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Non-emergency Patient Transfer
Scheduling and Assignment

Travis Foster, Peter VanBerkel, Uday Venkatadri and Theresia van Essen

Abstract Emergency Medical Services organizations are responsible for providing
paramedic crews, vehicles and equipment to transfer patients from one location to
another in emergency and non-emergency settings. Theymust solve difficult schedul-
ing and assignment problems to ensure on-time arrival of patients and the efficient
use of health care resources during non-emergency operations. Ambulances can
serve both emergency and non-emergency requests but are rarely available to serve
non-emergency requests. Therefore, non-emergency requests are the responsibility
of Patient Transfer Units. The objective of this study is to develop a mathematical
model that will assign Patient Transfer Units to non-emergency patient transfer re-
quests, design a schedule that will minimize travel costs and balance workloads and
apply it to a real-world case study. This paper also proposes a framework to utilize
historical patient transfer data in the scheduling process. The mathematical model
provides decision support for the non-emergency patient transfer scheduling process.
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1 Introduction

This paper examines the scheduling and assignment of non-emergency patient trans-
fer requests. Such transfers can be between any of the following locations: a special
care facility, a hospital or a personal residence. Patient transfers are an important part
of public safety systems as they improve patient care by allowing access to proper and
continuing medical care to patients. In some jurisdictions of Canada, transfers are
conducted by Emergency Medical Service (EMS) providers with paramedic crews
in ambulances or similar vehicles. Increasing transfer volumes add pressure to EMS
providers [10].

From a scheduling and assignment perspective, patient transfers present a unique
challenge to EMS and Operations Research (OR) scientists. Patient transfers are
non-emergency requests and are often scheduled according to:

• Arrival time of request (advance notice or same day).
• The requested time of pickup.
• The availability of transport vehicles in the region.
• Logistical issues surrounding the transfer such as equipment required, current
vehicle location and future pickups.

Many health care organizations, including EMS providers, collect and store large
amounts of historical data. This paper presents a framework for using this historical
data to help a model for patient transfer scheduling and assignment at the offline
operational level [6].

In Sect. 2 we describe the scheduling problem faced by Nova Scotia EMS
providers. In Sect. 3 we review related literature and position our research. In Sect. 4
we present the scheduling model and the framework for integrating their data within
the model. In Sect. 5 we review our results on a real-world case study. In Sect. 6 we
present our conclusions and future work.

2 Problem Description

This research is motivated by Emergency Health Services (EHS). EHS is the organi-
zation that provides EMS to the province of Nova Scotia in Canada. EHS uses vehi-
cles called Patient Transfer Units (PTUs) for a significant portion of non-emergency
patient transfers. For simplicity, the term “patient transfer” will refer specifically to
non-emergency patient transfers.

Patient transfer requests are phoned into EHS when the sending facility has de-
termined a patient requires extra care for transport to a medical appointment. After
a pickup time has been agreed upon between EHS and the requesting party, EHS
schedules the transfer in their system. A preliminary schedule for the following day
is created in the evening with all requests that were submitted in advance. Same
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day requests are submitted to EHS the following day during the operation period.
The schedule is adjusted to account for these same day requests. EHS also assigns a
paramedic crew (who are operating a PTU) during the day-of operation. This assign-
ment depends on several factors including the location of the patient, the location
and status of the crews, future patient transfers and operator knowledge. Delaying or
arriving late to a patient pickup can result in a cancelled or rescheduled appointment
for the patient and a deadhead trip (a completed trip without a patient) for a PTU to
the next patient pickup.

This paper focuses on scheduling advance notice patient transfer requests to min-
imize total travel time while using historical data to inform the model. We are also
interested in introducing workload balancing features to the model. We do not ex-
amine the same day scheduling portion of the problem at this time nor do we address
crew assignment; in this phase of the research, only vehicle assignment and schedul-
ing are considered. This model is then applied to a real-world case study in Nova
Scotia.

3 Related Research

Patient transfer systems are a common part of health care systems and as such,
scheduling patient transfers has been studied extensively. Patient transfer systems
can be modelled as dial-a-ride problems (DARP), a class of Vehicle Routing Prob-
lems (VRP) and part of the Travelling Salesman group of problems. The dial-a-ride
model develops vehicle routes and schedules for n requests divided among k vehi-
cles. We refer readers to Cordeau and Laporte [3] and Ho et al. [7] for additional
information regarding the DARP.

Detti et al. [4] studied a real-world health care example of the DARP with sev-
eral constraints and multiple vehicle depots. They analyze the effectiveness of their
heuristics and a Mixed Integer Programming (MIP) model from real and randomly
generated data. Guerriero et al. [5] solved a multi-objective DARP considering travel
and patient waiting time and demonstrated computational results from their two step
heuristic approach. Workload balancing features such as cost-related objective func-
tions and constraints are explored by Matl et al. [9] in VRPs, including the DARP.
They also review types of VRP workload balancing measures. Berg and Essen [1]
examined scheduling vehicles for patient transfer coverage while minimizing the
impact on emergency vehicles. Marković et al. [8] developed prediction models us-
ing statistical and machine learning algorithms for capacity requirements of a new
dial-a-ride system. Yalçındağ et al. [11] used data driven methods to estimate travel
times in home health care.

Our paper applies a DARP scheduling model including workload balancing, and
data driven statistical models to estimate travel and service times from historical
data to act as an efficient scheduling tool and applied to a real-world case study of a
non-emergency patient transfer system.
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4 Methods

In this section, we first review the approach and assumptions made when modelling
the scheduling processwith aDARPmodel. This approach is used tomimic the actual
scheduling process where a preliminary schedule is created the previous day for all
patient transfer requests submitted in advance. Second, we discuss the historical data
and how it is used as an input to the model.

4.1 Advance Request Model

The model creates a set of routes for k PTUs and n requests while minimizing the
travel time across all routes. The model assumes a single depot to act as the start and
end point for every vehicle. We also assume that we have a homogeneous fleet and
patients. In reality, patients do have different needs but this has little impact on the
time required for a request.

Our DARP model is based off of the three-index formulation found in Cordeau
[2]. However, our model includes workload balancing constraints and variable shift
times for the PTU crews. We use the time windows to ensure patients arrive at their
destination in a timely manner. It is formulated on a directed graph G = (V, A). All
vertices on the graph are represented by i, j = (0, ..., 2n + 1). The pickup nodes are
represented by P = (1, ..., n) and the drop-off nodes are represented by D = (n +
1, ..., 2n). The depot is represented by nodes 0 and 2n + 1. These three indices make
up the vertex set V = (0, 1, ..., n, n + 1, ..., 2n, 2n + 1). Each request is treated as
a pair (i, n + i) that must be visited in order and by the same vehicle.

K represents the set of vehicles. Each vehicle k ∈ K has a capacity of Qk , a
minimum shift start time of Tmink and a maximum shift end time of Tmaxk . Each
node i ∈ V has a service time di and a load qi such that qn+i = −qi . These values for
the depot are such that d0 = d2n+1 = q0 = q2n+1 = 0. Each node has a time window
[ei , li ] where ei and li are the earliest and latest times that service may begin at node
i . Each arc (i, j) has an associated travel time ti j . We use the parameters wb+ and
wb− as the maximum and minimum workload, respectively, for each PTU.

The model has three types of decision variables:

• xki j is a binary decision variable and is 1 if vehicle k will traverse the route from
node i to node j and is 0 otherwise.

• uki decides the service start time at node i by vehicle k.
• lki decides the number of patients in vehicle k after visiting node i.
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The MIP formulation is (1)–(19):

Min
∑

k∈K

∑

i∈V

∑

j∈V
ti j x

k
i j (1)

∑

k∈K

∑

j∈V
xki j = 1 ∀ (i ∈ P) (2)

∑

i∈V
xk0i =

∑

i∈V
xki,2n+1 = 1 ∀ (k ∈ K ) (3)

∑

j∈V
xki j −

∑

j∈V
xkn+i, j = 0 ∀ (i ∈ P, k ∈ K ) (4)

∑

j∈V
xkji −

∑

j∈V
xki j = 0 ∀ (i ∈ P ∪ D, k ∈ K ) (5)

Equation (1) is the objective function where we minimize the total travel time
of the routes. Constraints (2) ensures each request is served once. Constraints (3)
ensures that every vehicle route begins and ends at the depot. Constraints (4) ensures
the pickup and delivery nodes of a request are served by the same vehicle. Constraints
(5) certifies that the vehicle that enters a node will also depart from that node.

ukj ≥ uki + di + ti j − M(1 − xki j ) ∀ (i, j ∈ V, k ∈ K ) (6)

uki+n ≥ uki + di + ti j − M(1 − xki,i+n) ∀ (i ∈ P, k ∈ K ) (7)

uk2n+1 ≤ Tmaxk ∀ (k ∈ K ) (8)

uk0 ≥ Tmink ∀ (k ∈ K ) (9)

ei ≤ uki ≤ li ∀ (i ∈ V, k ∈ K ) (10)

Constraints (6) and (7) guarantee that service time is consistent among every
node, and that the service time at node i + n does not begin until after the service at
node i is completed. Constraints (8) and (9) uphold vehicle shift start and end times.
Constraints (10) ensures that a request is completed during it’s time window.

lkj ≥ lki + q j − M(1 − xki j ) ∀ (i, j ∈ V, k ∈ K ) (11)

lkj ≤ lki + q j + M(1 − xki j ) ∀ (i, j ∈ V, k ∈ K ) (12)

lki ≤ Qk ∀ (i ∈ V, k ∈ K ) (13)

lki ≤ Qk + qi ∀ (i ∈ V, k ∈ K ) (14)
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lki ≥ 0 ∀ (i ∈ V, k ∈ K ) (15)

lki ≥ qi ∀ (i ∈ V, k ∈ K ) (16)
∑

i∈K

∑

j∈V
(ti j + di )x

k
i j ≤ wb+ ∀ (k ∈ K ) (17)

∑

i∈K

∑

j∈V
(ti j + di )x

k
i j ≥ wb− ∀ (k ∈ K ) (18)

xki j ∈ (0, 1) ∀ (i ∈ V, j ∈ V, k ∈ K ) (19)

Constraints (11)–(16) ensures consistency for the passenger load in every vehi-
cle. Inequalities (17) and (18) are the workload balancing constraints. We measure
workload as the sum of the travel time and service time along a PTU’s route.

4.2 Model and Data Framework

EHS captures data such as facility visited, length of time traveled, time spent with
the patient and much more. We use historical patient transfer data to help estimate
travel times, service times and generate samples to test the model. This process is
illustrated in Fig. 1. The DARP model receives the service and travel time estimates
from the patient transfer data in addition to the PTU shift schedules and qi . The
output from this model is the route set (xki j ), service time start times (uki ) and PTU
load (lki ) for each node.

The patient transfer process can be broken into four stages as shown in Fig. 2. A
PTU crew is sent to pick up a patient. They spend t ji minutes travelling to pickup
node i . They spend service time di at the pickup node. Once the patient is loaded into
the PTU, the crew spends ti,i+n minutes travelling to the delivery node where they
spend di+n minutes. When they have transferred care to the receiving facility, the
patient transfer is complete. This is a special case where no additional patients are
picked up once a patient transfer has begun, and Qk = 1.We focus on this case as the
majority of PTUs have a capacity of one. Thesemodel parameters are estimated from
the patient transfer data. We first look at characteristics of patient transfer demand
to determine how we will determine these parameters.

We check patient transfer requests by day of week and by time of day. The day of
week analysis found themajority of patient transfer requests occurMonday to Friday.
Focusing only on those days, Fig. 3 shows requests by time of day. Requests begin
at 6 a.m. We see that requests taper off by 6 p.m.; therefore, that will be the end of
the model’s time horizon. We also note that advance notice requests are more likely
to take place in the morning while same day requests take place in the afternoon.

With these patient transfer trips captured in the data, we use the historical average
to estimate the expected time to travel from node i to node j . These estimates are
used in the model as parameter ti j .
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Fig. 1 Big data and OR framework

Fig. 2 Time stages in the patient transfer process

Fig. 3 Patient transfer requests by time of day
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In this paper, we define two types of service time. The pickup service time is the
time that paramedics spend with the patient at the pickup location before transit be-
gins. Delivery service time is the time spent at the delivery location before completing
the transfer. These are shown in Fig. 2 as di and di+n respectively. Service times are
captured in the patient transfer data. However, numerous factors can influence the
service time, including the facility type, equipment required and whether the patient
is ready when the paramedics arrive. Using the patient transfer data, multi-linear
regression models were created to estimate the expected pickup and delivery service
times for requests. These models use common information that are included in every
patient transfer record. The output of the regression model is used as input to the
DARP model as di . We use day of week, time of day, facility, whether the patient is
bariatric, whether special equipment is required andwhether the request was advance
notice or same day.

5 Results

EHS typically receives 15–45 advance requests per day in the city of Halifax. We
test the model on randomly selected actual problems from the historical data. We can
use the actual service times or generate predicted service times from the regression
model. The computational times are plotted on a logarithmic scale in Fig. 4 shows
that computation time (plotted on a logarithmic scale) increases with the number of
requests. However, every problem tested solved in under one hour of run time using
the Gurobi Optimizer. Since EHS would run the model overnight, we have shown
that the model can be solved in a short time frame where the results will be of use
to EHS. Table1 shows a summary of our tests including the maximum, minimum
and mean number of requests and time (measured in seconds) required to solve the
DARP.

We compare our total travel time against the actual recorded travel time from the
data for advance requests. However, we do not have the original schedules with only
the advance requests. Instead, we have the final schedules with advance and same
day requests. Therefore, we select the 9days where same day requests make up the

Fig. 4 DARP model computational time
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Table 1 Computational results summary

Requests Computational time (s)

Max 49 3281

Min 19 2

Mean 33 319

Table 2 Advance requests study

Advance
requests

Model travel
time

Actual travel
time

Actual
completed
requests

Travel time
difference

Same day
requests

24 645 747 22 102 8

26 771 833 26 62 8

32 847 1244 32 397 9

34 744 1048 34 304 11

35 768 993 35 225 10

37 890 933 36 43 8

39 920 1211 37 291 10

39 740 1191 38 451 11

43 1289 1271 41 −18 12

smallest percentage of all requests. While this is not a completely fair comparison,
focusing on the days with the least impact from the same day requests is as close as
we can get. The results are found in Table2.

For these DARP instances, we see a total reduction in travel time of 1857min, or
206min per day. This is a 19.6% improvement on the actual travel time spent on the
advance requests. The PTUs also only completed 301 advance requests versus the
309 that were planned for as 8 requests were cancelled. Cancellations can happen
for a number of reasons, but it is most likely that this happens when the patient is
not ready for transport. The average travel time spent per request as per the model is
24.6min versus 31.5min in the data, an improvement of 21.7%.

6 Conclusions and Future Work

In this paper, we studied non-emergency patient transfers and applicable operations
research models. We modelled the advance request system using a Dial-A-Ride
Problem approach, and developed a model that will schedule and route PTUs for
a set of known requests. We also develop statistical models for delivery service
times from historical patient transfer data. The historical data is used to inform
model parameters as described in Fig. 1. We present this framework as a method to
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incorporate Big Data and Analytics into non-emergency patient transfer scheduling.
We test our model on historical data and find the model is computationally feasible
for problem sizes we are interested in. Finally, we compare our model’s output to
the actual travel times for days where impact from same day requests is minimal and
find travel time improvements of approximately 20%.

Future work involving this problem could include incorporating the same day
requests into a model to dynamically update the routes as new demand arrives in real
time and investigating the stochastic nature of travel and service times.
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Optimizing Operator’s and Users’
Objectives in Non-emergency Patients
Transportation

Jamal Abdul Nasir, Yong-Hong Kuo and Reynold Cheng

Abstract In this work, we study a Non-emergency Patients Transportation (NEPT)
problem in the context of delivering such services in Hong Kong. The purpose of our
work is to examine the user inconvenience (waiting time)with the goals of optimizing
the vehicle utilization and operating costs.We developed aMixed Integer Linear Pro-
gramming (MILP) formulation for the NEPT problem and solved the mathematical
model by CPLEX to get optimal results. Using a weighted objective function-based
sensitivity analysis, the behaviour of the MILP model is analyzed regarding multiple
performance measures, namely operating cost, underutilization level, and user wait-
ing time. This study provides decision makers with the insights into the impacts of
objective weights on different performance measures. Our solutions not only reduce
the operating costs but also the patient inconvenience. Moreover, our computational
experiments based on a case study demonstrate the effective implementation of the
model and show the practicality of our methodology.

Keywords Dial-a-ride problem · Health care system · Non-emergency Patients ·
Transportation · User inconvenience

1 Introduction

Transportation services to reach the hospitals/clinics are an important part of the
health care system and essential for the well-being of elderly and disabled citizens.
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Non-urgent patient transportation needs and associated circumstances in which pa-
tients are unable to reach or depart from the health care facilities on their own are
defined byBellamy et al. [1]. In order to transport non-urgent patients between homes
and hospitals and among different care units, non-emergency ambulances are usually
employed following the respective appointment specifications of the patients. The
patients who require transportation submit requests with their specific pickup and
delivery addresses and the times ready for pick up. The scheduling and routing plans
for non-emergency ambulances to serve these patients are made considering several
constraints, e.g., time windows, route length, and ride time. Such planning problems
are usually modeled as dial-a-ride problem (DARP) [2] with the aim to minimize the
travelling costs and patient inconvenience. The assignment and scheduling decisions
for non-emergency patients have been also studied in the context of home health care
[3, 4]. From the modeling perspective, DARP resembles Vehicle Routing Problem
(VRP) with pickups and deliveries. However, a clear distinction can be made be-
tween the DARP and other route planning problems by taking into account the user
inconvenience which must be balanced against the operating costs minimization [5].

The problem studied in this paper emerges from the HongKong public health care
system as it investigates the Non-Emergency Ambulance Transfer Service (NEATS)
dedicated to the transportation of non-urgent patients. NEATS works under the Hos-
pital Authority and provides transportation services to three types of patients: (i)
elderly patients attending medical appointments, (ii) patients in need of transfer
between hospitals, (iii) the patients who seek transportation for home when being
discharged from the hospital. Considering the non-emergency nature of these ser-
vices, requests are usually made in advance of the scheduled appointments. Each
ambulance can carry more than one patient, hence group transfers are preferred to
avoid low utilization and extra operating costs. Consequently, instead of a first come,
first served basis, the trip of a patient is scheduled with other patients heading to-
wards the same locality. Although this strategy improves the ambulance utilization
rate and in some case also helpful in reducing travelling costs, the patients’ waiting
time increases more than expectations. Hence there are increasing number of com-
plaints about the waiting time which directly affects the quality of service. In this
work, we examine the patient inconvenience in terms of their waiting time against
the vehicle utilization rate and operating costs. An MILP formulation based on the
DARP is developed to model the problem. In the perspective of economic efficiency
and service quality of the transportation services, the conflicting objectives need to
be considered. Hence the objective function of this mathematical model aims to min-
imize a weighted sum of three components that characterize different performance
measures with respect to non-emergency patients transportation service: (1) the total
distance traveled cost by all the vehicles and the associated vehicle assignment cost,
(2) the total length of waiting time before the arrival of an ambulance to pick the
patients and (3) the total underutilized capacity of ambulances with respect to the
visited nodes.

The remainder of this article is organized as follows. In Sect. 2, we review the
relevant literature. In Sect. 3, we describe the mathematical model for our problem.
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Section4 provides the computational experiments and results. Conclusion and future
work are given in Sect. 5.

2 Literature Review

There have been studies on non-urgent patient transportation problem in the context
of DARP. A NEPT problem with multi-trip ambulance routes and staff planning
was investigated by Lim et al. [6]. Their model formulation contained a hierarchi-
cal objective function. A local search-based metaheuristic method was proposed to
solve the problem. Zhang et al. [7] proposed a memetic algorithm to solve the NEPT
problem. The authors developed a mathematical model that aims to minimize the
travelling cost and the number of unserved requests. Van Den Berg and Van Essen
[8] introduced a method to optimize the routes for NEPT by utilizing a part of the
capacity while the remaining capacity was maximized to handle the emergency pa-
tients. Two approaches were suggested to solve their problem. In the first approach,
an integer linear programming formulation was solved with a time limit, whereas
the second approach presented an alternative formulation with discretized time to
obtain efficient solutions. Similarly, Kergosien et al. [9] considered both emergency
requests and NEPT requests with respect to dynamic arrivals throughout the day. The
authors used a discrete event simulation based tool to analyze the performance of
the proposed management approaches regarding the ambulance fleets. Three man-
agement approaches were investigated in their study: (i) independent management,
(ii) reactive integrated fleet management, and (iii) proactive integrated fleet man-
agement. It was observed that the proactive integrated fleet management approach
provided more promising results and was easy to implement in real-life situations.

Ritzinger et al. [10] studied a DARP in the context of transporting elderly and
handicapped people where user inconvenience was taken into account. The authors
used Dynamic Programming (DP) based exact and heuristic algorithms to provide
solutions for their problem. Taking into account the stochastic information about
the future return transports, Schilde et al. [11] investigated the DARP in the context
of daily operations of the Austrian Red Cross. Four different types of metaheuris-
tic solution approaches were used to find the solutions. It was observed that their
look-ahead approach regarding the future patient transportation assists to improve
the solution quality if the number of patient requests who require the return transport
service are low compared to overall transportation requests. Parragh et al. [12] de-
veloped a two-phase heuristic solution procedure for a multi-objective DARP which
aimed to find the efficient ambulance dispatch plans for the Austrian Red Cross. The
proposed mathematical formulation included patient inconvenience and travelling
cost in the objective function. Path relinking module was used to obtain Pareto op-
timal solutions, where initial solutions were obtained by a variable neighborhood
search-based method. A DARP with heterogeneous vehicles and users was studied
by Parragh [13]. The author considered different usage requirementmodes (stretcher,
wheel chair and seats) and proposed two mathematical formulations. The proposed
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2-index formulation was found better than the 3-index formulation considering a
branch and cut-based solution framework.

Distinguishing between the static and dynamic natures of transportation requests
arrivals, Cordeau and Laporte [5] identified two distinct modes for DARPs. The
static case only serves the transportation requests received ahead of the certain time
limit, whereas dynamic case considers requests throughout the day and updates the
scheduling plan accordingly. In order to serve the dynamic patient transportation
requests between the care units, Kergosien et al. [14] proposed a Tabu Search (TS)
based heuristic algorithm to obatian solutions. The capacity of each vehicle was
limited to one patient only and subcontracting can be done to compensate the capacity
shortage. Three different types of transportation requests were considered in their
work. The suggested solutionmethod stores the routes through adaptive memory and
then the initial solutions are improved by iteratively running the TS algorithm. The
main contribution of our current work is to analyze different performance measures
in the context of NEPT by giving preference to these measures through a weighted
objective function. This study conducts a sensitivity analysis to observe the potential
tradeoff between the operating costs and waiting time considering the NEPT services
in Hong Kong.

3 Problem Description

Each patient request is characterized by a pickup node and a corresponding delivery
node. Let P = {1, ..., n} be the set of pickup nodes andD = {n + 1, ..., 2n} be the set
of patient delivery nodes, where n + j is the delivery node of pickup node j. The route
of each non-emergency ambulance starts from the origin node 0 and terminates at the
destination node 2n + 1. Let Nr = P ∪ D be the set of all the locations to be visited
by an ambulance after leaving the depot. Similarly, No = {0} ∪ Nr represent the set
of origin node and all the pickup and delivery nodes, whereas Nd = Nr ∪ {2n + 1}
denote the set of all the pickup anddelivery nodes and the destination node. TheNEPT
problem is defined on a graph G = (N ,A), where N = {0} ∪ P ∪ D ∪ {2n + 1} is
the set of all nodes andA = {(j, k) | j ∈ N , k ∈ N } is the set of arcs. α1, α2 and α3 are
the assigned weights for respective performance measures. Table1 gives a summary
of related parameters and decision variables used in this mathematical model.

3.1 Mathematical Model

min α1

⎛
⎝ b

∑
i∈V

∑
(j,k)∈A

djk xijk + c
∑
i∈V

zi

⎞
⎠ + α2

⎛
⎝g

∑
i∈V

∑
j∈Nr

uij

⎞
⎠ + α3

⎛
⎝f

∑
i∈V

∑
j∈P

wij

⎞
⎠

(1)
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Table 1 Notations

Notation Definition

Indices

P Set of patient pickup nodes

V Set of non-emergency ambulances

N Set of all nodes

Parameters

Gc Capacity of each ambulance i ∈ V

L Maximum route length for each ambulance i ∈ V

M A very large number

T Service time duration for each patient pickup/delivery service

tjk Time required to travel from node j to k

djk Travelling distance between two locations j and k

pij The number of patients to be picked at pickup node j ∈ P

drj The number of patients to be dropped at delivery node j ∈ D

Esj Time ready for pickup at pickup node j ∈ P

b Traveling cost incurred per unit of distance

c Cost for route assignment to an ambulance

f Penalty for waiting per minute at pickup nodes

g Penalty for underutilization of ambulance at each visited node

Decision variables

xijk 1 if an ambulance i ∈ V travels from node j to k, 0 otherwise

zi 1 if an ambulance i ∈ V has been assigned a route, 0 otherwise

qij Service start time of ambulance i ∈ V at node j ∈ N

VLij Vehicle load for ambulance i ∈ V at node j ∈ N

wij Time waiting for ambulance i ∈ V at pickup node j ∈ P

uij Underutilization of ambulance i ∈ V at node j ∈ N

Subject to:

∑
i∈V

∑
k∈Nr(k �=j)

xijk = 1 ∀j ∈ P (2)

∑
k∈N (k �=j)

xijk −
∑

k∈N (k �=j)

xi,j+n,k = 0 ∀j ∈ P, ∀i ∈ V (3)

∑
k∈Nd

xi0k = zi ∀i ∈ V (4)
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∑
j∈No

xij(2n+1) = zi ∀i ∈ V (5)

∑
j∈No(j �=h)

xijh −
∑

k∈Nd (k �=h)

xihk = 0 ∀h ∈ Nr, ∀i ∈ V (6)

qij +
(
T + tjk

)
xijk ≤ qik + M

(
1 − xijk

) ∀i ∈ V, ∀ (j, k) ∈ A (7)

qij +
∑

k∈N (k �=j)

(
T + tjk

)
xijk ≤ qi,j+n ∀i ∈ V, ∀j ∈ P (8)

Esj
∑

(j,k)∈A
xijk ≤ qij ∀j ∈ P, ∀i ∈ V (9)

Esj
∑

(j,k)∈A
xijk ≥ qij − wij ∀j ∈ P, ∀i ∈ V (10)

VLij + (pik − drk)xijk ≤ VLik + M
(
1 − xijk

) ∀j, k ∈ N (j �= k), ∀i ∈ V
(11)

VLij + uij = Gc
∑

k∈Nr(k �=j)

xijk ∀j ∈ Nr, ∀i ∈ V (12)

∑
(j,k)∈A

djk xijk ≤ L ∀i ∈ V (13)

xijk , zi ∈ {0, 1} ∀i ∈ V, (j, k) ∈ A (14)

qij, VLij, wij, uij ≥ 0 ∀i ∈ V, j ∈ N (15)

The objective function (1) seeks to minimize a weighted sum of the operating
cost (traveling cost and route assignment cost), underutilization penalty cost and
penalty cost for patients waiting times. Constraints (2) ensure that all the requests
are served. Constraints (3) guarantee that the pickup node and the corresponding
delivery node are visited by the same ambulance for each specific patient request.
Constraints (4) and (5) assure that the ambulance route will start at the origin node
and terminate at the destination node respectively. Constraints (6) represent the flow
conservation for ambulances with respect to nodes. Constraints (7) determine the
ambulance arrival time at a pickup/delivery node. Constraints (8) implement the
precedence and ensure that a delivery node is visited only after visiting the associated
pickup node. Constraints (9) assure that the ambulance arrives at a pickup node after
the start of ready-for-pickup time specified by a patient. Constraints (10) calculate
the waiting time observed at each patient node. This waiting time is the difference
between the ambulance arrival time and the ready-for-pickup time specified by the
patient. Constraints (11) determine the vehicle load at each node visited by the
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ambulance. Constraints (12) guarantee that the vehicle load will not exceed the
ambulance capacity and they also define the underutilization level of an ambulance
at each visited node before reaching the last delivery point. Constraints (13) ensure
that the ambulances respect the route length limit. Constraints (14) and (15) show
the binary and positive decision variables respectively.

4 Computational Experiments

We performed computational experiments to assess the performance measures by
varying respective weightings in the objective function. The mathematical formula-
tion was implemented in OPL and solved by CPLEX. The computational tests were
performed on a computer with 3.40GHz Intel Core i5 CPU.

The mathematical model developed in this study is applied to instances based on
a case of Hong Kong. We consider sixty different locations as potential pickup and
delivery points in the Central and Western district of Hong Kong. These locations
include patient homes and public hospitals/clinics in this district. These locations
are marked on the map in Fig. 1. The real distance (djk) and travel time (tjk) between
each pair of nodes is calculated through the Google Maps API. On the basis of this
data, three different sets of problem instances are created which contain ten problem
instances in total. CPLEXcould only deliver the results for the instanceswith 10 pick-
ups and 10 drop-off locations. Therefore, the maximum size of the test instances is
limited to 10 pickup locations in this study. Each set contains problem instances with
different sizes. The size of the problem instances remains same inside a set, whereas
the size of the instances increases as we move from set A to set C. For instance, set A
contains five problem instances and each problem instance in this set has same size (5
pickups and 5 drop-off locations), however, the geographical addresses (coordinates)
for pickup and drop off locations are different for each instance. Table2 presents the
related characteristics and input parameters values used for all the instance sets in

Fig. 1 Pickup and delivery
locations for patients



20 J. A. Nasir et al.

Table 2 Instance characteristics

Inst. # Pickup
nodes

# Delivery
nodes

# Ambulances Capacity Route length

A 5 5 3 7 50

B 7 7 3 7 50

C 10 10 4 7 50

terms of pickup nodes (P), delivery nodes (D), number of ambulances (V ), capacity
(Gc) and route length (L). The ready-for-pickup times are distributed randomly over
a time period of seven hours. The cost values (b, c) are chosen based on the context of
Hong Kong and these values are 4 Hong Kong Dollars (hkd) per unit of distance and
500 hkd per ambulance respectively. The penalty cost for underutilization (g) is four
times less than the waiting penalty (f ), as the underutilization will occur on almost
every node and the respective values will always be large at the nodes earlier in the
route. For the initial experiments equal weights are assigned to all the performance
measures in the objective function (α1 = α2 = α3 = 1), though the varied weights
are used in the sensitivity analysis to observe the tradeoff between these performance
measures.

4.1 Results

Table3 shows the results for all the instances. The run time is expressed in seconds
and objective value is stated in terms of hkd. The results obtained by CPLEX show

Table 3 Results for the MILP model solution

Inst. type CPU (s) Total cost Travelling
cost

Ambulance
route cost

Waiting
time cost

Under
utilization
cost

A1 45 630.40 52.40 500 40 38

A2 63 584.00 10.00 500 36 38

A3 29 610.40 24.40 500 48 38

A4 80 636.40 26.40 500 72 38

A5 18 593.60 19.60 500 36 38

B1 2500 666.40 46.40 500 76 44

B2 2345 678.75 58.75 500 76 44

B3 2763 672.20 41.20 500 87 44

C1 5800 675.35 65.35 500 64 45

C2 4750 685.41 73.41 500 55 57
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the successful implementation of the MILP model as the scheduling and routing
decisions respect the associated constraints while minimizing the total cost. Clearly,
the run time for each instance is highly dependent on the problem size and increases
significantly with the increasing size of the problem as shown in the 2nd column.
The total cost values increase from first to last set owing to the increasing size of
the problem. The penalty cost values for user inconvenience are large in some cases
(e.g., waiting time cost (B3) = 87). Such results are observed due to the equal pref-
erence given to all performance measures as far as respective weights are concerned
(α1 = α2 = α3 = 1).

4.2 Sensitivity Analysis

Preference among the performance measures of the objective function is expressible
by setting significantly different values for the respective weights of these measures.
In order to observe the behavior of theMILPmodel against the variation in the values
of assigned weights to performance measures, we performed a sensitivity analysis
by varying the weights of first two measures (α1, α2) between 0 and 1, whereas α3 is
kept constant. For the purpose of this analysis, one instance from set A is selected and
solved through CPLEX. This analysis aims to examine the impact of operating cost
and underutilization level on the patients’ waiting time. Theweights for α1 and α2 are
simultaneously changed in descending and ascending order respectively (α1 = 1 to
0.1, α2 = 0.1 to 1), whereas α3 is kept at 1. It was noted that the waiting time shows
considerable change when the value of α1 is changed. The lowest value for waiting
time is achievedwhenα1 = 0.1 andα2 = 1.0. Thewaiting time costs, operating costs

Fig. 2 Waiting costs, operating costs and underutilization costs against the considered scenario
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and underutilization costs against different weights are shown in Fig. 2. Considering
the results, clearly a trade-off exists between the operating cost and the waiting cost.

The results of sensitivity analysis indicate that thewaiting time ismore sensitive to
the lower values of operating costs related to route assignment cost. It was observed
that the waiting time changes significantly when very low weights are assigned to
α1 as shown in Fig. 2. Hence, the decision makers can reduce the user inconvenience
by making a proper trade-off between operating costs and waiting time penalty.

5 Conclusion

This article studies the transportation services for non-emergency patients consid-
ering the NEPT services being provided in Hong Kong. This problem is modeled
as a DARP with weighted objective function featuring three different performance
measures. The problem takes into account the constraints related to the earliest start
time, route length for ambulances and capacity limit. The results obtained by CPLEX
indicate the successful implementation of theMILPmodel to perform the scheduling
decisions. Moreover, a sensitivity analysis is performed to examine the behavior of
the mathematical model with respect to the different performance measures. It was
noted that the waiting time is reduced when a low preference is given to the operating
costs. In the future work, these performance measures can be further studied by in-
corporating dynamic arrivals of patient requests and integration between emergency
and non-emergency fleets of ambulances. Moreover, efficient heuristic methods can
be developed to handle larger problem instances.
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Modelling Hospital Medical Wards
to Address Patient Complexity:
A Case-Based Simulation-Optimization
Approach

Paolo Landa, Micaela La Regina, Elena Tànfani, Francesco Orlandini,
Mauro Campanini, Andrea Fontanella, Dario Manfellotto and Angela Testi

Abstract In this paper we focus on patient flows inside Internal Medicine Depart-
ments, with the aim of supporting new organizational models taking into account
the patient relevant characteristics such as complexity and frailty. The main contri-
bution of this paper is to develop a Discrete Event Simulation model to describe in
detail the pathways of complex patients through medical hospital wards. The model
has been applied to reproduce a case study of an Italian middle size hospital. The
objective is quantifying the impact on resource use and outcome of introducing a
new organizational model for medical departments. The re-organization is mainly
focused on changing the available beds assignment among thewards to better address
the complexity of care of patients with comorbidities. Following a patient-centered
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approach, patients are segmented considering the clinical characteristics (i.e. the
pathology, proxy of Diagnoses Related Groups classification) and sub-grouped con-
sidering other characteristics, such as comorbidities and ward of admission. Then, an
optimization component embedded into the model chooses the best pooling strategy
to reorganize medical wards, determining the corresponding number of beds able to
improve process indicators, such as length of stay. The simulationmodel is presented,
and preliminary results are analyzed and discussed.

Keyword Simulation-optimization · Internal Medicine Ward organization ·
Clinical pathway · Hospitalist-based model · Data segmentation

1 Introduction and Problem Addressed

In the last few years with the fast progress of medical knowledge, the education of
doctors has evolved towards greater specialization. Within the medical area, many
sub-specializations, such as cardiology, pulmonology, gastroenterology, geriatrics,
etc., gemmated from Internal Medicine [2]. The need to investigate each medical
condition has led, from an organizational point of view to the birth of different
medical wards, each corresponding to a specific specialization [12]. Consequently,
patients are today admitted to different wards depending on the prevalent clinical
problem that led to the need for the hospital admission.

The problem arises from the fact that, to the greater specialization of medical
knowledge, an evolution of the patient’s conditions in the opposite sense is observed.
The presence of multiple-pathologies and social frailty represent the epidemic of the
third millennium, and they are mining the sustainability of national and worldwide
health systems [17]. This problem affects mostly patients admitted in hospital that
have an age over 65 year old, with an average of 2.7 chronic diseases, requiringmedi-
cal care for an acute transient condition, i.e. an infection, that triggers a decompensa-
tion of chronic condition or acute decompensated heart failure, and/or a complication
such as diabetes onset [8]. The clinical complexity is increased by functional and
cognitive decline, adverse events given by the use of multiple drugs, socioeconomic
deprivation andpoor familiar support. These patients, often called frail, require urgent
organizational changes to address their health needs appropriately [5].

The first change to be addressed concerns the professional education of medical
specialists who should regain their main characteristics, being doctors of complex-
ity capable of treating the patient following a holistic approach. The appropriate
professional figure, already introduced 20 years ago in the US, could be the “Hospi-
talist”, a medical specialist, more often a specialist in Internal Medicine hat should
have the clinical, organizational and relational skills needed to the integrated care of
complex patients with multi-pathologies [18]. The introduction of this new figure in
a specialty-based hospital, however, is not sufficient to meet patient requirements,
even if it seems to produce performance gain as literature proves [16, 19] but, in our
opinion, it is not enough.
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A second change is essential to take full advantage of this new professional figure,
i.e. the reorganization of medical wards from specialty-based care to a patient-
centered one. This change requires a cultural shift and a complete re-thinking of
medical Departments, or even the whole hospital, where the divisions among sub-
specialties should disappear. This does notmean, of course, that specialized cardiolo-
gists, pulmonologists, geriatricians and other specialized clinicians should disappear,
but that they should not be assigned a specific ward. Instead, they should work in
multidisciplinary teams coordinated by the global approach of the hospitalist. Some
specialized units should remain for particularly severe intensive care such as the
ICU for cardiac disease. This reconfiguration is the only one able to face the needs
of new patients in the most appropriate clinical way as recent studies show it is a
reconfiguration based on the patient and not on the hospital supply [4, 11]. However,
before the introduction of organizational innovation, an evaluation of the expected
impact should be carried on.

Whether this patient-centered reconfiguration also brings some advantages in
terms of resource use and outcome to the traditional specialty-based one, is the
specific aim of this work. The resource use is a proxy of the number of ward beds
needed and costs for laboratory and diagnostics, while the outcome is assessed by
means of the average length of stay. Themain contribution of this paper is to develop a
Discrete Event Simulation (DES)model to firstly reproduce the traditional (specialty-
based) organization of a real case study and to evaluate the impact on resource
utilization (beds and costs) and outcome (average length of stay) of re-organizing
the stay areas using a patient-centered model. In the patient-centered model the
specialist wards are merged into a unique Internal Medicine Ward (IMW) to better
address the complexity of care of patients. Besides, the optimization component
embedded in the DES model is used to determine the optimal (minimum) number
of beds necessary to manage the overall cohort of patients flowing in the hospital
IMWs following the patient-centered organizational model.

The paper is organized as follows: In Sect. 2, the study motivation is presented
together with a brief description of the organizational models to be tested. Section 3
reports the case study, data collection, and analysis. In Sect. 4 the simulation model
development is introduced, and some details of the methodology and assumptions
are reported. The results given by the simulation-optimization for the case study
are analyzed in Sect. 5. Finally, in Sect. 6, conclusions and future direction of the
research are reported.

2 Study Motivation

This study began from a collaboration with a group of internists involved in an
advanced master level course titled “Hospitalist: managing complexity in Internal
Medicine inpatients”. The aim of the course was forming these internists as Hos-
pitalist, for the Italian hospital sector. As reported in Sect. 1, Literature shows that
the introduction of hospitalists in IMWs could result in reduced costs, shortened
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lengths of stay, preserved or even enhanced the quality of care and patient satisfac-
tion, in essence improving the “value of care” [16, 19]. However, the introduction of
this figure poses additional issues on how healthcare services should be organized
around acute multi-pathology patients. At least, to the authors’ knowledge and expe-
rience, no studies are dealing with the evaluation of the re-organization of the stay
area connected to the introduction of this new figure.

The organizational models herein compared are referred to as the specialty-based
and the patient-centred model, respectively. The first reproduces the current practice
where patients are admitted in a ward following the main acute clinical problem.
Specialty-based hospitals cannot assure global and efficient care for multi-pathology
and frailty of patients [15]. Their hospital stay will likely be fragmented in more,
isolated episodes of carewith transfers from the emergency department to otherwards
(e.g. infectious disease, cardiologic and metabolic wards). Movements among wards
are uncomfortable and risky for patients. Transitions of care are invariably associated
with loss of clinical information, duplication of tests, unintentional pharmacological
discrepancies andmuchmore. In the re-organization that follows the patient-centered
model, the patient is admitted in a unique IMW where the hospitalist organizes and
takes in charge the patient hospital stay managing a multidisciplinary medical team
and assuring a holistic vision of the care.

Thanks to the collaboration of the clinicians involved in this study, we had the
opportunity of collecting a large amount of clinical historical data of patients admit-
ted in hospital with a diagnosis among the most prevalent in the Internal Medicine
area. The inclusion criteria and the resulting cohort of patients analyzed are reported
in Sect. 3. The clinical pathways of all patients with the same health problem, age,
comorbidity conditions, severity of illness are analyzed with a focus on the differ-
ences in terms of resource use and outcome depending only on the organizational
model: specialty-based or patient-centered. Starting with the data collected, a dis-
crete event simulation model evaluates the benefits of introducing a patient-centered
reconfiguration of the stay area in terms of resource use and outcome.

3 Case Study: Data Collection and Analysis

The case study herein reported refers to a Ligurian Local Health Authority (ASL5)
sited in La Spezia province (Italy). ASL5 is one of the Local Health Authorities
of Liguria Region. It provides, directly or through accredited public and private
subjects, the following services: (i) services provided on the Essential Health Care
Levels (LEA) in the form of district assistance and hospital care health services, (ii)
high social and health integrated assistance, and (iii) emergency health services. It
provides health services to 217,507 inhabitants (which 27.4% is over 65 years old).
About 8500 inhabitants are frail and at risk of disability, while 8300 have a disability.

Administrative data coming from the Hospital Discharge Episodes Database
(HDED) and medical data coming from Electronic Patient Record (EPR) collected
from January 2016 toDecember 2016were analyzed. TheHospital Discharge Report
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Table 1 Number of patients admitted for each DRG and ward (year 2016)

DRG

Ward 087 089 090 127 576 Total

Cardiology 71 1 2 140 5 219

Geriatrics 64 83 14 155 61 377

Infectious diseases – 21 15 1 97 134

General Medicine 1 199 52 36 129 109 525

General Medicine 2 566 37 16 163 351 1133

Respiratory Medicine 266 40 27 3 3 339

Total 1166 234 110 591 626 2727

includes administrative data, as well as the date of admission and discharge, the trans-
fers of the patient between wards, the diagnosis, and the DRG assigned. Data from
EPR include all the tests and consultations (blood transfusion, specialist visits, diag-
nostic tests, laboratory tests, and other tests) performed to the patient during the
hospital stay. The cost of these specialist and diagnostics services were provided by
the Italian National Health System official tariff list. Other data were collected by
the Hospital management accounting service.

The analysis is focused on the six medical wards reported in Table1, two of them
(General Medicine 1 and General Medicine 2) are generic, and the other four are
specialist wards. With reference to the pathologies to be included, as suggested by
the hospital physicians involved in our study, the analysis focused on five Diagnosis
Related Groups (DRGs) covering on average 70% of the total cases (DRG 087:
Pulmonary edema and respiratory failure, DRG 089: Pneumonia and pleuritis with
complications, DRG 090: Pneumonia and pleuritis >17 year old, DRG 127: Heart
failure and shock, DRG 576: Sepsis without medical ventilation).

All DRGs are treated within each of the six wards. The total number of patients
admitted by eachwarddepends on the differentward capacity in termsof resource, but
they are not distributed exclusively following the prevalent condition. For instance,
specialist wards, as cardiology and infectious diseases, admit patients with heart
failure and sepsis, respectively, but also with respiratory problems.

As a consequence, patients with heart failure are almost equally distributed among
cardiology, geriatrics and general medicine wards, while patients with pulmonary
edema and respiratory failure are mostly managed by respiratory medicine and gen-
eral medicine wards. This situation however, engenders different organizational pro-
cesses leading to a different length of stay and an average cost of treatment for each
patient at the parity of DRG, as pointed in Tables 2 and 3. For instance, the same
condition Heart failure has a LOS ranging from 5.9 in the specialist ward Cardiology
to 9.4 in General Medicine 2. There is a large variability also across wards about all
wards: sometimes the difference is due to the specific treatment—this seems to be
the case for the Infectious disease ward. However, in other cases, differences appear
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Table 2 Average length of stay (in days) for each DRG and ward of admission

DRG

Ward 087 089 090 127 576 Average

Cardiology 7.3 5.0 5.5 5.9 16.0 6.6

Geriatrics 8.7 9.5 8.2 8.9 9.5 9.1

Infection and Immunology – 11.6 6.9 7.0 15.7 14.0

General Medicine 1 10.2 11.3 8.2 9.4 12.9 10.5

General Medicine 2 7.4 6.7 5.6 6.5 7.8 7.3

Respiratory Medicine 9.6 7.9 6.3 6.7 2.7 9.0

Average 8.4 9.3 7.1 7.6 10.1 8.7

Table 3 Average cost per patient (in Euro, e) for each DRG and ward of admission

DRG

Ward 087 089 090 127 576 Average

Cardiology 2793.40 1948.60 2131.50 2273.30 6013.40 2524.60

Geriatrics 2816.70 3087.60 2651.10 2894.20 3085.40 2945.50

Infection and
Immunology

– 5805.60 3515.80 3679.60 7824.30 6994.70

General Medicine 1 3047.80 3348.10 2426.70 2850.50 3819.00 3146.60

General Medicine 2 2278.40 2053.20 1727.20 2030.30 2388.90 2261.80

Respiratory Medicine 4593.20 3785.50 3052.30 3212.40 1368.30 4334.40

Average 2998.70 3340.30 2650.20 2502.30 3572.10 3038.00

to be unjustified: for instance, General Medicine 1 has a larger average LOS for all
the DRGs, while General Medicine 2 has on average three days less.

Large variability is also observed with regards to the average cost for each DRG
(see Table 3). The average cost for each ward is given by the sum of different items:
average utilization of diagnostics and laboratory and the average daily cost times the
number of days.

The variability of the average cost depends, of course, by the clinical pathway
(DRGs) requiring different bundle of services (diagnostics and so on), for instance in
the case of Respiratory Medicine and Infectious Diseases. However, in other cases,
as between General Medicine 1 and General Medicine 2, for the same DRG, the
detected lower LOS seems to be justified by a different organizational model able to
achieve larger productivity of the given beds and resources.

The comparison between the different organizational models for the same DRG,
however, is correct only if patient complexity for each DRG is similar among the
different wards. The analysis of the demographic and clinical data summarized in
Tables 4 and 5 show large variability among the complexity of patients addressing
different wards. Complexity is assessed by three characteristics drawn from admin-
istrative data (HDED): (i) demographic characteristics (age, sex); (ii) comorbidity
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status (measured by the Charlson Comorbidity Index; (iii) severity condition and
mortality risk (APR-DRG classes).

The Charlson Comorbidity Index (CCI) was computed following the specific
criteria reported in Deyo et al. [7]. The CCI is amethod of categorizing comorbidities
of patients based on the International Classification of Diseases (ICD) diagnosis
codes reported in administrative data, such as electronic patient records. Seventeen
comorbidity categories are included with associated weight (from 1 to 6), based on
the adjusted risk of mortality or resource use, and the sum of all the weights provides
a final comorbidity score for the patient. A score of zero indicates no comorbidities.
The higher is the score, the more likely the predicted outcome will result in mortality
or higher resource use. In this study, we use four classes of comorbidity with score
values of 0, 1–2, 3–4 and more than 5 respectively.

The Patient Refined Diagnosis Related Group (APR-DRG), is an inpatient clas-
sification system that assigns a Diagnostic Related Group value, a Risk of Mortality
subclass and a Severity of Illness subclass ranging from 1 to 4 in ascendant order of
risk and severity [13]. Regarding the Clinical pathways, we mean the main disease
condition causing hospitalization (proxy of DRG, coded using ICD9-CM v.24). In
Table 4 for each ward are reported the demographic characteristics and the comor-
bidity status while in Table 5 the severity conditions, i.e. severity class and mortality
risk.

General Medicine wards have the largest quantity of patients covering about 70%
of the overall sample, while the smallest units in terms of patient treated are Cardiol-
ogy and Infection diseases wards. More than half (63%) of overall patients are older
than 80 years old, while the patients between 65 and 80 years old and the patients
with less than 65 years old represent 27% and 10% of the cohort, respectively. Most
of the patients have a CCI of 1–2 (48%) and 0 (42%). Patients with a CCI of 3–4 and
larger than 5, are 8% and 2%, respectively A larger quantity of CCI 3–4 is present
in the Geriatric unit (14%).

The most frequent APR severity class is 2 (60%), where in General Medicine 1
and Respiratory Medicine has a maximum of 67% and 77%, respectively. The 16%
and 22% of patients have a severity class of 1 and 3, respectively, while only the 2%
has a severity class of 4. The most frequent APR mortality risk is 2 (43%), where in
Cardiology and Geriatric units has a maximum of 67% and 49%, respectively. The
17% and 35% of patients have a mortality risk of 1 and 3, respectively, while only
the 5% has a mortality risk of 4. Infection and Immunology ward treat patients with
higher APR values (both severity class and mortality risk). Geriatrics, Immunology
and General Medicine 1 and 2 have at least the 30% of patients with a high risk
of mortality (3 or 4). Different combinations of complexity characteristics for each
Clinical Pathway (represented by the DRG) define groups of patients that should be
homogeneous with respect to the resource use and cost. After this adjustment, the
residual variability among wards is due only to different organizational models.

In the next section a simulation model is developed to evaluate the impact on
resource utilization (beds and costs) and outcome (average length of stay) of merging
all IMW into a unique ward following the best model.
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4 Simulation Model Development

The adoption of simulation modeling in the healthcare context derives from the
need to reproduce the system reality and to provide to the decision maker a good or
optimal solution for health policies. Since the 1970s were published several scientific
articles where simulation techniques were applied to analyze healthcare services [3,
9, 10]. DES is a simulation technique that was used widely in health care to provide
evidence of “what-if” and scenario analysis before implementation in reality [20].
DES is an effective modeling technique to represent the care pathways structures, it
can include inside its structure resource constraints and health outcomes. “What-if”
scenarios analyses and determines the effect of implementing changes and process
re-organization in the whole system performance [6, 14]. The adoption of solutions
provided by “what if” analysis through simulation models, enables to understand
the system behavior and the implication of a process re-organization before their
implementation [1]. In this paper, a DESmodel has been developed and implemented
using the simulation softwareWITNESS to assess the impact of introducing a patient-
centered reconfiguration of the medical wards stay area. The schematic flow chart
of the resulting DES model is reported in Fig. 1.

Following a patient-centered perspective, new patients enter the system belonging
to a Pathology-related Clinical Pathway, represented by the DRG. Note that, all
patients arrive as urgent and are directly admitted from the Emergency Department.
The number and time of arrivals of patients for each DRG are taken from the data
collection as well as the main characteristics associated. To consider the current
occupation of beds at the beginning of the planning horizon, the number and LOS
of patients already in the hospital are generated using retrospective data and pushed
into the stay area. Note that, using the real data to feed the system with the patients
already present at the beginning of the simulation run, we do not need to perform a
warm-up to reach steady-state simulation. In fact, in our analysis, wewant to simulate
the flows of the cohort of patients as collected by real data verifying the impact of
different organizational settings.

During the simulation run, new patient arrivals are managed using an arrival
profile input data. Patients arriving in the system are segmented using demographic
and clinical characteristics, as reported inTables 4 and5,DRGandwardof admission.
Different combinations of these characteristics define groups of patients homogenous
with respect to the resource use and cost. Each identified group is then associated
with a LOS and cost distribution function. After hospital admission, patients flow in
the system depending on the clinical pathway and organizational model of the stay
area used.

As introduced in Sect. 2, the organizational model refers to how the stay areas are
organized, i.e. specialty-based versus patient-centered hospital organization. The first
reproduces the current practice where patients are admitted in the ward collected by
real data. Instead, in the re-organization that follows the patient-centered model, all
patients are accepted into a generic ward, where the multidisciplinary team organizes
and takes in charge the patient hospital stay and providing a holistic vision of the
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Fig. 1 Schematic flow chart of the system under study

care process. Dealing with multi-pathologies patients recovered in medical wards,
the main resources in the care process are beds and clinical staff. Assuming that
the number of clinicians and nurses are fixed, the main question herein addressed is
determining how many beds are needed for each ward to treat the considered cohort
of patients in both scenarios. To answer this question, we used the optimization
module integrated into the simulation environment. We use as constraints the overall
capacity in terms of the number of beds for eachward, as collected from real data. The
objective function aims at defining the optimal number of beds to avoid cancellations
and delayed admissions. Obviously, in the best scenario the objective function must
reach the null value, guaranteeing that all patients arriving in the system in the exact
timing of the real data (real arrival profile) are admitted.
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5 Preliminary Results

The data-driven simulation model has been used to exactly reproduce the cohort of
patients under study with their characteristics and their flow rules validated with
the clinicians involved in our study to ensure its ability to represent the real system
under investigation. Two scenarios are tested to evaluate the effect of re-organizing
the “traditional”, specialty-based, stay area (eachmedical ward has its available beds)
into a new patient-centered organization (beds are shared among all medical wards
and patients are all treated as they are in an IMW).

In Table 6, the number of beds needed and the average length of stay in the
three scenarios are reported. Note that, concerning the patient-centered model, two
configurations are tested using for each patient group the LOS distributions and costs
of the data collected in General Medicine 1 and General Medicine 2, respectively.

In both patient-centered scenarios, a reduction of the total number of beds needed
is shown passing from 119 beds, in the current scenario (Specialty-based), to 115
and 98, respectively, in Patient-centered configuration (1) and (2), with a percentage
reduction of beds of 3.4% and 17.6%. The outcome, measured by the average length
of stay, shows improvement only in the Patient-centered model (2), where it reduces
from 9.4 days to 8.3 days on average with a percentage reduction of 11.7%.

In Table 7 the average cost for eachDRG and the total cost of the cohort is reported
for the two scenarios. For both configurations of the patient-centered model a cost
reduction is observed for all DRGs. Note that the average cost herein reported is
weighted for the number of the patient in the segment and reflects the differences
among the number and types of tests performed to the patients belonging to the
segment analysed. Shifting from a specialty-based model to a patient-centered one,
a total average reduction of 3% and 28% is obtained in configuration (1) and (2)
respectively.

The better results of configuration (2) can be explained by the different skills of
the clinicians of the two wards that affect the clinical pathways and outcomes of
patients treated. In particular, in General Medicine 2 ward, the skills and abilities of
the physicians are similar to the hospitalist, as described by literature: they perform
ultrasounds on their own, as well as most invasive procedures such as positioning
of central venous catheters, they plan the controls themselves or some changes in
therapies such as insulin or laxative, helping to anticipate the controls, identify early
or prevent complications, and thus shorten the stay and reduce the costs accordingly.

6 Conclusions and Future Works

This study focuses on the analysis of the impact of the adoption of a new organiza-
tional model for medical wards (Patient-centered model) with respect to the standard
organization currently in use (Specialty-based model), considering both resources
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Table 7 Specialty-based versus Patient-centered model (average cost for DRG and total cost in
Euro, e)

Specialty-based
model

Patient-centred
model (1)

Patient-centred
model (2)

DRG Average cost

087: Pulmonary
edema and
respiratory failure

2998.68 2832.19 2269.35

089: Pneumonia and
pleuritis with
complications

3340.27 2818.04 1823.34

090: Pneumonia and
pleuritis >17 years
old

2650.19 2286.95 1684.89

127: Heart failure
and shock

2502.26 2667.70 1975.23

576: Sepsis without
medical ventilation

3572.08 3560.18 2455.67

Average total cost 3037.98 2940.44 2186.53

use and outcomes. The flowof patientswithin the hospitalwardswasmodeled includ-
ing patient-relevant characteristics such as severity, comorbidities, age, and sex. A
Discrete Event Simulation model was developed to represent the pathways of com-
plex patients through medical hospital wards. The model evaluates the length of stay
of patients and the resource use (consultations, blood transfusions and diagnostic,
cardiology, imaging and laboratory tests), using two organizational models. A real
case study based on a medium hospital setting was analyzed. The results show that
the patient-centered model provides an improvement in terms of beds needed and
length of stay reduction of about 17% and 12%, respectively. The reduction of costs
provided by the patient-centered models of 3% and 28%, respectively.

This study presents two main limitations: the first consists in the limited use of
outcome indicators,where other outcomes should be included such as 90-days patient
readmission and in-hospital mortality; the second derives from the hospital data
which the model is based, a sensitivity analysis should be provided in order to verify
the robustness of the results. Future work will be directed to test the model on a larger
dataset, made up of three years of hospital data records also distinguishing in detail
the results with respect to different DRGs. Indeed, wewill useMachine unsupervised
learning techniques, such as K-means clustering to identify the main characteristics
able to create representative clusters of patients, with similar characteristics in terms
of the intensity level of care and corresponding costs.
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Benefits of a Broader View: Capturing
the Hospital-Wide Impact of Surge
Policies with Discrete-Event Simulation

Carolyn R. Busby and Michael W. Carter

Abstract There are many examples in the literature of techniques aimed at optimiz-
ing bed capacity and allocation, reducing EDwaiting time andmaximizing operating
room utilization; however, most draw narrow boundaries around a specific depart-
ment or service (specialty) or tackle each problem in isolation. These approaches help
diagnose department specific issues but miss the wider picture and fail to capture
the upstream and downstream impacts. This is particularly important in congested
hospitals where operational issues in one department will likely have a ripple effect
throughout the hospital. This inter-department dependence in congested hospitals
is reflected in the surge policies used when congestion reaches a threshold that is
deemed to require a whole hospital response. A hospital-wide generic discrete-event
simulation (DES) model, that factors in the effects of congestion, has been built to
tackle these problems. Insights on the importance of wide model boundaries and
surge protocol modelling, gained through application of the model at three hospitals
in Ontario, Canada, are shared. Example scenarios used to illustrate this include early
discharge planning, and surgical throughput improvement.

Keywords Discrete event simulation · Hospital · Patient flow · Surge policy

1 Introduction

In a congested hospital, the interactions between departments become pronounced
as patients compete for resources across the hospital. In addition, hospitals routinely
facing congestion use “surge protocols” to help alleviate the pressure. In order to
accurately capture patient flow in these hospitals, a discrete-event hospital-wide
model, that includes surge protocols, was constructed. The model can be used to
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aid decisions on inpatient capacity and allocation, operating room scheduling, and
hospital flow policies. Output includes ED boarding time (time in ED waiting for
an inpatient bed), operating room throughput and cancellations, inpatient occupancy
and off-servicing rates (patients put in bed assigned to different service (specialty),
alternately referred to as “misallocation” or “outlier”). The model was constructed
as a generic model such that it could be used at multiple hospitals. In this paper we
discuss the validation and application of this model at three hospitals, highlighting
insights gained on the value of hospital-widemodelling and surge protocol inclusion.

Many healthcare and simulation reviews [6, 7, 10, 12, 13, 26] conclude that very
few hospital-wide models have been reported in the literature. Modelling multiple
departments allows interactions between departments to be captured and ensures that
problems are addressedwhere they originate. If focus is on just one department, effort
may be spent within that department to compensate for an issue originating in another
department, when itwould bemore appropriately addressed at the source [26].While,
there is evidence that research is trending towardsmore integratedmodelswithmulti-
facility, multi-stage patient flows [2], hospital-wide discrete event models are still
rare. In addition, most whole-hospital models are high-level, lacking detailed patient
flow and/or coverage [4, 15–17, 19]. On the other hand, Norouzzadeh et al. [21]
focus in on the details of the transition between the ED and the inpatient wards,
modelling the staff communication process at a community hospital. Our model
does not explicitly capture staffing as beds are the main constraint in congested
hospitals, and wait times are generally measured in hours rather than minutes.

In congested hospitals, problems in one area quickly spread to other areas of the
hospital. Likewise, improvements in one area can alleviate congestion in another.
Surge protocols employed routinely in congested hospitals provide an example of
how congestion is addressed using a hospital wide approach. Surge protocols vary by
hospital but are typically triggered by insufficient inpatient bed availability or crowd-
ing in the Emergency Department. Typical surge responses include: increased effort
to discharge eligible patients (“reverse triage”); opening extra beds; delaying trans-
fers from other hospitals; transferring patients to other hospitals; canceling surgery;
moving patients to lower level of care to make room for more acute patients; and
increasing off-servicing options. The importance of Bed Management and potential
solutions, including surge protocols, are thoroughly discussed in Proudlove et al.
[23]. The need to include surge policies is illustrated by Wolstenholme et al. [27]. In
order to validate a nationally developed System Dynamics model at the local level,
they found that they needed to incorporate local coping strategies used in times of
congestion. Finally, Landa et al. [18] use DES and multi-objective optimization to
determine the optimal bed management decision rules and bed allocation to achieve
minimumEDboarding time, number ofEDboarding patients, number of off-serviced
patients, and cancelled elective admissions. The simulation model captures arrival
streams from both the ED and elective patients into inpatient beds differentiated by
service (ED patients could also flow through a short-observation unit before admis-
sion to an inpatient bed). Surgery was not explicitly modeled. The bed management
options (analogous to surge protocol responses) considered included off-servicing
and cancellation of elective admissions. The decision rule variables that could be
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changed included triggers for when a bed management response should occur (the
maximum time an individual ED patient can wait for an on-service inpatient bed and
the maximum number of ED patients that can be waiting for an inpatient bed) and
the duration over which elective patients are delayed. In our model, the later was
fixed at one day, but could be triggered over multiple consecutive days.

Capturing surge protocols requires awhole-hospital approach. The clear drawback
of models with wider boundaries is complexity and model size. Creating a detailed
generic simulation model amortizes the time invested by only coding the model once
and then applying it at multiple hospitals. Our model is what Fletcher and Wor-
thington [6] classify as a “setting-specific generic model designed for multiple local
use” (level 3B generic model). There are three notable examples of widely applied
department-level 3B generic hospital simulation models: An ED model applied in
ten hospitals [5]; a perioperative model applied in fourteen hospitals [25] (of which
this model is an expansion); and a multi-department model [8, 9, 11] that does not
include detailed OR flow, but does include more ED detail and clinic detail than this
model.

2 Model Overview

In this section, an overview of the elements included in the model are described.
A previous publication [3] offers additional details on the model development and
techniques used.

The model is composed of a Simul8 simulation model that captures common
elements of hospital flow while allowing hospital-specific resources, policies and
patient characteristics to be uploaded via an Exel input file. Upon importing the data
to the simulation model, code is triggered to configure the model according to the
imported hospital data. The hospital-specific simulation is then ready to be run and
hospital-specific output data collected. As shown in Fig. 1, the main areas covered
include the emergency department, operating rooms and inpatient beds. Auxiliary
services such as diagnostics are not included in this model, nor are outpatient clinics.

Patient files containing arrival time, priority level, services required and associated
lengths of stay, are pulled in their entirety from historical hospital records. This
technique maintains correlation between each element of the patient stay. These
correlations are shownbyLuangkesorn et al. [20] to affect the distribution of inpatient
occupancy and so are important to maintain. In addition, this technique facilitates
data updates and continued use of the model by client hospitals without the need to
fit complex dependent distributions.

The daily volume of entities arriving via the ED is based on a Poisson distribution
that is day-of-week dependent. The Poisson distribution is an ideal choice for a
generic model. It generically representation random arrivals and allows the lay user
to update the distribution simply by calculating the average arrival rate rather than
having to fit data to a distribution. In addition, to capturing the variation in arrival
rates across the week, intra-day arrival time variation is captured by basing the arrival
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Fig. 1 Model coverage and flow

time of each patient on the patient file pulled. This is accomplished by having all
patients for the day arrive to a queue at the start of each day. The arriving entity then
chooses a patient file and enters the emergency room at the time specified on the
patient file. This also ensures that any correlation between patient type and arrival
time of day is captured. For example, car accident victims may be more likely to
arrive during the day than at night and night admissions may be more likely to be
emergent.

Upon admission to the hospital a check is done for an inpatient bed. If unavailable,
the patient waits in the ED until one becomes available. If the patient requires urgent
surgery, they are placed on an urgent surgical list. These patients may continue to
wait in the ED or are moved to a surgical unit. Direct Admission patients, which
typically includes maternity patients and transfers from other facilities or clinics,
also arrive to the model according to a Poisson distribution by day-of-week. Patients
then wait to be assigned an inpatient bed. Elective surgical patients arrive randomly
to surgeon specific elective waiting lists where they wait to be scheduled for surgery.

At the start of each day, the model schedules patients for surgery based on an
inputted master surgical schedule and surgeon assignments. This model is designed
for use with a block schedule where hospital administrators assign full-day or half-
day blocks in each OR to a particular surgical specialty. Each specialty then assigns
specific surgeons to each allocated OR block. Schedules can be of any length but are
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typically on a 1–4 week cycle. In the model, scheduled patients enter the OR and
remain for the time specified in their patient file. Completed patients move to the
post anaesthesia care unit (PACU), an inpatient bed (Critical Care or Ward), or leave
the hospital. If a patient is meant to go to an inpatient bed that is not yet ready, the
patient will wait in the PACU. If the PACU is full, the patient will remain in the OR
blocking the next surgery. Checks are then done to see if there is time for the next
scheduled surgery and if there will be a bed available (if required). If not, the surgery
is cancelled.

Urgent surgeries must be completed within target times based on acuity level and
availability of ORs. Urgent patients can be accommodated by scheduling them into
an elective or reserved urgent block ahead of time, using time remaining at the end
of an elective block, bumping a scheduled elective patient during operating hours,
or completing them outside of regular operating hours. The policies governing these
decision are hospital specific and therefore captured in the input file.

When a patient requires a bed, the model first looks for available on-service beds.
If none are found, a check for a suitable off-service bed is done. Based on rules
selected in the input file the patient is either sent to the off-service bed immediately
or waits for an on-service bed that will open later in the day. Inpatient units available
for off-servicing may increase when in surge. If no bed is available, patients wait
until an appropriate bed opens up. When a bed becomes available a check is done to
see if any patients are waiting for the bed. If multiple appropriate patients require the
bed, it is assigned based on priorities specified in the input file. For each patient unit
in the model an ordered priority is given to search for a waiting patient categorized
by location waiting (e.g. ICU, ED) and match to bed (e.g. off-service, on-service).
Patients also move between inpatient units as service requirements change.

There are three types of inpatient beds included in the units: funded, flex, and
unfunded. Funded beds have planned, consistent nursing levels and set nurse-to-bed
ratios. Flex beds are extra physical beds that can be temporarily used without adding
nursing staff. Unfunded beds are physical beds that can be opened when necessary
by bringing in extra nursing staff. These flex and unfunded beds are used in times of
surge.

Surge policies are modelled by capturing the triggers and responses associated
with each surge level and affected area of the hospital. Levels of surge correspond to
the degree of congestion and therefore have different trigger thresholds and degrees
of response. Triggers included in the model are: number of admitted patients in the
ED; number of patients exceeding total anticipated free beds; previous days in surge;
number of scheduled surgerieswith no reserved bed; number of flex or unfunded beds
currently open. Responses included in the model are: expediting discharge (“reverse
triage”); expediting move to lower level of care; allowing increased off-servicing;
opening flex or unfunded beds; delaying outside transfers into the hospital; canceling
of elective surgery; and transferring EDpatients to another hospital. Hospital-specific
surge policies are defined by the combination of triggers and responses used at each
level of surge. This allows surge protocols used by the hospital to be replicated. As
an example, a level 1 surge may occur because the number of patients waiting in the
ED for an admission to an inpatient bed may exceed the specified threshold. This
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may then result in the administration instructing physicians to check patients in the
ward to see if accommodations can be made to allow patients to be discharged home
more quickly (expedited discharge). A level 4 surge may be called if the hospital has
been in surge for several days, beds are full and there is a back-up of patients in the
ED. At this stage hospital administrators may open any remaining unfunded beds,
prevent patient transfers in from other hospitals, and contact downstream services,
such as home care, to help support expedited patient discharge.

The surgical block schedule, surgeon assignments, surgical priority levels and
deadlines, turnover time, number of inpatient units, number and type of beds in each
unit, as well as rules for bed prioritization, surgical scheduling, overtime, and surge
triggers, responses, affected areas and levels are all defined by the user in the input
file.

3 Results and Validation

The model was tested at three hospitals with widely varying characteristics to ensure
that one generic model could adequately represent each hospital, using the standard
input file to generate hospital-specific models. The characteristics of each hospital
are described in Table 1.

Model results, compared to historical data, are shown for the three hospitals in
Figs. 2, 3 and 4. Number of runs varied between the three hospitals, ranging from 16
to 60 and were set to obtain 95% confidence intervals that are within a reasonable
level of error for midnight census and ED boarding time. These two outputs were
chosen because they are affected by all other model outputs and therefore have the
most variability. Reasonable errors were determined to be a midnight census within
2% overall and within 2% or 1.5 beds in each inpatient unit and an overall average
ED wait time and medical ED wait time within 10% or 1 h.

Validation was completed on these and other indicators, including surgical
throughput, by comparing actual historical values to model outputs. All results were

Table 1 Pilot hospitals’ characteristics

Hospital Location Type Operating
rooms

Inpatient beds ED visits/year

A Downtown
Urban

Trauma centre
Teaching
hospital

22 ~535 ~75,000

B Suburban Community
hospital

9 ~270 ~47,000

C Small town Small
community
hospital

2 ~60 ~21,000
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Fig. 2 Actual and predicted average occupancy by inpatient unit at the three pilot hospitals (A =
Hospital A, 1 = unit 1 etc.)
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Fig. 3 Actual and predicted average surgical throughput by specialty service (cases/week) at the
three pilot hospitals (A = hospital A etc., 1 = service 1 etc.)
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Fig. 4 Actual versus model predicted average ED boarding time (hours) at the three hospitals (A
= Hospital A etc.)

also discussed with hospital personnel to determine if the model was sufficiently
representative of their process.
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4 Impact of Hospital-Wide Boundaries and Surge

With the assurance that themodel was sufficiently representative in each case, several
popular hospital management theories including increased AM discharge, 85% bed
capacity, LOS changes and the impact of surge policies when full (from Proudlove
et al. [23]). In addition, hospital-requested scenarios such as OR schedule optimiza-
tion and bed reallocation were tested. In this section, two scenarios are reported that
underscore how hospital-wide modelling was able to capture essential interactions
leading to conclusions that would not be found in a department focused model. The
direct impact of surge policy modelling is also highlighted in one of the examples.

4.1 Operating Room Throughput and Utilization

Operating room utilization improvement scenarios at one of the hospitals showed
that an increase in surgical throughput was restricted by bed availability. Further, it
was found that while there were sufficient surgical beds to accommodate increased
throughput of surgical patients, the current level of patient off-servicing from the
medical units prevented their use by surgical patients. Therefore, only surgical blocks
dedicated to outpatient procedures could be added to the existing block schedule
unless changesweremade to reduce the off-servicing ofmedical patients into surgical
beds.

Upon closer examination of the model, it was also observed that medical patients
were flowing into surgical beds because “Alternate Level of Care” (ALC) patients
were occupying medical beds. ALC patients are those that no longer need an acute
bed in the hospital but are not sufficiently well to be discharged home. They are
designated as requiring an alternate form of care such as home care, rehab or long-
term care. However, if those services are not immediately available, they remain in
the hospital until the required services become available.

By using a hospital-wide model we were able to better understand how ALC
patients remaining in the hospital and taking up beds in the medical ward impact
OR utilization and throughput. We were able to show that adding surgical blocks
that serviced patients requiring and inpatient stay would lead to increased ED and
inpatient congestion as well as cancelled surgeries. An OR-focused model would
not have flagged the need to limit additional blocks to outpatient procedures, as the
model would show that there were sufficient beds to accommodate an increase in
inpatients. The hospital-wide model can better identify the true impact of the change
and isolate the barriers to OR throughput expansion so that barriers can be addressed
in advance.
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4.2 Morning Discharge Policy to Reduce ED Boarding Time

There has been a great deal of attention in practice and in the literature, in recent
years on the policy of discharging patients as early as possible in the day to free up
beds for incoming patients and reduce crowding in the ED. Most literature indicates
that if discharges are moved earlier in the day, there is a positive effect on crowding,
wait time for an inpatient bed, and peak and average hospital occupancy [1, 14, 22,
28]. However, Shi et al. [24] found mixed results in both empirical observations, and
simulated scenarios.

The effect on ED boarding time of dismissing patients by 9 am was tested at each
hospital with the generic simulationmodel. Discharge times after 9 amwere adjusted
to between 7 am and 9 am. This represents an aggressive version of the policy that
would be difficult to achieve in practice, so gives a “best case” outcome. The policy
was effective at two of the three hospitals, reducing ED boarding time by 2–3 h on
average. However, at the third hospital the ED boarding time remains stable.

The surge trigger at Hospital B was based on the number of admitted patients
waiting in the ED. So, the early movement of patients reduced the spike of admitted
patients waiting, and therefore the chance of surge being called; the percentage of
time in surge was reduced by 43%. The result was fewer extra beds opened, but
unchanged ED boarding time. If the hospital wished to shift the balance to reduce
boarding time, they could test changing surge protocol triggers as part of the policy
change. Models focused on a narrower process or that don’t include surge policies
would have failed to capture these complex relationships. If simply piloted live,
management could have concluded that the pilot was a failure based on measured
outcomes in the ED alone.

5 Conclusion

The generic discrete event simulation model presented demonstrates the importance
of using sufficiently wide model boundaries. The examples discussed show how
interventions can have unexpected impacts due to hospital wide flow that will be
missed ifmodel boundaries are drawn too tightly. In addition, the critical role of surge
protocols in congested hospitals is demonstrated. These critical protocols cannot be
accurately captured in narrowly focused models. The drawback of widening model
boundaries, without loss of detail, is clearly complexity, leading to increased cost and
effort. This is mitigated in this case by creating a generic model that can be amortized
across several hospitals. This wide-boundary model can complement smaller, faster
models by testing findings to see if the conclusions hold when placed in a wider
setting.
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Coxian Phase-Type Regression Models
for Understanding the Relationship
Between Patient Attributes,
Overcrowding, and Length of Stay
in Hospital Emergency Departments

Laura M. Boyle, Adele H. Marshall and Mark Mackay

Abstract Hospital emergency departments (EDs) operate under significant pressure
worldwide. Overcrowding is a frequent occurrence, caused by a combination of high
presentation numbers, and long delays in the admission of patients due to a lack of
availability of hospital beds. Understanding the factors which influence length of
stay (LoS) in the ED is a vital aspect of any strategy to improve patient flow. The de-
terminants of ED patient flow are complex and varied, due to the diverse population
of patients competing for limited resources. This research uses Coxian phase-type
distributions to cluster patients into groups by their LoS, using a unique diagram
for improved communication of patient flow issues. A novel application of survival
analysis is presented to simultaneously evaluate the effect of patient attributes, sys-
tem factors, and overcrowding on ED LoS. The approach is demonstrated with an
application to data from a hospital in South Australia.

Keywords Emergency department overcrowding · Hospital length of stay ·
Coxian phase-type distributions · Patient flow

1 Introduction

Hospital emergency departments (EDs) are frequently ‘overcrowded’ and operating
under pressurised conditions, due to an excess of patient demand for the available
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hospital resources [8]. Until recently, Australian EDs were subject to the National
Emergency Access Target (NEAT) [3], which specified that pre-determined propor-
tions of patients should be admitted, discharged, or transferred within four hours of
their presentation to hospital. Since the end of 2017, NEAT is no longer officially
in use on a national level within Australia, however individual states continue to
use iterations of the four-hour rule. Statistics from the Australian Institute of Health
and Welfare for 2016–2017 report that the proportion of patients seen ‘on time’ (ie.
within four hours) in South Australian EDs was 64% [2]. Failure to meet perfor-
mance targets is attributed to a number of factors, including high attendance rates.
The number of presentations to EDs in Australia continues to increase by 3.7% an-
nually [2], placing a growing strain on EDs to treat an increased volume of patients
within a capacity-constrained physical space. Further problems are caused by ‘board-
ing’ patients, who remain in ED for lengthy periods awaiting availability of inpatient
hospital beds [15]. Both the high attendance and boarding patient problems pose a
considerable challenge, as these factors lie outside the control of the ED.

1.1 Review of Relevant Literature

Understanding the factors which influence length of stay (LoS) in ED is a vital
aspect of any strategy to improve patient flow and increase system performance. The
determinants of EDpatient flow are complex and varied, due to the diverse population
of patients competing for limited resources. Regression models are commonly used,
however they require a log-transformed or discretised outcome variable to handle
the skewness typically found in LoS data [9]. Survival analysis techniques are more
appropriate for modelling positively skewed data [18]. Cox proportional-hazards
(PH) regression has been utilised [16], however difficulties arise when handling
the assumption of proportional hazards with a sizeable number of variables, and
obtaining the distribution of baseline hazard for prediction in the presence of tied
event times [5], which are often present in large ED datasets. These limitations can be
avoided by using accelerated failure time (AFT)models to predict EDLoS [4], where
interpretation of the parameter effects as acceleration factors is more intuitive and
clinically meaningful than through hazard ratios. Coxian phase-type distributions are
a type of Markov model which have been used in patient flowmodelling to represent
LoS as a series of latent stages prior to departure from the system [7]. These models
offer advantages over other survival distributions, both in flexibility, and opportunity
to gain additional information regarding the underlying rates of flow through phases
of the survival process prior to the event of interest [1]. Coxian phase-type regression
models have been used to evaluate the effect of explanatory variables on ED LoS for
a cohort of respiratory patients [19]. The authors noted an improvement in fit of their
data over standard AFT models.

The models discussed thus far did not consider the effect of overcrowding on
ED LoS. Despite a sizeable amount of literature on quantifying ED overcrowding
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[8], there are relatively few studies which investigate it’s effect on ED LoS [12].
McCarthy et al. [12] considered the relationship between ED occupancy and LoS
using a discrete time survival model.

1.2 Overview and Contributions

The work presented includes the following contributions;

1. Coxian phase-type distributions are used to cluster patients into groups by their
length of stay [11]. A unique diagram approach is developed to visualise the dif-
ferences between patient attributes in each group. This type of analysis addresses
a recently reported gap in the ED LoS literature [9] which indicated a lack of
clustering methods to identify groups of patients with protracted LoS;

2. To the best of the authors’ knowledge, this is the first study to simultaneously
evaluate the effect of patient attributes, system factors, and overcrowding on ED
LoS;

3. The work ofMcCarthy et al. [12] on overcrowding is extended from discrete-time
to continuous-time survival analysis.

The remainder of this paper is laid out as follows. Section 2 outlines the method-
ology of Coxian phase-type regression models, Sect. 3 demonstrates an application
of the methods to data from an Australian ED. The paper concludes with a discussion
in Sect. 4.

2 Methodology

Phase-type distributions are a type ofMarkov process, representing time until absorp-
tion of afiniteMarkov chain in continuous time,where there is a single absorbing state
and the process begins in a transient state [14]. Phase-type distributions can be gen-
eralised to approximate almost all continuous distributions [6]. The main limitation
of phase-type distributions is that they are over-parameterised, typically requiring
(k2 + k) parameters to represent a distribution with k phases. Coxian phase-type
distributions are a special subclass with (2k − 1) parameters, meaning they are more
computationally efficient [6].

Coxian phase-type distributions consist of a Markov process where entities move
sequentially through ordered transient stages until absorption occurs [14]. Figure1
displays the k-phase Coxian representation. The parameters λk represent the instan-
taneous risk of transitioning between transient phases i and (i + 1), and parameters
μk represent the instantaneous risk of transitioning between transient phase i and the
absorbing phase (k + 1). This process flow corresponds to the movement of patients
through treatment stages in ED departing from the system.
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Fig. 1 Transition diagram for a k-phase Coxian distribution, with arrows indicating all possible
transitions and directions of the Markov process

More formally, Coxian phase-type distributionsmay be defined by a latentMarkov
chain in continuous time, as {X (t); t ≥ 0}with state space {1, 2, . . . , k, k + 1}, where
the process always begins in phase one of themodel (initial stateX (0) = 1). Then the
probability of a transition occurring in a small time interval, say δt between transient
states i = 1, 2, . . . , k is:

prob{X (t + δt) = i + 1|X (t) = i} = λiδt + o(δt) , (1)

where λi represents the probability of transitioning between transient phases of the
model. Furthermore, the probability of transitioning from each of the transient phases
i = 1, 2, . . . , k into the absorbing phase k + 1 may be written as:

prob{X (t + δt) = k + 1|X (t) = i} = μiδt + o(δt) , (2)

whereμi represents the probability of absorption from transient phases of the model,
and Eqs. (1) and (2) are correct to terms of order o(δt) [10, 14].

The probability density function of the Coxian phase-type distribution can be
expressed in the following matrix notation:

f (t) = p exp{Qt}q, (3)

whereQ is the (k × k) generator matrix, containing the transition intensities between
the transient phases of the Markov model:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(λ1 + μ1) λ1 0 . . . 0 0
0 −(λ2 + μ2) λ2 . . . 0 0
. . . . .

. . . . .

. . . . .

0 0 0 . . . −(λk−1 + μk−1) λk−1

0 0 0 . . . 0 −μk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

p is a (1 × k) vector of probabilites for the process beginning in each state:

p = (1, 0, 0, . . . , 0, 0), (5)
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and q is a (k × 1) vector of transition intensities into the absorbing phase:

q = −Qe = (μ1, μ2, . . . , μk)
T . (6)

Marshall and McClean [11] outlined a method for calculating the probability of
absorption from each of the transient phases. Let πi represent the probability that an
individual departs from the ith phase of the distribution, then π1, π2, . . . , πk can be
calculated as follows:

πk = μk

λk + μk

{
k−1∏
i=1

λi

λi + μi

}
. (7)

These probabilities represent the proportion of patients in the datawhich are absorbed
from each phase. Patients can be separated into similar length of stay clusters grouped
in the ratioπ1 : π2 : . . . : πk . By using this technique, the length of stay groups can be
analysed to determine whether patients in the same cluster possess similar attributes
which might help to explain the pattern of their LoS.

The Coxian phase-type distribution has been identified as particularly suitable
for representing LoS data [18]. Tang et al. [17] proposed the Coxian phase-type
regression model as a method of assessing the influence of covariates upon rates
of flow through the model. The regression coefficients are estimated through direct
incorporation of parameters into the probability density function as follows:

f (t) = p exp[exp{−xiTβ}Qt][exp{−xiTβ}q], (8)

where xi is a vector of covariates for individual i and β is the corresponding vector
of regression parameters.

3 Application

The data used in this study was obtained from the patient database of an ED within a
large teaching hospital located in Adelaide, South Australia. The ED dataset consists
of 119,306 patients who presented to the ED over a period of 20months between
2012 and 2013 and contains clinical information (such as triage category and arrival
method) and patient details (for example age and gender). Time-stamps indicating
the progression of each patient through ED are also recorded, for triage, seen by
doctor (first occasion), admission, and outcome for each patient. The total LoS in
ED is calculated as the sum of three distinct stages, as outlined in Fig. 2.

The methodology is illustrated using the data for ‘boarding’ [15] stage 3 of ED
LoS, which represents the delay experienced by patients who are waiting for an inpa-
tient bed to become available for hospital admission. Boarding patients are a major
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Fig. 2 Pathways through the ED as defined by the date and time stamps. Stage 1: waiting time
between triage and initial consultation with a doctor. Stage 2: treatment time for each patient in the
ED. Stage 3: any additional time spent in the ED. For admitted patients, this refers to ‘boarding’
[15] i.e. the time spent waiting for an inpatient bed to become available. For discharged patients
this is time which in an extended emergency care unit (EECU)

contributor to overcrowding, as they continue to utilise resources before transfer to
inpatient wards, thereby reducing the ability of the system to cater for new arrivals.

3.1 Analysing Length of Stay Groups from the Coxian
Phase-Type Distribution

The LoS for boarding patients was fitted using Coxian phase-type distributions.
The optimal order of Coxian phase-type distribution for representing a dataset is
determined using a sequential fitting approach i.e. a one-phase distribution is initially
fitted, then additional phases are added until little or no difference is observed in
the model fit. Bayesian Information Criterion (BIC) is used for model selection,
as it provides a good balance between goodness-of-fit and model parsimony. The
fminsearch procedure in MATLAB was used to find the maximum likelihood value
and parameter estimates, by employing the Nelder-Mead algorithm [13]. Table1
displays the results of the optimal 6-phase model, which had the lowest BIC value
Fig. 3 demonstrates that the 6-phase Coxian captures the shape of the empirical LoS
data. The order of optimal Coxian distribution corresponds to the number of LoS
clusters, where the probability of departure from each phase was calculated using
Eq. (7) then utilised to group patients, as shown in Table2.
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Table 1 Coxian phase-type distributions fitted to emergency department LoS (admitted)

No. of phases Fitted parameters Log-likelihood BIC

1 μ̂1 = 0.0474 −155,792.9 311,596.3

2 μ̂1 = 2.99 × 10−14 λ̂1 = 0.1597 −151,168.5 302,368.7

μ̂2 = 0.0673

3 μ̂1 = 0.0052 λ̂1 = 0.3018 −150,534.9 301,122.6

μ̂2 = 7.52 × 10−212 λ̂2 = 0.0680

μ̂3 = 0.2896

4 μ̂1 = 0.0063 λ̂1 = 0.0616 −149,625.1 299,324.1

μ̂2 = 3.61 × 10−63 λ̂2 = 0.4249

μ̂3 = 0.0002 λ̂3 = 0.4260

μ̂4 = 0.4262

5 μ̂1 = 0.0076 λ̂1 = 0.3350 −149,462.4 299,019.8

μ̂2 = 0.0049 λ̂2 = 0.0985

μ̂3 = 0.0001 λ̂3 = 0.3408

μ̂4 = 0.3006 λ̂4 = 0.0331

μ̂5 = 0.0287

6 μ̂1 = 0.0059 λ̂1 = 0.3636 −149,427.0 298,970.2
μ̂2 = 0.0148 λ̂2 = 0.4364

μ̂3 = 3.48 × 10−55 λ̂3 = 0.0957

μ̂4 = 0.0182 λ̂4 = 0.3449

μ̂5 = 0.9633 λ̂5 = 0.0823

μ̂6 = 0.0260

Fig. 3 Six-phase Coxian distribution plotted over empirical LoS data for admitted patients
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Table 2 Probability of departure from each stage of the fitted six-phase Coxian distribution for
admitted patients

Phase S1 S2 S3 S4 S5 S6

Probability
of departure

0.01607 0.03238 3.46 × 10−54 0.04774 0.83265 0.07117

Most of the patients departed from the fifth phase of the model. The percentage
of patients departing from each LoS group S1 to S6 were calculated by the variable
‘primary complaint category’, of which there are 98 illness categories, to identify
differences between the extreme phases of the distribution. Patients departing from
the first and last phase of the model have unique behaviour, and are consequently
of primary interest in this study. Figures4 and 5 display four complaint categories
which had a particularly high proportion of patients depart from phases 1 and 6 of

Fig. 4 Four complaint categories containing a relatively high proportion of patients that departed
from phase 1 of the fitted Coxian distribution. The highest values were the ‘labour’, ‘other obstetric’,
‘cardiac arrest’, and ‘drowning’ categories

Fig. 5 Four complaint categories containing a relatively high proportion of patients that departed
from phase 6 of the fitted Coxian distribution. The highest proportions were the ‘psychiatric illness’,
‘drug/substance abuse’, ‘overdose unconscious’, and ‘alcohol abuse’ complaints
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the model respectively. These diagrams were utilised to communicate patient flow
patterns with hospital management. It was identified that patients presenting in the
psychiatric illness and substance abuse (PISA) categories had a protracted ED LoS.

3.2 Assessing the Effect of Patient and System Factors on LoS

Coxian phase-type regression models were fitted to the LoS stage 3 (boarding) in the
ED data. The patients in each of five triage categories were considered separately, to
identify the unique characteristics of each group. Table3 displays the optimal Coxian
phase-type regression model for each triage category.

A range of variables were identified as influential on the boarding time of patients
using stepwise selection. Patients who presented to ED between 3 pm and 7 am
had an increased boarding time over patients who presented between 7 am and 3
pm. Ambulance arrival was associated with an increased LoS for patients in triage
category 2 only. PISA patients in triage categories 1–4 had an increased boarding
time over other patient types.The inpatient division destination for patients was found
to be influential on boarding time for triage categories 1–4, but not 5. Patients who
were admitted to the PICU (mental health) division generally had longer boarding
times than those in the reference group (general medicine). By contrast, patients who
were admitted to the Women and Children’s division generally had shorter boarding
times than the reference group. Patients who were admitted to the Surgery division
had a mixture of effects in comparison to the reference group. ED occupancy was
included as a covariate in the regressionmodel, as a proxymeasure for overcrowding.
Occupancy was significantly influential on ED LoS, with the exception of patients
in triage category 5. The regression parameter estimates of 0.03 indicated that each
additional boarding resulted in an increase of approximately 3% in the length of
boarding time.

4 Discussion

This research has presented an application of the Coxian phase-type clustering
method to group patients by LoS, and thereby identify characteristics of subjects
who departed from the extreme distribution phases of the distribution. The tech-
niques presented in this paper provide a new method to understand ED patient flow,
by using both Coxian patient-flow diagrams and regression models to quantify the
effect of patient and system factors on LoS, and in particular on ED boarding times.
Such information can be used by health service managers to facilitate the develop-
ment of improvement strategies that can be targeted towards the patients who are
most likely to breach LoS targets, and to address system issues that may reduce time
spent in ED. Additionally, the models can rapidly be re-fitted using new data, en-
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Table 3 Coxian phase-type regression models fitted to stage 3 (boarding) of ED LoS (Inpatient
division destination is abbreviated to DIV, time of day to TDAY, psychiatric illness and substance
abuse to PISA, ambulance to AMB, and overcrowding to O)

Triage cat. (no obs) No. of
phases

Fitted estimates

Rates Covariates Log-likelihood

1 (1001) 3 μ̂1 = 0.0559,
μ̂2 = 0.2670,

β̂TDAY1 = 0.1960,
β̂TDAY2 = 0.3713,

−3850.5

μ̂3 = 0.0591,
λ̂1 = 0.1288,

β̂DIV1 = 1.6091,
β̂DIV2 =-0.1095,

λ̂2 = 0.0851 β̂DIV3 =-1.0685,
β̂O = 0.0263

2 (7558) 3 μ̂1 = 0.0086,
μ̂2 = 2.99 × 10−28,

β̂AMB = 0.0624,
β̂TDAY1 = 0.3053,

−29,640.5

μ̂3 = 0.0793,
λ̂1 = 0.8069,

β̂TDAY2 = 0.2337,
β̂DIV1 = 1.2349,

λ̂2 = 0.9302 β̂DIV2 = 0.0163,
β̂DIV3 =-0.8286,

β̂PICU = 0.3771,
β̂O = 0.0286

3 (15346) 3 μ̂1 = 1.46 × 10−08,
μ̂2 = 0.1391,

β̂TDAY1 = 0.1925,
β̂TDAY2 = 0.2097,

−59,952.0

μ̂3 = 0.0404,
λ̂1 = 0.1785,

β̂DIV1 = 1.2734,
β̂DIV2 = −0.0196,

λ̂2 = 0.0394 β̂DIV3 =-0.6833,
β̂PICU = 0.3179

β̂O = 0.0283

4 (6450) 3 μ̂1 = 1.40 × 10−09,
μ̂2 = 0.1792,

β̂TDAY0 = −0.1281,
β̂TDAY2 = 0.1088,

−24,459.1

μ̂3 = 0.0430,
λ̂1 = 0.2248,

β̂DIV1 = 1.3248,
β̂DIV2 = −0.1295,

λ̂2 = 0.0456 β̂DIV3 =-0.7031,
β̂PICU = 0.3501,

β̂O = 0.0262

5 (314) 4 μ̂1 = 0.0037,
μ̂2 = 0.0341,

−1020.3

μ̂3 = 0.2361,
μ̂4 = 0.0251,

λ̂1 = 0.2787,
λ̂2 = 0.2482,

λ̂3 = 0.0463
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suring up-to-date analysis, and the opportunity for comparison of ED performance
between multiple hospitals.

To ensure that health services benefit from this method a range of strategies are
required to improve translation. Engagement between modellers and health service
management staff, together with demonstration of uses and benefits of the approach
is required. The ideal solution to ensure ongoing uptake of the method is to provide
the health services management team with ongoing regular access to a modeller who
can provide the necessary technical expertise as required. Future work will consider
use of the models for obtaining accurate LoS predictions across different EDs and
how the translation of the method into practice may be best facilitated.
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Abstract Emergency Medical Services (EMS) provide pre-hospital care and trans-
portation to hospitals following an emergency call. Some EMS will also offer inter-
hospital transportation services for patients. This paper presents a simulation model
based on Urgences-santé, an EMS covering a population of 2.4 million people in
Quebec (Canada). The goal of the simulation tool is to produce a highly realis-
tic model that focuses on some of the lesser studied aspects of EMS management.
These aspects include relocation, reroute-enabled dispatching, hospital selection,
break management, complex priority system, ambulance specialization, and the in-
tegration of inter-hospital transport. The simulation tool allows us to measure the
impact of changes to the rerouting and relocation policies, as well as to the fleet
composition, on the system’s performance using what-if analysis.
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1 Introduction

For many patients, Emergency Medical Services (EMS) are the point of entry into
the health care system. From the moment they call for emergency services until they
are successfully taken in charge at the hospital, their quality of care depends on their
EMS provider. Among the performance measures used for the quality of care of
EMS, Response Time (RT), which is defined as the time elapsed after a call has been
assigned a priority up until an ambulance arrives on the scene, is one of the more
commonly found measures cited in the literature [1–3]. It is notably used because of
its important impact on mortality rates [4, 9].

The management of an EMS is a complex task. It requires the operation of an
ambulance fleet, with its corresponding paramedics, and a dispatch center. In this
center, a medical dispatcher evaluates the caller’s condition and manages the fleet.

Many decisionsmust be taken into account in order to effectivelymanage the fleet.
Themost recent literature reviews separate these decisions into three categories based
on their time horizon [1, 3, 8].

Strategic decisions usually impact theEMS for several years. These include choos-
ing both the number of bases of operation, as well as their location. Deciding on the
number of ambulances and paramedics is also considered a strategic decision. And
finally, choosing performance objectives could also be included in this category [1].

At the tactical level, the two main decisions are the scheduling problem for am-
bulances and the location problem. The scheduling decision consists of choosing the
start time and duration of the shift to ensure that the number of ambulances on the
road is adequate for the frequency of calls. The location decision is about deciding
the position of the standby site where the ambulance is waiting for calls. The position
of these sites is important since adequate positioning ensures that the ambulance can
promptly reach any part of the territory to answer calls. Location problems have been
the main focus in the literature so far.

Operational decisions are those taken in the day-to-day management of the EMS.
The relocation decision is closely linked to the location decision since it implies
choosingwhere to send idle ambulances among the standby sites and, as such, has also
been studied often. The dispatching decisions imply choosing available ambulances
to send to each call. Most papers use the simplest approach of sending the closest
available ambulance, howevermore sophisticated rules for dispatchinghave also been
considered, although it is not a focus in the literature. For example, already assigned
ambulances can be sent to another call thus ending their current assignation. This
is referred to as a reroute-enabled-dispatch or simply “reroute” [7]. Finally, another
operational decision is the hospital selection. Outside of the specific case of disaster
response, most studies consider that patients are sent to the closest hospital. To the
best of our knowledge, the only study to test other approaches outside of disaster
response has been Lee [6].

In addition to serving emergency calls, some EMS also offer inter-hospital trans-
portation services for patients [8]. Since most EMS do not include this service, it has
been less studied. Among researches on the subject, Kergosien et al. [5] compared the
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performance gained by using a single fleet of ambulances for both types of requests
versus using dedicated resources.

By its nature, the request for emergency care is highly uncertain. This has led
to an important part of the research done on EMS to use discrete-event simulation
to account for this variability. Aboueljinane et al. [1] presents a detailed review of
simulation models applied to EMS operations. Simulation models for EMS tend to
focus on one or two decisions that are modeled in great detail, while keeping the
other aspects of the EMS simple. While this paper does focus on operational level
decisions, we aimed to minimize the number of simplifications done in order to make
our model both very realistic and flexible.

The simulation model presented in this paper is based on Urgences-santé,
a state-owned EMS system that covers a population of 2.4 million people in
Quebec (Canada). Its territory covers the city ofMontreal and its suburb, Laval. Their
territories include several general and specialized hospitals. Some of these hospitals
offer their services primarily in English whilemost do so in French. Urgences-santé’s
main mission is to respond to emergency calls made in its territory, but they will also
transfer patients between health facilities when required. These transports represent
around 10% of their activities.

The model incorporates many aspects of the Urgences-santé system. Notably,
it includes Urgences-santé’s dispatching rules for both emergency calls and inter-
hospital transfers, including the possibility to reroute an ambulance. It also incorpo-
rates complex policies for relocation, hospital selection, paramedics’ lunch break,
and end of shift policies. Among these, re-routing and hospital selection have been
studied in very few cases; while the impact of a lunch break and end of shift poli-
cies has never been considered, to our knowledge. Furthermore, it’s one of the few
models to consider ambulance specialization, in our case with three different types
of ambulances.

The remainder is organized as follows. Next section describes the process at
Urgences-Santé. The simulation model is detailed in Sect. 3 and results in Sect. 4. A
discussion concludes this paper.

2 Process

In order to accurately model Urgences-santé’s process, we consulted their internal
documentation and observed their dispatch center operate for several hours. The re-
sulting processmapswere subsequently validated and enriched by amedical dispatch
instructor working for Urgences-santé. Finally, the process maps were presented and
validated with several of their executives. The five main components to understand
the process are the priority systemand ambulance fleet, the emergency calls (how they
are handled), the inter-hospitals transfers, the relocation policies and the paramedic
work shifts.
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Table 1 Priority system summary

Priority Type 911 Hybrid Inter Urgent Description

0 Calls Yes Yes Yes Yes High risk of
cardial arrest

1 Calls Yes Yes No Yes Immediate
mortality risk

2 Transfer Yes Yes Yes Yes High risk of
morbidity or
mortality

3 Calls Yes Yes No Yes Risk of morbidity

4 Calls Yes Yes No No Risk of morbidity
in the next hours

5 Transfer Yes Yes Yes No Immediate
transfer

6 Transfer Yes Yes Yes No Transfer with
appointment

7 Calls Yes Yes No No No identified risk
of morbidity

8 Transfer Yes Yes Yes No Non-emergency
transfer

2.1 Priority System and Ambulance Fleet

Urgences-santé’s priority system goes from 0 to 8, 0 being the most urgent. Table1
summarizes the priority system. Their ambulance fleet is divided into three types
of vehicles: 911 vehicles, which mostly respond to emergency calls; Inter vehicles,
which mainly perform transfers; and Hybrid vehicles, which will do both types of
requests with a focus on transfers. The priority of the request has several impacts
on vehicle dispatching. First, it represents the relative priority of the requests. It
also impacts which kind of vehicle can respond to each request. Priorities of 3 and
under are considered urgent. For these priorities, paramedics use emergency driving
protocols, which include the use of lights and sirens. Furthermore, a vehicle already
assigned can be sent to a new urgent call if it’s the closest available vehicle and if the
current assignation is not as urgent. Finally, non-urgent requests cannot be dispatched
using 911 ambulances if there are less than seven 911 ambulances available; this is
explained in further detail in Sect. 2.4.

2.2 Emergency Calls

Emergency calls come from calls addressed to the city’s 911 service which transfers
them to Urgences-santé after an initial assessment. A medical dispatcher then talks
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to the caller and assigns a priority to the call. If there’s a vehicle available, one will be
dispatched to the call. The vehicle will move to the call location and will provide pre-
hospital emergency care to the patient. Unless the patient refuses transport or has left
the location before the ambulance’s arrival, the paramedics will communicate with a
medical dispatcher who will then select an appropriate hospital. While patients can
refuse transportation, the paramedics cannot, for legal reasons, advise them to refuse.
We estimate that about 15% of interventions will not lead to a need for transport.
Following this step, the patient is transported to the selected hospital where he is
subsequently transferred. The ambulance becomes available to take another call once
the transfer is finished.

Once the transport is confirmed, the hospital selection takes places. It takes into
consideration multiple variables including the patient’s condition, age, spoken lan-
guage, and medical history. These factors ensure that each patient is sent to a hospital
equipped for his needs. In cases where more than one hospital could be suitable, the
patient is sent to the closest one. In some cases, patient preferences will also be con-
sidered. Furthermore, Urgences-santé has an allocation agreement with the hospitals
in its territory, to an agreed upon number, under which they agree to limit both the
percentage of patients sent to each hospital and the number of patients sent in a single
hour to the same hospital. For some of the lower-urgency cases, Urgences-santé will
select the hospital in order to respect these numbers.

2.3 Inter-hospital Transfers

Inter-hospital transfers cover cases where the patient is already in a medical facility
and needs to be transferred to a new one. Requests for transfers are sent by the
hospital to Urgences-santé. Some requests will be made by appointment before the
actual request, while others will be made immediately before the transfer is needed.
Requests for immediate transfer are considered urgent if the patient’s condition is at
risk of deteriorating. This category of requests also includes transfer to and from an
air ambulance. In all cases, transfers are treated in a similar manner. An hour before
the time of an appointment or when an immediate request is made, the dispatch
center will try to assign an ambulance to the request. If a dispatch is possible, the
ambulance will go to the hospital of origin where the patient will be transferred to
the ambulance. The patient will then be transported to the hospital of destination
where he will be dropped off. Afterward, the ambulance will immediately become
available for another transport request or call. Contrary to emergency call response,
the probability of cancellation is very low.
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2.4 Relocation Policies

Urgences-santé’s territory includes 34 waiting stations where idle 911 ambulances
can be sent. These stations are divided into 3 groups, depending on their importance.
Each station usually contains no more than one ambulance. Medical dispatchers pri-
oritize themost important stations over the others. Ambulances are not usuallymoved
from station to station. If at least 7 ambulances are stationed, the territory is consid-
ered to be covered by Urgences-santé, regardless of which locations are occupied in
its territory. This coverage means that there should be enough idle ambulances in the
territory to ensure a fast response to new high-urgency calls. If this condition is not
met, 911 ambulances cannot be used to respond to low-urgency requests and will
instead be sent to one of the empty waiting stations. Hybrid and Inter ambulances
are not affected by the coverage condition and will not be sent to a waiting station.
If they are idle, they will, instead, stay close to one of the major hospitals.

2.5 Paramedic Work Shifts

Each Urgences-santé ambulance is manned by two paramedics. At the start of their
work shift, they leave one of Urgences-santé’s three operational centers and become
available to respond to emergency calls and transfer requests. The length of the
paramedic shift is generally between 8 and 12 h. Outside of their normal work, two
events happen during the shift: their lunch break and the end of shift period.

The lunch break varies from 30 to 60min. It is not taken at an exact time. Instead,
after a set delay, each paramedic team becomes eligible for their lunch break. At
this point, they will be given their break if there is no unassigned request of priority
0–3. Before the actual start of the break, there is a 15-min pre-break period. During
this period, the paramedic can freely move their ambulance but are still considered
available for priority 0 calls and in some cases priority 1 and 2 as well. It is used by
paramedics to reach the desired location of their lunch break. If a paramedic team has
not taken their lunch break past the middle of their shift, the condition for their break
will change to only require no unassigned requests of priority 0–2. This ensures that
paramedics can take their breaks when the system is overloaded.

The end of shift period starts 45min before the actual end of shift. During this
period, the ambulance stops responding to low priority requests and will try to get
closer to its starting operational center. As time passes, the range of priorities not
covered increases. At the actual end of shift, the ambulance stops responding to
all priorities and the paramedics exit the vehicle if they’ve reached the operational
center. This approach reduces the occurrence of overtime by making paramedics less
likely to be dispatched close to the end of their shift. Despite these policies, overtime
is a common occurrence, with an average value per shift of around 20min.
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3 Simulation Model

The simulationmodel is implemented usingArena Simulation. The twomain entities
of the models are ambulances and patients. For now, parameters for both entity types,
as well as the other distributions in the model, are based on estimates and do not
follow Urgences-santé’s data rigorously.

Patient arrivals follow a Poisson distribution whose parameter changes by the
hour of the day. The Poisson distribution is the most popular distribution for patient
arrival found in the literature [1]. In total, around 820 patients are created each day.
Patients are divided into two mains categories: emergency call patients and transfer
patients. The attributes linked to each patient will differ based on these categories.
For emergency calls, patient attributes include their priority, location, condition, and
whether they accept to be transported. For transfer requests, attributes includepriority,
hospital of origin, and hospital of destination. Refusal of transport for transfer is not
taken into account since it is uncommon. The priorities used in the model are the
same as those used by Urgences-santé.

Ambulance arrivals follow a fixed frequency for each hour of the day. In total,
around 160 ambulances are created each day. Ambulance attributes include their
type, the length of their shift, the length of their lunch break and an identifier for
their operational base.

The simulation model uses the same decision rules as those used by Urgences-
santé and described in Sect. 2. More specifically, the model uses the full set of dis-
patching rules of Urgences-santé, including rerouting rules. The processes for emer-
gency calls, including hospital selection and inter-hospital transport are as described
in Sects. 2.2 and 2.3 respectively. Finally, the paramedics’ lunch break and end of
shift period are modeled.

The transportation model used to calculate travel time of ambulances in the sim-
ulation divides Urgences-santé’s territory into 950 zones of 775 m by 1110 m. This
shape corresponds to an area of a hundredth of a degree latitude by a hundredth of a
degree longitude for theMontreal area. Since in futureworkwe plan to useUrgences-
santé’s data, and they have agreed to give us call coordinates whose position will be
rounded down to 1/100 of a degree to ensure patients anonymity, we have decided
to use this shape.

For each zone, a nodehas been located on either itsmain roadormajor intersection.
A total of 3582 edges link these nodes to form a graph. Edges link neighboring nodes
if there is no geographical obstacle between them. The weight of these edges was
measured usingGoogle’s DistanceMatrixAPI. Transportation time and shortest path
between each pair of nodes were pre-calculated and integrated into the model. At the
moment, the shortest path is static and does not change based on time. This approach
allows tracking of an ambulance’s position while it travels from one zone to another.
This is necessary to correctly apply Urgences-santé’s rerouting policy. It also offers
good modeling of geographical obstacles, which is important since Montreal and
Laval are separated by a river. The transportation model did not account for the use
of lights and sirens.
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4 Experimentation and Results

With the simulation model, we tested several scenarios where we modified some of
Urgences-santé’s policies. The scenario goals are to reduce Response Time (RT) for
low-urgency calls and transfers, both of which are very high, without compromising
high-urgency RT. Currently, the system has 4 main mechanisms in place to ensure
shortRT for high-urgency: (1) The priority systemensures that the higher the urgency,
the faster an ambulance is sent; (2) most ambulances are type 911 and thus focus on
emergency calls, most of which are high-urgency; (3) the coverage system prevents
dispatching for low-urgency requests if not enough ambulances are available; and (4)
high-urgency can reroute ambulances sent to low-urgency requests. The scenarios
serve to test if some of these mechanisms can be modified without increasing high-
urgency RT significantly. Since high-urgency requests have more risks of mortality
and morbidity, no significant increase of RT is justifiable even with the decrease to
low-urgency RT.

Besides a baseline scenario, we tested 8 scenarios. The Baseline scenario uses
the same set of rules as Urgences-santé, as described in Sect. 3. It serves as a point
of comparison for the other scenarios. Scenario 1 increases the percentage of the
fleet made of hybrid vehicles. Scenario 2 uses the same approach to increase the
number of Inter ambulances.Scenario 3 combines both previous scenarios.Scenario
4modifies the re-dispatching rules by limiting their application to priority 0–2 instead
of 0 to 3. Scenario 5 to 8 test alternative requirements for coverage, ranging from 3
to 6 stationed 911 ambulances.

Table2 presents the scenario results. Response Times are expressed in minutes.
The confidence intervals use a percentage value of 95%. RT were divided into four
categories: high-urgency covering requests of priority 0–3; low-urgency range from
priority 4 to 8; emergency calls covering priorities 0, 1, 3, 4 and 7; and transfer
requests including priorities 2, 5, 6 and 8. For transfer, RT includes two elements:
the time difference between the appointment and the arrival time of the ambulance for
transfer requests made by appointment; and the RT for immediate transfer requests.
Reported results are based on 20 replications of 30days. Each replication had awarm-
up period of 5days. Total computation time per scenario is between 8 to 10min.

Scenarios 1–3 focus on inter-hospital since they add additional Hybrid and Inter
ambulances to the fleet, both of which are specialized in patient transfers. Scenarios
2 and 3 reduce Inter RT significantly at the cost of an increase to high-urgency RT,
while also positively impacting low-priority RT.

Scenario 4positively impacts theRTof every category except for the high-urgency,
which increases by about 50 s. In its current state, we found that ambulances as-
signed to priority 4 and higher have difficulty reaching their destination without
being rerouted to a higher urgency request. While re-dispatching help reduces RT
for high-urgency, it is also a cause of unproductivity since the time spent by ambu-
lances while they travel to a low-urgency call is wasted if they are re-dispatched to
another request. Scenario 4’s main benefit is to reduce this loss of time. The increase
to high-urgency RT for this scenario should be carefully considered since the rule
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change only affects priority 3, the least urgent priority among its group, and one for
which no risk of mortality is identified.

Scenarios 5–8 reduce the number of 911 ambulances that need to be available
before ambulances can be dispatched to low-urgency demands. Each reduction of
the coverage criteria from 7 to 4 has a positive impact on every category except
high-urgency, which steadily increases for each reduction. A further reduction to the
criteria, to a value lower than 4, leads to an increase in response time in every category.
This can be explained by a longer travel time as fewer ambulances cover the territory
when the coverage criteria is reduced. The increase in travel time when reducing
the coverage to 3 seems to exceed the benefit of a lower criteria for low-urgency
requests, resulting in a general deterioration in the system’s performance.

Overall, none of the scenarios manage to decrease the low-urgency or transfer RT
without increasing high-urgency RT. While changing the relocation policies or the
fleet distribution leads to major changes on the system’s performance, modifying the
coverage criteria has a more moderate impact.

5 Discussion

In this paper, we present a simulationmodel that aims to replicate, in detail, the inner-
workingof anEmergencyMedical Service (EMS)whichprovides both assistance and
transport for emergency calls and inter-hospital transport services. Before building
the model, we consulted the EMS internal documentation and spent time observing
their activities to ensure appropriate modeling. The resulting model includes many
aspects of the EMS that are often left out of simulation studies.

The scenarios tested aim to assess potential improvement in the performance of
the EMS by making changes to some of its current policies. The first 3 scenarios
show that changing the ratio between specialized ambulances can have a vast impact
on overall performance. In one scenario, the proposed change leads to a reduction in
the average RT for inter-hospital transfer by more than an hour and a half, at the cost
of an increase of 1.1min to high-urgency RT. While the increase to high-urgency
RT is not justifiable, the scenarios show the impact of these ratios on the system.
Another scenario modifies the rerouting policies by making them more restrictive.
This results in an improved RT for lower-urgency requests at the cost of an increase in
high-urgency RT. This increase was, however, solely caused by an increase in RT for
priority 3, the lowest priority of its group. The last four scenarios show thatmodifying
the redeployment policies can improve mean RT for low-urgency, emergency call,
and transfers up to a certain point while increasing the high-priority RT. While the
improvement of RT for low-urgency and transfer offered by these scenarios seems
promising, they do not necessarily justify the increase in high-urgency RT regardless
of how small they might seem.
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These results show that modeling the details of an EMS can help us understand
the relation between the system rules and the resulting response times for different
categories of requests. It also allows estimation of the trade-off between the RT of
different categories when trying to improve one of them. The modifications tested
in these scenarios would all be relatively simple to implement for Urgences-santé
and could be implemented for no cost other than some training for the emergency
dispatchers. Applying a similar approach to other EMS might provide solutions to
improve other EMS’ specific situations without requiring any major changes.

Furthermore, we find that the work required to accurately model an EMS system
helps to build a better understanding of its operations and can provide insight into
some lesser-studied aspects of EMS management. For example, shift management
proved to be an important part of Urgences-santé day-to-day operations. Together,
the pre-break period and end of shift period reduce the availability of vehicles for an
hour per shift. Optimizations in those areas could possibly improve overall system
performance, but—to the best of our knowledge—has never been studied.

In future work, we plan to improve the modeling of the request generation using
historical data and add out-of-territory transports to the model. This will allow for
direct validation of the model by comparing it to Urgences-santé’s actual metrics.
Once validated, the proposed scenarios could be measured more accurately in regard
to their impacts on the Urgences-santé system. Additional scenarios must be con-
sidered since the hospital selection policy of Urgences-santé is complex and offers
opportunities for improvement. The impact of changes to the break policies and end
of shift policies should also be considered. It would also be possible to evaluate, and
potentially improve, the location of Urgences-santé’s waiting stations. However, this
problem would require the use of different tools, in addition to simulation. Finally,
additional performance indicators might give a better understanding of the impact of
the scenarios.
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A Two-Phase Approach to the
Emergency Department Physician
Rostering Problem

Paola Cappanera, Filippo Visintin and Roberta Rossi

Abstract In this study, we address the physician rostering problem occurring in an
Emergency Department of an Italian pediatric hospital. Motivated by the paramount
importance that workload balance has in this setting, we propose a tailored two-phase
approach andwe present two optimizationmodels onwhich the proposed approach is
based. In the first phase, we assign all the weekend (and holidays) shifts to physicians
in a medium-term planning horizon pursuing a fair distribution of weekend and night
shifts among the physicians, whereas in the second phase, we assign all the weekday
shifts to physicians in short-term planning horizons so that each physician works
almost the same number of morning and afternoon shifts. We present preliminary
results of an ongoing research whose ultimate goal is to develop a decision support
system to facilitate the creation of physicians’ rosters.

Keywords Physician rostering · Workload balance · Emergency department ·
Optimization

1 Introduction

For every organization, satisfying customers’ needs requires having the right staff on
duty at the right time. In EmergencyDepartment (ED), where the service being deliv-
ered saves human life, relying on a well-designed physician roster is of paramount
importance.

In general, solving a staff rostering problem involves building a work schedule
that: (i) allows meeting a time dependent demand for service, (ii) complies with
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regulatory constraints and work-place agreements, (iii) attempts to satisfy individual
staff constraints and preferences [7].

Effectively addressing personnel management is very complex. Consequently, the
problem is typically split in two sub-problems [7]: the first one, referred to as staff
dimensioning, involves the determination of the number and type of staff needed to
meet the demand for each time-shift. The second one, referred to as rostering, instead,
involves the assignment of individual staff members to each shift to meet demand.

In this study, we consider the latter sub-problem within the context of an emer-
gency department. This will be thus referred to as Emergency Department Physician
Rostering Problem (EDPRP). In particular, we assume that the number of physicians
to assign to each work-shift in a medium-term planning horizon (6month) is known
and we determine the assignment of physicians to shifts in a way that maximizes
personnel’s satisfaction and perceived equity.

In emergency departments—including the one inspiring this study—the number
of physicians covering each shift is typically determined once a year. Such a deci-
sion takes into account the seasonality of the demand (which is quite significant
in pediatric ED, see [15]), involves a negotiation between hospital management,
trade unions and local government, and usually drives hiring policies. Once the staff
dimensioning is determined, the hospital management iteratively solves the EDPRP
to determine the physician schedules for the incoming weeks. This is a very difficult
task. It requires, in fact, not only to comply with articulated regulations (defining, for
example, themaximum and/or minimum number of daily, weekly andmonthly hours
that a physician can work, the minimum number of days between two consecutive
night shifts and so on) but, also, to deal with the fact that, given the seasonality of the
ED arrival rates and the fact that ED are open 24/7, certain shifts (e.g. weekend and
night shifts) are less desirable than others. Moreover, when building the schedule, it
is necessary to continuously deal with physicians’ requests that can be strict and thus
managed as hard constraints (e.g. when the physician is unavailable because s/he has
already assigned to other hospital duties) or expressed as preferences and thus man-
aged as soft constraints (e.g. when s/he asks for a day-off for personal motivations).
In the hospital under study, this task is performed by two seasoned physicians, with
enough authority to deal with colleagues’ pressures.

In this paper we propose a two-phase approach to the EDPRP and present two
Integer Linear Programming (ILP) models that allow implementing the proposed
approach. In the first phase, we assign all the weekend (and holidays) shifts to physi-
cians in a medium-term planning horizon (e.g. 6months). In the second one, instead,
we assign all the weekday shifts to physicians in short-term planning horizons (e.g.
one month). In this phase, we consider the weekend shifts as already assigned, and
we assign the remaining ones. The optimal solution of the first phase, thus, is given
in input to the model used in the second phase. Such an approach ensures that: (i)
physicians know their weekend shifts well in advance and (ii) physicians’ requests, if
communicated reasonably in advance (e.g. one month ahead), can be accommodated
without incurring in schedule disruptions.

The proposed approach, thus, aims at increasing personnel’s satisfaction while
at the same time simplifying the rostering efforts. The objective functions of our
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models are defined in a way that maximizes the perceived shift equity. Ensuring shift
equity, in fact, is proven to influence staff morale and motivation [2, 4]. Specifically,
the objective function used in the first phase allows to evenly distribute weekend and
night shifts among physicians. The one used in the second phase, instead, allows
to evenly distribute morning and afternoon shifts. As pointed out earlier, the shifts
assigned to each physician in the first phase are considered as preassigned shifts in
the second one.

This paper reports the preliminary results of an ongoing research whose ultimate
goal is to develop a decision support system to helpEDphysicians developing staffing
rosters.

The manuscript is organized as follows. Section2 briefly reviews the literature
with a specific focus on those contributions related to physician rostering problems
in which workload balance plays a pivotal role. Then, in Sect. 3 the two optimization
models proposed to formulate the rostering problem are presented emphasizing their
common structure. Section4 reports the preliminary results obtained when facing the
rostering problem at the ED of an Italian pediatric hospital, while Sect. 5 concludes
the paper.

2 Literature Review

Personnel scheduling is a wide spread problem which has been extensively studied
in the literature [8, 13]. One of the most challenging setting to address personnel
scheduling problems is the healthcare one. Here, in fact, the problem is complicated
by the fact that personnel, especially physicians, are usually understaffed, burnout
exposed, specialized and thus difficult to replace [6].

Moreover, developing personalized schedules (rosters) taking into consideration
physician preferences and constraints (most of which are related with the different
services that physicians provide both within and outside the hospital) is of paramount
importance, as it drives staff satisfaction and service quality. In addition, physicians
are resources usually shared by different wards and their rosters in the ED need to
consider the activities already assigned to them in other wards as preassigned activ-
ities [14]. Thus, the management of preferences and preassigned activities, and the
plurality of activities performed by physicians make the physician rostering prob-
lem different from other rostering problems addressed in the healthcare setting. The
physician rostering problem, however, has received limited research attention to date
[1]. In the literature, there is consensus [1, 11, 17] that when dealing with physician
rostering problems, it is necessary to ensuring shift equity by balancing personnel
workload. Workload balance is usually pursued while considering other patient-
related constraints. As an example, Adams et al. [1] deal with workload balance
while taking into consideration the continuity of care that patients experience.

Several papers (e.g., [9]) propose cyclic roster solutions to ensure workload bal-
ance. However, approaches based on cyclic roster make it difficult to satisfy individ-
ual preferences [10]. Indeed, in cases in which individual requests are manifold and
diversified among physicians—such as in our case study—cyclic approaches are not
suitable.
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In addition, the management of preferences makes the problem computationally
difficult to solve. This computational complexity has often led to adopt two-phase
approaches in which shifts are organized in two groups (for example working shifts
and rest shifts) assigned separately in each phase. Typically, rest days are assigned
in the first phase, whereas working shifts are assigned in the second phase assum-
ing the rest shift as preassigned activities [12, 17]. In other studies, the complexity
introduced by constraints ruling workload equalization is managed by relaxing the
complicating constraints. Then, either they are penalized as typically done in meta-
heuristic approaches [16] or introduced dynamically in the relaxed problem as done
in branch-and-cut algorithms [5].

In this study, we address the physician rostering problem and we design a two-
phase approach to ensure workload balance. Indeed, in our setting, equity has two
dimensions and physicians ask that (i) weekend and night shifts are fairly assigned in
a medium-term planning horizon, (ii) each physician works almost the same number
of morning and afternoon shifts in a medium-term planning horizon. The proposed
decomposition algorithm reflects in each phase the peculiarities of a specific type of
balancing and it is not intended to reduce computational complexity. In addition, the
workload balancing is explicitly incorporated in the objective function. We are not
aware of similar approaches in the literature.

3 The Optimization Models

In modeling the two rostering problems characterizing the two phases above
described, we exploit their common structure. Indeed, each of the two problems
has its peculiar constraints, whereas they both share the same network structure.
Thus, both of them are modeled as multicommodity flow problems. This approach
has been already investigated in the literature for other kinds of rostering problems
[3]. Specifically, a layered network is used in each phase. In each of the two phases,
the layered network is characterized by a level for each day in the planning horizon,
and the nodes in each level correspond to the shifts that must be covered in that day.
Each physician corresponds to a commodity and the sequence of activities assigned
to a given physician identifies a path in the layered network from a source node to a
destination node. The layered network is characterized by three sets of arcs: (i) the
first set of arcs connect the source node to all the nodes in the level corresponding
to the first day of the planning horizon; (ii) the second set of arcs connect two inter-
mediate and consecutive layers in the network, and (iii) the third set of arcs connect
the nodes in the day corresponding to the last day of the planning horizon to the
destination node. The resulting network is acyclic and for each physician exactly
one shift—either a work shift or a rest shift, has to be assigned on each day of the
planning horizon (there are specific situation in which a physician can work more
than one shift per day, if that is the case, the graph is modified accordingly by adding
arcs linking shift nodes within the same day). Thus, for a given physician, a path
from the source to the destination node visits exactly one node in each layer of the
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network and the node visited in a specific day represents the shift assigned to him on
that day. The multicommodity structure allows to consider a personalized network
for each physician and to consider implicitly compatibility constraints between two
consecutive shifts: as an example, if two shifts cannot be assigned consecutively to a
physician, in the corresponding network the arc between the two shifts is not inserted
for any couple of consecutive days in the planning horizon. There are two additional
issues which are common to both the models: (i) the management of desiderata
expressed by physicians, and (ii) the management of undesirable sequences of shifts.
Concerning desiderata, a physician may ask that a certain activity is assigned on a
certain day or not assigned, and that his request is strict (the request has to be sat-
isfied) or granted only if it does not deteriorate the optimal solution. In the former
case the desiderata are treated as hard constraints, whereas in the latter case they are
managed as soft constraints, i.e., they are penalized when not granted and the total
number of not satisfied desiderata is minimized in the objective function. On the
other hand, the assignment of two activities one after the other is discouraged in the
objective function for any sequence belonging to the set of undesirable sequences.

Let us denote with:

H set of physicians
H ⊆ H subset of temporary staff
S set of shifts
Sm ⊆ S subset of morning shifts
Sa ⊆ S subset of afternoon shifts
Sn ⊆ S subset of night shifts
Sr ⊆ S subset of rest shifts
Ss ⊆ S subset of night-call duty shifts
U = {(i, j) s.t. i, j ∈ S} set of undesirable couples of consecutive shifts
D = {1, . . . , |D|} set of days to be considered—extended planning horizon consisting of |D| days
L = D ∪ {0, |D| + 1} set of levels
D ⊆ D subset of days corresponding to the planning horizon (possibly different from D

due to extension on the left and on the right)
M ⊆ D set of days corresponding to Mondays
W set of weekends in the planning horizon—each w ∈ W is a subset of D
Gh = (Nh,Ah) graph relative to physician h
oh ∈ Nh origin node for physician h; by default oh belongs to level 0
dh ∈ Nh destination node for physician h; by default dh belongs to level |D| + 1
Δh

v,t = {(i, l) s.t. i ∈ S, l ∈ D} with v ∈ {0, 1}, t ∈ {P,F} set of desiderata for physician h, expressed as couples
of activity-day which have to be avoided (v = 0) or done (v = 1)
in a soft (t = P) or hard way (t = F)

nh maximum number of night shifts physician h can work
wh maximum weekly workload for physician h—expressed in hours
mh maximum monthly workload for physician h—expressed in hours
sh monthly number of night-call duties for physician h

b
h

monthly number of working hours for temporary staff
d minimum number of days that must elapse between two night shifts
cil number of physicians required in day l on duty i
wi workload of shift i ∈ S
M big-M value
αc weight used in the objective functions to discriminate criterion c.
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Then, let us define the following families of variables in order to model the deci-
sions:

xhiljl+1 =
{
1if shift i in level l and shift j in level l + 1are assigned consecutively to physician h
0 otherwise

h ∈ H , l ∈ L, (il, jl+1) ∈ Ah,

εhil =
{
1 if the preference expressed by physician h for shift i on day l is not satisfied
0 otherwise

h ∈ H , l ∈ L, i ∈ S

In the following, we first describe, in terms of variables and constraints the common
features of the two rostering problems and then their distinguishing features. Using
the variables and notation above, the constraints common to both the models are the
following:

∑
j∈S

xhoh0j1 = 1 ∀h ∈ H (1)

∑
j∈S

xhj|D|dh|D|+1 = 1 ∀h ∈ H (2)

∑
j∈S∪oh

xhjl−1il −
∑

j∈S∪dh

xhiljl+1 = 0 ∀h ∈ H ,∀l ∈ D,∀i ∈ S (3)

∑
h∈H

∑
j∈S∪oh

xhjl−1il ≥ cil ∀l ∈ D,∀i ∈ S (4)

∑
j∈S∪oh

xhjl−1il = 0 ∀h ∈ H ,∀(i, l) ∈ Δh
0F (5)

∑
j∈S∪oh

xhjl−1il = 0 + εhil ∀h ∈ H ,∀(i, l) ∈ Δh
0P (6)

∑
j∈S∪oh

xhjl−1il = 1 ∀h ∈ H ,∀(i, l) ∈ Δh
1F (7)

∑
j∈S∪oh

xhjl−1il = 1 − εhil ∀h ∈ H ,∀(i, l) ∈ Δh
1P (8)

xhiljl+1 ∈ {0, 1} ∀h ∈ H ,∀l ∈ L,∀(il, jl+1) ∈ Ah (9)

εhil ∈ {0, 1} ∀h ∈ H ,∀v ∈ {0, 1}∀(i, l) ∈ Δh
vP (10)

The xhiljl+1 variables allow to design the schedule for each physician h: for each
physician, flow conservation constraints (1)–(3) impose that a path is determined
from the origin oh to the destination dh visiting exactly one node (one shift) in
each layer (each day). Constraints (4) guarantee demand coverage, while constraints
(5)–(8)manage desiderata as hard constraints—(5) and (7), or as soft constraints—(6)
and (8). Finally, the rest of the constraints impose the integrality of the variables.
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The weekend shift management problem makes use of the following peculiar
variables:

Y the maximum number of weekends on duty assigned to a physician
V the maximum number of night shifts assigned to a physician

yhw =
{
1 if physician h is on duty in weekend w

0 otherwise
h ∈ H , w ∈ W .

The peculiar set of constraints in the first phase are the following:

min αyY + αvV + αx

|D|−1∑
l=1

∑
(i,j)∈U

xhiljl+1 + αε

∑
h∈H

∑
v∈{0,1}

∑
(i,l)∈Δh

vP

εhil (11)

∑
l∈D

∑
i∈Sn

∑
j∈S∪dh

xhiljl+1 ≤ V ∀h ∈ H (12)

∑
l∈w

∑
i∈S\Sr

∑
j∈S∪dh

xhiljl+1 ≤ Myhw ∀h ∈ H ,∀w ∈ W (13)

∑
w∈W

yhw ≤ Y ∀h ∈ H (14)

yhwi
+ yhwi+1

≤ 1 ∀h ∈ H ,∀i = 1, . . . , |W | − 1 (15)

yhw ∈ {0, 1} ∀h ∈ H ,∀w ∈ W (16)

The first phase is guided by balancing criteria which hierarchically minimize the
maximum number Y of weekends on duty and the maximum number V of night
shifts among the physicians. The other two terms in the objective function discourage
respectively undesirable sequences of activities and unsatisfied desiderata. Variable
yhw takes value one (see 13), if h is assigned a work shift in any day of weekend w,
i.e., if h is on duty in weekendw. Constraints (12) and (14) guarantee the correctness
of the value assumed by variables Y and V , whereas constraints (15) prevent that a
physician is on duty for two consecutive weekends. Constraints (16) define the yhw’s
domain.

The weekday shift management problem makes use of the following peculiar
variable:

Z the maximum difference (in absolute value) of the number of morning and
afternoon shifts among the physicians.

The peculiar set of constraints in the second phase are the following:
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min αzZ + αx

|D|−1∑
l=1

∑
(i,j)∈U

xhiljl+1 + αε

∑
h∈H

∑
v∈{0,1}

∑
(i,l)∈Δh

vP

εhil (17)

∑
l∈D

∑
i∈S

∑
j∈S∪dh

wix
h
iljl+1 ≤ mh ∀h ∈ H (18)

min(d+6,|D|)∑
l=d

∑
i∈S

∑
j∈S∪dh

wix
h
iljl+1 ≤ wh ∀h ∈ H ,∀d ∈ M (19)

∑
l∈D

∑
i∈Ss

∑
j∈S∪dh

xhjl−1il ≤ sh ∀h ∈ H (20)

∑
l∈D

∑
i∈S

∑
j∈S∪dh

wix
h
iljl+1 = b

h ∀h ∈ H (21)

∑
l∈D

∑
i∈Sn

∑
j∈S∪dh

xhiljl+1 ≤ nh ∀h ∈ H (22)

l=d+d∑
l=d

∑
i∈Sn

∑
j∈S∪dh

xhiljl+1 ≤ 1 ∀h ∈ H ,∀d ∈ D (23)

∑
l∈D

∑
i∈Sa

∑
j∈S∪dh

xhiljl+1 −
∑
l∈D

∑
i∈Sm

∑
j∈S∪dh

xhiljl+1 ≤ Z ∀h ∈ H (24)

−
∑
l∈D

∑
i∈Sa

∑
j∈S∪dh

xhiljl+1 +
∑
l∈D

∑
i∈Sm

∑
j∈S∪dh

xhiljl+1 ≤ Z ∀h ∈ H (25)

As the first phase, also the second phase is guided by a balancing criterion which
attempts at assigning to each physician almost the same number of morning and
afternoon shifts. Specifically, for each physician the (absolute) difference between
morning and afternoon shits assigned in the planning horizon is computed (see 24
and 25) and the objective minimizes the maximum of these differences among the
physicians. The rest of the constraints guarantee, for each physician, respectively a
correct value for the monthly and weekly workloads (see 18 and 19), for the night-
call duty time (20), for the working time of temporary staff (21), for the number of
night shifts (22), and the correct interchange between night shifts and other shifts.

4 Numerical Results

In this section we present an example of the model’s output. Due to space con-
straints the example will report the output relevant to the shifts from 04/02/2019 to
17/02/2019 (2weeks). As showed in Table1, the ED under study has to cover 10
types of shift per day. Some shifts refer to the main ED (MO, AF, ENI, NI), whereas
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Table 1 Shift duration and coverage

Timeframe Shift code Shift name Duration (h) Coverage
weekends

Coverage
weekdays

Morning MO Morning 6 2 3

MO_O Morning
observational
unit

6 1 1

MO_T Morning
trauma

6 1 1

Afternoons AF Afternoon 6 2 4

AF_O Afternoon
observational
unit

6 1 1

AF_T Afternoon
trauma

6 1 1

Early night ENI Early night 4 1 1

Night NI Night 12 2 2

NC Night call duty 0 1 1

NC_T Night call
duty trauma

0 1 1

others refer to different areas (observational unit and trauma unit) which are covered
by dedicated resources during the day (while at night they share the same resources
with the main ED). Not all the physicians can cover all the shifts (e.g. only a few of
them cover the trauma shift), not all the physicians are expected to work the same
amount of hours per week. Each shift is characterized by its length and coverage. For
the same shift, the coverage changes betweenweekends andweekdays. The weekend
shifts include the Friday afternoon shift. Night-call duty shifts (NC and NC_T) are
assigned with duration equal to 0 as physicians have to guarantee their availability
but they will work only in case of emergency.

Table2 shows the results of the first model/iteration where we assign weekend
shifts. As we can notice, physicians working one weekend do not work the following
one (and indeed the number of weekends worked by each physician is well balanced
in the planning horizon of 6months).

Table3 shows the results of the second model/iteration. Here, weekend shifts are
already assigned, and we assign the remaining ones. In this case, the objective is to
balance afternoon and morning shifts, while considering the shifts that have already
been assigned in the previous iteration as fixed.

The resulting schedule complies with the weekend schedule and balances the
number of morning and afternoon shifts worked by each physician in a planning
horizon of 1month. Each phase of the two-phase approach can be solved to optimality
within 10min. However, the decomposition of the problem in two-phases is not
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motivated by efficiency reasons, but by the fact that the two problems usually involve
planning horizon of different lengths and have peculiar constraints and objective
functions which differentiate the one from the other.

5 Conclusion

In this paperwe presented a novel two-phase approach to the EDPRP. The approach is
basedon twooptimizationmodels sharing the samenetwork structure. Thefirstmodel
supports medium-term (6months) planning decision concerning the assignment of
weekend shifts, and allows balancing the weekend and night shifts assigned to each
physician. The second one, instead, allows assigning the weekday shifts in the short
term (1month) in away that (i) is compatiblewith theweekend shifts already assigned
and (ii) ensures that morning and afternoon shifts are equally distributed across
physicians. The models have been successfully tested using data from an Italian
pediatric hospital.

Our future research effort will be aimed at embedding the presented models in a
decision support system facilitating the physician rostering process in the hospital
under study.
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Using a Slotted Queuing Model
to Compare the Efficacy of Emergency
Departments Operating with
and Without a Physician in Rural
Communities

Peter T. Vanberkel, Benjamin Wedge, Alix J. E. Carter and Ilze Ziedins

Abstract NovaScotia has developed a novelway tomanageEmergencyDepartment
(ED) patients in rural communities. Staffed by a paramedic and a registered nurse,
and overseen by physician via telephone, Collaborative Emergency Centres (CECs)
have replaced traditional physician-led EDs overnight. Wemodeled the performance
of CECs using a slotted queuing model to determine how well they perform in
larger communities. It is shown that a CEC’s success is related to the proportion of
demand for primary care appointments compared with the supply of primary care
appointments. Furthermore, we show that larger communities employing CECs will
experience diminishing returns.

Keywords Slotted queueing model · Emergency medicine · Lindley’s recursion ·
Rural emergency departments

1 Introduction

Delivery of after hours health care in rural Nova Scotia (NS) has undergone major
changes in recent years to improve access to primary care and decrease overnight
Emergency Department (ED) closures. It is common in rural NS for physicians
to both have primary care practices and also provide ED coverage. When there
is a physician shortage, access to primary care suffers and overnight ED closures
become more common [1]. The shortage of daytime primary care appointments can
be exacerbated when physicians shorten or cancel their clinic before or after working
an overnight shift in the ED. This combination of overnight ED closures and primary
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care appointment shortages, coupled with low overnight demand [2], motivated the
NS government to rethink how ED services are provided in rural NS. Following
an extensive review of emergency health care services, [2] the province began to
implement Collaborative Emergency Centres (CECs) in rural areas. CECs are staffed
by a nurse and paramedic team overnight who treat patients with the assistance of
a Medical Oversight Physician (MOP) who oversees multiple CECs and provides
advice over the phone. During daytime hours, the CEC is staffed by a physician who
sees his/her regularly scheduled primary care patients, walk-in patients, and those
referred by the night time CEC team.

The implementation of CECs began in the summer of 2011. As of June 2017,
there are eight CECs in NS and all operate in small communities. The largest CEC
community has approximately 7600 residents in the catchment area, whereas the
smallest CEC community has approximately 4100 residents. An assessment of the
performance of these sites was commissioned by the NS Department of Health and
Wellness. The assessment, reported in [1], found that the program has been effective
in reducing overnight closures of EDs, has increased the availability of primary care,
and has saved money. The provincial government has indicated they will continue
to use the model and assess additional (and larger) sites. Six years after the first
CEC opened, this paper seeks to determine if similar gains can be expected in larger
population centres.

The most comprehensive collection of evidence related to the CEC model of
care found was a Rapid Knowledge Synthesis project by Hayden et al. [3]. This
project summarized, among other things, the typical structure of CECs, the common
challenges for CEC implementation, and the locations across Canada which have
CEC-type centres. The authors conclude that “there is limited scientific literature on
the concept of CEC-typemodels as a health care delivery model.”We refer readers to
their comprehensive report for further details on the care model. We instead present
a high-level description of how patients typically flow through the system and the
resources with which they interact.

The patient flow in the traditional ED environment involves physician(s) and
nurse(s) in an ED at night treating patients. Patient care is complete at the end of
the ED visit with the patient discharged either home or admitted as inpatients for
further care. In rural areas these are the same physicians who provide primary care
the following day, and as such, theymay see fewer patients preceding or following an
ED shift than on other days [1]. The patient flow in the CEC model involves a nurse
and paramedic in the ED at night treating patients with the support of a physician
available via telephone. In terms of patient flow, the primary difference compared to
a traditional ED is that these patients may be asked to come back the following day to
complete or reassess their treatment. Furthermore, because there is not a physician
overnight, physicians are not cancelling day time primary care appointments the
following day. Some of the following day’s primary care appointments may be used
by patients referred by the overnight CEC team. The patient flow diagram for CECs is
displayed in Fig. 1 where all disposition options are detailed. There is some variation
in the CEC staffing complement and processes as is reviewed by Wedge [4].
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Fig. 1 CEC patient flow diagram

2 Methodology

To measure the efficacy of the CEC model in other (larger) communities we model
the operations and performance of the traditional ED and then compare that to the
operations and performance of the CEC. Although there are considerable clinical
differences between these two care models (as described in [3]), the flow of patients
and capacity to treat patients only changes slightly. By changing model parameters,
the model described in this section is used to evaluation both the traditional ED and
the CEC.

2.1 Model Description

Patient flow is modelled as a discrete time slotted queuing model. A discrete time
queueing approach is used because it can represent the patient flow in a straight-
forward manner and allows for more generic and repeatable models suitable for
multiple settings [5]. The model has two slots, one representing the daytime and one
representing the night time. A slotted queueing model aggregates periods of time
and considers arrivals and services as batches during this time period. The queue is
computed at the end of the slot. As an example, consider a single slot representing
a single day. If there were no patients waiting at the beginning of the day and 12
patients arrive and 10 patients are served, then the queue would be 2 at the end of
the slot. For further details on slotted queueing models see [6].

A single day is divided into two slots, one representing all daytime primary care
(including the daytime CEC) and one representing the night time CEC or ED de-
pending on the scenario. Patients arriving to the daytime slot will be served if there
is sufficient capacity. Patients who are served leave the system. Patients who are
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not served from the daytime slot will either try again the next day or renege to the
night time slot. Patients arriving to the night time slot will have either reneged or be
new demand. Patients served at the night time slot will either be discharged to the
Regional Hospital, home, or to the daytime slot the next day.

Patient arrivals at the daytime slot, denoted by AP
t where t is the present day and P

denotes primary care. The daytime slot has a daily capacity to see SP
t patients on day

t independent of the patient’s acuity. Note that patient arrivals denote appointment
requests i.e. calls to the clinic for an appointment, not patients physically arriving to
the clinic. The shorter label “patient arrivals” is used for simplicity and clarity.

Those patients who are not seen on the day they requested an appointment are
denoted by Lt,r , where r indexes the number of days that have passed since request-
ing an appointment. These patients will have priority for appointments over new
appointment requests for the next daytime slot, however they renege and go to the
night time slot with probability pr . We denote these reneging patients by AE

t,r . All
other night time slot arrivals are denoted by AE

t . It follows that the aggregate arrival
rate to the nighttime slot is AC

t = AE
t + ∑∞

r=0 A
E
t,r . The night time slot has a capacity

to see SE
t patients per night.

After service in the night time slot, patients are discharged to another hospital with
probability p′

1, patients are sent back to the daytime slot with probability p′
2, and

patients are discharged home with probability p′
3. The number of patients discharged

in each manner is: D1,t = p′
1A

C
t , D2,t = p′

2A
C
t , D3,t = p′

3A
C
t . Patients sent back to

the daytime slots (D2,t ) receive first priority for appointments. For the ED, D2,t = 0.
That completes the feedback loop demonstrating how workload from the daytime
slots overflow to the night time slots and vice versa.

The state of the system is described by Lindley’s Recursion [7]. Let Lt,r be the
number of patients at the beginning of day t that have been waiting for service for r
days. Lt,0 is increased by arrivals (AP

t , D2,t ), and Lt,r , r ≥ 0 is decreased by patients
served by the daytime slot and patient reneging (AE

t,r ). Formally,

Lt+1,r+1 = {Lt,r − {SP
t − D2,t −

∞∑

j=r+1

Lt, j }+}+ − AE
t,r (1)

where Lt,0 = AP
t and x+ = max{0, x}.

Consider that the number of patients waiting r + 1 days tomorrow is the number
of patientswaiting r days today (Lt,r )minus those that received an appointment today
({SP

t − D2,t − ∑∞
j=r+1 Lt, j }+), and then if any are not seen today, minus those that

reneged to the night timeCEC (AE
t,r ). To determine howmanywaiting patients receive

an appointment todaywemust consider howmany daytime clinic appointments were
available today (SP

t ) and how many appointments were consumed by patients of
higher priority. Patients of higher priority include those referred from the night time
slot (D2,t ) and those who have waited more days (

∑∞
j=r+1 Lt, j ).
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2.2 Modelling the Random Processes

The two arrival processes, AP
t and AE

t , are assumed to be Poisson processes with
mean λP and λE respectively. Poisson distributions have been shown to effectively
model non-scheduled arrivals in healthcare settings [8]. Reneging (AE

t,r ) is modelled
using a binomial distribution. The probability that AE

t,r patients waiting r days renege
is equal to,

P(AE
t,r ) = (Lt,r !)

(Lt,r − AE
t,r )!AE

t,r !
p
AE
t,r

r (1 − pr )
Lt,r−AE

t,r (2)

This assumes that patients renege independently and with equal probability pr
given the number of days they have waited for an appointment. The assumption is
what would be expected from a waiting list where patients do not interact, as in this
case. For example, the decision by any patient to renege and go to a CEC does not
influence any other patient’s decision. The number of patients being sent back to the
daytime clinics (D2,t ) is also modelled using a binomial distribution and conforms
to the requirements of the binomial distribution.

We analyzed our model using simulation programmed in Visual Basic. This ap-
proach allows us to investigate unstable settings while maintaining the slotted queue-
ing model structure. In the simulation, for each day t we sample from the distribution
and generate a random variate for each of our random variables described above
(AP

t , AE
t , AE

t,r , D2,t ). Using these instances of the random variable we compute the
state of the system and then advance to day t + 1.

2.3 Scenarios, Data, and Validation

The model is calculated first when a traditional ED is in operation and then when
the traditional ED is replaced with a CEC. When the traditional ED scenario is run,
patients do not go from the night time slot to the daytime slot as a physician is in
the hospital in this scenario. In the CEC scenario p′

2 percent of patients return the
next day to see a physician. In the traditional ED scenario, physicians reduced the
availability of daytime appointments in order to recover from overnight care hours.
In the model this is managed by reducing the supply of daytime appointments by
four, representing one hour of cancelled care [9]. In the CEC scenario the supply of
appointments is the full value of SP

t .
The model is run for four different population sizes: 4100 and 7700 patients (used

as two baseline comparisons to towns with existing CECs) and 10,000 patients (a
moderate-sized town, approximately 25

Several performance metrics are used to compare these two ED setups in these
different communities. The proportion of patients who get an appointment on the
first day they asked is a measure of primary care access and is found by computing
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1 −
∑

(Lt+1,1+AE
t,r )∑

Lt,0
where the sums are taken over all t . The daytime provider utiliza-

tion is found by taking the total number of appointments filled during the daytime
care hours divided by the total number of appointments offered during the daytime.
Finally, we compute the physician cost per overnight patient using the costs described
in [2]. In the non-CEC scenario the physician cost per overnight patient is found by
taking the average cost of overnight care, and dividing by the average number of
overnight arrivals. The annual physician cost associated with running an overnight
ED was reported to be $350,000 for an eight hour ED and $700,000 for a 14 h ED
[2]. Prorating this to a 12 h ED leads to a cost of $657,000 per year or $1800 per
night. For the CEC scenario, there is a flat fee of $150 per night for the Medical
Oversight Physician, as well as a fee of $60 per patient referred back the daytime
CEC, for the cost of the patient’s primary care appointment. The difference between
support staff costs for the two model scenarios is the same [2] and therefore ignored
in the model.

Data for themodel can be roughly classified into three categories; (1) primary care
demand and service capacity, (2) reneging from the primary care queue to the ED/
night time CEC and (3) ED/night time CEC demand and service capacity. Data for
(1) comes from the Department of Health and Wellness’ billings database. Data for
(2) comes from health services literature and data for (3) comes from the electronic
patient care record of the local ambulance service provider. Primary care demand and
service capacity data for this research was extracted from the Department of Health
and Wellness’ billings database for the period April 1, 2012 to March 31, 2013. The
data showed 8.49 visits per thousand people per day in one CEC community and 7.33
visits per thousand people per day in the other. These numbers are comparable to
typical daily primary care appointment rates cited in the literature of approximately
eight per thousand people [10]. We assume that a physician sees four patients per
hour during the daytime clinics and that clinic hours are not cancelled.

An important characteristic of the model is patient reneging. While waiting for a
primary care appointment, patients may decide to instead visit the night time CEC or
ED. Previous research on reneging asked patients arriving at the ED how long they
had been experiencing an issue [11]. Table1 gives reneging probabilities used in this
paper, with p0 being the probability that a patient reneges on their day of arrival if
they are not seen, and pr being the probability that a patient who is still waiting for
an appointment after r days reneges that day. For numerical purposes we assume the
maximum number of days waiting for an appointment is finite and 7days.

The electronic patient care record (ePCR) database records all visits to the
overnight CECs since their inception (among other things). The data for this study

Table 1 Reneging probabilities

Day (r ) 0 1 2 3 4 5 6 >7

Renege probability
(pr ) (%)

16 6.5 7.0 7.5 8.1 8.9 9.7 100
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were collected from April 1, 2012 to March 31, 2013. From this data we deter-
mined that after a patient has been assessed they are transferred to another hospital,
treated and released with follow-up, or treated and discharged home with probabili-
ties p′

1 = 14.9, p′
2 = 56.2, and p′

3 = 28.9, respectively. The arrival rate of patients
to the ED was found to be 2% of the arrival rate to the daytime primary care. This is
slightly lower than the 4% reported in [12]. The arrival rate of patients to the night
time CEC is made up of patients reneging from the day clinic and patients arriving
directly to the night clinic. The former is an output from the daytime slot and the
latter is assumed to be 1% of the arrival rate to the daytime primary care.

The warm-up period was found using Welch’s graphical procedure and the run
length was set to ten times the warm up period [13]. The number of replications
required was found by performing a number of pilot runs and then calculating the
number of replications required to keep each metric’s confidence interval within
certain bounds.

To validate the model, the number of overnight arrivals to the modelled ED/CEC
was compared to historical data. In the ED version, the model found 1.479 ± 0.049
(± denotes the size of the 95% confidence interval) arrivals per night, compared
with 1.44 in the historical data. With the CEC operating, the model found there were
0.635 ± 0.021 arrivals per night, compared with 0.68 in the historical data. It is felt
that the slight under-estimation of overnight arrivals is consistent with the finding
that the night time arrival rate declined as the CEC program progressed [1]. Based
on this information, it is felt that the model provides a valid approximation of the
overnight arrivals to emergency care in both the CEC and ED settings.

3 Results

In this section we review the numerical results for the 16 scenarios—two baselines
representing the existing CECswith 95 appointment requests per 100 offered and two
larger communities each with 90, 99 and 110 appointment requests per 100 offered.
For simplicity this ratio is expressed as a fraction e.g. 90 appointments requested per
100 offered is referred to as the “90/100 scenario”. The summary of results for each
scenario is in Table2.

In the baseline scenario, with 4100 residents, we see that 79.2% of patients can
get an appointment on the first day they ask, compared with 94.6% when the CEC
opens. In the slightly larger Baseline 2 scenario, with 7700 residents, we see that
74.2% of patients receive care on the first day they ask, increasing to 96.3% when
the CEC opens. Big improvements are seen in cost, where the physician cost per
overnight patient drops from $1,218 in the baseline to $270 when the CEC opens; a
drop of 77.8%.

In the 90/100 scenario and a community of 10,000 residents, 93.7% of patients
can get an appointment on the first day they ask, which increases to 97.0% when the
CEC opens. In the 99/100 scenario, 72.8% of patients can get an appointment on the
first day they ask, which increases to 81.4% when the CEC opens. In the 110/100
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Table 2 Summary of numeric results

Population Appointment
requests per
100 offered

Facility Proportion
of patients
who get
first day ap-
pointments

Daytime
provider
utilization

Physician
cost per
overnight
patient

E[D2,t ]

4100 95 ED 0.792 0.952 1218 0

4100 95 CEC 0.946 0.884 270 0.35

7700 95 ED 0.741 0.982 497 0

7700 95 CEC 0.963 0.91 145 0.73

10,000 90 ED 0.937 0.946 1067 0

10,000 90 CEC 0.97 0.918 155 0.68

10,000 99 ED 0.728 0.989 403 0

10,000 99 CEC 0.814 0.973 78 1.83

10,000 110 ED 0.166 1 149 0

10,000 110 CEC 0.007 1 41 9.94

20,000 90 ED 0.97 0.951 743 0

20,000 90 CEC 0.98 0.938 102 1.19

20,000 99 ED 0.777 0.994 237 0

20,000 99 CEC 0.747 0.993 51 4.64

20,000 110 ED 0.263 1 84 0

20,000 110 CEC 0 1 37 21.18

scenario, 16.6% of patients will get appointments on the first day they ask, dropping
to 0.3% when the CEC opens. This demonstrates that primary care is less accessible
after a CEC opens; a phenomenon which is discussed in Sect. 4. In all three scenarios
the CEC reduces the physician cost per overnight patient. For the 90/100 scenario
the cost decreases from $1067 to $155 when the CEC opens. In the 99/100 scenario
it falls from $403 to $78 and in the 110/100 scenario it falls from $149 to $41.

With 20,000 people and the 90/100 scenario, the CEC increases the proportion of
patients seen on the first day from97.0 to 98.0%.When theCECopened, 1.19 patients
were referred back to daytime care each night. TheCEC reduced the physician cost of
overnight care from $743.21 to $102.35 in this scenario. In this community the CEC
model showed modest performance advantages compared with EDs in the 99/100
scenario. The proportion of patients who were seen on the first day fell from 77.7 to
74.7%when the CEC opened. 4.64 patients were referred back to primary care when
the CEC opened and the physician cost per overnight patient declined from $238 to
$51.

Advantages of the CEC were not found when there was a shortage of primary
care appointments. In the 110/100 scenario, 26.3% patients were seen on the first
day they asked for an appointment when the ED was open, but none were seen on
the first day they asked once the CEC opened. When the ED was open, the physician
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saw 21.34 patients per night. The CEC saw 38.44 patients per night. Furthermore,
21.18 were sent back to primary care for follow-up, which would require 2/3 of a
physician’s daytime appointment capacity to treat. Despite this, the physician cost
per patient still decreases, from $85 to $37. The findings from the 20,000-person
community show that the CEC remains modestly beneficial when there is an excess
of primary care capacity, but that it is detrimental to care when there is a shortage of
primary care appointments.

4 Discussion

The simulation results show that the benefits anticipated from the CECs do occur
under certain conditions. Specifically, the average cost per patient is reduced and
primary care capacity is increased so long as there is not a shortage of primary
care capacity prior to the CEC implementation. Furthermore, the simulation model
demonstrates that the CECprogram is prone to diminishing returns. As the catchment
population grows, the proportional cost savings and primary care access improve-
ments decrease. Importantly, any advantage is dependent on oversupply of primary
care, and is lost in all scenarios in which there is undersupply.

To understand why CECs exacerbate shortages of primary care appointments one
must understand that while CECs free physicians to provide more daytime primary
care they also create rework. We observed that 56% of patients who visit the night
time CEC are referred back to the daytime CEC. This means these patients are seen
twice and had a physician been present at the night time CEC they would only have
been seen once. If the number of rework appointments is greater than the number of
extra daytime primary care appointments created by the CEC program, then primary
care access becomes worse. This situation occurs primarily if the referral back to
primary care rate becomes large or if the arrival rate to the night time CEC is large.
The latter is expected when there is a shortage of primary care appointments leading
to high reneging rates. Furthermore, in areas with large catchment populations the
arrival rate to the night time CEC is expected to be large, meaning we expect a large
number of patients referred back to daytime primary care. In this case, the large
amount of rework may be reason enough not to convert to the CEC model.

Another reasonwe see diminishing returns in the benefits of CECs as communities
get larger is because larger catchments aremore tolerant to the loss of one provider for
a portion of the day. Consider a population of 5000 that has access to 100 primary care
appointments per day. If a physician cancels four appointments to recover from an
overnight ED shift, primary care capacity is decreased by 4%.The same four canceled
appointments for a population of 10,000 with 200 primary care appointments per day
represents only a 2%decrease in primary care capacity. Such economyof scale results
are also evident in the performance metric results.

The model, being the first to analytically evaluate CECs, has a number of limita-
tions which may reduce its utility in measuring certain aspects of CEC performance.
Data limitation exists in two ways. First, the model is calibrated using a population
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subgroup found in rural Nova Scotia over a predefined time period. This may not be
representative of some larger catchment populations and ignores behavioral changes
and system feedback which may occur after CEC implementation. Second, a lack
of Canadian data, as well as a lack of rural data, could also impact model predic-
tion. We have used data for rural Canada when available, however some data was
derived from American sources. Finally, data on reneging probabilities is limited.
Note that these data limitations do not affect the model’s ability to make compara-
tive assessments of EDs and CECs in a particular community when configured with
appropriate input parameters. The chosen model abstraction is overly efficient with
regards to primary care access due to daytime provider pooling. The model accounts
for all daytime primary care demand in a single queue. This pooling likely leads to
underestimated wait times. However, underestimates of wait time due to pooling is
small when systems operate at a high load [14], as is the case in our setting.
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AMeta Algorithm for Reinforcement
Learning: Emergency Medical Service
Resource Prioritization Problem in an
MCI as an Example

Kyohong Shin and Taesik Lee

Abstract We present a finite-horizon Markov Decision Process (MDP) model for
a patient prioritization and hospital selection problem, which is a critical decision-
making problem in emergencymedical service operation. Solving thismodel requires
reinforcement learning (RL) due to its large state space.We propose a novel approach
with an aim to significantly enhance the scalability of RL algorithms. Our approach,
which we call a State Partitioning and Action Network, SPartAN in short, is a meta-
algorithm that offers a framework an RL algorithm can be incorporated into. In
this approach, we partition the state space into smaller subspaces to construct a
reliable action network in the downstream subspace. This action network is then
used in a simulation to approximate values of the upstream subspace. Using temporal
difference (TD) learning as an example RL algorithm, we show that SPartAN is able
to reliably derive a high-quality policy solution, thereby opening opportunities to
solve many practical MDP models in healthcare system problems.

Keywords Emergency medical service · Patient prioritization · Hospital
selection · Reinforcement learning

1 Introduction

One of the important decision problems in the operation of emergency medical
service (EMS) system is a patient prioritization and hospital selection problem. This
problem is particularly relevant in the aftermath of a mass casualty incident (MCI)
when anEMS system experiences a severe resource shortage [1, 2].Whilemany prior
studies on the medical decision-making problem including EMS resource operations
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Fig. 1 The conceptual framework of SPartAN

have been based on scheduling or job assignment optimization formulation such as
mixed integer program or stochastic optimization, more recent studies formulate the
problem as a sequential decision making model, i.e. MDP model [3].

Solutions to anMDPmodel can be derived by using dynamic programming (DP).
However, MDP models of complex systems, such as EMS operations under MCI,
often require a large state space, making it difficult to use a dynamic programming
method. This problem is well-known as curses of dimensionality [4]. Reinforcement
learning (RL) addresses this problem by using an approximate value function. RL
uses a simulation model to generate sample paths and calculates the value function
of states along the generated sample path. Progressing forward from an initial state
along a sample path, RL updates the value function of the states on the sample path.
This process is repeated on thousands of sample paths to update the values of as
many states as a computational budget allows. Despite the continuous development
of various value function approximation techniques [5–10], the scalability problem
is far from being conquered, and the need for new ideas and techniques is ever
increasing.

With a goal of solving the patient prioritization and hospital selection problem
underMCI,we propose a novel approach that significantly enhances the scalability of
RL algorithms.Our approach,whichwe call a State Partitioning andActionNetwork,
SPartAN in short, is a meta-algorithm in that it works as a framework any existing
RL algorithm can be incorporated into. In SPartAN, we partition a system’s state
space into the upstream and downstream subspace, and obtain a policy solution in
the downstream subspace first, and then passes the results to the upstream subspace
through simulation. See Fig. 1, that is, we solve two RL problems within one big RL
problem. Key ideas in SPartAN are threefold: reducing the size of an original RL
problem by partitioning the state space into smaller compartments, directly obtaining
values of the terminal states of the upstream compartment by using a simulation
model, and constructing a quality heuristic policy in the downstream subspace by an
action network (e.g. Deep Neural Network (DNN)) to use in the simulation.

This paper is structured as follows. In Sect. 2, we use temporal difference (TD)
learning as an example of an RL algorithm to solve a patient transport decision
problem under MCI. We show that the TD learning quickly becomes ineffective as
the size of the problem increases, which motivates our development. In Sect. 3, we
provide a detailed description of SPartAN, and the experiments and discussions on
the results are presented in Sect. 4. Then we conclude our work in Sect. 5 with the
areas to be addressed in future work.
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2 Motivation

2.1 Patient Transport Decision Problem

Our patient transport decision problem is as follows. A large number of victims have
just been rescued from a large-scale accident and need to be transported to nearby
hospitals by one ambulance. There are two classes of victims, referred to as immediate
and delayed, denoted by pI and pD respectively. These patients have a limited survival
time within which they must receive care at a hospital to survive. Survival times for
the patients in each class follow an exponential distribution with mean survival time
of 1/rI and 1/rD respectively (r is referred to as an abandonment rate). While both
classes of patients require medical intervention for their survival, immediate class
patients are more critical than delayed class in that their mean survival time is shorter
than that of delayed class patients (1/rI < 1/rD).

Twohospitals,H1 andH2, are accessible from the accident sitewith themean travel
time by the ambulance 1/w1 and 1/w2, respectively. Comparing the two hospitals,
H2 is better in that they can treat a patient quicker with a higher quality of care.
This is modeled as a single server queue with a higher service rate (μ2 > μ1). For
higher quality, we use an adjustment factor δ to give a higher probability of survival
in computing immediate reward.

The decision problem is to decide which class of the patients and towhich hospital
the ambulance should transport next. The objective is to maximize the total sum of
survival probability for the entire patients. For this problem, a system state is defined
as S = (pI , pD, h1, h2,A); pI (pD) denotes the number of immediate class (delayed
class) patients remaining on the accident site, hj(j = 1, 2) is the number of patients
in queue at hospital Hj and A represent one of the four ambulance’s states – to/from
(0/1) hospital j, a0/1j . When an ambulance arrives at the site and there are patients to
be transported, emergency medical technicians make a decision and this decision is
denoted by X (s) = {(i, j) : i ∈ {I ,D}, j ∈ {1, 2}}. Naturally, the decision epoch for
this problem is the moment when the ambulance arrives at the accident site. The time
horizon of the problem runs through the moment all patients have received care at a
hospital or died at the accident site.

Immediate reward of a decision to send a patient in class i to hospitalHj is defined
as the patient’s probability of survival. This is computed as the probability that a
patient will start receiving care at a hospital before his survival time expires. Time
until a patient receives care consists of waiting time at the accident site, transport
time, and waiting time at the hospital. Then, the immediate reward is specified as:

R(s, x) = δi,j

[ hj−1∑
k=0

{P(kZ < Y < (k + 1)Z) × P(T > Y + (hj − k)Z)}

+ P(hjZ < Y ) × P(T > Y )

]
, (1)
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where Y ∼ exp(wj) is the travel time distribution, Z ∼ exp(μj) is the service time
distribution at the hospital Hj and T ∼ exp(ri) is the survival time distribution for
patients in class i ∈ {I ,D}. The adjustment factor, δi,j, represents that, with all other
things being equal, the probability of survival at H2 is higher than H1.

Because P(Y < Z) = wj

μj+wj
, P(Y < kZ) = kwj

μj+kwj
, and P(T > Y + hjZ) =

wjμj

(hjri+μj)(ri+wj)
, the final reward is as follows:

R(s, x) = δi,j

[ hj−1∑
k=0

{(
(k + 1)wj

μj + (k + 1)wj
− kwj

μj + kwj

)
× wjμj

((hj − k)ri + μj)(ri + wj)

}

+
(
1 − hjwj

μj + hjwj

)
× wj

ri + wj

]
. (2)

The system state transitions to other states when one of three events occurs:
patient death, ambulance arrival and patient discharge. Since the model assumes
that the inter-arrival times of the three events follow an exponential distribution, the
event generation process follows the Poisson process [11]. Thus, the state transition
probability of the model is obtained by dividing the occurrence rate of each event by
the sum of the rates of all events that can occur in the current state, which is:

γ = (wj) + (pI rI + pDrD) + (1h1>0μ1 + 1h2>0μ2). (3)

Each parenthesis represents the rate at which the ambulance arrives at the accident
site or the hospital j, the rate at which patients die at the accident site and the rate at
which the patient is discharged from the hospital. The indicator function, 1hj>0, has
the value 1 when there is at least one patient in hospital j and the value 0 when there
is no patient.

Finally, the objective function of state s = (pI , pD, h1, h2,A0
j ), j ∈ {1, 2} is for-

mulated using Bellman’s equation:

V (s) = 1

γ

[
wj max

(
R(s, (I , 1)) + V (pI − 1, pD, h1, h2,A

1
1),

R(s, (I , 2)) + V (pI − 1, pD, h1, h2,A
1
2),

R(s, (D, 1)) + V (pI , pD − 1, h1, h2,A
1
1),

R(s, (D, 2)) + V (pI , pD − 1, h1, h2,A
1
2)

)

+pI rI V (pI − 1, pD, h1, h2,A
0
j ) + pDrDV (pI , pD − 1, h1, h2,A

0
j )

+1h1>0μ1V (pI , pD, h1 − 1, h2,A
0
j ) + 1h2>0μ2V (pI , pD, h1, h2 − 1,A0

j )

]
,

(4)
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and the objective function of state s = (pI , pD, h1, h2,A1
j ), j ∈ {1, 2} is formulated:

V (s) = 1

γ

[
wjV (pI , pD, hj + 1, h3−j,A

0
j )

+pI rI V (pI−1, pD, h1, h2,A
1
j ) + pDrDV (pI , pD − 1, h1, h2,A

1
j )

+1h1>0μ1V (pI , pD, h1 − 1, h2,A
1
j ) + 1h2>0μ2V (pI , pD, h1, h2 − 1,A1

j )

]
.

(5)

2.2 Reinforcement Learning (Temporal Difference Learning)

To demonstrate the scalability in using RL as a solution approach forMDP problems,
we use a TD learning as an example of an RL algorithm to solve the patient transport
decision problem.

TD learning is one of the first learning algorithms to solve RL problems. Unlike
backward DP, TD learning approximates the value functions of system states, V̄ n(s),
by moving forward from its initial state to terminal states. It iteratively generates
sample paths from a simulation model, where the value functions of the states along
each sample path are updated by using the sample estimate [4]. In nth iteration, the
sample estimate v̂n of the current state sn is computed by,

v̂n = max
a∈A(s)

[R(sn, an) + E{V̄ n−1(s′n)|sn, an}] (6)

where R(·) is the immediate reward and E{·} is the expected value from the transition
states s′n. In (6), v̂n depends on V̄ n−1(s′n), which is the approximate value of state
s′n updated at (n − 1)th iteration. With v̂n, the approximate value V̄ n of state sn is
updated as follows:

V̄ n(sn) = (1 − αn)V̄
n−1(sn) + αnv̂

n.

This process of updating V̄ n(sn) is continuously repeated until a predefined compu-
tational budget (e.g., iteration number) is reached.

2.3 Results from TD Learning

For the patient transport decision problem, we set the total number of patients to
be 80, half of which are immediate class patients and the other half delayed class
patients. A specific setting for the problem is shown in Table1. Note that under this
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Table 1 Experiment scenario

Patients Immediate Delayed Hospitals H1 H2

Number of
patients

40 40 Mean travel
time, 1/wj

1/8 hr 1/4 hr

Abandonment
rate, ri

0.5 ppl/hr 0.2 ppl/hr Service rate,
μj

3 ppl/hr 5 ppl/hr

(δI ,j, δD,j) (0.2 , 1) (1, 1)

setting, the model can be exactly solved by dynamic programming, and the optimal
policy for this problem is known.

We solve the example problem by using TD learning. We use e−0.005n as an
exploration rate to balance exploitation and exploration. To control the learning rate,
a harmonic stepsize rule is adopted αn = 50

50+n′−1 , and n′ is the number of visits
to state s [4]. We set the maximum number of iteration at 1 × 106. We solve this
problem five times to obtain five policy solutions.

We examine the quality of the policy solution from the TD learning by comparing
thepolicywith the optimal policy. Specifically,wedivide the state spaceS into smaller
compartments to see how the performance of the TD learning solution varies with
respect to the depth of state transition. Since our problem has a finite horizon and the
system state transitions from S0 = (40, 40, ·, ·, ·) toward ST = (0, 0, ·, ·, ·), a natural
choice for compartmentalization is by the total number of patients remaining on the
accident site, pI + pD. S(a,b) then denotes the subset of S, which is defined as S(a,b) =
{S|a × 10 < (pI + pD) ≤ b × 10}. For each compartment, we select states that have
been visited more than 500 times, and compare the policy solution (i.e., action)
from the TD learning with the optimal action computed from dynamic programming.
Table2 shows the number of caseswhereTD learning solution agreeswith the optimal
solution.

Table2 shows that within S(6,7) and S(4,6), actions recommended by TD learning
significantly differ from the optimal actions; in more than 60% of the states therein,
TD learning gives a sub-optimal action. In fact, we observe a clear tendency in the
results that, with an exception of S(7,8), % agreement decreases toward the upstream

Table 2 % of states where TD learning policy agrees with the optimal policy

Compartment S(7,8) S(6,7) S(4,6) S(2,4) S(1,2) S(0,1)

# of statesa (A) 206 433 1057 891 268 123

# of states in agreement (B) 110 157 395 478 186 96

% agreement (B/A × 100) 53.3 36.3 37.4 53.6 69.4 77.8
a These are the states that have been visited more than 500 times
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of the state space. 1 That is, the TD learning solution yields fairly high % agreement
in S(0,1), and it drops toward S(6,7).

In TD learning, to get a good approximation of the value for a state s, s needs to be
repeatedly visited many times. In general, however, as the number of states explodes
towards the downstream of the state space, chances of generating the same sample
path many times thereby visiting same states along the sample path repeatedly are
shallow. This makes it difficult for the algorithm to reflect the downstream reward in
the value approximation for the states in the upstream state space. Due to this inherent
difficulty, while TD learning generates a well-performing policy in the downstream
state compartments (e.g., S(1,2) and S(0,1)), rewards obtained from such a policy are
not effectively propagated to the upstream state space.

In summary, this example illustrates the main cause of the limitation of the TD
learning algorithm. Our proposed meta-algorithm addresses this problem by taking
a different approach to better transfer values of downstream state space to upstream
state space. Instead of relying on repeated visits (hopefully) by generating large
number of sample paths from top to bottom, we use a simulation to directly ob-
tain approximate value of the interim states, given a well-performing policy in the
downstream state subspace. Details of our meta-algorithm are discussed next.

3 State Partitioning and Action Network (SPartAN)

We propose a meta-algorithm that aims to address the scalability problem of RL
algorithms. This meta-algorithm is suitable for a finite horizon MDP. We call this
meta-algorithm as State Partitioning and Action Network (SPartAN).

Suppose a state space S for a finite-horizon MDP model with step 2L is divided
into SU and SD. SU is the subset of states in the upstream of the state space (say, step
1 through L). Likewise, SD is the set of states in the downstream (step L + 1 through
T ). Let us also suppose that we happen to know the optimal policy (ΩD) for SD.
Then, we can solve this problem for its entire state space S in the following fashion.
Starting from the initial state s0, we apply an RL algorithm (e.g., TD learning) to
advance and update values of system states down to sL, the terminal states of SU .
V̄ (sL), the approximate value of sL is then obtained by running a simulation model
(starting from sL+1) that uses the optimal policy ΩD. This allows us to compute a
policy for SU , which we would call ΩU . 2 Finally, a policy solution for the entire
state space is constructed byΩU ∪ ΩD. Clearly this gives an advantage over solving
for the entire state space because we have a better approximation for V̄ (sL) than
when we have to approximate V̄ (sL) by continued application of the RL algorithm.

1For S(7,8), the reason why % agreement is high in the compartment is that the optimal policy in
S(7,8) is close to a greedy policy. In other words, in the compartment, the optimal policy simply
chooses an action that maximizes the immediate reward.
2To be precise, if TD learning is used in this process, the policy solution obtained at this point is
not defined for complete SU , and needs to be augmented by an additional step such as DNN.
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The problemwith the above description is that we do not knowΩD before solving
the entire problem. Our solution to this problem is to construct an approximate policy
Ω̂D. First, we build a reference policy, ωD for a partial problem within SD. A partial
problem for this construction can take any state s0(L+1), and it is an MDP with a
horizon length of (T − L) on its own. For this partial problem with a reduced scale,
an RL algorithm would yield a good quality solution ωD. Now, we design a DNN to
create an action network from ωD for the rest of the states in SD. We use this policy
as an approximation for ΩD, and denote it as Ω̂D.

A pseudo-code for SPartAN is shown in Algorithm 1. SPartAN takes the parti-
tioning location L as an argument.

Algorithm 1 State Partitioning and Action Network: SPartAN(L).

1: V̄ 0(s) ← 0 ∀s
2: Set the maximum iteration number N , the partitioning location L, and an initial state s01
3: for t = 1 to L do
4: x0t ← randomly choosing x ∈ X (s)
5: s0t+1 ← Sim(s0t , x

0
t )

6: end for
7: Set a new initial state to s0L+1
8: for n = 1 to N do
9: Initialize the simulation configuration to match the new initial state s0L+1
10: for t = L + 1 to T do
11: Apply an RL algorithm
12: end for
13: end for
14: Construct an action network Ω̂D by training ωD

15: for n = 1 to N do
16: Initialize the simulation configuration to match the original initial state s01
17: for t = 1 to T do
18: if t ≤ L then
19: Apply an RL algorithm
20: else
21: xnt ← Ω̂D(snt )
22: V̄ n(snL+1) ← V̄ n(snL+1) + R(snt , x

n
t )

23: snt+1 ← Sim(snt , x
n
t )

24: end if
25: end for
26: end for

After initialization, we randomly choose s0L+1 as an initial state for a partial prob-
lem in SD (line 2–7). Sim(s, x) denotes that the action x is performed in the current
state s and the simulation is proceeded to the next decision epoch (line 5, 23). In
line 8–13, we solve the partial problem by using an RL algorithm to compute the
reference policy, ωD. Then we build an action network using ωD as its training set
(line 14). This is used as a heuristic policy Ω̂D for the state subspace SD. From line
15, we go back to the initial state of the original problem, s01, and we apply an RL
algorithm to SU . As shown in line 18–19, the RL algorithm proceeds down to step
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L. At step (L + 1), we use the heuristic policy Ω̂D to run a simulation (line 21–23).
Line 21 shows that an action xt is determined from the heuristic policy Ω̂D. During
this process, approximate value of state sL+1 is obtained from the simulation result
(Line 22).

Before closing this section,wewant to emphasize that althoughwe havemotivated
and explained SPartAN by using TD learning as an example, SPartAN works with
any RL algorithm. As seen in line 11 and 19 of Algorithm 1, any RL algorithm can
be used within the framework of SPartAN, and this is why we refer SPartAN as a
meta-algorithm. SPartAN addresses the problem associated with a large state space
MDP model, which is a common challenge to all RL algorithms.

4 Numerical Experiments

In this section,we revisit the patient transport decision problemdiscussed in Sect. 2.1.
Again usingTD learning as an example of anRLalgorithm,we compare the quality of
TD learning solutionwithSPartANsolution inSect. 4.1. Then inSect. 4.2,we conduct
additional experiments to examine the effect of the relative size of the partitioned
state space, SU versus SD.

4.1 Effect of State Partitioning

Problem description and the experimental setting remain the same as presented in
Sect. 2, and we only need to mention how we construct a DNN in SPartAN (line 14
in Algorithm 1). The DNN used in SPartAN consists of an input layer, four hidden
layers, and an output layer. The input layer consists of four nodes: pI , pD, h1, and
h2. Four hidden layers have 10, 30, 20, and 10 nodes, respectively, and the output
layer has four nodes. Four nodes in the output layer describe a possible action in the
problem.

For this experiment, we set L = T
2 as a partitioning step location for the state

space S. In this problem, the number of decisions (steps) made during the transition
from the initial state to the final state is not fixed because the patients may die at the
accident site. Therefore, we run the simulation using a random policy and set the
state to the initial state of SD when we visit the state where the sum of the number
of patients remaining on the accident site is less than half the initial number of
patients. Note that the TD learning algorithm is a special case of SPartAN with no
partitioning, which is equivalent to partitioning at L = 0 or L = T . We obtain five
policy solutions from SPartAN and TD learning, and under each policy we run 100
simulations respectively. As a performancemeasure, the average number of survivors
from the simulations is reported. For each simulation run, common random numbers
are used to test several policies using the same random input streams [12].
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Fig. 2 Performance
comparison between TD
learning and SPartAN
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Figure2 shows the results from the simulation experiments. Each point in Fig. 2
is the average number of survivors under each policy solution obtained by SPartAN
and TD learning. As expected, the performance of the policy solutions by SPartAN
is higher than TD learning with the grand average of 19.98 versus 19.01 (X marks
in Fig. 2). In addition, the variation in the performance from the five policy solu-
tions is significantly smaller in SPartAN than TD learning. This result is confirmed
to be statistically significant by t-test (p < 0.001). This means that SPartAN pro-
duces policies with more consistent performance, whereas the variance in the policy
performance from TD learning is relatively large, rendering TD learning much less
reliable.

4.2 Effect of State Partitioning Step Location, L

SPartAN takes L, a step location for state partitioning. To further understand how
SPartAN works, we test difference partitioning location by varying L: T

8 , T
4 , T

2 , 3T
4 ,

7T
8 , and T . Note that L = T corresponds to SPartAN with no partitioning and it is
equivalent to the TD learning, and so is SPartAN with L = 0.

We look at the average performance of policy solutions obtained under each setting
of L. Figure3 shows the results. X marks in Fig. 3 mean total average performance.
We conduct t-test with p < 0.001 to examine the differences among the results from
different partitioning locations. L = 3T

4 and L = 7T
8 have a higher performance than

the other locations with statistical significance. Although we can not make a conclu-
sive remark about optimal partitioning location L∗ with this single problem instance,
Fig. 3 seems to suggest that larger L works to the advantage of SPartAN. In order
words, when L is large (i.e. SD is small), the performance of the policy solution is
better and the variation in the computed policies is small.
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Fig. 3 Performance
comparison of the depth size
for state partitioning
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Table 3 Performance of policy for each state subspace SD and SU

L T/8 T/4 T/2 3T/4 7T/8

Subspace SD SU SD SU SD SU SD SU SD SU

# of statesa (A) 2804 191 2186 638 1179 1844 501 2768 157 3093

# of states in agree-
ment (B)

1473 9 1140 188 613 789 360 1273 122 1541

% agreement
(B/A × 100)

53 5 52 30 52 43 72 46 78 50

a These are the states that have been visited more than 500 times

We examine the performance of the policies obtained for different L values in
further detail. In Table3, we show%agreement of actions determined by the obtained
policies with respect to the optimal policy. The results are separately presented for
SD and SU to compare the relative performance in each state compartment across L.
Column SD is the performance of the reference policy ωD obtained for SD. Likewise,
shown in column SU is the performance of ΩU , where ΩU refers to the policy
obtained in SPartAN for SU .

We see that the quality of ωD is better for larger L. For example, when L = T
8 , %

agreement ofωD is 53%, and for L = 7T
8 , it increases to 78%. As L gets larger (i.e. the

size of SD becomes smaller), an RL applied to solve a partial problem in SD is able
to derive a good reference policy ωD. For smaller L (larger SD), ωD deviates further
away from the optimal policy due to the increased state space of the partial problem.
The quality of the reference policy ωD determines the quality of the heuristic policy
Ω̂D to be used in the simulation step that approximates the value of the terminal state
sL in SU . In this sense, a larger value of L is a positive factor for the quality of ΩU as
well. On the other hand, larger L also poses a negative impact for the quality of ΩU .
Larger L means smaller SD, which in turn means larger SU . An RL needs to make a
ΩU at a larger scale when L is large. Nevertheless, the results suggest that the benefit
from better Ω̂D, thereby better approximation of sL, outweigh the negative of having
to solve a larger scale problem in SU .
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Similar logic explains the pattern observed in Table3 in the other way around. We
would expect that an RL will better solve for ΩU when SU is small (i.e. L is small).
On the contrary, the results show that the performance of ΩU is in fact worse for
smaller L. This is most likely due to the fact that larger SD makes the quality of the
reference policy ωD worse, leading to poor approximation of values for sL. Hence,
even though small L should work to the advantage of obtaining ΩU , its benefit is
limited by the low quality of the policy solution in SD.

5 Conclusion

Recent advances in reinforcement learning techniques enable to solve MDP models
that have been unsolvable before. Yet, there still is a great need to further improve
their scalability. To address this problem, we propose a novel approach that can
significantly enhance the scalability for solving a large-scale finite-horizon MDP
model.

Our approach, whichwe call SPartAN in short, is ameta-algorithm in that it works
as a framework the existing RL algorithms can be incorporated into. Three key ideas
in SPartAN are partitioning the state space into smaller compartments to reduce
the size of an original problem, using a simulation to directly obtain values of the
terminal states of the upstream subspace, and constructing a quality heuristic policy
in the downstream subspace by an action network to use in the simulation. Using the
patient transport decision problem, we show that SPartAN is able to reliably derive
a high-quality policy solution.

While we have a proof of concept for SPartAN using TD learning as its RL
component, it remains to be confirmed that SPartAN works with other types of RL
algorithm, for example DQN. Through several experiments, we have confirmed that
SPartAN derives a high-quality policy solution even when using DQN as an RL
component. The detailed results will be reported in a forthcoming article.

A vast range of problems in healthcare system operation have been and will be
modeled by MDP. For these MDP problems, in most previous operations research
literature, their main effort was on understanding the optimal policy structure and
properties rather than actually computing the optimal policy solution itself due to
computational difficulties. While finding such properties have a great value on its
own, obtaining optimal policy and studying them carries practical significance. We
hope our work can contribute to making MDP models a more practically viable
approach to healthcare systems decision problems.
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Facing Implementation Barriers
to Healthcare Simulation Studies

Clio Dosi, Manuel Iori, Arthur Kramer and Matteo Vignoli

Abstract Implementation barriers to simulation studies are a reality in today’s
healthcare organizations. This work proposes a novel framework to use simulation
to maximise successful implementation by (1) framing the right problem to face; (2)
using what-if scenarios as an exploration tool for users’ value; (3) supporting knowl-
edge integration in giving tangible results to discuss among different professionals.
We successfully tested the framework in an 18-month Emergency Department over-
crowding case study, by developing a Discrete Events Simulation model and using
it as a decision making tool for a multi-disciplinary group of 21 professionals (doc-
tors, nurses, aid nurses, hospital management and engineers expert in simulation).
Results show that the framework helps finding the most implementable solutions
in the context of study, under the rationale that a small implemented improvement
is preferable than a big one on paper. In the presented case study, after 15 years
of absence of organisational change, the hospital was able to implement three new
simulated solutions in 18 months.
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1 Introduction

Healthcare problems received a lot of attention in the literature in many different
contexts. Due to their growing complexity, these problems are becoming even more
relevant in simulation modeling studies. With regard to the application of operations
research techniques, it is possible to identify the use of simulationmodeling to address
problems usually found in healthcare units, as shown in the surveys by Brailsford
et al. [5], Gunal and Pidd [13] and Katsaliaki and Mustafee [14]. In Brailsford et al.
[5], due to the vast literature on the application of operations research techniques in
healthcare, the authors used a new review methodology. With this newmethodology,
they identified and analysed the frequency of some characteristics of the works in
the studied domain. For example, the authors analysed the frequency concerning the
year of publication, methodology adopted and the level of implementation of the
solution methods. Gunal and Pidd [13] and Katsaliaki and Mustafee [14], in turn,
focused on the works involving the use of simulation techniques in the healthcare
context. In particular, Gunal and Pidd [13] focused on papers proposing discrete
event simulationmodels. These works show the growing interest in the application of
simulationmodeling techniques to improve the efficiency of healthcare units. Despite
the number of studies, and the fact that the medical and managerial community
agree on the importance of simulation studies, nowadays the simulation community
recognizes that there are still implementation barriers.

The implementation issues of simulation have been discussed intensively during
the last decades, both from practitioners’ (since Lowery et al. [17]) and academic
point of view (sinceWilson [23]).Wilson explicitly addressed the problem in his con-
tribution “Implementation of computer-simulation projects in healthcare”, reporting
that only 16 simulation projects out of the 200 considered reported successful imple-
mentations. Fone et al. [9, p. 333] systematically reviewed the use of healthcare sim-
ulationmodels and shed doubt on the value of the implementation “we were unable to
reach any conclusions on the value of modelling in health care because the evidence
of implementation was so scant.[…] Further research to assess model implementa-
tion is required to assess the value of modelling.”. Brailsford [4, p. 1446] confirmed
that “Countless projects are carried out by academics and published in academic
journals, but these models are not widely taken up by other health providers.”.Gunal
and Pidd [13, p. 48] stated that“Even after 25 years of this [Wilson’s] review, all these
barriers to the successful implementation of simulation still exist to some degree in
all domains, including health care”. This paper addresses techniques and methods
to support simulation experts and decision makers in finding ways that maximise
chances of implementation, and looks for suggestions in disciplines that already
faced implementation issues such as design and management.

The paper is organised as follows: in Sect. 2, starting frommanagement and design
literature we identify three constructs that impact on simulation implementation and
develop propositions that explain how, given those constructs, simulation could be
used in a different way to maximise the chances of simulation results’ implementa-
tion. We then present, in Sect. 3, the framework that we designed to support those
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propositions, and show, in Sect.4, how that framework has been tested in a real case
study. Our concluding remarks are presented in Sect. 5.

2 Constructs Impacting on Simulation Implementation.

We identified three constructs that strongly impact on the successful implementation
of a simulation project.

2.1 Problem Framing

The classical approach of simulation only starts when a specific problem and a
specific unit of analysis are given. Most of the time, simulation studies are used
once the general conceptual organisational prototype is identified as the solution to
design, and simulation models helps to detail the solution processes and resources,
or to simulate that result in the actual context (see for example Starnino et al. [21]
for a Rapid Assessment Zone solution in an adult ED). On the contrary, in the
design practice, designers are used to identify problems throughout the process [6,
7]. The slogan is “Problem first, solution later.” Designers usually produce several
low-fidelity prototypes and test them with users to collect their critical comments.
In this way, designers can better frame the problem, identifying the critical success
factor. Interpreted in the light of the design approach, simulation can help experts to
explore the problem before focusing on finding the best solution.

Proposition #1. With the classical approach to simulation, the use of simulation
aims at finding the best solution to solve a given problem. To maximise simulation
results’ implementation, we argue that the use of simulation needs to aim first at
framing the right problem to be solved.

2.2 Innovation-Value Fit

In the classical approach to simulation, users are involved in the process to have
a deeper shared knowledge of the context and to consider their point of view into
the decisional system. Still, the final aim of the simulation and of what-if scenarios
is to find the scenario that has the most significant improvement of the defined
Key Performance Indicators (KPIs). For example Banditori et al. [3] developed a
combined optimization-simulation approach that allows to take decisions based on
accurate estimates of the performance that the hospital will actually achieve if the
investigated solutions are implemented.
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Innovation literature explains why, even after the formal organisational decision
to adopt an innovation, the organisation frequently fails the implementation. The
construct “innovation-values fit” describes “the extent to which targeted users per-
ceive that use of the innovation will foster (or, conversely, inhibit) the fulfillment
of their values” [15], that is how much involved users value the degree of fit of that
innovation with their own value. It is renown that, no matter how good the innovation
is and how effective the top management of the organisation will be in pushing that
implementation in the organisation, if the innovation has a poor fit with the users
main values then its implementation will likely fail. Being able to evaluate if a poten-
tial innovation fits users’ high-intensity values means that the decision maker can
explore the organisational resistance to organisational change.

Proposition #2. With the classical approach to simulation, the use of what-if sce-
narios aims at finding the scenario that improves the most the defined KPIs of the
process. We argue that to maximise simulation results’ implementation, the use of
what-if scenarios should also be used to understand what is the users’ perceived
value of the proposed innovation.

2.3 Knowledge Integration

The classical approach of simulation studies concentrates the interaction of the stake-
holders around the simulation model itself, considering the implementation as a later
stage that happens after the group has decided what is the best what-if scenario to
adopt [20]. After the decision, the project is usually considered finished and the
organisation is usually left alone in the process of implementing the solution of the
identified what-if scenario.

The organisational complexity is such that the activity of defining how to imple-
ment the identified scenario at the organisational level is a design activity per se.
The same stakeholder involvement that simulation experts know is needed in the
simulation definition has to be put into the implementation part.

Management scholars call “knowledge integration” the concept of putting together
diverse knowledge and ideas, that is to say the ability of a multidisciplinary team to
attain knowledge integration. Gardner et al. [11, p. 999] define knowledge integration
as “a reliable pattern of team communication that generates joint contributions to the
understanding of complex problems”. The higher the integration of different sources
of knowledge (e.g., medical, nurse-related or technical knowledge), the higher the
knowledge integration.

Proposition #3. With the classical approach to simulation, knowledge integration
among experts happens along with the simulation and ends once the best scenario has
been identified. We argue that to maximise simulation results’ implementation, the
stakeholders involvement has to be extended to the organisational design of solutions
related to the identified scenario.
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3 The Framework

Based on the three constructs presented, we designed a framework that leverages on
simulation tools to maximise innovation implementation. The framework includes 3
sequential phases, each of them using the simulation tools in specific ways to enable
the consideration of the previously identified constructs.

Such a framework could be used in organisational contexts where decisions
are taken from a multidisciplinary group of stakeholders, composed by simulation
programmers (engineers, mathematicians, process designers, organisational consul-
tants), healthcare professionals (doctors, nurses, aid nurses, head of physicians and
head nurse), and hospital top and middle management. For a shorter reference, from
now on we will refer to: engineers as simulation experts; medical staff for health-
care professionals; management for top and middle management roles; group when
referring to the whole group of decision makers.

1. Problem Framing: Find the right problems to solve with simulation set up
The first phase of the framework aims at understanding what is the general

problem to be tackled. The objective is to set a common language and mindset,
where data and facts should inform and help understand the relevant problems
that have to be faced. Such a phase, that is obvious for the engineers, is rarely
shared by healthcare professionals.

Setting up the simulation and the analysis of data that will be input of the
simulation is a way to interact with the medical staff. During this interaction, the
engineers need to highlight dynamics that are related to the department consid-
ered. While showing some dynamics that are renown from data, engineers can
anticipate the medical staff that not all of the dynamics they expect to see will
be confirmed, and use this opportunity to challenge medical staff assumptions,
so that the group can understand the right problem to face.

It is interesting to mention that this phase is preliminary to the classical face
validation, that happens after the problem framing phase, when all the actors are
aligned about what is the problem that will be addressed.

2. Innovation-Value Fit: What-if to learn about organisational resistance
The second phase of the framework is meant to explore organisational resis-

tance to change before decidingwhat is the solution decisionmakerswill possibly
implement. The what-if scenario is used to understand what is the users’ per-
ceived value of the proposed innovation, and if the KPIs improvement are worth
their possible organisational resistance in the implementation phase. Simulation
is thus the tool through which we learn about organisational resistance.

Engineers present several what-if scenarios, aware that it is just an explorative
phase and that they are leveraging on those scenarios to know if theyfitwith users’
main values. In this phase, the engineers should produce the highest possible
number of what-if scenarios, check them with the medical staff and management
and eventually adjust them, in an iterative use of the simulation.What-if scenarios
are used as a medium of continuous feedback with the actors involved in the
processes. In plenary discussions, the engineers ask the actors to express their
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feelings and thoughts regarding the presented what-if scenario, with explorative
questions aiming at creating critical feedback.Thephase is repeateduntil decision
makers find a satisfactory number of what-if scenariowith good innovation-value
fit. In the finalmeeting, the engineers recap possible what-if scenarios. Thewhole
group decide whether each scenario should receive a go, a kill or an explore
further.

3. Knowledge Integration: Transform scenarios in potential viable solutions
The last phase of the framework deals with the post-simulation design effort.

Given some chosen scenarios, decision makers need to translate them into
organisational potential solutions.

To do this, the group designs multiple possible organisational solution that
make the identified scenario viable. By designing, we mean that possible organ-
isational solutions are benchmarked, ideated and tested with the users in the
organisation.

The learnings that happen during this phase will assure a knowledge integra-
tion in the group. The group can then support the implementation stage with a
more grounded awareness of the perceived benefits and problems.

4 Case Study: Testing the Framework in a Major Italian
EDs

In the last 40 years several studies have approached the Emergency Department
(ED) overcrowding topic by using simulation tools, although with different aims,
simulation techniques and approaches. Abo-Hamad and Arisha [1], for example,
proposed a framework based on a simulation model to improve the efficiency of
EDs and applied it to an ED in Dublin. The works by Aboueljinane et al. [2], Gul
and Guneri [12] and Salmon et al. [19] present an overview of the use of simulation
modeling in EDs.We developed a Discrete Event Simulation (DES) model of the ED
processes to understand the current system and to investigate possible organisational
changes in order to attain performance improvements.

The ED considered in our study case is located in the north of Italy and admits
more than 80,000 patients per year. Given the general dissatisfaction of ED employ-
ees (doctors, nurses, and aid nurses) and high conflicts among professionals, the
hospital top management and the head physician asked the authors for a support.
The project lasted 18 months. The ED redesign had to improve the actual processes,
to find possible ways to improve the ED system in general and ED professionals
working habits in particular, so that professionals could be supported in their every-
day routines. It is important to note that the organizational context was renowned as
a conservative and hard-to-manage. In the last 15 years, most of the interventions
proposed by different actors failed to be implemented. The hospital top management
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involved the authors as mixed team between simulation experts and process engi-
neers, to maximise the chances of implemented organisational changes that would
improve the ED performances while increasing the internal professionals’ quality of
work. The general director and the head of ED would retire soon after the end of the
project, and their hope was to leave an improved and more stable organisation.

We tested the proposed framework in this context developing a DES model and
using it as a group decision making support instrument. The DES model simulates
the flow of patients through the ED considering important features such as patients
arrival rate and the distributions of patients urgency codes, service times and exams
requirements. Main KPIs are: Wait time to first visit (WT_1V), Wait time to Last
visit (WT_LV), Length of Stay (LoS), Outliers (percentage of patients with aWT_1V
longer than 240 min—applied to white and green codes only) and number of patients
waiting for the first visit (N). Every KPI is expressed both as average number on the
total patients and average by color code. Among the possible organisational changes
that have been evaluated aswhat-if scenarios there are: Equipe scheduling, Triage out,
Anticipating exams at triage, Act on bottleneck lead times. Further details related
to the numerical development of the simulation can be found in Dosi et al. [8].
We created an ad-hoc group of ED professionals that were involved in the design
process and decision making. The plenary group involved 5 ED doctors, 6 nurses and
4 aid nurses plus the ED head of Physician and 2 professionals from the Managerial
staff (1 from the Medical Direction, 1 from the Nursing Direction). This group had
the responsibility to take decisions (with the four authors as simulation experts and
process designers) and to informand receive feedback fromall the other 80 colleagues
of the ED. The group met once every 10 days and the hospital top management was
involved once every 3 months.

4.1 Test of the Framework 1st Phase: Problem Framing

When entering the ED, we realized that doctors, nurses and top management already
had ideas regarding the problems they face every day, but none of those ideas were
ever confirmed by data or discussed with other departments. The result was that
professionals had in mind different problems to tackle and different priorities about
them. For example, ED doctors blamed general practitioners’ absence for the fact
that patients with no need of ED interventions use to reach the ED rather than their
general practitioner; ED professionals blamed the radiology department for the long
waiting to have results of requested exams; nurses blamed the wards’ professionals
for the long wait for admission of patients in need of a hospital bed; doctors and
nurses had relational problems with aid nurses, who were not always present when
needed, and so on.

We realized that, to let thewhole group being engaged in the design and implemen-
tation of ED improvements, it was necessary to design a pre-simulation phase where
professionals were guided to explore different perspectives of the “ED improvement”
problem. We used the simulation to discuss with the medical staff which problems
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were potential problems that could lead to a successful implementation. In doing so,
we were already screening some points of view of the problem.

Discussions related to the best level of analysis arose. The group had different
perspectives on what level was more appropriate to study. Some nurses wanted to
highlight triage practices so as to show how abilities of triage nurses affected the
actual process, improving the Length of Stay (LoS) KPI. “Our head nurse does not
emphasize the efforts we have made to make the triage process more efficient. But it’s a
huge experience my triage colleagues and I have built over the last years. We think our
informal triage practice has quite an impact to improve the general system flexibility.
If we could show this, we could finally formalize the procedure.”—Triage nurse #2.
Most of the professionals wanted to study the connected services (radiologies of the
hospital and laboratory exams). “We have 3 radiology units in this hospital, each of
them has 3, 4 or more machines. Until two years ago the nearest radiology could
only receive our patients, then the procedure changed, to support wards and special
therapies, and this means that we have no more dedicated resources. We need to
demonstrate that this choice has drastically affected our performances”—Doctor #1
Other doctors wanted to demonstrate the impact of wards’ bed management on their
activities. The head nurse and her staff were more interested in mapping the Short
Observation Unit inside the ED (the unit where critical patients should wait for a bed
or for exams results after the first visit), to demonstrate that the Short Observation
Unit was undersized. “If we can show with numbers that this ED area has 12 patients
slot and we usually have 30 patients or more, it won’t be possible to avoid our request
of one extra nurse anymore.” Nurse #7, supported by others.

In this phase, the engineers need to highlight multiple dynamics that emerge from
data, and use those dynamics to present different angles of the problem. To do this,
we used a consistent database containing data from January to September 2017. It
provided input quantitative information concerning the distribution of patients arrival
rates, urgency and exams requirements, as well as information about service times of
additional exams such as laboratory and x-ray. Among the shared dynamics, some of
themwill surprise the medical staff and challenge their assumptions. For example, in
the next passage, one engineer of the group is challenging the fact that since radiology
exams have long waiting times, then that is the problem that needs to be addressed.
“I am not sure the problem is radiology here. We will have to study data that we don’t
have now, we will understand when we have them, but - even if time for radiology
is long - is not obvious that that’s the bottleneck we need to act on”—Engineer #1.
In another passage, the healthcare professionals were discussing about the Short
Observation Unit inside the hospital, as they initially wanted to demonstrate that
the Short Observation Unit was undersized. Engineers explained “Your IT systems
could track the moment in which a patient enters the Short Observation Unit and
the moment in which he exits from it, but no doctor fill that information. If you want
to analyse that part of the ED process, as a group we need to make an effort and
manually collect data. It’s an extra effort for the nurses, and it has to last at least
2 weeks.”—Engineer #1. Beside the input database, part of the simulation input data
have been collected by in loco observation and data collection, and by interviewing
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ED’s staff. Among those input data we can recall queue rules currently used in the
ED, some services execution times, resource availability and personnel schedules.

At the end of the first phase, the following major problems were confirmed: (i)
many patients of white code arriving to the ED actually do not need any emergency
service; (ii) the transport of blood samples required by the laboratory exams usually
requires a large amount of time and constitutes a bottleneck in the process. On the
other hand, the simulation disconfirmed that the following were relevant problems to
face: (i) ED équipes have no way to impact on patients’ LoS; (ii) laboratory exams
are continuously required by the équipes, as we discovered that laboratory exams are
only required during the first visit of the ED équipes; (iii) radiology exams are the
bottleneck of the process.

4.2 Test of the Framework 2nd Phase: Innovation-Value Fit

In the second phase, the group develops the what-if scenarios and glimpse if there is
an innovation-value fit among the scenarios and the users’main values.We developed
7 main what-if scenarios, named A, B, C, D, E, F and Comb (combination of the
previous scenarios), inspired from literature and from discussions we had in the
group. Scenarios aimed at improving the ED performance, given the identified KPIs,
and identified several renown solutions in theED literature to improve theEDprocess.
Scenario A worked on team shifts by simulating the system under different shifts
for the équipes. Scenarios B, C and F consider organisational solutions to improve
low priority patients, by changing their priorities according to the current state of
the system. Scenario D focuses on the laboratory exams and Scenario E in the triage
process aiming at reducing the number of patients at the ED that are not in need of
an ED intervention.

This phase define what scenarios could turn into a potentially successful imple-
mented solution. Scenario D works on the laboratory exams sub-process to reduce
the general lead time (i.e. the sum of waiting time, specimen transportation time—
from the ED to the lab, and examination times in the lab). The idea of the scenario is
to anticipate the request of lab exams: instead of waiting for the doctor that requests
lab exams during the first visit, the scenario analyses what happens if triage requests
laboratory exams. If triage can request exams, the lab result waiting time happens
while the patients wait to see the doctor. Scenario results show that if 50% of the
patients have their lab exams anticipated by the triage request, you gain almost 7%
on the LoS KPI (5% with 20% of patients). The idea is renown in the literature and
it was hiddenly suggested by expert nurses of triage. The engineer group knew that
this was probably aligned with nurses values, although they sensed that this solution
could stumble across resistance of doctors. This is what happened as most of the
doctors said “You know, you have to go easy on saying that a nurse can be a doctor
and prescribe laboratory tests.”—Doctor #2. At the same time a senior doctor that
was sponsoring the idea confided to the engineers that “Consider that this hospital
is a university hospital, and it’s not easy to accept that a nurse can have such a
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power compared to the doctors.”, with a senior nurse saying “Let’s not forget about
repercussion from register of doctors. I already know of bad experiences that hap-
pened to colleagues that have touched doctors’ privileges, especially in conservative
environment as this one is”—Nurse #2. In front of such an ambiguous feedback of
innovation-value fit (fit for nurses, unfit for doctors), the group decided to explore
further the scenario.

The difficult part of this phase for the engineers is to shift from a perspective on
KPIs to a perspective on users values. Among the scenarios identified, scenarios A,
D and E improved LoS in a very similar way (respectively of 6.3%, 6.8% and 6.5%),
but—given their different impact on users values—they respectively received a kill
and two explore further.

4.3 Test of the Framework 3rd Phase: Knowledge Integration

This phase translate the what-if scenarios that received a go or further explore in mul-
tiple potential organisational solutions. The difficult part is that no one in the group
can knowwith certainty what implementable organisational solution best fits the ED.
To reach such an awareness different professionals need to integrate their knowledge
while designing and testing that potential solutions. By testing the potential solu-
tions, they will understand if the potential organisational solution can be considered
as an implementable prototype for the final solution that will be implemented. To
explain what this means we report the story of Scenario D. Scenario D wanted to
anticipate laboratory exams request from the first visit to the triage moment. This
could improve the LoS KPI by making the waiting time for lab exams results parallel
to the first visit waiting time. Despite the innovation-value fit was ambiguous and
the what-if scenario received just a “further explore” vote the scenario was finally
implemented. The group analysed other case studies where triage could anticipate
laboratory exam requests and discovered that not only ED literature accept this option
but also that other EDs in the Region had successfully experienced that practice. The
group estimated that 20%of patients exams could be intercepted by the triage request.
The group realised that the competence of the nurses was critical in this new design
as doctors and triage knowledge needed to be integrated into the role of the triage
nurse. The group could not say whether their ED could be able to anticipate exam
requests. To discover this, the group created an organisational prototype providing
answers to such a critical function. Two senior doctors and two triage nurses defined
a panel of symptoms and the connected list of lab exams to request. Moreover, the
group thought to use the role of the area-doctor as a consultant of triage in case of
necessity, so that nurses could always count on an expert medical suggestion. The
group decided to prototype the solution and to implement it for one month. At the
end of the month, the group realised that only 5% of the exams had been intercepted.
The result was that nurse and doctor’s knowledge was integrated and the organisa-
tion became aware of the fact that the ED could bear such a solution, and that to
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improve its efficacy the whole organisation had to foster triage and doctors knowl-
edge integration. If the engineers had suggested the top management to implement
lab exams anticipation from triage starting from the simulation only, the chances of
implementing such a solution would have been very low as most of the professionals
were not aware of the complex organizational shift. Even if the organisation where
we tested the framework is renowned for being a difficult-to-manage organization,
extremely change resistant, with the use of this framework 3 process improvements
were implemented in just 18 months.

5 Conclusion and Discussion

Several conditions impact on the success of the implementation of a new organi-
zational solution: for example, how strongly the organisational climate support the
implementation, how good designers are in finding the right solutions, howmuch the
scenario improves the actual process KPIs and motivates professionals. However,
given those conditions, how engineers use the simulation tool makes a difference.
We designed and tested a framework that leverage on the simulation tool to maximise
organisational implementation.

First, the framework changes the approach to the simulation tool, finding the most
implementable solutions in the context of study, not the best ones in terms of KPIs
improvement. The rationale behind this choice is that—with the words of themedical
staff “a small implemented improvement is better than a great solution on paper”.
Second, the three phase framework proposes a novel framing of the simulation in
the whole change process, helping to frame the right problem to face, using what-if
scenarios as an exploration tool for users’ value and supporting knowledge integration
in giving tangible results to discuss among different professionals. At last, with this
framework the engineer changes her role.While she is still an expert of the simulation
tool, she also becomes a facilitator of the whole organisational redesign. Her work
is far more complex and takes more time if compared to the classical simulation
process, but this will increase the chances that the result of the simulation project
will turn into reality.

In the last years some recent contributions developed frameworks that proposed a
different use of simulation techniques, under the keywords of facilitated modelling,
softmethodologies or problemstructuring (e.g. Franco andMontibeller [10]). Several
contributions involve users in simulation modelling, for example Kotiadis et al. [16]
report techniques on how to involve stakeholder participation during the first stage
of simulation modelling (conceptual modeling), while Robinson et al. [18] involve
participants in the experimentation phase.

However, to the authors knowledge, none of the frameworks found in literature
use simulation as a tool to foster solution implementation. In our framework, in fact,
we believe that implementation should not be considered as the last phase of the
process (e.g. Robinson et al. [18], Tako and Kotiadis [22]) but as a goal to pursue in
every phase. Future research should build on this framework and develop techniques,
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define the type of interaction and role of actors, and assess the best tools to be used
in each phase.
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Reallocating Operating Room Time:
A Portuguese Case

Mariana Oliveira, Luísa Lubomirska and Inês Marques

Abstract Health care providers face a continuous increase in the complexity of
organizations mainly due to the increasing demand and to the development of new
and expensive technologies. The operating room (OR) is a major challenge in the
hospital and is crucial for the institution financial health. Moreover, the OR has a
large impact in several units of the hospital and on theworkforce of the immediate up-
and downstream units. In the last decades, surgery demand has been increasing with
restrictive resources, forcing ORs to be more efficiently and effectively managed.
This work is developed under a partnership with a Portuguese public hospital and
aims to achieve a major social impact, which is increasing surgical access and thus
reducing the patients waiting lists. Given the hospital restrictions in terms of space
and staff, this work focuses on the reallocation of the available OR time among the
surgical services, proposing new master surgical schedules—aggregate production
planning consisting of timetables with specific timeslots assigned to each specialty.
The main objective is to match demand and the existing capacity while maximizing
OR efficiency. This work proposes a mathematical programming model, with three
objectives: to maximize the allocated slots weighted by aggregated staff preferences;
to match supply and demand; and to level the workload of up- and downstream
units. A comparison of the actual allocation of slots with the one suggested by
this approach is performed. Results show that the workforce is one of the major
bottlenecks, suggesting a new distribution of the workforce among the specialties.
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1 Introduction

Managing health care organizations is increasingly complex and challenging. This
complexity can be related with the evolution of two main factors: the ageing and
comorbility population which increases demand and the development of expensive
technologies in the health sector. Within the services provided by hospitals, surgical
activity is a major center of costs and revenues. Operating rooms (ORs) represent
more than 40% of hospitals costs and profits and are often considered as the engine
of the organization [6, 8]. Surgery involves high specialized medical staff and equip-
ment which have high associated costs. Among the complexity factors, this activity
includes a high level of variability and uncertainty related to demand and resources
consumption, stakeholders perspectives and material availability. Moreover, surgical
activities have not only an intrinsic high complexity but represent a large social re-
sponsibility as directly impacting the health status of the patients waiting for surgery.
To guarantee quality of health care, surgical activities should be held in a certain time
frame measured by the waiting time. A higher service level is achieved with a lower
number of days that a patient waits to the procedure at least in compliance with a
predetermined maximum waiting time. This work aims to reduce the waiting list for
surgical procedures by focusing on the tactical decision level of OR planning and
scheduling, namely a resource allocation problem. Thus, a mathematical model is
developed to optimize the available OR time while matching surgical supply and
demand, balancing the workload of up- and downstream resources and considering
stakeholders’ preferences.

OR time allocation can follow three different strategies: block scheduling, open
scheduling, and modified block scheduling. This paper considers the block schedul-
ing strategy where time slots (i.e., a combination of an OR, a day and a time period)
are assigned to a specialty or to a surgeon group [16]. This is the strategy followed
by a master surgery schedule (MSS) and this is the most used approach by several
authors and in several hospital contexts (e.g. [6, 7, 17]) as providing a higher stability
to managers and to the medical staff, especially when dealing with a cyclic MSS.
This stability affectsmanagers by giving amore predictable pattern of bed occupancy
in the up- and downstream units, and also the required staff and material [5]. Open
scheduling allows surgeons to use any of the time slots according to their needs.
This is based on the idea that no time slot is reserved for a particular surgeon and,
therefore, surgeons can use all available time slots and compete for OR time. This
approach increases flexibility, which means that it might better and quicker adjust to
waiting lists dynamic, and it can also increase the efficient utilization of the ORs [5].
Liu et al. show that open scheduling is able to increase OR efficiency and decrease
overtime cost, especially in large-scale OR cases [12]. Modified block scheduling
tries to achieve the benefits of both previous strategies: stability and flexibility. Few
authors report on the application of this approach [1].

Different problem characteristics, objectives and solution methods are applied
for OR planning problems under the block scheduling strategy. The first papers only
focus on the OR. Blake and Donald [8] focus on the equitable distribution of time
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slots among the surgical groups while Agnetis et al. [5] assign time slots to surgical
groups with the possibility to dynamically adapt the number of hours allocated to
each surgical group according to the evolution of the waiting list.Day et al. combine
open access scheduling and dedicated slots, and minimizes underused OR time and
overtime [9]. In 2007, downstream units are introduced to the OR time allocation
problem (e.g. [6, 17]) justified by the high impact that the OR has on many other
units inside the hospital. Zhang et al. study the impact of the OR on upstream units
[20]. The main objective is to minimize inpatients’ length of stay in the wards when
waiting for surgery, to build a more robust MSS. Moreover, Banditori et al. [2]
address the MSS problem considering the number of patients in the waiting list
with due date over the planning horizon. Cappanera et al. [3] propose a surgery
scheduling method (operational decision level) in which conflicting stakeholders’
interests are considered, namely the compliance with patients’ surgery due date,
OR utilization, beds’ utilization and number of scheduled surgeries. Visintin et al.
[18] solve a MSS problem by evaluating three flexible practices and concluded that
introducing variable surgical team assignments (every time a newMSS is produced)
andmixed sessions (long-stay and short-stay surgeries performed in the same session)
increase the number of scheduled surgeries. Recently, Guido and Conforti propose
a multi-objective integer linear programming model to consider trade-offs among
underutilization of OR capacity, balanced distribution of OR time among surgical
groups, waiting time and overtime [11].Moreover, Visintin et al. [19] create a flexible
tool to schedule patientsǵroups for surgery, in which stakeholders are involved in the
development process by commenting in the resulting schedules, changing gradually
the model and facilitation its implementation in the hospital. Marques et al. also
develop a multi-objective mixed integer programming model to build cyclic MSSs
for a private hospital where time slots can be either assigned to surgical specialties
or to individual surgeons [14].

This work proposes a mathematical model which combines objectives already
considered by other authors but never studied together: the allocation of the slots
according to the waiting list evolution, as e.g. [13]; the distribution of the slots
considering the preferences of the stakeholders (e.g. surgeons and anesthesiologists),
as e.g. [15]; and the workload balance on up- and downstream units as e.g. [10].
Although these objectives have already been considered individually in the literature,
their integration allows not only to encompass the preferences of the surgical staff but
also to respond to patients’ needs, while taking into account the characteristics and
capacity of the hospital under study.Moreover, to compute the target allocation value,
the duration of the surgeries in the waiting lists are considered. In the literature, this
values is usually calculated taking into account only the waiting list length and the
surgeries due date. This work ismotivated by the case of a public hospital in Portugal.
The OR time assigned to each surgical service has been kept almost constant over
the last couple of years regardless of the changes in the surgical demand pattern
and of the raising numbers in waiting list for surgery. The hospital needs to adapt
supply to its constantly changing demand, bymanaging theOR time as efficiently and
effectively as possible. Although presenting a general model which can be applied
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in other contexts, this work uses this hospital as a case study to validate the model
and perform the computational experiments.

The remainder of this paper is structured as follows. Section2 introduces theMSS
problem and the model formulation. In Sect. 3, the model is applied to the case study.
Finally, Sect. 4 concludes the paper.

2 Mathematical Model

To build new MSSs, a large (i.e. 1-year) planning horizon is considered and repre-
sented by a set of weeks which are composed by a set of working days (in most cases,
surgeries are only performed between Monday and Friday) organized in shifts. In
each day, there is a set of available ORs equally equippedwith all the necessarymate-
rial and equipment to perform the surgery. When constructing the MSSs, specialties
must be assigned to shifts, days and ORs considering the availability of medical staff
(e.g. surgeons and anesthesiologists). Besides availability, their preferences are also
considered. In order to guarantee workload balance among the staff, the number of
slots that each staff member can usemust be lower than establishedmaximumvalues.
Each specialty has a predefined weekly target number of slots which is based on the
estimated weekly demand measured in number of patients, the average surgery du-
ration and the total number of available slots. However, sometimes it is not possible
to comply with the target values and the MSS incur in under or overallocation of
slots which should be minimized. Besides ORs, up- and downstream units are also
considered (e.g. pre-ward, intensive-care unit and wards). These resources have a
limited daily capacity which can influence the ORs throughput. To avoid variabil-
ity, a target value for utilization of each resource is also defined. Depending on the
ORs management and performance, the up- and downstream units can be under or
overutilized which it is aimed to be minimized. The number of patients in each unit
in a day depends on the slots allocation and on estimated probabilities for a patient
of each specialty being in each unit before or after a number of days. The relative
importance of each unit is used to weight the minimization of under and over uti-
lization. To keep staff routines and timetable stability but allow for flexibility (e.g.
to match variations in demand and to adjust to changes in staff availability over the
planning horizon), a non-cyclic MSS approach is considered although a maximum
number of monthly and weekly changes is allowed. The monthly stability parameter
considers the number of changes on the MSS from one week relatively to its cor-
responding week of the first month in the planning horizon. Moreover, the weekly
stability accounts for the differences between each week and the first week of the
considered month. Routines are indeed very important for the staff satisfaction and
therefore for the receptiveness of such approaches.

A mathematical model for this MSS problem is formulated in (1)–(23). The no-
tation is summarized in Table1. Functionality of the ORs is modeled by constraints
(2)–(9), supply and demand balance is formulated by constraints (10)–(12), stability
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Table 1 Sets, parameters and variables for the mathematical model

Sets and indices

s ∈ S Specialties

m ∈ M Months

w ∈ W Weeks

d ∈ D Week days

k ∈ K Days in the planning horizon; the first day of the planning horizon is k = 1

r ∈ R Operating rooms

b ∈ B Shifts

i ∈ I Surgeons

a ∈ A Anesthesiologists

z ∈ Z Up- and downstream units

Subsets

Wm Weeks of month m; the first week of month m is w1m

Sz Specialties that use unit z

Is Surgeons of specialty s

Parameters

κ
surg
idb Preference score for surgeon i

κanest
adb Preference score for anesthesiologist a

tsw Target slots allocation for specialty s in week w

wz Relative weight of unit z

asurgswdb Number of surgeons of specialty s available on week w, day d and shift b

asurgDiwd 1, if surgeon i is available on at least one shift on week w and day d ; 0,
otherwise

aanestwdb Number of anesthesiologists available on week w, day d and shift b

aanestDawd 1, if anesthesiologist a is available on at least one shift on week w and day
d ; 0, otherwise

wwsurg
i Maximum weekly workload for surgeon i

wwanest
a Maximum weekly workload for anesthesiologist a

mwsm Minimum workload for specialty s on month m

ΔM
m Monthly stability for month m

ΔW
w Weekly stability for week w

ezsk Probability that a patient of specialty s is in unit z on day k

λs Average number of patients operated per slot by specialty s

nzs Maximum number of days that a patient of specialty s stays in unit z

uzk Target utilization for unit z on day k

czk Available capacity of unit z on day k

δsurg Minium requested number of surgeons available per slot assigned

δanest Minium requested number of anesthesiologists available per slot assigned

G Large number

(continued)
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Table 1 (continued)

Decision variables

xswdbr 1, if specialty s is assigned to OR r on week w, day d and shift b 0,
otherwise

t−sw , t+sw Negative and positive deviations of the number of allocated slots to the
target value for specialty s on week w, respectively

u−
zk , u

+
zk Under and overutilization of beds on unit z on week w and day d

(compared to the target utilization value), respectively

Auxiliary variables

yswdbr 0, if specialty s is assigned on week w to the same OR r, day d and shift b
as the first week of the same month; 1, otherwise

jswdbr 0, if specialty s is assigned on week w to the same OR r, day d and shift b
as in the corresponding week on the first month of the planning horizon; 1,
otherwise

fzk Expected number of patients in unit z on day k

vtsw 0, if t−sw > 0; 1, if t+sw > 0

vuzk 0, if u−
zk > 0; 1, if u+

zk > 0

of the MSS is promoted by constraints (13)–(16), whereas constraints (17)–(21)
model workload in up- and downstream units.

Function (1) sums up three objectives. The first objective maximizes the number
of slots assigned to each specialty, weighted by the relative aggregate preferences
of surgeons and anesthesiologists. The second and third objectives relate with unde-
sired deviations to target values for the OR time assigned to each speacialty and the
workload in the up- and downstream units, respectively. The latter (units workload)
is measured by the number of occupied beds and weighted by a relative importance
given by the stakeholders to each unit.

max
∑

s∈S

∑

w∈W

∑

d∈D

∑

b∈B

∑

r∈R

(∑
i∈Is κ

surg
idb

|I| +
∑

a∈A κanestadb
|A|

)
xswdbr −

∑

s∈S

∑

w∈W

t−sw + t+sw
tsw

−
∑

z∈Z
wz

∑

k∈K

u−
zk + u+

zk
uzk

(1)

s.t.:
∑

s∈S
xswdbr ≤ 1 ∀w ∈ W, d ∈ D, b ∈ B, r ∈ R (2)

δsurg
∑

r∈R
xswdbr ≤ asurgswdb ∀s ∈ S,w ∈ W, d ∈ D, b ∈ B (3)

δsurg
∑

b∈B

∑

r∈R
xswdbr ≤

∑

i∈Is
asurgDiwd ∀s ∈ S,w ∈ W, d ∈ D (4)

δsurg
∑

d∈D

∑

b∈B

∑

r∈R
xswdbr ≤

∑

i∈Is
wwsurg

i ∀s ∈ S,w ∈ W (5)

δanest
∑

s∈S

∑

r∈R
xswdbr ≤ aanestwdb ∀w ∈ W, d ∈ D, b ∈ B (6)
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δanest
∑

s∈S

∑

b∈B

∑

r∈R
xswdbr ≤

∑

a∈A
aanestDawd ∀w ∈ W, d ∈ D (7)

δanest
∑

s∈S

∑

d∈D

∑

b∈B

∑

r∈R
xswdbr ≤

∑

a∈A
wwanest

a ∀w ∈ W (8)

∑

w∈Wm

∑

d∈D

∑

b∈B

∑

r∈R
xswdbr ≥ mwsm ∀s ∈ S,m ∈ M (9)

∑

d∈D

∑

b∈B

∑

r∈R
xswdbr + t−sw − t+sw = tsw ∀s ∈ S,w ∈ W (10)

t−sw ≤ G
(
1 − vtsw

)
∀s ∈ S,w ∈ W (11)

t+sw ≤ G vtsw ∀s ∈ S,w ∈ W (12)
|xswdbr − xsw1mdbr | = yswdbr ∀s ∈ S,w ∈ Wm \ {w1m},m ∈ M, d ∈ D,

b ∈ B, r ∈ R (13)
∑

s∈S

∑

d∈D

∑

b∈B

∑

r∈R
yswdbr ≤ Δw ∀w ∈ W (14)

|xswdbr − xsldbr | = jswdbr ∀s ∈ S,w ∈ Wm,m ∈ M \ {1},
l = w −

∑

g<m
|Wg |, d ∈ D, b ∈ B, r ∈ R (15)

∑

s∈S

∑

w∈Wm

∑

d∈D

∑

b∈B

∑

r∈R
jswdbr ≤ Δm ∀m ∈ M (16)

0 ≤ fzk −
∑

s∈Sz

∑

b∈B

∑

r∈R

nzs−1∑

l=0

λsezsk xs,w,d±l,b,r ≤ 1 ∀z ∈ Z, k ∈ k : k → (w, d),

w ∈ W, d ∈ D (17)

fzk + u−
zk − u+

zk = uzk ∀z ∈ Z, k ∈ K (18)

u+
zk ≤ czk − uzk ∀z ∈ Z, k ∈ K (19)

u−
zk ≤ G

(
1 − vuzk

) ∀z ∈ Z, k ∈ K (20)

u+
zk ≤ G vuzk ∀z ∈ Z, k ∈ K (21)

t−sw, t+sw, u−
zk , u

+
zk , fzk ≥ 0 ∀s ∈ S,w ∈ W, z ∈ Z, k ∈ K (22)

xswdbr , yswdbr , jswdbr , v
t
sw, vuzk ∈ {0, 1} ∀s ∈ S,w ∈ W, d ∈ D, b ∈ B, r ∈ R,

z ∈ Z, k ∈ K (23)

Constraints (2) force a maximum of one specialty assigned to each slot avail-
able. Constraints (3) state that a slot can only be allocated to a specialty if there
is a minimum number of available surgeons. These are important constraints since
in many cases a surgery must be performed by two surgeons (e.g. it is regulated
by Portuguese legislation [4]). Constraints (4) prevent a surgeon to be allocated in
consecutive slots. Indeed, it guarantees that, in one day, the number of slots allocated
to some specialty is not higher than the number of slots potentially assigned given
the number of available surgeons and the minimum number of required available
surgeons. Constraints (5) define the weekly workload for surgeons. With these con-
straints, the number of times that a surgeon can operate and, therefore, the number of
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times that a specialty can be assigned to a slot, is restricted. Similar constraints are
modeled to anesthesiologists, (6)–(8). Constraints (9) impose a minimum monthly
workload for each specialty. Constraints (10) model the weekly target number of
allocated slots to each specialty where under and over allocation are allowed at a
penalty cost minimized in the second term of the objective function. Constraints (11)
and (12) guarantee that either the positive or the negative deviation is higher than
zero. The multi-objective effect requires these constraints which are not necessary
if only the second objective is minimized. Constraints (13) and (15) define auxiliary
variables yswdbr and jswdbr , respectively. These variables account the differences in
the MSS of some week when compared with the first week of the considered month
and of some week when compared with the corresponding week in the first month
of the planning horizon, respectively. These constraints are non-linear although they
can be easily linearized. Constraints (14) and (16) limit the number of weekly and
monthly changes, respectively, promoting stability in the MSSs. Constraints (17)
define auxiliary variables fzk (i.e. number of patients in each unit and day) by linking
with variables x. The expected number of patients in unit z on day k of the planning
horizon, fzk , depends on the probability ezsk , which is obtained based on the aver-
age length of stay of patients in the corresponding units in the hospital under study.
Constraints (18) model the units workload as a result of OR slots assignment and
deviations are penalized in the third term of the objective function. Constraints (19)
bound the positive deviation to the capacity of each unit. Similar to constraints (11)
and (12), constraints (20) and (21) guarantee positive or negative deviations to the
target workload for each unit and day. Constraints (22) and (23) represent the domain
constraints for decision and auxiliary variables.

This mathematical programming model, although motivated by the problem at
the hospital under study, intends to be as general as possible. Indeed, a very com-
mon problem in hospital is the allocation of slots to specialties (resource allocation)
considering the demand and incorporating the workload of other facilities when
constructing the MSS. This model maximizes the total number of slots assigned,
considering staff preferences and target values, while complying with the upstream
and downstream units’ capacity.

3 Computational Experiments

The model is applied in the context of the central surgical suite of a public hospital
in Portugal. The actual MSS was kept almost unchanged over the last years. Never-
theless, the workforce availability and the surgical demand are dynamic parameters
over time. The OR comprises 8 specialties (|S|=8), namely general surgery, urology,
orthopedics, ophthalmology, plastic surgery, pediatric surgery, otorhinolaryngology
(ORL) and stomatology. Before surgery, all patients stay in a pre-ward for a max-
imum of one day. Surgeries are performed from Monday to Friday (|D|=5) in two
daily shifts (|B|=2). Elective surgeries are performed in four ORs (|R|=4). For each
specialty, a target number of allocated slots is defined according to the demand and
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Table 2 Results for the case study. Time limit: 1h

max Obj1Value Obj2Value Obj3Value Gap Time

Obj1 1404 −147.46 −531.48 0 1

Obj2 1248 −147.46 −532.35 0 1

Obj3 1196 −147.46 −523.25 1.01 60

(1) capacityR 1404 −147.46 −524.61 0.65 60

(1) capacity+ 2288 −19.5 −438.20 0.35 60

to the average surgery duration.1 The workforce is composed by ten anesthesiolo-
gists (|A|=10) and forty-three surgeons (|I|=43). To assign a slot to a specialty, there
must be, at least, two available surgeons (δsurg=2) and one available anesthesiologist
(δanest=1). The minimum monthly workload in the OR for each specialy is one slot
(mwsm=1). Moreover, since medical staff share OR time with appointments, intern-
ment visits and the emergency unit, a maximum of one or two weekly slots is applied
to each surgeon (wwsurg

i =1,2). Anesthesiologists share OR time with appointments
and thus the maximum number of weekly slots is set to four or five (wwanest

a =4,5).
After surgery, patients go directly to a ward or through the intensive care unit (ICU).
There are 6 down- and upstream units (|Z| = 6). The MSS is designed for a 1-year
planning horizon.

The mathematical model is implemented in Java, with Eclipse Java Mars.2, using
the callable library of ILOG CPLEX 12.8.0. All tests ran on a portable computer
with an Intel Core i7-3632QM CPU of 2.20GHz and 6 GB of RAM under Windows
10 operating system.

The results for the case study instance are shown in Table2. In this table,
‘Obj#Value’ is the value for objective #, ‘Gap’ is an upper bound on the optimality
gap (in %) based on the LP relaxation solved by CPLEX and ‘Time’ is the compu-
tation time (in minutes). Each single objective is considered individually (‘Obj#’)
and function (1) is used as optimization objective. An additional case with extended
surgeons capacity is also tested (‘capacity+’). The model performs well in all cases
obtaining an optimal solution in less than one minute when optimizing the first and
second objectives individually, and providing a solution with up to 1.01% gap within
1h computing time for the remaining cases.

Table2 shows that the total deviation of the number of slots assigned to target
values (‘Obj2Value’) is the same regardless of the optimized objective when the real
capacity is considered. This can be explained by the maximum weekly number of
OR slots that a surgeon can use in practice. Each department takes full advantage
of the workforce, but the surgeons’ maximum capacity is not enough to answer the
demand, being a strong bottleneck in the system and avoiding achieving the target
for the number of allocated slots for all specialties (Table3). When the maximum
number of slots a surgeon can be in the OR is doubled (‘capacity+’), the total number

1tsw = slots availablew
nb patients in the waiting listsw × av surgery durations∑
s∈S nb patients in the waiting listsw × av surgery durations

.
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Table 4 Average utilization of up- and downstream units (in %) in number of beds with respect to
the target value

Pre-ward ICU Ward 1 Ward 2 Ward 3 Ward 4

CapacityR 69.85 14.43 21.63 27.30 23.35 17.69

Capcity+ 92.56 18.76 33.49 46.77 33.67 17.71

of slots assigned is much closer to the target. Table3 allows to compare the results
on the compliance rate of target slots allocation when the real surgeons’ capacity is
considered and when an increased capacity is granted, and also the average expected
number of weekly operated patients in both cases. For the latter, the actual approach
and the target are also shown.

Regarding beds’ utilization in the up- and downstream units, the percentage of
compliance with the target value for each unit in both solutions using objective (1)
is summarized in Table4. Ward 1 is shared by general surgery, plastic surgery and
stomatology, ward 2 is for general surgery and urology, ward 3 includes ophthalmol-
ogy, orthopedics and ORL and ward 4 is used by pediatric specialty. This table shows
that all units are underused regarding the target utilization (which is a percentage of
the total capacity) meaning that the capacity in ORs and in the wards is not leveled.
The wards present excess capacity, mostly in downstream units, comparing to the
ORs which reinforces the idea of a bottleneck in the ORs.

4 Conclusions

This work focuses on the tactical level of decisions of ORmanagement and proposes
an integrated approach of three objectives that were already studied individually but
never considered together: to adjust the allocation of slots to the surgical demand
considering workforce preferences; and to balance the workload in up- and down-
stream units. A Portuguese public hospital is used as case study and to validate the
model. The model is tested using instances based on real data provided by the hos-
pital. Results show that the workforce is a major bottleneck in the OR management
system disallowing a proper response to the increasing surgical demand. The solu-
tion is only able to assign 64.55% of the OR slots with respect to the target value,
which is calculated according to the demand and the OR time capacity. Moreover,
increasing the surgeries workload capacity of each surgeon allows most specialties
to comply with their allocation target value (95.3%).

For further studies, the dynamic behaviour of thewaiting list should be considered.
Moreover, the impact of the proposed solutions on the operational level and on key
performance indicators for theORmanagement should be tested through a simulation
model. A more extensive discussion of the preferences system is also suggested.
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Evaluating Replenishment Systems
for Disposable Supplies at the Operating
Theater: A Simulation Case Study

Karen Moons, Geert Waeyenbergh, Paul Timmermans, Dirk De Ridder
and Liliane Pintelon

Abstract Ensuring cost containment while providing high quality patient care is of
paramount concern to hospitals. The operating theater in particular is a major cost
driver for any hospital, and is among the most critical resources in terms of both
capacity and patient care. Effective inventory and distribution systems are a prereq-
uisite for realizing efficiency improvements in the internal operating theater supply
chain. In this work, discrete-event simulation is used to model part of the internal
distribution process in the operating theater at a Belgian Hospital and to identify
improvements by focusing on the replenishment process. A logistics performance
measurement framework based on Analytic Network Process (ANP), as a popu-
lar Multi-Criteria Decision-Making (MCDM) technique, is adopted to assess three
replenishment scenarios. The best performing scenario is selected using the Internal
Logistics Efficiency Performance (ILEP) index as an evaluation basis. This research
indicates that industrial engineering techniques, such as simulation and MCDM,
which are successfully applied in industrial sectors, can also be adopted to realize
efficiency opportunities in healthcare logistics.
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1 Introduction

Efficiently controlling and distributing medical-surgical supplies to the operating
theater (OT) is essential to lower costs without sacrificing patient care quality. The
OT takes up 40–60% of total hospital supply expenditures [1], and is thus a major
cost center and a primary target for materials management improvement. The inter-
nal supply chain of the OT, involving product and information flows from receiving,
picking and replenishing, is identified as the weak link in supply chain integration
[2, 3]. The main goal of healthcare Supply ChainManagement (SCM) is to achieve a
well-coordinated system and support clinical activities by providing the right mate-
rials in the right quantity at the predestined place and time, while reducing costs.
Assessing efficiency in healthcare logistics is gaining attention as demonstrated by
the growing body of literature [4]. Volland et al. [5] provide an overview of quan-
titative methods applied to four streams of hospital SCM: supply and procurement,
inventory management, distribution and scheduling, and holistic SCM. Camp et al.
[1] suggest strategies to increase healthcare supply chain performance, including
inventory control, standardization and physician preference card management. From
a distribution perspective, resource coordination, effective delivery strategies and
efficiently managing care delivery services are a necessity to provide high-quality
patient care [6].

In this paper, we investigate the internal distribution practices at the OT at the
University Hospital in Leuven (UZ Leuven) by focusing on replenishment of decen-
tral storage locations within the OT. The goal is to assess alternative replenishment
policies in the OT to identify efficiency targets. Discrete-event simulation is used to
model the replenishment scenarios.

2 Literature Review

Manufacturing and retailing industries have successfully applied SCM, resulting in
substantial benefits and cost savings. In contrast, the healthcare sector is struggling
to adopt these concepts [7, 8]. The supply chain activities represent 30% of total
hospital costs and inventory costs take up 10–18% of net revenues [1, 9]. Efficiently
managing the supply chain can significantly reduce costs and waste, while meeting
patient care service levels [9]. The main challenge in healthcare SCM is trading-off
costs with inventory levels to sustain quality and timely patient care [10].

Effective inventory control lowers the cost of internal distribution by for instance
improving inventory turnovers. Optimal replenishment policies need to be developed
to maximize service levels in hospitals. Bijvank and Vis [11] investigate the impact
of inventory models on medical supplies by establishing simple replenishment rules
to determine reorder levels and reorder quantities. Rosales et al. [12], Di Martinelly
[13] combine periodic and continuous replenishments in a hybrid two-bin inventory
policy. The authors analyze the impact on costs, inventory levels and replenishment
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frequency at point-of-use locations. Landry and Beaulieu [14] use the (de)centralized
material management system and the review period to determine the appropriate dis-
tribution policy for replenishment of point-of-use locations. Centralizing the logistics
processes will lower both costs and inventory levels due to more frequent replenish-
ments, reduce workload for logistics staff and provide a higher service level [15].
The impact of decentral inventory locations on the performance of replenishment
systems in nursing units is investigated in the work of Bélanger et al. [3], by focus-
ing on logistics staff productivity. The objective of workload balancing is considered
by Lapierre and Ruiz [16], who develop a scheduling approach to coordinate dis-
tribution activities while respecting inventory capacities. The schedules determine
the delivery frequency, the products to be replenished, as well as task assignment to
improve personnel management.

The organization of the internal distribution within the OT is complex, as different
types of medical-surgical supplies are stored in various central and decentral storage
locations. The models discussed in literature use several decision variables to deter-
mine the impact of distribution policies at point-of-use locations. In this work, we
will integrate these indicators to assess the performance of the distribution system
which depends on multiple criteria, such as cost, service level, personnel satisfac-
tion, degree of centralization, etc. The complex problem structure, however, makes
analytical models impractical as they require many assumptions to simplify mod-
elling, making models unrepresentative of reality [8]. Therefore, simulation is used
as a tool to support decision-making in healthcare logistics. This work contributes to
literature as simulation is mostly applied to study patient flows rather than hospital
material logistics, and multiple performance indicators are identified to evaluate the
multi-dimensional character of logistics in healthcare.

3 Methodology

The OT supply chain is a complex system featuring many elements and parameters.
A simulation case study is an effective decision-support approach to understand the
impact of replenishments systems on the performance of the OT and to identify
efficiency improvement opportunities.

3.1 Internal Replenishment Process at Operating Theatre

This study is conducted at the OT of UZ Leuven. The OT is divided into seven
clusters, depending on medical disciplines, counting 33 operating rooms (ORs) in
total. One cluster is typically equipped with four ORs. Commonly used disposable
supplies are held in decentral storage locations within the OR and are replenished
from central storage rooms within the hospital. Currently, a periodic review replen-
ishment policy is used with a fixed stocking limit, based on gut feeling. However,
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Fig. 1 Internal operating theatre supply chain of disposable supplies

stock-outs, imperfect order fulfilment, stock duplication, lack of standardization and
centralization, and ergonomic burden for logistics staff are typical problems. With
this study, we aim to improve the efficiency of the internal replenishment process
at the OT, focusing at the flow of disposable supplies (e.g. surgical drapes, gloves,
syringes). Figure 1 shows the scope of this research.

3.2 Experimentation: Scenario Analysis

Three scenarios, representing alternative replenishment systems for disposable sup-
plies, are introduced. In the As-Is scenario, the decentral stock is replenished using
copy carts from the central stock (see Fig. 1). These carts contain a duplicate of all
disposables stored in decentral stock, meaning that the carts are a permanent double
stock. The great amount of items on these carts cause heavily loaded carts, which
increases ergonomic burden for logistics staff. Furthermore, all information exchange
is paper-based, meaning that no record is made of what has been consumed. This
complicates effective inventory control, requiring consumption data of each surgery.
The As-Is scenario serves as the baseline scenario throughout the rest of the paper.
The alternative scenarios represent two potential logistics improvements, both fea-
turing barcode scanners. The Standard scenario eliminates the copy carts to reduce
the amount of stock in circulation. Barcode scanners are introduced to scan decentral
stock (see Fig. 1). Based on the scanning data, the requested items are picked in cen-
tral stock to replenish decentral stock. Moreover, scanning enables collecting daily
consumption data in ORs, which is essential for inventory optimization in a next
research phase. A disadvantage of this scenario, however, is that decentral locations
are not immediately restocked, resulting in more visits and higher incomplete refills
(i.e. location cannot be refilled to the stocking limit). This drawback is countered by
the Copy carts scenario, which features both barcode scanners and copy carts. Three
copy carts are used to immediately replenish decentral stock. The copy carts hold a
selection of commonly used items to avoid heavily loaded double carts. In addition,
scanning enables daily consumption data on the copy cart level. Table 1 gives an
overview of the replenishment scenarios.
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Table 1 Overview of
replenishment scenarios

As-Is Standard Copy carts

No double stock X ✓ X

Barcode scanner X ✓ ✓

Immediate
replenishment

✓ X ✓

Consumption
data

X ✓ (OR level) ✓ (copy cart
level)

3.3 Prioritization of KPIs

Simulation is used to assess the replenishment scenarios based on the logistics per-
formance management framework developed by Moons et al. [17]. Input from all
stakeholders (medical staff, materials managers, etc.) is required to select key per-
formance indicators (KPIs) for assessing replenishment policies, since they may
have conflicting objectives regarding efficiency [13]. MCDM is a useful approach
for prioritizing KPIs when multiple, possibly conflicting, quantitative and qualita-
tive criteria must be considered [2]. Several authors propose Analytic Hierarchy or
Network Process (AHP/ANP), developed by Saaty [18–20] as a valuable MCDM
tool for performance management in hospitals [17, 21, 22]. In Moons et al. [17], the
weights attributed to the KPIs are obtained by eliciting expert judgements through
the ANPmethodology. One expert, the OT logistics manager, is included in this case
study serving as a pilot for further research. For more detailed information on the
ANP methodology, the interested reader is referred to the papers by Saaty [18–20]
and Moons et al. [17].

The KPIs are related to four main objectives—quality, time, financial and pro-
ductivity/organization—to assess the replenishment process according to the logis-
tics performance management framework [17]. More information on the KPIs
can be found in Appendix 1. According to Table 2, quality (0.32) and productiv-
ity/organization (0.48) are the most important objectives with the greatest contribu-
tion to improving the internal distribution process. The most critical indicators are
Distribution Service Level (DSL), Personnel Management (PM) and Delivery Fre-
quency (DF). Finally, the ILEP (Internal Logistics Efficiency Performance) index
is introduced serving as an evaluation basis to choose the scenario that is best
performing, based on performance scores on the four objective dimensions.

3.4 Simulation Model

We use simulation to model replenishment policies in the OT, because of the advan-
tages of simulation in solving complex problems [8]. Discrete-event simulation pro-
vides the flexibility of evaluatingmultipleKPIs, and can be used as a decision-support
tool for evaluating the efficiency of the logistics processes. Themodels are developed
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using Arena® Simulation Software. The scenarios are translated into three distinct
models, using a similar modular logic and sharing most variables. The models con-
tain entities representing copy carts, resources or logistics staff, attributes (e.g. type
of disposable supply), variables (e.g. current inventory level) and queues. Appendix
2 displays the Standard scenario in its conceptual form. Four sections are highlighted
representing the core activities: (1) scanning decentral stock (i.e. calculate reorder
quantity by comparing the maximum stock limit and the actual stock), (2) uploading
scanning data (i.e. waiting for the printer to print the list with scanned items and
transfer the list to the central storage room), (3) assembling case carts (i.e. picking
items in central storage room) and finally (4) replenishing decentral stock.

Data collection
The simulationmodel requires two types of data.During a ten-dayobservationperiod,
a time study is performed on replenishment jobs (e.g. scanning, picking and replen-
ishing times). Due to the stochastic nature of these process times related to human-
performed tasks, the time data fit statistical distributions (e.g. Beta distribution). The
second type of data deals with daily item usage of decentral stock. The introduction
of barcode scanners allows collecting data over a year (August 2017–July 2018). In
total, 264 disposable supplies stored at 454 locations are included in the simulation
study. A Poisson distribution is fit to the data, expressing the probability of items
consumed in one day.

Verification and validation
Attention must be paid to verification and validation, ensuring that the model per-
forms as intended to the modelling assumptions and behaves the same as the real
system, respectively [23]. Due to lack of accurate data, we focus on best judgment
of the expert to explore the model as thoroughly as possible. First, adding animation,
by showing the (de)central storage rooms, logistics staff, copy carts and a clock,
facilitates communication with various stakeholders and increases confidence in the
simulation results. Second, graphical visualizations aid in monitoring the values of
various sub-indicators, such as stock-outs, incomplete refills and items in stock per
item per storage room (see Fig. 2). Finally, task completion times and workload dis-
tribution are validated by comparing them to the real system. The logistics manager
is knowledgeable about the direction of the output behavior and knows the acceptable
value range of the magnitudes. Graphs are commonly used to check for operational
validity when statistical assumptions cannot be satisfied or when there are insuffi-
cient data. Based on these graphs, the model developer and system expert decide
the model accuracy is within its acceptable range for its intended purpose, namely
evaluating three replenishment scenarios to identify the best-performing one.
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Fig. 2 Simulation output visualizing items in stock, incomplete refills and stock-outs for item
FA366823 in OR 2 of Cluster D

4 Results and Interpretation

The computer models are used to assess three replenishment policies in order to real-
ize efficiency opportunities. The simulation output provides a score for the indicators,
which is normalized across all scenarios using the As-Is scenario as a baseline. By
aggregating the normalized values into a single score for each objective based on
ANP weights, the best-performing scenario is selected on the level of one objective.
A lower score is better. Table 2 shows the values for these KPIs in each scenario as
well as the ILEP index to select the appropriate policy.

4.1 Results

The Standard scenario provides the best quality, due to the high weight attributed to
the number of stock-outs, as this is a critical factor in measuring distribution service
level. Furthermore, delivery accuracy is performing badly in the As-Is scenario due
to the time gap between making picking lists and replenishing stock, which causes
incomplete refills. The Copy carts scenario eliminates this time gap by immediately
restocking decentral locations. Finally, the impact of centralization is investigated to
free up space for primary services in the OT. The Standard scenario eliminates copy
carts, and benefits from adjusting decentral stocking limits.

In addition, the model keeps track of the time required to perform replenishment
activities by logistics staff. The time related KPIs in Table 2 indicate the best (i.e.
lowest) score for the Standard scenario. However, the results should be carefully
interpreted. Although all items are delivered before the end of the day, the average
delivery time in the As-Is scenario is 14 h 13. Both the response time and the replen-
ishment lead time are considerably higher in the As-Is scenario due to discontinuities
in the replenishment process. These interruptions are mainly caused by the involve-
ment of Central Sterilization Department (CSD) employees, who are not included
in the study. This explains the low value for clinical staff involvement, which refers
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to logistics employees. The Standard and Copy carts scenarios only use logistics
employees to perform replenishing activities.

From a financial perspective, an important indicator for assessing replenishment
policies is the inventory holding cost. Table 2 shows a 20% reduction in holding cost
in the Standard scenario, whereas the Copy carts scenario incurs a 15% increase. The
lower holding cost in the former scenario is a result of eliminating copy carts, which
carry permanent double stock. The Copy carts scenario requires a careful selection of
items to be held on the copy cart in order to reduce holding costs. This should be done
in collaboration with the nursing staff. Although costs are an important indicator to
evaluate inventory policies, the financial factor has the least impact (0.06) on the
replenishment process performance according to the ANP ranking.

Furthermore, productivity and organizational KPIs aid in streamlining processes
and improving staff satisfaction. Delivery frequency impacts productivity by the
number of items that need replenishment and the visits to decentral locations.On aver-
age, 40% of decentral item locations are daily replenished. The Copy carts scenario
has the best total score for productivity, mainly due to less frequent visits to decentral
stock. A recent trend in healthcare management emphasizes process standardization
to simplify workflows. Standardization stimulates increasing the number of items
that can be scanned, creating uniform replenishment practices throughout the entire
OT. Based on accurate consumption data, the logistics team can use evidence-based
arguments for standardizing items in consultation with surgeons, thus decreasing
product variety and facilitating inventory control.

Finally, an index is developedby converting the scores of the fourKPIs into a single
score using ANP priorities, demonstrating the Internal Logistics Efficiency Perfor-
mance for each scenario. This ILEP index provides an objective evaluation basis
for logistics managers to identify the best strategy for managing internal healthcare
logistics processes. The higher this index, the better the performance of the process.
The ILEP index is added to Table 2. Overall, we observe that the Standard sce-
nario provides the best service quality at the lowest cost, although it is slightly more
demanding for logistics staff compared to the Copy carts scenario. However, making
decisions based on a single score may be misleading. Therefore, the logistics man-
ager should always consider the trade-off between multiple criteria when choosing
an appropriate replenishment policy.

4.2 Interpretation

The performance management framework supports decision-making when selecting
the most appropriate scenario for organizing the internal OT replenishment process.
KPIs are identified in the framework and serve as a guideline for monitoring the
performance of internal healthcare logistics processes. Both the Standard and Copy
carts scenarios demonstrate better performance in terms of quality, time and produc-
tivity/organization compared to the As-Is scenario. From a financial perspective, the
Standard scenario is preferred due to lower inventory holding costs.
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When analyzing the findings of this case study, some limitations must be con-
sidered. One limitation is related to the sample size of the ANP application. This
work presents preliminary results of a healthcare logistics performance management
framework as only one stakeholder is included, namely the OT logistics manager
expressed his preferences for KPIs. However, multiple stakeholders with possibly
conflicting goals are involved in the OT supply chain, which complicates efficient
performance management. A single decision-maker’s attitude introduces bias in the
outcome, which need to be resolved in further research by including different stake-
holders allowing for group decision-making and improving the robustness of the
framework. The main challenge in group decision-making will be to deal with possi-
bly conflicting perspectives among different stakeholders. Consensus, compromise,
or geometric mean are techniques for aggregating groupmember judgments [20, 24].
Finally, ANP sets priorities according to the different stakeholders’ preferences [12,
17]. Second, the accuracy of the data used in the simulation model must be critically
assessed. The input data contain 264 of 404 (65%) unique SKUs stored at 454 of 743
(61%) supply locations in decentral stock, representing 98% of total items ordered.
The remaining items are excluded due to limited scanning data for various reasons,
such as scanning problems, new items, backorders or IT-related problems. For inven-
tory optimization purposes, accurate data is essential to determine appropriate stock
limits and reorder points in order to minimize costs and maximize service levels.
Despite these limitations, this case study provides insights on the impact of three
replenishment scenarios on the workflow, quality and costs of the operating theater.

This section proposes recommendations to improve the internal OT supply chain
processes in further research. An interesting follow-up study will focus more on
simulation of system parameters to decide on appropriate stock limits, as 16% of
stock-outs are caused by 12% of items with a stock limit of one. A “What-if?”
analysis is performed to examine the impact on the inventory cost and number of
stock-outs. By increasing the stock limit of those items by one, the number of stock-
outs decrease on average with 13% while inventory costs increase with roughly 5%
due to higher average stock levels. However, having excess items in stock increases
both the workload for logistics employees and the costs. Further research should
address this main trade-off in inventory control, namely balancing costs and service
level, by focusing on inventory parameter optimization in central and decentral loca-
tions. In addition, dealing with physician preferences, causing large product variety,
by implementing item standardization and engaging physicians in updating prefer-
ence cards may increase OT supply chain efficiency and facilitates inventory control
[25]. In further research, the simulation model can be extended by including other
clusters, thereby improving the generalizability of the findings. The ILEP index for
one cluster shows a 24% improvement for the Standard scenario compared to the
As-Is situation. Extension to all clusters in the OT will reveal even higher improve-
ment opportunities. In addition, the methodology can be customized to healthcare
logistics problems using the ILEP index as an objective evaluation basis for assess-
ing logistics scenarios. Hospitals using a performance management framework have
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a competitive advantage. The corresponding ILEP index enables hospitals to con-
trol their supply chain strategy, implement continuous improvement programs and
improve decision-making by focusing on relevant KPIs [26].

5 Conclusion

Cost containment in healthcare is of increasing concern. Streamlining OT supply
chains is critical to provide superior, low-cost patient care. This study analyzed the
current logistics workflow in one operating room cluster by focusing on replenish-
ment of disposable supplies. Overall, we demonstrate that two replenishment scenar-
ios both result in efficiency improvements compared to the current As-Is situation.
The Standard scenario provides a better service than theAs-Is at lower costs, whereas
the Copy carts scenario improves the logistics staff productivity. However, the latter
scenario contains a higher inventory cost due to improper selection of items car-
ried on copy carts. In addition, both these scenarios increase data collection through
scanning, resulting in valuable information for inventory control.

Ultimately, the logistics manager should consider the trade-off between service,
time, costs and productivity when defining efficiency targets, and discuss this trade-
off withmedical staff, as they have critical insights into the challenges of achieving an
operationally efficientworkflow, supporting care delivery. In addition, enabling accu-
rate data collection through scanning is important to monitor performance. Decision
support models based on ANP provide useful information for managerial decision-
making in relation to performance management. The logistics performance manage-
ment framework by Moons et al. [17] enables hospitals to control their supply chain
strategy, improve supporting services and realize significant efficiency opportunities.

With this research, we prove that industrial engineering concepts applied in indus-
trial sectors are also useful to be adopted by the healthcare sector to identify effi-
ciency opportunities in the internal supply chain processes. Further research will
focus on other dimensions determining the replenishment process performance such
as optimizing inventory levels, reorder frequency and stock-out rate. In addition, the
robustness of the framework will be validated by including multiple stakeholders
with possibly conflicting goals for efficiency improvements.

Appendix 1

Quality Quality specifies how well a specific activity has been performed, ensuring that
patients receive care service in a safe manner and that problems such as medical
errors are minimized

(continued)
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(continued)

Distribution
service level
(DSL)

The availability of logistics services to support clinical care
processes

Urgent
delivery rate

Daily stock − out rate =
∑i=454

i=1 (Stockouti)
730 days

Additional
items needed

Average replenishment per item =
AvgMaxStock −

Average daily replenishment
Average replenishment items per day

Delivery
accuracy (DA)

The ability to pick and deliver the correct items and quantities
from storage to point-of-use location

Perfect order
fulfilment

Daily number of incomplete refills =
∑i=454

i=1 (MaxStocki−ItemsInStocki)
730 days

Centralization
impact (CI)

The ability to locate items only at a central storage room, or
also at decentral storages.

Permanent
double stock

Number of copy carts, containing duplicate
of items in decentral storages

Impact of
centralization

Adjust max stock in decentral locations

Time Time involves the time to complete the logistics operations to ensure that the right
items are at the right place and time

Replenishment
lead time (RLT)

The total amount of time that elapses from the moment an item
is ordered until the item is back on the shelf

Transport time Time to move items to the right place

Replenishing
time

Time to replenish decentral stock

Scanning time Time to scan items in decentral stock

Preparing time Time to pick requested items from central
stock

Other activities
time

Time spent on other activities than
replenishing due to interruptions

Replenishment
lead time

= Transport + replenishing + scanning +
preparing + other activities

Response time
(RT)

The ability to deliver items on time, preventing delays in
surgical procedures

On-time
delivery

Average delivery time = finish time of
replenishing decentral stock

Clinical staff
involvement
(CSI)

The amount of time clinical staff is busy with logistics tasks,
rather than their core activities

Logistics
employees
involvement

Time spent by logistics employees
(=RLT—other activities)

Financial Financial indicators identify supply chain cost drivers, such as expenses incurred
by departments for providing services, including direct and overhead costs for
inventory and internal distribution

Distribution
cost (DCo)

Total cost of handling and transporting to move supplies from
storage rooms to point-of-care locations

Replenishing
cost

Related to RLT

(continued)
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(continued)

Personnel cost
(PCo)

The cost related to the time personnel is involved with
logistics activities

Personnel cost Related to CSI

Inventory cost The annual cost of holding inventory at a specific storage room

Holding cost Average holding cost =
[∑i=454

i=1

(
ItemsInStocki
InventoryCount

)
] ∗ UnitCosti ∗ 0.25

Productivity/organization Productivity/organization involves operational control metrics for logistics
departments used for streamlining processes, reducing costs, facilitating
information flow and enhancing provided care services

Case cart
efficiency
(CCE)

The availability and utilization of case carts to provide
surgeons with the required supplies

Not applicable for replenishment process

Delivery
frequency (DF)

The number of visits to decentral storage locations to deliver
or replenish items in these locations

Percentage of
items
replenished

Daily percentage of item replenishment =
Total items − Daily number of items replenished

Total items included

Scanning
frequency

Use of scanner (0/1)

Visits to
decentral
locations

Number of opening relay cabins

Standardization
(S)

The ability to simplify workflows between operating rooms
and improve working conditions

Percentage of
scannable
items for
replenishment

= Total items − Number of scannable items
Total items

Personnel
management
(PM)

A measure of how to obtain, use and maintain a satisfied
workforce

Personnel
utilization

= Time busy replenishing (RLT)
480min

Ergonomics
friendliness

Use of double carts (0/1)

Workload
distribution

Timeline of logistics employees interrupted
by other activities

Appendix 2
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Stochastic Master Surgical Scheduling
Under Ward Uncertainty

Asgeir Orn Sigurpalsson, Thomas Philip Runarsson
and Rognvaldur J. Saemundsson

Abstract In this work, we address the elective surgery scheduling problem and
the risk of last-minute cancellations. This risk is associated with the likelihood of
operating rooms going into overtime and ward beds exceeding their limit. The risk of
overtime is constrained by considering only feasible combinations of operating room
days schedules. To account for the feasibility, we restrict the number of surgeries
assigned to each combination and force it tomaintain the correct ratio between in- and
out-patients for each operator. Furthermore, the probability of running into overtime
is bound and verified using Monte-Carlo simulation. The risk of exceeding the ward
limit is solved by amixed-integer programmingmodel where the probability of going
over the available ward beds downstream is bound. The approach is inspired by real
challenges and tested on real-life hospital data.

Keywords Surgery scheduling · Stochastic integer programming · Monte Carlo
simulation

1 Introduction

Due to the aging of the population and increasing cost of care, hospital managers seek
to maximize the use of existing resources. One such resource that has received con-
siderable attention are operating rooms [1, 2]. Operating rooms (ORs) are expensive
resources but also a significant source of income [3]. However, the capacity of down-
stream resources, such as intensive care units and wards, constrain the patient flow
from the ORs [4, 5]. Therefore, to gain from increased utilization, surgeries need to
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be scheduled in such a way to assure a balanced patient flow for avoiding last-minute
cancellations due to downstream bottlenecks. This is a challenging problem due to
the stochastic nature of patient admittance, surgery times, length of stay [4, 6] and
the competing objectives of the various stakeholders involved in the surgery process
[7].

In practice, one can divide surgery scheduling into three decisions levels: strategic,
tactical, and operational [8]. At the strategic level, decisions are made about the
overall surgical capacity, including ORs and equipment. These decisions are long
term. At the tactical level, decisions are made about the availability of OR time, e.g.,
by temporarily closing ORs or increasing staffing, and how the available OR time
is allocated to surgical specialties and operators. These allocations, which may be
cyclic, are usually set months in advance. Lastly, at the operational level, patients
waiting for elective surgeries are scheduled to a room, day, and time, based on the
allocation of the OR time to the specialty or operator in question. This may be done
some weeks in advance.

The schedule created at the tactical level is referred to as aMaster Surgical Sched-
ule [4, 9]. These schedules may refer to finding an ideal mix of surgical procedures
for each day [9, 10]. Furthermore, many approaches have been presented for build-
ing them. In [11] an integer programming (IP) model is applied and a post-solution
heuristic to minimize the difference between the target and assigned OR time for all
specialties, however, without taking the post-operation patient flows into considera-
tion. In [3, 12] and [9] models take into account a varying degree of the stochastic
nature of the problem and the constraints posed by downstream resources. Never-
theless, they either assume a given flow of patients reducing their practical use for
maximizing throughput while avoiding last-minute cancellations. In [4] a stochastic
IP model is proposed, which both accounts for the stochasticity of surgery times
and length of stay. The model is solved with a sample average approximation where
the goal is to maximize the expected throughput. To maximize the throughput, the
authors assign surgery groups to days and rooms for each specialty. However, the
assignment of the surgical operators is not considered as it might be no issue in their
study.

In this paper, we suggest a new approach for building a Master Surgical Sched-
ule (MSS). First, the schedule refers to a cyclic allocation of OR time to surgical
operators. In effect, this takes both the specialty and the mix of elective surgical
procedures into account. Second, the schedule is based on historical data, which
allows the continuous monitoring of the effectiveness of the schedule in use. Third,
to create the schedule, we use an approach to the operational surgery scheduling, we
termed Pattern Scheduling [13]. This allows us to account for the stochastic nature
of the problem in a practical way and precisely. Fourth, we use an approximation that
allows us to bound the likelihood of exceeding the ward capacity. To the best of our
knowledge, this has not been attempted before. Often, the expected ward numbers
are used. To demonstrate and test our approach, we build and evaluate a MSS using
historical data from the National University Hospital of Iceland (Landspitali).



Stochastic Master Surgical Scheduling Under Ward Uncertainty 165

The paper is organized as follows. In the next section, we provide a problem
description. The following two sections specify the two steps of our pattern schedul-
ing approach, followed by an experimental study based on historical data. In the final
section, we discuss the results and provide conclusions.

2 Problem Description

Landspitali hospital has pre-assignedORs r ∈ R for elective surgeries anddaysd ∈ D
under a weekly planning horizon T consisting of five days. Each day and room
represents a single session allocated to one operator. The goal is to find the optimal
assignments of the surgical operators o ∈ O such that throughput is maximized. To
tackle this problem, the elective surgical case assignment problem is solved for each
session using the patients most likely to appear within the planning horizon.

Each patient is assigned to a single operator, and each operator is assigned to at
least one day in the weekly planning horizon. Patients may then be assigned to one of
these days assigned to their operator. Planning toomany patients for any given session
may result in overtime, but this is not necessarily undesirable. However, too many
sessions in overtime the same day may result in last-minute cancellations. The same
applies to days exceeding the available ward beds. Bounding the expected number
in the ward can be formulated in a straight forward manner. However, formulating
the risk or likelihood of exceeding the ward capacity is more challenging and will
be attempted here.

A two-phase approach is used to build a cyclic MSS, for elective surgeries, that
minimizes the risk of cancellations due to overtime and ward capacity. In the first
phase, all feasible patterns of operator room day schedules are created. In the second
phase, these patterns are used by a Mixed Integer Programming (MIP) model that
addresses the ward restriction in a probabilistic manner.

3 Pattern Generation

The first step in our approach is the pattern generation. In this context, we define
a pattern as a feasible session or one-day assignment of patients to each surgical
operator. To generate the patterns p, one can use enumeration. However, not all of
them are feasible. Thus, we set up a three-step procedure to account for feasibility.
Let us define a binary indicator zi,p taking the value 1 if patient i is assigned to pattern
p, otherwise 0. The first step is to put an upper boundM on the number of surgeries
assigned to each pattern p,

∑

i∈Lo
zi,p ≤ M , ∀ p ∈ P, o ∈ O (1)
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where Lo is the set of patients for operator o. Second, we force each pattern to
maintain a balance ho between in- and out-patients for each operator o, determined
by their waiting list,

|
∑

i∈Lo
gizi,p − �ho

∑

i∈Lo
zi,p�| ≤ 1, ∀o ∈ O, ∀p ∈ P (2)

The first part of the constraint counts the number of in-patients assigned to the
pattern p, where gi ∈ {0, 1} indicates when patient i is an in-patient. The second part
calculates the desired number of in-patients rounded up to the nearest integer for
operator o. The absolute difference between those two parts should preferably be
zero. However, we allow the flexibility of one patient. A similar strategy is found
in [4, 6] where scheduling balance is forced for different surgery groups. In the
last step, we employ a Monte-Carlo simulation to verify each pattern concerning
overtime. That is, they will not result in overtime with more than δ probability for a
given capacity Cap

Pr[f (zp) ≥ Cap] ≤ δ (3)

where f (zp) denotes the distribution function for the stochastic sum of all surgical
procedures in pattern p, including the times between the surgeries.

This method is comparable to the work by [9] where column generation is used
to create feasible operating room days. However, when generating the sub-problem,
the stochastic constraint (3) is approximated using a planned slack, which is not
desirable for a practical application. In practice, the number of feasible patterns is
limited. Thus, generating all feasible patterns is an attractive exact approach and
tractable up to some limited patient list length.

4 Pattern Scheduling with Probabilistic Ward Restrictions

Now all feasible patterns have been generated that satisfy stochastic constraint (3).
The decision is now reduced to determine which pattern p should be assigned to day
d and room r. Let us introduce the binary variable xd ,p,r taking the value 1 if pattern
p is assigned on day d and room r. The objective is to maximize the throughput of
patients

max
x

∑

d∈D,p∈P,r∈R
Cpxd ,p,r (4)

where Cp is the number of patients assigned to pattern p. As each pattern represent
a whole session, only one pattern can be in any room at any given day,

∑

p∈P
xd ,p,r ≤ 1, ∀r ∈ R, d ∈ D (5)
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and any given surgery can only be performed once

∑

p∈Ps,d∈D,r∈R
xd ,p,r ≤ 1, ∀s ∈ S (6)

where Ps ⊆ P are patterns containing surgery s. Each operator is only working
according to one pattern per day,

∑

p∈Po,r∈R
xd ,p,r ≤ 1, ∀d ∈ D, o ∈ O (7)

where Po ⊆ P are the patterns of operator o. Similarly, we force an assignment of
each operator to at least one day for a given week v with working days Dv,

∑

p∈Po,d∈Dv,r∈R
xd ,p,r ≥ 1, ∀o ∈ O (8)

Now we turn our attention to the ward assignments. By using historical data, it
is possible to estimate the expected number of patients on each day for any given
pattern. However, this will not give the probability of exceeding the ward capacity.
Thus, we approximate the problem as follows. We assume that there are only three
possible scenarios for a patient, either the patient will be in the ward on the day j
with 100% certainty, will have a 50% chance of being discharged or will not be in
the ward on the day j. Thus, we define two parameters w50

j,p and w100
j,p denoting the

number of patients with 50% and 100% likelihood respectively of being in the ward
on day j for pattern p. At any given day d the number of patients in the ward known
with certainty is

w̄100
d =

∑

r∈R,p∈P,j∈{0,...,m}:d−j∈D
w100
j,p xd−j,p,r, ∀d ∈ D (9)

over am day period. Similarly, w̄50
d can be formulated as shown in equation (9). Now,

we know how many beds are occupied with certainty. Thus we should not exceed
the given limit,

w̄100
d ≤ wT , ∀d ∈ D (10)

where wT is the absolute upper limit on the number of beds in the ward. Now we
are left with the decision to determine how many patients with 50% chance of being
discharged to have each day. First, let us determine how many beds are still available
bywa

d = wT − w̄100
d for each day d . Now let us introduce an auxiliary binary indicator

yd ,i ∈ {0, 1} for day d and i ∈ {0, . . . ,wT },

wa
d =

∑

i∈{0,...,wT }
iyd ,i, ∀ d ∈ D (11)
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In this context, the variable yd ,i is used as a look-up for the allowed number of patients
on the day d , which will be given by look-up index i. Note that i takes the same value
as the remaining beds for each day. Clearly, yd ,i can only take one value as only one
possibility is available for the day,

∑

i∈{0,...,wT }
yd ,i = 1, ∀d ∈ D (12)

Now we can find an upper bound on the number of patients with 50% chance of
being discharged in the ward,

w̄50
d =

∑

r∈R,p∈P,j∈{0,...,m}:
d−j∈D

w50
j,pxd−j,p,r ≤

∑

i∈{0,...,wT }
F50
i yd ,i, ∀d ∈ D (13)

where F50
i denotes the maximum number of patients with a 50% chance of being

discharged when there are i beds available. Let us assume there exist a patient w̄50
d

with 0.5 chance of being on the day d in the ward or not. Then the number of
such patients the ward can hold without exceeding its limits wa

d is computed by the
quantile function for the Binomial distribution. The values are for example (i,F50

i ) :
(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (5, 4), (6, 5), when using the confidence 0.05.

Although the patterns maintain a balanced ratio between in- and out-patients for
any given operator, this value has been approximated to the nearest integer. Thus, the
overall balance over the whole set of operators may still be biased towards selecting
more out-patients since they usually require less surgery time. To combat this, a
global in- out-patient constraint is forced for all operators. The global ratio hG of in-
and out-patients each week can be forced using the following two constraints,

hG
∑

(d ,p,r)∈DPR
Cpxd ,p,r − 1 ≤ Pin (14)

Pin ≤ hG
∑

(d ,p,r)∈DPR
Cpxd ,p,r + 1 (15)

where Pin is a continuous variable denoting the total number of in-patients and is
defined by

Pin =
∑

p∈P,d∈D,r∈R
Gpxd ,p,r (16)

where Gp denotes the number of in-patients for pattern p.
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5 Experimental Study

For the computational experiments we will create several different MSS using our
approach. For the sake of simplicity, we focus on one surgical specialty, General
Surgery. The experiments are performed on a 32GB memory Intel Core i7-7700
3.60GHzwith 4 cores. Themodel is programmed in Python 3.6 usingGurobi version
8.1.0. The time for each experiment is limited to 6 hours.

5.1 Instance Generation

We have obtained an extensive data set from Landspitali from the last ten years. This
data set is used to create several different instances. For each instance, we sample
surgeries that aremost likely to occur for each operator using different sizes ofwaiting
lists Lo ∈ {10, 20, 30}. In Table1, we provide a summary of the main characteristics
of the most frequently performed surgeries by each operator.

Based on the current MSS, there are two ORs (r1 and r2) available each day both
with capacity ofCap = 450minutes. As previously discussed, running into overtime
is not undesirable. Thus we assume that δ ≈ 0.3. From historical data, we select an
upper bound of M = 6 on the number of patients assigned to each pattern and that
global ratio between in- and out-patients scheduled is hG = 0.38. The total number
of beds available in the ward is wT = 6. Different MSS will be found under these
parameter settings by varying the cycle length in days T ∈ {7, 14, 28}.

Table 1 A summary of the main characteristics of the operators and their surgeries

Operator Number of
surgery types

Mean surgery
time

Mean ward
probability

Mean ward length
of stay

A 9 184 (min) 0.40 2.4 (days)

B 6 137 0.50 2.9

C 9 188 0.50 2.6

D 10 167 0.70 3.2

E 11 162 0.60 3.4

F 5 214 0.40 3.7

G 7 90 0.10 2.0

H 12 143 0.30 2.5

I 13 84 0.10 2.3
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5.2 Results

Table2 provides a summary for the computational results under different parameter
settings. In the table, one can find the proportion of scheduled in- and out-patients.
By increasing the values of T and Lo substantially makes the problem more difficult
to solve. As a result, a sub-optimal solution is provided for the parameter settings of
T = 28 and Lo = 30 (with a small gap of 0.73%). Comparing the throughput under
each setting, including more patients on the waiting list leads to more throughput.
This is expected since more options are available and so too the surgeries with short
surgery time and length of stay. Onemight have expected to schedule four times what
was optimally planned for one week. However, only 136 surgeries are scheduled.
It indicates that the optimization has selected operations of a specific type (with
short times and length of stay). Hence, more complicated surgeries may be deferred.
Comparing the results to the actual MSS (fixed roster days) for T = 7, one can see
that the same throughput is achieved, but fewer in-patients are scheduled.

Table 3 illustrates the historical ratio ho and the scheduled ratio for each surgical
operator along with the number of planned surgeries in the parenthesis behind. Simi-
larly, the global ratio hG is provided. It is apparent from the table that each operator’s
ratio is often achieved. For short planning horizons, it might, however, get challeng-
ing to satisfy this ratio completely. Turning now to the global ratio, one can see, that
it is satisfied for all settings (with a small deviation). However, the results suggest
that planning beyond one week is required to fulfill the ratio of each operator when
maximizing the throughput. One could add more restrictions to meet each operator
ratio even further, i.e., by taking into account the types of surgeries similar to [4, 6].
However, it might come at the cost of the flexibility of the provided schedules and
so the throughput.

Different MSS are provided in Tables4, 5 and 6 for Lo = 30 and T = {7, 14, 28}
along with the actual MSS. Each table shows the assignments of the operators to
days and rooms along with their daily proportion of in-patients from the throughput.

Table 2 Comparison of the throughput under different parameter settings

T Lo Number of
surgeries

Number of
in-patients

Number of
out-patients

Duality gap
(%)

CPU MIP
(sec)

7 10 35/90 13/27 22/63 0.00 1

20 39/180 14/67 25/113 0.00 28

30 41/270 16/104 25/166 0.00 202

7 30 41/270 15/104 26/166 0.00 123 Actual MSS

14 10 60/90 22/27 38/63 0.00 4

20 72/180 27/67 45/113 0.00 320

30 78/270 29/104 49/166 0.00 986

28 20 124/180 47/67 77/113 0.00 948

30 136/270 51/104 85/166 0.73 21600
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In our MIP model, we have approximated the probability of being in the ward to
three rounded probabilities 0, 0.5 and 1. The true probability of going over the set
ward limit can, however, be found off-line with Monte Carlo simulation to estimate
the true probability of going over the absolute ward limit wT . This is denoted by
Pr[wd ≥ wT ] in the tables below. In this case, we observed that this likelihood is
less than or equal to 0.10 in all cases but one, where on the day 19 in Table6, it
is 0.23. In general, the results are nevertheless promising. Comparing the results to
the actual MSS, one can see that the assignments of the operators is different than
in reality and that no clear patterns are found. However, some parts remain similar.
For T = {7, 14} it is suggested that operator I is assigned to two days each week.
That is in accordance with the actual MSS however, his days are different except
for the Fridays. When T = 28 one can see that operator I is no longer assigned to
two patterns each week anymore. Instead, operator G is assigned to two patterns in
weeks I and IV. Furthermore, operators I and A are assigned to two patterns in week
II and III, respectively. As predicted these operators, who have the shortest operating
time (see Table1), complete almost all of their available patients within the planning
horizon of T = 28 when the throughput is maximized.

6 Discussion and Conclusions

In this paper, we have provided an effective way to account for risk associated with
last-minute cancellations for the surgery scheduling problem, namely going into
overtime and exceeding the limit of the ward beds. To tackle the problem, we used a
two-phase approach. In thefirst phase,we created feasible one-day sessions (patterns)
using a three-step procedure. It allowed us to tackle the uncertainty in surgery times
in a practical and precise way by generating feasible patterns. In the second step, the
patterns are scheduled using a MIP model that addresses the ward restrictions in a
probabilistic manner. To illustrate this, we built several MSS for various planning
horizons and waiting lists length, where the goal was to find the optimal assignments
of the operators. The results suggest that by using the proposed approach, one can
bound the risk of exceeding wards effectively and tackle the uncertainty in surgery
times. Thus, we avoid the risk of cancellation. Further results indicate that flexibility
in the rosters of the operators and planning beyond one week is required to achieve
the best possible results in terms of balanced flow of in- and out-patients.

In this study, we have focused on maximizing the throughput of patients. By
doing so, the optimization will favor patients with shorter surgery times and ward
days. It unfortunately, will leave the more difficult patients for a later date, especially
for the shorter planning periods, which is not a desired result of the optimization.
Additional criteria will be needed to combat this effect, for example, the patient
priority. However, finding the right balance between patient priority and throughput
poses new challenges. These issues are the focus of our current work.
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Integration of User’s Preferences
into the Home Healthcare Routing
and Scheduling Multi-objective Problem:
A Hierarchical Approach with
Pareto-Optimal Alternative Solutions

Laura Musaraganyi, Simon Germain , Nadia Lahrichi
and Louis-Martin Rousseau

Abstract Home health care structures provide medical and paramedical services
in patient homes rather than in facilities, such as hospitals. From these activities
emerge various operational problems including the Home Health Care Routing and
Scheduling Problem (HHCRSP). In this paper we are especially interested in the
multi-objective aspect of the HHCRSP. In fact, while assigning patient visits to
caregivers, multiple conflicting criteria must be simultaneously considered in order
to find the best trade-off. However the evaluation of these trade-offs depends greatly
on the decision maker’s judgment, which includes a diverse range of HHCS provide
home health care services. This implies that in order for a decision tool to be adopted
by the largest number it must be able to adapt to its user’s preferences. In this paper,
we present a method that takes into account the decision maker’s priorities, within
the context of an automatic scheduling assistant. The algorithm, based on a heuristic,
uses a hierarchical approach to find the best multi-objective solution according to
strict priorities. It also suggests near-equivalent Pareto-optimal solutions, selected by
means of tolerance parameters, to provide the user with relevant alternative choices.
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1 Introduction

Home health care services offer a wide range of services such as helping individuals
cope with long-term medical conditions, illness or injury. While the patient remains
in the comfort of their own home, the administrators see a decrease in hospital con-
gestion, which also reduces costs [1]. For these reasons, and due to multiple factors
(e.g. aging population, chronic diseases,…), this type of service quickly grew in
popularity. Most of home health care providers operate a fleet of mobile care work-
ers that travel from place to place providing care to patients under the company
supervision. In this situation, at an operational level, arises the Home Health Care
Routing and Scheduling Problem (HHCRSP). The HHCRSP is interested in deter-
mining the assignment of home visits to a set of caregivers over the course of a
planning horizon, and the routing of these caregiver workdays. In our application,
we consider timewindows and time-dependent travel issues, as well as constraints on
caregivers’ skills, patient requirements, and specific caregiver contracts/union rules
e.g. work time limits. The home health care context also comes with an important
concern, which is the continuity of care. In fact, once a patient-caregiver relationship
is established, there are strong benefits to maintain that match.

In the process of assigning routes to home health care workers, schedulers con-
sider simultaneously various conflicting criteria (worker skill-set, availability / time
of day, distance traveled, patient-worker relations,…) and try to make the best sched-
ule possible, minimizing time spent in the car and maximizing time with patients,
while also limiting costs for the home health care service provider. In this paper, we
present a method tackling the challenging task of finding the right balance between
these contradictory criteria. In particular, our work is centered around the users’ per-
spective as, for a method to be beneficial to a large number of different home health
care structures, it has to be easily adaptable to their preferences. To do so, we com-
bine a hierarchical optimization technique with a Pareto based approach. Tolerance
parameters are introduced in order to display only relevant Pareto-optimal choices to
the decision maker. For this project, we collaborated with the company AlayaCare.
It offers a cloud-based platform (SaaS) for home health care service providers to
improve their efficiency in their different tasks. We are especially interested in Alay-
aCare’s Schedule Optimizer. It is an optimization tool built to provide full daily
schedules for every care worker over a given period. We will focus on a significant
overhaul of the Schedule Optimizer that is the integration of users’ preferences. In
fact, our industrial partner has to deal with a considerable number of home health
care structures with their own characteristics and their own policies. To address this
issue, the proposed method contributes to a much better decision making experi-
ence for the end-users as it offers priority-oriented solutions and a varied choice of
alternative solutions.

A growing interest in home health care over the last few decades has given rise
to a number of publications dealing the HHCRSP. Two complete reviews on the
HHCRSP are available [2, 3]. Asmentioned in Cissé et al.[3], although the HHCRSP
has gained popularity in recent years, few research has focused on tackling its multi-
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objective aspect. However, multi-objective resolution methods can help home health
care schedulers find the best trade-off according to their experience and knowledge
of home health care environments. In addition, an optimization method able to adapt
to the user and provide good decision support have a higher probability to be used
effectively. Nevertheless, solving the HHCRSP is usually done by using a multi-
objective weighted sum model [3–5]. While it does definitely work, we found a
significant problem when the algorithm was faced with real users (the schedulers
in the HHCS). Translating the intuitions of human beings into weights to allocate
the importance in the objective function ended up to be a challenging task. Every
scheduler wanted to have slightly different weights, and even with full control of
them, they were often unsatisfied with the results. Regarding the estimation of the
weights for each objective, the analytic hierarchy process (AHP) method, proposed
by Saaty [6] has been considered. It was used, for example, in Jafari et al.[7] in order
to maximize nurses’ preferences. However, in this application the process would
need to be repeated several times and this would imply an unnecessary burden for
the end-user.

More generally, many models solving nurse scheduling problems use a hierar-
chical or goal programming approach [8–11] whereas the Pareto-based approach is
often used in vehicle routing problems [12–15] and also in some scheduling prob-
lems [16, 17]. Therefore it seems natural to combine both approaches to solve the
HHCRSP. Furthermore, Drechsler et al.[18] introduced an idea of ε-limit to avoid
considering solutions with excessive values for less preferred objectives.

This paper is outlined as follows: in Sect. 2, we describe our formulation of the
HHCRSP, in particular the constraints and the objectives that are considered as well
as the resolution approach. Then Sect. 3 focuses on how different multi-objective
techniques have been combined to better adapt to the user preferences. Especially,
3.1 presents how multi-objective aspects were handled during the generation of so-
lutions and 3.2 tackles the issue of choosing the most suitable solution regarding
user priorities and selecting alternative solutions. Results are discussed in Sect. 4 and
finally, we offer our conclusion.

2 Problem Statement and Resolution Approach

The HHCRSP can be modeled in a few different ways [3]. We chose the approach
of the multiple depot traveling salesman problem with time windows (MDTSPTW).
In addition to the classical routing and assignment constraints, constraints specific
to the home health care context are taken into account:

• Planning horizon: Period over which the routing and scheduling decisions are
made. The planning horizon considered in this application is one or two weeks.

• Continuity of care (patient–nurse loyalty): For the patient, it involves consistency
and trust in the experience of care. For caregivers, it is related to collecting sufficient
information and knowledge about the patient in order to give the best possible care.
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• Time windows: Time interval in which the patient can receive care. It is linked to
patient availability and to the type of care that needs to be provided (e.gmedication
intake). Only hard time windows were considered.

• Preferences: They are divided into hard constraints (if a patient rejects a particular
caregiver) and soft constraints (preferences related to the caregiver’s gender or
language skills). The optional preferences were not considered in this application,
although the algorithm is able to support these constraints.

• Time-dependent travel times: For real-world applications such as this one, it is
essential to include the time-dependent aspects in travel times as they change
considerably over the course of the day.

• Work time: Can be a soft or a hard constraint. When it is set as a soft constraint,
overtime work refers to working hours exceeding those specified in union rules
or work contracts; and under-time work refers to working hours missing to meet
those specified in union rules or work contracts.

• Qualifications/ skills: To satisfy a patient’s need, the caregiver’s qualificationsmust
match the patient’s care requirements.

More details about these constraints are given in Table1. To facilitate comparisons
with other HHC models we used terms from Cissé et al. [3].

Within these constraints, the goal is to minimize the following objectives :

• Unscheduled visits: A service that corresponds to a specific care type that needs
to be provided to a patient. It is composed of one or several visits that have to
be carried out. In the context of this application, all the visits cannot always be
scheduled, therefore the constraint related to scheduling visits has been relaxed.

• Travel Time: Total travel time over all caregivers and over the planning horizon. It
is expressed in minutes.

• Wait Time: Sometimes a caregiver has to wait for a patient to be available. This
objective corresponds to the total waiting time over all caregivers and over the
planning horizon. It is expressed in minutes.

• Assigned Nurses: Continuity of care measured within a single care type.
• Loyalty: Continuity of care measured across care types.

Table 1 Classification of the specific constraints

Constraints Type of constraint Related to

Planning horizon Temporal HHC structure

Continuity of care Assignment

Time windows Temporal Patients

Preferences Assignment

Time-dependent travel times Geographic

Worktime Temporal Caregivers

Qualifications/skills Assignment
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• Daily Overtime: Total working hours exceeding a daily limit. It is expressed in
minutes.

• Daily Under-Time: Totalworkinghoursmissing tomeet a daily limit. It is expressed
in minutes.

• Weekly Overtime: Total working hours exceeding a weekly limit. It is expressed
in minutes.

• Weekly Under-Time: Total working hours missing to meet a weekly limit. It is
expressed in minutes.

• Used Nurses: Number of caregivers serving all patients.

As mentioned previously, these objectives are conflicting. More specifically,
scheduling a visit often increases all the other objectives. Trying to minimize the
travel time can deteriorate the continuity of care. Reducing the number of caregivers
serving all patients potentially increases the overtime.

The HHCRSP, is solvable to optimality [19]. However, the complexity of the
problem leads to scalability issues [20, 21]. To bypass this obstacle,methods based on
heuristics ormeta-heuristics have been developed [2]. Someuse amix of heuristic and
Mixed Integer Linear Programming [4, 5], while others rely only on heuristic [22]. In
this work, the solution developed is based around an Adaptive Large Neighbourhood
Search (ALNS). Extension of the Large Neighborhood Search, this method destroys
parts of the current solution through destroy operators then recreates a new solution
with repair operators as shown in procedure 1. It allows for the exploration of
promising areas more easily than with the use of local search heuristics.

3 Introducing a Hierarchical Approach

3.1 Generating Solutions

During the problem resolution, the method used to generate the solutions can influ-
ence their quality, especially with regards to how they conform to a certain order of
priority. This is particularly true for theALNSmethod. In fact, someALNS operators
rely on a cost function (e.g. a weighted sum) to remove or insert visits; meaning that
in our case, the definition of the cost function should be easily adaptable to different
preference orders. Most of the operators used in our application are the same as
those described in Grenouilleau et al. [4], namely, WorstRemoval, RandomRemoval,
ServiceRemoval and FlexibleAvailRemoval for the destroy procedure and Greedy
Heuristic, Regret - 2 and Regret - 3 to repair the solution. Two other repair operators
are applied:

• TightVisitInsertion: The visits are ordered in increasing order of tightness i.e.

Number O f AvailableDays

Number O f V isi tsT oSchedule
× T imeWindowLength

V isi t Duration
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Then, a greedy allocation method is called to insert the visits at the lowest-cost
position.

• WorkTimeRoutesInsertion: The unscheduled visits are ordered in decreasing order
of their average feasible routes’ congestion. Then, a greedy allocation method is
called to insert the visits at the lowest-cost position.

Some of these operators use a cost function to destroy or repair solutions (e.g when
comparing the potential insertions of a visit). The creation of the initial solution
also requires a cost function as it is the same procedure as in Grenouilleau et al.
[4], following a lowest-cost insertion logic. The idea of a weighted sum was kept
to compute the costs, but the objectives were transformed with this upper-bound
approach, as follows:

∀ i, F̃i =
{

Fi
Fmax

i
if Fmax

i �= 0

0 otherwise

Where F̃i is non-dimensional and≤ 1. Next, theweights are set in such away that,
if the objectives 1,…, n are ranked in order of priority, 1 being the most preferred,
then wi = 5 × wi+1.

Algorithm 1: Generate ALNS Solution
Input: Initial solution Si

Destroy part of the solution Si ;
Repair & create a new solution Si+1 ;
Output: Next solution Si+1

We will not go into more detail about the ALNS, more information can be found
in [22–24]. Any suitable heuristic that generates valid solutions could be used.

3.2 Guiding the Optimization Process

In order to guide the optimization process and handle the multiple objectives, a hi-
erarchical approach is proposed. This can be achieved through defining the weights
so that they do not interfere one with the other or through using a lexicographic
comparison. In this application, a lexicographic comparison is used to compare so-
lutions according to a hierarchical order, set by the user, as shown in procedure 2.
This approach has the advantage of being easily understandable and intuitive for the
end-user. It is simpler to sort one’s priorities rather than weighting them one against
the other.
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Algorithm 2: Update Best Solution
Input: Solution S, current best solution S∗
if S ≤ S∗ (as per hierarchical order) then

Set S∗ = S
end
Output: ∅

In traditional scalarized multi-objective methods, the model will select one so-
lution and others will be discarded. However, some of the rejected solutions may
still be interesting. The existing algorithm was already offering alternative choices
that were the previous best weighted-sum solutions found during the search process.
Figure1 shows an example of choices suggested to the user when a new service needs
to be scheduled. We can see that option 6 offers the least travel time but comes with
a substantial number of conflicts. Option 7 requires an extra 14min of travel time
and an extra caregiver compared to option 6, but with much less conflict. Although
option 8 brings an extra 11min of travel time to the user and has the same number
of conflicts as option 7, it assigns only one caregiver to the service, leading to better
continuity of care.

Besides the fact that some potentially interesting solutions were not considered,
there was no guarantee for the suggested solutions not to be dominated by others. To
address this issue, the concept of Pareto front is introduced. The idea is to record, in
a list, all the near Pareto-optimal solutions generated during the search process, even
if they are not the best according to the hierarchical order. The list is dynamically
updated as shown in procedure 3.

Fig. 1 Example of alternative solutions from AlayaCare software
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Algorithm 3: Update Pareto List
Input: Solution S, current Pareto list P
if S non-dominated in P then

for Si in P do
if S dominates Si in P then

Remove Si from P ;
end

end
Add S to P ;

end
Output: ∅

Nevertheless, due to the number of objectives, the size of the approximate Pareto
front could potentially be very large. Thus, as we only want to provide the user with
relevant solutions, a procedure is applied after the search process to prune the Pareto
list. To do so, the user is asked to set some tolerance parameters so that only the
interesting solutions, near-equivalent to the best hierarchical solution, are displayed
(see procedure 4). In fact, an experienced user could look at the set of near-equivalent
solutions and decide that the trade-off between the different criteria is better on some
solutions than others. More formally:

Let F1, F2, . . . , Fn be the objective functions and ε1, ε2, …, εn their associated
tolerance. Let P be the set of Pareto-optimal solutions and S∗ be the best hierarchical
solution. The solution Si ∈ P will be considered as near-equivalent to S∗ if and only
if :

∀ k ∈ {1, . . . , n}, Fk(Si ) ≤
{

Fk(S∗) + εi , if εi expressed in absolute value

Fk(S∗) × (1 + εi ), if εi expressed in percentage

Algorithm 4: Define ε-Neighbourhood
Input: Solution S, current Pareto list P
for Si in P do

if Si ε-nondominated by S then
Add Si to P∗ ;

end
end
Output: P∗

The global process is summarized in Algorithm 5.
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Algorithm 5: Main procedure

Generate Solution S0 ;
while Stopping criteria not reached (e.g. time) do

Generate ALNS Solution ;
Update Best Solution ;
Update Pareto List ;

end
Define ε-Neighbourhood ;
Output: Best Solution S∗ and its ε-Neighbourhood P

∗

3.3 Scenarios

In order to evaluate our method, we considered only the first 6 objectives in Sect. 2
because, due to the young age of its optimisation tool, our industrial partner was not
able to provide us with more complex and realistic instances. Then, we looked at 4
different priority rankings believed to be the most probable scheduler’s choices. The
scenarios are displayed in table 2. The tolerance parameters are the same for all the
tests and are shown in table 3.

Table 2 Scenarios for the set of instances
Criteria Scenario 1 Scenario 2 Scenario 3 Scenario 4

Order Weights Order Weights Order Weights Order Weights

Unscheduled
visits

1 10,000 1 10,000 1 10,000 1 1,000,000

Travel time 2 15 3 1 3 1 3 10

Wait time 5 1 5 1 5 1 5 1

Assigned nurses 3 10 2 200 4 5 4 10

Loyalty 4 5 4 5 2 200 – –

Daily overtime – – – – – – 2 1000

Table 3 Tolerance parameters

Criteria ε Tolerance

Unscheduled visits 2

Travel time max(200, 15% of FT ravelT ime)

Wait time max(200, 15% of FWaitT ime)

Assigned nurses max(10, 10% of FAssigned Nurses )

Loyalty max(30, 10% of FLoyalty)

Daily overtime max(50, 5% of FDailyOvertime)
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4 Results

We ran our algorithm against the current weighted sum used in AlayaCare software.
The tests were performed using instances provided by our industrial partner. We
had a set of 8 instances from the same home health care structure, divided equally
into instances with tight time-window and instances with large time-window. An
additional instance was generated to show examples of alternative solutions and how
changing criteria order can affect the solutions proposed by the method.

All the instances of the set had between 311 and 340 visits to schedule and between
11 and 16 caregivers available. The planning horizon is a week and overtime is not
allowed. The algorithm was run during 600 seconds. The results for the 3 scenarios
are expressed as average relative variation from the best weighted sum solution and
shown in Fig. 2. The trends are quite similar for both types of instances and for the
two first scenarios. The average variation from the weighted sum baseline remains
between −14 and 6% for the number of unscheduled visits and between −1, and
6% for the travel time and the loyalty objectives. For the third scenario, the number
of unscheduled visits is about 10% higher in the hierarchical solutions than in the
weighted sum solutions for both types of instances. The newmethod is able to greatly
decrease the number of assigned nurses, around−30% for the three scenarios and for
both types of instances. It is, therefore, able to improve the continuity of care. This
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Fig. 2 Average relative variation of best hierarchical solution from baseline
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Table 4 Baseline, best hierarchical solution and alternative solutions

Order Objectives Weighted
sum
baseline

Best
hierarchical
solution

Alternative
solution 1

Alternative
solution 2

1 Unscheduled visits 2 1 2 3

2 Daily overtime (min) 142 354 176 65

3 Travel time (min) 4394 4299 4205 4478

4 Assigned nurses 99 112 99 105

5 Wait time (min) 311 317 315 310

improvement is done at the expense of the waiting time (it deteriorates, on average,
up to 37%) which is not surprising given the fact that this objective is ranked last in
all scenarios.

To present examples of alternative solutions, an instance of 7 nurses, 217 visits
to schedule and 2weeks planning horizon has been generated. The CPU time is 600
seconds. As a result, 12 alternative solutions were kept in the pruned Pareto list
but for the sake of simplicity only two are presented in Table4. In this example,
we can see that the new method is able to schedule one additional visit with less
total travel time and similar values for the objectives. assigned nurses, and wait
time compared to the weighted sum solution but with twice as much daily overtime.
Regarding the alternative solutions, the alternative solution 1 is quite similar to the
baseline with around 30 more minutes of overtime and 200 less minutes of travel
time. The alternative solution 2 offers to increase the number of unscheduled visits
by 2 and the travel time by approximately 180min in order to save almost 300min of
overtime. These different trade-offs suggested by the new method are represented in
Fig. 3 where we can see that the best hierarchical and the second alternative solution
are two extremes, one with the lowest number of unscheduled visits and the other
the least daily overtime. As for alternative solution 1, it sits between the two other
solutions as a compromise. In this situation, only the decision makers are able to
choose the right solution from their experience and their knowledge.

5 Conclusion

Our industrial partner AlayaCare is offering a scheduling tool in the home health
care industry and has to deal with a significant amount of home health care service
providers, each of which has different priorities. The ease of use of this technique and
the speed at which the system provides an interesting set of solutions were important
factors when choosing to develop and implement this method. In fact, the users are
now relieved from the difficult task of setting weights to their priorities and this was
achieved without degrading the quality of the proposed solution.With this technique,
we bring a method based around existing algorithms to provide a set of interesting
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Fig. 3 Best hierarchical solution and alternative solutions—graphic representation

alternatives to a solution. This algorithm can be tweaked in many ways to be adapted
to various problems dealing with multi-objective criteria. In particular, the algorithm
that generates solutions should be adapted to fit the context of the problem. Further
studies could be conducted using machine learning techniques to best predict the
user choice (e.g. preferences for a certain type of solution).
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3. Cissé, M., Yalçndağ, S., Kergosien, Y., Şahin, E., Lenté, C., Matta, A.: OR problems related
to home health care: a review of relevant routing and scheduling problems. Oper. Res. Health
Care 13, 1–22 (2017)

4. Grenouilleau, F., Legrain, A., Lahrichi, N., Rousseau, L.-M.: A set partitioning heuristic for the
home health care routing and scheduling problem. Eur. J. Oper. Res. 275(1), 295–303 (2019)

5. Decerle, J., Grunder, O., Hajjam El Hassani, A., Barakat, O.: A general model for the home
health care routing and scheduling problemwith route balancing. In: IFAC PapersOnLine 50-1,
pp. 14662–14667 (2017)

6. Saaty, T.L.: How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48(1),
9–26 (1990)

7. Jafari, H., Salmasi, N.: Maximizing the nurses’ preferences in nurse scheduling problem:
mathematical modeling and a meta-heuristic algorithm. J. Indus. Eng. Int. 11(3), 439–458
(2015)



Integration of User’s Preferences into the Home Healthcare … 191

8. Oughalime, A., Ismail, W.R., Yeun, L.C.: A tabu search approach to the nurse scheduling
problem. In: 2008 International Symposium on Information Technology, vol. 1, pp. 1–7. IEEE
(2008)

9. Morizawa, K., Hirabayashi, N.: A heuristic approach for nurse scheduling under two and
three-shifts workers mixed situation. DEStech Trans. Eng. Technol. Res. (icpr) (2017)

10. Ferland, J.A., Berrada, I., Nabli, I., Ahiod, B.,Michelon, P., Gascon, V., Gagné, É.: Generalized
assignment type goal programming problem: application to nurse scheduling. J. Heuristics 7(4),
391–413 (2001)

11. Saji, Y., Riffi, M.E., Ahiod, B.: Multi-objective ant colony optimization algorithm to solve a
nurse scheduling problem. Int. J. Adv. Res. Comput. Sci. Softw. Eng.3(8), (2013)

12. Ke, L., Zhai, L.: A multiobjective large neighborhood search for a vehicle routing problem. In:
International Conference in Swarm Intelligence, pp. 301–308. Springer, Cham (2014)

13. Hsu, W.H., Chiang, T.C.: A multiobjective evolutionary algorithm with enhanced reproduction
operators for the vehicle routing problem with time windows. In: 2012 IEEE Congress on
Evolutionary Computation, pp. 1–8. IEEE (2012)

14. Ghoseiri, K., Ghannadpour, S.F.: Multi-objective vehicle routing problem with time windows
using goal programming and genetic algorithm. Appl. Soft Comput. 10(4), 1096–1107 (2010)

15. Song, Q,. Zilecky, P., Jakob, M., Hrncirv J.: Exploring Pareto routes in multi-criteria urban
bicycle routing. In: 2014 IEEE 17th International Conference on Intelligent Transportation
Systems (ITSC). 8–11 Oct 2014. Qingdao, China

16. Burke, E.K., Li, J. Qu, R.: A Pareto-Based Search Methodology for Multi-Objective Nurse
Scheduling. Springer (2009)

17. Guo, Z.X., Wong, W.K., Li, Z., Ren, P.: Modeling and Pareto optimization of multi-objective
order scheduling problems in production planning. Comput. Indus. Eng. 64(4), 972–986 (2013)

18. Drechsler, N., Sülflow, A., Drechsler, R.: Incorporating user preferences in many-objective
optimization using relation ε-preferred. Nat Comput. 14, 469–483 (2015)

19. Hall, R. (Ed.) Handbook of Healthcare System Scheduling. International Series in Operations
Research and Management Science, Series (2012)

20. Borsani, V., Matta, A., Beschi, G., Sommaruga, F.: A homecare scheduling model for human
resources. Serv. Syst. Serv. Manag. 1, 449–454 (2006)

21. Torres-Ramos, A., Alfonso-Lizarazo, E., Reyes-Rubiano, L., Quintero-Araujo, C.: Mathemati-
calmodel for the home health care routing and scheduling problemwithmultiple treatments and
time windows. In: Proceedings of the 1st International Conference on Mathematical Methods
and Computational Techniques in Science and Engineering, pp. 140–145 (2014)

22. Ribeiro, G.M., Laporte, G.: An adaptive large neighborhood search heuristic for the cumulative
capacited vehicle routing. Problem. Comput. Oper. Res. 39(3), 728–735 (2012)

23. Aksen,D.,Kaya,O., Salman, F.S.: Tüncel,Ö.:Anadaptive large neighborhood search algorithm
for a selective andperiodic inventory routingproblem.Eur. J.Oper.Res.239(2), 413–426 (2014)

24. Ropke, S., Pisinger, D.: An adaptive large neighborhood search heuristic for the pickup and
delivery problem with time windows. Transp. Sci. 40(4), 455–472 (2006)

25. Braekers, K., Hartlc, R.F., Parraghc, S.N., Tricoirec, F.: A bi-objective homecare scheduling
problem : analyzing the trade-off between costs and client inconvenience. Eur. J. Oper. Res.
248, 428–443 (2016)

26. Martinez, C., Espinouse, M. L., Di Mascolo, M.: Continuity of care in home services: a client-
centered heuristic for the home health care routing and scheduling problem. In: 2018 5th
International Conference on Control, Decision and Information Technologies (CoDIT), pp.
1045–1050. IEEE (2018)

27. Colette, Y., Siarry, P.: Optimisation Multiobjectif. Eyrolles (2002). ISBN: 2-212-11168-1
28. Schaus, P., Hartert, R.: Multi-objective large neighborhood search. In: International Confer-

ence on Principles and Practice of Constraint Programming, pp. 611–627. Springer, Berlin,
Heidelberg (2013)



A Two-Phase Method for Robust Home
Healthcare Problem: A Case Study

Mahdyeh Shiri, Fardin Ahmadizar, Houra Mahmoudzadeh
and Mahdi Bashiri

Abstract The adoption of home healthcare is occurring rapidly because it decreases
pressure on in-patient hospital beds by providing care to patients at home. This paper
proposes a novel hybrid approach to solving the uncertain problems associated with a
robust homehealthcaremodel. In thefirst phase of this two-phase robust approach, the
qualified candidate locations for health facilities are selected by using a fuzzy analytic
hierarchy process and grey rational analysis. In the second phase, a robust model
considering several aspects such as over-qualification cost, violation of service time,
and overtime is proposed. The objective function minimizes the total cost. Finally,
a case study from the city of Sanandaj, Iran, is utilized to validate the solution in a
real-world situation.

Keywords Home healthcare · Routing · Scheduling · Fuzzy analytic hierarchy
process · Grey rational analysis · Robust optimization

1 Introduction

In the home healthcare problem, health services are provided by operators (e.g.,
nurses, physicians, social workers) in the patients’ home to reduce hospitalization
expenses and increase patient satisfaction. Home healthcare is growing in impor-
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tance, especially with the increase in elderly people prefer to receive health services
at home [1]. The process of planning human resources in home healthcare is of
great importance and led to the formulation of the Home Healthcare Routing and
Scheduling Problem (HHRSP) which is receiving increasing attention in the litera-
ture. Uncertainty in patient health status causes uncertainty in service times, which
in turn affects routing and scheduling decisions. All patients need to receive routine
service and, therefore, in addition to considering the optimality of solutions in terms
of cost, we must also examine the feasibility of the model in terms of patient ser-
vices. The purpose of this paper is to simultaneously minimize the overall costs of
establishing and operating a home healthcare system and to ensure each patient is
servedwithin a reasonable timewindowwhile also considering all possible scenarios
of patient service times.

In recent literature of HHRSP, facility locations are assumed to be fixed in most
papers (see [2–14]). Some authors consider only the cost factor when selecting the
best facilities [15, 16]. To the best of our knowledge, no work has considered all
different criteria in addition to the cost of selecting potential facility locations. Most
recent work in the literature focuses on a single-period problem using deterministic
approaches [3–9, 12–16]. However, total cost, overqualified skill levels, overtime,
and violation of service time have not been considered in the home healthcare rout-
ing and scheduling problem simultaneously. Some papers have considered stochastic
optimization for facing inherent uncertainty in parameters [2, 4, 9, 11]. Robust op-
timization has also been applied to these problems to address uncertainty in demand
and travel time [10, 13]. The Mulvey approach [17] is a specific type of robust
optimization that tackles scenario-based uncertainty that can be evaluated by two
measures: optimality (solution robustness) and feasibility (model robustness). Solu-
tion robustness shows how “close” a solution is to optimality under all scenarios,
and model robustness denotes that the model stays “almost” feasible under all sce-
narios. To the best of our knowledge, no work has considered the trade-off between
optimality and feasibility in the HHRSP using this approach.

This paper proposes a Two-Phase Multi-criterion Robust Home Healthcare Prob-
lem (2P-MRHHP). The specific contributions of this paper are as follows:

1. We use a hybrid Fuzzy Analytic Hierarchy Process and Grey Rational Analysis
(FAHP-GRA) method to select facilities based on multiple criteria.

2. We propose a mixed-integer programming model for HHRSP considering
overqualified skill levels and overtime.

3. We provide a robust optimization model based on the Mulvey approach [17] that
could immunize the optimality of the solution and the feasibility of the model
simultaneously under uncertainty in service times.

4. We demonstrate the results of our proposed approach on a real case study.

The rest of the paper is structured as follows: The 2P-MRHHP methodology
is defined in Sect. 2 along with problem definition and mathematical formulation.
Section3 provides the numerical results of our case study and sensitivity analyses on
critical parameters. Finally, conclusions and future research directions are shown.
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2 Solution Methodology

In this section, we introduce the 2P-MRHHP approach. In the first phase, a hybrid
FAHP-GRA is used for selecting the candidate facility locations. These locations
then serve as the input data for the second phase. In the second phase, a model
for a robust routing and scheduling problem is proposed to select the top facilities
based on criteria, and the optimal routing and scheduling of the healthcare team are
determined.

2.1 First Phase: Selecting the Candidate Locations

In this phase, a strategic-level decision ismade based on long-term qualitative criteria
(other than cost). We use a hybrid FAHP-GRA [15, 18] for ranking the candidates
based on these criteria. We make pairwise comparisons between the candidate lo-
cations under each criterion. Triangular fuzzy numbers are considered to capture
the fuzzy expert opinion. More specific details are provided with the numerical case
study in Sect. 3.3.

The few top candidates, which are all considered good strategic options, are then
selected as the input of the second phase where the optimal location among these top
candidates is selected.

2.2 Second Phase: Robust Optimization Model

In the second phase, two decisions are made jointly with the objective of minimizing
total cost: (i) selecting a facility from the top options identified in the first phase; and
(ii) finding the optimal routing and scheduling for all nurse teams. In this phase, the
only monetary cost is considered in making these simultaneous decisions.

Themodel considers teams of nurse team that depart the healthcare center and visit
multiple patients within a set period according to a given schedule and pre-specified
route. At the end of each route, the nurse teams go to the laboratory to deliver all
samples (e.g., blood) taken. Team structures stay fixed for each period and route. The
nurses have fixed a working hour and we consider a penalty for overtime cost. There
is also an upper bound on how much overtime each nurse can have per period. The
qualification (proficiency) level of nurses and the skills required for each patient are
considered to differ according to patient conditions. We consider a penalty cost for
assigning an overqualified nurse to a patient.

We consider uncertain service time and use three scenarios, each of which cor-
responding to a different service duration: pessimistic, most likely, and optimistic.
These three scenarios are set by nurse experts and are decided based on patients’
health conditions. Ensuring the constraints are met for all possible scenarios may not
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be feasible; however, we would like to make the solution as “near-feasible” as pos-
sible to avoid adverse effects. Therefore, in addition to considering the optimality of
solutions in terms of cost, the feasibility of the model in terms of patient services, and
the trade-off between the two are of great importance. Therefore, we use the Mulvey
approach, which fits well with the home healthcare routing and scheduling problem
tackled in this paper. Applying the Mulvey approach to our model, solution robust-
ness is achieved by minimizing the expected value and standard deviation of the
objective function among all scenarios. Model robustness is achieved by minimizing
the number of violations in the service time constraint [17].

The notations used in the robust model (indices, sets, parameters, decision vari-
ables) and all problem assumptions are summarized in Table1.

The model formulation is presented below. Note that for teams with no assign-
ments, empty routes (from the healthcare center to laboratory) are allowed.

min Z =
∑

s∈S
psξs + λ

∑

s∈S
ps[(ξs −

∑

s′∈S
ps′ξs′) + 2θs] + ω

∑

s∈S

∑

r∈I
psδrs (1)

s.t.

ξs = wc(
∑

h∈I
chuh +

∑

l∈I
clul

∑

i,j∈A

∑

k∈K

∑

t∈T
cvijxijkts +

∑

k∈K

∑

t∈T
ckokts)

+wqp
∑

r∈I

∑

k∈K

∑

t∈T
φrkts, ∀s (2)

ξs −
∑

s′∈S
ps′ξs′ + hs ≥ 0, ∀s (3)

φrkts =
∑

n∈N
βnkznkt − αrsyrkts, ∀r, k, t, s (4)

∑

h∈I
uh = 1, (5)

∑

l∈I
ul = 1, (6)

xhrkts ≤ uh, ∀h, r, k, t, s (7)

xrlkts ≤ ul, ∀l, r, k, t, s (8)∑

k∈K

∑

t∈T
yrkts = 1, ∀r, s (9)

∑

j:(r,j)∈A
xrjkts = yrkts, ∀r, k, t, s (10)

∑

j:(h,j)∈A
xhjkts = 1, ∀k, t, s (11)

∑

i:(i,l)∈A
xilkts = 1, ∀k, t, s (12)
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∑

i:(i,r)∈A
xirkts −

∑

j:(r,j)∈A
xrjkts = 0, ∀r, k, t, s (13)

xrjkts(srkts + vrj + drs − sjkts) ≤ 0, ∀r, j : (r, j) ∈ A , k, t, s (14)

yrkts(art − srkts) ≤ 0, ∀r, k, t, s (15)

yrkts(srkts − brt − δrs) ≤ 0, ∀r, k, t, s (16)

xhrkts(srkts − e − vhr − dhs) ≥ 0, ∀r, h, k, t, s (17)

xrlkts(srkts + vrl + drs − f − okts) ≤ 0, ∀r, l, k, t, s (18)
∑

k∈K
znkt ≤ 1, ∀n, t (19)

∑

n∈N
znkt = m, ∀k, t (20)

okts ≤ omax, ∀k, t, s (21)

uh, ul, znk , xijkts, yrkts ∈ {0, 1}, ∀h, l, n, k, i, j, t, s (22)

Φrkts, okts, δrs, θs, ξs, sikts ≥ 0, ∀i, r, k, t, s (23)

The model aims to determine the optimal routing and scheduling under each
scenario that minimizes the total home healthcare cost, consisting of the cost of es-
tablishing the healthcare center and laboratory, the cost for traveling between patient
home and health facilities, the cost of nurse overtime, and the penalty for overquali-
fied skill levels.

According to the Mulvey approach for scenario-based models [17], we formulate
the objective function for the proposed robust model in (1)–(3). In constraint (4), the
nurses can serve a patient if their skill level is above the minimum required level.
Constraints (5) and (6) show that only one candidate must be selected for each of
the health facilities. Constraints (7) and (8) allow the use of the facility only when it
is selected. Constraints (9) and (10) state that a patient is allocated exactly once to a
team of nurses in each period. In constraint (11), each team of nurses starts its route
from the healthcare center. Constraint (12) guarantees that each team of nurses ends
its route at the laboratory. Constraint (13) shows flow conservation for each team of
nurses. Constraint (14) states that the service for the next patient can be started after
the previous patient has been served and the team has traveled to the next patient’s
home. Constraint (15) implies that a patient should be served within a certain time
window. Constraint (16) is control constraint that calculates any violation of service
time. Constraints (17) and (18) define the duration of routes and calculate overtime
by considering the working hours of a nurse. Constraint (19) implies that a nurse
is assigned to at most one team per period. Constraint (20) determines the number
of teams of nurses available. Constraint (21) ensures that the overtime is less than
the allowed limit. Constraints (22) and (23) indicate binary and sign constraints,
respectively. Note that the nonlinear constraints can easily be linearized based on the
method explained in reference [19].



A Two-Phase Method for Robust Home Healthcare Problem … 199

3 Implementation and Evaluation

3.1 Case Explanation

To show the practicality and validity of the model, we present a real case study. Our
data was provided by the Kosar hospital in the city of Sanandaj, Iran. Sanandaj is
divided into 10 districts, shown in Fig. 1, each of which is a candidate location for
establishing a healthcare center. Districts 1, 3, 4, 8 and 9 are potential candidates for
establishing a laboratory.

The models were solved using GAMS and CPLEX on a Core i5-5257U laptop
with 2.70GHz CPU and 8GB RAM. The problem was solved to optimality (zero
optimality gap) and the solution time for a problem with 5 periods, 20 patients,
3 healthcare center candidates, 3 laboratory candidates, 3 teams and 6 nurses was
29:59min.

3.2 Selecting the Top Facility Locations

In the first phase, the strategic criteria considered for selecting the top candidates
for the healthcare center were: city planning, security, road access, cost level, and
social impact. For the laboratory, these criteria were: city planning, security, climate,
cost level, and political impact. Triangular fuzzy numbers for each criterion were
provided for each district based on expert knowledge and documentation fromKosar
hospital and the municipality of Sanandaj. We use the hybrid FAHP-GRA method
[15, 18] to rank all healthcare center and laboratory candidates. First, the fuzzy
numbers for each criterion of candidates are changed to interval values using an α-
cut of 0.5. Next, the normalized values are achieved by interval values. The weighted
normalized value matrix is then calculated by the normalized interval multiplying of

Fig. 1 Geographical dispersion and location of MRHHP facilities
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each candidate under each criterion. The weights of the criteria are determined by
experts. Next, the reference value vector under every criterion is acquired using two
measures: (1) maximum ofminimum and (2)maximum ofmaximum. Themaximum
start value of the weighted normalized interval is represented for all candidates, and
the second step is the maximum end value of all candidates from the first step. Then,
we calculate the maximum distance for every candidate from its reference value. We
also obtain the minimum and maximum distance for every criterion of candidates.
Finally, we calculate the weighted distance from the reference value vector and the
average score for every candidate.

3.3 Optimal Route Visualization

Based on the ranking approach explained in the first phase, three top scenarios were
selected by the municipality as the potential locations for consideration in the second
phase. The robust model then finds the optimal routes as well as optimal facility
locations for all scenarios. Note that the robust problem provides all these solutions
simultaneously, and therefore the locations of the facilities are fixed regardless of the
scenario whereas the routes will change depending on the scenario.

In Fig. 2, we show a small sample to illustrate the solution for a problem with
20 patients, 2 nurse teams, 2 periods and 3 scenarios. Districts 8 and 4 are selected
as the optimal locations for the healthcare center and laboratory, respectively. The
optimal routes are illustrated in Fig. 2.

3.4 Optimality and Feasibility of Mulvey Approach

To explore the trade-off between optimality and feasibility, a risk-aversion weight
(ω) is used. A risk-averse DM who strictly avoids a violation of service time selects
a higher ω. Figure3a explains the trade-off between optimality and feasibility for
different values of risk-aversion weight—asω increases, the violation of service time
(feasibility) decreases, while the overall cost (optimality) increases. The expected vi-
olation will eventually stabilize at a higher weighting penalty. This trade-off can help
in determining a suitable value for the weighting penalty. Mulvey and Ruszczynski
[17] report similar results. Figure3b, on the other hand, looks at variations in the
variability weight λ. A higher value for λ does not necessarily result in a higher cost
and also does not result in reduced feasibility. The lowest service time violation is
observed at λ = 0.5. Feasibility and optimality are insensitive to changes in λ after
a certain threshold.
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Fig. 2 The HHRSP optimal routes

Fig. 3 The impact of a risk-aversion weight, b variability weight, on optimality and feasibility
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4 Conclusions

In this paper, we developed a two-phase multi-criterion robust home healthcare prob-
lem. In the first phase, we used a hybridmethod for selecting health facilities inwhich
decision makers consider a variety of criteria to choose the top strategic candidates.
In the second phase, we proposed a robust approach to select the optimal facilities
among the top candidates and make optimal routing and scheduling decisions si-
multaneously. To consider a trade-off between feasibility and optimality, we used
the Mulvey approach for scenario-based uncertainty. Numerical experiments are
shown for a real-life case study. Our future research direction includes considering
a cardinality-constrained robust optimization approach for considering uncertainties
in individual patient’s service times.

References

1. Fikar, C., Hirsch, P.: Home health care routing and scheduling: a review. Comput. Oper. Res.
77, 86–95 (2017)

2. Rodriguez, C., Garaix, T., Xie, X., Augusto, V.: Staff dimensioning in homecare services with
uncertain demands. Int. J. Prod. Res. 53(24), 7396–7410 (2015)

3. Fikar, C., Hirsch, P.: A matheuristic for routing real-world home service transport systems
facilitating walking. J. Clean. Prod. 105, 300–310 (2015)

4. Yuan, B., Liu, R., Jiang, Z.: A branch-and-price algorithm for the home health care scheduling
and routing problem with stochastic service times and skill requirements. Int. J. Prod. Res.
53(24), 7450–7464 (2015)

5. Rest, K.D., Hirsch, P.: Daily scheduling of home health care services using time-dependent
public transport. Flex. Serv. Manuf. J. 28(3), 495–525 (2016)

6. Braekers, K., Hartl, R.F., Parragh, S.N., Tricoire, F.: A bi-objective home care scheduling
problem: analyzing the trade-off between costs and client inconvenience. Eur. J. Oper. Res.
248(2), 428–443 (2016)

7. Redjem, R., Marcon, E.: Operations management in the home care services: a heuristic for the
caregivers’ routing problem. Flex. Serv. Manuf. J. 28(1–2), 280–303 (2016)
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Adverse Event Prediction by
Telemonitoring and Deep Learning

Antoine Prouvost, Andrea Lodi, Louis-Martin Rousseau and Jonathan Vallee

Abstract Home health care comes as a potential solution to increasing stress on
health-care systems, as well as concerns for medical patients comfort. However,
additional distance from the care workers to the patients lead to more challenges,
some of which can be addressedwithmachine learning (ML) and operations research
(OR) algorithms. In this paper, we focus on automating a risk assessment of remote
patients. Namely, we describe a risk prediction framework for home telemonitoring
patients and show that learning a risk from weak signals in the patient’s data out-
performs simple risk threshold proposed by care workers to automate the task. We
combine recurrent neural networks with a ranking objective from survival analysis
to evaluate the risk of patient’s adverse events. Training and testing of our method-
ology is achieved on a retrospective dataset gathered by an Ontario home health care
agency during the course of a multi-year pilot home telemonitoring program. Results
are benchmarked against alerts that were manually engineered by registered nurses,
and against a simple linear baseline. This is an additional step in the application of
machine learning in health care for patient-centered personalized treatments.
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1 Introduction

Population ageing comeswith increased care needs since 85%of elderly will develop
chronic conditions [39]. From 6.9% in 2000 to an estimated proportion of 19.3% of
the global population in 2050 [10], the elderly account for a growing proportion of
the health care costs.

Keeping elderly healthy and at home longer is thus a critical endeavour. Home
Health Care (HHC) is starting to be widely adopted since it is seen as a cost effective
alternative to traditional care and because patients often prefer it.

Home telemonitoring (HT), a specialized form of HHC is a potential alternative
that empowers patients to take charge of their health, generates reliable data that can
be leveraged to better assess the patients’ states and that may improve the patient’s
medical condition [27].

Given the growing demand for HHC and HT, data is accumulating at an extreme
velocity, in a great volume and in a variety of forms. The advancements inmonitoring
devices is also contributing to the velocity and volume of data generated by HT
programs. Valuable information lies in this data. There is thus a pressing need for
improved decision systems that can use the information.

When a patient is admitted to a home care agency, she generally gets visited by
a registered nurse who will perform an initial needs assessment [33]. If the agency
offers a HT program, patients can be admitted to it. While on a HT program, the
patient answers a periodic questionnaire during which she will be asked to take some
vital signs readings. This information is then transmitted to the HHC agency where a
nurse monitors a HT case load. Based on the patient diagnosed conditions and initial
assessment, the care workers create alerts based on acceptable range of each of the
measured vital signs as shown in [35]. Sometimes, with more advanced systems,
complex rules can be developed to get alerted based on combinations of suspect
readings.

In all cases, care workers bear the weight of setting up patients with the right
set of alerts based on their conditions. The manually engineered rules then need to
evolve with the patient’s condition in order to remain reliable. When a vital sign
reading is out of the acceptable range, the monitoring nurse can perform one or
two of the following actions: (1) call the patient to determine next steps, and/or (2)
schedule an in-person visit. The challenge is to prevent costly hospital readmissions
and emergency room visits, but there is also a cost to each intervention. To add
complexity, most of the alarms are false positives, not leading to adverse events.

Early detection of these events serves the purpose of the triple aim of improving
outcomes: (1) quality of health services, (2) improving health of populations and (3)
reducing costs [3].

The contribution of this paper is to propose a patient ranking approach to adverse
events prediction and to show that it performs well on a retrospective patient cohort.

The remainder of the paper is organized as follows: In Sect. 2, we review the body
of work related to adverse events predictions. In Sect. 3, we review the technical
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background required for our proposed solution to adverse events prediction. Section4
details our proposed framework and Sect. 5 reports our results.We conclude the paper
with a discussion and perspectives in Sect. 6.

2 Adverse Event Prediction Related Work

Since about 20% of Medicare patients are readmitted within 30days of discharge
[18] and since [17] established financial penalties to hospital with the highest read-
mission rates 30days after discharge, prediction of adverse events such as hospital
readmissions has been extensively done in health care research.

Linear models such as multivariate logistic regression and Cox Proportional Haz-
ard [12, 20, 34, 38] are often used because of their understandable nature. Indeed,
most of the work so far has been interested in understanding the significant factors
that lead to adverse events. Conversely, neural networks have not been used as much
because they are seen as hard to interpret black-boxes [42] despite their success in
many industries, from computer vision to market finance.

In health care, some examples of neural network use are as diagnostic tool such
as in [2], as prediction tools in [14, 24], in emergency states detectors [36], and in
psychology [31]. In particular, [2] hypothesizes that neural networks could outper-
form linear models because of their capacity to capture relationships between input
variables that are not seen by simpler models. More recently, additional work has
been done using neural networks to anticipate patient outcome (mortality, readmis-
sion, extended stay, etc.) from their electronic health records [1, 32], including using
recurrent neural networks [9].

3 Technical Background

Neural networks are parametric functions approximators built by composition. The
network is built by alternatively composing matrix multiplications and a non lin-
ear (element-wise) function, called activation function (such as the Rectified Linear
Units (ReLU), x �→ max(x, 0)). This type of architecture is that of a multi-layer
perceptron. Finding the coefficients of the matrices building the network is an op-
timization problem, also called “learning” or “fitting” the model. The loss function
of this problem depends on the input data. In supervised learning, neural networks
are optimized on a training set to minimize a loss function between their prediction
and an observed target. The nature of the loss function depends on the task. Usually,
mean square error is used for regression and cross-entropy for classification. To min-
imize the training error, neural networks are designed differentiable, and optimized
using Stochastic Gradient Descent (SGD), a gradient descent approach where the
loss is approximated over a subset of the training examples (called a “mini-batch”).
Optimizing on a training set eventually leads to degrading performances on unseen
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examples (this is known as over-fitting). To curtail this, the performance of the neu-
ral network is monitored on a dataset of unseen examples, known as the validation
set, and optimization is stopped once the validation metrics worsen. This is done
in combination with regularization techniques: any method that empirically reduces
the test error, at the expense of the training error.

Recurrent neural networks, reuse their internal parameters sequentially to be able
to process and learn over time series data of arbitrary length. At every step, they com-
bine information coming from the current time step with past information condensed
by the neural network into a hidden state vector. Popularmodels include the long short
termmemory (LSTM) [15] and Gated Recurrent Units (GRUs) [5].When time series
are long, recurrent neural networks can be trained with truncated back propagation
through time [41]. Namely, the gradients are approximated, and optimization steps
are taken, over consecutive subsets of data along the time dimension. Data global
to a time series can be combined with the neural network, for instance through the
initial hidden vector. The reader is referred to [11] for an extensive textbook on deep
learning.

4 Adverse Events Prediction

Because predicting adverse events, either as a regression (for the time to the next
adverse event), or as a very in-balanced classification (classifying if an adverse event
will occur in the next k days), is hard, we chose to model the problem as a survival
task. Namely, we predict a latent patient risk of experiencing an adverse event. It is
important to understand that this risk is interpreted only relative to other patient risks,
that is a patient risk is higher than another if the former is more likely to experience
an adverse event than the latter. In other words, this risk is only introduced to output
a ranking of patients. Given a predicted ranking, and the true ranking (computed
from the times to the next adverse event), we can compute a score metric called
concordance index (C-index) [13]. This measure is not differentiable and therefore
cannot be optimized through gradient based methods (as it is done for neural net-
works). Hence, we use a surrogate loss derived from the maximum likelihood of
the Cox proportional hazard model for survival analysis [7]. This likelihood loss
function is used to compute gradients for the neural network, but model selection
and final scores are expressed in terms of C-index. The detail of these loss function
can be burdensome and we deliberately omit it here. In short, the C-index is a mea-
sure counting the percentage of pairs (of patients here) properly ranked. The Cox
model makes more assumptions on the mathematical form of the risk function in
order to derive a likelihood. Both are able to deal with censored data, i.e. patients
exiting the program (or the program ending). The interested reader is referred to the
aforementioned literature, as well as the adaptation for neural networks introduced
in [21]. Unlike in Cox proportional hazard model, the problem contains a strong time
component as we wish to predict a risk for every patient on every day (with new in-
formation coming in). The metrics are therefore evaluated on a daily basis across all



Adverse Event Prediction by Telemonitoring and Deep Learning 209

Fig. 1 A recurrent neural network is used to combine the patients a priori information with their
daily vital signs and output a risks

patients. Modeling the problem as a ranking problem is in line with the application
pursued here. Indeed, on every day, it is sufficient for the care giver to be able to rank
the patients by risk, in order to provide an intuition on where to prioritize, as care
workers cannot visit all patients on a daily basis.

As depicted in Fig. 1, we use a recurrent neural network to process patient data,
both static (patient information and diagnoses) and time distributed (vital signs mea-
sured on a daily basis). The network outputs a risk for every patient, on every day.We
use the Cox log-likelihood as a loss function to train the network, as was previously
done by Katzman et al. [21], and report the C-index as well.

Static patient data contain medical diagnoses codes from the International Statis-
tical Classification of Diseases and Related Health Problems (ICD9, ICD10) [26],
which are not very informative on their own. To tackle this issue [6] uses an un-
supervised deep learning approach to embed these codes into a more meaningful
vector space, using additional information from the disease, as well as other types of
codes. The embedded codes show desirable properties such as diseases with similar
symptoms or prescriptions are close together in Euclidean distance. We used their
pre-trained embeddings to represent this part of our data. Because patients have a
variable number of diseases, we need to use another (small) recurrent neural network
(hidden inside the orange parallelogram in Fig. 1) to process these diseases before
passing them on to the main (larger) recurrent neural network. Alternatively, we also
try not to include that information, and simply pass a null vector (as usually done),
with the intuition that learning should be easier.

We face more challenges as we have somemissing data in the vital signs observed
on a daily basis. Although more complex solutions exist to model this (e.g., [4]), we
chose the simple approach ofmodellingmissing data with additional binary variables
representing if the data is missing.
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The data is split into training (60%), validation (20%) and test (20%) sets. We
made sure that no information from the future could be used to make prediction and
hence computed the splits as dates: from the beginning to the first split date would
constitute the training set etc. Past events (previous targets) however can be used as
input after their occurring date. Some patients appear in multiple sets, while other
are new in every one. This is because of the nature of the application as we want to
keep assessing the risk of patients throughout their participation in the program and
not just once.

Neural networks and their optimization algorithms come with a number of so
called “hyper-parameters”: parameters that cannot be optimized directly. In our case,
these hyper-parameters divide into two groups. The first group controls the optimiza-
tion algorithm itself: SGD, or the Adam variant [22], the gradient step size, the L2

regularization multiplier, the number of examples in a SGD mini-batch, the number
of time steps considered in the truncated version of back-propagation through time,
and the use of dropout (a regularization technique) [22]. The second group controls
architectural decisions: number and size of hidden layers (the matrices involved in
the neural network), the type of recurrent layers (LSTM or GRU), and whether to use
the patient static data as the initial hidden vector or to simply omit it. A pragmatic
way to select these hyper-parameters is to generate randomly some configurations,
train the networks for each of them and finally keep the one performing best (in
C-index) on the validation set.

Expanding on the evaluation of machine learning performance, we compared
it to manually engineered alerts (four levels of severity). We also compare to a
simple linear survival baseline using the time distributed readings independently
(time dependencies are not taken into account) without using static patient data.

5 Results

The dataset we use has been gathered by an Ontario private HHC agency during
the course of a multi-year pilot HT program and is fully anonymized. The input
data include the patient static information (sex, age, and medical records through
ICD codes), and daily vital sign readings (blood glucose, systolic, diastolic, heart
beat, SpO2 oximeter, and weight). The dataset also contains observed adverse events
experienced by the patients and used to compute the losses (either Cox log-likelihood
or C-index). On any given day, past events are also added as input.1 The 320 patients
in our study were aged from 31 to 101 with an average age of 79.Women represented
56.25% of the patient group. Moreover, 36.25% of patients experienced at least one
hospital readmission or emergency room visit while on the HT program. The average
number of events per patient was 0.72 with a standard deviation of 1.30. The average
number of events for the 36.25% of patients that experienced at least one was 1.98
with a standard deviation of 1.47. Finally, 91.56% of patients had comorbidities,

1This is correct as no information from the future is added to the input.
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(a) Cox negative log-like lihood. (b) Concordance index.

Fig. 2 Training of the most promising set hyper-parameters, averaged over twenty runs

hypertension being the more frequent at 55.31% followed by chronic heath failure
with 46.25%, diabetes with 39.69% and chronic obstructive pulmonary disease at
38.13%. In total, we have access to 76,359 daily patient observations.

The training process of neural networks was highly stochastic, with results often
close to random, as there is a strong noise to signal ratio in the data. This made
it difficult to differentiate promising models from random luck. Therefore, hyper-
parameters configurations were manually selected from across all runs (over a hun-
dred), based not only on validation performance, but as well on stability (reduced
stochasticity during training) in addition to small gap between the training and vali-
dation scores.

These configurations were then retrained over twenty random seeds to average
the results. The training for the best performing set of hyper-parameters is depicted
in Fig. 2. Important details of this configuration are: three gated recurrent unit (GRU)
layers with eight units each and dropout for the network architecture, an SGD opti-
mizer with a batch size of 64, and a truncation length for back-propagation through
time of 15days for the training procedure. It it worth noting that the neural network
presented in Fig. 2 does not use static information about the patients (this was a con-
figurable hyper-parameter choice). That is among all the configurations trained, the
best performing model was one that did not make use of the static information. This
is, further discussed in Sect. 6.

We removed from these twenty models a few that did not perform well on the
training or validation set (three of them). Due to the stochasticity in the training
process, some trained networks can under-perform. We can legitimately filter them
out, as long as we do so on validation or training sets.2 Then, we computed their
final score on the test set. The results are given in Fig. 3. The box plot reports a
test concordance index of 58.8 ± 4.6%. We performed a Student T-test against the
value of 50% and rejected with p-value 3.7 × 10−7 that our model is equivalent to a
random one.

We compares against two baselines. The first ones are the manual alerts set by
the care workers. We have a history of four levels of urgency (none, low, medium,

2The only difference is that the training procedure now includes a filtering phase.
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Fig. 3 A box plot of the test
error of the most promising
set hyper-parameters, over
seventeen runs (three
dropped due to
under-performance on
training or validation set)

high) for every patient and every day. As done with the latent risk modeled by the
neural network, these alerts yield a natural ranking that can be used to compute
a concordance index. These alerts achieve concordance indices of 48.7%, 50.7%,
and 51.1% on respectively the training, the validation, and the test set. Note that
these alerts were not set based on training data, so these results could be aggregated.
However, we provide them separated so that the test error could be compared to
the neural network on the same data points. The second baseline is a linear survival
regression model, where data points are the vital signs for every patient and every
day, as if they were independent (no time dependencies are taken into account). This
model achieves a training error (on training and validation sets combined) of 49.7%
and a test error of 48.0%. Even if these two baselines are simplistic, the fact that they
do not achieve better than a random draw shows the difficulty of the problem.

We implemented the neural network inPyTorch [28], usedLifelines [8] to compute
the linear baseline and the C-index, made use of Numpy [37], Scipy [19], Pandas
[25], Scikit-Learn [29], IPython [30], and Jupyter [23] for pre-processing of the data
and post-processing of the results, and rendered the figures with Matplotlib [16] and
Seaborn [40].

6 Discussion

The high stochasticity of the problemmakes training hard and long, thereforemaking
comparison between different neural network architectures and training procedures
either expensive (through averaging) or unfair (some configuration randomly per-
forming abnormally well or poorly). As stated in the previous section, passing the
patient static information as the first hidden vector of the recurrent neural network
(as opposed to just passing a null vector), as proposed in Sect. 4, did not improve the
performances and was therefore not selected through hyper-parameter search. Fur-
ther inquiring should be done to find out if a better model could be obtained using the
static patient information. Our hypothesis is that this data does have predictive power
for this task, but that the specific part of the neural network responsible for it failed
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to learn, due to optimization hardships. Indeed, not only this part of the model adds
more parameters (layers) to train, these parameters are also updated less frequently
in the truncated variant of back-propagation through time. Potential directions could
be to focus more on the training of this part of the model (for instance through per-
taining), or to include this data at every time-step (explicitly or through an attention
mechanism).

Our results do not show that a linear model could not perform as well as the
neural network, as less effort was given to this model. Improving the linear baseline
would howevermean additional engineering of the data to include time dependencies,
patient static information, and perform feature selection.

These results suggest that combining, even weak, signals from remote monitoring
in the homecare context can outperform simplemanual baselineswhich open the door
to better models.

Nonetheless, a self-fulfilling prophecy problem could occur with a better predic-
tion accuracy. Care workers using machine learning generated alerts would prevent
events from happening and reduce the observations labeled as events. A potential
alternative is to ask care workers if the prediction was useful or not, i.e., if they
want such prediction happening again in the future. While far from perfect, this
methodology has the advantage of enabling model retraining as the data is gathered.
More research is required to evaluate the risk of this problem and performance of
the proposed alternative.

In addition, further research is needed to better understand the factors that con-
tribute to higher risk days for home telemonitoring patients. Indeed, the black-box
nature of neural networks makes them difficult to implement in the health care in-
dustry since physicians and other care workers generally want to understand why
an adverse event probability is predicted. For example, what action should a care
worker take if manual alerts are triggered but neural networks say that nothing is
happening? The model performance suggests that no action should be taken, but this
is clearly a difficult call.
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Mass Casualty Events: A Decision
Making Tool for Home Health Care
to Discharge Conventional Hospitals

Alain Guinet and Eric Dubost

Abstract We need to admit in a Home Health Care structure a massive influx of
patients requiring an early discharge from conventional hospitals, due to a terrorist
attack. Such situation requires to free hospitalization beds at the earliest for the vic-
tims. The early discharge patients are transferable to the Home Health Care (HHC)
structure from a given release date and until a due date in order to reach the patient’s
home and find the caregiver. The home Health care structure must plan the patient
admissionswith the objective to admit as soon as possible themost victims in conven-
tional hospitals using the least amount ofHHChuman resources during the discharges
of hospitalized patients. An admission-planning model is proposed, the bi-objective
problem modelled is solved with CPLEX.

Keywords Admission planning · Home Health Care · RCPSP · Bi-objective
mixed linear model

1 Introduction

In the framework of the project PrHoDom (Protection of Home Health Care struc-
tures) we are working with the 3rd biggest HHC structure in France i.e. the hospital
centre "Soins et Santé", in order to develop decision making tools to support the
different processes of its crisis management plans. In this paper, we focus on the
response to a terrorist risk after a bombing attack in the framework of a collabo-
rative emergency management plan with conventional hospitals. Contexts are first
presented and secondly the HHC contribution is introduced to face such situations.

A. Guinet (B)
Institut National Des Sciences Appliquées de Lyon, Université de Lyon, DISP, 21 Av. Jean
Capelle, 69621 Villeurbanne, France
e-mail: alain.guinet@insa-lyon.fr

E. Dubost
Centre Hospitalier Soins Et Santé, 325 Rue Maryse Bastié, 69141 Rillieux-la-Pape, France

© Springer Nature Switzerland AG 2020
V. Bélanger et al. (eds.), Health Care Systems Engineering,
Springer Proceedings in Mathematics & Statistics 316,
https://doi.org/10.1007/978-3-030-39694-7_17

217

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39694-7_17&domain=pdf
mailto:alain.guinet@insa-lyon.fr
https://doi.org/10.1007/978-3-030-39694-7_17


218 A. Guinet and E. Dubost

1.1 Mass Casualty Contexts: A Large Number
of Hospitalizations

On 11 September 2001, four coordinated terrorist attacks tacked place in the east
cost of the United States. The attacks killed 2996 persons and injured over 6000
people. Four planes were hijacked by terrorists who crashed two planes on the south
and north towers of the World Trade Centre in New-York. Saint Vincent’s Hospital
was the closest trauma hospital of the World Trade Centre. It received 844 patients
over the 3 days following the terrorist attacks [4].

On 11 March 2004, ten terrorist bombs exploded in trains in Madrid killing 177
people and injuring 2062 others. From injured people, 312 patients were treated in
hospitals and 91 persons were hospitalized [15].

On 13November 2015, four bombing attacks tacked place in Paris at four different
sites. These assaults wounded more than 300 people and killed 129 others on sites
[9]. 256 wounded people were safely transferred and treated in APHP (Assistance
Publique des Hôpitaux de Paris) hospitals, 44 others arrived at hospitals by their own
means.

On 22March 2016, two bombing attacks tacked place in Brussels at two different
sites. The terrorist attacks killed at least 35 people including the three suicide bombers
and injured 340 people [11].

On 14 July 2016, a truck crashed into the crowd in Nice during the French national
celebration day. This terrorist attack wounded more than 400 people and killed 86
others [2].

1.2 The Home Health Care Contribution to Mass Casualties

Home Health Care (HHC) refers to a health structure that provides care at home
for patients requiring complex postoperative treatments, or patients suffering from
a chronic illness, a disability, or patients needing palliative care. In France, a HHC
structure has the same rights and duties than a conventional hospital, for example, the
requirement to establish emergency management plans in collaboration with other
hospitals if possible. As long as the collaboration between HHCs and conventional
hospitals is concerned, HHCs might provide restorative care while the conventional
hospitals deliver mainly acute cares. Such collaboration could offer many mutual
benefits. Home rehabilitation shorters expensive care length of stay of the patients,
improves the patient physical health and family reintegration. Another improvement
resulting from the combination of HHC and the conventional hospitalization is the
emergency department freeing, HHC discharging directly the emergency system
without requiring hospitalization beds [5]. Cooperation between Home Health Care
structures and Conventional Hospitals can be benefit to face crisis with efficiency, by
sharing acute patients and rehabilitation patients. Considering the studied scenario,
we retain the hypothesis of an approved emergency management plan between a
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conventional hospital and a home health care structure. The objective of such an
emergency plan is to improve the efficiency of resources (beds and physicians) by
orienting victims to the conventional hospital and the early hospitalization discharges
generated to the home health care structure.

2 The Investigated Problem

2.1 The Massive Admission Scenario

A terrorist attack occurs in St Exupery Airport in Lyon. Around 8:00 AM, a bomb
explodes in the main terminal killing 14 people and injuring more than 100 others,
similar to the Zaventem airport attack on 2016. TheORSECNOVI plan in St Exupery
Airport is activated. The ORSEC NOVI plan is a French emergency management
plan used for a mass casualty incident in a limited area. Around 8:15 AM, the HCL
(Hospices Civils de Lyon) is alerted for an eventual massive influx of injuries and
it activates its external emergency management plan. The HCL tries to empty the
Emergency Departments from the regular patients, and to free the hospitalization
beds with early discharges to the Home Health Care structure "Soins et Santé". The
HHC structure activates its external emergency plan to admit a large number of early
hospitalization discharges from HCL. A patient admissions planning is required.

2.2 Previous Works on Patients’ Admissions

Our review of the literature investigates the field of admission planning and the field
of early discharge planning regarding conventional hospitals and Home Health Care
structures. The discharge process must favour the continuing of care for the patient in
order to preserve the quality of cares, to reduce readmissions to conventional hospital
and to avoid patient psychological distress. Collaboration with other care providers
(e.g. the HHC), patient and his family are essential [13]. In a usual context, the
discharge planning resulting from the discharge process helps to reduce the length of
stay for patients in the hospital and to promote adherence of treatment [10]. In a mass
admission context, the discharge process must help the care coordinator to identify
the early discharges freeing the hospitalization beds while transferring the patient
in safe conditions to another health care structure [3]. Preplanning with other care
providers must be prepared and Home Health Care is an appropriate candidate [8].
The HHCs and conventional hospitals require a good coordination between them in
terms of drug administration (i.e. a common pharmaceutical booklet) and of nursing
technical cares (i.e. care protocols) [1]. Less literature has been found on admission
planning. Granja et al. [6] define a patient planning, a control process, and propose
a simulated annealing algorithm to optimize the patient admission process. The
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authors defined a task as a group of activities using the same resources in the same
time range. Resources are characterized by their capacity, their availability and their
ability to perform tasks. The patient pathway makes necessary to specify precedence
relations between tasks. The patient waiting times and the total completion time
were minimized respectively for quality of cares and resource efficiency. In a mass
admission context, there is no admission planning for a conventional hospital and
victim triage is used facing to patient arrivals in the emergency department [12].

2.3 The Patient Admission Planning Problem

We need to admit in a Home Health Care structure a massive influx of patients
requiring an early discharge from conventional hospitals, due to a terrorist attack
(Mass Casualty Incident) which requires freeing hospitalization beds at the earliest.
The early discharge patients are transferable from a given release date and can be
managed by the Home Health Care structure until a due date in order to reach on
time the patient’s home and find the caregiver. Both dates are specific to each patient
and define time windows. Patients wait in their hospital beds for their transportation,
so they immobilize the bed. The schedule of anticipated exits must be specified
by an early discharge planning of the conventional hospital, which depends on the
admission planning of the HHC. Both planning can be the same. TheHHC admission
activities are: the establishment of the care order by the HHC coordinating physician
and the hospital physician; the assignment of the salaried/liberal nurse for the cares;
the establishment of the medication order by the HHC pharmacist and the hospital
pharmacist; the preparation of the delivery of medicines; the delivery of medicines
and medical equipment (medical bed, syringe pump, mechanical ventilator …); the
transport of the patient by ambulance; the patient’s entrance to his home and the
information of the caregiver (family member) with the patient by the nurse. Human
resources associatedwith admission activities are limited to: coordinating physicians,
head nurses, pharmacists, pharmacy technicians, deliverymen and paramedics. The
objective is to admit as soon as possible the most victims in conventional hospitals,
i.e. to free hospital beds at the earliest so that they can accommodate victims; using
the least amount ofHHChuman resources during the transfer of hospitalized patients.
Thiswill result in aHHCadmission planning.Our problem is close to the investigated
problem by Granja et al. but with a bi-objective function i.e. planning the admissions
at the earliest with the smallest HHC resource employment.
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2.4 The Admission Problem Complexity

We have a set of N projects (patient admissions) to plan with due-dates (latest hospi-
talization dates) and release-dates (early hospitalization dates). Each patient admis-
sion requires (is composed of) M non-preemptive tasks linked with precedence con-
straints. Medical staffs (renewable resources) with limited availabilities (capacities)
perform the admission tasks according to their skills, i.e. the task processing requires
dedicated resources (physician, pharmacist, head-nurse, paramedic…). A resource
constraint multi-project scheduling problem (RCPSP) [7] is then defined with two
objectives to optimize. The first objective is to admit the patients at the earliest,
i.e. to minimize the sum of flow-time with a complexity similar to a hybrid flow-
shop [16], which is NP hard. The second objective is to minimize the number of
employees used, with a complexity of a resource investment problem [14], which
is also NP hard. In the next section, we model such problem according to a lexi-
cographic approach to integrate both objectives. Therefore, we model an admission
planning problem and a resource sizing problem. A planning problem is favoured
rather than a scheduling problem for complexity reasons. We verify the resource
capacities roughly. Another simplifying hypothesis is the approximated duration of
tasks, because the HHC knows generally only the patient medical speciality before
planning.

3 The Mixed Linear Programs for the Bi-objective
Optimization

3.1 The Admission Planning Model

Data:

– T: number of periods (hours),
– N: number of admissions (patients), each of them are composed of M tasks,
– Dur (i,j): duration of task j for patient i in minutes,
– Dtot (i): early hospitalization date (hour) in the HHC structure for patient i,
– Dtar (i): latest hospitalization date (hour) in the HHC structure for patient i,
– Pred (j,k): kth predecessor of task j,
– Cap (j,t): number of available resources associated to task j for period t.

Variables:

– X (i,j,t): binary variable equal to 1 if task j of admission i ends on period t,
– Y (j,t): real variable equal to the deferred resource (stock) for task j on period t,
for a resource employment overlapping two periods,

– Tach (i,j): real variable equal to the completion date of task j for patient i,
– Cre (j,t): number of resources associated to task j and used on period t,
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– Dfin (i): completion date of patient admission i.

Objective function:

Minimize(Z1) =
N∑

i=1

(Df in(i) − Dtot (i)) (1)

We minimize the waiting times sum of the patients to be admitted at home i.e.
the flow-time. The last task of a patient admission is the last completed task. The
waiting time is the difference between this admission completion date and the early
hospitalization date.

Constraints:

T∑

t=1|t<Dtot(i)

X(i, j, t) = 0 ∀i = 1, . . . , N ∀ j = 1, . . . ,M (2)

T∑

t=1|t> Dtar(i)

X(i, j, t) = 0 ∀i = 1, . . . , N ∀ j = 1, . . . ,M (3)

T∑

t=1

X(i, j, t) = 1 ∀i = 1, . . . , N ∀ j = 1, . . . ,M (4)

A task of a patient admission cannot be realized before the early hospitalization
date of the patient. A task of a patient admission cannot be realized after the latest
hospitalization date of the patient. Each task of a patient must be realized.

Tach(i, j) − Dur(i, j) ≥ Tach(i, Pred( j, k)) ∀i = 1, . . . , N

∀ j, k = 1, . . . ,M |Pred( j, k) > 0 (5)

We must respect the task precedence. The completion date of a task minus the
task duration must be greater than the completion date of the precedent task.

T∑

t=1

(X(i, j, t)*t*60) ≥ Tach(i, j) ∀i = 1, . . . , N ∀ j = 1, . . . ,M (6)

T∑

t=1

(X(i, 1, t)*t*60) ≤ Tach(i, 1) ∀i = 1, . . . , N (6bis)

The task completion date of a patient must be linked with the binary variable
which specifies the period where the task is achieved.



Mass Casualty Events: A Decision Making Tool for Home Health … 223

N∑

i=1

(X(i, j, 1) ∗ Dur(i, j)) = (Cre( j, 1) − Y ( j, 1)) ∗ 60 ∀ j = 1, . . . ,M (7)

N∑

i=1

(X(i, j, t)∗ Dur(i, j)) = (Cre( j, t) + Y ( j, t − 1) − Y ( j, t))∗ 60

∀t = 2, . . . , T ∀ j = 1, . . . ,M (7Bis)

For each period, the sum of admission tasks must be equal to the resource capac-
ity used in minutes plus or minus the differed resources in minutes. The differed
resources are acting as a stock to respect the continuous employment of resources.

Y ( j, t) ≤ Cre( j, t) ∀ j = 1, . . . ,M ∀ t = 1, . . . ,T (8)

The stock cannot exceed the amount of used resources of one period regarding to
the resource employment overlapping two periods.

Cre( j, t) ≤ Cap( j, t) ∀ j = 1, . . . ,M ∀t = 1, . . . , T (9)

The resource capacity used is limited by the resource capacity available.

Df in(i) ≥ X(i, j, t) ∗ t ∀i = 1, . . . , N ∀ j = 1, . . . ,M ∀t = 1, . . . , T (10)

The completion date of patient admission i is equal to the period where the last
task is completed. The completion date accuracy is given in hours.

3.2 The Resource Sizing Model

The mixed linear program to minimize the human resource utilization during the
patient admissions (i.e. resource sizing), is similar than the mixed linear program
for admission planning. It differs from the objective function which minimizes the
maximums of the used resources. Data, variables and constraints are the same.

Second objective function Z2 for resource sizing replaces function Z1:

Minimize (Z2) =
M∑

j=1

(Rmax(j)) (11)

Added Constraints:

Rmax( j) ≥ Cre( j, t) ∀t = 1, . . . , T ∀ j = 1, . . . ,M (12)

We calculate the maximum resource used over the horizon per task to minimize
it.
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3.3 The Lexicographic Model to Integrate Both Objectives

Two types of constraints are added in order on one hand to calculate the selected
objective function and on the other hand, to keep the best solution found by themixed
linear program for the non selected objective function.

N∑

i=1

(Df in(i) − Dtot(i)) ≤ Z1 (13)

We keep the best solutions found for Z1 minimizing Z2.

M∑

j=1

(Rmax( j)) ≤ Z2 (14)

Equation 14 replaces Eq. 13. We keep the best solutions found for Z2 minimizing
Z1.

4 Scenario Study

Table 1 defines the tasks, the task precedence, the task durations, the task resources
and the number of resource exemplars. The early hospitalization dates in theHHC are
set from 1 to 6 in equal proportion regarding the number of patient admissions. The
latest early hospitalization dates in the HHC are set from 8 to 13 in equal proportion
regarding the number of patient admissions. The horizon is set to 13 periods.

The early hospitalization date of an admission is always smaller than its latest
hospitalization date. These parameters have been defined by both hospitals accord-
ing to patient medical specialities. The problems are solved with the Cplex Solver

Table 1 Patient admission parameters

S. No. Task Predecessors Task duration Type of
resource

Resource
capacity

1 Care order {10,15} Physician 2

2 Nurse
assignment

1 {25,35,45} Head nurse 4

3 Medication
order

1 {10} Pharmacist 2

4 Drug
preparation

2,3 {20} Technician 3

5 Drug delivery 4 {40} Delivery man 6

6 Transportation 4 {90} Ambulance 10
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(https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/) lim-
ited to one hour of computation timewhen the optimal solution is not proved.Optimal
solutions are found in less than 10 min.

Table 2 presents: the results of the 4 different approaches, specifying: the problem
solved, the number of admissions (N.), the mean patient waiting time (i.e. the objec-
tive function of the planning program Z1 divided by N), the sum of the maximums
of resources used (Z2. i.e. the objective function of the sizing program) and the com-
pletion time of the last admission (Cmax). Six sizes of problems (N varying from 10
to 60) are studied for four problem configurations (i.e. minimizing Z1 only, Z2 only,
Z1 before Z2, Z2 before Z1). The left side of Table 2 shows the results considering
only one criteria. The right side of Table 2 presents the results of the lexicographic
approach considering both criteria. Only solutions in bold have been proved to be
optimal.

Minimizing first the objective function Z1 before Z2 (1 » 2) comparing to min-
imizing first the objective function Z2 before Z1 (2 » 1), improves the admission
planning dividing the mean waiting time of patients by 1.5. The resources in ‘1 » 2’
approach are used during a shorter time comparing to the ‘2 » 1’ approach. The
completion time of the last admission (Cmax) for the ‘1 » 2’ approach is around 3
periods less than for the ‘2 » 1’ approach. Most solutions have been proved to be
optimal (numbers in bold). Non optimal solutions are higher of less than 1% of the
solver lower-bound.

Minimizing first the objective function Z2 before Z1 (2 » 1), improves the resource
sizing reducing themaximumnumbers of resource required. The number of resources
used is divided by 1.3–2.5 regarding to the problem size. Using ‘2 » 1’, less resources
are used but for a longer time (see Cmax).

Considering the two used bi-objective approaches, minimizing first the objective
function Z1 before Z2 seems to us the most suitable approach. On one hand, the two
approaches require either fewer resources for a longer time or more resources for
less time and on the other hand, the mean waiting time of patients is 1.5 times shorter
for the ‘1 » 2′ approach.

The two previous experiments show that an optimized mean waiting time is con-
tradictorywith aminimized amount of themaximums of resources used. The left side
of Table 2 presents the results of the planning program with the initial parameters of
Table 1 i.e. without optimizing the maximums of resources used (Z1 only) or without
optimizing the mean waiting time (Z2 only). All the solution found are here optimal.
Results for minimizing ‘Z1 only’ are 25–50% more costly than minimizing first the
objective function Z1 before Z2 for the sum of the maximums of resources used.
Results for minimizing ‘Z2 only’ are 15–20% more costly than minimizing first the
objective function Z2 before Z1 for the mean patient waiting time. Our lexicographic
approach seems justified and the ‘1 » 2′ approach is better.

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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5 Conclusion

Wehavemodelled amass admissionplanningproblem forHHCstructures optimizing
two objective functions (patient waiting times and resource employments). Cplex
solver seems suitable to solve our models. The decision tool will be implemented
in the Hospital centre “Soins et Santé”. Model parameters Table 1 are defined in
an Excel sheet and results Tables 2 are written in another Excel sheet. The home
care director knows very few information about the solver, just enough to lunch the
calculus. Our tool can also be transferable to conventional hospitals.

We would like to thank the reviewers for their relevant and helpful comments.
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Simultaneous Optimization
of Appointment Grid and Technologist
Scheduling in a Radiology Center

Dina Bentayeb, Nadia Lahrichi and Louis-Martin Rousseau

Abstract The objective of this paper is to simultaneously optimize the appointment
grid and the technologist scheduling. We develop an integer programming model by
integrating the constraints of appointments and technologist schedules. We evaluate
the optimization model using a real case of the Magnetic Resonance Imaging in the
CHUM radiology department. The proposed approach provides a decision tool for
outpatient centers, and improves resource utilization as well as patient access to the
service.

Keywords Appointment grid · Staff scheduling · Radiology

1 Introduction

Radiology departments in hospitals contain expensive resources such as Computed
Tomography scans (CT-scan) and Magnetic Resonance Imaging (MRI). The man-
agement of these services is generally based on appointment scheduling systems.
The objective is to match supply and demand. Due to the demand heterogeneity and
limited resources, the match is not usually optimal, which generates either server idle
time or overtime, machine under-utilization, and patient waiting time. This gives rise
to high costs of care services and patient dissatisfaction.

Appointment and staff scheduling for diagnosis resources has been widely stud-
ied. Medical staff scheduling is a relevant problem in healthcare. Researchers are
proposing an efficient planning by considering different aspects of scheduling is-
sues, such as: preferences, fairness, breaks, etc. We refer the reader to [1, 2] for an
extensive review. Considering how this applies to radiology, Chen et al. [3] propose
a method for the allocation and scheduling of radiological technologists. Yuura et
al. [4] present a scheduling model for radiographers by integrating their skills and
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training. He [5] is conducting a tabu search for radiological resource planning during
the examination process.

To present realistic appointment scheduling, the majority of researchers consider
patients with multiple priority and different service duration. They have applied
several methods to improve access to service and to reduce patient wait time: simple
scheduling policies [6], optimization and simulation [7], Markov decision process
[8, 9], etc. Cappanera et al. [10] treat the patient scheduling for magnetic resonance
imaging, taking into account the number of allocated radiologists. They present two
approaches: offline and online. They take into consideration examination overlap
and radiologist cross-training.

Two nuclear medicine studies combine patient and resource scheduling. Perez et
al. [11] propose two algorithms: in the first, the task resource assignment is fixed;
in the second, they carry out the assignment by solving an integer programming
model, specifically for days with high demand. Perez et al. [12] develop stochastic
online planning, starting with the offline version. In the existing literature, the studies
focus only on the patient scheduling, or determine simultaneously the assignment of
resources to tasks at the operational level. However, the authors do not consider the
problem of the staff scheduling in parallel.

In outpatient healthcare centers based on appointment systems, patient scheduling
is more efficient as a result of the timetable redesign that adjusts the service time
[13] or the appointment type classification [14]. To the best of our knowledge, the
studies in the literature don’t address the grid design when doing staff scheduling.
However, the appointment types and their number depend on the availability of
appropriate resources, as well as on the historical demand. Therefore, scheduling
patient appointments separately leads to inefficient resource allocation.

Integrated tactical planning allows dynamic and flexible resource management
and is adapted to the variability and the heterogeneity of demand: in the case of high
demand, managers can use the maximum capacity of resources, including overtime,
in order to furnishmore time slots in the grid; and in the case of low demand, they can
plan technologist training or acceptmore holiday requests. In this article, we optimize
the patient appointment grid along with the technologists scheduling. We provide
an optimal allocation of personal resources to maximize the machine utilization,
and the number of patients seen per day. The proposed approach is applied to real
data from the Magnetic Resonance Imaging (MRI) in the CHUM radiology center.
It combines, simultaneously, the scheduling of appointments and technologists at
the tactical level while taking demand into account. For each machine, we decide
the following: types, number, and sequence of radiology tests. We also decide the
following for each technologist: their shift, room assignment, days off, and breaks.
In the next section, we discuss the problem context and our case study. In Sect. 3, we
present the associated scheduling model. We analyze the experiments and results in
Sect. 4 and finally, conclude in Sect. 5.
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2 Problem Statement

The technologist scheduling is performed manually without taking into account the
exam planning and other constraints of the hospital, such as the demand variation.
In this study, we implement a decision tool that allows the interaction between the
human resources and patient scheduling.

In the CHUM radiology department,MRI is divided into the following categories:
neuroradiology, abdomen, musculoskeletal, cardiac, breast and vascular. Figure1
shows that the neuroradiology and the abdomen MRI represent more than 50% of
the performed exams; 20% of the capacity is reserved to emergency or research
exams, which can be included in any category. The center contains six machines of

Fig. 1 MRI Categories distribution in the CHUM radiology center
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three different types, so assigning an exam to a machine depends on its category. In
fact, breast and cardiac exams are performed only on machine A. Neuroradiology
is performed on any machine, except machine A. Abdomen MRI is performed on
machines C, E and F. The execution of the MRI for a given patient requires the
availability of a minimum number of technologists, depending on the exam category.

Twenty four technologists are allocated to this radiology center, they are divided
into part-time and full-time.16 technologistswork only themorning shift, and, 8 tech-
nologists work only the evening shift.We also take into account cross-training,mean-
ing the technologist may treat all exam categories. In our case study, the scheduling
period is 28 days. We define for each technologist the assigned machine, the work-
days, and the planning. The planning represents the daily schedule: it determines the
start and end times of the shift, the dedicated slots for work, and the break times.
The planning classification corresponds to the type of shift that the technologist can
work.

3 IP Model for Appointment and Technologist Scheduling

In this section, we present an integer programming (IP) model to schedule radiolog-
ical technologists simultaneously with the grid appointment. We define the mathe-
matical model using the following sets, parameters and variables.

Sets :
H the set of shifts
P the set of plannings
Ph the set of plannings of shift h
T the set of technologists
Tk the set of technologists that can’t work more than k days per 14 days
M the set of machines
C the set of exam categories
D the set of slot lengths
S the set of slots
Sd the set of slots of length d
J the set of days
J1 the set of the first half of days in the planning horizon
J2 the set of the second half of days in the planning horizon
JW ⊂ J the set of weekend days
JSt ⊂ J the set of Saturdays
JSn ⊂ J the set of Sundays
Wi ⊂ J the set of days from Monday to Thursday of the week i



Simultaneous Optimization of Appointment Grid … 235

Parameters :
atp binary parameter, equal to 1 if it is possible to assign

planning p to technologist t
bcm binary parameter, equal to 1 if it is possible to assign

category c to machine m
eps binary parameter, equal to 1 if planning p covers slot s
nc the total minimum number of each category c
nbc the minimal required number of technologists to

execute the exam category c
nsh the minimal number of active machines in the shift h

Variables :
xmj
cs binary variable, equal to 1 if category c is performed on machine m,

slot s and day j
ymj
pt binary variable, equal to 1 if planning p is assigned to technologist t

and machine m on day j
of ft j binary variable, equal to 1 if technologist t is off on day j
δ
mj
s binary variable, equal to 1 if a change of category is done on slot s

day j, machine m

The present optimizationmodel considers two types of constraints: hard and soft. The
first type represents the constraints that we must respect; they include the covering
(3), the feasibility (6) and the hospital regulation (10). However, if we don’t regard
the soft constraint (5), we will have a feasible solution, but with low quality.

The objective function is defined in Eq. (1). The first termmaximizes the machine
utilization by filling the maximum number of available slots. The second term pe-
nalizes the change of category on the same machine during a day. The last term leads
to minimizing the number of technologists working on the weekend.

Maxλ =
∑

c∈C

∑

s∈S

∑

m∈M

∑

j∈J

xmj
cs −

∑

s∈S

∑

m∈M

∑

j∈J

δmj
s +

∑

t∈T

∑

j∈JW

o f ft j (1)

We consider the following constraints.
We may attribute at most one exam category to a slot on a given machine and day:

∑

c∈C
xmj
cs ≤ 1, ∀ s ∈ S, m ∈ M, j ∈ J (2)

The execution of each category requires a minimum number of technologists:
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∑

p∈P

∑

t∈T
eps y

mj
pt ≥ nbcx

mj
cs , ∀ c ∈ C, s ∈ S, m ∈ M, j ∈ J (3)

The total number of each category throughout the planning horizon has to be at least
equal to nc:

∑

d∈D

∑

s∈Sd ∑
m∈M

∑
j∈J

d∗xmj
cs

≥ nc, ∀ c ∈ C
(4)

Penalize the change of category from one slot to the next one on the same machine
during a day:

xmj
cs + xmj

c′(s+1) ≥ δ
mj
s+1 + 1, ∀ c ∈ C, c′ ∈ C, c 	= c′, s ∈ S, m ∈ M, j ∈ J

(5)

An exam category can only be assigned to the appropriate machine:

xmj
cs (1 − bcm) = 0, ∀ c ∈ C, s ∈ S, m ∈ M, j ∈ J (6)

A technologist can work, at most, on one machine according to one planning per
day:

∑

p∈P

∑

m∈M
ymj
pt ≤ 1, ∀ t ∈ T, j ∈ J (7)

A technologist is assigned only to the appropriate planning:

ymj
pt (1 − atp) = 0, ∀ p ∈ P, t ∈ T, m ∈ M, j ∈ J (8)

If a technologist does not work one day; then, it’s his day off:

1 −
∑

p∈P

∑

m∈M
ymj
pt = of ft j , ∀ t ∈ T, j ∈ J (9)

The technologist can’t work more than five consecutive days:

∑

p∈P

∑

m∈M

j+5∑

j ′= j

ymj ′
pt ≤ 5, ∀ t ∈ T, j ∈ {1, ..,max(J ) − 5} (10)



Simultaneous Optimization of Appointment Grid … 237

During aweek, if the technologist works a day shift, hewill have the same assignment
for the next day or he will be off:

ymj
pt ≤ ym( j+1)

pt + of ft ( j+1), ∀ p ∈ P, t ∈ T, m ∈ M, j ∈ Wi , i ∈ {1, 2, 3, 4}
(11)

The number of active machines per shift during the weekend has to respect the
minimum coverage of resources:

∑

p∈Ph

∑

t∈T

∑

m∈M
ymj
pt ≥ nsh, ∀ j ∈ JW , h ∈ H (12)

If a technologist works on Saturday, he will work on Sunday with the same planning:

ymj
pt = ym( j+1)

pt , ∀ p ∈ P, t ∈ T, m ∈ M, j ∈ JSt (13)

A technologist can’t work two weekends consecutively:

∑

p∈P

∑

m∈M
ymj
pt +

∑

p∈P

∑

m∈M
ym( j+6)
pt ≤ 1, ∀ t ∈ T, j ∈ JSn (14)

The technologist who belongs to Tk can’t work more than k days on the half of the
planning horizon:

∑

p∈P

∑

m∈M

∑

j∈J1

ymj
pt ≤ K , ∀ t ∈ Tk (15)

∑

p∈P

∑

m∈M

∑

j∈J2

ymj
pt ≤ K , ∀ t ∈ Tk (16)

4 Experiments and Results

To evaluate our IP model, we conduct computational experiments based on the case
of the CHUM radiology department. We solve the model through the CPLEX Solver
using a PC with a processor Intel Core i7 2.80 GHZ and 16 GB RAM.

We consider sixmachines, seven examcategories, and 24 technologists. All exams
may be executed by one technologist, except breast biopsy examswhich requiremore
than one. During the weekend, at least two machines are active in the morning shift,
and, one machine in the evening shift.
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The planning defines working hours, breaks, start and end times of the shift for
a technologist. The planning is constructed manually. We split the day into slots of
one hour, and slots of a half hour, which are reserved for some breaks. We list all
the possible planning based on the different hospital regulations. The morning shift
can start between 7 am and 9 am, or at 12 pm. The start time of the evening shift
is between 3 pm and 4 pm. The lunch break is taken between 11 am and 3 pm.
However, the dinner break is between 6 pm and 8 pm. The technologists have three
breaks during a working day: lunch break of one hour, dinner break of a half hour,
and two breaks of 15min that are taken at the end of the shift. Table1 describes an
example of planning. All the time slots are of one hour; though, the length of the last
two slots is a half hour. The technologist starts the working day at 8 am, finishes at
3:30 pm, and has his lunch break at 12 pm and the two other breaks of 15min at 3
pm.

Figures2 and 3 illustrate respectively the scheduling of technologists and appoint-
ments on machine 1 and day 27. Four technologists are assigned to this machine.
They are from four different shifts that start at 7 am, 9 am, 12 pm and 4 pm. From
12 pm to 6:30 pm, two or three technologists work on this machine; so, the breast
biopsy exam can be executed at this time interval because its realization requires
more than one technologist.

Table2 presents the results. The machine utilization is the ratio between the total
number of working hours on this resource and its maximum capacity. The computa-
tional time is calculated for the optimality gap of 1%.

We have good results. The proposed optimization model outperforms the current
scheduling approach of the CHUM. The total number of category change over the

Table 1 Technologist planning example

slot (sd ) 71h 81h 91h 101h 111h 121h 11h 21h 30.5h 30.5h

e2s 0 1 1 1 1 0 1 1 1 0

Fig. 2 Technologist allocation on machine 1, day 27
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Fig. 3 MRI categories scheduling on machine 1, day 27

Table 2 Results of optimization model run

Scheduling
method

Computational
time

Number of
category
change

Machine utilization Average
number of
technologists
on the weekend

Weekdays (%) Weekends (%)

Current case – 136 62 20 3

IP model 16,009 s 80 93 74 11.6

scheduling period is reduced by 40%. We increase the number of allocated technol-
ogists on the weekend; therefore, the machine utilization reaches 74%. Moreover,
we exploit 93% of the machine capacity over the weekdays, the gain compared to
the real case is about 30%.

5 Conclusion

The scheduling of the technologist and the grid appointment is usually performed
independently and manually without taking into account the demand. This study in-
volves developing a decision tool that leads the scheduling of appointments and tech-
nologists at the same time in the tactical level. We present an Integer Programming
model which is evaluated based on a real case of the Magnetic Resonance Imaging
in the CHUM radiology department. The computational experiments indicate that
our approach provides a considerable improvement in the machine utilization, that
reaches 50% over the weekend and 30% over the weekdays.
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AMathematical Programming Model
for Radiotherapy Scheduling with
Time Windows

Bruno Vieira, Derya Demirtas, Jeroen B. van de Kamer, Erwin W. Hans,
Louis-Martin Rosseau, Nadia Lahrichi and Wim H. van Harten

Abstract In external-beam radiotherapy (RT), high-energy radiation beams are de-
livered by a linear accelerator in a series of irradiation sessions undertaken over
multiple days. In this work, we consider the problem of scheduling and sequencing
RT sessions considering time window preferences given by patients for the starting
time of their appointments. Most studies in the literature focus on assigning patients
to linacs and days, neglecting the sequencing component, and existing sequencing
algorithms are only able to solve the problem using approximation methods due to
the intractability of the formulated models. We propose a mixed-integer linear pro-
gramming model and test it using data from a large Dutch RT center. Results show
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that the problem can be solved in reasonable computation time for real-world size
instances using our model.

Keywords Mathematical programming · Radiotherapy scheduling · Patient
preferences · Sequencing model

1 Introduction

As the number of new cancer cases increases [1], demand for radiotherapy (RT) is
expected to grow by an average of 16% until 2025 [2]. In external-beam radiotherapy
(RT), treatments are administered by a linear accelerator (linac), which delivers high-
energy radiation to kill cancer cells and prevent them from multiplying. While RT
resources (staff and machines) are expensive and delays in the start of treatment may
induce greater psychological distress patients subject to longer waiting times [3], RT
centers are encouraged to manage their linac capacity in the most efficient manner.

The RT treatment is divided into a set of (daily) irradiation sessions. Due to the
large variety of possible treatment schemes and the high number of technical con-
straints involved, the problem of scheduling RT treatment sessions has increasingly
been addressed in the literature [4]. As we elaborate in Sect. 2, the majority of the
models proposed in the literature assign patients’ irradiation sessions to linacs, as
done in [5–7], neglecting the sequencing of patients in each day and linac. However,
given that the majority of RT centers have enough linac capacity to treat all patients
in due time [8], the main problem becomes on how to schedule the irradiation ses-
sions such that not only timeliness constraints are satisfied, but also the fulfilment of
patient preferences regarding the starting time of their sessions is maximized. There-
fore, optimizing the sequencing of patients when scheduling RT treatments allowing
the fulfillment of patient preferences becomes important and relevant for RT centers.
Two studies addressed the problem of scheduling RT sessions considering time win-
dows in the literature [9, 10], both on particle therapy (PT). However, in PT there
are technical and medical constraints which are not found in conventional RT. For
instance, in PT a single beam source is used by multiple treatment rooms, but only
one room can use the source at a time. Besides, in PT there is a minimal and maximal
number of days allowed between treatment sessions, and there has to be a break from
the treatment of at least two consecutive days each week [9]. Therefore, the methods
proposed in [9, 10] cannot be applied directly to conventional external-beam RT.
The contribution of this paper is to propose a mixed-integer linear programming
(MILP) model for the delivery of daily treatment sessions in conventional RT with
maximization of time window preferences given by patients for the starting time
of their treatment sessions. The applicability of our model is tested with real-world
data from the Netherlands Cancer Institute (NKI), a large RT center (4966 treatments
per year) based in Amsterdam, the Netherlands. Our model will serve as a basis for
finding optimal schemes for the allocation of linac types to patient groups (e.g. the
most advanced linacs treat the most complex tumor groups such as brain).
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The remainder of this paper is organized as follows: Sect. 2 presents a more de-
tailed description of the problem and related to current literature. The MILP model
is presented in Sect. 3. Section4 describes the computational experiments and cor-
responding results, and Sect. 5 outlines conclusions and draws future research lines
on this project.

2 Problem Description and Background

In the RT scheduling problem, the aim is to schedule a set of treatment sessions for a
set of cancer patients P over a given planning horizon T , discretized in time periods
t = 1, . . . , |T | of usually one day. Each session of each patient i ∈ P has an estimated
duration pi, and sessions are mostly delivered in consecutive days (daily treatments).
Each patient is assigned a due date di, which is the date by which the patient should
start treatment based on his/her urgency level. Treatment sessions are delivered in a
set of (technically feasible) linear acceleratorsK, with a pre-defined number of time
slots |S| available. In our MILP model, we make the following assumptions:

• Treatment sessions of a given patient have the same (estimated) duration. It is
known that sessions’ duration may vary between different patient groups, but
current literature indicates that each particular patient is scheduled sessions with
the same duration throughout the course of his/her treatment [5–7], regarding of
his/her patient group.

• Sessions are delivered in consecutive days (daily treatments). Although some small
patient populations may not be prescribed daily treatment sessions (e.g. hypofrac-
tionation schemes, in which high-dose radiation is delivered, may require one day
off in between treatment sessions), we know that the great majority of the patient
population in RT receive daily treatment sessions, as confirmed by the referred
literature studies [5–7].

• There are no pre-allocated linacs to patient types, i.e. all linacs are available to
treat all types of patients. While some linacs may be technologically more suited
for some cancer types (e.g. brain) than others, literature shows that all irradiation
machines are typically able to treat all types of patients.

• Patients can switch linacs during the course of treatment. Although from a patient
perspective it is desirable that patients receive their irradiation sessions in the same
machine (so they see the same facilities and most likely the same radiation tech-
nologists), there are no technical or medical constraints that point it as a necessary
condition, as confirmed by the aforementioned studies.

Previous studies have approached different variants of the problem and several
methods have been proposed. Sauré et al. [5] formulated the problem as a discounted
infinite-horizonMarkov decision process,with the percentage of treatments initiating
treatment within 10days increasing from 73 to 96%. Legrain et al. [11] proposed
a two-step stochastic algorithm for online scheduling of RT sessions, with results
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showing an averagedecrease in the number of patients breaching the standards of 50%
for acute patients and 81% for subacute patients. In their case, consistent appointment
times for irradiation sessions is achieved by considering that all treatment sessions
of all patients have the same duration. However, in many centers such as the NKI
this is not the case. Besides complying with timeliness requirements and technical
constraints, those RT centers are interested in finding a schedule that maximizes
patient preferences regarding the starting time of irradiation sessions. The goal is
that the starting time of these sessions fall within the patients’ desired time window
[tmin
i , tmax

i ] in a consistent basis. To this end, models have been proposed [9, 10]
such that the starting time of irradiation sessions do not deviate from a pre-defined
target time by more than a certain threshold (30min in both [9, 10]).

Overall, most models presented in the current literature focus on deciding upon
the specific day and linac of each scheduled irradiation session, with the sequence
of patients in each linac and each day being either neglected or determined on a
second stage. Studies addressing the sequencing problem considering time windows
are only able to solve the problem using approximation methods, which often lead
to suboptimal solutions. In this paper, we propose a MILP model to solve the RT
scheduling problem with time windows to optimality and test its performance for
real-world size instances.

3 Methodology

In this section, we present the MILP model for the RT scheduling problem with time
windows. We use the notation presented in Table1.

In our formulation, linacs’ daily availability is divided in time slots s = 1, . . . , |S|
of a fixed duration l. Irradiation sessions are scheduled by assigning a starting time
slot in a given day and linac, and by preventing other sessions from being assigned
to the remainder slots (needed to achieve the session’s duration) in that same linac

Table 1 Notation of the MILP model

Set/Parameter Description

P Set of patients to be scheduled (i, j ∈ P)

K Set of identical linear accelerators (k ∈ K)

S Set of time slots per linac (s ∈ S)
T Set of workdays in the planning horizon (t ∈ T )

Ii Number of sessions to be delivered to patient i

di Due date: day by which patient i must start treatment

pi Duration, in number of time slots, of each session of patient i

tmin
i , tmax

i Lower and upper bound of the time window preference for patient i

l Length of each time slot of each linac
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and day. In our model, binary variables are represented by X t
iks, which take the value

1 if patient i is scheduled a session starting on time slot s of linac k in day t, and
0 otherwise. Real variables Δ−

it and Δ+
it are used to minimize the overall deviation

from the preferred time window by means of the objective function (1):

min
∑

i∈P\{1}

∑

t∈T
(Δ−

it + Δ+
it ) (1)

The set of constraints is as follows:

∑

k∈K

∑

s∈S
X t
iks ≤ 1,∀i ∈ P,∀t ∈ T (2)

∑

i∈P
X t
iks ≤ 1,∀k ∈ K,∀s ∈ S,∀t ∈ T (3)

∑

k∈K

∑

s∈S

∑

t∈T
X t
iks ≤ Ii,∀i ∈ P (4)

∑

k∈K

∑

s∈S
X t
iks −

∑

k∈K

∑

s∈S
X t−1
iks ≤

∑

k∈K

∑

s∈S
X n
iks,∀i ∈ P,∀t ∈ T ,

∀n = t, . . . ,min{|T |, t + Ii − 1}, {X 0
iks = 0,∀i, k, s} (5)

∑

k∈K

∑

s∈S

di∑

t=1

X t
iks ≥ 1,∀i ∈ P (6)

X t
iks ≤ 1 −

∑

i′∈P
X t
i′,k,s′ ,∀i ∈ P,∀k ∈ K,∀s = 1, . . . , |S| − pi + 1,

∀t ∈ T ,∀s′ = s + 1, . . . , s + pi − 1, pi ≥ 2 (7)

X t
iks = 0,∀i ∈ P,∀k ∈ K,∀s = |S| − pi + 2, . . . , S,∀t ∈ T , pi ≥ 2 (8)

l(s − 1)X t
iks ≥ tmin

i X t
iks − Δ−

it ,∀i ∈ P,∀k ∈ K,∀s ∈ S,

∀t ∈ T (9)

l(s − 1)X t
iks ≤ tmax

i X t
iks + Δ+

it ,∀i ∈ P,∀k ∈ K,∀s ∈ S,

∀t ∈ T (10)

Δ−
it ≥ 0,Δ+

it ≥ 0,∀i ∈ P,∀t ∈ T (11)

Constraints (2) ensure that each patient is scheduled at most one session per day.
Restrictions (3) establish that at most one session per day is scheduled in each slot
of each linac. Constraints (4) restrict the number of sessions delivered to the number
of remaining sessions for that patient. Inequalities (5) ensure that patients receive
daily sessions until the number of sessions or the end of planning horizon is reached.
Constraints (6) impose that every patient starts treatment before their due date. In-
equalities (7) ensure that no slots are booked for the remainder of the session duration
pi after the starting slot, while constraints (8) prevent sessions with two or more slots
from being booked in the last slot(s) of the day. Constraints (9)–(10) force variables
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Δ−
it and Δ+

it to take a non-zero value if a session’s starting time deviates from the
desired lower and upper bounds, respectively. Constraints (11) are the non-negativity
constraints associated with the real variables.

4 Case Study and Preliminary Results

We tested our model by generating a set of test instances with various sizes regarding
the number of patients (|P|) and available linacs (|K|) maintaining the patient-to-
linac ratio of the NKI, i.e. 30 patients to be scheduled per linac, per week. We used
historical data from the RT department of the Netherlands Cancer Institute (NKI),
a large cancer center operating in the Netherlands, to generate patient-specific data
for each instance size.

4.1 Input Data

Patient characteristics are generated according to empirical distributions generated
using historical data collected throughout 2017 (number of treatments = 4966). In
our algorithm, we start by generating a care plan (i.e. care trajectory) for each patient.
There are 63 care plans in total, with the largest being "Bone metastasis" (22.5%),
“Breast” (15.7%), “Long > 44Gy” (5.7%), “Prostate” (4.9%), and “Head-and-neck”
(4.7%). Thereafter we generate the number of sessions Ii of each patient, which can
vary between 1 and 35 sessions depending, to a large extent, on the care plan. For
instance, nearly half of all prostate patients will undergo 35 sessions, while 65% of
all bone metastasis patients are prescribed 3 sessions or less. Similarly, the urgency
level of each patient, which can be either urgent (34%) or regular (66%), is randomly
assigned according to historical data associatedwith his/her care plan.Urgent patients
need to start treatment in the earliest time period possible, thus di = 1 for all urgent
patients. The due date of regular patients (di = 1..5) is generated per care plan and
considers themaximumrecommendedwaiting time forRT [12] (28days from referral
to start of treatment).We calculated, for each patient, the time difference between the
waiting time target and the time elapsed from referral to the end of treatment planning
to derive the corresponding empirical distributions. Furthermore, the duration of each
session pi is also assigned on a care plan basis, ranging from 10 to 30min inmultiples
of 5min. Data shows that the majority of patients will be scheduled 15-min sessions
(60.5%), with 19.9% patients having sessions of 20min or longer. The daily available
time for delivering irradiation sessions in the clinic ranges from 07h30 to 17h30, thus
|S| = 120 by considering l = 5 min. We solve the problem for a planning horizon
of one labour week, discretized in time periods of one day (|T | = 5).

In the NKI, patient preferences, i.e. the preferences given by patients for the
desired starting time of their irradiation sessions, are currently considered when
scheduling irradiation sessions of regular patients only. In the case of urgent pa-
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tients, preferences are not currently considered in order to provide more flexibility
for finding earlier appointment slots for their treatment. Regular patients are asked
for a 150-min window during which they would like to receive their sessions. How-
ever, data regarding patient preferences are not currently recorded in the clinic, thus
historical data regarding patient preferences cannot be used. Nevertheless, interviews
with the planners revealed that most patients who have a preference either prefer to
have their sessions early in the morning (<10h00), or later in the day (>15h00),
while some patients do not have a preference at all. Therefore, we randomly gen-
erated time window preferences [tmin

i , tmax
i ] for regular patients as follows: 1/3 of

regular patients with a preference for the early morning (window = [0, 150]), and 1/3
with a preference for the end of the workday (window = [450, 600]). The remainder
1/3 of regular patients, as well as all urgent patients have no preferred time window
([0, 600]).

4.2 Preliminary Results

The MILP model was coded in C++ using Visual Studio 2017 and the Concert
Technology of CPLEX v12.8.0, which was used as a solver. All experiments were
conducted on a desktop computer with a processor Intel i7 3.6GHz and 16 GB
of RAM using up to 8 threads, running on a 64-bit version of Windows 10. The
maximum allowed CPU time was set to 28,800s (8h), which was considered to be a
reasonable time for an RT center to wait for an output solution to be implemented in
practice. In our case study, in which the goal is to find a weekly schedule (Monday
to Friday), RT managers can hypothetically run the model during the last workday
of the previous week (i.e. Friday), and have a complete, perhaps optimal solution
to be implemented in less than 8h of computation time. Table2 shows the results
regarding the performance of the model using the described input data for different
instance sizes.

Table 2 Results for several instance sizes using NKI patient data

#patients #linacs # sessions outside
window

MIP gap (%) CPU time (s)

30 1 0 0 2

60 2 0 0 14

90 3 0 0 37

120 4 0 0 2482

150 5 0 0 12,818

180 6 Out of memory Out of memory Out of memory
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Analyzing the results of Table2, we can see that the proposed MILP model is
able to find an optimal solution that schedules all sessions within the desired time
window for all instance sizes up to 150 patients and 5 linacs. Even for the instance
with 150 patients and 5 linacs, the proposed formulation proved effective in finding
the optimal weekly schedule in less than 3.5h of CPU time. However, the computer
used in our experiments ran out of memory when attempting to solve the problem for
180 or more patients, most likely due to complexity introduced by the exponentially
higher number of constraints (around two million for the instance with 180 patients).

5 Conclusions and Future Research

Previous work on modeling the problem of scheduling RT sessions considering
time windows resulted intractable even for small-sized instances and, as a result,
(meta)heuristics have been proposed [9, 10]. In this paper, we propose an exact
method for the RT scheduling problem with time windows that can be solved via
MILP in reasonable computation time for real-world instance sizes. Besides pro-
viding automated decision making for scheduling RT treatments, our algorithm is
capable of incorporating patient preferences while ensuring that all patients start
treatment in due time. Moreover, our model has proved to be efficient in achieving
an optimal solution for instances of up to 150 patients, although a feasible solution
could not be achieved in due time for the instance with 180 patients and 6 linacs. In
further research, we aim to explore alternative solution methods (e.g. row generation
methods, constraint programming) for improving the computational time required
to solve the problem to optimality for instances with more than 150 patients, and
test the models for other patient preference schemes by varying the time window
size and proportion of patients “competing” for the same time window. Moreover,
we plan to use the model as a basis for finding optimal schemes for the allocation
of some linac types to certain patient groups. For instance, RT centers often want
the most advanced linacs to treat the most complex tumor sites, such as brain. In
addition, we consider making use of prediction models for treatment times [13] to
develop data-driven approaches considering the variability inherent to the session’s
duration for finding more robust schedules.
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Pattern-Based Online Algorithms for a
General Patient-Centred Radiotherapy
Scheduling Problem

Roberto Aringhieri, Davide Duma and Giuseppe Squillace

Abstract A radiotherapy treatment consists in a given number of radiation sessions,
one for each (working) day, which should start before a given due date. Patients are
usually classified into classes of urgency having different deadlines and number of
sessions. Waiting time is the main critical issue in the management of a radiotherapy
health system. After deriving a general problem statement from the case studies
reported in the literature, we present three online optimisation algorithms that try to
exploit the particular structure of the solution, and we compare their results with two
baseline online algorithms.

Keywords Radiotherapy · Scheduling · Online algorithm

1 Introduction

Malignant tumours can be treated by a radiation treatment, which consists in the use
of ionising radiation. A radiation therapy, say also radiotherapy, is delivered by a
linear accelerator or linac in a clinical setting. A linac is a special device whose main
function is to concentrate in beams and accelerate the emission of subatomic particles.
Radiotherapy is the primary treatment for many type of cancers whilst, for others, it
is used in combination with other forms of therapy (surgery and/or chemotherapy).
More generally, an accurate treatment plan depends on the cancer type, location and
stage, as well as the general conditions of the patient. A radiotherapy consists in a
given number of radiation sessions, one for each (working) day, which should start
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after a given release date and before a given due date. Patients are usually classi-
fied into classes of urgency having different deadlines and number of sessions to be
delivered.

Waiting time is the main critical issue in the management of a radiotherapy health
system. Actually, the delay between the first consultation and the first treatment is
typically rather long. Such a delay has the potential to damage the health status of the
patients both directly and indirectly. For instance, a delay can affect the radiotherapy
outcomes by permitting proliferation of clonogenic cells within the field, leading to
a decrease in the probability of local control [7]. Radio-biological principles suggest
that prevailing waiting times for radiotherapy, which often approximate the doubling
time of a fast growing human tumour, may have a clinically significant effect on local
control [8].

From such an analysis, it clearly emerges the room for applying optimisation
techniques to the scheduling of the patients needing a radiotherapy treatment, in
order to improve both the quality of the health service provided (reducing the waiting
times) and the utilisation of the involved resources (linacs and personnel). After
deriving a general patient-centred problem statement from the case studies reported
in the literature (Sect. 2), we present three online optimisation algorithms that tries to
exploit the particular structure of the solution (Sect. 3), and we compare their results
with two baseline online algorithms (Sect. 4).

2 Literature Review and Problem Formulation

General patient-centredproblem statement. TheRadiotherapy Patient Scheduling
(RPS) problem falls into the broader class ofmulti-appointment scheduling problems
in hospital in which patients need to visit sequentially multiple or single resource
types in order to receive treatment or be diagnosed [9]. In order to provide a general
problem statement, we resume the real case studies in the literature and we choose
the most general settings taking into account the best ones from a patient-centred
perspective.

Addressing any appointment scheduling problem, we have a certain number of
machines that could be equals or provide different services, available on a subset of
days over the planning horizon, and organised on one or more shifts in such days.
In the RPS, shifts are usually one per day or two per day (morning and afternoon).
Patients of different categories, that means different urgencies and treatments, should
be performed on the shifts minimising their waiting times and, in some cases, trying
to respect a deadline called due date.

A first classification about any appointment scheduling problem can be made
with respect to the choice of using the blocking or the non-blocking policy. Most of
the contributes of the literature use the former, that is dividing each shift in slots of
fixed time and assigning them to the patients in accordance with several rules. Some
works in the literature use the non-blocking policy for the RPS (see, e.g., [3]) which
consists in selecting the sessions to be performed in each shift and ordering such
sessions in order to provide an appointment to the patients. We limit our summary
to the contributions under the blocking policy, which are reported in chronological
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Table 1 Summary of the main problem setting in the literature

Reference [11] [2] [10] [13] [14] [6] [12]

First author Petrovic Conforti Petrovic Sauré Tang Legrain Riff

Year 2006 2008 2011 2012 2014 2015 2016

Slots per session 1 1 ≥1 ≥1 1 1 1

C1 ✗ ✗ ✓ ✓ ✓ ✓ ✗

C2 ✗ ✓ ✗ ✗ ✗ ✓ ✗

C3 ✗ ✗ ✗ ✓ ✗ ✗ ✗

Setup slots ✗ 1 ✗ 1–2 ✗ ✗ 1–2

Machine types 2 1 4 1 1 1 2

Categories 3 4 3 5 2 3 3

Due dates (days) 2, 14, 28 1, 14, 28, n.d. 2, 14, 28 5, 8, 10, 12, 15 n.d. 3, 4, 18 2, 14, 28

Overtime ✗ ✗ ✗ ✓ ✗ ✓ ✗

Problem NO CA NO CA CA PO CA

order in Table1. Usually a session is scheduled into a single slot, but in [10, 13]
it could require two or three consecutive slots of the same shift, depending on the
patient therapy.

Due to medical and patient-centred reasons, there are three common constraints
that could be considered. The first constraint (C1) is the absence of interruptions in
the series of sessions, that is patients have to be always scheduled in consecutive
working days. The second constraint (C2) is the planning of the patient sessions
always in the same daily slot, that means to give always the same appointment time
to the patient. The third constraint (C3) is the availability of the patient during the
shift hours of the day, that is a sort of preference expressed during the booking.

The first session could require one or two additional slots for the setup time, that
is the time necessary to set the machine [2, 12, 13]. The setup slot considerably
complicates the scheduling of the treatments under the constraints C1 and C2. The
reason is that this causes a hook shape for the patient sessions into the schedule, as
shown in the example in Fig. 1.

days days

sl
ot

s

sl
ot

s

release dates release dates

Fig. 1 Comparing RPS with constraints C1–C2 with (right) and without (left) the setup slot: the
number of slots for each patient (indicated with a different colour) is the same to highlight how the
hook shape complicates the scheduling.Days are ordered from left to right



254 R. Aringhieri et al.

In [10–12] different slot durations are set for the scheduling of several types of
treatments, that is on different shifts since they require the use of two ormore different
machines.

Patients are always classified into two or more categories, that is patients with
different urgency for which different due dates are usually defined.Most of the works
refer to the same three classes of patients: even if they are calledwith different names,
the same due dates are provided, that is 28days for the less urgents (called palliative
or radicals), 14days for the middle urgency (curative or palliative) and 1–3days for
the others (called emergency, urgent or others). The various categories have also a
different arrival rate and also a different number of sessions for the whole treatment,
that is usually few days for most urgent patients up to 6–9weeks for the most urgent
ones.

Generally, the appointment scheduling approaches can be classified into two cate-
gories: offline and online. The offline appointment scheduling is performed cyclically
on a certain planning horizon after collecting the request of treatments in the previous
period. Then, at themoment of the scheduling, the demand is known and the schedule
is (usually) empty. On the contrary, in the online appointment scheduling the appoint-
ment requests are updated over time, then the sessions have to be scheduled (on a not
empty schedule) without knowing the future requests. Because of the characteristics
of the RPS, which requires a timely planning, an online appointment scheduling
approach is necessary, as demonstrated by the contributions in the literature. On-
line approaches for the multi-appointment scheduling problems can be divided into
three levels: capacity allocation (CA), near-online (NO) and pure-online (PO). At
the CA level, the decision to be taken is the allocation of the slots to the patients
over a certain planning horizon (usually one week). At the NO level, the request of
treatments is collected in a short time (e.g. daily) before of allocating the slot to the
sessions, then appointments are promptly provided to the patients. Finally, at the PO
level appointments are given in real time at the moment of the patient arrival.

Our approach places at the PO level, which presents a lack of attempts in the
literature: such a level is addressed only in [6] even if it represents the most com-
mon organisation approach in the real life. We use a blocking approach on several
machines of the same type. We take into account constraints C1–C2, that is each
session is performed in the same shift of the day, on the same machine and in the
same slot and it is not possible to interrupt the series of sessions in the working
days. We assume that each session requires one slot, except for the first session that
includes an additional setup slot determining, together with C1–C2, the hook shape
of the patient sessions. For the sake of simplicity, all the slots of a sessions series
(that are in the same position of the same shift in different days in accordance to C1
and C2) are denoted as regular slots, while the additional setup slot is denoted as
left slot or right slot depending on whether the setup slot precedes (left) or follows
(right) the regular slot of the first appointment, respectively. Finally, we consider an
operative context in which sessions can be scheduled over 5days a week, without
overtime, to patients divided into different categories.
Integer linear programming model. Let J be the set of all the patients generated
over the time horizon indicated as a set of working days K . Patients can start the
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session series only in working days k ∈ K ′, K ′ ⊂ K , that are not pre-holiday (i.e.,
Friday or Christmas eve are not feasible starting days). LetW be the set of the slots of
each day, withm = |W |. Slots occupied by the sessions of already scheduled patients
are indicated by the matrix S = (skw)k∈K ,w∈W , with skw = 1 if the slot is occupied,
and skw = 0 otherwise. Let d j be the duration of the treatment of the patient j ∈ J ,
that is the number of sessions to be scheduled, and let ρ j be the release date, that is
the first day in which the patient can start the treatment.

Let us define the following decision variables to give amathematical programming
formulation of the problem: y jkw is equal to 1 if a session of the patient j is scheduled
in the slot w of the day k, 0 otherwise; t jkw is equal to 1 if the first session of the
patient j is scheduled in the slotw of the day k, 0 otherwise (t jkw = 1 ⇒ y jkw = 1);
r jkw is equal to 1 if the slot w on the day k is the right slot of the patient j , 0
otherwise; l jkw is equal to 1 if the slotw on the day k is the left slot of the patient j , 0
otherwise. Inspired to that reported in [2], the following integer linear programming
(ILP) model describes the offline version of our problem on a given shift:

min z =
∑

j

[
∑

k

(k − ρ j )
∑

w

t jkw +
(
1 −

∑

k

∑

w

t jkw

)
(|K | − ρ j + 1)

]

subject to

∑

j

(
y jkw + r jkw + l jkw

) + skw ≤ 1 ∀k, w = 2, . . . ,m (1)

∑

j

(
y jk1 + l jk1

) + sk1 ≤ 1 ∀k (2)

∑

j

(
y jkm + r jkm

) + skm ≤ 1 ∀k (3)

∑

k

∑

w

t jkw ≤ 1 ∀ j (4)

t jkw = r jkw+1 + l jkw−1 ∀ j,∀k, w = 2, . . . ,m − 1 (5)

t jk1 = r jk2 , t jkm = l jkm−1 ∀ j,∀k (6)

y jkw ≥ t jkw ∀ j,∀k,∀w (7)
min{k+d j ,|K |}∑

τ=k

y jτw ≥ min{d j , |K | − k}t jkw ∀k (8)

k∑

τ=max(k−d j ,1)

t jτw ≥ y jkw ∀k (9)

t jkw = 0 ∀ j,∀k = 1, . . . , ρ j − 1,∀w (10)

t jkw = 0 ∀ j,∀k ∈ K\K ′,∀w (11)



256 R. Aringhieri et al.

Constraints (1)–(3) impose that each slot of each day can be occupy at most by
one patient, that can be for a regular slot (y jkw = 1), a left slot (l jkw = 1), a right slot
(r jkw = 1) or an already scheduled slot (s jkw = 1). In particular, (2) indicate that the
first slot of the shift can not have a left slot and likewise (3) impose that the last slot of
the shift can not have a right slot, while (1) concern all the other slots. Constraints (4)
make sure that all patients have at most one first session. Constraints (5) impose that
we have a setup slot in correspondence of the first session, which can be a left slot or a
left slot. Constraints (7) combine the variables y jkw and t jkw to make them coherent.
The operative constraints C1–C2 are fixed by (8) and (9), respectively, while (10)
and (11) impose that the session series can not start before the release date and in a
pre-holiday, respectively. Furthermore y jkw, t jkw, l jkw, r jkw ∈ {0, 1}.

The objective function that wewouldminimise is thewaiting time. To this purpose
we sum the number of days between the release date and thefirst session for scheduled
patients. Otherwise, for all the other patients we sum the number of days between
the due date and the last day of the planning horizon plus one.

The ILP model can be easily generalised to the case of two or more shifts and
different machines. Although the high complexity of its offline solution [2], we try to
solve smaller instances of this model (i.e., 10 slots and 10 working days as planning
horizon) to identify a common pattern that can be exploited in the development of
new online algorithms.

3 Online Algorithms

We propose several online algorithms for the pure online version of the RSP, that is
patients are scheduled one by one in real time. Starting from an adaptation to our
operational settings of the heuristics proposed in [11] for the NO level, that is the
As-Soon-As-Possible (ASAP) and the Just-In-Time (JIT), we define two baseline
online algorithms in order to compare them with our approach.

For the sake of simplicity, we indicate with the term right hook and left hook
a sessions series with a right slot and a left slot, respectively, observing that each
sessions series can be scheduled as a right hook or a left hook, since the decision
of the slot to dedicate for the setup is a decision that is taken during the scheduling.
Further, we suppose to have two shifts on eachmachine, but the approaches are easily
adaptable to scenarios with one or more shifts.

The ASAP and the JIT are adapted to the case of sessions series with a hook
shape. In this context, placing only right hooks or only left hooks side by side means
a trivial lost of slots, which will be not allocated due to the lack of two adjacent slots
needed for the first session. We call Smart ASAP (SASAP) and Smart JIT (SJIT) our
adaptions.

Three further online algorithms are conceivedon thebasis of a pattern, say fountain
effect, observed analysing the above ILP model solutions on small instances. The
fountain effect consist in the nesting of hooks of the same type (right or left) on
the two sides of the shift (from the beginning forward or from the end backward,
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respectively). A first online algorithm called Fountain On Shift (FOS) has been
conceived exploiting this idea. However, we observed that in some cases it is better
to choose only one side of the shift for the nesting, then for machines that have two
shifts per day we propose a further algorithm called Fountain On Machine (FOM).
Another observation is that nesting a small hook between two longer hooks causes
a waste of slots, then the Selective Fountain On Machine (SFOM) pre-assigns a
category to each shift in proportion to the expected demand and tries to exploit the
fountain effect on the selected shift. In all the algorithms, patients with a very short
due date are scheduled with the SASAP rule.

We provide in Algorithm1 a general scheme for the proposed online approaches,
which take in input a patient flow F and the schedule of the already assigned slots
indicated with the 3-dimensional matrix S, defined on the set of the working days
K , the set of the shifts Σ , and the set of the daily slots W . Each algorithm waits for
the arrival of new patients for the whole time horizon and it schedule them online
one by one. A sequence of decisions is taken on the basis of the schedule S and
the patient to be scheduled p. The first choice is the shift σ in which the patient p
will be scheduled (selectShiftFromMachines), then the first regular slots t and the
additional (right or left) slot a are selected (selectFirstSlots). Finally, on the basis of
such decisions, the appointments are provided to the patient p and the schedule S is
updated (schedulePatient).

Algorithm 1: General online RPS scheme
Data: Patient flow: F , Scheduling matrix: S = (skσw)k∈K ,σ∈Σ,w∈W
Result: Scheduling matrix

1 k=1;
2 while k ∈ timeHorizon do
3 while new patients arrive do
4 p := newPatient(id, category, duration, releasedate, delay);
5 σ := selectShiftFromMachines(S, p);
6 (t, a) := selectFirstSlots(S, σ , p);
7 S := schedulePatient(S, σ , t , a, p);

8 k=k+1;

9 return S;

The functions introduced in the general scheme are defined in order to provide
our five online approaches, which are described below, while an example on a small
instance is illustrated in Fig. 2.

SASAP: The function selectShiftFromMachines chooses the shift σ that has a
feasible solution that minimizes the waiting time of the patient p and, if two or
more shifts provides the same waiting time, a pre-fixed order in Σ is followed.
Then, the function selectFirstSlots selects the first two feasible slots and chooses
the hook orientation (left or right) that minimises the number of adjacent empty
slots and returns the first regular slot t and the additional slot a accordingly.
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Fig. 2 Solutions provided
by the 5 proposed algorithms
for a small instance. We
suppose to have an empty
schedule and 12 patients
indicated with different
colours, with release dates on
the first 3days and belonging
to 3 different categories. The
arrival order is the following:
light blue, green, grey and
black (day 1), red, yellow,
orange and brown (day 2),
pink, purple, violet and dark
blue (day 3). The hooks with
duration 3 and 6 have due
date after 4days after the
release date, while the one
with duration 2 have to be
scheduled as soon as possible

SJIT: The function selectShiftFromMachines chooses the shiftσ that has a feasible
solution as late as possible within the due date; if such solution is provided by two
or more shifts, a pre-fixed order in Σ is followed, otherwise if any shift has a
feasible solution the patient is scheduled using the SASAP. Then, the function
selectFirstSlots is the same of the SASAP.
FOS: The function selectShiftFromMachines selects the less loaded shift σ . Then,
selectFirstSlots chooses alternately the the left and the right side of the shift to
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nest the hook with respect the fountain pattern as soon as possible, and the first
slots t and a are set accordingly.
FOM: The function selectShiftFromMachines selects the less loaded machine and
chooses alternately one of its shifts. Then, selectFirstSlots chooses always the
same side of the shift to nest the hook (e.g., the left side for the morning shifts and
the right side for the afternoon shift) with respect the fountain pattern as soon as
possible, and the first slots t and a are set accordingly.
SFOM: The function selectShiftFromMachines selects the less loaded shift σ

among those pre-assigned to the category of the patient p. Then, selectFirstSlots
chooses always the same side of the shift to nest the hook with respect the fountain
pattern as soon as possible, and the first slots t and a are set accordingly.

4 Preliminary Computational Results

In this section we provide a quantitative analysis for two different scenarios that dif-
fers only for the workload determined by a different patient arrival rate. For each sce-
nario, 10 different instances has been randomly generated usingGeneRa, an instance
generator available online [1], capable to take into account specific characteristics
inherent to different scenarios and realistic organisational settings.

In accordance with the literature reported in Sect. 2, our scenarios consider 3
categories of patients, that we call radicals, curative and urgent denoted by 1, 2, and
3, respectively. For these categories, we set a frequency of the 67%, 31% and 2%, a
duration of 40, 15 and 3days, and a due date after 28, 14 and 2days from the release
date, respectively. These parameters are consistent with the literature. We suppose
to work on two identical machines and over two shifts per machine, composed by 20
slots each one. For each day of a time horizon of 260days (52weeks of 5 working
days) GeneRa provides a certain number of patients belonging to the 3 categories in
accordance with the defined parameters. Such a number is generated using a uniform
distribution ofminimum0 andmaximumM .We fix such a parameter in order to have
the 80% and the 100% as upper bound for the machine utilisation, that is the ideal but
geometrically impossible case in which all patients are scheduled and treated within
the time horizon. Then, we obtained two different scenario S1 and S2 for M = 4 and
M = 5, that is 2 and 2.5 patients per day on average, respectively.

In Table2 we report the average results about a set of performance indices evalu-
ated on 10 instances for each scenario, excluding the first 20% of patients (in arrival
order) considered as warm up. Such instances generated 507 and 653 patients on
average, of which only the last 406 and 523 are taken into account for the results,
respectively. Due to the limited number of the analysed instances, some indices could
have large confidence intervals, but the differences between the performance of the
online algorithms is such that the intervals do not overlap, except few cases (e.g.,
FOS vs. FOM in scenario S1 for patients scheduled and treated in time). Results
give very clear indications about which is the best algorithms for the two analysed
scenarios, no trade-offs are indeed found between the performance indices.
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The SASAP and the SJIT algorithm provide significantly different results: the
latter seems to schedule inefficiently because of the hook shape of the sessions series,
which hinders the insertion from low to high. On the contrary, SASAP provides a
discrete performance for the balanced scenario S1, while poor results are obtained
for the overloaded scenario S2, for this reason we refer to this online algorithm for
the evaluation of our proposed algorithms.

Using the FOS, we are able to provide a first slight reduction of the waiting times,
which decreases in average of 2.8days for the scenario S1 and 7.2days in the scenario
S2, with 5.8 and 10.9%more patients treatedwithin the due date. However, exploiting
the fountain structure only on one side of the shift, that is using the FOM, we obtain
a further improvement of all the indices in both the scenarios: utilisation increases
of the 1.9–4.6% compared to the SASAP, while 8.4–13.9% more patients start the
sessions series within the due date, and on average patients have the first appointment
4–9 working days earlier. Furthermore, the FOM provides different waiting times
for the three patient categories, while using the SASAP they are uniform.

Finally, the SFOM is the best algorithm for both the scenarios S1 and S2.When the
workload is balanced (scenario S1), we have almost 4 more occupied slots every day,
and all patients are treated in time with very low average waiting times. Considering
the overloaded scenario S2, the SFOM is able to treat within the due date all urgent
patients and most of those belonging to the other categories, with average waiting
times lower than the maximum allowed delay. As a matter of fact, we remark that
the SFOM seems the most robust algorithm as soon as the workload increases.

5 Conclusions

In this paper we provided a general problem statement and a set of new online
algorithms for theRSP.Weprovided three newonline algorithms that exploit a special
pattern, say fountain effect, observed in the offline solutions of the RPS when the
sessions series has a hook shape due to the setup slot in the first appointment. We
further provided the adaptation at the PO level of two already proposed heuristics
for the NO level, which are used as baseline in our algorithm comparisons.

The quantitative analysis proved the effectiveness of our algorithms, showing on
two different scenarios that the proposed online algorithms are able to significantly
decrease the waiting times and to increase themachine utilisation. The algorithm that
provides the best performance is the SFOM, which is based on the idea of exploiting
the special fountain pattern and of pre-assigning different shifts to patients of different
categories.

Further developments of this work should consider an experimental competitive
analysis [4], look-ahead online algorithms [5], and a better instance generator (ar-
rivals distributed as a Poisson process instead of a discrete uniform). In terms of
problem settings, it could be of interest to generalise our algorithms to other oper-
ative contexts (e.g., the possibility of interrupting the sessions series, changing the
assigned slots along the sessions series, …).
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Multi-level Heuristic to Optimize
the Chemotherapy Production
and Delivery

Alexis Robbes, Yannick Kergosien and Jean-Charles Billaut

Abstract The bio pharmaceutical unit of Oncology Clinic (UBCO) of the hospital
of Tours (France) produces between 100 and 300 injections per day for three hos-
pital units of Tours. The production of chemotherapy drugs consists of two steps: a
sterilization step and a preparation step performed by pharmacists. The production
process can be modeled as a hybrid flow shop scheduling problem. Once the drugs
are completed, they have to be delivered to the patient at a given due date. The de-
livery problem is a variant of the Multi-Trip Vehicle Routing Problem. We propose
in this paper a multi-level heuristic to solve the integrated production and delivery
problem. Computational experiments are conducted on real-life based instances to
compare multiple settings and to evaluate the efficiency of the proposed approach.

Keywords Integrated · Scheduling · Routing · Chemotherapy production

1 Introduction

The health care system is a demanding public service with various challenges. This
paper focuses on an integrated chemotherapy production and delivery problem. In
2010, a first work with the bio pharmaceutical unit of Oncology Clinic (UBCO)
of the hospital of Tours (France) [1] proposed to optimize the preparation of the
chemotherapy products by solving a parallel machine scheduling problem. A first
integrated solution to the UBCO [2] was presented in 2011. A method for a com-
bined transportation and scheduling version of the problem [3]was proposed in 2017,
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however this study considers only one delivery man and a simplified workshop con-
figuration. This paper is an extension of this study where the scheduling problem is
a hybrid flow shop scheduling problem and the delivery problem is a variant of the
Multi-Trip Vehicle Routing Problem. Even if the two sub-problems (the scheduling
problem and the delivery problem) are considered independently, their resolution re-
mains difficult. Most of the variants of the hybrid flow shop scheduling problem are
NP-Hard [4], the same for the Multi-Trip Vehicle Routing Problem [5, 6]. Integrated
production and distribution scheduling problems have been studied in several papers
[7–9] where the objective functions are to minimize the combination of production
and delivery costs or to minimize the makespan. In this study, we propose a model of
an integrated chemotherapy drugs production and delivery problemwhich represents
the real-life case (note that many services like UBCO have the same configuration).
The objective is to minimize the total tardiness in order to provide a better health
service quality. We propose a multi-level heuristic to solve the problem within a rea-
sonable computation time, in order to be applied online and to compute an updated
solution every time a new event occurs (e.g. the arrival of a new request).

2 Problem Definition

The process of a chemotherapy treatment requires various steps. First of all the
patient receives a medical consultation few days before the treatment. At the end of
this consultation, the doctor prescribes the forthcoming treatment.Aproduction order
with the prescribed drugs is sent to the UBCO and another consultation is scheduled
just before the beginning of the treatment. During this second consultation, the doctor
checks the patient health and validates the previous prescription. The preparation of
the order by the UBCO can only start after this validation in order to avoid the losses
of drugs. Figure1 illustrates this process.

First Consultation

Second Consultation
validation

Production scheduling

Sterilization

Preparation

Control

Delivery

Administration

Fig. 1 Chemotherapy treatment process
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The chemotherapy production is a 3-step process: Sterilization,
Preparation and Control. Due to the isolators design, the Sterilization
and the Preparation steps are done in the same isolator. Each isolator has sev-
eral work stations where operators handmake the Preparation step. When a
chemotherapy is completed, a Control step is executed on a single automated
analyzer.

The delivery part is done by a delivery men team. Each chemotherapy drug has
to be delivered to a given patient. All patients are dispatched in different oncology
units of several hospital units.

The set of chemotherapy drugs to produce and to deliver is represented by the
set of jobs J . Each job j in J has a release date r j corresponding to the validation
time before which the Preparation step cannot start, a processing time pO

j for
the Preparation step, an assigned oncology unit u j where it has to be delivered
before its due date d j .

The production is donewith |I | identical parallel isolators.An isolator is character-
ized by a sterilizer capacity Q (i.e maximum number of jobs), a Sterilization
processing time pS (which do not depend on the sterilized batch of jobs) and a number
of operators m which can work at the same time (i.e. number of work stations).

The Control step is proceeded by a single automated analyzer. The Control
processing time pA is the same for every job. To deliver the jobs, |V | delivery
men can make more than one trip. The objective function is to minimize the total
tardiness

∑
j∈J Tj where Tj is the delivery tardiness of the job j computed by

Tj = max(0, Dj − d j ) where Dj denotes the delivery date.
We propose a modelization of the chemotherapy production and delivery problem

as an integrated scheduling and routing problem. The scheduling part corresponds
to a 3-stage Hybrid Flow shop scheduling problem. The routing part corresponds to
a variant of the Multi-Trip Vehicle Routing Problem with due dates.

Let consider a given schedule and a given delivery plan, for every job j , cOj
denotes the completion time of the Preparation step, cAj denotes the completion
time of the Control step. The batch Control completion time is the maximum
Control completion time of the jobs in the batch.

Figure2 is a Gantt chart representing a partial solution of a problem instance with
2 isolators, 2 operators per isolator and 2 delivery men. As an example we highlight
the process of the job 20 from the Sterilization step to the delivery. First, the
job is sterilized in the first batch of isolator 1. Then, it is prepared by operator 1
after its release date r20 and after the end of the Sterilization step. This job
is packed in a delivery batch with jobs 1 and 4. This delivery batch is completed
at max j∈{1,4,20}(cAj ) and is delivered by delivery man 1. The delivery trip is the first
one of delivery man 1. The delivery man leaves the UBCO after the delivery batch
completion time, then delivers jobs 1 and 4 at their assigned oncology unit (u1 = u4).
The job 20 is then delivered at its oncology unit u20. Finally, the delivery man comes
back at the UBCO and is available for another trip.
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Fig. 2 Illustration of an instance of the problem: 2 isolators, 2 operators per isolator, 2 delivery
men

3 Lower Bound

In order to propose a lower bound, we introduce revised release dates r̃ j = r j +
pO
j and revised due dates d̃ j = d j − t0, j where t0, j represents the shortest possible

transportation time to deliver the job j . r̃ j is the minimum possible value for cOj and
d̃ j is the maximum possible value for cAj to deliver the job without tardiness.

Let consider the single machine scheduling problem with revised release dates,
revised due dates, identical processing times (p j = pA) and total tardiness mini-
mization, which can be denoted by 1|r j , p j = p| ∑ Tj using the 3-field Graham
notation of scheduling problems [10]. Any lower bound of this problem is a lower
bound of our problem. Indeed, the 1|r j = r̃ j , p j = pA, d j = d̃ j | ∑ Tj problem is
equivalent to our problem considering a large number of operators and delivery men.
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Fig. 3 Illustration of the lower bound definition

The proposed lower bound is computed as follows. We build a pseudo instance
where job k has the kth shortest revised release date r̃[k] and the kth shortest revised
due date d̃[k]. The lower bound is given by the evaluation of sequence (1, . . . , |J |)
of this pseudo instance (Figure3 represents an instance with J = 6 jobs).

4 Multi-level Heuristic

The proposed multi-level heuristic is a constructive heuristic with multi-level de-
cisions. The first decision level is the clustering of the jobs into delivery batches,
the second decision level is the job assignment to a Sterilization batch, the
third decision level is the Preparation scheduling, the fourth decision level is
the Control scheduling and the last decision level is the delivery routing. Figure4
represents the flowchart of the multi-level heuristic.

Clustering and sort: Each job is assigned to a cluster corresponding to a delivery
batch by an Agglomerative Hierarchical Clustering method. This method needs a
distance function between two clusters (i.e. batches). We define the distance be-
tween two batches B and B ′ as the maximum Euclidean distance between the jobs
which is named “complete link” in [11]: dist (B, B ′) = max( j, j ′)∈B×B ′(dist ( j, j ′)).
The Euclidean distance between jobs uses three dimensions: the oncology unit u j

Clustering and sort Sterilization assignment

Preparation scheduling

Control schedulingDefine a routing plan

List of delivery batch (Bk)

List of sterilization batch
(b j, s) j, s∈ J×S

List of delivery batch
(Bk)

List of batch completion times

Fig. 4 Multi-level heuristic flowchart
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location, the due date d j and the revised release date r̃ j . This clustering method aims
to limit the waiting times before the delivery of each jobs and to reduce the duration
of trips.

The number of delivery batches is given as an input. It is an important setting
which is related to the maximum acceptable distance between two jobs from a same
delivery batch.

The resulting delivery batches are then sorted using one sorting rule based on the
due date of jobs of each batch. We propose three sorting rules by increasing order
of:

1. min j∈B(d j ), denoted MIN
2. mean j∈B(d j ), denoted MEAN
3. median j∈B(d j ), denoted MED.

A study of the impact of the number of delivery batches and the sorting rule is
presented in Sect. 5.2.

Sterilization assignment: The sterilization assignment is an iterative method that
consists in assigning jobs one by one to a sterilization batch. The jobs are sorted
according to the sequence of delivery batches first (sorted by the selected sorting
rule), then they are sorted in each delivery batch in r j + pO

j increasing order. Then,
each job is assigned to the last unfilled sterilization batch ending before the job’s
release date. If no such batch exists, the job is assigned to the first unfilled sterilization
batch after the job’s release date. In case of equality (i.e. two sterilizations batches
complete at the same time) the job is assigned to the sterilization batch with the
minimum sum of processing times pO

j of jobs already assigned to that batch. This
sterilization batch assignment allocates the jobs to an isolator and its set of operators.

Preparation scheduling: For each isolator the jobs of the sterilization batches
are successively scheduled. All the jobs of a sterilization batch must been scheduled
before starting to schedule the jobs of the next sterilization batch. The jobs of each
sterilization batch are sorted according to the sequence of delivery batches first, then
they are sorted by increasing release date r j . The jobs are then scheduled as soon as
possible on the first available operator.

Control scheduling: The jobs are sorted first by increasing preparation completion
time cOj and in case of equality they are sorted according to the sequence of delivery
batches. The jobs are successively scheduled as soon as possible.

Routing: Delivery batches are assigned iteratively to the first available delivery man.
The trip of a delivery batch is constructed by the Nearest Neighbor heuristic [12].
The delivery man repeatedly delivers to the nearest oncology units until all jobs have
been delivered.
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5 Computational Experiments

In this section, the performances of the multi-level heuristic with various settings
is evaluated on pseudo real life instances. We compare the proposed multi-level
heuristic with the following 4-step method currently used at the UBCO:

1. Preparation: schedule the jobs by earliest release date first on the first avail-
able operator.

2. Control: schedule the jobs by earliest Preparation completion time first.
3. The clustering of jobs is done by the clustering algorithm described before with

the following dimensions: Control completion times, due dates and oncology
units.

4. The routes are defined by the Nearest Neighbor heuristic.

Note that the steps 3 and 4 are an approximation of the real life behavior of the
delivery men who build their trips. This method is similar to a two-phase algorithm
(scheduling then routing). This algorithm is called the Reference algorithm. The
algorithms are implemented in Python language. Tests have been performed on an
Intel(R) Core(TM) i5-7440HQ CPU @2.80GHz with 16 Go of Ram. The compu-
tation time of the two algorithms is about 1 second, which is acceptable for online
use.

5.1 Datasets

The generation of 100 instances is inspired by the real case of the UBCO and have
the following features:

• number of chemotherapy drugs: |J | = 150
• due dates: ∀ j ∈ J, d j ∈ [9 h, 18h]
• release dates: ∀ j ∈ J, r j ∈ [d j − 10h, d j − 50min]
• number of isolators: |I | = 4
• production hours: [8h, 18h]
• Sterilization processing time: 15min
• number of operators per isolator: 2 operators
• Preparation processing time: pO

j ∈ [5, 15]min
• Control processing time: pA = 5min
• number of oncology units: 60units
• number of delivery men: |V | = 3
• all oncology units are within 35min from the UBCO

For each interval, the distribution is uniform.
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5.2 Parameters Setting and Evaluation

The number of delivery batches is a parameter that must be determined to find a good
compromise:

• few delivery batches would result in long waiting times for the delivery men due
to the time required to complete the batches

• a large number of delivery batches will generate a huge number of round trips
which would imply waiting times for the completed batches.

To find the best compromise, we tested different number of delivery batches (from
15 to 35) on the 100 instances.

For each instancewe determined the gap between the lower bound and the solution
found. The gap is computed as gap = h−Lb

Lb where h is the total tardiness found by
the proposed multi-level heuristic or the Reference algorithm and Lb is the lower
bound defined in Sect. 3.

Figure5 represents the evolution of the mean gap for each tested number of deliv-
ery batches and for each sorting rule. Figure5 shows that increasing the number of
delivery batches increases the quality until a tipping point around 26 for the proposed
multi-level heuristic and 24 for the Reference algorithm.

A delivery of 150 chemotherapy drugs in 26 trips means an average delivery batch
size of 6 jobs and just under three trips per hour.

The best average gap found is around 52%which seems to be a big value.However,
the lower bound, defined in Sect. 3, is clearly weak but is useful to compare the
methods with a common reference. The lower bound weakness is mostly due to the
assumption of an infinite number delivery men. It seems that the choice of the sorting
rule do not have a big impact on the mean gap.

Fig. 5 Impact of the number of delivery batches - Mean Gap
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Fig. 6 Impact of the number of delivery batches—median gap

Fig. 7 Boxplots of the percentage of been the best heuristic i.e. first rank (number of delivery
batches varying between 15 and 35)

Figure6 presents the same results as Fig. 5 using the median gap instead of the
mean gap. Around the tipping point, we note that theMEAN presents the best results
on the median gap whereas there is not much difference between the three rules on
the mean gap.

The median gap is smaller than the mean gap. One of the reason would be the
existence of few outliers.

Figure7 illustrates the quality difference of the sorting rules. The size of the
boxplots shows that the Reference algorithm is the best algorithm around 20% of the
time without depending of the number of delivery batches. However, it is the MIN
rule which is the best most of the time (around 45%). This is in accordance with
Fig. 5.
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Fig. 8 Percentage of times a heuristic gives the best result i.e. first rank

Figure8 illustrates the influence of the number of delivery batches on the heuristics
ranking. We can see that the MIN rule is more is often the best heuristic whatever
the number of delivery batches. While, the MEAN rule ranking is really dependent
of the number of delivery batches.

6 Conclusions and Future Works

A real case of production and delivery of chemotherapy drugs was studied and a
model of the problem was proposed. The model is based on an integrated version of
a hybrid flow shop scheduling problem and a Multi-Trip Vehicle Routing Problem.
To quickly solve the problem, we proposed a multi-level heuristic which schedules
the production after taking into account the delivery part. The numerical experiments
showed the efficiency of the proposed method compared to a Reference algorithm
corresponding to the current planning method. A study of the multi-level settings
illustrated the importance of the number of delivery batches and of the sorting rule.

Several research perspectives can be considered. First, the lower bound quality
may be improved on the routing part. Besides, a local search at each scheduling level
could improve the quality of the heuristic.
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Acuity-Based Access Time Evaluation
in Primary Care: A Case Study
of an Ontario Clinic

Nazanin Aslani, Fariborz Fazileh, Donatus Mutasingwa and Daria Terekhov

Abstract Measuring access to primary care is complicated due to a variety of per-
spectives. In Ontario, Canada, one of the main metrics currently used to evaluate
access is the proportion of patients who are able to obtain a same- or next-day ap-
pointment with a primary care provider. However, this metric does not accurately
reflect patients who do not medically require same- or next-day access. In this study,
we demonstrate the need for developing more detailed metrics which capture the ur-
gency of needed care via a case study of an Ontario primary care clinic. Our results
show that using the standard metric, the clinic’s performance appears unsatisfac-
tory, while using the more detailed acuity-based metrics, the clinic is shown to be
performing well for non-urgent requests.

Keywords Access time · Performance evaluation · Primary care · Ontario ·
Non-urgent patient prioritization

1 Introduction

Primary care has been considered as a main element of a high-performing health
system from the beginning of the 20th century [3]. Hence, it is important to evalu-
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ate access to primary care, but this evaluation is difficult as access can be viewed
and measured in multiple ways [19]. In Ontario, Canada, the main method for eval-
uation of access to primary care is through surveys, such as the Commonwealth
Fund International Health Policy Survey and the Quality and Costs of Primary Care
(QUALICOPC) Patient Experiences Survey (PES). However, these methods have
two limitations. First, due to being survey-based, they are influenced by respondent
perceptions and biases. Evaluating access only from patient perception can be mis-
leading due to theweak relationship between care accessibility and patient perception
of access [16]. Second, current metrics calculated from survey data, most notably
the number of patients who obtain a same-day or next-day appointment, do not con-
sider the urgency of the patient request. However, given the scarcity of healthcare
providers in Canada [8], knowing the urgency of the patient could lead to more equi-
table and effective allocation of available physician time. The need for prioritization
of patients in the setting of scarce resources is well-known in medical environments
outside of primary care, such as emergency departments [13]; it has also recently
been examined in the context of non-emergency settings, such as physiotherapy or
rehabilitation services [10].

Our focus is the evaluation of access time, which is defined as the interval between
the arrival of an appointment request and the scheduled time of appointment [6]. To
address the above limitations, we argue for the evaluation of access time (a) through
clinic data in order to overcome the potential subjectivity resulting from surveys, and
(b) based on detailed metrics related to the various patient groups that primary care
serves, akin to how emergency care performance is measured through different ac-
cess time targets for patients of different acuity. While the first argument has already
appeared in previous literature, see e.g., Rao et al. [20], we provide further evidence
that there exist discrepancies between performance evaluation from objective data
and patient surveys. Our second argument builds on work by Haggerty et al. [9],
whose definition of accessibility considers the appropriateness of access time “to the
urgency of the problem”, and by Premji [18], who demonstrates a limitation of the
most-prominent metric used for evaluation of Ontario primary care, i.e., the percent-
age of patients able to obtain a same-day or next-day appointment. Motivated also by
the use of prioritization in other medical contexts with scarce resources, we propose
to categorize patients in primary care according to the urgency of their request, a
proposal which, to the best of our knowledge, has not been explored in the literature.

Our argument is illustrated by a case study of the Health for All (HFA) clinic,
located in Markham, Ontario, Canada. Using a comprehensive data set of patient
records from September 2017 to September 2018, we compute both the standard
same-day/next-day access metric as well as the proportion of patients obtaining care
with access times within targets appropriate to their level of acuity. Our results show
a discrepancy between the two evaluation approaches: for non-urgent patients, using
the standard metric, the clinic’s performance appears unsatisfactory, while using the
more detailed metrics, the clinic is shown to be performing well.
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2 Current Performance Evaluation in Ontario
Primary Care

Health Quality Ontario [11] evaluated performance of primary care in Ontario,
Canada, based on the Primary Care Performance Measurement framework, which
evaluates nine domains, including access. The specific criteria used to evaluate access
by Health Quality Ontario [11] include, among others, timely access at regular place
of care. Prior to 2017, Health Quality Ontario focused on the percentage of patients
with same-/next-day access to a primary care provider, based on the question “The
last time you were sick, how quickly could you see any doctor, nurse practitioner or
physician assistant in this clinic?” In 2017, the latest year for which the performance
report is currently available, a distribution of access times is presented, showing that
39.9%, 26.5%, 19.2% and 14.5% had access times of <2 days, 2–3 days, 4–7 days,
and ≥ 8 days, respectively. The percentage of people waiting for ≥ 8 days ranged
from 5.6% in the Central West region to 40.7% in the North West. At the same time,
67.6% of the respondent Ontarians reported that their wait for an appointment was
“about right”, 18.3% said “somewhat too long” and 14.1% said “much too long”,with
a range of 10.2% (TorontoCentral) to 23.6% (NorthEast) in the “much too long” cate-
gory. Interestingly, the regions with the highest proportion of appointments with high
access times are not necessarily the ones with the highest percentage in the “much too
long”wait category. This observation supports our investigation: first, it demonstrates
the impact of patient perceptions and expectations; second, it does not capture how
many of the appointments were obtained within medically-warranted time frames.

The Quality and Costs of Primary Care (QUALICOPC) Patient Experiences Sur-
vey (PES) is a framework for evaluating care quality and outcomes in primary care
[23]. For evaluating timely access to care, QUALICOPC-PES asks: “How many
days did you wait for this visit from the time that you tried to make an appointment?
For patients who had made an appointment for today’s visit: Was it easy to get the
appointment? Were you able to arrange an appointment with the doctor as soon as
you wanted to?” For data collected between 2013 and winter 2014, 32% (of 1379)
respondents said that they obtained a same-/next-day appointment; surprisingly, 87%
(of 1536) said they were “able to arrange an appointment as soon as [they] wanted
to” [15]. These differing statistics again motivate the need for further research into
performance evaluation: for instance, were the complaints of patients who did not
get a same-/next-day appointment and yet were satisfied less urgent than the ones
who were dissatisfied?

The Canadian Institute for Health Information Commonwealth Fund Survey [5]
in 2016 reports that “only 43% of Canadians were able to get a same- or next-day
appointment at their regular place of care last time they needed medical attention”.
Furthermore, the study shows a discrepancy between the numbers reported by pa-
tients and physicians regarding access to primary care; in particular, the statistic
provided for patients who say they could get a same- or next-day appointment for
2016 is 43%while the statistic provided for “primary care physicianswho saymost (at
least 60%) of their patients can get a same- or next-day appointment” is 53% in 2016.
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3 Literature Review

Primary Care Performance Evaluation Jones et al. [14] state that there exist two
main approaches to evaluating primary care performance: appointment-data-based
and survey-based. However, to the best of our knowledge, all existing studies in
Canada are survey-based. Haggerty et al. [9] consulted primary healthcare (PHC)
experts across Canada to formulate operational definitions of PHC attributes that
should be evaluated in the Canadian primary healthcare setting. Importantly, the
definition of first-contact accessibility as “the ease with which a person can obtain
needed care (including advice and support) from the practitioner of choice within
a time frame appropriate to the urgency of the problem” received a high level of
physician consensus.We highlight in their definition the need to define a “time frame
appropriate to the urgency of the problem”: for acute patients, the appropriate time
frame might indeed be same-day or next-day, but for patients requesting a periodic
health exam, obtaining an appointment within several weeks of their requests is
reasonable. Similarly, by analyzing the data from the QUALICOPC PES, Premji et
al. [19] determined that the same-day/next-day access to primary care indicator does
not match patients’ perceptions of access to primary care.

Patient Classification in Primary Care The aim of patient classification is to prior-
itize patients objectively based on equitable criteria to ensure that patients with more
urgent needs receive services first [7]. In the literature, the classification of primary
care patients into different types has been considered in the context of improving pri-
mary care payment schemes (e.g., [21]) as well as improving patient access times. In
the latter category, Balasubramanian et al. [1] study improving access by redesign-
ing a physician panel based on the patients’ age and presence of chronic disease;
Ozen and Balasubramanian [17] use the number of simultaneous chronic conditions
a patient has to classify patients in primary care and use as a predictor of the number
of visits. In the capacity allocation literature, the majority of papers classify patients
as urgent and non-urgent, e.g., Wang and Gupta [22]. However, based on our knowl-
edge none of the existing access-time-focused literature in primary care explores the
idea of performance evaluation based on acuity levels or prioritization to provide
equitable access time.

4 The Health for All Clinic Background

The Health for All (HFA) clinic is adjacent to the Markham Stouffville Hospital,
located in the City of Markham in the Regional Municipality of York within the
Greater TorontoArea of SouthernOntario, Canada. It is located approximately 30km
northeast of Downtown Toronto. The HFA clinic is affiliated with the University of
Toronto’s Department of Family and Community Medicine. Residents spend their
final two years of training with HFA to become family physicians; they see their
own patients and go through clinical rotations at the hospital. HFA is a family health
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team (FHT)—an inter-professional team of health care providers consisting of family
doctors, nutritionists, social workers, and other professionals who provide compre-
hensive care to patients enrolled within the FHT.

Data We use a comprehensive data set from the HFA clinic for the period from
September 2017 until September 2018. The data set contains 60,682 records listing
the provider name, booking date, appointment date, appointment type, primary MD,
no show, appointment detail, scheduled time, duration, arrival time and departure
time. In order to prepare the data for analysis, we remove extra records and outliers.
The records that we remove from consideration are those with negative access time
(time of appointment in data set was before the time of booking); with no booking
or appointment date; with doctor unavailability; home visits; evening and Saturday
clinic appointments; and records that were labeled as “deleted”, which generally
corresponded to an appointment that was rescheduled for later. After removing these
records, the remaining data set consists of 39,608 records. In order to choose an
appropriate outlier labeling method, we considered whether the underlying data is
symmetric or skewed [2]. Histograms of access times for all appointment types in
this study were found to be right-skewed. Therefore the Adjusted Boxplot developed
by Hubert and Vandervieren [12] is applied as an outlier labeling method. After
removing the outliers using this method, we are left with 39,397 records in the data
set.

Current Appointment Types at HFA The appointment classification system at
HFA is based on patient complaints, i.e., the reason why the appointment has been
requested.When a patients calls the clinic, an administrative clerk asks the patient for
the reason of their request, their family doctor, their availability, etc., and suggests
a time slot. To aid this process, the HFA clinic currently classifies appointments
into 14 types: 11 of these are presented in the first column of Table1, with example
conditions given in the second column. Since the focus of this study is on the access
time of patients who physically visit the clinic, we do not consider the ‘Home-visit’
appointment type in our analysis. Table1 also omits the ‘New Patient’ category, an
appointment for a patient to be introduced to their new family physician. Finally,
another category of appointment is referred to as ‘Blank’—a category that is meant
to encompass all requests that do not clearly fit into the other 13 types. Importantly,
‘Blank’ appointments comprise 52% of all appointments at HFA; anecdotally, it
appears that a large proportion of ‘Blank’ appointments request same-day or next-
day appointments—however, this hypothesis cannot be confirmed by the current data
set due to missing description of patient conditions in the data.

5 Proposed Acuity-Based Evaluation

As seen from Table1, the complaints for which family medicine clinic appointments
are requested vary widely in their nature and urgency. This observation suggests that
evaluation of access time which considers the urgency of the patient request would
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Table 1 Appointment types, example conditions and proposed access time bounds

App type Condition example Should be seen within

Follow-up Soft tissue infection started on
an antibiotic

1week

Sub-acute abdominal pain with
blood work and imaging

2weeks

Hypertension with recent
medication change

4weeks

Thyroid medication dose
modification

12weeks

Injection Travel medicine injection 1week

First visit of a patient who has
not started

2weeks

Their routine immunization in
their infancy

Intra-articular injection 4weeks

Repeat intra-articular injection 12weeks

Mental health Anxiety 2weeks

Depression started on new
medication

4weeks

Mental health condition
responded moderately to
medication change

12weeks

First Pre-Natal Appt requested 1–2 weeks
before week 8th of pregnancy

2weeks

Appt requested 3–4 weeks
before week 8th of pregnancy

4weeks

Pre-Natal After week 28th of pregnancy 2weeks

Week 12th till week 28th of
pregnancy

4weeks

Well-baby Baby should be seen in 4, 6, 9,
12, 15, 18m

12weeks

Pre-op Request 1–2 weeks before
operation

2weeks

Request more than 2weeks
before operation

4weeks

Diabetic management Patient should be seen every
3months

12weeks

Child physical Child should be seen in 2, 4, 6,
16 year

12weeks

Periodic health exam Annual visits for chronic
illness and/or health issues

12weeks

Driver’s physical Every 5years if < 46 y/o;
3years if 46–64 y/o; annually
if > = 65 y/o

12weeks
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give a more accurate representation of the performance of primary care and lead to
more equitable allocation of appointments to patients.

For example, consider patient Awho has diabetes and is calling for his/her regular
three-month appointment. In this case, as long as the appointment is scheduled close
to the target time of three months from the previous check-up, the care needs of the
patient and risks of adverse health outcomes are appropriately addressed. In contrast,
consider patient Bwho calls for a follow-up appointment for an eight-month-old baby
with five days of fever and a possible viral illness diagnosis. Patient B needs to be seen
in the clinic on the same day to ensure they are not at risk for significant adverse health
outcomes. Table1 provides additional examples of conditions of various urgency—
the third columnof Table1 gives potential access time upper bounds obtained through
discussions with two practitioners from HFA. For the majority of appointments, the
access time upper bounds can be defined as the maximum time from the arrival of
the patient request until the patient is seen; however, for some periodic appointments
such as physicals, or for follow-up appointments, the upper bound is defined as the
time between the previous appointment and the next one (e.g., the time between an
appointment to resolve an initial complaint and a follow-up appointment to discuss
the effectiveness of the care received).

As described in Sect. 2, current methods of primary care performance evaluation
in Ontario do not take into account the urgency of the patient request; furthermore, as
shown in Sect. 3, a detailed classification of patient urgency in primary care is done
for billing purposes or, for the purposes of appointment allocation, is usually limited
to two types. Such a performance evaluation approach in primary care is in contrast to
performance evaluation in emergency care. In emergency care, the Canadian Triage
Acuity Scale (CTAS) is employed to classify patients into five categories in order to
“triage patients according to acuity, risk, and care needs based on their presenting
signs and symptoms” and to “ensure that the sickest and highest risk patients are
seen first when ED capacity has been exceeded” [4]. In addition, ED managers can
use CTAS to “capture and analyze ED patient visit based on volume, acuity and by
CEDIS presenting complaint” [4].

Considering Table1 and using an analogy with the CTAS system in emergency
care, we propose a five-level classification of patients in primary care based on their
urgency, varying from urgent patients that need to be seen within one day to routine
patiens that should be seen within 12weeks, as shown in Table2. In Table3 we show
how the current HFA appointment types map to our proposed acuity levels. Given
the acuity levels defined in Table2, we can now evaluate the performance of primary
care with respect to the urgency of the appointment, by finding the proportion of
patients in each acuity category that obtained an appointment within the proposed
access time upper bound (referred to as access time target).
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Table 2 Proposed acuity levels and corresponding access time targets

Acuity level Description Should be seen within

1 Same day urgent 1day

2 Same week urgent 1week

3 Two weeks non-urgent 2weeks

4 Four weeks non-urgent 4weeks

5 Routine 12weeks

Table 3 Acuity levels per appointment type at HFA

Appointment type Acuity level Appointment type Acuity level

Periodic health exam 5 Injection 2–5

Child physical 5 New patient 1–5

Diabetic management 5 Pre-Op assessment 3.4

Driver’s physical 5 Pre-Natal 3.4

First Pre-Natal 3.4 Well baby 5

Follow up 2–5 Blank 1–5

Mental health 3–5

6 Measuring Timely Access to Care

We first analyze HFA clinic access time performance based on the indicators from
the Ontario Ministry of Health and Long-term Care (MOHLTC), followed by per-
formance evaluation based on the acuity levels defined in Table2.

Evaluation based on MOHLTC indicator MOHLTC considers same-/next-day
access as one of the major access time indicators [11]. Patients at HFA reported
“same-day or next-day access when they are sick” as 54% and 52% for 2016 and
2017, respectively. Calculating the same metric from appointment data, we see that
only 32% (out of 38,367) and 31% (out of 39,608) of patients had same-/next-day
appointments for 2016/17 and 2017/18 data, suggesting that the surveyed sample
consisted of patients that either actually had faster access times or were influenced
by an overall favourable perception of their experience at the clinic. In addition, it
is not clear whether patients who are over-due to visit for a chronic condition would
classify their request as being in the category “when they are sick”. The discrepancy in
these numbers supports our argument for objective evaluation from appointment data
systems rather than surveys. Furthermore, the values 31 and 32% seem to indicate
sub-par performance of the HFA clinic.

In Table4, we present the cumulative percentage of same-/next-day and same-
week appointments for each patient class based on our 2017/18 data set. Look-
ing at the percentages by current appointment types, we see that the percentage of
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Table 4 % of patient types with same-day/next-day/same-week appointments

Appointment type Access time

Total # % same d (%) % next d (%) % same w (%)

Periodic health exam 2309 10 13 14

Child physical 910 8 10 12

Diabetic management 1906 6 8 9

Driver’s physical 38 18 26 55

First Pre-Natal 136 7 9 13

Follow up 5978 19 24 27

Mental health 965 10 13 16

Injection 1499 48 53 55

New patient 1470 13 17 18

Pre-Op assessment 247 19 24 28

Pre-Natal 708 7 9 11

Well baby 2711 6 9 11

Blank 20,731 37 42 46

All types 39,608 27 31 35

same-/next-day visits ranges from 8% (diabetic management) to 53% (injection)
which again seems to suggest lack of timely access to care for many HFA patients.
Additionally, these results show substantial variability among patient classes.

Evaluation based on acuity-based indicators Figures1, 2 and 3 show access time
histograms for three appointment types, ‘Follow up’, ‘Diabetic Management’ and
‘Periodic Health Examination’. Importantly, from these histograms we can observe
that access time behaviour of different appointment types is quite different. The
histogram for ‘Follow up’ shows a zero-inflated distribution with a long right tail
that extends beyond 120days; the histogram for ‘DiabeticManagement’ is bi-modal,
with peaks at two weeks and 90days; for the ‘Periodic Health Exam’, the majority
of appointments happen within one month, with a mode of 1week. In addition to the
differences in behaviour among the appointment types, in all three histograms,we see
substantial variability in access times among patients within each appointment type.
For ‘Follow up’ appointments, there are peaks, of diminishing magnitudes, at the
end of every week, suggesting the existence of multiple “sub-types” in the ‘Follow
up’ category, that is, patients whose follow-up appointments should be in one week,
twoweeks, etc. For diabetic appointments, the peak at 90days matches the suggested
interval between two regular visits for a patient with diabetes. For the periodic health
exam, the high number of patients being scheduled within one day and one week is
particularly surprising, given that these are non-urgent appointments.
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We now focus on the appointment types identified in Table3 as having a sin-
gle acuity level of 5. For these appointment types, we present additional statistics
as well as the evaluation of their access times according to our proposed metric in
Table5. In particular, we observe that the majority of patients requesting ‘Periodic
Health Exam’, ‘Child Physical’, ‘Diabetic Management’ and ‘Well Baby’ appoint-
ments were able to obtain them within the suggested upper bounds on access time,
demonstrating that HFA performs very well for non-urgent appointments, which is
not obvious from standard metrics, and in fact contradicts the conclusion one would
make from looking at same-/next-day metrics over all appointment types or even
for these specific non-urgent appointment types. Furthermore, we can observe that
a large number of acuity level 5 patients obtained a same-/next-day appointment,
despite being of low urgency. In a setting with scarce resources, this observation
effectively implies that same-/next-day appointment times are not being used effec-
tively by the clinic, and can inform new allocation policies.
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Discussion A limitation of our study is that we could not evaluate the performance
of the clinic for appointment categories with multiple acuity levels (see Table3) due
to the lack of data regarding patient complaints. Furthermore, we note that the acuity
level definitions proposed in Table2 constitute a proposal that we expect will be
refined by researchers and practitioners in futurework.Given these (or refined) acuity
level definitions, the list of conditions and corresponding access time targets would
require substantial work from clinicians, similarly to the work involved in defining
and updating CTAS.We observe that any potential implementation of our proposal in
practice immediately raises the question of triage in primary care. However, despite
the work required for formalizing a prioritization scheme and triage procedures,
doing so may lead to more equitable resource allocation in primary care, which so
far remains a setting with limited resources.



288 N. Aslani et al.

0

100

200

300

400

0 30 60 90

Access time Sep 2017−Sep2018

# 
of

 p
hy

sc
ia

l r
ou

tin
e 

ex
am

 A
pp

Fig. 3 Access time (days) for periodic health exam

Table 5 Summary of access times for acuity level 5 appointment types at HFA

Appointment
type

Range (w) Mean (w) Median (w) Mode (w) % seen within
access target
(%)

Periodic
health exam

0–15 3.44 3 1 98

Child physical 0–28 4.05 3 2 95

Diabetic
management

0–27 5.94 4 2 91

Well baby 0–25 4.93 4 1 91



Acuity-Based Access Time Evaluation in Primary Care … 289

7 Conclusion

In this paper,we contrasted performance evaluation of primary care using a traditional
metric and new metrics via a case study of a primary care clinic, namely the Health
for All Clinic in Markham, Ontario, Canada. Inspired by CTAS classification used in
emergency departments, we defined acuity levels for the conditions relative to each
appointment type in our case study of primary care. Future work needs to focus on
developing the exact list of conditions for different acuity levels as well as evaluation
of other clinics.
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Uncertainty in the Blood Donation
Appointment Scheduling: Key Factors
and Research Perspectives

Ettore Lanzarone and Semih Yalçındağ

Abstract We consider the management of a blood collection center, which includes
the features of both a production system and a service provider. In particular, we
analyze the scheduling of donors and the related appointment system, addressing
the so-called Blood Donation Appointment Scheduling (BDAS) problem. From the
production system viewpoint, the requirement is to balance the production of whole
blood units between days in order to meet the requirement of a constant supply of
blood to hospitals and transfusion centers; from the service provider perspective,
appointments reduce waiting times and improve the service quality perceived by
donors. Thus, the goals of the BDAS are to guarantee a quite constant production of
whole blood units and to reduce physicians’ overtimes while including appointments
and free slots for donors without a reservation. A framework for the BDAS problem
has been recently proposed, in which slots are first preallocated to the different blood
types and then assigned to the donors when they call to make a reservation. However,
this framework refers to a deterministic setting in which all input parameters are
assumed to be known in advance. On the contrary, the BDAS problem is stochastic
in nature and includes stochastic parameters that must be predicted from historical
data. In this paper, we first analyze the possible uncertainty sources to determine
the most critical ones. Then, we propose research directions to properly include
them in the BDAS framework, considering both stochastic programming and robust
optimization methodologies.
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1 Introduction

Blood is necessary to perform several treatments and surgeries, and blood supply is
a key problem for all health care systems. However, while the demand for blood is
usually high (10 million units per year in the USA, 2.1 in Italy, and 2 in Turkey),
blood is a limited resource as it cannot be produced in laboratory but only withdrawn
from healthy individuals. Thus, blood is usually collected from volunteer donors
all around the world, and the collected blood units are used to satisfy the demand
from hospitals and transfusion centers. Blood units are managed by the so-called
Blood Donation (BD) supply chain. Together with the high demand to satisfy, one
of the main criticalities in managing the BD chain is the short shelf life of the blood
units (about 6weeks), which limits the time period between blood collection and
utilization. Thus, the BD system must effectively manage the collection of blood
units with respect to the demand, in order to avoid blood shortage and wastage.
This is a difficult task, which involves several decision levels, and optimization tools
are highly recommended to guarantee effectiveness and efficiency of the BD supply
chain.

The BD supply chain can be classified in different ways [6, 25, 35]. According to
[35], it is divided in four phases: collection, storage, transportation and utilization.
In this work, we focus on the blood collection phase, which is the first and the most
crucial phase of the entire BD chain. In fact, the management of blood collection
impacts all other phases, as an unbalanced number of donations between days with
respect to the demand might result in blood shortage or wastage despite a proper
management of the other phases. There is no doubt that an increased number of
donations has positive consequences on theBD system, but in any case an unbalanced
arrival of donors could determine alternate periods of wastage and shortage. Hence,
it is crucial to systematically receive donations through a reservation system that
balances the daily production of blood units with respect to the demand.

Moreover, as blood collection centers include the features of both a production
system and a service provider, a proper reservation system can also reduce waiting
times for donors and improve the perceived quality of the service, thus making the
potential donors more willing to donate regularly.

Though most of the donors are willing to exploit reservation systems (either
manual or based on an optimization tool), it is unavoidable that some other donors
do not reserve the donation in advance. As donation is a voluntary activity in several
Countries, blood collection centers accept these non-booked donors not to lose blood
units andnot to discourage future donations from these donors.However, the presence
of non-booked donations makes it difficult to perfectly align blood production with
demand, as random arrivals of these donors generally cause production imbalances
between days. Another issue related with the appointment scheduling is the no-show
of booked donors, who make a reservation but do not show up on the scheduled day.
As in the case of non-booked donors, these no-shows cause production imbalances
between days. Thus, optimization tools for BD appointment scheduling should take
into account these randomness sources while planning donation schedules.



Uncertainty in the Blood Donation Appointment Scheduling … 295

Despite its importance, the blood collection phase is marginally addressed in
the management literature of the BD supply chain [3, 5] and, even considering the
available works that deal with this phase, uncertainty is still neglected.

In this work, in collaboration with a real Italian provider, we discuss the uncer-
tainty sources that affect blood collection to determine themost critical ones and their
impact. Then, we consider the deterministic Blood Donation Appointment Schedul-
ing (BDAS) framework proposed in [4] for the collection of whole blood units and
propose research directions to adequately include uncertainty in this framework.

The remainder of this chapter is organized as follows. A brief literature review on
BD supply chain and optimization approaches that include uncertainty is presented
in Sect. 2. Then, the BDAS framework taken as reference is presented in Sect. 3,
while the uncertainty sources, the methodologies to address them and future research
directions are discussed in Sect. 4. Finally, concluding remarks are reported in Sect. 5.

2 Literature Review

The BD supply chain has been extensively studied, as discussed in recent reviews
available in the literature [3, 5, 25]. These works show that most of the studies
focus on storage and utilization phases, while the collection has not been adequately
considered.

Baş et al. [4] were among the first who contributed to the development of a
decision support tool for blood collection via the definition of the BDAS problem
and the development of a two-phase solution framework. Though this work filled an
important gap in the literature, it did not include any uncertainty source related to
blood collection or the rest of the BD supply chain. However, uncertainty should be
considered to create more effective tools and decision support systems for the BD
system. In the following, we overview all recent works that deal with uncertainty in
the BD supply chain, which are also classified in Table1 according to the addressed
BD phase, the included uncertainty source and the adopted optimization approach.

Most of the works that include uncertainty address the inventory management
(storage phase), the transportation/distribution problem and the design of the overall
supply chain network. This also reflects the trend of all available works, including
those that neglect uncertainty [3, 5]. As for inventory management, Van Dijk et
al. [36] proposed a multi-step procedure based on Markov dynamic programming,
Zhou et al. [40] developed a stochastic dynamic programming approach, Gunpinar
and Centeno [16] proposed a stochastic programming model, Dillon et al. [12] pro-
posed a two-stage stochastic programming model, Najafi et al. [24] developed a
chance-constraint programmingmodel, and Puranam et al. [27] developed a stochas-
tic dynamic programming approach. As for distribution, Hemmelmayr et al. [17]
developed a stochastic programming model, Kazemi et al. [21] proposed a robust
possibilistic programming approach, Akhavan Niaki [2] developed a stochastic pro-
gramming model, and Jafarkhan and Yaghoubi [20] proposed a robust optimization
model.
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Table 1 Literature works that include uncertainty in the management of the BD supply chain
References BD supply chain phase Uncertainty source Optimization approach

Demand Supply Other

Akhavan Niaki et al. [2] Distribution � Stochastic programming

Dillon et al. [12] Inventory management � � Stochastic programming

Ensafian and Yaghoubi
[13]

Supply chain network
design

� Robust optimization

Ensafian et al. [14] Supply chain network
design

� Stochastic programming

Fazli-Khalaf et al. [15] Supply chain network
design

� Robust possibilistic
chance-constraint
programming

Gunpinar and Centeno
[16]

Inventory management � Stochastic programming

Hemmelmayr et al. [17] Distribution � Stochastic programming

Jabbarzadeh et al. [19] Collection/location-
allocation

� � Robust optimization

Jafarkan and Yaghoubi
[20]

Distribution � � Robust optimization

Kazemi et al. [21] Distribution � Robust possibilistic
programming

Najafi et al. [24] Inventory management � � Chance-constraint
programming

Osorio et al. [26] Collection � Stochastic programming

Puranam et al. [27] Inventory management � Stochastic dynamic
programming

Rabbani et al. [28] Collection/location � Fuzzy mathematical
programming

Ramezanian and
Behboodi [29]

Collection/location-
allocation

� Robust optimization

Salehi et al. [31] Supply chain network
design

� Robust stochastic
programming

Samani et al. [32] Supply chain network
design

� Stochastic and
possibilistic
programming

Van Dijk et al. [36] Inventory management � Markov dynamic
programming

Zahiri et al. [39] Collection/location-
allocation

� � Robust possibilistic
programming

Zahiri and Pishvaee [37] Supply chain network
design

� Robust possibilistic
programming

Zahiri et al. [38] Supply chain network
design

� Stochastic programming

Zhou et al. [40] Inventory management � Stochastic dynamic
programming
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Other works include uncertainty while integrating more than one phase (Supply
Chain Network Design). In this group, Ensafian et al. [14] developed a stochastic
programming model, Ensafian and Yaghoubi [13] presented a robust optimization
approach, Fazli-Khalaf et al. [15] proposed a robust possibilistic flexible chance con-
straint programming model, Salehi et al. [31] developed a robust two-stage multi-
period stochastic model, Zahiri and Pishvaee [37] designed two bi-objective robust
possibilistic programming models, Samani et al. [32] proposed stochastic program-
ming and possibilistic programming approaches, and Zahiri et al. [38] developed a
multi-stage stochastic programming approach.

Finally, few contributions address uncertainty in the collection phase; however,
they are mostly related to location/allocation problems and not to the appointment
scheduling problem. Among them, Jabbarzadeh et al. [19] developed a robust op-
timization model to support blood facility location and allocation decisions, Zahiri
et al. [39] proposed a robust possibilistic programming model to determine the best
locations for fixed and temporary blood facilities, Ramezanian and Behboodi [29]
proposed a robust optimization approach for the location-allocation problem, Rab-
bani et al. [28] addressed a fuzzy mathematical programming model for the mobile
blood collection system, and Osorio et al. [26] proposed a multi-objective stochastic
programming model for collection technology selection and donor allocation prob-
lems.

From this literature classification, we may observe a lack of robust appointment
scheduling systems that include uncertainty for the BD collection phase. This gap
could be filled by incorporating the uncertainty sources into the existing BDAS
deterministic framework [4] or in other deterministic models.

Three main approaches to include uncertainty in optimization problems are stud-
ied in the literature and applied in practice [1]. Stochastic programming considers
the uncertain parameters as random variables with a known probability distribution,
and the problem is solved including a set of scenarios generated with those dis-
tributions. Distributionally robust optimization and ambiguous chance-constrained
approaches assume that the probability distributions of the uncertain parameters lie
within a known family of distributions, and the problem is solved for the worst-case
realization compatible with the family. Robust optimization assumes that the uncer-
tain parameters belong to a given convex set (named uncertainty set) without any
assumption on the probability distributions over the set, and the problem is solved
guaranteeing that the solution remains feasible for all parameter values within the
uncertainty set. We will also focus on these methods in our discussion.

3 Blood Donation Appointment Scheduling (BDAS)
Problem

The BDAS architecture proposed by Baş et al. [4] consists of an offline preallocation
of the time slots for donation based on blood type, and an online allocation of each
incoming reservation request to a suitable slot preallocated for the donor’s blood
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type. The offline preallocation is modeled as a deterministic mixed integer linear
programming model, which is solved at a fixed frequency (e.g., once per day); the
online allocation consists of a prioritization policy of the slots, to propose the best
slots each time a donor calls tomake the reservation. The number of preallocated slots
converted in actually reserved slots is fed back to the next run of the preallocation
model, and the process is repeated so on.

The preallocation model of [4] considers a number of slots xbt to preallocate (deci-
sion variables) and a number of already allocated slots abt from previous reservations
(parameters) for each day t of the time horizon T and each blood type b ∈ B. The to-
tal number of slots to preallocate

∑
t x

b
t + abt for each b ∈ B is forced to lie between

(1 − ε)db and (1 + ε)db, where db is the expected number of booked donors over T
and ε is a flexibility parameter. An amount of slots nbt is then left empty at day t ∈ T
for non-booked donors of blood type b ∈ B. Thus, the overall number of planned
donations for blood type b ∈ B at day t ∈ T is ybt = xbt + abt + nbt . Moreover, all
days t ∈ T are divided in a set K of periods, and the service time required in period
k ∈ K of day t ∈ T above the capacity ctk is defined as dispersion penalty ptk . The
primary goal of the BDAS preallocation model is to minimize, over the days t ∈ T
and for each blood type b ∈ B, the absolute variation of ybt with respect to its average
value over the days, which is denoted by zbt . The secondary goal is to minimize a
weighted sum of ptk over t ∈ T and k ∈ K . Further details are provided in [4].

4 Uncertainty Sources and Possible Methodologies

In the above described preallocation model, all parameters are assumed to be deter-
ministic and their values are taken from historical expected values; however, several
uncertainty factors may affect the actual values of the parameters and, thus, the qual-
ity of a solution when applied in practice. On the one hand, it is impossible to include
all of them in the problem, as common in health care where the complexity of both
problem and data is high. On the other hand, the most critical factors should be
included in order to avoid unexpected issues when a solution is executed.

The most critical parameters in the BDAS are those that directly affect the filling
of slots and, therefore, the number of produced units. In particular, with respect to
the planned layout of slots, variations may occur due to the random arrivals of non-
booked donors and the unexpected no-show of booked donors, who do not show up
on the scheduled day without notifying. Thus, the most critical uncertain parameters
are the random arrivals of non-booked donors and the effective number of already
allocated slots (parameters nbt and a

b
t in theBDASpreallocationmodel, respectively).

In the following, we separately address these two parameters. Other secondary
uncertain parameters are the demand for blood, the availability of physicians andma-
chinery for blood withdrawing, and the health status of donors, as it may happen that
a donor must be excluded from donation or a produced blood unit must be discarded.
This classification and prioritization of the uncertainty factors has been discussed and
outlined with staff of the Associazione Volontari Italiani Sangue (AVIS), the largest
network ofBDcollection centers in Italy, and in particularwith itsMilanDepartment.
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4.1 Uncertain Arrivals of Non-booked Donors

This concerns the parameters nbt in the BDAS preallocation model. We suggest two
possible approaches to deal with their uncertainty, either with stochastic program-
ming or with robust optimization.

A trade-off between the robustness level, which refers to the feasibility of the solu-
tion over the possible parameter realizations, and the solution quality, which concerns
the deterioration of the planned solution when applied to the uncertain system, must
be taken into account [1]. On the one hand, a non-conservative solution might easily
become infeasible even for small deviations from the nominal/deterministic prob-
lem; on the other hand, very conservative solutions may turn out to be expensive for
likely scenarios. Thus, the adopted approach and the level of protection against the
uncertain parameters must be tailored based on the specific BDAS problem and the
stochastic information available for the uncertain parameters.

Stochastic programming requires a deep knowledge of the problem to get the
probability distributions. Its main advantage is not to produce over-conservative
solutions, as the level of protection is fine-tuned by the distributions themselves;
however, the resulting problem can be difficult to solve and, if the distributions are
not reliable, the quality of the solution may be low. On the contrary, the solutions
produced via robust optimizationmay be over-conservative, but the possibility to give
a specific shape to the uncertainty set and limit the parameters’ movement within
it allow us to adjust the level of robustness, and the resulting problems are usually
easier to solve than under stochastic programming.

Stochastic programming
Stochastic programming solves the problem over a set S of scenarios generated

based on the probability distribution of the unknown parameters [9]. Two approaches
are usually adopted to manage the scenarios. In the Here & Now approach, the sce-
narios are included in a single optimization problem by repeating the constraints for
each scenario s ∈ S and reformulating the objective function to include the contribu-
tion of each scenario s, weighted by its occurrence probability πs . In theWait & See
approach, the problem is separately solved in each scenario s ∈ S and the expected
value of all obtained solutions is then considered.

In our BDAS problem, scenarios refer to the arrival of non-booked donors. Thus,
for the Here & Now approach, the number of non-booked donors with blood type
b ∈ B in day t ∈ T is redefined as nbst to be replicated in each scenario s ∈ S, while
all other parameters remain the same over the scenarios. Also the main decision
variables xbt andwb

tk remain the same over the scenarios, providing a single stochastic
solution to the problem, while the scenarios affect the definition of the other decision
variables, whose values depend on scenario s. In particular, they are redefined as
follows: ybst is the number of planned units for blood type b ∈ B in day t ∈ T under
scenario s ∈ S; zbst of scenario s ∈ S is the absolute variation of ybst with respect its
average value over T ; pstk is the dispersion penalty in period k ∈ K of day t ∈ T
under scenario s ∈ S.
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The objective function is finally given by the sum of the terms in the scenarios,
weighted by the occurrence probability πs of each scenario s. However, from a prac-
tical viewpoint, the number of theoretical scenarios to include could be extremely
high, considering all possible combinations of nbst over b ∈ B and t ∈ T . Thus, our
suggestion is to draw a predefined number |S| of scenarios with a Monte Carlo ap-
proach from their probability distributions. Then, as they are generated with the same
sampling mechanism, we suggest to assume a uniform probability distribution for
their occurrence, by assigning equal probabilities πs for each s. Finally, a sensitivity
analysis can be conducted with respect to the choice of |S|, to derive the minimum
number of scenarios to include in order to get a good robust solution. This sampling
approach has been already applied in the health care literature [22].

However, in our opinion, the classical Here & Now approach as it is could not be
fully effective for the BDAS preallocation model, because it is based on the so-called
risk-neutral paradigm in which the objective function is given by the expected value
over all considered scenarios. On the contrary, we think that focusing more on the
worse realizations could be more effective. In this light, as future research direction,
we suggest to consider the risk-averse stochastic programming and the Conditional
Value-at-Risk (CVaR) riskmeasure for the objective function, which is directly based
on the Value-at-Risk (VaR) measure [30, 33].

Let us consider the cumulative distribution function FZ (·) of random variable Z ,
which is minimized in the objective function. VaR at confidence level α ∈ (0, 1] is
equal to the α-quantile of Z , i.e., to inf {η : FZ (η) = α} [30, 33]. This is a simple
and widely used risk measure with a clear interpretation; however, it only considers
the position of the α-quantile. The CVaR risk measure takes into account both the α-
quantile (the impact of all extremevalues in the tail of distribution) and the conditional
expectation of the least favorable outcomes (the expectation of only the worst values
above the α-quantile). Indeed, the CVaR of random variable Z at confidence level α
is [30, 33]:

CVaRα(Z) = inf
η∈R

{

η + 1

1 − α
E

[
(Z − η)+

]
}

where E denotes the expected value and the superscript + defines the maximum
between the argument and 0. This expression is nonlinear, due to the maximum
operator+; however, it canbe linearized and easily rewritten considering the scenarios
s ∈ S and their occurrence probabilities πs .

These stochastic programming approaches allow a detailed description of the
uncertainty, based on the probability densities. Moreover, when considering a risk-
averse stochastic programmingmodel, the decisionmaker’s risk-aversion degree can
be easily adjusted by tuning the α-quantile value. However, the probability densi-
ties of the random arrivals of non-booked donors are not always available or their
knowledge is inaccurate. In addition, based on the specific application, we might
discover that a huge number of scenarios is required to get effective solutions, thus
making it impossible to exploit the stochastic programming in practice. To address
this possibility, we also discuss a robust optimization approach.
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Robust Optimization

Several robust optimization approaches are available in the literature. One of
the first and simplest ones was proposed by Soyster [34], in which all uncertain
parameters vary in a predefined range and may assume they worst value together.
However, in practice, it is highly unlikely that all parameters assume they worst value
together.

Thus, more complex approaches have been developed. For example, Bertsimas
and Sim [7] proposed an approach in which only a given subset of parameters for
each constraint, whose cardinality is fixed, assume their worst value together; to
respect the robustness of the solution, the worst combination of parameters is then
chosen in the optimal solution. This approach has been already applied in health
care [10, 23] and proved to be an effective tool [1]. However, it is not suitable for
the BDAS preallocation problem, where all uncertain nbt are typically correlated. In
fact, it is not realistic that the value of nbt in a day is uncorrelated to the other values
in the close days. For this reason, we searched for other robust approaches that take
parameter correlations into account.

Due to the characteristics of the BDAS, our suggestion is to apply the so-called
implementor-adversary approach [8]. Its idea is to obtain the worst-case robust so-
lution over the uncertainty set by iteratively adding scenarios that are critical for
the last solution obtained. When no critical scenarios can be added, the set of the
generated scenarios defines the uncertainty set. Indeed, the problem is formalized as
a two-players game. At each iteration, the implementor solves the principal problem
while considering the scenarios generated up to that iteration, while the adversarial
determines a scenario that respects the conditions of the uncertainty set and worsen
the solution found by the implementor. Then, the two problems are iteratively solved
by adding the newly generated scenarios until the adversarial is no more able to find
a critical scenario that worsen the implementor solution. This approach has been
rarely applied in the health care literature: to allocate scarce medical staff to medical
specialties [18] and to the nurse-to-patient assignment problem in home care [11].

The implementor-adversarial approach can be applied to the BDAS preallocation
problem in a similar way than in Carello et al. [11]. In particular, rough information
on the probability density of each nbt can be used to generate a set L of equiprobable
levels, i.e., values nblt with l ∈ L that are representative of a bandwithin the support of
the distribution,where the bands contain equiprobable parts of the probability density.
Then, the uncertainty set can be defined by assigning rules on the relationships
between the bands, and scenarios s respecting these rules can be iteratively added.

4.2 Random No-Shows of Already Booked Donors

This concerns the reliability of parameters abt in the BDAS preallocation model,
whose values can be lower than planned due to donors who do not actually fill the
reserved slot.
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From the historical data, we may assume to know the show probability of each
booked donor who contributes to each single abt parameter. This show probability
can be either derived as the ratio of times in which the specific donor showed up
after reserving a donation, or a stochastic prediction model can be developed to
determine the probability based on donor’s covariates (e.g., age, gender, working
status, distance from the collection center).

Thanks to the show probabilities, we can build a probability density function for
each abt , whose support ranges from abt = 0, when all donors do not show up, to a
maximum value when all donors do. The resulting probability density functions of
all abt can be employed in different ways. The simplest approach is to consider their
expected values, which means to get abt by summing the show probabilities of the
already booked donors rather than their amount. In this case, the BDAS preallocation
model remains deterministic, but at least the parameters match the expectation of the
show probabilities, while in the model of [4] all donors were assumed to show up.
Other possible approaches are those already suggested for nbt . On the one hand, sce-
narios can be generated and addressed with stochastic programming, also including
the CVaR risk measure; on the other hand, a robust approach can be exploited. Also
in this case, the implementor-adversarial approach could be a valid tool.

5 Conclusions

In this chapter, we have discussed the major sources of uncertainty that affect any
appointment scheduling system for blood donation, with particular reference to the
BDAS preallocation model. In close collaboration with AVIS Milan, we have found
out the two most critical sources, i.e., the uncertain arrivals of non-booked donors
and the uncertain no-shows of booked donors. For both of them we have suggested
possible integrations with the BDAS framework, in order to promote future research
and suggest practical solutions. In the future, we will integrate these uncertainty
sources and test the benefits on the AVIS Milan case. The final goals are to improve
the management of BD collection centers taking into account their twofold function,
i.e., production system and service provider.
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balance the production of blood bags from donation. Eur. J. Oper. Res. 265, 1124–1143 (2018)
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