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Abstract. In this paper, we propose a new pipeline to perform accu-
rate spinal curvature estimation. The framework, named as SegdReg,
contains two deep neural networks focusing on segmentation and regres-
sion, respectively. Based on the results generated by the segmentation
model, the regression network directly predicts the cobb angles from
segmentation masks. To alleviate the domain shift problem appeared
between training and testing sets, we also conduct a domain adaptation
module into network structures. Finally, by ensembling the predictions
of different models, our method achieves 21.71 SMAPE in the testing
set.
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1 Introduction

Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis and
typically affects children who are at least 10 years old. How to accurately estimate
the spinal curvature plays an important role in the treatment planning of AIS.
The current clinical standard for AIS assessment relies on doctors’ Cobb angle
measurement. Such manual intervention process usually makes the operation
time-consuming and produces unreliable results. Recently, deep neural networks
have got amazing achievements in various image classification tasks. How to
apply these deep models to the problem of spinal curvature estimation becomes
a hot issue in automated AIS assessment. BoostNet [5] is proposed as a novel
framework for automated landmark estimation, which integrates the robust fea-
ture extraction capabilities of Convolutional Neural Networks (ConvNet) with
statistical methodologies to adapt to the variability in X-ray images. To miti-
gate the occlusion problem, MVC-Net (Multi-View Correlation Network) [6] and
MVE-Net (Multi-View Extrapolation Net) [1] have been developed to make use
of features of multi-view X-rays.

Currently, there are two ways to estimate the Cobb angles: (a) predicting
landmarks and then angles [5,6] and (b) regressing angle values [1]. The first
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Fig. 1. An overview of our pipeline. We first process the X-ray using a segmentation
network. Note that we formalize the groundtruth mask using the provided landmarks.
Afterwards, the predicted mask is fed to the regression model to perform angle value
prediction.
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approach is able to produce high-precision angle results but relies heavily on the
landmarks predictions, which means a small mistake in coordinates may lead
to a big error in angle predictions. On the contrary, angle regression methods
are more stable but may lack the ability to generate precise predictions. In this
paper, we explore the possibility of aforementioned two directions in MICCAI
AASCE 2019 challenge and our experimental results show that the regression
strategy outperforms the landmark approach. We will conduct more details in
following sections.

2 Proposed Method

We display our pipeline in Fig. 1. The whole process is constructed by two net-
works: one for segmentation and the other for regression. The architecture of
segmentation network is similar to PSPNet [7] while the regression part employs
traditional classification models.

2.1 Preprocessing

We observed that there is an obvious domain gap between training and testing
sets (as shown in Fig.2). To mitigate this problem, we first apply histogram

(a) Training set (b) Testing set

Fig. 2. A comparison of training set and testing set. It is obvious that these two sets
have a huge domain gap.
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equalization to both sets to make them visually similar. Considering the limited
number of testing images, we decided to manually crop these X-rays to remove
the skull and keep the spine in the appropriate scope. Besides, we also applied
random rescaling (0.85 to 1.25) and random rotation (—45° to 45°) during the
training process. We tried to add gaussian noise to the input images in order to
mitigate the overfitting but it did not work.

For the segmentation task, we built the groundtruth masks on top of offered
landmarks’ coordinates. It is worth noting that we found adding another class
“gap between bones” helped the segmentation model perform the best. We argue
that such operation may regularize the training process which makes final pre-
dictions more precise.

2.2 Network Architecture

We followed the instructions in [7] to design our segmentation network. After
the feature extractor, PSPNet [7] utilized different pooling kernels to capture
various receptive fields. In order to keep the feature map size, we also append
the dilated convolution with different dilation rates to the pooling pyramid.
As shown in Fig.1, we used 2, 4 and 6 as dilation rates while summing their
outputs after the convolution operations. For backbone architecture, we simply
took ResNet-50 [4] and ResNet-101 as the basic feature extractor (Fig. 3).
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Fig. 3. Our domain adaptation strategy.

As for the classification part, we directly employed recent classification net-
works to perform the regression task. ImageNet based pretraining was used
because we found it helped a lot under limited training samples. Considering
the domain gap between training and testing sets, we modified the approach
proposed in [3]. The idea is pretty simple which adds a discriminator branch
and reverses its gradients during the back propagation so the final loss function
can be formalized as:

Loss = Ly + ALg (1)

where A is set to 1 in our experiments.



72 Y. Lin et al.

2.3 Network Training

We used Adam as the default optimizer for both networks where the initial learn-
ing rate is 3e—3. 01 and [, are set to 0.9 and 0.999, respectively. We also used
weight decay which is 1e—5 and cosine annealing strategy. For the segmentation
model, we ran each network for 50 epochs while 90 epochs seem to be a better
choice for the regression model. We resized the segmentation input to 1024 x 512
and regression input to 512 x 256. The batch size is 32 on 4 NVIDIA P40 GPUs.

Table 1. We made an ablative study on input types and input sizes. It is easy to find
that using segmentation mask as input performs the best on the validation set while
(512, 256) is the best regression size. The default segmentation backbone is ResNet-50
and regression model is DenseNet-169.

Input type | Input size | Anglel | Angle2 | Angle3
Img (512, 256) |6.0754 |7.3386 |6.7629
Img + Mask | (512, 256) |5.4489 |6.4599 |5.8470
Mask (512, 256) |4.7128 | 5.7965 | 5.6596
Mask (1024, 512) | 4.9360 |7.2436 |6.7321

Table 2. The segmentation performance of PSPNet and DeepLab V3+.

Metric | Ours | PSPNet | DeepLab V3+
mlIOU | 0.8943 | 0.8715 |0.817

3 Experimental Results

We report our experimental results in both local validation and online testing
sets. Note that we did not use cross validation.

3.1 Local Validation

In this part, we report the L1 distance between model predictions and
groundtruth labels. As shown in Table 1, it is obvious that segmentation mask is
the best input type and (512, 256) is the best input size. In Table 2, we compare
the performance of our improved version with PSPNet and DeepLab V3+ [2].
We can find that adding a dilation pyramid thus improves the performance of
previous PSPNet. It is interesting that PSPNet surpasses DeepLab V3+ by a
large margin since they have achieved comparable performance in PASCAL VOC
segmentation task. We argue that the failure of DeepLab can be attributed to
the limited training data and our parameter tuning strategies.
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3.2 Online Testing

We formalize our online testing results into Table 3. We can see that our dila-
tion pyramid improves the online SMAPE by 0.48. Also, it is quite normal to
see that EfficientNet-b5 is better than DenseNet-169 considering its higher Ima-
geNet performance. After adding domain adaptation module, the single model
performance rises to 26.15. During the model ensemble stage, we assigned dif-
ferent weights to different model outputs considering their validation scores. We
mainly ensembled ResNet series, DenseNet series and EfficientNet series. This
strategy helped us to improve the SMAPE score to 22.25.

Table 3. The segmentation performance of PSPNet and DeepLab V3+.

Strategies
PSPNet + DenseNet-169 | v/
Ours + DenseNet-169 v
Ours + EfficientNet-bs v v
Domain Adaptation v v
Model Ensemble v
SMAPE 28.51 | 28.03 | 27.07 | 26.15 | 22.25
Angles, Training Data
0 e . ° ° . ° . ° .
B o F N b ° L S
70 . P :,.. . % . : - :%. ... . .:-.
0 eg o 00 5% o R o o.° o'.o.o .\:
,‘o.O 5. . o‘. % © ‘ o'. .a. o. :' “0%. o o
50 .. o - .o. ° e, (S o ° : <8 - ’o f 4 °
ae® Lo ¢ .' ° oo .. o o 0 L) . < > L 2 ° : > .
“ o 0‘ :. =d- ? :‘.:‘ "o o° (.'. %y ':. 50..’ "‘.:’ 'Jlo o:o* :::.? . °
3C :.0 p & "Q‘ ° » y / X ,)éﬂ‘..: :“‘?“g.?' :l’ ... L) ‘° .. LI e
? % ° o P e 'v @’ e o .0'... e © L4 30.0( .').
AR g 8 MRt T R Ry U e
B N AR < S S S B0 AN O
,: AL . ® S .: ':ho 8° '(b o .° '-. & ® o8 @
‘ 0 Tet "5‘:‘ ..v 1(3)‘; ’ ,5[1‘ ° 200 % 250 300 .I:SU ° 400 N 450 ”

e Anglel e Angle2 e Angle3

Fig. 4. Distribution of 3 angles in the training set.

During the online testing stage, we revisited the distribution of 3 angles in
the training set. From Fig.4, we can easily find out that Angle2 and Angle3
are much smaller than Angle2. Also, Angle2 has many values which are close
to zero. According to such phenomenons, we reduced angles smaller than 4° to
zeros which brought us to 21.71 SMAPE.
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