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Preface

The spine represents both a vital central axis for the musculoskeletal system and a
flexible protective shell surrounding the most important neural pathway in the body, the
spinal cord. Spine related diseases or conditions are common and cause a huge burden
of morbidity and cost to society. Spine imaging is an essential tool for assessing spinal
pathologies. Giving the increasing volume of imaging examinations and the complexity
of their assessment, there is pressing need for advanced computerized methods that
support the physician in diagnosis, therapy planning, and interventional guidance.

The objective of this combined workshop and challenge on spinal imaging was to
bring together researchers who share a common interest in spine focused research and
to attract additional researchers to this field. By allowing both submissions of papers on
novel methodology and clinical research, and also papers which demonstrate the
performance of methods on the provided challenges, the aim was to cover both the-
oretical and very practical aspects of computerized spinal imaging.

We invited spine imaging researchers to share and exchange their experiences and
expertise in spinal imaging and method development. Prof. Shisheng, Professor of
School of Medicine from Tongji University, Shanghai, China, who is also the chief
physician and chief director of the spinal surgery, Department of Orthopedic, Shanghai
Tenth People’s Hospital, Shanghai, China, gave the keynote speech. He shared his
experience about the clinical challenge and opportunity of deep learning techniques
from a surgeon’s perspective. The talk, with a full house audience, attracted not only all
CSI participants but also many other MICCAI attendantees on the workshop day.

The increasing number of publications in recent years on spinal imaging, in par-
ticular at MICCAI, indicate the high relevance of this topic to the community. After
five successful workshops at MICCAI 2013, 2014, 2015, 2016, and 2018, we also had
an increased number of participants in this year’s workshop. The workshop selected
five regular papers on spine image analysis, covering the topics of vertebra detection,
spine segmentation, and image-based diagnosis. Each submission was rigorously
reviewed by two or three Program Committee (PC) members on the basis of its
technical quality, relevance, significance, and clarity. The Best Paper Award was given
to the paper “Conditioned Variational Auto-Encoder for Detecting Osteoporotic
Vertebral Fractures” by Malek El Husseini, Anjany Sekuboyina, Amirhossein Bayat,
Bjoern Menze, Maximilian Loeffler, and Jan Kirschke, based on the raw scores of all
review feedbacks.

In addition to regular research presentations, the computational challenge was
organized to attract researchers working on general purpose algorithms to try their
methods on spinal data. The MICCAI Challenge on Accurate Automated Spinal
Curvature Estimation (AASCE) 2019 was jointly organized with the CSI 2019
workshop. The goal of the challenge was to investigate (semi-)automatic spinal cur-
vature estimation algorithms and provide a standard evaluation framework with a set of
x-ray images. The challenge attracted 79 international participating teams. The top



eight teams were invited for presentation in the workshop. The Tencent YouTu Lab
team achieved the best performance on all metrics. The short papers of the AASCE
2019 challenge participants were included in the workshop post-proceedings. These
short papers focused on presenting the methodologies used for the challenge task.

We would like to thank the MICCAI workshop organizers for supporting the
organization of the CSI 2019 workshop, as well as all of the PC members for their great
efforts and cooperation in reviewing and selecting the papers. We would also like to
thank all of the participants for attending the regular presentation sessions and chal-
lenge competition session. Finally, our gratitude goes to Springer, especially Anna
Kramer, for their continuous support in the publication of the workshop proceedings.

November 2019 Yunliang Cai
Liansheng Wang
Michel Audette

Shuo Li
Guoyan Zheng
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Accurate Automated Spinal Curvature
Estimation Challenge 2019

1 Introduction

Scoliosis is often defined as a curvature of the spine. The Cobb angle is the most
widespread method used for determining the degree of scoliosis. Cobb angle greater
than 45 degrees is considered severe scoliosis. Only a few methods have been proposed
for the automatic estimation of Cobb angles. The purpose of the accurate automated
spinal curvature estimation (AASCE) challenge is to provide an objective evaluation
platform for automatic spinal curvature estimation algorithms.

2 Task

The task of this challenge is to automatically obtain 3 Cobb angles from each spinal
anterior-posterior X-Ray image. Participants need to submit a CSV file of the Cobb
angles results of the test set. We use an online automatic evaluation system (https://
aasce19.grand-challenge.org).

Dataset The dataset contains a total of 707 spinal anterior-posterior x-ray images.
Among them, 609 are the training set, and 98 are the testing set. In the open training
set, the landmarks were provided, and the Cobb angles were calculated using these
landmarks. The testing set only released x-ray images with the ground truth only
known by organizers. These annotations were done manually by professional doctors.

Evaluation Submissions are scored based on a symmetric mean absolute percentage
(SMAPE). The SMAPE metric is defined as:

SMAPE ¼ 1
N

XN

i¼1

SUMjXi � Yij
SUMðXi þ YiÞ � 100%

where Xi is the estimated Cobb angles, Yi is the ground truth, N is the number images.

Results Table 1 depicts the 5 top-ranked results of the AASCE-2019, after cleaning up
some false and duplicate submissions. Team X won this task with 21.7135% SMAPE.

https://aasce19.grand-challenge.org
https://aasce19.grand-challenge.org


3 Conclusion

In this paper, we provide an overview of the setup and results of the AASCE-2019
challenge at the 2019 MICCAI Workshop on Computational Methods and Clinical
Applications for Spine Imaging. As further work, the challenge will be reopened for a
new submission.

December 2019

Table 1. Mean performance and ranking of the 5 top-ranked team on SMAPE.

Ranking (#) Team SMAPE (%)

1 X 21.7135
2 iFLYTEK 22.1658
3 Erasmus MC 22.9631
4 vipsl 24.7987
5 JLD 25.4784

viii Accurate Automated Spinal Curvature Estimation Challenge 2019
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Detection of Vertebral Fractures in CT
Using 3D Convolutional Neural Networks

Joeri Nicolaes1,2,3(B) , Steven Raeymaeckers4, David Robben2,3,5 ,
Guido Wilms6 , Dirk Vandermeulen2,3 , Cesar Libanati1, and Marc Debois1

1 UCB Pharma, Brussels, Belgium
joeri.nicolaes@ucb.com

2 Medical Imaging Research Center (MIRC), KU Leuven, Leuven, Belgium
3 Medical Image Computing (MIC), ESAT-PSI,

Department of Electrical Engineering, KU Leuven, Leuven, Belgium
4 Department of Radiology, University Hospital, Brussels, Belgium

5 icometrix, Leuven, Belgium
6 Department of Radiology, UZ Leuven, Leuven, Belgium

Abstract. Osteoporosis induced fractures occur worldwide about every
3 s. Vertebral compression fractures are early signs of the disease and con-
sidered risk predictors for secondary osteoporotic fractures. We present a
detection method to opportunistically screen spine-containing CT images
for the presence of these vertebral fractures. Inspired by radiology prac-
tice, existing methods are based on 2D and 2.5D features but we present,
to the best of our knowledge, the first method for detecting vertebral
fractures in CT using automatically learned 3D feature maps. The pre-
sented method explicitly localizes these fractures allowing radiologists
to interpret its results. We train a voxel-classification 3D Convolutional
Neural Network (CNN) with a training database of 90 cases that has been
semi-automatically generated using radiologist readings that are readily
available in clinical practice. Our 3D method produces an Area Under
the Curve (AUC) of 95% for patient-level fracture detection and an AUC
of 93% for vertebra-level fracture detection in a five-fold cross-validation
experiment.

Keywords: Vertebral fracture · 3D Convolutional Neural Networks ·
Detection

1 Introduction

Current radiology practice grades vertebral fractures according to Genant’s semi-
quantitative Vertebral Fracture Assessment (VFA) method [5]. This method
assesses the vertebral body morphology in X-ray images or at/around the mid-
sagittal plane in 3D image modalities (CT, MR). As reported by Buckens et
al. [3], the intra- and inter-observer reliability and agreement of semi-quantitative
VFA on chest CT is far from trivial on patient- and vertebra-level.

c© Springer Nature Switzerland AG 2020
Y. Cai et al. (Eds.): CSI 2019, LNCS 11963, pp. 3–14, 2020.
https://doi.org/10.1007/978-3-030-39752-4_1
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A number of publications on vertebral fracture detection are inspired by how
radiologists apply the Genant classification: firstly they attempt to segment the
vertebrae at high accuracy, secondly the endplates are detected and finally the
height loss of each vertebra is quantified in order to detect vertebral fractures.
Such methods rely exclusively on 2D [2] and 2.5D [14] height features.

Valentinitsch et al. propose a pipeline that first segments the vertebrae, then
extract various 3D texture features (e.g. Histogram of Oriented Gradients, ...)
and volumetric Bone Mineral Density (vBMD) to finally apply a Random Forest
classifier for patient-level fracture detection. Their experimental results show
that combining multiple features calculated for each vertebra along the spine
yields superior results [12]. Bar et al. does not first segment the spine before
extracting features, but uses a Convolutional Neural Network (CNN) to directly
map input images to output fracture classes. They combine a 2D CNN processing
sagittal patches along the spine with a Recurrent Neural Network to aggregate
predictions of multiple patches from the same patient. While this approach learns
features from training data, it only uses 2D sagittal information at a virtually
constructed sagittal section to cope with (abnormal) spine curvature [1]. Tomita
et al. apply a similar 2D approach using Long Short-Term Memory (LSTM)
units for patient-level aggregation [11].

In contrast, in this work we go beyond using learned 2D/2.5D or engineered
3D features by learning compact 3D features for detecting vertebral fractures.
The proposed voxel classification method does not require segmenting the spine
or (virtually) selecting the appropriate sagittal slice for inspecting vertebral frac-
tures.

2 Data

For this study, we build a training database of 90 de-identified CT image series
from the imaging database of the University Hospital of Brussels. These images
were acquired on three different scanners (Siemens, Philips and General Elec-
tric; 120 kVp tube voltage; maximum in-plane spacing and slice thickness are
respectively 0.92mm × 0.92mm and 1.5 mm) and contain 90 patients scanned
for various indications (average age: 81 years, range: 70–101 years, 64% female
patients, 12% negative cases). The dataset has been curated by one radiologist
(S.R.) who scored Genant grades (normal, mild, moderate, severe) for every ver-
tebra [5]. It contains a total of 969 vertebrae of which 184 are fractured (85 mild,
64 moderate, 35 severe). Vertebral fracture prevalence is approximately 20% in
men and women above 60 years [13] hence our dataset with 19% vertebral frac-
ture prevalence is representative for this clinical population. More than 90% of
the scans are abdomen studies implying that more than 75% of the vertebrae
range from T11 to S21. Figure 1 shows the number of fractures for every Genant
grade along the spine.

1 Vertebrae are named T1 to T12 for thoracic, L1 to L5 for lumbar and S1–S2 for
sacral vertebrae (with numbers increasing from top to bottom).
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Fig. 1. Training set: number of fractures for every Genant grade along the spine,
data labels indicate the amount of mild, moderate and severe fractures.

3 Methods

We present a two-staged vertebra fracture detection method that first predicts
a class probability for every voxel using a 3D CNN and secondly aggregates
this information to patient-level and vertebra-level fracture predictions. The CT
images are resampled to 1mm3 and normalized to zero mean and unit standard
deviation before voxel classification.

3.1 Voxel Classification

Image classification CNNs map an input image to one output prediction for the
entire image. This approach seems attractive for medical imaging as the expert
labeling effort is limited to a (set of) answer(s) per image, yet building datasets
of (tens of) thousands of CT scans containing subjects of the appropriate classes
is not trivial. A voxel classification approach is typically applied for segmentation
tasks. While this approach requires much less CT scans, it does require a label for
every voxel in each training image which significantly increases the annotation
effort. The proposed work applies a hybrid approach combining voxel classifica-
tion with sparse vertebra annotations. Our experiments demonstrate that this
approach produces good results using two orders of magnitude less images than
a typical image classification approach.

Since our task is detection and not segmentation, correctly predicting only a
sufficient amount of voxels around the vertebra centroid is needed to detect nor-
mal or fractured vertebrae in an image. We leverage this observation to construct
3D label images for our training database in a semi-automated fashion. First,
radiologist S.R. created a text file with annotations for every vertebra present
in the field of view as described in Sect. 2. Next, J.N. enriched these labels with
3D centroid coordinates by manually localizing every vertebra centroid in the
image using MeVisLab [8]. This step required an average of less than two min-
utes per image in our dataset. Finally, we extended the method described by
Glocker et al. [6] to automatically generate 3D label images from these sparse
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annotations. The resulting label images contain ellipsoids (flattened along the
longitudinal axis for fractured vertebrae) around each vertebra centroid anno-
tated with the ground truth class label provided by the radiologist (combining
mild, moderate and severe fractures into one fracture class because of the low
number of examples per class, see Fig. 1). The generated label image is not voxel-
perfect under these assumptions as voxels near the vertebra border are labeled
as background in the ground truth label image, but we demonstrate that this is
sufficiently accurate for the fracture detection task at hand. The result of this
step is a training database {(Ik, Lk)}Kk=1 with K pairs of an image I and label
image L of the same spatial dimensions that can be fed into a voxel-based CNN
classifier. Note that the above semi-automated procedure is only required for
building label images in our training database, test images are processed fully
automatically by our method.

3.2 CNN Model Selection

We know that human experts only leverage 2D height information from sagittal
slices for detecting vertebral fractures (see Sect. 1), but we want to investigate
whether exploiting the 3D information in CT images does yield better results
than only using 2D information in the sagittal plane.

Implementation Details. We used the open source Deepmedic Tensorflow
implementation by Kamnitsas et al. [7] as this has proven to efficiently sample
and process 3D segments from 3D images such as CT (since state-of-the-art
GPUs cannot process full 3D image volumes due to memory constraints).

All our experiments have been conducted using the voxel classification net-
work shown in Fig. 2: an 11 layers dual pathway architecture containing 230 K
parameters. This CNN consists of 8 convolution layers each of which have filters
of size 33 realizing an effective receptive field of 173 in the normal pathway and
513 in the subsampled pathway (subsampling factor 3). This depth has been
chosen such that features can be learned using all voxels inside a vertebral body.
Additionally, we observed in our experiments that this effective receptive field
yields distinct predictions for every vertebra.

The following training regime has been used in all our experiments:

– During training, image segments are sampled in a weighted regime using the
ground truth label images to ensure that the network sees enough vertebra
voxels. We apply a grid-sampling scheme during inference to build a prediction
map of the entire image volume.

– We apply data augmentation by adding noise to our input intensities and
randomly flipping images across X, Y and Z axes.

– We use the cross-entropy loss function, RmsProp optimizer, L1 and L2 reg-
ularization, anneal our initial learning rate of 0.001 when validation perfor-
mance plateaus and train for 35 epochs.
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Fig. 2. 3D CNN 11 layers dual pathway architecture realizes an effective receptive
field of 173 and 513 in the normal and subsampled pathway respectively.

Model Selection Experiment. We investigated whether a 3D CNN performs
better than a 2D equivalent by comparing three variants of the 11 layer dual
pathway network. We split our training database randomly into training (N = 68)
and validation (N = 22) to evaluate the three models depicted in Table 1.

Table 1. Model evaluation.

Model name CONV-1 filter CONV-2 to 8 filter Receptive Field (normal
pathway)

1slice 1× 3× 3 1× 3× 3 172 in sagittal plane

5slices 5× 3× 3 1× 3× 3 172 in sagittal plane

3D 3× 3× 3 3× 3× 3 173 in 3D

We calibrated all models to contain the same amount of network parameters
and trained each model using the training regime described above. Every model
has the same effective receptive field in the sagittal plane yet only the 3D model
is allowed to learn features outside the sagittal plane. The 5slices model addition-
ally learns to combine information from 5 input slices in the CONV-1 features.
Figure 3 qualitatively compares the prediction results of these three models on
one validation case. While all three models show similar prediction outputs at
coarse scale, the 3D model clearly yields more compact and less noisy predictions
than the 2D models at finer scale. All subsequent experiments discussed in this
work make use of the 3D model described in this section.

3.3 Aggregation

The voxel classifier transforms an input image into a prediction image that con-
tains a probability p(f |x), f ∈ F = {background, normal, fracture} for every
voxel x present in the image. This information can be aggregated to patient-level
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Fig. 3. Prediction outputs for 1slice, 5slices and 3D models on one validation
case in our training database. The network explicitly localizes the vertebra and labels
each voxel with a class label (green = normal vertebra voxel, red = fractured vertebra
voxel). The prediction images shown here are segmentation masks from epoch 30 using
hard labels of the most likely class, rendered in 3D with a small counter-clockwise
rotation around the longitudinal axis to show prediction results outside the sagittal
plane. The 1slice (left) and 5slices (mid) models show stacked (sagittal) predictions.
The 1slice (left) and 5slices (mid) models clearly yield more noisy predictions and mixed
beliefs inside a vertebra while the 3D (right) model builds more compact predictions.
Best viewed in color. (Color figure online)

(detecting whether a fracture is present in the patient image) or vertebra-level
(detecting whether a fracture is present for every vertebra visible in the patient
image).

Patient-Level Fracture Detection. First, we aggregate the 3D prediction
image to patient-level fracture predictions by finding the connected components
of fracture voxels and counting the total number of fracture voxels present in
the image. This coarse form of aggregation involves two negatively correlated
hyperparameters: a probability threshold for selecting only those fracture voxels
that have been predicted with high probability by our voxel classifier and a
noise threshold for determining when a component is too small to be a group of
vertebra voxels.

Vertebra-Level Fracture Detection. Secondly, we used the ground truth
centroid coordinates that were annotated for building our training database
(see Sect. 3.1) to perform a more fine-grained aggregation at vertebra-level. The
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fracture prediction probabilities of voxels inside a cube around the vertebra
centroid are averaged to produce one summary score per vertebra. These prob-
abilities are weighted using a Gaussian distance kernel to decrease the contri-
bution of the voxels further away from the centroid (consistent with our ground
truth label images which are by design less accurate for voxels that are more
distant from the ground truth centroid). For automated screening, we envisage
combining our vertebra-level fracture detection method with a vertebra localiza-
tion method that automatically identifies and localizes each vertebra present in
the image. Current state-of-the-art vertebra localization work reports identifying
91.6% of the vertebrae and localizing them with mean error 6.2± 16.2 mm [9]
on a challenging public dataset. We have used these localization error bounds
to add noise to our ground truth centroid coordinates for simulating automated
results.

4 Results

We performed a stratified 5-fold cross-validation2 using 90 images in our training
database to estimate the expected performance of our 3D method. For each
run, we selected 15% of the images in the training folds as validation samples
to determine when to stop training based. We report the Receiver Operating
Characteristic (ROC) curve because this metric describes model performance
independently of the class distribution and is best suited to compare results
from different test sets. The vertebra-level hyperparameter cube size has been
determined using cross-validation (10 voxels).

Since our patient-level fracture detection method involves two hyperpa-
rameters that can be chosen to deliver distinct classifiers, we build the ROC
curve using the convex hull representing the optimal classifiers from a group of
potential classifiers [10]. Each point on this ROC curve represents one optimal
classifier generated with one pair of hyperparameter values (probability thresh-
old, noise threshold). Figure 4 shows this patient-level fracture detection ROC
curve for the five-fold cross-validation experiment3. Our patient-level fracture
detection Area Under the Curve (AUC) of 0.95 ± 0.02 is comparable to the
results reported by Valentinitsch et al. (AUC 0.88) [12], Tomita et al. (AUC
0.92) [11] and the operating point (recall 0.905, specificity 0.938) on our patient-
level fracture detection ROC is similar to the one reported by Bar et al. (recall
0.839, specificity 0.938) [1]. We note that all these results have been reported
using different test sets (due to the absence of a public test set for fracture
detection). We did not evaluate these other methods on our test set due to the
absence of an open source implementation.

2 Since our training database has only 11 negative cases, we stratified the random
sampling to ensure that each fold has a minimum of two negative cases.

3 The (False Positive Rate, True Positive Rate) values have been interpolated to plot
a smoother curve.
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Fig. 4. Patient-level fracture detection ROC curve for the 5-fold cross-validation
experiment: bootstrapped (n= 1000) ROC curve (AUC= 0.95 ± 0.02) of our method
in blue. (Color figure online)

Figure 5 shows the vertebra-level fracture detection ROC curve for the five-
fold cross-validation experiment (AUC of 0.93 ± 0.01). We added Gaussian noise
to the ground truth vertebra coordinates (standard deviation of 3 mm along
each axis) to simulate using automatically detected centroid coordinates (see
discussion in Sect. 3.3). We are aware of one vertebral fracture detection work
(using a 2.5D method [14]) reporting a sensitivity of 95.7% with a False Positive
Rate of 0.29 per patient [4]. Burns et al. designed their test set carefully by
excluding cases with more than two contiguous vertebral fractures (in contrast,
in our database 18% of the cases contain more than two contiguous fractures and
>70% of vertebral fractures have at least one neighboring fractured vertebra, see
Fig. 7(b) and (c)). We have not tested this 2.5D method on our test set because
of the lack of an open source implementation.

The vertebra-level fracture detection results are illustrated in Fig. 6 (two
validation cases with only correct vertebra-level predictions) and Fig. 7 (three
validation cases with False Positive (FP) and False Negative (FN) errors at
vertebra-level). We observed that our vertebra-level errors occur predominantly
on mild cases (either misses on ground truth mild fractures or false alarms on
normal vertebrae) and can be clustered into the following categories: errors at
edge vertebrae (vertebra and/or its neighbors are not completely visible, see
Fig. 7(a)), errors in series of fractured vertebrae (known to be difficult to read
as the reference vertebra dissappears, see Fig. 7(b)) and errors due to confusion
with other vertebra pathologies (e.g. inferior vertebra in Fig. 7(b)). Supported
by Fig. 1 we hypothesize that our training database does not contain enough
vertebra examples, explaining for instance the FN on mild S1 in Fig. 7(a) and the
FN on moderate T7 and mild T9 in Fig. 7(c) (notice the spine curvature around
L5 and T7–T8 which makes these fractures look different compared to other
locations along the spine). We also observed that some ambiguous (mild) cases
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Fig. 5. Vertebra-level fracture detection ROC curve for the 5-fold cross-
validation experiment, again bootstrapping (n = 1000) our predictions to generate the
mean and standard deviation of ROC curves (AUC = 0.93 ± 0.01).

(a) Validation case 1 (b) Validation case 2

Fig. 6. Fracture detection correct vertebra-level predictions on two validation
images: for each case, one mid-sagittal slice of the pre-processed 3D input image is
overlayed with the output fracture class probability label map (blue = low probability,
red= high probability). Probability values <0.05 have been removed for visualization
purposes. Best viewed in color. (Color figure online)
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(a) Validation case 3 with
two errors at vertebra-level

(b) Validation case 4 with
four FNs at vertebra-level

(c) Validation case 5 with
two FNs at vertebra-level

Fig. 7. Fracture detection incorrect vertebra-level predictions on three valida-
tion images: for each case, one mid-sagittal slice of the pre-processed 3D input image
is overlayed with the output fracture class probability label map (blue = low probabil-
ity, red = high probability), TPs and error type are annotated manually. Probability
values <0.05 have been removed for visualization purposes. Observe the differences in
image quality and field of view present in our training database. Best viewed in color.
(TP= True Positive, FP = False Positive, FN = False Negative) (Color figure online)

would benefit from consensus reading as reported previously [3] (e.g. inferior
vertebra in Fig. 7(b)).

5 Conclusion

We present to the best of our knowledge the first vertebral fracture detection
model learning 3D features in the spine while simultaneously localizing the detec-
tion results to allow for interpretation by radiologists. We discussed the impor-
tance of exploiting 3D information to automatically learn compact vertebral
fracture detection features. The results of our 5-fold cross-validation experiment
demonstrate that our 3D data-driven method produces AUC scores above 90%
for patient-level and vertebra-level fracture detection.

While our work demonstrates encouraging fracture detection results, this
study has a few limitations which can be mainly attributed to our small database.
First, we reported vertebra-level fracture detection results with noisy manual
annotations that should be replaced by automatically detected centroids (using
an automated localization method). Secondly, we did not yet report fracture
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grades because our initial experiments show that we have an insufficient number
of training examples for many vertebrae and especially for the more ambiguous
mild fractures. Thirdly, the amount of thoracic vertebrae and the variability in
spine pathologies and image acquisition settings was limited due to the size of
our training database. Lastly, we used cross-validation instead of independent
training and test sets due to the limited number of patients in our training
database.
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Abstract. Vertebral metastases are common complications of primary
cancers that alter bone architecture potentially leading to vertebral frac-
ture and neurological compromise. Quantitative measures from vertebral
body segmentations from Computed Tomography (CT) scans have been
useful for assessing fracture risk predictions and vertebrae stability. Pre-
vious segmentation methods used to generate these metrics were slow and
required manual intervention, limiting their utility. More accurate, robust
and fast methods are needed for clinical assessments. This investigation
proposes a 3D U-Net Convolutional Neural Network (CNN) to accurately
segment individual trabecular centrum from metastatically compromised
vertebrae of interest in CT imaging. Using different augmentation tech-
niques achieved good performance (DSC = 0.904± 0.056) with the seg-
mentation model remaining accurate with simulated lower image quality,
and translation of the vertebrae within the image, especially compared
to when no augmentations were used (DSC = 0.774± 0.188). Integration
of this method into a clinical tool will allow accurate and robust quanti-
tative assessment of mechanical stability, aiding clinical decision making
to improve patient care.

Keywords: Vertebrae segmentation · 3D U-Net

1 Introduction

Approximately 70% of cancer patients are found to have skeletal metastases
during post-mortem examinations [31], with breast, prostate, lung and renal
cancers contributing over 80% of cases of skeletal involvement [23]. The spine
is the most common site for these skeletal metastases accounting for approxi-
mately two-thirds of all skeletal lesions. As cancerous cells metastasize in the
spine they can deregulate the balance of bone remodelling, leading to excess
bone resorption (osteolytic disease), bone formation (osteoblastic disease) or a
mixture of both [23]. Vertebral metastases can cause pain, mobility issues and
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neurologic compromise. 5–10% of patients will develop mechanical instability or
neurological complications requiring treatment. In severe cases further neurlogic
complications may cause paralysis.

Local and systemic treatment options exist for patients with spinal metas-
tases. Stereotactic Body Radiation Therapy (SBRT) can deliver more pre-
cise highly conformal and hypofractionated external beam radiotherapy with
a locally curative objective in single or few fractions. However SBRT has been
shown to induce and progress existing vertebral fractures with risks reported
ranging from 11% to 39% [4,8,27]. Surgical intervention and stabilization prior
to radiation treatment has been considered and shown to improve neurologic
outcomes, pain relief, and overall quality of life compared to radiation alone
[10]. The spinal instability neoplastic score (SINS) is a scoring system developed
to guide clinical assessment of spinal stability and determine if stabilization is
necessary [10]. While SINS is in use clinically and shown to be reproducible
(0.846 interobserver reproduciblity), it is a semi-quantitative estimation of ver-
tebral stability that is done manually by experts and lacks quantitative metrics
of fracture risk or stability.

Quantitative metrics derived from Computed Tomography (CT) scans of
vertebral bodies have shown a potent ability to quantify fracture risk. Thibault
et al. [30] found that osteolytic tumour involvement ≥11.6% relative to the total
vertebral body volume was highly correlated to VCF occurring (P> 0.001) with
an odds ratio of 37.4 [30] in a cohort of 55 patients. This study was able to
predict VCF with a sensitivity and specificity of 70.6% and 94.0%, respectively
[30]. Similarly, a pilot study Hardisty et al. found that vertebral volume collapse
quantified by analysing CT imaging pre- and post-SBRT was higher in patients
that went on to receive mechanical stabilization [12]. These results show promise
that a quantitative prediction of spinal stability is possible by evaluating medical
imaging. However, these analyses required a multi-step, semi-automated pipeline
to segmentation the trabecular centrum and metastatic lesions of a vertebral
body [11,33] which was slow, required manual intervention, and was sensitive
to initialization (locating and cropping the vertebrae of interest). To evaluate
fracture risk and vertebral stability in a clinical setting a faster, automated and
more robust segmentation model that is less sensitive to initialization is required.
Further the method must be tolerant of variability in scan quality as patients
with metastatic disease have imaging studies for treatments planning and follow
up with varying resolution. This work proposes that a 3D Convolutional Neural
Network (CNN) can be used to meet the necessary criteria for a trabecular
centrum segmentation model for clinical use. The pipeline will involve a user
selecting a vertebra from a full spine CT scan as the vertebrae of interest will
be known. Robustness of the segmentation model will include the ability of it
to accurately segment non-centered vertebrae, avoiding the need for careful pre-
alignment of the vertebra selected.
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2 Dataset

Data from this work was acquired through the Sunnybrook Health Science Cen-
tre and consisted of T4-L5 healthy and metastatic vertebrae from 30 patients
with sequential imaging taken at four 4-month scan intervals (initial, 4-month,
8-month, 12-month). Fractured vertebrae were excluded from this cohort.
Approximately 530 segmentations were used for training and 130 for valida-
tion. Ground truth annotations of the vertebral body’s trabecular centrum were
obtained using the previously developed semi-automated method [11] followed
by manual corrections. Each scan was sparsely labelled such that not all vertebra
are have ground truth labels.

3 Previous Work

Methods for 3D vertebral body segmentation exists using shape and statisti-
cal models, and atlas based methods [5,11,13,14,16–20,25,28]. However, these
methods are slow and may only be semi-automated requiring user input. More
recent advances have looked into using machine learning techniques for verte-
bra detection including iterative marginal space learning [24], random forest
[6], and Support Vector Machines [9]. These previous segmentation methods
require training both a detection and segmentation model, making them less
efficient than a single stage model required here. Similarly, the detection model
adds additional computational overhead which is unnecessary here as a clinician
would already know the vertebrae of interest.

Recent techniques have looked into using classical and convolutional neural
networks (CNN) for vertebra segmentation. Al Arif et al. [1] also used a 2D
CNN framework to achieve 0.944 Dice similarity coefficient by utilizing shape
aware loss function with a U-Net architecture [26]. Janssens et al. [15] was able
to accurately label 3D vertebral bodies with a U-Net after vertebra localization
with a prior FCN. A single end-to-end model was developed by Lessmann et al.
[21] to both segment and classify vertebral bodies in a full CT image using an
iterative patch-based method. Sekuboyina et al. [29] demonstrated a whole 3D
vertebrae segmentation model that is able to accurately segment vertebrae under
varying field-of-view, and with varying pathologies (healthy, osteoporotic unfrac-
tured, osteopototic fractured). Even though their model does not achieve higher
than state-of-the-art segmentation accuracy (achieving only 0.87 average Dice
similarity coefficient) their model can perform under more varying clinical con-
ditions. They achieved this by first cropping 3D vertebrae from CT scans using
the localization results of a 2D sagittal attention network. These 3D cropped
vertebrae where then segmented using a network composed on both 2D and
3D convolutions. While this work demonstrates a robust segmentation model
the 2D convolutions can cause vertebral information to be lost. Also, the two
networks are trained and implemented independently and not through an end-
to-end structure, meaning final computation and use of the segmentation results
in a clinical pipeline will be slower. Furthermore, their approach does seem to
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significantly decrease in accuracy for osteoporotic vertebrae (Dice coefficient of
0.837) which could cause it’s performance on metastatic vertebrae (what is of
interest here) to be not clinically usable. A volumetric concurrency of 0.89 has
been shown to be sufficient for automatically predicted segmentations to be use-
ful for fracture risk assessment in the metastatically involved spine [11,22,30].
However, other than the semi-automated model by Hardisty et al. [11], none
of these models have shown to be able to segment metastatically involved ver-
tebral bodies. It has also not been shown how these models function with the
requirements necessary for deployment in the clinical pipeline.

4 Methodology

This work proposes to use a 3D U-Net CNN [7,26] to segment metastatically
involved trabecular centrum from CT scans. The method will involve selection
of the vertebrae of interest by the user and then automated segmentation and
analysis with a 6-layer U-Net (Fig. 1). A U-Net is similar to an encoding (left)
and decoding (right) CNN. An image’s structural information and resolution
decrease as it propagates down the left side of the U-Net as the network attempts
to learn high and low level image information, as with normal FCN models. The
benefit of the U-Net is the concatenation of the left and right sides which allow
the network to regain structural information and resolution is increased during
up-convolutions. U-Net models have been shown to be successful for 2D [32] and
3D [21] vertebral segmentation, but have not considered metastatically involved
vertebrae. For this work, a 6-layer 3D U-Net was used with a 32 base filters.
This was chosen based on the computational resources available and results in
existing literature.

Fig. 1. Example of a 6-layer 3D U-Net CNN with base filter size of n.

4.1 Preprocessing and Training

Prior to training, all CT scans were resampled to 1 mm3 voxel spacing. Patches
(of size 128×128×64) encompassing individual vertebrae were cropped from the
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whole-spine CT scans. An example of this patch with and without the ground
truth segmentation can be seen in Fig. 2a and b, respectively. Different models
were trained based on different augmentation techniques, to investigate their
ability to handle simulated real-world situations. Each model was trained using
the negative of the Dice Similarity Coefficient (DSC), a measure of overlap for
segmentations, for their loss function. The DSC can be seen in (1). Models
were developed in Keras and training was done for 200 epochs using the Adam
optimizer with a 1e−4 learning rate. Training was done using 4 NVIDIA Tesla
V100 GPUs using Compute Canada resources (https://docs.computecanada.ca/
wiki/Beluga/en).

4.2 Augmentation

The goal of this segmentation model is to be used to aid clinical decision making
and planning for patients with known disease in specific vertebrae. The user will
be able to identify and localize the vertebrae of interest, however the precise
location will not be ensured, therefore the segmentation model must segment
a vertebral body without precisely knowing the centre. To avoid this necessity
translation augmentations were considered during training to shift the cropping
window to off-set the vertebral body’s center from the windows center. Mod-
els trained with this augmentation are denoted as TM, and an example of this
augmentation’s affect of the CT data can be seen in Fig. 2c. This segmentation
model will also need to be able to segment the vertebral body from CT scans
of variable resolution to accommodate different clinical requirements (planning,
diagnostic, monitoring) and scanning protocols. A resampling augmentation was
used during training, after the initial 1 mm3 voxel spacing resampling discussed
above, to simulate the potential differences in imaging resolution possible in dif-
ferent scans of these patients. Image volumes were resampled with a random
voxel spacing between 1–2 mm3 and then to the standard 1 mm3 voxel size used
as input to the model. These additional resamplings would decrease image qual-
ity in a manner consistent with lower resolution imaging. This range was decided
upon based on our groups clinical experience with CT scanning done for plan-
ning SBRT compared to those scans done as follow up to the therapy. Models
trained with this resampling augmentation are denoted as RM and an example
of this can be seen in Fig. 2d. Finally, shape augmentations common to image
processing models were also applied during training and these include randomly
rotating, scaling, elastically transforming and mirroring scans. Model’s trained
with shape augmentations are denoted as SM.

A total of 8 models were trained based on the combination of the three
augmentation techniques (shape, translation and resampling) with the inclusion
of a model without any augmentations applied, and were: STRM, SRM, STM, SM,
TRM, RM, and NM. An example of a of an axial CT slice with both translation
and resampling augmentations can be seen in Fig. 2e.

https://docs.computecanada.ca/wiki/Beluga/en
https://docs.computecanada.ca/wiki/Beluga/en
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Fig. 2. An axial slice of CT scans showing (a) a centered vertebral body with no
augmentations applied; (b) ground truth segmentation overlayed in red; (c) translation
augmentation applied; (d) resolution augmentation applied; (e) both translation and
resolution augmentations applied. (Color figure online)

4.3 SpineWeb Data

A second analysis was done using the vertebral body segmentations from Dataset
4 from SpineWeb [2,3], using trained model’s discussed above. The 2D vertebral
body segmentations were concatenated producing 21 3D ground truth samples,
of which 7 were excluded as the whole vertebrae was not visible. The resulting
14 samples were also resampled to a consistent 1 mm3 voxel spacing and patches
of 128 × 128 × 64 were cropped as discussed above. These 14 samples were only
used for subsequent testing and no training was done with this data.

4.4 Evaluation

Segmentation accuracy was based on the Dice Similarity Coefficient (DSC) (1)
and Concurrency (2) which are the harmonic and arithmetic mean of the preci-
sion and recall, respectively. The previous semi-automated method achieved an
average vertebral body segmentation concurrency of 0.893 ± 0.02 [11]. There-
fore, segmentation validation will be based on achieving a minimum average
Concurrency of 0.893 for vertebral body segmentation.

DSC(X,Y ) = 2
|X ∩ Y |

|X| + |Y | (1)

Concurrency(X,Y ) =
1
2

( |X ∩ Y |
|X| +

|X ∩ Y |
|Y |

)
(2)
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To determine how each model configuration responded to the different pos-
sible real world scenarios being investigated (non-centered vertebral body and
low resolution scans) different augmentations were applied to the data during
validation. Each model was therefore validated four times for the four different
augmentation combinations. Similar to the different model configurations, the
four augmentations used during validation were ND, TD, RD, and TRD. The
subscript D is used to identify validation data and to distinguish this from a
model configuration. The average DSC and Concurrency for the four validation
tests will be used to provide an overall evaluation of each model’s segmentation
accuracy. The DSC provides comparability of these results to other segmenta-
tion literature as DSC is one of the most common metrics used for segmentation
overlap. Concurrency will provide a comparison to the previous segmentation
method by Hardisty et al. (average Concurrency of 0.893%). It is hypothesized
that the segmentation model described here is more accurate and more robust
than previous semi-automated methods.

5 Results

The DSC and Concurrency results for each model can be seen in Tables 1a and b,
respectively, for each validation dataset. Models trained with all augmentations
(STRM) produces the most accurate DSC and Concurrency results of 0.904 and
0.908, respectively, based on the average of the four validation tests. Tables 1a
and b show that translation augmentations produce the most significant change
to a model’s performance, especially when the model is tested on translated
data. Shape augmentation produces overall improvement to model performance,
but less significant than translation augmentations. Resampling augmentation is
shown to only cause, at most, marginal improvements to a model’s segmentation
accuracy.

The results in Tables 1a and b show that the top-performing model was able
to segment the vertebral body more accurately than the previous method by
Hardisty et al. (average Concurrency of 0.893), and was able to do this with
non-centered vertebrae and under simulated low-resolution conditions. Each indi-
vidual prediction was computed in approximately 0.4 s using a NVIDIA Titan
Xp GPU, which is also approximately 100-times faster than the previous semi-
automated segmentation method [11]. A module for deployment of the model
has been developed within the 3D Slicer platform that allows users to segment
vertebrae of interest [https://github.com/kleingeo/Vertebral Segmentation].

Examples of axial slices of ground truth and predicted segmentations of the
top performing model, STRM, can be seen in Fig. 3 for the ND (top) and TRD

(bottom). The DSC and Concurrency values for each example are for the full 3D
trabecular centrum. Significant osteoblastic involvement (the T6 example) shows
situations where the model has difficulty segmenting the trabecular centrum.
This may indicate the need for more examples of this type of tumour involvement
or strategies that preserve vertebrae shape [1].

https://github.com/kleingeo/Vertebral_Segmentation
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Table 1. DSC, (a), and Concurrency, (b), validation results for the different augmen-
tation and validation tests. Subscripts M and D are used to distinguish augmentations
used during training and the validation datasets, respectively. S, T, and R correspond
to shape, translation, and resampling augmentations respectively, where N is for no
augmentations. Total Avg. column is the average DSC or Concurrency for all four test
cases.

(a)

Model DSC (± std)

ND TD RD TRD Total avg.

STRM 0.904 (0.048) 0.904 (0.049) 0.904 (0.067) 0.905 (0.060) 0.904 (0.056)

SRM 0.910 (0.031) 0.828 (0.215) 0.914 (0.029) 0.820 (0.197) 0.868 (0.154)

STM 0.905 (0.038) 0.905 (0.038) 0.897 (0.050) 0.895 (0.044) 0.900 (0.043)

SM 0.908 (0.033) 0.841 (0.118) 0.904 (0.036) 0.852 (0.092) 0.876 (0.084)

TRM 0.899 (0.041) 0.899 (0.041) 0.896 (0.042) 0.895 (0.043) 0.897 (0.042)

RM 0.906 (0.033) 0.754 (0.147) 0.904 (0.033) 0.729 (0.171) 0.823 (0.141)

TM 0.896 (0.045) 0.896 (0.046) 0.885 (0.083) 0.880 (0.079) 0.889 (0.066)

NM 0.910 (0.038) 0.688 (0.164) 0.905 (0.039) 0.595 (0.192) 0.774 (0.188)

(b)

Model Concurrency (± std)

ND TD RD TRD Total avg.

STRM 0.908 (0.039) 0.908 (0.039) 0.909 (0.046) 0.909 (0.044) 0.908 (0.042)

SRM 0.913 (0.030) 0.844 (0.191) 0.916 (0.027) 0.844 (0.152) 0.879 (0.129)

STM 0.908 (0.036) 0.908 (0.036) 0.901 (0.046) 0.899 (0.040) 0.904 (0.040)

SM 0.912 (0.031) 0.848 (0.115) 0.907 (0.034) 0.859 (0.089) 0.881 (0.081)

TRM 0.902 (0.038) 0.903 (0.038) 0.900 (0.039) 0.899 (0.040) 0.901 (0.039)

RM 0.909 (0.031) 0.776 (0.124) 0.908 (0.032) 0.753 (0.150) 0.836 (0.123)

TM 0.900 (0.041) 0.901 (0.042) 0.893 (0.053) 0.888 (0.053) 0.895 (0.048)

NM 0.913 (0.035) 0.717 (0.145) 0.908 (0.036) 0.643 (0.169) 0.795 (0.165)

5.1 Results - SpineWeb Data

With the 14 3D vertebral bodies, augmentations were applied in the same man-
ner as with the evaluation above using the trabecular centrum in-house data
resulting in a model being tested on four validation datasets. The DSC for
the different models on each augmentation test can be seen in Table 2 below.
The results here are similar to those above with the in-house data. Translation
augmentation shows the most significant change to segmentation accuracy when
considering translated data. Resampling augmentation produces minor improve-
ments to overall segmentation accuracy. However, unlike with the in-house data,
model’s trained with shape augmentations seem to have significantly lower per-
formance relative to the other values in Table 2. Comparing Tables 1a and 2 show



Metastatic Vertebrae Segmentation for Use in a Clinical Pipeline 23

Fig. 3. Best (L1) and worst (T6) trabecular centrum segmentation predictions from
STRM on the ND (top) and TRD (bottom). Blue and red contours are the ground truth
and predicted segmentations, respectively. (Color figure online)

there is a significant decrease in absolute DSC values and this is easily seen
when looking at the NM and ND value as this represents the best case scenario
(perfectly centered, no changes in resolution or augmentation). An example pre-
diction (red) and ground truth (blue) segmentation can be seen in Fig. 4 below

Table 2. DSC validation results for the different augmentation and validation tests
for the SpineWeb Dataset 4 [2,3]. Subscripts M and D distinguish models and the
validation datasets, respectively. S, T, and R correspond to shape, translation, and
resampling augmentations respectively, where N is for no augmentations. Total Avg.
column is the average DSC of all four validation datasets.

Model DSC (± std)

ND TD RD TRD Total avg.

STRM 0.731 (0.204) 0.728 (0.204) 0.774 (0.030) 0.772 (0.030) 0.751 (0.147)

SRM 0.468 (0.335) 0.123 (0.214) 0.589 (0.247) 0.077 (0.147) 0.314 (0.329)

STM 0.718 (0.201) 0.717 (0.200) 0.695 (0.168) 0.661 (0.209) 0.698 (0.197)

SM 0.772 (0.036) 0.537 (0.190) 0.760 (0.039) 0.629 (0.209) 0.674 (0.174)

TRM 0.771 (0.021) 0.769 (0.022) 0.765 (0.021) 0.767 (0.021) 0.768 (0.021)

RM 0.780 (0.022) 0.482 (0.203) 0.779 (0.022) 0.468 (0.213) 0.627 (0.212)

TM 0.774 (0.029) 0.772 (0.027) 0.759 (0.032) 0.756 (0.035) 0.765 (0.032)

NM 0.784 (0.024) 0.261 (0.0197) 0.771 (0.030) 0.140 (0.159) 0.489 (0.319)
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showing both the sagittal and axial views for with the STRM and ND. The low
DSC and Concurrency reported in Fig. 4 (DSC = 0.77 and Concurrency = 0.81)
can be better explained by looking at the predicted and ground truth segmen-
tation contours Fig. 4. The lower DSC was primarily due to the result of the
prediction being for the trabecular centrum, rather than the whole vertebral
body itself as done in the Spine Web dataset.

Fig. 4. Sagittal (left) and axial (right) slices of SpineWeb data [2,3] sample without any
augmentations with ground truth (blue) and predicted (red) segmentations. Prediction
were generated from STRM, which was trained on trabecular centrum segmentations.
The SpineWeb ground truth is of a whole vertebral body segmentation. (Color figure
online)

6 Discussion

Tables 1a and b show that one of the highest single DSC value was from NM on
the ND. This situation constitutes the ideal, real-world scenario as all data is
high-resolution and the trabecular centrum is centered in the cropped window.
This provides an upper boundary a model’s segmentation ability. With a similar
argument, the TRD is the worst case scenario (lower resolution and off-centered
cropping) and will show how well the model can handle more difficult situa-
tions. The validation results of the NM with the TRD achieves the lowest DSC
(DSC = 0.595) in Table 1a indicating that the simplest model configuration can-
not segment the trabecular centrum accurately for (simulated) real-world situa-
tions. The STRM tested with the TRD achieves the highest DSC (DSC = 0.905)
showing the augmentations have on a model’s robustness through its ability to
accurately segment the trabecular centrum in real-world situations.

For clinical translation the segmentation model will need to perform well
with a variety of image qualities. The RM can be seen to be able to accurately
segment low and high resolution scans, as seen in the ND and RD columns in
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Tables 1a and b. However, the RM seems to be only marginally more accurate
than the NM for the same validation datasets. This suggests that the model may
be using more shape information in the CT scans to perform the segmentation as
opposed to the texture information. Furthermore this may suggest a robustness
to variations in image resolution for this segmentation task; the shape of the
vertebral bodies was relatively smooth without fine structure. This finding has
practical advantages for collecting training data which may not be uniform and
for prediction outside of the image resolution of the training set.

Another criteria for clinical use of the segmentation model is for a user to be
able to select and segment a vertebral body of interest without needing to have
their selection perfectly centered in the cropping window. This will allow for a
more robust model that requires less user intervention. Models trained with TA
(STRM, STM, TRM, and TM) all demonstrate that they can more accurately
segment off-centered vertebral bodies compared to models that were not trained
with TA. For example the NM achieved an average DSC of 0.688 ± 0.164 on the
TD, whereas TM achieved an average DSC of 0.896 ± 0.046. The model trained
with TA achieved an approximately 20% greater DSC than the model trained
without, as well as a significant reduction in uncertainty. This demonstrates the
robustness of the model in its ability to accurately segment off-centered vertebral
bodies.

The relative trend of the DSC values with the SpineWeb dataset are similar
to the in-house data described above showing that transnational augmentation
produces the most significant increase in DSC for translated test cases, improv-
ing overall model robustness. The models trained with translation augmentation
(TM), and translation and resampling augmentations (TRM) performed the high-
est overall. Unlike the results with the in-house data shape augmentation does
not seem to cause any significant improvement and seems to reduce a model’s
overall DSC, as seen when comparing TRM and STRM models. The reason for
this can be seen when looking at each sample’s segmentation prediction. From
the individual results the STRM model miss-segments one the samples (segments
the trabecular centrum of the vertebrae above) resulting in a DSC of 0 and, with
only 14 samples, this significantly lowers the average DSC for that scenario. The
absolute DSC is decreased for the SpineWeb dataset as seen in Table 2 compared
to Table 1a for the in-house data. This can be best seen when comparing the NM

model on the ND test set, as these represent the best case scenario (perfectly
centered, no changes in resolution or augmentation). There are a few potential
reasons for this change and they all stem from differences in the physical struc-
tures that are segmented in the data. The SpineWeb dataset includes osteophytes
in its segmentation which the trabecular centrum data does not. Additionally,
the SpineWeb dataset considers the whole vertebral body rather than just the
trabecular centrum and this can be clearly seen in Fig. 4. The predicted segmen-
tation in Fig. 4 is qualitatively good if the task was to segment the trabecular
centrum, which was what the model was trained for. However, the DSC for Fig. 4
is only 0.77 as it being compared to something slightly different. This does show
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that the model is able to achieve (qualitiatively) accurate segmentations of the
trabecular centrum on different data.

The broad goals of this project are to build tools for the metastatically
involved spine to aide in treatment planning, assess mechanical stability, and
fracture risk. These methods are of increasing importance with the rising num-
ber of treatment options available and the increasing complexity of optimizing
care delivery for patients with metastatic disease in the spine. Our future work
is focused on tools that can effectively fuse multiple data sources to model the
course of symptomatic fractures and indicate the need for prophylactic stabi-
lization. Accurate segmentation of vertebral bodies is the first step for stability
estimations. Osteolytic lesion segmentation has previously been done using a
patient specific thresholding of Hounsfield units, which required accurate seg-
mentations of the vertebral body [33]. The developed models here (average DSC
and Concurrency of 0.904 and 0.908, respectively) were shown to segment the
vertebral body accurately enough for this clinical pipeline, and meet the criteria
established at the outset of this project based upon this clinical need, Hardisty et
al. (average Concurrency of 0.893). The model developed here could be used in
a larger clinical pipeline for metastatic fracture prediction and clinical interven-
tion, and could be trained in a complete end-to-end fashion. Personalized cancer
care in the spine may also need to consider primary tumour type and local
bone quality considerations in building quantitative methods to assess disease
progression, vertebral stability and response to therapy.

7 Conclusion

A segmentation model using a 3D U-Net framework has been developed to accu-
rately segment vertebral bodies of metastatically involved vertebrae. Existing
methods for vertebral body segmentation in pathologic vertebrae require man-
ual correction and long computational times. This work demonstrates a U-Net
framework as a faster, more accurate and robust alternative for segmenting ver-
tebral bodies in 3D CT images of healthy or metastatic vertebrae. Further the
network was trained to be robust to changes in scan resolution and positioning
of the vertebrae within the scan, making it suitable for different clinical settings
and scanning protocols. The proposed segmentation model here can be used in a
clinical pipeline and will be able to provide accurate vertebral body segmentation
which is a crucial to estimate stability of a patient’s spine/vertebrae.

Acknowledgements. Feldberg Chair for Spinal Research, Canadian Institute for
Health Research Doctoral Award.
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Abstract. Detection of osteoporotic vertebral fractures in CT scans is a
particularly challenging task that was never sufficiently addressed. This
is due to the large variation among healthy vertebrae and the different
shapes a fracture could present itself in. In this paper, we combine a
reconstructing conditioned-variational auto-encoder architecture and a
discriminating multi-layer-perceptron (MLP) to capture these different
shapes. We also introduce a vertebrae-specific loss-weighing regime that
maximizes the classification yield. Furthermore, we ‘look into’ the learnt
network by investigating the saliency maps, traversing the latent space
and demonstrating its smoothness. Finally, we report our results on two
datasets, including the publicly available xVertSeg dataset achieving an
F1 score of 84%.

Keywords: Fracture detection · Variational Autoencoders

1 Introduction

The human spine is usually made up from 25 different vertebrae which are
divided into 3 sub-categories, i.e. cervical spine vertebrae C1-C7, thoracic spine
vertebrae T1-T12 and lumbar vertebrae L1-L5, with the osteoporotic fractures
mainly occurring in the thoracic and lumbar regions. The fractures usually
present themselves more similarly among similarly-shaped vertebrae. Vertebral
fractures are considered one of the main symptoms of osteoporosis and have a
multitude of consequences which includes disability and mortality. Furthermore,
the mere existence of a fracture exponentially increases the risk of new fractures
of the spine and hip and their identification is essential to start the patients bone-
protective and bone-enhancing therapy [1]. The prevalence of fractures is high
in older adults, reaching 40% by the age of 80 [3]. Nevertheless, under-reporting
of incidental fractures remains common with 84% of them not reported in CT
exams in one study [4]. The gold standard of fracture classification is currently
the semi-quantitative method developed by Genant et. al. [2] which relies on
c© Springer Nature Switzerland AG 2020
Y. Cai et al. (Eds.): CSI 2019, LNCS 11963, pp. 29–38, 2020.
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experts judgment to classify and grade the fracture by visually assessing them
on a CT scan. These fractures are divided into three levels of severity, as can be
seen in Fig. 1, with level 1 being mild to level 3 being severe. We refer to these
images as the vertebral masks and are obtained by masking the 3D vertebral
patch with its segmentation mask.

Fig. 1. Levels of severity in vertebral fractures: left to right: the vertebral masks cor-
responding to the CT mid-slices of a healthy, mildly fractured, moderately fractured
and severely fractured L1 vertebrae.

The level of severity is a measure of how much height the vertebral body has
lost along the sagittal plane, with mild cases having lost 20–25% of their height,
moderate cases 25–40% and the severe case >40%. These scores are meant to
be visually interpreted which makes the standard more or less dependent on the
observer. Such variation in fractures and their rating complicates the detection
task for automated algorithms, keeping in mind that the size of vertebrae vary
a lot from one patient to another. Another very common feature among spines
with osteoporotic fractures is a decrease in the average vertebral Hounsfield units
measured from the CT scan. This is due to the respective decrease of bone density
caused by this condition [5]. Thus, to leverage the maximum information out of
a scan, an algorithm has to take into account both shape as well as intensity
features.

Only a few attempts have been previously made to automate fracture detec-
tion and with limited success. A 2D convolutional approach along with LSTMs
was used in osteoporotic vertebral fractures to develop a whole-spine CT fracture
detection algorithm [6]. However this method requires multiple sagittal slices of
the full thoraco-lumbar spine to be visible in the scan, which are rarely available
in the clinical setup as most of the scans encompass only a part of the whole
spine, this also means that this method is heavily reliant on the quality of those
scans and assumes the availability of localized slices of interest. The end result
is a binary output of the presence of a fracture in a scan without localizing it
to the vertebral level. Thus, making the fracture labels available on a vertebral
level would provide the physicians with more precise data to work with.

Moreover, clinically available vertebral data is usually extremely imbalanced
with fractures being present in less than 10% of the scans. Therefore, we end up
with a large difference between the healthy and fractured classes and training a
generalizable supervised model for such cases becomes highly unfeasible. Addi-
tionally, the fracture labels are usually only available for a small subset of a huge
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Fig. 2. Architecture of Spine-VAE. The 3-D patches are forwarded through the
encoder’s convolutional layers, which are separated by batchnorm and ReLU activa-
tion layers. The encoder then feeds into two linear layers which represent the mean and
the standard deviation through which the latent space is sampled using the gaussian-
reparametrization trick. The latent space is concatenated to a vector representing the
vertebral classes and then feeded to the decoder. If the classification circuit is activated,
the latent space vectors are feeded to the MLP classifier as well.

un-annotated cohort. To leverage all the data available at hand, unsupervised
learning has to be used to capture the underlying differences in the data at hand.
To this extent, Autoencoders provide a compressed representation of data based
on its successful reconstruction without any supervision. As our problem requires
correlating a number of independent features, we look for a frame-work which
is able to ‘separate’ those features as much as possible in the latent representa-
tion. Variational Autoencoders (VAEs) provide a framework through which the
latent representation can be effectively conditioned. They were used in medical
applications to learn interpretable anatomical features for automatic classifica-
tion of images from patients with cardiac diseases associated with structural
remodeling [7].

Our Contributions

1. We propose a compact deep learning architecture which incorporates the
unsupervised auto-encoding and the supervised discriminating elements.

2. We use a custom task-specific loss function to learn a representation for our
data.

3. We evaluate the model on a publically available dataset.
4. We extensively investigate the interpretability of the acquired results.
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2 Methodology

Our approach is to build a two-step deep learning algorithm, that includes the
training of an unsupervised model for an un-annotated cohort of vertebrae using
a 3D-convolutional VAE. Then, with the help of this model, along with the
annotated sub-set of the cohort, we train an MLP to detect vertebral fractures.
The network will be referred to as Spine-VAE from now on. In this section we
will describe three main parts of our contribution, namely the representation
learning, conditioning the VAE, and the MLP. As can be seen in Fig. 2, we use
a 3D convolutional VAE to learn the representation of a single vertebra in the
latent space. However, we use a couple of tools to enhance our representation
and allow it to capture the necessary features to detect a fracture. Our first step
is to train the unsupervised model (without the MLP) using all the data-points
in our cohort.

Fig. 3. Baselines architecture. (a) Architecture of the encoder-classifier baseline. (b)
Architecture of the normal autoencoder-classifier baseline (AE baseline).

Representation Learning. Since the body region of the vertebra is what
should be emphasized on to detect the fractures, we used a weighted mean square
error as the loss to train the VAE. As we can see in Eq. 1 the reconstruction loss
for a single point of our dataset would be:

Lrecon =
n∑

i=1

ωi(xi − x̄i)
2 (1)

where x represents the vertebral mask, x̄ is the reconstructed vertebra and the
weight ω is a mask of the same size of the vertebral mask and it decreases uni-
formly from 1 at the beginning of the body to 0 by the end of the vertebral pro-
cess. An example weight mask can be seen in Fig. 4. As the weights go to zero,
the network ignores learning an accurate reconstruction of the down-weighed
vertebral process. This results in a very similar reconstruction of the vertebral
processes across the different data-points which in turn eases the classification
task at the later stage by filtering out a highly variable but fracture-wise unneces-
sary element of the vertebra. We show the effect of this step on the classification
stage in Fig. 5 by plotting the saliency maps from the classifier, back-propagated
to the vertebral masks to find which regions were responsible for the classifier’s
decision.



C-VAE for Detecting Osteoporotic Vertebral Fractures 33

Fig. 4. An example weight mask ω. The red at the very edge of the vertebral body
represents 1 which decreases until it reaches 0 (blue) at the end of the vertebral process
(Color figure online).

VAE. For learning a latent representation, we use a VAE conditioned on the
shape of the vertebrae by concatenating a one-hot vector to the VAE’s bottle-
neck. The one-hot vector is a categorical label obtained by clustering the ver-
tebrae from T1 to L5 into 5 different clusters based on their shape similarities
with the groups being as the following: T1-T5, T6-T9, T10-T12, L1-L4 and L5.
The idea behind this step is that fractures of vertebrae from the five sub-classes,
tend to have more consistent features among their respective classes. Hence, we
subtly pass this information to the VAE in order to condition the latent space
on that relationship. So we end up with the standard loss function of a VAE:

LV AE(θ, φ;xi) = −DKL(qφ(z|xi))||pθ(z)) + Eqφ(z|xi)
[logpθ(xi|z)] (2)

where the first term is the KL divergence of the approximate posterior from the
prior and the second component is the expected reconstruction error. To balance
our losses we include a β term as suggested in [8] and to aid convergence.

MLP. After the VAE converges, we move to the discriminatory part of our
network, where the classification circuit is activated by adding a cross entropy
loss term to the existing model and our total loss is expressed as:

Ltotal = Lrecon + βLKL + ζH(y, ȳ) (3)

where ζ is the median frequency weighing map (to handle class imbalance in the
dataset) as described in [9], H is the cross-entropy loss function, y is the ground
truth and ȳ is the MLP’s prediction.

3 Results

In this section, we qualitatively validate our contributions by investigating
saliency maps, we check the latent space sanity by interpolating between dif-
ferent vertebrae and we finally we demonstrate the descriptiveness of out latent
code. Furthermore we quantitatively analyze our classification results on our
in-house as well as xVertSeg datasets.
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Fig. 5. The contribution of the weighted MSE loss to the classifier demonstrated using
the saliency maps of the classified vertebrae projected on the summed vertebral masks
along the sagittal axis. Top: saliency maps from a model trained with a standard
MSE loss. Bottom: trained with our weighted MSE loss. The heat maps show that
the weighted loss decreased the classifier’s emphasis on the posterior element of the
vertebrae and focused on the body for the decision making process

Data Preparation. Recent advancement in localization and segmentation
methodologies made segmentation of the spine and vertebrae easily obtainable
from CT scans. In our case, the segmentations were generated using an auto-
mated algorithm and corrected by radiologists. Although vertebral segmenta-
tions alone provide a valuable insight for fracture detection in terms of structural
features, combining those features with their corresponding Hounsfield unit val-
ues would provide a classification algorithm with a more complete set of features
to correlate with fractures. Therefore, we took the available segmentation masks
and multiplied them with the original scans to obtain our 3D masked vertebrae.
We re-sampled all of our data to isotropic 1.5 mm voxel spacing and placed our
vertebrae in 64 × 64 × 64 boxes.

Datasets and Training. We use a cohort of 2700 segmented vertebrae, among
which 1150 are labeled and subsequently 400 fractured samples. Online augmen-
tations are applied where individual samples are rotated randomly to ±30◦ along
the sagittal plane. An Adam optimizer was used with a learning rate of 1×10−4.
The network was trained for 600 epochs, with the first 150 being trained solely
with reconstruction loss while the KL-loss is annealed afterwards with a weight
of 0.1 to surmount the problem of over-regularization. The MLP classifier is
later trained with cross-entropy loss for 30 extra epochs until convergence. For
testing, we used the xVertSeg dataset which has 75 vertebrae. The GPU used
was NVIDIA P6000 and training a network required around 10 h.
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Fig. 6. Traversing the latent space. (a) Latent space interpolation: the interpolation
between the latent vectors corresponding to two healthy and fractured vertebrae, where
the interpolated vector z = β.zvert1 +(1−β)zvert2. Top row: interpolation using Spine-
VAE. Bottom row: interpolation using a normal autoencoder. (b) Latent space manipu-
lation: (left to right) top row: ‘inducing’ a fracture onto a healthy T5 vertebra. Bottom
row: ‘curing’ a level 3 fractured T5 vertebra.

3.1 Qualitative Analysis

Saliency Maps: To investigate the contribution of our custom reconstruction loss
in 1, we plot the saliency maps obtained by backpropagation in Fig. 5. We can
observe the contrast between the classifiers trained with the standard loss versus
the ones trained with our weighted loss, where the decision making process is
mainly coming from the body of the vertebrae in the latter, more precisely, from
the fractured region. This indicates that this loss constrains the VAE in terms
of the features it emphasizes on learning.

Latent Space Sanity: To demonstrate the superiority of VAEs to normal AEs in
terms the latent space smoothness, we interpolate between two given vertebrae.
In Fig. 6a, we compared the interpolation between Spine-VAE (top) and a normal
autoencoder (bottom), with the former producing viable vertebrae reconstruc-
tions at all of the interpolated points, while the normal autoencoder resulted
in a discontinuous interpolation and distorted images, which cannot exist as a
natural variation in reality. In the same experiment, we also observe the interpo-
lation between a healthy and a fractured L1 vertebrae. As can be seen in Fig. 6a
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Table 1. Classification statistics. We present the recall, precision, F1 score and the
specificity for our three baselines as well as Spine-VAE.

Model Recall Precision F1 Specificity

In-house dataset Baseline 62.9± 5.3 67.36± 2.8 66.4± 5.4 67.5± 5.5

AE-baseline 54.3± 7.2 52.4± 9.2 53.4± 8.2 60.3± 4.6

VAE 73.1± 3.3 70.3± 4.8 71.6± 3.2 68.8± 6.6

Spine-VAE 79.3±2.0 71.4±3.1 75.4±2.8 69.5±4.0

xVertSeg Spine-VAE 85.4 83.6 84.5 66.9

(top), the transition between the two images is smooth which indicates that the
network has learned to encode the different fracture level variations.

Latent Code Descriptiveness. To ensure that our model is capable of understand-
ing the fractures and does the classification process in an interpreted manner, we
demonstrate the generation capabilities of our model by ‘inducing’ and ‘curing’
fractures by manipulating the latent vectors as can be seen in Fig. 6b. Using
saliency maps from the classifier to the latent space, we were able to pinpoint
the most ‘contributing’ digits in the latent vector to fracture classification. This
is done by determining the two digits with maximum variation between positive
and negative samples among the 64 latent space digits. We then varied those
digits by adding a bias to them to acquire the induced healthy/fractured states.

3.2 Quantitative Analysis

To validate our approach, we trained 4 networks on our in-house dataset, which
are the encoder-classifier baseline as can be seen in Fig. 3a (denoted as ‘Base-
line’), normal-autoencoder-classifier baseline as seen in Fig. 3b (denoted as ‘AE-
Baseline’), an ablated version of Spine-VAE which excludes the one-hot vec-
tor concatenation and trained with the standard MSE loss (denoted as ‘VAE’).
Finally, the last network is Spine-VAE. We extracted the recall, precision, F1
score and the specificity for each classifier. All of our results were acquired by 5-
fold cross validation on our in-house dataset, with the exception of the xVertSeg
results, where we used all the annotated data from our set to train the model
and then used the aforementioned set to validate it.

As can been seen in Table 1. We observe an increase in both the recall as well
as the overall F1 score as we move from our baseline to the VAEs framework,
with the best scores obtained using our Spine-VAE. If we further analyze the
results and have a look at the fracture level statistics in Fig. 7a, we observe that
the fractures of level 3 are all detected on both our test sets, with level 2 fractures
being all detected on the xVertSeg, while having 81% recall on the in-house set.
On the other hand, level 1 fractures had less recall with 65% and 80% recalls on
the in-house and xVertSeg sets respectively. We can also observe that we have
higher recall for level 2 in comparison with level 3 fractures in the 3 trained
baseline, an anomaly that was solved in the Spine-VAE classifier.
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(a) Spine-VAE (b) Baseline

(c) Regular AE (d) VAE

Fig. 7. Recall scores of the different networks for the different fracture levels. A higher
recall can be seen for level-2 fractures in comparison with level-3 fractures in the three
baselines b, c and d. This anomaly was not present in Spine-VAE.

(a) Spine-VAE (b) Baseline

(c) Regular AE (d) VAE

Fig. 8. ROC curves of the different classifiers overall performance along with their
respective area under the curve (AUC) values. We can observe a higher AUC for Spine-
VAE in comparison with the other baselines.
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We also extracted the ROC curves for the different classifiers on our in-house
dataset, the results can be seen Fig. 8. We observe an increase in the area under
the curve for the ‘VAE’ and ‘Spine-VAE’ models with the highest score being
0.81 achieved by Spine-VAE.

4 Conclusions

We proposed a solution to the relatively complicated task of vertebral fracture
detection by utilizing the power of deep learning. The presented solution was
specifically designed to ensure that the classification process would be based on
the relevant structures by ignoring the encoding of the unnecessary posterior ele-
ments of the vertebrae as well as establishing a categorical relationship between
the fractures and the anatomical type of the vertebrae. Furthermore we man-
aged to overcome the challenge of the limited availability of annotated data by
capturing the distribution of the of the un-annotated cohort of vertebrae using
VAEs before training a classifier on the available labeled samples. We tested our
model on the public xVertSeg dataset to establish the state of the art scores and
were able to detect all the clinically relevant cases with 100% recall.
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Abstract. Localizing and labeling vertebrae in spinal radiographs has
important applications in spinal shape analysis in scoliosis and degenera-
tive disorders. However, due to tissue overlaying and size of spinal radio-
graphs, vertebrae localization and labeling are challenging and compli-
cated. To address this, we propose a robust approach for landmark detec-
tion in large and noisy images and apply it on spinal radiographs. In this
approach, the model has a holistic view of the input image irrespective
to its size. Our model predicts the labels and locations of vertebrae in
two steps: Firstly, a fully convolutional network (FCN) is used to esti-
mate the vertebrae location and label, by predicting 2D Gaussians. Then,
we introduce the Residual Corrector (RC) component, that extracts the
coordinates of each vertebral centroid from the 2D Gaussians, and cor-
rect the location and label estimations by taking into account the entire
image. The functionality of the RC component is differentiable. Thus, it
can be merged to the deep neural network, and trained end-to-end with
other sub-networks. We achieve identification rates of 85.32% and 52.28%
for sagittal and coronal views and localization distance of 4.57 mm and
5.33 mm in sagittal and coronal views radiographs, respectively.

1 Introduction

Localization and labeling in spine is applicable in Cobb angle calculation, surgery
planning, bio-mechanical load analysis, diagnosing vertebral fractures or other
pathologies. Analysing the shape of the spine in scoliosis and degenerative dis-
orders should be performed in an upright standing position, which is captured
using 2D radiographs. Thus, vertebrae localization and labeling is of crucial
importance on radiographs, while most of the work for vertebrae labeling has
been performed on CT scans.

Vertebrae localization and labeling in radiographs are challenging tasks, due
to overlaying tissue and noise. Particularly, in lumbar spine the vertebrae are
superimposed by heterogenious soft tissue. Thus the vertebrae’s intensity looks
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different from the ones in the other regions. Another challenge is the large size of
the spinal radiographs, as they include the entire spine. The latter issue makes it
difficult to design a network with a receptive field, covering the entire image. For
the same reason, applying available deep neural network architectures to process
these images is sub-optimal. On the other hand, applying fully connected layers
to address this problem is not feasible as well, as it leads to increasing the
parameters, and limits the performance of the network only to fixed size images.

The related works for vertebrae localization and labeling are mostly on CT
scans. Usually, an FCN is employed to estimate a heat map of points of interest,
then, a second module is applied on the heat map to predict the locations and
labels more accurately. The main difference between various methods is mostly
in the second module.

In [7] and [8] Yang et al. propose a deep FCN being trained with deep super-
vision followed by message passing or convolutional LSTM to improve the pre-
dictions. In [9] the authors propose to regress a heat map and then regress the
landmarks using FCNs. In their approach, the field of view in the input images
is variable. While, we always have complete spine image in the input. In [5] and
[6] used regression forests label the vertebra, but the limitation of their model
is limited field of view. To address the problem of limitation in field of view, the
authors in [4] used MLP networks to capture the long-range context features.
In the same direction, in [3] the authors introduce an adversarial framework for
localization and identification of vertebrae in CT scans. They use an energy-
based discriminator in an adversarial setting to correct the labels predicted by
the FCN.

While the related works mentioned above, are on CT, we address the problem
of vertebrae labeling and localization in spinal radiographs. This task is more
challenging due to tissue overlay and noise. We devise a model with unlimited
receptive field and enforcing the spinal shape. Our solution is a two-level supervi-
sion approach. First, we estimate the rough location of landmarks by predicting
2D Gaussians using a fully convolutional network (FCN). At this level, the 2D
Gaussian image is compared to the ground truth 2D Gaussians. Next, we intro-
duce the residual corrector (RC) component, to convert the Gaussians predicted
in the previous step, to coordinate format and then correct the coordinates. In
this way, the dimensionality of the data decreases from h × w to 2 × 24, where h
and w are height and width of the input image respectively and 24 is the number
of vertebrae. For each vertebra, 2 parameters are estimated as 2D coordinates.
In other words, we can decrease the dimensionality of data from input images
with variable size to a fixed size of 2 × 24, as long as the input image includes the
entire spine. The functionality of the RC component is differentiable. Therefor,
the entire network is trainable in an end-to-end fashion.

Our model design, leverages both the texture features and spinal shape (inter
vertebral spatial relation) to localize and label the cervical, thoracic and lumbar
vertebrae. We train and test our model on two datasets. One including radio-
graphs of sagittal view and the other one a dataset of coronal view radiograph.
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Fig. 1. Overview of the model.

Contributions. (1) We design a robust and accurate deep neural network archi-
tecture, with two level of supervision, applicable to landmark detection, on large
images. (2) We design residual corrector (RC) component, a differentiable mod-
ule to convert centroids predicted as 2D Gaussian images to coordinates, and
then correct them. (3) Finally, we achieve identification rate of 80.55% for both
coronal and sagittal view, localization distance of 7.71 mm and 7.59 mm for sagit-
tal view and coronal view respectively.

2 Methodology

Annotations. The output of the FCN is compared to ground-truth Gaussian
images. Similar to [3], the ground-truth Gaussian image Y ∈ R(h×w×25) is a 25-
channeled, 2D image with each channel corresponding to each of the 24 vertebrae
(C1 to L5), and one for the background; h and w are height and width of the
input image respectively. Each channel is constructed as a Gaussian heat map
of the form yi = e−||x−μi||2/2σ2

, x ∈ R2 where μi is the location of the ith

vertebra and σ controls the spread. The background channel is constructed as,
y0 = −max(yi).

Architecture. Figure 1 gives an overview of our proposed model. It is composed
of two sub-networks: U-net [10] as a FCN, and the RC component, which is
highlighted with a dashed-line box in Fig. 1.

In the RC component, first the centroid coordinates are extracted using soft-
argmax method [1,2]. In this way, the dimensionality of the data decreases from
h × w to 2 × 24, where 24 is the number of vertebrae. For each vertebra, 2 param-
eters are estimated as 2D coordinates. In other words, we can decrease the dimen-
sionality of data from input images with variable size to a fixed size of 2× 24, as
long as the input image includes the entire spine. After that, we have a residual
block of fully-connected layers to (1) correct the location of the estimated coordi-
nates and (2) increase the receptive field of the model. Since the receptive field of
the model covers the entire input image, it can capture long-range dependencies
in the inputs with fewer network layers and parameters compared to the FCN
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approaches with similar receptive field. As soft-argmax is differentiable, we can
train the fully-connected layers along with the FCN end-to-end and variable size
input images. The fully connected layers in RC component sub-network, give a
holistic view of the input image to the network and leads to global consistency
of the estimated vertebral coordinates and labels. i.e. the order of label and also
morphological consistency of the spine.

Training. The FCN sub-network, predicts 2D Gaussians, the predicted image
in this level is compared to the ground truth Gaussian image. For this, we use
the loss function introduced in [3], which measures the L2 distance supported
by a cross-entropy loss over the softmax excitation of the FCN prediction and
ground truth Gaussian image.

LGaussian = ||Y − Ỹ ||2, (1)

Lce = H(softmax(Y), softmax(Ỹ )), (2)

Limg = LGaussian + Lce, (3)

Where Ỹ is the predicted Gaussian image, Y is the target Gaussian image and
H is the cross-entropy function. Next, using our RC component we extract the
centroid coordinates and correct them. For this stage, we use a Smooth Absolute
(Huber) loss to compare the predicted coordinates to the ground truth.

Lcoordinate =

{
1
2 ||C − C̃||2 for |C − C̃| ≤ 1,(

|C − C̃| − 1/2
)

otherwise.
(4)

Finally, the total loss is the sum of the loss at the first and second stages.

Ltotal = Limg + Lcoordinates, (5)

Inference. Once the model is trained, for inference the input image is fed to
the FCN sub-network, the result is a multi-channel image with the same size of
the input image. In the resulting image, each vertebral centroid is predicted as a
2D Gaussian in the corresponding channel. Next, this multi-channel image is fed
to the RC component. In the RC component, the coordinates of the Gaussians
are extracted using the soft-argmax function. Then, the extracted coordinates
are corrected by the residual fully-connected layers.

3 Experiments and Results

Datasets. We work with an in-house dataset of 122 patients for each we have
the coronal and sagittal radiographs, we also have the vertebral centroids anno-
tations of them. We selected 100 cases randomly for training and 22 cases
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Fig. 2. Testing the model on sagittal coronal radiographs. The predicted centroids
are plotted in red dots and the ground truth centroids in green crosses, the numbers
indicate the vertebral label. (Color figure online)
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for validation. The radiographs are mostly from old patients, some cases with
scoliosis or metal insertion. we augmented the data by rotation the images 2, −2,
5 and −5◦. We create two separate datasets out of this dataset, one for coronal
view and the other one for sagittal view radiographs.

Experiments. We carry out four experiments to validate our approach: (1)
First, we train only U-net to localize and label the vertebral centroids on sagittal
view. (2) We train U-net on coronal view radiographs. (3) Next, in order to
improve the performance of the model, we add the RC component to the model
and train the model sagittal view. (4) We train the model with RC component
on coronal view radiographs.

We implement our network in the Pytorch framework and use a Quadro
P6000 GPU for training the model. In all experiments, the initial learning rate
is 0.0001 and Adam is used as optimizer, and the models are trained for 150
iterations.

Evaluation. To evaluate the performance of our network, we use the identi-
fication rates (id.rate) and localisation distances (dmean and dstd) in mm [5].
Table 1 compares the performance of U-net and our model, trained on sagittal
view radiographs. Similarly, Table 2 reports the performance of U-net and our
model, trained on coronal view radiographs.

Table 1. Quantitative performance comparison of U-net and our model on sagittal
view radiographs.

Measure U-net U-net+RC

Id.rate 61.3% 85.32%

dmean 11.54 mm 4.57 mm

dstd 12.73 mm 3.84 mm

Table 2. Quantitative performance comparison of U-net and our model on coronal
view radiographs

Measure U-net U-net+RC

Id.rate 44.5% 52.63%

dmean 12.32 mm 5.33mm

dstd 11.12 mm 5.94mm

We did not compare our results to vertebrae labeling methods on CT, as
they are tested on another modality. The results suggest that the residual cor-
rection approach, improves the performance of the model significantly. Due to
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the limited receptive field of U-net, the localization and labeling are not accurate.
The RC component takes the entire spinal shape into account and learn the inter
vertebral spatial relation. Therefore, it can correct the predictions of U-net, by
enforcing the true shape of spine.

Figure 2 demonstrates examples of testing our model on coronal and sagittal
images. The results suggests that our model is robust against metal insertion
and treatment effects visible in the radiographs. Also it is robust against shift
and small rotations. As it is shown in Fig. 2, our model handles variable size
radiographs in both sagittal and coronal view. Finally, our model performs on
the raw image data, without preprocessing or employing another network to
localize the spine and all of the calculations are done in a single forward pass.

4 Conclusion

Processing large medical images using fully convolutional networks is suboptimal
due to limitation of the receptive field and large size of spinal radiographs. Also,
it is not feasible to apply fully-connectd layers to these networks to compensate
the limitation of receptive fields, as it increases the number of parameters, sig-
nificantly. Downscaling the images leads to losing details and makes the network
prone to error. We propose an architecture to extract the local features using
a fully convolutional network and learn the global shape of the spine using a
residual corrector module. Finally, our model is robust against treatment effects
in radiographs and can localize and label the vertebra in a single forward pass.
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Abstract. Labeled data is scarce in clinical practice, and labeling 3D medical
data is time-consuming. The study aims to develop a deep learning network with
a few labeled data and investigate its segmentation performance of lumbosacral
structures on thin-layer computed tomography (CT). In this work, semi-cGAN
and fewshot-GAN were developed for automatic segmentation of nerve, bone,
and disc, compared with 3D U-Net. For evaluation, dice score and average sym-
metric surface distance are used to assess the segmentation performance of lum-
bosacral structures. Another dataset from SpineWeb was also included to test the
generalization ability of the two trained networks. Research results show that the
segmentation performance of semi-cGAN and fewshot-GAN is slightly superior
to 3D U-Net for automatic segmenting lumbosacral structures on thin-layer CT
with fewer labeled data.

Keywords: Semi-supervised segmentation · Lumbosacral structures ·
Semi-cGAN · Fewshot-GAN

1 Introduction

Three-dimensional (3D) radiographic image is beneficial for preoperative assessment of
spinal surgery [1]. Computed tomography (CT) excels at demonstrating bony structures,
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whilemagnetic resonance imaging (MRI) is good at differentiating soft tissues.However,
the combined evaluation of lumbosacral structures on multimodal radiographic images
for surgical planning is time-consuming and costly. Thin-layer CT is an ideal candidate
for constructing a 3D model with bony structures and soft tissue for surgical planning.
However, manual segmentation is cumbersome for 3D reconstruction.

Deep learning is a promising technology to achieve the automatic segmentation of
medical images. However, labeled data is scarce in clinical practice, and labeling 3D
medical data is time-consuming. In 2015, a concise neural network named U-Net was
developed for the semantic segmentation of two-dimensional biomedical images with a
few training data [2]. One year later, the same group developed 3D U-Net for volumetric
segmentation [3]. U-Net or 3D U-Net has been validated as a successful supervised
neural network for segmenting medical images [4–8]. Generative adversarial networks
(GAN) can integrate unlabeled data to achieve precise segmentation [9].

The study aims to develop a conditioned GAN for 3D images (semi-cGAN and
fewshot-GAN) with a few labeled data and investigate its segmentation performance of
lumbosacral structures on thin-layer CT.

2 Methods

The local institutional ethical committee approved this retrospective study before data
extraction. All the CT data was obtained from Shanghai Tenth People’s Hospital, and
algorithms were mainly developed and tested using Tensorflow on a personal computer
(GPU: An Nvidia Tesla M40 GPU with 11180 MB memory CPU: An Intel(R) Xeon(R)
CPU E5-2682 v4 @ 2.50 GHz CPU with eight cores).

2.1 Manual Annotations

Thirty-one cases of thin-layerCTweremanually segmentedwithSlicer 4.8. Lumbosacral
nerves, bones and nerves were meticulously segmented and labeled (see Fig. 1). These
manual annotations were regarded as the ground truth.

Fig. 1. Manual segmentation of lumbosacral structures. A: original CT with segmentation; B:
segmented masks.
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2.2 Data Preprocessing

All thin-layer CT were preprocessed using the following steps: resampling, cropping,
and intensity normalization.

1. Resampling: we standardized the voxel size of the original CT and manually labeled
3D masked images into 1 mm × 0.5 mm × 0.5 mm nearest-neighbor interpolation.

2. Cropping: we cropped the resampled CT and manually-labeled 3D masked images
into 32 × 64 × 64 patches, which were used as input data.

3. Intensity normalization: For more accurate semantic segmentation, the average
brightness and contrast fluctuations of CT images of different samples should have a
degree of consistency. For this reason, the CT images in the dataset are standardized
so that the pixel values of the CT images have zero mean and unit variance. The
scale and bias were obtained by statistic computing from the training dataset, and
they were used for whitening during all phases, including training, validation and
testing.

4. Data augmentation: we conducted data augmentation with the following methods:

• Adding a small amount of white noise to patch which will be input to the neural
network

• Performing vertical flipping and horizontal flipping at a certain probability
• Voxel size is randomly disturbed within the range of ±0.2 mm to introduce a

degree of size variation
• Performing random rotation around the Height axis with angles within ±10°.

2.3 Network Architecture

Fig. 2. Schematic drawing of two network architecture. A: Fewshot-GAN network architecture;
B: Semi-cGAN network architecture

As Fig. 2 shown, generator G of fewshot-GAN is a volume generator proposed by
Wu et al. [10] The input for generator G is a noise vector z and the output of generator
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G is a fake patch. In association with a labeled patch and an unlabeled patch, they
are input into Discriminator D. Discriminator D is a modified 3D U-Net with leaky
ReLUs, weight-normalization (rather than batch normalization) and average pooling
(instead of Max pooling). Discriminator D serves as a segmentation network to gain
corresponding masks. Features of generated images match features in an intermediate
layer of discriminator by feature matching loss.

Generator G of semi-cGAN is a 3D U-Net. The input for generator G is CT patch
x (labeled CT or unlabeled CT), and the output of generator G is the corresponding
masks of automatic segmentation. G(x) has four channels (4 classes: nerve, bone, disc,
background), which is the same to manually labeled masks y (unlabeled CT has no
corresponding masks y). G(x) or y concatenate to x, which generates (x, G(x)) or (x, y)
and is input to Discriminator D. Discriminator D is a 3D convolutional neural network
(3D-CNN). The last two layers are full connection layer, and the last layer generates the
probability of (x, G(x)) or (x, y) as a real sample.

2.4 Material

Thirty-one labeled cases and 54 unlabeled cases of thin-layer CTwere included for semi-
supervised semantic segmentation. The ratio of training labeled cases and validation
labeled cases for both semi-cGAN and fewshot-GAN is 20:6. The remaining 5 cases
serve as a testing function. As a comparison, the same data used for training 3D U-Net
except unlabeled cases. Besides, another ten labeled cases from SpineWeb [11] were
also included to test the generalization ability of the two trained networks.

2.5 Training

Fewshot-GAN. This method consists of a generator and a discriminator.

Generator Loss. We adopted the Feature Matching (FM) loss for the generator. This
method is aimed at matching the expected value of features f (x) in an intermediate
layer of the discriminator.

LG,labeled = ∥
∥Ex,y:Plabeled (x) f (x) − Ez:noise f (G(z))

∥
∥
2
2 (1)

Discriminator Loss. The discriminator loss function is the sum of three losses incorpo-
rating a weighted loss for labeled images.

LD = LD, f ake + LD,unlabeled + λDLD,labeled (2)

The loss for labeled images is weighted cross-entropy loss. Different classes have
unique values. In terms of unlabeled data, we constraint the output to correspond to one
of the K classes of real data. Similarly, to calculate the loss for fake images, we impose
each pixel of an input image to be predicted as fake.

LD, f ake = −Ez:noise
∑

x∈�
log

[
1

F(G(z)) + 1

]

(3)
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LD,unlabeled = −Ex :Punlabeled (x)

∑

x∈�
log

[
F(x)

F(x) + 1

]

(4)

LD,labeled = −Ex,y:Plabeled (x,y)

∑

x∈�
W (X) log

[

exp (a1(x))
∑N

k=0 exp(ak(x))

]

(5)

where F(x) =
N∑

k=0
exp(ak(x)), ak(x) is the activation value at the last layer of the

discriminator of voxel point x in channel k; al(x) is the activation value at the last
layer of voxel point x in the ground truth channel; w(x) is the cross entropy weight of
voxel x.

Semi-cGAN. This method also includes a generator and a discriminator.

Generator Loss. The generator is aimed to fool the discriminator and to be near the
ground truth in a weighted softmax cross-entropy sense. We made two main modifi-
cations to the standard Generator Loss. The first one is including unlabeled data to
improve the generalization, and the other is adding a weighted softmax cross-entropy
loss for labeled data. Therefore, the final formula is as follow:

LG = LG, f ake + LG,unlabeled + λGLG,labeled (6)

Among which:

LG, f ake = −Ex :Plabeled (x)
[

log D(x,G(x))
]

(7)

LG,unlabeled = Ex :Punlabeled (x)
[

log D(x,G(x))
]

(8)

LG,labeled = −Ex,y:Plabeled (x,y)

∑

x∈�
w(x)log

[

exp(al(x))
∑N

k=0 exp(ak(x))

]

(9)

In the above function, x ∈ Ω is voxel point of labeled CT; ak(x) is the activation
value at the last layer before softmax of voxel point x in channel k; al(x) is the activation
value at the last layer before softmax of voxel point x in the ground truth channel; w(x)
is the cross-entropy weight of voxel x.

Discriminator Loss. The loss function of the discriminator is as follows:

LD = λDLD, f ake + LD,unlabeled + LD,labeled (10)

Among which:

LD, f ake = −Ex :Plabeled (x)
[

log(1 − D(x,G(x)))
]

(11)

LD,unlabeled = −Ex :Punlabeled (x)
[

log(1 − D(x,G(x)))
]

(12)

LD,labeled = −Ex,y:Plabeled (x,y)
[

log D(x, y)
]

(13)
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Training Process. We adopted the Adam algorithm to optimize generator loss and dis-
criminator loss. During training, the batch size of labeled data and unlabeled data is 4.
It took 48.01 h to complete the training with 100 thousand iterations for semi-cGAN
and 70.52 h for fewshot-GAN with the same number of iterations. To compared with
state-of-art algorithms, we also trained a 3D U-Net with 20 labeled cases. During the
training process, we preserve the best model according to the highest dice score on the
testing dataset.

2.6 Testing

A total of 5 labeled cases were used to test the trained semi-cGAN, fewshot-GAN and
3DU-Net. Another 10 cases from SpineWebwere also included to test the generalization
ability of the two trained networks. During testing, any case in the test dataset will be
selected and undergo standard processing, and then a sliding window of size 32 × 64 ×
64 is used to traverse the case with stride = (20 × 40 × 40) to obtain the patch xi .
The patch xi will be input to the trained model M , and then the model will generate the
corresponding probability mask yi . Finally, the automatically segmented mask S will
be obtained with the above-mentioned combined algorithm combining yi based on the
location of xi on Y .

3 Results

3.1 Own Dataset

Final segmentation performances on five cases are compared to each other (see Fig. 3)
Confusion matrixes are also calculated to display a summary of prediction results (see
Fig. 4). The Dice score of semi-cGAN and fewshot-GAN is 91.5117% and 90.0431%,
respectively, compared with 89.8137% of 3D U-Net (see Table 1). The average ASD
of semi-cGAN and fewshot-GAN is 1.2726 and 1.5188, compared with 1.4747 of 3D
U-Net (see Table 2).
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Fig. 3. Generating masks from different algorithms (own dataset).

3.2 Cross Dataset

Similarly, ten cases from the cross dataset are applied to assess segmentation perfor-
mances (see Fig. 5), and confusion matrixes will be shown in Fig. 6. The Dice score
of semi-cGAN and fewshot-GAN is 89.0644% and 88.3881% respectively, compared
with 88.6382% of 3D U-Net (see Table 3). The average ASD of semi-cGAN and
fewshot-GAN is 0.6869 and 0.6954, compared with 1.3109 of 3D U-Net (see Table 4).
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Fig. 4. Matrix of pixel classification (own dataset). A, C, E are confusion matrixes for 3D U-
Net, Fewshot-GAN, Semi-cGAN respectively. B, D, F are normalized confusion matrixes for 3D
U-Net, Fewshot-GAN, Semi-cGAN respectively
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Table 1. Dice score of testing cases from local dataset.

Dice score Bone Disc Nerve Average

3D U-Net 92.3489 90.5965 86.4957 89.8137

Fewshot-GAN 92.9376 90.1145 87.0771 90.0431

Semi-cGAN 93.2424 92.1263 89.1665 91.5117

Table 2. Average symmetric surface distance of testing cases from local dataset.

ASD\voxel Bone Disc Nerve Average

3D U-Net 0.3865 3.2963 0.7412 1.4747

Fewshot-GAN 0.3578 3.4492 0.7493 1.5188

Semi-cGAN 0.3275 2.9085 0.5817 1.2726

Fig. 5. Generating masks from different algorithms (cross dataset).
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Fig. 6. Matrix of pixel classification (cross dataset). A, C, E are confusion matrixes for 3D U-
Net, Fewshot-GAN, Semi-cGAN respectively. B, D, F are normalized confusion matrixes for 3D
U-Net, Fewshot-GAN, Semi-cGAN respectively
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Table 3. Dice score of testing cases from cross dataset.

Dice score Bone Disc Nerve Average

3D U-Net 88.3997 90.3211 87.1937 88.6382

Fewshot-GAN 89.5538 87.8308 87.7797 88.3881

Semi-cGAN 90.5567 88.9054 87.7312 89.0644

Table 4. Average symmetric surface distance of testing cases from cross dataset.

ASD\voxel Bone Disc Nerve Average

3D U-Net 0.6948 0.5044 2.7335 1.3109

Fewshot-GAN 0.6324 0.6524 0.8013 0.6954

Semi-cGAN 0.5507 0.5750 0.9350 0.6869

4 Discussion

Based on enormous raw data, models trained by deep learning network are able to extract
pertinent features and accomplish complex tasks. Therefore, relevant clinical data is
essential for this promising method to train a prospective model. [12] However, specific
task entails corresponding data, and public datasets are usually hard to meet particular
research requirements. Besides, labeled data is scarce in clinical practice, and labeling
3Dmedical data is time-consuming. Apart from these problems, manual segmentation is
not always consistent or entirely precise due to inter-expert variance. [13] It is also time-
consuming to examine the accuracy of collected data. All in all, accurate and satisfying
clinical data is rare, which is a bottleneck of this technology.

Transfer learning is one of the possible methods to remedy the scarce data problem.
It applies knowledge learned from other similar data into target domain, which means
little target data is required. However, this technology is not a simple task to implement,
as the potential similarities between source data distribution and target data distribution
need to be identified. This issue may result in negative transfer, which means reduced
performance. [14] Because of little publicly related clinical data, this method can not
perfectly tackle our problems.

Unsupervised learning is another sensible approach, making its inferences based on
unlabeled data. However, unsupervised learning demands more training unlabeled data
than supervised learning. It is also time-consuming to obtain relevant data and clean them.
Meanwhile, unsupervised learning may show a poor performance in segmentation with
lower accuracy because of unlabeled data. Also, given the subjectivity of unsupervised
learning and its lack of gold standard, this method can not fix the existing challenges.

Semi-supervised learning subtly utilizes a combination of labeled data and unlabeled
data. In this case, few labeled data and relatively more unlabeled data are required. One
semi-supervised method proposed by Wenjia Bai et al. [15] has applied to MR Image,
which proved the potentiality of semi-supervised learning. Other successful applications
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like Li et al. [16] and Papandreou et al. [17] showed a promising prospect. Therefore,
we adopted semi-supervised learning to tackle the scarcity of clinical data.

U-NET [2] is a well-known convolutional neural network applied to medical
image segmentation. This network creatively combined contraction path and symmetric
expanding path, which eventually facilitated both segmentation speed and performance.
Besides, it has been widely applied to various specific issues and proved its excellent
segmentation ability. GANs are a semi-supervised method which has obtained great
achievement in medical image processing despite lack of adequate labeled data. By syn-
thesizing realistic images to alleviate the data limitation, this efficient network has an
outstanding performance in segmentation. Other than this merit, GANs are highly effec-
tive in extracting meaningful features from training data compared with conventional
approaches [18].

Both our methods try to combine the benefits of U-NET and GANs. In the fewshot-
GAN, the discriminator is amodified 3DU-NET, and the generator is a volume generator.
Semi-cGAN consists of a generator based on 3D U-NET and a 3D CNN discriminator.
3D U-NET acts as a different role in two models, and one of our goals is trying to
explore which combination has better performance. Recently, there is also a novel U-
NET-GAN proposed by Dong et al. However, in their proposed model, three-label-
based segmentations are included and trained each of them separately, which might need
massive computational powers. Our trained models are more concise with promising
results, which automatically segment multiple lumbosacral structures.

5 Conclusions

Segmentation performance of semi-cGAN or fewshot-GAN is slightly superior to 3D
U-Net for automatic segmenting lumbosacral structures on thin-layer CT with fewer
labeled data.

Acknowledgement. We would like to thanks William M. Wells in Brigham and Women’s
Hospital, Harvard Medical School for the guidance of this project.
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Abstract. In order to estimate the spinal curvature, we propose two
methods to detect the spinal keypoints at first. In Method-1, we use a
RetinaNet to predict the bounding box of each vertebra followed by a
HR-Net to refine the keypoint detections. In Method-2, we implement
a similar two-stage system, which firstly extract 68 rough points along
the spine curves using a Simple Baseline. We then generate patches and
make sure each of them contains three vertebrae at most based on ground
truth. We train a second Simple Baseline to predict the exact keypoints
of these patches, which are generally not fixed in numbers. A delicate
postprocess of clustering is proposed to deal with dense keypoint predic-
tions due to the freedom of patch selections. After fusing Method-1 and
Method-2, we achieve competitive results on the public leaderboard of
AASCE2019 challenge.

1 Introduction

As the current clinical standard for AIS assessment, manual Cobb angle measure-
ment is time-consuming and unreliable, which sparked interest in development
of accurate automated spinal curvature estimation in spinal anterior-posterior
X-ray images [1–4]. Given the difficulty in using the information of X-rays effi-
ciently, achieving highly accurate automated estimation is rather challenging.

2 Methodology

2.1 Method-1

As shown in Fig. 1, Method-1 is based on RetinaNet [5] and HR-Net [6]. It has
two stages. The first stage is to detect vertebrae and to generate corresponding
bounding boxes using RetinaNet. We train the RetinaNet using the bounding
boxes generated from the 68 keypoints, demanding each box covers 4 keypoints
of an individual vertebra. In the second stage, we use HR-Net to detect the 4
keypoints of the bounding box.

K. Chen, C. Peng and Y. Li made equal contribution to the project. D. Cheng con-
structed and directed the research.
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Fig. 1. Framework of the two methods we proposed. (a) is the input image, the blue
bounding boxes in (b) and keypoints in (c) are prediction results from RetinaNet and
HR-Net in Method-1. The bottom workflow shows the Method-2, including (d) rough
points generation, (e) patch selection, (f) patch points generation and (g) clustering.
(h) is the final image which shows the process of spine curvature estimation, with the
red and blue keypoints respectively representing ground truth and prediction. The lines
show which vertebrae are selected to calculate the Cobb angles. (Color figure online)

2.2 Method-2

Following the workflow shown in Fig. 1 Method-2, we firstly train Simple Base-
line [7] I with spinal images to detect all 68 keypoints in a spinal sample. In
contrast to Method-1 and other similar detection methods, which are difficult
to model the scene sequentiality, Simple Baseline I can grasp the global implicit
sequentiality of keypoints through generating corresponding heatmaps simulta-
neously with fixed order. As shown in Fig. 2, such output mechanism avoids the
false negatives and false positives in detection methods and leads to a robust
model. As a results, the predicted keypoints can smoothly trace the curvature of
most spines, even though their landmarks are not accurate enough to calculate
Cobb angles. Thus, we use them as the outline sketches of spines to generate
patches so as to force the model focus on local information in a certain range of
vertebrae.

A patch includes n points, {n|n = 4, 6, 8, 10, 12}, for one to three vertebrae.
Half of the vertebra is allowed, but there must be at least two halves of the
vertebra in a patch. Patches are randomly captured in multiple times within a
certain vertebrae range. An image sample produces hundreds of patches. Taking
into account the fact that the vertebrae vary in permutations and shapes, we
believe that the range limitation up to three vertebrae can include most per-
mutations and shapes of vertebrae. Such Patch Process not only makes it much
easier to match a template for any adjacent vertebrae, but also makes it easy
to augment a large amount of data, so that the following Simple Baseline II
becomes a highly robust model.
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Fig. 2. Comparison of local view vertebra detection and global view keypoints detec-
tion. (a) are vertebra detection results from RetinaNet and keypoint detection from
HR-Net in Method-1. Without order restrictment, detection methods using regression
loss are hard to balance the precision and the recall. (b) and (c) are keypoint detection
results from Simple Baseline I and Patch Process results in Method-2. With global
keypoints detection and sequential scoremap loss, they can cleverly avoid the false
negatives and false positives and generate dense patch samples. (Color figure online)

Patches acquired by Patch Process are used to detect keypoints by Sim-
ple Baseline II. For each patch, the number of keypoints predicted by Simple
Baseline II varies from 4 to 12, corresponding to the patch range from 1 to 3
vertebrae. Given a vertebra is randomly sampled for dozens of times, through
Simple Baseline II, a vertebra corresponds to dozens of keypoints with 4 vertex
tags, as shown in Fig. 1(f).

2.3 Postprocessing

To summarize the final 68 keypoints from 4 vertex groups of points, we proposed
a postprocess to cluster and remove outliers. In Postprocess (i.e. from Fig. 1(f)
to (g)), squeezed vertebrae assessment is optional. Therefore, there are 2 results
obtained from Method-2.

DBSCAN clustering is applied respectively to 4 vertex groups of points. Clus-
ters within the same groups are sorted in ascending order based on the Y-axis
coordinate of cluster centers. The first and the last cluster centers of the 4 ver-
tex groups are then assessed. If the Y-axis coordinate order or the angles of
adjacent centers are unnormal, the corresponding clusters are excluded. The fol-
lowing squeezed vertebrea assessment is optional. If a squeezed vertebra exists,
the 4 vertexes of it form a right-angled trapezium or parallelogram instead of a
isosceles trapezium or rectangle pattern in normal vertebra. Hence, we use the
length ratio of two diagonals to remove the redundant points. After the removal,
the median number of the remaining cluster centers of the 4 vertex groups is
calculated as the number of detected vertebrae. Based on it, K-means clustering
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is performed. Later, outliers are removed by the gap ratio of the X-axis and
Y-axis distance among the adjacent centers. K-means clustering is then per-
formed again. Eventually, the last 3 vertebrae are checked and suppressed if
their Y-axis gaps are too small.

3 Experiments and Results

3.1 Implementation Details

In this section, the details about the data processing and how we make the
dataset based on the standard dataset will be discussed.

Implementation Details in Method-1. For RetinaNet, we follow [5] to
experiment with ResNet-50-FPN backbone. The model is trained for 180k iter-
ations with a total of 8 images per minibatch.

Strategies are proposed for the output of RetinaNet to drop the outlier boxes
and keep the remaining boxes stay in the spine line. After bounding box detec-
tion, the two IoU of current box with the previous adjacent box and posterior
adjacent box will be calculated. If the two IoU values are larger than the thresh-
old TIoU , which is 0.36 in this scheme, the current box will be dropped. The
distance between the upper left vertex of current box and previous box is also
compared with the distance between the upper left and upper right vertexes of
current box, if larger, the current box will also be dropped. These two steps are
done through all the bounding boxes in one spine sample.

Following [6], we use HRNet-W48 with input size of 384×288 and the Adam
optimizer. The training process is terminated within 30 epochs.

Implementation Details in Method-2. Following [7], we use ResNet-152
backbone with input size of 384 × 288 for Simple Baseline I. The training ends
within 200 epochs with batch size of 32, with CLAHE enhancement.

We choose the Simple Baseline II result from ResNet-152 with input size of
256 × 192 for further research. The training ends within 70 epochs with batch
size of 130.

3.2 Angle Measurement

Different from the usual clinical method [8], we noticed that the angle measure-
ment method provided by organizers is so sensitive and complex that deviation
in few pixels can cause great error of angles. So, we tried different angle measure-
ment ways, including fixing the first and the last vertebrae for Proximal-Thoracic
(PT) and Thoracic-Lumbar (TL) angles [4], the clinical measurement [8] and the
method listed below, which achieved the best result.

The most tilted vertebra above and below the apex are marked as V1 and V2.
The middle vectors of V1 and V2 are used to calculate the intersection angle as
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the Main Thoracic (MT) Cobb angle. The most tilted vertebra above from V1 is
chosen as V0. Similarly, the most tilted vertebra below from V2 is chosen as V3.
PT and TL angle are calculated from the middle vectors of V0 and V1, V2 and
V3, respectively.

3.3 Fusion Method

We chose one result from Method-1 and two results from Method-2 to fuse.
The results from Method-2 differ from each other only in the Postprocessing
squeezed vertebrea assessment. To combine the results, we consider following
fusion methods.

Before voting for the selected vertebrae, the quality of outputs are assessed.
If there is a large difference in the length of the opposite sides, it is considered
that the current prediction is poor and not under consideration. After quality
assessment, the remaining outputs vote for the selected vertebra positions of the
separation lines according to the principle of minority subordinate to majority.
Once without agreement, one model choice is randomly selected from the patch
baseline for the others. In the end, we average over the 3 models of Cobb angles
for the final result (Fig. 3).

Fig. 3. Results from Method-1, Method-2 and fusion method.
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Compared with simply averaging the angles over the schemes, our fusion
method decrease 1% SMAPE, reaching 22.16582% eventually.

4 Conclusion

We proposed an automated spinal curvature estimation framework for compre-
hensive assessment of AIS with two methods.

In Method-1, we implement a RetinaNet for the vertebra bounding box detec-
tion, with a HR-Net for local keypoint detection. The vertebra detection based
workflow is easy to implement and works efficiently for FOV with unfixed num-
ber of vertebrae. However, without sequential modelling, it is hard to balance
the precision and the recall.

Method-2 cleverly avoids the disadvantages in Method-1 with a highly robust
system, but it needs to design a suitable postprocessing and therefore not easy
to implement. In Method-2, we firstly use a Simple Baseline for rough keypoint
detection to sketch the spine curve globally. After a well-designed patch genera-
tion, we train a second Simple Baseline on patches to predict exact local points
with an unfixed number. We implement a delicate clustering postprocessing to
handle the prediction of dense keypoints. The highly robust Method-2 grasps
the global implicit sequentiality of keypoints and makes it much easier to match
a template for any adjacent vertebrae because of various patch samples.

After methods fusion, our framework achieves competitive results in
AASCE2019 challenge, which allows clinicians to measure spinal curvature more
accurately and robustly.
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Abstract. In this paper, we propose a new pipeline to perform accu-
rate spinal curvature estimation. The framework, named as Seg4Reg,
contains two deep neural networks focusing on segmentation and regres-
sion, respectively. Based on the results generated by the segmentation
model, the regression network directly predicts the cobb angles from
segmentation masks. To alleviate the domain shift problem appeared
between training and testing sets, we also conduct a domain adaptation
module into network structures. Finally, by ensembling the predictions
of different models, our method achieves 21.71 SMAPE in the testing
set.

Keywords: Spinal curvature estimation · Cobb angle · Deep learning

1 Introduction

Adolescent idiopathic scoliosis (AIS) is the most common form of scoliosis and
typically affects children who are at least 10 years old. How to accurately estimate
the spinal curvature plays an important role in the treatment planning of AIS.
The current clinical standard for AIS assessment relies on doctors’ Cobb angle
measurement. Such manual intervention process usually makes the operation
time-consuming and produces unreliable results. Recently, deep neural networks
have got amazing achievements in various image classification tasks. How to
apply these deep models to the problem of spinal curvature estimation becomes
a hot issue in automated AIS assessment. BoostNet [5] is proposed as a novel
framework for automated landmark estimation, which integrates the robust fea-
ture extraction capabilities of Convolutional Neural Networks (ConvNet) with
statistical methodologies to adapt to the variability in X-ray images. To miti-
gate the occlusion problem, MVC-Net (Multi-View Correlation Network) [6] and
MVE-Net (Multi-View Extrapolation Net) [1] have been developed to make use
of features of multi-view X-rays.

Currently, there are two ways to estimate the Cobb angles: (a) predicting
landmarks and then angles [5,6] and (b) regressing angle values [1]. The first
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Fig. 1. An overview of our pipeline. We first process the X-ray using a segmentation
network. Note that we formalize the groundtruth mask using the provided landmarks.
Afterwards, the predicted mask is fed to the regression model to perform angle value
prediction.

approach is able to produce high-precision angle results but relies heavily on the
landmarks predictions, which means a small mistake in coordinates may lead
to a big error in angle predictions. On the contrary, angle regression methods
are more stable but may lack the ability to generate precise predictions. In this
paper, we explore the possibility of aforementioned two directions in MICCAI
AASCE 2019 challenge and our experimental results show that the regression
strategy outperforms the landmark approach. We will conduct more details in
following sections.

2 Proposed Method

We display our pipeline in Fig. 1. The whole process is constructed by two net-
works: one for segmentation and the other for regression. The architecture of
segmentation network is similar to PSPNet [7] while the regression part employs
traditional classification models.

2.1 Preprocessing

We observed that there is an obvious domain gap between training and testing
sets (as shown in Fig. 2). To mitigate this problem, we first apply histogram

(a) Training set (b) Testing set

Fig. 2. A comparison of training set and testing set. It is obvious that these two sets
have a huge domain gap.
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equalization to both sets to make them visually similar. Considering the limited
number of testing images, we decided to manually crop these X-rays to remove
the skull and keep the spine in the appropriate scope. Besides, we also applied
random rescaling (0.85 to 1.25) and random rotation (−45◦ to 45◦) during the
training process. We tried to add gaussian noise to the input images in order to
mitigate the overfitting but it did not work.

For the segmentation task, we built the groundtruth masks on top of offered
landmarks’ coordinates. It is worth noting that we found adding another class
“gap between bones” helped the segmentation model perform the best. We argue
that such operation may regularize the training process which makes final pre-
dictions more precise.

2.2 Network Architecture

We followed the instructions in [7] to design our segmentation network. After
the feature extractor, PSPNet [7] utilized different pooling kernels to capture
various receptive fields. In order to keep the feature map size, we also append
the dilated convolution with different dilation rates to the pooling pyramid.
As shown in Fig. 1, we used 2, 4 and 6 as dilation rates while summing their
outputs after the convolution operations. For backbone architecture, we simply
took ResNet-50 [4] and ResNet-101 as the basic feature extractor (Fig. 3).

Fig. 3. Our domain adaptation strategy.

As for the classification part, we directly employed recent classification net-
works to perform the regression task. ImageNet based pretraining was used
because we found it helped a lot under limited training samples. Considering
the domain gap between training and testing sets, we modified the approach
proposed in [3]. The idea is pretty simple which adds a discriminator branch
and reverses its gradients during the back propagation so the final loss function
can be formalized as:

Loss = Ly + λLd (1)

where λ is set to 1 in our experiments.
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2.3 Network Training

We used Adam as the default optimizer for both networks where the initial learn-
ing rate is 3e−3. β1 and β2 are set to 0.9 and 0.999, respectively. We also used
weight decay which is 1e−5 and cosine annealing strategy. For the segmentation
model, we ran each network for 50 epochs while 90 epochs seem to be a better
choice for the regression model. We resized the segmentation input to 1024×512
and regression input to 512×256. The batch size is 32 on 4 NVIDIA P40 GPUs.

Table 1. We made an ablative study on input types and input sizes. It is easy to find
that using segmentation mask as input performs the best on the validation set while
(512, 256) is the best regression size. The default segmentation backbone is ResNet-50
and regression model is DenseNet-169.

Input type Input size Angle1 Angle2 Angle3

Img (512, 256) 6.0754 7.3386 6.7629

Img + Mask (512, 256) 5.4489 6.4599 5.8470

Mask (512, 256) 4.7128 5.7965 5.6596

Mask (1024, 512) 4.9360 7.2436 6.7321

Table 2. The segmentation performance of PSPNet and DeepLab V3+.

Metric Ours PSPNet DeepLab V3+

mIOU 0.8943 0.8715 0.817

3 Experimental Results

We report our experimental results in both local validation and online testing
sets. Note that we did not use cross validation.

3.1 Local Validation

In this part, we report the L1 distance between model predictions and
groundtruth labels. As shown in Table 1, it is obvious that segmentation mask is
the best input type and (512, 256) is the best input size. In Table 2, we compare
the performance of our improved version with PSPNet and DeepLab V3+ [2].
We can find that adding a dilation pyramid thus improves the performance of
previous PSPNet. It is interesting that PSPNet surpasses DeepLab V3+ by a
large margin since they have achieved comparable performance in PASCAL VOC
segmentation task. We argue that the failure of DeepLab can be attributed to
the limited training data and our parameter tuning strategies.
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3.2 Online Testing

We formalize our online testing results into Table 3. We can see that our dila-
tion pyramid improves the online SMAPE by 0.48. Also, it is quite normal to
see that EfficientNet-b5 is better than DenseNet-169 considering its higher Ima-
geNet performance. After adding domain adaptation module, the single model
performance rises to 26.15. During the model ensemble stage, we assigned dif-
ferent weights to different model outputs considering their validation scores. We
mainly ensembled ResNet series, DenseNet series and EfficientNet series. This
strategy helped us to improve the SMAPE score to 22.25.

Table 3. The segmentation performance of PSPNet and DeepLab V3+.

Strategies

PSPNet + DenseNet-169 �
Ours + DenseNet-169 �
Ours + EfficientNet-b5 � �
Domain Adaptation � �
Model Ensemble �
SMAPE 28.51 28.03 27.07 26.15 22.25

Fig. 4. Distribution of 3 angles in the training set.

During the online testing stage, we revisited the distribution of 3 angles in
the training set. From Fig. 4, we can easily find out that Angle2 and Angle3
are much smaller than Angle2. Also, Angle2 has many values which are close
to zero. According to such phenomenons, we reduced angles smaller than 4◦ to
zeros which brought us to 21.71 SMAPE.
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Abstract. Adolescent idiopathic scoliosis (AIS) is the most common
type of spinal deformity in children in early puberty. Cobb angle is widely
used in the diagnosis and treatment of scoliosis. However, existing Cobb
angle measurement methods in clinical practice are time-consuming and
unreliable. Accurate quantitative assessment of spinal curvature is an
essential task in the clinical assessment and treatment planning of AIS.
In this study, we proposed a top-down approach to accomplish the task
of automatic spinal curvature estimation. We achieved 26.0535% of sym-
metric mean absolute percentage error (SMAPE).

Keywords: AIS · Deep learning · Cobb angles · Spinal curvature

1 Introduction

Adolescent idiopathic scoliosis (AIS) is the most common type of spinal defor-
mity in children in early puberty [10]. It dramatically affects the quality of life,
which can cause complications from heart and lung injuries in severe cases.
Currently, clinicians make treatment decisions by assessing the extent of spinal
deformity. The criteria for assessing scoliosis is the manual measurement of
Cobb angles [5] based on x-ray images of anterior-posterior (AP) and lateral
(LAT), which are widely used in the diagnosis and treatment strategies for sco-
liosis. However, existing Cobb angle measurement methods in clinical practice
are time-consuming and unreliable [6,8]. Therefore, accurate computer-assisted
spinal curvature measurement is necessary.

Computer-assisted quantitative evaluation of spinal curvature has been
increasingly studied recently. Anitha et al. [2,3] used active contouring and fil-
tering to locate the desired vertebrae and segment them, then calculated the
Cobb angle based on the segmentation results. Li et al. [11] estimated vertebral
coordinates using BoostNet based on deep learning. Wu et al. [12] combined the
multi-view X-ray features with a multi-view convolutional layer to construct a
Multi-View Correlation Network (MVC-Net) to estimate the Cobb angle. Wang
et al. [9] directly predicted the Cobb angle using a Multi-View Extrapolation Net
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Fig. 1. The architecture of the RU-Net for the spinal segmentation. The arrows rep-
resent the connection of the data. A colored box corresponds to the operation of the
feature map. (Color figure online)

(MVE-Net). Chen et al. [4] used an Adaptive Error Correction Net (AEC-Net)
to convert the estimation of spinal Cobb into a high-precision regression task.

Presently, AASCE 2019 sets up a challenge [1]. The purpose of the challenge
is to perform accurate automatic spinal curvature estimation from the spine AP
X-ray images, which aims to study the (semi)automatic spine curvature estima-
tion algorithm. We proposed a top-down approach to estimate and analyze the
spine curvature.

2 Methods and Results

Due to the high complexity and variability of spine X-rays, it is difficult to achieve
high accuracy if deep learning is used directly for end-to-end learning. In this
paper, we proposed a top-down approach to accomplish the task of automatic
spinal curvature estimation. We first segmented the spine region through a spinal
segmentation network. Then, the segmentation result is used to fit the trend of
the spine. Finally, the Cobb angles were obtained after the adaptive vertebral
angle correction performed at the maximum degree of curvature.

2.1 Spine Segmentation Network

We use RU-Net to segment the spine, which is improved using U-Net [7], as
shown in Fig. 1. We replace the convolution module of the original network in
the residual module to enhance the use of context information. The downsam-
pling part is pooled using a 2 × 2 max pooling. The upsampling portion is



Automatic Spine Curvature Estimation by a Top-Down Approach 77

0 45° 90° 135° 180°
0

0.5

1

0 45° 90° 135° 180°
0

0.5

1

0 45° 90° 135° 180°
0

0.5

1

0 45° 90° 135° 180°
0

0.5

1

0°

45°

90°

135°

Fig. 2. The left column is the edge map in different directions as input. The middle
graphs are the corresponding function of the Gaussian kernel for the input in different
directions. The pictures on the right are the appearance of the corresponding most
massive Gaussian kernel. (Color figure online)

replaced by a bilinear difference layer instead of a deconvolution layer, which
further reduces the parameters of the network to prevent over-fitting. Finally,
the network outputs two layers of feature maps to predict the spine and back-
ground separately. The cross-entropy loss is calculated after passing through the
softmax layer.

2.2 Algorithm for Predicting the Trend of the Spine

We find that the segmentation results can reflect the degree of curvature of the
spine to a certain extent. We assume that the curved spine like a soft water pipe.
The boundaries of the spine are like the wall of a water pipe, and the degree of
bending of the flowing water in it is the target we need to quantify. First, we
use the segmentation results to find the left and right boundaries of the spine.
Then we search the nearest neighbor to the right boundary and connect it to
each point on the left boundary. Similarly, we also get a series of midpoints in
the opposite direction. The midpoint of the line is the water flow. Finally, we
fit the points to the function of spine simulation by the least-squares method,
which completes the quantification of the spine, as shown in Fig. 3(a–d) middle.
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(a) (b)

(c) (d)

Fig. 3. The pictures on the left are ground truth. The middle is the result of our fitting
on the spine. The images on the right are the result of vertebral angle correction. (Color
figure online)

We use this function to calculate the position that has the maximal curvature
of the spine from which we can directly obtain the Cobb angles.

2.3 Vertebrae Angle Correction

Our function can only get the general trend of the spine instead of simulating the
condition of each vertebra since the spine is not continuous, but the vertebrae
and intervertebral discs are combined. In response to this problem, we conduct
post-processing. Firstly, based on the results obtained in the previous step, we
obtained the edge map of the vertebrae by edge extraction using the canny oper-
ator at the position where the curvature of the spine is largest. We assume that
the outline of the vertebra is significantly larger than the other small edges, and
the most significant direction of the edge gradient should be perpendicular to
the direction of the vertebrae. Therefore, we construct a flat Gaussian kernel
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(Fig. 2), which can rotate 180◦. We use the directional derivative of this Gaus-
sian kernel and the edge map of the vertebrae to obtain a response curve in
different directions, which is the direction of the most significant response in the
direction of the vertebrae. The Cobb angles are calculated using the direction of
the vertebrae after correction.

2.4 Result

Figure 3 shows the spine AP x-ray images of four patients. Left is the original
map, the red line is the central axis of each vertebra perpendicular to the direc-
tion of the spine, and the Cobb angle is the angle between the green segments.
The result of the segmentation of the spine is shown in the white line of the mid-
dle image. The yellow dots represent the trend of the spine, and the red curve is
the fitted spine function obtained by the least-squares method. The green square
is the position that has the max curvature of the spine, and it can be found to
be in excellent agreement with the ground truth. Right pictures compare the
results of our models and the ground truth, and the cyan line is the direction in
which the vertebrae angle is corrected. After the correction, the direction of the
vertebrae is almost the same as the result of the doctor.
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Abstract. Correct evaluation and treatment of Scoliosis require accu-
rate estimation of spinal curvature. Current gold standard is to manually
estimate Cobb Angles in spinal X-ray images which is time consuming
and has high inter-rater variability. We propose an automatic method
with a novel framework that first detects vertebrae as objects followed
by a landmark detector that estimates the 4 landmark corners of each
vertebra separately. Cobb Angles are calculated using the slope of each
vertebra obtained from the predicted landmarks. For inference on test
data, we perform pre and post processings that include cropping, outlier
rejection and smoothing of the predicted landmarks. The results were
assessed in AASCE MICCAI challenge 2019 which showed a promise
with a SMAPE score of 25.69 on the challenge test set.
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1 Introduction

Scoliosis is a sideways curvature of the spine occurring mostly in teens. Severe
scoliosis can also lead to disability. The current gold standard for diagnosing
scoliosis is manual measurement of Cobb Angles in anterior-posterior (AP) or
lateral (LAT) X-ray images which involve identifying the most tilted vertebrae
above and below the apex of the spinal curve [1]. However, the procedure is time-
consuming and observer dependent, leading to high inter-observer variability
that could negatively impact assessing prognosis and treatment decisions [2].
Thus, there has been increasing interest in automatic estimation of Cobb angles
directly from the X-ray images. In this context, we participated in MICCAI
2019 challenge on Accurate Automated Spinal Curvature Estimation (AASCE)1

where the task was to accurately estimate three Cobb angles [3] from the training
dataset containing 609 AP x-rays2 whose results were assessed on 98 test images.
The ground truth (GT) annotations are the anatomical landmarks consisting of
four corners of 17 vertebrae: twelve thoracic and five lumbar.
1 https://aasce19.grand-challenge.org/Home/.
2 http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets.
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Related Work: The two most common approaches of estimating Cobb angles are
Segmentation based and Landmark based approaches. The segmentation based
methods first segment all the vertebrae or the end-plates of the vertebrae to iden-
tify the most tilted vertebrae from which the Cobb angles are estimated [3–5].
Accurate segmentation of each vertebra from X-ray images is difficult with tra-
ditional feature-engineering based approaches. To our knowledge, even modern
supervised deep neural networks are not robust and accurate enough yet for the
vertebra segmentation. Creating accurate GT segmentation is time consuming
and relatively difficult compared to annotating landmarks: four corners of the
vertebrae. In Landmark based approach which is the state-of-the-art, the four
corners of each vertebrae are detected and are subsequently used for estimating
Cobb angles. Some methods jointly estimate all the landmarks and Cobb angles,
while others first estimate landmarks followed by Cobb angle computation which
might include outlier rejection and post-processing techniques [6,7].

There are several approaches of detecting landmarks in medical images such
as Reinforcement learning [8], iterative patch based approaches [9] and fully
convolutional neural network based approaches [10]. One important difference in
vertebra landmarks compared to other anatomical landmarks is the presence of a
large number of similar looking vertebrae. We believe that detecting vertebrae as
objects before finding landmarks within the detected vertebrae is advantageous
as it allows: (i) avoiding difficulty for translation equivariant CNNs to learn
very different coordinate locations for almost identical appearing vertebrae (ii)
leveraging popular object detectors pre-trained for computer vision tasks (iii)
Reducing the search space for landmark detector.

Contribution: We propose a novel approach to first detect 17 vertebrae with a
bounding box object detector, after which each of the predicted boxes is fed to
a landmark detector as illustrated in Fig. 1. The predicted landmarks are post-
processed to remove outliers before calculating the three Cobb angles. [11] used
Faster-RCNN [12] object detector to detect intervertebral disc in lateral X-rays,
but they left the landmark detection as a future work.

2 Dataset

The dataset consists of 609 spinal AP x-ray images available at SpineWeb3 as
Dataset 16. Each image has 68 GT landmarks corresponding to 4 corners of
the 17 vertebrae, and 3 Cobb Angles. Organizers provided test images without
GT separately. We connected the four landmark corners of each vertebrae to
create a box whose width and height were then increased symmetrically by 50
and 10 pixels respectively to create GT bounding boxes. All the bounding boxes
were labelled as belonging to a single class. The GT bounding boxes were used
to crop and extract individual vertebrae as a single separate image containing
four landmark corners. The coordinates of the landmarks are normalized to the
coordinate system that maps all the pixel coordinates of the cropped image to
3 http://spineweb.digitalimaginggroup.ca/spineweb/index.php?n=Main.Datasets.
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the interval [0, 1]. The normalized landmark coordinates are used as GT labels
for the landmark regression network.

3 Vertebrae Detection Followed by Landmarks
Regression

We use an object detector to detect the vertebrae as bounding box objects which
are then fed to a landmark regression network as separate input images. The
predicted normalized landmark coordinates from individual bounding boxes are
combined and mapped back to the original images as shown in Fig. 1.

Fig. 1. Proposed Framework: The input images are first passed to an object detec-
tor that detects the vertebrae. The detected vertebrae are extracted as individual
images and passed to a landmark detector that detects the four corners of the verte-
bra. The landmarks are mapped back to the original image from which Cobb angles
are calculated. We use CNN-based Faster-RCNN and DenseNet for object detection
and landmark detection respectively.

3.1 Training Vertebra Detection with Faster-RCNN

Faster-RCNN [12] is a widely used two-stage object detector consisting of: (i) a
Region Proposal Network (RPN) that proposes potential object regions from a
set of anchor boxes of various sizes in a sliding window over the feature maps
extracted from a CNN-based base network (ii) a fully connected and a bounding
box regression layer that regress bounding box locations of the identified objects.
We used ResNet V1 101 with pre-trained weights on Imagenet data4 as the base
network, which was fine-tuned after block 2. We used two scales with box areas of
642 and 1282 pixels, and aspect ratios 1:1 and 2:1 for RPN’s anchor boxes, as the
vertebrae are relatively small and do not have extreme aspect ratios. The network
was trained for around 180k steps with batch size 1 using SGD optimizer with
momentum 0.9, learning rate 0.0003 and early stopping. The implementation
was adopted from Luminoth5 in Tensorflow framework 10.1. Data augmentation

4 https://github.com/tensorflow/models/tree/master/research/slim.
5 https://github.com/tryolabs/luminoth.
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included random Gaussian noise (μ = 0, σ = 0.005), and vertical and horizontal
flips with a probability of 0.5. All the images were rescaled preserving the aspect
ratio such that its sizes remained within 600–1000 pixels as much as possible.

3.2 Training Landmark Detector with DenseNet

The four corner landmarks were estimated using a Densely Connected Convolu-
tional Neural Network (DenseNet) which are known to require fewer parameters
than traditional CNN [13]. In DenseNet, each layer’s feature maps are used for
all subsequent layers within a block, where each block constitutes a bottleneck
layer (a 2d Convolution layer with 1× 1 filter size), batch normalization, ReLU
activation, and a regular 2D convolution layer (3× 3 filter size). We used 5 blocks
with a growth rate of 8 which is the number of output feature maps of each layer.
The 2D Global Average Pooling is used after 5 blocks followed by a dense layer.
The final layer consists of 8 output units with a linear activation function. All
the input images to landmark detector were resized to 200× 120 pixels.

4 Pre and Post Processing During Inference

Cropping: Almost all test images contained skull and pelvic regions but none of
the training images had them. During training, the model did not see negative
samples of skull and pelvic regions making it prone to falsely detect structures
appearing similar to vertebra such as jaws. We randomly picked one test image
with an aspect ratio a0 and found empirically that cropping ct0 = 0.18 and
cb0 = 0.21 times the image height from the top and bottom removed skull and
pelvic regions satisfactorily. All the remaining test images with aspect ratio a
were cropped by ct = ct0 · a

a0
and cb = cb0 · a

a0
fraction of the image height from

the top and bottom respectively.

Outlier Rejection: We removed some of the outliers by using the fact that adja-
cent vertebrae cannot be far away from each other: if the x-center (horizontal) of
any detected bounding box is more than half box width away from the x-centers
of both of its two nearest neighboring (top and bottom) boxes, they are rejected
as outliers. For the topmost and bottom boxes, the same test was done against
only one nearest neighbor.

Curve Fitting and Cobb Angle Calculation from Predicted Landmarks: We used
the code provided along with the challenge dataset [6] to calculate 3 Cobb angles
- Main Thoracic (MT), Proximal Thoracic (PT) and Thoracolumbar/Lumbar
(TL/L) from a given set of landmarks. It did not work well when the number
of landmarks were not exactly 68 corresponding to the 17 bounding boxes. To
ensure exactly 68 landmark points for angle calculation, we used the following
after outlier rejection: when the detected vertebrae number is more than 17,
reject extra bounding boxes starting from the bottom. Similarly, if the number
is less than 17, duplicate the bottom landmarks as required. We also smoothed
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the landmarks by fitting a polynomial curve where the degree 6 polynomial gave
best fit out of 3 to 8 on visual inspection. The x-coordinate of each landmark
is regressed by using the y-coordinate as the independent variable of the fitted
polynomial. The smoothed landmarks were the ones that were used to estimate
Cobb angles in the final test score.

5 Results

The results were evaluated with symmetric mean absolute percentage error,
SMAPE= 1

N

∑
N

∑
m |ag−ap|

∑
m (ag+ap)

100%, where we have N(= 98) test images, m(= 3)
Cobb angles per image, GT angle ag and the corresponding predicted angle ap.

Table 1. Results for different experiment setups

Exp no. Processing for test images SMAPE

1 No Cropping 33.3%

2 Cropping and outlier removal without
smoothing

26.79%

3 Cropping, outlier removal and smoothing with
order 6 polynomial fitting

25.69%

Table 1 shows the results of three different experiments where we achieved
our best score in the challenge by cropping, rejecting outliers and smoothing
the estimated landmarks. The top score in the leader board was 21.71% when
the challenge results entry was closed. Figure 2 shows detected bounding boxes
and landmarks, and results of outlier rejection and smoothing with polynomial
fitting in 4 example images from test set.

Fig. 2. Anti-clockwise from top left: bounding box detection, outlier rejection, land-
mark prediction and smoothing of landmarks (green) with polynomial degree 6 for four
images of the test set (Color figure online)
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6 Discussion and Conclusion

Detecting vertebrae as objects before predicting corner landmarks is found to
be a promising approach. However, cropping all test images will not generalize
well. A more robust object detector trained with images having negative samples
from skull and pelvic regions could eliminate the need of cropping. The proposed
approach does not properly take into account the inter-dependency between
landmark positions of different vertebrae. A learning algorithm to learn this
inter-dependency could improve the results. Finally, learning to estimate the
angles directly from landmarks instead of using the geometric algorithm could
be robust to noisy landmark prediction.
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Abstract. Scoliosis is a condition defined by an abnormal spinal curva-
ture. For diagnosis and treatment planning of scoliosis, spinal curvature
can be estimated using Cobb angles. We propose an automated method
for the estimation of Cobb angles from X-ray scans. First, the centerline
of the spine was segmented using a cascade of two convolutional neural
networks. After smoothing the centerline, Cobb angles were automati-
cally estimated using the derivative of the centerline. We evaluated the
results using the mean absolute error and the average symmetric mean
absolute percentage error between the manual assessment by experts
and the automated predictions. For optimization, we used 609 X-ray
scans from the London Health Sciences Center, and for evaluation, we
participated in the international challenge “Accurate Automated Spinal
Curvature Estimation, MICCAI 2019” (100 scans). On the challenge’s
test set, we obtained an average symmetric mean absolute percentage
error of 22.96.

1 Introduction

Diagnosis and treatment planning of Adolescent idiopathic scoliosis (AIS) relies
on the estimation of the spinal curvature, which can be measured using Cobb
angles [2]. We propose an automated method to measure Cobb angles in X-ray
scans. In our approach, the centerline of the spine was automatically segmented
using cascaded neural networks, that were optimized end-to-end, i.e. trained
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simultaneously. While the first network focused on the segmentation of the spine,
the second network focused on the extraction of the centerline of the spine,
using the results of the first network. The centerline was then smoothed and its
derivative was computed to obtain tangents and estimate the Cobb angles.

Unlike our approach, most automated methods for estimating Cobb angles
rely on the segmentation of the individual vertebrae or the detection of their
corners [3,4,8]. Recently, Wu et al. [3] predicted the position of landmarks indi-
cating the corners of vertebrae using convolution neural networks (CNNs). The
authors proposed BoostNet, a layer architecture to reduce intra-class variance of
feature embeddings. They also designed a structured output for their networks,
which incorporates respective positions of landmarks in a connectivity matrix.
Wu et al. [3] achieved very accurate results in the automated localization of
vertebrae landmarks, but did not measure Cobb angles in their paper. Horng
et al. [4] recently proposed to measure the spinal curvature by first isolating
spine region and detecting each vertebra using image processing, subsequently
segmenting vertebrae with a U-net like network [1], and measuring Cobb angles
using the vertebrae segmentations. Similarly to our approach, Okashi et al. [9]
measured Cobb angles directly from the centerline of the spine. In their work,
the centerline was extracted using a complex hand-engineered image processing
algorithm.

2 Methods

2.1 Datasets

The method was optimized with a publicly available dataset of 609 spinal
anterior-posterior X-ray images [3] with 17 vertebrae of the thoracic and lum-
bar regions manually indicated using landmarks at the four corners thereof.
Cobb angles were computed using the landmarks. To evaluate our method, we
competed in the Accurate Automated Spinal Curvature Estimation (AASCE)
challenge1 hosted by the 22nd International Conference on Medical Image Com-
puting and Computer Assisted Intervention. The test dataset contained 100
X-ray scans. These images were different from the training images, which focused
on the spine, in that they displayed areas of the neck and shoulders. We man-
ually cropped the images of the evaluation dataset so that they show the same
region as images of the training dataset. In addition, this dataset was substan-
tially different from the training dataset in that the majority of its images had
small Cobb angles (low curvature), while Cobb angles in the training dataset
were more uniformly distributed. As additional preprocessing, we normalized
the intensities of all images by dividing by the maximum intensity value of each
image individually.

As ground truths, the challenge organisers provided three Cobb angles that
were manually measured: the major Cobb angle which estimates the highest
overall spinal curvature (the Cobb angle usually reported in the litterature);

1 https://aasce19.grand-challenge.org/Home/.

https://aasce19.grand-challenge.org/Home/
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Fig. 1. Spine segmentation and curvature computation. Top row, left to right:
an input X-ray scan with corners of the vertebrae manually indicated in blue (X-
ray); spine segmentation by connecting vertebral corners (GT1 ) and centerline (GT2 ),
used for training the cascaded networks. CNN1 and CNN2 are the outputs of the cas-
caded networks: the spine and spine centerline segmentations, respectively. The bottom
row illustrates the post-processing pipeline: thresholding the centerline segmentation
(Thresh); removing small connected components (Filtered); extracting the spine cen-
terline curve (Centerline); centerline smoothing using heat equation (Smoothed); com-
puting the derivative of the centerline (Derivative), which was subsequently used to
compute Cobb angles.

the upper Cobb angle, which is the Cobb angle measuring the highest spinal
curvature in the spine region above the region of highest overall curvature; and
the lower Cobb angle, which is the Cobb angle in the spine region under the
region of highest curvature.

2.2 Centerline Extraction with Neural Networks

Two cascaded convolutional neural networks were used to extract the centerline
of the spine. Their architecture was that of a U-Net [1] with fewer feature maps
and batch normalization layers [5] before each pooling layer (Fig. 2). The net-
works were optimized end-to-end, simultaneously. The first network was given
the X-ray scan as input and was optimized to segment the complete spine, while
the second network was given the output of the first network as input and was
optimized to segment only the centerline. In earlier experiments, we used a single
network to segment the centerline directly, which led to parts of the centerline
– often areas with low contrast – not being segmented. Ground truth segmen-
tations of the complete spine and the centerline were automatically computed
using the landmarks provided in the training dataset.

Fig. 2. Cascaded networks architecture. The last number in each layer is the
number of feature maps.
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The networks were optimized using Adadelta optimizer [6] and mean squared
error loss function over voxel intensities between the binary ground truth seg-
mentations of the spine and centerline and the segmentations predicted by the
network. Images were augmented online during training, with random rotation,
translation, and horizontal flipping, addition of Gaussian noise, and varying
brightness and contrast.

2.3 Postprocessing

Curve Extraction. The network output was binarized using a low threshold (0.25)
to ensure continuity of the centerline, followed by small (smaller than 40 × 140
pixels) connected components removal. Borders of the centerline were detected
to compute two curves. Points in the middle of both curves were then selected
to model the centerline curve. In our experiments on the validation set, this was
the most robust approach to extract the curve in the training dataset.

Smoothing with Heat Equation. Centerline curves extracted from the images
showed some local noise due to image resolution and errors in the segmentation.
To compute more accurate derivatives, the centerline was smoothed using the
heat equation, solved with Euler method. There were two parameters: the heat
transfer coefficient, which was set to 0.01 and the number of iterations in Euler’s
method set to 65000, which had to be large enough and was tuned on the training
set. We did not experiment with varying the heat transfer coefficient.

Computation of Cobb Angles. Similarly to Horng et al. [4], we computed Cobb
angles as

φ =
180
π

∣
∣
∣
∣
arctan

(
T (pR,M ) − T (pR,m)

1 + T (pR,M ) · T (pR,m)

)∣
∣
∣
∣
, (1)

where T (p) is the tangent slope of the centerline at point p, pR,M is the point
with the maximum slope in region R, and pR,m is the point with the minimum
slope in R. We computed the derivative of the centerline to obtain the tangent
of the centerline in every point. Then, we selected 19 points evenly spaced over
the derivative of the centerline (“Derivative” in Fig. 1) as an approximation of
the location of the interstices between the 17 annotated vertebrae, and consid-
ered values of the slope of the tangent, T (p), only in those points. Considering
tangents over the entire curve would quantify its curvature more accurately but
would be less comparable to the manually measured Cobb angles.

To compute the major angle, the entire centerline was used as the region of
interest R. The upper and lower angles were computed in the regions above and
below the region of the highest curvature, defined as the region between pR,m

and pR,M .

2.4 Ensemble of Ensembles

To improve the generalization performance of our models, we created ensem-
bles of prediction models optimized on different subsets of the training set. The
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dataset of 609 X-ray scans was randomly split in 10 subsets of 61 scans each.
At the beginning, one of these subsets was selected as testing set and left out
of the optimization process. Models were then optimized using different combi-
nations of the nine remaining subsets, and their results were averaged. Models’
predictions were averaged at two stages of the pipeline: centerline segmentation
maps of several models were averaged to compute single Cobb angles, and Cobb
angles predicted by several ensembles were averaged too, acting as an ensemble
of ensembles. Results with varying size of ensembles are reported in Table 1.
Ensembles with the best results on the left out set of 61 scans were then used
for submission on the challenge test set.

3 Experiments

We evaluated the performance of our model by competing in the AASCE chal-
lenge (Sect. 2.1). The AASCE challenge uses the symmetric mean absolute per-
centage error (SMAPE) averaged over the three Cobb angles as main metric.
For all three Cobb angles, the SMAPE was computed as:

SMAPE =
200
n

n∑

i=1

∑3
j=1 |Ai,j − Bi,j |

∑3
j=1 Ai,j + Bi,j

, (2)

where n is the number of X-ray scans in the set, Ai,j is the manual assessment
of the Cobb angle j for the scan i, and Bi,j the Cobb angle predicted by the
automated method.

To get more insights we also evaluated our results on a subset of the public
dataset used for training (Sect. 2.1) with additional metrics. This second test
set contained 61 X-ray scans randomly drawn at the beginning of the experi-
ments and not used for optimization. On this set, in addition to the SMAPE, we
also computed mean absolute error (MAE) between the manual and automated
assessments of Cobb angles. All results are shown in Table 1.

Table 1. Automated predictions of Cobb angles. Crop is whether vertebrae at
the top and bottom of the image were removed from the image, Nbr Models is the
number of averaged models, and Augmentation is the type of data augmentation on
image intensities, where B & C are changes of brightness and contrast over the whole
image. MAE 1, 2, 3 are the mean absolute error for the major, upper, and lower
Cobb angle in degrees, MAE Avg is the MAE averaged over the three angles, SMAPE
is defined in Eq. (2) and computed over the left out test set of the public dataset
(Sect. 2.1), SMAPE Lb was computed on the evaluation dataset and reported on the
challenge’s leaderboard.

Crop Nbr Models Augmentation MAE 1 MAE 2 MAE 3 MAE Avg SMAPE SMAPE Lb

No 2 Gaussian 5.28 5.39 6.91 5.86 26.45 27.78

No 4 Gaussian 4.95 5.13 6.55 5.54 24.27 25.79

Yes 4 B & C 3.43 3.91 5.39 4.24 21.03 23.94

Yes 4 & 7 B & C 3.22 3.75 5.23 4.07 20.55 23.67

Yes 4 & 7 & 4 & 4 & 5 B & C 3.18 3.6 5.19 3.99 20.4 22.96
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4 Discussion and Conclusion

We proposed an automated method for estimation of Cobb angles from X-ray
scans. Contrary to most other approaches, our approach measured Cobb angle
directly from the centerline of the spine without requiring the segmentation of
individual vertebrae [3,4,8].

Our method has several limitations. In the training dataset all images were
initially cropped relatively close to the spine, while in the evaluation dataset the
initial regions of interest was substantially larger. This difference caused major
issues for the automated spine segmentation, and required manual cropping of
the region of interest. Our method also has a long running time due to the
smoothing with Euler method. A similar effect may be achieved using Gaussian
smoothing. Finally, Cobb angles are not a linear measurement of severity of AIS.
The severity actually increases exponentially with the Cobb angle. This is not
reflected in our evaluation criteria. Using Cobb angles to assess AIS severity is
also in itself limited, as Cobb angles are measured in 2D while AIS is a three-
dimensional condition [7]. Using 3D measurements instead could help to assess
AIS severity more accurately.

Intrarater or interrater variability have not been measured in our dataset.
By inspecting results reported by Horng et al. [4], we computed that, on their
set of 32 X-ray scans, the intrarater variability in the manual measurement of
Cobb angle by an expert observer had a MAE of 2.0◦ and interrater variability
had a MAE of 3.87◦ on average. Our results are in-between these intrarater and
interrater variabilities, with a MAE of 3.18◦ and Pearson correlation coefficient
of 0.95 between manual and automated measurements of the major Cobb angle
in our dataset. Consequently, our method might be suited to replace manual
assessment of Cobb angles in clinical practice.
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Abstract. Adolescent idiopathic scoliosis (AIS) is one of the most common type
of scoliosis. In current clinical settings, the severity of scoliosis is assessed by
evaluating the contralateral blending angle of the spinal cord. Cobb angle is one
of the most widely accepted standards for angle measurement. However, the man-
ual measurement of Cobb angle is time consuming and unreliable. In this arti-
cle, we propose a novel two-stage method that can automatically estimate Cobb
angle from vertebrate landmarks. The proposed method uses rotation vertebrate
region proposals to increase the accuracy of vertebrate localization in curved spinal
region. Our model uses a backbone of ResNet50 combined with FPN for multi-
scale region proposal extraction. The rotation proposals are co-registered and fed
into stage-two fully convoluted network (FCN) for vertebrate landmarks detection.
The performance of proposed method is more robust than traditional landmarks
segmentation networks for datasets with large variance, with a SMAPE score of
25.4784.

Keywords: Adolescent idiopathic scoliosis (AIS) · Cobb angle · Vertebrates
detection · Landmarks detection

1 Introduction

Adolescent idiopathic scoliosis (AIS) refers to abnormal spinal curvature starts from later
childhood or adolescence and continues to adulthood. AIS is one of the most common
type of scoliosis, with about 4% occurrence in adolescents [1]. It causes skeletal muscle
dysfunction, leading to lower back pain, ventilatory restrictions, or even pulmonary
cardiac failure [2]. AIS is preventable, and early diagnosis and proper intervention in
adolescents are critical for controlling abnormal spinal curve progression.

Patients with AIS may experience mild or no pain in the early stage. Clinically, the
diagnosis of AIS are relying on curvature assessment on lateral spinal X-ray images, and
one of the widely used standard is Cobb angle. However, the manual measurement of
Cobb angles is time consuming and labor intensive. It can be challenge for experienced
clinicians due to anatomical variations and low contrast of X-ray images.
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Recent advances in deep learning show the advantages of automatic spinal curvature
assessment. Wu et al. [3, 4], Sun et al. [5] and Galbusera et al. [6] proposed one-stage
bottom-up approaches to extract vertebrate landmarks or Cobb angle directly from spine
images. One-stage approaches can incorporate structural information of whole spinal
region but are easily affected by intra domain variance. One the other side, Horng et al.
[7] used two-stage approach to first locate the rectangular vertebrate regions and then
estimate vertebrate landmarks in each region. Two-stage approaches split the task of
landmarks detection on the whole image into two easier sub-tasks: vertebrate region
localization and landmarks detection on each region proposal. On problem with existing
two-stage methods is that rectangular vertebrate proposals are not suitable for curved
spinal cords. Since vertebrates are not horizontal when scoliosis occurs, and accuracy
of both two sub-tasks can be affected due to region misalignment.

To address this problem, we propose a two-stage automated spinal landmarks detec-
tion network based on rotational regional proposals of vertebrates. In stage one, the
proposed network detects location of vertebrates using rotated rectangular regions. In
stage two, each vertebrate region undergoes rotation co-registration using rotation angle
from previous stage. Landmarks detection are then performed on aligned proposals.
Finally, we estimate Cobb angle using detected vertebrate landmarks.

2 Proposed Method

2.1 Vertebrates Detection via Rotational Proposals

We adopt feature pyramid network (FPN) as network’s backbone (see Fig. 1), which
performs multiscale feature extraction and gives regional proposals on each scale. In
the training stage, the input ground truth of each rectangular vertebrate bounding box
contains 5 parameters (x, y, w, h, θ). Among them, (x, y) and (w, h) describe bounding
box center location and dimension, respectively. Rotation angle θ, ranging from −π

2
to π

2 , is about the angle of tilted bounding box with respect to x-axis with rotation
center fixed at (x, y). In addition, we design rotational anchors at 5 scales, 3 ratios and 3
rotational angles. We use minimum mean square loss for rotation angle regression. The
rest parameters of bounding box are estimated as in [8]

2.2 Rotational ROI Align and Landmarks Detection

We propose to use rotational region of interest (ROI) align on vertebrate proposals (see
Fig. 1). Rotated vertebrate proposals are adjusted using rotation angles regressed from
previous stage. These proposals then undergo ROI align into fixed size feature maps as
stated in [8]. Finally, they are sent to fully convolutional network (FCN) for landmarks
detection.

3 Experiments and Results

3.1 Implementing Details

Dataset. The proposed study is based on AASCE2019 whole spine X-ray dataset,
including 481 train images, 128 validation images, and 98 test images. Images in train
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Fig. 1. Pipeline of proposed method. We use ResNet50 combined with FPN as backbone for
multiscale feature extraction. Rotational region proposals are extracted from stage one and fed
into FCN for landmarks detection.

and validation set consist of 68 manually annotated landmarks (4 landmarks for each of
the 17 thoracic vertebrates). Trainset and validation set are manually cropped to remove
head and pelvis floor, whereas test set images have increased field of view from upper
femur to head. In addition, image contrast and texture of test set are visually different
from train and validation set. The intra domain variance among three datasets, particu-
larly the presence of head and pelvis floor in test set, has a significant impact on model
performance (see Fig. 2(a) and (b)). To solve this, we propose a standardized image
preprocessing routine to reduce the influence of dataset variance.

Fig. 2 Illustration of preprocessing steps for spine region isolation and refinement.
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Spine Region Isolation. We first isolate the area of spine region using horizontal inten-
sity projection to remove head and pelvis floor (see Fig. 2(c)). The intensity thresholds
for different body parts are determined by statitcal evaluation of whole dataset.

Spine Region Refinement with Cord Segmentation. After obtaining spine region,
we perform spinal cord segmentation and midline extraction (see Fig. 2(d)), which are
used for spinal cord co-registration and false-positive key points suppression. Finally,
spine region is further refined with locked aspect ratio 3.5 between image height and
width (see Fig. 2(e)).

3.2 Results

Figure 3. shows experiment results of vertebrate localization and landmarks detection of
test dataset. Our model predicts the location of each vertebrate using rotation bounding
box (as in Fig. 3(b)). Despite significant difference among train, validation and test
dataset, our model achieves a recall of >98% in vertebrate detection and a precision
of >99% after post-processing using spinal cord mask. The proposed vertebral region
and co-registered using rotation angle and used for landmarks detection. Each region
proposal yields 4 landmarks, which are projected back into original image for Cobb
angle estimation.

Fig. 3. Qualitative experiment results of test dataset. (a) shows the original image with refined
spine region. (b) shows the rotational bounding box results from stage one region proposal network.
(c) shows vertebrate landmarks segmentation results from stage two landmarks detection module.
(d) illustrates vertebrate patches before and after rotation angle adjustment.

We compare our method with V-Net and Cascade Pyramid Network (CPN). V-Net
is a robust architecture that succeed in many medical image applications. For V-Net, we
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divide the landmarks into four groups (upper left, lower left, upper right, and lower left),
according to the location of landmarks to corresponding vertebrate. CPN is a powerful
two-stage landmark detection network that demonstrate its ability in human landmarks
detection. We use similar settings for CPN with our method. Experiments results shows
that our method achieves better performance that the other two, with a score of 25.4784
for proposed method, 30.7135 for V-Net and 40.7873 for CPN ((as in Table 1). By visual
inspection, we find that rotation region proposals fit vertebrate region better and non-
rotate proposals, thus reduce noises from non-spinal regions and therefore increase the
accuracy of landmark detection.

Table 1. Quantitative comparison of three different methods.

Model V-Net CPN Our method

SMAPE 30.7135 40.7873 25.4784

4 Conclusion

In this paper, we introduce an end-to-end deep convolutional neural network for spinal
landmarks detection and Cobb angle estimation. Our method is motivated by MaskR-
cnn but customized for the task of rotated vertebrate detection using rotational region
proposals. Compared to other methods, the proposed method is more robust to intra
domain variance. Rotation region proposals provide a better fitting of vertebrates in
curved spinal regions, which are of greater clinical importance than straight spinal area.
Given the accurate detection of vertebral regions, our model has a lower false-positive
rate of estimated landmarks.

The task of Cobb angle estimation intrinsically requires locating the first and last
thoracic vertebrate. However, our model is more likely to detect all existing vertebrates
on image. We have incorporated preprocessing steps such as head and neck removal,
which can partly solve this problem. In practice, however, the last cervical vertebrate is
often mis-recognized as the first thoracic vertebrate. One future direction is to introduce
additional network for more accurate localization of the first and last thoracic vertebrate.

Overall, we have proposed a novel and robust framework for spinal landmarks detec-
tion. The proposed method demonstrates its ability in dataset with large variance and
can potentially be used for other medical image applications.
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Abstract. Spinal anterior-posterior x-ray CT imaging is an appealing tool to aid
diagnosis and elucidate Adolescent Idiopathic Scoliosis (AIS) Assessment. In this
paper, we propose an automatic detection method for AIS assessment from X-ray
CT images. Our deep learning based coarse-to-fine heatmaps regression method
achieves symmetric mean absolute percentage error (SMAPE) of 24.7987 in the
grand challenge AASCE 2019.

1 Introduction

Adolescent idiopathic scoliosis (AIS) is themost common form of scoliosis and typically
affects teens. It is amedical condition inwhich a person’s spine has a sideways curve. The
curve of the spine presents “S”- or “C”-shape over three dimensions. The conditions of
some patients are not stable, and the degree increases over time. Mild scoliosis does not
typically cause problems, but severe cases can interfere with breathing. The assessment
has significant impacts on statistics and prediction of the spinal condition, which can
help to decide the early treatment plan and prevent the deterioration of the condition.

The AIS assessment is a standard tool to quantitatively analyze the condition. The
evaluation is based on some landmarks around the vertebras in 2D vertical section X-ray
image of human trunk. The Cobb angle is a standard measurement of bending disorders
of the vertebral column. The angles are calculated on the annotated landmarks of the
posteroanterior (back to front) X-ray images. The evaluation selects the most tilted
vertebra at the top and bottom of the spine, and calculates the intersection angles of the
selected vertebras. But in clinical, the landmarks are annotated manually, which remains
a time-consumingwork for an experienced doctor. Because of the anatomical differences
across organizations, the manual annotation in the X-ray images is extremely subjective
to observer variability. The accuracy of assessment usually has a great influence on the
treatments. Therefore, an automatic annotation and calculation method would release
doctors from the time-consuming work and especially avoid the observation errors.
Li et al. [1–4] hold the Accurate Automated Spinal Curvature Estimation as a grand
challenge in MICCAI 2019.

The AIS assessment is directly based on spinal landmarks. But in the evaluation,
the Cobb angle is designed to selecting the most tilted vertebra, and the endplates are
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generally parallel for each vertebra, so the Cobb angle is not sensitive to small local
deviation in landmark coordinates. In this paper, we propose a novel deep learning
framework for automatically AIS assessment. Our proposed method is improved from
the landmark heatmap regression method. In our framework, the deep learning models
regress heatmaps from coarse to fine in 2 stages, informing global configuration as well
as accurately describing the local appearance, similar to what we did in [5].

2 Method

Overall Framework: As shown in Fig. 1, the overall framework for landmark detection
includes 2 stages. The global stage takes the peeling cropped image as input, the U-net
[6] A regresses the whole spine mask. The image multiplied with the mask and inputs to
Mask r-cnn [7], whose outputs contain box masks, bounding boxes and tag labels. In the
local stage,we extend the bounding box and crop the region image contained the box. The
local region image inputs to U-net D and U-net E separately, the outputs are multiplied
together. The 4 highlights in the 4 channels heatmaps are obtained as the landmarks of one
vertebral column. The local stage procedure traverses the bounding boxes and obtains
the spine landmarks. Based on the previous work, we proposed a different landmark
obtainingmethod. To increase the robustness, wemodify the landmarks with polynomial
curve fitting, to adjust the unusual landmarks and decrease the outliers.

Fig. 1. The main parts of our proposed framework.
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Global Stage Masks Regression: We train 3 U-net models to regress 3 kinds of
heatmaps, as shown in Fig. 2. The 3 models take whole spine images as input. The
U-net A is trained to regress Whole Spine Mask (WSM). The U-net B is trained to
regress the Target Spine Mask (TSM). The outputs of these 2 models are highlight
regions of the spine, but their edges are with different blur extension. The first channel
is the target channel as shown in Fig. 2, and the last channel is the background which is
all 1 matrix subducts the sum of the target channels. The WSM and TSM indicate the
location of the spine, they can filter out the false positive regions while inferring. The
U-net C is trained to regress the Box Masks. The box masks are the center region in the
4 landmarks of each vertebral column, and the first 17 channels contain 17 heatmaps
separately for the vertebras in the given data. The last channel is the shared background,
in order to handle the class-imbalance problem while training. The U-net C separates
the connective vertebras into channels, the highlights in channels can easily represent
their locations. The 3 models are trained separately and are embedded in the framework
described in the following section.

Fig. 2. 3 U-net models regress 3 different kinds of heatmaps.

Peeling Crop: The released test data ismuchmore irregular andwilder than the training
data. We propose a data regularization method for data preprocessing, in order to fit the
trained model while inferring. The proposed data preprocess method is a progressive
procedure, gradually narrowing the unwanted margins, like peeling onion piece by piece
to get the wanted inner part. We use the 3 trained U-net models in the peeling crop
procedure. The trained U-net A model takes the wild test data as input, to regress the
WSM. Although there is a huge deviation between the train data and the input data, the
model can still locate the coarse spine region butwithmarginal false detection. TheU-net
B and U-net C take the test data multiplied the first channel of theWSM, to regress TSM
and boxmasks. To obtain themain target spine region, the first channel of TSMmultiplies
with the first 17 channels of box masks. Each channel obtains the highlight location. We
apply the outlier detection and the continuity judgement to the 17 coordinates, to figure
out the superior endplate and the inferior endplate. The detected region box is based on
the 2 endplates’ location and with the fixed height-width ratio, which is the red dotted
box as shown in Fig. 3. We extend the detected box with the remained margin, in case of
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the over cropping in the target spine. The cyan dotted box in the Fig. 3 is the extended
region. The next iteration uses the cropped image in the extended region. The peeling
crop iterates the cropping and the predicting, until the detected region box is narrowing
slowly.We compare the narrowing distance of 2 iterations and set themaximum iteration
number, to stop the iteration procedure. As shown in Fig. 4, when the region is getting
closer to the training data, the box masks are getting more precise and separable in
channels. The peeling crop processes the testing data once, before the inferring in the
main framework.

Fig. 3. The peeling crop is the data prepressing for the test data. (Color figure online)

Fig. 4. The cropped image in the extended spine region as shown in row (a) and their box masks
predictions in row (b). They are progressively adjusting in the peeling crop iteration.

Global Stage Detection: The vertebras are similar locally, so we model the vertebra
detection problem as an instance segmentation problem. As shown in Fig. 1a, our global
stage detection is based on the Mask r-cnn, which has shown well-performance in the
instance segmentation subject. We transfer the coordinates to box masks and bounding
boxes. The tag labels are the up-down order index of vertebras in the annotated spine. The
U-net A takes the peeling cropped image as input, and then the output WSM multiplies
with the image. The Mask r-cnn is trained to predict the box masks, bounding boxes and
tag labels. The model extracts global information for the local patch detection.
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Local Stage Heatmap Regression: We got the coarse bounding boxes, which indicate
the boundaries of vertebras. In local stage, we want to obtain the landmarks for each
vertebra. We use multi channels heatmaps regression method similarly to what we did
in [5]. As shown in Fig. 1b, the local stage contains U-net D and U-net E. These 2
models are trained with the region patch images, to regress the box heatmaps and the
point heatmaps. The box heatmaps are 2 channels, the first channel is the box mask of
the vertebra located at the center of the extended bounding box, the second channel is
the background. The point heatmaps are 5 channels, the 4 landmarks of one vertebra
are modeled as 4 channel heatmaps. A 2D Gaussian distribution locates at the center
of the landmark in the first 4 channels, and the last channel is the sheared background.
While inferring, the points heatmaps are masked separately by the first channel of the
box heatmaps. The overlapping region of the first 4 channels contains the locations of the
landmarks. Each coordinate is obtained as the mean position of the pixels whose values
are greater than 0.5. The 4 coordinates of 1 vertebra are obtained in the first 4 overlapping
channels. The local stage procedure traverses the bounding boxes and obtains the whole
spine landmarks.

Polynomial Curve Refine: We find that the Cobb angle is sensitive to the unusual
landmarks, and these error predictions are usually protrusive and uneven in their vertebral
neighbors. But the midline of the prediction shows the reliable curve trend of the spine.
As the post-processing,wewant to use the curve trend to fine-tune these error predictions.
There are 2 sets of coordinates here used to fit the spine curve, which are the centers of the
bounding boxes fromMask r-cnn and themean positions of the boxmasks fromU-net C.
We use the least square method to fit the 9th degree polynomial coefficient, and the curve
segments of the 2 endplates are 1st degree polynomial coefficient. We iterate the fitting
procedure, while filtering out those landmarks far from the curve. The final coordinates
are refined by the curve. The 17 center labels of bounding boxes which matching to the
box masks from U-net C, are selected as the target vertebras. The horizonal connections
of their coordinates intersect the curve. The vertical line in the intersections should go
thought the 2 coordinates in an ideal situation. The unusual coordinates rotate on their
intersections closing to the vertical lines.

3 Results

We report the results of two stages obtained by the proposed framework. The data
is provided by the grand challenge AASCE 2019 [8], and the results are the online
evaluations on the unlabeled test dataset. The evaluation is the score based on symmetric
mean absolute percentage error (SMAPE) (Table 1).

Table 1. The stage-wise results of the proposed framework.

Stage SMAPE

Local stage 26.4455

Curve refine 24.7987
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4 Discussion

In conclusion, we propose a coarse-to-fine heatmap regression method for Adolescent
Idiopathic Scoliosis Assessment. As data preprocessing, the Peeling Crop strategy is
different from the direct region prediction methods, it adjusts the target regions progres-
sively. The global and local parts of our framework are trained separately, it reduces
the GPU memory cost and they are motivated in 2 different strategies. The 2 stages
inform global configuration as well as accurately describing local appearance, then the
local stage regresses the point heatmaps to obtain the landmark locations. We propose a
Polynomial Refine method as our post-processing to refine the local stage coordinates.
The results show that our method is effective in AIS Assessment.
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Abstract. Cobb angle plays an important role in the diagnosis of scol-
iosis, which can effectively quantify the degree of scoliosis. Manual mea-
surement of Cobb angles is time-consuming, and the results are also heav-
ily affected by the expert’s choice. In this paper, we propose a spine curve
guide framework to directly regress the cobb angle from single AP view
X-rays images. We firstly design a segmentation network to accurately
segment two spine boundary, and then aggregate the obtained boundary
scoremap with the original spinal X-rays images to input another angle
estimation network to make high-precision regression prediction for cobb
angle. We evaluate our method in the AASCE19 challenge, and our result
achieves 22.1775 SMAPE that shows strong competitiveness compared
to other excellent methods.

1 Introduction

Scoliosis is a disease caused by abnormal curvature of the spine, the curve of the
scoliosis usually appears as an “S” or “C” shape in a posteroanterior (back to
front) X-ray. In the diagnosis and treatment decisions of scoliosis, cobb angle is
widely used to evaluate the degree of curvature of the spine [4], which is shown
in Fig. 1(a).

Traditional methods of measuring Cobb angles employed hand-crafted land-
marks of spine to measure the cobb angle which is time-consuming. And these
manual landmarks are affected by many factors such as the selection of verte-
brae, the bias of observer, as well as image quality [1]. To improve the accuracy
of cobb angle and eliminate manual impact, recent works are more focus on the
end-to-end automated estimation methods based on deep convolutional neural
networks. Wu et al. [6] integrate the robust ConvNet features with statistical
information to adapt to the variability in X-ray images. After that, Wu et al.
[5,7] aggregate multi-view information from both AP and LAT x-rays, aiming at
utilizing the structural dependencies of the two views. However, these works are
directly regress the cobb angle from the raw X-rays, which don’t make good use
of clinical priori knowledge. More recently, Chen et al. [1] design a landmark-net
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to learn the spinal boundary features from landmarks for comprehensive scoliosis
assessment.

However, Chen et al. [1] only use landmarks for indirect Cobb angle cal-
culation, which makes few contributions to the learning process of regression
network. In this paper, we propose a spine curve guide framework (SCG-Net) to
more accurately predict the cobb angle by utilizing the spine curve segmentation
result as correction information to help network focus on more useful features
during later regression task. Consider that the spine curve is capable of reflect-
ing the degree of scoliosis intuitively, we firstly design a segmentation network
to learn boundary of spine. Unlike latest work [1] that obtains auxiliary infor-
mation from sporadic spinal landmarks (see Fig. 1(b)), we found that continuous
spine boundary curve (see Fig. 1(c)) carries more complete analysis for the spine.
In later regression task, the network directly predicts the cobb angles based on
original input images and the spine curve map generated by segmentation model
and the spine curve map could help the regression network focus on more useful
features. To verify the effectiveness of the presented SCG-Net, we evaluate it
on the test set of AASCE2019, and the leaderboard demonstrates our method
achieves excellent performance.

2 Method

Figure 2 illustrates the pipeline of our method. Firstly, we learn the spine bound-
ary curve from given X-rays images by a boundary segmentation network. Then
the angle regression network takes X-ray images and obtained spine curve maps
as inputs to produce the final prediction for cobb angle.

2.1 Boundary Segmentation Network

Based on clinical knowledge, we know that cobb angle reflects the crook extent of
spine, therefore we design a segmentation network to obtain the spinal boundary.
The segmentation network is designed as Unet [3] structure that consists of an
encoder and a decoder and we add two skip-layer connections at 1X and 4X
levels to refine the segmentation results by aggregating the low-level features
and high-level semantic features. In order to learn more complete spine edge, we
apply the Pyramid Pooling Block (PP block) [8] at the bottom of network to
generate global information at different scales.

2.2 Angle Regression Network

Unlike classical classification and segmentation tasks, directly regress an impal-
pable cobb angle value from the raw X-ray image is lack of interpretability, even
for experts. In fact, the cobb angle is usually calculated from spine curve, (see
Fig. 1(a)(c)), therefore, we utilize the spinal boundary segmentation to build a
relation between raw X-ray images and the feature learning of cobb angle to
boost the network’s capability of understanding cobb angle.
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AP X-ray Image

(a) (b) (c)
Fig. 1. (a) cobb angles in the posteroanterior (back to front) X-ray (b) given landmarks
of spine, (c) boundary curve of spine

Our angle regression network takes the raw X-ray images and their corre-
sponding segmentation results as inputs and directly produces three predictions
for cobb angles. The main body of our regression network is DenseNet [2], which
connects each layer to every other layer in a feed-forward fashion and shows
excellent performance in a lot of tasks.

3 Experiments

3.1 Dataset and Data Augmentation

The AASCE2019 challenge supplies 609 spinal anterior-posterior X-ray images
as train set and each image contains three cobb angle tags (PT, MT, TL). In
addition, organizers provide corresponding landmark information for each image
in train phase (see Fig. 1(b)). In test phase, all participates need evaluate their
method on 98 images without landmark information.

For the train dataset, we make little data augmentation except for random
crop and resize, because we are concerned that excessive transformations may
affect the accuracy of the angle tag. For segmentation task, we firstly connect
given landmark points together to generate two continuous spine boundaries and
then we make dilation operation on the curve to generate final segmentation
mask.
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Fig. 2. The workflow of our method, which consists of two networks. The above network
generates segmentation maps for spine boundary curves and the one below takes the
original inputs as well as obtained spine curves mathe crook extent of spineps as input
to make the final prediction for cobb angles.

3.2 Evaluation Metrics

In this challenge, the symmetric mean absolute percentage error (SMAPE) is
used to evaluate the effectiveness of each method, which is defined as following:

SMAPE =
1
N

∑

N

SUM(|A−B|)
SUM(|A + B|) × 100% (1)

where A is ground truth, B is predicted result, N is the number of test data.

3.3 Challenge Result

The evaluation result of the on-site challenge of AASCE 2019 is listed in Table 1,
and our method demonstrates good performance and strong robustness. Our
results finally rank 5th place on the public leaderboard and there is only a slight
gap between our results and the first place.
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Table 1. There are 257 teams participated in this challenge and 78 teams submitted
their results. Our method ranks the 5th place.

Team SMAPE Rank

mr.waste(TencentX) 21.7135 1

Walker(iFLYTEK) 22.1658 2

AIchallenge2019 22.1729 3

Haru1994 22.1746 4

Our method 22.1775 5

...... ...... ...

soeci92 50.6884 78

4 Conclusion

In this paper, we present a novel cobb angle estimation framework (SCG-Net)
that introduces the spine curve map as a guidance to help angle estimation
network understand this task better. Finally, our method ranks 5th in the
AASCE2019 challenge and there is only a slight gap between our results and
the first place.
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Abstract. In scoliosis diagnosis and treatment, estimation of spinal cur-
vature plays an important role. Compared with the traditional method,
which is time-consuming and unreliable, automated estimation has been
more and more popular. But it remains to be such a great challenge
that direct estimation has poor precision due to the lack of information.
To meet this challenge, we propose a Multi-Task learning method with
pyramidal feature aggregation. Our method is one-stage. It means that
we can directly estimate the angles without detecting landmarks. To
enhance the feature extraction and collect more information, we make
the fusion of the pyramidal features and extend the base model by adding
an extra branch for spinal segmentation. We evaluate our method on the
validation set from the challenge (Accurate Automated Spinal Curva-
ture Estimation, MICCAI 2019) and obtain a symmetric mean absolute
percentage error of 12.97.

Keywords: Spinal curvature · Pyramidal features · Spinal
segmentation

1 Introduction

Cobb angle is a measurement of the bending deformity of the vertebral column. It
has been widely used for scoliosis treatment, including structural, lateral, rotated
curvature of the spine. Large reports show that there is a sustained increment of
the prevalence rate of scoliosis. Therefore, it’s likely essential to have a reliable
estimation of Cobb angles.

In clinical practice, each X-ray contains seventeen vertebras. For each one of
them, doctors find four landmarks and draw the outline accordingly. Then they
locate the key vertebras and calculate the angles. The main obstacle is that this
method is highly time-consuming and can be easily mistaken.

To address this problem, researchers have designed lots of automated frame-
works. Two-stage methods like [9] simulate clinical practice. They firstly segment
anatomical structures and then estimate the measurement based on segmenta-
tion. Some recent studies adopt the detector, instead of the segmentation model,
c© Springer Nature Switzerland AG 2020
Y. Cai et al. (Eds.): CSI 2019, LNCS 11963, pp. 113–118, 2020.
https://doi.org/10.1007/978-3-030-39752-4_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39752-4_14&domain=pdf
https://doi.org/10.1007/978-3-030-39752-4_14


114 J. Wang et al.

to observe the key structure [5]. But these studies are limited by the selection
of key vertebras and bias of different operators. Direct estimation methods [6–8]
aim to obtain the functional connection of medical images and clinical measure-
ment. While these studies are limited by the multi-type views (anterior-posterior
and lateral X-ray images). In the case of a single view, they perform much worse
due to the insufficient use of global information.

For the purpose of full use of global information, we propose a direct esti-
mation method based on pyramidal feature aggregation. In contrast to earlier
direct methods, we add an extra branch to predict spinal masks inspired by [1],
which can benefit the angles’ estimation. To further enhance the feature extrac-
tion, we make a fusion of the decoder’s feature map with multiple scales. Over-
all, our method achieves the highest symmetric mean absolute percentage error
(SMAPE) of 12.8 on the 125 scans from the challenge.

Fig. 1. Overall of our framework. The network learns multi-scale features from single
view (AP) via pyramidal feature aggregation and multi-task learning.

2 Methods

2.1 System Framework

As is shown in Fig. 1, the network is based on the encoder-decoder structure
[3]. The last feature map of the encoder is transformed into a vector via global
average pooling (GAP), and the biggest feature map of the decoder outputs
the mask via activation function (Softmax). In an attempt to make full use
of a decoder, we add GAP into each stage of the decoder except the last one.
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For the different lengths, the feature vectors are simply concatenated and output
the three angles through the dense layer.

For network training, our loss function includes mask loss and angle loss
which can be defined as:

loss = lossmask + lossangle (1)

Dice similarity coefficient (DSC) is a metric function to measure the degree
of similarity and always used in the medical image segmentation, so we calculate
the mask loss by DSC. As for the Cobb angle, we choose SMAPE, which is
usually used to evaluate the angles’ estimation.

lossmask = 1 − 2 |X ∩ Y |
|X| + |Y | (2)

lossangle = 1 − 1
N

∑

N

SUM [|A − B|]
SUM [A + B]

× 100% (3)

Here A and X are ground truth, B and Y are predicted result, N is the
number of test data.

2.2 Image Pre-processing

The direct estimation method hasn’t taken it into consideration that different
ratio (rate of height and width) will obtain different Cobb angles (see Fig. 2).
There is a certain problem while resizing all the images into the same size.
For instance, if the original ratio is smaller than the model’s input ratio, Cobb
angles will be smaller in the result. Hence we keep the ratio while resizing and
use padding to fit the input shape. What’s more, we augment the training data
by randomly shifting resized images.

3 Experiments

3.1 Datasets and Implementation Details

Datasets are collected from the challenge (Accurate Automated Spinal Curvature
Estimation, MICCAI 2019), and it’s composed of three parts, among which only
train and validation sets’ annotations are provided. As a result, we take the
experiments only on the two sets. We count the three angles’ value and draw
the histogram as Fig. 3. From top to bottom, we number the Cobb angles. It’s
apparent that the angle above is more likely to be bigger than the angle below.
From the graph, we can also see that most angles are small.

Although samples in the training set may come from the same patient, con-
sidered that there is still bias due to interval of operation, we randomly select
10% samples from the public train set as the validation and take public valida-
tion set as our test set. For all experiments, we use the same optimizer (Adam)
and the learning rate (1e−4). By initialized with 100 epochs, the training process
is terminated by a strategy called Earlystop.
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Fig. 2. Purpose of the pre-processing method. There is some error while changing
original image into different ratio, which may lead to lose of information.

Fig. 3. Count of the three angles’ value. From top to bottom we number the angles
as ANGLE 1–3. Blue box represents the histogram and red line is the univariate or
bivariate kernel density estimation. The x-axis means angle’s value and we set the hist
bins as 25. (Colr figure online)

3.2 Results

Through the same setting described above, we have taken a series of experiments
to make the discussion. First of all, we talk about the impact of different encoder:
Vgg11 [4], ResNet-50 [2]. Thanks to the single channel of X-ray images, weights



A Multi-task Learning Method for Direct Estimation 117

pre-trained on ImageNet cannot be transferred into this task. Thus we train
both networks from scratch and haven’t adopted deeper encoder. As the second
and third rows show, there is a significant difference between the two conditions.
Vgg11 outperforms so that we take it as our encoder while adding PFA and a
new branch. The last two rows suggest that estimation is more precise by using
our method (Table 1).

Table 1. Experimental results for Cobb angles’ estimation.

Output Cases MAE MSE SMAPE

Angle V gg. 7.78 97.58 16.6

Res. 11.01 191.41 23.16

Angle + Mask V gg. 6.85 80.72 14.55

V gg. + PFA 6.69 75.65 12.97
a We calculate MAE and MSE via Degree Measure.

In detail, correlation coefficients between the three different predicted angles
and ground truth are given as Fig. 4. The figure demonstrates that the estimation
of the first angle is much better than the rest, and the second one is better than
the third one. It has the same variation tendency as angle’s range that the smaller
angles have worse performance (see Fig. 3).

Fig. 4. The correlation coefficients between three angles predicted by the proposed
method and ground truth. The angles are numbered from top to bottom and our
method has much better performance on the first angle.

4 Conclusion

In this paper, we have proposed a Multi-Task network with pyramid feature
aggregation to estimate Cobb angles automatically. Inspired by Multi-Task learn-
ing, we add a new branch for segmentation to enhance the feature extraction.
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Typical aggregation of pyramid features is used to catch features at different lev-
els. The two strategies both provide a more precise estimation of Cobb angles,
and our method finally achieves high performance of SMAPE (12.97).

However, imbalanced estimation exists that our method estimates the top
angle much better than the rest. There are several possible explanations for this
result. Since big Cobb angles have a distinct appearance, the model can easily
achieve excellent performance. On contrast, estimation of a straight spine with
small Cobb angles has obvious relative fluctuation.
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