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Abstract. Correct evaluation and treatment of Scoliosis require accu-
rate estimation of spinal curvature. Current gold standard is to manually
estimate Cobb Angles in spinal X-ray images which is time consuming
and has high inter-rater variability. We propose an automatic method
with a novel framework that first detects vertebrae as objects followed
by a landmark detector that estimates the 4 landmark corners of each
vertebra separately. Cobb Angles are calculated using the slope of each
vertebra obtained from the predicted landmarks. For inference on test
data, we perform pre and post processings that include cropping, outlier
rejection and smoothing of the predicted landmarks. The results were
assessed in AASCE MICCAI challenge 2019 which showed a promise
with a SMAPE score of 25.69 on the challenge test set.
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1 Introduction

Scoliosis is a sideways curvature of the spine occurring mostly in teens. Severe
scoliosis can also lead to disability. The current gold standard for diagnosing
scoliosis is manual measurement of Cobb Angles in anterior-posterior (AP) or
lateral (LAT) X-ray images which involve identifying the most tilted vertebrae
above and below the apex of the spinal curve [1]. However, the procedure is time-
consuming and observer dependent, leading to high inter-observer variability
that could negatively impact assessing prognosis and treatment decisions [2].
Thus, there has been increasing interest in automatic estimation of Cobb angles
directly from the X-ray images. In this context, we participated in MICCAI
2019 challenge on Accurate Automated Spinal Curvature Estimation (AASCE)1

where the task was to accurately estimate three Cobb angles [3] from the training
dataset containing 609 AP x-rays2 whose results were assessed on 98 test images.
The ground truth (GT) annotations are the anatomical landmarks consisting of
four corners of 17 vertebrae: twelve thoracic and five lumbar.
1 https://aasce19.grand-challenge.org/Home/.
2 http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets.
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Related Work: The two most common approaches of estimating Cobb angles are
Segmentation based and Landmark based approaches. The segmentation based
methods first segment all the vertebrae or the end-plates of the vertebrae to iden-
tify the most tilted vertebrae from which the Cobb angles are estimated [3–5].
Accurate segmentation of each vertebra from X-ray images is difficult with tra-
ditional feature-engineering based approaches. To our knowledge, even modern
supervised deep neural networks are not robust and accurate enough yet for the
vertebra segmentation. Creating accurate GT segmentation is time consuming
and relatively difficult compared to annotating landmarks: four corners of the
vertebrae. In Landmark based approach which is the state-of-the-art, the four
corners of each vertebrae are detected and are subsequently used for estimating
Cobb angles. Some methods jointly estimate all the landmarks and Cobb angles,
while others first estimate landmarks followed by Cobb angle computation which
might include outlier rejection and post-processing techniques [6,7].

There are several approaches of detecting landmarks in medical images such
as Reinforcement learning [8], iterative patch based approaches [9] and fully
convolutional neural network based approaches [10]. One important difference in
vertebra landmarks compared to other anatomical landmarks is the presence of a
large number of similar looking vertebrae. We believe that detecting vertebrae as
objects before finding landmarks within the detected vertebrae is advantageous
as it allows: (i) avoiding difficulty for translation equivariant CNNs to learn
very different coordinate locations for almost identical appearing vertebrae (ii)
leveraging popular object detectors pre-trained for computer vision tasks (iii)
Reducing the search space for landmark detector.

Contribution: We propose a novel approach to first detect 17 vertebrae with a
bounding box object detector, after which each of the predicted boxes is fed to
a landmark detector as illustrated in Fig. 1. The predicted landmarks are post-
processed to remove outliers before calculating the three Cobb angles. [11] used
Faster-RCNN [12] object detector to detect intervertebral disc in lateral X-rays,
but they left the landmark detection as a future work.

2 Dataset

The dataset consists of 609 spinal AP x-ray images available at SpineWeb3 as
Dataset 16. Each image has 68 GT landmarks corresponding to 4 corners of
the 17 vertebrae, and 3 Cobb Angles. Organizers provided test images without
GT separately. We connected the four landmark corners of each vertebrae to
create a box whose width and height were then increased symmetrically by 50
and 10 pixels respectively to create GT bounding boxes. All the bounding boxes
were labelled as belonging to a single class. The GT bounding boxes were used
to crop and extract individual vertebrae as a single separate image containing
four landmark corners. The coordinates of the landmarks are normalized to the
coordinate system that maps all the pixel coordinates of the cropped image to
3 http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets.
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the interval [0, 1]. The normalized landmark coordinates are used as GT labels
for the landmark regression network.

3 Vertebrae Detection Followed by Landmarks
Regression

We use an object detector to detect the vertebrae as bounding box objects which
are then fed to a landmark regression network as separate input images. The
predicted normalized landmark coordinates from individual bounding boxes are
combined and mapped back to the original images as shown in Fig. 1.

Fig. 1. Proposed Framework: The input images are first passed to an object detec-
tor that detects the vertebrae. The detected vertebrae are extracted as individual
images and passed to a landmark detector that detects the four corners of the verte-
bra. The landmarks are mapped back to the original image from which Cobb angles
are calculated. We use CNN-based Faster-RCNN and DenseNet for object detection
and landmark detection respectively.

3.1 Training Vertebra Detection with Faster-RCNN

Faster-RCNN [12] is a widely used two-stage object detector consisting of: (i) a
Region Proposal Network (RPN) that proposes potential object regions from a
set of anchor boxes of various sizes in a sliding window over the feature maps
extracted from a CNN-based base network (ii) a fully connected and a bounding
box regression layer that regress bounding box locations of the identified objects.
We used ResNet V1 101 with pre-trained weights on Imagenet data4 as the base
network, which was fine-tuned after block 2. We used two scales with box areas of
642 and 1282 pixels, and aspect ratios 1:1 and 2:1 for RPN’s anchor boxes, as the
vertebrae are relatively small and do not have extreme aspect ratios. The network
was trained for around 180k steps with batch size 1 using SGD optimizer with
momentum 0.9, learning rate 0.0003 and early stopping. The implementation
was adopted from Luminoth5 in Tensorflow framework 10.1. Data augmentation

4 https://github.com/tensorflow/models/tree/master/research/slim.
5 https://github.com/tryolabs/luminoth.

https://github.com/tensorflow/models/tree/master/research/slim
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included random Gaussian noise (μ = 0, σ = 0.005), and vertical and horizontal
flips with a probability of 0.5. All the images were rescaled preserving the aspect
ratio such that its sizes remained within 600–1000 pixels as much as possible.

3.2 Training Landmark Detector with DenseNet

The four corner landmarks were estimated using a Densely Connected Convolu-
tional Neural Network (DenseNet) which are known to require fewer parameters
than traditional CNN [13]. In DenseNet, each layer’s feature maps are used for
all subsequent layers within a block, where each block constitutes a bottleneck
layer (a 2d Convolution layer with 1× 1 filter size), batch normalization, ReLU
activation, and a regular 2D convolution layer (3× 3 filter size). We used 5 blocks
with a growth rate of 8 which is the number of output feature maps of each layer.
The 2D Global Average Pooling is used after 5 blocks followed by a dense layer.
The final layer consists of 8 output units with a linear activation function. All
the input images to landmark detector were resized to 200× 120 pixels.

4 Pre and Post Processing During Inference

Cropping: Almost all test images contained skull and pelvic regions but none of
the training images had them. During training, the model did not see negative
samples of skull and pelvic regions making it prone to falsely detect structures
appearing similar to vertebra such as jaws. We randomly picked one test image
with an aspect ratio a0 and found empirically that cropping ct0 = 0.18 and
cb0 = 0.21 times the image height from the top and bottom removed skull and
pelvic regions satisfactorily. All the remaining test images with aspect ratio a
were cropped by ct = ct0 · a

a0
and cb = cb0 · a

a0
fraction of the image height from

the top and bottom respectively.

Outlier Rejection: We removed some of the outliers by using the fact that adja-
cent vertebrae cannot be far away from each other: if the x-center (horizontal) of
any detected bounding box is more than half box width away from the x-centers
of both of its two nearest neighboring (top and bottom) boxes, they are rejected
as outliers. For the topmost and bottom boxes, the same test was done against
only one nearest neighbor.

Curve Fitting and Cobb Angle Calculation from Predicted Landmarks: We used
the code provided along with the challenge dataset [6] to calculate 3 Cobb angles
- Main Thoracic (MT), Proximal Thoracic (PT) and Thoracolumbar/Lumbar
(TL/L) from a given set of landmarks. It did not work well when the number
of landmarks were not exactly 68 corresponding to the 17 bounding boxes. To
ensure exactly 68 landmark points for angle calculation, we used the following
after outlier rejection: when the detected vertebrae number is more than 17,
reject extra bounding boxes starting from the bottom. Similarly, if the number
is less than 17, duplicate the bottom landmarks as required. We also smoothed
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the landmarks by fitting a polynomial curve where the degree 6 polynomial gave
best fit out of 3 to 8 on visual inspection. The x-coordinate of each landmark
is regressed by using the y-coordinate as the independent variable of the fitted
polynomial. The smoothed landmarks were the ones that were used to estimate
Cobb angles in the final test score.

5 Results

The results were evaluated with symmetric mean absolute percentage error,
SMAPE= 1

N

∑
N

∑
m |ag−ap|

∑
m (ag+ap)

100%, where we have N(= 98) test images, m(= 3)
Cobb angles per image, GT angle ag and the corresponding predicted angle ap.

Table 1. Results for different experiment setups

Exp no. Processing for test images SMAPE

1 No Cropping 33.3%

2 Cropping and outlier removal without
smoothing

26.79%

3 Cropping, outlier removal and smoothing with
order 6 polynomial fitting

25.69%

Table 1 shows the results of three different experiments where we achieved
our best score in the challenge by cropping, rejecting outliers and smoothing
the estimated landmarks. The top score in the leader board was 21.71% when
the challenge results entry was closed. Figure 2 shows detected bounding boxes
and landmarks, and results of outlier rejection and smoothing with polynomial
fitting in 4 example images from test set.

Fig. 2. Anti-clockwise from top left: bounding box detection, outlier rejection, land-
mark prediction and smoothing of landmarks (green) with polynomial degree 6 for four
images of the test set (Color figure online)



86 B. Khanal et al.

6 Discussion and Conclusion

Detecting vertebrae as objects before predicting corner landmarks is found to
be a promising approach. However, cropping all test images will not generalize
well. A more robust object detector trained with images having negative samples
from skull and pelvic regions could eliminate the need of cropping. The proposed
approach does not properly take into account the inter-dependency between
landmark positions of different vertebrae. A learning algorithm to learn this
inter-dependency could improve the results. Finally, learning to estimate the
angles directly from landmarks instead of using the geometric algorithm could
be robust to noisy landmark prediction.
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