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1 Introduction

General linear methods have been extensively studied for solving ODEs. Among the
large family of general linear methods the diagonally implicit multistage integration
methods (DIMSIMs) in [1] are the special cases, which exhibit considerable
potential for efficient implementation, providing the global error of the same order
as the local truncation error. In [2], it was demonstrated that finite difference
methods for PDEs can be constructed such that their convergence rates, or the order
of their global errors, are higher than the order of the truncation errors. Following
this idea, Ditkowski and Gottlieb devised the error inhibiting strategy in [3] by
inhibiting the lowest order term in the truncation error from accumulating over time
and thus showed that the global error of the scheme is one order higher than the local
truncation error. The form of the error inhibiting scheme is inspired by the work of
[7], where a block of s new step values is obtained at each step. The key idea of this
method is to construct a coefficient matrix that has the null space where the local
truncation error resides.

In this work, we further improved the original error inhibiting method
by introducing an additional free parameter used in the radial basis function
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(RBF) approximations. The main idea of the proposed method is to adopt
the free parameter in the reconstruction of the error inhibiting method and
to control it for further possible error cancellations. This results in a higher
order of convergence than the original method. One advantage is that the
proposed method does not need any additional conditions, so it is efficient to
implement.

The next section will review the explicit error inhibiting block one-step method.
In Sect. 3, we will explain the RBF interpolation. In Sect. 4, we show how the new
method can be derived followed by Sect. 5 where numerical results are provided
verifying that the convergence rate of the proposed method is increased by one
order. A brief conclusion and an outline of our future research are presented in
Sect. 6.

2 Error Inhibiting Block One-Step Method

Consider the initial value problem for the first-order ODE below

u′(t) = f (t, u(t)), t � a

u(a) = ua

(1)

where we assume f (t, u) is uniformly Lipschitz continuous in u and continuous in
t . We choose a value h for the step size and set tn = a + nh a discrete sequence in
the time domain. Denote the numerical approximation of the solution u(tn) by vn.

Define the solution vector Un by

Un =
[
u

n+ s−1
s

, · · · , u
n+ 1

s
, un

]T

,

where u
n+ j

s
= u(tn+jh/s) is the exact solution at t = tn + jh

s
for j = 0, · · · , s − 1.

The corresponding approximation vector Vn is defined as

Vn =
[
v
n+ s−1

s
, · · · , v

n+ 1
s
, vn

]T

.

In [3], the scheme is formulated as

Vn+1 = QVn (2)

where the operator Q is represented by the following

Q = A + hBf
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and A,B ∈ R
s×s . There are 4 sufficient conditions imposed on the matrices A and

B in order to be error inhibiting:

1. rank(A) = 1.
2. The only non-zero eigenvalue of A is 1 and its corresponding eigenvector is

[1, · · · , 1]T .

3. A can be diagonalized.
4. The matrices A and B are constructed such that when the local truncation error

is multiplied by the discrete solution operator, we have

||Qτν || � O(h) · ||τν ||.

This is accomplished by requiring that the leading order term of the local
truncation error is in the eigenspace of A associated with the zero eigenvalue.

We derive those matrices of A and B with symbolic computation. As an example
of the derivation of the error inhibiting method, we consider the construction of the
scheme with s = 2. The solution vector is then

Un = [un+1/2, un]T ,

and the corresponding approximation vector is given by

Vn = [vn+1/2, vn]T .

In order to satisfy those conditions listed above we first select

A =
[

1 − υ υ

1 − υ υ

]
, (3)

which can be diagonalized as

A =
[

1 − υ υ

1 − υ υ

]
=

[
υ − 1 υ

υ − 1 υ − 1

] [
1 0
0 0

] [
−1 υ

υ−1
1 −1

]
. (4)

Then conditions 1, 2 and 3 are satisfied. Further suppose that

B =
[
b11 b12

b21 b22

]
. (5)
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Then

Vn+1 =
[

1 − υ υ

1 − υ υ

]
Vn + h

[
b11 b12

b21 b22

] [
fn+1/2

fn

]
(6)

where fn+1/2 = f (tn+1/2, vn+1/2) and fn = f (tn, vn). The components of Vn+1
are

vn+3/2 = (1 − υ)vn+1/2 + υvn + h(b11fn+1/2 + b12fn),

vn+1 = (1 − υ)vn+1/2 + υvn + h(b21fn+1/2 + b22fn).

We write each difference equation in the form of error normalized by the step
size and then insert the exact solutions to the ODE into the difference equation.
Expanding un+3/2, un+1 and un+1/2 around t = tn in Taylor series gives the local
truncation error

τn = (τn+1/2, τn)
T ,

where

τn+1/2 = 1

2
(2 − 2b11 − 2b12 + υ)u′

n + 1

8
(8 − 4b11 + υ)u′′

nh

+ 1

48
(26 − 6b11 + υ)u(3)

n h2 + O(h3),

(7)

τn = 1

2
(1 − 2b21 − 2b22 + υ)u′

n + 1

8
(3 − 4b21 + υ)u′′

nh

+ 1

48
(7 − 6b21 + υ)u(3)

n h2 + O(h3). (8)

Vanishing the coefficients of the constant term and the term h in (7) and (8), and
equating the quotient of the coefficient of the terms h2 in (7) and (8) to υ

υ−1 , the
condition 4 is satisfied.

Finally we have the desired scheme as in [3]

Vn+1 = 1

6

[
−1 7
−1 7

]
Vn + h

24

[
55 −17
25 1

] [
fn+1/2

fn

]
, (9)

and correspondingly the local truncation error is 2nd order convergent as expected

τn = 23

576

[
7
1

]
u(3)

n h2 + O(h3). (10)
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3 RBF Interpolation

Now we briefly explain the RBF interpolation in one dimension. Suppose that for
a domain � ⊂ R, a data set {(xi, ui)}Ni=0 is given where ui is the value of the
unknown function u(x) at x = xi ∈ �. We use the RBFs φ : � → R defined by
φi(x) = φ(|x − xi |, εi), where |x − xi | is the distance between x and xi and εi is
a free parameter. The reconstruction of a function, u(x), is then made by a linear
combination of RBFs

IR
N u(x) =

N∑
i=0

λiφ(|x − xi |, εi), (11)

where λi are the expansion coefficients to be determined. Using the interpolation
condition IR

N u(xi) = ui, i = 0, · · · , N , we could find the expansion coefficients λi

by solving the linear system

⎡
⎢⎢⎢⎢⎣

φ(|x0 − x0|, ε0) φ(|x0 − x1|, ε1) · · · φ(|x0 − xN |, εN)

φ(|x1 − x0|, ε0) φ(|x1 − x1|, ε1) · · · φ(|x1 − xN |, εN)
...

...
...

φ(|xN − x0|, ε0) φ(|xN − x1|, ε1) · · · φ(|xN − xN |, εN)

⎤
⎥⎥⎥⎥⎦

·

⎡
⎢⎢⎢⎢⎣

λ0

λ1
...

λN

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎣

u0

u1
...

uN

⎤
⎥⎥⎥⎥⎦

.

(12)

If we choose the multiquadric RBF with all the free parameters equal, then the
interpolation matrix, A, becomes a symmetric matrix with all diagonal entries 1,

A =

⎡
⎢⎢⎢⎢⎣

1
√

1 + ε2(x0 − x1)2 · · · √
1 + ε2(x0 − xN)2√

1 + ε2(x1 − x0)2 1 · · · √
1 + ε2(x1 − xN)2

...
...

...√
1 + ε2(xN − x0)2

√
1 + ε2(xN − x1)2 · · · 1

⎤
⎥⎥⎥⎥⎦

.

(13)

Consider the case of three equally spaced nodes x0, x1, x2 with x0 < x1 < x2.
Let h be the grid spacing. Then the linear system becomes

⎡
⎢⎣

1
√

1 + ε2h2
√

1 + 4ε2h2√
1 + ε2h2 1

√
1 + ε2h2√

1 + 4ε2h2
√

1 + ε2h2 1

⎤
⎥⎦ ·

⎡
⎢⎣

λ0

λ1

λ2

⎤
⎥⎦ =

⎡
⎢⎣

u0

u1

u2

⎤
⎥⎦ . (14)
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By the closed-form expression for the RBF interpolant in [4],

IR
2 u(x) =

2∑
i=0

ui

det(A)
det(Ai(x)). (15)

where Ai(x), a 3 × 3 matrix, is obtained by replacing the ith row of A with the row
vector

[√
1 + ε2(x − x0)2

√
1 + ε2(x − x1)2

√
1 + ε2(x − x2)2

]
.

Differentiating the interpolant, we obtain the first-order derivative

d

dx
IR

2 u(x) =
2∑

i=0

ui

det(A)
· d

dx
det(Ai(x)). (16)

We then estimate the derivative of u at x = x1 as we do in polynomial interpolation
for the central difference formula:

d

dx
IR

2 u(x1) =
√

1 + 4ε2h2 + 1

4h
√

1 + ε2h2
(u2 − u0). (17)

By employing the Taylor expansion of the quotient on the right-hand side of (17),
we have

d

dx
IR

2 u(x1) =
[

1

2h
+ ε2 h

4
+ O(h3)

]
(u2 − u0). (18)

The main feature of the RBF method is that it contains a free parameter, ε, which
we could make use of to further inhibit the errors. In the following section, we will
show that using the parameter ε coupled with hp terms, where p � 2, we can
increase the order of local truncation error and further promote the order of global
error by adopting the error inhibiting scheme.

4 Construction of the Adaptive Error Inhibiting Scheme

Following the main feature of the RBF method explained in the preceding section,
we try to establish a similar explicit block one-step scheme that provides a higher
order of convergence by adding one more block of the free parameters ε1 and ε2
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coupled with hp term. With p = 3, we have

Vn+1 =
[

1 − υ υ

1 − υ υ

]
Vn + h

[
b11 b12

b21 b22

] [
fn+1/2

fn

]
+ h3

[
0 ε1

0 ε2

] [
fn+1/2

fn

]
. (19)

We measure the one-step error normalized by the step size as in Sect. 2. Expanding
un+3/2, un+1 and un+1/2 around t = tn in Taylor series again yields the local
truncation error

τn = [τn+1/2, τn]T ,

where

τn+1/2 = 1

2
(2 − 2b11 − 2b12 + υ)u′

n + 1

8
(8 − 4b11 + υ)u′′

nh +
(

−ε1u′
n + 1

48
(26 − 6b11 + υ)u

(3)
n

)
h2 + 1

384
(80 − 8b11 + υ)u

(4)
n h3 + O(h4),

(20)

τn = 1

2
(1 − 2b21 − 2b22 + υ)u′

n + 1

8
(3 − 4b21 + υ)u′′

nh +
(

−ε2u′
n + 1

48
(7 − 6b21 + υ)u

(3)
n

)
h2 + 1

384
(15 − 8b21 + υ)u

(4)
n h3 + O(h4).

(21)

Annihilating the first two terms in (20) and (21), and equating the quotient of the
coefficient of the terms h3 in (20) and (21) to υ

υ−1 , we have the scheme

Vn+1 = 1

7

[
−1 8
−1 8

]
Vn + h

28

[
64 −20
29 1

] [
fn+1/2

fn

]
+ h3

[
0 ε1

0 ε2

] [
fn+1/2

fn

]
.

(22)

We can easily check that the scheme (22) satisfies those four conditions in Sect. 2.
Further annihilating the coefficients of the term h2, we get the optimal values of ε1
and ε2:

ε1 = 47u
(3)
n

168u′
n

, (23)

ε2 = 9u
(3)
n

224u′
n

. (24)
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Our new scheme has the truncation error

τn = 55

2688

[
8
1

]
u(4)

n h3 + O(h4). (25)

Note that in our new scheme, we need the value of u
(3)
n at each step. This higher

order derivative can be computed by repeated differentiation of the function f on
the right-hand side of (1) twice. However, we choose to estimate the third-order
derivative. For u′

n, we use the given condition from (1), i.e. u′(t) = f (t, u(t)).

For the third-order derivative u
(3)
n , we employ the second-order central difference

formula for f ′′(t, u(t)) at t = tn as

u(3)
n = f ′′(tn, un) ≈ 4(fn+1/2 + 2fn − fn−1/2)

h2
, (26)

where fn+1/2, fn and fn−1/2 are given values. For this computation, no additional
conditions are necessary. The truncation error is still third order accurate, O(h3),
as in (25), so by the error inhibiting strategy we end up with a global error that is
O(h4), which will soon be confirmed in the following section.

We conclude this section with a comparison of three methods. For DIMSIM of
type 3,

[
vn+2

vn+1

]
= 1

4

[
7 −3
7 −3

] [
vn+1

vn

]
+ h

8

[
9 −7

−3 −3

] [
fn+1

fn

]
,

two steps vn and vn+1 are employed to update the step vn+1 and obtain the step
vn+2.
For error inhibiting scheme,

[
vn+3/2

vn+1

]
= 1

6

[
−1 7
−1 7

] [
vn+1/2

vn

]
+ h

24

[
55 −17
25 1

] [
fn+1/2

fn

]
,

two steps vn and vn+1/2 are involved to generate the next two steps vn+1 and vn+3/2.
For our method (if we utilize (26) and substitute (23), (24) for respective ε1 and ε2
in (22) to avoid the zero denominator),

⎡
⎢⎣

vn+3/2

vn+1

vn+1/2

⎤
⎥⎦ = 1

7

⎡
⎢⎣

−1 8 0
−1 8 0
1 0 0

⎤
⎥⎦

⎡
⎢⎣

vn+1/2

vn

vn−1/2

⎤
⎥⎦ + h

168

⎡
⎢⎣

572 −496 188
201 −48 27

0 0 0

⎤
⎥⎦

⎡
⎢⎣

fn+1/2

fn

fn−1/2

⎤
⎥⎦ ,

we use previous three steps vn−1/2, vn and vn+1/2 to evolve the next two steps vn+1
and vn+3/2. In [5] the stability analysis has been done for the adaptive radial basis
function methods for IVPs and it has been shown that some adaptive methods have a
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better stability condition than the original ones. However, it seems that the adaptive
error inhibiting method is more computationally expensive than the original one
when the approximation of (26) is used.

5 Numerical Results

We start with the nonlinear first-order differential equation used in [3]

u′ = −u2, t � 0

u(0) = 1.
(27)

The exact solution of the example is u(t) = 1/(t +1). The left figure of Fig. 1 shows
the global errors at the time t = 1 versus N , the number of steps, in logarithmic
scale for the type-3 DIMSIM (blue), the original error inhibiting scheme (red) and
our proposed method (green). As seen in the figure, our proposed method is the
most accurate among those three methods and yields high order convergence which
is 4th order. Table 1 shows the convergence with N for (27). The type-3 DIMSIM
yields the 2nd order accuracy, the original error inhibiting scheme yields the 3rd
order accuracy and our proposed method yields the 4th order accuracy.

Next we consider the following problem used in [6] where the solution changes
rapidly between [−2, 2]

u′ = −4t3u2, t � −10

u(−10) = 1/10001.
(28)

101 102

N

10-10

10-8

10-6

10-4

10-2

G
lo

ba
l E

rro
r

DIMSIM3
EIS
EIS with h3

Slope = -2
Slope = -3
Slope = -4
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Fig. 1 Global error versus N in logarithmic scale. Left: (27). Right: (28). Blue: DIMSIM
(DIMSIM3) 2nd order. Red: error inhibiting scheme (EIS) 3rd order. Green: our proposed method
(EIS with h3) 4th order
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Table 1 Global error and order of convergence for u′ = −u2 with u(0) = 1

Method N Global error order

DIMSIM type-3 10 6.60E−3

20 1.60E−3 2.0702

40 3.82E−4 2.0402

80 9.41E−5 2.0208

160 2.34E−5 2.0105

320 5.82E−6 2.0053

Error inhibiting scheme 10 2.17E−4

20 2.89E−5 2.9118

40 3.73E−6 2.9536

80 4.74E−7 2.9763

160 5.97E−8 2.9880

320 7.50E−9 2.9940

Error inhibiting scheme with h3 term 10 2.71E−5

20 2.24E−6 3.5935

40 1.64E−7 3.7781

80 1.11E−8 3.8833

160 7.22E−10 3.9400

320 4.61E−11 3.9698

The exact solution is u(t) = 1/(t4 + 1). The right figure of Fig. 1 shows the global
errors at t = 0 versus N in logarithmic scale for the type-3 DIMSIM (blue), the
original error inhibiting method (red) and our proposed method (green). We verify
again that our proposed method is indeed the most accurate and yields the highest
order of convergence. Table 2 shows the convergence with N for (28). Although
the type-3 DIMSIM does not reveal the 2nd order accuracy in the beginning, it
eventually exhibits the order of accuracy as expected. The original error inhibiting
scheme is 3rd order accurate and our proposed method 4th order accurate.

6 Conclusions

In this note, we modified and improved the original error inhibiting block one-
step method proposed in [3] by introducing a free parameter. By exploiting the
parameter, the local truncation error is further reduced resulting in higher order of
the global error. It is numerically demonstrated that, with the proposed method, the
local truncation error is of the 3rd order and the global error of the 4th order. As
mentioned in Sect. 4, we will investigate the stability of the error inhibiting method
and our proposed method as well as relaxing the fourth constraint in error inhibiting
method in our future research.
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Table 2 Global error and order of convergence for u′ = −4t3u2 with u(−10) = 1/10001

Method N Global error Order

DIMSIM type-3 200 9.05E−1

400 7.24E−1 0.3221

800 4.07E−1 0.8293

1600 1.49E−1 1.4476

3200 4.24E−2 1.8158

6400 1.10E−2 1.9475

Error inhibiting scheme 200 1.86E−1

400 2.80E−2 2.7294

800 3.60E−3 2.9639

1600 4.50E−4 2.9965

3200 5.63E−5 3.0002

6400 7.03E−6 3.0005

Error inhibiting scheme with h3 term 200 1.14E−2

400 6.57E−4 4.1132

800 3.94E−5 4.0620

1600 2.41E−6 4.0307

3200 1.49E−7 4.0123

6400 9.91E−9 3.9122
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