25 < t < 30

Woman-Blonde 0.9651 35.09 0.9682 36.22 0.9716 36.97 10 < t < 12

Living room 0.8574 27.43 – – 0.8855 28.94 45 < t < 50

Living room 0.9287 32.28 0.9296 32.36 0.9416 33.54 25 < t < 30

Living room 0.9687 37.22 0.9716 38.49 0.9752 38.86 10 < t < 12

Pepper 0.8883 28.53 – – 0.9098 30.43 45 < t < 50

Pepper 0.9407 31.77 0.9539 33.04 0.9543 33.94 25 < t < 30

Pepper 0.9715 34.71 0.9789 36.21 0.9800 37.65 10 < t < 12

Lake 0.9475 30.80 – – 0.9622 32.65 45 < t < 50

Lake 0.9737 33.98 0.9758 34.44 0.9800 35.89 25 < t < 30

Lake 0.9870 37.97 0.9895 38.99 0.9912 40.42 10 < t < 12

JetPlane 0.9582 31.45 – – 0.9658 32.62 45 < t < 50

JetPlane 0.9878 42.47 0.9904 45.77 0.9918 46.31 25 < t < 30

JetPlane 0.9915 45.69 0.9938 47.27 0.9940 48.27 10 < t < 12

CameraMan 0.9610 30.43 – – 0.9691 32.15 45 < t < 50

CameraMan 0.9760 32.06 0.9816 33.45 0.9812 34.82 25 < t < 30

CameraMan 0.9825 38.23 0.9930 43.81 0.9932 43.89 10 < t < 12

House 0.9507 31.87 – – 0.9785 36.84 45 < t < 50

House 0.9769 34.64 0.9591 35.18 0.9934 41.49 25 < t < 30

House 0.9889 42.59 0.9901 45.61 0.9972 47.76 10 < t < 12
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4 Conclusion

In this work, an image security scheme which can be applicable for sensitive medical
images has been developed. This method not only provides excellent authentication
detection, but also is able to recover the original image well, when it is necessary.
To achieve this aim, an image is divided into set of pixel blocks, then watermarked
data including authentication code and recovery codes is computed for each block.
Authentication code for each block is 16 bits and is produced by a Hash function and
should be hidden into the block itself. In order to authenticate an image, authentication
code can be extracted and compared with the result of the hash function on the contents
of the block. The OIBTC compression and the mean value are exploited for each block
to generate recovery information. Another recovery code is available since there is a
probability of losing one of the recovery codes as a result of tampering. Recovery codes
are scrambled inside the image blocks to have better reconstruction of the image in case
of tampering. The proposed method can embed two compressed copies of the image
inside the image itself with high quality by applying two new ways; extracting different
features depending on the types of blocks then reducing the number of needed bits
for embedding as well. Experimental results demonstrate conclusively that this scheme
can achieve superior performance for tampering detection, localization and recovery,
especially when tampering rate is high. The proposed hybrid method uses block size of
8× 8 for authentication code and block size of 4× 4 or 8× 8 for recovery code depending
on the texture of the block. Although our proposed method showed good performance
in recovery of image after high level of tampering, the accuracy of tamper localization
could be improved further by considering adaptive block size for authentication code as
well.
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Abstract. This paper presents a method for synthesizing multi-focus
cell images by using generative adversarial networks (GANs). The pro-
posed method, called multi-focus image GAN (MI-GAN), consists of
two generators. A base image generator synthesizes a 2D base cell image
from random noise. Using the generated base image, a multi-focus cell
image generator produces 11 realistic multi-focus images of the cell while
considering the relationships between the images acquired at successive
focus points. From experimental results, MI-GAN achieves the good per-
formance to generate realistic multi-focus cell images.

Keywords: Multi-focus pathological images · GAN · Image synthesis

1 Introduction

Cervical cancer screening is useful for early detection of cancers with less invasive
natures. In the screening, cytotechnologists observe a tissue sample taken out
from human body, and find pre-cancerous and cancer cells from the sample.
Generally, one sample includes tens of thousands of cells. Among them, the
number of cancer cells is much smaller than that of normal cells. Moreover, in
the case of cervical cancer screening in Japan, only 120 of every 10,000 people
may carry cancer cells, and 7 of them will be diagnosed as suffering from cancer.
Owing to these, the detection of cancer cells is a hard and time-consuming task.

Recently, instead of the sample, whole slide images (WSIs) have become a
common method for not only cancer screening but also another clinical appli-
cations [1]. WSIs are high resolution digital images with gigapixels acquired by
scanning the enter sample and varying focus points. The use of WSIs enables to
computerize the cancer screening. By applying image processing techniques, WSI
has the potential to improve the accuracy and efficiency of the cancer screening
including web-based remote diagnosis.
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Now, we have been developing an automatic system of cervical cancer screen-
ing using WSI. The construction of the system needs many WSIs including cancer
and normal cells. However, as stated above, cancer cell images are difficult to col-
lect compared with the case of normal cells. Therefore, there is a serious problem
of the imbalance between normal and cancer cell images. The data imbalance
makes it difficult to construct the system with acceptable accuracy.

Here, generative adversarial networks (GANs) [2] have achieved great success
at generating realistic images. Recent researches [3–7] have developed GAN-
based methods for pathological images. Hou et al. [3] applied GAN to synthesize
image patches to generate large-scale histopathological images by integrating
the patches. Hu et al. [4] proposed a GAN-based unsupervised learning of the
visual attributions of cells. Another GAN application to pathological images is
a stain normalization of the images. One challenge of using pathological images
is their color or stain variations. To overcome the problem, GAN-based stain
normalization methods [5–7] have been developed to transfer the stain style of
a microscopic image into another one.

Most of GAN-based methods have focused on single-focus images including
natural and pathological images. On the contrary, considering the WSI genera-
tion, WSI is also regarded as a sequence of multi-focus cytopathological images
acquired at different focus. However, there are few GAN-based methods whose
targets are the multi-focus images.

When the multi-focus images is regarded as an image sequence, the genera-
tion of multi-focus images is related to realistic video generation [8–10]. Gener-
ally, the aim of the video generation is to capture the changes of the appearance
and motion of a target. On the contrary, in our case, GAN needs to learn the
appearance changes of cells by varying a focus setting. This difference makes it
difficult to apply previous GANs for video generation to the synthesis of multi-
focus images.

In this paper, we propose a new GAN-based method, called multi-focus image
GAN (MI-GAN), for synthesizing multi-focus cell images to construct virtual
WSIs. MI-GAN is composed of two phases. The first phase is to from random
noise, produce a base cell image which is in focus in the multi-focus images.
In the second phase, MI-GAN produces realistic multi-focus images of the cell
considering the relationships between the images acquired at successive focus
points.

2 Method

Figure 1 shows the architecture of our proposed MI-GAN system which generates
a sequence of 11 multi-focus images of a cell. The size of each generated image
is 64 × 64[pixel]. Here, we denote I−5, . . . , I+5 as the 11 images. Especially, I0 is
a base cell image which is in focus in the multi-focus images.

The MI-GAN consists of two generators. A base image generator G1 synthe-
sizes a 2D base cell image I0 from random noise. Using the generated base image
I0, a multi-focus cell image generator G2 produces 11 realistic multi-focus images
of the cell. The two generators are trained independently. In the following, we
explain the architectures and training of the two generators.
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Fig. 1. Architecture of MI-GAN.

2.1 Base Image Generator

As shown in Fig. 2, the framework of constructing the base image generator is
based on DCGAN [11]. Given a 100 dimensional random noise Z, the base image
generator outputs the base image with size 64 × 64 [pixel]. In the base image
generator, there are four up-sampling convolution layers. Batch normalization
and Rectified Liner Unit (ReLU) activation are applied after each convolution
layer. Moreover, the kernel size of the convolution layer is 6 × 6 while both the
stride and padding sizes are 2. The discriminator is a feed-forward network with
six convolution layers. The kernel size of the convolution layer is 5 × 5.

In the training of the base image generator, we use the loss function used
in WGAN-GP [12] to stably synthesize images with acceptable quality. In the
WGAN-GP, the loss function L(1)

G of the generator G1 is defined by

L(1)
G = −EI∼Pg

[D1(I)]. (1)

On the contrary, the loss function L(1)
D of the discriminator D1 is formulated as

L(1)
D = EI∼Pg

[D1(I)] − EI∗∼Pr
[D1(I∗)] + λ1EÎ∼pÎ

[(‖∇ÎD1(Î)‖2 − 1)2] (2)

where I∗ and I are the real and synthesized base images of cells. The value of
λ1 in our method is set to 10. In Eq. (2), Î is calculated by

Î = ε1I
∗ + (1 − ε1)I (3)

where ε1 is a random number follow U ∼ [0, 1].
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Fig. 3. Architecture of multi-focus cell image generation network.

2.2 Multi-focus Cell Image Generator

Unlike general generators using random noise as the input data, the multi-
focus cell image generator G2 produces 10 multi-focus cell images from the base
image. Here, cycleGAN [13] converts a given real image into another type image.
Inspired by cycleGAN, as shown in Fig. 3, the multi-focus cell image generator
is composed of three parts: an 2D encoder, a 3D feature map generation, and a
2D decoder.

The encoder part includes 11 networks, each of which uses the base image I0
as the input image to output a candidate sample of the cell image acquired at
the corresponding focus point. The input matrix of the feature map generation
part is obtained by concatenating 11 candidate samples extracted from the 11
networks of the encoder part. The size of the input matrix is 11 × 3 × 4 × 4.
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3D ResNet with seven layers is employed to transform the input matrix into
a 3D feature map of a sequence of multi-focus images while considering the
relationships between the images acquired at successive focus points. In the
decoder part, the feature matrix is divided into 11 2D feature maps with size
of 3 × 4 × 4. Each 2D feature map is inputted to the corresponding 2D-decoder
part to synthesize the multi-focus cell image.

In the encoder part, there are four 2D down-sampling convolution layers. On
the contrary, the decoder part has four 2D up-sampling convolution layers. In
both the encoder and decoder parts, batch normalization and Rectified Liner
Unit (ReLU) activation are applied after each convolution layer. Moreover, the
kernel size of the 2D convolution layer is 6×6 while both the stride and padding
sizes are 2.

The feature map generation part is constructed by 3D ResNet with seven
layers. Each layer consists of two 3D convolution sub-layers. In the first sub-
layers, we apply batch normalization and LeakyReLU to the sub-layer while
batch normalization is applied to the second sub-layer. In both the sub-layer,
the kernel size of the convolution layer is 3 × 3. Moreover, to keep the output
size of 3D ResNets unchanged, we use padding of 1 × 1 × 1 at each convolution.

The discriminator D2 is a feed-forward network with six 3D down-sampling
convolution layers. Batch normalization and ReLU activation are applied after
each convolution layer. The kernel size of the convolution layer is 5 × 5 while
both the stride and padding sizes are 2.

Similar with the training of the base image generator, the multi-focus cell
image generator is trained by the 3D version of the WGAN-GP loss function.
Practically, the loss function L(2)

G of the multi-focus cell image generator G2 is
described by

L(2)
G = −EV ∼Pg

[D2(V )]. (4)

On the contrary, the loss function L(2)
D of the discriminator D2 is defined as

L(2)
D = EV ∼Pg

[D2(V )] − EV ∗∼Pr
[D2(V ∗)] + λ2EV̂ ∼pV̂

[(‖∇V̂ D2(V̂ )‖2 − 1)2] (5)

where V ∗ and V are the sequences of real and synthesized multi-focus images of
cells. The value of λ2 in our method is set to 10. In Eq. (5), V̂ is calculated by

V̂ = ε2V
∗ + (1 − ε2)V (6)

where ε2 is a random number follow U ∼ [0, 1].

3 Experimental Results

To verify the applicability of the proposed method, we made experiments of syn-
thesizing multi-focus images of cells. In our experiments, a digital slide scanner
(Hamamatsu Photonics: Nanozoomer-XR) is used to acquire WSI of a sample
including many cells. WSI consists of 11 multi-focus images of the sample at dif-
ferent focus. Each WSI has 75,000 × 75,000 [pixel] while the spatial resolution
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Fig. 4. Examples of real multi-focus images of SiHa cells.

Fig. 5. Synthesized multi-focus SiHa images by MI-GAN1.

of each image in WSI is 0.23 [μm/pixel]. The multi-focus images of a target cell
are extracted automatically from the WSI. The size of each cell image is 64× 64
[pixel]. The proposed method is implemented on a commercial desktop computer
(Quadro GP100 16 GB and Pytorch framework).

Firstly, we constructed MI-GAN, called MI-GAN1, for generating multi-focus
images of SiHa cell which is one of human cervical cancer cell lines. Figure 4
shows the examples of the real multi-focus images of SiHa cell. the MI-GAN1
construction uses 1,100 images of SiHa cells. In addition, to prevent the proposed
system overfitting, we perform data augmentation as follows: 90, 180, and 270
[deg] rotation of the original data, and a mirror flip of the up-down and left-right
directions. Finally, MI-GAN1 is constructed by using 6,600 SiHa images.

The proposed method synthesized the sequences of multi-focus SiHa images
as shown in Fig. 5. From these figures, the proposed method can generate realistic
multi-focus SiHa images compared with real SiHa cell images in Fig. 4. More-
over, the quality of the synthesized cell images is evaluated by some experienced
cytotechnologists. We got the comment of the experienced cytotechnologists that
the synthesized cell images are very similar with real cell images.
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Fig. 6. Examples of real multi-focus images of cancer cells.

Fig. 7. Synthesized multi-focus images of cancer cells by MI-GAN2.

However, MI-GAN1 generates some multi-focus images with low quality. The
red circles in Fig. 5 illustrate the example of the low quality cell images obtained
by MI-GAN1. The figures include some noises in the smooth region of cell cyto-
plasm and unnatural change of the cell nuclear shape between successive images.
The solutions for this problem include the improvement of the network architec-
ture and the definition of the loss function.

The second experiment is to construct another MI-GAN, called the MI-
GAN2, for generating multi-focus images of real cancer cells (Fig. 6). The number
of real cancer cell images is 541 and about half of SiHa cell images used in the
MI-GAN1 construction. Therefore, a transfer learning is applied to construct
MI-GAN2. Practically, the trained MI-GAN1 using SiHa cell images is used as
the initial architecture of MI-GAN2. Moreover, the data augmentation is applied
to increase the number of the cancer cell images. Using the cancer cell images,
MI-GAN2 is trained to synthesize multi-focus images of cancer cells.

The generated multi-focus images of cancer cells is illustrated in Fig. 7. As
with the generation of SiHa cell image, the proposed method reconstructs multi-
focus images of cancer cells with acceptable quality compared with real cancer
cell images. From the results, the pretrained GAN by using one type of cells is
useful to construct GAN for producing another type of cells.

4 Conclusion

We propose a GAN-based method, MI-GAN, for synthesizing multi-focus images
of cells. The synthesis process using MI-GAN is composed of two phases. In
the first phase, from random noise, the proposed method, MI-GAN produces
a base cell image which is in focus in the multi-focus images. In the second
phase, the MI-GAN produces realistic multi-focus images of the cell considering
the relationships between the images acquired at successive focus points. From
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the experimental results, MI-GAN achieves the good performance to generate
realistic multi-focus cell images. One of our future works is to establish metrics
for evaluating the generated multi-focus cell images such as the visual tuning
test [14].
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Abstract. This work investigates the impact of the loss function on the
performance of Neural Networks, in the context of a monocular, RGB-
only, image localization task. A common technique used when regressing
a camera’s pose from an image is to formulate the loss as a linear com-
bination of positional and rotational mean squared error (using tuned
hyperparameters as coefficients). In this work we observe that changes
to rotation and position mutually affect the captured image, and in order
to improve performance, a pose regression network’s loss function should
include a term which combines the error of both of these coupled quan-
tities. Based on task specific observations and experimental tuning, we
present said loss term, and create a new model by appending this loss
term to the loss function of the pre-existing pose regression network
‘PoseNet’. We achieve improvements in the localization accuracy of the
network for indoor scenes; with reductions of up to 26.7% and 24.0% in
the median positional and rotational error respectively, when compared
to the default PoseNet.

1 Introduction

In Convolutional Neural Networks (CNNs) and other Neural Network (NN)
based architectures, a ‘loss’ function is provided which quantifies the error
between the ground truth and the NN’s prediction. This scalar quantity is used
during the backpropagation process, essentially ‘informing’ the NN on how to
adjust its trainable parameters. Naturally, the design of this loss function greatly
affects the training process, yet simple metrics such as mean squared error (MSE)
are often used in place of more intuitive, task specific loss functions. In this work,
we explore the design and subsequent impact of a NN’s loss function in the con-
text of a monocular, RGB-only, image localization task.

The problem of image localization—that is; extracting the position and rota-
tion (herein referred to collectively as the ‘pose’) of a camera, directly from an
image—has been approached using a variety of traditional and deep learning
based techniques in the recent years (Fig. 1).

The problem remains exceedingly relevant as it lies at the heart of numerous
technologies in Computer Vision (CV) and robotics, e.g.geo-tagging, augmented
reality and robotic navigation.
c© Springer Nature Switzerland AG 2020
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Fig. 1. A sample of the predicted pose positions (purple) generated for the ground truth
poses (orange) in the 7Scenes Heads scene using our proposed model. The scene’s origin
(white) and SfM reconstruction is rendered for reference. Image best viewed in color.
The Heads scene has been rendered in blue to contrast with the plotted data points.
(Color figure online)

More colloquially, the problem can be understood as trying to find out where
you are, and where you are looking, by considering only the information present
in an RGB image.

CNN based approaches to image localization—such as PoseNet [4]—have
found success in the recent years due to the availability of large datasets and
powerful training hardware, but the performance gap between these systems
and the more accurate SIFT feature-based pipelines remains large. For example,
the SIFT-based Active Search algorithm [12] remains as a reminder that signif-
icant improvements need to be made before CNN techniques can be considered
competitive when localizing images.

However, CNN-based approaches do possess number of characteristics which
qualify them to handle this task well. Namely, CNNs are robust to changes in
illumination and occlusion [9], they can operate in close to real time [7] (∼30
frames per second) and can be trained from labelled data (which can easily
be gathered via Structure from Motion (SfM) for any arbitrary scene [13,14]).
CNN based systems also tend to excel in textureless environments where SIFT
based methods would typically fail [1]. They are also proven to operate well
using purely RGB image data—making them an ideal solution for localizing
small, cheap, robotic devices such as drones and unmanned ground vehicles.
The major concern of this work is to extend existing pipelines whilst ensuring
that the benefits provided by CNNs are preserved.

A key observation when considering existing CNN approaches is how position
and rotation are treated separately in the loss function. It can be observed that
altering a camera’s position or rotation both affect the image produced, and
hence the error in the regressed position and the regressed rotation cannot be
decoupled—each mutually affects the other. In order to optimize a CNN for
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regressing a camera’s pose accurately, a loss term should be used which combines
both distinct quantities in an intuitive fashion.

This publication thus offers the following key contributions:

1. The formulation of a loss term which considers the error in both the regressed
position and rotation (Sect. 3).

2. Comparison of a CNN trained with and without this loss term on common
RGB image localization datasets (Sect. 5).

3. An indoor image localization dataset (the Gemini dataset) with over 3000
pose-labelled images per-scene (Sect. 4.1).

2 Related Work

This work builds chiefly on the PoseNet architecture (a camera pose regression
network [4]). PoseNet was one of the first CNNs to regress the 6 degrees of free-
dom in a camera’s pose. The network is pretrained on object detection datasets
in order to maximize the quality of feature extraction, which occurs in the first
stage of the network. It only requires a single RGB image as input, unlike other
networks [11,17], and operates in real time.

Notably, PoseNet is able to localize traditionally difficult-to-localize images,
specifically those with large textureless areas (where SIFT-based methods fail).
PoseNet’s end-to-end nature and relatively simple ‘one-step’ training process
makes it perfect for the purpose of modification, and in the case of this work,
this comes in the form of changing its loss function.

PoseNet has had its loss function augmented in prior works. In [3] it was
demonstrated that changing a pose regression network’s loss function is suffi-
cient enough to cause an improvement in performance. The network was simi-
larly ‘upgraded’ in [18] using LSTMs to correlate features at the CNN’s output.
Additional improvements to the network were completed in [2], where a Bayesian
CNN implementation was used to estimate re-localization accuracy.

More complex CNN approaches do exist [8–10]. For example, the pipeline
outlined in [5] uses a CNN to regress the relative poses between a set of images
which are similar to a query image. These relative pose estimates are coalesced
in a fusion algorithm which produces an estimate for the camera pose of the
query image.

Depth data has also been incorporated into the inputs of pose regression net-
works (to improve performance by leveraging multi-modal input information).
These RGB-D input pipelines are commonplace in the image localization litera-
ture [1], and typically boast higher localization accuracy at the cost of requiring
additional sensors, data and computation.

A variety of non-CNN solutions exist, with one of the more notable solutions
being the Active Search algorithm [12], which uses SIFT features to inform a
matching process. SIFT descriptors are calculated over the query image and are
directly compared to a known 3D model’s SIFT features. SIFT and other non-
CNN learned descriptors have been used to achieve high localization accuracy,
but these descriptors tend to be susceptible to changes in the environment, and
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they often necessitate systems with large amounts of memory and computational
power (comparatively to CNNs) [4].

The primary focus of this work is quantifying the impact of the loss function
when training a pose regression CNN. Hence, we do not draw direct compar-
isons between the proposed model and significantly different pipelines—such
as SIFT-based feature matching algorithms or PoseNet variations with highly
modified architectures. Moreover, for the purpose of maximizing the number of
available benchmark datasets, we consider pose regressors which handle purely
RGB query images. In this way, this work deals specifically with CNN solutions
to the monocular, RGB-only image localization task.

3 Formulating the Proposed Loss Term

When trying to accurately regress one’s pose based on visual data alone, the error
in the two terms which define pose—position and rotation—obviously needs to
be minimized. If these error terms were entirely minimized, the camera would
be in the correct location and would be ‘looking’ in the correct direction.

Formally, pose regression networks—such as the default PoseNet—are trained
to regress an estimate �̂p for a camera’s true pose �p. They do this by calculating
the loss after every training iteration, which is formulated as the MSE between
the predicted position �̂x and the true position �x, plus the MSE between the
predicted rotation �̂q and the true rotation �q. Note that rotations are encoded as
quaternions, since the space of rotations is continuous, and results can be easily
normalized to the unit sphere in order to ensure valid rotations. Hyperparameters
α and β control the balance between positional and rotational error, as illustrated
in Eq. (1). In practice, RGB-only pose regression networks reach a maximum
localization accuracy when minimizing these error terms independently.

Ldefault = α · ‖�̂x − �x‖ + β · ‖�̂q − �q‖ (1)

Rather than considering position and rotation as two separate quantities,
we consider them together as a line in 3D space: the line travels in a direction
defined by the rotation, and must travel through the position vector defined by
the position �x. We then introduce a ‘line-of-sight’ term which constrains our pre-
dictions to lie on this line. The line-of-sight term considers the cosine similarity
between the direction of the pose �p and the direction of the difference vector
�d = �x − �̂x, as per Eq. (2) and Fig. 2. This term is only zero when the predicted
position lies on the line defined by the ground truth pose, hence constraining
the pose regression objective further. In the context of image localization, this
ensures that the predicted poses lie on the line-of-sight defined in the ground
truth image.

1 − cos θ = 1 − �p · �d

‖�p‖ · ‖�d‖
(2)
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Fig. 2. The important quantities required in the calculation of the proposed loss term
in 2D. This process naturally extends to 3D. The Euclidean dot product formula is
used to calculate a value for θ.

We modify the default loss function presented in Eq. (1) by adding a weighted
contribution of the line-of-sight loss term, producing the proposed loss function
in Eq. (3). In practice, the value of γ is chosen to roughly reflect the scale of the
scene being considered, and is found via a hyperparameter grid search. Note that
the line-of-sight term can contribute to the loss through multiplication, higher
order terms, etc. but it was determined that weighted addition produced the
best performing networks.

Lproposed = Ldefault + γ · (1 − cos θ) (3)

In short, the final loss function used to train the proposed model (Eq. (3)) is
the result of an exploration in the space of possible loss terms, and the term’s
design was informed by task specific observations and experimentation.

4 Experiments

Our experiments are naturally centred around testing the performance of the
proposed model (defined in Sect. 3). This performance is defined with respect to
the following criteria:

– Accuracy: the system should be able to regress a camera’s pose with a level
of positional and rotational accuracy that is competitive with similar classes
of algorithms. Accuracy is reported using per-scene and average median posi-
tional and rotational error (See Sect. 5.1).

– Robustness: the system should be robust to perceptual aliasing, motion
blur and other challenges posed by the considered datasets (See Sect. 5.2 and
Fig. 8).

– Time performance: evaluation should occur in real-time (∼30 frames per
second), such that the system is suitable in hardware limited real-time appli-
cations, or on platforms with RGB-only image sensors, e.g.on mobile phones
(See Sect. 5.3).
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We compare our proposed model against the default PoseNet and other
PoseNet variants.

4.1 Datasets

The following datasets are used to benchmark model performance. Each scene’s
recommended train and test split is used throughout the following experiments
(Figs. 3, 4, 5 and 6).

Chess Fire Heads Office Pumpkin Red Kitchen Stairs

Fig. 3. Sample images from each of the 7 scenes in the 7Scenes dataset.

Great Court Kings College Old Hospital Shop Facade St Mary’s
Church

Street

Fig. 4. Sample images from each of the 6 scenes in the Cambridge Landmarks dataset.

Office Meeting Kitchen Conference Coffee Room

Fig. 5. Sample images from each of the 5 scenes in the University dataset.

Fig. 6. Sample images from the 2 scenes in the Gemini dataset.

7Scenes [15]. 7 indoor locations in a domestic office context. The dataset fea-
tures large training and testing sets (in the thousands). The camera paths move
continuously while gathering images in distinct sequences. Images include motion
blur, featureless spaces and specular reflections (see Fig. 8), making this a chal-
lenging dataset, and one that has been used prolifically in the image localization
literature. The ground truths poses are gathered with KinectFusion, and the
RGB-D frames each have resolutions of 640 × 480 px.
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Cambridge Landmarks [2,4]. 6 outdoor locations in and around Cambridge,
The United Kingdom. The larger spatial extent and restricted dataset size make
this a challenging dataset to learn to regress pose from—methods akin to the
one presented in this work typically only deliver positional accuracy in the scale
of metres. However, the dataset does provide a common point of comparison,
and also includes large expanses of texture-less surfaces. Ground truth poses are
generated by a SfM process, so some comparison can be drawn between this
dataset and the one created in this work.

University [5]. 5 indoor scenes in a university context. Ground truth poses are
gathered using odometry estimates and “manually generated location constraints
in a pose-graph optimization framework” [5]. The dataset, similarly to 7Scenes,
includes challenging frames with high degrees of perceptual aliasing, where mul-
tiple frames (with different poses) give rise to similar images [20]. Although the
scenes are registered to a common coordinate system in the University dataset
and thus a network could be trained on the full dataset, the models created in
this work are trained and tested scene-wise for the purpose of consistency.

Gemini1. 2 indoor scenes in a university lab context. This dataset was created
for the purpose of studying the effect of texture and colour on pose regression net-
works: both scenes survey the same environment, with one scene including decor
(posters, screen-savers, paintings etc.) and the other deliberately not including
visually rich, textured, and colorful decor. As such the two scenes are labelled
Decor and Plain. A photogrammetry pipeline (COLMAP [14]) was used to gener-
ate the ground truth poses. Images were captured in 15 separate video sequences
using a FujiFilm X-T20 with a 23 mm prime autofocus lens (in order to ensure
a fixed calibration matrix between sequences). Visualizations of the with decor
scene are provided in Fig. 7.

(a) Top down view (b) Isometric view

Fig. 7. (a) – (b) Varying views of the Gemini dataset.

1 This dataset has been made available at https://github.com/anon-datasets/gemini.

https://github.com/anon-datasets/gemini
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4.2 Architecture and Training

As stated, we primarily experiment with the PoseNet architecture (using Ten-
sorFlow). For the purpose of brevity we redirect the reader to the original publi-
cation [4], as here we only describe crucial elements of the network’s design and
operation.

The PoseNet architecture is in itself based on the GoogLeNet architecture
[16], a 22 layer deep network which performs classification and detection. PoseNet
extracts GoogLeNet’s early feature extracting layers, and replaces the final three
softmax classifiers with affine regressors. The network is pretrained using large
classification datasets such as Places [21].

Strictly, the default loss function used is not exactly as defined in Eq. (1).
Instead, PoseNet uses the predictions from all three affine regressors (hence
there are three predictions for each quantity). We label the ith affine regressor’s
hyperparameters and predictions using a subscript i, as per Eq. (4). All three
affine regressors’ predictions are used in the loss function, but each have different
hyperparameter weightings: α1 = α2 = 0.3, α3 = 1, β1 = β2 = 150 and β3 = 500.

Ldefault = αi · ‖�̂xi − �x‖ + βi · ‖�̂qi − �q‖ (4)

In order to demonstrate the consistency and generalization of the proposed
network, we train against all scenes in all datasets using the same experimental
setup. For each scene we train PoseNet using the default loss (Eq. (4)) and the
proposed loss (Eq. (3)) with the contribution from all three affine regressors.
Each model is trained per-scene over 300, 000 iterations with a batch size of 75
on a Tesla K40c, which takes ∼10 h to complete.

5 Results

We compare our proposed model to PoseNet and one of its variants—Bayesian
PoseNet [18]—in Table 1. This is to show the proposed model’s performance
when compared to other variants of PoseNet with modified loss functions. We
then provide results specifically comparing the default PoseNet to our proposed
model in Table 2. A discussion of our system’s performance regarding the criteria
outlined in Sect. 4 follows.

5.1 Accuracy

It is observed that the proposed model outperforms the default version of
PoseNet in approximately half the 7Scenes scenes—particularly the Stairs scene.
In the Stairs scene, repetitious structures, e.g.staircases, make localization
harder, yet the proposed model is robust to such challenges. The network is out-
performed in others scenes; namely outdoor datasets with large spatial extents,
but in general, performance is improved for the indoor datasets 7Scenes, Uni-
versity and Gemini.
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Table 1. The results of various pose regression networks for various image localiza-
tion datasets. Median positional and rotational error is reported in the form: metres,
degrees. The lowest errors are emboldened. Note that our proposed model is compet-
itive in indoor datasets with respect to median positional error.

Scene Bayesian Default Proposed

PoseNet [2] PoseNet [4] model

Chess 0.37, 7.24 0.32, 8.12 0.31, 7.04

Fire 0.43, 13.7 0.47, 14.4 0.49, 13.3

Heads 0.31, 12.0 0.29, 12.0 0.24, 15.7

Office 0.48, 8.04 0.48, 7.68 0.40, 10.0

Pumpkin 0.61, 7.07 0.47, 8.42 0.49, 9.50

Red Kit. 0.58, 7.54 0.58, 11.3 0.53, 7.98

Stairs 0.48, 13.1 0.56, 15.4 0.48, 14.7

Average 0.47, 9.81 0.45, 11.0 0.42, 11.2

Street – 3.67, 6.50 –

King’s Col. 1.74, 4.06 1.92, 5.40 2.28, 4.05

Old Hosp. 2.57, 5.14 2.31, 5.38 3.90, 8.75

Shop Fac. 1.25, 7.54 1.46, 8.08 2.48, 10.2

St Mary’s 2.11, 8.38 2.65, 8.48 3.02, 7.79

Averagea 1.92, 6.28 2.09, 6.84 2.92, 7.70
a Average calculated using only the scenes: King’s

College, Old Hospital, Shop Facade & St Mary’s

Church as full dataset performance is not available

for all pipelines.

Table 2. A study on the direct effects of using our proposed loss function, instead
of the default loss function when training PoseNet. Median positional and rotational
error is reported in the form: metres, degrees. The lowest errors of each group are
emboldened. Note that our contribution majorly outperforms the default PoseNet in
both median positional and median rotational error throughout the University dataset
and the Gemini dataset. In the Gemini dataset, decreases of 26.7% and 24.0% in
the median positional and rotational error are observed in the Decor scene, and an
overall increase in accuracy demonstrates the proposed model’s robustness to texture-
less indoor environments (when compared to the default PoseNet).

Scene Default Proposed

PoseNet [4] model

Office (University) 1.05, 16.2 0.91, 11.0

Meeting 1.78, 10.1 1.30, 9.58

Kitchen 1.19, 12.5 1.25, 15.5

Conference 2.88, 13.3 2.83, 15.8

Coffee Room 1.41, 14.9 1.21, 13.3

Average 1.66, 13.4 1.50, 13.0

Plain 1.27, 7.87 1.14, 7.90

Decor 0.15, 1.17 0.11, 0.89

Average 0.71, 4.52 0.63, 4.40
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A set of cumulative histograms for six of the evaluated scenes are provided in
Table 3, where we compare the distribution of the positional errors and rotational
errors. Median values (provided in Tables 1 and 2) are plotted for reference.

The proposed model’s errors are strictly less than the default PoseNet’s
throughout the majority of the Chess and Coffee Room distributions. However,
the default PoseNet outperforms our proposed model with respect to rotational
accuracy in the 10◦–30◦ range in the Coffee Room scene.

Note the lesser performance observed from the proposed model on the King’s
College scene; where the positional errors distributions for the two networks are
nearly aligned. Moreover, the default PoseNet more accurately regresses rotation
in this outdoor scene. See Sects. 5.2 and 6 for further discussion.

5.2 Robustness

The robustness of our system to challenging test frames—that is, images with
motion blur, repeated structures or demonstrating perceptual aliasing [6]—can
be determined via the cumulative histograms in Table 3. For the purpose of visu-
alization, some difficult testing images from the 7Scenes dataset are displayed
in Fig. 8.

The hardest frames in the test set by definition produce the greatest errors.
Consider the positional error for the Meeting scene: our proposed model reaches
a value of 1.0 on the y-axis before the default PoseNet does, meaning that the
hardest frames in the test set have their position regressed more accurately. This
analysis extends to each of the cumulative histograms in Table 3, thus confirming
our proposed loss function’s robustness to difficult test scenarios, as the frames
of greatest error consistently have less than or comparable errors when compared
to the default PoseNet.

(a) Motion blur (b) Repeated structures (c) Textureless & specular
surfaces

Fig. 8. (a) – (c) Images from the 7Scenes dataset where accurately regressing pose is
challenging.

Moreover, the proposed model significantly exceeds the default PoseNet’s
performance throughout the Gemini dataset. The performance gap in the Plain
scene proves that our model is more robust to textureless spaces than the default
PoseNet.
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Table 3. Cumulative histograms of positional and rotational errors, with median values
plotted as a dotted line. Note that the proposed model’s positional error distribution
is strictly less than (shifted to the left of) the default PoseNet’s positional error dis-
tribution for the indoor scenes (except Conference, where performance is comparable).
Additionally, the maximum error of the proposed model is lower in the scenes Meeting,
Coffee Room and Kitchen, meaning that our implementation is robust to some of the
most difficult frames offered by the University dataset. Images best viewed in colour.
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5.3 Efficiency

Training Time. The duration of the training stage compared between our
implementation and default PoseNet is by design, very similar, and highly com-
petitive when compared to the other systems analyzed in Table 1. This is due
to the relatively inexpensive computing cost of introducing a simple line-of-sight
loss term into the network’s overall loss function. The average training time for
default PoseNet and for our augmented PoseNet over the University dataset is
10 : 21 : 31 and 10 : 23 : 33 respectively (HH:MM:SS), where both tests are ran
on the same hardware.

Testing Time. The network operation during the test time is naturally not
affected by the loss function augmentation. The time performance when testing
is similar to that of the default PoseNet and in general is competitive amongst
camera localization pipelines (especially feature based matching techniques). We
observe a total elapsed time of 16.04 s when evaluating the entire Coffee Room
scene testing set, whereas it takes 16.03 s using the default PoseNet. In other
words, both systems take ∼16.8 ms to complete a single inference on our hard-
ware.

Memory Cost. Memory cost in general for CNNs is low—only the weights for
the trained layers and the input image need to be loaded into memory. When
compared to feature matching techniques, which need to store feature vectors for
all instances in the test set, or SIFT-based matching methods with large memory
and computational overheads, CNN approaches are in general quite desirable—
especially in resource constrained environments. Both the proposed model and
the default PoseNet take 8015MiB and 10947MiB to train and test respectively
(as reported by nvidia-smi). For interest, the network weights for the proposed
model’s TensorFlow implementation total only 200 MB.

6 Discussion and Future Work

Experimental results confirm that the proposed loss term has a positive impact
on robustness and accuracy, whilst maintaining speed, memory usage, and
robustness (to textureless spaces and so forth).

The network is outperformed by the SIFT-based image localization algorithm
‘Active Search’ [12], indicating that there is still some work required until the
gap between SIFT-based algorithms and CNNs is closed (in the context of RGB-
only image localization). However, SIFT localization operates on a much longer
timescale, and can be highly computationally expensive depending on the dataset
and pipeline being used [19].

Ultimately, the loss function described in this work illustrates that intuitive
loss terms, designed with respect to a specific task (in this case image localiza-
tion) can positively impact the performance of deep networks.

Possible avenues for future work include extending this loss function design
methodology to other CV tasks, in order to achieve higher performance, or to
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consider RGB-D pipelines. An investigation on the effect that such loss terms
have on the convergence rate, and upper performance limit of NNs could also be
explored.

7 Conclusion

In summary, the effect of adding a line-of-sight loss term to an existing pose
regression network is investigated. The performance of the proposed model is
compared to other similar models across common image localization benchmarks
and the newly introduced Gemini dataset. Improvements to performance in the
image localization task are observed, without any drastic increase in evalua-
tion speed or training time. Particularly, the median positional accuracy is—on
average—increased for indoor datasets when compared to a version of the model
without the suggested loss term.

This work suggests that means squared error between the ground truth and
the regressed predictions—although often used as a measure of loss for many
Neural Networks—can be improved upon. Specifically, loss functions designed
with the network’s task in mind may yield better performing models. For pose
regression networks, the distinct and coupled nature of positional and rotational
quantities needs to be considered when designing a network’s loss function.
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Abstract. Age and gender classification of human’s face is an impor-
tant research focus, having many application areas. Recently, Convolu-
tional Neural Networks (CNNs) model has proven to be the most suitable
method for the classification task, especially of unconstrained real-world
faces. This could be as a result of its expertise in feature extraction
and classification of face images. Availability of both high-end comput-
ers and large training data also contributed to its usage. In this paper,
we, therefore, propose a novel CNN-based model to extract discrimina-
tive features from unconstrained real-life face images and classify those
images into age and gender. We approach the large variations attributed
to those unconstrained real-life faces with a robust image preprocess-
ing algorithm and a pretraining on a large IMDb-WIKI dataset con-
taining noisy and unfiltered age and genders labels. We also adopted a
dropout and data augmentation regularization method to overcome the
risk of overfitting and allow our model generalize on the test images. We
show that well-designed network architecture and properly tuned train-
ing hyperparameters, give better results. The experimental results on
OIU-Adience dataset confirm that our model outperforms other studies
on the same dataset, showing significant performance in terms of classi-
fication accuracy. The proposed method achieves classification accuracy
values of 84.8% on age group and classification accuracy of 89.7% on
gender.

Keywords: Adience dataset · Age classification · Convolutional
neural network · Unconstrained images

1 Introduction

Facial recognition is an interesting [9], and prevalent problem recently [18]
because of its many popular real-world application areas, ranging from enter-
tainment [31], security control [1], cosmetology [15], to biometrics [6,14]. Age
and gender classification of faces, in particular, has rapidly gained more pop-
ularity among others [12]; it plays a very significant role in our social lives in
which we rely on the two attributes of the face for our daily interactions [20].
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Age and gender classification tasks have been approached with some many
methods, many of which are incapable of solving the two problems accurately.
Most of the popular approaches have been handcrafted which manually engineer
features from the face, and focuses on extracting handcrafted features to explore
the discriminative information needed for the estimation task [16,19,25,30]. Dif-
ferent machine learning methods studied by many researchers for age and gender
classification were only efficient on face images captured under controlled con-
ditions; few of those methods are designed to handle the many challenges of
unconstrained real-life imaging conditions achieving unsatisfactory results [4,7].

Recently, Convolution Neural Networks (CNNs) has proven to be the most
suitable method for facial recognition, especially in age and gender classifica-
tion. It can classify the age and gender of face images relying on its good feature
extraction technique [2,5,11,21,26,29]. Availability of both large data for train-
ing and high-end computer machines, also help in the adoption of the deep
CNN methods for the classification task. This consequently shows its relevance
to classify unconstrained real-world age and gender tasks automatically achiev-
ing significant performance over existing methods [17,24,27,32]. We, therefore,
present a CNN-based model (in Fig. 1) for age group and gender classification
of unfiltered real-life face images of individuals. Our main contributions are as
follows:

1. We propose a new CNN model to process age and gender classification of
unconstrained real-life faces where we categorize the facial analysis task as a
classification problem, that considers each age and gender as a class label.

2. We design a robust face detection and alignment algorithms that localize face
in the image, detect facial landmarks of unconstrained faces in real-time and
transform the image into an output coordinate space.

3. We also pre-train our model on a very large facial aging dataset containing
unconstrained age and gender labels, to learn the bias and particularities of
the dataset and also to avoid overfitting.

4. Finally, we employ two popular datasets benchmark for training and val-
idation. The experimental results when evaluated on OIU-Adience bench-
mark dataset for age and gender classification, show that our novel CNN
model achieves better performance compared with state-of-the-art on the
same dataset and hence can satisfy the requirements of many real-world appli-
cations.

The remainder of this paper is arranged as follows: Sect. 2 briefly studies the
related works in age and gender classification, Sect. 3 describes our proposed
approach, Sect. 4 presents the experiments and the experimental analysis on
OIU-Adience dataset of unconstrained faces with age and gender labels and
then discusses the achieved results while conclusion and future works are drawn
in Sect. 5.
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Fig. 1. The pipeline of our proposed model

2 Related Works

In the past years, several methods have been proposed to solve the age and
gender classification problem. Some of those methods focus more on constrained
images while only a few studies age and gender classification of unconstrained
real-world faces. Recently, CNN has received increasing attention in the com-
puter vision community especially for classifying age and gender of face images
from uncontrolled imaging environment [11]. To mention a few, Eidinger et al.
[12] studied age and gender classification of face images acquired in challenging
in-the-wild scenarios. Firstly, they collected face images of people labeled for age
and gender from online image repositories. They also proposed a dropout-SVM
approach for the estimation task with a robust face alignment technique to pre-
pare the in-the-wild images for better result. Their approach achieved a better
result when compared to the state-of-the-art. Levi and Hassner [20] also inves-
tigated a five-layer CNN method to classify the age and gender of the person
using the faces collected from unconstrained settings. The model is trained and
evaluated on Adience benchmark for age and gender estimation where the results
reflect a remarkable baseline for CNN-based models and can improve with bet-
ter system design. Subhani and Anto in [29] proposed a five-layer CNN based
architecture for age and gender classifications on Adience benchmark images
using direct Convolutional Neural System engineering. The model achieved a
better result than the current state-of-the-art methods when evaluated on Adi-
ence dataset. Zhang et al. [32] developed a novel CNN-based model for age
group and gender classifications of the in-the-wild images, named “Residual
Networks of Residual Networks (RoR)”. RoR model was initially pretrained on
ImageNet dataset, then finetuned on IMDB-WIKI dataset to learn the peculiar-
ity of each dataset before finally finetuning on Adience benchmark dataset. The
experimental results achieved new state-of-the-art results on Adience dataset.
In 2018, Duan et al. [10] proposed a hybrid novel age estimation model named
CNN2ELM, to predict the age and gender of face images. CNN2ELM includes
three convolutional neural networks (CNN) models and two extreme learning
machine (ELM) structures. The models are pretrained on the ImageNet dataset
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before finetuning on the IMDB-WIKI, MORPH-II, Adience benchmark, and
LAP-2016 datasets. The three CNNs are used for features extraction while the
two ELM structures classify the age group and gender.

Although most of the methods discussed above made lots of improvement on
age and gender classification, where some are aimed at unconstrained imaging
conditions, our novel CNN structure can still achieve a better result. It is not
only suitable on constrained images but also able to classify the age and gender
of unconstrained real-life facial images.

3 Proposed Approach

The approach for the age group and gender classification of unconstrained real-
life face images as presented in Fig. 1, consists of the following main components:

3.1 Face Detection

The image preprocessing stage starts with face detection to detect an input
image by localizing face in the image before detecting the key facial structures
on the face object of interest. To accomplish this task, we employ a dlib library
that uses “pre-trained HOG + Linear SVM”. The detector, an improvement of
[8] and [23], is an effective and reliable model to localize the face in the image;
it can locate the bounding box (x, y)-coordinates of a face in an image.

3.2 Landmark Detection and Face Alignment

Given the face region from face detection phase, we can then apply a face
landmark method to detect the key facial structures on the face area of inter-
est including the mouth, right eyebrow, left eyebrow, right eye, left eye, nose,
and jaw. The designed landmark detector algorithm detects facial landmarks of
unconstrained faces in real-time.

Also, before we pass our face images through our CNN model for training and
evaluation, there is a need to normalize and align the face images to obtain better
accuracy. The goal of this is to warp and transform the images into an output
coordinate space. Having achieved the (x, y)-coordinates of the eyes through
landmark detection, we then compute the angle between them and generate
their midpoint. An affine transformation is then applied to warp the images
into a new output coordinate space for centered images, an equally scaled, and
well-rotated eyes lying along a horizontal line.

3.3 Architecture of Our CNN Model

In this section, we describe the design of our novel CNN structure in Fig. 2. Our
network architecture includes two stages: feature extraction and classification.
The feature extraction stage contains the convolutional layer, activation layer
(rectified linear unit (ReLU)), batch normalization (instead of the deprecated
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Fig. 2. The pipeline of our proposed model

Local Response Normalization), max-pooling layer, and a dropout. The feature
extraction stage has four convolutional layers with their corresponding parame-
ters, including the number of each filter, the kernel size of each filter, the stride,
etc. The first convolutional layer consists of 96, 7 × 7 kernels and a stride of
4 × 4. The second, third and fourth series of convolutional layers applied the
same structure as the first but with different filter and filter size. Second con-
volutional layer consist of 256, 5 × 5 filters, third is near identical to the second
convolutional layers but with an increase in the number of filters to 384 and a
reduction of the filter size to 3 × 3. The last and fourth convolutional layer set
has a filter of 256 and a filter size of 3 × 3. All the convolutional layers have a
fixed dropout of 25% to improve generalization and reduce overfitting.

The classification stage contains two fully-connected layers that classify the
age group and gender tasks. The first fully-connected layers contain 512 neurons,
followed by a ReLU, batch normalization and a dropout layer at a dropout ratio
of 50%. The last fully-connected layer output 512 features which are densely
mapped to 8 or 2 neurons for classification tasks. A softmax with cross-entropy
loss function is adopted to obtain a probability for each class.

Cross-Entropy: Cross-entropy loss measures the performance of a classification
model and generates an output that is between 0 and 1. Cross-entropy loss
decreases as the predicted probability converges to the correct label; the lower
the cross-entropy result, the better the classification model to generalize.

In binary classification, with the number of classes N equals 2, it is therefore
defined as:

− (z log(p) + (1 − z) log(1 − p)) (1)

but for multi-class classification with N > 2, we calculate a separate loss for each
label of observation and then sum the outcome (see Eq. 2).

−
N∑

c=1

zo,c log(po,c) (2)

where N is the number of classes, z is the binary indicator (0 or 1) if class label
c is the actual classification for observation o, log is the natural log, and p is the
predicted probability observation o of class label c.
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Table 1. Summary of the popular Facial Aging Databases

Database Database size #Subjects Age range Age type Year In-the-wild?

OIU-Adience [12] 26,580 2,284 0–60+ Age group 2014 Yes

IMDb-WIKI [32] 523,051 20,284 0–100 Real 2016 Yes

3.4 System Training

In this section, we present the training details of the two classifiers for age group
and gender on Adience dataset that correctly predict the age group and the
gender of unconstrained face images. The age classifier will be responsible for
predicting the age of eight different classes while gender classifier will classify
gender into two classes. We initially pre-train the two CNN based classifiers on
a very large IMDb-WIKI benchmark dataset containing unconstrained real-life
faces with age and gender label. This is important so that the two classifiers will
learn the bias from large image samples to generalize on the test image samples
and also reduce the risk of overfitting. For IMDb-WIKI dataset, we split into two:
90% for training, and 10% for validation while 70% of OIU-Adience images is
used for training and the remaining 30% is equally split, 15% for validation and
15% for testing. The images in the datasets were originally rescaled to 256×256
pixel, then cropped to 224 × 224 pixel before being passed into the network.
We also train the network using a batch size of 64. The optimization of the
proposed model for the classifiers is carried out by using a stochastic gradient
descent method with mini-batches of size 256 and a momentum value of 0.9
with a weight decay of 0.0005. The training starts with an initial learning rate
of 0.0001 then decrease by a factor of 10 whenever there is no improvement
in the accuracy result. The training on the classifiers is terminated when the
network begins to overfit on the validation set. To further improve our model
performance, we employ data augmentation on both the training and testing
images and also utilize dropout regularization methods. We calculate SGD as
defined in Eq. 3:

β = β − η · ∇βJ(β;x(i); y(i)) (3)

where η is defined as the learning rate, ∇βJ , the gradient of the loss term with
respect to the weight vector β.

4 Experiments

In this section, we describe the specifications of the employed OIU-Adience and
IMDb-WIKI benchmark databases, and experimental analysis of our model on
OIU-Adience benchmark with age and gender labels.

4.1 Description of the Dataset

We employ two standard facial aging datasets to train and validate our approach.
We initially train our model on IMDb-WIKI database [32] and then finetune it
on the original OIU-Adience benchmark [12] of unconstrained facial images.
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Fig. 3. Age group and gender distribution of face images in OIU-Adience dataset.

OIU-Adience dataset [12] consists of about 26,000 face images from ideal
real-life and unconstrained environments. Hence, It reflects all the features that
are expected of an image collected from challenging uncontrolled scenarios with
a high degree of variations in noise, pose, appearance among others. It has eight
different age categories (0–2, 4–6, 8–13, 15–20, 25–32, 38–43, 48–53, 60+) and
two gender labels.

IMDb-WIKI database [32] is the largest publicly available dataset for age
estimation of people in the wild, containing more than half a million images
with accurate age labels between 0 and 100 years. For the IMDb-WIKI dataset,
the images were crawled from IMDb and Wikipedia; IMDb contains 460,723
images of 20,284 celebrities and Wikipedia with 62,328 images. The images of
IMDb-WIKI dataset are obtained directly from the website, as such the dataset
contains many low-quality images, such as “human comic” images, sketch images,
severe facial mask, full body images, multi-person images, blank images, and so
on.. The specification of the datasets is highlighted in Table 1 while the detailed
distribution of OIU-Adience images for the age and gender categories, is pre-
sented in Fig. 3.

4.2 Experimental Results and Discussion

A novel CNN model which classify unconstrained face images to age group and
gender has been proposed. Different empirical experiments have been carried out
to evaluate the performance of the proposed approach for classifying a person to
the correct age group and gender on Adience dataset. The performance of the
two classifiers is measured by two standard metrics common in the literature:
confusion matrix and accuracy.
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Table 2. Results in literature for Age group and Gender classification on OIU-Adience
benchmark using classification accuracy.

Reference Year Approach Age group (%) Gender (%)

[12] 2014 Dropout SVM + LBP 45.1 –
[20] 2015 3C2FC 50.7 86.8
[13] 2016 3C3FC 54.5 80.8
[3] 2017 FFNN 58.5 –
[24] 2017 VGG 59.9 –
[11] 2018 CNN + ELM 52.3 88.2
[21] 2018 CNN + focal Loss 54.0 –
[10] 2018 RAGN 66.5 –
Proposed 2019 4C2FC 84.8 89.7

Confusion Matrix [22]. This evaluates the performance of multi-class age
group and binary gender classification model on sets of test images. The metric
summarizes the performance of the classification algorithm in a table with four
different combinations of predicted and actual classes. We therefore presents a
confusion matrix to the eight classes (0–2, 4–6, 8–13, 15–20, 25–32, 38–43, 48–53,
60+) age grouping results and for binary class gender classification results. The
metric generates the results of our proposed method on OIU-Adience dataset for
age group and gender classification.

Accuracy [28]. This calculates the closeness of the measured (predicted) value
to the standard or known (ground truth) value. It is calculated as the percentage
of face images that were classified into correct age-groups (or gender). It measures
the proportion of true results (both true positives and true negatives) among the
total number of face image samples tested (see Eq. 4).

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

where TP is the number of true positive value, TN is the number of true negative
value, FP is the number of false positive value, and FN is the number of false
negative value.

It is important to comment that the variation in the classification result for
age and gender as presented in Fig. 5(a) and (b) respectively, is attributed to
the different number of samples for age and gender annotations which are not
evenly distributed, and also the peculiarity of each class.

From the confusion matrix table in Fig. 5(a), it is noticed that the 8–13 and
0–2 age group labels are estimated with the highest accuracy compared to the
other age groups. In the case of the 0–2 age group, this could be attributed
to the fact that face images of infants contain distinctive features that enable
the classifier to distinguish this age group easily. For 8–13 group, that might
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be as a result of its size and distinctive features in those image category. 48–53
age group label was recorded with the lowest accuracy, the result might be as
a result of its small size. The confusion matrix of the gender classification is
presented Fig. 5(b). From this figure, we see that our approach recognizes males
easily compared to females, achieving better accuracy.

In addition to applying a confusion matrix metric, we also evaluate the accu-
racy of the best configuration of our method in terms of classification accuracy,
on OIU-Adience benchmark dataset, and compare our results with the state of
the art methods. Table 2 compares the accuracy of the best configuration of our
method with that of state-of-the-art techniques for the OIU-Adience dataset.
For the Age group Classification, our model achieves a classification accuracy of
84.8%, and this improves over best-reported state of the art result for accuracy
in Duan et al. [10] by 18.3%. We also evaluate our method for classifying a per-
son to the correct gender on the same OIU-Adience dataset where we train the
model for classification of two gender classes, and report the result on classifica-
tion accuracy with pre-training on the IMDb-WIKI dataset, and finetuning on
the original dataset. As presented in Fig. 4(b), we achieve an accuracy of 89.7%
compared to the previous state-of-the-art of 88.2% reported in Duan et al. [11].
Our approach, therefore, achieves the best results not only on the age group
estimation but also on gender classification; it outperforms the current state-of-
the-art methods. The graphs in Fig. 4(a) and (b) present the results of the two
classifications on the OIU-Adience dataset.

As presented in Figs. 6, 7 and 8, it is recorded that our model can correctly
predict the age group and gender of faces. However, there are few cases where
face images were incorrectly classified, this is could be as a result of different
degree of variability attributed to unconstrained images including low resolution,
non-frontal, lighting conditions, and heavy makeup (see Fig. 9).

(a) Accuracy (Age group) (b) Accuracy (Gender)

Fig. 4. Graphs of accuracy results for age group and gender classification.
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(a) Confusion matrix (Age group) (b) Confusion matrix (Gender)

Fig. 5. Graphs of confusion matrix results for age group and gender classification.

Fig. 6. Age group classification

Fig. 7. Male: gender classification

Fig. 8. Female: gender classification
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Fig. 9. Faces with misclassification

5 Conclusions and Future Work

The proposed CNN-based classification model is designed for the age group and
gender classification of unconstrained real-life faces. The novel approach relied
on the features extraction ability and classification proficient of the CNN archi-
tecture. The satisfactory performance of the classification model is attributed
mainly to our new CNN architecture, that was initially pre-trained on very large
IMDb-WIKI dataset before being fine-tuned on the original dataset. Robust face
detection and good alignment technique also contributed greatly to the classifi-
cation accuracy of the approach. An extensive evaluation of the newly-designed
model on OIU-Adience benchmark for age and gender classification, confirms
the applicability of our method on unconstrained real-world face images. Exact
age and gender classification of human’s face will be an interesting research field
to study in the future.
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Abstract. Vision-based semantic segmentation and obstacle detection
are important perception tasks for autonomous driving. Vision-based
semantic segmentation and obstacle detection are performed using sepa-
rate frameworks resulting in increased computational complexity. Vision-
based perception using deep learning reports state-of-the-art accuracy,
but the performance is susceptible to variations in the environment. In
this paper, we propose a radar and vision-based deep learning percep-
tion framework termed as the SO-Net to address the limitations of vision-
based perception. The SO-Net also integrates the semantic segmentation
and object detection within a single framework. The proposed SO-Net
contains two input branches and two output branches. The SO-Net input
branches correspond to vision and radar feature extraction branches.
The output branches correspond to object detection and semantic seg-
mentation branches. The performance of the proposed framework is vali-
dated on the Nuscenes public dataset. The results show that the SO-Net
improves the accuracy of the vision-only-based perception tasks. The SO-
Net also reports reduced computational complexity compared to separate
semantic segmentation and object detection frameworks.

Keywords: Joint learning · Sensor fusion · Radar · Monocular camera

1 Introduction

Vehicle detection and free space semantic segmentation are important percep-
tion tasks that has been researched extensively [8,9]. Generally these tasks are
independently explored and modeled using the monocular camera. By indepen-
dently modeling these tasks, the resulting computational complexity is high.
Additionally, the camera-based perception frameworks are affected by challeng-
ing environmental conditions.

In this paper, we propose to address both these issues using the SO-Net.
Firstly, we address the environmental challenges by performing a deep fusion
c© Springer Nature Switzerland AG 2020
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of radar and vision features. Secondly, for the high computational complexity,
we formulate a joint multi-task deep learning framework which simultaneously
performs semantic segmentation and object detection.

The main motivation for formulating a joint multi-task deep learning frame-
work is to reduce the computational complexity, while achieving real-time per-
formance. We propose to achieve computationally complexity by sharing the
features extracted by deep learning layers for multiple tasks.

In sensor fusion methodologies, sensors with complementary features are
fused together to enhance robustness. In case of radar and vision sensors, the fea-
tures are complementary. The vision features are descriptive and provide delin-
eation of objects, but are noisy in adverse conditions. Radar features are not
affected by adverse conditions caused by illumination variation, rain, snow and
fog [11,12], but are sparse and do not provide delineation of objects. By fus-
ing the radar and vision sensors, we can improve the robustness of perception.
Examples of radar features in challenging scenes are shown in Fig. 1.

In this research, we propose the SO-Net, which is an extension of RV-Net [18].
The SO-Net is a perception network containing two feature extraction branches
and two output branches. The two feature extraction branches contain separate
branches for the camera-based images and the radar-based features. The output
branches correspond to vehicle detection and free space semantic segmentation
branches.

The main contribution of the paper is as follows:

– A novel deep learning-based joint multi-task framework termed as the SO-Net
using radar and vision.

The SO-Net is validated using the Nuscenes public dataset [2]. The exper-
imental results show that the proposed framework effectively fuses the camera
and radar features, while reporting reduced computational complexity for vehicle
detection and free space semantic segmentation.

The remainder of the paper is structured as follows. The literature is reviewed
in Sect. 2 and the SO-Net is presented in Sect. 3. The experimental results are
presented in Sect. 4. Finally, the paper is concluded in Sect. 5.

Fig. 1. An illustration of the radar features overlaid on the camera images in the
Nuscenes dataset.
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2 Literature Review

To our understanding, no one has explored the possibility to use radar and cam-
era pipeline for multi-task learning. Multi-task learning is the joint learning of
multiple perception tasks. The main advantage of joint learning is the reduction
of computational complexity. Recently, multi-task learning has received much
attention [6,13].

We perform radar-vision fusion within a multitask framework. Generally,
radar-vision fusion for perception is performed as early-stage fusion [1,4,17],
late-stage fusion methods [7,19,20] and feature-level fusion [3,18]. In early-stage
fusion, the radar features identify candidate regions for vision-based perception
tasks [1,5,10,14,17]. In late stage fusion, independent vision and radar pipelines
are utilized for the perception tasks. The results obtained by the independent
pipelines are fused in the final step [7,20].

Compared to the above two methods of fusion, the feature-level fusion is more
suited for deep learning-based multi-task learning [3]. In feature-level fusion a
single pipeline is adopted for perception. Recently, John et al. [18] proposed
the RVNet to fuse radar and vision fusion for obstacle detection using feature
level vision. The authors show that the feature-level fusion framework reports
state-of-the-art performance with real-time computational complexity.

In this paper, we extend the RVNet to a multi-task learning framework,
where the radar and vision features extracted in the input branches are shared
in the output branches. By sharing the features, the proposed SO-Net performs
free space segmentation and vehicle detection while reducing the computational
complexity.

3 Algorithm

The SO-Net is a deep learning framework which performs sensor fusion of camera
and radar features for semantic segmentation and vehicle detection. The SO-
Net architecture, based on the RVNet, contains two input branches for feature
extraction and output branches for vehicle detection and semantic segmentation.

The semantic segmentation framework can be utilized to detect the vehicles
instead of the separate vehicle detection output branch. However, the semantic
segmentation framework does not provide the instances of vehicles for tracking.
The instances of vehicles are provided by the instance segmentation framework.
However, the instance segmentation framework utilizes a bounding box-based
obstacle detector in its initial step [16]. Thus in our work, we propose to utilize
an obstacle detection branch and semantic segmentation branch. An overview of
SO-Net modules are shown in Fig. 2.

3.1 SO-Net Architecture

Feature Extraction Branches. The SO-Net has two input feature extraction
branches which extract the features from the front camera image I and the
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Fig. 2. An overview of the input and output branches of the SO-Net. The input feature
maps are shared across the two output branches.

“sparse radar image” S. The “sparse radar image” is a 3-channel image of size
(224×224), where each non-zero pixel in the S contains the depth, lateral velocity
and longitudinal velocity radar features. The velocity features are compensated
by the ego-motion of the vehicle. The two feature extraction branches extract
image-specific and radar-specific features, respectively. Each randomly initialised
input branch contains multiple encoding convolutional layers and pooling layers.
These specific features maps are shared with the two output branches. The
detailed architecture of the feature extraction branches are given in Fig. 3.

Vehicle Detection Output Branch. The radar and image feature maps are
fused in the vehicle detection output branch. The vehicle detection branch is
based on the tiny Yolo3 network. The fusion of the radar and image feature maps
in the output branches are performed by concatenation, 1 × 1 2D convolution
and up-sampling. The vehicle detection output branch detects vehicles in two
sub-branches. In the first sub-branch, small and medium vehicles are detected. In
the second sub-branch, big vehicles are detected. For both the sub-branches, the
YOLOv3 loss function [15] is used within the binary classification framework.

Free Space Semantic Segmentation Output Branch. The second output
branch performs semantic segmentation for estimating the free space for the
vehicle. The free space represents the drivable area on the road surface. In this
work, we define everything other than the free space as the background.

For the semantic segmentation framework, an encoder-decoder architecture is
utilized. The radar and vision features obtained in the encoding layers are shared
and fused in the output branch using the skip connections. In the skip connec-
tions, the vision and radar features at the different encoding levels are trans-
ferred individually to the corresponding semantic segmentation output branch.
The feature maps are effectively fused using concatenation layer. Details of the
encoder-decoder architecture are found in Fig. 3. We use a sigmoid activation
function at the output layer for the binary semantic segmentation.

Training. The SO-Net is trained with the image, radar points and ground
truth annotations from the Nuscenes dataset. For the semantic segmentation,
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Fig. 3. The detailed architecture of the proposed SO-Net. Conv2D(m,n) represents 2D
convolution with m filters with size n × n and stride 1. Maxpooling 2D is performed
with size (2,2). The zero-padding 2D pads as following (top, bottom), (left, right). The
Yolo output conv (Conv2D(30,1)) and the output reshape are based on the YOLOv3
framework.
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we manually annotate the free space for the images in the Nuscenes dataset as
the dataset doesn’t contain semantic information. The SO-Net is trained with
an Adam optimizer with learning rate of 0.001.

3.2 SO-Net Variants

We propose different variations of the proposed SO-Net to understand how each
input branch contributes to the learning.

Fusion for Vehicle Detection. The camera and radar features are utilized
for the vehicle detection task alone, instead of the joint multi-task learning
(Fig. 4(a)). The architecture is similar to the SO-Net in Fig. 3, with the omission
of the segmentation branch.

Fusion for Semantic Segmentation. The camera and radar features are
utilized for the semantic segmentation task alone, instead of the joint multi-task
learning (Fig. 4(b)). The architecture is similar to the SO-Net in Fig. 3, with the
omission of the vehicle detection branch.

Camera-Only for Vehicle Detection. The camera features “alone” are uti-
lized for the vehicle detection task, instead of the sensor fusion for the joint multi-
task learning (Fig. 4(c)). The architecture is similar to the SO-Net in Fig. 3, with
the omission of the radar-input branch and segmentation branch.

Camera-Only for Semantic Segmentation. The camera features “alone”
are utilized for the semantic segmentation task, instead of the sensor fusion for
the joint multi-task learning (Fig. 4(d)). The architecture is similar to the SO-
Net in Fig. 3, with the omission of the radar-input branch and vehicle detection
branch.

4 Experimental Section

Dataset: The different algorithms are validated on the Nuscenes dataset with
308 training and 114 testing samples. The training data contain scenes from
rainy weather and night-time. Example scenes from the dataset are shown in
Fig. 1.

Algorithm Parameters: The proposed algorithm and its variants were trained
with batch size 8 and epochs 20 using the early stopping strategy. The algo-
rithms were implemented on Nvidia Geforce 1080 Ubuntu 18.04 machine using
TensorFlow 2.0. The performance of the networks are reported using accuracy
and computational time.
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Fig. 4. SO-Net variants.

Table 1. Comparative Analysis of the SO-Net and vehicle detection variants. Note
that the proposed network reports computational time for the joint tasks, while the
variants report the time for the individual tasks. The total time for joint tasks are
given in the total time.

Algo. Detection accuracy Computational time (ms)

SO-Net (proposed) 42.34 25

Fusion vehicle detection 46.35 15

Camera-alone vehicle detection 35.21 7

Table 2. Comparative Analysis of the SO-Net and semantic segmentation variants.
Note that the proposed network reports computational time for the joint tasks, while
the variants report the time for the individual tasks.

Algo. Semantic
segmentation accuracy

Computational
time (ms)

SO-Net (proposed) 99.1 25

Fusion semantic seg 98.6 20

Camera-alone semantic seg 98.5 15
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Fig. 5. Results for the SO-Net and fusion network variants. Yellow rectangle denotes
the detected vehicles, while the green oval denotes the missed vehicles. (Color figure
online)

Error Measures: The performance of the vehicle detection for the networks are
reported using the Average Precision (AP) with IOU (intersection over thresh-
old) of 0.5. In case of the semantic segmentation, we report the per-pixel classi-
fication accuracy for free space segmentation.

Results. The performance of the different algorithms tabulated in Tables 1 and
2 show that the segmentation accuracy of the proposed SO-Net and vehicle
detection accuracy of the fused vehicle detection framework are better than the
variants. The computational time of all the algorithms are real-time in the order
of 10–25 ms.

Discussion. The results tabulated in Tables 1 and 2 show that performance of
the SO-Net is similar to the fusion network variants, with marginally inferior
vehicle detection accuracy and superior semantic segmentation accuracy. How-
ever, the SO-Net reports improved computational complexity. The two fusion
network variants, fusion with vehicle detection and fusion with semantic seg-
mentation, report a combined computational time of (vehicle det-15 + semantic
seg-20) 35 ms per frame. The proposed SO-Net reports a reduced computational
time of 25 ms with similar performance as shown in Table 3 (Fig. 5).
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Fig. 6. Results for the SO-Net and camera-only network variants. Yellow rectangle
denotes the detected vehicles, while the green oval denotes the missed vehicles. (Color
figure online)

In the case of comparison with the camera-only network variants, the SO-
Net reports better accuracy for both vehicle detection and semantic segmentation
tasks, with similar computational complexity. The two camera-only network vari-
ants report a combined computational time of (vehicle det-7 + semantic seg-15)
22 ms per frame, which is similar to the SO-Net as shown in Table 3.

Table 3. Computational time of the SO-Net and its variants.

Alg. Computational time (ms)

SO-Net (proposed) 25

Fusion semantic seg + Fusion vehicle det 20 + 15 = 35

Camera-alone semantic seg + Camera-alone
vehicle det

15 + 7 = 22

The observed results show the effectiveness of sensor fusion for vehicle detec-
tion and semantic segmentation. The SO-Net and fusion network variants both
report better accuracy than the camera-only network variants. In case of the
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computational complexity, we see that the multi-task learning based SO-net
reports reduced the computational complexity compared to the individual fusion
networks (Fig. 6).

5 Conclusion

A deep sensor fusion and joint learning framework termed as the SO-Net is
proposed for the sensor fusion of camera-radar. The SO-Net is a multi-task
learning framework, where the vehicle detection and free space segmentation is
performed using a single network. The SO-Net contains two independent feature
extraction branches, which extract radar and camera specific features. The multi-
task learning is performed using two output branches. The proposed network
is validated on the Nuscenes dataset and perform comparative analysis with
variants. The results show that sensor fusion improves the vehicle detection and
semantic segmentation accuracy, while reporting reduced computational time.
In our future work, we will consider the fusion of additional sensors.
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Abstract. Facial Expression Recognition is a prospective area in Com-
puter Vision (CV) and Human-Computer Interaction (HCI), with vast
areas of application. The major concept in facial expression recognition
is the categorization of facial expression images into six basic emotion
states, and this is accompanied with many challenges. Several methods
have been explored in search of an optimal solution, in the development
of a facial expression recognition system. Presently, Deep Neural Network
is the state-of-the-art method in the field with promising results, but it
is incapacitated with the volume of data available for Facial Expression
Recognition task. Therefore, there is a need for a method with Deep
Learning feature and the dynamic ability for both large and small vol-
ume of data available in the field. This work is proposing a Deep Forest
tree method that implements layer by layer feature of Deep Learning
and minimizes overfitting regardless of data size. The experiments con-
ducted on both Cohn Kanade (CK+) and Binghamton University 3D
Facial Expression (BU-3DFE) datasets, prove that Deep Forest provides
promising results with an impressive reduction in computational time.

Keywords: Facial Expression Recognition · Deep Neural Network ·
Deep Forest

1 Introduction

Deep forest learning is a recent method initiated by [14,21] with the motive
of approaching classification and regression problems by making a conventional
classifier (shallow learners) like the random forest (decision tree) to learn deep.
The prevalence of Deep Neural Network (DNN) in Machine Learning (ML) and
Artificial Intelligence (AI) can never be overemphasised. Deep learning is said to
be as old as Artificial Neural Network (ANN) but went into hibernation due to
its computational complexity and the demand for the large volume of data [5].
In the recent years, the availability of sophisticated computational resources and
invention of the internet that give room for the collection of large datasets play
a remarkable role in bringing deep learning back into the forefront of machine
learning models. Deep learning has proven its worth in several areas of clas-
sification and regression computation with an efficient and optimal solution.
c© Springer Nature Switzerland AG 2020
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Beyond reasonable doubt, deep learning outperformed the conventional clas-
sifiers in most machine learning tasks like; image processing, computer vision,
pattern matching, biometrics, bioinformatics, speech processing and recognition,
etc. Nevertheless, despite the computational prowess of Deep learning, its quest
for large datasets and computational resources consumption is still a challenge.
Therefore, there is a need to explore other machine learning models and see the
opportunities to enhance their capability for better efficiency and accuracy.

Deep forest is still very new in machine learning and this implies that its
application is yet to be explored. Both Forward Thinking Random Forest and
gcForest are the popularly available deep forest models. And the reports of the
models give the similar performance even if not more, as DNN in their exper-
iments on MNIST dataset, with additional advantages of low computational
time, limited hyper-parameter tuning and dynamic adaptation to the quantity
of available dataset. Our task in this paper is to develop a deep learning model
from the ensemble of forest trees for the classification of facial expression into
six basic emotions, while depending on the forest tree inherent affinity for multi-
class problems. Facial expression recognition is a multi-class problem and its goal
is to detect human affective state from the deformation experience in the face
due to facial muscles response to emotion states. To the best of our knowledge,
this work is the first of its kind that engages a layer by layer enssemble of forest
tree approach to the task of facial expression classification.

In this paper; Sect. 2 contains the details description of the related works, it
captures the performances and the limitations of some of the classification mod-
els on facial expression recognition data. Section 3 contains a brief introduction
to random forest and the description of the proposed deep forest framework for
facial expression recognition. In Sect. 4 we discuss the databases for the experi-
ments while Sect. 5 contains details of the experiment performed and the result
analysis. Section 6 is the conclusion of the work.

2 Related Works

The complexity of facial expression and the subtle variations in its transition give
rise to several challenges experienced in the field. One of the major challenges
of facial expression is its classification into the six category of classes proposed
by [9]. Many classifiers and regression algorithms have been proposed severally
to address the challenge, the methods include Support Vector Machine (SVM)
[15], Boosting Algorithm (AdaBoost) [7], Convolution Neural Network (CNN) [2]
Decision Tree [18], Random Forest [4], Artificial Neural Network (ANN) [19], to
mention a few. The listed classifiers have reportedly produced various promising
results depending on the approach.

The impressive performance of Decision tree towards classification problems
makes its evident application in several machine learning fields. [18] used deci-
sion tree to classify feature extracted from a distance based feature extraction
method. Although there are not many works in facial expression recognition with
decision tree method because of overfitting challenge in its performance with
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high dimensional data [16], the available ones are either presented its boosting
(AdaBoost) or an ensemble (forest tree) version. Decision tree has been gra-
ciously enhanced by the introduction of Forest tree [3]. A random forest tree
is an ensemble of learner algorithms in which individual learner is considered
to be a weak learner. Decision tree algorithm has been widely explored as a
weak learner for random forest tree, and this is likely the reason for describing
a random forest as the ensemble of decision trees. [6] in their work extends the
capability of random forest tree to a spatiotemporal environment, where subtle
facial expression dynamics is more pronounced. The model conditioned random
forest pair-wisely on the expression label of two successive frames whereby the
transitional variation of the present expression in the sequence is minimized by
the condition on the most recent previous frame. [12] hybridized deep learning
and decision tree, and the hybridization was based on the representation learning
of deep learning feature and the divide and conquer techniques of decision tree
properties. A differentiable backpropagation was employed to enhance the deci-
sion tree to achieve an end to end learning, and also preserving representation
learning at the lower layers of the network. So that the representation learn-
ing would minimize any likely uncertainty that could emerge from split nodes
and thus minimized the loss function. The concept of Deep Forest is beyond
the integration of decision tree into Deep Neural Network as proposed in [12].
[14,21] thoroughly highlighted; computation complexity cost as a result of using
backpropagation for the multilayers training of nonlinear activation function,
massive consumption of memory during the training of complex DNN models,
overfitting and non-generalization to small volume of data and complexity in
hyperparameter tuning; as the challenges encountered while implementing Deep
Neural Network. Therefore, there is a need for a deep learning model type that
would minimize the challenges in the existing deep learning models. [14] proposed
a deep learning model (Forward Thinking Deep Random Forest) different from
ANN, in which the neurons were replaced by a shallow classifier. The network
of the proposed model was formed by layers of Random Forest, and decision
tree which is the building blocks of forest tree was used in place of neurons.
The model was made to train layer by layer as opposed to the once-off training
complexity and rigidity experienced in DNN. Likewise, the evolving Deep Forest
learning (gcForest) proposed by [21] ensures diversity in its architecture, where
the architecture consists of layers with different random forests. Both models
successfully implement deep learning from Random Forest without backprop-
agation. Although the mode of achieving this slightly differs, while gcForest
ensures connection to the subsequent layer using the output of the random for-
est of the preceding layer, the connection to the subsequent layer in FTDRF
is the output of the decision tree in the random forest of the preceding layer.
As earlier stated, it was reported that both models outperform DNN on the
performance evaluation experiment on MNIST datasets.
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3 Deep Forest Learning

Before providing the details of Deep Forest learning operations, it suffices to
discuss the basic concept of Random Forest tree.

3.1 Random Forest

Random Forest tree was introduced by Breiman [3], before the advent of
Breiman’s work, tree learning algorithm (decision tree) had been in existence, the
algorithm was effective and efficient. Its implementation could either be shallow
or a full grown tree (deep tree). Shallow tree learning model has a great affin-
ity for overfitting resulting from the model high bias and low variance features,
which is often addressed by boosting (AdaBoost) algorithm. Breiman established
the ensemble idea on the early works of [1,8,20] and proposed a random forest
algorithm which is efficient for both regression and classification tasks. Breiman
implements both bootstrapping and bagging techniques by randomly creates
several bootstrap samples from a raw data distribution so that each new sample
will act as another independent dataset drawn from the true distribution. And
after fit, a weak learner (decision tree) to each of the samples created. Lastly,
computes the average of the aggregate output. The operation that would be
performed on the aggregate of the output of the weak classifiers is determined
by the task (classification or regression). In case of a regression problem, the
aggregate is the average of all the learners’ output and if classification the class
with the highest volt is favoured. Random forest is known for its fast and easy
implementation, scalable with the volume of information and at the same time
maintain sufficient statistical efficiency. It could be adopted for several prediction
problems with few parameter tuning, and retaining its accuracy irrespectives of
data size.

3.2 Proposed Facial Expression Deep Forest Famework

Deep forest learning architecture as presented in Fig. 1 is a layer by layer archi-
tecture in which each layer comprises of many forests, a layer links with its
successive layer by passing the output of the forest tree as input to the next
layer in the architecture. This work enhance the deep forest model proposed by
[21] by introduction of trees with different features at strategic positions for bet-
ter performance. The model consists of two phases; the feature learning phase
and the deep forest learning phase. The feature learning phase is integrated for
the purpose of feature extraction similar to convolution operation in DNN. It
uses windows of different sizes to scan the raw images (face expression images),
in a process of obtaining a class representative vector. The class vector is a N-
dimensional feature vector extracted from a member of a class and then use for
the training of the Deep Forest.

The second phase is the main deep forest structure; a cascade structure in
the form of a progressive nested structure of different forest trees. The model
implements four different forest trees classifiers (two Random Forest, ExtraTree
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and Logistic Regression classifiers), and each of the forest trees contains 500
trees. The difference between the forest trees is in their mode of selecting the
representing feature for a split at every node of the tree.

The learning principle of the deep forest is the layer to layer connectivity,
that is, a layer communicates with its immediate predecessor layer by taking
as input, the forest tree output o f the preceding layer. The efficiency of the
cascade structure lies in its ability to concatenate the original input with the
features inherited at each layer. The motive is to update each layer with the
original pattern and also to make the layer achieves reliable predictions. The
concatenation of the original input layer thus enhances the generalization of the
structure. Each layer is an ensemble of forests, the connection from one layer to
another layer is done through the output of the forests. Forest processes start
with bagging (bootstrap Aggregation). If there is N data sample, then some
numbers n subsets of R randomly chosen samples with replacement is created
such that each subset is used to train a tree, and the aggregate forest contains
n trees. The tree growth for each of the forests starts from the root with the
whole dataset, then each node containing an associate sample is split into two
with reference to the randomly selected feature from the Forest. The two subsets
are then distributed on the two children nodes, and the splitting continues until
there is a pure sample of a class at the leaf node of the tree or the predefined
condition is satisfied.

Fig. 1. Deep forest architecture

For each instance of a class, class distribution estimation is computed, and
then averaging across all trees for each forest. This becomes the class vector to
be concatenated with the original feature vector and send to the cascade next
layer as input. Which implies each class will have one class vector, the number
of augmented features extracted depends on the number of class multiply by the
number of trees in the deep forest model. In order to control overfitting, K-fold
is used to generate the class vector for each forest. At every layer expansion,
cascade performance evaluation is estimated. At a point in the training where
there is no significant improvement in the performance, the training is halt. This
account for the control that Deep Forest has over its architecture.
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3.3 Mathematical Illustration of the Framework

Data description Let χ = Rm represent the input space, and let Y = y1, ..........yc
be the output space. Then every sample xi ∈ χ has corresponding yi ∈ Y the
training sample Δm is:

Δm = (x1, y1), ..........., (xm, ym)

At each layer there are forests and each forest contains learning algorithms
that could be regarded as functions which give the image of the input data as
the output of the forest. Then each forest in the first layer, L1 contains set of
learning function say αl1 with general behaviour: αl1 : χi → χl1

i where χi is the
input data into the layer1 and χl1

i is the image of χi then all functions in layer1
are represented as:

αl1 = αl1
1 , ............, αl1

n

χl1
i = αl1

1 (χi), ...........αl1
n (χi)

this implies that a new data is gotten at layer 1, which means:

Δm = Δl1
m = (χl1

1 , y1), ....., (χl1
m, ym)

The process continues as long as there is a significant performance in the model
at every successive layer. At every layer k in the model where tree is appreciable
improve in the performance of the model, it suffices to recall that the input to
layer k is χ

(k−1)
i

χlk
i = χlk

1 × χlk
2 × ........... × χlk

n

χlk
i = αlk

1 (χi), ..........., αlk
n (χi)

the output of layer k is:

Δlk
m = (χlk

1 , y1), ...........(χlk
m, ym)

the layer stop growing at layer n where there is no significant increase in perfor-
mance of the model. At layer n there is an assurance of having χ

l(n−1)
i converging

closely to yi. Note that, the output of each layer is the average of the proba-
bility distribution for instances in the leaf node of the trees for each forest. Let
P = p1, ............., pt be the class vector probability of each node of the tree. For
each sample of input χ

l(n−1)
i the probability vector of the leaf node is given as:

P ln
i (χl(n−1)

i ) = (P ln
1 (χl(n−1)

i ), ........, P ln
t (χl(n−1)

i ))

then the output of Forest β in a layer ln is the average of the probability vectors
of all trees in the forest; as given in (1):

βj =
1
J

J∑

j=1

Pj(χt) (1)

where J is the number of trees in a Forest and T is the number of class vector
estimation at the leaf node.
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4 Database

In this section we briefly introduce the two databases (BU-3DFE and CK+)
that we are proposing for the experiment here. Figures 2 and 3 are the respective
samples of the expression images in BU-3DFE and CK+.

Fig. 2. Selected expression images samples from BU-3DFE datasets. The arrangement
from left: Angry, Disgust, Fear, Happy, Sad and Surprise

4.1 Binghamton University 3D Facial Expression (BU-3DFE)

This database was introduced at Binghamton University by [17], it contains 100
subjects with 2500 facial expression models. 56 of the subjects were female and
44 were male, the age group ranges from 18 years to 70 years old, with a vari-
ety of ethnic/racial ancestries, including White, Black, East-Asian, Middle-east
Asian, Indian, and Hispanic Latino. 3D face scanner was used to capture seven
expressions from each subject, in the process, four intensity levels were captured
alongside for each of the 6 basic prototypical expressions. Associated with each
expression shape model, is a corresponding facial texture image captured at two
views (about +45◦ and −45◦). As a result, the database consists of 2,500 two
view’s texture images and 2,500 geometric shape models.

Fig. 3. Selected expression images for each of the emotion states from CK+ datasets.
The arrangement from left: Angry, Disgust, Fear, Happy, Sad and Surprise
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4.2 Cohn Kanade and Cohn Kanade Extension (CK and CK+)
Database

[11] released a facial expression database in 2000, the database contains 97 sub-
jects between the ages of 18 and 30; 65 were female and the remaining 35 were
male. The subjects were chosen from multicultural people and races. There were
486 sequences collected from the subjects and each sequence started from neutral
expression and ended at the peak of the expression. The peak of the expressions
was fully FACS coded and emotion labeled, but the label was not validated. [13]
itemized three challenges with CK databases challenges; invalidation of emotion
labels because it did not depict what was actually performed. Unavailable com-
mon performance metrics for algorithm performance evaluation, as a result of no
standard protocol for a common database. [13], having identified the challenges
with CK database proposed its extension termed extended Cohn Kanade (CK+)
database. In CK+ the number of subjects was increased by 27 and the number
of sequence by 22, there were slight changes in the metadata also, age group of
the subject ranged between 18 and 50, male was 31, and female was 69. The
emotion labels were revised and validated using FACS investigator guide as a
reference and confirmed by appropriate expert researchers. Leave-one-out sub-
ject cross-validation and area underneath the Receiver Operator Characteristics
curve were proposed as metrics for Algorithm performance evaluation.

5 Experiment

The experiment was conducted on two datasets; the Cohn Kanade exten-
sion (CK+) and the Binghamton University 3D Facial Expression (BU-3DFE)
datasets. We used only the peak images for the six basic emotion states (Anger,
Disgust, Fear, Happy, Sad, Surprise) of 2D images from each of the data sets,
and the total number of expression images used from BU-3DFE is 600 (100
images per emotion, 54 female and 46 male). In CK+ dataset; the total number
of images extracted was 309 but the number of images per emotion varied (AN
= 45, DI = 59, FE = 25, HA = 69, SA = 28, SU = 83). We split each of the
extracted data into two; the training set (80%) and the validation set (20%).
The training set was used to train the forest and the validation set was used for
the performance evaluation. The model depth (the number of layers) is auto-
matically determined, each layer consists of three different pairs of forests, and
each forest contains 500 trees.

Before feeding the images as input for processing data processing techniques
such as face detection, face alignment and histogram equalization were applied
on the data so as to minimise data redundancy and intensity variation that may
possibly challenge the performance of the system. As earlier stated we split the
input into the training data and the validation data. Growing the forests with
the training data set, we used 5-fold cross-validation to minimized chances of
overfitting.

We tested the trained model on the validation set and passed each instance
of the validation as representative feature to the cascade forest classification
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process. The output of the cascade forest returned probability predictions from
each forest in the last layer of the cascade. As a result, the mean of the predictions
was computed, and finally, the class with maximum value is the outcome of the
prediction. For performance evaluation we use accuracy as our metrics and also
employ confusion matrix for proper analysis of the result.

Furthermore, we conducted an investigation on the effect of number of classi-
fiers on the behaviour of Deep Forest model. Initially, on both datasets (CK+ and
BU-3DFE) we used 4 forest classifiers, and obtained average accuracy of 93.22%
with only 5 layers added and 7 estimators in each layer for CK+ dataset. When
each of the classifiers was doubled, the accuracy remained but ten layers were
added with 7 estimators in each layer. This is different in the case of BU-3DFE
dataset, the initial 4 classifiers gave accuracy of 57.98% and added 8 layers with
8 estimators in each layer. When each of the classifiers was doubled, the accuracy
increased by almost 10% and added 10 layers with 8 estimators in each layer.
Summary of the investigation is provided in Table 1.

Table 1. Summary of the investigation conducted on the Deep Forest model with
increase in number of classifiers

Database Classifiers Layers Estimators Accuracy

CK+ 4 5 7 93.22%

CK+ 8 10 7 93.22%

BU-3DFE 4 8 8 57.98%

BU-3DFE 8 10 8 65.53%

Table 2. The result comparison of FERAtt (Facial Expression Recognition with Atten-
tion Net) with Deep Forest learning

Author Database Method Accuracy

Fernandez et al. [10] BU-3DFE FERAtt 75.22%

Our BU-3DFE Deep Forest 65.53%

Fernandez et al. [10] CK+ FERAtt 86.67%

Our CK+ Deep Forest 93.22%

5.1 Result

Figures 4 and 6 are the confusion matrices of the model probabilistic predictions
accuracy on the BU-3DFE and CK+ respectively. Also, Figs. 5 and 7 are the
graph of average recognition rate on the test data of BU-3DFE and CK+.
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Fig. 4. Confusion matrix of Deep Forest predictions on BU-3DFE dataset

Fig. 5. The graph of the recognition rate against number of predictions of BU-3DFE
test data

In Fig. 4, the prediction of the model is most for the surprise at 95%. Followed
by happy at 90% then disgust at 55%, both sad and fear have 50% prediction
accuracy and angry has the least prediction at 40%. Figure 6 shows that the
model gives 100% prediction for Angry, disgust, Fear and happy instances, 94%
for surprise and 40% for sad.
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Fig. 6. Confusion matrix of Deep Forest predictions on CK+ dataset

Fig. 7. The graph of the recognition rate against number of predictions of CK+ test
data

We justify the performance of Deep forest on Facial expression classification
by comparing its performance with the state of the art DNN method (FERAtt)
[10]. Table 2, presents both our result and FERAtt result and clearly Deep forest
gives better accuracy (93.22%) than the accuracy achieved in FERAtt (86.67%)
on CK+ dataset. while accuracy gotten with FERAatt (75.22%) on BU3DFE
dataset is more than Deep Forest (65.53%). But it should be noted that FERAtt
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could not use a small dataset, because the authors reported that the data were
augmented and also combined with Coco data. Also FERAtt demands for high
computing device like GPU for its appreciable time of computation, unlike the
Deep Forest that performed its layer by layer learning on the available computing
device (intel(R)Core(TM)i7-4770sCPU @3.10 GHz 3.10 GHz and RAM: 8 GB) at
an appreciable time.

Obviously, the result of the experiment compliments the claim of [21]. It
shows that Deep Forest has the inherent capability for small datasets. The aver-
age prediction accuracy of the model on CK+ (309 data) is 93.22% and BU-3DFE
(600) is 65.53%. Although, Deep Forest is challenge with the issue of memory
consumption, yet it could be a an alternative to DNN if its features are greatly
explored.

6 Conclusion

We have presented a Deep learning approach other than the popularly known
DNN for Facial Expression Recognition. And our work proved that Deep forest
could preform very well even in a wild environment and with a sparsely dis-
tributed and unbalanced dataset. Also the outcome of the further investigation
conducted in the experiment, is the evidence of dynamic control behaviour of
deep forest over its model. The result of this work is an incite for exploring
possibilities of enhancing Deep Forest model, which is the focus of the future
work.
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Abstract. Use of herbicides is rising globally to enhance crop yield and
meet the ever increasing food demand. It adversely impacts environment
and biosphere. To rationalize its use, variable rate herbicide based on
weed densities mapping is a promising technique. Estimation of weed
densities depends upon precise detection and mapping of weeds in the
field. Recently, semantic segmentation is studied in precision agriculture
due to its power to detect and segment objects in images. However, due
to extremely difficult and time consuming job of labelling the pixels in
agriculture images, its application is limited. To accelerate labelling pro-
cess for semantic segmentation, a two step manual labelling procedure
is proposed in this paper. The proposed method is tested on oat field
imagery. It has shown improved intersection over union values as seman-
tic models are trained on a comparatively bigger labelled real dataset.
The method demonstrates intersection over union value of 81.28% for
weeds and mean intersection over union value of 90.445%.

Keywords: Weed density · Semantic segmentation · Variable rate

1 Introduction

Approximately one third of all pest related agriculture production losses are
attributed to weeds [1]. Weeds reduce crop yield by sharing nutrients, moisture
and sunlight with host plants in an adaptive and competitive process [2]. Her-
bicide application is a common agriculture practice in mitigating the impact
of weeds on crop yield. In USA, it constitutes two third of all chemical applica-
tion to agricultural fields [3]. Increasing trend of chemical application have raised
environmental, biological and sustainability concerns. Recent studies have shown
their detrimental effects on human health [4]. To reduce harmful effects of chem-
icals while ensuring profitability of farmers, precision agriculture proposes site
specific variable rate application of herbicides which requires accurate mapping
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of weed densities [5,6]. Weed mapping on a large scale is a challenging task due
to spectral similarity of weeds and host plants.

Weed mapping techniques can be classified into two broad categories: inter-
line and intraline. The former assumes that host plants are planted in rows and
everything outside of plant rows is weed [7]. This technique has inherit flaw of
misclassifying intra row weeds as host plants and inter-row host plants as weeds.
Intra-line approaches attempt to address these flaws by extracting shape fea-
tures of plants and classifying them into host plant and weeds. With the advent
of deep learning techniques, image classification tasks have become easier due
to automated feature extraction. In precision agriculture, different deep learn-
ing based classification techniques are being employed. Semantic segmentation
is a promising pixel level classification technique for weed density mapping. The
bottleneck for this technique is labelling of data at pixel level which is time con-
suming. Recent works have concentrated on synthetic data for training semantic
segmentation models and then employing them for real data. Training models
on synthetic data do not generalize well on real datasets.

In this paper, semantic segmentation technique is used on the images acquired
from oat fields in Saskatchewan for weed density estimation. The paper makes
following contributions:

1. It proposes a two step manual labelling procedure for pixels in agriculture
images.

2. Semantic segmentation is employed on a real oat field imagery for both train-
ing and testing.

The proposed methodology has shown Intersection Over Union (IOU) value
of 81.28% for weeds and Mean Intersection Over Union (MIOU) value of
90.445%. Remainder of the paper is organized as follows: Sect. 2 surveys related
works, Sect. 3 explains methodology, Sect. 4 discusses results and Sect. 5 con-
cludes the paper.

2 Related Work

Distribution of weeds is not uniform in field. Its patchiness character prompts
site specific weed management. Garibay et al. study site specific weed control
by thresholding weed density for herbicide spray [8]. Site specific weed control is
not readily adopted by farmers due to accuracy concerns, unavailability of robust
weed recognition system and limitation of spraying machinery [9]. Castaldi et al.
use Unmanned Aerial Vehicle (UAV) imagery to explore the economic potential
of patch spraying and its effects on crop yield [10]. Korres et al. study relation-
ship of soil properties and weed types with focus on weeds along highways [11].
Metcalfe et al. demonstrate correlation between weed and soil properties and
make prediction of weed patches in wheat field with the objective to make cite
specific weed control more effective [12].

Apart from weed patch prediction based on soil properties, weed detection
using computer vision techniques is also widely studied. Traditionally, weed
detection involves following four steps [13]:
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1. RGB or multispectral image acquisition through UAV or ground moving
equipment.

2. Background and foreground (vegetation) segmentation.
3. Feature extraction from images like shape and colours.
4. Classification of images based on extracted features.

Saari et al. study UAV and ground equipment mounted sensors for higher
resolution imagery [14]. For background segmentation, numerous techniques
like Otsu-Adaptive Thresholding, clustering algorithms and principle compo-
nent analysis are employed to separate vegetation from soil [5,15,16]. These
colour based segmentation techniques do not perform well under varying sun-
light, weather conditions and shadows. Feature extraction and classification tech-
niques can be further categorized in two main classes, interline approach and
intraline approaches. Bah et al. implement interline approach using normalized
Hough transform to detect crop rows [17]. This approach has disadvantage of
misclassifying interline crop plants as weed and intraline weeds as host plants.
Contrary to this, intraline approach assumes that weeds can be both interline
and intraline [18]. For the purpose, extra features like texture and shape are
extracted from weed and host plants to classify images [19]. Lastly, different
machine learning techniques like support vector machines and artificial neural
network are used to classify based on extracted features [20].

Deep learning has emerged as a powerful machine learning tool in the field of
computer vision because of its ability to extract features automatically [21]. Dyr-
mann et al. detect the location of monocot and dicot weeds in cereal field images
using Convolutional Neural Networks (CNN) [22]. Yu et al. apply object detec-
tion techniques like VGGNet, GoogLeNet and DetectNet for detecting weeds in
turf-grass [23]. Semantic segmentation techniques are also being implemented.
Bottleneck in semantic segmentation is pixel wise labelling of images. Dyrmann
et al. overcome this problem by synthesizing training images and labels. Weeds
and host plants are placed in randomly overlapping and nonoverlapping configu-
rations [24]. Potena et al. use a small representative dataset to label large dataset
for semantic segmentation [25]. To compensate the unavailability of large labelled
data for semantic segmentation, Milioto et al. input vegetation indexes as addi-
tional variables to segmentation model [26]. These studies lack fully labelled real
images at pixel level for semantic segmentation which is the focus of this work.

3 Methodology

The objective of the study is to estimate weed density for crops grown in Cana-
dian Prairies. The weed density mapping will be used for variable rate herbicide
application. Approach adopted in this paper can be summarized in three steps.
First step is acquisition of images and second is labelling the pixels in a two step
procedure. Third step is to train semantic segmentation model for automating
weed mapping and weed density calculation. Following sub sections give details
about these steps.
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3.1 Two Step Manual Labelling

For deep learning applications in precision agriculture, large number of labelled
agriculture images are not available [27]. Semantic segmentation requires images
to be labelled at pixel level which is time consuming. In this study, focus is on
developing an efficient and effective way of labelling RGB images. A two step
manual labelling procedure is proposed as follows.

Background Removal Using Maximum Likelihood Segmentation. In
first step, images are preprocessed by segmenting background and foreground
using Maximum Likelihood Segmentation (MLS) [28]. Background removal is
performed for two reasons, first is to label background pixels and second reason is
to facilitate manual labelling of weeds as with background there are chances that
some weed plants are missed in a highly varied background from being labelled.
ARCGIS is used as a tool for this purpose. Unlike rule based scheme applied
to all images, in our procedure we are making batch of similar images and then
training MLS on each batch separately for background removal. MLS is applied
in batches because RGB images vary in leave colours, light conditions, soil colour,
moisture content of soil, mix of dead plants and some of images contain shadow of
the sensing equipment. Figure 1 shows the instances of variations in the images.

Fig. 1. Examples of images with shadows, varying sunlight and colours

Manual Labelling. In second step, minority class pixels are manually labelled
using Labelme software package [29]. Instead of labelling both crop and weeds,
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only weeds are labelled assuming it to be a minority class in images. The crop
pixels are zeroed out like background pixels in first step. Minority class labelling
dramatically reduces time for manual labelling of pixels. Figure 2 is an example
of manually labelled image.

(a) Original RGB image (b) Heatmap of weeds

Fig. 2. Manual labelling of minority class pixels

3.2 Semantic Segmentation

Semantic segmentation has seen great progress in recent years thanks to advent
of deep learning techniques. Deep learning based semantic segmentation con-
sists of encoding and decoding blocks. Encoding block downsamples the image
and extracts features out of it and decoder block up samples to target mask
size. The network architecture of encoder and decoder blocks is determined by
meta-architecture scheme like UNET [30] and SegNet [31]. The paper makes
comparison of UNET and SegNet on given dataset. In UNET, whole feature
map is transferred from encoder block to decoder block while in SegNet only
pooling indexes are transferred from encoder block to decoder block. In both
UNET and SegNet, decoding blocks are transpose of encoding block. Phased
upsampling in UNET and SegNet improve accuracy of network [32].

After semantic segmentation is performed on images, weed densities are esti-
mated by following equation:

Weed density (wd) =
Weed pixels in a image

Total pixels
(1)
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Crop pixels are not separately classified because the objective of the study is
to estimate weed density (wd) for variable rate herbicide application. However,
crop density (cd) can be estimated by subtracting weed density from background
segmented vegetation density (vd) given by following equation:

cd = vd − wd (2)

where vd is the vegetation density and cd is the crop density in the image.

4 Results Discussion

The study is conducted in collaboration with CropPro consulting, Canada. RGB
images are collected from three oat fields at early growth stage using quad
mounted Sony DSC-RX100M2 camera. A total of 2109 images are collected
in a grid pattern of 60 ft by 80 ft. The dataset is augmented to 4702 images
using different combinations of flipping, rotation, shearing, scaling, noise addi-
tion, colour variations and blurry effects. The original images are divided into
four tiles of 800× 544 to deal with memory constraints as downsampling would
remove details from the images.

For semantic segmentation UNET and SegNet are used with VGG16 and
ResNet-50 as base models. To evaluate and fine tune models, dataset is divided
into train, validation and test dataset with split ratio of 70%, 15% and 15%
respectively. Thereafter it is augmented to avoid overfitting and better gener-
alization. The trained models are evaluated on accuracy, precision, recall, F1,
IOU, MIOU and Frequency Weighted Intersection Over Union (FWIOU). F1
score, IOU, MIOU and FWIOU are given by following equations:

F1 =
2 · precision · recall
precision + recall

(3)

IOU =
Area of overlap

Area of union
(4)

MIOU =
IOUi + IOUj

k
(5)

FWIOU = wi × IOUi + wj × IOUj (6)

where wi and wj are the weights of each class and k is number of pixel classes.
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Table 1 summarizes the metrics for evaluation on test dataset. For compar-
ison purpose, accuracy for majority class classifier is calculated to be 98.27%.
Accuracy of the UNET model exceeds this by 1.30% while that of SegNet model
exceeds majority class classifier (MCC) by 1.37%. SegNet performance is com-
paratively better than UNET. IOU for weed class is 81.28% for SegNet model.
MIOU and FWIOU values for SegNet model are 90.445% and 99.29%.

Table 1. Evaluation metrics

Metric UNET with VGG16 SegNet with ResNet-50

MCC accuracy 98.27% 98.27%

Accuracy 99.55% 99.62%

Precision 99.60% 99.71%

Recall 99.90% 99.91%

F1-score 99.77% 99.81%

IOU-Background and crop 99.55% 99.61%

IOU-Weeds 79.15% 81.28%

MIOU 89.35% 90.445%

FWIOU 99.19% 99.29%

As per developed methodology, models are trained in a way that crop pixels
and background pixels are classified in to one class and weed pixels to other
class. This means semantic models should ideally learn shape features of crop
and spectral properties of background and club them together into one class
while labelling remaining pixels as weeds. It is pertinent to mention that there
are no means available to ascertain what model is actually learning except having
clues from testing it on various images. If model is learning something close to
ideal scenario then it should be able to map new types of weeds which were
not included in data at learning stage. To evaluate model performance on new
types of weeds, it is tested on images of oat crop containing new weeds. Figure 3a
contains a new weed type called Horsetail (highlighted) which is not previously
seen by the model. The trained SegNet model successfully detects and maps this
weed as shown in Fig. 3b.

There are some points where models confuse weed and crop-background
classes. In blurry images oat plants are mapped as weed. Models fail to identify
crop plants because of indistinct shapes. So, model labels every vegetation in
the image as weed. At image preprocessing stage, training images were made
blurry to improve models performance on blurry images. However, when model
is confronted with blurry images like Fig. 4, it fails to crop and weed pixels.
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(a) Test image with new type of weed
namely Horsetail.

(b) Horsetail detected and mapped by
model

Fig. 3. SegNet model performance on detecting new types of weeds

(a) Blurry image (b) Heatmap of blurry image

Fig. 4. Examples of model confusion on blurry images

5 Conclusion and Future Recommendations

Accurate mapping of weed and crop densities in field provides basis for variable
rate herbicide application. Semantic segmentation is a promising technique to
estimate these densities. Using two step manual labelling procedure, a relatively
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bigger set of images can be labelled for model training resulting in better MIOU
and accuracy values. As in proposed methodology, trained model eliminates crop
pixels along with background pixels, the remaining pixels are labelled as weed
pixels. It has advantage of detecting new weeds which are not seen by model
during training. In performance comparison of UNET and SegNet, SegNet per-
forms UNET. In future work, we plan to club different density zones to provide
basis for variable rate herbicide quantification.
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Abstract. This paper designs a structure of 3D convolutional neural network to
detect the global exam events in invigilation videos. Exam events in invigilation
videos are defined according to the human activity performed at a certain phase
in the entire exam process. Unlike general event detection which involves differ-
ent scenes, global event detection focuses on differentiating different collective
activities in the exam room ambiance. The challenges lie in the great intra-class
variationswithin the same type of events due to various camera angles and different
exam room ambiances, as well as inter-class similarities which are challengeable.
This paper adopts the 3D convolutional neural network based on its ability in
extracting spatio-temporal features and its effectiveness in detecting video events.
Experiment results show the designed 3D convolutional neural network achieves
an accuracy of its capability of 93.94% in detecting the global exam events, which
demonstrates the effectiveness of our model.

Keywords: Exam event detection · Surveillance video · 3D convolutional neural
network

1 Introduction

In the modern society the exams are the important activity because they are widely
used to evaluate the individual ability. However, the traditional invigilation needs a large
number of human resources, which is expensive. Another demerit of invigilating by
human being is hardly to get rid of subjective judgment on exam events. The demerits
of the traditional invigilation motivate us to develop automatic invigilation systems. An
automatic invigilation model is proposed for detecting suspicious activities in exams [1].
Cote et al. applies two-state Hidden Markov model to distinguish the abnormal exam
events from the normal exam events [2]. However, they take slight attention on global
exam event detection. Global event detection is an essential and core part of a com-
plete automatic invigilation system, which can be the prior task of abnormal exam event
detection. Besides, the automatic detection of the global exam events benefits the com-
munication between invigilation system and management system, which is convenient
for further conducting examination evaluation and analysis. Furthermore, the fairness
of exam can be improved by reducing the human subjective judgment.
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One goal of automatic invigilation system is to detect the exam events from the
invigilation videos. However, video events detection is still a challenging task due to the
background clutter or occlusions. The successful methods in the recent years focuses
on extracting spatial-temporal features like STIP [3], HOG3D [4], MBH [5] and dense
trajectories [6], and uses bag-of-visual-word histograms or Fisher vectors [7] to represent
their distribution in a video for classification. Among these features, improved Dense
Trajectories (iDT) perform the best. However, extracting these local features is time-
consuming and some discriminative features make difference in finer part of the whole
video.

With the breakthrough of image classification brought by convolutional neural net-
work [8], recent researches concentrate on applying convolutional neural network to
video events detection. Karpathy et al. firstly apply convolutional neural network with
different time fusion strategies on Sports-1M video dataset but gain less accuracy than
hand-crafted features [9]. Feichtenhofer et al. explore the two-stream convolutional net-
work fusion for action recognition in videos. Interestingly, they find that the slow fusion
of temporal and spatial network can boost accuracy of classification [10]. Although it
is time-consuming by training two networks, it inspired researchers that the temporal
information is critical for understanding the video activities. 3D convolutional neural
network is then be proposed [11]. It builds an architecture to directly learn the spatial
and temporal features by adding temporal dimension to the network. It performs well
in extracting compact and discriminative features, which is necessary for efficient video
event detection.

Global exam event detection in invigilation videos is a branch of video event detec-
tion. Different form detecting abnormal exam behavior like cheating, it aims at detecting
the whole status in the exam room. For global exam events detection, one challenge lies
in the great intra-class variations. The events take place in different classrooms and the
classrooms are invigilated from various angles of cameras, which means the same exam
event can occur with different background. Additionally, global exam events detection
suffers from inter-class indistinguishability as a result of the finer motion change in
different events [12]. It is hard to distinguish the event accurately from one still image.
To the best of our knowledge, there is no research targeting at global exam event clas-
sification before. After reviewing the technologies in video event detection, we notice
the efficiency of 3D convolutional neural network of extracting compact and discrim-
inative features. Therefore, this paper develops the detecting model based on the 3D
convolutional neural network to solve the detection problem for global exam events.

2 Proposed 3D Convolutional Neural Network Structure

We detect the global exam events using the 3D convolutional neural network. The pro-
posed method firstly breaks each predefined exam surveillance video into consecutive
frames. Then we select N consecutive frames from each video and encapsulate them as
a volume to feed the 3D convolutional model. The 3D convolutional model is trained
for outputting closer to the predefined category results. Finally, the well-trained model
is used for global exam events prediction. The framework is showed in Fig. 1.

Ourmethod adopts 3D convolutional neural network architecture which is developed
from C3D model [11, 13]. 2D CNN convolves the spatial dimensions only, whereas 3D
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Fig. 1. Framework diagram of detecting global exam events

CNN is different from 2D CNN by adding a temporal dimension to the convolutional
kernel. Some behaviors in global exam events take time to finish. The temporal infor-
mation is required in detecting the events. Therefore, 3D CNN should be considered to
be more suitable for implementation on the global exam events scene. Assuming the
input is the F = (c, f, w, h) (c: channel, f: frame number, w: width, h: height), 2D
CNN or multi-frames 2D CNN only uses the two-dimensional filters (k, k) (k: kernel
width, k: kernel height), which results in two dimensions output. As the Fig. 2 shows,
3D CNN does the convolution operation by using filters whose dimension is (d, k, k) (d:
kernel temporal depth, k: kernel width, k: kernel height) which convolves the volume
( f, w, h) of each channel. Then, add each channel of RGB together to get the output of
three-dimensional feature map. Since the 3DCNNkernel convolves the adjacent frames,
it reserves temporal information. In this way, 3D CNN model can extract the temporal
dimension features of frames, which plays key role in extracting motion features. When
the chunks of consecutive frames feed to the 3D CNN architecture, the 3D convolu-
tion kernel can encapsulate both temporal and spatial information and output a feature
volume map.

Fig. 2. 3D convolution
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The experiment in [10] shows that gradually deeper network which gradually con-
volves and pools spatial and temporal information can achieve better results. The number
of kernels also increase to generate different types of feature map. The pooling operation
is max pooling, which reduces the feature map size except that the size of the temporal
dimension is not changed in the first pooling layer. After convolution and pooling layers,
it comes to fully connective layers to ensemble the features for the six categories of the
global exam events. And the softmax function is used for normalizing the results and
the cross entropy function is applied for minimizing the gradient loss.

Training: The 3DCNN is trained to extract spatio-temporal features from a given input
which is a chunk of consecutive frames. The input dimension is denoted as,

xi ∈ R
b× f ×w×h×c

where b stands for the sample number for a batch, f is the frame number in a chunk.
w and h represent the width and height of each frame. c is channel number. Due to the
RGB form, the initial input channel is 3.

After convolution and pooling layers, a feature map is produced. Its dimension is
denoted as below, where p represents the pooling times, NumF stands for the number
of filters in the layer.

si ∈ R
b× f

p/2×w
p × h

p ×NumF

Our goal is to output vectors of NumC categories, which represent for NumC global
exam events.

z j ∈ R
b×NumC

We use the softmax function to normalize the output components corresponding to
each category.

y j = ez j

NumC∑

k=1
ezk

(1)

The loss function uses cross entropy function. In order to minimize the gratitude
between predefined label and forward propagation result, the parameters in the 3D CNN
model is adjusted in the backward propagation phase,

loss
(
y′
j , y j

)
= −

NumC∑

k=1

y′
j log y j (2)

where y′
j represents the ground true label of the video frames.
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3 Experiments and Evaluation

In the experiments, the input is 16 consecutive frames from each predefined video clips.
By using the 3D convolution operation, the spatial-temporal information is extracted
from the input volume and encapsulated in the output. After the convolutional layer, the
pooling layer scales down the spatial sizes and merges the temporal size. Going through
two fully connective layers, the output is mapped to six likely outcomes which are six
categories of the exam events.

3.1 Dataset

Since there is no available public global exam events dataset, we establish our own
dataset. The exam surveillance videos are collected from various exam rooms in primary
or secondary schools. Some videos show different perspectives due to camera angles.
All videos are in “avi” format with a frame rate of 25FPS. There are 916 videos in total.
The global exam events are manually defined into six categories. They are “empty exam
room status”, “examinees entrance”, “distributing papers”, “on-exam status”, “exami-
nees departure”, “collecting papers”. Each category includes 153, 162, 148, 180, 113,
160 videos separately. 25% dataset is used for testing. Due to the uneven distribution of
samples, the weight for each category will be considered in the following classification
result. These six categories can generally classify different phases of exams. Each cat-
egory is divided into 20 groups with 18 videos of the same behavior contained in one
group. The length of each video is generally around 10 s. Some illustrations in each
defined exam event category are showed in Fig. 3.

Empty Exam Room Status. Before the exam begins or when the exam ends, there is
no one (students or invigilators) in the classroom. This event ends when someone open
the door and enters the room.

Examinees Entrance. This event begins when examinees begin to enter the room from
the front door. They receive security inspection by the invigilators and walk around the
room to find their seat to sit down. This event ends when all the examinees have entered
to room and sit down.

Distributing Papers. After all the examinees have entered the room and sit down,
invigilators give out papers to examinees. Mostly, they walk to every examinee’s seat
and hand out the papers to the examinees one by one. Sometimes invigilators choose
to give the papers to the first student of each row. This event ends when all papers are
handed out to all the examinees.

On-exam Status. When exam begins, examinees begin to do the exam. Mostly, invigi-
lators stay in front or back of the classroom and watch over the examinees. Sometimes,
invigilators go around the classroom for inspection. This event ends when exam time is
up, every examinee stops to do the exam.

Examinees Departure. After the on-exam status, examinees stand up and walk to the
front door of the room for leaving from the room. This event ends when all the examinees
leave and there are no examinees in the room.
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Fig. 3. Illustrations in six pre-defined global exam events. According to time sequence for an
exam, there are phases of Empty exam room, Examinees entrance, Distributing papers, On-exam
status, Examinees departure, Collecting papers, separately. These six global exam events depict
the whole exam process.

Collecting Papers. After the examinees departure, opposite to distributing papers,
invigilators come to each seat to collect the exam papers and sort them together. This
event ends when there is no papers on each desk.

3.2 Parameters

We use Tensorflow [14] framework to implement our experiment. We firstly break the
predefined videos to clips. Through iteration testing, the optimal value of consecutive
frames is 16 which is enough for depicting a completed global exam event. The frames
are cropped to 112 × 112 with channels of 3. The temporal dimension of the 3D kernel
is set to 3 this experiment as it has been shown that 3 × 3 × 3 convolution kernel
has the best performance [11]. The 16 consecutive frames are treated as a volume and
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each time we feed the model with 10 volume samples as a batch, thereby our input
is of 5 dimensional tensors consisting of 10 × 16 × 112 × 112 × 3 (batch-size,
frames-per-clip, crop-size, crop-size, channels).

There are 5 convolutional layers with 8 times convolutional operations followed by
ReLU activation function, 5 pooling layers, two fully connected layers, and a softmax
output layer in total. All 3D convolution kernels are in size of 3 × 3 × 3 with a stride of
1 × 1 × 1. As the network goes deeper, the number of kernels increase from 64, 128,
256 to 512. With the purpose of preserving the early temporal information, the pool1
kernel size is 1 × 2 × 2 with stride 1 × 2 × 2, and all other pooling layers are 2 × 2 × 2
with stride 2 × 2 × 2 to scale down the spatial features and merge the temporal features.
The fully connected layer output 4096 units which are then passed to the classification
layer for classification. Finally, we get the classification label through the softmax layer.
The 3D CNN architecture which we apply in our experiment is presented in Table 1.

Table 1. The architecture of the adopted 3D convolutional neural network. The architecture
consists of 5 convolution layers, 5 pooling layers, 2 fully layers and 1 softmax output layer.
Detailed descriptions are given in the text.

Conv1 Input: [10, 16, 112, 112, 3] Conv4b Input: [10, 4, 14, 14, 512]

Output: [10, 16, 112, 112, 64] Output: [10, 4, 14, 14, 512]

Pool1 Input: [10, 16, 112, 112, 64] Pool4 Input: [10, 4, 14, 14, 512]

Output: [10, 16, 56, 56, 64] Output: [10, 2, 7, 7, 512]

Conv2 Input: [10, 16, 56, 56, 64] Conv5a Input: [10, 2, 7, 7, 512]

Output: [10, 16, 56, 56, 128] Output: [10, 2, 7, 7, 512]

Pool2 Input: [10, 16, 56, 56, 128] Conv5b Input: [10, 2, 7, 7, 512]

Output: [10, 8, 28, 28, 128] Output: [10, 2, 7, 7, 512]

Conv3a Input: [10, 8, 28, 28, 128] Pool5 Input: [10, 2, 7, 7, 512]

Output: [10, 8, 28, 28, 256] Output: [10, 1, 4, 4, 512]

Conv3b Input: [10, 8, 28, 28, 256] FCNet1 Input: [10, 1, 4, 4, 512]

Output: [10, 8, 28, 28, 256] Output: [10, 4096]

Pool3 Input: [10, 8, 28, 28, 256] FCNet2 Input: [10, 4096]

Output: [10, 4, 14, 14, 256] Output: [10, 4096]

Conv4a Input: [10, 4, 14, 14, 256] Out Input: [10,4096]

Output: [10, 4, 14, 14, 512] Output: [6, 10]

3.3 Results

Eventually, we get a six-category global exam event discrimination of 93.94% by using
our method. Due to the pioneer of this work, there are few baselines able to be compared.
To the best of our knowledge, ourwork is the first one to detect the global examevents and
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the approach in [15] is the most related work. Therefore, we choose [15] as our baseline
to demonstrate the performance of our work. Table 2 compares the results using 3D
CNN networks with two-classifier using HOG features [15] to demonstrate its superior
performance.

Table 2. Comparation with other method

Method Accuracy

3D CNN 93.94%

[15] 86.1%

Table 3 presents the performance of 3D CNN on classifying the six global exam
events and compared with Depth-1 (2D CNN) method. It is worth mentioning that the
data in Table 3 is weighted-calculated as a result of the uneven distribution samples.
Obviously, empty exam room status event and on-exam status event have the best per-
formance compared to other four events, whereas examinees departure event has the
poorest accuracy. This may be due to the short period of time this event takes place,
which lead to less training data of this event. A controlling experiment is also carried
out by decreasing the temporal depth into 1, which means the whole 16 frames are con-
volved in 2D way separately. It is interesting to observe from Table 3 that the accuracy
of three global exam events decreases when it comes to Depth-1 (2D CNN), they are
distributing papers event, on-exam status event as well as collecting papers event. We
believe it is due to that these three events are mostly completed through a period of
time and are easily-confused from static images. For example, distributing papers is
really similar with collecting papers except opposite directions. Reasonably, 3D CNN
has higher accuracy on these three events due to its extraction of temporal features,
which also demonstrate that 3D CNN functions better under global exam events scenes.
Overall, 3D CNN outperforms Depth-1 (2D CNN) method as can be seen weighted
average performance in Table 3.

Figure 4 presents the normalized confusion matrix results of the experiment. From
the confusion matrix, we can find that the distributing papers event and the exami-
nees departure event have relatively lower accuracy compared with other events, where
distributing papers event has chance to be confused with on-exam status, examinees
entrance and examinees departure event, examinees departure event tends to confuse
with distributing paper event and collecting paper event. It may be caused by the lower
discrimination of actions taken in these events and the weakness of this model to classify
events when someone or several ones hold the standing position.

To conclude, the experiment result demonstrates that by capturing both spatial and
temporal features simultaneously, our model has satisfactory performance for the global
exam events recognition.
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Table 3. Performance of the two methods. The performance is evaluated in terms of accuracy
(Acc.), precision (Pre.), recall and F1 score. The highest value of each case is in bold. Due to the
uneven distribution of samples, the weighted average, denoted as W-Mean, is calculated.

Events 3D CNN Depth-1 (2D CNN)

Measure Acc. Pre. Recall F1 Acc. Pre. Recall F1

Empty-exam room 1 1 1 1 1 1 1 1

Examinees entrance 0.8966 0.9630 0.8966 0.9286 0.8966 0.8387 0.8966 0.8667

Distributing papers 0.8723 0.9111 0.8723 0.8913 0.8511 0.8696 0.8511 0.8603

On-exam status 1 0.9020 1 0.9485 0.9565 0.9362 0.9565 0.9462

Examinees departure 0.8462 0.9565 0.8462 0.8980 0.8462 0.9565 0.8462 0.8980

Collecting papers 0.9714 0.9189 0.9714 0.9444 0.9429 0.9167 0.9429 0.9296

W-Mean 0.9394 0.9406 0.9394 0.9388 0.9221 0.9230 0.9221 0.9220

Fig. 4. Confusion matrix of six-category global exam events

4 Conclusions

This paper has proposed a structure of 3D convolutional neural network for the global
exam event recognition and gains a promising accuracy result. It firstly built the examina-
tion video dataset which includes 916 surveillance videos of different classroom scenes
and various camera angles. On the built dataset, it is done to test the proposed structure
of 3D convolutional neural network to extract the spatial-temporal features from six
kinds of exam events. The proposed algorithm achieved an accuracy of 93.94% to dis-
criminate these six global exam events. Additionally, the superiority of 3D CNN model
is evaluated by diminishing the depth kernel into 1.
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More works could be explored in the future. For instance, when the accuracy of
classifying the exam events is guaranteed, we should try shorter clips to improve its
sensitivity and search for the boundary among these different exam events. Besides,
examination video event detection is firstly implemented using 3D convolutional neural
network, more advanced recognition technology needs to be explored and fused for
better result.
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Abstract. Deep learning based object recognition methods have
achieved unprecedented success in the recent years. However, this level
of success is yet to be achieved on multimodal RGB-D images. The lat-
ter can play an important role in several computer vision and robotics
applications. In this paper, we present spatial hierarchical analysis deep
neural network, called ShaNet, for RGB-D object recognition. Our net-
work consists of convolutional neural network (CNN) and recurrent neu-
ral network (RNNs) to analyse and learn distinctive and translation-
ally invariant features in a hierarchical fashion. Unlike existing methods,
which employ pre-trained models or rely on transfer learning, our pro-
posed network is trained from scratch on RGB-D data. The proposed
model has been tested on two different publicly available RGB-D datasets
including Washington RGB-D and 2D3D object dataset. Our experimen-
tal results show that the proposed deep neural network achieves superior
performance compared to existing RGB-D object recognition methods.

Keywords: Object recognition · RGB-D images · Deep learning

1 Introduction

Object recognition is a challenging problem in computer vision, deep learning
and robotics [24,28]. Automatic recognition of unseen objects in complex scenes
is a highly desirable characteristic for intelligent systems [29,31,32]. Development
of vision capabilities involves an off-line training, where training data along with
the labels is provided and the intelligent object recognition system then predicts
the classes for the unseen examples during test time. To achieve high recognition
accuracy, few design considerations are required. For instance, a large number
of labeled training examples are required ensure good generalization of the deep
neural network. In addition, feature descriptors must be descriptive and repre-
sentative to mitigate the effect of high variation in inter and intra-class. The
intelligent system, at test time, is also required be computationally efficient to
ensure real-time recognition for robots.
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Fig. 1. Block diagram of our proposed network. The input image is given to CNN,
which consists of convolutional and average pooling layers. The CNN produces a 3D
matrix, which is given as input to RNNs. The latter learn to generate the final feature
vector.

Traditional object recognition methods use hand-crafted features extracted
from 2D images [13,35]. Recent advances in deep learning methods have shown
to achieve good recognition performance for 2D images [16,17,34]. The availabil-
ity of low-cost depth scanners has enabled the extraction of 2.5D/3D informa-
tion and more representative features from images, however, RGBD data comes
with new challenges [36]. For instance, in contrast to the conventional RGB
images, the RGB-D data is noisy and incomplete (because of holes) thus pos-
ing additional challenges for recognition systems. Additionally, compared to the
traditional RGB images the labeled RGB-D training data is also scarce, which
further constrains deployment of powerful deep learning techniques for deep neu-
ral network training on the RGB-D images. Recent research works have aimed
at addressing these problems [4,18,22,25,26,29,33] with a particular emphasis
towards the scarcity of large scale annotated training datasets.

In the recent years, feature representation techniques have also rapidly
evolved from hand-crafted features to automatic feature learning [27,37]. The
most prevalent methods are based on the deep neural networks which have been
shown to achieve the state-of-the-art performance [7,11,12,38]. Deep learning
based recognition techniques rely on the features learned by the fully-connected
layers, which appear towards the end of the network. Although, fully connected
layers contain rich semantic information, they are spatially very coarse [14]
and thus need to be complemented by computationally expensive pre-processing
steps [7].

In this paper, we address these issues by proposing a deep learning framework,
called spatial hierarchical analysis deep neural network (shown in Fig. 1) which
consists of a convolutional neural network followed by recurrent neural network
applied in hierarchical fashion to extract translationally invariant descriptive
features. In contrast to existing deep learning techniques, which rely on transfer
learning or pre-trained networks for object recognition, our proposed network is
trained from scratch on RGB-D data. The input to our proposed network are
RGB-D images captured using Kinect scanner. Initially, the network separately
extracts features from each modality. Each image is given as an input to CNN,
which extracts the low level features such as edges. The responses of CNN are
then given to RNNs. The latter has shown superior performance in text analysis
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domain such as image captioning and text parsing. In this paper, we explore
RNNs for learning high level compositional features from images. Compared to
existing RGB-D feature learning methods [4,8], our approach is computationally
efficient and does not need additional input channels such as surface normals.

The contribution of this paper can be summarised as follows:

– We propose a novel spatial hierarchical analysis deep learning architecture,
which extracts low and high level descriptive features and part interactions
in hierarchical fashion.

– The proposed technique is efficient and does not require any additional infor-
mation channels such surface normals for achieving good performance.

– The proposed deep network achieves superior performance on two publicly
available RGB-D datasets.

The rest of this paper has been organised as follow. Related work is pre-
sented in the next section. The proposed technique and experimental results are
provided in Sect. 3 and 4, respectively. The paper is concluded in Sect. 5.

2 Related Work

Prior works on object recognition relied on hand-crafted features such as SIFT
[23], spin images [15] and kernel-based representation [4] for colour, depth and
3D domains. Spin images [15] are popular 3D shape local features, which have
been widely applied to 3D meshes and point cloud for object recognition. Some
variants of spin images [1,22] have also been proposed to improve the original
spin images. Fast point feature histogram [6], is a local feature, which has been
shown to outperform spin images in 3D object registration. Normal aligned radial
features (NARF) [2] extract object boundary cues to perform recognition. These
features, however, fail to capture important cues such as edges and size for object
recognition. Kernel descriptors [4] are able to generate rich features by turning
any pixel attribute to patch-level features [30].

Despite their simplicity, the aforementioned techniques rely on the prior
knowledge of the underlying distribution of data that is not readily available
in most applications. Recently, automatic feature learning using machine learn-
ing approaches has received significant attention. For instance, deep belief nets
[7] learn a hierarchy of features by greedily training each layer separately using a
restricted Boltzmann machine. Lee et al. [20] proposed convolutional deep belief
networks (CDBN) to learn features from the full sized images. CBDN shares the
weights between the hidden and visible layers and uses a small receptive field.
Convolutional Neural Networks [16] are feed-forward models that have been
successfully applied to object/face recognition, face/object detection, character
recognition and pose estimation.

Liu et al. [21] proposed guided cross-layer pooling to extract local features
using sub-array of convolutional layers. In [12], the concatenated convolutional
layers were used in local regions for feature representations. Schwarz et al. [25]
used simple colorization scheme of the depth images to perform transfer learning.
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Fig. 2. CNN filters visualization for RGB (left) and Depth (right) images. Only few
filters learnt by our model are shown here.

The drawback of their method is that it ignores the significance of earlier con-
volutional layers and uses the fully connected layers for feature representation.
Gupta et al. [11] encoded the depth modality as HHA, which is the combination
of horizontal disparity, height above ground and angle with gravity. However, the
limitation of their method is that the proposed embedding is geocentric and such
information is not always available in recognition tasks, which are object-centric.

To overcome the limitations of the existing methods, we propose spatial
hierarchical analysis deep neural network, ShaNet, which does not require a
pre-trained model and transfer learning for the task of object recognition. In
addition, the proposed method does not require additional information channels
for superior recognition performance.

3 Proposed Spatial Hierarchical Analysis Deep Neural
Network

In this section, we describe our proposed Spatial Hierarchical Analysis Network
(ShaNet), which learns translationally invariant and distinctive features. The
lower hierarchy of the network consists of convolutional neural network (CNN)
to achieve translational invariance and the upper hierarchy consists of recurrent
neural networks (RNN) to learn more distinctive features.

3.1 Network Initialization and Training

Our proposed deep neural network learns distinctive features in a hierarchical
fashion, its appropriate intialization is therefore essential. We perform initializa-
tion of our proposed network in two stages. In the first stage, we initialize CNN
filters in an unsupervised way using [9]. Given a set of input images, we first
extract random patches from these images and normalized them. The extracted
patches are then clustered in an unsupervised way using the k-means algorithm.

We use k-mean algorithm because its implementation is not complex, its a
computationally efficient approach and does not require tuning of any hyper-
parameters. In the second stage, the weights of RNNs are initialized by using
the technique proposed by Le et al. [19]. We observed that compared to random
initialization of weights, this approach achieves better optimization.
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Since our network learns to extract distinctive features during training, its
appropriate initialization is critical. A random initialization of the network can
make the variance of its output directly proportional to the number of its incom-
ing connections. To alleviate this problem, we use Xavier initialization [10] and
randomly initialize the weights with a variance measure that is dependent on the
number of incoming and outgoing connections (kf−in and kf−out respectively)
from a neuron:

V ar(w) =
2

nf−in + nf−out
, (1)

where w are network weights. Note that the fan-out measure is used in the vari-
ance above to balance the back-propagated signal as well. Xavier initialization
works well in our case and leads to better convergence rates.

To avoid over-fitting, we use batch-normalization as our regularization strat-
egy. Given a set of activations {xi : i ∈ [1, a]} (where xi = {xi

j : j ∈ [1, b]} has
b dimensions) from a given layer corresponding to a specific input batch with
a images, we compute the first and second order statistics (mean and variance
respectively) of the batch for each dimension of activations as follows:

μxj
=

1
m

m∑

i=1

xi
jσ

2
xj

=
1
m

m∑

i=1

(xi
j − μxj

)2 (2)

μxj
and σ2

xj
represent the mean and variance for the jth activation dimension

computed over a batch, respectively. The normalized activation operation is
represented as:

x̂i
j =

xi
j − μxj√
σ2

xj
+ ε

. (3)

We observe that just the normalization of the activations is not sufficient, because
it can alter the activations and disrupt the useful patterns that are learned by
the network. Therefore, we rescale and shift the normalized activations to allow
them to learn useful discriminative representations:

yi
j = γj x̂

i
j + βj , (4)

where γj and βj are the learnable parameters which are tuned during error
back-propagation.

After the initialization of the proposed model, the CNN filters (shown in
Fig. 2) are convolved over the input image to extract features in the lower
hierarchy of our deep network. Each input image of size N× N is convolved
with L square filter of size m × m, resulting in L filter responses, each of size
(N − m + 1) × (N − m + 1). The CNN applies its nonlinearity as follows. The
learned filter responses of size (N −m+1)×(N −m+1) are next average pooled
with the square regions of size l × l and a stride size of s, to obtain a pooled
response with the width and height equal to N − l/s + 1.
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Fig. 3. Spatial hierarchical analysis network feature learning. 3D Matrix X (left most)
from the CNN is given to hierarchy of RNNs, which merge 4 adjacent vectors to get
the final feature p (right most).

The output of the CNN is a 3D matrix X of size L × α × α for each input
image. For a given 3D matrix X, a block of size L×β ×β consisting of adjacent
vectors in the matrix X is defined, as shown in Fig. 3. Note that 4 adjacent
vectors are used in the horizontal and vertical directions; β is therefore equal
to 4 in this case. As a result, we get a block of size L × 4 × 4 where L = 128.
The vectors in 3D matrix are then merged step-wise into the parent vector p
(as shown in Fig. 3) by mapping the input X εR128×64×64 to a representation
p εR128, as follows:

p(1) = f(W (1))X + b(1) (5)

p(2) = f(W (2))X + b(2) (6)

p = f(W (3))X + b(3) (7)

where W (i), i = 1,2,3,... is the parameter matrix, f(.) is a non-linear activation
function (sigmoid in this case), b is the bias vector, and p(1), p(2) and p(3) are
matrices of dimension R

L×α/4×α/4, RL×α/16×α/16 and R
L, respectively. In our

implementation, vector p is used as the feature vector to a softmax classifier. The
input, output sizes and the parameters of our proposed network are reported in
Table 1.

4 Experimental Results

The proposed deep neural network is evaluated on the publicly available Wash-
ington RGB-D [18] and 2D3D [6] datasets, which are widely used for bench-
marking RGB-D object recognition techniques. In the following, we will briefly
describe the datasets and compare our method against several state-of-the-art
algorithms.
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Table 1. Input, Output (feature sizes) and parameters of the proposed Spatial Hier-
archical Analysis Deep Neural Network.

Description Value/size

Input image 20 × 20

CNN filter bank size 128

Filter (width× height) 3 × 3

Pooling region size 10

Stride size 5

3D matrix (CNN feature) 128 × 64 × 64

RNN output (Feature vector) 128

4.1 Washington RGB-D Object Dataset

Washington RGB-D dataset contains 300 household object instances which are
organized into 51 categories. Each instance is captured using Kinetic scanner on
a revolving turntable from three elevation angles (30◦, 45◦ and 60◦). We follow
the experimental setup of Lai et al. [18] in our evaluation and use the same
training/ testing splits and the cropped images as suggested by Lai et al. [18].
We then compute LBP features for each image and pass the image to the network
for feature learning. Our object recognition results and comparison with state-of-
the-art is reported in Table 2. Our proposed technique achieves object recognition
accuracy of 89.8% on RGB-D images, the second best performance is achieved
by CNN-colourized. Note that our approach achieves superior performance for
all the modalities compared to existing RGB-D object recognition methods.

4.2 2D3D Object Dataset

2D3D object dataset contains 16 different categories of highly textured common
objects (e.g. drink cartons, computer monitors). We follow the experimental
protocol of Browatzki et al. [6] for a fair comparison. Due to the small number
of examples, we specifically combine the spoon, knife and fork classes into a joint
class of silverware and exclude phone and perforator. This makes a final dataset
of 156 instances and 14 classes for category recognition. Our experimental results
are reported in Table 3. The proposed approach achieves better performance
compared to state-of-the-art methods.

The superior performance of the proposed network can be attributed to the
hierarchical architecture of the deep neural network, which learns translationally
invariant and distinctive features in the lower and higher levels of the architec-
ture, respectively.
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Table 2. Performance comparison in terms of recognition accuracy (in %) of the pro-
posed technique with state-of-the-art methods on Washington RGB-D object dataset.
The reported accuracy is an average over 10 trials.

Techniques RGB Depth RGB-D

EMK-SIFT [18] 74.5 ± 3.1 64.7 ± 2.2 83.8 ± 3.5

Depth Kernel [4] 77.7 ± 1.9 78.8 ± 2.7 86.2 ± 2.1

CKM [3] - - 86.4 ± 2.3

HMP [5] 82.4 ± 2.1 81.2 ± 2.3 87.5 ± 2.9

SSL [8] 81.8 ± 1.9 77.7 ± 1.4 87.2 ± 1.1

Subset-RNN [2] 82.8 ± 3.4 81.8 ± 2.6 88.5 ± 3.1

CNN-colourized [25] 83.1 ± 2.0 - 89.4 ± 1.3

CaRF [1] - - 88.1 ± 2.4

LDELM [39] 78.6 ± 1.8 81.6 ± 0.7 88.3 ± 1.6

Proposed technique 84.2 ± 3.8 82.4 ± 1.2 89.8 ± 1.7

Table 3. Performance comparison in terms of recognition accuracy (in %) of the pro-
posed technique with state-of-the-art methods on 2D3D Object Dataset.

Techniques RGB Depth RGB-D

2D+3D [6] 66.6 74.6 82.8

HMP [5] 86.3 87.6 91.0

R2ICA [14] 87.9 89.2 92.7

Subset-RNN [2] 88.0 90.2 92.8

Proposed technique 89.2 91.1 93.2

4.3 Computation/Implementation Details

These experiments were run on high performance computing devices with
NVIDIA Titan V GPU and 128 GB RAM. Our code was implemented in MAT-
LAB.

5 Conclusion and Future Directions

In this paper, we proposed a spatial hierarchical analysis deep neural network for
RGB-D object recognition. The proposed network consists of CNN and RNNs to
learn distinctive features in a hierarchical fashion. The tanslationally invariant
features of CNN are analyzed and merged systematically using RNNs to get
the most representative and descriptive feature for a given input image. The
proposed technique has been tested on two publicly available RGB-D datasets
for the task of object recognition. Our proposed deep neural network achieves
state-of-the-art performance on these datasets.
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In our implementation, our CNN generates a 3D matrix of size 128×64×64,
which is merged to get a final feature vector of size 128×1. As a future work, we
intend to test a 3D matrix of higher dimensions and instead of merging 4 adja-
cent vectors (as done in this work), we intend to choose a bigger neighbourhood
for combining these vectors. This will require more RNNs in the architecture
and computational resources. In our technique, we have used sigmoid activa-
tion function, however, we believe that recognition performance can be further
increased by using ReLU activation function.

Acknowledgment. The author would like to thank NVIDIA for their Titan-V GPU
donation.
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Abstract. This paper presents an algorithm for reading digital video
clocks by using two phases of connected deep networks to avoid the
demerits of existing heuristic algorithms. The problem of reading digital
video clocks can divided into two phases: locating the clock area and
reading the clock digits. First, a phase of connected deep networks is a
chain of neural networks to localize the clock area. Each of these neural
networks takes use the properties of the working digital video clocks to
work on one task. Its key step is to localize the place of second place by
using the constancy and the periodicity of the pixels belong to second
place. Second, the other phase of deep networks is a batch of custom digit
recognizers that are designed based on deep networks and the properties
of the working digital video clocks. The proposed method gets rid of the
tedious heuristic procedure to find the accurate locations of all digits.
Thus this paper forms the first algorithm that key tasks are taken by
different neural networks. The experimental results show that the pro-
posed algorithm can achieve a high accuracy in localizing and reading
all the digits of clocks.

Keywords: Clock area localization · Digits recognition · YOLO · Text
localization

1 Introduction

Reading digital video clocks (or called time recognition) is an active research
problem because the clock time plays a critical role in video event detection
and event inference [1,2,7,8,13–17]. This paper considers the common case in
which a digital video clock has been superimposed on video. Although current
videos already have a text channel that can be used to store the encoded clock or
timestamp information, the algorithm presented in this paper does not need to
use these encoded clocks or timestamps. Most sports and surveillance videos have
superimposed digital video clocks or timestamps for various reasons – such as to
show game-related time in sports videos or to show the time of the recording in
surveillance videos. For, example, the video clock in a soccer video indicates the
game time lapsed at the current frame, whereas the reversely-running video clock
c© Springer Nature Switzerland AG 2020
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in a basketball video indicates the remaining game time at the current frame.
In surveillance videos and sports videos recorded from TV programs by digital
recorders, superimposed digital video clock or timestamps is one method guard
against malicious tampering of the encoded timestamp information stored in the
text channel [1,2,7,8,13–17]. Hence, it is highly desired to develop the algorithms
for reading the superimposed digital video clocks, independently of the clock or
timestamp encoded in the text channel.

Reading digital video clocks is a special case of reading text from videos that
is a very challenging problem [3,9,11]. The recent algorithms for reading text
based on the sliding window scanning and deep networks, being a kind of region-
based method [4–6,10–12]. This region-based method reaches the best perfor-
mance (accuracy in 83.3%) for object detection [12]. The flow of this method
includes the steps of generating candidate regions and then detecting the object
within the candidate regions. The detection accuracy of this method depends
on the recall of identifying candidate regions. Although region-based methods
employs inexpensive features to do the selective search of candidate regions.
It still requires much running time for detection task. YOLO (You Only Look
Once) [12] was proposed in 2016 to predicts bounding boxes and class proba-
bilities directly from full images in one evaluation. It is quickly applied to solve
the various problems due to that it is simple, fast, and high performance [12].
However, YOLO has not applied to the problem of reading digital video clocks.

The researchers have been designing custom algorithms for reading clocks
since no general algorithms can have a satisfactory performance for reading text
from images or videos [1,2,7,8,14–17]. The problem of reading digital video
clocks can be divided into two sub-problems: clock-area localization and clock-
digit recognition. The first sub-problem is a special case of the general text
(character) localization problem. The second sub-problem is a special case of
the text recognition problem within the text area. This problem appears after
the text area is localized. The researchers have proposed a batch of methods
designed custom methods for these two problems [1,2,7,8,14–17]. In the early
years, multiple algorithms adopted image processing approach to localize clock
digits in video [1,2]. These algorithms only have a low accuracy. Then, some
improved algorithms were proposed [7,8]. They use the method based on clock
digit periodicity to verify the localized characters, but they still use image pro-
cessing approach to localize the candidates of clock digits. Particularly, they find
the character candidates by doing character segmentation and the connected
component analysis (CCA) on the detected clock board. Then they monitor all
character candidates to find the one whose color change is approximately of sec-
ondly periodicity, called region periodicity. They are tedious yet not as robust
due to they use error-prone process of character segmentation and CCA.

In 2012 a pixel periodicity method was proposed and a custom algorithm
based on this method was proposed to localize clock digits that discarded the
tedious image processing components in [14]. This paper designed a set of func-
tions to describe the second pixel periodicity and the heuristic algorithm of using
those functions achieved 100% of accuracy on the second-digit place localization.
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However, the algorithm is a custom one but it is not a neural network algorithm
and the thresholds in those functions were set manually but not through a learn-
ing process. The periodicity of the value change of the s-digit pixel disclosed in
[14,15] can be used to design the algorithm for reading clocks, but it is dif-
ficult in designing the features to represent this periodicity. Hence, a batch of
mathematical functions is designed to describe this periodicity. Additionally, the
algorithm in [14,15] only uses the periodicity of second-digit place pixels but the
constancy of neighbouring second-digit place pixels.

With the advance of deep network and the high performance of YOLO this
paper is to use a batch of neural networks, particularly YOLO, to replace the
heuristic components in the algorithm presented in [14,15], aiming to eliminate
the demerits of the algorithm. The general idea is to use the properties of working
digital video clocks to customize the deep networks to form the deep networks
or the connected deep works to conduct the tasks of reading digital video clocks.
The convolutional neural networks (CNNs) is first used to identify the relatively
constancy pixels. Then based on [14,15], a frame-aligned pixel recognition net-
work (PRN) is proposed to identify the s-digit pixels that their color values
change periodically within the neighbour pixels of the identified constancy pix-
els. Compared to the functions it gets rid of the job of setting thresholds for
functions. More importantly, deep networks parameters have potential to take
use of the properties of digital video clocks better than the heuristic functions.
After the second-digit place is localized, the area that contains all the digits of
the clock can be decided. The remaining task is to localize and recognize all
the digits in this area. This paper proposes two YOLO based procedures that
mainly take YOLO framework with the customized deep networks. Thus, two
heuristic procedures of finding the bounding boxes of digits and recognizing the
clock digits in [14,15] were done by the neural networks.

The rest of the paper is organized as follows. Section 2 presents the technical
details of the proposed algorithm for reading digital video clocks. Experimental
results are presented in Sect. 3. Section 4 concludes the paper.

2 Two Phases of Deep Networks for Reading Clocks

2.1 Notations and Overview of the Proposed Algorithm

This paper divides the problem of reading digital video clock into two tasks: clock
area localization and clock digit recognition. The task of clock area localization
is to find the area that contains all the digits of a clock; and the task of clock
digit recognition is to identify each digit and recognize it. For the first task,
a phase of customized deep networks are proposed. It first uses a CNN based
procedure to identify the constancy pixels; then it is to localize s-digit place by
pixel recognition network (PRN) and YOLO [12] with Clock-Digit Recognition
Network (CDRN) as its first several layers. The CDRN is an clock digit classifier
network which based on the deep network proposed by LeCunn in paper [4]. In
our paper, CDRN is the base of YOLO, which is used for feature extraction of
digit in video clock. The CDRN only trained for 11 classes, which contains the
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digit classes of from 0 to 9 and the clock area of none-digit. The YOLO localizes
the bounding box of s-digit. Then we localizes clock area based on the bounding
box of s-digit. Finally in this clock area, sliding the bounding box of s-digit with
YOLO to do the localization and recognization of other digits.

Definition 1: (s-digit, x-digit) In video clock, a digit on the second place of the
clock is called as an s-digit; any digit representing ten second, minute, and ten
minute in video clock are called as an x-digit.

An algorithm for reading video clocks is described in Algorithm 1. The pro-
posed algorithm for detecting digital video clocks has two main phases: clock
area localization and clock digit recognition.

Algorithm 1: Reading working digital video digit clocks
Input: A video with a working digital video clock
Output: The time representing by four digits and the frame number of

appearing this time
1 Phase 1: localizing the clock area by a phase of connected neural
networks

2 1.1: Find constancy pixels from the video by a CNN
3 1.2: Find s-digit pixel around pixel by PRN
4 Then we can use Sliding-CDRN to do the localization and recongnition of

other digit in clock area
5 1.3: Use CDRN and YOLO to get s-digit bounding box
6 1.4: Get clock area based on s-digit bounding box
7 Phase 2: Reading the four clock digits by another phase of
connected neural networks

8 Use 3-digit sequence with CDRN to read s-digits in the bounding box of
s-digit

9 Use Sliding-CDRN to read x-digits within the clock area

2.2 A Phase of Deep Networks for Localizing the Clock Area

This section presents a phase of neural networks for localizing the clock area by
taking use of the properties of digital clocks.

Some Properties of S-Digit Pixels. Some properties of s-digit pixels are
presented so that the proposed methods can be understood. Figure 2 shows the
flow of this pixel periodicity on the s-digit place. Refer paper [15] for some nota-
tions and concepts used in this paper, and relevant formulae for computing the
s-digit bounding box are presented.

Let W and H be the width and the height of the images of a given video.
Let B be the set of all pixels within an image. Let Fi be the considered frame.
Then Fi−R, Fi−R+1, ... , Fi−1 and Fi, Fi+1, ... , Fi+R−1 are the R frames in the
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preceding second and the succeeding second, respectively. Let c(k, p) be the grey
value of pixel p in frame Fk. Then we have following definitions.

Definition 2: (Constancy Pixel) Let Fk for k = 1 to be L frames including
at least 3 second consecutive frames. Pixel p is called as a constancy pixel if it
meets the following condition.

|c(k, p) − C1| < β1 for k = i to L, where C1 =
1
L

∑L
k=1 c(k, p); where β1 is a

threshold.

Definition 3: (Constancy Adjacency Pixel) A non-constancy pixel (NCP) is
called as a constancy adjacency pixel (CAP) if it is a neighbour pixel of a con-
stancy pixel (CP), i.e. dist(NCP,CPi) < β2.

We design a CNN based procedure to identify the constancy pixels accord-
ing to Definition 2. It uses the mean of pixel values and the variances of pixel
values to identify the constancy pixels. After getting constancy pixels, all of the
constancy adjacency pixels can be found according to Definition 3. Next, PRN
is used to find s-digit pixel in the constancy adjacency pixels .

Finding the S-Digit Pixels with the Periodicity of S-Digit Pixels. We
localize the pixels belong to s-digit place by finding the pixel pairs of a constancy
pixel and a pixel with the periodicity. A sample of the periodic variation of the
gray value of the second pixel is shown in Fig. 2.

Fig. 1. The number of digits in the digital box changes continuously for 10 s (the video
frame rate is 25 fps), and the red dot indicates one of the second pixels. (Color figure
online)

As shown in Fig. 1, during frame conversion of s-digit pixels, the change of
second pixel gray value is significantly larger than other time periods. Thus, we
proposed an efficient pixel recognition network based on frame-align. We convert
the n seconds ∗ 25 length frame sequence into a n seconds ∗ 25 two-dimensional
matrix, so that their transit-frames are aligned just as Fig. 3. the structure of
CDRN showed in Fig. 4.



Reading Digital Video Clocks by Two Phases of Connected Deep Networks 199

Fig. 2. The upper figure shows the gray value map of the second pixel point (red dot)
for 10 consecutive seconds, and the lower one shows the gray value map of the frame
difference for 10 consecutive seconds. (Color figure online)

Fig. 3. The structure of PRN, its data input is shown, k indicates kernel size, s indicates
stride and n indicates the number of conv layer.

The reason why the PRN could recognize s-digit pixel well. During the frame
conversion, the difference of gray-values is obvious. However, the values in other
conditions are constant. Through the frame alignment, the pixel data stream
would be transferred into two-dimensional, and regarding the pixel data stream
as a gray image. In the gray image, the change of second-pixel gray value is
periodic. Which causes larger gray values existing in adjacent columns. Thus,
gray image features can be seen as some vertical stripes, and the pixel recog-
nition network (Based CNN) can learn these features. The experiment results
shows that the pixel recognition network is generalized to detect certain periodic
problems and contains better learning performance.

S-Digit Localization: CNNs [4] and YOLO [12] are customized to get the
bounding box of s-digit. The CDRN is used for clock digit feature extraction
inside of the area identified by YOLO. As shown in Fig. 4, the structure of
CDRN is designed more simpler than ResNet-50 and DarkNet-19 because the
CDRN only recognizes clock digits.

Deciding the Clock Area: A procedure is designed to decide the clock area
based on the preceding outcomes such as the found s-digit place and the following
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Fig. 4. The structure of YOLO with CDRN. the structure of 0–5 layers is CDRN, and
the structure of layers of 6–12 is the rest of YOLO. The 9th layer is the combination
of the output of 5th layer and 8th layer, In the 11th layer, the number of filters is
80, because each grid in YOLO predicts 5 boxes and each boxe has 16 parameters.
which contains 11 classes probabilities, 4 coordinate parameters for each box and 1
confidence.

two facts: (1) digits in clock area usually are the same in color and bounding
box size. (2) the pixels around clock area are background, which are constant.
Based on this two facts, we can localize clock area by s-digit bounding box.

2.3 Reading Clock Digits by a Phase of Deep Networks

A CDRN based procedure is proposed to localize and recognize s-digits in the
found clock area because the traditional OCR can not achieve a satisfactory
performance for this task.

Custom Networks for Localizing and Recognizing Clock Digits. After
finding the bounding box of s-digit by YOLO with CDRN. We use digit sequence
to recognize s-digit by CDRN. This procedure is built based on the following
facts. Frames from t + k ∗ R + 1 to t + (k + 1) ∗ R have the same s-digit if frame
t is s-digit transit frame because the s-digit transits every R frames. Thus, the
s-digit in the frames t + k ∗ R + 1 to t + (k + 1) ∗ R is number k if the s-digit
in the frames from t to t + R is “0”. In other words, the s-digits in the frames
from t to t + v ∗ R form a digit periodic increasing sequence according to the
clock knowledge, supposed that the input clip is v second long (v < 10). Based
on these facts, we use 3-digit sequence CNN recognition procedure for finding
both s-digit transit frames and recognizing s-digits, denoted as Procedure I.
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Procedure I: The digit sequence Clock-Digit Recognition Network recog-
nition procedure
Input: A 4 second long clip with single clock and the bounding box of each

s-digit
Output: The first frame number that all the s-digits are correctly recognized

and the recognized s-digits on each frame for each clock
1 Let s = 0, e = R, and m = [(s + e)/2];
2 while e != s do
3 Sequence 1 = Fs, Fs+R, Fs+2R, Sequence 2 = Fm, Fm+R, Fm+2R, Sequence

3 = Fe, Fe+R, Fe+2R;
4 Use the trained Clock-Digit Recognition Network to recognize these three

3-digit sequences;
5 if all the recognized results of Sequence 1 to 3 are the same or different then
6 return the clock is not a proper running clock;
7 end
8 if the recognized results of Sequence 1 and 2 are the same then
9 s = m, m = [(s + e)/2];

10 end
11 if the recognized results of Sequence 2 and 3 are the same then
12 e = m, m = [(s + e)/2];
13 end
14 if s = e then
15 return frame s is the s-digit transit frame and the number on frame s,

terminate the procedure;

16 end

17 end

Procedure II: The sliding-Clock-Digit Recognition Network recognition
and localization procedure
Input: A 4 second long clip of clock-area with running clocks
Output: The localization and recognition x-digits on each frame for each

clock
1 An odd number v is the parameter of this procedure, indicating how

many instances are recognized at the same time;
2 Denote the first s-digit transit frame as s, then each x-digit place has the

same digit in frame s to frame s + 75;
3 for Sliding s-digit box in clock area do
4 use CDRN to get label and probabilities for this box;
5 save (label, probabilities, localization) for this box;
6 end
7 delete none-digit box;
8 use Non-Maximum Suppression(NMS)[9] to get all x-digits include box

and label;
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Once s-digit transit frames are known by Procedure I, all the transit frames
for all x-digits are known. Thus, we can take at least 50 frames with the same
digit for any x-digit from a 4 second long clip (Notice that our video is 25 frames
per second). Hence an odd number of frames from these 50 frames can be selected
to recognize an x-digit in Procedure II.

3 Experimental Results

The algorithm for reading digital video clocks is implemented in C++. To eval-
uate the proposed algorithm of dataset is built. This dataset comprises of 300
broadcast soccer videos and 300 broadcast basketball videos, where each clip
is 15 second long. Each of 300 broadcast soccer videos has a single clock; each
of 300 broadcast basketball videos has two clocks. All clocks in the clips are
working clocks. These clips vary in digit color, digit background color, size, and
font.

By setting different threshold parameters, the CPP method [15] can achieve
good results, but these threshold parameters are difficult to set. Our experi-
mental data was collected based on CPP method and the threshold parameters
provided.

3.1 Experiments on the S-Digit Pixel Identification

In order to verify the effectiveness of Pixel Recognition Network (PRN), this
paper compares it with several commonly used methods, namely SVM, FCN
(fully connected network). PRN is implemented by caffe(c++) and its detail
described in Sect. 2. We use libraries of libsvm(c++, svm type=c svc, ker-
nel type=rbf) and FCN(layer=[125, 10, 2], activation=sigmoid) implemented
by caffe(c++). The results are presented in Table 1.
Train: 20162 positive samples, 21003 negative samples
Test: 20143 positive samples, 20925 negative samples

Table 1. Comparison with SVM, and FCN for recognizing s-digit pixel in Test

Algorithm PRN SVM FCN

Accuracy in % 99.6 96.2 82.8

Precision in % 99.4 95.2 81.0

Recall in % 99.7 97.2 87.3

F1 score in % 99.5 96.2 84.0

Time (s) 1.28 1.15 0.89

According to Table 1 we draw the following conclusions. First, the recall value
of the proposed method is generally higher than the precise value, due to the
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amount of none-s-digit pixel larger than the s-digit pixel around the stable pixel.
Second, during the periodicity of the s-digit pixel, the result of Pixel Recognition
Network (PRN) is relatively best with a little time consumption. In addition,
the PRN can be generalized to detect certain periodic problems.

3.2 Experiments on Finding the S-Digit Bounding Box

According to the s-digit pixel detected in Sect. 2, we can generate the s-digit
region, and then we use the Clock-Digit Recognition Network (CDRN) and
YOLO to get s-digit bounding box. Unlike general YOLO detection framework,
we use Clock-Digit Recognition Network as the backbone instead of the com-
monly used as VGG, ResNet, and DarkNet. The Clock-Digit Recognition Net-
work structure is simpler as shown in Table 2 and is more suitable for feature
extraction of video clock digit. The Clock-Digit Recognition Network is improved
on the basis of LeNet-5. The experiments show that the Clock-Digit Recognition
Network extracts the digital features of the video clock better.

In this step, we use the algorithm presented in [14,15] to collect a variety of
s-digit region images amounted 2w+ by setting best threshold parameters. The
training set contains 10435 and the test set is 10779. Then we convert dataset
to a gray image and resize 8 times larger, which makes s-digit region’s resolution
higher. The result of localizing s-digit bounding box showed in Table 2.

Table 2. The result of the localizing s-digit bounding box in Test

Backbone IOU Time (s)

ResNet-50 0.79 0.53

DarkNet-19 0.77 0.33

Clock-Digit Recognition Network 0.79 0.25

From the Table 2 we can draw following conclusions. First, our method locates
the bounding box of s-digit more accurately and with minimal time. Second,
compared with ResNet-50, the structure of Clock-Digit Recognition Network
(CDRN) is simpler in structure, and the effect of localizing s-digit is the same.
Third, it can be proved that CDRN is more suitable for extracting clock digital
features.

3.3 Experiments on Clock Digit Localization and Recognition in
Clock Area

In this step, we use the algorithms in [14,15] by setting best threshold parameters
to collect a variety of clock area images amounted 2w+. Next, we use sliding-
CRDN to locate and recognize digits in clock area showed in Sect. 3 Procedure
II. The library is caffe(c++), and the result showed in Table 3. The accuracy
indicates ratio of digits recognized correctly account for all digits in total clock
areas.
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Table 3. The result of the recognition in clock area

Algorithm Time (s) Accuracy

Sliding-CDRN 0.42 0.94

4 Conclusions and Future Work

This paper has presented an algorithm for reading digital video clocks to elim-
inate the demerits of existing heuristic algorithms by using two phases of con-
nected neural networks. The first phase of neural networks is used to localize
the clock area. This phase of neural networks takes the approach that first find
the s-digit place and then expands to obtain the clock area. The second phase
of neural networks adopts YOLO as framework and uses the deep networks cus-
tomized by making use of properties of digital clocks to work as the bases of
YOLO. The experimental results has showed that the proposed algorithm can
achieve a high accuracy in second digit localization and reading all the digits
of clocks. This paper has the following contributions. First, a pixel recognition
network (based on frame alignment) to identify the periodic s-digit pixels. This
is the first neural network that can identify individual pixels by taking use of the
periodicity of pixel values. Second, it proposed the first algorithm constituted by
a batch of neural networks to localize and recognize s-digit and x-digits. Com-
pared to the method that uses a batch of functions to localize s-digit place, it
gets rid of the job of setting thresholds for functions. And the trained deep net-
works have potential to take use of the properties of digital video clocks better
than the heuristic functions.

The two future jobs can be done to enhance the proposed algorithm. First,
it is to improve the algorithm design to achieve an accuracy of 100% to reach
the accuracy level of the existing heuristic algorithms. Second, it is to further
integrate the connected deep networks into one whole deep network as YOLO
localizes and recognize object in one pipe.
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