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1 Introduction

For a bounded Lipschitz domain Ω ⊂ R
3 recall the classical L2-orthogonal

Helmholtz decompositions

L2(Ω) = ∇ H 1
0 (Ω) ⊕ H(div 0,Ω) = ∇ H 1(Ω) ⊕ H0(div 0,Ω) ,

see, e.g., [9, Ch. XI, Sect. I]. They can be used to derive decompositions of
(subspaces of) H(curl,Ω):

H0(curl,Ω) = ∇ H 1
0 (Ω) ⊕ XN(Ω), XN(Ω) := H0(curl,Ω) ∩ H(div 0,Ω),

H(curl,Ω) = ∇ H 1(Ω) ⊕ XT (Ω), XT (Ω) := H(curl,Ω) ∩ H0(div 0,Ω) .

If the domain Ω is convex then the respective complementary space, XN(Ω)

or XT (Ω), is continuously embedded in the space H1(Ω) of vector fields with
Cartesian components in H 1(Ω), cf. [1]. Then one can, for instance, write any
u ∈ H(curl,Ω) as

u = ∇ p + z, (1)
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with p ∈ H 1(Ω) and z ∈ H1(Ω). Since ‖∇ p‖L2(Ω) ≤ ‖u‖L2(Ω) one obtains
(using the continuous embedding) the stability property1

‖∇ p‖L2(Ω) + ‖z‖H1(Ω) ≤ C‖z‖H(curl,Ω) . (2)

A similar decomposition can be found for u ∈ H0(curl,Ω).
Generally, a decomposition of form (1) with the stability property (2) is called

regular decomposition, even if L2-orthogonality does not hold. Actually, it turns out
that (1)–(2) can be achieved even in cases where Ω is non-convex, in particular on
non-smooth domains, or in cases where Ω or its boundary have non-trivial topology;
only the L2-orthogonality has to be sacrificed, cf. [20].

Noting that ∇ H 1(Ω) is contained in the kernel of the curl operator and that—
under mild smoothness assumptions on the domain—the whole kernel is spanned by
∇ H 1(Ω) plus a finite-dimensional co-homology space [15, Sect. 4] one can achieve
a second decomposition,

u = h + z , (3)

with h ∈ ker(curl|H(curl,Ω)) and z ∈ H1(Ω), where

‖h‖L2(Ω) ≤ C ‖u‖L2(Ω), ‖z‖H1(Ω) ≤ C ‖ curl u‖L2(Ω) . (4)

The second stability estimate states that if u is already in the kernel of the curl oper-
ator, then z is zero. Hence, (1) the operator mapping u to h is a projection onto the
kernel space and (2) the complement operator projects u to the function z of higher
regularity H1(Ω). For trivial topology of Ω and ∂Ω , the two decompositions (1)–
(2) and (3)–(4) coincide.

As a few among many more [17, Sect. 1.5], we would like to highlight two
important applications of these regular decompositions.

1. The second form (3)–(4), in the sequel called rotation-bounded decomposition,
can be used to show that the operator underlying a certain boundary value
problem for Maxwell’s equations is a Fredholm operator. The key point is
that the complement space of the kernel (from the view of the mentioned
projections) is H1(Ω) which is compactly embedded in L2(Ω), see e.g., [14, 16]
and references therein.

2. The first form (1)–(2), in the sequel called gradient-based decomposition, has
been used to generate stable three-term splittings of a finite element subspace
of H(curl,Ω), cf. [19–21, 23], which allows the construction of so-called
fictitious or auxiliary space preconditioners for the ill-conditioned system matrix
underlying the discretized Maxwell equations.

1Here and below C stands for a positive “generic constant” that may depend only on Ω , unless
specified otherwise.
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In both applications, it is desirable to obtain the decompositions for minimal
smoothness of the domain, e.g., Lipschitz domains, which are not necessarily
convex. Moreover, it is also desirable to go beyond decompositions of the entire
space H(curl,Ω) and extend them to subspaces for which the appropriate trace
vanishes on a “Dirichlet part” ΓD of the boundary. In this case traces of the two
summands should also vanish on ΓD .

In the present paper, we provide regular decompositions of both types for sub-
spaces of H(curl,Ω) (in Sect. 3) and H(div,Ω) (in Sect. 4) comprising functions
with vanishing trace on a part ΓD of the boundary ∂Ω for Lipschitz domains Ω

of arbitrary topology. In particular, Ω is allowed to have handles, and ∂Ω and ΓD

may have several connected components. The Dirichlet boundary ΓD must satisfy a
certain smoothness assumption that we shall introduce in Sect. 2. In addition to the
stability estimates (2) and (4), we show that the decompositions are stable even in
L2(Ω).

In the final part of the manuscript, in Sect. 5, we establish regular decompositions
of spaces of Whitney forms, which are lowest-order conforming finite element
subspaces of H(curl,Ω) and H(div,Ω), respectively, built upon simplicial trian-
gulations of Ω .

This note is based on [17] and is an abridged version of [18]. Please refer to this
latter preprint for complete proofs of the results quoted below.

2 Preliminaries

Since subtle geometric arguments will play a major role for parts of the theory, we
start with a precise characterization of the geometric setting: Let Ω ⊂ R

3 be an
open, bounded, connected Lipschitz domain.2 We write d(Ω) for its diameter. Its
boundary Γ := ∂Ω is partitioned according to Γ = ΓD ∪ Σ ∪ ΓN , with relatively
open sets ΓD and ΓN . We assume that this provides a piecewise C1 dissection of
∂Ω in the sense of [12, Definition 2.2]. Sloppily speaking, this means that Σ is the
union of closed curves that are piecewise C1.

Under the above assumptions on Ω and ΓD , [12, Lemma 4.4] guarantees the
existence of an open Lipschitz neighborhood ΩΓ (“Lipschitz collar”) of Γ and of a
“bulge” ΥD ⊂ ΩΓ \Ω . We recall the properties of bulge domains from [12, Sect. 2,
Thm. 2.3], also stated in [17, Thm. 2.2]:

Theorem 1 (Bulge-Augmented Domain) There exists a Lipschitz domain ΥD ⊂
R

3\Ω , such that Υ D∩Ω = ΓD , Ωe := ΥD∪ΓD∪Ω is Lipschitz, d(Ωe) ≤ 2 d(Ω),
and Υ D ⊂ ΩΓ . Moreover, each connected component ΓD,k of ΓD corresponds to a
connected component ΥD,k of ΥD , and these have positive distance from each other.

2Strongly Lipschitz, in the sense that the boundary is locally the graph of a Lipschitz continuous
function.
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Let

H 1
ΓD

(Ω) := {u ∈ H 1(Ω) : (γ u)|ΓD
= 0},

HΓD
(curl,Ω) := {u ∈ H(curl,Ω) : (γ τ u)|ΓD

= 0},
HΓD

(div,Ω) := {u ∈ H(div,Ω) : (γnu)|ΓD
= 0} ,

denote the standard Sobolev spaces where the distributional gradient, curl, or
divergence is in L2 and where the pointwise trace γ u, the tangential trace γτ u,
or the normal trace γnu, respectively, vanishes on the Dirichlet boundary ΓD , see
e.g. [3, 6, 26]. These space are linked via the de Rham complex,

KΓD
(Ω)

id−→ H 1
ΓD

(Ω)
∇−→ HΓD

(curl,Ω)
curl−→ HΓD

(div,Ω)
div−→ L2(Ω),

(5)

where

KΓD
(Ω) := {v ∈ H 1

ΓD
(Ω) : v = const} =

⎧
⎨

⎩

span{1}, if ΓD = ∅,

{0}, otherwise.

The range of each operator in (5) lies in the kernel space of the succeeding one, cf.
[3, Lemma 2.2]. We define

HΓD
(curl 0,Ω) := {v ∈ HΓD

(curl,Ω) : curl v = 0},
HΓD

(div 0,Ω) := {v ∈ HΓD
(div,Ω) : div v = 0}. (6)

Barring topological obstructions these kernels can be represented through poten-
tials: Let β1(Ω) denote the first Betti number of Ω (the number of “handles”) and
β2(Ω) the second Betti number (the number of connected components of ∂Ω minus
one). By the very definition of the Betti numbers as dimensions of co-homology
spaces we have

β1(Ω) = 0 �⇒ H(curl 0,Ω) = ∇ H 1(Ω), (7)

β2(Ω) = 0 �⇒ H(div 0,Ω) = curl H(curl,Ω), (8)

cf. [26]. We call Ω topologically trivial if β1(Ω) = β2(Ω) = 0.

3 Regular Decompositions and Potentials Related to H(curl)

Throughout we rely on the properties of Ω and ΓD as introduced in Sect. 2 and
use the notations from Theorem 1. We write C for positive “generic constants” and
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say that a constant “depends only on the shape of Ω and ΓD”, if it depends on the
geometric setting alone, but is invariant with respect to similarity transformations.
To achieve this the diameter of Ω will have to enter the estimates; we denote it by
d(Ω).

3.1 Gradient-Based Regular Decomposition of H(curl)

The following theorem is essentially [17, Thm. 2.1].

Theorem 2 (Gradient-Based Regular Decomposition of H(curl)) Let (Ω, ΓD)

satisfy the assumptions of Sect. 2. Then for each u ∈ HΓD
(curl,Ω) there exist z ∈

H1
ΓD

(Ω) and p ∈ H 1
ΓD

(Ω) depending linearly on u such that

(i) u = z + ∇ p,

(ii) ‖z‖0,Ω + ‖∇ p‖0,Ω ≤ C ‖u‖0,Ω,

(iii) ‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω ≤ C‖ curl u‖0,Ω + 1

d(Ω)
‖u‖0,Ω ,

with constants depending only on the shape of Ω and ΓD , but not on d(Ω).

Remark 1 An early decomposition of a subspace of H(curl,Ω) ∩ H(div,Ω) into
a regular part in H1(Ω) and a singular part in ∇H 1(Ω) can be found in [4] and
in [5, Proposition 5.1], see also [7, Sect. 3] and references therein. Theorem 2
was proved in [14, Lemma 2.4] for the case of ΓD = ∂Ω and without the L2-
stability estimate, following [5, Proposition 5.1]. Pasciak and Zhao [28, Lemma 2.2]
provided a version for simply connected Ω and the case ΓD = ∂Ω with pure
L2-stability, but p is only constant on each connected component of ∂Ω (see also
Theorem 5 and Remark 3). This result was refined in [24, Thm. 3.1]. For the case
ΓD = ∅, [14, Lemma 2.4] gives a similar decomposition but ∇p must be replaced
by an element from H(curl 0,Ω) in general. Finally, Theorem 2 without the pure
L2-stability was proved in [20, Thm. 5.2].3

Remark 2 The constant C in Theorem 2 depends mainly on the stability constants
of key extension operators. If the bulge ΥD has multiple components ΥD,k , the final
estimate will depend on the relative distances between ΥD,k , ΥD,
, k �= 
 and the
ratios d(ΥD,k)/ d(Ω).

3This reference contains a typo which is easily identified when inspecting the proof: In general, z
cannot be estimated in terms of ‖ curl u‖0,Ω but one must use the full H(curl) norm.
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Remark 3 If ΓD = ∂Ω , one obtains only p ∈ H 1(Ω) being constant on each
connected component of ΓD but the improved bound

‖∇ z‖0,Ω + d(Ω)−1‖z‖0,Ω ≤ C ‖ curl u‖0,Ω .

Results on regular decompositions in this special case can be found in [24, 28].

3.2 Regular Potentials for Some Divergence-Free Functions

Let the domain Ω and the Dirichlet boundary part ΓD be as introduced in Sect. 2 and
let Γi , i = 0, . . . , β2(Ω), denote the connected components of ∂Ω , where β2(Ω) is
the second Betti number of Ω .

We define the space4

HΓD
(div 00,Ω) :=

{
q ∈ HΓD

(div 0,Ω) : 〈γnq, 1〉Γi
= 0, i = 0, . . . , β2(Ω)

}
.

(9)

Above γn denotes the normal trace operator, and the duality pairing is that between
H−1/2(Γi) and H 1/2(Γi). If ΓD = ∅ we simply drop the subscript ΓD . Obviously,

HΓD
(div 00,Ω) ⊂ H(div 00,Ω) .

The next result identifies the above space as the range of the curl operator.

Theorem 3 (Regular Potential of Range(curl)) Let (Ω, ΓD) be as in Sect. 2 and
assume in addition that each connected component ΥD,k of the bulge has vanishing
first Betti number, β1(ΥD,k) = 0. Then

HΓD
(div 00,Ω) = curl HΓD

(curl,Ω) = curl H1
ΓD

(Ω) ,

and for each q ∈ HΓD
(div 00,Ω) there exists ψ ∈ H1

ΓD
(Ω) depending linearly on

q such that

curl ψ = q and ‖∇ ψ‖0,Ω + 1

d(Ω)
‖ψ‖0,Ω ≤ C ‖q‖0,Ω ,

where C depends only on the shape of Ω and ΓD , but not on d(Ω)

4Alternatively we can define HΓD
(div 00,Ω) as the functions in HΓD

(div 0,Ω) orthogonal to the
harmonic Dirichlet fields H(div 0,Ω) ∩ H0(curl 0,Ω).
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Remark 4 For the case that ΓD = ∅, we reproduce the classical result

H(div 00,Ω) = curl H(curl,Ω) = curl H1(Ω),

see [11, Thm. 3.4]. In that case, Step 4 of the proof can be left out and ψ = w1
which is why div ψ = 0 in Ω . This property, however, is lost in the general case.

3.3 Rotation-Bounded Regular Decomposition of H(curl)

We can now formulate another new variety of regular decompositions, for which the
H1-component will vanish for curl-free fields.

Theorem 4 (Rotation-Bounded Regular Decomposition of H(curl) (I)) Let
(Ω, ΓD) be as in Sect. 2 and assume, in addition, that each connected component
ΥD,k of the bulge has vanishing first Betti number, β1(ΥD,k) = 0. Then, for
each u ∈ HΓD

(curl,Ω) there exist z ∈ H1
ΓD

(Ω) and a curl-free vector field
h ∈ HΓD

(curl 0,Ω), depending linearly on u such that

u = z + h,

‖h‖0,Ω ≤ ‖u‖0,Ω + C d(Ω) ‖ curl u‖0,Ω,

‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω ≤ C ‖ curl u‖0,Ω ,

where C depends only on the shape of Ω and ΓD , but not on d(Ω).

Remark 5 The constant C in Theorem 4 depends essentially on the stability
constants of the divergence-free extension operator E

div,0
Ωe and the (adapted) Stein

extension operator E
∇,Stein
ΥD

.

Another stronger version of the rotation-bounded regular decomposition of
H(curl) gets rid of the assumptions on the topology of the Dirichlet boundary and
has improved stability properties (though with less explicit constants).

Theorem 5 (Rotation-Bounded Regular Decomposition of H(curl) (II)) Let
(Ω, ΓD) be as in Sect. 2. Then for each u ∈ HΓD

(curl,Ω) there exist z ∈ H1
ΓD

(Ω)

and a curl-free h ∈ HΓD
(curl 0,Ω) depending linearly on u such that

u = z + h ,

‖z‖0,Ω + ‖h‖0,Ω ≤ C ‖u‖0,Ω ,

‖∇ z‖0,Ω + d(Ω)−1‖z‖0,Ω ≤ C ‖ curl u‖0,Ω ,

where C depends only on the shape of Ω and ΓD , but not on d(Ω).
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Remark 6 For the case ΓD = ∂Ω the result of the theorem is already proved by
Remark 3 since we obtain u = z + ∇p with ∇p ∈ ∇H 1

0,const(Ω) = H0(curl,Ω).

Remark 7 We would like to emphasize that both in Theorems 2 and 5, the domain
Ω may be non-convex, non-smooth, and may have non-trivial topology: It may
have handles and its boundary may have multiple components. Also the Dirichlet
boundary ΓD may have multiple components, each of which with non-trivial
topology. Moreover, we have the pure L2(Ω)-stability in both theorems. In this
sense, the results of Theorems 2 and 5 are superior to those found, e.g., in [7,
Thm 3.4], [19] or the more recent ones in [8, Thm. 2.3], [22].

Remark 8 If Ω has vanishing first Betti number, β1(Ω) = 0, then HΓD
(curl 0,Ω)

= ∇H 1
ΓD,const(Ω). Hence, we can split each u ∈ HΓD

(curl,Ω) into z ∈ H1
ΓD

(Ω)

and ∇p with p ∈ H 1(Ω) being constant on each connected component of ΓD . If
ΓD is connected, then p ∈ H 1

ΓD
(Ω). Summarizing, if Ω has no handles and if ΓD

is connected, then we have the combined features of Theorems 2 and 5.

Finally, we mention that the regular decomposition theorems spawn projection
operators that play a fundamental role in the analysis of weak formulations of
Maxwell’s equations in frequency domain [14, Sect. 5].

Corollary 1 Let (Ω, ΓD) be as in Sect. 2. Then there exist continuous pro-
jection operators R : HΓD

(curl,Ω) → H1
ΓD

(Ω) and N : HΓD
(curl,Ω) →

HΓD
(curl 0,Ω) such that R + N = id and

‖Rv‖H1(Ω) + ‖Nv‖L2(Ω) ≤ C ‖v‖H(curl,Ω) ∀v ∈ H(curl,Ω),

where C is a constant independent of v. Moreover, F : HΓD
(curl,Ω) →

HΓD
(curl,Ω) defined by Fv := Rv − Nv is an isomorphism.

Remark 9 The L2-estimates from Theorem 4 then show that the corresponding
operator R can be extended to a continuous operator mapping from L2(Ω) to
L2(Ω).

4 Regular Decompositions and Potentials Related to H(div)

The developments of this section are largely parallel to those of Sect. 3 with some
new aspects concerning extensions and topological considerations.

4.1 Rotation-Based Regular Decomposition of H(div)

The following theorem is the H(div)-counterpart of Theorem 2.
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Theorem 6 (Rotation-Based Regular Decomposition of H(div)) Let (Ω, ΓD)

satisfy the assumptions made in Sect. 2. Then for each v ∈ HΓD
(div,Ω) there exist

z ∈ H1
ΓD

(Ω) and q ∈ H1
ΓD

(Ω) depending linearly on v such that

v = z + curl q,

‖z‖0,Ω + ‖ curl q‖0,Ω + 1

d(Ω)
‖q‖0,Ω ≤ C ‖v‖0,Ω ,

‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω + 1

d(Ω)
‖∇ q‖0,Ω ≤ C

(‖ curl v‖0,Ω + 1

d(Ω)
‖v‖0,Ω

)
,

with constant C depending only on the shape of Ω and ΓD , but not on d(Ω).

4.2 Regular Potential with Prescribed Divergence

The next result carries Theorem 3 over to H(div).

Theorem 7 (Regular Potentials for the Image Space of div) Let (Ω, ΓD) be as
in Sect. 2 and, in addition, assume that each connected component ΥD,k of the bulge
has a connected boundary, i.e., β2(ΥD,k) = 0. Then

L2(Ω) = div HΓD
(div,Ω) = div H1

ΓD
(Ω).

Moreover, for each v ∈ L2(Ω) there exists q ∈ H1
ΓD

(Ω) depending linearly on v

such that, with a constant C depending on Ω and ΓD but not on d(Ω),

div q = v and ‖∇ q‖0,Ω + 1

d(Ω)
‖q‖0,Ω ≤ C ‖v‖0,Ω .

4.3 Divergence-Bounded Regular Decompositions of H(div)

We can now formulate other variants of regular decompositions of H(div) in analogy
to what we did in Sect. 3.3.

Theorem 8 (Divergence-Bounded Regular Decomposition of H(div) (I)) Let
(Ω, ΓD) be as in Sect. 2. In addition, assume that each connected component
ΥD,k of the bulge has a connected boundary, i.e., β2(ΥD,k) = 0. Then, for each
v ∈ HΓD

(div,Ω) there exists z ∈ H1
ΓD

(Ω) and a divergence-free vector field
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h ∈ HΓD
(div 0,Ω) depending linearly on v such that

v = z + h, (10)

‖h‖0,Ω ≤ ‖v‖0,Ω + C d(Ω)‖ div v‖0,Ω , (11)

‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω ≤ C ‖ div v‖0,Ω , (12)

where C depends only on the shape of Ω and ΓD , but not on d(Ω).

The last variant of H(div) regular decomposition of H(div) dispenses with the
assumptions on the topology of the Dirichlet boundary and has better stability
properties than the splitting from Theorem 8 (though with less explicit constants).

Theorem 9 (Divergence-Bounded Regular Decomposition of H(div) (II)) Let
(Ω, ΓD) be as in Sect. 2. Then, for each v ∈ HΓD

(div,Ω) there exists z ∈ H1
ΓD

(Ω)

and a divergence-free vector field h ∈ HΓD
(div 0,Ω) depending linearly on v such

that

v = z + h, (13)

‖z‖0,Ω + ‖h‖0,Ω ≤ ‖v‖0,Ω , (14)

‖∇ z‖0,Ω + 1

d(Ω)
‖z‖0,Ω ≤ C ‖ div v‖0,Ω , (15)

where C depends only on the shape of Ω and ΓD , but not on d(Ω).

5 Discrete Counterparts of the Regular Decompositions

The discrete setting to which we want to extend the concept of regular decomposi-
tions is provided by finite element exterior calculus (FEEC, [2]) which introduces
finite element subspaces of H(curl) and H(div) as special instances of spaces of
discrete differential forms. In this section we confine ourselves to the lowest-order
case of piecewise linear finite element functions.

Throughout, we assume that (Ω, ΓD) is as in Sect. 2, and, additionally, that Ω is
a polyhedron and that ∂ΓD consists of straight line segments. All considerations take
for granted a shape-regular family of meshes {T h}h of Ω , consisting of tetrahedral
elements, and resolving ΓD in the sense that ΓD is a union of faces of some of the
tetrahedra.

The following finite element spaces will be relevant:

• the space W0
h,ΓD

(Ω) of H 1
ΓD

(Ω)-conforming piecewise linear Lagrangian finite
element functions,

• the space W1
h,ΓD

(Ω) of HΓD
(curl,Ω)-conforming lowest order Nédélec ele-

ments, also known as edge elements,
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• the space W2
h,ΓD

(Ω) of HΓD
(div,Ω)-conforming lowest order tetrahedral

Raviart-Thomas finite elements, aka, face elements,
• the space W0

h,ΓD
(Ω) := [W0

h,ΓD
(Ω)]3 of piecewise linear globally continuous

vector fields vanishing on ΓD .

Functions in W

h,ΓD

(Ω), 
 = 1, 2, 3, are so-called Whitney forms, lowest-order
discrete differential forms of the first family as introduced in [13] and [2, Sect. 5].

5.1 Discrete Regular Decompositions for Edge Elements

Commuting projectors, also known as co-chain projectors, are the linchpin of FEEC
theory [2, Sect. 7], and it is not different with our developments. Thus, let

R0
h,ΓD

: H 1
ΓD

(Ω) → W0
h,ΓD

(Ω)

and R1
h,ΓD

: HΓD
(curl,Ω) → W1

h,ΓD
(Ω)

denote the continuous, boundary-aware cochain projectors from [17, Sect. 3.2.6],
which extend the pioneering work [10] by Falk and Winther. These two linear
operators are projectors onto their ranges, they fulfill the commuting property

∇(R0
h,ΓD

ϕ) = R1
h,ΓD

(∇ ϕ) ∀ϕ ∈ H 1
ΓD

(Ω) , (16)

and local stability estimates

Theorem 10 ([17, Thm. 1.2]) For each vh ∈ W1
0,ΓD

(Ω) there exists a continuous

and piecewise linear vector field zh ∈ W0
h,ΓD

(Ω), a continuous and piecewise

linear scalar function ph ∈ W0
h,ΓD

(Ω), and a remainder ṽh ∈ W1
0,ΓD

(Ω), all
depending linearly on vh, providing the discrete regular decomposition

vh = R1
h,ΓD

zh + ṽh + ∇ ph

and satisfying the stability estimates

‖zh‖0,Ω + ‖∇ ph‖0,Ω + ‖̃vh‖0,Ω ≤ C ‖vh‖0,Ω , (17)

‖∇ zh‖0,Ω + ‖h−1̃vh‖0,Ω ≤ C
(‖ curl vh‖0,Ω + 1

d(Ω)
‖vh‖0,Ω

)
, (18)

where C is a generic constant that depends only on the shape of (Ω, ΓD), but not on
d(Ω), and on the shape regularity constant of T h(Ω). Above, h−1 is the piecewise
constant function that is equal to h−1

T on every element T .

Obviously, this is a discrete counterpart of the regular decomposition of H(curl)
from Theorem 2. The following theorem appears to be new and it corresponds to
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the rotation-bounded regular decomposition of Theorem 5. For the sake of brevity
define the discrete nullspace of the curl operator

N 1
h := {vh ∈ W1

h,ΓD
(Ω) : curl vh = 0} . (19)

If Ω and ΓD have simple topology, Xh = ∇ W0
h,ΓD

(Ω), but if the first Betti number
of Ω is non-zero, or if ΓD has multiple components, then a finite-dimensional co-
homology space has to be added [2, Sect. 5.6].

Theorem 11 (Rotation-Bounded Discrete Regular Decomposition for Edge Ele-
ments) For each vh ∈ W1

0,ΓD
(Ω) there exists a continuous and piecewise linear

vector field zh ∈ W0
h,ΓD

(Ω), an curl-free edge element function hh ∈ N 1
h , and a

remainder ṽh ∈ W1
0,ΓD

(Ω), all depending linearly on vh, providing the discrete
regular decomposition

vh = R1
h,ΓD

zh + ṽh + hh

and satisfying the stability bounds

‖zh‖0,Ω

‖hh‖0,Ω

‖̃vh‖0,Ω

⎫
⎪⎬

⎪⎭
≤ C ‖vh‖0,Ω ,

‖∇ zh‖0,Ω

‖h−1̃vh‖0,Ω

}

≤ C ‖ curl vh‖0,Ω ,

where C is a uniform constant that depends only on the shape of (Ω, ΓD), but not
on d(Ω), and on the shape regularity constant of T h(Ω).

We stress that the statements of Theorems 10 and 11 do not hinge on any
assumptions on the topological properties of Ω and ΓD .

5.2 Discrete Regular Decompositions for Face Elements

For face elements, the construction of a boundary-aware co-chain projection
operator

R2
h,ΓD

: HΓD
(div,Ω) → W2

h,ΓD
(Ω)

that commutes with R1
h,ΓD

and the curl-operator has not yet been accomplished.
Fortunately, in the case ΓD = ∅, this operator is available from [10]. Thus, in the
following, we treat only the case ΓD = ∅ and just omit the subscript ΓD . Then,
from [10] we can borrow a linear operator R2

h : H(div,Ω) → W2
h(Ω) such that

curl R1
hu = R2

h curl u ∀u ∈ H(curl,Ω) . (20)

The next result takes Theorem 6 to the discrete setting.
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Theorem 12 (Discrete Regular Decomposition of W2
h(Ω)) For each vector field

vh in the lowest-order Raviart-Thomas space W2
h(Ω), there exists a continuous

and piecewise linear vector field zh ∈ W0
h(Ω), a vector field qh in the lowest-order

Nédélec space W1
h(Ω), and a remainder ṽh ∈ W2

h(Ω), all depending linearly on
vh, providing the discrete regular decomposition

vh = R2
hzh + ṽh + curl qh ,

and the stability estimates

‖zh‖0,Ω

‖ curl qh‖0,Ω + 1
d(Ω)

‖qh‖0,Ω

‖̃vh‖0,Ω

⎫
⎪⎬

⎪⎭
≤ C ‖vh‖0,Ω ,

‖∇ zh‖0,Ω

‖h−1̃vh‖0,Ω

}

≤ C‖ div vh‖0,Ω + 1

d(Ω)
‖vh‖0,Ω .

The constant C depends only on the shape of Ω , but not on d(Ω), and the shape-
regularity of T h(Ω).

Finally, we present a counterpart to the divergence-bounded regular decomposi-
tion of Theorem 9. For convenience we introduce the space of divergence-free face
element functions

N 2
h := {qh ∈ W2

h(Ω) : div qh = 0} . (21)

Theorem 13 (Divergence-Bounded Discrete Regular Decomposition of
W2

h(Ω)) For each vector field vh in the lowest-order Raviart-Thomas space
W2

h(Ω), there exists a continuous and piecewise linear vector field zh ∈ W0
h(Ω),

an element hh in the discrete divergence-free subspace N 2
h , and a remainder

ṽh ∈ W2
h(Ω), all depending linearly on vh, providing the discrete regular

decomposition

vh = R2
hzh + ṽh + hh

and the stability estimates

‖zh‖0,Ω

‖̃vh‖0,Ω

‖hh‖0,Ω

⎫
⎪⎬

⎪⎭
≤ C ‖vh‖0,Ω ,

‖∇ zh‖0,Ω

‖h−1̃vh‖0,Ω

}

≤ C ‖ div vh‖0,Ω .

The constants C depend only on the shape of Ω , but not on d(Ω), and the shape
regularity of T h(Ω).



58 R. Hiptmair and C. Pechstein

Remark 10 The result of Theorem 13 can be viewed as an improvement of the
decompositions in [25] which are elaborated for the case of essential boundary
conditions on ∂Ω .

Corollary 2 If the second Betti number of Ω vanishes, that is, if ∂Ω is connected,
then hh in Theorem 13 can be chosen as hh = curl qh with qh ∈ W1

h(Ω) such that

vh = R2
hz + ṽh + curl qh ,

with the bounds

‖zh‖0,Ω

‖̃vh‖0,Ω

‖ curl qh‖0,Ω

d(Ω)−1‖qh‖0,Ω

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

≤ C ‖vh‖0,Ω ,
‖∇ zh‖0,Ω

‖h−1̃vh‖0,Ω

}

≤ C ‖ div vh‖0,Ω .

Remark 11 The result of Corollary 2 is an improvement of [19, Lemma 5.2] which
assumes a domain Ω that is smooth enough to allow H 2-regularity of the Laplace
problem (2-regular case, for details see [19, Sect. 3]). This lemma is used in [27] in
a domain decomposition framework, where convex subdomains are assumed. With
our improved version, this assumption can be weakened considerably.
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