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Abstract. Scoliosis is a condition defined by an abnormal spinal curva-
ture. For diagnosis and treatment planning of scoliosis, spinal curvature
can be estimated using Cobb angles. We propose an automated method
for the estimation of Cobb angles from X-ray scans. First, the centerline
of the spine was segmented using a cascade of two convolutional neural
networks. After smoothing the centerline, Cobb angles were automati-
cally estimated using the derivative of the centerline. We evaluated the
results using the mean absolute error and the average symmetric mean
absolute percentage error between the manual assessment by experts
and the automated predictions. For optimization, we used 609 X-ray
scans from the London Health Sciences Center, and for evaluation, we
participated in the international challenge “Accurate Automated Spinal
Curvature Estimation, MICCAI 2019” (100 scans). On the challenge’s
test set, we obtained an average symmetric mean absolute percentage
error of 22.96.

1 Introduction

Diagnosis and treatment planning of Adolescent idiopathic scoliosis (AIS) relies
on the estimation of the spinal curvature, which can be measured using Cobb
angles [2]. We propose an automated method to measure Cobb angles in X-ray
scans. In our approach, the centerline of the spine was automatically segmented
using cascaded neural networks, that were optimized end-to-end, i.e. trained
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simultaneously. While the first network focused on the segmentation of the spine,
the second network focused on the extraction of the centerline of the spine,
using the results of the first network. The centerline was then smoothed and its
derivative was computed to obtain tangents and estimate the Cobb angles.

Unlike our approach, most automated methods for estimating Cobb angles
rely on the segmentation of the individual vertebrae or the detection of their
corners [3,4,8]. Recently, Wu et al. [3] predicted the position of landmarks indi-
cating the corners of vertebrae using convolution neural networks (CNNs). The
authors proposed BoostNet, a layer architecture to reduce intra-class variance of
feature embeddings. They also designed a structured output for their networks,
which incorporates respective positions of landmarks in a connectivity matrix.
Wu et al. [3] achieved very accurate results in the automated localization of
vertebrae landmarks, but did not measure Cobb angles in their paper. Horng
et al. [4] recently proposed to measure the spinal curvature by first isolating
spine region and detecting each vertebra using image processing, subsequently
segmenting vertebrae with a U-net like network [1], and measuring Cobb angles
using the vertebrae segmentations. Similarly to our approach, Okashi et al. [9]
measured Cobb angles directly from the centerline of the spine. In their work,
the centerline was extracted using a complex hand-engineered image processing
algorithm.

2 Methods

2.1 Datasets

The method was optimized with a publicly available dataset of 609 spinal
anterior-posterior X-ray images [3] with 17 vertebrae of the thoracic and lum-
bar regions manually indicated using landmarks at the four corners thereof.
Cobb angles were computed using the landmarks. To evaluate our method, we
competed in the Accurate Automated Spinal Curvature Estimation (AASCE)
challenge1 hosted by the 22nd International Conference on Medical Image Com-
puting and Computer Assisted Intervention. The test dataset contained 100
X-ray scans. These images were different from the training images, which focused
on the spine, in that they displayed areas of the neck and shoulders. We man-
ually cropped the images of the evaluation dataset so that they show the same
region as images of the training dataset. In addition, this dataset was substan-
tially different from the training dataset in that the majority of its images had
small Cobb angles (low curvature), while Cobb angles in the training dataset
were more uniformly distributed. As additional preprocessing, we normalized
the intensities of all images by dividing by the maximum intensity value of each
image individually.

As ground truths, the challenge organisers provided three Cobb angles that
were manually measured: the major Cobb angle which estimates the highest
overall spinal curvature (the Cobb angle usually reported in the litterature);

1 https://aasce19.grand-challenge.org/Home/.

https://aasce19.grand-challenge.org/Home/
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Fig. 1. Spine segmentation and curvature computation. Top row, left to right:
an input X-ray scan with corners of the vertebrae manually indicated in blue (X-
ray); spine segmentation by connecting vertebral corners (GT1 ) and centerline (GT2 ),
used for training the cascaded networks. CNN1 and CNN2 are the outputs of the cas-
caded networks: the spine and spine centerline segmentations, respectively. The bottom
row illustrates the post-processing pipeline: thresholding the centerline segmentation
(Thresh); removing small connected components (Filtered); extracting the spine cen-
terline curve (Centerline); centerline smoothing using heat equation (Smoothed); com-
puting the derivative of the centerline (Derivative), which was subsequently used to
compute Cobb angles.

the upper Cobb angle, which is the Cobb angle measuring the highest spinal
curvature in the spine region above the region of highest overall curvature; and
the lower Cobb angle, which is the Cobb angle in the spine region under the
region of highest curvature.

2.2 Centerline Extraction with Neural Networks

Two cascaded convolutional neural networks were used to extract the centerline
of the spine. Their architecture was that of a U-Net [1] with fewer feature maps
and batch normalization layers [5] before each pooling layer (Fig. 2). The net-
works were optimized end-to-end, simultaneously. The first network was given
the X-ray scan as input and was optimized to segment the complete spine, while
the second network was given the output of the first network as input and was
optimized to segment only the centerline. In earlier experiments, we used a single
network to segment the centerline directly, which led to parts of the centerline
– often areas with low contrast – not being segmented. Ground truth segmen-
tations of the complete spine and the centerline were automatically computed
using the landmarks provided in the training dataset.

Fig. 2. Cascaded networks architecture. The last number in each layer is the
number of feature maps.
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The networks were optimized using Adadelta optimizer [6] and mean squared
error loss function over voxel intensities between the binary ground truth seg-
mentations of the spine and centerline and the segmentations predicted by the
network. Images were augmented online during training, with random rotation,
translation, and horizontal flipping, addition of Gaussian noise, and varying
brightness and contrast.

2.3 Postprocessing

Curve Extraction. The network output was binarized using a low threshold (0.25)
to ensure continuity of the centerline, followed by small (smaller than 40 × 140
pixels) connected components removal. Borders of the centerline were detected
to compute two curves. Points in the middle of both curves were then selected
to model the centerline curve. In our experiments on the validation set, this was
the most robust approach to extract the curve in the training dataset.

Smoothing with Heat Equation. Centerline curves extracted from the images
showed some local noise due to image resolution and errors in the segmentation.
To compute more accurate derivatives, the centerline was smoothed using the
heat equation, solved with Euler method. There were two parameters: the heat
transfer coefficient, which was set to 0.01 and the number of iterations in Euler’s
method set to 65000, which had to be large enough and was tuned on the training
set. We did not experiment with varying the heat transfer coefficient.

Computation of Cobb Angles. Similarly to Horng et al. [4], we computed Cobb
angles as
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where T (p) is the tangent slope of the centerline at point p, pR,M is the point
with the maximum slope in region R, and pR,m is the point with the minimum
slope in R. We computed the derivative of the centerline to obtain the tangent
of the centerline in every point. Then, we selected 19 points evenly spaced over
the derivative of the centerline (“Derivative” in Fig. 1) as an approximation of
the location of the interstices between the 17 annotated vertebrae, and consid-
ered values of the slope of the tangent, T (p), only in those points. Considering
tangents over the entire curve would quantify its curvature more accurately but
would be less comparable to the manually measured Cobb angles.

To compute the major angle, the entire centerline was used as the region of
interest R. The upper and lower angles were computed in the regions above and
below the region of the highest curvature, defined as the region between pR,m

and pR,M .

2.4 Ensemble of Ensembles

To improve the generalization performance of our models, we created ensem-
bles of prediction models optimized on different subsets of the training set. The
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dataset of 609 X-ray scans was randomly split in 10 subsets of 61 scans each.
At the beginning, one of these subsets was selected as testing set and left out
of the optimization process. Models were then optimized using different combi-
nations of the nine remaining subsets, and their results were averaged. Models’
predictions were averaged at two stages of the pipeline: centerline segmentation
maps of several models were averaged to compute single Cobb angles, and Cobb
angles predicted by several ensembles were averaged too, acting as an ensemble
of ensembles. Results with varying size of ensembles are reported in Table 1.
Ensembles with the best results on the left out set of 61 scans were then used
for submission on the challenge test set.

3 Experiments

We evaluated the performance of our model by competing in the AASCE chal-
lenge (Sect. 2.1). The AASCE challenge uses the symmetric mean absolute per-
centage error (SMAPE) averaged over the three Cobb angles as main metric.
For all three Cobb angles, the SMAPE was computed as:

SMAPE =
200
n

n∑

i=1

∑3
j=1 |Ai,j − Bi,j |

∑3
j=1 Ai,j + Bi,j

, (2)

where n is the number of X-ray scans in the set, Ai,j is the manual assessment
of the Cobb angle j for the scan i, and Bi,j the Cobb angle predicted by the
automated method.

To get more insights we also evaluated our results on a subset of the public
dataset used for training (Sect. 2.1) with additional metrics. This second test
set contained 61 X-ray scans randomly drawn at the beginning of the experi-
ments and not used for optimization. On this set, in addition to the SMAPE, we
also computed mean absolute error (MAE) between the manual and automated
assessments of Cobb angles. All results are shown in Table 1.

Table 1. Automated predictions of Cobb angles. Crop is whether vertebrae at
the top and bottom of the image were removed from the image, Nbr Models is the
number of averaged models, and Augmentation is the type of data augmentation on
image intensities, where B & C are changes of brightness and contrast over the whole
image. MAE 1, 2, 3 are the mean absolute error for the major, upper, and lower
Cobb angle in degrees, MAE Avg is the MAE averaged over the three angles, SMAPE
is defined in Eq. (2) and computed over the left out test set of the public dataset
(Sect. 2.1), SMAPE Lb was computed on the evaluation dataset and reported on the
challenge’s leaderboard.

Crop Nbr Models Augmentation MAE 1 MAE 2 MAE 3 MAE Avg SMAPE SMAPE Lb

No 2 Gaussian 5.28 5.39 6.91 5.86 26.45 27.78

No 4 Gaussian 4.95 5.13 6.55 5.54 24.27 25.79

Yes 4 B & C 3.43 3.91 5.39 4.24 21.03 23.94

Yes 4 & 7 B & C 3.22 3.75 5.23 4.07 20.55 23.67

Yes 4 & 7 & 4 & 4 & 5 B & C 3.18 3.6 5.19 3.99 20.4 22.96
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4 Discussion and Conclusion

We proposed an automated method for estimation of Cobb angles from X-ray
scans. Contrary to most other approaches, our approach measured Cobb angle
directly from the centerline of the spine without requiring the segmentation of
individual vertebrae [3,4,8].

Our method has several limitations. In the training dataset all images were
initially cropped relatively close to the spine, while in the evaluation dataset the
initial regions of interest was substantially larger. This difference caused major
issues for the automated spine segmentation, and required manual cropping of
the region of interest. Our method also has a long running time due to the
smoothing with Euler method. A similar effect may be achieved using Gaussian
smoothing. Finally, Cobb angles are not a linear measurement of severity of AIS.
The severity actually increases exponentially with the Cobb angle. This is not
reflected in our evaluation criteria. Using Cobb angles to assess AIS severity is
also in itself limited, as Cobb angles are measured in 2D while AIS is a three-
dimensional condition [7]. Using 3D measurements instead could help to assess
AIS severity more accurately.

Intrarater or interrater variability have not been measured in our dataset.
By inspecting results reported by Horng et al. [4], we computed that, on their
set of 32 X-ray scans, the intrarater variability in the manual measurement of
Cobb angle by an expert observer had a MAE of 2.0◦ and interrater variability
had a MAE of 3.87◦ on average. Our results are in-between these intrarater and
interrater variabilities, with a MAE of 3.18◦ and Pearson correlation coefficient
of 0.95 between manual and automated measurements of the major Cobb angle
in our dataset. Consequently, our method might be suited to replace manual
assessment of Cobb angles in clinical practice.
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