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1 Introduction

In R
d , given a bounded domain � with Lipschitz boundary ∂� and σ̂ n ∈

H−1/2(∂�) = tr H(div,�), ω ∈ H 1(�) solves the Neumann problem,

⎧
⎪⎨

⎪⎩

∂ω

∂n
= σ̂ n on ∂�

−div
(
grad ω

) + ω = 0 in �

, (1)

if and only if σ ∈ H(div,�) which solves the Dirichlet problem,

⎧
⎨

⎩

σ · n = σ̂ n on ∂�

−grad (div σ ) + σ = 0 in �
, (2)

satisfies σ = grad ω [3]. This is obvious at the continuous level. The question is
whether we can find a set of finite dimensional function spaces such that σ h =
grad ωh holds if ωh and σ h solve the discrete Neumann and Dirichlet problems
respectively. The answer is yes.
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Throughout this paper, we restrict ourselves to R
3. We will first construct the

primal polynomial spaces and their algebraic dual representations, and then use
them to discretize problems (1) and (2) such that the identity σ h = grad ωh holds
at the discrete level in any curvilinear domain for any polynomial approximation
degree. This work extends [7, 9], where similar dual Neumann–Dirichlet problems
are considered, to 3-dimensional space. These primal spaces and their algebraic
dual representations can be ideal for the so-called mimetic or structure-preserving
discretizations [1, 4, 8, 11, 12]. Together with their trace spaces, they can be used
for the hybrid finite element methods which first decompose the domains into
discontinuous elements then connect them with Lagrange multipliers living in the
trace spaces [2, 13, 14].

The outline of this paper is as follows: In Sect. 2, we introduce the construction
of polynomial spaces and their algebraic dual representations. The discrete formu-
lations of the Neumann–Dirichlet problems and the proof of their equivalence at
the discrete level follow in Sect. 3. A 3-dimensional numerical test case is then
presented in Sect. 4. Finally, conclusions are drawn in Sect. 5.

2 Function Spaces

2.1 Primal Polynomial Spaces

Let −1 = ξ i
0 < ξi

1 < · · · < ξi
I i = 1, i = 1, 2, 3, being three partitionings of [−1, 1].

The associated Lagrange polynomials are

hj (ξ
i) =

I i
∏

m=0,m�=j

ξ i − ξ i
m

ξ i
j − ξ i

m

, j = 0, 1, · · · , I i .

They are polynomials of degree I i which satisfy the Kronecker delta property,
hj (ξ

i
k) = δjk . The associated edge functions can be derived as [6],

ej (ξ
i) = −

j−1∑

k=0

dhk(ξ
i)

dξ i
, j = 1, 2, · · · , I i ,

which are polynomials of degree I i − 1. Edge functions also satisfy the Kronecker
delta property, but in the integral sense,

∫ ξ i
k

ξ i
k−1

ej (ξ
i) dξ i = δjk.
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Consider a reference domain �ref|ξ1,ξ2,ξ3 := [−1, 1]3. With the tensor product,

we can construct finite dimensional scalar function space PI 1,I 2,I 3
spanned by

polynomial basis functions

{
hi(ξ

1)hj (ξ
2)hk(ξ

3)
}

,

and vector-valued function space LI 1,I 2,I 3
spanned by polynomial basis functions

{
ei(ξ

1)hj (ξ
2)hk(ξ

3), hi(ξ
1)ej (ξ

2)hk(ξ
3), hi(ξ

1)hj (ξ
2)ek(ξ

3)
}

.

Let ωh ∈ PI 1,I 2,I 3
be

ωh =
I 1
∑

i=0

I 2
∑

j=0

I 3
∑

k=0

wi,j,khi(ξ
1)hj (ξ

2)hk(ξ
3). (3)

Due to the way of constructing the edge functions, we can easy derive ρh =
grad ωh ∈ LI 1,I 2,I 3

,

ρh = grad ωh = (ρ1, ρ2, ρ3)
T,

where [6],

ρ1 =
I 1
∑

i=1

I 2
∑

j=0

I 3
∑

k=0

(
wi,j,k − wi−1,j,k

)
ei(ξ

1)hj (ξ
2)hk(ξ

3),

ρ2 =
I 1
∑

i=0

I 2
∑

j=1

I 3
∑

k=0

(
wi,j,k − wi,j−1,k

)
hi(ξ

1)ej (ξ
2)hk(ξ

3),

ρ3 =
I 1
∑

i=0

I 2
∑

j=0

I 3
∑

k=1

(
wi,j,k − wi,j,k−1

)
hi(ξ

1)hj (ξ
2)ek(ξ

3).

Let ω, ρ be the vectors of expansion coefficients of ωh, ρh. We can obtain

ρ = E ω, (4)

where E is called the incidence matrix. The incidence matrix is very sparse, only
consists of ±1 as non-zero entries. If we squeeze, stretch or distort the domain, of
course, the polynomial basis functions change, but the incidence matrix will remain
the same. It only depends on the topology of the mesh and the numbering of the
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degrees of freedom. And it is exact. In other words, it introduces no extra error.
All these features make it an excellent discrete counterpart of the grad operator.
Examples of incidence matrices can be found in [8, 10–12].

For a comprehensive explanation of these polynomial basis functions, we refer
to [6]. In isogeometric analysis, tensor-product B-splines with similar properties
have been developed, see, for example [5]. For tetrahedral elements, an analogue
development can be found in [15].

From (3), we can derive the trace of ωh, for example, on the back boundary of

�ref, �b =
{
ξ1 = −1, ξ2, ξ3 ∈ [−1, 1]

}
,

trb ωh =
I 2
∑

j=0

I 3
∑

k=0

w0,j,kh0(−1)hj (ξ
2)hk(ξ

3).

Let ωb be the vector of expansion coefficients of trb ωh. Clearly, there exists a linear
operator Nb such that

ωb = Nb ω.

The same processes can be done for other boundaries. If we collect the traces
of ωh on all boundaries and combine their vectors of expansion coefficients and
corresponding linear operators, we can eventually obtain

ωtr = N ω,

where the matrix N, like E, is sparse and only depends on the topology of the mesh
and the numbering of the degrees of freedom. Furthermore, it contains only 1 as
non-zero entries. An example of N can be found in [7]. Now, we can conclude that
the trace space, PI 1,I 2,I 3 = tr PI 1,I 2,I 3

, is given as

PI 1,I 2,I 3 := PI 2,I 3

−1 ∪ PI 2,I 3

1 ∪ PI 1,I 3

−1 ∪ PI 1,I 3

1 ∪ PI 1,I 2

−1 ∪ PI 1,I 2

1 ,

where PI 2,I 3

−1 is the space spanned by
{
h0(−1)hj (ξ

2)hk(ξ
3)

}
, PI 2,I 3

1 is the

space spanned by
{
hI 1(1)hj (ξ

2)hk(ξ
3)

}
and so on. Notice that the polynomial

basis functions in
{
h0(−1)hj (ξ

2)hk(ξ
3)

}
are exactly the same as those in

{
hI 1(1)hj (ξ

2)hk(ξ
3)

}
because h0(−1) = hI 1(1) = 1. But here we still distinguish

them because they represent basis functions at different boundaries.
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2.2 Algebraic Dual Polynomial Spaces

We first consider the space PI 1,I 2,I 3
. Let MP be the symmetric mass matrix, for

example,

MPi+j (I 1+1)+k(I 1+1)(I 2+1), l+m(I 1+1)+n(I 1+1)(I 2+1) :=
∫∫∫

�ref

hi(ξ
1)hj (ξ

2)hk(ξ
3)hl(ξ

1)hm(ξ2)hn(ξ
3) dξ1dξ2dξ3.

The associated algebraic dual polynomial representations, or simply dual polyno-
mials, are linear combinations of the polynomial basis functions, or simply primal
polynomials, defined in the previous section,

[
h̃0,0,0(ξ

1, ξ2, ξ3), · · · , ˜hI 1,I 2,I 3(ξ
1, ξ2, ξ3)

]

:=
[
h0(ξ

1)h0(ξ
2)h0(ξ

3), · · · , hI 1(ξ
1)hI 2(ξ

2)hI 3(ξ
3)

]
M

−1
P .

These dual polynomials are always well-defined. This is because the primal polyno-
mials are linearly independent. So the mass matrix MP is injective and surjective,

therefore invertible. Let the finite dimensional space spanned by
{
h̃i,j,k(ξ

1, ξ2, ξ3)
}

be denoted by P̃I 1,I 2,I 3

. We say P̃I 1,I 2,I 3

is the algebraic dual space of the primal

space PI 1,I 2,I 3
. Note that PI 1,I 2,I 3

and P̃I 1,I 2,I 3

actually represent the same space.
The change of basis functions only leads to a different representation. Therefore, we
also call the algebraic dual space a dual representation. Let M̃P be the mass matrix

of P̃I 1,I 2,I 3

, we can easily see that

M̃PMP = I, (5)

where I is the identity matrix. Similarly, we can derive the algebraic dual space

L̃I 1,I 2,I 3

of the primal space LI 1,I 2,I 3
. Let M̃L and ML be their mass matrices, we

have

M̃LML = I. (6)

If ρh ∈ LI 1,I 2,I 3
, σ h, whose vector of expansion coefficients σ satisfies

σ = ML ρ, (7)

will be the representation of ρh in the algebraic dual space L̃I 1,I 2,I 3

.
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To explain how the algebraic dual space of the trace space PI 1,I 2,I 3
is derived,

we take PI 2,I 3

−1 as example. We already know that PI 2,I 3

−1 is a space spanned by

primal polynomials
{
h0(−1)hj (ξ

2)hk(ξ
3)

}
. With these primal polynomials, we can

compute its mass matrix, denoted by Mb. The dual polynomials are then computed
by

[
h̃0,0,0(−1, ξ2, ξ3), · · · , h̃0,I 2,I 3(−1, ξ2, ξ3)

]

=
[
h0(−1)h1(ξ

2)h1(ξ
3), · · · , h0(−1)hI 2(ξ

2)hI 3(ξ
3)

]
M

−1
b .

The algebraic dual space P̃I 2,I 3

−1 is spanned by dual polynomials
{
h̃0,j,k(−1, ξ2, ξ3)

}
.

The algebraic dual space of the trace space PI 1,I 2,I 3
eventually can be written as

P̃I 1,I 2,I 3 = P̃I 2,I 3

−1 ∪ P̃I 2,I 3

1 ∪ P̃I 1,I 3

−1 ∪ P̃I 1,I 3

1 ∪ P̃I 1,I 2

−1 ∪ P̃I 1,I 2

1 .

The divergence of σ h ∈ L̃I 1,I 2,I 3

can be done with the help of the boundary value
σ̂

h ∈ P̃I 1,I 2,I 3
. With vector proxies, it can be written as

div σ h = N
T σ̂

h − E
Tσ h. (8)

A detailed introduction of algebraic dual polynomial spaces is given in [9].

2.3 Function Spaces in Curvilinear Domains

So far, all polynomial spaces are defined only in the reference domain
�ref|ξ1,ξ2,ξ3 = [−1, 1]3. Consider an arbitrary domain � and a C1 diffeomorphism
	 : �ref|ξ1,ξ2,ξ3 → �|x1,x2,x3 . In �, the primal polynomials change. Therefore, the
mass matrices will also change. But the process of constructing dual polynomials
does not change. And as we mentioned before, the metric-independent incidence
matrix E and the matrix N remain the same. The way of converting polynomials in
Cartesian domain into those in curvilinear domains follows the general coordinate
transformation process, for example, see [16].

From now on, notations mentioned in this section not only refer to the reference
domain �ref, but also refer to the physical domain �.
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3 Weak Formulations

3.1 Discrete Neumann Problem

With integration by parts, we can derive the weak formulation of the Neumann
problem, (1), written as: For given σ̂ ∈ H−1/2(∂�), find ω ∈ H 1(�) such that

(
grad ω, grad ω̄

)

L2 + (ω, ω̄)L2 = 〈
tr ω̄, σ̂

〉
, ∀ω̄ ∈ H 1(�). (9)

Note that on the right hand side, we use 〈·, ·〉 to represent the duality pairing between
tr ω̄ ∈ H 1/2(∂�) and σ̂ ∈ H−1/2(∂�). We use finite dimensional space PI 1,I 2,I 3

to approximate the space H 1(�) and use the algebraic dual trace space P̃I 1,I 2,I 3
to

approximate the space H−1/2(∂�). Then we obtain

(
grad ωh, grad ω̄h

)

L2
= ω̄h,T

E
T
MLE ωh,

(
ωh, ω̄h

)

L2
= ω̄h,T

MP ωh,

and
∫

∂�

tr ω̄h σ̂
h d� = ω̄h,T

N
T σ̂

h
,

which eventually leads to the discrete formulation of (9),

E
T
MLE ωh + MP ωh = N

T σ̂
h
. (10)

3.2 Discrete Dirichlet Problem

For the Dirichlet problem, (2), the weak formulation is given as: For given σ̂ ∈
H−1/2(∂�), find σ ∈ H(div,�), tr σ = σ̂ such that

(div σ , div σ̄ )L2 + (σ , σ̄ )L2 = 0, ∀σ̄ ∈ H0(div,�). (11)

We use algebraic dual space L̃I 1,I 2,I 3

to approximate H(div,�). With σ̂
h ∈

P̃I 1,I 2,I 3
given and (8), we obtain

(
div σ h, div σ̄ h

)

L2
= −σ̄ h,T

EM̃P
(
N

T σ̂
h − E

T σ h
)

,

and
(
σ h, σ̄ h

)

L2
= σ̄ h,T

M̃L σ h.
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Therefore, the discrete formulation of (11) is written as

EM̃PET σ h + M̃L σ h = EM̃PNT σ̂
h
. (12)

3.3 Equivalence Between Discrete Formulations

Now it is time to check if the equivalence between (1) and (2) holds at the discrete
level. In other words, it is time to check if the statement that ωh solves (10) if and
only if σ h = grad ωh solves (12) is correct.

From (4) and (7), we know that σ h,

σ h = MLE ωh, (13)

is the vector representation of grad ωh in the dual space. If we insert (13) into (12),
we obtain

EM̃PET
MLE ωh + M̃LMLE ωh = EM̃PNT σ̂

h
. (14)

From (10), we know that

E
T
MLE ωh = −MP ωh + N

T σ̂
h
. (15)

By inserting (15) into (14), we get

EM̃P
(
−MP ωh + N

T σ̂
h
)

+ M̃LMLE ωh = EM̃PNT σ̂
h
. (16)

From (5) and (6), we know that (16) holds, which proves the equivalence.

If the equivalence holds, relation
∥
∥
∥ωh

∥
∥
∥

H 1(�)
=

∥
∥
∥σ h

∥
∥
∥

H(div,�)
should also be

satisfied. To prove this, we have

∥
∥
∥σ h

∥
∥
∥

2

H(div,�)

(8)= σ h,T
M̃L σ h +

(
N

T σ̂
h − E

Tσ h
)T

M̃P
(
N

T σ̂
h − E

Tσ h
)

(13)=
(
MLE ωh

)T
M̃L

(
MLE ωh

)

+
[

N
T σ̂

h − E
T

(
MLE ωh

)]T

M̃P
[

N
T σ̂

h − E
T

(
MLE ωh

)]

(10)= ωh,T
E

T
MLE ωh + ωh,T

MPM̃PMP ωh

=
∥
∥
∥ωh

∥
∥
∥

2

H 1(�)
,

where we constantly use (5) and (6) and the fact that mass matrices are symmetric.
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4 Numerical Test

Consider the mapping 	 which maps the Cartesian reference domain �ref|ξ1,ξ2,ξ3 :=
[−1, 1]3 into the physical domain �|x1,x2,x3 = [0, 1]3 by

xi = 1

2
+ 1

2

⎛

⎝ξ i + c
∏

j

sin(πξj )

⎞

⎠ , i = 1, 2, 3.

When the deformation coefficient c = 0, the domain � is Cartesian. Otherwise the
domain is curvilinear, meaning that a curvilinear coordinate system parametrizes �.
Examples of such curvilinear domains in R

2 are shown in Fig. 1.
A manufactured solution of the Neumann problem, (1), is

ωexact = ex1 + ex2 + ex3
.

Clearly, σ exact = grad ωexact =
(
ex1

, ex2
, ex3

)T
solves the Dirichlet problem, (2).

In the domains of different deformation coefficient c, with the boundary condi-
tion σ̂ = tr σ exact imposed, we solve the discrete formulations (10) and (12) using
Gauss–Lobatto–Legendre (GLL) polynomial spaces of degree I 1 = I 2 = I 3 = N .

The results of the L2-error of
(
σ h − grad ωh

)
are shown in Fig. 2 (Left) where

we can see that the relation σ h = grad ωh is preserved up to the machine precision.
With the growth of the polynomial degree, the error increases slowly because of
the accumulation of the machine error as the amount of degrees of freedom grows
significantly.

In Table 1, the results of the H 1-norm of ωh and H(div)-norm of σ h are

presented. It is shown that the relation
∥
∥
∥ωh

∥
∥
∥

H 1(�)
=

∥
∥
∥σ h

∥
∥
∥

H(div,�)
holds for all

polynomial degrees irrespective of whether we use the Cartesian domain, c = 0, or

Fig. 1 Curvilinear domains for c = 0.15 (Left) and c = 0.3 (Right) in R
2. The gray lines illustrate

the coordinate lines
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2 4 6 8 10 12 14 16 18 20
N

10−14

10−13

10−12

10−11

10−10

10−9
σ

h
−
gr
ad

ω
h

L
2 −

no
rm

c = 0
c = 0.15
c = 0.3

2 4 6 8 10 12 14 16 18 20
N

10−14

10−11

10−8

10−5

10−2

101

ω
h

H
1 −

er
ro
r
=

σ
h

H
(d
iv
)−

er
ro
r

c = 0
c = 0.15
c = 0.3

Fig. 2 The L2-error of
(
σ h − grad ωh

)
(Left) and the p-convergence of the H 1-error of ωh

(Right) for N = 2, 4, · · · , 20 and c = 0, 0.15, 0.3

Table 1 The H 1-norm of ωh and H(div)-norm of σ h for polynomial degree N = 2, 4, · · · , 20
and deformation coefficient c = 0, 0.15, 0.3

c = 0 c = 0.15 c = 0.3

N

∥
∥
∥ωh

∥
∥
∥

H 1

∥
∥
∥σ h

∥
∥
∥

H(div)

∥
∥
∥ωh

∥
∥
∥

H 1

∥
∥
∥σ h

∥
∥
∥

H(div)

∥
∥
∥ωh

∥
∥
∥

H 1

∥
∥
∥σ h

∥
∥
∥

H(div)

2 6.0720702909 6.0720702909 5.8899445673 5.8899445673 6.7381947027 6.7381947027

4 6.0730653395 6.0730653395 6.0567452129 6.0567452129 5.8849807780 5.8849807780

6 6.0730653668 6.0730653668 6.0729332275 6.0729332275 6.0721137212 6.0721137212

8 6.0730653668 6.0730653668 6.0730647051 6.0730647051 6.0730525346 6.0730525346

10 6.0730653668 6.0730653668 6.0730653557 6.0730653557 6.0730648440 6.0730648440

12 6.0730653668 6.0730653668 6.0730653665 6.0730653665 6.0730653428 6.0730653428

14 6.0730653668 6.0730653668 6.0730653667 6.0730653667 6.0730653663 6.0730653663

16 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653667 6.0730653667

18 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653668

20 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653668 6.0730653668

curvilinear domains, c = 0.15, 0.3. It is also seen that the results always converge to

the analytical value ‖ωexact‖H 1 =
∥
∥
∥σ h

∥
∥
∥

H(div)
= 6.0730653668. The p-convergence

for the H 1-error of ωh, therefore also for the H(div)-error of σ h, is shown in Fig. 2
(Right), which shows the exponential convergence of the method.

5 Conclusions

By constructing and using primal polynomial spaces and their algebraic dual
representations both in the domain and on the boundary, we successfully preserve
the equivalence of the div-grad Neumann problem and the grad-div Dirichlet
problem at the discrete level in 3-dimensional curvilinear domains. This suggests the
further usage of these spaces to structure-preserving methods and hybrid methods.
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