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1 Introduction

A broad range of physical phenomena can be described by hyperbolic conservation
laws of the form

ur+ fw)y =0, (x,1) e Rx Ry,
u(0) = uo,

6]

with the conserved variables u : R x Ry — R and the flux function f : RN —
R¥. The nonlinear behavior of f can lead to complex solutions, most notably
shocks. It is well-known that high-order methods give good results for smooth data,
but for discontinuous ones spurious oscillations are introduced. A popular class of
methods to solve (1) is the finite volume method, which is based on a discretization
in space ... < Xj_12 < Xjt1/2 < ... and the average values u; of its cells
Ci = [xi—1/2, Xi11,2]. It is defined by the semi-discrete scheme

dut; _ Fiv12 — Fi—1/27 @)
dr Ax
where the numerical flux term F;4 1/, depends on the values {u; ., ..., #;j4p—k}

with 0 < k < p — 1. For more details we refer the reader to [15, 20, 22].

The class of essentially nonoscillatory (ENO) methods, introduced by Harten et
al. [14], reduces spurious oscillations to a minimum. They are based on a monotone
numerical flux function F(u, v) and high-order accurate reconstruction s;(x) for
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each cell i. The central idea is to choose the least oscillating interpolation function
s; and define the numerical flux Fiy12 = F(u::q/z, ”i_+1/2) with uii+1/2 being
the evaluation of s; 11 and s; at the interface x;41,2. Based on the ENO method,
Jiang and Shu [19] introduced the weighted ENO (WENO) method which considers
different interpolation polynomials, based on different stencils, and combines them
in a nonoscillatory manner to maximize the attainable accuracy. Further results on
ENO and WENO methods can be found in [10, 11, 16].

2 CWENO

The CWENO method is based on the WENO method and was introduced by Levy et
al. [23] as a third order method. Further analysis and generalization to higher orders
on general grids can be found in [6, 7].

Let us consider the standard semi-discrete formulation (2) with a monotone
flux function F(u, v). The goal is to construct a reconstruction P,...; for each
cell C; based on the stencil {C;_g, ..., Ciyx} for k € N. In the smooth regions
the algorithm should choose a polynomial of degree 2k which interpolates the
central stencil u;_y, ..., u;4; in the mean value sense. In case of a non-smooth
solution it chooses a polynomial of degree k on one stencil {C;_g41, ..., Ciy;} that
avoids the discontinuity. Given the reconstruction, the high-order numerical flux is
Fiv12 = F(Prec,i+1(Xi+1/2) Prec,i(Xi+1/2))-

Specifically, let us consider P,p; as the polynomial of degree 2k that interpolates
all data in the 2k + 1 stencil and the polynomials P; of degree k that interpolate the
data on the stencil {C;_¢4;—1, ..., Ciy;—1} forl =1, ...,k + 1. Furthermore, the
reconstruction depends on the choice of the positive real coefficients dy, . . ., dx+1 €
[0, 1] such that Z;‘:& d; = 1,dg # 0. Then, the reconstruction polynomial of degree
2k is

k+1
Prec(x) =Y wy Pi(x), 3)
=0
with
1 k+1
Po) = o (Popr (0 = 3 di o)), @

=1
and the nonlinear coefficients w; that are defined as

[07) dl
I O] = ——F————>
Y e T APyt ey

w] =

®)
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where I[P;] indicates the smoothness of P;, 1 > € > Oand ¢t > 2. A
classical indicator of smoothness in the cell C for a polynomial is the Jiang—Shu
indicator [19]

l
I[P]=Zdiam(C)Z’*‘/C(%P(x))zdx. (6)

>0

The choice of € is of importance: if it is too small, it might affect the order of
convergence. On the other hand if it is too big, spurious oscillations may occur.
Cravero et al. [7] show that the choice € = €h” for p = 1, 2 leads to the maximal
order of convergence. As proposed in [7] we define the coefficients d; over the
temporary weights

5 5 ; . k+2
and we choose dy € (0, 1) for the high-order polynomial. This gives us a possible
choice for the coefficients

d.
dj = (1= dp). (8)
Zi>0di

The main difference with respect to the classical WENO method is that for the
smooth case we are not constructing P,,; out of the polynomials P, but we build it
independently by resolving an additional system of equations. This method has the
advantage that it is easier to generalize on general grids in high dimensions, while
maintaining high-order accuracy.

3 Radial Basis Functions

An alternative to the classical polynomial interpolation is the interpolation with
radial basis functions (RBF). RBFs were proposed in the seminal work by Hardy
[13]. They have been successfully applied in scattered data interpolation [4, 9, 17,
24, 27] and as a basis for a generalized finite difference method (RBF-FD) [5, 12].
The advantage is its flexibility in high dimensions and the possibility to reduce the
risk of ill-conditioned point constellations. Its disadvantage is the ill-conditioning
of the interpolation matrix for small grid sizes [8, 21, 26].

The RBF interpolation is based on a basis %, obtained from a univariate
continuous function ¢ : RY - R, composed with the Euclidean norm centered
at the data points

¢(x —xj) = @(ellx —x;), €
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Table 1 Commonly used RBF ) Order
RBFswithN v >0,k e N _—
and e > 0 Infinitely smooth RBFs

Multiquadratics (1+ (er)»)” | v
Inverse multiquadratics | (1 + (er)?)™" |0
Gaussians BXP(—(S")Z) 0
Piecewise smooth RBF's

2k—d k

y2k—d log(r) k

Polyharmonic splines

with the shape parameter ¢. Some common RBFs can be found in Table 1. Thus,

for given scattered data points X = (xp, ..., x,,)T with x; € R4 and corresponding
values f1, ..., fn € R we look for
n

s() =) ajp(x —x;) + p(x), (10)

J=1

with a polynomial p € IT,,_1(R%), m € N, the interpolation condition s(x;) = fj
and the additional constraints

n
> ajqx)) =0, for all ¢ € IT,,_1(RY), a1
j=1
with the coefficients a; € Rforall j =1,...,n.

The same concept can be applied in the case of cell-averages. We seek functions

n
S@) = ap, ¢ —E +p),  pe 1 ®RY, (12)
j=1
such that
chs:ﬁj, forall j =1,...,n, (13a)
n
> ajrc(p) =0, forall C € {Cy, ..., Cyn}, (13b)

Jj=1

with the averaging operator Ay f(x) = ﬁ /. ¢ f(x)dx. A well-known problem with
RBFs is the high condition number of the interpolation matrix for small grid sizes
or small shape parameters [8, 21, 26]. This problem can be resolved by using the
vector-valued rational approximation method [28].
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4 RBF-CWENO

Methods combining RBFs and essentially nonoscillatory methods have been pro-
posed, e.g. RBFs with ENO [18, 25], RBFs with WENO [1-3]. The advantage of
the CWENO method over the WENO method is its flexibility on general grids and
its independence of the construction of a high-order interpolation function out of
lower order ones. This facilitates the use of the whole grid in smooth regions and is
important for non-polynomial interpolation functions which cannot be combined to
an higher order function.

We propose the RBF-CWENO method which works as the classical CWENO
method with the reconstruction function (3) and the weights (5), but as interpolation
function we use RBFs instead of polynomials. Since the problem of the ill-
conditioning can be solved by using the vector-valued rational approximation
method [28], the main challenge for RBF methods is the choice of the smoothness
indicator. For polyharmonic splines, Aboyar et al. [1] use the semi-norm of the
Beppo-Levi space and Bigoni et al. [3] use a modified version of the Jiang-Shu
indicator (6).

4.1 Smoothness Indicator

The smoothness indicator is the heart of the essentially nonoscillatory methods. We
consider one based on the one introduced by Bigoni and Hesthaven [3]

g+l

Lls] =) Ax}! /

=1 Ci

+1 g+1 2
2g+1 98 L& B
+ Ax; /C,» <8xé’+1[ laﬂc_ﬁb(llx SII)]dX> ,

J

(")
14

where the first part is the sum of the derivatives of the polynomial part and the
second term expresses the highest derivative of the RBF-part. The original Jiang-
Shu indicator applied to (12) would include the lower derivatives of the RBF-part
plus all mixed terms, but we find this to be less efficient. For simplicity the integrals
can be approximated with a simple mid-point rule.

We face again the problem of ill-conditioning when recovering the coefficients
a;. Numerical examples indicate that small shape parameter improve the accuracy,
but they do not affect the choice of the stencil using this smoothness indicator. Thus,
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we use a bigger shape parameter ¢, that is smaller than the smallest distance to a
singularity

er = 0.95(max [x; — x;ID7", (15)
i,j<N

which ensures the solvability of the system of equations [28].

5 Numerical Results

We now discuss the numerical results of the RBF-CWENO method and compare
it with the RBF-WENO method [3] and the classical ENO method [14]. All
methods are using the Lax-Friedrichs numerical flux and integration in time is done
using the SSPRK-5 method [15] with time step df = CFL - Ax/Apq,y and the
maximal eigenvalue A, 4, of V, F. Furthermore, we use the vector-valued rational
approximation approach [28] to circumvent ill-conditioning of the interpolation
matrix and a shape parameter ¢ = 0.1. For the nonlinear weights (5) we choose
€ =¢h* withé = 0.1.

5.1 Linear Advection Equation

Let us consider the linear advection equation

uy +au, =0, x € [0, 1], (16)
with wave speed a = 1, initial condition ug(x) = sin(27x) and periodic boundary
conditions [22]. Note that for k = 3 we expect the order of convergence to be 7,
therefore we use the reduced time step dt = CFL - AxT/3 /Amax to recover the
right order of convergence. The correct order of convergence of the RBF-CWENO

method is shown in Table 2 and it seems to be more accurate than the RBF-WENO
method.

5.2 Burger’s Equation
Considering the Burger’s equation

1
u, + z(uz)x =0, x €0, 1], (17)
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Table 2 Convergence rates of RBF-CWENO using multiquadratics for the linear advection
equation at time ¢ = 0.05

RBF-CWENO RBF-WENO
1 2 2
L, L; L L;
k N | Error Rate | Error Rate | Error Rate | Error Rate

16 |5.6409¢—04 | — 2.1702¢—04 | - 1.5903¢—04 | - 1.5754e—02 | -
32 |7.6612¢—05 | 2.75 |2.4817e—05 | 2.99 | 1.6221e—05 | 3.15 | 4.8924¢—03 | 1.69
64 | 1.0082¢—05 | 2.79 |2.5297e—06 | 3.15 | 1.3561e—06 | 3.42 | 1.2608¢—03 | 1.96
128 | 1.3812¢—06 |2.74 | 2.4032¢—07 |3.24 | 9.6982¢—08 | 3.63 |9.2931¢—05 | 3.76
256 | 2.1322e—07 | 2.57 | 2.3289¢—08 |3.21 | 6.5703¢—09 | 3.71 | 2.3008¢—06 | 5.34

2| 16 |2.3796e—05 |- 7.3671e—06 | — 4.1241e—06 | — 5.4401e—04 | -
32 |3.5783e—06 | 2.61 | 8.3093e—07 | 3.01 | 3.9675¢—07 | 3.22 | 4.4938¢—05 | 3.60
64 |2.8691e—07 | 3.48 | 5.9366e—08 | 3.63 | 3.6940e—08 | 3.27 |3.4787¢—06 | 3.69
128 | 1.4563¢—08 | 4.11 | 2.5775¢—09 | 4.32 | 1.3965¢—09 | 4.51 |2.5956e—07 | 3.74
256 | 6.8835¢—10 | 4.20 | 9.6168¢—11 |4.53 |4.4249¢—11 |4.75 | 1.9221e—08 | 3.76

3| 16 |3.8815¢—05 |- 1.3319¢—05 | - 7.7293¢—06 | — 2.2578e—04 | -
32 | 4.3423¢—07 | 6.48 | 1.3452¢—07 | 6.63 | 8.1494¢—08 | 6.57 | 7.3483¢—06 | 4.94
64 |5.1821e—09 | 6.39 | 1.4750e—09 | 6.51 | 8.8273¢—10 | 6.54 | 1.4075¢—07 |5.71
128 | 7.6636e—11 | 6.08 | 1.6792¢—11 | 6.46 | 7.8655¢—12 | 6.81 | 1.4510e—09 | 6.60
256 | 1.1554e—12 | 6.05 | 1.5855¢—13 | 6.73 | 6.9487¢—14 | 6.82 |2.0120e—11 | 6.17

We use shape parameter ¢ = 0.1, CFL = 0.01

1

0.5

h=1/16
— - h=1/32
— h=1/64
h=1/128
—— Ref. sol.

-0.5

0 0.1 0.2 0.3 0.4

Fig. 1 Burger’s equation at t = 0.3 with up = sin(2wx) solved by using RBF-CWENO method
with MQ interpolants of order k = 3

we analyze its robustness with respect to discontinuities. In Fig. 1 we report the
results performed with CFL = 0.5 at + = 0.3. We observe no oscillations around
the discontinuity at x = 0.5 and as expected an increasing accuracy for increasing
number of elements.
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5.3 Euler Equations

The one-dimensional Euler equations express conservation of mass, momentum and
the total energy. They can be described by the density p, the mass flow m, the energy
per unit volume E and the pressure p through

P m

2
m| +| % +p =0, (18)
E S(E+p)

! X

with p = ZpT = (y — 1)(E — %’"72) for an ideal gas with the ratio of specific
heat y = 1.4 [15]. For k = 3 we need to change the nonlinear weights (5) by using
€ = éh?* with € = 107° to avoid oscillations.

5.3.1 Sod’s Shock Tube Problem

The Sod’s shock tube problem describes two colliding gases in [0, 1] with different
densities given by the initial conditions

(1,0, 1) ifx <0.5

. (19)
(0.125,0,0.1) ifx > 0.5

(po, mo, po) =

This results in a rarefaction wave followed by a contact and a shock discontinuity
which separates the domain into four domains with constant variables. The RBF-

CWENO method resolves it well, see Fig.2. For k = 3, we observe minor
1 e N=64 1 N=64
rrrrr N=128 --%-- N=128
o-- N=256 o-- N=256
\ —— Ref. sol —— Ref. sol.

. N
0.5 0.5 \0

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
X X

Fig. 2 Results for the Sod shock tube problem at ¢ = 0.2 solved by using RBF-CWENO with MQ
interpolants of order k = 2, 3 on characteristic variables (left: k = 2, right: k = 3)
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N=128

rrrrr N=256
-o-- N=320

—— Ref. sol. -&"
1 e

X X

Fig. 3 Results for the Euler shock entropy problem at # = 1.8 solved by using RBF-CWENO with
MQ interpolants of order k = 2 on characteristic variables (Left) and a comparison with WENO,
ENO2 and ENOS for N = 256 cells (Right)

oscillations, but their amplitude decreases for increasing number of elements.
Furthermore, we observe the increasing accuracy for k = 3 compared to k = 2.

5.3.2 Shu-Osher Shock-Entropy Wave Interaction Problem

The Shu—Osher problem describes the interaction of a discontinuity with a low
frequency wave which introduces some high frequent waves. Its initial conditions
are

(3.857143,2.629369, 10.33333) ifx < —4

. (20)
(1+0.25sin(5x), 0, 1) ifx > —4

(po, mo, po) =

In Fig. 3, we observe on the left side the increasing accuracy for increasing number
of elements for k = 2. On the right side we see its good approximative behaviour
compared to the existing methods ENO2, ENOS5 and the corresponding WENO.
In particular we observe that the performance of the RBF-CWENO (k = 2) is
comparable to ENOS5 and superior to WENO (k = 2).

6 Conclusion

In this work, we introduce the RBF-CWENO method that relies on the CWENO
method [23] and the use of radial basis functions for the interpolation. We develop
a smoothness indicator that is based on RBFs but works similarly to the one for
polynomials. Furthermore, we tackle the problem about the choice of the weight
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1> € > 0.For € = ¢h? with € = 0.1 we get the right order of convergence, but for
the 7th order method (k = 3) we choose € = 107 to reduce spurious oscillations
for the Euler equations.

Moreover, we should point out that the choice of the linear weight dy can
influence the result; indeed if it is too close to 1 then the reconstruction almost
coincides with Py, which can lead to spurious oscillations in case of discontinuous
solutions. We present multiple numerical examples to show the robustness of the
method.

We can conclude that the RBF-CWENO method works comparable to the
existing RBF-WENO and ENO methods in one dimension. The advantage of
RBFs is clearer when considering unstructured grids in higher dimensions where
polynomial reconstruction is complex.
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