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1 Introduction

In this chapter, part two in a two part series, describes a sequence of numerical
experiments demonstrating the performance of a highly computationally efficient
solver for equations of the form

κ
∂u

∂t
= Lu(x, t) + g(u, x, t), x ∈ Ω, t > 0, (1)

with initial data u(x, 0) = u0(x). Here L is an elliptic operator acting on a fixed
domain Ω and f is lower order, possibly nonlinear terms. We take κ to be real or
imaginary, allowing for parabolic and Schrödinger type equations.

The “Hierarchial Poincaré–Steklov (HPS)” solver has already been demonstrated
to be a highly competitive spectrally accurate solver for elliptic problems [1, 4, 7]
and has also been used together with a class of exponential integrators [5], to evolve
solutions to hyperbolic differential equations. As just mentioned, the focus here is
on differential equations in the form (1) whose discretization leads to stiff system
of ODE that can beneficially be advanced in time using Explicit, Singly Diagonally
Implicit Runge–Kutta (ESDIRK) methods. ESDIRK methods offer the advantages
of stiff accuracy and L-stability and are well suited for the HPS algorithm as they
only require a single matrix factorization. They are also easily combined with
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explicit Runge–Kutta method leading to so called Additive Runge–Kutta (ARK)
methods [6].

To this end we investigate the stability and accuracy that is obtained when
combining high-order time-stepping schemes with the HPS method for solving
elliptic equations. We restrict attention to relatively simple geometries (rectangles)
but note that the method can without difficulty be generalized to domains that can
be expressed as a union of rectangles, possibly mapped via curvilinear smooth
parameter maps.

The rest of this chapter is organized as follows. In Sect. 2 we present results
illustrating that the order reduction phenomena for DIRK methods observed in [8]
can be circumvented when formulating the time stepping in terms of slopes (with
boundary conditions differentiated in time) rather than formulating it in terms of
stage solutions. In Sect. 3 we present numerical results for Schrödingers equation in
two dimensions and in Sect. 4 we present numerical results for a nonlinear problem,
viscous Burgers’ equation in two dimensions. Finally, in Sect. 5 we summarize and
conclude. For a longer description of the method we refer to thee first part of this
paper and to [2].

2 Time Dependent Boundary Conditions

This section discusses time-dependent boundary conditions within the two different
Runge–Kutta formulations. In particular, we investigate the order reduction that has
been documented in [8] for implicit Runge–Kutta methods and earlier in [3] for
explicit Runge–Kutta methods.

In this first experiment, introduced in [8], we solve the heat equation in one
dimension

ut = uxx + f (t), x ∈ [0, 2], t > 0. (2)

We set the initial data, Dirichlet boundary conditions and the forcing f (t) so that
exact solution is u(x, t) = cos(t). This example is designed to eliminate the effect
of the spatial discretization, with the solution being constant in space and allows for
the study of possible order reduction near the boundaries.

We use the HPS scheme in space and use 32 leafs with p = 32 Chebyshev nodes
per leaf. We apply the third, fourth, and fifth order ESDIRK methods from [6]. We
consider solving for the intermediate solutions, or as we refer to it below “the ui

formulation” with the boundary condition enforced as un
i = cos(tn + ciΔt). We

also consider solving for the stages, which we refer to as “the ki formulation” with
boundary conditions imposed as kn

i = − sin(x, tn + ciΔt).
Error reduction for time dependent boundary conditions has been studied both

in the context of explicit Runge–Kutta methods in e.g. [3] and more recently for
implicit Runge–Kutta methods in [8]. In [8] the authors report observed orders of
accuracy equal to two (for the solution u) for DIRK methods of order 2, 3, and 4 for
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Fig. 1 The error in solving (2). Results are for a third order ESDIRK. (a) Displays the single
step error which converges with fourth order of accuracy. (b) Displays the global error at t = 1
converging at third order. Both errors converge at one order higher than what is expected from the
analysis in [8]
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Fig. 2 The error in solving (2). Results are for a fifth order ESDIRK. (a) Displays the single
step error which converges with fourth order of accuracy. (b) Displays the global error at t = 1
converging at third order. Both errors converge at one order higher than what is expected from the
analysis in [8] but still lower than expected

the problem (2) discretized with a finite difference method on a fine grid (the spatial
errors are zero) using the ui formulation.

Figures 1 and 2 show the error for the third and fifth order ESDIRK methods,
respectively, as a function of x for a single step and at the final time t = 1. Figure 3
shows the maximum error for the third, fourth, and fifth order methods as a function
of time step Δt after a single step and at the final time t = 1.

In general, for a method of order p we expect that the single step error decreases
as Δtp+1 while the global error decreases as Δtp. However, with time dependent
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Fig. 3 The maximum error (here denoted l∞) in solving (2) for the third, fourth, and fifth order
ESDIRK methods for a sequence of decreasing time steps. (a, c) are errors after one time step and
(b, d) are the errors at time t = 1. The top row are for the ui formulation and the bottom row is for
the ki formulation. Note that the ki formulation is free of order reduction

boundary conditions implemented as un
i = cos(tn + ciΔt) the results in [8] indicate

that the rate of convergence will not exceed two for the single step or global error.
The results for the third order method (p = 3) displayed in Fig. 1 show that the

single step error decreases as Δtp+1 while the global error decreases as Δtp, which
is better than the results documented in [8]. However, we still see that a boundary
layer appears to be forming, but it is of the same order as the error away from the
boundary. The results for the fifth order method (p = 5) displayed in Fig. 2 show
that the single step error decreases as Δt4 while the global error decreases as Δt3,
which is still better than the results documented in [8]. However, the boundary layer
is giving order reduction from Δtp+1 for the single step error and Δtp for the global
error. We note that our observations differ from those in [8] but that this possibly
can be attributed to the use of a ESDIRK method rather than a DIRK method.

We repeat the experiment but now we use the ki formulation for Runge–Kutta
methods and for the boundary condition we enforce kn

i = − sin(tn + ciΔt). The
intuition here is that kn

i is an approximation to ut at time tn + ciΔt and we use
the value of ut for the boundary condition of kn

i . Intuitively we expect that the fact
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that we reduce the index of the system of differential algebraic equation in the ui

formulation by differentiating the boundary conditions can restore the design order
of accuracy.

In the previous examples the Runge–Kutta method introduced an error on the
interior while the solution on the boundary was exact. If the error on the boundary
is on the same order of magnitude as the error on the interior then the error in uxx is
of the correct order, but when the value of u is exact on the boundary it introduces
a larger error in uxx . In the ki formulation, for each intermediate stage we find
uxx = 0 and then kn

i = − sin(tn + ciΔt) on the interior and on the boundary. So
at a fixed time the solution is constant in x and a boundary layer does not form.
Additionally, the error is constant in x at any fixed time and for a method of order
p we obtain the expected behavior where the single step error decreases as Δtp+1

and the global error decreases as Δtp.
Figure 3 shows the maximum error for the third, fourth, and fifth order methods

as a function of time step Δt after a single step and at the final time t = 1. The results
show that the methods behave exactly as we expect. The single step error behaves as
Δtp+1 for the third and fifth order methods and Δtp+2 for the fourth order method.
The fourth order method gives sixth order error in a single step because the exact
solution is u(x, t) = cos(t), which has every other derivative equal to zero at t = 0
and for a single step we start at t = 0. The global error behaves as Δtp for each
method.

3 Schrödinger Equation

Next we consider the Schrödinger equation for u = u(x, y, t)

ih̄ut = − h̄2

2M
Δu + V (x, y)u, t > 0, (x, y) ∈ [xl, xr ] × [yb, yt ],

u(x, y, 0) = u0(x, y).

(3)

Here we nondimensionalize in a way equivalent to setting M = 1, h̄ = 1 in the
above equation. We choose the potential to be the harmonic potential

V (x, y) = 1

2

(
x2 + y2

)
.

This leads to an exact solution

u(x, y, t) = Ae−it e− (x2+y2)
2 , (4)

where we set A = 1/
√√

π and solve until t = 2π on the domain (x, y) ∈ [−8, 8]2.
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Fig. 4 Error in the Schrödinger equation as a function of leaf size. The exact solution is given in
Eq. (4)

Table 1 Estimated rates of
convergence for different
Runge–Kutta methods and
different orders of
approximation

p 4 6 8 10 12

ESDIRK3 2.59 5.73 7.72 9.69 11.47

ESDIRK4 1.89 6.47 7.82 9.76 11.69

ESDIRK5 1.84 4.42 7.69 9.71 11.48

The computational domain is subdivided into nx × ny panels with p × p points
on each panel. To begin, we study the order of accuracy with respect to leaf size. To
eliminate the effect of time-stepping errors we scale Δt = hp/qRK , where qRK is the
order of the Runge–Kutta method. In Fig. 4 we display the errors as a function of the
leaf size for p = 4, 6, 8, 10, 12, 16 and for the third and fifth order Runge–Kutta
methods (qRK = 3, 5). The rates of convergence are found for all three Runge–
Kutta methods and summarized in Table 1. As can be seen from the table, p = 4
appears to converge at second order, while for higher p we generally observe a rate
of convergence approaching to p.

In this problem the efficiency of the method is limited by the order of the
Runge–Kutta methods. However, as our methods are unconditionally stable we
may enhance the efficiency by using Richardson extrapolation to achieve a highly
accurate solution in time. We solve the same problem, but now we fix p = 12
and take 5 · 2n time steps, with n = 0, 1, . . . , 5. For the third order ESDIRK
method we use 60 × 60 leaf boxes. For the fourth order ESDIRK method we use
90×90 leaf boxes. For the fifth order ESDIRK method we use 120×120 leaf boxes.
Table 2 shows that we can easily achieve much higher accuracy by using Richardson
extrapolation.

Finally, we solve a problem without an analytic solution. In this problem the
initial data

u(x, y, t) = 3 sin(x) sin(y)e−(x2+y2),
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Table 2 Estimated errors at the final time after Richardson extrapolation

qRK /

extrapolations 0 1 2 3 4 5 6

3 1.32 (−1) 1.01 (−2) 1.27 (−4) 1.17 (−5) 6.98 (−8) 8.62 (−10) 7.40 (−6)

4 2.70 (−4) 6.46 (−6) 1.23 (−7) 2.95 (−10) 1.59 (−11) 3.70 (−14) 1.20 (−11)

5 1.28 (−3) 9.67 (−6) 6.30 (−8) 1.86 (−10) 4.11 (−13) 9.27 (−14) 5.08 (−11)

The notation d(−p) means d · 10−p

Table 3 Errors computed against a p and h refined solution

p/panels 2 4 8 16 32

8 1.11 (0) 1.39 (−1) 8.74 (−3) 1.50 (−4) 2.45 (−6)

Rate ∗ 3.00 3.99 5.87 5.92

10 5.87 (−1) 3.16 (−2) 4.62 (−4) 6.17 (−6) 5.21 (−8)

Rate ∗ 4.21 6.10 6.22 6.89

The errors are maximum errors at the final time t = 4. The notation d(−p) means d · 10−p

interacts with the weak and slightly non-symmetric potential

V (x, y) = 1 − e−(x+0.9y)4
,

allowing the solution to reach the boundary where we impose homogenous Dirichlet
conditions.

We evolve the solution until time t = 4 using p = 8 and 10 and 2, 4, 8, 16 and
32 leaf boxes in each direction of a domain of size 12 × 12. The errors computed
against a reference solution with p = 12 and with 32 leaf boxes can be found in
Table 3.

In Fig. 5 we display snapshots of the magnitude of the solution at the initial time
t = 0, the intermediate times t ≈ 1.07, t ≈ 1.68 and at the final time t = 4.0.

4 Burgers’ Equation in Two Dimensions

As a first step towards a full blown flow solver we solve Burgers’ equation in two
dimensions using the additive Runge–Kutta methods described in the first part of
this paper. Precisely, we solve the system

ut + u · ∇u = εΔu, x ∈ [−π, π ]2, t > 0, (5)

where u = [u(x, y, t), v(x, y, t)]T is the vector containing the velocities in the x

and y directions.
The first problem we solve uses the initial condition u = 5[−y, x]T exp(−3r2)

and the boundary conditions are taken to be no-slip boundary conditions on all sides.
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Fig. 5 Snapshots of the magnitude of the solution at the initial time (a) t = 0, the intermediate
times (b) t ≈ 1.07, (c) t ≈ 1.68 and at the final time (d) t = 4.0

We solve the problem using 24 × 24 leafs, p = 24, ε = 0.005, and the fifth order
ARK method found in [6]. We use a time step of k = 1/80 and solve until time
tmax = 5. The low viscosity combined with the initial condition produces a rotating
flow resembling a vortex that steepens up over time.

In Fig. 6 we can see the velocities at times t = 0.5 and t = 1. The fluid rotates
and expands out and eventually forms a shock like transition. This creates a sharp
flow region with large gradients resulting in a flow that may be difficult to resolve
with a low order accurate method. These sharp gradients can be seen in the two
vorticity plots in Fig. 6 along with the speed and vorticity plots in Fig. 7.

In our second experiment we consider a cross stream of orthogonal flows. We
use an initial condition of

u = [8y e
−36

(
y
2

)8

,−8xe
−36

(
x
2

)8

]T , (6)

and time independent boundary conditions that are compatible with the initial data.
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This initial horizontal velocity drops to zero quickly as we approach |y| = 0.5.
For |y| < 0.5 the exponential term approaches exp(0) and the velocity behaves like
u = 8y. The flow has changed slightly by t = 0.06, but we can see in Fig. 7 the
flow is moving to the right for y > 0 and the flow is moving the left for y < 0
and all significant behavior is in |y| < 0.5. A plot of the velocity v would show
similar behavior. We also use 24 × 24 leafs, p = 24, ε = 0.025, k = 1/200, and
tmax = 0.75. We show plots of the horizontal velocity u and the dilatation at time
t = 0.06 and t = 0.15. We only show plots before time t = 0.15 when the fluid
is hardest to resolve and we observe that after t = 0.15 the cross streams begin to
dissipate. This problem contains sharp interfaces inside x ∈ [−0.5, 0.5]2.

5 Conclusion

In this two part series we have demonstrated that the spectrally accurate Hierarchial
Poincaré–Steklov solver can be easily extended to handle time dependent PDE
problems with a parabolic principal part by using ESDIRK methods. We have
outlined the advantages of the two possible ways to formulate implicit Runge–Kutta
methods within the HPS scheme and demonstrated the capabilities on both linear
and non-linear examples.

There are many avenues for future work, for example:

• Extension of the solvers to compressible and incompressible flows.
• Application of the current solvers to inverse and optimal design problems,

in particular for problems where changes in parameters do not require new
factorizations.
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