
Andrea Saracino
Paolo Mori (Eds.)

LN
CS

 1
19

67

Second International Workshop, ETAA 2019
Luxembourg City, Luxembourg, September 27, 2019
Proceedings

Emerging Technologies
for Authorization
and Authentication

Lecture Notes in Computer Science 11967

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7410

http://www.springer.com/series/7410

Andrea Saracino • Paolo Mori (Eds.)

Emerging Technologies
for Authorization
and Authentication
Second International Workshop, ETAA 2019
Luxembourg City, Luxembourg, September 27, 2019
Proceedings

123

Editors
Andrea Saracino
IIT-CNR
Pisa, Italy

Paolo Mori
IIT-CNR
Pisa, Italy

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-39748-7 ISBN 978-3-030-39749-4 (eBook)
https://doi.org/10.1007/978-3-030-39749-4

LNCS Sublibrary: SL4 – Security and Cryptology

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-8149-9322
https://orcid.org/0000-0002-6618-0388
https://doi.org/10.1007/978-3-030-39749-4

Preface

This book contains the papers which were selected for presentation at the Second
International Workshop on Emerging Technologies for Authorization and Authenti-
cation (ETAA 2019), which was held in Luxembourg on September 27, 2019, and
co-located with the 24th European Symposium on Research in Computer Security
(ESORICS 2019).

The workshop program included 10 full papers and 1 invited paper concerning the
workshop topics, in particular: new techniques for biometric and behavioral based
authentication, authentication and authorization in the IoT and in distributed systems in
general, techniques for strengthen password based authentication and for dissuading
malicious users from stolen password reuse, an approach for discovering authentication
vulnerabilities in interconnected accounts, and strategies to optimize the access control
decision process in the Big Data scenario.

We would like to express our thanks to the authors who submitted their papers to the
second edition of this workshop, thus contributing to making it again a successful
event. A special thanks goes to Prof. Alessandro Aldini, who accepted being the invited
speaker of ETAA 2019. We would like to thank the sponsors of the workshop,
including the EU Commission funded projects: Collaborative and Confidential Infor-
mation Sharing and Analysis for Cyber Protection (C3ISP) and European Network for
Cyber Security (NeCS), Marie Sklodowska-Curie Actions (MSCA), and Innovative
Training Networks (ITN). Last but not least, we would like to express our gratitude to
the members of the Technical Program Committee for their valuable work in evaluating
the submitted papers.

This workshop was supported by the EU Commission funded projects:

– C3ISP: Collaborative and Confidential Information Sharing and Analysis for
Cyber Protection. Grant Agreement n. 700294.

– NeCS: European Network for Cyber Security, Grant Agreement n. 675320.

September 2019 Paolo Mori
Andrea Saracino

ETAA Workshop Introduction

IT devices are day by day becoming more pervasive in several application fields and in
everyday life. The major driving factors are the ever increasing coverage of the Internet
connectivity and the extreme popularity and capillarity of smartphones, tablets, and
wearables, together with the consolidation of the Internet of Things (IoT) paradigm. As
a matter of fact, interconnected devices directly control and take decisions on industrial
processes, regulate infrastructures and services in smart cities, and manage quality of
life and safety in smart homes, taking decisions with user interactions or even auton-
omously. The involvement of these devices in so many applications, unfortunately
introduces a set of unavoidable security and safety implications, related to both the
criticality of the aforementioned applications and to the privacy of sensitive informa-
tion produced and exploited in the process. To address these and other related issues,
there is an increasing need for instruments to control the access and the right to perform
specific actions on devices or data. These instruments need to be able to cope with the
high complexity of the considered applications and environments, being flexible and
adaptable to different contexts and architectures, from centralized to fully-distributed
ones, able to handle a high amount of information, as well as taking into account
nonconventional trust assumptions. The considered technologies should regulate the
actions of both human users and autonomous devices, being effective in enforcing
security policies, still without introducing noticeable overhead, both on the side of
performance and user experience. Hence, the design of advanced, secure, and efficient
mechanisms for continuous authentication and authorization, requiring limited to no
active interaction is solicited.

The ETAA workshop, which is now at its second edition, aims at being a forum for
researchers and practitioners of security active in the field of new technologies for
authenticating users and devices, and for enforcing security policies in new and
emerging applications related to distributed systems, mobile/wearable devices, and IoT.
ETAA 2019 saw the participation of Professor Alessandro Aldini from University of
Urbino as invited speaker. It aimed to attract original research work covering both
theoretical and practical aspects of authentication and authorization.

September 2019 Paolo Mori
Andrea Saracino

Organization

Workshop Chairs

Paolo Mori Consiglio Nazionale delle Ricerche, Italy
Andrea Saracino Consiglio Nazionale delle Ricerche, Italy

Technical Program Committee

Benjamin Aziz University of Portsmouth, UK
Francesco Buccafurri Universita Mediterranea di Reggio Calabria, Italy
Gabriele Costa IMT Lucca, Italy
Francesco Di Cerbo SAP Lab, France
Carmen Fernandez Gago University of Malaga, Spain
Vasileios Gkioulos Norwegian University of Science and Technology,

Norway
Jatinder Singh University of Cambridge, UK
Jens Jensen Science and Technology Facilities Council, UK
Erisa Karafili Imperial College London, UK
Georgos Karopulos JRC, Italy
Hristo Koshutanski ATOS, Spain
Gabriele Lenzini University of Luxembourg, Luxembourg
Mirko Manea HPE Italia, Italy
Charles Morisset Newcastle University, UK
Silvio Ranise Fondazione Bruno Kessler, Italy
Marco Tiloca RISE, Sweden
Francesco Santini Universita di Perugia, Italy
Daniele Sgandurra Royal Holloway, University of London, UK
Debora Stella Bird & Bird, Italy
Nicola Zannone Eindhoven University of Technology, The Netherlands

Contents

Logics to Reason Formally About Trust Computation and Manipulation 1
Alessandro Aldini and Mirko Tagliaferri

An Authorization Framework for Cooperative Intelligent
Transport Systems. 16

Sowmya Ravidas, Priyanka Karkhanis, Yanja Dajsuren,
and Nicola Zannone

A Framework for the Validation of Access Control Systems. 35
Said Daoudagh, Francesca Lonetti, and Eda Marchetti

The Structure and Agency Policy Language (SAPL) for Attribute
Stream-Based Access Control (ASBAC) . 52

Dominic Heutelbeck

NOCRY: No More Secure Encryption Keys for Cryptographic Ransomware 69
Ziya Alper Genç, Gabriele Lenzini, and Peter Y. A. Ryan

Security Requirements for Store-on-Client and Verify-on-Server Secure
Biometric Authentication . 86

Haruna Higo, Toshiyuki Isshiki, Masahiro Nara, Satoshi Obana,
Toshihiko Okamura, and Hiroto Tamiya

Reflexive Memory Authenticator: A Proposal for Effortless
Renewable Biometrics . 104

Nikola K. Blanchard, Siargey Kachanovich, Ted Selker,
and Florentin Waligorski

Collaborative Authentication Using Threshold Cryptography 122
Aysajan Abidin, Abdelrahaman Aly, and Mustafa A. Mustafa

MuFASA: A Tool for High-level Specification and Analysis of Multi-factor
Authentication Protocols . 138

Federico Sinigaglia, Roberto Carbone, Gabriele Costa,
and Silvio Ranise

A Risk-Driven Model to Minimize the Effects of Human Factors
on Smart Devices . 156

Sandeep Gupta, Attaullah Buriro, and Bruno Crispo

A Formal Security Analysis of the p � p Authentication Protocol
for Decentralized Key Distribution and End-to-End Encrypted Email. 171

Itzel Vazquez Sandoval and Gabriele Lenzini

Author Index . 189

x Contents

Logics to Reason Formally About Trust
Computation and Manipulation

Alessandro Aldini(B) and Mirko Tagliaferri

University of Urbino, Urbino, Italy
{alessandro.aldini,mirko.tagliaferri}@uniurb.it

Abstract. Trust represents a fundamental, complementary ingredient
for the success of security mechanisms in computer science, as it goes
beyond the intrinsic, technical aspects of cybersecurity, by involving the
subjective perception of users, the willingness to collaborate and expose
own resources and capabilities, and the judgement about the expected
behavior of other parties. Computational notions of trust are formalized
to support automatically the process of building and maintaining trust
infrastructures, and mathematical logics provide the formal means to
reason about the efficacy of such a process. In this work we advocate the
use of two logical approaches to the modeling and verification of the two
main tasks at the base of any trust infrastructure: the initial computation
of trust values and the dynamic manipulation of such values.

Keywords: Computational trust · Modal logic · Conceptual analysis
of trust

1 Introduction

Providing a secure environment on the Internet is a daunting task and a massive
use of hard-security mechanisms does not guarantee the honest agents against
outside attacks. Moreover, there is always a disparity in the resources required
to offer proper defence mechanisms and the ones required to build successful
attacks. Even admitting a completely safe environment, agents in the online
community might still fall victims of deceit and scam. For these reasons, it
has been argued [34] that social control mechanisms, employed as soft-security
mechanisms, can integrate successfully the classical methodologies based, e.g.,
on encryption, access control policies, and authentication. First, they distribute
the burden of protection on the whole community, therefore putting a balance
in the amount of resources required to defend and to attack the system. Sec-
ond, differently from hard-security mechanisms, which, if passed, often allow full
access to the target of attack, soft-security mechanisms expect and even accept
that there might be unwanted intruders in the system, but they help in iden-
tifying those intruders and then prevent them from harming the community at
large, meanwhile limiting the amount of actions a given intruder might perform
in the system.
c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 1–15, 2020.
https://doi.org/10.1007/978-3-030-39749-4_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_1&domain=pdf
https://doi.org/10.1007/978-3-030-39749-4_1

2 A. Aldini and M. Tagliaferri

Among the various typologies of social control mechanisms, trust is the best
suited to foster positive behaviors and limit malevolent ones. However, digital
environments lack the proper features that would allow a natural form of trust to
emerge [31]. Therefore, computational notions of trust must be built artificially
in the environment by using rigorous models that can be automated. Typically,
trust is modeled as a relation between an agent/entity (the trustor) and another
agent/entity (the trustee) estimating the expectation of the trustor about the
future behavior of the trustee on which the trustor depends. Such a relation is
always characterized by some degree of epistemic uncertainty, concerned with an
unavoidable lack of knowledge, and, very often, nondeterminism, concerned with
the subjectivity of the personal perception of trust, which may induce different
reactions under the same conditions. These features are opposed to the notion of
trustworthiness, which refers to the inherent, objective quality of the trustee [8].
Hence, trust is related to risk, but also opportunity.

There exists a strict, inherent relation between trust and hard-security poli-
cies and mechanisms such as authentication and authorization [11]. For instance,
in pass-through authentication mechanisms, the trust relation between two
domains enables user accounts as well as global groups to be employed in another
domain other than the domain where accounts and groups are defined. In digi-
tal identity trusted ecosystems and federations, trust is part of the verification
process of the attributes that work together to ensure identity authentication.
Trust models can be also used in combination with emerging technologies sup-
porting authentication [3], lightweight authentication protocols [19], or as a tool
to trade between privacy issues and the intrusive nature of complex, multifactor
authentication mechanisms [4]. Moreover, trust models can support authoriza-
tion systems to deal with multiple domains of administrative control, partial
knowledge of all users, highly volatile environments, dynamic mechanisms (such
as delegation and revocation), need for flexibility and expressiveness in schemes
purely based on identities [9,23,24,39,49].

In general, computational trust models have two fundamental, distinguished
roles: explaining how trust is generated (see, e.g., [28]) and then explaining
the dynamics of trust (see, e.g., [21,48]), which, respectively, amount to define
a computing component and a manipulation component of trust. Even if the
two components integrate with each other naturally to provide a comprehensive
notion of trust, they rarely receive the same attention within a unique framework.
In this paper, we advocate the use of two formal models of trust, one for each
of such components, in a logical framework. In this setting, the formal modeling
and verification of trust is not a novel research field. For instance, temporal
trust properties can be model checked as CTL properties [14], thus providing a
formal framework for the verification of the trust manipulation component. On
the other hand, (modal) logics for trust (and notions of reputation), typically
inspired by classical definitions of trust [10], have been defined to reason formally
about trust and trust computation [18,30,38]. Our objective is to bridge the gap
between the two components of trust by defining a formal, logical framework
representing a step towards a uniform approach to trust analysis. To this aim,

Logics to Reason Formally About Trust Computation and Manipulation 3

in the following we first summarize some elements characterizing different forms
and aspects of the notion of trust that will be helpful to understand certain
modeling choices (Sect. 2). Then we introduce two logical approaches to trust
computation (Sect. 3) and trust manipulation (Sect. 4). Some conclusions follow
(Sect. 5).

2 Trust: Origins and Varieties

Modeling the different aspects that affect the generation and maintenance of
trust relationships is a task that requires a clear comprehension of the variables
at play. Trust is a complex, multifaceted notion due to the several subjective
elements contributing to its definition. Hence, before illustrating how to reason
mathematically about a computational notion of trust, it is worth setting the
context.

Navigating through the various definitions of trust given in the different
disciplines is a burdensome task. First of all, disciplines as diverse as sociol-
ogy [5,12,26,35], economy [13,15,36,47], political science [16,17,25] and evolu-
tionary biology [6,44,45] dedicated some of their attention to trust, obviously
prioritizing their specific needs and using their typical examination techniques.
This produced many theoretical definitions of trust which diverge on the tech-
nical language employed to express the definitions and the principal features
that are highlighted. More recently, in the last two decades, various and dis-
tinct formal, computational notions of trust have been developed to cope with
the ever increasing necessity of implementing soft-security mechanisms in digital
environments [20,22,29,32,37,41].

To classify trust, three dimensions emerge that describe in different ways
the nature of the trust relation, the nature of the agents subject to trust and
the context in which trust is evaluated [35,43,46]. The trust relation can be
established according to strategic or moralistic considerations. A strategic app-
roach to trust identifies the explicit knowledge and evaluation mechanisms that
contribute to the decision making process. Such an approach typically relies on
quantitative (e.g., probabilistic) methods to estimate trust. On the other hand,
a moralistic approach relies on moral and ethical issues and, therefore, depends
on psychological predispositions (due to, e.g., social norms and culture), which
very often are necessary to initiate a trust relationship whenever past experience
and significant knowledge are not available.

Trust definitions can be particular or general, depending on whether the
phenomenon of trusting is modeled as a one-to-one relation or as a one-to-many
relation, respectively. Notice that general trust can be placed on anonymous or
unknown individuals whenever they belong to a group, organization, or institu-
tion with which a trust relationship exists by virtue of several, different motiva-
tions, either strategic or moralistic.

Trust may also refer to a specific context of evaluation (simplex notion of
trust), meaning that trust is granted with respect to a specific task, so that
different tasks require different trust estimations. Otherwise, it can be viewed as

4 A. Aldini and M. Tagliaferri

a context-free or multi-context phenomenon (multiplex notion of trust), where
the trustee is evaluated without reference to any specific scenario or with respect
to multiple, different tasks, respectively.

The three dimensions identify a space within which various notions of trust
can be mapped and defined. Another important distinction that should be con-
sidered concerns whether trust must be computed or manipulated. The first task
consists in computing trust on the basis of the belief and attitude that are spe-
cific in a given instant of time, including the special case of the startup phase.
In practice, a computing component is fundamental for the trust bootstrap and
depends strictly on the nature of trust as specified by the varieties surveyed
above. The second task is related to the trust manipulation and the way in
which trust evolves dynamically in time by virtue of the events and interactions
that may affect the subjective perception of the trustor. Trust models covering
these dynamics are typically used not only to update trust relationships but
also to build the reputation of agents in their reference community [41]. In the
following, we present two different logics for reasoning about these two tasks,
respectively.

3 LCT: A Logic for Computing Trust

In this section we present a multi-agent modal logic for computing trust (LCT,
for short). It relies on previous work on single-agent formalisms [40,42,43]
and is inspired by neighborhood structures for the interpretation of the modal
part [7,33], augmented with a machinery to estimate the relevance of beliefs1

with respect to the problem of evaluating trust. Hence, the basic goal of this
logic is to compute trust estimations on the base of the beliefs of the agents in
a given instant of time.

3.1 Syntax

In LCT, the ground ingredients are a countable set At of atomic propositions
p, p′, q, q′ . . . , representing basic pieces of information (e.g., “Alice is trustwor-
thy”, “The access to Bob’s LAN is SSL-VPN protected”), and a finite set Ag of
agents i, j, The language is defined by this grammar:

φ :: = p | ¬φ | φ ∧ φ | T (i, φ)

where i ∈ Ag and p ∈ At . Formula T (i, φ), called trust formula, should be
intuitively read as “Agent i trusts that φ holds”; the set of trust formulas of
the form T (i, φ) is denoted by Tf . In the following, we assume that the set Lct

of formulas generated by the grammar above is ranged over by φ, ψ, . . . , while
At ∪ Tf is ranged over by a, b,
1 Notice that it is also possible to base the semantics of LCT on notions stronger

than belief, like, e.g., classical definitions of knowledge from epistemic modal logic.
However, we prefer using belief as it is a more general notion and it can capture
better the cognitive states of human agents.

Logics to Reason Formally About Trust Computation and Manipulation 5

3.2 Semantics

The semantics of LCT is in truth-theoretical form and is based on formal models
designed specifically to formalize trust and to allow reasoning about such a
notion. Formally, Lct formulas are interpreted in the following model.

Definition 1. A trust model is a tuple M = (S, π,B,Δ,Θ), where:

– S is a countable set of states, ranged over by s, s′, . . . ;
– π : At �→ P(S) is the valuation function;
– B is the belief function set, which is a family of belief functions:

bi : S �→ (P(S) \ ∅) ∀i ∈ Ag ;

– Δ is the trust relevance set, which is a family of quantitative trust relevance
functions:

δa,i : P(S) �→ [0, 1] ∀a ∈ At ∪ Tf , i ∈ Ag

such that
∑

X⊆S δa,i(X) = 1;
– Θ is the thresholds set, which is a family of trust threshold functions

θi : (At ∪ Tf) �→ [0, 1] ∀i ∈ Ag .

The set S of states of the system is defined as in standard modal logic;
subsets of S are ranged over by X,X ′, The valuation function π assigns to
each atomic proposition p the set of states in which p holds.

The belief function bi, with i ∈ Ag , assigns to every s ∈ S the consistent set
of states that are compatible with what is believed by i in s. More precisely, given
the beliefs of i in the current state s, bi(s) is the set of all and only the states
of S in which such beliefs hold. Notice that if i believes all the true statements
identifying state s independently of the current state s′, then i believes that s
is the only possible current state, i.e., bi(s′) = {s} ∀s′ ∈ S. Such an example
emphasizes that it might be the case that a given state s is not included in bi(s),
since an agent i can believe something that is actually false.

The quantitative trust relevance function δa,i, with a ∈ At ∪ Tf and i ∈ Ag ,
assigns to every X ⊆ S a value indicating the quantitative relevance of X for
agent i to trust a. All such values are additive to 1. The interpretation is as
follows. Each statement representing a piece of information that is relevant for
trusting a (from the viewpoint of i) corresponds formally to the set X of states
in which the statement holds. Hence, δa,i(X) expresses the contribution of the
information given by such a statement to the computation of the trust of i
towards a.

The threshold function θi, with i ∈ Ag , assigns to each a ∈ At ∪ Tf the
threshold needed by i to trust a.

Before providing the truth definition for a formula in a trust pointed model,
some additional functions must be defined. First of all, we extend functions θi

to deal with any composed formula.

6 A. Aldini and M. Tagliaferri

Definition 2. Given a threshold function θi, the extended function θe
i is defined

recursively as follows:

– θe
i (a) = θi(a),∀a ∈ At ∪ Tf

– θe
i (¬φ) = 1 − θe

i (φ)
– θe

i (φ ∧ ψ) = max(θe
i (φ), θe

i (ψ))

The role of function θe
i is to assign a trust threshold value to all formulas of

Lct. In particular, the case of negation captures the intuitive idea that when it
is easy to trust a formula, then the negation of such a formula is hard to trust,
and viceversa. Then, in order to trust a conjunction, it is necessary to consider
the highest threshold value between the two conjuncts.

The next additional function is intended to establish the ideal value of trust
in the current state s towards a statement in At ∪ Tf . The computed value is
ideal as it depends on the contributions of all the information relevant for trust
that hold in s, independently on the beliefs of the agent involved.

Definition 3. Given a trust model M = (S, π,B,Δ,Θ), the trust value function
τa,i : S �→ [0, 1], with a ∈ At ∪ Tf and i ∈ Ag, is defined as:

τa,i(s) =
∑

s∈X⊆S

δa,i(X) (1)

Function τa,i assigns to formula a the ideal trust value of agent i towards such
a formula by assuming that i is aware of the fact that s is the current state of the
world. Such a value is determined by summing up the weights of all the pieces
of information that are considered to be relevant for trust from the viewpoint
of i and that are satisfied in s. Notice that, as in the case of functions θi, both
atomic propositions and trust formulas are treated atomically. This is because,
in general, we assume that for both cases the estimations determined by i can
depend only on the conditions assumed by i. For the other, composed formulas,
the estimations can be derived depending on the semantics of the operators.

Definition 4. The extended trust value function τe
φ,i : S �→ [0, 1], with φ ∈ Lct

and i ∈ Ag, is defined recursively as follows:

– τe
a,i(s) = τa,i(s) ∀a ∈ At ∪ Tf

– τe
¬φ,i(s) = 1 − τe

φ,i(s)

– τe
φ∧ψ,i(s) = min(τe

φ,i(s)·θe
i (φ∧ψ)

θe
i (φ)

,
τe

ψ,i(s)·θe
i (φ∧ψ)

θe
i (ψ))

The case of negation is managed according with the same intuition behind
the definition of θe

i (¬φ). The case of conjunction is managed in a way inspired
by probability theory and requires some special treatment in the limiting cases
in which θe

i () = 0. In particular, if θe
i (φ) = 0, it holds that θe

i (φ ∧ ψ) = θe
i (ψ).

Therefore, if τe
φ,i(s) > 0, then it is immediate to obtain τe

(φ∧ψ,i)(s) = τe
ψ,i(s),

which captures the intuition that trust value and threshold of φ ∧ ψ depend on
ψ only as φ is trivially trusted. On the other hand, if τe

φ,i(s) = 0 then we would
have an indeterminate form that it is safe to manage by assuming τe

(φ∧ψ,i)(s) = 0,

Logics to Reason Formally About Trust Computation and Manipulation 7

thus capturing the intuition that since there is no trust towards φ, there can be
no trust towards φ ∧ ψ. The symmetric case θe

i (ψ) = 0 is analogous.
Given all the above functions, it is now possible to give a truth definition for

LCT.

Definition 5 (Satisfiability relation). Given a trust model M =
(S, π,B,Δ,Θ) and s ∈ S, it holds that formula φ ∈ Lct is true in a pointed
trust model (M, s) ((M, s) |= φ) if:

– (M, s) |= p iff s ∈ π(p) ∀p ∈ At;
– (M, s) |= ¬φ iff (M, s)
|= φ;
– (M, s) |= φ ∧ ψ iff (M, s) |= φ and (M, s) |= ψ;
– (M, s) |= T (i, φ) iff ∀s′ ∈ bi(s). τe

φ,i(s
′) > θe

i (φ).

The case of the trust operator emphasizes the subjective character of trust,
as in order to trust φ, the agent has to consider the trust values related to all
the states that are compatible with her beliefs, and to compare each of them
with the trust threshold. The semantics of the T operator relies on the classical
assumption that if the beliefs of the agent are partial and do not reveal the
identity of the current state, then the worst case scenario is to be considered,
by taking the minimum among all the possible trust values associated with the
candidate states determined by the belief conditions of the agent.

Definition 6 (Satisfiability and validity). A formula φ ∈ Lct is satisfiable in
a trust model M iff there exists s ∈ S ∈ M such that (M, s) |= φ. If ∀s ∈ S ∈ M
it holds that (M, s) |= φ, then φ is valid in M (M |= φ). If ∀M it holds that
M |= φ, then φ is valid (|= φ).

We notice that, as usual, a formula φ is valid if, and only if, the negation of
the formula ¬φ is not satisfiable. We conclude the presentation of the semantics
of LCT by showing the following decidability result about the problem of model
checking (M, s) |= φ.

Theorem 1. The model checking problem (M, s) |= φ is decidable for LCT by
using an algorithm with complexity O(| φ |2 · | S |).

In essence, LCT provides a formal framework in which it is possible to define
and characterize quantitatively the trust relevant information for a given agent
in order to trust a certain formula. Based on such a characterization, we have
the formal means to compute the trust towards the formula in any state of the
world and, depending on the threshold applied, decide whether the formula can
be trusted or not. The computed trust is expressed in terms of the values τe

φ,i(s)
and, as we will see, represents the starting metric to consider whenever passing
to the framework in which the dynamics of trust are evaluated as time goes on.

3.3 LCT and the Trust Taxonomy

By following the same lines of previous work [43], it is straightforward to extend
LCT to make the model sensitive to specific contexts of evaluation. To this

8 A. Aldini and M. Tagliaferri

end, it is sufficient to add to the structure M the set of contexts C and to
parameterize with respect to c ∈ C the elements of Δ and of Θ. Accordingly, by
using the extended function τe

φ,i,c, the satisfiability problem can consider such
an additional aspect, by turning into (M, s, c) |= φ.

By extending the notions of validity as well, we obtain interesting insights
with respect to the taxonomy of the different notions of trust. For instance, the
strategic notion of trust is characterized by the fact that in no context the for-
mula of interest turns out to be model-valid. The reason is that the information
holding in the various states represents a key element for the satisfiability of
trust. On the other hand, if it holds that there exists a context for which the
formula of interest is model-valid, then what is known is not relevant for the
attribution of trust. In other words, whatever the state of the system is, trust
will be granted. This kind of behavior is typical of situations in which moralistic
trust is taken into account, as well as cases in which the cost of distrusting is
orders of magnitude higher than the potential benefit of trusting. If a trust for-
mula is satisfied in a given state for each possible context, then the notion under
consideration is that of multiplex trust, as opposite to the case in which the
result of the evaluation depends on the chosen context (simplex trust). Notice
that, model-validity with respect to both the set of states and the set of contexts
captures intuitively a notion of moralistic multiplex trust. Finally, as far as the
whom dimension of trust is concerned, the distinction between particular and
general conceptions of trust is not explicitly characterized by any definition of
satisfiability and validity. This is due to the fact that this dimension is not cap-
tured by these principles but, instead, by the meaning of the atomic propositions
that are subject to trust evaluation. In fact, a proposition may refer to a single
fact or agent, as well as an entity representing a class of agents.

4 LMT: A Logic for Trust Manipulation

The second logical language we present has been conceived to specify and then
model check trust-based properties of dynamic networks of agents obeying the
rules of the given trust model that governs the trust-based relationships among
agents [1]. The underlying semantics of such a system is based on state/transition
systems expressing both the behavior of the agents and the information required
by the trust model. With respect to the varieties of trust, we introduce the theory
for strategic, particular, simplex models. We start by introducing a classical
notion of labeled transition system and then we extend it to deal with trust
information.

Definition 7. A labeled transition system (LTS) is a tuple (Q, q0, L,R), where:

– Q is a finite set of states (with q0 the initial one);
– L is a finite set of labels;
– R ⊆ Q × L × Q is a finitely-branching transition relation.

Logics to Reason Formally About Trust Computation and Manipulation 9

We assume that each q ∈ Q represents a global state of the system expressed
as a vector of local states, each one denoting the local behavior of every agent
composing the system. The transitions in R represent the execution of events,
and the labels in L range over the names of such events, each one denoting
either an autonomous move of an agent, or an interaction between agents. The
LTS representation of the behavior of the system needs to be extended with
pieces of information needed to feed the trust model regulating the trust-based
interactions among agents. To this aim, we enrich the states with such additional
information.

Definition 8. Let V be the domain of trust variables and T the domain of trust
values. A trust labeled transition system (tLTS) is a tuple (Q, q0, L,R, T , P)
where:

– (Q, q0, L,R) is a LTS;
– T is a finite set of trust predicates of the form v = k, with v ∈ V and k ∈ T;
– P : Q → (T → N) is a labeling function that associates a multiset of T to

each state of the tLTS.

Set V contains all the variables needed by the trust model to compute trust
metrics. In practice, each v ∈ V represents a trust-relevant piece of information
feeding the trust model. For instance, in several trust models (see, e.g., [27] and
the references therein), in order to compute the trust metric tij , denoting the
trust of agent i towards agent j, it is necessary to collect all the rates i has
assigned to j by virtue of the evaluation of the interactions occurred between
them. Denoted by eij such an evaluation, predicate eij = 1 may represent a
positive feedback reported by i after a satisfactory interaction with j. Notice that
i may experience several such interactions, thus motivating the need for dealing
with multisets of predicates. As another example, a typical class of variables
feeding the trust model is that expressing recommendations provided by the
agents.

In order to allow for the representation of several different trust models,
here we consider a very general and abstract definition that considers the basic
ingredients shared by the majority of trust models in the literature.

Definition 9. A trust model is a mathematical structure encompassing:

– a black box taking in input trust-relevant information encoded in the current
state of the tLTS and updating the trust metrics expressing the trust relations
among agents;

– a trust threshold function that, for each agent, returns the minimum value
required by the agent to trust other agents;

– initial estimations of the trust metrics, known as dispositional trust values.

For the sake of simplicity, in the following we assume that trust thresholds
and trust metrics expressing the trust relations among agents are represented by
values in the domain [0, 1]. Notice that for several sophisticated models of trust,
the threshold function can be accompanied by further parameters configured at

10 A. Aldini and M. Tagliaferri

the level of each single agent. However, it is worth observing that usually in
the literature on models for trust manipulation, it is not specified the way in
which the dispositional trust must be assessed, sometimes as an intermediate
value in the range of trust values, sometimes as the combination of prefetched
information collected through alternative ways or by employing pre-existing,
unspecified relations among agents, sometimes chosen by the agent, probably
on the basis of her attitude to initiate new interactions with unknown users. In
our setting, we propose to solve formally such a lack by employing the values
returned by model checking LCT formulas. In fact, given φ ∈ Lct the formula
concerning the trustworthiness of an agent j
= i, the truth value of the formula
T (i, φ) establishes whether i trusts j, and the values τe

φ,i(s), which are used to
determine such a truth value, can be employed to determine the initial value
of the trust metric tij . In particular, if we follow the same intuition behind the
semantics of T (i, φ), among all the τe

φ,i(s) that contribute to the evaluation of
T (i, φ), we take the minimum value to initialize tij .

Until now we have defined the ingredients of the formal semantic model
underlying the behavior of a network of interacting agents, without specifying
how such a model is derived. This is typically done by employing formal specifi-
cation languages with a translation semantics towards state/transition systems,
thus enabling verification techniques like model checking. Among the various
possibilities, process algebra represent a well-established approach. Instead of
proposing a specific language (see, e.g., [1,2], where two different process alge-
braic languages are defined with an underlying semantics compatible with the
notion of tLTS), here we list three basic features that must be possessed to model
properly a trust-based system with a tLTS based semantics:

– capability of expressing interacting agents (parallel composition, communica-
tion, synchronization);

– semantic rules, expressing the execution of trust-relevant events, with conclu-
sions that allow for the update of the set of trust predicates that label the
tLTS states and feed the trust model;

– semantic rules, expressing the execution of trust-relevant events, with
premises checking the trust metrics against the trust thresholds as returned
by the trust model (in order to model trust-based alternative choices).

Once the behavior of a system is formally given in terms of a tLTS, trust-
based properties can be specified through a logic for trust manipulation (LMT,
for short). The syntax of LMT is defined as follows:

Φ :: = true | α | w > k | Φ ∧ Φ | ¬Φ | AΨ | EΨ
Ψ :: = Φ A1U Φ | Φ A1UA2 Φ

where A1,A2 ⊆ L, α ∈ L, k ∈ T, and w ranges over V ∪ the set of mathematical
combinations of the trust variables satisfying some predicate (e.g., the sum of
all the eij for some given i and j) ∪ the set of trust metrics tij . Therefore,
we have two types of state-based statements: either events or predicates about
trust variables, mathematical combinations of selected trust variables, and trust

Logics to Reason Formally About Trust Computation and Manipulation 11

metrics. State formulas, which range over Φ, include atomic statements, logical
combinations of state formulas, universally (A) and existentially (E) quantified
path formulas. Path formulas, which range over Ψ , include two types of indexed
until operator, where the indexes A1,A2 are sets of events.

The intuitive interpretation of the operators is given as follows with respect
to a tLTS (Q, q0, L,R, T , P). A state q ∈ Q satisfies an event-based predicate α
if it enables a transition labeled with α. On the other hand, q satisfies a trust-
based predicate w > k if the evaluation of w in q, denoted by wq, satisfies the
condition >k. The evaluation of w in q depends on the trust predicates labeling
q, i.e., P (q). If w is a trust metric, then it is computed by the trust model
that takes as input values the trust information encoded in P (q). The logical
connectives and the quantifiers over the paths have the usual interpretation.
In particular, a path satisfies the until formula Φ A1U Φ′ if along the path a
state satisfying Φ′ is visited, while until reaching such a state, all the visited
states satisfy Φ and all the executed events belong to A1. The only difference in
the interpretation of the until formula Φ A1UA2 Φ′ is that the event leading to
the state satisfying Φ′ belongs to A2. Such a difference emphasizes that a path
satisfying Φ A1UA2 Φ′ includes at least a transition. Instead, a state q satisfying
Φ′ satisfies also Φ A1U Φ′ independently of its outgoing transitions, if any.

In order to introduce the formal semantics of the operators, we recall some
notations. A path σ is a (possibly infinite) sequence of transitions of the form:

q0
α0−−−→ q1 . . . qj−1

αj−1

−−−→ qj . . .

where qj−1

αj−1

−−−→ qj denotes the transition (qj−1, αj−1, qj) ∈ R, for each j > 0.

Every state qj in the path is denoted by σ(j). Moreover, qj

A
−−−→ qj+1 can be

used in the case αj ∈ A ⊆ L. We denote with Path(q) the set of paths starting
in state q ∈ Q. Then, the formal semantics of LMT is shown in Table 1.

As a shorthand, the derived operators of Table 2 are defined. Such abbre-
viations allow for the definition of compact patterns that represent trust-based
variants of classical formulas used in the setting of safety analysis. Some exam-
ples are given by reachability:

EF (tij > k ∧ α)

and its variants given by conditional and extended reachability:

E(tij > k A1
U α)

AGEF (tij > k)
EFEGA1 .

As an example, the first conditional reachability pattern can be used to define a
property stating whether eventually a certain (trust-based) action α is executed,
provided that along the path preceding it, while executing actions in A1 only, j
is trusted by i if the trust threshold is k. Another interesting class of properties
is related to liveness:

AG(tij > k → AFα)
AG(α → AG(tij > k))

12 A. Aldini and M. Tagliaferri

Table 1. Semantics of LMT.

q |= true holds always

q |= α iff ∃q′ : q
α−−−→ q′ ∈ R

q |= w > k iff wq > k
q |= Φ ∧ Φ′ iff s |= Φ and s |= Φ′

q |= ¬Φ iff s �|= Φ
q |= AΨ iff ∀σ ∈ Path(q) : σ |= Ψ
q |= EΨ iff ∃σ ∈ Path(q) : σ |= Ψ

σ |= Φ A1U Φ′ iff ∃n ≥ 0 :

σ(n) |= Φ′ ∧ (for all 0 ≤ i < n : σ(i) |= Φ ∧ σ(i)
A1−−−→ σ(i + 1))

σ |= Φ A1UA2 Φ′ iff ∃n > 0 :
σ(n) |= Φ′ ∧ (for all 0 ≤ i < n − 1 : σ(i) |= Φ ∧
σ(i)

A1−−−→ σ(i + 1)) ∧ σ(n − 1) |= Φ ∧ σ(n − 1)
A2−−−→ σ(n)

which can be used to state whether certain conditions about trust are sufficient
to enable the execution of certain (trust-based actions), or viceversa.

By considering that the granularity of the trust-based information and of the
trust model parameters is at the level of the single agent, these patterns can be
used to perform sensitivity analysis with respect to the parameters governing the
trust model. Moreover, it is possible to verify the effects of pro-social attitudes of
the agents, malicious behaviors of single agents or coalitions of agents, fake infor-
mation injected by such malicious agents in order to execute bad mouthing (false
negative recommendations about honest agents), ballot stuffing (false positive
recommendations about dishonest agents), collusion, and so on. Analogously,
since the model can easily capture dynamic behaviors, even the related attacks
can be model checked, such as on-off (agents alternating good and bad behav-
iors), sybil (adversaries creating multiple fake colluding agents), white-washing
(change of identity when reputation is compromised), and so on. For instance,

Table 2. Derived operators of LMT.

XΦ = false ∅UL Φ
XA1Φ = false ∅UA1 Φ
EFΦ = E(true LU Φ)

EFA1Φ = E(true LUA1 Φ)
AFΦ = A(true LU Φ)

AFA1Φ = A(true LUA1 Φ)
EGΦ = ¬AF¬Φ

EGA1 = ¬AFL−A1 true
AGΦ = ¬EF¬Φ

AGA1 = ¬EFL−A1 true

Logics to Reason Formally About Trust Computation and Manipulation 13

examples of trust models that have been modeled formally are Eigentrust and
Subjective Logic; more specific trust systems that have been modeled, compared,
and analyzed are Trust-Incentive Service Management, Reputation-based Frame-
work for Sensor Networks, Robust Reputation System [1,2].

5 Conclusion

Two logical languages have been discussed that propose a formal framework for
the modeling and analysis of a general notion of trust and of its operational
components.

The language LCT is general enough to capture a wide range of trust notions.
Certain semantic choices can be further generalized to obtain a meta-theory of
trust in which any desired form of trust computation (e.g., based on knowledge
rather than belief) and trust property can be formalized. To this aim, it is worth
studying axiomatizations in order to investigate potential properties of interest,
like, e.g., trust transitivity. Second, it is worth comparing the notions of trust
and knowledge/belief, with respect to the typical properties that are considered
in the literature of modal logics, like, e.g., soundness and introspection.

The language LMT, as presented in this paper, offers a meta-theory for the
specification and analysis of computational trust models. Model checking tech-
niques have been used to test its expressiveness and flexibility in estimating
the properties of real-world trust systems and their robustness against several
classes of attacks. As a fundamental future work, the bridge between the two
logics still requires the definition of an algorithmic process enabling the two-steps
automated analysis of the computing and manipulating components of trust.

References

1. Aldini, A.: Modeling and verification of trust and reputation systems. J. Secur.
Commun. Netw. 8(16), 2933–2946 (2015)

2. Aldini, A.: Design and verification of trusted collective adaptive systems. Trans.
Model. Comput. Simul. (TOMACS) 28(2), Article no. 9 (2018). https://doi.org/
10.1145/3155337

3. Alexopoulos, N., Daubert, J., Mühlhäuser, M., Habib, S.M.: Beyond the hype:
on using blockchains in trust management for authentication. In: IEEE Trust-
com/BigDataSE/ICESS, pp. 546–553. IEEE (2017)

4. Anakath, A., Rajakumar, S., Ambika, S.: Privacy preserving multi factor authen-
tication using trust management. Clust. Comput. 22, 10817–10823 (2019)

5. Barber, B.: The Logic and Limits of Trust. Rutgers University Press, New
Brunswick (1983)

6. Bateson, P.: The biological evolution of cooperation and trust. In: Gambetta, D.
(ed.) Trust: Making and Breaking Cooperative Relations, pp. 31–48. Blackwell,
New York (1988)

7. van Benthem, J., Fernández-Duque, D., Pacuit, E.: Evidence logic: a new look at
neighborhood structures. Adv. Modal Log. 9, 97–118 (2012)

https://doi.org/10.1145/3155337
https://doi.org/10.1145/3155337

14 A. Aldini and M. Tagliaferri

8. Solhaug, B., Stølen, K.: Uncertainty, subjectivity, trust and risk: how it all fits
together. In: Meadows, C., Fernandez-Gago, C. (eds.) STM 2011. LNCS, vol. 7170,
pp. 1–5. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29963-6 1

9. Blaze, M., Feigenbaum, J., Ioannidis, J., Keromytis, A.D.: The role of trust man-
agement in distributed systems security. In: Vitek, J., Jensen, C.D. (eds.) Secure
Internet Programming. LNCS, vol. 1603, pp. 185–210. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48749-2 8

10. Castelfranchi, C., Falcone, R.: Principles of trust for MAS: cognitive anatomy,
social importance, and quantification. In: International Conference on Multi Agent
Systems (ICMAS), pp. 72–79. IEEE (1988)

11. Chapin, P.C., Skalka, C., Wang, X.S.: Authorization in trust management: features
and foundations. Comput. Surv. 40(3), 9:1–9:48 (2008)

12. Coleman, J.: Foundations of Social Theory. Harvard University Press, Cambridge
(1990)

13. Dasgupta, P.: Trust as a commodity. In: Gambetta, D. (ed.) Trust: Making and
Breaking Cooperative Relations, pp. 49–72. Blackwell, New York (1988)

14. Drawel, N., Bentahar, J., Laarej, A.: Verifying temporal trust logic using CTL
model checking. In: 20th International Workshop on Trust in Agent Societies.
CEUR-WS (2018)

15. Fehr, E.: On the economics and biology of trust. J. Eur. Econ. Assoc. 7, 235–266
(2009)

16. Hardin, R.: The street-level epistemology of trust. Polit. Soc. 21, 505–529 (1993)
17. Hardin, R.: Trust and Trustworthiness. Russell Sage Foundation, New York (2002)
18. Herzig, A., Hübner, J.F., Lorini, E., Vercouter, L.: A logic of trust and reputation.

Log. J. IGPL 18(1), 214–244 (2010)
19. Husseini, A., M’Hamed, A., ElHassan, B.A., Mokhtaari, M.: A novel trust-based

authentication scheme for low-resource devices in smart environments. Pers. Ubiq-
uit. Comput. 5(5), 362–369 (2011)

20. Jøsang, A.: Trust and reputation systems. In: Aldini, A., Gorrieri, R. (eds.) FOSAD
2006-2007. LNCS, vol. 4677, pp. 209–245. Springer, Heidelberg (2007). https://doi.
org/10.1007/978-3-540-74810-6 8

21. Jøsang, A.: Subjective Logic. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-42337-1

22. Jøsang, A., Ismail, R., Boyd, C.: A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43(2), 618–644 (2007)

23. Kim, H., Lee, E.A.: Authentication and authorization for the Internet of Things.
IEEE IT Prof. 19(5), 27–33 (2017)

24. Koshutanski, H., Massacci, F.: An interactive trust management and negotiation
scheme. In: Dimitrakos, T., Martinelli, F. (eds.) Formal Aspects in Security and
Trust. IIFIP, vol. 173, pp. 115–128. Springer, Boston (2005). https://doi.org/10.
1007/0-387-24098-5 9

25. Levi, M.: A state of trust. In: Braithwaite, V., Levi, M., Cook, K., Hardin, R. (eds.)
Trust and Governance, pp. 77–101. Russell Sage Foundation, New York (1998)

26. Luhmann, N.: Trust and Power. Wiley, New York (1979)
27. Mármol, F.G., Pérez, G.M.: Trust and reputation models comparison. Internet

Res. 21(2), 138–153 (2011)
28. Marsh, S.: Formalising Trust as a Computational Concept. University of Stirling,

Scotland (1994)
29. Mousa, H., Mokhtar, S.B., Hasan, O., Younes, O., Hadhoud, M., Brunie, L.: Trust

management and reputation systems in mobile participatory sensing applications:
a survey. Comput. Netw. 90, 49–73 (2015)

https://doi.org/10.1007/978-3-642-29963-6_1
https://doi.org/10.1007/3-540-48749-2_8
https://doi.org/10.1007/978-3-540-74810-6_8
https://doi.org/10.1007/978-3-540-74810-6_8
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/978-3-319-42337-1
https://doi.org/10.1007/0-387-24098-5_9
https://doi.org/10.1007/0-387-24098-5_9

Logics to Reason Formally About Trust Computation and Manipulation 15

30. Muller, T.: Semantics of trust. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST
2010. LNCS, vol. 6561, pp. 141–156. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-19751-2 10

31. Nissenbaum, H.: Securing trust online: wisdom or oxymoron. Boston Univ. Law
Rev. 81(3), 635–664 (2001)

32. Nunoo-Mensah, H., Boateng, K.O., Gadze, J.D.: The adoption of socio- and bio-
inspired algorithms for trust models in wireless sensor networks: a survey. Int. J.
Commun. Syst. 31(7), e3444 (2018)

33. Pacuit, E.: Neighborhood Semantics for Modal Logic. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-67149-9

34. Rasmusson, L., Jansson, S.: Simulated social control for secure Internet commerce.
In: Proceedings of the Workshop on New Security Paradigms, pp. 18–25 (1996)

35. Robbins, B.G.: What is trust? A multidisciplinary review, critique, and synthesis.
Sociol. Compass 10(10), 972–986 (2016)

36. Schelling, T.: The Strategy of Conflict. Harvard University Press, Cambridge
(1960)

37. Seigneur, J.-M., Ahram, T., Taiar, R.: A survey on trust in augmented human
technologies. In: Ahram, T., Karwowski, W., Taiar, R. (eds.) IHSED 2018. AISC,
vol. 876, pp. 1033–1037. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-02053-8 157

38. Singh, M.P.: Trust as dependence: a logical approach. In: 10th International Con-
ference on Autonomous Agents and Multiagent Systems (AAMAS), pp. 863–870
(2011)

39. Singh, S., Bawa, S.: A privacy, trust and policy based authorization framework for
services in distributed environments. Int. J. Comput. Sci. 2(2), 85–92 (2007)

40. Tagliaferri, M., Aldini, A.: From knowledge to trust: a logical framework for pre-
trust computations. In: Gal-Oz, N., Lewis, P.R. (eds.) IFIPTM 2018. IAICT,
vol. 528, pp. 107–123. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
95276-5 8

41. Tagliaferri, M., Aldini, A.: A taxonomy of computational models for trust com-
puting in decision-making procedures. In: 17th European Conference on Cyber
Warfare and Security (ECCWS), pp. 571–578. ACPI (2018)

42. Tagliaferri, M., Aldini, A.: A trust logic for pre-trust computations. In: 21th Inter-
national Conference on Information Fusion (FUSION). IEEE (2018)

43. Tagliaferri, M., Aldini, A.: A trust logic for the varieties of trust. In: Camara, J.,
Steffen, M. (eds.) SEFM 2019. LNCS. Springer (2019, to appear)

44. Trivers, R.L.: The evolution of reciprocal altruism. Q. Rev. Biol. 46(1), 35–57
(1971)

45. Trivers, R.L.: Natural Selection and Social Theory: Selected Papers of Robert
Trivers. Oxford University Press, New York (2002)

46. Uslaner, E.M.: Who do you trust? In: Shockley, E., Neal, T.M.S., PytlikZillig,
L.M., Bornstein, B.H. (eds.) Interdisciplinary Perspectives on Trust, pp. 71–83.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-22261-5 4

47. Williamson, O.: Calculativeness, trust, and economic organization. J. Law Econ.
36(2), 453–486 (1993)

48. Yu, B., Singh, M.P.: Detecting deception in reputation management. In: 2nd
International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pp. 73–80. ACM (2003)

49. Zhang, C.C., Winslett, M.: Distributed authorization by multiparty trust negotia-
tion. In: Jajodia, S., Lopez, J. (eds.) ESORICS 2008. LNCS, vol. 5283, pp. 282–299.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88313-5 19

https://doi.org/10.1007/978-3-642-19751-2_10
https://doi.org/10.1007/978-3-642-19751-2_10
https://doi.org/10.1007/978-3-319-67149-9
https://doi.org/10.1007/978-3-030-02053-8_157
https://doi.org/10.1007/978-3-030-02053-8_157
https://doi.org/10.1007/978-3-319-95276-5_8
https://doi.org/10.1007/978-3-319-95276-5_8
https://doi.org/10.1007/978-3-319-22261-5_4
https://doi.org/10.1007/978-3-540-88313-5_19

An Authorization Framework
for Cooperative Intelligent Transport

Systems

Sowmya Ravidas, Priyanka Karkhanis, Yanja Dajsuren, and Nicola Zannone(B)

Eindhoven University of Technology, Eindhoven, The Netherlands
{s.ravidas,p.d.karkhanis,y.dajsuren,n.zannone}@tue.nl

Abstract. Cooperative Intelligent Transport Systems (C-ITS) aims to
enhance the existing transportation infrastructure through the use of
sensing capabilities and advanced communication technologies. While
improving the safety, efficiency and comfort of driving, C-ITS intro-
duces several security and privacy challenges. Among them, a main chal-
lenge is the protection of sensitive information and resources gathered
and exchanged within C-ITS. Although several authorization frameworks
have been proposed over the years, they are unsuitable to deal with the
demands of C-ITS. In this paper, we present an authorization frame-
work that addresses the challenges characterizing the C-ITS domain.
Our framework leverages principles of both policy-based and token-based
architectures to deal with the dynamicity of C-ITS while reducing the
overhead introduced by the authorization process. We demonstrate our
framework using typical use case scenarios from the C-ITS domain on
location tracking.

1 Introduction

Intelligent Transport Systems (ITS) are “systems in which information and
communication technologies are applied in the field of road transport, includ-
ing infrastructure, vehicles and users, in traffic management and mobility man-
agement, as well as for interfaces with other modes of transport” [4]. Coopera-
tive Intelligent Transport Systems (C-ITS) aims to improve the quality of ITS
through the use of sensing capabilities and advanced information and communi-
cation technologies [13].

Significant developments have taken place over the past few years in the C-
ITS domain. Several initiatives and projects have been established all over the
world (e.g., DITCM [34], CONVERGE [1], US-ITS [2]) to enable the develop-
ment of a cooperative architecture to support the communication of vehicles
with the transport infrastructure, service providers and other vehicles. While
these initiatives provide a foundation for the design and development of C-ITS,

S. Ravidas and P. Karkhanis—Equal contribution to this manuscript.

c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 16–34, 2020.
https://doi.org/10.1007/978-3-030-39749-4_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_2&domain=pdf
https://doi.org/10.1007/978-3-030-39749-4_2

An Authorization Framework for Cooperative Intelligent Transport Systems 17

their results can be deployed at a large scale only if the developed infrastruc-
ture and services meet the requirements posed by the C-ITS domain, including
scalability, performance and security.

Security is particularly challenging to achieve within C-ITS as it encompasses
multiple systems, such as automotive systems, road infrastructure, services and
applications, and requires addressing attackers with various motivations and lev-
els of skills, and diversity of threats and countermeasures [22]. Among the several
security concerns, the protection of information gathered and shared within C-
ITS is of utmost importance to enable its deployment at a large scale. Typically,
sensitive data are protected through the adoption of authorization mechanisms
that guarantee that only authorized parties can gain access to the data. While
several authorization frameworks have been proposed to address authorization
concerns in several application domains, there has been very little attention
towards authorization in the C-ITS domain. Given the critical and dynamic
nature of C-ITS, authorization mechanisms should not affect the functioning
and performance of the system as well as provide fine-grained protection of sen-
sitive information and resources. Specifically, an authorization framework for
C-ITS should allow the specification and evaluation of context-aware policies to
deal with the dynamicity of C-ITS, minimizing the overhead of the authorization
process, and guaranteeing its reliability [30].

In this paper, we present an authorization framework that addresses the
unique challenges of the C-ITS domain. The design of our framework leverages
principles of both policy-based [26] and token-based [3,11] architectures to deal
with the dynamicity of C-ITS while minimizing the overhead introduced by the
authorization process. Specifically, we decouple the evaluation of policies from
their enforcement. Our solution encompasses a policy-based authorization server
that is used off-line to generate tokens encoding user permissions based on the
policies provided by the resource owner. Tokens are then locally validated by the
resource server at request time to determine whether access should be granted.
While this decoupling allows minimizing the overhead introduced by the autho-
rization process at request time, relying only an off-line policy evaluation does
not make it possible to account for access constraints based on the run-time envi-
ronment. To this end, we devise authorization tokens that encompass constraints
to be verified at request time. For the design of our authorization framework,
we leverage a C-ITS reference architecture as a baseline. The adoption of a C-
ITS reference architecture helps identifying the C-ITS systems involved in the
authorization process and, thus, facilitate the realization and integration of our
authorization framework within existing C-ITS deployment sites.

The paper is organized as follows. Section 2 provides background on the C-
ITS domain and authorization. Section 3 discusses related work. Section 4 intro-
duces the C-ITS reference architecture used in this work and Sect. 5 proposes an
authorization framework conforming to such an architecture. Section 6 presents
an application of the proposed authorization framework in the context of location
tracking services. Finally, Sect. 7 discusses design choices, and Sect. 8 concludes
the paper and presents directions for future work.

18 S. Ravidas et al.

Fig. 1. ETSI security services within C-ITS

2 Background

Cooperative Intelligent Transport System (C-ITS) is emerging to improve the
quality of existing ITS infrastructure by making transportation more safe and
economical by combining data from vehicles and other sensors [13]. In particular,
C-ITS applies information and communication technologies to the field of road
transportation, including infrastructures, vehicles and users, for efficient traffic
management and mobility management. While bringing several advantages to
individuals, industry and society, the deployment of C-ITS also opens new chal-
lenges. To be adopted at a large scale, C-ITS should facilitate the addition and
management of a large range of heterogeneous devices, allow for transferring
data at high rate and provide real-time response.

On top of these issues, security is a critical success factor for the adoption
of C-ITS. This has spurred several efforts from both industry and academia to
enable and improve security within the C-ITS domain. Standardization bod-
ies such as the European Telecommunication Standards Institute (ETSI), have
defined guidelines towards the design and development of secure services for C-
ITS [5]. Specifically, ETSI has identified key secure functionalities to be provided
by C-ITS, including identification, authentication, authorization and enrolment.
These functionalities are positioned within security management services, as
illustrated in Fig. 1.

Authorization services (the focus of this work) aim at the protection of sensi-
tive information exchanged within C-ITS (e.g., location data). A typical solution
to protect sensitive information and resources is through the adoption of access
control solutions that guarantee that only authorized parties can gain access.
Access is regulated using policies that specify which actions an entity can per-
form on a certain object. In the remainder of the section, we provide an overview
of the reference architectures commonly adopted for the design of authorization
frameworks and discuss the main challenges to be addressed in the design of an
authorization framework tailored to C-ITS.

An Authorization Framework for Cooperative Intelligent Transport Systems 19

PIP

4. attribute 5. attribute value

PEP

PDP
1. policy

6. response

2. access request
Requester

PAP

3. access request

(a) Policy-based Architecture

Resource
Server

6. protected resource

5. access token

Resource
Owner

Authorization
Server

Client

4. access token

2. authorization grant

1. access request

3. authorization grant

(b) Token-based Architecture

Fig. 2. Authorization reference architectures

Authorization Reference Architectures: Several architectures have been proposed
for the design of authorization mechanisms. Two widely adopted architectures
are the policy-based and token-based architectures. Policy-based architectures
can be exemplified by the reference architecture proposed by XACML [26],
the de facto standard for the specification and enforcement of attribute-based
access control policies. This architecture comprises four main components: Pol-
icy Enforcement Point (PEP), which provides an interface with the system and
is responsible for enforcing access decisions; Policy Decision Point (PDP), which
evaluates access requests against access control policies and determines whether
access should be granted or denied; Policy Administration Point (PAP), which
acts as a policy repository and offers facilities for policy management; Policy
Information Point (PIP), which denotes the source of information (e.g., con-
text information) needed for policy evaluation. Figure 2a shows the interaction
between these components. The PAP makes the policies available to the PDP
(1). Upon receiving an access request (2), the PEP forwards the request to the
PDP (3), which evaluates the request against the policies fetched from the PAP.
If additional information is required for policy evaluation, the PDP queries the
PIP (4, 5). The PDP evaluates the request against the policies and returns
a response specifying the access decision to the PEP (6), which enforces the
decision.

Authorization mechanisms adopting a policy-based architecture typically
provide a single, centralized point for the evaluation and enforcement of access
control policies [18]. This solution may not be suitable when resources are dis-
tributed across different nodes, which is a typical situation in C-ITS. The last
years have seen the emergence of token-based architectures as an alternative
to policy-based architectures to deal with the needs of open and decentralized
systems. Various standards have defined reference token-based architectures and
authorization protocols [3,11]. Although these architectures and protocols vary
in the way tokens are generated and in the flow of the authorization process,
they share the same underlying principles. As an example, Fig. 2b presents the
OAuth protocol [11], in which a client application first obtains a token encoding

20 S. Ravidas et al.

its permissions from an authorization server and subsequently uses it to access
a given resource.

Challenges: An authorization framework should not affect the functioning of
C-ITS. Given the constraints imposed by these systems, the design of an autho-
rization framework for C-ITS presents a number of challenges. These challenges
will be used to identify the main concepts and design principles that should be
considered when developing an authorization framework for C-ITS.

– Dynamicity: C-ITS are complex and dynamic systems in which an increasing
number of entities (e.g., vehicles, RSUs) are connected and in which network
topology and connectivity changes over time. To handle the dynamic nature
of C-ITS, an authorization framework should support the specification and
evaluation of context-aware access control policies that impose conditions on
the C-ITS ecosystem such as access time and location.

– Management: The dynamicity of the C-ITS ecosystem can also affect policy
management. In such systems, the resources of an entities can be stored and
managed by different administrative domains interacting together. Therefore,
an authorization framework should be able to support the management of
access control policies for devices and resources across multiple domains.

– Automation: A main characteristic of C-ITS is collaboration, which is
achieved through interactions between entities involved in the C-ITS (e.g.,
vehicles, RSUs). These interactions involve the sharing of real-time safety
critical information. Hence, C-ITS systems require a high level of automa-
tion, possibly without any user involvement. This need for automation also
reflects in the authorization process.

– Performance: C-ITS are critical systems in which delays can have serious
consequences and even result in human loss. Therefore, services deployed
within the C-ITS should not introduce latency both in terms of computation
and communication. This constraint extends to the authorization process.
In particular, the authorization process should not inhibit performance with
significant overhead, which violates the timing constraints imposed by the
C-ITS.

– Reliability: The critical nature of C-ITS also poses high demands for business
continuity, even in cases of system failures. On the other hand, the highly
sensitive information gathered and exchanged within the C-ITS requires pro-
tection and its disclosure to unauthorized parties should be prevented. Meet-
ing these (apparently conflicting) demands requires the authorization process
to be reliable. Even in cases where failures or loss of connectivity occur, the
authorization framework must still be operational.

3 Related Work

Several security services for ITS have been proposed in the literature [6,22,30,
31,36,37]. However, they typically focus either on authentication alone or on the
protection of communication using cryptographic techniques. To the best of our

An Authorization Framework for Cooperative Intelligent Transport Systems 21

Table 1. Analysis of existing authorization frameworks for ITS. Symbol ○ denotes
that a challenge is addressed, � that it is partially addressed, and ○␣ that its is not
addressed

Ref. Arch. Dynamicity Management Automation Performance Reliability

Salonikias et al. [33] Policy-based ○ ○ ○ � �

Gupta et al. [15] Policy-based � ○ ○ � �

Dorri et al. [12] Blockchain ○␣ ○␣ ○ ○␣ �

Albouq et al. [8] Policy-based � ○ ○ � �

Riabi et al. [32] Policy-based ○␣ � ○ � ○␣

knowledge, only a few authorization frameworks have been proposed in the ITS
context. Salonikias et al. [33] propose a policy-based authorization mechanism
tailored to vehicular infrastructures based on fog computing. This mechanism
comprises multiple PDPs and PEPs located at the edge, while a single PAP
(which also encompasses a PIP) deployed in the cloud is responsible to maintain
and propagate access control policies to the PDPs. Gupta et al. [15] present an
authorization framework for Internet of Vehicles. This framework proposes the
deployment of authorization components (PEP, PDP, PAP, PIP) at different
layers – object, virtual object and cloud level layer – to deal with different types
of interactions. Dorri et al. [12] propose an authorization framework for vehicular
networks based on blockchain. In this framework, interactions between vehicles
are stored in the blockchain as transactions, which are verified by powerful nodes
acting as miners. Albouq et al. [8] propose a policy-based framework for ITS
infrastructures based on fog computing. Service providers deploy their services
in fog nodes and vehicles can connect to these nodes through RSUs acting as
edge network units. RSUs rely on the publish-subscribe paradigm to enable
vehicles to subscribe to the services deployed in fog nodes. In this respect, the
authorization framework resides within RSUs to control which services can be
published whereas vehicles can subscribe to any (allowed) service. Riabi et al. [32]
propose the use of a distributed hash table (DHT) to handle authorization within
ITS. Resources are stored in fog nodes and each fog node maintains a DHT
specifying the mapping between fog nodes and the Access Control List (ACL)
maintained by them. Upon receiving an access request for a given resources,
fog nodes use the DHT to identify the node handling the requested resource and
forward the request to such a node, which makes an access decision by evaluating
the request against its ACL.

Discussion: Despite the number of authorization mechanisms for ITS proposed
by both industry and academia, existing authorization mechanisms are inad-
equate to deal with the open and dynamic nature of C-ITS systems. Table 1
presents an analysis of existing authorization frameworks for ITS with respect
to the challenges discussed in Sect. 2.

An authorization framework for C-ITS should cope with the dynamic nature
of ITS. While some frameworks (e.g., [15,33]) support the definition of context
constraints in policies and their evaluation, many frameworks (e.g., [8,12,32])

22 S. Ravidas et al.

do not, thereby not addressing this challenge. Nonetheless, most frameworks
[8,15,33] provide a single point for policy administration, thus facilitating policy
administration. An exception is the frameworks in [12], in which policies reside
within vehicles. It is worth noting that the framework in [32] allows resource
owners to deploy their policies to a single fog node and uses a DHT to iden-
tify which nodes should evaluate a request for a given resource. However, the
DHT stored in each node has to be updated whenever an ACL is modified. The
automation of the authorization process is satisfied by all frameworks as they
do not require user involvement in the authorization process.

To be effective in C-ITS, an authorization framework should not introduce
significant overhead and latency and, in general, should not affect the overall
performance of the C-ITS [30]. None of the existing frameworks fully satisfies
this requirement. Existing authorization frameworks typically perform policy
evaluation upon receiving an access request, thus delaying service provision. In
addition, some frameworks require additional communication to retrieve the con-
text information needed for policy evaluation [33], or rely on technology that is
computational expensive like blockchain [12]. Other frameworks [8,15,32] adopt
a centralized architecture where all authorization components reside within the
cloud, a fog node or the vehicle. However, assuming that all (context) infor-
mation needed for policy evaluation is available from a single source limits the
constraints on the context that can be verified.

Existing authorization frameworks partially address the reliability of the
authorization process by placing authorization components within the cloud
[15,33], which typically provides recovery measures to ensure business continuity.
In addition, Salonikias and colleagues envision redundancy for those components
deployed at the edge. Similarly, the frameworks in [12] and in [8] can theoreti-
cally ensure the reliability of authorization components by replicating them in
blockchain nodes and RSUs, respectively. However, for both frameworks, scenar-
ios of node failure or loss of connectivity are not analyzed. In [32], the request
can be sent to any fog node, which forwards it to the node that has the requested
resource. However, ACLs are not replicated among nodes, leading to reliability
issues in case of connectivity loss or node failure.

In summary, existing authorization frameworks fail to fully address all chal-
lenges posed by C-ITS. A main drawback is given by latency due to the choice of
a policy-based architecture for their design. In this work, we present an autho-
rization framework for C-ITS that adopt principles underlying the token-based
architecture as a baseline for its design (Sect. 5). This architecture provides a
foundation to deal with the dynamicity and performance constraints typical of
C-ITS scenarios.

4 C-ITS Reference Architecture

For the design of our authorization framework for C-ITS and its realization and
integration in existing C-ITS sites, we adopt a C-ITS reference architecture as
a baseline for our design. A reference architecture is typically used to facilitate

An Authorization Framework for Cooperative Intelligent Transport Systems 23

Governance
Test &

Certification
Management

Security & Credentials Management

Operational
Management Central System

Roadside System

Vehicle System

Traveler/VRU System

Support System

x.509 Enrollment
Authority

x.509 Root
Certification Authority

Long Term
Certification Authority

Authorization
Authority

Fig. 3. C-ITS reference architecture

communication and cooperation between different stakeholders during the design
and development of complex systems. A reference architecture for the C-ITS
domain addresses not only demands in the software/system engineering field,
but also in traffic engineering, civil engineering, information technology, etc.
Moreover, its design should account not only for new systems but also taking
into account the infrastructure and systems already in place.

In the recent years, several C-ITS reference architectures have been proposed
to address the interdisciplinary concerns and to enable the large scale deployment
of region or nation wide C-ITS services. In this work, we adopt the C-ITS refer-
ence architecture proposed in the C-MobILE project (http://c-mobile-project.
eu) as a baseline for the design of our authorization framework. The C-MobILE
reference architecture provides a baseline for the design of a C-ITS infrastruc-
ture mainly targeting traffic related concerns [9,20]. The C-MobILE reference
architecture is based on the generalization of existing C-ITS architectures while
addressing the main concerns of the C-ITS stakeholders.

The C-MobILE reference architecture categorizes C-ITS systems into five
main types based on the functionalities they provide, as illustrated in Fig. 3.
Below we present a brief description of the main systems and refer to [9] for
details:

– Support system consists of systems supporting the governance and manage-
ment of C-ITS services. Support systems influence all other systems of the
C-ITS.

– Central system comprises systems that support connected vehicles and road-
side units by capturing data from vehicles and roadside units, and providing
such data to C-ITS applications. Central systems can be aggregated together
or can be geographically or functionally distributed.

– Roadside system consists of systems forming the physical road infrastructure
such as roadside units, traffic light controllers, and cameras.

– Vehicle system comprises systems integrated within vehicles such as a Vehicle
On-Board Unit (V-OBU).

http://c-mobile-project.eu
http://c-mobile-project.eu

24 S. Ravidas et al.

Vehicle On-board
unit Cloud Services

Traffic light
controllers

Roadside Units (sensors,
cameras)

Vehicle On-board
unit Cloud Services

Authorization Authority

Governance Vehicle owner

Resource Owner

Authorization
Server

Requesting Party

Resource Server (PEP)

Policy Information Point

Support
System

Central System

Vehicle System

Roadside
System

Fig. 4. Authorization framework and mapping of its components to C-ITS systems

– Traveler/VRU system consists of personal devices, typically a smart phone
or personal navigation device used by a traveler or Vulnerable Road User
(VRU).

Security services are provided by the support system. Below we describe its
sub-systems.

– Governance comprises systems and entities that are responsible for the func-
tioning and security of the C-ITS.

– Operational Management comprises systems enabling operational processes
such as fault, performance and configuration management of C-ITS systems.

– Test and Certification Management supports the registration and manage-
ment of tested and certified communication systems for ITS (safety) applica-
tions.

– Security and Credentials Management provides a high-level representation
of the systems that enable trusted communications between mobile devices,
roadside devices and centres, and protect data from unauthorized access.
A sub-systems is the Authorization Authority, which is in charge of issuing
authorization tickets to ITS entities.

In the next section, we present the design of our authorization framework
and show how its components are mapped to the systems of the C-ITS reference
architecture. This mapping will help understand the external interfaces, high
level functional capabilities of the authorization components within the C-ITS
architecture.

5 Authorization Framework

Existing authorization frameworks are usually based on either a policy-based
or a token-based architecture. As discussed in Sect. 2, policy-based frameworks

An Authorization Framework for Cooperative Intelligent Transport Systems 25

Run-time token validation

Off-line token generation

Resource Owner

Authorization
Server

Resource
Server (PEP) PIPRequesting

Party

Policies

1. Authorization Token
Request

2. Token Generation

3. Authorization Token

4. Resource Request + Authorization Token

5. Token Validation

6. Attribute Request

7. Attribute Values

8. Context Condition
Verification

9. Resource

Fig. 5. Authorization process

often introduce delays that cannot be tolerated by the C-ITS. While existing
token-based frameworks address this issue by limiting the operations to be per-
formed at run-time to token validation, they usually require user involvement
to determine whether access should be granted, thus providing no automation
of the authorization process. In this work, we propose a hybrid authorization
framework that leverages the advantages of both these architectures. In particu-
lar, we divide the authorization process into two main stages: an off-line process
in which tokens are automatically generated based on policies (without any user
involvement) and a run-time process in which tokens are validated. Such an
approach provides the flexibility and performance necessary to deal with the
dynamic and critical nature of C-ITS while providing a high degree of automa-
tion. In the remainder of the section, we present the main components of the
framework along with the authorization process.

Authorization Components: The authorization framework encompasses the
following entities and components:

26 S. Ravidas et al.

policy {
“Combining Algorithm“: permit-overrides
“target”: {

“resource”: vehicle7282:location
}
“rule“:{

“target”: {
“subject_organization“: MyInsurance
“action”: GET
}
“effect”: permit
“constraint”:Driver=A120223

}
“rule“:{

“target”: {
“subject_role“: traffic authority
“action”: GET
}
“effect”: permit
“constraint”: resource_location ∈ subject_region

}
}

(a) Policy

request: {
subject_id: AI094520
subject_organization: MyInsurance
resource_id: vehicle7282:location

}

(b) Request

token{
“permissions”: [

{
“resource_id”: vehicle7282:location
“subject_id”: Al094520
"scopes": [

"GET"
“constraint”: Driver=A120223

],
}

]
“created_at”: 2019-03-10T11:55:00
“expires_at”: 2019-04-10T11:54:59

}

(c) Authorization Token

Fig. 6. Example of a policy, a request and a token

– Resource Owner is the user or legal entity that controls a given resource.
– Resource Server is the component hosting the resource on behalf of resource

owner.
– Authorization Server is the component that protects resources hosted on a

resource server on behalf of the resource owner. The authorization server
generates tokens based on access requirements specified by the resource owner,
thus acting as the PDP.

– Policy Information Point denotes the source of context information.
– Requesting Party is a user or a legal entity that uses a client application to

access resources.

Figure 4 shows these components along with their interactions. It also provides
their mapping to the systems of the C-ITS reference architecture in Fig. 3. This
mapping identifies which C-ITS systems can play a role in the authorization
process.

Authorization Process: The authorization process supported by our hybrid
authorization framework is performed in two stages. First, the authorization
server evaluates the policies off-line and generates an authorization token assert-
ing the permissions of the requesting party. Then, when requesting access to
a resource, the requesting party provides the token along with request to the
resource server, which validates the token and verifies additional constraints on
the context (if any). The procedures for off-line token generation and run-time
token validation are represented in Fig. 5.

We assume that the resource owner stores her resources in a resource server.
Moreover, she has provided the authorization server with access control policies

An Authorization Framework for Cooperative Intelligent Transport Systems 27

PEP

Request Handler

Resource Handler

permission

Context Verification

Token Validator

token

attributecondition
«Interface»

Requesting Party
«Interface»

PIP

request

Fig. 7. Component diagram of PEP

defining who can access her resources. It is worth noting tha resources can be
under the control of multiple entities or negotiation between entities may be
necessary to determine how resources can be used and with whom they can be
shared. In this settings, data sharing agreements [19,25] should be established
between the involved parties to determine provisions concerning access and dis-
semination. How data sharing agreements and collaborative policies [10,23] can
be defined is out of the scope of this work and here we simply assume that
the policies to be enforced are provided to the authorization server. Interested
readers can refer to [28] for a thorough discussion on this issue.

In this work, we consider policies specified in attribute-based access control
(ABAC) as this paradigm provides a means for the specification of fine-grained
access control policies. In ABAC, access requests and policies are defined in terms
of attribute name-value pairs. Policies have a target, which defines the applicabil-
ity of the policy by specifying to which requests the policy applies, and an effect,
which specifies whether the subject has the permission to perform the speci-
fied action on the resource (permit) or not (deny). Figure 6a shows an example
policy expressed in (a compact representation of) the XACML policy language
[26]. This example policy is used to regulate the access to the location informa-
tion of a given vehicle and consists of two rules combined using permit-override
combining algorithm. The first rule states that subjects working in a certain
insurance company are allowed to perform a GET operation to retrieve location
information, whereas the second rule is used to restrict the access to the traffic
authority operating in the region in which the vehicle is passing through. Note
that policies, being evaluated off-line, can only be used to verify constraints on
static properties of the subjects and resources. To account for context-depended
properties (e.g., location, current time), policies also include constraints that are
returned along with the authorization token and verified at run-time time (see
below).1 For instance, in our example, the constraint of the first rule allows the
insurance company to retrieve location information of the vehicle only when a
given individual is driving the vehicle.

1 Constraints can be specified in XACML using element <Obligations>. In XACML,
obligations are returned along with the access decision (either permit or deny) to
enrich the decision.

28 S. Ravidas et al.

cloud

3. Request + Activation Token

4.
 L

oc
at

io
n

D
at

a

Requesting Party

PEP

Authorization Server

PDP

1.
 R

eq
ue

st
 A

ct
iv

at
io

n
To

ke
n

2.
 A

ct
iv

at
io

n
To

ke
n

(a) Activation of Location Data Forwarding

Lo
ca

tio
n

D
at

a

Requesting party

PEP

Authorization Server

PDP

1.
 R

eq
ue

st
 A

cc
es

s
To

ke
n

2.
 A

cc
es

s
To

ke
n

 cloud

3. Request + Access Token

4. Location Data

PEP

PEP

(b) Retrieval of Location Data

Fig. 8. Deployment of the authorization framework for location tracking

Off-line Token Generation: The authorization process starts with the off-line
generation of an authorization token (top of Fig. 5). The requesting party
requests the authorization token from the authorization server to access a
resource (1). The authorization server determines the permissions of the request-
ing party on the resource on the basis of the policies provided by the resource
owner and generates an authorization token listing all permissions the request-
ing party has over the resource (2). The token is then sent to the requesting
party (3). Figure 6c shows the authorization token generated by evaluating the
access request in Fig. 6b against the policy in Fig. 6a. The token contains the per-
missions of the requesting party on the resource along with the validity period of
the token. It is worth noting that the constraint specified in the policy is passed,
together with the permissions, to the authorization token in order to prevent
application overprivilege [17,35]. This constraint is then verified at run-time to
determine whether access should be granted.

Run-Time Token Validation: When the requesting party wants to access a
resource, she sends a request to the PEP located in the resource server along
with the authorization token (4). The resource server verifies whether the token
is valid (5). In addition, the resource server verifies the constraints provided in
the token. If additional information is needed to verify the constraints on the
context, the resource server retrieves it from the appropriate sources (PIPs),
which can be located within the resource server or in a different component (6
and 7). For example, the resource server could be vehicle which may have to
retrieve context information from the nearby RSUs. If the verification of the
constraint (8) is successful, the resource is disclose to the requesting party (9).
Figure 7 provides a detailed view of the components and interfaces involved in
the run-time token validation process.

Note that authorization tokens needs to be protected against tampering or
relay attacks. How tokens can be protected against those attacks is out of the
scope of this work and we refer to [11] for approaches commonly used to secure
authorization tokens.

An Authorization Framework for Cooperative Intelligent Transport Systems 29

6 Application to Location Tracking Services

This section presents typical C-ITS use case scenarios and discusses how our
authorization framework can be deployed to deal with such scenarios.

6.1 Location Tracking Services

Location information is an enabler for several services in the C-ITS domain
[5]. For instance, location information can be used to increase vehicular safety
(such as notification of nearby accident), tracking of stolen vehicle, pay-per-drive
insurance, car sharing, toll payment, etc. To enable the retrieval of location infor-
mation from a vehicle, the vehicle owner typically has to activate the forwarding
of location information within the vehicle, including setting the time interval
data are transmitted. Since this might generate a large amount of data, it is not
ideal to forward the data to the requester directly. To this end, in our scenarios,
we envision that data are transmitted to one of the C-ITS central systems (e.g., a
Data Provider Back Office in the cloud), from which data can be retrieved when
needed. Below we present typical use case scenarios relying on location tracking.
These scenarios are an adaptation of the ones defined in the ETSI standard [5].

Scenario 1: Pay Per Drive Insurance. Consider two sibyls, Alice and Bob, who
co-own a car. They want to insure their car, but they would like different types
of insurance. While Bob prefers a fixed premium, Alice wants a pay-per-drive
insurance where the premium of the insurance policy is based on the kilometers
traveled. In order to calculate the premium, the insurance company should be
able to retrieve the location information from the vehicle when it is driven by
Alice.

Scenario 2: Stolen Car. Alice and Bob’s car was stolen and, thus, the two sibyls
alert the police. Assuming that Bob has previously activated the forwarding of
location information from the vehicle to the cloud, he can retrieve the exact
location of his car in real time. Bob shares this information with the police to
assist them in retrieving the car.

While enabling a variety of services, location information is sensitive and,
thus, should be protected from unauthorized accesses. Next, we present how the
authorization framework in Sect. 5 can be used to enable the selective sharing of
location information.

6.2 Authorization Framework for Location Tracking Services

The first step for adapting our authorization framework to the scenarios above
is to identify the C-ITS systems to which its components are deployed. In the
scenarios, the owner of the vehicle represents the resource owner as he is the
entity to whom information refers and, thus, he has the control on how the
information is processed and to whom it can be disclosed [14]. The authorization
server is handled by the Authorization Authority within the support system
(cf. Fig. 3). The insurance company (scenario 1) and the police (scenario 2),

30 S. Ravidas et al.

which can be seen as two instances of the service provider back office (SP-BO)
within the central system, are the requesting parties.

The scenarios involve two main phases: a first phase in which the forwarding
of location information is activated and a second phase in which the information
is retrieved from the Data Provider Back Office (DP-BO) that the vehicle owner
used to store its data. Accordingly, the C-ITS system acting as the resource
server varies in the two steps; in the first step the V-OBU acts as the resource
server whereas in the second step the DP-BO acts as the resource server. We also
distinguish two types of authorization tokens based on their purpose, namely
activation tokens and access tokens. Activation tokens are used to enable the
forwarding of location data from vehicle to the cloud. Access tokens are used to
enable the retrieval of location information from the cloud.

Forwarding of Location Information: Alice wants to activate the gathering of
the location of her vehicle, e.g., to enable vehicle tracking as demanded by her
insurance company. To this end, she enables the forwarding of location informa-
tion from the vehicle to the cloud. Figure 8a depicts the forwarding activation
process. The requesting party (acting on behalf of Alice) requests an activa-
tion token to the authorization server (1). The authorization server provides
Alice with an activation token listing her permissions on the vehicle (2). These
steps are performed during the off-line phase. At run-time, the requesting party
provides the activation token to the V-OBU (3). The PEP in the vehicle vali-
dates the token as well as verifies the constraints on the context (if any). Upon
successful validation, the vehicle starts forwarding location information to the
cloud (4).

Retrieval of Location Information: Suppose that Alice has specified a policy that
allow the insurance company to access location information of her car but only
under the condition that she is driving (see Fig. 6a). To comply with Alice’s
access requirements, the resource server (i.e., the cloud) has to verify this con-
straint at run-time before disclosing location data. This means that the resource
server might have to retrieve additional information from the vehicle or road-
side units in order to evaluate such constraints. Figure 8b depicts the information
retrieval process. In the off-line phase, the requesting party (acting on behalf of
the insurance company) requests an access token to the authorization server (1).
The authorization server verifies the permissions of the insurance company and
provides it with an access token (2). When requesting access to the location
information of Alice’s vehicle, the insurance company attaches the access token
to the request (3). The resource server validates the token and verifies the con-
straints on the context conditions (i.e., whether Alice is driving). Upon successful
validation, the location information is disclosed to the insurance company (4).

7 Discussion

This section discusses the feasibility of our framework and provides a qualitative
analysis of the main design choices with respect to the challenges presented in

An Authorization Framework for Cooperative Intelligent Transport Systems 31

Sect. 2. These choices encompass the use of a hybrid authorization framework,
the use of a centralized authorization server and the handling of contextual
information.

We have adopted a hybrid authorization framework that combines princi-
ples of both policy-based and token-based frameworks. As discussed previously,
policy-based frameworks perform policy evaluation at request time, introduc-
ing delay in service provisions. This, however, might be problematic in critical
systems as C-ITS. In our design of the authorization framework, we leverage
a token-based architecture where a token is generated off-line and then vali-
dated (along with the constraints on the context) at run-time, when access to
a resource is requested. This allows performing policy evaluation off-line, thus
reducing overhead and latency [24]. However, differently from existing token-
based frameworks like OAuth [11], which require the resource owner to autho-
rize an application the first time it requires access to a resource, we automate
the generation of tokens by exploiting the use of policies. Although there have
already been efforts to integrate the use of policies in the token-based architec-
ture [3], existing framework usually do not support the verification of context
conditions, making them unsuitable to deal with the dynamicity of C-ITS. It is
worth noting that token validation along with verification of context conditions
does not introduce a significant overhead as this operation is significantly less
expensive than policy evaluation and token generation [16].

Our framework employs a centralized component for token generation (i.e.,
the authorization server). This provides resource owners with a single point for
policy administration where they can efficiently manage their policies [7,18]. The
use of a centralized authorization server can also bring other advantages com-
pared to deploying the policy decision point into (multiple) edge nodes (e.g. [32])
or within vehicles (e.g. [12]). For example, it allows exploiting the benefits of
cloud computing in terms of scalability and reliability. It is worth noting that,
in C-ITS, entities can rely on several resource servers to store and manage their
data and resources. Therefore, an approach based on sticky policies [29], in which
the resource server is required to attach policies to the data, is not particularly
suitable as an entity would be required to configure their policies in each resource
server in which her resources are stored.

In C-ITS, the information needed to verify context conditions may have to
be retrieved from different sources, e.g. vehicles, road-side units or cloud. Thus,
assuming that the resource server is the only source of context information as in
[8,15] restricts the types of context conditions that can be verified, thus limiting
the level of granularity for access control. However, retrieving context informa-
tion from different sources can have an impact on latency as it requires additional
interactions between parties. Hence, one has to make a trade-off between the
expressiveness of context conditions and the latency introduced by the retrieval
of the information necessary for their verification.

Unlike other authorization frameworks, our framework has been designed to
address the challenges characterizing the C-ITS domain. In this work, we have
looked into these challenges from a design perspective. However, in practical

32 S. Ravidas et al.

deployments, other factors such as communication protocols (CoAP, MQTT)
[21,27], data format (JSON, XACML), handling of token refreshing and revo-
cation, should be taken into account. Nevertheless, we believe that our hybrid
authorization framework makes a step forward to the development of practical
authorization mechanisms tailored to C-ITS. Moreover, the adoption of a C-ITS
reference architecture as a baseline for our framework facilitates its integration
and realization in existing C-ITS deployment sites.

8 Conclusions and Future Work

In this paper, we have designed an authorization framework tailored to the
C-ITS domain. Our framework leverages principles of both policy-based and
token-based architectures to minimize the overhead introduced by the autho-
rization process while providing fine-grained protection. We have adopted the
C-MobILE reference architecture as a baseline for the design of our hybrid autho-
rization framework. This will help identifying the C-ITS systems involved in the
authorization process for a specific application scenario and, thus, realizing the
framework at various C-ITS deployment sites. We have also provided a qualita-
tive analysis of our framework by demonstrating its application to typical C-ITS
scenarios and showing how it addresses the challenges characterizing the C-ITS
domain.

In the future, we plan to implement, integrate and validate our authoriza-
tion framework within existing C-ITS deployment sites. To this end, we will
further refine the design of our framework by investigating communication and
implementation aspects.

Acknowledgements. This work is funded by the Horizon 2020 C-MobILE project
(723311) and the ITEA3 project APPSTACLE (15017).

References

1. CONVERGE. https://converge-online.de. Accessed 25 June 2019
2. US-ITS. https://local.iteris.com/arc-it. Accessed 25 June 2019
3. User-Managed Access (UMA) 2.0 Grant for OAuth 2.0 Authorization. https://

kantarainitiative.org/file-downloads/rec-oauth-uma-grant-2-0-pdf/. Accessed 25
June 2019

4. Directive 2010/40/EU of the European Parliament and of the Council. Official
Journal of the European Union, vol. 50, p. 207 (2010)

5. Intelligent Transport Systems (ITS); Security; ITS communications security archi-
tecture and security management. ETSI TS 102 940, ETSI (2018)

6. Abrougui, K., Boukerche, A.: Efficient group-based authentication protocol for
location-based service discovery in intelligent transportation systems. Secur. Com-
mun. Netw. 6(4), 473–484 (2013)

7. Ahmad, T., Morelli, U., Ranise, S., Zannone, N.: A lazy approach to access control
as a service (ACaaS) for IoT: an AWS case study. In: Proceedings of Symposium
on Access Control Models and Technologies, pp. 235–246. ACM (2018)

https://converge-online.de
https://local.iteris.com/arc-it
https://kantarainitiative.org/file-downloads/rec-oauth-uma-grant-2-0-pdf/
https://kantarainitiative.org/file-downloads/rec-oauth-uma-grant-2-0-pdf/

An Authorization Framework for Cooperative Intelligent Transport Systems 33

8. Albouq, S.S., Fredericks, E.M.: Securing communication between service providers
and road side units in a connected vehicle infrastructure. In: Proceedings of Interna-
tional Symposium on Network Computing and Applications, pp. 1–5. IEEE (2017)

9. Dajsuren, Y., Karkhanis, P., Kadiogullary, D., Fuenfrocken, M.: C-MobILE
D3.1 reference architecture. Technical report (2017). http://c-mobile-project.eu/
library/

10. Damen, S., den Hartog, J., Zannone, N.: Collac: collaborative access control. In:
Proceedings of International Conference on Collaboration Technologies and Sys-
tems, pp. 142–149. IEEE (2014)

11. Denniss, W., Bradley, J.: OAuth 2.0 for Native Apps. RFC 8252, IETF (2017).
https://tools.ietf.org/html/rfc6749

12. Dorri, A., Steger, M., Kanhere, S.S., Jurdak, R.: Blockchain: a distributed solution
to automotive security and privacy. IEEE Commun. Mag. 55(12), 119–125 (2017)

13. Festag, A.: Cooperative intelligent transport systems standards in Europe. IEEE
Commun. Mag. 52(12), 166–172 (2014)

14. Guarda, P., Zannone, N.: Towards the development of privacy-aware systems. Inf.
Software Technol. 51(2), 337–350 (2009)

15. Gupta, M., Sandhu, R.: Authorization framework for secure cloud assisted con-
nected cars and vehicular internet of things. In: Proceedings of Symposium on
Access Control Models and Technologies, pp. 193–204. ACM (2018)

16. Hernández-Ramos, J.L., Jara, A.J., Marin, L., Skarmeta, A.F.: Distributed
capability-based access control for the internet of things. J. Internet Serv. Inf.
Secur. 3(3/4), 1–16 (2013)

17. Jia, Y.J., et al.: ContexIoT: towards providing contextual integrity to appified IoT
platforms. In: Proceedings of Network and Distributed System Security Symposium
(2017)

18. Kaluvuri, S.P., Egner, A.I., den Hartog, J., Zannone, N.: SAFAX - anextensible
authorization service for cloud environments. Front. ICT (2015)

19. Karafili, E., Lupu, E.C.: Enabling data sharing in contextual environments: Pol-
icy representation and analysis. In: Proceedings of Symposium on Access Control
Models and Technologies, pp. 231–238. ACM (2017)

20. Karkhanis, P., van den Brand, M., Rajkarnikar, S.: Defining the C-ITS reference
architecture. In: Proceedings of International Conference on Software Architecture
Companion, pp. 148–151. IEEE (2018)

21. Laaroussi, Z., Morabito, R., Taleb, T.: Service provisioning in vehicular networks
through edge and cloud: an empirical analysis. In: Proceedings of Conference on
Standards for Communications and Networking. IEEE (2018)

22. Le, V.H., den Hartog, J., Zannone, N.: Security and privacy for innovative auto-
motive applications: a survey. Comput. Commun. 132, 17–41 (2018)

23. Mahmudlu, R., den Hartog, J., Zannone, N.: Data governance and transparency
for collaborative systems. In: Ranise, S., Swarup, V. (eds.) DBSec 2016. LNCS,
vol. 9766, pp. 199–216. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
41483-6 15

24. Martinez, J.A., Ruiz, P.M., Marin, R.: Impact of the pre-authentication perfor-
mance in vehicular networks. In: Proceedings of Vehicular Technology Conference-
Fall. IEEE (2010)

25. Matteucci, I., Petrocchi, M., Sbodio, M.L.: CNL4DSA: a controlled natural lan-
guage for data sharing agreements. In: Proceedings of Symposium on Applied
Computing, pp. 616–620. ACM (2010)

26. OASIS: eXtensible Access Control Markup Language (XACML) v. 3.0. OASIS
Standard (2013)

http://c-mobile-project.eu/library/
http://c-mobile-project.eu/library/
https://tools.ietf.org/html/rfc6749
https://doi.org/10.1007/978-3-319-41483-6_15
https://doi.org/10.1007/978-3-319-41483-6_15

34 S. Ravidas et al.

27. Ojanperä, T., Mäkelä, J., Mämmelä, O., Majanen, M., Martikainen, O.: Use cases
and communications architecture for 5G-enabled road safety services. In: Proceed-
ings of European Conference on Networks and Communications, pp. 335–340. IEEE
(2018)

28. Paci, F., Squicciarini, A.C., Zannone, N.: Survey on access control for community-
centered collaborative systems. ACM Comput. Surv. 51(1), 6:1–6:38 (2018)

29. Pearson, S., Casassa-Mont, M.: Sticky policies: an approach for managing privacy
across multiple parties. Computer 44(9), 60–68 (2011)

30. Ravidas, S., Lekidis, A., Paci, F., Zannone, N.: Access control in internet-of-things:
a survey. J. Netw. Comput. Appl. 144, 79–101 (2019)

31. Raya, M., Papadimitratos, P., Hubaux, J.P.: Securing vehicular communications.
IEEE Wirel. Commun. 13(5), 8–15 (2006)

32. Riabi, I., Saidane, L.A., Ayed, H.K.B.: A proposal of a distributed access control
over Fog computing: the ITS use case. In: Proceedings of International Conference
on Performance Evaluation and Modeling in Wired and Wireless Networks. IEEE
(2017)

33. Salonikias, S., Mavridis, I., Gritzalis, D.: Access control issues in utilizing fog com-
puting for transport infrastructure. In: Rome, E., Theocharidou, M., Wolthusen, S.
(eds.) CRITIS 2015. LNCS, vol. 9578, pp. 15–26. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-33331-1 2

34. van Sambeek, M., et al.: Towards an architecture for cooperative-intelligent trans-
port system (C-ITS) applications in the Netherlands. Technical report, DITCM
Innovations (2015)

35. Schuster, R., Shmatikov, V., Tromer, E.: Situational access control in the internet of
things. In: Proceedings of Conference on Computer and Communications Security,
pp. 1056–1073. ACM (2018)

36. Sha, K., Xi, Y., Shi, W., Schwiebert, L., Zhang, T.: Adaptive privacy-preserving
authentication in vehicular networks. In: Proceedings of International Conference
on Communications and Networking in China, pp. 1–8. IEEE (2006)

37. Sucasas, V., Mantas, G., Saghezchi, F.B., Radwan, A., Rodriguez, J.: An
autonomous privacy-preserving authentication scheme for intelligent transporta-
tion systems. Computers & Security 60, 193–205 (2016)

https://doi.org/10.1007/978-3-319-33331-1_2
https://doi.org/10.1007/978-3-319-33331-1_2

A Framework for the Validation of Access
Control Systems

Said Daoudagh1,2(B) , Francesca Lonetti1 , and Eda Marchetti1

1 Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo” (ISTI), CNR,
via G. Moruzzi 1, 56124 Pisa, Italy

{said.daoudagh,francesca.lonetti,eda.marchetti}@isti.cnr.it
2 Computer Science Department, University of Pisa, Pisa, Italy

said.daoudagh@di.unipi.it

Abstract. In modern pervasive applications, it is important to validate
Access Control (AC) mechanisms that are usually defined by means of
the XACML standard. Mutation analysis has been applied on Access
Control Policies (ACPs) for measuring the adequacy of a test suite.

This paper provides an automatic framework for realizing mutations
of the code of the Policy Decision Point (PDP) that is a critical compo-
nent in AC systems. The proposed framework allows the test strategies
assessment and the analysis of test data by leveraging mutation-based
approaches. We show how to instantiate the proposed framework and
provide also some examples of its application.

Keywords: Access Control Systems · Mutation analysis · Testing ·
XACML

1 Introduction

Security is among the top most pressing concerns of both developers and con-
sumers of modern software systems. In today’s highly connected and pervasive
software-intensive systems, preventing unauthorized, erroneous or even malicious
usage of critical resources is imperative. Thus, secure software engineering relies
on sophisticated control and protection mechanisms to ensure the proper behav-
ior of software systems at each implementation level and against any potential
threat.

Among security mechanisms, a critical role is played by Access Control (AC)
systems, which aim to ensure that only the intended subjects can access the
protected data and get only the permission levels required to accomplish their
tasks and no much more. An Access Control Policy (ACP) specifies the level of
confidentiality of data, the procedures for managing data and resources, and the
classification of resources into category sets yielding different security require-
ments.

Supported by CyberSec4Europe Grant agreement ID: 830929.

c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 35–51, 2020.
https://doi.org/10.1007/978-3-030-39749-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_3&domain=pdf
http://orcid.org/0000-0002-3073-6217
http://orcid.org/0000-0002-4864-2219
http://orcid.org/0000-0003-4223-8036
https://doi.org/10.1007/978-3-030-39749-4_3

36 S. Daoudagh et al.

Into the AC systems, the Policy Decision Point (PDP) is one of the most
critical components. It is in charge of implementing the evaluation logic of ACPs,
i.e., the rules for accessing data and resources. Then, any error or overlook of the
PDP could result either in forbidding due access rights, or worse in authorizing
accesses that should be denied, thus jeopardizing the security of the protected
data.

In this paper, we focus on the testing of the PDP. Different PDP implementa-
tions, and in general AC systems, usually rely on the eXtensible Access Control
Markup Language (XACML) [20], the de facto standard for the specification of
policies and requests. It is an XML-based language conceived with interoper-
ability, extensibility, and distribution in mind, thus enabling the specification of
very complex rules.

Due to the complexity of the XACML language as well as the criticality of
the PDP role, for assuring the required security level a key factor becomes the
application of effective and efficient testing approaches; indeed, generated test
cases should exercise all the security-critical aspects discovering all the possible
faults. Therefore, knowing in advance the peculiarities of each available test
strategy and its level of fault detection effectiveness it is important for a proper
selection of the most promising testing approach and consequently for developing
a successful testing phase.

Testing of the PDP consists of probing the PDP with a set of test cases
(i.e., XACML requests) and checking its responses against the expected deci-
sions. Available proposals for generation of test cases can be divided into
three categories: (i) those that focus on the application of the combinatorial
approaches to XACML policies values for generating test inputs, as, for instance
X-CREATE [2,8] and Targen [17]; (ii) those that exploit change-impact anal-
ysis for test cases generation starting from policies specification [18]; and (iii)
those that are based on the representation of policy-implied behavior by means
of models [13,19].

However, even though there is an increasing research interest in defining new
testing strategies and automatic testing facilities for AC systems validation,
few proposals are targeting the analysis of test data and provide support for
repeatable experiments in the context of AC systems. This paper would like
to provide a contribution in this direction by presenting an automated testing
framework, called XACML Mutation Framework (XMF), useful for both testing
the PDP component and assessing the test suite effectiveness. Specifically, with
the intent to join together automation and replication, this paper would like to
target the development of an automatic framework for test strategies selection
and assessment as well as analysis of test data, also providing some examples of
application.

The proposed framework leverages the application of the classical approach
of mutation testing. Briefly, mutation testing is a technique in which syntac-
tic faults, simulating typical programmer’s mistakes, are seeded in the original
program in order to produce a set of faulty programs, called mutants, each one
containing one fault. The ratio of the number of detected faults over the total

A Framework for the Validation of Access Control Systems 37

number of seeded faults indicates the effectiveness of the test suite. We refer
to [12,21] for an extensive survey of software mutation testing.

Many existing mutation-based proposals [4,16,19] rely on mutations applied
directly on the ACPs. A first attempt to realize mutations of the code of the
PDP implementation is presented in [9]. The proposal of this paper includes
and extends the work in [9] realizing an automated framework for assessing the
effectiveness of the test suites by applying a set of classical code-based mutation
operators of the PDP.

Indeed, even though some case studies show that the existing methodologies
are quite effective in the simulation of many common faults in the XACML policy
specification [4,16], due to the complexity of PDP functional realization and the
specific characteristics of the adopted implementation language, the proposed
mutations do not exhaustively cover all the important criticalities of the PDP
specification.

XMF tries to overcome the above mentioned limitations integrating facilities
for testing the PDP engine and assessing the different test strategies. The main
goal of the proposed framework is to provide an automated solution for analysis
and assessment of test strategies in the context of AC systems. Indeed, the
framework provides test data storage and analysis capabilities supporting the
tester into an easy replication of the experiments as well as a better addressing
of the testing activities. The framework allows different kinds of test data analysis
such as comparison of test strategies in terms of fault detection and cardinality
of the test suites, mutants distribution and number of distinct executions of the
mutated PDPs, among the others.

For the sake of simplicity, we report only two examples of the framework
application: (i) the assessment of two different test generation strategies in terms
of cardinality of the derived test suites; and (ii) the analysis of the distribution
of the mutants in the PDP code. In the first example we consider real-world
ACPs based on the Attribute-Based Access Control (ABAC) model encoded in
XACML.

Outline. We recall XACML based AC and mutation testing in Sect. 2. In Sect. 3
we present the proposed framework and describe its components, whereas Sect. 4
contains examples of the application of the framework. Section 5 presents related
works. Finally, in Sect. 6 we conclude and point out the future work.

2 Background

In the following subsections, basic details about XACML-based access control
systems and mutation testing are provided.

2.1 XACML-Based Access Control System

XACML [20] is a platform-independent XML-based language for the specifica-
tion of Access Control Policies (ACPs). The main purpose of an XACML policy

38 S. Daoudagh et al.

Fig. 1. Anatomy of an XACML policy and an XACML request.

is to define the constraints that a subject needs to comply with for accessing a
resource and doing an action in a given environment.

Briefly, an XACML policy has a tree structure whose main elements are:
PolicySet, Policy, Rule, Target and Condition. The PolicySet includes one or
more policies. A Policy contains a Target and one or more rules. The Target
specifies a set of constraints on attributes of a given request. Typical categories
of attributes are Subject, Resource, Action and Environment. The Rule spec-
ifies a Target and a Condition containing one or more boolean functions. If
the Condition evaluates to true, then the Rule’s Effect (a value of Permit or
Deny) is returned, otherwise a NotApplicable decision is formulated. If an error
occurs during the evaluation of a policy against a request, Indeterminate value
is returned. The PolicyCombiningAlgorithm and the RuleCombiningAlgorithm

Fig. 2. Access control system architecture.

A Framework for the Validation of Access Control Systems 39

define how to combine the results from multiple policies and rules respectively
in order to derive a single authorization access decision.

The structure of an ACP and an AC request is sketched in Fig. 1. The main
actors in the XACML domain are shown in Fig. 2: the Policy Administration
Point (PAP) is the system entity in charge of managing the policies; the Pol-
icy Enforcement Point (PEP), usually embedded into an application system,
receives the access request in its native format, constructs an XACML request
and sends it to the Policy Decision Point (PDP); the Policy Information Point
(PIP) provides the PDP with the values of subject, resource, action and environ-
ment attributes; the PDP evaluates the policy against the request and returns
the response, including the authorization decision, to the PEP.

2.2 Mutation Testing

Mutation Testing is a technique in which syntactic faults, simulating typical
programmer’s mistakes, are seeded in the original program in order to produce
a set of faulty programs, called mutants, each one containing one fault. The
main purpose of mutation testing is to assess the adequacy of a test suite. Each
test case is executed on the original program and its mutants, then outputs are
collected: if the mutant’s output is different from the original program’s one, the
fault is detected and the mutant is said to be killed. The mutation score is the
ratio of the number of detected faults over the total number of seeded faults and
indicates the effectiveness of the test suite. Since mutation testing was proposed
in the 1970s, it has been applied to many programming languages, such as Java,
Fortran, Ada, C, SQL and many mutation tools have been developed to support
automated mutation analysis. We refer to [12,21] for an extensive survey of
software mutation testing.

The general process of mutation analysis consists of two steps: first, change
the original program with predefined mutation operators and generate a set of
mutated program, called mutants; then, the mutants are executed against a test
suite, and information is collected during the execution for various purpose of
analysis.

In the context of AC systems, some proposals address mutation techniques
to assess the fault detection effectiveness of test sets for security policies and
provide specific mutation operators. The defined mutation operators manipulate
the target and condition elements of the XACML policy, in order to generate a
set of faulty policies. The policy under test and the faulty policies are evaluated
by the PDP against the same access requests, then the test outputs, represented
by the access responses, of the original and the mutated policies are compared
to get the mutation score. We refer to Sect. 5 for specific proposals of mutation
testing in the context of AC systems.

3 XACML Mutation Framework

In this section we present the XACML Mutation Framework (XMF) useful both
for testing PDP component and for assessing the test generation strategies. The

40 S. Daoudagh et al.

framework provides three main functionalities: (1) test case generation, execu-
tion and assessment; (2) mutants generation; and (3) a data mart for OLAP
analysis [11].

Very briefly, considering the testing of PDP, it consists on the execution
of a set of access requests, derived by a specific policy on the PDP and the
consequent comparison of the collected responses against the expected ones.
Thus the PDP needs to be configured to use a selected policy, the requests have
to be sent to the PDP under test, and the responses (permit, deny, not applicable
or indeterminate) collected.

Considering instead the assessment of the test generation strategies, first it is
necessary to execute the requests (test cases) on the original PDP and to collect
the associated set of responses; then the PDP is replaced with one of its mutated
versions, each of the test cases re-executed on this mutant, and responses are
collected again; finally, the responses are analyzed and compared so as to discover
the killed mutants. In the case of PDP, a mutant is considered killed when an
exception is raised or when the returned response is different from the expected
one. As final step, the mutation score for the whole test suite is calculated by
dividing the number of killed mutants by the number of mutants.

According to the literature, a test suite is considered of high quality if it is
able to reach a high mutation score, i.e., the test suite has a high fault detection
capability.

Fig. 3. The proposed XACML mutation testing framework.

Figure 3 schematizes the architecture of XMF framework which mainly con-
sists on the following seven components:

1 TestCasesGenerator is an automated XACML requests generator, which
implements and/or integrates different testing strategies or tools so as to
reduce as much as possible the time and the effort required for the test cases
specification;

2 XacmlRepository is a database that contains XACML policies, XACML
requests, i.e., test cases, and XACML decisions defined by the XACML lan-
guage, i.e., Permit, Deny, NotApplicable and Indeterminate. The data are
organized so as to be able to associate the requests to the policies from which

A Framework for the Validation of Access Control Systems 41

they are generated and to keep track of the generator used for their genera-
tion;

3 PDPsMutationGenerator is a generator that automatically derives
mutated versions of the original PDP. These are generated by applying a
set of Java based mutation operators producing set of mutated java classes,
each one containing only one fault;

4 PDPsMutationIntegrator works in direct collaboration with the PDPsMu-
tationGenerator for seeding the faults in the code of PDP and producing
executable mutated versions of the original PDP;

5 XacmlPDPsRepository maintains all the original PDPs and the associ-
ated mutated versions. It also contains the mutation operator applied to the
original PDP to obtain the mutated version;

6 XacmlPDPsExecutor is an automated executor of test cases on the original
PDP and the associated set of mutated PDPs;

7 XacmlMutationDW contains a data mart for storing the collected data
derived from test cases and mutants generation activities as well as the eval-
uation activity.

3.1 Workflow of the Testing Process

A typical testing process, shown in Fig. 4, is composed of at least four main steps:
(A) test cases generation; (B) mutants generation; (C) test cases execution; and
finally, (D) results analysis.

All these steps can be performed automatically by using a subset of compo-
nents provided by the XMF framework and, as shown Fig. 4, the first two steps
(steps A and B) can be performed in parallel.

Fig. 4. Workflow of the testing process.

Generally, the first step is related to the generation of test cases (step A),
which in our case can use the TestCasesGenerator component of XMF (compo-
nent 1 of Fig. 3) for the aim of generating a test suite starting from a given ACP.
The result of this activity can then be stored in a specific database (component
2) which contains information about the generated test cases, the policy from
which they are generated and the used generator.

42 S. Daoudagh et al.

The next step (B in Fig. 4) is related to the generation of PDP mutants,
which involves three components of XMF. In particular, with the help of compo-
nent 3 (see Fig. 3), mutated versions of the PDP can be generated by applying
a set of mutation operators; therefore, for each modified version, an executable
mutated PDP can be generated by using the component 4 ; finally, the result
of this step can be stored in a specific database (component 5) which, for each
mutant, keeps track of: (i) the mutation operator used to create it; and (ii) the
specific location of the source code affected by the mutation, e.g., the class (in
case of OO programming language), method or statement.

The results of steps A and B are then used in the next phase (step C
in Fig. 4), which involves the XMF’s component 6 that allows the execution of
test cases on the original PDP and on its mutated versions. Finally, the result
of step C is loaded into the data warehouse (component 7 in Fig. 3) and used
in step D of the testing process (see Fig. 4).

The next section details how to instantiate the XMF framework and reports
some analyses that can be performed.

4 Examples of Framework Application

We illustrate the application of the XMF framework through a simple scenario in
which a tester wants to perform some analyses of test data. Specifically, the goal
of these analyses is: (1) to compare two different test cases generation strategies
in terms of the size of the generated test suites; and (2) to show the distribution
of mutants of the PDP source code, considering real-world XACML policies.

To this end, the application of the XMF framework consists of two main steps:
(1) instantiation of the XMF framework; and (2) illustration of some examples
of analysis.

4.1 Instantiation of the XMF Framework

The instantiation or instrumentation of the XMF allows the realization of the
means for performing different kinds of experiments and monitoring them. In our
case, this consists of the realization of the XMF components and their orchestra-
tion. More precisely, this means (1) the selection of appropriate XACML policies
and the System Under Test (SUT), i.e., the PDP; (2) the selection of appropri-
ate mutation operators to be applied to the SUT; and (3) the integration of the
considered test cases generation strategies.

XACML Repository. We populated the XacmlRepository component with
nine real-world XACML policies taken from real contexts and European projects.
As in XACML Policy column of Table 1, policies named demo-5, demo-11 and
demo-26 have been taken from the Open Source repository software Fedora
(Flexible Extensible Digital Object Repository Architecture) [1] for controlling
the access to the administered digital contents; the remaining six are released
by the TAS3 European project [24]. The same table reports some information

A Framework for the Validation of Access Control Systems 43

about the structure of the selected policies; in particular, the columns repre-
sent the number of rules (#Rule column), conditions (#Cond column), subjects
(#Sub column), resources (#Res column), actions (#Act column) and distinct
functions (#Funct column) within each policy.

Table 1. XACML policies.

XACML policy Functionality

#Rule #Cond #Sub #Res #Act #Funct

2 73020419964 2 6 5 3 3 0 4

create-document-policy 3 2 1 2 1 3

demo-5 3 2 2 3 2 4

demo-11 3 2 2 3 1 5

demo-26 2 1 1 3 1 4

read-document-policy 4 3 2 4 1 3

read-informationunit-policy 2 1 0 2 1 2

read-patient-policy 4 3 2 4 1 3

Xacml-Nottingham-Policy-1 3 0 24 3 3 2

Test Cases Generator. Several testing strategies are available for XACML
requests generation and can be included in the proposed testing framework.
Among them, in this paper we focus on two requests derivation strategies:

– Multiple Combinatorial testing strategy that relies on combinatorial
approaches of subject, resource, action and environment values taken from
the XACML policy [5,8]. The motivation of this selection was the possibility
to directly integrate in the XMF framework the tool X-CREATE [5,8] that
implements the Multiple Combinatorial testing.

– XACMET [10] strategy, which is based on the expected behavior of an
XACML-based PDP. XACMET models the expected behaviour of the eval-
uation of a given XACML policy as a labeled graph and guarantees the full
path coverage of such graph [3,6]. The test cases generated are used only for
the PDP testing purposes. This strategy has been selected because, according
to its description, it can provide similar performance to the Multiple Combi-
natorial and can be better exploited for a fair comparison.

It is out of the scope of this paper to focus on the definition of test strate-
gies. The framework has been voluntarily conceived to be independent from the
test strategies adopted. The only mandatory constraints are that the strategies
considered are based on XACML language and there exist a tool or at least a
detailed specification that lets the implementation and the integration into the
framework.

44 S. Daoudagh et al.

XACML PDPs Repository. The PDP under test we considered is the Sun
PDP engine [23], which is an open source implementation of the XACML stan-
dard, written in Java. This choice was not mandatory and different PDP imple-
mentations could be considered. We decided for Sun’s PDP engine because it
is currently one of the most mature and widespread used engines for XACML
policy evaluation, which provides complete support for all the mandatory fea-
tures of XACML 2.0 and a number of optional features. This engine supports
also all the standard attribute types, functions and combining algorithms and
includes APIs for adding new functionalities as needed. The Sun PDP source
code is broken into ten packages: seven packages include the core implementa-
tion, two packages include classes used for the configuration code, rarely used by
programmers, and one package contains test code samples. In Table 2 we report
for each package (column Sun PDP Package) the number of classes (column #
of Java Classes) of the core implementation of Sun PDP.

Table 2. Core implementation of Sun PDP.

Sun PDP package #Java classes

com.sun.xacml 16

com.sun.xacml.attr 24

com.sun.xacml.combine 9

com.sun.xacml.cond 34

com.sun.xacml.ctx 7

com.sun.xacml.finder 5

com.sun.xacml.finder.impl 1

PDPs Mutation Generator. In order to apply mutation analysis to the pol-
icy evaluation engine, we selected a set of mutation operators for the Java
code considering the mutation operators addressed in the most commonly used
object-oriented mutation tools such as µJava [15] that has been integrated within
the PDPsMutationGenerator. Specifically, the selected mutation operators are
divided into two main parts: (i) class-level mutation operators; and (ii) method-
level mutation operators.

The former set of operators is specific for object-oriented languages and Java
features and it can be classified in three categories based on the features of the
Java language:

– Inheritance: the operators IHD, IHI, IOD, IPC and ISI cover the variables
shadowing, the use of keyword super, and the constructors definition;

– Polymorphism: the operators OAC, OMR, PCC, PCI, PNC and PRV cover
all objects references;

– Java-Specific features: the other operators cover other features supported in
Java such as the use of keywords this and static.

A Framework for the Validation of Access Control Systems 45

The latter set of mutation operators introduces faults at the level of methods
by seeding them directly into the internal code statements (e.g., if conditions,
loops, boolean/arithmetic expressions et cetera). These operators are classified
in the following categories:

– Arithmetic operators: the operators AODS, AODU, AOIS, AOIU, AORB,
AORS and ASRS allow the deletion, insertion and replacement of both binary
and unary operators;

– Logical operators: LOI and LOR are operators conceived for deletion and
replacement of Java logical operator;

– Conditional operators: COD, COI and COR allow to manipulate the opera-
tors into the Java conditions that are used for expressing XACML functions
and their parameters.

For a more detailed description of mutation operators we refer to [9,15].

4.2 Examples of Analysis

We performed several analysis by using the XMF framework to better under-
stand (i) the performance of the considered XACML strategies in terms of
number of test cases; (ii) the distribution of the mutations of the Sun PDP
by applying the mutation operators integrated in the PDPsMutationGenerator
component. In particular, the involved components have been TestCasesGenera-
tor and XacmlRepository for the former analysis and PDPsMutationGenerator,
PDPsMutationIntegrator and XacmlPDPsRepository for the latter one. Then,
all test data have been stored in XacmlMutationDW. In the following, we report
the performed analyses. Even if simple and informal, the obtained descriptive
statistics let to highlight important information about the test cases generation
strategies and the used mutation operators.

Size of Test Suites. Figure 5 reports, for each of the nine XACML policies, the
size of test suites generated by each test strategy. Specifically, the blue bars (black
in black and white printing) refer to the size of the XACMET test suites, while
the orange bars (light gray in black and white printing) report the size relative
to the Multiple Combinatorial test suites. As evidenced in Fig. 5, XACMET
strategy produces systematically the smallest test suites. This could provide
hints for an effective allocation of testing costs and efforts.

Distribution of Mutants. Considering the distribution of mutants in Sun
PDP engine, Table 3 reports the cardinality of the mutants set (fourth column)
and their distributions at class-level and method-level (second and third column)
for each Java Package. As reported in the last row, the 76% (i.e. 6085 over 8030
mutants) of the mutants generated are derived by the application of the method-
level mutation operators. Having a knowledge of mutants distribution at package
level could help the tester to address the parts of the code that are more complex
and could be subject to possible faults.

Distribution of the Mutations per Java Class. For each Java Class of Sun
PDP, Fig. 6 shows the ordered number of the mutations applied. In particular,

46 S. Daoudagh et al.

Fig. 5. Number of generated requests by policy and strategy: orange bars refer to the
size of the Multiple Combinatorial test suites; blue bars refer to the size of test suites
generated by XACMET strategy (Color figure online).

Table 3. Number of mutants by mutations operator level and by Java package.

Java package Mutation operator level All

Class-level Method-level

com.sun.xacml 685 885 1570

com.sun.xacml.attr 431 2943 3374

com.sun.xacml.combine 73 277 350

com.sun.xacml.cond 344 1747 2091

com.sun.xacml.ctx 282 174 456

com.sun.xacml.finder 122 43 165

com.sun.xacml.finder.impl 8 16 24

All 1945 6085 8030

the blue bars (black in black and white printing) refer to the class-level muta-
tion operators, while the orange bars (light gray in black and white printing)
report the method-level ones. As evidenced in the figure, that shows a long-tailed
distribution of all the mutations applied, most of the mutants are contained in
few Java classes (the first 10 reported in the figure) and the remaining mutants
are distributed in all the remaining ones. A deeper analysis of mutants distri-
bution at class level allows the tester to focus the testing activity on the most
error-prone java classes.

A Framework for the Validation of Access Control Systems 47

Fig. 6. Java classes ordered by number of mutations. (Color figure online)

Top 10 Mutated Java Classes. Figures 7 and 8 report a detailed extract of
the top 10 mutated Java classes listed in Fig. 6. Specifically, in Fig. 7 there are
the top 10 mutated Java classes ordered by the number of mutations derived
by the application of mutants at class level; while in Fig. 8 there are the top
10 mutated Java classes considering the application of mutants at method level.
These analyses enable to evidence the different classes of the PDP code that are
most affected by class-level and method-level mutation operators. This could
help the tester to focus on object-oriented features or classical features of the
programming language.

5 Related Work

The work presented in this paper spans over two main research directions: muta-
tion testing for AC systems and XACML based test generation strategies.

Mutation Testing for Access Control Systems. In the context of AC sys-
tems, many proposals rely on mutation techniques in order to evaluate testing
effectiveness, namely the fault detection capabilities of testing strategies.

They leverage a set of mutation operators that is defined starting from the
XACML policies, independently from any kind of implementation of the PDP
in charge of evaluating the policy itself.

The authors of [16] define a fault model and a set of mutation operators that
simulate syntactic faults of XACML ACPs. The work in [19] defines a generic
metamodel able to express various rule-based security policy formalisms (R-
BAC, OrBAC), and introduces a set of mutation operators that can be applied to
all rule-based formalisms. Finally, the XACMUT tool [4] includes and enhances
the mutation operators of [16] and [19] addressing specific faults of the XACML
2.0 language. It supports the automatic derivation of XACML mutation oper-
ators as well as their application to XACML policies and offers facilities to
compute the mutation score of a test suite.

48 S. Daoudagh et al.

Fig. 7. Top 10 mutated Java classes ordered by number of mutations (class level).

Fig. 8. Top 10 mutated Java classes ordered by number of mutations (method level).

The authors of [7] proposed a mutation-based approach to testing the PolPA
based PDP. A set of mutation operators is defined according to the syntax of the
PolPA policy language and mutants are created by applying mutation operators
to the policy rules. The obtained faulty policies are used for generating test cases
useful for assessing the PDP implementation.

Other proposals, however, exploit mutation for fault fixing and debugging of
XACML policies purposes. Specifically, the approach in [25] addresses mutation-
based techniques for policy repair. First, most suspicious policy elements (e.g.,

A Framework for the Validation of Access Control Systems 49

combining algorithm, policy target, and rules) are detected by fault localization
techniques according to the execution information of test cases; then suspicious
elements are modified by using well-defined mutation operators.

All the above mutation-based methodologies apply mutation analysis on ACP
specification and they have been proven to be effective in the simulation of many
common faults both in the policy specification and implementation [4,7,16].
However, they do not consider the specific characteristics of the PDP imple-
mentation code. To overcome these limitations, a first attempt to define specific
mutation operators for PDP implementations is presented in [9]. Specifically, a
set of Java based mutation operators is selected and manually applied to the
code of the PDP.

The work presented in this paper includes and extends the proposal of [9]
by presenting an automated testing framework for assessing the test suite effec-
tiveness, by applying a set of classical code-based mutation operators directly
on the PDP implementation. To the best of our knowledge, our approach is
the first initiative that applies automated mutation analysis at the level of the
policy evaluation engine, addressing specific faults of the PDP implementation
language.

XACML-Based Tests Generation. Considering the automated test cases
generation, solutions have been proposed for testing either the XACML pol-
icy or the PDP implementation [7,8]. Among them, the most referred ones use
combinatorial approaches for test cases generation. Specifically, the X-CREATE
tool [8] and the Targen tool [17] generate test inputs using combinatorial
approaches of the XACML policies values and the truth values of independent
clauses of policy values, respectively, whereas the work in [22] applies combi-
natorial analysis to the elements of the model (role names, permission names,
context names) to derive test cases.

Alternatively, the Cirg approach [18] applies change impact analysis for test
case generation starting from policy specification. Specifically, it provides a
framework able to derive test cases as counterexamples that evidence seman-
tic difference between two different versions of the policy under test.

Other approaches leverage existing symbolic execution techniques for gen-
erating test cases. Specifically, in [14], first the ACP under test is converted
into semantically equivalent C Code Representation (CCR); then, the CCR is
symbolically executed to generate test inputs.

Differently from the above approaches, authors of [6,10] propose the
XACMET strategy based on the expected behaviour of an XACML-based PDP.
XACMET models the expected behaviour of the evaluation of a given XACML
policy as a labeled graph and guarantees the full path coverage of such graph.
The test cases generated are used only for the PDP testing purposes. The main
benefits of XACMET deal with the derivation of: (i) XACML requests that
explicitly take into account the semantics of XACML functions as well as the
policy and rule combining algorithms; and (ii) the expected verdict for each test
request.

50 S. Daoudagh et al.

In XMF framework we integrated the X-CREATE tool, which has been
proven to be more effective than Targen for the higher structural variability
of the derived test inputs able to guarantee the coverage of the input domain of
the XACML policy, and the XACMET strategy, that guarantees the full path
coverage of graph representing the expected behaviour of the XACML-based
PDP.

6 Conclusions

In this paper we presented the architecture and the behaviour of the XACML
Mutation Framework (XMF), useful for assessing the XACML test suite effec-
tiveness by means of Java code based mutation operators. XMF framework
allowed the analysis of test data guaranteeing automation and replication of
the experiments that are key aspects for addressing the overall testing process.

Two application examples of the framework have been provided aiming to: (i)
compare two test strategies: Multiple Combinatorial vs XACMET approach; (ii)
showing the distribution of mutants of the Sun PDP. However, it is important
to remark that is out of the scope of this paper to decide which are the best test
strategies. We only would like to provide an automatic testing framework that
could be used for performing different analyses that provide hints to the tester
for better decision-making of the testing activity.

For future work, we plan to include in XMF the XACML conformance test
suite and to develop controlled experiments using also other implementations of
the XACML-based PDP and other test strategies. We also would like to unify
the set of mutant operators provided by the different tools and extend them in
order to better target the XACML policy evaluation engine peculiarities.

Future work will also include experiments considering the last version of the
XACML standard, i.e., the XACML 3.0.

References

1. Fedora commons repository software. http://fedora-commons.org/
2. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: Automatic XACML

requests generation for policy testing. In: Proceedings of ICST, pp. 842–849, April
2012

3. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: Modelling and testing of
XACML policies. 2012-TR-010 (2012)

4. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti., E.: XACMUT: XACML 2.0
mutants generator. In: Proceedings of the 8th International Workshop on Mutation
Analysis, pp. 28–33 (2013)

5. Bertolino, A., Lonetti, F., Marchetti, E.: Systematic XACML request generation
for testing purposes. In: Proceedings of the 36th EUROMICRO Conference on
Software Engineering and Advanced Applications (SEAA), pp. 3–11 (2010)

6. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E.: An automated model-
based test oracle for access control systems. In: Proceedings of the 13th Interna-
tional Workshop on Automation of Software Test, AST@ICSE 2018, Gothenburg,
Sweden, 28–29 May 2018, pp. 2–8 (2018)

http://fedora-commons.org/

A Framework for the Validation of Access Control Systems 51

7. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Martinelli, F., Mori, P.:
Testing of PolPA-based usage control systems. Softw. Qual. J. 22(2), 241–271
(2014)

8. Bertolino, A., Daoudagh, S., Lonetti, F., Marchetti, E., Schilders, L.: Automated
testing of extensible access control markup language-based access control systems.
IET Softw. 7(4), 203–212 (2013)

9. Daoudagh, S., Lonetti, F., Marchetti, E.: Assessment of access control systems
using mutation testing. In: TELERISE, Florence, Italy, 18 May 2015, pp. 8–13
(2015)

10. Daoudagh, S., Lonetti, F., Marchetti, E.: XACMET: XACML modeling & testing:
an automated model-based testing solution for access control systems. Softw. Qual.
J. (2019, accepted)

11. Golfarelli, M., Rizzi, S.: From star schemas to big data: 20+ years of data warehouse
research. In: Flesca, Sergio, Greco, Sergio, Masciari, Elio, Saccà, Domenico (eds.)
A Comprehensive Guide Through the Italian Database Research Over the Last 25
Years. SBD, vol. 31, pp. 93–107. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-61893-7 6

12. Jia, Y., Harman, M.: An analysis and survey of the development of mutation
testing. IEEE Trans. Softw. Eng. 37(5), 649–678 (2011)

13. Le Traon, Y., Mouelhi, T., Baudry, B.: Testing security policies: going beyond
functional testing. In: Proceedings of ISSRE, pp. 93–102 (2007)

14. Li, Y., Li, Y., Wang, L., Chen, G.: Automatic XACML requests generation for
testing access control policies. In: SEKE, pp. 217–222 (2014)

15. Ma, Y.S., Offutt, J., Kwon, Y.R.: MuJava: an automated class mutation system.
J. Softw. Test. Verif. Reliab. 15, 97–133 (2005)

16. Martin, E., Xie, T.: A fault model and mutation testing of access control policies.
In: Proceedings of the 16th International Conference on World Wide Web, pp.
667–676 (2007)

17. Martin, E., Xie, T.: Automated test generation for access control policies. In: Sup-
plemental Proceedings of ISSRE, November 2006

18. Martin, E., Xie, T.: Automated test generation for access control policies via
change-impact analysis. In: Proceedings of SESS, pp. 5–11, May 2007

19. Mouelhi, T., Fleurey, F., Baudry, B.: A generic metamodel for security policies
mutation. In: Proceedings of ICSTW, pp. 278–286 (2008)

20. OASIS: eXtensible Access Control Markup Language (XACML) Version
2.0. http://docs.oasis-open.org/xacml/2.0/access control-xacml-2.0-core-spec-os.
pdf. Accessed 10 June 2019

21. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Traon, Y.L., Harman, M.: Mutation
testing advances: an analysis and survey. In: Advances in Computers, vol. 112, pp.
275–378. Elsevier (2019)

22. Pretschner, A., Mouelhi, T., Le Traon, Y.: Model-based tests for access control
policies. In: Proceedings of ICST, pp. 338–347 (2008)

23. Sun Microsystems: Sun’s XACML implementation (2006). http://sunxacml.
sourceforge.net/

24. TAS3 project: trusted architecture for securely shared services. https://cordis.
europa.eu/project/rcn/85331/factsheet/en

25. Xu, D., Peng, S.: Towards automatic repair of access control policies. In: 14th
Annual Conference on Privacy, Security and Trust (PST), pp. 485–492. IEEE
(2016)

https://doi.org/10.1007/978-3-319-61893-7_6
https://doi.org/10.1007/978-3-319-61893-7_6
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf
http://sunxacml.sourceforge.net/
http://sunxacml.sourceforge.net/
https://cordis.europa.eu/project/rcn/85331/factsheet/en
https://cordis.europa.eu/project/rcn/85331/factsheet/en

The Structure and Agency Policy
Language (SAPL) for Attribute

Stream-Based Access Control (ASBAC)

Dominic Heutelbeck(B)

FTK e.V. Forschungsinstitut für Telekommunikation und Kooperation,
44149 Dortmund, Germany

dheutelbeck@ftk.de

https://www.ftk.de

Abstract. Current architectures and data flow models for access con-
trol are based on request response communication. In stateful or session-
based applications monitoring access rights over time this results in
polling of authorization services and for Attribute-Based Access Con-
trol (ABAC) in the polling of policy information points. This introduces
latency or increased load due to polling. Attribute-Stream-based Access
Control (ASBAC) is an authorization model based on a publish subscribe
pattern mitigating these bottlenecks. ASBAC allows the quasi real time
consideration of attribute data streams for access control decisions, such
as internet-of-things (IoT) sensor data. This paper introduces the Struc-
ture and Agency Policy Language (SAPL) for implementing ASBAC.
In addition, the paper describes how ASBAC with SAPL can be imple-
mented by applying a reactive programming model and describes key
algorithms for evaluating SAPL policies.

Keywords: Attribute-based access control · ABAC · Attribute
stream-based access control · ASBAC · Data streams · Reactive
programming · IoT

1 Introduction

Attribute-based access control (ABAC) [11] has been a successful model for estab-
lishing reliable and flexible authorization infrastructures across applications in
complex domains. In ABAC systems, access to resources is granted based on
policies, i.e., rules and relationships which determine which behavior of a user
or process (the subject) is authorized with regards to different resources. The
policies themselves are encoded in a machine-readable format and the rules con-
tained in the policies refer to traits of relevant objects, such as name, date of
birth, unique identifiers, location, or security clearance level. These traits are
called attributes, which may require accessing different data sources during pol-
icy evaluation to determine the outcome of the authorization process. These
data sources are called policy information points (PIPs). Other well-established
c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 52–68, 2020.
https://doi.org/10.1007/978-3-030-39749-4_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_4&domain=pdf
https://doi.org/10.1007/978-3-030-39749-4_4

A Policy Language for ASBAC 53

access control schemes, such as discretionary access control (DAC) [15], manda-
tory access control (MAC) [15], and role-based access control (RBAC) [18] can
be expressed by ABAC systems.

The two dominant ABAC control models currently in use are either based
on the eXtensible Access Control Markup Language (XACML) standard [19] or
on Next Generation Access Control (NGAC) [1]. The functional architectures
of both XACML and NGAC share the concept of a policy enforcement point
(PEP), as a functional entity which enforces access decisions made by a policy
decision point (PDP). These access control models follow a request-response
pattern and usually establish the access rights once prior to access and then allow
the operation in question to be executed. The only way to continuously monitor
access rights to a resource is to poll the PDP repeatedly. This introduces latency
dependent on the poll frequency, and additional load on the infrastructure for
communication and computation. Polling the PDP will also introduce load on
the PIPs required for decision-making.

Since the introduction of XACML the industry has seen wide adoption of
structured data serialization formats other than XML. Especially the JSON [4]
format has found wide adoption for web services and IoT messages. The develop-
ment of access control systems has been picking up on this and several approaches
exist which use JSON for representing data or policies. E.g., the XACML JSON
Profile [17] specifies a JSON representation for the authorization requests and
responses in communication with a PDP. JACPoL [13,14] presents a JSON-
based ABAC policy language, which proves to be less resource consuming than
XACML policies. JACPoL omits the possibility to access external data sources
for attributes and only uses attributes encoded in the authorization request.
Both XACML and JACPoL make use of the hierarchical document structure
of XML or JSON to represent rules and policies, resulting in optimization for
machine processing, but are difficult to manually author by administrators since
the semantics of a rule are often difficult to understand between the verbose
notation in XML, and to a lesser extent, JSON. This results in an error-prone
authoring process. This has been identified by commercial vendors of XACML
systems, and Abbreviated Language for Authorization (ALFA) [20] has been
developed as a domain-specific language (DSL) for policy authoring, which can
be translated back and forth to XACML, improving the readability of policies.
Other work [16] proposes to apply JSON Schema for modeling an ABAC rule
language.

A common definition of attributes in ABAC [11] is: Attributes are char-
acteristics of the subject, object, or environment conditions. Attributes contain
information given by a name-value pair. The intent is to allow rules in a policy
to access the domain model of the given application with regards to subject,
object and environment. XACML and ALFA implement this very literally and
attributes are accessed via so-called attribute designators returning the value (or
a collection of values) for a given name. Further processing beyond comparisons
operations is difficult, and it is explicitly not possible to use attribute values to
be used as the input for further traversal intop the domain model by accessing

54 D. Heutelbeck

sub-attributes of attributes. In case that the entire information required is con-
tained in the request document, this is not a problem. As soon as the retrieval of
attributes requires the access of external PIPs, required information may not be
easily accessible via a simple name string, and deeper traversal of the application
domain model may be necessary to get the required data. For example, when
the authorization request only obtains a username, and first a tracking identifier
has to be looked up to determine the current location of the user in question.
This requires two PIP lookups, first lookup the tracking id by username, then
lookup the location via the tracking id. XACML and ALFA does not allow this.
While it may be possible to include this information apriori in the request, this
would require the knowledge about the requirements made by policies (which are
potentially subject to change at runtime) at the policy enforcement point during
formulation of the request, which clearly is breaks separation of concerns enabled
by the externalization of policy decision making which is a core motivation for
the ABAC model.

In XACML and ALFA, conditions on the access of a resource can only be
implemented by using obligations and advices. This requires that the PEP imple-
ments matching logic for realizing these constraints. One specific class of con-
straints which is commonly found in practice is the requirement to remove or
transform parts of the resource data before handing it over to the client code.
Examples: map birth date to an age bracket for anonymization of personal data,
blacken part of a credit card number for web applications, only keep high level
categorization of a medical diagnosis while removing detailed case specific symp-
toms, or remove classified information about the contents of shipping containers
in logistics applications. The matching protection requirements may be subject
to change. In this case handling these kinds of transformations within the PDP
and formulating them in policies can be of advantage, providing a clear separa-
tion of concerns.

While XACML an ALFA could potentially be modified in order to support
a publish-subscribe paradigm, in order to do so, a clear specification would be
required on how to handle PIPs with changing values over time (streaming PIPs).
Also, XACML has no notion of lazy and eager evaluation of expressions which
have distinct implications for handling streaming PIPs.

The introduction of a new policy language is in major parts motivated by the
limitations of XACML in expressing more complex domain model traversal while
accessing PIPs, and requirements for PDP-side data transformation. However,
the focus and main contribution of this paper are the description of policy evalu-
ation approaches for PDPs supporting a publish-subscribe authorization scheme
and streaming PIPs, which are also transferable to existing policy languages.

The remainder of the paper is structured as follows. Section 2 provides a brief
overview of the Attribute Stream-Based Access Control (ASBAC) [8] functional
model. Section 3 provides key requirements in policy language design and Sect. 4
introduces the Structure and Agency Policy Language (SAPL) and Sect. 5 dis-
cusses the implications of the streaming nature of authorization and PIPs to the

A Policy Language for ASBAC 55

policy evaluation process and introduces the key algorithms. The paper closes
with conclusions in Sect. 6.

Fig. 1. ASBAC functional architecture

2 Attribute Stream-Based Access Control (ASBAC)

Attribute Stream-Based Access Control (ASBAC) [8] introduces a functional
architecture, as illustrated in Fig. 1. It is shares some key aspects with the archi-
tectures of both XACML and NGAC, with a policy decision point (PDP) in
the center, responsible for interpreting policies and making authorization deci-
sions. The primary difference to the previously mentioned architectures is not
the structure of components, but the way they communicate. In XACML and
NGAC a single authorization request made by the PEP to the PDP results in
a number of requests and responses to and from the connected components for
accessing policies, configuration, and external attributes.

In ASBAC the authorization request is replaced by an authorization sub-
scription to the PDP (2). The PDP in turn subscribes to the PDP configuration
(3). The configuration contains fundamental parameters for the decision making
(e.g., the default policy combining algorithm selected for the deployment) or
parameters for PIPs connected to the PDP (e.g., access tokens for message bro-
kers or RESTful APIs). In addition, the PDP makes a subscription to the policy
retrieval point, parameterized by the authorization subscription. The PRP will
return all policies (policy sets, rules if applicable) to be evaluated for the autho-
rization subscription, and sends a new set of matching policies if they change
due to policy management activities of the policy administration point. Each
time the PDP has a new set of configuration and matching policies, it starts
evaluating the policies. During the evaluation, when the PDP encounters refer-
ences to policy information points, the PDP subscribes to them (5) as encoded

56 D. Heutelbeck

in the policies and aggregates incoming attributes from the PIPs to calculate
the most recent decision (6), which is forwarded to the PEP if it differs from
the most recent previous decision (7). The PEP then enforces the decision (8)
and, if applicable, performs the requested action. Then it provides the client
application with access to the return value, if present, of the action (9) which
may be altered before being delivered to the client application (10), if this is
indicated by the decision. The architecture should at every step be implemented
using non-blocking asynchronous code. The functional model as presented in [8]
is not specifying a policy language but covers the fundamental algorithms for
stream-based PDPs and PEPs. This paper proposes a matching policy language
and elaborates on implementation details to support attribute data streams.

3 Requirements

The goal is to create a lightweight, human readable policy language for ASBAC
with a clean syntax avoiding boilerplate code in the form of hierarchical object
structures used in policy languages expressed purely in XML or JSON. The lan-
guage should be expressive enough to cover comparable scope of scenarios as
XACML. For example in order to support “breaking the glass” scenarios where
users may access a resource under additional constraints require policies express-
ing advices and obligations. These constraints usually encode additional actions
to be performed on by a PEP in case of access, such as logging and notification
of third parties about the occurrence of access.

The language should be extensible, i.e., it should be possible to integrate
new functions on values to enable domain specific policies (such as geospatial
functions for geofencing [12] similar to GeoXACML [5]). Geospatial policies are
good candidates for attribute stream-based policies as they rely on streams of
location tracking data. It should be easy to integrate new PIPs, i.e., external
databases, message brokers, or location tracking services.

The policy language should support the transformation of resources. For
example, granting access to medical or social science data for aggregation may
require specific degradation of the original information. In this case degrading
the information may require to transform the birth date in the data into an age
bracket instead to avoid disclosure of the identity of patients. A second use-case
may be a system storing credit card information which is accessed by a graphical
frontend based on client-side JavaScript code. Here it may be indicated to only
display the last four digits of a credit card number while blackening the leading
digits. Policies should be able to express that the frontend only receives the
blackened credit card number, while a payment backend may access the full
dataset. Similarly, a logistics application may require the blackening of contents
of shipping containers to certain personnel.

An appropriate data model for expressing subscriptions, authorization events
and entities has to be selected. Because of its lightweight syntax and wide accep-
tance JSON should be basic data model of the policy language.

A Policy Language for ASBAC 57

The policy language should support expressions that allow to query JSON
values. JSONPath [7] is a popular standard for querying JSON objects and the
policy language should support queries in this style.

As deployments of authorization infrastructures organically grow over time,
the number of policies increases as well. Always evaluating all policies, including
subscriptions to potentially required PIPs for each authorization, is not feasible
and wasteful. Thus, the policy language should provide means of policy indexing,
allowing for the selection of matching relevant policies for an individual subscrip-
tion which does not require the full evaluation of the policy or any subscriptions
to external PIPs.

As an additional structuring element, the policy language should allow for
grouping of individual policies into policy sets. Policy sets have some important
implications for both potential administrative models for the policies as well
as for the implications for potential algorithms for resolving the occurrence of
multiple different results from a number of policies for a given subscription.
The policies in policy sets should ordered, allowing for additional resolution
algorithms taking into account the order of decisions within a policy set.

The language should allow for deep domain model traversal allowing cascad-
ing attribute resolution.

An implementation must realize the ASBAC model.

4 The Structure and Agency Policy Language (SAPL)

This paper proposes a policy language for ASBAC, called the Structure and
Agency Policy Language (SAPL). SAPL is named after the observations from
social science, explaining the interdependence between social structures and the
agency of individuals [2]. The following terms formalize components of the func-
tional architecture.

Definition 1. A value is a chunk of serialized data. All values are expressed
as JSON [4] values. Then let JSON be the set of all JSON values. Let JSON∗

:= JSON ∪ {undefined}.
Definition 2. Data streams are composable, asynchronous sequences of val-
ues. Let S be the set of all possible streams with values in JSON and S∗ be the
set of all possible streams with values in JSON∗.

Definition 3. A protected resource, r, is an element of R∗ := S ∪R. Resources
can be streams or in the set R of any other object depending on the domain logic
or runtime environment.

Definition 4. Let Subjects ⊂ JSON be the set of values describing all potential
users and processes which may attempt to access any given resource ∈ R∗.
Let Resources ⊂ JSON be the set of values identifying and describing any
given resource ∈ R∗. Let Actions ⊂ JSON be the set of values describing all
potentials actions to be performed by any subject ∈ Subjects on any resource ∈
R∗.

58 D. Heutelbeck

4.1 Subscriptions and Decisions

Definition 5. Let sub ∈ ASub ⊂ JSON be an authorization subscription.
ASub is the set of all objects containing the keys subject, action, and resource

with matching values from Subjects, Actions, Resources. Optionally, sub may
contain a key environment with an arbitrary JSON value.

A sub ∈ ASub is used to indicate that a PEP subscribes to decisions from
the PDP about the authorization of the subject to perform the action with the
given resource. The three values have to unambiguously describe these objects.
For JSON objects, values of keys are considered attributes of the object. The
resource object may be a direct JSON representation of the resource, if appli-
cable. SAPL authorization subscriptions are designed to answer authorization
questions expressed similarly to XACML requests.

1 {

2 "subject" : { "username" : "alice", "id" : 1234321 },

3 "action" : "SUBSCRIBE",

4 "resource": { "type": "mqtt", "topic": "track/987/location" }

5 }

This subscription expresses that the subject with username “alice” would like
to subscribe to a topic of a MQTT message broker.

Definition 6. An authorization decision, d, is an object value containing
a decision ∈ {PERMIT ,DENY , INDETERMINATE , NOT_APPLICABLE },
an optional array of values for obligations, an optional array of values for
advices, and an optional resource value. Let ADec ⊂ JSON be the set of all
possible authorization decisions.

The values of decision follow the same semantics as XACML [19]. An autho-
rization decision may look as follows:

1 {

2 "decision" : "PERMIT",

3 "obligations": [{ "action": "logAccess" }],

4 "advices" : [{ "action": "sendMail", "to": "foo@bar.baz" }]

5 }

The authorization decision contains the decision, arrays containing obliga-
tions and advices, and an optional replacement resource. These authorization
decisions can then be processed by the subscribing PEP by applying the ASBAC
design patterns introduced in [8].

4.2 SAPL Documents

Policies and policy sets are organized in individual documents.

A Policy Language for ASBAC 59

Definition 7. A SAPL document, p ∈ SAPL, is a document containing either
a policy or a policy set expressed in SAPL. A policy p matches sub ∈ ASub,
if it does not have a target expression, or its target expression evaluates to true
for sub.

At the beginning, a SAPL document may declare imports for PIPs or function
libraries enabling shorthands for potentially long attribute names or functions.
After this, one document contains either exactly one policy or policy set. This
paper discusses some key aspects of the full grammar of SAPL (see Appendix A)
[9].

4.3 Policies

Each policy starts with the keyword policy and a policy name. Followed by the
entitlement permit or deny, implying the decision indicated by the policy should
it be positively evaluated. This is followed by a Boolean target expression. The
target expression has the purpose to make the overall decision process more effi-
cient, by allowing for indexing of policies and avoiding accessing external PIPs
referenced by irrelevant policies. In order to support indexing, the target expres-
sion is evaluated strictly eager and no access to PIPs is allowed. Algorithms and
data structures for indexing SAPL policies indexing are outside the scope of this
paper and will be addressed in future publications. Target expressions may how-
ever use traversal and transformation of JSON data by using a JSONPath like
syntax, comparisons, regular expression matching and application of functions.
The remainder of the policy is only to be evaluated, if the target expression eval-
uates to true for a given subscription such policies are considered to match the
subscription. If omitted, the target expression is considered to evaluate to true
for all requests. The target expression is followed by an optional where block,
consisting of a conjunction of semicolon delimited Boolean expressions. If the
target expression and the where block of a policy evaluate to true, the policy
implies the decision noted by the entitlement defined above. In the where block,
or policy body, lazy Boolean operators are allowed and policy information points
may be accessed to retrieve externally held attributes. External attributes pro-
vided by PIPs are subscribed to by angle brackets. The only two parts of a
policy which are mandatory are a name String preceded by the keyword policy
and an entitlement which is either PERMIT or DENY. A policy only consisting
of these elements would match all subscriptions and always result in the given
entitlement, resulting in a “permit all” or a “deny all” or policy.

After the entitlement, a target expression, where block, obligation, and advice
may follow, with the semantics as outlined in the example above. The where block
may contain variable declarations var name = value; assigning a value to the
variable with the given name. Such a statement is considered to have evaluated
to true for the purpose of evaluating the where block.

The final optional statement a policy can make is the transform statement,
which is used to indicate, that the resource, as defined by the subscription, should

60 D. Heutelbeck

be replaced with a different JSON value. The keyword transform is followed by
an expression which evaluates to a JSON value.

A SAPL document with a policy matching the example subscription above
may be expressed as follows:

1 policy "example1"

2 permit resource.type == "mqtt" & action == "SUBSCRIBE"

3 where

4 subject.id.<profile.clearanceLevel> >= 5;

5 subject.id.<physicalAccessControl.checkedIn>;

6 obligation

7 { "action": "logAccess" }

8 advice

9 { "action": "sendMail", "to": "foo@bar.baz" }

In this example policy, subject.id evaluates to the number 1234321. By
appending .〈profile.clearanceLevel〉, the policy engine is instructed to pass the
preceding result (1234321) to the PIP, or attribute finder, with the name “pro-
file” to retrieve the attribute “clearanceLevel”. The PIP in turn subscribes to the
attribute. In the next line, an attribute finder subscribes to data published by the
physical access control system which registers, if users have physically checked
into the workplace. Thus, the policy permits access, if the subject has a suffi-
cient security clearance and is on the company premises under physical access
control. Attribute finders have to be preregistered to the PDP. If no matching
PIP is present, an evaluation error occurs. In case a matching policy evaluates
to PERMIT or DENY, the optional obligation and advice blocks are evaluated,
which contain expressions which evaluate to arbitrary JSON values, which are
then added to the authorization sent to the PEP. These events are sent to the
subscribing PEP, whenever a new different authorization event occurs based on
the latest PIP data.

4.4 Policy Sets

A policy set is an ordered collection of policies collected in one document. A
policy set starts with the keyword set and a name string, followed by declaring
which combining algorithms (see next section) is to be applied to the policies con-
tained in the set for resolving potential ambiguities in the policy results. These
two declarations and the presence of at least one policy below are mandatory
within each policy set.

1 set "example2"

2 deny-unless-permit

3 for resource.type == "aType"

4 var dbUser = "admin";

5

6 policy "example2.1"

7 permit subject.function == "admin"

A Policy Language for ASBAC 61

8

9 policy "example2.2"

10 permit action == "read"

11 transform resource |- filter.blacken

Optionally a policy set may declare a policy set target expression after the
keyword for which is used in the same way as the target statement of documents
containing only a policy. The policy set is only evaluated, if the policy set target-
statement evaluates to true for a given subscription. Finally before defining
the individual policies arbitrary variables may be declared to be used during
evaluation of the following policies.

4.5 Combining Algorithms

SAPL foresees the following combining algorithms to resolve ambiguities when
multiple policies return decisions, in the absence of transformations in the poli-
cies, these are very similar to combining algorithms found in XACML. However,
the introduction of resource transformations introduces a new situation:

Definition 8. A transformation uncertainty is a situation where multiple
policies result in PERMIT and at least one of them has a transformation state-
ment and it is not clear if and how a resource value should be replaced.

Potential reactions to transformation uncertainty is to DENY access, or to
return an error in the form of a INDETERMINATE result. In this way the
combining algorithms ensure, that a decision event is always unambiguous with
regards to a resource value replacement.

– deny-unless-permit. This strict algorithm is used if the decision should be
DENY except for there is a PERMIT. It ensures that any decision is either
DENY or PERMIT. If any policy document evaluates to PERMIT and there
is no transformation uncertainty, the decision is PERMIT. Otherwise the
decision is DENY.

– permit-unless-deny. This more relaxed algorithm is used if the decision
should be PERMIT except for there is a DENY. It ensures that any decision
is either DENY or PERMIT. If any policy document evaluates to DENY or
if there is a transformation uncertainty, the decision is DENY. Otherwise the
decision is PERMIT.

– only-one-applicable. This algorithm is used if policy sets and policies are
constructed in a way that multiple policy documents with a matching target
are considered an error. A PERMIT or DENY decision will only be returned
if there is exactly one policy set or policy with matching target expression
and if this policy document evaluates to PERMIT or DENY. If any target
evaluation results in an error (INDETERMINATE) or if more than one policy
documents have a matching target, the decision is INDETERMINATE. If
there is no matching policy document, the decision is NOT_APPLICABLE.
Otherwise, i.e., there is exactly one matching policy document, the decision
is the result of evaluating this policy document.

62 D. Heutelbeck

– deny-overrides. This algorithm is used if a DENY decision should prevail a
PERMIT without setting a default decision. If any policy document evaluates
to DENY, the decision is DENY. Else, if there is any INDETERMINATE or
there is a transformation uncertainty, the decision is INDETERMINATE.
Else, if there is any PERMIT the decision is PERMIT. Else, the decision is
NOT_APPLICABLE.

– permit-overrides. This algorithm is used if a PERMIT decision should pre-
vail a DENY without setting a default decision. If any policy document eval-
uates to PERMIT and there is no transformation uncertainty, the decision
is PERMIT. Else, if there is any INDETERMINATE or there is a transfor-
mation uncertainty, the decision is INDETERMINATE. Else, if there is any
DENY the decision is DENY. Else, the decision is NOT_ APPLICABLE.

– first-applicable. This algorithm is exclusive for policy sets, as it assumes
that the policies are ordered. It allows the policy author to manages the pol-
icy’s priority by their order in a policy set. As soon as the first policy returns
PERMIT, DENY or INDETERMINATE, its result is the final decision. Thus
a “default” can be specified by creating a last policy without any conditions.
If a decision is found, errors which might occur in later policies are ignored.
Each policy is evaluated in the order specified in the policy set. If it evaluates
to INDETERMINATE, the decision is INDETERMINATE. If it evaluates
to PERMIT or DENY, the decision is PERMIT or DENY If it evaluates to
NOT_APPLICABLE, the next policy is evaluated. If no policy with a deci-
sion different from NOT_APPLICABLE has been found, the decision of the
policy set is NOT_APPLICABLE.

For all combining algorithms, the advices and obligations of the policies agree-
ing with the final outcome are added to the respective arrays in the decision
event.

4.6 Expressions

The SAPL expression syntax contains typical operation in accessing attributes
(keys) of JSON objects, arithmetic, Boolean, string and comparison operations.
Due to size limitations, a full specification is out of scope of the paper, and only
key features and design considerations are discussed in this section. A detailed
specification is available in [9].

SAPL expressions may evaluate to any JSON value or to undefined. The
reason for introducing the concept of undefined values is to eliminate unex-
pected and unwanted evaluation errors which would lead to the occurrence
of policies evaluating to INDETERMINATE and thus potentially to an unin-
tended denial of access. By introducing undefined and the matching seman-
tics in operators, policies become easier to write and to reason about. The
source for such potentially unintended behavior from the perspective of pol-
icy authors is, that policies cannot make assumptions about the contents of
the values contained in a subscription. As a PDP may potentially be used by
applications from different domains with individual ways of expressing subject,
action, or resource in subscriptions. And also policies may be written by different

A Policy Language for ASBAC 63

individuals only aware of their own domain and what kind of subscriptions to
expect from there. For example, given one policy containing a target expression

and another policy with the target expression
subject.age > 50 and a subscription with the subject .
The first target expression evaluates to true, while for the second target expres-
sion the subject object does not contain the key age and without the possibility
of evaluating to undefined the expression would result in an error causing the
policy to error and evaluate to INDETERMINATE as a whole with the implied
results based on the applied combining algorithm. With undefined, the compar-
ison can evaluate to false and the evaluation is only resulting in a policy that
does not match, or is not applicable if such cases occur in the where block of a
policy.

Expressions may contain function calls library.function(expression). Func-
tions may return a JSON value or undefined. The PDP may have arbitrary
function libraries installed, such as libraries for processing geographical informa-
tion.

Expressions may contain access to attribute data streams provided by
policy information points. Accessing a PIP is expressed by angled brackets:
subject.id.<tracker.location>. Such an expression is turned into a subscription
to the attribute tracker.location with the value of subject.id as a parameter.
The PDP may have arbitrary attribute finders installed each providing a set of
attributes to subscribe to. Attribute finders may include time-based attributes
returning the current time as a data stream in regular intervals. The implications
of subscribing to attribute streams for evaluating expressions and policies will
be examined in the implementation section.

Expressions may contain JSONPath style queries on values. For example
given an array persons containing JSON objects describing persons including
their age, the expression persons[?(@.age >= 50)] will return a new array only
containing the persons with age 50 and up. Other queries include wildcards,
recursive search for keys, and array slicing.

A unique feature of JSON processing in SAPL is the ability to apply filters to
JSON values. SAPL provides two default filters remove, which removes a key from
an object, and blacken which operates on strings and overwrites a substring with
a provided character (e.g., overwrite the leading digits of a credit card number
with asterisks). Filters are expressed by using the filter operator |-. For example,
resource |- { @.credit_card : blacken } overwrites the characters in the string
containing the credit card information. Additionally, filters can be applied to all
elements in an array by preceeding the expression with the keyword each.

5 Implementation of an Attribute Stream-Based Policy
Evaluation

The general algorithm for implementing an attribute stream based PDP were
previously described in [8]. The algorithm was described without taking a spe-
cific policy language into account. This section examines how to implement the
evaluation of SAPL policies with access to attribute streams.

64 D. Heutelbeck

5.1 Reactive Programming

In the following, this paper presents a number of asynchronous algorithms for
policy evaluation where asynchronous information can change the evaluation
result over time. A publish-subscribe design is applied, similar to the observer
pattern [6]. The principles of reactive programming as proposed by the Reactive
Manifesto [3] are applied, which also addresses requirements regarding respon-
siveness, resilience, elasticity and message-driven systems. A notable difference
to the original observer pattern is the introduction of functionality for handling
back-pressure, i.e., for informing upstream data sources about bottlenecks in
downstream processing and allowing for elastic adjustment of data transfer. To
be able to express algorithms following this paradigm, this paper uses a simpli-
fied notation for reactive algorithms. This notation mostly ignores error handling
and only introduces a few required asynchronous operations on data streams.

Definition 9. For a stream, s ∈ S∗, s.first() returns a stream only containing
the first element of the stream s.

Definition 10. Let combineLatest : [S1, . . . , Sn] → S∗, n ∈ N be a function
returning a stream which, starting from the time all input streams have emitted
at least one value, emits an array of the most recent values for each input stream
whenever a new value is emitted by any input stream.

Definition 11. For a stream, s ∈ S∗, s.map(fun|fun : JSON∗ → JSON∗)
returns a stream, where for each value v ∈ s, s.map(fun) contains fun(v).

Definition 12. For a stream, s ∈ S∗, s.switchMap(fun|fun : JSON∗ → S∗)
returns a new stream s′, where the each time a new value from s is emitted,
a new stream fun(s) is generated, and until the next value from s arrives, all
values from fun(s) are emitted by s′ as they occur.

Definition 13. just(v) ∈ S∗, v ∈ JSON∗ is the stream only containing v.

5.2 Reactive Policy Document Evaluation

Passing a SAPL policy p into a SAPL parser will generate an in-memory abstract
syntax tree (AST) representing the document, containing nodes for the differ-
ent syntactical elements and their respective children as defined by the SAPL
grammar [9].

Definition 14. Each node n in the abstract syntax tree of a SAPL document
implements a function evaln : ASub → S∗, returning a data stream.

Determining if any given policy document matches a subscription is does not
need to take data streams into account. The check for a match is to be imple-
mented as a blocking synchronous function. Even, in the context of an otherwise
primarily asynchronous implementation of a policy engine this is the right thing
to do, as the function an be immediately be evaluated based on the subscription

A Policy Language for ASBAC 65

and AST alone without accessing external resources and blocking IO operations.
The limitations of the paper do not allow to specify the evaluation algorithms
for all node types in a SAPL AST. The following example expression contains a
few key constructs that allow explain how attribute streams are handled when
evaluating SAPL policies.

1 subject.<physicalAccessControl.checkedIn>

2 && (subject.<profile.clearanceLevel> >= 5

3 || environment.<threatLevel> < 2)

This expression subscribes up to three attribute streams. The result depends
on the subject to be registered on company premises and one of the two next
conditions must be met. The subject has either a security clearance level greater
or equal of five or the estimated threat level of the environment is below 2.
SAPL differentiates between eager and lazy operations. Operators like arith-
metic, string concatenation, and comparisons are always evaluated eagerly. This
means that a node in the AST constructs the output data stream by subscribing
to its parameter data streams and applying the operator when the data streams
emit new values. The eval function of each AST node for eager operators con-
struct the result data stream by applying Algorithm1 for a matching operator
function op.

Algorithm 1. Eager Evaluation

Given : left, right ∈ S∗, op : JSON∗ → JSON∗

combineLatest(left, right).map([l, r] �→ op(l, r))

In the case of Boolean operations, policy evaluation may not always need to
look at both values in order to determine the outcome. In most programming
languages, the expression left of a Boolean operation is evaluated first and the
right expression is not evaluated at all, if the outcome is clear at this point.
This allows for both conditional evaluation and reduces computation cost. In
the case of the SAPL expression above, the evaluation can stop end return false
if the subject.<physicalAccessControl.checkedIn> returns false. Ideally, the policy
evaluation should not only not look at the other values, but also not subscribe
to the PIPs on the right side of the conjuction as long as the latest value of the
left data stream is false. This behavior is realized by Algorithm 2. Here, if the
left data stream returns false just a false value is emitted. However if it was
true, the evaluation subscribes to the right data steam and returns its values,
and unsubscribes as soon as the left side becomes false again. SAPL operators
can be implemented on following variants of these two basic algorithms, while
adding checks for typing.

66 D. Heutelbeck

Algorithm 2. Lazy Conjunction Evaluation

Given : left, right ∈ S∗ , where ∀v ∈ left, right : v ∈ {true, false}
left.switchMap(l �→ {

i f (l)
return right ;

else
return just(false);

})

6 Conclusions

This paper presented the fundamentals of a new policy language for attribute
stream-based access control (ASBAC) solving a number of issues occurring with
existing ABAC systems in scenarios where access rights may change during
access and polling the authorization infrastructure is not an acceptable solution.
The proposed reactive implementation strategy together with the algorithms pre-
sented in [8] illustrates how to implement an ASBAC engine supporting SAPL.
An authorization infrastructure following the proposed patters is a natural fit
for applications following the reactive programming model and allows for quasi-
real time publish-subscribe authorization in stateful applications. The syntax
of SAPL has been designed to be both expressive and also easily readable by
humans to reduce errors in policy auditing. SAPL has built in support for JSON
queries, filtering and transformation. A complete reference implementation of
the ASBAC architecture has been implemented and is publicly available as open
source under the Apache 2.0 license at [9], including a full implementation of
SAPL. A number of case studies based on medical scenarios and geographic
access control are available [10]. The proposed solution addresses a number of
shortcomings of existing XACML-based (domain navigation, transformations,
readability) and its unique feature is the support of publish-subscribe patterns
for all architecture components (incl. PEP, PDP, PRP, PIP). This paper could
not cover all evaluation steps required for a full implementation, aspects such as
combining algorithms and variable handling have been omitted due to space lim-
itations. While the presented algorithms are simple, they demonstrate a signifi-
cant paradigm shift im policy handling compared to existing ABAC approaches
and implementations and that adding data stream processing to authorization
infrastructure is feasible. A quantitative performance evaluation of ASBAC and
data structures for policy indexing will be covered in future publications. Further
work will examine how to apply ASBAC in collaborative IoT applications, where
ASBAC will first be applied in message brokers due to the hardware limitations
at sensor level. ASBAC is not defining an administrative model, which should
be investigated.

A Policy Language for ASBAC 67

A SAPL Grammar

sapl = { import },(policy-set | policy) ;

import = "import", ID, { ".", ID }, ".",

(ID | "*") | "import", { ID, "." },

ID, "as", ID ;

policy-set = "set", STRING,

combining-algorithm,

["for", target-expression],

{ value-definition, ";" },

policy, { policy } ;

combining-algorithm =

"deny-overrides"|"permit-overrides"

|"first-applicable"|"only-one-applicable"

|"deny-unless-permit"|"permit-unless-deny";

target-expression = expression ;

value-definition = "val", ID, ":=",expression ;

policy = "policy", STRING, entitlement,

[target-expression],

["where", policy-body],

["obligation", expression],

["advice", expression],

["transform" expression] ;

entitlement = "permit" | "deny" ;

policy-body = statement, ";", {statement,";"};

statement = value-definition | expression ;

expression = addition ;

addition = multiplication, { ("+" | "-"

| "&&" | "&"), multiplication } ;

multiplication = comparison, { ("*" | "/"

| "||" | "|"), comparison } ;

comparison = prefixed, [("==" | "=~" | "<"

| "<=" | ">=" | ">" | "in"), prefixed] ;

prefixed = [("-" | "!")],basic-expression;

basic-expression = (value | "@" | ID

| function-call | ("(", expression, ")")),

{ selection-step },

[("|-", filter) | ("::", value)] ;

function-call = ID, { ".", ID }, "(",

[expression, {",", expression }], ")" ;

selection-step = key-step | index-step

| wildcard-step | rec-descent-step

| rec-wildcard-step | slicing-step

| expression-step | condition-step

| union-step | attr-finder-step ;

key-step = ".", ID | "[", STRING, "]" ;

index-step = "[", NUMBER, "]" ;

wildcard-step = ".", "*" | "[", "*", "]" ;

rec-descent-step = "..", ID | "..",

"[", STRING, "]" | "..",

"[", NUMBER, "]" ;

rec-wildcard-step = "..", "*" | "..",

"[", "*", "]" ;

slicing-step = "[", [NUMBER], ":",

[[NUMBER], [":",[NUMBER]]], "]" ;

expression-step = "[","(",expression,")","]";

condition-step = "[", "?", "(", expression,

")", "]" ;

union-step = "[", NUMBER, ",", NUMBER,

{ ",", NUMBER }, "]"

| "[", ID, ",", ID, { ",", ID }, "]" ;

attr-finder-step = ".", "<", ID, { ".",

ID }, ">" ;

filter = ["each"], filter-function |

"{", filter-statement, { ",",

filter-statement }, "}" ;

filter-statement = ["each"], "@",

{selection-step}, ":", filter-function ;

filter-function = ID, { ".", ID }, ["(",

[expression, {",",expression}],")"] ;

value = object | array | NUMBER | STRING

| "true" | "false" | "null" | "undefined";

object = "{", [STRING, ":", expression,

{ ",", STRING, ":", expression }], "}" ;

array = "[", [expression, { ",", expression}

], "]" ;

ID = (LETTER | "_" | "$"),{ LETTER | DIGIT

| "_" | "$" } ;

LETTER = "A"|"B"|... |"Z"|"a"|"b"|...|"z" ;

DIGIT="0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9";

STRING=’"’,? any character except " ?,

’"’|"’", ? any character except ’ ?, "’" ;

NUMBER = ? JavaScript number definition ? ;

References

1. American National Standards Institute: INCITS 499–2018: Information technol-
ogy - next generation access control - functional architecture. Technical report,
American National Standards Institute (2018)

2. Barker, C.: Cultural Studies: Theory and Practice. Sage, Thousand Oaks (2003)
3. Bonér, J., et al.: The reactive manifesto (2014). https://www.reactivemanifesto.

org/. Accessed 15 May 2019
4. Bray, T.: The JavaScript Object Notation (JSON) Data Interchange Format. RFC

7159, March 2014. https://doi.org/10.17487/RFC7159, https://rfc-editor.org/rfc/
rfc7159.txt

5. Open Geospatial Consortium: Geospatial extensible access control markup lan-
guage (GeoXACML). Technical report, Open Geospatial Consortium (2011).
https://www.opengeospatial.org/standards/geoxacml

https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/
https://doi.org/10.17487/RFC7159
https://rfc-editor.org/rfc/rfc7159.txt
https://rfc-editor.org/rfc/rfc7159.txt
https://www.opengeospatial.org/standards/geoxacml

68 D. Heutelbeck

6. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-oriented Software. Addison-Wesley Longman Publishing Co., Inc.,
Boston (1995)

7. Gossner, S.: JSONPath - XPath for JSON (2006). https://goessner.net/articles/
JsonPath/. Accessed 14 June 2019

8. Heutelbeck, D.: Attribute stream-based access control (ASBAC) - functional archi-
tecture and patterns. In: Proceedings of the 2019 International Conference of Secu-
rity and Management (SAM 2019) (2019)

9. Heutelbeck, D.: SAPL policy engine (2019). https://github.com/heutelbeck/sapl-
policy-engine. Accessed 10 May 2019

10. Heutelbeck, D.: SAPL policy engine demos (2019). https://github.com/
heutelbeck/sapl-demos. Accessed 10 May 2019

11. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations. Technical report, National Institute of Standards and Technology,
January 2014. https://doi.org/10.6028/nist.sp.800-162

12. Ijeh, A.C., Brimicombe, A.J., Preston, D.S., Imafidon, C.O.: Geofencing in a secu-
rity strategy model. In: Jahankhani, H., Hessami, A.G., Hsu, F. (eds.) ICGS3 2009.
CCIS, vol. 45, pp. 104–111. Springer, Heidelberg (2009). https://doi.org/10.1007/
978-3-642-04062-7_11

13. Jiang, H., Bouabdallah, A.: JACPoL: a simple but expressive JSON-based access
control policy language. In: Hancke, G.P., Damiani, E. (eds.) WISTP 2017. LNCS,
vol. 10741, pp. 56–72. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
93524-9_4

14. Jiang, H., Bouabdallah, A.: Towards a JSON-based fast policy evaluation frame-
work. In: Panetto, H., et al. (eds.) OTM 2017. LNCS, vol. 10574, pp. 22–30.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69459-7_2

15. Latham, D.C.: Department of defense trusted computer system evaluation criteria.
Department of Defense (1986)

16. Linklater, G., Smith, C., Connan, J., Herbert, A., Irwin, B.V.: JSON schema
for attribute-based access control for network resource security. In: Proceedings
of Southern Africa Telecommunication Networks and Applications Conference
(SATNAC 2017). (2017)

17. Lockhart, H., Parducci, B.: JSON profile of XACML 3.0 version 1.0
(2017). http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/xacml-json-http-
v1.0.html. Accessed 10 May 2019

18. Sandhu, R.S.: Role-based access control. In: Advances in Computers, vol. 46, pp.
237–286. Elsevier (1998)

19. XACML 3.0 Committee: extensible access control markup language (XACML)
version 3.0 (2013). http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-
en.html. Accessed 10 May 2019

20. XACML 3.0 Committee: Abbreviated language for authorization version
1.0 (2015). https://www.oasis-open.org/committees/download.php/55228/alfa-
for-xacml-v1.0-wd01.doc. Accessed 10 May 2019

https://goessner.net/articles/JsonPath/
https://goessner.net/articles/JsonPath/
https://github.com/heutelbeck/sapl-policy-engine
https://github.com/heutelbeck/sapl-policy-engine
https://github.com/heutelbeck/sapl-demos
https://github.com/heutelbeck/sapl-demos
https://doi.org/10.6028/nist.sp.800-162
https://doi.org/10.1007/978-3-642-04062-7_11
https://doi.org/10.1007/978-3-642-04062-7_11
https://doi.org/10.1007/978-3-319-93524-9_4
https://doi.org/10.1007/978-3-319-93524-9_4
https://doi.org/10.1007/978-3-319-69459-7_2
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/xacml-json-http-v1.0.html
http://docs.oasis-open.org/xacml/xacml-json-http/v1.0/xacml-json-http-v1.0.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html
https://www.oasis-open.org/committees/download.php/55228/alfa-for-xacml-v1.0-wd01.doc
https://www.oasis-open.org/committees/download.php/55228/alfa-for-xacml-v1.0-wd01.doc

NoCry: No More Secure Encryption Keys
for Cryptographic Ransomware

Ziya Alper Genç(B), Gabriele Lenzini, and Peter Y. A. Ryan

Interdisciplinary Centre for Security, Reliability and Trust (SnT),
University of Luxembourg, Luxembourg City, Luxembourg

{ziya.genc,gabriele.lenzini,peter.ryan}@uni.lu

Abstract. Since the appearance of ransomware in the cyber crime
scene, researchers and anti-malware companies have been offering solu-
tions to mitigate the threat. Anti-malware solutions differ on the specific
strategy they implement, and all have pros and cons. However, three
requirements concern them all: their implementation must be secure, be
effective, and be efficient. Recently, Genç et al. proposed to stop a spe-
cific class of ransomware, the cryptographically strong one, by blocking
unauthorized calls to cryptographically secure pseudo-random number
generators, which are required to build strong encryption keys. Here,
in adherence to the requirements, we discuss an implementation of that
solution that is more secure (with components that are not vulnerable
to known attacks), more effective (with less false negatives in the class of
ransomware addressed) and more efficient (with minimal false positive
rate and negligible overhead) than the original, bringing its security and
technological readiness to a higher level.

Keywords: Ransomware · Malware · Cryptovirus · CSPRNG

1 Introduction

Cryptographic ransomware reached the peak of its fame after WannaCry’s world-
wide attack, in May 2017. On victim’s machine, it encrypts files, asking for a
ransom (hence the name) to release the cryptographic key the victim needs to
decrypt the files and re-access them. Unsurprisingly, according to a recent sur-
vey [6], 50.6% of the victims did not get any key in return, after the payment,
irremediably losing the data and money.

Encryption is a strong instrument in the hands of criminals. If properly imple-
mented, its impact is irreversible: without knowing the decryption key, recovering
the contents of an encrypted file is computationally unfeasible, a very disrup-
tive fact for the victims. However, implementing cryptography flawlessly is a
difficult task, and coders of ransomware are challenged by the same issues that
have been troubling security engineers in charge of implementing cryptographic
applications. One of the most relevant is to generate (cryptographically secure)
encryption keys and keep them safe. Failing in this makes the encryption weak
c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 69–85, 2020.
https://doi.org/10.1007/978-3-030-39749-4_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_5&domain=pdf
https://doi.org/10.1007/978-3-030-39749-4_5

70 Z. A. Genç et al.

in the sense that it becomes likely to reproduce or retrieve the decryption keys,
which would jeopardize the ransomware business model. In this issue, there is
hope as same defence and some anti-ransomware solutions (see Sect. 6) indeed
offer to recover files counting on ransomware engineering’s being näıve in imple-
menting strong cryptography.

Unfortunately, modern ransomware programs are coded more professionally
than those in the past. Such professional variants (and attack relying on them are
increasing and demanding higher ransom, contrarily the general trend that sees
the number of ransomware attacks dropping, see [7]) are quite sophisticated,
well designed, and properly implemented. Among them, there are variants of
WannaCry, and variants of other ransomware families such as Petya, NotPetya,
and GoldenEye, CryptoLocker, Crysis, Cerber, and RAA. They all pose serious
threats. Bajpai et al. [2], who propose for ransomware a scale similar to the Saffir-
Simpson for hurricanes, classify them as having severity categories 5 and 6.

Are then they unstoppable? Genç et al. discuss a strategy in [8], called
UShallNotPass. The core idea is to impede them to call cryptographically
secure pseudo-random number generators (CSPRNGs). These functions offered
by the operating system return the essential ingredients required to build crypto-
graphically secure encryption keys: “good” pseudo-random numbers. The solu-
tion described in [8] has a sufficiently accurate detection rate (i.e., 94%), but
it is not yet an effective and efficient solution. What it needs is an access con-
trol system that guarantees at least three important requirements: (1) to rely
on architectural components that are not vulnerable against known or arguable
targeted attacks; (2) to have lower false positive rate; (3) to impose a negligible
performance overhead.

Contribution. We discuss improvements to the solution proposed in [8] that sat-
isfies requirements (1)–(3). It meets (1) by avoiding interprocess communication
(IPC), a choice that is potentially vulnerable to named pipes hijacking (Sect. 4.1).
It meets (2) by bootstrapping and maintaining a Whitelist DB of honest appli-
cations that also call CSPRNG (Sect. 4.2). It meets (3) by showing that, when
run in respect to vanilla system, our implementation has a negligible overhead
(Sect. 5) over applications that use CSPRNGs, with a relative improvement of
roughly two orders of magnitude with respect the prototype presented in [8].
We also re-test the implementation against 747 active real-world ransomware
samples, and measure the false negative rate.

To appreciate fully this paper’s contribution, we recall UShallNotPass’s
in Sect. 2, security model and assumptions in Sect. 3, and the state of the art in
anti-ransomware in Sect. 6. We discuss and test our implementation in Sect. 4
and in Sect. 5, arguing that our version of UShallNotPass, which we call
NoCry, in antithesis to the infamous WannaCry, has potential to become the
best defense against ransomware at the time of writing (June 2019).

NoCry: No More Secure Encryption Keys for Cryptographic Ransomware 71

2 Recalling UShallNotPass: No Random, No Ransom

UShallNotPass [8] has been proposed as a solution to stop cryptographically
strong ransomware attacks. It intercepts calls made to application programming
interfaces (APIs) of cryptographically secure pseudo-random number generators
(CSPRNGs) and allows only authorized applications to get through, blocking
and terminating all the others.

On modern operating systems (OSs), CSPRNG APIs are the only reliable
source of cryptographically secure pseudo-random numbers that are necessary
to build (cryptographically strong) encryption keys, which are the instruments
that a crypto-ransomware needs to be certain that it is unfeasible for a victim
to reverse the damage without paying the ransom.

Genç et al. showed that a proof-of-concept implementation, proving they are
able to neutralize even NotPetya, and collect evidence that the concept works
against a very large class of about five hundreds real-word active cryptograph-
ically strong ransomware samples including WannaCry, and other ransomware
families such as Petya and GoldenEye, CryptoLocker, Crysis, Cerber, and
RAA.

The goal of [8] is to prove that by controlling access to CSPRNG, ransomware
can be blocked before any damage occurs. However, how the authorization is
decided has not been detailed, but claimed relying on a Whitelist database (DB)
accessible only with admin privileges and upon an undefined security policy. It
suggests however two optional mechanisms for authorization: (i) digitally signed
executables can call CSPRNG; and (ii) not digitally signed executables can also
call CSPRNG, if the administrator decides so at run time.

The architecture of UShallNotPass and the workflow is depicted in Fig. 1.
It has two separate components: Interceptor, and Controller. Interceptor captures
the calls made to CryptGenRandom API (a CSPRNG offered by Windows OS)
and dispatches the process ID to the Controller, which searches the Whitelist DB
to decide whether to allow or deny access. No parameters or outputs are logged.
The overhead which the proof-of-concept prototype of UShallNotPass brings
to the clean system is significant. Details and benchmarks can be found in [8].

3 Security Assumptions

UShallNotPass [8] works under two assumptions, which remain valid in our
implementation of the concept, NoCry: (i) at the moment in which the anti-
ransomware is installed on a target system and before it becomes active and
operational, the system is non-compromised; (ii) the host machine can run anti-
virus software to detect, stop and neutralize common malicious actions such as
keystroke logging, process injection, etc.

We also stress one key point once more. The original concept, and thus
NoCry, has been conceived to work against cryptographically strong ran-
somware only. At least in the ransomware samples that we have analyzed,
those are the ransomware programs that access secure random number sources.

72 Z. A. Genç et al.

Fig. 1. Architectural view of UShallNotPass [8]. When CryptGenRandom API is
called, Interceptor identifies the caller and dispatches the process ID to Controller. If the
application is authorized, the call is executed and the result is returned to the caller.
Otherwise, the call is blocked and the caller process is terminated.

NoCry does not stop ransomware that does not follow secure development
standards and, for instance, derives keys from a non-cryptographic pseudo-
random number generators (PRNGs), like rand function in C runtime library
or System.Random class provided by .NET framework. In Sect. 5.3, we argue
that such ransomware variants are weak, cannot achieve success in the long
term, or can be stopped otherwise. Therefore, NoCry is not all-in-one defence
but meant to work side-by-side with (or even, integrated into) traditional anti-
malware solutions or in combination with other anti-ransomware systems.

4 NoCry: Requirements, Design and Implementation

We believe that an anti-ransomware application should be effective and non-
invasive in at least the following meanings:

Robust Architecture. The execution and operation of the defense system
should rely on architectural choices that minimize the attack surface and have
no vulnerabilities against known and arguable targeted attacks. In our case, the
authorization mechanism be robust against targeted attacks.
Low False Positive Rate and Minimal User Intervention. While provid-
ing the security, the defense system must also ensure (arguably and measurably)
a low rate of false positive. The challenge regards our Whitelist DB. The list
needs to be safely bootstrapped, and software updates should be reflected in the
Whitelist DB with no interruption, inconsistency, or possibility of intrusions.

NoCry: No More Secure Encryption Keys for Cryptographic Ransomware 73

Optimized Decision Procedure. The performance impact of running an anti-
ransomware should be negligible and must be imperceptible by the user. In
NoCry, the overhead is due to the interception of calls to CSPRNG APIs and
the time required by the access control decision procedure.

We discuss the NoCry in the reminder of the section. We refer to Windows
systems, as they have been the target of most of the ransomware attacks known
at today. What we discuss applies to other platforms as well.

4.1 Robust Architecture

As described in Sect. 2, UShallNotPass consists of two components: Intercep-
tor detects the calls made to CSPRNG APIs and Controller makes authorization
decisions for the caller processes. This architecture needs an active communica-
tion channel between Interceptor and Controller components. In order to fulfill
this need, UShallNotPass employs named pipes.

A named pipe is an interprocess communication (IPC) mechanism which
enables processes to communicate to each other using a client-server architec-
ture [17]. In this model, the pipe server is the application which creates the
named pipe. Once the pipe is created, pipe clients – the applications that con-
nects to the pipe server – can start sending/receiving messages to/from the pipe
server. In the access control system of UShallNotPass, Interceptor creates
two simplex named pipes, one for dispatching the process ID to Controller and
another for getting the authorization result.

That said, named pipes in Windows platform are infamous with their secu-
rity issues [3]. Among them, one particular issue constitutes a critical vulner-
ability for UShallNotPass. Namely, a malicious application can attempt to
create a named pipe before the legitimate application does, and act like the pipe
server. The pipe name of UShallNotPass is static and therefore a ransomware
can hijack the pipe by creating the pipe instance more quickly than Controller
of UShallNotPass. This would make the attacker owner of the named pipe
object, allowing the ransomware to impersonate the Controller and authorize
itself.

Observing this vulnerability, NoCry is designed to be IPC-free. In this new
architecture, Interceptor and Controller are moved into Unified Agent, a single
module which intercepts and controls CSPRNG calls. The architectural view of
NoCry is illustrated in Fig. 2. The capability of direct data exchange between
Interceptor and Controller renders NoCry immune to the potential targeted
attacks. Consequently, we conclude that NoCry is a more robust protection
system.

4.2 Low False Positive Rate and Minimal User Intervention

We introduce two methods that NoCry offers in order to increase the usability.

74 Z. A. Genç et al.

Fig. 2. Architectural view of NoCry. Interceptor and Controller reside in the same
module, Unified Agent. This new construction enables robust and efficient information
exchange between Interceptor and Controller for making an authorization decision.

Bootstrapping Whitelist DB. UShallNotPass does not come with a pre-
determined whitelist of benign applications. The list, presumably, is initially
empty and if access control over CSPRNG APIs were applied immediately after
UShallNotPass is installed, every cryptographic application invoking these
functions would be stopped: this is surely not what the authors mean to happen.
Thus, benign cryptographic applications should be whitelisted before UShall-
NotPass is launched. To make this task as much automatic as possible we
suggest in NoCry a Training Mode. It starts immediately after installation:
the Interceptor listens the calls made to CSPRNG APIs without blocking any.
Under our assumptions (Sect. 3), all access requests to CSPRNG APIs should
come from honest processes. The hash of the binary executables are added to
the Whitelist DB. Training Mode can only be activated once and just after the
setup.

What if, against our assumption, Training Mode is run on a system that
is infected by some strains of silent ransomware [13]? Some strains in fact
infect computers but stay inactive until being activated by command and con-
quer (C&C) servers or simply await until a certain time has passed. This way,
ransomware attempts to look like a benign application and evade behavioral
analysis-based detection systems. It is unlikely that such ransomware bypass
NoCry: the ransomware executable would not call CSPRNG APIs in the sleep-
ing phase and therefore they will not be whitelisted, unless the training phase
coincides with the awakening of ransomware. This may be a remote possibility,
but raises our assumption of making mandatory running our Training Mode in
a clean system a must, as it is usually the case for any anti-malware.

Handling Software Updates. Whitelist DB can change. Programs that access
CSPRNG APIs but are installed after the Training Mode has ended, must have
their hashes be added to it. OS components are updated for various reasons,
including patching security vulnerabilities, fixing bugs and adding new function-

NoCry: No More Secure Encryption Keys for Cryptographic Ransomware 75

alities and since the update process involves replacing the existing executables
with new ones, their hash values in the Whitelist DB have to be updated con-
sequently. User applications also regularly check for new updates and install
them in the background. The hashes of these updated executables should also
be reflected to the Whitelist DB.

In environments where this could potentially lead to delays, e.g., due to slow
human reaction, we suggest that NoCry can be configured to defer access control
to keep the system stable and workflow uninterrupted. We call this Deferred
Mode.

When working in Deferred Mode, NoCry does not immediately block calls
to CSPRNG APIs coming from unknown processes. Instead, the parameters and
outputs of these calls are securely logged in a protected location until admin-
istrator takes an action. Here, administrator can find the software benign, thus
add the hash of the executable to Whitelist DB and dispose the logs associated
with that process. Otherwise, the process is suspended and, if necessary, recovery
procedure is initiated. The logging, and when necessary, recovery procedures are
similar to the approach of PayBreak [14] which we discuss in Sect. 6. However,
there are two notable differences in NoCry:

(i) logging is applied per unidentified process, not system-wide; and
(ii) once the administrator makes a positive decision, the logs are disposed.

The rationale of the variations above is to reduce the potential impact of
logging the outputs of CSPRNG. In our approach, random numbers obtained
by whitelisted processes are not logged. This eliminates the security risks which
could arise due to the persistence of the generated random numbers which are
potentially used for cryptographic purposes.

4.3 Optimized Decision Procedure

In UShallNotPass, the access control over CSPRNG APIs requires to make
an authorization decision which cause a significant delay. Mainly, the delay is
due to two factors:(i) time spent for establishing IPC; and (ii) time spent by
Controller for authorization.

As discussed in [8], the IPC is the main bottleneck of the authorization
procedure and causes an overhead on CSPRNG APIs calls with a factor ranging
from 62 to 125. In addition to the improved the security, eliminating the IPC
from access control system is another motive which led us to unify Controller and
Interceptor in a new module Unified Agent in NoCry. This way, both interception
and authorization tasks are carried out in one place, without needing to consume
time for IPC which enables to decide and act faster.

Furthermore, in UShallNotPass, the subsequent calls from the same pro-
cess are authorized independently. While this approach would provide the highest
level of time-granularity in access control, it might be an overkill for the secu-
rity goals and a waste of resources for many systems. It is reported in [8] that
the security checks performed in Controller causes an overhead up to a factor of

76 Z. A. Genç et al.

5.52. NoCry, therefore, holds an authorization to be valid for the lifetime of a
process.

It is reasonable to expect that the two optimizations above would bring a
significant performance improvement, which we assess in the next section.

5 Methods, Experiments and Results

On NoCry, we have run a series of experiments aiming at to measure the perfor-
mance overhead, and false positive & false negative rates. For each experiment
we describe the methodology, then we report and discuss the result.

5.1 Performance

Methodology. We measure the time that a benchmark program spends invok-
ing CryptGenRandom API repetitively for 100 000 times. We run the benchmark
program first on a clean system, then on a system with NoCry. We made this
experiment on Windows 7 32-bit OS , running on a VM with 2 CPU cores clocked
at 2.7 GHz. Overall, this is the same setting used in [8].

Results and Discussion. Table 1 shows the results of our measurements. It also
reports the result from [8], obtained using the exact same methodology.

Table 1. Time benchmarks of 100 000 iterative calls to CryptGenRandom API. Perfor-
mance gain is calculated as (old−new)\old×100. Measurements of UShallNotPass
are recalculated.

Measurement mode Random number length (bits)

128 256 1024 2048

Clean System (sec) 0.13 0.14 0.18 0.24

UShallNotPass (sec) 15.59 15.80 15.84 16.91

UShallNotPass Overhead 11992 % 11285 % 8800 % 7024 %

NoCry (sec) 0.17 0.18 0.22 0.29

NoCry Overhead 30 % 22 % 18 % 20 %

Performance Gain 98.9× 98.9× 98.6× 98.3×

Our analysis shows that NoCry brings drastically lower overhead in terms
of time for getting the output of CryptGenRandom API. This improvement is due
to the unification of Interceptor and Controller components of UShallNotPass
which enables interception and control actions to be managed by a single com-
ponent, Unified Agent, and thereby removing IPC. This result is not surprising
after our improvements in Sect. 4.3 and confirms our hypothesis.

Another cause of the performance increase is the use of cache mechanism
during authorization. In UShallNotPass, iterative calls from the same process

NoCry: No More Secure Encryption Keys for Cryptographic Ransomware 77

are authorized individually, causing a significant overhead, as much as a factor
of 5.52 [8]. With NoCry, process authorizations are valid for the lifetime of a
process. That is, accessing to the Whitelist DB is performed once after the first
invocation of CSPRNG API. This allows eliminating the need for accessing the
Whitelist DB for authorizing subsequent calls.

Lastly, the architecture of UShallNotPass limited the maximum number
of iterative calls to CryptGenRandom API to the order of 100 000 as the system
becomes unstable beyond this point [8]. Since NoCry is IPC-free, it was able to
handle a significantly larger number of requests. This makes it a better candidate
for a protection system where CSPRNGs are heavily consumed.

5.2 Evaluation of False Positives

In the domain of NoCry, false positive describes the condition that a legitimate
process calls a CSPRNG API and is stopped by NoCry.

Methodology. We have collected the Top 20 Installed Programs according to
Avast PC Trends Report 2019 [1], and we look at whether they have digital
signatures, the criterion which NoCry can use for authorization.

Results and Discussion. Table 2 presents the results of our findings. Among the
Top 20, the only unsigned application is 7-Zip. Being 7-Zip is an open source
software, system administrators can obtain the source code, compile themselves,
and add it to the NoCry whitelist.

It is reasonable to expect that digital signatures of applications and source
code availability of open source software together help system administrators
maintain Whitelist DB and therefore lower the number of false positives. In the
lights of these circumstances, we perceive that the false positive rate of NoCry
will be at a non-invasive level.

5.3 Evaluation of False Negatives

Modern ransomware employs hybrid cryptosystems for scalability and efficiency
reasons. Consequently, managing the encryption keys in a secure manner is crit-
ical for a successful ransomware campaign, as a flaw in the transport, usage or
storage of the keys might allow security professionals to build a decryptor. In
particular, if the victims can obtain the keys used to encrypt files, decrypting
the files without paying a ransom would be feasible. This is obviously against
the goals of ransomware authors so they try to obtain encryption keys securely.
The analyses in previous works [2,10] recognizes the following three strategies to
obtain the encryption keys:(i) using embedded keys in the binary file; (ii) gen-
erating keys on the victim’s machine; and (iii) downloading keys from a certain
network location.

The security analyses of key generation in ransomware are found in [2,10].
Here, we resume it. If a ransomware follows (i), keys can be extracted from
the ransomware binary, and the encrypted files can be recovered. Most of the

78 Z. A. Genç et al.

Table 2. Top 20 Installed Programs according to [1]. All applications in the table
calls one or more CSPRNG APIs. NoCry will allow these calls automatically since the
applications are digitally signed, except for 7-Zip, which is an open source software.

Rank Program Calls CSPRNG APIs Digitally Signed Source Code Open

1 Google Chrome ✓ ✓

2 Acrobat Reader ✓ ✓

3 WinRAR ✓ ✓

4 MS Office ✓ ✓

5 Mozilla Firefox ✓ ✓ ✓

6 VLC Media Player ✓ ✓ ✓

7 Skype ✓ ✓

8 CCleaner ✓ ✓

9 iTunes ✓ ✓

10 TeamViewer ✓ ✓

11 Windows Live Essentials ✓ ✓

12 7-Zip ✓ ✓

13 Stream ✓ ✓

14 Dropbox ✓ ✓

15 Opera ✓ ✓

16 CyberLink PowerDVD ✓ ✓

17 CyberLink PowerDirector ✓ ✓

18 HP Photo Creations ✓ ✓

19 CyberLink YouCam ✓ ✓

20 CyberLink Power2Go ✓ ✓

ransomware prefer to generate the keys on victim’s machine. In this case, there
are two options: to use the CSPRNG, which produces high entropy random
values; or to use a non-cryptographic PRNG. The first has been largely discussed
already. The second is a weak choice: PRNGs are designed to be reproducible
thus their outputs are guessable. If the ransomware uses a non-cryptographic
PRNG, like rand function in C runtime library or System.Random class provided
by .NET framework, decryption is feasible. If ransomware fetches keys from
a remote server (iii) then blocking the malicious IPs inhibits the ransomware,
which forces ransomware developers to fallback to (i) or (ii). The only option for
current ransomware to get good encryption keys is therefore to use a CSPRNG.

In order to support our argument that CSPRNG is vital for the success of a
ransomware, we designed experiments: the first, (A1), aims at to find out how
common it is to use CSPRNG among current ransomware families. Indirectly,
we also measure the false negative rate of NoCry. The second, (A2), aims at
to check if there exists a publicly available decryptor for those samples that did
not call any CSPRNG APIs.

NoCry: No More Secure Encryption Keys for Cryptographic Ransomware 79

Methodology. Following the previous research [8], we (1) obtain malware cor-
pus from VirusTotal1; (2) pick potential ransomware among them; (3) rebuilt
the same test environment, using Cuckoo Sandbox2 to identify the active ran-
somware samples; and, (4) classify the families using AVclass [22] tool; (5) run
NoCry against them; (6) (if any) discover the reason for false negative.

Results and Discussion. We identified 747 active samples from 56 cryptographic
ransomware families. Next, we installed NoCry on the test machines and run
the executables against NoCry. Table 3 shows the results: 97.1% of the samples
have been stopped by NoCry before any user file is damaged, i.e., encrypted
by the ransomware program. They were the samples that attempted to call
CSPRNG during the attacks, and were terminated by NoCry as they were not
present in the Whitelist DB.

Among the 2.9% of samples that cause false negative, there may be ran-
somware executables that either circumvented NoCry’s access control, or ran-
somware process did not call CSPRNG APIs. To discover the exact reason behind
the false negatives, we picked random samples from the families we missed, and
manually analyzed the API call tree. The missing samples from Cryptxxx and
Dalexis did call CryptGenRandom API, however, said API could not be hooked
by NoCry. We believe this is due to a problem of our implementation. The
missing samples from Carberp, Cryakl, Crysis, Gator, Neoreklami and Sigma
families did not call any CSPRNG APIs. Among them, we found decryptors for
Cryakl, Crysis and Sigma on ID Ransomware3 platform.

6 State of the Art in Ransomware Defense

There have been several proposals from the community of information security
to mitigate the cryptographic ransomware threat. NoCry falls into the access
control class, as Genç et al.’s UShallNotPass [8]. We can categorize other
defense systems, based on their main strategies, into three groups: behavioral
analysis, key escrow and deceptive protection.

Behavioral Analysis. A common anti-malware strategy is to monitor the pro-
cesses and terminate the ones with a suspicious behavior. The monitored behav-
iors include file system I/O, network connections and interaction with the OS.
Among these, the fundamental characteristic of the ransomware is its aggres-
sively encrypting victim’s data, causing an unusual file system activity. Using
this fact, several defense systems are proposed. One of them, Scaife et al.’s
CryptoDrop [21] monitors file type changes by looking file headers, compares
sdhash [20] outputs and measures the Shannon Entropy before and after file-
write operations. Another one, ShieldFS [4] by Continella et al. tracks the
low-level file system operations and collects the following features: folder listing,
1 VirusTotal Threat Intelligence, https://virustotal.com.
2 Cuckoo Sandbox – Automated Malware Analysis, https://cuckoosandbox.org/.
3 ID Ransomware, https://id-ransomware.malwarehunterteam.com/.

https://virustotal.com
https://cuckoosandbox.org/
https://id-ransomware.malwarehunterteam.com/

80 Z. A. Genç et al.

Table 3. List of active ransomware samples tested against NoCry. The notation x/y
means that x samples out of y could be successfully stopped.

Family Samples (%)

Barys 1/1 (100%)

Birele 1/1 (100%)

Bitman 152/152 (100%)

Browserio 2/2 (100%)

Bzub 1/1 (100%)

Carberp 0/1 (0%)

Cerber 60/60 (100%)

Cryakl 0/1 (0%)

Cryptxxx 0/2 (0%)

Crysis 2/3 (66%)

Dalexis 1/3 (33%)

Daws 5/5 (100%)

Delete 1/1 (100%)

Deshacop 1/1 (100%)

Dlhelper 1/1 (100%)

Enestaller 1/1 (100%)

Enestedel 1/1 (100%)

Expiro 1/1 (100%)

Gamarue 2/2 (100%)

GandCrab 1/1 (100%)

Gator 1/2 (50%)

GlobeImposter 1/1 (100%)

Godzilla 1/1 (100%)

Jaff 1/1 (100%)

Lethic 4/4 (100%)

Locky 47/47 (100%)

Midie 1/1 (100%)

Neoreklami 0/1 (0%)

Family Samples (%)

Occamy 4/4 (100%)

OpenCandy 2/2 (100%)

Petya 2/2 (100%)

QQPass 1/1 (100%)

Razy 6/6 (100%)

SageCrypt 1/1 (100%)

Saturn 1/1 (100%)

Scar 3/3 (100%)

Scatter 2/2 (100%)

Shade 2/2 (100%)

ShadowBrokers 1/1 (100%)

Shiz 17/17 (100%)

Sigma 0/1 (0%)

Sivis 3/7 (42%)

Spigot 2/2 (100%)

Spora 2/2 (100%)

Striked 0/1 (0%)

Swisyn 0/1 (0%)

Tescrypt 5/5 (100%)

TeslaCrypt 316/316 (100%)

Tpyn 1/1 (100%)

Upatre 2/7 (28%)

Ursnif 1/1 (100%)

Vobfus 1/1 (100%)

Wowlik 1/1 (100%)

Wyhymyz 1/1 (100%)

Zerber 52/52 (100%)

Zusy 7/7 (100%)

Total: 726/747 (97.1%)

file-read/write/rename operations, file extension and average entropy of file-write
operations. Comparing these characteristics with that of benign applications
allows the detection of ransomware. In addition to detection, ShieldFS cre-
ates a copy for each file before a file-write operation, eliminating the potential
damage of ransomware. Moreover, Kharraz et al. proposed Redemption [11]
that also uses the similar metrics for identifying a ransomware activity. How-
ever, in contrast to ShieldFS, Redemption redirects file-write operations to

NoCry: No More Secure Encryption Keys for Cryptographic Ransomware 81

sparse files, rather than creating a full copy of each written file. Differently, Data
Aware Defense (DaD) by Palisse et al. [18] uses chi-square test to determine if
the written data is close to random distribution which is indicates that the file is
being encrypted. DaD computes the sliding median of this indicator on the last
fifty file-write operations and suspends the corresponding process that exceeds
a predetermined threshold.

Key Escrow. Key-escrow based defense allows the ransomware to complete its
attack. This approach is based on the idea that the files encrypted by ransomware
can be recovered if the encryption keys can be retrieved after the attack. For
this aim, logging the keys used by ransomware is first appeared in the litera-
ture by Palisse et al. [19] and independently by Lee et al. [15]. The first public
implementation of this idea PayBreak, with extending the idea to cover the
third party crypto libraries was given by Kolondenker et al. [14]. In this system,
all known cryptographic API are hooked, cryptographic materials are extracted
and securely stored in a key vault. In the case of a ransomware attack, the
encrypted files are tried by brute-forcing to be decrypted by retrieving the keys
and other necessary parameters from the key vault. A slightly different method,
Deterministic Random Bits Generator (DRBG) is proposed by Kim et al. [12]
to retrieve the random numbers that ransomware used after an attack. DRBG
replaces the CSPRNG of the system with a back-doored PRNG. The trapdoor
is known only by the user and is preferably stored in the user’s mobile device.
After a ransomware incident, this trapdoor is retrieved and given to the PRNG
to generate the same outputs that ransomware used. Using these outputs, ran-
somware’s operations are reverted and files are recovered.

Deceptive Protection. In this strategy, carefully-crafted files are placed as a decoy
in the file system with the user’s files. These decoys are not supposed to be
modified/deleted by the user, so any write request to the decoy files are treated
as an indicator of ransomware activity. RWGuard, a recently proposed system
by Mehnaz et al. [16] uses this technique – in addition to behavioral analysis –
to mitigate ransomware threat in real time.

7 Critical Discussion and Conclusions

Cryptographic ransomware is a modern global crime and a large amount of public
and private institutions have been attacked already. The problem is that encryp-
tion is a powerful tool in the hands of criminals, hard to fight. By encrypting crit-
ical files on the victim’s machine, ransomware blocks access to information and
compromises critical services, wreaking an economical and social havoc because,
unless victims pay the demanded ransom to receive the correct decryption key,
they might not be able to recover their files if no backup is available. Compu-
tational complexity results ensure that a properly implemented encryption is
irreversible, but to realize this theoretical result in practice, ransomware has to
use cryptographically secure encryption keys. Many variants choose weaker alter-
natives: although there could be a theoretical solution to reverse their encryption

82 Z. A. Genç et al.

at affordable costs, such scareware succeed in persuading victims to pay. Other
variants, implement a theoretically weak but good-enough encryption to make
decryption-without-the-key sufficiently painful to convince that paying the ran-
som is the lesser of two evils.

But in the restricted niche of ransomware that want their damage to
be computationally irreversible, one finds the most disruptive variants, for
instance, WannaCry, Petya, GoldenEye, CryptoLocker, Crysis, Cerber, RAA,
and NotPetya. These ransomware families need a good source of random num-
bers and all of them find it in the CSPRNG available on a victim’s system.
Today, such functions are indeed reliable and de facto source of cryptographic
randomness available on a computer.

To contain the threat coming from ransomware in this cryptographically
strong niche, Genç et al. proposed in [8] to control access to CSPRNG APIs.
They proved the concept by stopping a very large class of real active ransomware
from doing any damage to any file—remarkably including NotPetya, which was
till that moment believed unstoppable. But a concept, as much as promising can
be, is not yet a fully-fledged application. Discussing how to implement it into
an effective anti-ransomware defense, herein called NoCry, is what we have
done in this paper. We solved several critical security and design issues: how to
ensure that the attack surface of the architecture is reduced; how to bootstrap
the Whitelist DB, honest cryptographic applications calling CSPRNG APIs and
maintain it with a minimal user intervention, arguably resulting in a very low
false positive rate; how to reduce the overhead that the access control imposes on
the systems performance to a negligible amount. By not relying on any IPC, we
removed any know-to-be-vulnerable elements from the architecture, so address-
ing the first issue; we addressed the last, by a better decision making that dras-
tically improves the overhead. With respect to the previous proof-of-concept,
reducing it from several thousands percent down to about 20%: quantified, the
overhead is now a few hundredth of a second.

These are quite evident improvements, but the solution we proposed to
address the second issue i.e., how to manage the Whitelist DB, needs further
discussion. In a system assumed uncorrupted, we bootstrap the list in Training
mode by feeding in honest applications that call CSPRNG. In Deferred mode
we update the list when a new version of a whitelisted application is avail-
able; we temporarily grant it the right to call CSPRNG but retaining critical
data that can help recovering files in rare case where the upgrade hides a ran-
somware. Despite looking reasonable to us, one can still challenge our choices.
For instance, one can ask why managing a Whitelist DB of applications that
call CSPRNG in the first place? In fact Windows OS already offers a protection,
AppLocker, that enables to deny non-whitelisted apps (e.g., malware) from run-
ning. Cannot be ransomware dismissed as any other malware? First, we observe,
this practice seems not have slowed down ransomware so we conclude that it
needs more time and maturity to be widely accepted. Second, the problem with
the whitelists is that they may not be complete, generating fastidious false pos-
itives. This issue, of course, affects also NoCry, but differently from a system

NoCry: No More Secure Encryption Keys for Cryptographic Ransomware 83

which offers protection against generic harmful apps (a term that may have
different interpretation). NoCry targets and operate against a very specific sit-
uation. If we imagine to defer to the user the decision about whether a potential
false positive is indeed so, NoCry can precisely state that a certain application
is trying to call critical functions, potentially to create strong encryption keys
and unless the application is meant to encrypt data, it is better to let NoCry
kill it. We fail to imagine instead stating a similar precise claim to warn about a
generic harmful application. The best could be a warning message sounding like
“something insecure may happen”, alert that users have learned to ignore [5]. A
precise claim like that, enabled by NoCry, will help users take more informed
decisions, arguably reducing the number of false positives, and we intend to test
this hypothesis in a future work.

Another critic can be that by only guarding access to CSPRNG, we miss to
stop ransomware that generate encryption keys using different strategies. If this
critics were well founded, this would count as a serious deficiency for NoCry
because would lead to false negatives. To this critic we answer first by observing
that NoCry was neither designed to stop other ransomware than those calling
CSPRNG APIs nor conceived to work in isolation from other anti-ransomware.
Indeed, we think, the full potential of NoCry will emerge only in integration
with an anti-malware that provably can reverse the damage done by ransomware
that make use of the encryption keys obtained not by calling CSPRNG. Theoret-
ical solutions exist that have the potential ability to reduce the cost of reversing
encryption to a feasible time complexity and a few solutions are actually imple-
mented [23]. These seems, indirectly, to support the argument that by not calling
CSPRNG APIs, ransomware can realize only cryptographically-weak encryption.
It is then by uniting different methods that we imagine a good anti-ransomware
can reliably combat this crypto-crime. How to do it properly is an open problem
but considering the improvements that we have herein discussed, we believe this
union is possible and practical.

There is a further observation to reinforce our rebutting to the critic. We
are aware that there is no silver bullet for ransomware mitigation. Each defense
system has pros and cons, and NoCry may well find its beater in some next
generation ransomware. As discussed in [9], ransomware applications can find
other ways than calling CSPRNG to get random numbers e.g., by relying on non-
cryptographic sources of randomness, but we believe that the alternative choices
have weak points. The fact is that all the samples and variants of ransomware in
the cryptographically-hard niche that we have analyzed so far, do call CSPRNG
APIs. Thus, today, these functions are the most reliable source of randomness
for application in search to build cryptographically strong encryption keys. And
if in the future other functions will available for the same task, the fundamental
question that remains to be solved is how many of these functions are, and
whether by controlling access to these APIs, we can still implement a targeted
strategy as the one in NoCry that enables a decision making with an arguably
low false positive rate. Investigating such research questions requires time and
we leave it as future work.

84 Z. A. Genç et al.

Other future work still needs to be done. The argument that we have a
reduced false positive rate has to be supported by experimental evidence. This
means to run stress tests while running a generous number of various benign
cryptographic applications under different conditions. Beyond having measured
the overhead in terms of loss of performance, we still need to assess the user
experience (UX) of NoCry running on different kinds of computers, included on
battery powered mobile devices, to verify whether the overhead is imperceptible,
as we claim, by users in their daily activities.

Acknowledgements. This work was partially funded by Luxembourg National
Research Fund (FNR) under the grant agreement PoC18/13234766-NoCry PoC.

References

1. Avast: PC Trends Report 2019, April 2019. https://blog.avast.com/pc-trends-
reports. Accessed 1 June 2019

2. Bajpai, P., Sood, A.K., Enbody, R.: A key-management-based taxonomy for ran-
somware. In: 2018 APWG Symposium on Electronic Crime Research (eCrime), pp.
1–12, May 2018

3. Bui, T., Rao, S.P., Antikainen, M., Bojan, V.M., Aura, T.: Man-in-the-machine:
exploiting ill-secured communication inside the computer. In: 27th USENIX Secu-
rity Symposium, pp. 1511–1525. USENIX Association, Baltimore (2018)

4. Continella, A., et al.: Shieldfs: a self-healing, ransomware-aware filesystem. In:
Proceedings of the 32nd A Conference on Computer Security Applications, pp.
336–347. ACM, New York (2016)

5. Cormac, H.: So long, and no thanks for the externalities: the rational rejection
of security advice by users. In: Proceedings of the 2009 New Security Paradigm
Workshop (NSPW), 8–11 September 2009, Oxford, United Kingdom, pp. 133–144.
ACM (2009)

6. CyberEdge: 2018 Cyberthreat Defense Report, March 2018. https://cyber-edge.
com/wp-content/uploads/2018/03/CyberEdge-2018-CDR.pdf. Accessed 3 June
2019

7. Gammons, B.: 4 surprising backup failure statistics that justify additional pro-
tection (2017). https://blog.barkly.com/backup-failure-statistics. Accessed 3 June
2019

8. Genç, Z.A., Lenzini, G., Ryan, P.Y.A.: No random, no ransom: a key to stop
cryptographic ransomware. In: Giuffrida, C., Bardin, S., Blanc, G. (eds.) DIMVA
2018. LNCS, vol. 10885, pp. 234–255. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-93411-2 11

9. Genç, Z.A., Lenzini, G., Ryan, P.Y.A.: Next generation cryptographic ransomware.
In: Gruschka, N. (ed.) NordSec 2018. LNCS, vol. 11252, pp. 385–401. Springer,
Cham (2018). https://doi.org/10.1007/978-3-030-03638-6 24

10. Genç, Z.A., Lenzini, G., Ryan, P.Y.A.: Security analysis of key acquiring strate-
gies used by cryptographic ransomware. In: Proceedings of the Central European
Cybersecurity Conference 2018, CECC 2018, pp. 7:1–7:6. ACM, New York (2018)

11. Kharraz, A., Kirda, E.: Redemption: real-time protection against ransomware at
end-hosts. In: Dacier, M., Bailey, M., Polychronakis, M., Antonakakis, M. (eds.)
RAID 2017. LNCS, vol. 10453, pp. 98–119. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-66332-6 5

https://blog.avast.com/pc-trends-reports
https://blog.avast.com/pc-trends-reports
https://cyber-edge.com/wp-content/uploads/2018/03/CyberEdge-2018-CDR.pdf
https://cyber-edge.com/wp-content/uploads/2018/03/CyberEdge-2018-CDR.pdf
https://blog.barkly.com/backup-failure-statistics
https://doi.org/10.1007/978-3-319-93411-2_11
https://doi.org/10.1007/978-3-319-93411-2_11
https://doi.org/10.1007/978-3-030-03638-6_24
https://doi.org/10.1007/978-3-319-66332-6_5
https://doi.org/10.1007/978-3-319-66332-6_5

NoCry: No More Secure Encryption Keys for Cryptographic Ransomware 85

12. Kim, H., Yoo, D., Kang, J.S., Yeom, Y.: Dynamic ransomware protection using
deterministic random bit generator. In: 2017 IEEE Conference on Application,
Information and Network Security (AINS), pp. 64–68, November 2017

13. KnowBe4: KnowBe4 alert: new strain of sleeper ransomware, May 2015. https://
www.knowbe4.com/press/knowbe4-alert-new-strain-of-sleeper-ransomware.
Accessed 1 June 2019

14. Kolodenker, E., Koch, W., Stringhini, G., Egele, M.: Paybreak: defense against
cryptographic ransomware. In: Proceedings of the 2017 ACM on Asia Conference
on Computer and Communications Security, pp. 599–611. ACM, New York (2017)

15. Lee, K., Oh, I., Yim, K.: Ransomware-prevention technique using key backup. In:
Jung, J.J., Kim, P. (eds.) BDTA 2016. LNICST, vol. 194, pp. 105–114. Springer,
Heidelberg (2017). https://doi.org/10.1007/978-3-319-58967-1 12

16. Mehnaz, S., Mudgerikar, A., Bertino, E.: RWGuard: a real-time detection system
against cryptographic ransomware. In: Bailey, M., Holz, T., Stamatogiannakis, M.,
Ioannidis, S. (eds.) RAID 2018. LNCS, vol. 11050, pp. 114–136. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00470-5 6

17. Microsoft: Named Pipes, May 2018. https://docs.microsoft.com/en-us/windows/
desktop/ipc/named-pipes. Accessed 3 June 2019

18. Palisse, A., Durand, A., Le Bouder, H., Le Guernic, C., Lanet, J.-L.: Data aware
defense (DaD): towards a generic and practical ransomware countermeasure. In:
Lipmaa, H., Mitrokotsa, A., Matulevičius, R. (eds.) NordSec 2017. LNCS, vol.
10674, pp. 192–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
70290-2 12

19. Palisse, A., Le Bouder, H., Lanet, J.-L., Le Guernic, C., Legay, A.: Ransomware
and the legacy crypto API. In: Cuppens, F., Cuppens, N., Lanet, J.-L., Legay, A.
(eds.) CRiSIS 2016. LNCS, vol. 10158, pp. 11–28. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-54876-0 2

20. Roussev, V.: Data Fingerprinting with Similarity Digests. In: Chow, K.-P., Shenoi,
S. (eds.) DigitalForensics 2010. IAICT, vol. 337, pp. 207–226. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-15506-2 15

21. Scaife, N., Carter, H., Traynor, P., Butler, K.R.B.: Cryptolock (and drop it): stop-
ping ransomware attacks on user data. In: 2016 IEEE 36th International Confer-
ence on Distributed Computing Systems (ICDCS), pp. 303–312, June 2016

22. Sebastián, M., Rivera, R., Kotzias, P., Caballero, J.: AVclass: a tool for massive
malware labeling. In: Monrose, F., Dacier, M., Blanc, G., Garcia-Alfaro, J. (eds.)
RAID 2016. LNCS, vol. 9854, pp. 230–253. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-45719-2 11

23. Young, M., Zisk, R.: Decrypting the negozi ransomware (2017). https://yrz.io/
decrypting-the-negozi-ransomware. Accessed 1 June 2019

https://www.knowbe4.com/press/knowbe4-alert-new-strain-of-sleeper-ransomware
https://www.knowbe4.com/press/knowbe4-alert-new-strain-of-sleeper-ransomware
https://doi.org/10.1007/978-3-319-58967-1_12
https://doi.org/10.1007/978-3-030-00470-5_6
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://docs.microsoft.com/en-us/windows/desktop/ipc/named-pipes
https://doi.org/10.1007/978-3-319-70290-2_12
https://doi.org/10.1007/978-3-319-70290-2_12
https://doi.org/10.1007/978-3-319-54876-0_2
https://doi.org/10.1007/978-3-319-54876-0_2
https://doi.org/10.1007/978-3-642-15506-2_15
https://doi.org/10.1007/978-3-319-45719-2_11
https://doi.org/10.1007/978-3-319-45719-2_11
https://yrz.io/decrypting-the-negozi-ransomware
https://yrz.io/decrypting-the-negozi-ransomware

Security Requirements
for Store-on-Client and Verify-on-Server

Secure Biometric Authentication

Haruna Higo1, Toshiyuki Isshiki1, Masahiro Nara1, Satoshi Obana2,
Toshihiko Okamura1, and Hiroto Tamiya1(B)

1 NEC Corporation, Kawasaki, Japan
{h-higo-aj,toshiyuki-isshiki,naramasahiro,t okamura,htamiya}@nec.com

2 Hosei University, Tokyo, Japan
obana@hosei.ac.jp

Abstract. The Fast IDentity Online Universal Authentication Frame-
work (FIDO UAF) is an online two-step authentication framework
designed to prevent biometric information breaches from servers. In
FIDO UAF, biometric authentication is firstly executed inside a user’s
device, and then online device authentication follows. While there is no
chance of biometric information leakage from the servers, risks remain
when users’ devices are compromised. In addition, it may be possible to
impersonate the user by skipping the biometric authentication step.

To design more secure schemes, this paper defines Store-on-Client and
Verify-on-Server Secure Biometric Authentication (SCVS-SBA). Store-
on-client means that the biometric information is stored in the devices
as required for FIDO UAF, while verify-on-server is different from FIDO
UAF, which implies that the result of biometric authentication is deter-
mined by the server. We formalize security requirements for SCVS-SBA
into three definitions. The definitions guarantee resistance to imperson-
ation attacks and credential guessing attacks, which are standard security
requirements for authentication schemes. We consider different types of
attackers according to the knowledge on the internal information.

We propose a practical concrete scheme toward SCVS-SBA, where
normalized cross-correlation is used as the similarity measure for the
biometric features. Experimental results show that a single authentica-
tion process takes only tens of milliseconds, which means that it is fast
enough for practical use.

Keywords: Biometric authentication · Privacy · FIDO · Normalized
cross-correlation

1 Introduction

User authentication is one of the most important security issues in many IT
systems. Biometric authentication can achieve higher usability than password
authentication because it does not require users to consciously remember or
c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 86–103, 2020.
https://doi.org/10.1007/978-3-030-39749-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_6&domain=pdf
https://doi.org/10.1007/978-3-030-39749-4_6

Security Requirements for SCVS Secure Biometric Authentication 87

possess anything as credentials. Thanks to the spread of mobile devices such as
smartphones and tablets with cameras or fingerprint sensors, we are now able
to use biometric authentication for many services.

In a simple online authentication scheme, a credential (e.g., a password and
biometric feature) of the user is stored in the server of the service provider. On an
authentication trial, a credential that is newly obtained through a user’s device
(hereafter known as the client) by the user is sent to the server and compared
with the stored one.

Such a simple scheme is susceptible to large-scale data breaches from the
server. Importantly, biometric authentication potentially induces the reuse prob-
lem because biometric features cannot be changed, and special care needs to be
taken. Even if encrypted, biometric features are defined as personal data by the
EU General Data Protection Regulation (GDPR) and by laws in some other
countries and regions. Therefore, especially for biometric authentication, means
that are more robust to data breaches are needed.

Fast IDentity Online (FIDO) [2] is a set of online authentication specifica-
tions defined on the assumption that users possess their own mobile devices or
tokens. Among the protocols, the Universal Authentication Framework (UAF)
offers passwordless authentication using clients with biometric sensors. In FIDO
UAF, biometric authentication is firstly executed inside a client, and only if it is
successful, online device authentication follows as the second step by a challenge-
response manner using digital signature. The important advantage of FIDO UAF
is that the credentials, the biometric feature and the secret key, never leave the
client. Therefore, even if the server suffers from a data breach, any secret infor-
mation for authentication is not leaked. In other words, service providers using
FIDO UAF do not need to manage the users’ credentials by themselves.

On the other hand, client security is crucial in FIDO UAF, while it is under
severe threats of both physical and cyber attacks. Although FIDO provides secu-
rity guidelines, the following attack vectors still remain:

1. Steal or forge the biometric feature. Attackers have chances to learn
raw biometric features by stealing the raw ones while they are decrypted for
authentication or the encrypted ones with the decryption keys stored also in
the client. Moreover, if an attacker replaces the stored biometric feature with
his or hers, the authentication will be successful.

2. Manipulate the result of the biometric authentication. By manipu-
lating the result of the biometric authentication to be successful, attackers
succeed in the whole authentication. That is, the first step is skipped, and
the authentication flow is no longer two-step.

Secure hardware-based modules such as trusted execution environment
(TEE) are candidates of the strong countermeasures, but software-based cryp-
tographic methods are attractive because not only can they be deployed widely
as applications, but also their security can be ensured theoretically.

Our Contributions. The main reason why above attacks may be possible is that
the server is not able to confirm the result of the biometric authentication step. In

88 H. Higo et al.

Fig. 1. Authentication flow of SCVS-SBA schemes.

general, two-factor authentication mechanism can prevent the attacks, because
the server verifies on both factors, and the client only learns the overall authen-
tication result. As sketched in Fig. 1, it is a combinatorial method for biometric
authentication and device authentication. All credentials are stored in the client
as the template, and the server determines the authentication result. We call
this model store-on-client and verify-on-server secure biometric authentication
(SCVS-SBA).

In this paper, we define the model of SCVS-SBA and formalize security
requirements for SCVS-SBA into three definitions. One is, like FIDO UAF, to
avoid having the server deal with the biometric features. The others are resis-
tance to impersonation attacks and credential guessing attacks, which are stan-
dard security requirements for authentication schemes. We define each of them
with a security game, which is a standard cryptographic technique. In the games,
we consider several types of attackers according to the knowledge of the internal
information. Moreover, the scheme should prevent attacks with forged templates.

We propose a scheme in which normalized cross-correlation (NCC) is used
as the similarity measure for the biometric features. NCC is traditionally and
widely used in the field of pattern matching including biometric authentica-
tion [9,14,17,25]. The proposed scheme is based on Schnorr’s identification pro-
tocol. For similar reasons as the security of Schnorr’s protocol, the proposed
scheme have resistance to attacks by attackers except for one type. Although
the scheme is susceptible to attacks from a type of attackers, such attacks can
be mitigated with some practically used methods. The proposed scheme has low
computational complexity and is fast enough for practical use as the experimen-
tal results show that a single authentication process takes only tens of millisec-
onds.

2 Definitions of Store-on-Client Verify-on-Server Secure
Biometric Authentication (SCVS-SBA)

In this section, we define the components and security of SCVS-SBA. Store-on-
client means that the credentials are only stored in the client, and verify-on-
server implies that the authentication result is determined by the server. We
define three security requirements to guarantee these two features and other

Security Requirements for SCVS Secure Biometric Authentication 89

requirements for secure authentication schemes. The security definitions take
into account multi clients.

To define the correctness and security of SCVS-SBA, the fuzziness of bio-
metric features needs to be formalized. Biometric features extracted from the
identical biometric characteristic do not match exactly because of some con-
ditions. For the model of biometric features, we use the universal error model
defined by Takahashi et al. [18] in which the error distribution is assumed to
be the same for every user. Below, a model of biometric features is denoted as
F = (X,Similarity,Decide,X , Φ) of which components are defined as follows.

X: A domain space of biometric features.
σ ← Similarity(x, y): A function to calculate a similarity score σ between two

biometric features x and y.
result ← Decide(σ): A function to determine an authentication result result ∈

{accept , reject} from a similarity score σ.
X : A distribution of extracted biometric features.
Φ: An error distribution according to extracted biometric features. (If a biometric

feature x is extracted from a biometric characteristic at the first extraction,
biometric features extracted from the same biometric characteristic after that
follows the distribution {e ←u Φ : x + e}.)

Note that even with most state-of-the-art techniques, extracted biometric
features do not have high entropy compared with cryptographic requirements.
Therefore, biometric features are susceptible to brute-force attacks [16]. That is,
for a secret biometric feature x ∈ X, it is able to find a biometric feature that is
sufficiently similar to (sufficient to be accepted against) x within practical time.
We denote by δF,τ the probability of the successful finding of a target biometric
feature with τ trials.

To mitigate such attacks in practice, the number of accesses to this oracle for
the same ID should be limited by a parameter determined with respect to the
biometric feature model. This kind of limitation is called rate limiting [15]. Also,
it is helpful for prevention of such attacks to use sound client modules which
check if the input is in the biometric feature space or allow input only from
trusted biometric sensors. For example, with the Android Fingerprint API [1],
both fingerprint capturing and feature extraction are done inside a trusted envi-
ronment.

2.1 Components

An SCVS-SBA scheme for a biometric feature model F consists of the five algo-
rithms SetupF , Join, Issue, Prove, and Verify described as follows.

pp ← SetupF (1λ, param): The setup algorithm Setup takes a security parameter
λ and a tuple of parameters param as input and outputs a public parameter
pp (if it is clear from the context, we omit writing it).

90 H. Higo et al.

(temp, verif) ← 〈Join(pp, x), Issue(pp)〉: The registration protocol (Fig. 2) is exe-
cuted between the two interactive algorithms Join and Issue. The client’s
algorithm Join takes as input a public parameter pp and a biometric feature
x, and the server’s Issue takes a public parameter pp. As a result, Join and
Issue output a template temp and a verifier verif , respectively.

(⊥, result) ← 〈Prove(pp, y, temp),Verify(pp, verif)〉: The authentication protocol
(Fig. 3) is executed between the two interactive algorithms Prove and Verify.
The client’s algorithm Prove takes as input a public parameter pp, a biometric
feature y, and a template temp, and the server’s Verify takes a public param-
eter pp and a verifier verif . As a result, only Verify outputs an authentication
result result ∈ {accept , reject}.

Fig. 2. Input and output of the registration protocol of SCVS-SBA schemes.

Fig. 3. Input and output of the authentication protocol of SCVS-SBA schemes.

An SCVS-SBA scheme is said to be correct if the two authentication results,
i.e., the one decided through the similarity function Similarity and the decision
function Decide and the other through the SCVS-SBA scheme, are identical
except for negligible errors. The formal definition is as follows.

Definition 1. For a model of biometric features F = (X,Similarity,Decide,X ,
Φ), we say an SCVS-SBA scheme Π = (SetupF , Join, Issue,Prove,Verify) is cor-
rect if we have the following for any λ ∈ N and x, y ∈ X:

Pr

⎡
⎢⎢⎢⎢⎣

pp ← SetupF (1λ, param);
(temp, verif) ← 〈Join(pp, x), Issue(pp)〉;
(⊥, result) ← 〈Prove(pp, y, temp),Verify(pp, verif)〉;
result ′ ← Decide(Similarity(x, y)) :
result = result ′

⎤
⎥⎥⎥⎥⎦

≥ 1 − negl(λ).

Security Requirements for SCVS Secure Biometric Authentication 91

2.2 Security

In this section, we formalize three security requirements for SCVS-SBA. The first
one is about secrecy of biometric features against the servers. In SCVS-SBA, the
verifier stored in the server is required not to include even partial information on
the biometric features. The other two requirements are standard ones for authen-
tication schemes: infeasibility of impersonation attacks and biometric feature
guessing attacks, which are called unforgeability and irreversibility, respectively.
We define these requirements through security games in which multiple clients
and adaptive attackers are considered. Before the games, we describe the oracles
commonly used in the two games.

Below, we denote by Π = (SetupF , Join, Issue,Prove,Verify) an SCVS-SBA
scheme for a biometric feature model F = (X,Similarity,Decide,X , Φ).

Server’s Ignorance on Biometric Features. The verifier is required not to
leak any information on the registered biometric feature. We define this require-
ment by perfect secrecy [22] as follows.

Definition 2. An SCVS-SBA scheme Π for a biometric feature model F is
said to satisfy the server’s ignorance on biometric features if for any public
parameter pp ← SetupF (1λ), x′ ∈ X, and verif ′ it holds that

Pr
[
x ← X : x = x′|verif = verif ′] = Pr [x ← X : x = x′] ,

where x is a biometric feature chosen according to X , and verif is a verifier that
is generated by the registration protocol (temp, verif) ← 〈Join(pp, x), Issue(pp)〉.

For example, this requirement is satisfied if the verifier is generated indepen-
dently from the biometric feature, or the verifier is XOR of a uniformly random
value and the biometric feature. However, as is the case in many schemes in the
store-on-server models (described in Sect. 4), the schemes in which the server
stores ciphertexts of biometric features using public key encryption schemes
cannot satisfy this requirement.

Oracles for Unforgeability and Irreversibility Games. The second and
the third requirements are defined through security games in which an attacker
and a challenger execute an SCVS-SBA scheme.

We consider attackers who are able to compromise some clients or the
server and eavesdrop on communication. To illustrate such attackers, we provide
seven oracles. The first three, named AddUser, RegServer, and RegClient,
are related to the registration protocol, the second three, AuthServer,
AuthClient, and Eavesdrop, are related to the authentication protocol, and
the last one, LeakData leaks information to the attacker. We denote by O the
set of the seven oracles. To deal with multiple users, a unique ID is assigned and
notified to the attacker on each execution of the registration oracles, and the
attacker designates the IDs on each execution of the authentication oracles.

92 H. Higo et al.

The challenger possesses 2 tables to remember data that it learns. For each
user with ID i, the first table T stores the biometric feature, template, and verifier
of the user at T[i].x, T[i].t, and T[i].v, respectively. Each item is set to be ⊥ at
first. After each execution of the registration oracles, the challenger stores to
T the items specified in Table 1. T is referred to when the challenger answers
queries to the authentication and leakage oracles.

The second table L stores flags to indicate the attacker’s knowledge of the
user’s biometric feature, template, and verifier at L[i].x, L[i].t, and L[i].v, respec-
tively. The default flag is 0, and it is switched to 1 if the corresponding item
is leaked to, chosen by, or learned by the attacker through the registration and
leakage oracles as in Table 2.

Table 1. Items stored with each registra-
tion oracle.

T[i].x T[i].t T[i].v

AddUser � � �
RegServer �
RegClient � �

Table 2. Flags switched with each reg-
istration oracle.

L[i].x L[i].t L[i].v

AddUser(x = ⊥) 0 0 0

AddUser(x �= ⊥) 1 0 0

RegServer 1 1 0

RegClient 0 0 1

We here describe the behaviors of the oracles. Below, pp denotes the public
parameter predetermined by pp ← SetupF (1λ).

AddUser: This oracle handles registration of a new user. First, the oracle is
given x ∈ X∪{⊥} and chooses a new ID i. If x 	= ⊥, the oracle sets L[i].x = 1,
and otherwise chooses x according to the distribution X . Then the oracle
executes (temp, verif) ← 〈Join(pp, x), Issue(pp)〉 and stores x, temp, and verif
at T[i].x, T[i].t, and T[i].v, respectively. Finally, i is replied to A.

RegServer: This oracle acts as a server and deals with registration requests from
A. First, the oracle chooses a new ID i. Then the oracle executes Issue(pp) to
interact with A and stores the resulting verif into T[i].v (note that T[i].x and
T[i].t are still set to be ⊥). Also, L[i].x and L[i].t are switched into 1. Finally,
i is replied to A.

RegClient: This oracle plays the client’s role in the registration protocol. First,
the oracle chooses a new ID i and a biometric feature x ← X . Then the oracle
executes Join(pp, x) to interact with A. The chosen x and the resulting temp
are stored at T[i].x and T[i].t, and L[i].v is switched into 1. Finally, i is replied
to A.

AuthServer: This oracle acts as the server and deals with authentication
requests from A. First, the oracle is given an ID i from A. If a verifier of
i is not stored (i.e., T[i].v = ⊥), the oracle outputs ⊥ and aborts. Otherwise,
the oracle executes Verify(pp, T[i].v) to interact with A. Finally, the authen-
tication result result is sent to A.

Security Requirements for SCVS Secure Biometric Authentication 93

AuthClient: This oracle plays the client’s role in the authentication protocol.
First, the oracle is given two IDs i and j from A. If either T[i].x or T[j].t is
⊥, the oracle outputs ⊥ and aborts. Otherwise, the oracle chooses a fuzziness
e ← Φ and executes Prove(pp, T[i].x + e, T[j].t) to interact with A.

Eavesdrop: This oracle simulates eavesdropping attackers. First, the oracle is
given three IDs i, j, and k from A. If any of T[i].x, T[j].t, or T[k].v is ⊥, the
oracle outputs ⊥ and aborts. Otherwise, the oracle chooses a fuzziness e ←
Φ and executes (⊥, result) ← 〈Prove(pp, T[i].x + e, T[j].t),Verify(pp, T[k].v)〉.
Finally, the transcript (i.e., the set of messages exchanged) is provided to A.

LeakData: This oracle leaks data to A. First, A designates an ID i and an
index e ∈ {x, t, v}. If T[i].e = ⊥, the oracle outputs ⊥ and aborts. Otherwise,
the oracle switches L[i].e to 1 and replies with T[i].e to A.

Unforgeability. In the unforgeability game, the attacker first makes an arbi-
trary number of queries to the seven oracles introduced above in an arbitrary
order to adaptively select an ID of a user as a target. Then, the challenger exe-
cutes the authentication protocol with the attacker for the target and finally
obtains an authentication result. The attacker is considered to succeed if the
authentication result is accept .

We categorize the attackers according to the knowledge as listed in Table 3.
Among the eight rows, we eliminate three types of trivial attackers. Because the
knowledge of the target’s biometric feature and template is equivalent to that
of the target, the attackers in the first and second rows are able to successfully
impersonate the target. Also, the attacker in the fifth row who has the template
and the verifier is able to find a biometric feature of the target through brute
force testing without accessing the challenger (i.e., offline). Therefore, we only
consider the remaining five types.

Type-1: Attackers who do not know the template of the target (i.e., who may
have the biometric feature and the verifier of the target).

Type-2: Attackers who do not know either the template or verifier of the target
(i.e., who may have the biometric feature of the target).

Type-3: Attackers who do not know either the biometric feature or verifier of
the target (i.e., who may have the template of the target).

Type-4: Attackers who do not know either the biometric feature or template of
the target (i.e., who may have the verifier of the target).

Type-5: Attackers who do not know any of the biometric feature, template, or
verifier of the target.

We say an attacker wins the unforgeability game if the final authentication
result is accept while satisfying the above requirements on the knowledge. The
unforgeability game outputs 1 if the attacker wins. Table 3 describes the unforge-
ability game ExpUNF,j

Π,F,(A1,A2)
(λ) played by a type-j attacker (A1,A2).

94 H. Higo et al.

Table 3. Knowledge and types of attackers for unforgeability game (left) and unforge-
ability game ExpUNF,j

Π,F,(A1,A2)
(λ) (right).

Knowlege on target
Bio. feat. Template Verifier Type

� � � —
� � —
� � Type-1
� Type-2

� � —
� Type-3

� Type-4
Type-5

1: pp ← SetupF (1λ, param)
2: (i∗, st) ← AO

1 (pp)
3: if T[i∗].v = ⊥ return 0
4: (·, result) ← 〈AO

2 (st),Verify(pp, T[i∗].v)〉
5: return 1 if result = accept and
6: · = 1: L[i∗].t = 0
7: · = 2: L[i∗].t = L[i∗].v = 0
8: · = 3: L[i∗].x = L[i∗].v = 0
9: · = 4: L[i∗].x = L[i∗].t = 0

10: · = 5: L[i∗].x = L[i∗].t = L[i∗].v = 0
11: return 0

An SCVS-SBA scheme is said to be unforgeable if the probability of any PPT
attacker’s winning is small enough. In particular, type-3 attackers are able to
check if a chosen biometric feature y matches the target’s biometric feature with
a query to the AuthServer oracle by honestly running Prove(pp, y, t) where t is
the target’s template. Therefore, the probability of type-3 attackers’ winning is
lower bounded by the probability of successfully guessing the target’s biometric
feature δF,τ where τ is the number of queries to the AuthServer oracle for the
target’s ID.

Definition 3. Let Π be an SCVS-SBA scheme for a biometric feature model
F , j ∈ {1, 2, 4, 5} and ε a function. We say Π satisfies ε-unforgeability against
type-j attackers if for any λ ∈ N and PPT attacker A = (A1,A2), it holds
that Pr

[
1 ← ExpUNF,j

Π,F,A(λ)
]

≤ ε. We say Π satisfies ε-unforgeability against
type-3 attackers if for any λ ∈ N and PPT attacker A = (A1,A2), it holds
that Pr

[
1 ← ExpUNF,3

Π,F,A(λ)
]

− δF,τ ≤ ε, where τ is the number of queries to the
AuthServer oracle for the target’s ID.

Irreversibility. Compared with the unforgeability game, the irreversibility
game differs only in the final protocol execution step. That is, after querying
to the oracles and selecting the target’s ID, the attacker outputs a biometric
feature as its guess of the target’s one. If the guessed one is in X and similar
enough to the stored one, it is considered that the attacker succeeds in guessing
the user’s biometric feature.

The attackers are categorized in Table 4. The attackers from the first to
fourth rows are trivial because they know the biometric feature of the target.
Also, the fifth attacker is able to find a biometric feature of the target through
brute force testing without accessing the challenger. Therefore, we only consider
the remaining three types of attackers that are labeled type-3, 4, and 5 for the
unforgeability game.

Security Requirements for SCVS Secure Biometric Authentication 95

Table 4. Knowledge and types of attackers for irreversibility game (left) and irre-
versibility game ExpIRR,j

Π,F,A(λ) (right).

Knowledge on target
Bio. feat. Template Verifier Type

� � � —
� � —
� � —
� —

� � —
� Type-3

� Type-4
Type-5

1: pp ← SetupF (1λ, param)
2: (i∗, y∗) ← AO

1 (pp)
3: if T[i∗].x = ⊥ return 0
4: if y∗ /∈ X return 0
5: result = Decide(Similarity(T[i∗].x, y∗))
6: return 1 if result = accept and
7: · = 3: L[i∗].x = L[i∗].t = 0
8: · = 4: L[i∗].x = L[i∗].v = 0
9: · = 5: L[i∗].x = L[i∗].t = L[i∗].v = 0

10: return 0

We say an attacker wins the irreversibility game if the attacker succeeds in
guessing the biometric feature of the target while satisfying the above require-
ments on the knowledge. The irreversibility game outputs 1 if the attacker
wins. Table 4 describes the irreversibility game ExpIRR,j

Π,F,A(λ) played by a type-j
attacker A.

We say an SCVS-SBA scheme is irreversible if the probability of any PPT
attacker’s winning is small enough. Similar to the discussion for the unforge-
ability, the winning probability of type-3 attackers is lower bounded by δF,τ+1,
where +1 counts the final output.

Definition 4. Let Π be an SCVS-SBA scheme for a biometric feature model
F , j ∈ {4, 5} and ε a function. We say Π satisfies ε-irreversibility against
type-3 attackers if for any λ ∈ N and PPT attacker A, it holds that
Pr

[
1 ← ExpIRR,3

Π,F,A(λ)
]

− δF,τ+1 ≤ ε, where τ is the number of queries to the
AuthServer oracle for the target’s ID. We say Π satisfies ε-irreversibility
against type-jattackers if for any λ ∈ N and PPT attacker A, it holds that
Pr

[
1 ← ExpIRR,j

Π,F,A(λ)
]

≤ ε.

Remark 1. One may think that the unforgeability implies the irreversibility;
however, it is not always the case. Even if some Type-4 and 5 attackers success-
fully guess the biometric feature, the attackers may not be able to break the
unforgeability because the attackers do not possess the target’s template that
is necessary for the client’s authentication algorithm Prove. Moreover, the two
games set different restrictions on the attackers’ knowledge. That is, the attack-
ers in the unforgeability game are required not to have the target’s verifier, while
the irreversibility game accepts attackers who know it.

3 Proposed Scheme and Its Analysis

We propose a scheme that deals with biometric features of which similarity
is measured by normalized cross-correlation (NCC). NCC-based methods have

96 H. Higo et al.

many applications such as face and fingerprint recognitions [9,14,17,25]. The
proposed scheme utilizes group operations of which discrete logarithm problem
is hard to solve. Although the scheme is shown to be secure against attackers
except for type-3 ones, the attacks can be prevented by using sound modules
or mitigated with the practically used technique as rate limiting. The scheme is
also shown to run fast enough for practical use.

One may think that a fuzzy extractor [7] with a digital signature scheme
is a good candidate for an SCVS-SBA scheme (see also Sect. 4). However, as
far as we know, schemes are considered for simpler similarity measures such as
Hamming distance or L∞-distance, and good schemes do not exist for complex
similarity measures such as Euclidian distance and NCC.

3.1 Preliminaries

In the proposed scheme, we use a group on an elliptic curve E in which solving
the elliptic curve discrete logarithm problem is hard. An algorithm to select an
elliptic curve E and a base point G of which order q is a λ-bit prime is denoted
by GGen(1λ). For an integer s and a point G on E, a scalar multiplication is
denoted by [s]G. We note that the group can be substituted for other groups of
which discrete logarithm problem is hard to solve.

We denote by x = (xi)
n
i=1 the vector (x1, x2, . . . , xn) below. NCC of two

vectors is the inner product divided by the product of the sizes, that is, for
vectors x and y, the NCC of them is 〈x,y〉/√∑

(xi)2
√∑

(yi)2. For the sake
of simplicity, the proposed scheme deals with biometric features that are pre-
normalized and calculates inner vectors as the similarity. Let z be a biometric
feature of which size

√∑
(zi)2 equals A and S a constant. Then (S/A)z is

a normalized vector that has a constant size S and is in [−S, S]n. Obviously,
the inner products of the normalized vectors are the NCCs multiplied by S2.
For group operations, we further round down the elements into integers. For
L = �log(S+1)�+1, the resulting vectors are in [−2L−1, . . . , 0, 1, . . . , 2L−1−1]n.
In formal, we use the biometric feature model F = (X,Similarity,Decide,X , Φ)
detailed as follows.

– X = {x | x ∈ [−2L−1, . . . , 0, 1, . . . , 2L−1 − 1]n ∧ ∑n
i=1(xi)2 ≈ S2}.

– Similarity((x1, . . . , xn), (y1, . . . , yn)) =
∑n

i=1 xi · yi.
– For a predetermined acceptance range θ, Decide(σ) = accept if σ ∈ θ, other-

wise Decide(σ) = reject .

3.2 Construction

Before the detailed construction, we provide a brief introduction. The regis-
tration protocol linearly masks a biometric feature x = (xi)n

i=1 with n + 2
fresh random values s1, s2, t1, . . . , tn ∈ Zq. The masked biometric feature r =
(s1xi − s2ti mod q)n

i=1 is stored in the client as the template.
The authentication protocol is based on the Schnorr’s identification protocol

[21]. Recall that the Schnorr’s protocol is to prove the prover P’s knowledge of
s corresponding to a public data H = [s]G to the verifier V as follows.

Security Requirements for SCVS Secure Biometric Authentication 97

1. P randomly chooses r ∈ Zq and sends A = [r]G to V.
2. V randomly chooses e ∈ Zq and sends it to P.
3. P computes z = es − r mod q and sends it to V.
4. V confirms that it holds that [e]H = [z]G + A.

In the proposed scheme, the client is to prove that the two biometric fea-
tures x and y are similar enough. Since the client only possesses the masked
biometric feature r, the client proves the inner product 〈x,y〉 is in θ with
〈r,y〉 = s1〈x,y〉 − s2〈t,y〉. We view this value as s in the Schnorr’s proto-
col in the proposed scheme. From a different point of view, s is secretly shared
between the user and client.

Therefore, the final step checks if it holds that [e]H = [z]G+A+[es2〈t,y〉]G
for some H ∈ {[s1θ]G | θ ∈ θ}. To compute this equation, the server possesses
s1, s2, and T = ([ti]G)n

i=1 as the verifier. That is, H in the Schnorr’s protocol is
secretly shared among the user, client, and server.

Here we describe the proposed SCVS-SBA scheme Π = (SetupF , Join, Issue,
Prove,Verify) for the biometric feature model F as follows.

The setup algorithm SetupF (1λ,θ):
1. SetupF executes (E,G, q) ← GGen(1λ), computes Θ = {[θj]G | θj ∈ θ},

and outputs a public parameter pp = (E,G, q,Θ).
The registration protocol 〈Join(pp,x), Issue(pp)〉:

1. Join chooses n + 2 random values s1, s2, t1, . . . , tn ∈ Zq, computes r =
(s1xi − s2ti mod q)n

i=1 and T = ([ti]G)n
i=1, sends s1, s2, and T to Issue,

and outputs temp = r.
2. Issue outputs verif = (s1, s2,T).

The authentication protocol 〈Prove(pp,y, temp),Verify(pp, verif)〉:
1. Prove chooses a random value r ∈ Zq, computes A = [r]G, and sends A

to Verify.
2. Verify chooses two random values e, b ∈ Zq, computes B = ([b]Ti)

n
i=1, and

sends e and B to Prove.
3. Prove computes z = e〈r,y〉− r mod q and C =

∑
[yi]Bi, and sends z and

C to Verify.
4. Verify outputs reject if C = 0, computes V = [1/s1]([1/e] ([z]G + A) +

[s2/b]C), and outputs accept if V ∈ Θ holds; otherwise it outputs reject .

When the algorithms run correctly, the value V is computed to be
[〈x,y〉]G. Therefore, the authentication result is determined according to
whether Similarity(x,y) = 〈x,y〉 ∈ θ holds or not. That is, the proposed scheme
satisfies the correctness.

3.3 Security Analysis

We analyze the security of the proposed scheme in this section. The proposed
scheme is designed to handle multiple clients (i.e., multiple users). The ran-
dom values and the key pairs are generated independently for each registra-
tion. Namely, if the attacker obtains some data or transcripts according to some
clients, it is not useful in attacking the other clients. Without loss of generality,
we only consider single-client cases in the security analysis below.

98 H. Higo et al.

Server’s Ignorance on Biometric Features. The verifier consists of random
values chosen independently from the biometric features. Therefore, it is clear
that the following theorem holds.

Theorem 1. The SCVS-SBA scheme Π satisfies the server’s ignorance on bio-
metric features.

Unforgeability. Next, we discuss the unforgeability of the proposed scheme.
The scheme is unforgeable against type-1, 2, 4, and 5 attackers.

Theorem 2. The SCVS-SBA scheme Π satisfies negl(λ)-unforgeability against
type-1, 2, 4, and 5 attackers if the success probability of solving the elliptic curve
discrete logarithm of the underlying group is bounded by negl(λ).

For a successful attack, the attackers need to compute z and C 	= 0 that satisfies
[z]G + [es2/b]C = [es1θ − r]G for some θ ∈ θ, the chosen value r, and the given
values e and B = ([bti]G)i. Based on the discrete logarithm assumption, it is
impossible even for the strongest type of type-1 attackers who know the target’s
biometric feature and verifier (s1, s2, ([ti]G)i) except for a negligible probability.
Formal proof is based on a similar discussion with that of the Schnorr’s protocol,
which is omitted because of space limitations.

Irreversibility. Irreversibility against type-4 and 5 attackers is satisfied based
on the difficulty of solving the elliptic curve discrete logarithm problem of the
underlying group.

Theorem 3. The SCVS-SBA scheme Π satisfies negl(λ)-irreversibility against
type-4, and 5 attackers if the success probability of solving the elliptic curve
discrete logarithm of the underlying group is bounded by negl(λ).

Even if the attackers query to the authentication oracles, the attackers only
learns inner products of the target’s biometric feature and randomly chosen
biometric features. The information is not helpful in guessing the target’s one.
Formal proof is omitted because of space limitations.

Unforgeability and Irreversibility Against Type-3 Attackers. The
scheme is susceptible to attacks by type-3 attackers who have the target’s tem-
plate. This is because the authentication protocol cannot detect if an illegal input
y /∈ X is used as the input to Prove, and then the type-3 attackers are possibly
able to exploit the AuthServer oracle with Prove(pp,y, t) where y /∈ X and t
is the target’s template.

If we can add a functionality in the authentication protocol to verify that
the input biometric feature y is in the biometric space, the proposed scheme
will satisfy all the security requirements. To develop a practical scheme that is
secure against all types of attackers is an interesting future work. In reality, we
are able to mitigate the threats with extra restrictions such as rate-limiting.

Security Requirements for SCVS Secure Biometric Authentication 99

3.4 Implementation Results

We used two machines for the measurements: the server’s is an Intel Xeon Silver
4114 @ 2.2 GHz CPU with 96 GByte memory running Ubuntu 18.04, and the
client’s is a Qualcomm Snapdragon 450 @ 1.8 GHz with 4 GByte memory run-
ning Android 8.1. We implemented the programs in C using OpenSSL 1.1.1 [20]
for multi-precision arithmetic and elliptic curve cryptography. For the server, the
programs were compiled with gcc 7.4.0, and for the client, we used clang 8.0.2
(Android NDK 19.2.5345600) to compile and the Java Native Interface (JNI) to
call the C libraries.

For the elliptic curve, we used P-256 defined in NIST FIPS PUB 186-4 [19],
where the size of a scalar is 256 bits, and each point is compressed to be 257 bits.
In this evaluation, we used 2% of the range of inner products of the biometric
features as the size |θ| of acceptance range.

Execution Time. Table 5 shows execution times of each algorithm of the pro-
posed scheme. Both registration and authentication processes take only tens of
milliseconds for the slowest case, which seems to have little burden on users.

Recall that the last step of Verify checks if the value V is in Θ. In the imple-
mentation, we utilized binary search in the verification step with the elements
of Θ sorted in Setup. We evaluated the worst case time in which V is not in the
range as shown in Table 5.

Table 5. Parameters and execution time of each algorithm. (n is the dimension of a
biometric feature. L is the bit length of each element of the biometric feature.)

n L |θ| Setup Registration Authentication

Setup[s] Join[ms] Issue[ms] Prove[ms] Verify[ms]

@Server @Client @Server @Client @Server

16 8 10,444 1.47 1.22 0.01 0.86 1.62

10 167,608 31.5 1.09 0.01 1.02 1.63

12 2,683,699 636 1.10 0.01 1.21 1.66

64 8 41,779 6.73 4.27 0.02 3.04 4.35

10 670,433 145 4.36 0.02 3.81 4.39

12 10,734,796 2,943 4.29 0.02 4.62 4.48

256 8 167, 116 32.4 17.1 0.06 12.0 15.1

10 2,681,733 652 17.1 0.06 15.1 15.8

12 42,939,187 13,231 17.1 0.06 18.2 15.9

Data Size. The server stores the public parameter pp and the verifier verif and
the client stores the template temp.

100 H. Higo et al.

The public parameter pp includes Θ which consists of |θ| points of the elliptic
curve. From Table 5, the size of pp is about 1GByte in the largest case of n = 256
and L = 12.

Table 6 shows the sizes of temp and verif and the sizes of messages trans-
mitted in the registration and the authentication protocols. The sizes of temp
and verif are proportional to n. They are around 8KByte in the largest case
n = 256. The message sizes are also around 8KByte in both registration and
authentication protocols. This would suggest that the proposed scheme does not
require either large storage or bandwidth.

Table 6. Storage and message sizes for each user.

n Storage [Byte] Message [Byte]

temp verif Registration Authentication

16 512 578 578 644

64 2048 2120 2120 2186

256 8192 8288 8288 8354

4 Related Work

There is a line of work [4,7,10,13,18] that designs and constructs schemes for
securely executing online biometric authentication. Most of the work concen-
trates on developing a way to enhance security while ensuring a similar usability
level compared with that of the non-secured online biometric authentication.
Because of this concept, the users are not allowed to possess their own devices
or remember their passwords and are assumed to use shared biometric sensors
such as those equipped at ATMs. To store the templates on the server (i.e., store-
on-server model), the templates are ciphertexts of the biometric features and are
never decrypted. The matching of the registered and the queried biometric fea-
tures are computed without decryption by utilizing linear codes [3,7,12,13,23],
homomorphic encryption [3,4,10,11,24], homomorphic signatures [18], and some
other secure computation tools [6].

Even if the template is the ciphertexts of the biometric features, it may not
be sufficient to protect privacy information from data breaches. As for what
FIDO uses, service providers are recommended not to possess any information
generated from biometric features.

There seems to be a potential for securely applying the store-on-server
schemes into SCVS-SBA by changing the entity who manages the template. How-
ever, it is not correct because there is another chance of impersonation attack in
the proposed model. That is, because the clients are able to compute templates
related to any arbitrary biometric feature, the attacker is able to forge templates

Security Requirements for SCVS Secure Biometric Authentication 101

to be used in impersonation. To prevent this attack, the schemes require rejec-
tion of the use of illegal templates that are not generated in the honest execution
of the registration protocol.

The fuzzy extractor [7], which is a technique to extract a random string
from a fuzzy data source, in combination with the digital signature may be
regarded as a candidate of a SCVS-SBA scheme. In the authenticate phase of
the scheme, the client uses a reproduction algorithm with a biometric feature
and the helper data to obtain the signature key, and a signature generated with
the key will prove the legitimacy of the user. However, its security depends on a
concrete scheme and must be examined well. For example, the fuzzy extractor
is not generally sufficient for achieving correctness because there is no guarantee
on the reproduced random string when the input is from another source. For
practicality, as far as we know, existing fuzzy extractor schemes cannot afford
complex similarity metrics such as NCC. Moreover, though the errors of some
biometric features are known to be very large, constructing a fuzzy extractor
that deals with high error rate sources has proved to be impossible [8].

With respect to password authentication, a FIDO-style model has been pro-
posed by Bringer et al. [5]. In the model, a token generated from a password is
stored by the client. While the entity model is similar to that of this work, pass-
words are not fuzzy and are not as sensitive as biometric information. Therefore,
the model is not sufficient for dealing with biometric authentication instead of
password authentication.

5 Conclusion

We introduced a model of store-on-client and verify-on-server secure biometric
authentication (SCVS-SBA) as a security enhancement of FIDO UAF. SCVS-
SBA is a combinatorial method for biometric authentication and device authen-
tication in which all credentials are stored in the client and the server determines
the authentication result. We took into account the possible attack vectors in
the FIDO UAF authentication flow and formalized security requirements that
guarantee both confidentiality of biometric features and resistance against imper-
sonation.

As a first step for SCVS-SBA schemes, this paper also proposed a scheme
that is shown to run practically fast. The scheme is susceptible to attacks that
exploit the target’s template in the defined model. To develop a practical scheme
that is secure against all types of attackers is one of interesting future work.

References

1. Android keystore system. https://developer.android.com/training/articles/key
store

2. FIDO Alliance. https://fidoalliance.org/
3. Bringer, J., Chabanne, H.: An authentication protocol with encrypted biometric

data. In: Vaudenay, S. (ed.) AFRICACRYPT 2008. LNCS, vol. 5023, pp. 109–124.
Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68164-9 8

https://developer.android.com/training/articles/keystore
https://developer.android.com/training/articles/keystore
https://fidoalliance.org/
https://doi.org/10.1007/978-3-540-68164-9_8

102 H. Higo et al.

4. Bringer, J., Chabanne, H., Izabachène, M., Pointcheval, D., Tang, Q., Zimmer, S.:
An application of the Goldwasser-Micali cryptosystem to biometric authentication.
In: Pieprzyk, J., Ghodosi, H., Dawson, E. (eds.) ACISP 2007. LNCS, vol. 4586, pp.
96–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73458-1 8

5. Bringer, J., Chabanne, H., Lescuyer, R.: Software-only two-factor authentication
secure against active servers. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2016. LNCS, vol. 9646, pp. 285–303. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-31517-1 15

6. Bringer, J., Chabanne, H., Patey, A.: Privacy-preserving biometric identification
using secure multiparty computation: an overview and recent trends. Signal Pro-
cess. Mag. 30(2), 42–52 (2013)

7. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

8. Fuller, B., Reyzin, L., Smith, A.: When are fuzzy extractors possible? In: Cheon,
J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 277–306.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53887-6 10

9. Hassner, T., et al.: Pooling faces: template based face recognition with pooled face
images. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2016

10. Higo, H., Isshiki, T., Mori, K., Obana, S.: Privacy-preserving fingerprint authenti-
cation resistant to hill-climbing attacks. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci. E101.A(1), 138–148 (2018)

11. Hirano, T., Hattori, M., Ito, T., Matsuda, N.: Cryptographically-secure and effi-
cient remote cancelable biometrics based on public-key homomorphic encryption.
In: Sakiyama, K., Terada, M. (eds.) IWSEC 2013. LNCS, vol. 8231, pp. 183–200.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41383-4 12

12. Isshiki, T., Araki, T., Mori, K., Obana, S., Ohki, T., Sakamoto, S.: New security
definitions for biometric authentication with template protection: toward covering
more threats against authentication systems. In: International Conference of the
Biometrics Special Interest Group (BIOSIG), pp. 1–12 (2013)

13. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: Proceedings of the 6th
ACM Conference on Computer and Communications Security, pp. 28–36. ACM,
New York (1999)

14. Karna, D.K., Agarwal, S., Nikam, S.: Normalized cross-correlation based finger-
print matching. In: 2008 Fifth International Conference on Computer Graphics,
Imaging and Visualisation, pp. 229–232, August 2008

15. Lai, R.W.F., Egger, C., Reinert, M., Chow, S.S.M., Maffei, M., Schröder, D.: Sim-
ple password-hardened encryption services. In: 27th USENIX Security Symposium
(USENIX Security 2018), pp. 1405–1421. USENIX Association, Baltimore (2018)

16. Martinez-Diaz, M., Fierrez-Aguilar, J., Alonso-Fernandez, F., Ortega-Garcia, J.,
Siguenza, J.: Hill-climbing and brute-force attacks on biometric systems: a case
study in match-on-card fingerprint verification. In: 40th Annual IEEE International
Carnahan Conferences Security Technology, ICCST 2006, pp. 151–159, October
2006

17. Masi, I., Trãn, A.T., Hassner, T., Leksut, J.T., Medioni, G.: Do we really need
to collect millions of faces for effective face recognition? In: Leibe, B., Matas, J.,
Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 579–596. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-46454-1 35

https://doi.org/10.1007/978-3-540-73458-1_8
https://doi.org/10.1007/978-3-319-31517-1_15
https://doi.org/10.1007/978-3-662-53887-6_10
https://doi.org/10.1007/978-3-642-41383-4_12
https://doi.org/10.1007/978-3-319-46454-1_35

Security Requirements for SCVS Secure Biometric Authentication 103

18. Matsuda, T., Takahashi, K., Murakami, T., Hanaoka, G.: Fuzzy signatures: relaxing
requirements and a new construction. In: Manulis, M., Sadeghi, A.-R., Schneider,
S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 97–116. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-39555-5 6

19. National Institute of Standards and Technology (NIST): FIPS PUB 186-4: Digital
Signature Standard (DSS) (2013)

20. OpenSSL Software Foundation: OpenSSL. https://www.openssl.org/
21. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,

G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

22. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Tech. J. 28(4),
656–715 (1949)

23. Tuyls, P., Akkermans, A.H.M., Kevenaar, T.A.M., Schrijen, G.-J., Bazen, A.M.,
Veldhuis, R.N.J.: Practical biometric authentication with template protection. In:
Kanade, T., Jain, A., Ratha, N.K. (eds.) AVBPA 2005. LNCS, vol. 3546, pp. 436–
446. Springer, Heidelberg (2005). https://doi.org/10.1007/11527923 45

24. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: New packing
method in somewhat homomorphic encryption and its applications. Secur. Com-
mun. Netw. 8(13), 2194–2213 (2015)

25. Yoo, J.C., Han, T.H.: Fast normalized cross-correlation. Circ. Syst. Signal Process.
28(6), 819 (2009)

https://doi.org/10.1007/978-3-319-39555-5_6
https://doi.org/10.1007/978-3-319-39555-5_6
https://www.openssl.org/
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/11527923_45

Reflexive Memory Authenticator:
A Proposal for Effortless Renewable

Biometrics

Nikola K. Blanchard1(B), Siargey Kachanovich2, Ted Selker3,
and Florentin Waligorski4

1 Digitrust, Loria, Université de Lorraine, Nancy, France
Nikola.K.Blanchard@gmail.com

2 Université Côte d’Azur, Inria Sophia-Antipolis, Nice, France
3 University of Maryland, Baltimore County, Palo Alto, CA, USA

4 Observatoire de Paris, Paris, France
http://www.koliaza.com/

Abstract. Today’s biometric authentication systems are still struggling
with replay attacks and irrevocable stolen credentials. This paper intro-
duces a biometric protocol that addresses such vulnerabilities. The app-
roach prevents identity theft by being based on memory creation biomet-
rics. It takes inspiration from two different authentication methods, eye
biometrics and challenge systems, as well as a novel biometric feature:
the pupil memory effect. The approach can be adjusted for arbitrary lev-
els of security, and credentials can be revoked at any point with no loss to
the user. The paper includes an analysis of its security and performance,
and shows how it could be deployed and improved.

Keywords: Eye biometrics · Authentication · Adaptive systems

1 Introduction

Until recently, biometric authenticators seemed to be the holy grail for access
security. Improved sensor technology made available new alternatives such as
iris and eye muscle signature, with the most accurate approaches reaching error
rates below 0.01%. Unfortunately, even these top biometric solutions suffer from
two important problems. The first is that an adversary can record and replicate
the iris or even simulate eye muscle motions to present as a user. The second
problem is that each person requires independent security for a large array of
services, such that compromising one does not affect the others. Aggregating the
authentication would necessitate some independent trusted reliable intermediary
service. Such a service then becomes a single point of failure, which easily exposes
users to access failure and other related problems. An ideal approach would allow
a person to create new authentication mechanisms if old ones get compromised
or to independently access services without compromising other services’ access
methods, which is unfeasible with most biometric authentication systems. This
c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 104–121, 2020.
https://doi.org/10.1007/978-3-030-39749-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-39749-4_7

RMA: A Proposal for Effortless Renewable Biometrics 105

paper works to demonstrate a new kind of biometric approach that could allow
ongoing creation and cancellation under attacks, by using unconscious memory
as a biometric feature.

Contributions. We propose a resettable reflexive biometric authentication sys-
tem that does not suffer from credential theft and re-use, with arbitrary security
due to a time-security trade-off. We analyse its security against multiple stan-
dard attacks, and the principal obstacles to its implementation in practice. This
proposal is presented to motivate development, and although the system could
be used today, empirical tests will be needed to validate and optimise its perfor-
mance.

This paper is structured as follows: Sects. 2 and 3 go over the related work for
the two main authentication methods on which the protocol is based. Section 4
introduces the specific biometric mechanism used, and Sect. 5 goes over the
details of the protocol. Section 6 analyses the resistance of the protocol to mul-
tiple kinds of attacks. Finally, extensions of this protocol to different use-cases,
vulnerabilities, and potential improvements are discussed in Sect. 7.

2 Challenge-Based Authentication

2.1 Text Challenges

Typical challenge-based authentication uses text questions: requesting answers
to a series of questions or the completion of a list of tasks. Such approaches
can achieve a relatively high level of security, with a higher promised level of
usability than common passwords. This idea has been around since at least the
early 1990s, initially as a list of personal questions [53].

This kind of system suffers from multiple issues:

– It is vulnerable to targeted attacks when answers are findable online [22].
– Free-form answers can lead to high error rates and frustration as people tend

to misremember the exact spelling they used [45].
– To achieve high entropy, a potentially long sequence of challenges is needed.

This requires more time and effort from the user and increases the system
complexity [22].

– A large set of potential challenges is needed to avoid repetition of chal-
lenges between different services. User-provided challenges are also riddled
with usability and security issues [23].

As such, text challenges have mostly been superseded by different systems,
based on intrinsic human visual pattern recognition abilities.

2.2 Graphical Challenges

The main alternative to text challenges is visual—or graphic—passwords, where
the user is confronted with a sequence of images and has to react, for example,

106 N. K. Blanchard et al.

by identifying known pictures [21], especially pictures of faces [7]. An alternative
is to click on certain zones in a sequence of pictures, which can either come from
an image corpus or be automatically generated [8,52]. Some research has also
looked at mixing different methods and mnemonics, such as storytelling plus
visuals [39] or sound-augmented visual passwords [50].

Graphical challenges do not solve all the problems mentioned:

– They still require either more complex challenges or a long sequence of chal-
lenges.

– Any system used by multiple service providers encounters the same risk of
challenge re-use.

– Depending on the structure of the interaction, the systems are generally quite
vulnerable to another person or camera recording the visual challenge by
“shoulder-surfing” [29].

– Attempts at limiting shoulder-surfing impose strong constraints on the image
set sizes, which lowers entropy [1].

Techniques inspired by these challenges are still present in the forms of
CAPTCHAs, often in conjunction with passwords systems to frustrate auto-
mated attacks through rate-limiting [19,25]. While they are present in multiple
popular commercial solutions, such systems have not solved the central issue of
authentication. We now turn to biometric authentication, which has been con-
sidered as a lower-effort security approach and plausibly an ultimate alternative
to passwords.

3 Biometric Authentication Methods

For the purpose of authentication, a wide array of biometrics features has been
used, going from hand shape to fingerprint, voice print, or typing patterns. These
methods have been used for decades, initially with limited uses in specific high-
security sectors, such as banking or the military in the 1970s [31]. Their preva-
lence has increased dramatically in recent years, with more than 40% of users
unlocking their phones through fingerprints or face recognition in 2018 [18]. A
central issue to biometric authentication is the possibility to steal biometric
information and to use it later in what is called a replay attack. A large amount
of work has been done to solve this, going from storing data in a way that is not
directly re-usable [9,30,35] to using parallel systems to make sure that the sensor
is not being fooled by a previously captured video in a process called liveness
detection [28,42]. Alas, these techniques are not entirely secure yet [34,49].

3.1 Error Rates

Comparing biometric features and authentication systems requires a common
metric. The most frequently used metric depends on two error rates: false rejec-
tion rate (FRR) and false acceptance rate (FAR). The false rejections, although
not being a critical security issue, are a source of frustration for the users. The

RMA: A Proposal for Effortless Renewable Biometrics 107

false acceptances, on the other hand, are a security failure. The two error rates
are related: the stricter the system is, the lower the FRR and the higher the
FAR become. Hence, we generally use the equal error rate (EER), the tolerance
level for which FAR and FRR are equal. These rates are generally within 1% and
6–7% for any kind of authentication except for the iris-based ones, which have
0.01% EER but—like most classical biometrics—are not renewable and are vul-
nerable to theft. Even multimodal biometrics—where one uses multiple sources
and biometric features for liveness detection and improved error rates [43]—
rarely improve below 0.2% EER [9,17,44]. Making the strong assumption that
the user data are quite well-distributed—which is far from guaranteed—this
corresponds to a min-entropy below 7 bits, on par with typical password sys-
tems. Moreover, most of the EER mentioned in papers on biometrics are against
non-optimised adversaries: for a given set of user patterns, they check which pro-
portion would be accepted as sufficiently similar to another user. An adversary
that can compute an optimal distribution of fake patterns to cover the space
of user data points more efficiently might get a success rate high enough to
impersonate more than 10% of users despite a three-strike policy1.

3.2 Eye and Reflexive Biometrics

After problems were discovered in fingerprint-based authentication, focus shifted
to eye biometrics, with more than a hundred papers published on the subject in
the last decade. Most of the research has been on iris recognition [5], where the
unique patterns present in the iris allows for a much lower EER. More recently,
eye movements have received a lot of interest, as muscular performance is quite
distinctive [3,17,26]. Despite the much improved EER, the unchangeability of the
underlying biometric pattern stays an intrinsic problem for nearly all biometric
authentication systems.

As such, some of the proposed systems have been inspired by challenge sys-
tems. Notably, multiple systems were developed based on gaze analysis, which
concentrates on how the eye moves when faced with specific images [13,16]. In
2016, Sluganovic et al. proposed a challenge-based eye movement system [51],
in which the server creates challenges in the form of a single dot quickly moving
on a screen. As the point’s location is random, it prevents replay attacks. The
speed and patterns in the eye’s movement are characteristic of the user’s muscle
function and allow them to authenticate them. This uses the user’s unconscious
reflexes, which means that it is quite low-effort to the user. However, the system
still depends on a hidden model of the user’s muscles. As such, it is vulnera-
ble to an adversary that can compute a sufficiently accurate model of the user.
Once this model is computed, it is impossible to reset the stimulus pattern. This
means that the user cannot safely use that biometric on this service, or any other
service, potentially compromising dozens of accounts.

To this date, there seems to be only one type of biometric authentication
systems that are based on partially unconscious actions while being resettable.

1 Meaning that the person trying to authenticate is blocked after three failed attempts.

108 N. K. Blanchard et al.

That is, where the stimulus and the reaction pattern can instantly be changed
if they become compromised, just as one resets their password. These systems
are all based on electro-encephalography (EEG), and tend to give an arbitrary
task to the user before recording their electrical brain patterns—which are not
consciously controllable—while they concentrate on the task [2,11,33]. Alas, they
suffer from common EEG drawbacks [12]:

– they tend to have high EER;
– they are costly and require specialised equipment that is hard to set up;
– they require an extended time to capture and process the signals;
– they are not entirely stable over extended time periods.

Our idea is to create reflexive challenge biometrics that rely on a different
biometric feature that has not been used previously for this purpose. Results on
this feature from the psychological literature are presented in the next section.

4 The Pupil Memory Reflex

The interactions between memory and eye behaviour have been studied for more
than half a century [36,38,41] and are still a subject of ongoing research [10,14,
24]. In 1967, Roger N. Shepard showed that recognition memory for pictures
vastly exceeded recognition memory for words. A week after having been shown
a set of 600 pictures, users who were shown two pictures and were asked to select
the ones they had seen previously were correct 87.0% of the time. Even after
four months without being shown the pictures, they still managed to be right
57.7% of the time [36]. 5 years later, Loftus showed that pupil patterns could
predict how well remembered an image would be [32]. Part of this memorisation
is conscious, but some unconscious processing is also involved [20].

The feature central to the Reflexive Memory Authenticator protocol is quite
simple: when presented with a stimulus, the pupil contraction reflex indicates
how new the stimulus is to the user. More precisely, the pupil starts contracting
between 200 ms and 300 ms after the stimulus starts. After this contraction and
depending on whether the stimulus is still present, the pupil dilates back to its
baseline over the course of a few seconds.

The contraction effect tends to be faster with novel stimuli, in which case
it also takes more time to get back to the baseline. This is directly influenced
by how familiar the image is. This effect has been shown through both declara-
tive experiments—where the user states whether the image is familiar—and free
viewing—where the already-seen images are recorded. In experiments performed
by Naber, Frässle, Rutishauser, and Einhäuser [37], 48 participants were shown a
list of pictures to memorise, and were later shown some of those pictures or new
pictures randomly, while their pupil behaviour was recorded. Figure 1 shows the
evolution of pupil size during retrieval on the right. Two main curves show this
effect—depending on whether the user judged the picture familiar or not—and
confidence intervals, which start diverging while the image is still shown (before
the 1s mark). Figure 2 (top) shows the curve slopes.

RMA: A Proposal for Effortless Renewable Biometrics 109

Fig. 1. Figures redrawn from [37, Fig. 3A (left) and 4A (right), Experiment 1], showing
the evolution of the pupil size during the memorisation phase (left) and retrieval phase
(right). The red curve corresponds to an image that the user later forgets, and the blue
one to a picture that is remembered. The green curve corresponds to a image that the
user remembers, and the yellow one to a image that is perceived as novel. The grey
area corresponds to when the images are on screen. (Color figure online)

Fig. 2. Figure redrawn from [37, Fig. 1B (top) and 1C (bottom)], showing the evolution
of the pupil size during the memorisation and retrieval phase. On the top graph, the
slopes vary depending on whether the image will later be judged as novel. The bottom
graph shows the slopes varying with whether the image is being judged as novel and how
confident the user is in that judgement (not shown here). The grey areas correspond
to when the images are on screen.

110 N. K. Blanchard et al.

Fig. 3. Figure redrawn from [6, Fig. 1], showing the evolution of pupil size as a function
of time, novelty of stimulus, and emotional content. The image is shown for 3 s starting
from 0 (the baseline is shown for 1 s before the stimulus).

A second effect also shown in the same study was that, during memorisation,
pupil size can also serve as an indicator of whether the image would later be
remembered. This is shown on Figs. 1 (left) and 2 (bottom).

An interesting effect, shown in [6], is that this behaviour is strongly mod-
ulated by the emotional content. Violent and erotic images elicit stronger and
slightly different responses, as shown in Fig. 3. Image content as well as unique-
ness will affect the protocol, and care has to be taken on the choice of images in
the database.

Without user effort beyond observing a sequence of images, this method
can reliably decide whether the user is familiar with an image that might have
previously been shown. The main question is how quickly this decision can be
made, with most experiments leaving multiple seconds of rest for the pupil to
return to baseline dilation, showing only one new image every three seconds,
which allows them to know quite accurately whether the image was novel. This
delay depends on cognitive and perceptual phenomena which are affected by
factors including sleep, mood and intoxication. More experimentation may reveal
further constraints on image recognition.

With all the building blocks in place, it is now time to introduce the Reflexive
Memory Authenticator protocol.

5 Using Reflexive Pupil Dilation for Authentication

The protocol has two different modes of functioning: when the user registers for
the first time, and when they try to authenticate afterwards.

RMA: A Proposal for Effortless Renewable Biometrics 111

5.1 Basic Protocol

Registration. At the registration phase, the user provides their username, and
the system selects a set of images (say, 30) and records that they correspond to
the user. The server tells the user to look attentively at the following pictures
and shows them one by one for 1.5 s each2.

Authentication. Each time the user tries to authenticate, the protocol works as
follows:

– The system computes two lists of images. The first comes from the set of
known images (based on the ones recorded in the registration phase), and the
other comes from a database of never-seen-before images.

– In a series of rounds, an image is selected from one of the two lists, with
probability 1/2 for each.

– The image is shown to the user for a recognition period of 1 s. The screen
then becomes blank for 1 s to allow the user to return to their baseline.

– The system evaluates if dilation of the user’s pupil corresponds to whether
the shown image is known or unknown to the user.

– The system estimates the probability that the person who is trying to authen-
ticate is indeed the user.

– If the probability exceeds a certain threshold, the system logs the user in.
– If more than a reasonable number of images (e.g. 50) have been shown or

the probability is below a second threshold (indicating a high probability of
spoofing attempt), the system requires a CAPTCHA and warns the user of
the authentication attempt (e.g. by email).

– Otherwise, the system chooses another image to show to the user from one
of the two lists at random.

– If the user manages to get authenticated but had at least one false positive,
the one with the strongest reaction is added to the list of known images.

In practice, many explicit and implicit parameters affect the performance of
the Reflexive Memory Authenticator, which are covered below.

5.2 Implementation Constraints and Parameters

Before implementing this protocol in practice, here are the questions we must
ask:

– Which images should be considered?
– How long should each image be shown, and how long should the resting period

between images be?
– How do we ensure that the protocol eliminates noise coming from pupil size

variability due to environmental conditions (such as glasses, camera charac-
teristics, lighting variations)?

2 This is enough for the users to have high memory performance as in [37], while still
being faster than nearly all password composition policies [46].

112 N. K. Blanchard et al.

– Should known and unknown images be shown with the same probability?
– Which thresholds should govern acceptance, rejection, and continued testing?
– How can targeted attacks be prevented?
– What should be the protocol for retiring images from the known set?
– How should the system keep track of which images are treated as known?

The first three questions are addressed here, and the last four in Sect. 6.

Image Types and Sources. Natural scenes—for example, pictures of mountains,
flowers or clouds— have been used in multiple studies [6,24,37] and form a
common baseline. However, emotionally loaded images elicit strong reactions in
both directions [6]. As this increases noise, emotionally loaded images should
probably be avoided.

The system requires many unseen images for each login attempt. It then
requires appropriately large databases to avoid the user seeing an image twice
and being too familiar with it. For example, consider 20 authentication attempts
per day, each with 20 novel images. Assuming that an image can be reused after
six months, this would require 72000 images to be drawn without repetition. It
could easily be done with the multiple online databases numbering in the mil-
lions of public domain images—such as Wikimedia Commons (https://commons.
wikimedia.org), Snappygoat (https://snappygoat.com) or Free-images (https://
free-images.com).

For the images to be drawn at random with little to no repetition, we would
have to avoid random collisions [27]. This would require close to 4 billion images,
so the server needs to store at least partial information on the images seen.
Subsection 6.6 expands on how to do this.

Time Parameters. A parameter with a direct linear impact on usability is the
delay per image. For example, each image can be shown for 1 s, with a rest period
of 2 s, as has been done in previous psychological studies [37]. This means that
to show 20 images—a lower bound to get the equivalent of 20 bits of security—
a whole minute of authentication would be required. To keep a high level of
usability, making the authentication process no-effort is not enough—it should
also be quite fast, to avoid disturbing the user’s workflow. The problem is that
the shorter the time allowed for both presentation and rest, the harder it becomes
to discriminate between the two contraction modes corresponding to a known
or unknown image.

A lowered accuracy could still improve security by showing images at an
increased rate. For example, instead of a 95% classification accuracy in 3 s, a
system with 75% accuracy in 0.5 s could take much less time to authenticate
a user, depending on the actual number of errors. Based on previous work, a
reasonable upper bound on the frequency, assuming no resting period, would
be around 3 images per second [37], leading to a time cost of less than ten
seconds to exceed median password security [4]. This kind of frequency brings
two problems, however. First, it provides less data on an earlier time frame,
which shows a less marked pupil memory effect. Second, it means that there is

https://commons.wikimedia.org
https://commons.wikimedia.org
https://snappygoat.com
https://free-images.com
https://free-images.com

RMA: A Proposal for Effortless Renewable Biometrics 113

an interference because of the lack of resting period. This requires much more
advanced statistical models to handle. One image per 3 s is doable today but
finding optimal parameters would require additional empirical studies.

Handling Environmental Variability. One common issue with eye biometrics is
that capturing software has to accommodate for a large variability in real data.
For example, pupil sizes react to cognitive load [14], but also to ambient light,
alcohol and drug use, and mood. Because of this, most experiments control the
luminance levels and try to keep them constant across all stimuli [20,40]. One
way to handle this in our context is to show a grey screen for a few seconds
before authentication (or measure pupil sizes while the user types their login).
Alternatively, we could show two or four initial images—half of them known,
the others unknown—and use the reactions as a baseline for the rest of the
authentication process.

6 Error Tolerance and Security Considerations

6.1 Kinds of Errors

The protocol that we described in Sect. 5 is prone to various errors, which can
be classified into four types:

– User false negatives, where the user is not recognising an image that had
previously been shown.

– User false positive, where the user recognises an image that is supposed to be
unknown, as the image has been seen before by coincidence (for example, on
someone else’s screen).

– System misclassification, in which the pupil dilation is badly interpreted.
– Sensor or environmental error, where the hardware has a bug or something

prevents the capture (e.g. due to the user suddenly turning their head).

Probabilistic Formalism. To be formal, we can integrate the previous errors into
probabilities that the user is correct or not, depending on what is shown on the
screen.

The probabilities that we take into account are the following:

– The base probability pu of being the user. We use the value pu = 0.5 in the
calculations in the following (which is not far from real world data [48]).

– The probability ps of the user successfully classifying an image. Unless stated
otherwise, we assume that this probability is 0.95. The analogous probability
for the adversary considered here is fixed to be 0.5 throughout this section.

– The probabilities px and py = 1 − px of being shown an unknown (respectively
known) image.

– The probabilities px0 and px1 = 1 − px0 that the user does not recognise
(respectively recognises) an unknown image.

– The probabilities py0 and py1 = 1 − py0 that the user does not recognise
(respectively recognises) an already known image.

We start by investigating the question whether px should be equal to py.

114 N. K. Blanchard et al.

6.2 Showing More Unknown or Known Images

Let us now consider a model in which the two probabilities px and py are not
necessarily equal, and the adversary classifies any image as “unknown” with a
probability x and as “known” with probability 1 − x. We then get the following
result:

Lemma 1. The optimal strategy for the adversary is to classify every image as
“unknown” if px > py, and as “known” if py > px.

Proof. Without loss of generality, let us assume that px > py. This implies
in particular that px > 0.5. In this case, the probability for the adversary to
successfully authenticate after being shown n images is:

p′
s(x) = pxx + (1 − px)(1 − x) = (1 − px) + (2px − 1)x.

Because px > 0.5, the function p′
s increases when x increases. Therefore, the

optimal strategy for the adversary is to set x = 1.

With the optimal strategy, the probability for the adversary to succeed the
authentication after being shown n images is max(px, py)n. As such, we have an
interest in setting py = px = 0.5, which minimises this probability.

6.3 Handling the Probability of an Error

In our first model, we assume that px = py = 0.5. In addition, the adversary
in this model randomly guesses whether an image is known or unknown to the
user with probability 0.5.

We are interested in comparing the probabilities of successful authentication
for the user and the adversary. These probabilities depend on two parameters: the
number n of shown images and the number e of errors tolerated by the system.
The general formulae for the probability of the successful authentication for the
user and the adversary are:

e∑

i=0

(
n

i

)
(1 − ps)ipn−i

s and
e∑

i=0

(
n

i

)
(0.5)n respectively.

Figure 4 plots the success probabilities for e = 0, 1, 2 and px0 = py1 = 0.95.

6.4 Adaptive Error Probability

As seen on Fig. 4, even by tolerating two errors, we eventually deny access to
some users. As such, it is better to use an adaptive system where the probability
of being the adversary is computed after each round.

The probability of being the adversary after n shown images with at most e
errors can be found using Bayes’ theorem:

∑e
i=0

(
n
i

)
(0.5)n(1 − pu)

∑e
i=0

(
n
i

)
(1 − ps)ipn−i

s pu +
∑e

i=0

(
n
i

)
(0.5)n(1 − pu)

.

RMA: A Proposal for Effortless Renewable Biometrics 115

Fig. 4. Success probabilities of the user and the adversary trying to authenticate in
the system, where different curves correspond to the number of errors tolerated by the
system. Note that the probability axis is log-scaled. The same curve are shown again
on the bottom with a larger logarithmic scale.

116 N. K. Blanchard et al.

Fig. 5. The probability of the person who tries to authenticate being an adversary
after an error occurred after each 5 images. The curve above and below take as base
probability ps of the user to be correct to be equal to 0.95 and 0.8 respectively.

We ran exact numbers for a user that tries to authenticate but misclassified
every fifth image. Figure 5 shows how the probability of being a real user evolves
in this context, and that it depends weakly on the server’s stored probability
that a user is misclassified. Even in a scenario where the user makes a mistake
every five pictures—much higher than real data would indicate—the system has
a lower error rate than all current biometric authentication systems in at most
27 challenges.

6.5 Preventing Targeted Attacks

A brute-forcing adversary has an exponentially small probability of success, as
long as they do not remember which images have been shown. However, a smarter
adversary could memorise previously shown images. Let us denote by N ′ the
number of images seen by the adversary, and by N the total size of the pool
of known images, which can be estimated. Once an adversary sees an image,
necessarily this image is known to the user. Therefore, the adversary always
classifies such an image as “known” if it appears again. On the other hand, if
the adversary has not seen an image before, we fix a probability N ′

N that the
adversary classifies the image as unknown.

We can compute the probability of successful classification for the adversary
separately for images that are known and unknown to the user, which are:

N ′

N
+

(
1 − N ′

N

)2

and
N ′

N
respectively.

RMA: A Proposal for Effortless Renewable Biometrics 117

From these formulae, the adversary has at least 75% of success on each single
image if N ′/N ≥ 0.75. We will denote this ratio as ε. We can estimate the
expected number A of attempts by the adversary to know at least a proportion
ε of the whole number N of images. This problem is related to the so-called
coupon collector’s problem. From the formula in [15, Sect. 2.1], we get:

A = N
N∑

i=εN

1
i

∼ N ln
(

1
1 − ε

)
≈ 1.39N.

We should then stop the adversary from obtaining too many images. If new
images are added at every login, we get that N should quickly be in the hun-
dreds. This means that a targeted attack would require many login attempts.
This would get detected by the system which could create a lock-out. An alter-
native would be to increase P (x) when many errors are detected and re-using
old pictures, making brute-force easier but targeted attacks harder.

6.6 Constraint on a Generalised Use

To be sure that the protocol is scalable, having many different accounts with
different services should not create any problem. Getting some seen images list
stolen should also not affect it, as it is possible to reset the protocol by removing
all the stolen images from the set and memorising new ones. One issue comes
from the re-use of similar image databases. It is quite related to the problem of
not showing the same images again by keeping track of which ones were seen,
with the problem that there is no common database.

One improvement over the naive method of randomly selecting images is to
select sets of 10 to 20 images. This lowers the probability of getting a familiar
set, at the cost of obtaining all positives when a known set is used (in which
case it is quite easy for the server to notice and cancel that set). Still, if all
services apply this method with the same categorisation of images into sets, the
probability of collision gets divided by 10.

This also means that less information has to be stored about which images
have been seen. Depending on future empirical research on the performance
of generated and composite images, a database of 1010 artificial images could
be used naively for improved performance. This is just one of many potential
improvements to the Reflexive Memory Authenticator, and we will now discuss
a few other options.

7 Extensions and Discussion

7.1 Potential Extensions

Besides the potential optimisations already mentioned, we want to mention three
ways to extend and improve this protocol. The first would be to reduce the
waiting time. This could be done by using loading times as an opportunity to

118 N. K. Blanchard et al.

show some images. The background images while the user waits or types their
information could also be used as a way to create a baseline.

A second possibility would be to use this kind of protocol for continuous
authentication, with an image being shown periodically, especially after extended
pauses to make sure that the person using the device is the correct one. Such
approaches would add security in the most critical times. As this interruption
can be costly to the user, care has to be taken to ensure that it does not disrupt
the workflow. This could be improved by using ideas from the field of considerate
computing [47]. As such, the image challenges should not be shown while the
user is typing, talking, making selections, or being presented with a complex
decision or action. Instead, it would be better to issue a challenge as they are
about to change task: closing a file or a tab, for example.

Finally, there is still a controversy about how much the brain really reacts
to images shown for very brief durations (e.g. 30 ms). An effect can be seen in
certain cases, especially when it comes to pupil behaviour, where it can prime
the user for faster reaction [20]. If that could be controlled, inserting test images
within a short video could make a longer authentication process more bearable.
However, this might bother some users conceptually, and it would require better
models of pupil contraction.

This method could also be used in a more worrisome way, as it could allow
an adversary to identify users without their knowledge or consent, by showing
discreet images and studying their pupil reactions. It would be possible to counter
this by making some mental computations, which affect pupil size, but this
counter requires being aware that the test is ongoing. Even without going as
far as identifying users, pupil biometrics also have the potential to be used to
expose the emotional state of the user—as well as whether they are intoxicated.

7.2 Testing Reflexive Pupil Biometrics

One central outcome of this paper is that we need specific empirical studies
on pupil sizes in memory effects, especially in the context of classification. Such
efforts would not just improve the performance and understanding of the Reflex-
ive Memory Authenticator, but also answer some fundamental questions. Many
are still open:

– How fast can the system accurately discriminate between a familiar and a
new image?

– What interactions need to be considered when using a resting period or when
presenting many stimuli in a row, and can the interference be compensated?

– We currently try to get a single bit, but how much information can be reliably
obtained by the dilation response? This could be done by allowing the classi-
fication to estimate the strength of recall instead of simply checking whether
the image is familiar.

– How does the pupil react to images that are closely related to ones that are
known or were recently shown?

– How is the pupil reaction affected by the use of synthetic or composite images?

RMA: A Proposal for Effortless Renewable Biometrics 119

– How usable would showing this stream of images be, and how would users
react to it, especially for high frequencies? Could ocular fatigue be a problem?

Acknowledgements. We’d like to thank Leila Gabasova for their help with the fig-
ures. This work was supported partly by the french PIA project “Lorraine Université
d’Excellence”, reference ANR-15-IDEX-04-LUE.

References

1. Asghar, H.J., Li, S., Pieprzyk, J., Wang, H.: Cryptanalysis of the convex hull click
human identification protocol. Int. J. Inf. Secur. 12(2), 83–96 (2013)

2. Ashby, C., Bhatia, A., Tenore, F., Vogelstein, J.: Low-cost electroencephalogram
(EEG) based authentication. In: 5th International IEEE/EMBS Conference on
Neural Engineering - NER, pp. 442–445. IEEE (2011)

3. Bednarik, R., Kinnunen, T., Mihaila, A., Fränti, P.: Eye-movements as a biometric.
In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540,
pp. 780–789. Springer, Heidelberg (2005). https://doi.org/10.1007/11499145 79

4. Bonneau, J.: The science of guessing: analyzing an anonymized corpus of 70 million
passwords. In: IEEE Symposium on Security and Privacy, pp. 538–552 (5 2012).
https://doi.org/10.1109/SP.2012.49

5. Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris bio-
metrics: a survey. Comput. Vis. Image Underst. 110(2), 281–307 (2008)

6. Bradley, M.M., Lang, P.J.: Memory, emotion, and pupil diameter: repetition of
natural scenes. Psychophysiology 52(9), 1186–1193 (2015)

7. Brostoff, S., Sasse, M.A.: Are passfaces more usable than passwords? A field trial
investigation. In: McDonald, S., Waern, Y., Cockton, G. (eds.) People and Com-
puters XIV – Usability or Else!: Proceedings of HCI, pp. 405–424. Springer, London
(2000). https://doi.org/10.1007/978-1-4471-0515-2 27

8. Chiasson, S., Biddle, R., van Oorschot, P.C.: A second look at the usability of
click-based graphical passwords. In: Proceedings of the 3rd Symposium on Usable
Privacy and Security, SOUPS 2007, pp. 1–12. ACM, New York (2007)

9. Choudhury, B., Then, P., Issac, B., Raman, V., Haldar, M.: A survey on biometrics
and cancelable biometrics systems. Int. J. Image Graph. 18, 1850006 (2018)

10. Cody, S.: Do Only The Eyes Have It? Predicting subsequent memory with simul-
taneous neural and pupillometry data. Master’s thesis, The Ohio State University
(2015)

11. Curran, M.T., Yang, J., Merrill, N., Chuang, J.: Passthoughts authentication with
low cost EarEEG. In: IEEE 38th Annual International Conference of the Engineer-
ing in Medicine and Biology Society - EMBC, pp. 1979–1982. IEEE (2016)

12. Das, R., Maiorana, E., Campisi, P.: EEG biometrics using visual stimuli: a longi-
tudinal study. IEEE Signal Process. Lett. 23(3), 341–345 (2016)

13. Deravi, F., Guness, S.P.: Gaze trajectory as a biometric modality. In: Biosignals,
pp. 335–341 (2011)

14. Einhäuser, W.: The pupil as marker of cognitive processes. In: Zhao, Q. (ed.)
Computational and Cognitive Neuroscience of Vision. CST, pp. 141–169. Springer,
Singapore (2017). https://doi.org/10.1007/978-981-10-0213-7 7

15. Ferrante, M., Saltalamacchia, M.: The coupon collector’s problem. Materials
Matemàtics 0001–35 (2014)

https://doi.org/10.1007/11499145_79
https://doi.org/10.1109/SP.2012.49
https://doi.org/10.1007/978-1-4471-0515-2_27
https://doi.org/10.1007/978-981-10-0213-7_7

120 N. K. Blanchard et al.

16. Galdi, C., Nappi, M., Riccio, D., Cantoni, V., Porta, M.: A new gaze analysis based
soft-biometric. In: Carrasco-Ochoa, J.A., Mart́ınez-Trinidad, J.F., Rodŕıguez, J.S.,
di Baja, G.S. (eds.) MCPR 2013. LNCS, vol. 7914, pp. 136–144. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38989-4 14

17. Galdi, C., Nappi, M., Riccio, D., Wechsler, H.: Eye movement analysis for human
authentication: a critical survey. Pattern Recogn. Lett. 84, 272–283 (2016)

18. German, R.L., Barber, K.S.: Consumer attitudes about biometric authentication.
Technical report, University of Texas at Austin Center for Identity (2018)

19. Golla, M., Schnitzler, T., Dürmuth, M.: Will any password do? Exploring rate-
limiting on the web. In: Who Are You ?! Adventures in Authentication (2016)

20. Gomes, C.A., Montaldi, D., Mayes, A.: The pupil as an indicator of unconscious
memory: introducing the pupil priming effect. Psychophysiology 52(6), 754–769
(2015)

21. Jensen, W., Gavrila, S., Korolev, V., et al.: Picture password: a visual login tech-
nique for mobile devices. Technical report, National Institute of Standards and
Technology (2003)

22. Just, M., Aspinall, D.: Personal choice and challenge questions: a security and
usability assessment. In: Proceedings of the 5th Symposium on Usable Privacy
and Security, p. 8. ACM (2009)

23. Just, M., Aspinall, D.: Challenging challenge questions: an experimental analysis
of authentication technologies and user behaviour. Policy Internet 2(1), 99–115
(2010)

24. Kafkas, A., Montaldi, D.: Recognition memory strength is predicted by pupillary
responses at encoding while fixation patterns distinguish recollection from famil-
iarity. Q. J. Exp. Psychol. 64(10), 1971–1989 (2011)

25. Karthika, S., Devaki, P.: An efficient user authentication using captcha and graph-
ical passwords - a survey. Int. J. Sci. Res. 3(11), 123 (2014)

26. Kasprowski, P., Komogortsev, O.V., Karpov, A.: First eye movement verification
and identification competition at BTAS 2012. In: IEEE 5th International Confer-
ence on Biometrics: Theory, Applications and Systems - BTAS, pp. 195–202. IEEE
(2012)

27. Klamkin, M.S., Newman, D.J.: Extensions of the birthday surprise. J. Comb. The-
ory 3(3), 279–282 (1967)

28. Kollreider, K., Fronthaler, H., Bigun, J.: Evaluating liveness by face images and the
structure tensor. In: IEEE 4th Workshop on Automatic Identification Advanced
Technologies - AutoID, pp. 75–80, October 2005

29. Lashkari, A.H., Farmand, S., Zakaria, O.B., Saleh, R.: Shoulder surfing attack in
graphical password authentication. Int. J. Comput. Sci. Inf. Secur. - IJCSIS 6(2)
(2009). http://arxiv.org/abs/0912.0951

30. Lee, C., Kim, J.: Cancelable fingerprint templates using minutiae-based bit-strings.
J. Netw. Comput. Appl. 33(3), 236–246 (2010)

31. de Leeuw, K.M.M., Bergstra, J.: The History of Information Security: A Compre-
hensive Handbook. Elsevier, Amsterdam (2007)

32. Loftus, G.R.: Eye fixations and recognition memory for pictures. Cogn. Psychol.
3(4), 525–551 (1972)

33. Marcel, S., Millán, J.R.: Person authentication using brainwaves (EEG) and max-
imum a posteriori model adaptation. IEEE Trans. Pattern Anal. Mach. Intell.
29(4), 743–752 (2007)

34. McCulley, S., Roussev, V.: Latent typing biometrics in online collaboration ser-
vices. In: Proceedings of the 34th Annual Computer Security Applications Confer-

https://doi.org/10.1007/978-3-642-38989-4_14
http://arxiv.org/abs/0912.0951

RMA: A Proposal for Effortless Renewable Biometrics 121

ence, ACSAC 2018, pp. 66–76. ACM, New York (2018). https://doi.org/10.1145/
3274694.3274754

35. Moon, D., Yoo, J.H., Lee, M.K.: Improved cancelable fingerprint templates using
minutiae-based functional transform. Secur. Commun. Netw. 7(10), 1543–1551
(2014). https://doi.org/10.1002/sec.788

36. Shepard, R.N.: Recognition memory for words, sentences, and pictures. J. Ver-
bal Learn. Verbal Behav. 6, 156–163 (1967). https://doi.org/10.1016/S0022-
5371(67)80067-7

37. Naber, M., Frässle, S., Rutishauser, U., Einhäuser, W.: Pupil size signals novelty
and predicts later retrieval success for declarative memories of natural scenes. J.
Vis. 13(2), 11–11 (2013)

38. Noton, D., Stark, L.: Scanpaths in saccadic eye movements while viewing and
recognizing patterns. Vis. Res. 11(9), 929–942 (1971)

39. Phetmak, N., Liwlompaisan, W., Boonma, P.: Travel password: a secure and mem-
orable password scheme. In: Nguyen, N.T., Attachoo, B., Trawiński, B., Somboon-
viwat, K. (eds.) ACIIDS 2014. LNCS (LNAI), vol. 8397, pp. 402–411. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-05476-6 41

40. Rajan, R., Selker, T., Lane, I.: Task load estimation and mediation using psycho-
physiological measures. In: Proceedings of the 21st International Conference on
Intelligent User Interfaces, pp. 48–59. ACM (2016)

41. Rayner, K.: Eye movement latencies for parafoveally presented words. Bull. Psy-
chon. Soc. 11(1), 13–16 (1978)

42. Reddy, P.V., Kumar, A., Rahman, S., Mundra, T.S.: A new antispoofing approach
for biometric devices. IEEE Trans. Biomed. Circ. Syst. 2(4), 328–37 (2008)

43. Rigas, I., Abdulin, E., Komogortsev, O.: Towards a multi-source fusion approach
for eye movement-driven recognition. Inf. Fusion 32, 13–25 (2016)

44. Roberts, C.: Biometric attack vectors and defences. Comput. Secur. 26(1), 14–25
(2007)

45. Schechter, S., Brush, A.J.B., Egelman, S.: It’s no secret. Measuring the security
and reliability of authentication via “secret” questions. In: 30th IEEE Symposium
on Security and Privacy, pp. 375–390. IEEE (2009)

46. Segreti, S.M., et al.: Diversify to survive: making passwords stronger with adaptive
policies. In: 13th Symposium on Usable Privacy and Security - SOUPS, pp. 1–12.
USENIX Association, Santa Clara, CA (2017)

47. Selker, T.: Understanding considerate systems - UCS (pronounced: You see us).
In: 2010 International Symposium on Collaborative Technologies and Systems, pp.
1–12, May 2010. https://doi.org/10.1109/CTS.2010.5478532

48. Shape: 2018 credential spill report. Technical report, Shape Security (2018)
49. Shin, S.W., Lee, M.K., Moon, D., Moon, K.: Dictionary attack on functional

transform-based cancelable fingerprint templates. ETRI J. 31(5), 628–630 (2009)
50. Singh, S., Agarwal, G.: Integration of sound signature in graphical password

authentication system. Int. J. Comput. Appl. 12(9), 11–13 (2011)
51. Sluganovic, I., Roeschlin, M., Rasmussen, K.B., Martinovic, I.: Using reflexive eye

movements for fast challenge-response authentication. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, CCS 2016,
pp. 1056–1067. ACM, New York (2016)

52. Wiedenbeck, S., Waters, J., Birget, J.C., Brodskiy, A., Memon, N.: Passpoints:
design and longitudinal evaluation of a graphical password system. Int. J. Hum
Comput Stud. 63(1–2), 102–127 (2005)

53. Zviran, M., Haga, W.J.: Cognitive passwords: the key to easy access control. Com-
put. Secur. 9(8), 723–736 (1990)

https://doi.org/10.1145/3274694.3274754
https://doi.org/10.1145/3274694.3274754
https://doi.org/10.1002/sec.788
https://doi.org/10.1016/S0022-5371(67)80067-7
https://doi.org/10.1016/S0022-5371(67)80067-7
https://doi.org/10.1007/978-3-319-05476-6_41
https://doi.org/10.1109/CTS.2010.5478532

Collaborative Authentication Using
Threshold Cryptography

Aysajan Abidin1(B), Abdelrahaman Aly1, and Mustafa A. Mustafa1,2

1 imec-COSIC, KU Leuven, Kasteelpark Arenberg 10 - bus 2452,
3001 Heverlee, Belgium

{aysajan.abidin,abdelrahaman.aly}@esat.kuleuven.be
2 Department of Computer Science, The University of Manchester,

Manchester M13 9PL, UK
mustafa.mustafa@manchester.ac.uk

Abstract. We propose a collaborative authentication protocol where
multiple user devices (e.g., a smartphone, a smartwatch and a wristband)
collaborate to authenticate the user to a third party service provider. Our
protocol uses a threshold signature scheme as the main building block.
The use of threshold signatures minimises the security threats in that
the user devices only store shares of the signing key (i.e., the private
key) and the private key is never reconstructed. For user devices that do
not have secure storage capability (e.g., some wearables), we propose to
use fuzzy extractors to generate their secret shares using behaviometric
information when needed, so that there is no need for them to store
any secret material. We discuss how to reshare the private key without
reconstructing it in case a new device is added and how to repair shares
that are lost due to device loss or damage. Our implementation results
demonstrate the feasibility of the protocol.

Keywords: Collaborative authentication · Security and privacy ·
Threshold signatures · Secret sharing · Fuzzy extractors

1 Introduction

The increasing number of mobile and wearable devices being carried by users
results in more sensitive information being stored on and/or accessed via these
devices. This provides users with more flexibility in terms of accessing resources
and services, thus enhancing their personal experience and convenience, as well
as, it creates new opportunities for both users and service providers. How-
ever, this flexibility comes at a cost, introducing new security and privacy chal-
lenges [1]. For example, some of these personal devices, i.e., wearables (such as
smartwatches and wristbands), unlike smartphones, have limited computational
and interaction capabilities, thus making them unsuitable to use existing authen-
tication protocols. The use of easily-accessible context information such as the
user’s location and typical behaviour causes privacy concerns too. In addition,
c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 122–137, 2020.
https://doi.org/10.1007/978-3-030-39749-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_8&domain=pdf
https://doi.org/10.1007/978-3-030-39749-4_8

Collaborative Authentication Using Threshold Cryptography 123

since these devices are small, light, and easy to carry, they are also prone to loss,
theft and/or break. Nevertheless, users still expect strong security, privacy pro-
tection as well as maximum flexibility and convenience when accessing services or
resources provided by the service providers. Satisfying the users’ needs while min-
imising the associated security and privacy risks of using personal and wearable
devices will require new, more collaborative, ways for users to be authenticated
and granted access to a wide range of on-line services and content [2].

Existing solutions for user authentication [3–8] do not satisfy these needs: (i)
users prefer password-less solutions, (ii) biometric-only solutions have security
and usability tradeoff, and (iii) wearable devices have limited computational
powers and are more prone to loss and theft. Thus, authentication solutions
that are more user-, device- and context-tailored are necessary.

One way to achieve this is to use a collaborative approach in designing authen-
tication schemes. Collaborative authentication schemes are the ones where mul-
tiple devices jointly authenticate to a remote server or within a device-to-device
setting with minimum user effort. They are getting traction as users carry mul-
tiple devices and wearables with themselves nowadays. To limit the cost, the
combination of wearables and the user’s other devices, say, a smartphone, would
be preferred. Such collaborative authentication schemes overcome the security
problems of using a single possession factor or a knowledge factor during the
authentication process. An adversary would have to compromise multiple wear-
ables to successfully impersonate a user. Moreover, by using wearables the user
is carrying anyhow, one avoids the need of employing external hardware authen-
tication tokens, which could be quite costly.

The main concept of collaborative authentication is to transform a challenge-
response protocol with a single prover and verifier, to a challenge-response pro-
tocol with multiple collaborating provers and a single verifier. To mitigate the
threat of wearables being stolen or lost, and the fact that the set of wearables is
dynamic (the user is not always carrying the same set of wearables), threshold-
based cryptography can be used. The aim of threshold cryptography is to protect
a key by sharing it amongst a number of entities in such a way that only a subset
of minimal size, namely a threshold t (out of, say, n > t), can use the key. No
information about the key can be learnt from t − 1 or less shares. To deal with
user devices that do not have secure element to store their share, such devices
can make use of fuzzy extractors to generate their shares of the secret key from
users’ biometric data on demand whenever they need them.

Contribution. The main contributions of this paper are summarised as follows.

– Firstly, it proposes a concrete collaborative authentication protocol that uses
threshold signatures.

– Secondly, it presents mechanisms for key reshare and share repair in case
some of the original shares of the key are lost or compromised. For repairing
lost shares, we use a repairable threshold scheme proposed in a recent paper
by Stinson and Wei in [9].

124 A. Abidin et al.

– Thirdly, it proposes a secret share generation mechanism for devices with no
memory applying fuzzy extractors to behaviometric information captured by
the device sensors, improving the usability of the authentication protocol. We
do note that the same procedure also applies to PUFs (physically uncloneable
functions) implemented in the devices.

– Lastly, it presents performance results from the implementation of the share
regeneration and threshold signatures. The results show that the proposed
protocol is feasible in practice.

Outline. The remainder of this paper is organised as follows: Sect. 2 presents
our system model and requirements for collaborative authentication schemes.
Section 3 presents security definitions of the cryptographic building blocks and
our threat model. Then, Sect. 4 proposes a concrete collaborative authentication
protocol that combines threshold signatures and fuzzy extractors, and introduces
a share generation mechanism as well as the threshold Schnorr signature scheme
using secret sharing. Sections 5 and 6 present the security analysis and the per-
formance evaluation of our protocol, respectively. Section 7 presents the related
work. Finally, Sect. 8 concludes the paper.

2 System Model and Requirements

System Model. As shown in Fig. 1, a system model of a collaborative authen-
tication system consists of the following entities:

– User : a person who wants to access various services provided by a service
provider. The user also carries a number of personal devices (including wear-
able) which can be used in the authentication procedure.

– Personal devices: devices owned by the user. Some of these devices such as
a smartphone have secure storage where the user’s secret data can be stored.
However, other devices such as wearables (e.g., wristband) may not have such
secure storage. Each of the user’s devices may also have one or more sensors
integrated to measure different (physiological) data such as location, gait,
blood pressure, heart beats, etc.

– Service provider : a service provider to which users want to authenticate in
order to access various services and/or resources.

Functional Requirements. A collaborative authentication system should sup-
port the following functional requirements:

– Collaborative: the user should use data (input) provided by multiple user
devices.

– Flexible: the user should be able to use various combinations of data collected
from various user devices.

– Robust and resilient : a failure or lack of a single user device should not result
in an authentication failure.

Collaborative Authentication Using Threshold Cryptography 125

Fig. 1. A system model of a collaborative authentication scheme.

Security and Privacy Requirements. A collaborative authentication proto-
col should satisfy the following security and privacy requirements.

– Multi-factor authentication: A user should need to use multiple factors
(devices) in order to authenticate successfully to the service provider.

– No authentication key stored : None of the user’s personal devices should store
the secret authentication key in its entire form. They should either store shares
of the key or generate these shares on demand.

– Lost and/or stolen device resistance: Loss of a certain number of a user’s
devices (less than a specified threshold) should still allow the user to success-
fully authenticate towards the service provider, but it should not allow an
attacker (in possession of those lost devices) to successfully impersonate the
user.

– No biometrics/behaviometrics information stored : None of the user’s personal
devices should store any sensitive biometrics and/or behaviometrics informa-
tion.

– Device presence protection: The service provider should not be able to identify
which (combination of) personal devices the user uses in the authentication
procedure.

3 Building Blocks and Their Security Definitions

Secret Sharing. Secret sharing enables the sharing of a secret S among n
parties, so that any subset of t or more parties can efficiently reconstruct the
secret, and any subset of t − 1 or less parties learn no information whatsoever
about the secret. It is a key technique widely used in secure multiparty com-
putation, which allows n players to compute an agreed function of their inputs
in a secure way. Some secret sharing schemes, such as additive secret sharing,
can offer security against dishonest majorities, whereas others, such as Shamir’s
secret sharing, require at least an honest majority [10]. Security in this setting
means guaranteeing the correctness of the output as well as the privacy of the
players’ inputs, even when some players cheat. Shamir’s scheme is what is typi-
cally called a (t, n) (or t-out-of-n)-threshold scheme where n is the total number
of parties involved in the computation and t is the size of the subset needed to
reconstruct the secret.

126 A. Abidin et al.

Let P be the set of n parties involved in a computation, and let Zq be a
finite field and S ∈ Zq a secret. A dealer calculates the shares Si, i = 1, · · · , n of
secret S using a polynomial f(x) of degree t−1, by evaluating f(i) mod q, ∀i =
1, · · · , n, i.e., Si = f(i).

Definition 1 (Shamir Secret Sharing). Let S ∈ Zq be a secret to be secretly
shared among n parties. Then Shamir’s (t, n)-threshold secret sharing scheme
works as follows. First, a degree t−1 polynomial f(x) = S+a1x+ · · ·+at−1x

t−1,
where aj ∈ Zq, j = 1, · · · , t − 1 are randomly selected coefficients, is chosen.
Then the shares Si, i = 1, · · · , n, are generated by evaluating f(x) at each i, i.e.,
Si = f(i) mod q. Given t shares, f(x) can be reconstructed using interpolation,
and then the secret is equal to the evaluation of the polynomial at 0, i.e., S = f(0)
mod q.

Fuzzy Extractor. A fuzzy extractor is a randomness extractor that comprises
a pair of procedures known as generation and reproduction algorithms. The
former algorithm generates a random string and helper data from an input. The
latter algorithm reproduces the same random string using the helper data and
an input that is close to the original input to the generation algorithm. Fuzzy
extractors (and also similar concepts such as fuzzy commitments) [11–15] are
commonly used as biometric cryptosystems for template protection. Formally, a
fuzzy extractor is a construct that must satisfy the following properties [14].

Definition 2 (Fuzzy Extractor). An (m, �, t, ε)-fuzzy extractor over a met-
ric space (M, d) comprises a pair of efficient randomized procedures (Gen, Rep).
The generation algorithm Gen, on input ω ∈ M, outputs an extracted string
S ∈ {0, 1}� and a helper string P ∈ {0, 1}∗. The reproduction procedure Rep

takes an element ω′ ∈ M and a helper string P ∈ {0, 1}∗ as inputs and outputs
S′, such that the following two properties are satisfied:

– (Security) For any distribution W over M with min-entropy m, S is indis-
tinguishable from a uniformly random string even when conditioned on P .
That is, if the min-entropy H∞(W) ě m and Gen(W) Ñ (S, P), then we
have

SD((S, P), (U�, P)) ď ε,

where SD is the statistical distance and U� is a uniformly distributed random
string of length �.

– (Error-tolerance) If d(ω, ω′) ď t and Gen(ω) Ñ (S, P), then Rep(ω′, P) =
S′ = S. This means that the exact value of S can be reproduced using the
helper data P and any new sample ω′ which is close to the originally sampled
template ω from which S and P were generated.

Threshold Signatures. The concept of threshold signatures is similar to that
of secret sharing. A t out of n threshold signature scheme is one that allows any

Collaborative Authentication Using Threshold Cryptography 127

subset of t players to generate a signature, while disallowing the generation of
a valid signature the number of participating players is less than t. A threshold
signature scheme TS = (TKeyGen,TSIGN,VER) comprises three algorithms.

– The threshold key generation algorithm TKeyGen takes t, n and a security
parameter λ as input and employs a (t, n) Shamir secret sharing to generate
n shares sk1, · · · , skn of a private key sk, and the corresponding public key
pk.

– The possibly randomised threshold signature generation algorithm TSIGN fur-
ther consists of signature share generation and signature construction algo-
rithms. Each participating player i outputs its signature share upon taking a
message m and its share ski as input. The signature construction algorithms
combines all signature shares and outputs a message-signature pair (m,σ).

– The verification algorithm VER uses the public key pk to verify if a message-
signature pair (m,σ) is valid.

Definition 3. Let a TS = (TKeyGen,TSIGN,VER) be a threshold digital signa-
ture scheme. Then TS is called secure if no probabilistic polynomial-time adver-
sary A that is allowed to corrupt up to t − 1 players can forge a valid signature
on any message.

Threat Model and Assumptions. The threat model used in this paper is
the following. Users are malicious. They might try passively and/or actively to
collect and alter the information stored and exchanged within the authentication
system, in an attempt to gain access to services which he or she does not have
permission to access. The service provider is honest-but-curious. It might try
to learn and extract unauthorised information about the users. External enti-
ties (i.e., third parties) are malicious. They are active adversaries who try to
impersonate legitimate users.

Assumption 1. We assume that users’ (i) personal devices (excluding wear-
ables) are equipped with secure storage, security mechanisms to provide access
control and protection against data breaches and/or malware, (ii) wearables do
not have any secure storage element, and (iii) the devices can communicate with
each other.

Assumption 2. We assume that the employed threshold signature scheme is
secure, cf Definition 3.

4 The Collaborative Authentication Protocol

In this section, we propose a collaborative authentication protocol that combines
a threshold signature scheme and fuzzy extractors. Afterwards, we detail how the
remaining shares could be used to regenerate a new share to replace a lost one
(due to a lost device). Finally, we propose a new threshold signature scheme by
combining the classical Schnorr signature scheme with the Shamir secret sharing
scheme.

128 A. Abidin et al.

4.1 Protocol Overview

Below we explain how any threshold signature scheme could be used to support
collaborative authentication schemes. Then we describe how these schemes could
be combined with fuzzy extractors to allow some of the users’ personal devices
to generate the shares of the secret key on demand, rather than storing them.

Using Threshold Signatures. Suppose that sk and pk are the private and
public key pair of a threshold signature scheme. Then sk is split into shares
which are distributed to the personal devices of a user. To sign a challenge during
the authentication process, these devices perform computations on the challenge
using their shares. Then, the results of these computations are combined (by one
of the user’s personal devices) to form a valid signature, which will be verified
by the service provider to verify the user identity. In particular:

– The user’s devices share the private key using secret sharing scheme among
themselves. The shares can be generated by one of the personal devices, say,
a smartphone, tablet, personal computer of the user.

– To authenticate a user, the service provider sends a challenge to the user’s
device which initiated the authentication request or acts as a gateway device.

– Upon receiving the challenge, the devices jointly compute a signature without
reconstructing the user’s private key.

– The signature is sent to the service provider, which verifies the signature using
the user’s public key.

Using Biometrics/Behaviometrics. The authentication system can also
incorporate biometrics or behaviometric information for increased security and
flexibility. In this case, the shares of the key can either be accessed by the devices
using the measured biometric/behaviometric information, or they can be directly
generated from such sources on demand. Below we describe how such fuzzy
sources can be utilised to generate the shares.

– A key is generated from the user biometrics using a fuzzy extractor in one
of the user’s biometric-enabled devices. The generated key will be used as
one of the shares of the private key for the signature scheme. The generated
public data, named helper data, is stored either in the device itself if there
is sufficient storage, or in a gateway device, which can be one of user’s more
computationally-capable personal devices, e.g., a smartphone, in the case the
device has limited storage capabilities, e.g., a wearable.

– During the authentication procedure, the behaviometric data is used to repro-
duce the share with the help of the helper data, and then the signature share
is computed by the device. In the case of a wearable, the gateway device sends
the helper data to the device which then uses it to reproduce the share, which
in turn is used for calculating the signature share of the device by the device.

Collaborative Authentication Using Threshold Cryptography 129

4.2 Share Regeneration and Repair

It may happen from time to time that a user device gets lost or damaged, which
results in the loss of the share distributed to that device; or even a new device is
added. In such cases, regeneration of the shares of the key using the remaining
shares without reconstructing the entire private key becomes necessary. Fortu-
nately, this is possible due to the nature of the Shamir secret sharing. Below we
describe the main idea with an example; for details we refer the curious reader
to [16].

Suppose that a secret S is shared among n players using the Shamir secret
sharing and that the shares are S1, · · · , Sn. Also, suppose that one share, say,
Si, is lost. We want to generate new shares, S′

1, · · · , S′
n, of the secret S without

reconstructing S. The procedure for achieving this is as follows.

– All players, except for the i-th player, generate n shares, say Sj1, · · · , Sjn, of
their share Sj , j = 1, · · · , n and j �= i.

– The shares of Sj are distributed to all players, so each player has n−1 shares
of the remaining shares of the original secret S.

– Each player uses t shares to interpolate a polynomial fi(x) of degree t−1 and
evaluates the polynomial at 0.

– The new shares of the original secret S is S′
i = fi(0), for i = 1, · · · , n.

Note that a distributed key generation scheme also follows the same procedures
as the share regeneration. The only difference is that in distributed key genera-
tion, each and every participating player picks a random secret string and shares
it with the rest of the players using a (t, n) secret sharing scheme. Then, using
the shares at its disposal, each player locally computes a value that will be a
share of a common secret. Later on, we will present a performance analysis for
both distributed key generation and share regeneration.

This share regeneration procedure requires communication among all players
and the number of messages exchanged among them is (n − 1)2. The required
computational complexity is also n×t modular additions and n(n−1) polynomial
evaluations.

However, in cases where we only want to recover a single share, then there
is a more efficient way to achieve this rather that regenerating the shares of all
parties. In this case, we can use what is called an enrollment repairable threshold
scheme (eRTS) proposed by Stinson and Wei [9]. This eRTS only requires a
subset of k players to help repair a share, where t � k � n; see [17] for more on
reparable threshold schemes. Below we describe how the enrollment repairable
threshold scheme works.

Suppose that a secret S is shared among n players using a (t, n)-Shamir secret
sharing scheme and we wish to repair the share S� for a player P�. Assume that
t players P1, · · · , Pt are helping with the recovery of S� and that � > k. Suppose
that S� = f(�), where f(x) ∈ Zq[x] is a random polynomial of degree at most
t − 1 whose constant term is the secret S. The share S� can be expressed as

S� =
t∑

i=1

ωisi,

130 A. Abidin et al.

where the ωi’s are public Lagrange coefficients. The eRTS proceeds as follows:

– ∀ 1 � i � t, player Pi picks random values δij , j = 1, · · · , t such that

t∑

j=1

δij = ωiSi.

– ∀ 1 � i � t, 1 � j � t, player Pi sends δij to player Pj .
– ∀ 1 � j � t, player Pj computes

σj =
t∑

i=1

δij .

– ∀ 1 � j � t, player Pj sends σj to player P�.
– Player P� recovers S� by computing

S� =
t∑

j=1

σj .

As can be seen, the eRTS requires only an exchange of t2 messages and
2t2 − t − 1 modular additions. The communication complexity can further be
reduced to t(t + 1)/2 messages and the computational complexity to t(t + 1)/2
modular additions by requiring that player Pi does not send anything to player
Pj if i < j, as shown in [17].

4.3 Threshold Schnorr Signatures

As a concrete example, here we present a threshold signature scheme that can
be employed in the collaborative authentication protocol proposed in this paper.
Namely, we present threshold Schnorr signatures which can be obtained from
the classical Schnorr signatures by using secret sharing.

Schnorr Signature Scheme. Let q be a prime. Let G be a group of order q in
which the discrete log is (assumed to be) hard, and let g be the generator of G.
Let M be the message space. Also, let H : {0, 1}∗ �Ñ {1, 2, · · · , q − 1} be a cryp-
tographic hash function. The Schnorr signature scheme, which is constructed by
applying the Fiat-Shamir transformation [18] to Schnorr’s identification proto-
col [19], works as follows.

The private key sk is an integer x in the range 1 � x � q − 1, and the public
key pk is y = gx mod q.

– Sign: (r, s) ← Sign(sk,m): A message m ∈ M is signed using the secret key
sk by first picking a random integer k in the range 1 � k � q − 1; then
r = gk mod q and s = H(m||r)x + k mod q. Here m||r is concatenation of
bit representation of m and r.

– Verify: 1/0 ← Verify(pk,m, s, r): To verify whether the signature (s, r) for m

is correct, use the public key y to check if gs ?= yH(m||r)r mod q.

Collaborative Authentication Using Threshold Cryptography 131

Threshold Schnorr Signature Scheme. The threshold scheme has a share
combining algorithm which takes as input a message and t valid signature shares
on the message, along with the public key, and outputs a valid signature on the
message.

Suppose that there are n � 2 players, and that the parameters, that is, the
group G, the private secret x and the public key (g, q, y = gx mod q), are the
same as before. The secret x is partitioned into n shares x1, x2, · · · , xn using
an additive secret sharing scheme and distributed to the respective parties. The
shares are such that at least t distinct shares would allow the reconstruction of
the secret x.

Now, in order to sign a message m, each party randomly picks a random
integer ki with 1 � ki � q−1 and provides gki mod q to one party, which we call
the central party, which then computes r =

∏t
i=1 gki mod q and h = H(m||r),

which then is sent back to each party. The devices provide si = hxi + ki mod q
to the central party, which combines them to generate the signature (s, r) on the
message m. So in summary, the threshold Schnorr signatures work as follows.

– The private key x is shared among the devices using Shamir secret sharing.
– Suppose that t devices are present, and let G be the set of those devices.
– To each device i ∈ G, the gateway device sends ωi =

∏
j∈G
j �=i

j
i−j .

– Each device i ∈ G, picks a random ki and provides ri = gωiki to the gateway.
– The gateway computes r =

∏
i∈G ri = g

∑
i∈G ωiki and h = H(c||r) and sends

h to all devices in G.
– Each device i ∈ G provides the gateway with si = ki + hxi

– Finally, the signature is (r, s) where

s =
∑

i∈G

siωi =
∑

i∈G

(ki + hxi)ωi =
∑

i∈G

kiωi + h
∑

i∈G

xiωi =
∑

i∈G

kiωi + hx.

Note that in threshold signature schemes the signing key is not reconstructed
to sign a message. Instead the players compute signature shares using their share
of the signing key, and the signature shares are combined to form a signature on
the message.

5 Security Analysis

Our collaborative authentication protocol satisfies all the security and privacy
requirements specified in Sect. 2. More specifically and informally speaking, it
provides a multi-factor authentication as it requires the presence (and collabora-
tion) of multiple user devices due to the use of secret sharing scheme. A user will
not be able to authenticate successfully towards the service provider if he/she
uses only one of his/her personal devices. For the same reasons, the protocol
also does not require the user’s private signature key to be stored in any of the
user’s personal devices. Instead, these devices only store (or generate) shares of
the key.

132 A. Abidin et al.

In addition, the use of a threshold scheme allows the protocol to provide
lost/stolen user device protection as well as device presence protection. More
specifically, the nature of threshold schemes - the fact that not all of the shares,
but only a subset of these shares, are required to perform a specific operation
successfully - allows users to successfully generate a valid signature even if one
or more of his/her devices (depending on the specified threshold) are not present
due to loss or theft. For the same reason and for the fact that the user’s signa-
ture is constructed locally (in one of the personal devices) and then sent to the
service provider, our protocol provides protection against leakage of information
about device presence. As a valid signature could be constructed using various
combinations of subset of the user’s personal devices, the service provider does
not know exactly which devices the user carries at the time of the authentication
procedure. Moreover, the use of fuzzy extractors allows users to generate some of
the shares of the key without the need of storing any biometric or behaviometric
information.

Formally speaking, it is obvious that for the proposed collaborative authen-
tication protocol to be secure, the underlying threshold signature scheme has to
be secure (i.e., unforgeable). There are threshold signature schemes that satisfy
various security requirements, such as the practical threshold RSA signatures by
Shoup [20] and more recent ones by Simoens et al. [16]. Shamir secret sharing is
used in the former and verifiable secret sharing together with bilinear maps in
the latter. In addition, Schnorr signatures are unforgeable and the unforgeability
of (t, n)-threshold Schnorr signatures is also straightforward assuming that no
more than t − 1 players are corrupted.

Below, we first give a security definition for a collaborative authentication
protocol, and then show that our protocol is secure.

Definition 4. We say that a collaborative authentication protocol using a (t, n)-
threshold signature scheme is secure against active attacks if for all efficient
(i.e., probabilistic polynomial time) adversaries A that can corrupt up to t − 1
players, the advantage of A in the following game between a Challenger and A
is negligible.

– Key generation. The Challenger runs (pk, sk1, · · · , skn) ← TKeyGen(λ, n, t),
and sends pk and a randomly chosen t − 1 shares of sk to A.

– Active attack phase. The adversary interacts with the prover (i.e., the user)
and gets the prover to produce signatures for a polynomial number of chal-
lenges. In this case, A plays the role of the verifier and the Challenger that
of the prover.

– Impersonation attempt. The Challenger and A interact with A playing imper-
sonating the prover. The Challenger requests A to produce a signature for a
challenge c, and A responds with (c, σ).

The adversary wins the game if σ is a valid signature for c. The adversary’s
advantage is defined as the probability that A wins the game.

Theorem 1 (Security). Let M be the space of all authentication challenges,
and assume that the size |M | of M is super-poly. Assume further that Assump-

Collaborative Authentication Using Threshold Cryptography 133

tions 1 and 2 holds. Then the presented collaborative authentication protocol
using threshold signatures is secure against active attacks as defined in Defini-
tion 4.

Proof (Sketch). First of all, the assumption that the size of the challenge space
|M | is super-poly implies that in each impersonation attempt, the probability
that A gets challenge that it has previously asked the prover in the attack
phase is negligible. Assumption 1 is necessary for security for obvious reasons.
To prove that Assumption 2 (i.e., the assumption that the threshold signature
scheme is unforgeable) implies the security of the authentication protocol, we
show that a successful attack on the authentication protocol can be converted
in a blackbox way into a successful attack on the signature scheme. This is
also straightforward. Suppose that an adversary A can break the authentication
protocol. This means that A can generate a valid signature on an authentication
challenge. Now, suppose that another adversary A′ is attempting to forge a valid
signature for a message. Then A′ first simulates the authentication protocol of
A using the threshold signature scheme. Then A′ presents A with the message
as an authentication challenge. A’s response will be a valid signature (for the
message) that A′ was attempting to forge.

Therefore, either the adversary gets the same challenge that it previously
used in the attack phase, or it successfully forges a signature. The probability
for both is negligible. �

In the case of using fuzzy extractors for generation of some of the shares, the
fuzzy extractor must satisfy Definition 2. The fuzzy extractors introduced by
Dodis et al. [15] already satisfy that definition. Security of fuzzy extractors also
implies the privacy of behaviometric data, as the public helper data does not
reveal information on the behaviometric data or the extracted key. Lastly, the
share regeneration procedure is information-theoretically secure against honest
majority, as it is the Shamir secret sharing, cf. Definition 1.

6 Performance Analysis

To evaluate the performance of our authentication protocol, we first have pro-
totyped and tested our basic scheme for share regeneration and distributed key
generation on relatively small key sizes (1024 bits). We implemented our test
cases using C++ and the secret sharing tools (Shamir Secret Sharing [10]) imple-
mented by the mpcToolkit1 introduced in [21]. The library was implemented over
NTL (Library for doing Number Theory) [22] and natively supports 63-bit inputs.
Hence, we further adapted it to support longer key sizes. We run our tests over
a 2 × 2 × 10-cores Intel Xeon E5-2687 server at 3.1 GHz. We simulated a three-
device scenario over our server, and averaged the results of 10000 executions. The
computational times are depicted in Table 1. As can be seen from the table, both
procedures for distributed key generation and share regeneration are efficient.

1 https://github.com/abdelrahamanaly/mpcToolkit.

https://github.com/abdelrahamanaly/mpcToolkit

134 A. Abidin et al.

Table 1. CPU running times.

Protocol Time in seconds Key sizes

Key generation 3.57 × 10−4 1024

Share reconstruction 7.60 × 10−5 1024

We then tested the performance of a python implementation of threshold
Schnorr signatures in a simulated network environment on the same server. With
parameters for 128-bit level security (chosen according to ECRYPT II recommen-
dations [23]), the total runtime for calculating the signature shares, communi-
cating them and combining them to form a signature is approximately 0.022 s,
for 3-out-of-5 devices.

7 Related Work

Shamir [10] was the first to introduce the concept of secret sharing. Feldman [24]
extended this concept by introducing verifiable secret sharing. Pedersen [25] then
used this idea to construct the first Distributed Key Generation (DKG) protocol.
To increase the resilience in threshold schemes, the number of devices included
in the scheme should be maximized. Therefore, Simoens et al. [16] presented a
new DKG protocol and demonstrated how this allows wearables not capable of
securely storing secret shares to be incorporated. Peeters et al. [26] used this idea
to propose a threshold distance bounding protocol. In this paper, we consider a
threshold-based authentication protocol, where the secret key is shared among
a set of user devices such as mobile phone and wearables.

Ever since the introduction of the general notion of threshold signatures by
Desmedt [27], threshold signature schemes have been extensively studied in the
literature. For example, Desmedt and Frankel [28] and Harn [29] respectively
presented a non-robust and a robust threshold ElGamal signature scheme [30]
based on secret sharing [10]. These schemes have small share size and require
synchronized interaction among the players. Gennaro et al. [31] presented a
robust threshold digital signature standard scheme. Shoup [20] showed how RSA
signatures could be transformed into a robust and practical threshold-based
variant.

On the collaborative continuous authentication front, there have been a
recent surge in interest and the industry demand due to the significantly
increased use of smartphones, tablets and wearables. Martinovic et al. [32] intro-
duced a new biometric based on the human body’s response to an electric square
pulse signal, called pulse-response. It is proposed to enhance security in the con-
text of two example applications: (1) an additional authentication mechanism
in PIN entry systems, and (2) a means of continuous authentication on a secure
terminal. As the authors show, the pulse-response biometric is effective because
each human body exhibits a unique response to a signal pulse applied at the palm
of one hand, and measured at the palm of the other. Patel et al. [33] gave a nice

Collaborative Authentication Using Threshold Cryptography 135

survey on continuous authentication on mobile devices, and also discussed chal-
lenges and research directions in this field. This survey along with the references
therein provides sufficient information on the state-of-the-practice in this field of
continuous authentication. Van hamme et al. [2] reviewed emerging trends and
challenges with collaborative frictionless authentication systems and identified
the enrollment of users, usability as well as security and privacy of such systems
as key research challenges. Mustafa et al. [34] provided a comprehensive threat
analysis of such a system and specified a list of security and privacy require-
ments. The authors also suggested three high-level solutions to address these
requirements, however, without providing any specific design or implementation
details.

8 Conclusions

In this paper, we proposed a collaborative authentication protocol based on
the use of threshold signature schemes. In particular, the user devices store the
shares of the signing key (i.e., the private key) of a threshold signature scheme,
and the private key is never reconstructed to minimise the security threats. In
case a share of the key is lost, the remaining shares can be used to (i) generate
new shares of the key for each party or (ii) repair only the lost share without
reconstructing the entire key. Furthermore, we showed how the shares of the key
can also be generated using contextual and/or behavioral information using fuzzy
extractors. Finally, our performance results demonstrate the practical feasibility
of our collaborative authentication protocol.

Acknowledgments. We thank the anonymous reviewers for their valuable comment.
This work was supported by imec through ICON DiskMan, the Security & Privacy
Centre projects on Biometrics & Authentication and Secure Distance Bounding. It
was also funded by the Flemish government through the FWO SBO project SPITE
S002417N.

References

1. Sagiroglu, S., Sinanc, D.: Big data: a review. In: International Conference on Col-
laboration Technologies and Systems (CTS 2013), pp. 42–47 (2013)

2. Van hamme, T., Rimmer, V., Preuveneers, D., Joosen, W., Mustafa, M.A., Abidin,
A., Argones Rúa, E.: Frictionless authentication systems: emerging trends, research
challenges and opportunities. In: the 11th International Conference on Emerg-
ing Security Information, Systems and Technologies (SECURWARE 2017). IARIA
(2017)

3. Bhargav-Spantzel, A., Squicciarini, A., Bertino, E.: Privacy preserving multi-factor
authentication with biometrics. In: Proceedings of the Second ACM Workshop on
Digital Identity Management (DIM 2006). ACM, New York (2006) 63–72

4. Bonneau, J., Herley, C., Oorschot, P.C.V., Stajano, F.: The quest to replace pass-
words: a framework for comparative evaluation of web authentication schemes. In:
Proceedings of the 2012 IEEE Symposium on Security and Privacy (S&P 2012),
pp. 553–567. IEEE Computer Society, Washington (2012)

136 A. Abidin et al.

5. Grosse, E., Upadhyay, M.: Authentication at scale. In: In: Proceedings of the 2013
IEEE Symposium on Security and Privacy (S&P 2013), vol. 11, no. 1, pp. 15–22
(2013)

6. Guidorizzi, R.P.: Security: active authentication. IT Prof. 15(4), 4–7 (2013)
7. Preuveneers, D., Joosen, W.: SmartAuth: dynamic context fingerprinting for con-

tinuous user authentication. In: Proceedings of the 30th Annual ACM Symposium
on Applied Computing (SAC 2015), pp. 2185–2191. ACM, New York (2015)

8. Abidin, A., Argones Rúa, E., Peeters, R.: Uncoupling biometrics from templates for
secure and privacy-preserving authentication. In: Proceedings of the 22nd ACM on
Symposium on Access Control Models and Technologies, pp. 21–29. ACM (2017)

9. Stinson, D.R., Wei, R.: Combinatorial repairability for threshold schemes. Des.
Codes Crypt. 86(1), 195–210 (2018)

10. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)
11. Juels, A., Wattenberg, M.: A fuzzy commitment scheme. In: ACM Conference on

Computer and Communications Security, pp. 28–36. ACM (1999)
12. Juels, A., Sudan, M.: A fuzzy vault scheme. IACR Cryptology ePrint Archive

(2002)
13. Juels, A., Sudan, M.: A fuzzy vault scheme. Des. Codes Cryptogr. 38(2), 237–257

(2006)
14. Dodis, Y., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate strong keys

from biometrics and other noisy data. In: Cachin, C., Camenisch, J.L. (eds.) EURO-
CRYPT 2004. LNCS, vol. 3027, pp. 523–540. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-24676-3 31

15. Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy extractors: how to generate
strong keys from biometrics and other noisy data. SIAM J. Comput. 38(1), 97–139
(2008)

16. Simoens, K., Peeters, R., Preneel, B.: Increased resilience in threshold cryptogra-
phy: sharing a secret with devices that cannot store shares. In: Joye, M., Miyaji, A.,
Otsuka, A. (eds.) Pairing 2010. LNCS, vol. 6487, pp. 116–135. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-17455-1 8

17. Laing, T.M., Stinson, D.R.: A survey and refinement of repairable threshold
schemes. eprint:2017/1155

18. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

19. Schnorr, C.P.: Efficient identification and signatures for smart cards. In: Brassard,
G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 239–252. Springer, New York (1990).
https://doi.org/10.1007/0-387-34805-0 22

20. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

21. Aly, A.: Network flow problems with secure multiparty computation. Ph.D. thesis,
Universté catholique de Louvain, IMMAQ (2015)

22. Shoup, V.: NTL: a library for doing number theory (2001)
23. ECRYPT II NoE: ECRYPT II yearly report on algorithms and key lengths (2011–

2012) (2012). ECRYPT II deliverable D.SPA.20-1.0
24. Feldman., P.: A practical scheme for non-interactive verifiable secret sharing. In:

FOCS 1987, pp. 427–437. IEEE Computer Society (1987)
25. Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret

sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140.
Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-46766-1 9

https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-540-24676-3_31
https://doi.org/10.1007/978-3-642-17455-1_8
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/0-387-34805-0_22
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-46766-1_9

Collaborative Authentication Using Threshold Cryptography 137

26. Peeters, R., Singelee, D., Preneel, B.: Toward more secure and reliable access con-
trol. IEEE Pervasive Comput. 11(3), 76–83 (2012)

27. Desmedt, Y.: Society and group oriented cryptography: a new concept. In: Pomer-
ance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 120–127. Springer, Heidelberg
(1988). https://doi.org/10.1007/3-540-48184-2 8

28. Desmedt, Y., Frankel, Y.: Threshold cryptosystems. In: Brassard, G. (ed.)
CRYPTO 1989. LNCS, vol. 435, pp. 307–315. Springer, New York (1990). https://
doi.org/10.1007/0-387-34805-0 28

29. Harn, L.: Group-oriented (t, n) threshold digital signature scheme and digital mul-
tisignature. IEE Proc.-Comput. Digit. Tech. 141(5), 307–313 (1994)

30. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete
logarithms. IEEE Trans. Inf. Theory 31(4), 469–472 (1985)

31. Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Robust threshold DSS signa-
tures. Inf. Comput. 164(1), 54–84 (2001)

32. Rasmussen, K.B., Roeschlin, M., Martinovic, I., Tsudik, G.: Authentication using
pulse-response biometrics. In: NDSS (2014)

33. Patel, V.M., Chellappa, R., Chandra, D., Barbello, B.: Continuous user authenti-
cation on mobile devices: recent progress and remaining challenges. IEEE Signal
Process. Mag. 33(4), 49–61 (2016)

34. Mustafa, M.A., Abidin, A., Argones Rúa, E.: Frictionless authentication system:
security & privacy analysis and potential solutions. In: The 11-th International
Conference on Emerging Security Information, Systems and Technologies (SECUR-
WARE 2017). IARIA (2017)

https://doi.org/10.1007/3-540-48184-2_8
https://doi.org/10.1007/0-387-34805-0_28
https://doi.org/10.1007/0-387-34805-0_28

MuFASA: A Tool for High-level
Specification and Analysis of Multi-factor

Authentication Protocols

Federico Sinigaglia1,2(B), Roberto Carbone2, Gabriele Costa3,
and Silvio Ranise2

1 DIBRIS, Università degli Studi di Genova, Genova, Italy
2 Security & Trust Research Unit, Fondazione Bruno Kessler, Trento, Italy

{sinigaglia,carbone,ranise}@fbk.eu
3 SysMA Unit, IMT School for Advanced Studies, Lucca, Italy

gabriele.costa@imtlucca.it

Abstract. In recent years, the usage of online services (e.g., banking)
has considerably increased. To protect the sensitive resources managed
by these services against attackers, Multi-Factor Authentication (MFA)
has been widely adopted. To date, a variety of MFA protocols have been
implemented, leveraging different designs and features and providing a
non-homogeneous level of security and user experience. Public and pri-
vate authorities have defined laws and guidelines to guide the design of
more secure and usable MFA protocols, but their influence on existing
MFA implementations remains unclear.

We present MuFASA, a tool for high-level specification and analysis
of MFA protocols, which aims at supporting normal users and security
experts (in the design phase of an MFA protocol), providing a high level
report regarding possible risks associated to the specified MFA protocol,
its resistance to a set of attacker models (defined by NIST), its ease-of-
use and its compliance with a set of security requirements derived from
European laws.

Keywords: Multi-Factor Authentication · Security protocols · Legal
compliance · Threat models

1 Introduction

Nowadays an enormous amount of our sensitive data is managed by various
service providers. To properly protect them, new mechanisms have been intro-
duced. Among these mechanisms, Multi-Factor Authentication (MFA) has been
increasingly adopted. MFA is based on security protocols that are specifically

This work has been partially supported by the EU Horizon 2020 projects FINSEC
(grant agreement No 786727) and SPARTA (grant agreement No 830892), by the IMT
PAI (Programma di Attività Integrata) project VeriOSS, and by the activity 19183
Teîchos of the action line Digital Finance of the AT Digital.
c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 138–155, 2020.
https://doi.org/10.1007/978-3-030-39749-4_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_9&domain=pdf
https://doi.org/10.1007/978-3-030-39749-4_9

MuFASA 139

designed for providing a higher level of security that traditional protocols cannot
reach. In particular, they leverage multiple identity proofs for authenticating the
user.

However, poor design choices (and consequent implementations) can poten-
tially nullify the theoretical strength of these protocols. Therefore, assessing the
security of MFA protocols becomes of paramount importance. To this aim, for-
mal analysis represents the highest guarantee of correctness, since it relies on
rigorous, mathematical properties. Unfortunately, in the case of MFA protocols,
modeling an MFA protocol is a very challenging task due its complexity.

Public and private authorities have defined laws and guidelines to drive the
design of more secure and usable MFA solutions. Nevertheless, their influence
on existing MFA implementations remains unclear. Among these standardiza-
tion initiatives, one of the most relevant is the Special Publication on Digital
Authentication, published by the NIST [12]. There, the NIST identifies the so-
called authenticators, i.e., the objects providing the identity proofs, as fundamen-
tal parts of an MFA and specifies their main features. Understanding whether a
real MFA protocol complies with the existing specifications is an open challenge.

In this paper we propose a methodology—and its implementation in the
MuFASA (Multi-Factor Authentication Specification and Analysis) tool—to
generate and analyze a high-level specification of an MFA protocol. Our specifi-
cation language abstracts from many internal details of the protocol and focuses
on the user experience. In this way, even non-experts can define the behavior of
an MFA protocol. Yet, the specification language is expressive enough to allow
the automatic comparison of the protocol against a set of rules, including the
NIST directives. The final report generated by our tool provides several informa-
tion about the protocol features and, in particular, on the most relevant attacker
models.
More in detail, MuFASA automatically checks the following aspects of an MFA
protocol.

– Its exposure w.r.t. (most of) the attacker models defined in [12].
– Its compliance w.r.t. a set of guidelines and best practices defined by the

European Central Bank (EBA).
– Its complexity in terms of basic user actions.

Moreover, to assess our tool we applied it to a set of real-world MFA protocols
employed by 30 major international banks.

2 Background on MFA

Our first step is to revise the existing definitions and specifications of the build-
ing blocks of MFA. Unfortunately, the literature on MFA shows a general lack
of standard definitions and terminology (e.g., see [1,3,8–10,13]). In our work
we align with the definitions given by the National Institute of Standards and
Technology (NIST) in [12].

140 F. Sinigaglia et al.

Fig. 1. Two alternative MFA protocols adopted by Nordea

Authentication Factors and Protocols. An authentication protocol is a sequence of
actions that allows the digital authentication of a user. The authentication occurs
by verifying that the user can exhibit her authentication factors (AF). An AF
can be of three different types, i.e., (i) knowledge (something the user knows),
(ii) ownership (something the user possesses) and (iii) inherence (something the
user is).

An MFA protocol is an authentication protocol that leverages more than one
AF. The user starts the MFA protocol from her endpoint, e.g., a web browser
or a mobile phone, and she must provide the necessary AFs to correctly execute
the protocol and be authenticated.

Authenticators. The authenticators are specific objects that allow for attesting
the possession and control of authentication factors.

There exists a wide range of authenticators whose features may vary signifi-
cantly. Common examples include OTP generators, smart card readers and even
passwords. The output of the authenticator is an evidence for the authentication
service that the user controls the AF.

When an authenticator generates an evidence from more than one AF (as a
piece of hardware generating an OTP after being unlocked by a code), we call
it a multi-factor authenticator.

3 Motivations and Overview of the Approach

In this section we discuss the motivations behind our proposal. Moreover, we
provide an overview of the main workflow of MuFASA. We start by presenting
a motivating example.

MuFASA 141

Fig. 2. Flow of the proposed approach.

Motivating Example. Let us consider a real-world example. Nordea1 is a major,
international bank based in Sweden. Its customers can opt, among others, for
two MFA protocols for authenticating, leveraging a physical device2 and a mobile
application3. We schematically depict them in Fig. 1.

In the first MFA protocol the user is in possession of a device to authenti-
cate. Initially, she connects to the website of the bank and she logs in with her
credentials (1). Then (2) she is prompted with a challenge, i.e., a code that only
the device can process, and (3) she submits the challenge to the device (together
with the card and the pin code that unlocks it). Finally, the device returns an
answer code (4) that the user copies in her browser (5).

The second protocol is slightly different. Again, the process starts with the
user authenticating to the website (1). However, in this case the remote service
sends a notification (2) to a mobile application running on the user’s smartphone.
The application displays the authentication request (3) to the user that, to con-
firm, touches the fingerprint reader of the phone (4). The protocol terminates
(5) with the mobile app sending a confirmation code to the bank server.

Few questions arise when considering these two MFA protocols.
(A) Can the user, according to her personal experience, be aware of the spe-

cific risks of each protocol? (B) Do the protocols differ in terms of the provided
level of security? (C) Is it possible to easily assess the compliance of the proto-
cols with common criteria (e.g., requirements or guidelines)? (D) What is their
complexity in terms of user effort?

Overview of our Approach. Our proposal is based on the modeling and analysis
process schematically depicted in Fig. 2. Our working assumption is to obtain a
description of the MFA protocol from the experience of common users, acquired

1 https://www.nordea.se/.
2 https://www.nordea.se/Images/154-21252/quickguide-cardreader.PDF.
3 https://www.nordea.se/Images/154-300029/Broschyr_skaffa_Mobilt_BankID.

pdf.

https://www.nordea.se/
https://www.nordea.se/Images/154-21252/quickguide-cardreader.PDF
https://www.nordea.se/Images/154-300029/Broschyr_skaffa_Mobilt_BankID.pdf
https://www.nordea.se/Images/154-300029/Broschyr_skaffa_Mobilt_BankID.pdf

142 F. Sinigaglia et al.

by running the MFA protocol (usage phase), without requiring any technical
skills (e.g., the customers of a bank). Therefore, we convert the user knowledge
into a model of the MFA protocol behavior (translation phase). To this aim we
developed a high-level modeling language, called MFA modeling language (MFA
ML). We rely on a questionnaire to support the modeling process for users with
no technical skills. The users fill the questionnaire and provide a description of
the MFA protocols they use. The compiled questionnaire is then automatically
processed (modeling phase), obtaining the corresponding MFA ML model.

The model then passes through an analysis phase, in which it is validated
against both a set of built-in adversaries and a list of specifications. The adver-
saries model a set of capabilities identified in the literature. Instead, the speci-
fications consist of a collection of requirements and guidelines released by some
authorities. At present, our implementation supports a list of adversaries inspired
to those described in [12] and specifications from [12], [6] and [7].

The final result of the process is a report, i.e., the output of the reporting
phase. The report contains the results of the security analysis as well as other
metrics of interest. In particular, we provide (i) a risk profile (in terms of the
adversaries that might compromise the protocol), (ii) a compliance checklist
(i.e., what are the requirements and guidelines that the protocol meets) and
(iii) a complexity score (i.e., how many operations must be correctly executed
by the user to authenticate).

All in all, MuFASA answers the four questions given above by (A) supporting
unskilled users to define the protocols they use in order to automatically evaluate
them (B) against the relevant attacker models, in terms of (C) compliance with
the relevant security criteria and (D) complexity of use.

In the following sections, we detail the peculiarities of the modeling and the
analysis phases. The description of a real implementation of the whole workflow
presented in Fig. 2 is then presented in Sect. 6.

4 Modeling an MFA Protocol

In this section we present our specification language for MFA protocols. Our
goal is to model each MFA protocol in terms of the authenticators it involves.
Moreover, below we discuss the expressiveness of our language and we show that
it captures the definitions given in [12].

4.1 MFA Modeling Language

We specify an MFA protocol as a finite sequence of authenticators.4 In our
framework, an authenticator is uniquely characterized by three main features,
i.e., its (i) type, (ii) I/O channels, (iii) data. The general definitions of an
authenticator is

δ ∠γ τ [ā] ∠γ ′ δ′ (1)

4 We use “;” to separate the elements of the sequence.

MuFASA 143

where δ, δ′ are data items, γ, γ ′ are channels and τ is an authenticator type.
Below we detail our specification language and we explain how it models these
three aspects. In addition, an authenticator type may be optionally labeled with
? to indicate that, for each operation, it requires the review and confirmation of
the users (see below).

Authenticator Types. The type of an authenticator is defined by its physical
and behavioral features. We distinguish among three categories of authenticators,
i.e., secrets, hardware and software. Below we describe them in details.

Secrets. A secret is the simplest form of authenticator. Basically, it consists
of some information, e.g., a secret number, that the user exhibits at a certain
point of the protocol. We distinguish between memorized secrets and look-up
secrets . The main difference between these two types is that a memorized
secret represents a pure knowledge factor, e.g., a secret pin number, while a
look-up secret is stored on some physical support such as a device or a piece of
paper. For instance, look-up secrets include matrices where each cell contains an
access code.

Hardware. Hardware authenticators are devices that carry out some compu-
tation, e.g., cryptographic operations. Hardware authenticators can either work
in isolation (i.e., only interacting with the user) or connect to some other device
(e.g., through a USB cable). Nevertheless, they consist of dedicated hardware
and they cannot carry out any task other than that specified by their embedded
program.

The AFs of a hardware authenticator can vary significantly. For instance, a
card reader may also require a secret pin, i.e., it attests both an ownership (the
smart card) and a knowledge (the pin) factor. Notice that the pin of the card
reader is not considered a memorized secret (see above) if it cannot be used as a
stand-alone authenticator, e.g., when its purpose is only to protect the hardware
from unauthorized users. We denote with [ā] a hardware authenticator that
attests the AFs ā ⊆ {O, K, I}. For instance, (the type of) the card reader
mentioned above is [O,K].

Software. Software authenticators are the counterpart of hardware authen-
ticators. Their distinguishing feature is that they consist of programs that run
on some general-purpose computing platform, e.g., a tablet or a smartphone. As
for the hardware authenticators, also software authenticators can attest differ-
ent AFs. Hence, we apply the same notation introduced above. For instance,
[O] stands for (the type of) a software authenticator that attests an ownership
factor.

Example 1. Both the MFA protocols of Fig. 1 start with the user entering her
credentials. This corresponds to a memorized secret . Instead, the two pro-
tocols differ on the second authenticator. In the first case, there is a hardware
authenticator that is owned by the user and is activated by a pin that she only

144 F. Sinigaglia et al.

knows. In our language this corresponds to [O,K]. In the second protocol, the
second authenticator is a software running on the smartphone of the user that
the user activates through her fingerprint. In symbols this amounts to [O,I].

Data Channels. MFA protocols often rely on more than one communication
channel. There are several types of channels that are commonly adopted and we
list them below.

h Human beings are part of the MFA protocols. Their role is often to provide
the authenticators with the proper input and collect their output. For this
reason we model them as communication channels.

o Sometimes an authenticator acquires its input through some optical scan
interface, e.g., a bar code or QR code reader.

n The network is the primary communication channel for most internet pro-
tocols. The network channel includes all IP-based communications indepen-
dently from the link medium (e.g, WiFi or 4G).

i Sometimes two processes directly communicate through some inter-process
channel. For instance, this is very common on the modern smartphones where
two apps can directly share a piece of data.

m The mobile telephony network is also commonly adopted to send authentica-
tion codes through an SMS of a phone call.

Example 2. Let us consider again the two MFA protocols presented in Sect. 3.
In the first protocol every piece of information is transmitted by the user, i.e.,
user, password, challenge, pin and answer. Thus, all these operations occur on
the h channel. In the second protocol, the user only inserts her credentials. All
the other communications pass through the network (n channel).

Data Items. Data items represent the information that an authenticator
receives and generates. Although the internal structure of the communications
may be obscure, e.g., because messages are encrypted, the content of a data
item is commonly well-understood. For instance, a hardware authenticator may
return a number to be submitted on a website in order to authorize an operation.
Such a number can be generated through various algorithms (e.g., via RNG or
hashing). From our perspective, all these numbers have the same features, i.e.,
they are unforgeable, unrepeatable evidences that only the authenticator can
generate. As a matter of fact, a user cannot perceive any observable difference
between them. Therefore, we distinguish between data items only depending on
their role in the protocol. In particular, here we consider three possible data
items that one can infer from the behavior of the authenticator.

ε We use ε to denote that the authenticator receives/sends no data or when the
transmitted data play no role in the authentication protocol.

opid An operation identifier is a piece of information that univocally defines the
ongoing operation.

MuFASA 145

otp A one time password is a code generated with some (assumed cryptograph-
ically perfect) algorithm that only the authorized parties can compute and
verify.

Example 3. Both the protocols of Fig. 1 terminate with the bank server receiving
a response code. In the first case it amounts to the challenge answer. In the second
case it is the confirmation code generated after the notification. In both cases
we assume that the authenticators receive an identification code, i.e., opid, and
return an encrypted confirmation code, i.e., otp.

Further Notation and Restrictions. The specification given in (1) provides
a general definition of an authenticator. Nevertheless, we apply few restrictions
to the structure of well-formed authenticators.

We already mentioned that a distinguishing feature of (software and hardware)
authenticators is whether they inform the user about the ongoing operation. In
general, these authenticators prompt the user with a message with the operation
to be authorized, e.g., “transfer 100$ to account 1234”. Then the user has to con-
firm the operation. This fact denotes the generation of an output (an otp in our
setting) that is uniquely associated to a specific operation. Such an association is
also called dynamic linking [6,7]. The definition of dynamic linking given there also
states that the user must be aware of the ongoing operation and she has to explic-
itly agree on it. We use the label ? to denote an authenticator type that informs
the user and asks for her authorization as discussed above, e.g., [O]. Reason-
ably, in order to display the operation details, the authenticator must receive an
input, i.e., γ �= ε. Well-formed authenticators must respect this requirement.

The Secret authenticator type consists of pure data objects, e.g., passwords
or other information that can be stored on some support. As such, they do not
have a proper input/output interaction (we assume that the user copies the
information on some endpoint such as a web browser). For this reason and

are not annotated with channels and data items.
Finally, we introduce two abbreviations that will simplify the discussion

about the out-of-band authenticators (see Sect. 4.2 below). In particular we
define and . Moreover, to apply these abbreviations two
conditions must be satisfied:

– γ = m ∨ γ ′ = m; i.e., input or output are transmitted through mobile
channels and,

– γ = n ∨ γ ′ = n, i.e., input or output are transmitted through network
channels.

Example 4. We combine the observations of Examples 1, 2 and 3 to provide the
specification for the two protocols of our working example. The first protocol
corresponds to the following specification.

(2)

For the second protocol, we replace [O,I] with the abbreviation introduced
above, i.e., [I]. Moreover, we notice that the authenticator informs the user

146 F. Sinigaglia et al.

about the ongoing operation (?). Thus, the resulsng specification for the second
protocol is as follows.

(3)

4.2 Compliance w.r.t. the NIST Classification

In [12] a classification of the authenticators is provided. Such a classification
is highly influential and most manufacturers and service providers comply with
it. In this section we show that our modeling language is expressive enough to
include the definitions given there. Each definition amounts to a constraint over
the structure of a generic authenticator as defined in (1). The mapping between
the definitions and our modeling language is presented in Table 1. Below we
discuss our encoding (with the exception of and which are straightforward).

Out-of-Band Devices. According to [12, §5.1.3] out-of-band authenticators are
physical devices that are uniquely addressable and communicate over a distinct,
namely secondary, channel (w.r.t. the primary channel used by the endpoint).
Out-of-band devices include both dedicated and general purpose hardware as far
as they satisfy one of the following conditions.

1. The secondary channel is used to receive a data item for the user.
2. The secondary channel is used to transmit a data item from the user.
3. The secondary channel is used to send and receive a data item on which the

user must agree.

For instance, a common practice is to receive an SMS containing an otp.
This case complies with the first condition, i.e., it relies on the mobile telephony
network as a secondary channel. Similarly, some MFA protocols require the user
to call a secure number from their mobile. This behavior matches the second
condition. Finally, the second protocol presented in Sect. 3 is an instance of the
third case. As a matter of fact, the user receives a notification on her smartphone.
The smartphone connection is a secondary channel w.r.t. the browser connection.

Single and Multi-Factor OTP Device. In [12, §5.1.4 and §5.1.5] these authentica-
tors are defined as devices embedding some seed number used for the generation
of OTPs. This category includes both hardware devices and software-based OTP
generators installed on devices such as mobile phones. They are distinguished
from the out-of-band authenticators as they do not rely on a secondary chan-
nel. Moreover, their output can either directly go to the endpoint through an
inter-process connection (i) or be copied by the user (h).

Single and Multi-Factor Cryptographic Device. A single or Multi-factor crypto-
graphic device [12, §5.1.7 and §5.1.9] is a hardware device that performs some
cryptographic operation (e.g., digital signature) on the operation identifier and
directly interacts (I/O) with the user endpoint.

Single and Multi-Factor Cryptographic Software. Basically, these authentica-
tors [12, §5.1.6 and §5.1.8] are the software counterparts of the previous category.

MuFASA 147

Table 1. Mapping NIST definitions to patterns

Observations. It is worth noticing that our definitions admit inter-
sections between the authenticators. For instance, according to Table 1,

is both an OTP and a cryptographic device. This is not
actually allowed by the classification of [12]. The reason is that the distinction
between these two authenticators is based on an internal feature, i.e., whether
they use cryptography or not, that the user cannot observe. As a consequence,
our language does not perfectly comply with the categories of [12]. This is
expected as, under our working assumptions, we are only interested in classi-
fying authenticators that the user can recognize.

5 Protocol Analysis

In this section we present our approach for the analysis of MFA protocols spec-
ified using MFA ML. In particular, we compare each protocol against a set of
attackers and a list of common security criteria. In addition, we evaluate the
complexity of the MFA protocol.

5.1 Attacker Models and Applicability

In our analysis, we evaluate the risk profile of an MFA protocol by comparing it
against a set of attackers. An attacker operates by targeting the authenticators

148 F. Sinigaglia et al.

Table 2. Excerpt of two attackers of MuFASA.

Table 3. Attacker models defined by NIST covered by our tool

of the MFA protocol execution. In particular, an attacker can compromise an
authenticator either entirely or partially.

An attacker partially compromises an authenticator when she can attest the
control over a subset of the authenticator’s AFs. Said differently, the presence
of the compromised AFs is immaterial from the point of view of the attacker. In
general, we denote with �a when the AF a is compromised, e.g., �O. We say that
an authenticator is entirely compromised, denoted by , all of its AFs are so.

MuFASA includes a number of attackers. Each of them is modeled as a
function that removes the compromised AFs and authenticators from a protocol
specification. Attacker collusion is modeled as function composition. A set of
attackers win against a protocol if, by applying their functions, the protocol
specification is reduced to nil.

To clarify our approach, we propose the following example and we present
an excerpt of two attackers supported by MuFASA.

Example 5. Consider again the MFA protocols specified in (2) and (3). We dis-
cuss the application of two attackers supported by MuFASA, i.e., the device thief
and the shoulder surfer.

A device thief can steal something. For instance, she can take an authenti-
cator away from the user. In our settings, this corresponds to compromise the
ownership factor of an authenticator. Instead, a shoulder surfer can leak data
from the user when she run the protocol. For instance, a pin or a password can
be eavesdropped. Notice that this does not apply to the OTP, since - in this
case - it is generated from the opid, hence associated to a specific operation. In
our model, a shoulder surfer entirely compromises secrets and partially compro-
mises authenticators relying on a knowledge factor. The rules described above
are schematically reported in Table 2.

By applying the two attackers to the protocol specifications (2) and (3) we
obtain the following effects.

MuFASA 149

Since no appears on the right column, neither the device thief nor the
shoulder surfer can entirely compromise the protocol. However, the first protocol
can be entirely compromised by a colluded attack, i.e., the composition of the
two attackers. As a matter of fact, the application of the device thief (first row)
results in a single-factor protocol (only relying on knowledge). Such a protocol
can be entirely compromised by the shoulder surfer.

Compliance w.r.t. NIST Attacker Models. In [12] a list of attacker models
is provided. Here we put their attackers in correspondence with the attacker
models included in MuFASA. Table 3 reports the list of the attackers of [12]. We
denote by � those that are currently supported by MuFASA.

Five attackers are not supported (�). This is due to our working assumptions.
In particular, our approach is designed to only rely on the user experience. Thus,
the expected input only includes details about the MFA protocol that a (non
expert) user can observe. This entails, for instance, that we cannot model the
internal structure of an authenticator device or software.

The assertion manufacture and modification attack applies to the service
infrastructure that handles the authentication process. Such infrastructure is
usually totally transparent to the user. Also, attackers such as offline crack-
ing, side channel and online guessing exploit flaws in the implementation of the
authenticators. Under our assumptions, the user is not aware of these internal
and remote implementation details. Finally, the unauthorized binding attack
applies to the delivery and activation of a new authenticator. This phase takes
place before any execution of the MFA protocol. Hence, it is out of scope for the
present work.

5.2 Security Criteria and Complexity

Due to their general interest for the modern society, the security of MFA pro-
tocols have been considered by several authorities. These authorities released
criteria, e.g., guidelines and requirements, to drive the security assessment. By
relying on our modeling language, some of these criteria can be encoded through
a pattern matching procedure. Below, we discuss some of the criteria that are
currently supported by our implementation.

In the last years, the European Central Bank (EBA) published several direc-
tives [4–7] about the correct implementation of MFA protocols. These directives
are mainly oriented to the e-banking and e-payment services, but most of them

150 F. Sinigaglia et al.

apply to the MFA protocols in general. Among the supported criteria we have
the following two.

– MFA protocols should use at least two types of AFs [4, §1 - Guiding Princi-
ples].

– MFA protocol must keep the user aware of the operation she is authorizing,
hence employing dynamic linking [7, Article 5, paragraph 2, letter a].

Example 6. Consider the two requirements given above. The first one amounts
to requiring that the model of an MFA protocol includes some authenticators
using at least two different AFs. This is obviously true for both the protocols
(2) and (3). Instead, the second requirement states that ? must appear in the
protocol, which is not true for (2).

Another key aspect of MFA protocols is their usability. As several studies [2,
11,14] point out, the users may tend to misuse an MFA protocol if it is too
difficult. In our analysis we consider the complexity. Our notion of complexity is
based on three scores, i.e., memory, operations and devices. The memory score
measures what the user has to memorize, the operations score measures how
many steps she has to do and the devices score measures how many objects she
has to carry. More in detail, the memory score counts the number of knowledge
factors used in an MFA protocol (i.e., and [K]). The operations score counts
the manual input/output operations (∠h) that the user has to perform. Finally,
the devices score corresponds to the number of physical devices (i.e., and)
that the user has to carry to execute the MFA protocol. The complexity score
is the sum of these three scores.

Example 7. Let us consider again protocol (2). It requires the user to memo-
rize (and employ during the protocol execution) her credentials and the pin for
unlocking the second authenticator (i.e., the OTP generator -). Therefore, the
score related to the memory effort is 2. Moreover, the user has to (a) manually
transfer the code displayed on her browser to the OTP generator and (b) to copy
the obtained OTP back on the browser: the value for the operations score is 2.
Finally, for executing the protocol, the user is required to carry a specific hard-
ware device (i.e., the OTP generator): the value of the devices score is 1. Hence,
the overall complexity score for protocol (2) amounts at 5. On the contrary,
protocol (3) only requires the user to memorize her credentials, check the cor-
rectness of the data sent to her smartphone (after tapping the push notification)
and use her fingerprint to confirm. In this case, the complexity cost is only given
by memory efforts, since no manual operations and specific hardware devices are
present. Therefore, the overall complexity score for protocol (3) amounts at 1.

MuFASA 151

Fig. 3. Architecture of MuFASA

6 Implementation

In this section we describe the implementation of MuFASA. Figure 3 depicts
its abstract architecture. MuFASA is a Java application consisting of four main
modules. Below we discuss them in detail.

6.1 Questionnaire

This module implements the user interface of MuFASA. The user is prompted
with high-level questions about her experience with the MFA protocol she wants
to model. Each round of questions aims at precisely identify an authenticator.
The rounds are iterated until the user describes all the authenticators in the
protocol.

The actual questions presented at each round are determined by the previous
answers. For instance, the first question is

“What is your nth operation?” (where n is the round counter)

The user can pick one of four answers, i.e., “I insert some secret credentials”, “I use
a device”, “I use a software” and “I send/receive something on my mobile phone
(e.g., an SMS)”. Some questions can be also accompanied by some pictures. The
pictures show several elements and the user has to select the one that more
resembles her experience. An example questionnaire is reported in Appendix A.

6.2 Translator

The Translator module reads the answers to the questionnaire and converts them
to a model of the MFA protocol. The module follows an interpretation tree that

152 F. Sinigaglia et al.

exhaustively represents all the possible answers to a round of the questionnaire.
Each leaf of the tree is labeled with the model of an authenticator. By combining
all the authenticators in a sequence, the Translator obtains the protocol model.
Eventually, the model is submitted to the analysis module.

6.3 Analysis

This module consists of a collection of sub-modules. Each sub-module imple-
ments a common interface: the Analysis interface. In this way, the set of analysis
carried out by MuFASA can be extended by adding new sub-modules. For the
time being, the three built-in analyses implement the operations described in
Sect. 5.

Attackers. As anticipated in Sect. 5.1, each attacker corresponds to a function.
Attackers’ functions remove the authenticators and AFs from the target protocol
until, eventually, it is entirely compromised. When an attacker cannot compro-
mise a protocol, its function behaves as the identity. Moreover, applying the same
attacker, i.e., the same function, twice on the same protocol has no effect. Thus,
the module iterates until a fixed point is reached, i.e., the protocol is entirely
compromised or all the attacks reduce to the identity. Eventually, the list of the
attacks is returned. The list contains all the groups of attackers together with
their effect on the protocol.

Criteria. The security criteria evaluation amounts to a pattern matching
between the protocol and the rules encoding each criterion. Each comparison
results in a boolean value indicating whether the protocol matches the rule. The
final result is a list of the criteria that the protocol matches.

Complexity. This module evaluates the complexity score of the specified MFA
protocol. The complexity score is computed as the sum of three scores, i.e.,
memory, operations and devices (see Sect. 5.2).

6.4 Aggregator

The Aggregator module retrieves the output of each analysis module and com-
bines them into a unified report. The report is then returned to the user in the
form of a PDF document.

7 Discussion and Future Directions

We assessed MuFASA by applying it to real-world e-banking MFA protocols.
In particular, we used MuFASA to analyze 61 MFA protocols adopted by 30
international banks. More information is available online at https://sites.google.
com/fbk.eu/mufasa. The reports generated by MuFASA show that the landscape
is very heterogeneous. As a matter of fact, most of the considered MFA protocols

https://sites.google.com/fbk.eu/mufasa
https://sites.google.com/fbk.eu/mufasa

MuFASA 153

significantly differ in terms of the compatible attackers and compliance with the
security criteria.

Future developments include the adoption of automated reasoning techniques
for verification and refinement. Such techniques are commonly based on formal
specification languages. Hence we are interested in defining a formal semantics
for our language. In particular, we plan to map our specification language into
the formal language of an existing verification framework for the analysis of
security protocols.

Moreover, although we focused on the user experience so far, it is reasonable
to expect that further information exist about the protocol. For instance, official
documentation or usage examples and tutorials are often available. These sources
might expose internal details about the protocol that we cannot model with the
current version of our modeling language. Also, these details might support a
more precise security analysis.

Another interesting direction is to extend our experiments. In particular,
we plan to assess the usability of MuFASA by publicly releasing it as a web
application. Moreover, we are interested in comparing the actual attacks to MFA
protocols against the results of our analysis process. The goal is to check whether
our attacker models comply with the real-world attacks.

8 Conclusion

We proposed MuFASA, a tool for the security assessment of MFA protocols. We
showed that MuFASA can effectively model actual MFA protocols and evaluate
them against several attacker models of interest. Moreover, MuFASA supports
the user to evaluate an MFA protocol in terms of compliance with a set of
relevant security criteria and complexity of use. The primary goal of our tool
is to raise the awareness of users having no technical skills. For instance, the
customers of a bank can analyze the MFA protocol they use daily. As a result,
they gain a better understanding of the kind of attackers they are most exposed
to. Furthermore, we advocate that MuFASA can be also useful for the security
experts. As a matter of fact, MFA protocol developers can use it to make a
preliminary evaluation, at design-time.

A Example Input

Here we provide an example of how the user fills the questionnaire to obtain
protocol (2). Notice that the sequence of the reported questions only represent
a specific path in the interpretation tree.

1. What is your 1st operation?
○ I insert some secret credentials (e.g., a password on a website)
○␣ I use a device (e.g., a card reader)
○␣ I use a software (e.g., an app on my smartphone)
○␣ I send/receive something on my mobile phone (e.g., an SMS)

154 F. Sinigaglia et al.

○␣ None, I am authenticated
(a) Where are the secret credentials stored?

○␣ On a physical support (e.g., a piece of paper)
○ Nowhere, I remember them

2. What is your 2nd operation?
○␣ I insert some secret credentials (e.g., a password on a website)
○ I use a device (e.g., a card reader)
○␣ I use a software (e.g., an app on my smartphone)
○␣ I send/receive something on my mobile phone (e.g., an SMS)
○␣ None, I am authenticated
(a) Is the device personal? Can you use others’ devices?

○ Yes, it is personal
○␣ No, they are all exchangeable

(b) Among the followings, what do you need to use the device?
○ I must insert a secret code/pin
○␣ I must scan a part of my body (e.g., my fingerprint)
○␣ Nothing

(c) Is your device connected to something?
○␣ Yes, to my PC (e.g., through a USB cable)
○␣ Yes, to the internet (e.g., through the WiFi)
○ No, it is isolated

(d) Does it read some sort of input code?
○␣ Yes, it scans an optic code (e.g., barcode or QR code)
○ Yes, I personally digit it (e.g., a code displayed on a website)
○␣ No

(e) Does it recap the ongoing operation and ask for your confirmation?
○␣ Yes (e.g., “Your are paying x$ to y. Confirm?”)
○ No

(f) Does it return some code that you have to copy somewhere?
○ Yes
○␣ No

3. What is your 3rd operation?
○␣ I insert some secret credentials (e.g., a password on a website)
○␣ I use a device (e.g., a card reader)
○␣ I use a software (e.g., an app on my smartphone)
○␣ I send/receive something on my mobile phone (e.g., an SMS)
○ None, I am authenticated.

References

1. Armando, A., Carbone, R., Zanetti, L.: Formal modeling and automatic secu-
rity analysis of two-factor and two-channel authentication protocols. In: Lopez, J.,
Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 728–734. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38631-2_63

2. Cristofaro, E.D., Du, H., Freudiger, J., Norcie, G.: Two-Factor or not Two-
Factor? A Comparative Usability Study of Two-Factor Authentication. CoRR
abs/1309.5344. University College London (2013)

https://doi.org/10.1007/978-3-642-38631-2_63

MuFASA 155

3. DeFigueiredo, D.: The case for mobile two-factor authentication. IEEE Secur. Priv.
9, 81–85 (2011)

4. European Banking Authority: Recommendations for the Security of Internet Pay-
ments (2013). https://www.ecb.europa.eu/pub/pdf/other/recommendationssecuri
tyinternetpaymentsoutcomeofpcfinalversionafterpc201301en.pdf

5. European Banking Authority: Recommendations for the Security of Mobile Pay-
ments - DRAFT (2013). https://www.ecb.europa.eu/paym/cons/pdf/131120/reco
mmendationsforthesecurityofmobilepaymentsdraftpc201311en.pdf

6. European Banking Authority: Directive 2015/2366 of the European Parliament
and of the Council on payment services in the internal market (PSD2) (2015).
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32015L2366

7. European Banking Authority: Regulatory Technical Standards on Strong Cus-
tomer Authentication and common and secure communication under Arti-
cle 98 of PSD2 (2017). https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?
uri=CELEX:32018R0389&from=EN

8. Furst, K., Lang, W.W., Nolle, D.E.: Internet banking: Developments and prospects.
Economic and Policy Analysis Working Paper No. 2000-9, Office of the Comptroller
of the Currency (2000)

9. Hao, F., Clarke, D.: Security analysis of a multi-factor authenticated key exchange
protocol. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341,
pp. 1–11. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-
7_1

10. Kennedy, E., Millard, C.: Data security and multi-factor authentication: analysis
of requirements under EU law and in selected EU Member States. Comput. Law
Secur. Rev. 32, 91–110 (2016)

11. Krol, K., Philippou, E., Cristofaro, E.D., Sasse, M.A.: “They brought in the horri-
ble key ring thing!” Analysing the Usability of Two-Factor Authentication in UK
Online Banking. CoRR abs/1501.04434. University College London (2015)

12. NIST: Special Publication - Digital Identity Guidelines (2017). https://pages.nist.
gov/800-63-3/

13. Sciarretta, G., Carbone, R., Ranise, S., Viganò, L.: Design, formal specification and
analysis of multi-factor authentication solutions with a single sign-on experience.
In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp. 188–213.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6_8

14. Weir, C.S., Douglas, G., Richardson, T., Jack, M.: Usable security: user preferences
for authentication methods in eBanking and the effects of experience. Interact.
Comput. 22(3), 153–164 (2010)

https://www.ecb.europa.eu/pub/pdf/other/recommendationssecurityinternetpaymentsoutcomeofpcfinalversionafterpc201301en.pdf
https://www.ecb.europa.eu/pub/pdf/other/recommendationssecurityinternetpaymentsoutcomeofpcfinalversionafterpc201301en.pdf
https://www.ecb.europa.eu/paym/cons/pdf/131120/recommendationsforthesecurityofmobilepaymentsdraftpc201311en.pdf
https://www.ecb.europa.eu/paym/cons/pdf/131120/recommendationsforthesecurityofmobilepaymentsdraftpc201311en.pdf
https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX:32015L2366
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0389&from=EN
https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018R0389&from=EN
https://doi.org/10.1007/978-3-642-31284-7_1
https://doi.org/10.1007/978-3-642-31284-7_1
https://pages.nist.gov/800-63-3/
https://pages.nist.gov/800-63-3/
https://doi.org/10.1007/978-3-319-89722-6_8

A Risk-Driven Model to Minimize
the Effects of Human Factors

on Smart Devices

Sandeep Gupta1(B) , Attaullah Buriro1(B) , and Bruno Crispo1,2(B)

1 Department of Information Engineering and Computer Science (DISI),
University of Trento, Trento, Italy

{sandeep.gupta,attaullah.buriro,bruno.crispo}@unitn.it
2 Department of Computer Science, imec-DistriNET, KULeuven, Leuven, Belgium

Abstract. Human errors exploitation could entail unfavorable conse-
quences to smart device users. Typically, smart devices provide multiple
configurable features, e.g., user authentication settings, network selec-
tion, application installation, communication interfaces, etc., which users
can configure according to their need and convenience. However, untrust-
worthy features configuration could mount severe risks towards the pro-
tection and integrity of data and assets residing on smart devices or
to perform security-sensitive activities on smart devices. Conventional
security mechanisms mainly focus on preventing and monitoring mal-
ware, but they do not perform the runtime vulnerabilities assessment
while users use their smart devices. In this paper, we propose a risk-
driven model that determines features reliability at runtime by monitor-
ing users’ features usage patterns. The resource access permissions (e.g.,
ACCESS INTERNET and ACCESS NETWORK STATE) given to an application
requiring higher security are revoked in case users configure less reliable
features (e.g., open WIFI or HOTSPOT) on their smart devices. Thus, our
model dynamically fulfills the security criteria of the security-sensitive
applications and revokes resources access permission given to them, until
features reliability is set to a secure level. Consequently, smart devices
are secured against any runtime vulnerabilities that may surface due to
human factors.

Keywords: Human factors · Risk-driven model · Smart devices

1 Introduction

Smart devices such as smartphones, tablets, smart-watches, smart TVs, smart
speakers and many more, indeed, bring rich digital experiences to their users.
Users can perform many personalized services, e.g., banking, emailing, navi-
gation, shopping, social networking, video conferencing, etc., on their smart
devices. Similarly, users can access data stored on cloud servers or to control
appliances and gadgets paired with their smart devices. Typically, smart devices

c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 156–170, 2020.
https://doi.org/10.1007/978-3-030-39749-4_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_10&domain=pdf
http://orcid.org/0000-0001-9220-7700
http://orcid.org/0000-0003-2723-2410
http://orcid.org/0000-0002-1252-8465
https://doi.org/10.1007/978-3-030-39749-4_10

A Risk-Driven Model to Minimize the Effects 157

amass a huge amount of their users’ private data, and any security breach could
result in unfavorable consequences to their users [1]. Thus, dedicated security
mechanisms are required to address threats, vulnerabilities, and insecure features
usage on smart devices.

Conventional security mechanisms address threats by deploying auto-
matic tools (e.g., anti-malware applications), which can discriminate between
malicious- and healthy apps, or mobile device management tools, which can wipe
data remotely and provide device-level controls. Generally, these anti-malware
applications apply strategies like signature-based malware detection, behavior-
based malware detection and sandboxing, to protect devices from malicious
software [2]. Likewise, system vulnerabilities could be addressed proactively by
applying threat modeling techniques or reactively by upgrading or patching the
system [3]. However, these existing security mechanisms have shown to be inca-
pable of addressing insecure features usage patterns on smart devices posed by
human factors.

A study by Google has revealed that maximum cyber-attacks on smart
devices occurred due to the users own errors, and in the last two years, the
victims have spent more than 25 million USD to recover their data [4]. Several
techniques have been proposed for human reliability assessment (HRA) because
humans are found to be the weakest link in a system security chain [5]. Some of
these techniques deploy qualitative and quantitative methods to estimate human
errors in sensitive tasks [6] whereas, some techniques focus on human reliability
and their performance, such as the ability of a human to complete a given task,
in given conditions, in a given time period, without any errors [7]. However,
targeting smart devices is such a lucrative affair for attackers that they become
more sophisticated and motivated to exploit human factors for accessing smart
devices [8].

In this paper, we analyze various scenarios that could make features available
on smart devices unreliable due to insecure usage patterns by the end users.
Then, we propose a risk-driven model that determines the features’ reliabil-
ity during runtime by monitoring users usage pattern to configure each feature
on their smart devices. Accordingly, the resources access permissions given to
security-sensitive applications are revoked unless features reliability level is con-
figured to fulfill the applications security criteria set by the users. Thus, our
model tackles possible human errors and secures smart devices against vulnera-
bilities that may surface due to human factors.

The rest of the paper is structured as follows: Sect. 2 briefly, describes some
commonly used security terminologies, risk factors and security strategies for
smart devices, and methods for human reliability assessment. Sections 3 and 4
presents the problem and the solution, respectively. The proposed security model
performs a risk assessment on the basis of feature reliability level and application
security level to grant system resources access to an application. Finally, Sect. 5
concludes the paper with the expected outcome of this research work.

158 S. Gupta et al.

2 Background

This section describes some commonly used security related terminologies, var-
ious risk factors affecting smart devices, existing security strategies for smart
devices, and available methods for human reliability assessment.

2.1 Terminologies

– Smart devices: Smart devices are the portable electronic gadgets with user-
friendly interfaces that offer multiple services and controls to their users any-
time anywhere. Moreover, their features can be easily configured to provide
better user experiences.

– Threats: Threat refers to the source and means of a particular type of attack
that might be potentially hazardous to system’s security [9]. In simple words,
threat can be define as something that can exploit a system, intentionally or
unintentionally.

– Vulnerabilities: Vulnerability refers to the weaknesses in a system that
could expose the integrity, availability, or confidentiality of the system in
a hostile environment [10]. Human factors can introduce or expose the vul-
nerabilities at the device or application level, which can be further exacerbate
attack surfaces.

– Risk: Risk refers to the likelihood of exposure or exploitation of a system in
case of threats being materialized as a result of an attack [9].

– Reliability: The ISO/IEC 25010:2011 standards define the degree to which
a system, product or component performs specified functions under specified
conditions for a specified period of time. Limitations in reliability are due
to faults in requirements, design, and implementation, or due to contextual
changes [11].

– Human Factors: The ISO 6385:2004 standards define human factors as a
scientific discipline concerned with the understanding of interactions among
human and other elements of a system and the profession that applies theory,
principles, data, and methods to design in order to optimize human well-being
and overall system performance [12]. In simple words, human factors can be
collectively defined as (lack of) awareness, (risky) belief, (risky) behavior,
(lack of) motivation, (inadequate) knowledge of technology while a user uses
the security mechanisms [13].

– Threat agent: Threat agent (source) refers to an individual or group that
can manifest a threat [14].

2.2 Risk Factors for Smart Devices

Figure 1 illustrates the overall risk to a smart device from threat agents having
capabilities and intentions to cause an adverse impact on it. Threat agents can
pose threats: (1) either directly, or (2) by exploiting vulnerabilities, or (3) by
discovering insecure usage patterns of system features.

A Risk-Driven Model to Minimize the Effects 159

Fig. 1. Risk factors: threats, vulnerabilities, and insecure features usage

2.3 Security Strategies for Smart Devices

Security strategies for a given system fundamentally involve steps like iden-
tification, characterization, and assessment of various risk factors. However, a
common strategy to address risks due to threats, vulnerabilities, and untrust-
worthy feature configurations, does not suffice for smart devices considering their
asymmetrical characteristics.

– Threats: Threats reported on smart devices are generally value-driven [2].
Unethical wireless carriers and malicious third-party apps may use persis-
tent malware to steal users’ data to trade the data in open markets [15].
Also, casual attackers, hackers, device harvesters, or espionage profession-
als may gain access to smart devices to retrieve users’ information and sell
data to spammers and spear-phishers [15]. Ransomware attacks could infect
devices by encrypting or scrambling files so they can no longer be readable
or accessible [16]. Similarly, attacks like DoubleLocker distributed through a
fake Adobe flash player apps lock smart devices by changing their PIN and
encrypts all the data stored in that device, compelling victims to pay a ran-
som [17]. Another scammer exploited a bug in Apple’s Mobile Safari browser
to extort ransom from users [18].
For smart devices, traditional anti-malware and third-party anti-virus soft-
ware could not work effectively to monitor other applications and system
properties due to their inherent increased security model (e.g., sandboxing).
Iqbal et al. [19] proposed a secure anti-malware framework (SAM) for smart-
phone operating systems that prevent malicious activities of the third-party
apps and malware.

160 S. Gupta et al.

Yang et al. [20] proposed a two-stage approach that unifies data states and
software execution on the critical path. In the first stage, a pilot static analysis
identifies the possible attack critical path based on APIs and existing attack
patterns. Then, a dynamic analysis is performed to identify a directed path to
execute the program to detect the attack possibility by checking conformance
of the detected path with the existing attack patterns. In the second stage, a
runtime dynamic analysis reports the type of attack scenarios with respect to
the type of confidential data leakage such as web browser cookie and others
without accessing any real critical and protected data sources in the mobile
device. Typically, most of the applications installed on Android-based smart
devices can access the data stored in external storage (emulated Sdcard stor-
age). Hong et al. [21] proposed an application, Sdguard, that incorporated
fine-grain permission control based on Linux DAC mechanism to detect ran-
somware, which encrypts the content of file stored in external storage or lock
user screen.
Commonly used strategies for threat management on smart devices are: (1)
automatic tools to discriminate between malicious apps and healthy apps, or
(2) mobile device management (MDM) tools that provide device-level pass-
word controls and remote data wipe commands.

– Vulnerabilities: Security surveys for smart devices have shown that the pres-
ence of vulnerabilities and flaws in a system is inevitable [22,23]. Technically,
vulnerabilities could be introduced by native applications and platform APIs,
third-party apps and open APIs, voice and image capturing hardware, net-
work interfaces like WiFi, Bluetooth, NFC, rooted or jail-broken OS, etc. [15].
From the risk perspective, vulnerabilities pose risk to a system only in the
event of being exploited by threat agents causing an adverse impact on the
system users [3].
Vulnerabilities can be addressed proactively by using threat modeling tech-
niques from the early stages of the software development life cycle (SDLC) [3].
However, in most cases, vulnerabilities are fixed reactively by upgrading the
system, or by applying software patches, periodically [3].

– Features Usage Decisions: Any smart devices security critically depends
on features configuration information conveyed to users, their decisions to
operate them, and the interpretation of their actions by the system to config-
ure those features [24]. To address security and privacy compromises, popular
operating systems for smart devices have introduced application-specific per-
missions that can be specified by users to restrict resources access by the
applications [25,26].
Shabtai et al. [27] demonstrated the likelihood and impact of 16 Android
features usage. Attacks based on permissions abuse can exploit the system
resources, if permissions are granted, carelessly. For example, malware can
send SMS messages to stored numbers without the user’s knowledge by
exploiting READ CONTACT permission. In fact, there are only a few numbers of
users pay attention to the permissions while installing the applications [28].
Lindorfer et al. [29] proposed a hybrid static and dynamic feature set method
that extracts the class names, permissions, intents, publisher identification

A Risk-Driven Model to Minimize the Effects 161

from a manifest file. The APK and manifest are checked to confirm their
validity and then extracted the user permissions, sensitive API calls and
native code from the APK, followed by the examination of APK certificate
and resources as indicators. Finally, the application was run in a sandbox to
observe operations, such as file activity, network traffic, phone calls, exposed
data, runtime code and registered broadcasts.
Studies have shown that humans are the weakest link in the security chain and
users carelessly take risky usage decisions [30]. Consequently, attackers simply
target human factors in setting traps to take control of the user’s device.
Thus, features management strategies must include attributes to assert users
decisions.

2.4 Human Reliability Assessment Methods

Typically, a feature can be defined as an interface that enables users to configure
the resources present in a system. Similarly, resources are used by applications
to perform tasks or activities for the benefit of the users. It could be inferred
that the reliability of a feature directly depends on the usage pattern of a user.
Thus, how a user decides to use a particular feature can be characterized by
associating an attribute with that feature, to assert its reliability [31]. Figure 2
shows the connection between features, resources, and applications along with
their normal interaction paths for a smart device.

Fig. 2. Connection between features, resources, and applications in a smart device

A number of approaches, e.g., task analysis, error identification, and quan-
tification of human error probabilities, etc., have been proposed for human reli-
ability assessment. Current human reliability assessment (HRA) methods such
as THERP (Technique for Human Error Rate Prediction), HCR (Human Cog-
nitive Reliability), STAHR (Socio-technical assessment of human reliability),
ATHEANA (A Technique for Human Event Analysis), are based on qualita-
tive and quantitative assessment of human contribution to risk in productive
tasks [6]. These methods are successfully deployed in high-reliability industries
such as petrochemical, nuclear and aviation.

162 S. Gupta et al.

3 Problem Description

We analyze the various features usage scenarios available on various smart
devices that may introduce risk to the system if users do not adhere to fea-
tures usage guidelines as prescribed by the system providers.

– Scenario 1: “No user authentication is enabled” - According to a web-report
[32], average users open ≈76 phone sessions per day while heavy users (the
top 10%) open ≈132 sessions per day. This is clearly the case of lack of
motivation where the PIN or password-based schemes to secure the access
(typing pin-numbers (76 x 4) times or alphanumeric (76 x 8) time per day)
are annoying to users [33]. Consequently, smart devices become vulnerable to
direct attacks.

– Scenario 2: “Apps/activities/services active or running in background” -
Along with apps opened by a user, several processes/services are also running
in the background on smart devices, this is a case of inadequate use of tech-
nology. While using any sensitive operation these active apps/services must
be stopped to averse possible threats.

– Scenario 3: “Apps installed from untrustworthy source” - Users install third-
party apps on their device, which is a risk behavior. Just because this appli-
cation promises to do everything a user required, it doesn’t mean it isn’t
malicious. And many such apps may be infested with spying capabilities
including activity monitoring, collecting sensory data of user’s behavioral
biometrics (keystrokes, gait, touch-strokes), data harvesting (account infor-
mation, logins, financial data), and more.

– Scenario 4: “USB debugging is ON” - When USB debugging [34] is enabled
intruders can access user’s data despite the user authentication is enabled or
disk encryption is in place. This is a case of lack of awareness.

– Scenario 5: “Bluetooth is on” - Bluetooth [35] connections are simply pro-
tected by a PIN. Users are required to enter a passkey or PIN to connect their
wireless devices for the first time. Often, users pick simple four-digit code like
“0000”, “1111”, “9999” or “1234”, which can be easily cracked [36,37]. Expos-
ing smart devices to eavesdropping, bluesnarfing, bluebugging, or denial of
service, showing user’s lack of awareness, risky belief or inadequate knowledge
of technology.

– Scenario 6: “Open Hotspots and WIFIs” - Hotspots are very common in air-
ports, hotels and coffee shops [38]. They are also starting to appear on public
transport, such as trains and buses, in supermarkets and in other establish-
ments. However, smart device users who unwittingly connect to them can be
the victim of snooping. Their user names, passwords, and even the credit card
details can be stolen easily. Hackers can label their Wi-Fi connection imper-
sonating as a genuine service provider, so users may think they are on a secure
connection but in reality, all their personal information they are entering on
their device is high-jacked. This is also known as Evil Twin, designed to make
illegitimate access points look identical to legitimate ones, making it difficult
for users to determine which one is correct. Once users join the rogue network,

A Risk-Driven Model to Minimize the Effects 163

the hacker can launch a man-in-the-middle attack and intercept information
between the user and another party. Therefore, it is advisable not to use your
online banking or anything sensitive on a public Wi-Fi network and such risky
behavior should be avoided.

– Scenario 7: “Mirroring the device” - Many applications track a user using
unique identifiers such as smartphone’s UDID (Unique Device Identifier - the
equivalent of a phone’s serial number) or IMEI (International Mobile Station
Equipment Identity - the unique number mobile networks use to identify
subscribers). Hackers can gain access to this information and mirror the device
and see everything on it, or install malware that will enable them to siphon
data from it due to inadequate knowledge of technology or lack of awareness.

– Scenario 8: “Pairing a smart device with another devices” - The flexibility
to pair the smart devices to other devices might be a value addition but this
might be risky believe. The feature offers easiness to watch Youtube video
on the smart TV, listen to choice of music on paired speakers or headphone,
or to get directions of the desired location by pairing with smart navigation
system of a car, but it’s also providing cyber-criminals and hackers another
attack surface they could use to target the smart devices for vicious activities.

– Scenario 9: “Location, trusted place” - The authentication can be enforced
as per the user location. If a user is at home, explicit authentication can be
avoided in favor of continuous authentication using behavioral biometrics like
gait recognition [39] or keystroke dynamics [40]. Whereas, if the user is at some
unfamiliar location explicit authentication along with the second factor can
be added and some high-risk activities, like transferring a significant amount
of money using mobile banking, might be disabled. Smart devices save the
user’s latitude and longitude, along with a time and date stamp. It then
copies the data to the owner’s computer whenever the two are synchronized.
This means anyone who stole the phone or gained access to the computer it
is paired with could build a detailed picture of the owner’s movements.

– Scenario 10: “Disable anti-malware or anti-virus apps” - This is a case of
inadequate use of technology. Disabling anti-malware or anti-virus apps will
stop the periodic scan and check for the potentially unwanted programs like
viruses and malware including Trojans, Worms, Spyware, Rootkits, and Key-
loggers.

Thus, security issues arising due to irregular and unpredictable features usage
decision induced by human factors can be tackled by computing the features
reliability at runtime. Appendix A summarizes the available features on smart
devices and their insecure usage patterns that could expose the resources asso-
ciated with those features.

4 Our Solution

We conceptualize a risk-driven model that dynamically monitors users’ usage
patterns of various features available on smart devices. Subsequently, a relia-
bility level assigned to each feature at runtime to assess the risk involved in

164 S. Gupta et al.

the usage patterns of those features with respect to the application. The model,
then, compares the user-defined application security level with the features relia-
bility level and revokes the resources permission associated with the less reliable
features to fulfill the security criteria of that application.

For example, a user assigned her banking app the highest security level and
the banking app requires the network feature to offer its services to the user.
If the user connects to an open WIFI or HOTSPOT, which could be risky in the
light of various cyber attacks. The model assigns the LOW reliability to the net-
work feature. Hence, the model automatically revokes the ACCESS INTERNET and
ACCESS NETWORK STATE permissions associated with the banking app to prevent
threats due to the unsecured network connection.

4.1 Model Description

Figure 3 illustrates the design of our model that is implemented within the Appli-
cation and Application Program Interface (API) Framework layers of the device
stack. The model establishes a relationship between installed applications, sys-
tem features, and human factors.

Fig. 3. Our model design for smart devices OS framework

The first step requires the user to assign the desired security level, i.e., high,
medium or low, to the applications installed on their smart devices, which is

A Risk-Driven Model to Minimize the Effects 165

store in the App Security Level (ASL) database in the API Framework layer.
The second step requires to determine the reliability of each feature (refer
to Appendix A). To achieve this, we assign a dedicated attribute, namely,
FEATURE RELIABITY LEVEL to each feature that stores the reliability of the fea-
ture in the Features Reliability Level (FRL) database.

Initially, FEATURE RELIABITY LEVEL for each feature is set to LOW. At the run-
time, Usage Pattern Monitor (UPM) module dynamically update the reliability
level, i.e., high, medium or low as per the user’s usage patterns of each feature.
This reliability assignment process varies from feature to feature. It could be fully
automated or depends on user input. For example, if a user sets a PIN/PASSWORD
or FINGER PRINT for [auth] feature, FEATURE RELIABITY LEVEL is automatically
set to MEDIUM or HIGH, respectively. Similarly, in the case of [connect2nw] fea-
ture, the model relies on the user’s input to set the FEATURE RELIABITY LEVEL,
every time the user connects to a new network.

4.2 Risk Assessment Process

Risk Engine (RE) periodically queries the ASL and FRL databases to fetch the
required security level of each application and current reliability level of features.
In the next step, the model generates a map between application security level
(APPi ASL) and feature reliability levels (Fj FRL) used by each application
at an instance tk, as shown in Table 1.

Table 1. Application security level and feature reliability levels map

Application App security level Features reliability level

1 APP1 APP1 ASL = HIGH

F1 FRL = HIGH

F2 FRL = LOW

F3 FRL = MEDIUM

...

FN−2 FRL = HIGH

2 APP2 APP2 ASL = LOW

F2 FRL = LOW

F15 FRL = MEDIUM

...

FN−1 FRL = HIGH

...

M APPM APPM ASL = MEDIUM

F1 FRL = HIGH

F3 FRL = MEDIUM

F6 FRL = MEDIUM

...

FN FRL = HIGH

166 S. Gupta et al.

With reference to Table 1, APP1 requires HIGH security level and it users
features F1, F2, F3, and FN−2. The model revokes the APP1 permission to use
resources associated with F2, and FN−2, as their FRL is not HIGH as required
by APP1. Similarly, APP2 and APPM require LOW and MEDIUM security level,
respectively. The model verifies the apps security level criteria is satisfied. There-
fore, permissions to use resources in both apps remain unchanged.

4.3 Resource Revocation Process

The model revokes the application permission to use resources by processing
the map generated at runtime as described in Sect. 4.1. The model iterates for
each application APPi and reads required security level and determines Fj FRL
for all the features used by them. If Fj FRL is less APPi ASL, models send
the instruction to Resource Manager (RM) to revokes permission of resources
associated with that feature as explained in Algorithm 1.

Algorithm 1. Resource revocation process
1: procedure readMAP
2: while i ≤ M do
3: Read APPi ASL � Reads required security level
4: for j = 1 to N ; j++ do
5: if Fj FRL < APPi ASL then
6: Revoke Resource Permission ∈ Fj � Sends instruction to RM
7: end if
8: end for
9: end while

10: end procedure

5 Conclusions

A balance between security and convenience is the most critical requirement for
smart devices. Moreover, there is always a contest between threat agents and
security professionals, where human factors swing the balance one way or the
other. Security mechanisms in smart devices, technically, get affected by human
factors that influence users’ usage patterns to use various features available on a
smart device. Unarguably, the irregular and unpredictable features usage deci-
sions by users can make smart devices unreliable to perform security-sensitive
activities or to store private data.

Our risk-driven model dynamically determines the features configuration reli-
ability by monitoring users usage patterns of various features available on smart
devices. The user-defined application security levels and features reliability levels
are compared at runtime, and the permission of the resources associated with the
less reliable features are revoked to fulfill applications security criteria. Thus, this
user-centric approach mitigates security risks caused by insecure features usage
patterns without affecting the user experience.

A Risk-Driven Model to Minimize the Effects 167

Acknowledgement. This project has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie
grant agreement No. 675320. Also, this work has been supported by the EU H2020-
SU-ICT-03-2018 Project No. 830929 CyberSec4Europe.

A Summary of features, their incorrect usage patterns,
and resources exposed

Features Feature incorrect usage
patterns

Resources exposed

[auth] Do not enable authentication,
Do not set a strong password
for accessing sensitive
information

All resources

[appinbg] Leave Apps/activities/
services running in
background

Memory, broadcast messages,
battery-life [41]

[appinstallation] Install third-party
applications from
unknown/untrusted sources

Device ID, contracts, call log,
and locations [42]

[usbdebug] Leave the USB debugging,
using public USB charging
stations [43]

File system [44], private user
data, phone calls and massages,
Keystrokes, SIM
informations [45]

[bluetooth] Leave the Bluetooth is on,
Use of an easy password,
Giving
BLUETOOTH ADMIN
permissions to other devices

Any Bluetooth devices [46],
discovery services, and launch
camera, mail, music and phone
system applications [47]

[connect2nw] Connect to open Hotspots
and WIFIs

Network traffic [48], wireless
data [49]

[phonemirroring] Leave the smart device
mirrored

Multimedia and documents,
online streaming [50]

[devicepairing] Leave the smart device paired
with another device

Multimedia and documents [51]

[AVT] Disable anti-virus or
anti-malware applications

File system [2]

[firmwareupdate] Installing upgrades from
untrusted source

Device management tools [52]

168 S. Gupta et al.

References

1. Gupta, S., Buriro, A., Crispo, B.: Demystifying authentication concepts insmart-
phones: ways and types to secure access. Mob. Inf. Syst. 2018, 16 p. (2018)

2. He, D., Chan, S., Guizani, M.: Mobile application security: malware threats and
defenses. IEEE Wirel. Commun. 22(1), 138–144 (2015)

3. UcedaVelez, T., Morana, M.M.: Risk Centric Threat Modeling: Process for Attack
Simulation and Threat Analysis. Wiley, Hoboken (2015)

4. Ward, M.: Ransomware ‘here to stay’, warns google study (2017). http://www.
bbc.com/news/technology-40737060

5. Pieters, W.: Defining “the weakest link” comparative security in complex systems
of systems. In: Proceeding of 5th International Conference on Cloud Computing
Technology and Science (CloudCom), vol. 2, pp. 39–44. IEEE (2013)

6. Proctor, R.W., Van Zandt, T.: Human Factors in Simple and Complex Systems.
CRC Press, Boca Raton (2018)

7. Li, P., Chen, G., Zhang, L., et al.: Research review and development trends of
human reliability analysis techniques. At. Energy Sci. Technol. 45(3), 329–340
(2011)

8. Gu, T., Li, L., Lu, M., Li, J.: Research on the calculation method of information
security risk assessment considering human reliability. In: 2014 International Con-
ference on Reliability, Maintainability and Safety (ICRMS), pp. 457–462. IEEE
(2014)

9. Stoneburner, G., Goguen, A., Feringa, A.: Risk Management Guide for Information
Technology Systems. NIST Special Publication 800–30 (2002)

10. Microsoft: Definition of a security vulnerability. https://msdn.microsoft.com/en-
us/library/cc751383.aspx?f=255&MSPPError=-2147217396 (2018)

11. ISO/IEC 25010:2011: Reliability (2018). https://www.iso.org/obp/ui/#iso:std:iso-
iec:25010:ed-1:v1:en

12. ISO: Human factors. https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-1:v1:
en (2018)

13. Metalidou, E., Marinagi, C., Trivellas, P., Eberhagen, N., Skourlas, C., Gian-
nakopoulos, G.: The human factor of information security: unintentional damage
perspective. Soc. Behav. Sci. 147, 424–428 (2014)

14. Vidalis, S., Jones, A.: Analyzing threat agents and their attributes. In: ECIW, pp.
369–380 (2005)

15. Fixmo: Enabling your business through mobile risk management (2018). https://
www.eiseverywhere.com/file uploads/12d988fc44b269ec828834bbaef0c6b3 Fixmo
Whitepaper.pdf

16. Lord, N.: A history of ransomware attacks: the biggest and worst ransomware
attacks of all time (2017). https://digitalguardian.com/blog/history-ransomware-
attacks-biggest-and-worst-ransomware-attacks-all-time

17. Johar, A.: Now ransomware attacks android: doublelocker locks your smart-
phone by changing the pin (2017). https://economictimes.indiatimes.com/tech/
internet/now-ransomware-attacks-android-doublelocker-locks-your-smartphone-
by-changing-the-pin/articleshow/61247838.cms

18. Goodin, D.: Ransomware scammers exploited safari bug to extort porn-viewing
IOS users. https://arstechnica.com/information-technology/2017/03/ransomware
-scammers-exploited-safari-bug-to-extort-porn-viewing-ios-users/ (2017)

19. Iqbal, M.S., Zulkernine, M.: SAM: a secure anti-malware framework for the smart-
phone operating systems. In: Proceeding of Wireless Communications and Net-
working Conference (WCNC), pp. 1–6. IEEE (2016)

http://www.bbc.com/news/technology-40737060
http://www.bbc.com/news/technology-40737060
https://msdn.microsoft.com/en-us/library/cc751383.aspx?f=255&MSPPError=-2147217396
https://msdn.microsoft.com/en-us/library/cc751383.aspx?f=255&MSPPError=-2147217396
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso-iec:25010:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-1:v1:en
https://www.eiseverywhere.com/file_uploads/12d988fc44b269ec828834bbaef0c6b3_FixmoWhitepaper.pdf
https://www.eiseverywhere.com/file_uploads/12d988fc44b269ec828834bbaef0c6b3_FixmoWhitepaper.pdf
https://www.eiseverywhere.com/file_uploads/12d988fc44b269ec828834bbaef0c6b3_FixmoWhitepaper.pdf
https://digitalguardian.com/blog/history-ransomware-attacks-biggest-and-worst-ransomware-attacks-all-time
https://digitalguardian.com/blog/history-ransomware-attacks-biggest-and-worst-ransomware-attacks-all-time
https://economictimes.indiatimes.com/tech/internet/now-ransomware-attacks-android-doublelocker-locks-your-smartphone-by-changing-the-pin/articleshow/61247838.cms
https://economictimes.indiatimes.com/tech/internet/now-ransomware-attacks-android-doublelocker-locks-your-smartphone-by-changing-the-pin/articleshow/61247838.cms
https://economictimes.indiatimes.com/tech/internet/now-ransomware-attacks-android-doublelocker-locks-your-smartphone-by-changing-the-pin/articleshow/61247838.cms
https://arstechnica.com/information-technology/2017/03/ransomware-scammers-exploited-safari-bug-to-extort-porn-viewing-ios-users/
https://arstechnica.com/information-technology/2017/03/ransomware-scammers-exploited-safari-bug-to-extort-porn-viewing-ios-users/

A Risk-Driven Model to Minimize the Effects 169

20. Yang, T., Yang, Y., Qian, K., Lo, D.C.-T., Qian, Y., Tao, L.: Automated detection
and analysis for android ransomware. In: Proceeding of 7th International Sympo-
sium on Cyberspace Safety and Security (CSS), pp. 1338–1343. IEEE (2015)

21. Hong, S., Liu, C., Ren, B., Chen, J.: Poster: Sdguard: an android application
implementing privacy protection and ransomware detection. In: Proceedings of
the 15th Annual International Conference on Mobile Systems, Applications, and
Services, pp. 149–149. ACM (2017)

22. Joshi, J., Parekh, C.: Android smartphone vulnerabilities: a survey. In: Proceed-
ing of International Conference on Advances in Computing, Communication, &
Automation (ICACCA) (Spring), pp. 1–5. IEEE (2016)

23. Yang, W., Hu, J., Fernandes, C., Sivaraman, V., Wu, Q.: Vulnerability analysis
of iPhone 6. In: Proceeding of 14th Annual Conference on Privacy, Security and
Trust (PST), pp. 457–463. IEEE (2016)

24. Yee, K.-P.: User interaction design for secure systems. In: Deng, R., Bao, F., Zhou,
J., Qing, S. (eds.) ICICS 2002. LNCS, vol. 2513, pp. 278–290. Springer, Heidelberg
(2002). https://doi.org/10.1007/3-540-36159-6 24

25. Apple: IOS requesting permission (2018). https://developer.apple.com/design/
human-interface-guidelines/ios/app-architecture/requesting-permission/

26. Google: Android permissions overview (2018). https://developer.android.com/
guide/topics/permissions/overview

27. Shabtai, A., Fledel, Y., Kanonov, U., Elovici, Y., Dolev, S., Glezer, C.: Google
android: a comprehensive security assessment. IEEE Secur. Priv. 8(2), 35–44 (2010)

28. Wang, Y., Zheng, J., Sun, C., Mukkamala, S.: Quantitative security risk assessment
of android permissions and applications. In: Wang, L., Shafiq, B. (eds.) DBSec
2013. LNCS, vol. 7964, pp. 226–241. Springer, Heidelberg (2013). https://doi.org/
10.1007/978-3-642-39256-6 15

29. Lindorfer, M., Neugschwandtner, M., Platzer, C.: Marvin: efficient and compre-
hensive mobile app classification through static and dynamic analysis. In: 39th
Annual Computer Software and Applications Conference (COMPSAC), vol. 2, pp.
422–433. IEEE (2015)

30. Aytes, K.: Computer security and risky computing practices: a rational choice
perspective. In: Information Security and Ethics: Concepts, Methodologies, Tools,
and Applications, pp. 1994–2011. IGI Global (2008)

31. Modarres, M., Kaminskiy, M.P., Krivtsov, V.: Reliability Engineering and Risk
Analysis: A Practical Guide. CRC Press, Boca Raton (2016)

32. Winnick, M.: Putting a finger on our phone obsession - mobile touches: a study on
humans and their tech (2016). https://blog.dscout.com/mobile-touches

33. Harbach, M., Von Zezschwitz, E., Fichtner, A., De Luca, A., Smith, M.: It’s a hard
lock life: a field study of smartphone (un) locking behavior and risk perception. In:
Symposium on usable privacy and security (SOUPS), pp. 213–230 (2014)

34. Summerson, C.: What is USB debugging, and is it safe to leave it enabled
on android? (2016). https://www.howtogeek.com/258788/what-is-usb-debugging-
and-is-it-safe-to-leave-it-enabled-on-android/

35. Padgette, J.: Guide to Bluetooth Security. NIST Special Publication 800-121 (2017)
36. Shaked, Y., Wool, A.: Cracking the Bluetooth Pin. In: Proceedings of the 3rd

International Conference on Mobile Systems, Applications, and Services, pp. 39–
50. ACM (2005)

37. Dunning, J.: Taming the blue beast: a survey of Bluetooth based threats. IEEE
Secur. Priv. 8(2), 20–27 (2010)

38. kaspersky: How to avoid public WiFi security risks (2018). https://usa.kaspersky.
com/resource-center/preemptive-safety/public-wifi-risks

https://doi.org/10.1007/3-540-36159-6_24
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.apple.com/design/human-interface-guidelines/ios/app-architecture/requesting-permission/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://doi.org/10.1007/978-3-642-39256-6_15
https://doi.org/10.1007/978-3-642-39256-6_15
https://blog.dscout.com/mobile-touches
https://www.howtogeek.com/258788/what-is-usb-debugging-and-is-it-safe-to-leave-it-enabled-on-android/
https://www.howtogeek.com/258788/what-is-usb-debugging-and-is-it-safe-to-leave-it-enabled-on-android/
https://usa.kaspersky.com/resource-center/preemptive-safety/public-wifi-risks
https://usa.kaspersky.com/resource-center/preemptive-safety/public-wifi-risks

170 S. Gupta et al.

39. Muaaz, M., Mayrhofer, R.: Smartphone-based gait recognition: from authentication
to imitation. IEEE Trans. Mob. Comput. 16(11), 3209–3221 (2017)

40. Traore, I., Woungang, I., Obaidat, M.S., Nakkabi, Y., Lai, I.: Online risk-based
authentication using behavioral biometrics. Multimed. Tools Appl. 71(2), 575–605
(2014)

41. Google: Background execution limits (2018). https://developer.android.com/
about/versions/oreo/background

42. Zhou, Y., Zhang, X., Jiang, X., Freeh, V.W.: Taming information-stealing smart-
phone applications (on android). In: McCune, J.M., Balacheff, B., Perrig, A.,
Sadeghi, A.-R., Sasse, A., Beres, Y. (eds.) Trust 2011. LNCS, vol. 6740, pp. 93–107.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21599-5 7

43. Shiroma, T., Nishio, Y., Inoue, H.: A threat to mobile devices from spoofing public
USB charging stations. In: Proceeding of International Conference on Consumer
Electronics (ICCE), pp. 88–89. IEEE (2017)

44. Google: Android debug bridge (adb) (2018). https://developer.android.com/
studio/command-line/adb

45. Hwang, S., Lee, S., Kim, Y., Ryu, S.: Bittersweet ADB: attacks and defenses. In:
Proceedings of the 10th ACM Symposium on Information, Computer and Com-
munications Security, pp. 579–584. ACM (2015)

46. Demetriou, S., Zhou, X.-Y., Naveed, M., Lee, Y., Yuan, K., Wang, X., Gunter,
C.A.: What’s in your dongle and bank account? Mandatory and discretionary
protection of android external resources. In: NDSS (2015)

47. Kywe, S.M., Li, Y., Petal, K., Grace, M.: Attacking android smartphone systems
without permissions. In: 2016 14th Annual Conference on Privacy, Security and
Trust (PST), pp. 147–156. IEEE (2016)

48. Spaulding, J., Krauss, A., Srinivasan, A.: Exploring an open WiFi detection vul-
nerability as a malware attack vector on IOS devices. In: Proceeding of 7th Interna-
tional Conference on Malicious and Unwanted Software (MALWARE), pp. 87–93.
IEEE (2012)

49. Wasil, D., Nakhila, O., Bacanli, S.S., Zou, C., Turgut, D.: Exposing vulnerabilities
in mobile networks: a mobile data consumption attack. In: Proceeding of 14th
International Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp.
550–554. IEEE (2017)

50. Sharma, K., Gupta, B.B.: Attack in smartphone Wi-Fi access channel: state of
the art, current issues, and challenges. In: Lobiyal, D.K., Mansotra, V., Singh, U.
(eds.) Next-Generation Networks. AISC, vol. 638, pp. 555–561. Springer, Singapore
(2018). https://doi.org/10.1007/978-981-10-6005-2 56

51. Sun, D.-Z., Mu, Y., Susilo, W.: Man-in-the-middle attacks on secure simple pairing
in Bluetooth standard v5. 0 and its countermeasure. Pers. Ubiquit. Comput. 22(1),
55–67 (2018)

52. Zeiter, K.: Hackers can control your phone using a tool that’s already built
into it (2014). https://www.wired.com/2014/07/hackers-can-control-your-phone-
using-a-tool-thats-already-built-into-it/

https://developer.android.com/about/versions/oreo/background
https://developer.android.com/about/versions/oreo/background
https://doi.org/10.1007/978-3-642-21599-5_7
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://doi.org/10.1007/978-981-10-6005-2_56
https://www.wired.com/2014/07/hackers-can-control-your-phone-using-a-tool-thats-already-built-into-it/
https://www.wired.com/2014/07/hackers-can-control-your-phone-using-a-tool-thats-already-built-into-it/

A Formal Security Analysis of the p ≡ p
Authentication Protocol for Decentralized

Key Distribution and End-to-End
Encrypted Email

Itzel Vazquez Sandoval(B) and Gabriele Lenzini

University of Luxembourg, Luxembourg City, Luxembourg
{itzel.vazquezsandoval,gabriele.lenzini}@uni.lu

Abstract. To send encrypted emails, users typically need to create
and exchange keys which later should be manually authenticated, for
instance, by comparing long strings of characters. These tasks are cum-
bersome for the average user. To make more accessible the use of
encrypted email, a secure email application named p ≡ p automates the
key management operations; p ≡ p still requires the users to carry out
the verification, however, the authentication process is simple: users have
to compare familiar words instead of strings of random characters, then
the application shows the users what level of trust they have achieved
via colored visual indicators. Yet, users may not execute the authen-
tication ceremony as intended, p ≡ p’s trust rating may be wrongly
assigned, or both. To learn whether p ≡ p’s trust ratings (and the corre-
sponding visual indicators) are assigned consistently, we present a formal
security analysis of p ≡ p’s authentication ceremony. From the software
implementation in C, we derive the specifications of an abstract proto-
col for public key distribution, encryption and trust establishment; then,
we model the protocol in a variant of the applied pi calculus and later
formally verify and validate specific privacy and authentication proper-
ties. We also discuss alternative research directions that could enrich the
analysis.

Keywords: Formal verification · Authentication protocols · Software
security analysis · Privacy-by-default · Secure email · End-to-end
encryption

1 Introduction

Despite the success of instant messaging (IM) applications, email prevails as
the principal means for written communication [24]; yet, communication over
email remains largely insecure nowadays [11]. Solutions for securing email have
however been proposed. For instance, OpenPGP [1] is arguably the most widely
used email encryption standard. Derived from the PGP software, it proposes

c© Springer Nature Switzerland AG 2020
A. Saracino and P. Mori (Eds.): ETAA 2019, LNCS 11967, pp. 171–187, 2020.
https://doi.org/10.1007/978-3-030-39749-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39749-4_11&domain=pdf
http://orcid.org/0000-0001-8229-3270
https://doi.org/10.1007/978-3-030-39749-4_11

172 I. Vazquez Sandoval and G. Lenzini

the use of symmetric and asymmetric cryptography plus data compression to
encrypt communication, and digital signatures for message authentication and
integrity.

Unfortunately, severe usability drawbacks have been identified and high-
lighted in the standard (e.g. [27]). Along with the need for users to understand
at least general cryptographic concepts regarding encryption—which inevitably
narrows down the scope of the audience—the principal issue is the need for
verifying the ownership of public keys, i.e., that a public key claimed to be
of an entity A does indeed belong to A exclusively. Various approaches tackle
this problem, e.g., fingerprint comparisons, public key infrastructure, certificate
authorities, and the notion of web of trust, which involves individuals signing
each other’s public keys, thus forming a chain of certifications [28]. However,
these approaches have encountered limited adoption mostly due to usability or
scalability issues [11].

Attempting to overcome OpenPGP’s usability issues related to trust estab-
lishment, an open source commercial software, called p ≡ p (Sect. 3), proposes
the use of so called trustwords (detailed in Sect. 3.1) to carry out peer-to-peer
entity authentication via an out-of-band channel—e.g., in-person, video-call.
This approach argues to introduce an improvement to usability and security
of the PGP word list.

In this work we present a formal security analysis of the core protocols imple-
mented in p ≡ p, focusing particularly in authentication and privacy goals.

1.1 Contributions

First, we derive from the open source code the specifications of p ≡ p’s abstract
protocols for key distribution and trust establishment, and present them as Mes-
sage Sequence Charts (MSC). From now on, we will refer to this abstraction as
the p ≡ p protocol. This is the first detailed technical documentation of such
protocol.

Second, we provide a symbolic formal security analysis of the p ≡ p proto-
col with respect to authentication and privacy goals, under a Dolev-Yao threat
model. The analysis validates the security claims of p ≡ p and the correct assign-
ment of privacy ratings to messages.

2 Context and Approach

The application of formal methods for verifying that specific security proper-
ties hold in cryptographic protocols in the presence of a certain adversary is
a well-established research area. Both the detection of flaws in a protocol (or,
contrariwise, the proof of security) and the nature of those flaws depend on dif-
ferent factors, such as the verification approach and the phase of the system in
which it takes place (e.g., design, implementation, compilation). An introductory
reference for the topic is [21].

A Formal Analysis of p ≡ p Authentication for E2E Encrypted Email 173

A variety of tools and formalizations have been used to successfully ana-
lyze, amongst others, authentication scenarios in real world and authentication
standards (e.g., [6,7,13]). Important flaws have been discovered even in well-
established protocols years after their publication and while being used (e.g.,
[19]). Therefore and because the design of protocols is by default an error-prone
task, to effectively protect a system, security protocols need to be not only care-
fully designed and rigorously implemented but also strictly verified.

Here, we carry out a symbolic formal analysis of the p ≡ p protocol spec-
ification. The symbolic approach assumes cryptographic primitives to work as
perfect black boxes and focuses on the description of the logic of the protocol, the
interaction among participants and the exchange of messages [10]. The resulting
models allow to seek for attacks that rely on logical flaws in the protocol while
taking advantage of mature automated tools for protocol analysis (e.g., ProVerif
[9], Tamarin [5]).

Our work concerns remote human-to-human authentication, where human A
wants to be sure that human B is who he claims to be and vice versa—in p ≡ p,
the owner of a specific public key—, in a global communication scenario where
A and B might not know each other.

2.1 Methodology

At the time when we started studying the p ≡ p protocol there was not substan-
tial documentation regarding neither the protocol specifications nor the source
code. In consequence, the work presented here relies on the open source code of
p ≡ p [22], together with online documentation mainly for users [23]. Recently
some internet drafts have been released [17,18], which has helped clarifying our
models.

Our security analysis consists of the following steps, which we detail in the
rest of the paper:

1. Extract the specifications of the key distribution and handshake protocols
from the available sources [22,23].

2. Describe the protocol in MSC notation.
3. Formalize in the applied pi calculus the MSC specifications of the previous

step, along with the attacker model.
4. Specify and formalize in the applied pi calculus the properties to be verified.
5. Verify the satisfiability of the properties formalized in 4, in the model resulting

from step 3.
6. Analyze and interpret the results of the verification.

We start by introducing the p ≡ p software and its relevant features in Sect. 3.
Then, steps 1 and 2, which deal with specifying the p ≡ p protocol, are presented
in Sect. 4. In Sect. 5, we define the security properties related to privacy and
authentication that concern our analysis. Section 6 covers steps 3 and 4 of the
methodology, i.e., the formalization of the protocol and of the security properties
introduced informally in Sect. 5. The results of the execution of step 5 and the

174 I. Vazquez Sandoval and G. Lenzini

analysis in step 6 are discussed in Sect. 6.4; we also discuss limitations of the
analysis in Sect. 6.5. Further directions and conclusions are presented in the last
section.

3 Background: Pretty Easy Privacy (p ≡ p)

Pretty Easy Privacy (p ≡ p)1 is a software that claims to provide privacy-
by-default in email communications via end-to-end opportunistic encryption.
Roughly, this means that the software encrypts outgoing email messages without
any intervention from the user, whenever a secure or trusted public key of the
intended receiver is available.

p ≡ p attempts to automate tasks that would otherwise require specialized-
knowledge from non-expert users, while informing the user of the privacy rating
assigned to messages in an intuitive way. Hence, its more relevant features are:
(1) a fully automated process for the generation and management of encryp-
tion keys and for the encryption of emails; (2) an algorithm to determine the
strongest privacy level that can be assigned to a message for a specific partner—
this level is further communicated to the user by colored visual icons; (3) a fully
decentralized architecture for key storage—this design decision eludes relying
on possibly untrusted central authorities by having the users perform the trust
establishment task via out-of-band channels.

p ≡ p is distributed as a standalone application for Android and as plugins for
desktop installations of some existing email clients, e.g., Outlook, Enigmail. In
this work we consider a general abstraction of the p ≡ p protocols that represent
improvements to PGP by means of the features described above. Comparing and
discussing specific implementations is out of the scope of this paper.

3.1 p ≡ p Trustwords

Manual key-fingerprint comparison is a well-established method for entity
authentication in messaging protocols; yet, the approach has been shown to
perform poorly for the intended goal (e.g., [14]). As a solution, in addition to
hexadecimal numbers, PGP allows fingerprints to appear as a series of so-called
“biometric words”, which are phonetically different English words that intend
to ease the comparison for humans and to make it less prone to misunderstand-
ings [2].

Trustwords in p ≡ p follow the same idea; they are natural language words
mapping hexadecimal strings that are used to authenticate a peer after hav-
ing exchanged public keys in an opportunistic manner. In short, such hexadec-
imal strings represent a combined fingerprint obtained by applying an XOR
operation to the fingerprints associated to the public keys being authenticated.
Each block of 4 hex characters of the combined fingerprint is mapped to a
word in a predefined trustwords dictionary. For instance, F482 E952 2F48 618B

1 https://www.pep.security.

https://www.pep.security

A Formal Analysis of p ≡ p Authentication for E2E Encrypted Email 175

01BC 31DC 5428 D7FA could be mapped to kite house brother town juice
school dice broken.

The main difference with the “biometric words” is the availability of trust-
words in different languages, which improves the security for non-English speak-
ers, and the use of longer words, which presumably increases the entropy as the
dictionary is larger and therefore the likelihood for phonetic collision is decreased
[17]. Considerations regarding the number of words in the dictionaries and the
length of the words themselves are discussed also in [17].

3.2 Trust Rating and Visual Indicators

In agreement with the privacy-by-default principle, p ≡ p assigns a specific
privacy rating to each email exchange. Such a rating is determined per message
and per identity depending on certain criteria and is shown to the users by
colored icons in the message. The ratings are:

– Mistrusted: the system has evidence that the communication partner is not
who (s)he claims to be, e.g., when the user explicitly mistrusts a peer.

– Unknown/Unsecure/Unreliable (Unsecure): encryption/decryption
of a message cannot be properly executed, e.g., when the recipient does not
use any secure email solution. The message is sent in plain text.

– Secure: the user has a valid public key for the recipient, however it has not
been personally confirmed. The message is encrypted/decrypted.

– Trusted: the user has the recipient’s public key and it has been validated
with the peer. The message is encrypted/decrypted and authenticated.

3.3 Technical Specifications of p ≡ p

The core component of p ≡ p is pEpEngine, a library developed in C99 where
the automation of cryptographic functionalities (e.g., key generation) is imple-
mented relying on existing standards and tools for secure end-to-end encrypted
communications (PGP, GnuPG). The p ≡ p protocols are built upon those func-
tionalities, therefore pEpEngine is the component from which we extracted the
specifications hereby presented.

Each installation of p ≡ p creates a local database of p ≡ p peers, their
corresponding keys and privacy ratings. Additionally, it creates a database from
which the trustwords for mutual authentication are retrieved; the trustwords
database contains the exact same data in all the distributions. To securely store
private and public keys in the devices, p ≡ p uses GnuPG2. A more detailed
description of p ≡ p can be found in [18].

4 The p ≡ p Protocol

In order to carry out a security analysis it is essential to clearly understand
the logic of the protocol, to know the cryptographic primitives used, the parties
2 https://www.gnupg.org/.

https://www.gnupg.org/

176 I. Vazquez Sandoval and G. Lenzini

involved and the messages exchanged between them. Our case study required us
to obtain this information mainly from the source code of p ≡ p.

Following the approach in [26], we executed the first step of the methodol-
ogy proposed here in Sect. 2.1 by reverse engineering a fragment of the source
code files. We then represented the output of such a process by means of MSC
diagrams (step 2) which p ≡ p confirmed to be accurately representing their
protocol.

Here, we present and describe such diagrams which correspond to our
abstracted version of the key distribution and authentication protocols used
by p ≡ p to engage in end-to-end private and authenticated communications.

In the rest of the paper, we will use skx and pkx to refer to secret and public
keys owned by agent x, respectively. As well, we use A and B to refer to honest
participants and M for the malicious agent trying to prevent the honest parties
from achieving the security goals.

4.1 Public Key Distribution and Encrypted Communication

Let A and B be two partners that do not know each other’s public key. A
installs p ≡ p from scratch without having any cryptographic keys. She wants
to privately communicate with B who is already a p ≡ p user owning a pair of
keys (skB , pkB). We denote the p ≡ p instances running in A’s and B’s devices
as pEpA and pEpB respectively.

So that the key distribution protocol (Fig. 1) can take place, when p ≡ p is
installed, pEpA generates a pair of keys (skA, pkA) for A (step 1). The protocol
starts when A sends a message m to B; pEpA creates an identity for B (2) and
stores his contact details (3); then, pEpA sends m as plain text along with pkA
(4). When pEpB receives the message, it displays m to B with the privacy rating
Unsecure (5); additionally, pEpB creates an identity for A (6) and stores her
email address and pkA (7); finally pEpB assigns the privacy rating Secure to
A’s identity (8). When B replies to A, pEpB attaches pkB to his response resp;
this message is then signed with B’s secret key skB (9) and encrypted using pkA
(10). The signed and encrypted message is sent to A (11); pEpB shows to B his
message as Secure. At reception, pEpA decrypts B’s message using skA (12);
then it stores pkB as the public key of B (13) and assigns to his identity the
Secure rating (14). B’s response is finally shown as Secure to A.

Note that the identifiers created for A and B do not need to coincide in pEpA
and pEpB, since they are only used by the corresponding p ≡ p instance. Also, pkA
and pkB sent in steps (4) and (11) are only attached to the first communication
between A and B or whenever they are updated.

The key distribution protocol allows making the communication secret to
everyone but the receiver, however, it does not guarantee that the receiver is the
intended person. Man-in-the-middle attacks are still possible, as we will discuss
in Sect. 6.4.

A Formal Analysis of p ≡ p Authentication for E2E Encrypted Email 177

Fig. 1. p ≡ p key distribution protocol

4.2 Authentication and p ≡ p Privacy Rating Assignment

Trust establishment is achieved via the p ≡ p Handshake protocol (Fig. 2), which
consists in A and B comparing a list of trustwords via a communication channel
assumed to be secure and that needs to be used only once.

When A selects the option to perform a handshake with B (1), pEpA generates
a combined fingerprint based on applying an xor function to the fingerprints of

178 I. Vazquez Sandoval and G. Lenzini

A and B (2). The resulting hexadecimal string is mapped onto words in the
selected language from the trustwords database (3) and displayed to A (4). The
analogous actions occur in pEpB when B selects the handshake option. Given
that the trustwords database is the same in all p ≡ p distributions, if pEpA and
pEpB use the same input parameters, i.e., the same public keys and thus the
same fingerprints, the list of trustwords generated by each p ≡ p instance must
be the same.

The next step is the authentication, where A and B contact each other in
a way that they are sure to be talking with the real person, and compare the
list of trustwords displayed for each (5). If B confirms that the list of trustwords
given by A matches exactly the one shown in his device, A’s privacy rating is
set to Trusted (6); we call this case a successful handshake. Conversely, in an
unsuccessful handshake A’s rating is downgraded from Secure to Mistrusted
(7). The analogous occurs in A’s device with respect to B. The privacy rating
assigned after a handshake remains for all future exchanges with the communi-
cation partner.

After a successful handshake, the communication between the identities that
performed the handshake is always encrypted and authenticated (8–12).

Remark that p ≡ p does not force users to perform the handshake protocol.
The email messages are always sent regardless of the security level, which is
decided per message and per recipient according to the recipient’s data available.

5 Security Properties

Our requirements for authentication match the definition of full agreement given
by Lowe in [20]. This definition subsumes aliveness, weak agreement, non-
injective agreement and injective agreement as defined in the same reference;
broadly, it requires the two participants to agree on all the essential data involved
in the protocol run, in our case, the public keys pkA and pkB and the email
addresses.

Definition 1 (Full agreement, from [20]). A protocol guarantees to an ini-
tiator A full agreement with a responder B on a set of data items ds if, whenever
A completes a run of the protocol, apparently with responder B, then B has
previously been running the protocol, apparently with A, and B was acting as
responder in his run, and the two agents agreed on the data values corresponding
to all the terms in ds, and each such run of A corresponds to a unique run of B.
Additionally, ds contains all the atomic data items used in the protocol run.

Here we redefine this property in terms of p ≡ p and introduce informally
other properties in which we are interested.

Property 1 (Full agreement). A full agreement between A and B holds on pkA,
pkB , emailA and emailB if, whenever A completes a successful handshake with
B, then: B has previously been running the protocol with A, the identity data
of A is (emailA, pkA) and the identity data of B is (emailB , pkB).

A Formal Analysis of p ≡ p Authentication for E2E Encrypted Email 179

Fig. 2. p ≡ p handshake protocol for authentication

180 I. Vazquez Sandoval and G. Lenzini

Recall that a successful handshake is only reached if B confirms that the trust-
words given by A match exactly those shown in his device, and vice versa;
therefore, the agreement on the trustwords is implicit in the definition.

Property 2 (Trust-by-Handshake). Trust-by-Handshake holds for B if whenever
B receives a message from A with privacy rating Trusted, then previously B
executed a successful handhsake with A.

Property 3 (Privacy-from-trusted). Privacy-from-trusted holds for B if, when-
ever B receives a message m from A who has a privacy rating Trusted, then
A sent m to B and m is encrypted with B’s public key.

Property 4 (Integrity-from-trusted). Integrity-from-trusted holds for B if, when-
ever B receives a message m from A who has a privacy rating Trusted, then
A sent m to B and m is signed with a valid signature of A.

Property 5 (MITM-detection). MITM-detection holds if whenever an unsuc-
cessful handshake between A and B occurs, then A has registered a key for B
that does not belong to him and/or vice versa.

Property 6 (Confidentiality). Confidentiality holds if M cannot learn the con-
tent of any message sent encrypted between A and B.

6 Formal Security Analysis

A security analysis requires three elements: a protocol model, a set of security
properties, and a threat model defining the capabilities of the adversary by which
the scope of the verification is framed.

We model the p ≡ p protocols in the applied pi calculus [4], a process calculus
suitable for describing and reasoning about security protocols in the symbolic
approach. Participants are represented as processes and their message exchanges
are represented by terms sent over public or private channels. A so called equa-
tional theory defines how the cryptographic operations occurring in the protocol
relate with each other, and how they can be applied to obtain equivalent terms.

6.1 Threat Model and Trust Assumptions

To determine a relevant attacker model we need to consider the decentralized
architecture of p ≡ p. To an attacker with access to the user’s device, not only the
code but also the application databases and the keys repository are available. M
can thus have B trusting her by simply modifying the corresponding record in the
privacy ratings database, even if a handshake was never performed. Modifications
to the trustwords database would also result in an attack, which although not
threatening privacy, could prevent A and B from establishing a valid trusted
communication as Trusted. Therefore, we restrict the threat model with the
following assumptions:

A Formal Analysis of p ≡ p Authentication for E2E Encrypted Email 181

1. p ≡ p users are honest participants and their devices are secure;
2. The adversary cannot modify exchanges over the trustwords channel;
3. The adversary has complete control over the network used to exchange emails

(Dolev-Yao attacker [15]);
4. The users execute the comparison of trustwords correctly, i.e., they confirm

the trustwords in the system only when they match in the real world and
they mistrust them only in the contrary case.

These assumptions allow M to eavesdrop, remove, and modify emails
exchanged between A and B, as well as to send them messages of her choice;
this includes learning their public keys exchanged by email. M cannot however
interfere with the channel used to corroborate trustwords. Remark that this is a
secondary channel such as the phone or in-person, thus, not intended to replace
the email communication channel. We elaborate on assumption 4 in Sect. 7.

6.2 Modeling the p ≡ p Protocol

The p ≡ p protocol consists of the sequential execution of the key distribution
and the trust establishment protocols presented in Sect. 4.

A and B are represented by two processes, senderA and receiverB, whose
parameters symbolize the knowledge that they have. To communicate with B, A
needs to know his contact details, which here we abstract with the type userId ;
in turn, B only needs to know his own id and his secret key. The actions for each
participant come from the diagrams in Figs. 1 and 2. We run multiple instances
of A as well as of B, to simulate communication with multiple peers.

For the exchange of emails we use a public channel; on the contrary, a private
channel models the trustwords’ validation channel. In order to prove confiden-
tiality of encrypted and authenticated communication, we introduce a private
message mssg representing a message whose content is initially unknown to M;
then, we model A sending mssg to B via the public channel after a successful
handshake between them. Since B is trusted, mssg is sent signed and encrypted
(steps 8–9, Fig. 2), and thus, expected to remain unreadable by M at the end of
the protocol.

According to the symbolic model assumption, our equational theory mod-
els a perfect behavior of asymmetric encryption and digital signatures. These
equations capture the relationships allowed among the cryptographic primitives
involved, determining the ways in which any participant, the attacker included,
can reduce terms. Then, for M a message and SK a secret key:

adec(aenc(M , pubKey(SK)), SK) = M (1)
verifSign(sign(M ,SK), pubKey(SK)) = M (2)

getMssg(sign(M , SK)) = M (3)

Equation (1) expresses that a message M encrypted with a certain public key
can be decrypted with the corresponding secret key; moreover, this is the only

182 I. Vazquez Sandoval and G. Lenzini

way to obtain M from a ciphertext since there is no other equation involving
the aenc primitive. Analogously, Eq. (2) returns M only if it was signed with
the secret key associated to the public key used for the verification. Equation (3)
allows the recovery of a message without verification of a digital signature and
we introduce it here to model the capability of M for learning messages without
the need of verifying the signature.

Also, we model a correct trustwords comparison as per assumption 4 in
Sect. 6.1. We abstract fingerprints as public keys since a PGP fingerprint is
uniquely derived from a public key. Then, for two public keys PK1 , PK2 , two
trustwords lists W1,W2 and the trustwords generation function trustwords:

trustwordsMatch(trustwords(PK1 ,PK2), trustwords(PK1 ,PK2)) = true

trustwordsMatch(trustwords(PK1 ,PK2), trustwords(PK2 ,PK1)) = true

During its computations, M is allowed to apply all and only these primitives.
Additionally, she has access to all the messages exchanged via the public channels
and to any information declared as public. This models for instance M’s real-
life capability of generating the trustwords, which is possible because all the
elements are public knowledge: the source code of the function, the trustwords
database, B’s public key and A’s public key.

6.3 Privacy and Authentication Properties of p ≡ p

We formalize the properties introduced in Sect. 5 as correspondence and reacha-
bility queries based on events. Correspondences have the form E =⇒ e1∧ ...∧en;
they model properties expressing: if an event E is executed, then events e1, ..., en
have been previously executed. Events mark important states reached by the pro-
tocol and do not affect the protocol’s behavior. Our properties are defined in
terms of the next events, where s and r represent two p ≡ p users:

– endHandshakeOk(s,r,pks,pkr,es,er): s and r completed a successful handshake
with the public keys and emails (pks, es) and (pkr, er) respectively.

– startHandshake(s,r): s starts a handshake via a second-channel with r
– userKey(s,pks): the agent s is the owner of the key pks
– userEmail(s,es): the agent s owns the email address es
– receiveGreen(r,s,m): r received the message m from s as Trusted
– receiverTrustsS(r,s): the contacted peer r sets the privacy rating of s as
Trusted after confirming that the trustwords match

– sendGreen(s,r,m): s sent the message m to r as Trusted
– decryptionFails(r,s,m): r cannot decrypt a message m from a trusted peer s
– signVerifFails(r,s,m): r cannot verify the signature attached to m as a valid

signature of s
– endHandshakeUnsucc(s,r,pks,pkr): s and r completed an unsuccessful hand-

shake with the public keys pks and pkr respectively.
– attacker(m): the adversary knows the content of the message m

A Formal Analysis of p ≡ p Authentication for E2E Encrypted Email 183

Then, for a private message mssg and for all p ≡ p users a and b, messages
m and public keys ka, kb, pkA, pkB :
Full Agreement. For email addresses eA and eB ,

endHandshakeOk(a, b, pkA, pkB , eA, eB) =⇒ startHandshake(a, b) ∧ startHandshake(b, a)

∧ userKey(a, pkA) ∧ userKey(b, pkB)

∧ userEmail(a, eA) ∧ userEmail(b, eB)

In our model the email address is abstracted as the identity itself, since we
consider the case of one account per user. Therefore, in the verification the
userEmail predicates are disregarded. We include them here for completeness.

Trust-by-Handshake

receiveGreen(b, a,m) =⇒ receiverTrustsS(b, a)

This formula matches exactly the definition of Property 2.

Privacy-from-Trusted. For a message z,
(
receiveGreen(b, a, z) =⇒ sendGreen(a, b, z) ∧ z = aenc(m, pkB)

∧ userKey(b, pkB)
) ∧

(
decryptionFails(b, a,m) =⇒ ¬ sendGreen(a, b,m)

)

This formula is the conjunction of two correspondence assertions. The first one
expresses Property 3; the second correspondence enforces the first by saying that
it cannot be otherwise, i.e., when b receives a message m from a which for any
reason cannot be decrypted—e.g. m is not encrypted—, then a did not send m
to b.

Integrity-from-Trusted. For a message z and a secret key skA
(
receiveGreen(b, a, z) =⇒ sendGreen(a, b, z) ∧ z = aenc(sign(m, skA), kb)

∧ userKey(a, skA)
)∧

(
signVerifFails(b, a,m) =⇒ ¬ sendGreen(a, b,m)

)

Analogous to the previous formula, in this one we express Property 4 and rein-
force it by proving that whenever the verification of the signature fails in message
m, then a did not send m.

MITM-detection

endHandshakeUnsucc(a, b, ka, kb) =⇒ (userKey(a, pkA) ∧ pkA �= ka) ∨
(userKey(b, pkB) ∧ pkB �= kb)

This formula matches exactly the definition of Property 5.

Confidentiality. attacker is a built in predicate in ProVerif, which evaluates
to TRUE if by applying the derivation rules to the knowledge of the adversary,
there exists a derivation that results in mssg. Therefore, the protocol achieves
confidentiality if

¬ attacker(mssg)

184 I. Vazquez Sandoval and G. Lenzini

6.4 Verification Results and Analysis

In order to determine whether or not the protocol satisfies the specified security
properties we use ProVerif [9], an automatic symbolic cryptographic protocol
verifier. We executed the verification3 with ProVerif 2.0 on a standard PC (Intel
i7 2.7GHz, 8GB RAM). The response time was immediate.

We analyzed three different models: of the key distribution protocol, of the
trust establishment protocol and of the key distribution followed by the trust
establishment (the p ≡ p protocol).

For the key distribution protocol, the results confirmed its vulnerability to
MITM attacks. The weakness resides in the exchange of public keys via a channel
where M has complete access. An attack proceeds as follows: M can intercept
the initial message from A to B and send him a new message attaching her
own public key, pkE , instead of A’s one. pEpB will then link M’s key with A’s
email in step (7) of Fig. 1, i.e., storeId(idAB , emailA, pkE). When B replies, the
message in step (10) is encrypted with pkE , and thus M can intercept it again
and decrypt it with her secret key, therefore obtaining pkB attached. From this
point, M can send encrypted emails to B using A’s email address and she will be
able to intercept and decrypt the responses sent by B. In an analogous way, M
can have A linking M’s public key to B’s identity, by sending her pkE encrypted
with pkA obtained by intercepting the first message.

Regarding the trust establishment protocol, encryption and authentication
hold since the trustwords comparison never mismatches due to the assumptions
of the peer devices being secure and of a previous key distribution successfully
executed.

The subsequent analysis of the p ≡ p protocol determined that the six prop-
erties, full agreement, trust-by-handshake, privacy-from-trusted, integrity-from-
trusted, MITM-detection and confidentiality are satisfied.

Regarding unsuccessful handshakes, even if A has the correct public key of
B, the handshake will fail if B has a key of A that does not correspond to her.
Both partners will mistrust each other because the communication with those
keys is threatened, however, once a peer is mistrusted, by p ≡ p design such a
privacy rating can not be reverted. This might be an issue, for instance if in the
future A and B meet in person and exchange their public keys; they can then
perform the handshake and B would be able to trust A, but A would not be
able to trust B in her device. In this case though, M misleading A to mistrust
the intended partner is closer to a Denial of Service (DoS) attack but does not
represent a threat to privacy.

We conclude that the execution of the p ≡ p protocol fulfills the claimed
security goals, i.e., after a successful handshake there is no undetectable way
for M to modify the exchanges between A and B, given that every message
between them is always sent encrypted and signed with the corresponding keys.
As a consequence, the privacy, authentication and integrity of the messages is
preserved. Also, entity authentication is achieved by the p ≡ p trust establish-
ment protocol. These results depend on the assumptions of p ≡ p residing in a
3 https://www.dropbox.com/s/ste22xe2zfj9bnt/fullPepProtocol.pv?dl=0.

https://www.dropbox.com/s/ste22xe2zfj9bnt/fullPepProtocol.pv?dl=0

A Formal Analysis of p ≡ p Authentication for E2E Encrypted Email 185

secure environment, of a secure second channel for the trustwords comparison
and of p ≡ p users owning a single instance of p ≡ p with a single email account.

6.5 Limitations

This analysis focuses solely on the technical specification of the key distribution
and handshake protocols. Social attacks such as impersonation or phishing are
however still possible; for instance M can create a fake email account related to
A’s name and then use it to send B an email attaching M’s public key and con-
tact details. If B has never met A, a handshake via trustwords comparison with
M would succeed given that both partners are indeed executing the protocol,
but the human B thinks that he is interacting with the human A.

The assumption of perfect cryptography implies that we consider the libraries
implementing cryptographic operations to be correct. Implementation flaws in
p ≡ p and side-channel attacks are not considered either; however, we highlight
the requirement for the software to ensure that the trustwords database provided
contains exactly the same data in all the distributions, to prevent introducing
false mismatches during the trustwords generation.

7 Further Directions and Concluding Remarks

We reported a symbolic security analysis of the specifications of p ≡ p protocols
for key distribution and authentication, validating the exchange of authenticated
end-to-end encrypted email between two p ≡ p trusted peers. Here, we conclude
by discussing some approaches that we have considered to extend our analysis.

How humans behave when comparing trustwords is not considered in this
work; yet, incorrect input from users, such as mistrusting a trusted peer or
vice-versa, might introduce security flaws. These situations happen, for instance,
when users verify only the first two words of the list or when they click the trust-
words confirmation button without comparing the trustwords. A formal model of
human errors in human-to-machine authentication protocols is proposed in [8];
adapting such an approach to studying further the mentioned scenarios could
give insights into how flaws introduced by users can be prevented. Understand-
ing the causes and frequency of incorrect behavior requires a different kind of
analysis mainly in the scope of usable security.

Regarding the decentralization of keys, we observe that trusting the user
device instead of a third party key server could represent an issue, for instance
if the user misplaces his device and does not have a protected repository. A
comprehensive systematization and evaluation of current architectures and pro-
tocols for securing email is presented in [11], where authors discuss approaches
achieving the strongest guarantees and their adoption decisions.

Since protocols for IM in general provide stronger security guarantees than
those for email [11,25], we speculate whether solutions for automating IM secu-
rity can be applied in the context of email. The Signal protocol [3], for instance,
performs key agreement by mixing multiple Diffie-Hellman shared keys (X3DH)

186 I. Vazquez Sandoval and G. Lenzini

and refreshing keys for every message exchange (double-ratchet), so that earlier
keys cannot be calculated from later ones. The protocol has been formally ana-
lyzed and proved secure regarding secrecy and authentication of message keys
[12]. The underlying reason preventing p ≡ p from adopting a similar approach,
hence upgrading security guarantees while relying less on the user, is Signal’
use of a central server as a deposit for all the public keys involved and which is
assumed to be trusted. This contradicts the decentralized paradigm adopted in
p ≡ p’s design.

Following p ≡ p’s line of automating the processes as reasonably as possible,
an idea to consider is how to automatically derive the trust from shared contacts
with peers already trusted; a sort of an automatic web of trust. While there are
many important considerations, for instance, how to get knowledge of shared
contacts without violating privacy, we believe that this could be a direction
worth studying.

As in the case of p ≡ p, in many systems that involve human-to-human
authentication such a task is not mandatory to provide a service, but rather
used to upgrade the security; therefore, users tend to neglect this step. Studying
causes and solutions for those problems could be interesting from a usability
perspective.

Finally, given that the human-to-human authentication relies on the trust-
words shown to the user, as a next step we plan to verify p ≡ p’s trustwords
generation function. Our approach considers taking advantage of the protocol
verifier Tamarin, which recently added support for XOR operations [16]. Addi-
tionally, we foresee a verification closer to the implementation in the computa-
tional model.

Acknowledgments. Authors are supported by the project pEp Security SA/SnT
“Protocols for Privacy Security Analysis”.

References

1. OpenPGP. https://www.openpgp.org/
2. PGP word list. https://en.wikipedia.org/wiki/PGP word list
3. Signal technical specifications. https://signal.org/docs/
4. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:

Acm Sigplan Notices, vol. 36, pp. 104–115. ACM (2001)
5. Basin, D., Cremers, C., Dreier, J., Meier, S., Sasse, R., Schmidt, B.: Tamarin

prover. https://tamarin-prover.github.io/
6. Basin, D., Cremers, C., Meier, S.: Provably repairing the ISO/IEC 9798 standard

for entity authentication. J. Comput. Secur. 21(6), 817–846 (2013)
7. Basin, D., Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R., Stettler, V.: A formal

analysis of 5G authentication. In: Proceedings of the 2018 ACM SIGSAC Confer-
ence on Computer and Communications Security, pp. 1383–1396. ACM (2018)

8. Basin, D., Radomirovic, S., Schmid, L.: Modeling human errors in security proto-
cols. In: 2016 IEEE 29th Computer Security Foundations Symposium (CSF), pp.
325–340. IEEE (2016)

https://www.openpgp.org/
https://en.wikipedia.org/wiki/PGP_word_list
https://signal.org/docs/
https://tamarin-prover.github.io/

A Formal Analysis of p ≡ p Authentication for E2E Encrypted Email 187

9. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
14th IEEE Computer Security Foundations Workshop, pp. 82–96. IEEE (2001)

10. Blanchet, B.: Security protocol verification: symbolic and computational models.
In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS, vol. 7215, pp. 3–29.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28641-4 2

11. Clark, J., van Oorschot, P.C., Ruoti, S., Seamons, K., Zappala, D.: Securing email.
arXiv preprint arXiv:1804.07706 (2018)

12. Cohn-Gordon, K., Cremers, C., Dowling, B., Garratt, L., Stebila, D.: A formal
security analysis of the signal messaging protocol. In: 2017 IEEE European Sym-
posium on Security and Privacy (EuroS&P), pp. 451–466. IEEE (2017)

13. Cremers, C.: Key exchange in IPsec revisited: formal analysis of IKEv1 and IKEv2.
In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 315–334.
Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23822-2 18

14. Dechand, S., Schürmann, D., Busse, K., Acar, Y., Fahl, S., Smith, M.: An empir-
ical study of textual key-fingerprint representations. In: 25th {USENIX} Security
Symposium ({USENIX} Security 16), pp. 193–208 (2016)

15. Dolev, D., Yao, A.C.: On the security of public key protocols. In: Proceedings of
the 22nd Annual Symposium on Foundations of Computer Science, SFCS 1981,
pp. 350–357. IEEE Computer Society, Washington, DC (1981)

16. Dreier, J., Hirschi, L., Radomirovic, S., Sasse, R.: Automated unbounded verifi-
cation of stateful cryptographic protocols with exclusive OR. In: 2018 IEEE 31st
Computer Security Foundations Symposium (CSF), pp. 359–373. IEEE (2018)

17. (IETF), I.E.T.F.: IANA registration of trustword lists. https://tools.ietf.org/html/
draft-birk-pep-trustwords-03

18. (IETF), I.E.T.F.: pretty Easy privacy (pEp): privacy by default. https://www.ietf.
org/id/draft-birk-pep-03.txt

19. Lowe, G.: Breaking and fixing the Needham-Schroeder Public-Key Protocol using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61042-1 43

20. Lowe, G.: A hierarchy of authentication specifications. In: Proceedings 10th Com-
puter Security Foundations Workshop, pp. 31–43. IEEE (1997)

21. Mauw, S., Cremers, C.: Operational Semantics and Verification of Security Proto-
cols. Springer, Heidelberg (2012)

22. Pretty Easy Privacy: pep source code. https://pep.foundation/pep-software/index.
html

23. Pretty Easy Privacy: pep user documentation. https://www.pep.security/docs/
index.html

24. The Radicati Group: Email Statistics Report, 2018–2022. Technical report (2018)
25. Unger, N., et al.: SoK: secure messaging. In: 2015 IEEE Symposium on Security

and Privacy, pp. 232–249. IEEE (2015)
26. Vazquez-Sandoval, I., Lenzini, G.: Experience report: how to extract security pro-

tocols’ specifications from C libraries. In: IEEE 42nd Annual COMPSAC 2018,
Tokyo, Japan, Vol. 2, pp. 719–724 (2018)

27. Whitten, A., Tygar, J.D.: Why Johnny can’t encrypt: a usability evaluation of
PGP 5.0. In: USENIX Security Symposium, vol. 348 (1999)

28. Zimmermann, P.R.: The Official PGP User’s Guide. MIT Press, Cambridge (1995)

https://doi.org/10.1007/978-3-642-28641-4_2
http://arxiv.org/abs/1804.07706
https://doi.org/10.1007/978-3-642-23822-2_18
https://tools.ietf.org/html/draft-birk-pep-trustwords-03
https://tools.ietf.org/html/draft-birk-pep-trustwords-03
https://www.ietf.org/id/draft-birk-pep-03.txt
https://www.ietf.org/id/draft-birk-pep-03.txt
https://doi.org/10.1007/3-540-61042-1_43
https://pep.foundation/pep-software/index.html
https://pep.foundation/pep-software/index.html
https://www.pep.security/docs/index.html
https://www.pep.security/docs/index.html

Author Index

Abidin, Aysajan 122
Aldini, Alessandro 1
Aly, Abdelrahaman 122

Blanchard, Nikola K. 104
Buriro, Attaullah 156

Carbone, Roberto 138
Costa, Gabriele 138
Crispo, Bruno 156

Dajsuren, Yanja 16
Daoudagh, Said 35

Genç, Ziya Alper 69
Gupta, Sandeep 156

Heutelbeck, Dominic 52
Higo, Haruna 86

Isshiki, Toshiyuki 86

Kachanovich, Siargey 104
Karkhanis, Priyanka 16

Lenzini, Gabriele 69, 171
Lonetti, Francesca 35

Marchetti, Eda 35
Mustafa, Mustafa A. 122

Nara, Masahiro 86

Obana, Satoshi 86
Okamura, Toshihiko 86

Ranise, Silvio 138
Ravidas, Sowmya 16
Ryan, Peter Y. A. 69

Selker, Ted 104
Sinigaglia, Federico 138

Tagliaferri, Mirko 1
Tamiya, Hiroto 86

Vazquez Sandoval, Itzel 171

Waligorski, Florentin 104

Zannone, Nicola 16

	Preface
	ETAA Workshop Introduction
	Organization
	Contents
	Logics to Reason Formally About Trust Computation and Manipulation
	1 Introduction
	2 Trust: Origins and Varieties
	3 LCT: A Logic for Computing Trust
	3.1 Syntax
	3.2 Semantics
	3.3 LCT and the Trust Taxonomy

	4 LMT: A Logic for Trust Manipulation
	5 Conclusion
	References

	An Authorization Framework for Cooperative Intelligent Transport Systems
	1 Introduction
	2 Background
	3 Related Work
	4 C-ITS Reference Architecture
	5 Authorization Framework
	6 Application to Location Tracking Services
	6.1 Location Tracking Services
	6.2 Authorization Framework for Location Tracking Services

	7 Discussion
	8 Conclusions and Future Work
	References

	A Framework for the Validation of Access Control Systems
	1 Introduction
	2 Background
	2.1 XACML-Based Access Control System
	2.2 Mutation Testing

	3 XACML Mutation Framework
	3.1 Workflow of the Testing Process

	4 Examples of Framework Application
	4.1 Instantiation of the XMF Framework
	4.2 Examples of Analysis

	5 Related Work
	6 Conclusions
	References

	The Structure and Agency Policy Language (SAPL) for Attribute Stream-Based Access Control (ASBAC)
	1 Introduction
	2 Attribute Stream-Based Access Control (ASBAC)
	3 Requirements
	4 The Structure and Agency Policy Language (SAPL)
	4.1 Subscriptions and Decisions
	4.2 SAPL Documents
	4.3 Policies
	4.4 Policy Sets
	4.5 Combining Algorithms
	4.6 Expressions

	5 Implementation of an Attribute Stream-Based Policy Evaluation
	5.1 Reactive Programming
	5.2 Reactive Policy Document Evaluation

	6 Conclusions
	A SAPL Grammar
	References

	NoCry: No More Secure Encryption Keys for Cryptographic Ransomware
	1 Introduction
	2 Recalling UShallNotPass: No Random, No Ransom
	3 Security Assumptions
	4 NoCry: Requirements, Design and Implementation
	4.1 Robust Architecture
	4.2 Low False Positive Rate and Minimal User Intervention
	4.3 Optimized Decision Procedure

	5 Methods, Experiments and Results
	5.1 Performance
	5.2 Evaluation of False Positives
	5.3 Evaluation of False Negatives

	6 State of the Art in Ransomware Defense
	7 Critical Discussion and Conclusions
	References

	Security Requirements for Store-on-Client and Verify-on-Server Secure Biometric Authentication
	1 Introduction
	2 Definitions of Store-on-Client Verify-on-Server Secure Biometric Authentication (SCVS-SBA)
	2.1 Components
	2.2 Security

	3 Proposed Scheme and Its Analysis
	3.1 Preliminaries
	3.2 Construction
	3.3 Security Analysis
	3.4 Implementation Results

	4 Related Work
	5 Conclusion
	References

	Reflexive Memory Authenticator: A Proposal for Effortless Renewable Biometrics
	1 Introduction
	2 Challenge-Based Authentication
	2.1 Text Challenges
	2.2 Graphical Challenges

	3 Biometric Authentication Methods
	3.1 Error Rates
	3.2 Eye and Reflexive Biometrics

	4 The Pupil Memory Reflex
	5 Using Reflexive Pupil Dilation for Authentication
	5.1 Basic Protocol
	5.2 Implementation Constraints and Parameters

	6 Error Tolerance and Security Considerations
	6.1 Kinds of Errors
	6.2 Showing More Unknown or Known Images
	6.3 Handling the Probability of an Error
	6.4 Adaptive Error Probability
	6.5 Preventing Targeted Attacks
	6.6 Constraint on a Generalised Use

	7 Extensions and Discussion
	7.1 Potential Extensions
	7.2 Testing Reflexive Pupil Biometrics

	References

	Collaborative Authentication Using Threshold Cryptography
	1 Introduction
	2 System Model and Requirements
	3 Building Blocks and Their Security Definitions
	4 The Collaborative Authentication Protocol
	4.1 Protocol Overview
	4.2 Share Regeneration and Repair
	4.3 Threshold Schnorr Signatures

	5 Security Analysis
	6 Performance Analysis
	7 Related Work
	8 Conclusions
	References

	MuFASA: A Tool for High-level Specification and Analysis of Multi-factor Authentication Protocols
	1 Introduction
	2 Background on MFA
	3 Motivations and Overview of the Approach
	4 Modeling an MFA Protocol
	4.1 MFA Modeling Language
	4.2 Compliance w.r.t. the NIST Classification

	5 Protocol Analysis
	5.1 Attacker Models and Applicability
	5.2 Security Criteria and Complexity

	6 Implementation
	6.1 Questionnaire
	6.2 Translator
	6.3 Analysis
	6.4 Aggregator

	7 Discussion and Future Directions
	8 Conclusion
	A Example Input
	References

	A Risk-Driven Model to Minimize the Effects of Human Factors on Smart Devices
	1 Introduction
	2 Background
	2.1 Terminologies
	2.2 Risk Factors for Smart Devices
	2.3 Security Strategies for Smart Devices
	2.4 Human Reliability Assessment Methods

	3 Problem Description
	4 Our Solution
	4.1 Model Description
	4.2 Risk Assessment Process
	4.3 Resource Revocation Process

	5 Conclusions
	A Summary of features, their incorrect usage patterns, and resources exposed
	References

	A Formal Security Analysis of the pp Authentication Protocol for Decentralized Key Distribution and End-to-End Encrypted Email
	1 Introduction
	1.1 Contributions

	2 Context and Approach
	2.1 Methodology

	3 Background: Pretty Easy Privacy (pp)
	3.1 pp Trustwords
	3.2 Trust Rating and Visual Indicators
	3.3 Technical Specifications of pp

	4 The pp Protocol
	4.1 Public Key Distribution and Encrypted Communication
	4.2 Authentication and pp Privacy Rating Assignment

	5 Security Properties
	6 Formal Security Analysis
	6.1 Threat Model and Trust Assumptions
	6.2 Modeling the pp Protocol
	6.3 Privacy and Authentication Properties of pp
	6.4 Verification Results and Analysis
	6.5 Limitations

	7 Further Directions and Concluding Remarks
	References

	Author Index

