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Abstract. To send encrypted emails, users typically need to create
and exchange keys which later should be manually authenticated, for
instance, by comparing long strings of characters. These tasks are cum-
bersome for the average user. To make more accessible the use of
encrypted email, a secure email application named p ≡ p automates the
key management operations; p ≡ p still requires the users to carry out
the verification, however, the authentication process is simple: users have
to compare familiar words instead of strings of random characters, then
the application shows the users what level of trust they have achieved
via colored visual indicators. Yet, users may not execute the authen-
tication ceremony as intended, p ≡ p’s trust rating may be wrongly
assigned, or both. To learn whether p ≡ p’s trust ratings (and the corre-
sponding visual indicators) are assigned consistently, we present a formal
security analysis of p ≡ p’s authentication ceremony. From the software
implementation in C, we derive the specifications of an abstract proto-
col for public key distribution, encryption and trust establishment; then,
we model the protocol in a variant of the applied pi calculus and later
formally verify and validate specific privacy and authentication proper-
ties. We also discuss alternative research directions that could enrich the
analysis.

Keywords: Formal verification · Authentication protocols · Software
security analysis · Privacy-by-default · Secure email · End-to-end
encryption

1 Introduction

Despite the success of instant messaging (IM) applications, email prevails as
the principal means for written communication [24]; yet, communication over
email remains largely insecure nowadays [11]. Solutions for securing email have
however been proposed. For instance, OpenPGP [1] is arguably the most widely
used email encryption standard. Derived from the PGP software, it proposes
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the use of symmetric and asymmetric cryptography plus data compression to
encrypt communication, and digital signatures for message authentication and
integrity.

Unfortunately, severe usability drawbacks have been identified and high-
lighted in the standard (e.g. [27]). Along with the need for users to understand
at least general cryptographic concepts regarding encryption—which inevitably
narrows down the scope of the audience—the principal issue is the need for
verifying the ownership of public keys, i.e., that a public key claimed to be
of an entity A does indeed belong to A exclusively. Various approaches tackle
this problem, e.g., fingerprint comparisons, public key infrastructure, certificate
authorities, and the notion of web of trust, which involves individuals signing
each other’s public keys, thus forming a chain of certifications [28]. However,
these approaches have encountered limited adoption mostly due to usability or
scalability issues [11].

Attempting to overcome OpenPGP’s usability issues related to trust estab-
lishment, an open source commercial software, called p ≡ p (Sect. 3), proposes
the use of so called trustwords (detailed in Sect. 3.1) to carry out peer-to-peer
entity authentication via an out-of-band channel—e.g., in-person, video-call.
This approach argues to introduce an improvement to usability and security
of the PGP word list.

In this work we present a formal security analysis of the core protocols imple-
mented in p ≡ p, focusing particularly in authentication and privacy goals.

1.1 Contributions

First, we derive from the open source code the specifications of p ≡ p’s abstract
protocols for key distribution and trust establishment, and present them as Mes-
sage Sequence Charts (MSC). From now on, we will refer to this abstraction as
the p ≡ p protocol. This is the first detailed technical documentation of such
protocol.

Second, we provide a symbolic formal security analysis of the p ≡ p proto-
col with respect to authentication and privacy goals, under a Dolev-Yao threat
model. The analysis validates the security claims of p ≡ p and the correct assign-
ment of privacy ratings to messages.

2 Context and Approach

The application of formal methods for verifying that specific security proper-
ties hold in cryptographic protocols in the presence of a certain adversary is
a well-established research area. Both the detection of flaws in a protocol (or,
contrariwise, the proof of security) and the nature of those flaws depend on dif-
ferent factors, such as the verification approach and the phase of the system in
which it takes place (e.g., design, implementation, compilation). An introductory
reference for the topic is [21].
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A variety of tools and formalizations have been used to successfully ana-
lyze, amongst others, authentication scenarios in real world and authentication
standards (e.g., [6,7,13]). Important flaws have been discovered even in well-
established protocols years after their publication and while being used (e.g.,
[19]). Therefore and because the design of protocols is by default an error-prone
task, to effectively protect a system, security protocols need to be not only care-
fully designed and rigorously implemented but also strictly verified.

Here, we carry out a symbolic formal analysis of the p ≡ p protocol spec-
ification. The symbolic approach assumes cryptographic primitives to work as
perfect black boxes and focuses on the description of the logic of the protocol, the
interaction among participants and the exchange of messages [10]. The resulting
models allow to seek for attacks that rely on logical flaws in the protocol while
taking advantage of mature automated tools for protocol analysis (e.g., ProVerif
[9], Tamarin [5]).

Our work concerns remote human-to-human authentication, where human A
wants to be sure that human B is who he claims to be and vice versa—in p ≡ p,
the owner of a specific public key—, in a global communication scenario where
A and B might not know each other.

2.1 Methodology

At the time when we started studying the p ≡ p protocol there was not substan-
tial documentation regarding neither the protocol specifications nor the source
code. In consequence, the work presented here relies on the open source code of
p ≡ p [22], together with online documentation mainly for users [23]. Recently
some internet drafts have been released [17,18], which has helped clarifying our
models.

Our security analysis consists of the following steps, which we detail in the
rest of the paper:

1. Extract the specifications of the key distribution and handshake protocols
from the available sources [22,23].

2. Describe the protocol in MSC notation.
3. Formalize in the applied pi calculus the MSC specifications of the previous

step, along with the attacker model.
4. Specify and formalize in the applied pi calculus the properties to be verified.
5. Verify the satisfiability of the properties formalized in 4, in the model resulting

from step 3.
6. Analyze and interpret the results of the verification.

We start by introducing the p ≡ p software and its relevant features in Sect. 3.
Then, steps 1 and 2, which deal with specifying the p ≡ p protocol, are presented
in Sect. 4. In Sect. 5, we define the security properties related to privacy and
authentication that concern our analysis. Section 6 covers steps 3 and 4 of the
methodology, i.e., the formalization of the protocol and of the security properties
introduced informally in Sect. 5. The results of the execution of step 5 and the
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analysis in step 6 are discussed in Sect. 6.4; we also discuss limitations of the
analysis in Sect. 6.5. Further directions and conclusions are presented in the last
section.

3 Background: Pretty Easy Privacy (p ≡ p)

Pretty Easy Privacy (p ≡ p)1 is a software that claims to provide privacy-
by-default in email communications via end-to-end opportunistic encryption.
Roughly, this means that the software encrypts outgoing email messages without
any intervention from the user, whenever a secure or trusted public key of the
intended receiver is available.

p ≡ p attempts to automate tasks that would otherwise require specialized-
knowledge from non-expert users, while informing the user of the privacy rating
assigned to messages in an intuitive way. Hence, its more relevant features are:
(1) a fully automated process for the generation and management of encryp-
tion keys and for the encryption of emails; (2) an algorithm to determine the
strongest privacy level that can be assigned to a message for a specific partner—
this level is further communicated to the user by colored visual icons; (3) a fully
decentralized architecture for key storage—this design decision eludes relying
on possibly untrusted central authorities by having the users perform the trust
establishment task via out-of-band channels.

p ≡ p is distributed as a standalone application for Android and as plugins for
desktop installations of some existing email clients, e.g., Outlook, Enigmail. In
this work we consider a general abstraction of the p ≡ p protocols that represent
improvements to PGP by means of the features described above. Comparing and
discussing specific implementations is out of the scope of this paper.

3.1 p ≡ p Trustwords

Manual key-fingerprint comparison is a well-established method for entity
authentication in messaging protocols; yet, the approach has been shown to
perform poorly for the intended goal (e.g., [14]). As a solution, in addition to
hexadecimal numbers, PGP allows fingerprints to appear as a series of so-called
“biometric words”, which are phonetically different English words that intend
to ease the comparison for humans and to make it less prone to misunderstand-
ings [2].

Trustwords in p ≡ p follow the same idea; they are natural language words
mapping hexadecimal strings that are used to authenticate a peer after hav-
ing exchanged public keys in an opportunistic manner. In short, such hexadec-
imal strings represent a combined fingerprint obtained by applying an XOR
operation to the fingerprints associated to the public keys being authenticated.
Each block of 4 hex characters of the combined fingerprint is mapped to a
word in a predefined trustwords dictionary. For instance, F482 E952 2F48 618B

1 https://www.pep.security.

https://www.pep.security
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01BC 31DC 5428 D7FA could be mapped to kite house brother town juice
school dice broken.

The main difference with the “biometric words” is the availability of trust-
words in different languages, which improves the security for non-English speak-
ers, and the use of longer words, which presumably increases the entropy as the
dictionary is larger and therefore the likelihood for phonetic collision is decreased
[17]. Considerations regarding the number of words in the dictionaries and the
length of the words themselves are discussed also in [17].

3.2 Trust Rating and Visual Indicators

In agreement with the privacy-by-default principle, p ≡ p assigns a specific
privacy rating to each email exchange. Such a rating is determined per message
and per identity depending on certain criteria and is shown to the users by
colored icons in the message. The ratings are:

– Mistrusted: the system has evidence that the communication partner is not
who (s)he claims to be, e.g., when the user explicitly mistrusts a peer.

– Unknown/Unsecure/Unreliable (Unsecure): encryption/decryption
of a message cannot be properly executed, e.g., when the recipient does not
use any secure email solution. The message is sent in plain text.

– Secure: the user has a valid public key for the recipient, however it has not
been personally confirmed. The message is encrypted/decrypted.

– Trusted: the user has the recipient’s public key and it has been validated
with the peer. The message is encrypted/decrypted and authenticated.

3.3 Technical Specifications of p ≡ p

The core component of p ≡ p is pEpEngine, a library developed in C99 where
the automation of cryptographic functionalities (e.g., key generation) is imple-
mented relying on existing standards and tools for secure end-to-end encrypted
communications (PGP, GnuPG). The p ≡ p protocols are built upon those func-
tionalities, therefore pEpEngine is the component from which we extracted the
specifications hereby presented.

Each installation of p ≡ p creates a local database of p ≡ p peers, their
corresponding keys and privacy ratings. Additionally, it creates a database from
which the trustwords for mutual authentication are retrieved; the trustwords
database contains the exact same data in all the distributions. To securely store
private and public keys in the devices, p ≡ p uses GnuPG2. A more detailed
description of p ≡ p can be found in [18].

4 The p ≡ p Protocol

In order to carry out a security analysis it is essential to clearly understand
the logic of the protocol, to know the cryptographic primitives used, the parties
2 https://www.gnupg.org/.

https://www.gnupg.org/
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involved and the messages exchanged between them. Our case study required us
to obtain this information mainly from the source code of p ≡ p.

Following the approach in [26], we executed the first step of the methodol-
ogy proposed here in Sect. 2.1 by reverse engineering a fragment of the source
code files. We then represented the output of such a process by means of MSC
diagrams (step 2) which p ≡ p confirmed to be accurately representing their
protocol.

Here, we present and describe such diagrams which correspond to our
abstracted version of the key distribution and authentication protocols used
by p ≡ p to engage in end-to-end private and authenticated communications.

In the rest of the paper, we will use skx and pkx to refer to secret and public
keys owned by agent x, respectively. As well, we use A and B to refer to honest
participants and M for the malicious agent trying to prevent the honest parties
from achieving the security goals.

4.1 Public Key Distribution and Encrypted Communication

Let A and B be two partners that do not know each other’s public key. A
installs p ≡ p from scratch without having any cryptographic keys. She wants
to privately communicate with B who is already a p ≡ p user owning a pair of
keys (skB , pkB). We denote the p ≡ p instances running in A’s and B’s devices
as pEpA and pEpB respectively.

So that the key distribution protocol (Fig. 1) can take place, when p ≡ p is
installed, pEpA generates a pair of keys (skA, pkA) for A (step 1). The protocol
starts when A sends a message m to B; pEpA creates an identity for B (2) and
stores his contact details (3); then, pEpA sends m as plain text along with pkA
(4). When pEpB receives the message, it displays m to B with the privacy rating
Unsecure (5); additionally, pEpB creates an identity for A (6) and stores her
email address and pkA (7); finally pEpB assigns the privacy rating Secure to
A’s identity (8). When B replies to A, pEpB attaches pkB to his response resp;
this message is then signed with B’s secret key skB (9) and encrypted using pkA
(10). The signed and encrypted message is sent to A (11); pEpB shows to B his
message as Secure. At reception, pEpA decrypts B’s message using skA (12);
then it stores pkB as the public key of B (13) and assigns to his identity the
Secure rating (14). B’s response is finally shown as Secure to A.

Note that the identifiers created for A and B do not need to coincide in pEpA
and pEpB, since they are only used by the corresponding p ≡ p instance. Also, pkA
and pkB sent in steps (4) and (11) are only attached to the first communication
between A and B or whenever they are updated.

The key distribution protocol allows making the communication secret to
everyone but the receiver, however, it does not guarantee that the receiver is the
intended person. Man-in-the-middle attacks are still possible, as we will discuss
in Sect. 6.4.



A Formal Analysis of p ≡ p Authentication for E2E Encrypted Email 177

Fig. 1. p ≡ p key distribution protocol

4.2 Authentication and p ≡ p Privacy Rating Assignment

Trust establishment is achieved via the p ≡ p Handshake protocol (Fig. 2), which
consists in A and B comparing a list of trustwords via a communication channel
assumed to be secure and that needs to be used only once.

When A selects the option to perform a handshake with B (1), pEpA generates
a combined fingerprint based on applying an xor function to the fingerprints of
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A and B (2). The resulting hexadecimal string is mapped onto words in the
selected language from the trustwords database (3) and displayed to A (4). The
analogous actions occur in pEpB when B selects the handshake option. Given
that the trustwords database is the same in all p ≡ p distributions, if pEpA and
pEpB use the same input parameters, i.e., the same public keys and thus the
same fingerprints, the list of trustwords generated by each p ≡ p instance must
be the same.

The next step is the authentication, where A and B contact each other in
a way that they are sure to be talking with the real person, and compare the
list of trustwords displayed for each (5). If B confirms that the list of trustwords
given by A matches exactly the one shown in his device, A’s privacy rating is
set to Trusted (6); we call this case a successful handshake. Conversely, in an
unsuccessful handshake A’s rating is downgraded from Secure to Mistrusted
(7). The analogous occurs in A’s device with respect to B. The privacy rating
assigned after a handshake remains for all future exchanges with the communi-
cation partner.

After a successful handshake, the communication between the identities that
performed the handshake is always encrypted and authenticated (8–12).

Remark that p ≡ p does not force users to perform the handshake protocol.
The email messages are always sent regardless of the security level, which is
decided per message and per recipient according to the recipient’s data available.

5 Security Properties

Our requirements for authentication match the definition of full agreement given
by Lowe in [20]. This definition subsumes aliveness, weak agreement, non-
injective agreement and injective agreement as defined in the same reference;
broadly, it requires the two participants to agree on all the essential data involved
in the protocol run, in our case, the public keys pkA and pkB and the email
addresses.

Definition 1 (Full agreement, from [20]). A protocol guarantees to an ini-
tiator A full agreement with a responder B on a set of data items ds if, whenever
A completes a run of the protocol, apparently with responder B, then B has
previously been running the protocol, apparently with A, and B was acting as
responder in his run, and the two agents agreed on the data values corresponding
to all the terms in ds, and each such run of A corresponds to a unique run of B.
Additionally, ds contains all the atomic data items used in the protocol run.

Here we redefine this property in terms of p ≡ p and introduce informally
other properties in which we are interested.

Property 1 (Full agreement). A full agreement between A and B holds on pkA,
pkB , emailA and emailB if, whenever A completes a successful handshake with
B, then: B has previously been running the protocol with A, the identity data
of A is (emailA, pkA) and the identity data of B is (emailB , pkB).
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Fig. 2. p ≡ p handshake protocol for authentication
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Recall that a successful handshake is only reached if B confirms that the trust-
words given by A match exactly those shown in his device, and vice versa;
therefore, the agreement on the trustwords is implicit in the definition.

Property 2 (Trust-by-Handshake). Trust-by-Handshake holds for B if whenever
B receives a message from A with privacy rating Trusted, then previously B
executed a successful handhsake with A.

Property 3 (Privacy-from-trusted). Privacy-from-trusted holds for B if, when-
ever B receives a message m from A who has a privacy rating Trusted, then
A sent m to B and m is encrypted with B’s public key.

Property 4 (Integrity-from-trusted). Integrity-from-trusted holds for B if, when-
ever B receives a message m from A who has a privacy rating Trusted, then
A sent m to B and m is signed with a valid signature of A.

Property 5 (MITM-detection). MITM-detection holds if whenever an unsuc-
cessful handshake between A and B occurs, then A has registered a key for B
that does not belong to him and/or vice versa.

Property 6 (Confidentiality). Confidentiality holds if M cannot learn the con-
tent of any message sent encrypted between A and B.

6 Formal Security Analysis

A security analysis requires three elements: a protocol model, a set of security
properties, and a threat model defining the capabilities of the adversary by which
the scope of the verification is framed.

We model the p ≡ p protocols in the applied pi calculus [4], a process calculus
suitable for describing and reasoning about security protocols in the symbolic
approach. Participants are represented as processes and their message exchanges
are represented by terms sent over public or private channels. A so called equa-
tional theory defines how the cryptographic operations occurring in the protocol
relate with each other, and how they can be applied to obtain equivalent terms.

6.1 Threat Model and Trust Assumptions

To determine a relevant attacker model we need to consider the decentralized
architecture of p ≡ p. To an attacker with access to the user’s device, not only the
code but also the application databases and the keys repository are available. M
can thus have B trusting her by simply modifying the corresponding record in the
privacy ratings database, even if a handshake was never performed. Modifications
to the trustwords database would also result in an attack, which although not
threatening privacy, could prevent A and B from establishing a valid trusted
communication as Trusted. Therefore, we restrict the threat model with the
following assumptions:
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1. p ≡ p users are honest participants and their devices are secure;
2. The adversary cannot modify exchanges over the trustwords channel;
3. The adversary has complete control over the network used to exchange emails

(Dolev-Yao attacker [15]);
4. The users execute the comparison of trustwords correctly, i.e., they confirm

the trustwords in the system only when they match in the real world and
they mistrust them only in the contrary case.

These assumptions allow M to eavesdrop, remove, and modify emails
exchanged between A and B, as well as to send them messages of her choice;
this includes learning their public keys exchanged by email. M cannot however
interfere with the channel used to corroborate trustwords. Remark that this is a
secondary channel such as the phone or in-person, thus, not intended to replace
the email communication channel. We elaborate on assumption 4 in Sect. 7.

6.2 Modeling the p ≡ p Protocol

The p ≡ p protocol consists of the sequential execution of the key distribution
and the trust establishment protocols presented in Sect. 4.

A and B are represented by two processes, senderA and receiverB, whose
parameters symbolize the knowledge that they have. To communicate with B, A
needs to know his contact details, which here we abstract with the type userId ;
in turn, B only needs to know his own id and his secret key. The actions for each
participant come from the diagrams in Figs. 1 and 2. We run multiple instances
of A as well as of B, to simulate communication with multiple peers.

For the exchange of emails we use a public channel; on the contrary, a private
channel models the trustwords’ validation channel. In order to prove confiden-
tiality of encrypted and authenticated communication, we introduce a private
message mssg representing a message whose content is initially unknown to M;
then, we model A sending mssg to B via the public channel after a successful
handshake between them. Since B is trusted, mssg is sent signed and encrypted
(steps 8–9, Fig. 2), and thus, expected to remain unreadable by M at the end of
the protocol.

According to the symbolic model assumption, our equational theory mod-
els a perfect behavior of asymmetric encryption and digital signatures. These
equations capture the relationships allowed among the cryptographic primitives
involved, determining the ways in which any participant, the attacker included,
can reduce terms. Then, for M a message and SK a secret key:

adec(aenc(M , pubKey(SK )), SK ) = M (1)
verifSign(sign(M ,SK ), pubKey(SK )) = M (2)

getMssg(sign(M , SK )) = M (3)

Equation (1) expresses that a message M encrypted with a certain public key
can be decrypted with the corresponding secret key; moreover, this is the only
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way to obtain M from a ciphertext since there is no other equation involving
the aenc primitive. Analogously, Eq. (2) returns M only if it was signed with
the secret key associated to the public key used for the verification. Equation (3)
allows the recovery of a message without verification of a digital signature and
we introduce it here to model the capability of M for learning messages without
the need of verifying the signature.

Also, we model a correct trustwords comparison as per assumption 4 in
Sect. 6.1. We abstract fingerprints as public keys since a PGP fingerprint is
uniquely derived from a public key. Then, for two public keys PK1 , PK2 , two
trustwords lists W1,W2 and the trustwords generation function trustwords:

trustwordsMatch(trustwords(PK1 ,PK2 ), trustwords(PK1 ,PK2 )) = true

trustwordsMatch(trustwords(PK1 ,PK2 ), trustwords(PK2 ,PK1 )) = true

During its computations, M is allowed to apply all and only these primitives.
Additionally, she has access to all the messages exchanged via the public channels
and to any information declared as public. This models for instance M’s real-
life capability of generating the trustwords, which is possible because all the
elements are public knowledge: the source code of the function, the trustwords
database, B’s public key and A’s public key.

6.3 Privacy and Authentication Properties of p ≡ p

We formalize the properties introduced in Sect. 5 as correspondence and reacha-
bility queries based on events. Correspondences have the form E =⇒ e1∧ ...∧en;
they model properties expressing: if an event E is executed, then events e1, ..., en
have been previously executed. Events mark important states reached by the pro-
tocol and do not affect the protocol’s behavior. Our properties are defined in
terms of the next events, where s and r represent two p ≡ p users:

– endHandshakeOk(s,r,pks,pkr,es,er): s and r completed a successful handshake
with the public keys and emails (pks, es) and (pkr, er) respectively.

– startHandshake(s,r): s starts a handshake via a second-channel with r
– userKey(s,pks): the agent s is the owner of the key pks
– userEmail(s,es): the agent s owns the email address es
– receiveGreen(r,s,m): r received the message m from s as Trusted
– receiverTrustsS(r,s): the contacted peer r sets the privacy rating of s as
Trusted after confirming that the trustwords match

– sendGreen(s,r,m): s sent the message m to r as Trusted
– decryptionFails(r,s,m): r cannot decrypt a message m from a trusted peer s
– signVerifFails(r,s,m): r cannot verify the signature attached to m as a valid

signature of s
– endHandshakeUnsucc(s,r,pks,pkr): s and r completed an unsuccessful hand-

shake with the public keys pks and pkr respectively.
– attacker(m): the adversary knows the content of the message m
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Then, for a private message mssg and for all p ≡ p users a and b, messages
m and public keys ka, kb, pkA, pkB :
Full Agreement. For email addresses eA and eB ,

endHandshakeOk(a, b, pkA, pkB , eA, eB) =⇒ startHandshake(a, b) ∧ startHandshake(b, a)

∧ userKey(a, pkA) ∧ userKey(b, pkB)

∧ userEmail(a, eA) ∧ userEmail(b, eB)

In our model the email address is abstracted as the identity itself, since we
consider the case of one account per user. Therefore, in the verification the
userEmail predicates are disregarded. We include them here for completeness.

Trust-by-Handshake

receiveGreen(b, a,m) =⇒ receiverTrustsS(b, a)

This formula matches exactly the definition of Property 2.

Privacy-from-Trusted. For a message z,
(
receiveGreen(b, a, z) =⇒ sendGreen(a, b, z) ∧ z = aenc(m, pkB)

∧ userKey(b, pkB)
) ∧

(
decryptionFails(b, a,m) =⇒ ¬ sendGreen(a, b,m)

)

This formula is the conjunction of two correspondence assertions. The first one
expresses Property 3; the second correspondence enforces the first by saying that
it cannot be otherwise, i.e., when b receives a message m from a which for any
reason cannot be decrypted—e.g. m is not encrypted—, then a did not send m
to b.

Integrity-from-Trusted. For a message z and a secret key skA
(
receiveGreen(b, a, z) =⇒ sendGreen(a, b, z) ∧ z = aenc(sign(m, skA), kb)

∧ userKey(a, skA)
)∧

(
signVerifFails(b, a,m) =⇒ ¬ sendGreen(a, b,m)

)

Analogous to the previous formula, in this one we express Property 4 and rein-
force it by proving that whenever the verification of the signature fails in message
m, then a did not send m.

MITM-detection

endHandshakeUnsucc(a, b, ka, kb) =⇒ (userKey(a, pkA) ∧ pkA �= ka) ∨
(userKey(b, pkB) ∧ pkB �= kb)

This formula matches exactly the definition of Property 5.

Confidentiality. attacker is a built in predicate in ProVerif, which evaluates
to TRUE if by applying the derivation rules to the knowledge of the adversary,
there exists a derivation that results in mssg. Therefore, the protocol achieves
confidentiality if

¬ attacker(mssg)
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6.4 Verification Results and Analysis

In order to determine whether or not the protocol satisfies the specified security
properties we use ProVerif [9], an automatic symbolic cryptographic protocol
verifier. We executed the verification3 with ProVerif 2.0 on a standard PC (Intel
i7 2.7GHz, 8GB RAM). The response time was immediate.

We analyzed three different models: of the key distribution protocol, of the
trust establishment protocol and of the key distribution followed by the trust
establishment (the p ≡ p protocol).

For the key distribution protocol, the results confirmed its vulnerability to
MITM attacks. The weakness resides in the exchange of public keys via a channel
where M has complete access. An attack proceeds as follows: M can intercept
the initial message from A to B and send him a new message attaching her
own public key, pkE , instead of A’s one. pEpB will then link M’s key with A’s
email in step (7) of Fig. 1, i.e., storeId(idAB , emailA, pkE ). When B replies, the
message in step (10) is encrypted with pkE , and thus M can intercept it again
and decrypt it with her secret key, therefore obtaining pkB attached. From this
point, M can send encrypted emails to B using A’s email address and she will be
able to intercept and decrypt the responses sent by B. In an analogous way, M
can have A linking M’s public key to B’s identity, by sending her pkE encrypted
with pkA obtained by intercepting the first message.

Regarding the trust establishment protocol, encryption and authentication
hold since the trustwords comparison never mismatches due to the assumptions
of the peer devices being secure and of a previous key distribution successfully
executed.

The subsequent analysis of the p ≡ p protocol determined that the six prop-
erties, full agreement, trust-by-handshake, privacy-from-trusted, integrity-from-
trusted, MITM-detection and confidentiality are satisfied.

Regarding unsuccessful handshakes, even if A has the correct public key of
B, the handshake will fail if B has a key of A that does not correspond to her.
Both partners will mistrust each other because the communication with those
keys is threatened, however, once a peer is mistrusted, by p ≡ p design such a
privacy rating can not be reverted. This might be an issue, for instance if in the
future A and B meet in person and exchange their public keys; they can then
perform the handshake and B would be able to trust A, but A would not be
able to trust B in her device. In this case though, M misleading A to mistrust
the intended partner is closer to a Denial of Service (DoS) attack but does not
represent a threat to privacy.

We conclude that the execution of the p ≡ p protocol fulfills the claimed
security goals, i.e., after a successful handshake there is no undetectable way
for M to modify the exchanges between A and B, given that every message
between them is always sent encrypted and signed with the corresponding keys.
As a consequence, the privacy, authentication and integrity of the messages is
preserved. Also, entity authentication is achieved by the p ≡ p trust establish-
ment protocol. These results depend on the assumptions of p ≡ p residing in a
3 https://www.dropbox.com/s/ste22xe2zfj9bnt/fullPepProtocol.pv?dl=0.

https://www.dropbox.com/s/ste22xe2zfj9bnt/fullPepProtocol.pv?dl=0
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secure environment, of a secure second channel for the trustwords comparison
and of p ≡ p users owning a single instance of p ≡ p with a single email account.

6.5 Limitations

This analysis focuses solely on the technical specification of the key distribution
and handshake protocols. Social attacks such as impersonation or phishing are
however still possible; for instance M can create a fake email account related to
A’s name and then use it to send B an email attaching M’s public key and con-
tact details. If B has never met A, a handshake via trustwords comparison with
M would succeed given that both partners are indeed executing the protocol,
but the human B thinks that he is interacting with the human A.

The assumption of perfect cryptography implies that we consider the libraries
implementing cryptographic operations to be correct. Implementation flaws in
p ≡ p and side-channel attacks are not considered either; however, we highlight
the requirement for the software to ensure that the trustwords database provided
contains exactly the same data in all the distributions, to prevent introducing
false mismatches during the trustwords generation.

7 Further Directions and Concluding Remarks

We reported a symbolic security analysis of the specifications of p ≡ p protocols
for key distribution and authentication, validating the exchange of authenticated
end-to-end encrypted email between two p ≡ p trusted peers. Here, we conclude
by discussing some approaches that we have considered to extend our analysis.

How humans behave when comparing trustwords is not considered in this
work; yet, incorrect input from users, such as mistrusting a trusted peer or
vice-versa, might introduce security flaws. These situations happen, for instance,
when users verify only the first two words of the list or when they click the trust-
words confirmation button without comparing the trustwords. A formal model of
human errors in human-to-machine authentication protocols is proposed in [8];
adapting such an approach to studying further the mentioned scenarios could
give insights into how flaws introduced by users can be prevented. Understand-
ing the causes and frequency of incorrect behavior requires a different kind of
analysis mainly in the scope of usable security.

Regarding the decentralization of keys, we observe that trusting the user
device instead of a third party key server could represent an issue, for instance
if the user misplaces his device and does not have a protected repository. A
comprehensive systematization and evaluation of current architectures and pro-
tocols for securing email is presented in [11], where authors discuss approaches
achieving the strongest guarantees and their adoption decisions.

Since protocols for IM in general provide stronger security guarantees than
those for email [11,25], we speculate whether solutions for automating IM secu-
rity can be applied in the context of email. The Signal protocol [3], for instance,
performs key agreement by mixing multiple Diffie-Hellman shared keys (X3DH)
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and refreshing keys for every message exchange (double-ratchet), so that earlier
keys cannot be calculated from later ones. The protocol has been formally ana-
lyzed and proved secure regarding secrecy and authentication of message keys
[12]. The underlying reason preventing p ≡ p from adopting a similar approach,
hence upgrading security guarantees while relying less on the user, is Signal’
use of a central server as a deposit for all the public keys involved and which is
assumed to be trusted. This contradicts the decentralized paradigm adopted in
p ≡ p’s design.

Following p ≡ p’s line of automating the processes as reasonably as possible,
an idea to consider is how to automatically derive the trust from shared contacts
with peers already trusted; a sort of an automatic web of trust. While there are
many important considerations, for instance, how to get knowledge of shared
contacts without violating privacy, we believe that this could be a direction
worth studying.

As in the case of p ≡ p, in many systems that involve human-to-human
authentication such a task is not mandatory to provide a service, but rather
used to upgrade the security; therefore, users tend to neglect this step. Studying
causes and solutions for those problems could be interesting from a usability
perspective.

Finally, given that the human-to-human authentication relies on the trust-
words shown to the user, as a next step we plan to verify p ≡ p’s trustwords
generation function. Our approach considers taking advantage of the protocol
verifier Tamarin, which recently added support for XOR operations [16]. Addi-
tionally, we foresee a verification closer to the implementation in the computa-
tional model.
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