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1 Introduction

Multiphase flow is not a canonical problem, therefore different models can be found
in the literature. Volume Of Fluid (VOF) model [9] is amongst the simplest. It
defines a single set of momentum equations shared by all phases, whilst the volume
fraction (fraction of a particular infinitesimal control volume which is occupied by
each phase) is tracked throughout the domain following an advection equation.
Phase-field methods [11] conserve the simplicity of VOF whilst increasing the
physical meaning of the evolution equation of the fluids present in the simulation.
The volume fraction is substituted by a phase-field parameter, which identifies each
phase. In this work, the Cahn–Hilliard equation [4] is chosen to model the evolution
of the phase-field parameter.

The introduced model is discretised in space using a high-order discontinuous
Galerkin method. These methods have been gaining popularity for the discretisation
of conservation laws, such as the Navier–Stokes equations [5–7, 13, 16, 22, 26].
Specifically, we use a Discontinuous Galerkin Spectral Element Method (DGSEM)
[2] that allows the generation of provably stable schemes [8]. These schemes provide
enhanced robustness when compared to classical high-order methods [17–20].
As far as the temporal discretisation is concerned, we use an efficient implicit-
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explicit approach that permits maintaining the time step restriction of a typical
one phase Navier–Stokes solver. It should be noticed that similar approaches to
model multiphase flows have been proposed in the past, see for example [29],
where an algorithm to model N immiscible incompressible fluids with high-order
methods is described. However, according to the authors knowledge, this is the first
implementation using the DGSEM.

The rest of the paper is organised as follows: in Sect. 2 the governing equations
of the model are described. In Sect. 3 the numerical techniques to discretise the
described model are introduced. Finally, in Sect. 4 the results of two validation test
cases are shown.

2 Governing Equations

In this work we model multiphase flows with a phase field approach. The flow field
is modelled by means of the incompressible Navier–Stokes equations. The evolution
of each of the fluids is modelled with the Cahn–Hilliard equation, which defines a
phase field variable, φ ∈ [−1, 1], that identifies spatial coordinates occupied by
fluid 1, φ = −1, fluid 2, φ = 1, or an interface φ ∈ (−1, 1). The value of the
thermodynamic properties of the fluids at each spatial coordinate can be computed
as:

ρ(φ) = ρ1

(
1 − φ

2

)
+ρ2

(
1 + φ

2

)
, η(φ) = η1

(
1 − φ

2

)
+η2

(
1 + φ

2

)
, (1)

where ρi is the density of fluid i whilst ηi is the dynamic viscosity of fluid i. The
complete system is built considering first the momentum equation,

∂
(
ρv

)
∂t

+ ∇ · (
ρvv

) = −∇p + 1

Re
∇ ·

(
η

(
∇v + ∇vT

))
+ 3√

2εReCa
μ∇φ + 1

Fr2
ρeg,

(2)

with velocity v, static pressure p, Reynolds number Re = ρ1u0L
η1

(where uo is a

reference velocity whilst L is a reference length), Capillary number Ca = η1u0
σ

(where σ represents the surface tension), Froude number Fr = u0√
gL

, (where g

is the gravity acceleration) and eg is the gravity direction. Second, an artificial
compressibility method [25] is used to couple the divergence-free condition,

∂p

∂t
+ ρ0

ρ1

1

M2
0

∇ · v = 0, (3)
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where ρ0 = max
(
ρ1, ρ2

)
is a reference density, and M0 is the artificial compress-

ibility Mach number. Third, the Cahn–Hilliard equation for the phase field,

∂φ

∂t
+ ∇ · (

φv
) = M∇2μ, μ = −φ + φ3 − ε2∇2φ, (4)

with M the mobility, and ε the interface width, the two free parameters of the
model. In (2) and (4), μ represents the chemical potential. Moreover, this equation
is designed to minimize the free-energy functional [4], F,

F(φ,∇φ) =
∫

�

(
1

4

(
1 − φ

)2 (
1 + φ

)2 + 1

2
ε2|∇φ|2

)
dx. (5)

Note that the set of Eqs. (2)–(4) is written in non-dimensional form, where the
thermodynamic variables of fluid 1 are taken as reference values, e.g.,

ρ(φ) =
(

1 − φ

2

)
+ ρ2

ρ1

(
1 + φ
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)
, η(φ) =

(
1 − φ

2

)
+ η2

η1

(
1 + φ

2

)
. (6)

The set (2)–(4) can be written as an advection-diffusion system:

∂u

∂t
+ ∇ · F(u) = ∇ · Fv(u, g) + S(u, g), (7)

where u = (φ, ρv, p) is the state vector, g = (gφ, gv, gμ) = (∇φ,∇v,∇μ) is the
gradients vector, F(u) and Fv(u, g) are the inviscid and viscous fluxes respectively,
and S(u, g) is a source term,

F(u) =

⎡
⎢⎢⎣

φv
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⎡
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⎥⎥⎦ ,

S(u, g) =

⎡
⎢⎢⎢⎣

0
3√

2εReCa
μgφ + 1

Fr2 ρeg

0

⎤
⎥⎥⎥⎦ . (8)

3 Numerical Methods

The numerical implementation of (2)–(4) is performed using a high-order discon-
tinuous Galerkin scheme for the spatial discretisation (DGSEM variant) and an
implicit-explicit Euler scheme for the time discretisation.
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3.1 Spatial Discretisation Using a Nodal Discontinuous
Galerkin Scheme (DGSEM)

Discontinuous Galerkin (DG) schemes (see [15]) are constructed by tessellating
the domain in non-overlapping elements, where the solution is approximated using
polynomials of an arbitrary order, N . In this particular implementation, we use a
nodal variant of the DG method, and we restrict ourselves to hexahedral elements.

In each element we approximate the solution using polynomials written in a set of
local spatial coordinates ξ = (ξ, η, ζ ) ∈ [−1, 1]3, which are related to the physical
space by a transfinite mapping,

x = (x, y, z) = X(ξ) = X
(
ξ, η, ζ

)
. (9)

Using the local coordinates, we write the solution using tensor product Lagrange
polynomials,

u(x)
∣∣
E

≈ U(ξ) =
N∑

i,j,k=0

Uijk(t)li(ξ)lj (η)lk(ζ ), (10)

where the time-dependent coefficients Uijk(t) are the nodal values of the solution
U , and lj (ξ) are the Lagrange polynomials based on a set of Gauss points {ξj }Nj=0.
To handle curvilinear geometries, we use a mapping X that transforms local and
physical spaces. With this mapping, we can construct covariant ai and contravariant
ai basis, and their associated Jacobian J , and metrics matrix M:

ai = ∂X(ξ)

∂ξi
, ai = ∇ξi = 1

J
aj × ak, J = ai ·

(
aj ∧ ak

)
, M = [Jaξ , Jaη, Jaζ ].

(11)

Following [14], we transform the system of Eqs. (7) to local coordinates,
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(12)

with gradients,

Jgv = M∇ξ v, Jgφ = M∇ξφ, Jgμ = M∇ξμ, (13)
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and the chemical potential definition,

Jμ = −Jφ + Jφ3 − ε2∇ξ ·
(
MT gφ

)
. (14)

We obtain the DG scheme replacing the continuous solution by their polynomial
counterpart (10), then multiplying (12), written in compact form (7), by a polyno-
mial test function (with same order N as the solution) ϑ , and we integrate the result
in one element E = [−1, 1]3,∫

E

Jϑ
∂U

∂t
+

∫
E

ϑ∇ξ · F(U) =
∫

E

ϑ∇ξ · Fv(U, G) +
∫

E

JϑS(U, G). (15)

Next, we integrate by parts the terms containing divergences, which yields
surface integrals. Since the solution is discontinuous at the inter-element faces, we
replace the surface flux by a numerical flux, F�,

∫
E

Jϑ
∂U

∂t
+

∫
∂E

ϑF� · n̂dS −
∫

E

∇ξϑ · F =
∫

∂E

ϑF�
v · n̂dS

−
∫

E

∇ξϑ · Fv +
∫

E

JϑS(U, G), (16)

where ∂E represents the six surfaces of the element E. For the inviscid numerical
flux F�, we use the exact Riemann solver derived in [1], whilst for the viscous
numerical flux we use the Symmetric Interior Penalty (SIP) method [27], with the
penalty parameter value derived in [24] and recently discussed for the DGSEM
in [21]. In (16), n̂ is the surface outward normal vector in local coordinates. To
obtain the evolution equations for each nodal degree of freedom Uijk , we let
ϑ = li (ξ)lj (η)lk(ζ ), and compute the integrals using the Gauss quadrature points
(and weights {wi}) associated to the interpolation points (which provide an accuracy
of 2N + 1),

J ijk dUijk

dt
+F�

x
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where F ijk = F(Uijk) and F
ijk
v = Fv(U

ijk, Gijk), being Gijk the nodal values
of the gradient G. The symbol δik represents the Kronecker delta. The derivation
matrix Dij is defined as Dij = l′j (ξi). To compute the gradient G, we perform the
weak formulation of (13),

∫
E

Jτ · G =
∫

∂E

U�MT · τdS −
∫

E

U∇ξ ·
(
MT · τ

)
, (18)

where τ is an arbitrary vector test function (from the order N polynomials space).
Since we use the SIP method, we use solution averages to couple inter-element
fluxes, U� = {{U}}. All the integrals involved in (18) are computed discretely similar
to those in (16), i.e.,

J ijkτd
ijkG

ijk
d

= U�(ξ, ηj , ζk)Ja
ξ
d
(ξ, ηj , ζk)

wi
li (ξ)

∣∣∣∣
ξ=1

ξ=−1

+ U�(ξi , η, ζk)Ja
η
d
(ξi , η, ζk)

wj
lj (η)
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η=1

η=−1
+ U�(ξi , ηj , ζ )Ja

ζ
d
(ξi , ηj , ζ )

wk
lk(ζ )
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ζ=1

ζ=−1

−
N∑

m=0

(
wm

wi
Ja

ξ,ijk
d

DmiU
mjk + wm

wj
Ja

η,ijk
d

DmjUimk + wm

wk
Ja

ζ,ijk
d

DmkU
ijm

)
.

(19)

The gradient nodal values G
ijk
d are introduced in the viscous fluxes Fv(U

ijk, Gijk)

of (17) hence completing the discretisation of (16). Note that one needs to compute
gφ before computing μ and its gradient gμ.

3.2 Time Integration Using IMplicit–EXplicit (IMEX)
and Runge–Kutta Schemes

The time integration of (17) is performed with a combination of forward and
backwards Euler and explicit Runge–Kutta schemes. On the one hand, the Navier–
Stokes equations are integrated by means of a third order explicit Runge–Kutta
(RK3) scheme [28]. On the other hand, the Cahn–Hilliard equation is integrated
with a combination of explicit RK3 for the phase field advection, forward Euler for
the chemical free-energy, and backwards Euler for the interfacial energy,

φn+1 − φn

�t
+ ∇ · (

vφ
)RK3 = ∇2

(
−φn + (

φn
)3 − ε2∇2φn+1

)
. (20)

The reason behind this choice, is that the numerical stiffness of the bi-Laplacian
(∇4φ) operator prevents from using an explicit method, as restricts the time-step �t
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to unpractical values. We only treat implicitly the interfacial energy since it yields
a constant Jacobian matrix, represented by J∇2 . In particular, the linear system to
solve is,

[
J∇2 + I

�t

]
φn+1 = φn

�t
− ∇ · (vφ

)RK3 + ∇2
(
−φn + (

φn
)3

)
. (21)

The Jacobian matrix is computed numerically (see [3]) and a LU factorisation is
performed only at the first time step. In each following iteration, the RHS of (21)
is computed and the linear system is solved by means of forward and backward
substitutions. Both the LU factorisation and the forward and backward substitutions
are performed with the library MKL-PARDISO [23].

4 Validation

The proposed methodology is tested with two test cases. First, the validity of
the discontinuous Galerkin discretisation of the Cahn–Hilliard equation is tested
with a benchmark spinodal decomposition problem [12]. Second, the validity of
the coupled Cahn–Hilliard/Navier–Stokes system is tested with a two dimensional
rising bubble test [10].

4.1 Spinodal Decomposition

This test problem considers an initial mixture of two fluids. These fluids are
immiscible, therefore they tend to separate to minimise their free energy (5). As
stated before, the geometry, initial condition and fluid parameters are taken from
[12]. In particular, the initial condition for this benchmark problem is:

φ(x, y) = −0.05
[
cos (0.105x) cos (0.11y) + [

cos (0.13x) cos (0.087y)
]2

+ cos (0.025x − 0.15y) cos (0.07x − 0.02y)
]
.

(22)

The physical domain is a “T” shape with a total height of 120 units, a total width
of 100 units, and horizontal and vertical section widths of 20 units (Fig. 1). No-flux
boundary conditions are applied at the boundaries. Following [12] mobility is set
to M = 10, whilst the interface width is set to ε = 3.16. The physical domain is
discretised with an unstructured mesh of 326 elements and a polynomial order of
N = 4. For the time discretization, we use a time step �t = 10−3.

Figure 1 shows qualitatively how the different phases separate, whilst Fig. 2
shows quantitatively the evolution of the total free energy with time. In Fig. 2
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Fig. 1 “T” domain for the spinodal decomposition. Initial condition (left figure) and evolution
with time (the right figure is the steady-state solution)

Fig. 2 Evolution of total free energy (5) with time

the results of this work are compared with those obtained in [12], validating the
proposed method.

4.2 Rising Bubble

This test case considers a bubble of light fluid submerged in a heavy fluid, both
subjected to a gravitational field. Following [10] the initial configuration, see Fig. 3,
consists of a bubble of radius r = 0.25 centred at [0.5, 0.5] in a [1 × 2] domain. A
no-slip boundary condition is used at the top and the bottom of the domain whilst
a free slip condition is enforced at the vertical walls. Following [10], the Reynolds
number is set to Re = 35 whilst σ and ε are set to 24.5 and 0.03125 respectively
(this gives a Eötvös number Eo = 10) whilst both density and viscosity ratios are set
to ρ1/ρ2 = μ1/μ2 = 10. The gravitational acceleration is g = 0.98. The problem
is discretised with 16 × 32 elements with a polynomial order of N = 4, and a time
step �t = 4 · 10−6.
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Fig. 3 Initial condition of the rising bubble test problem

Fig. 4 Evolution of the center of mass of the bubble with time

This test case is quantitively compared with the results of [10] in Fig. 4 with
satisfactory results. It should be mentioned that the benchmark results of [10] are
obtained with a sharp-interface model which may explain the small disagreement in
the evolution of the center of mass shown in Fig. 4.

5 Conclusions

A method to model incompressible two phases flows is introduced. The model
solves the incompressible Navier–Stokes equations coupled with the Cahn–Hilliard
equation to track the evolution of the different fluids. The model is discretised in
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space using a discontinuous Galerkin spectral element method (DGSEM) whilst an
efficient implicit-explicit approach is used to advance in time. The validity of the
model is shown with two test cases. A spinodal decomposition benchmark problem
is solved to validate the Cahn–Hilliard solver whilst a rising-bubble test problem is
solved to validate the coupled Cahn–Hilliard–Navier–Stokes system. Both test cases
are solved showing good agreement with the literature, and proving the accuracy and
robustness of the proposed method.
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