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1 Introduction

A semi-Lagrangian spectral method has been proposed in [8] for the numerical
approximation of the nonrelativistic Vlasov–Poisson equations, which describe
the dynamics of a collisionless plasma of charged particles, coupled under the
effect of their own electric field. We assume for simplicity that the development
of the plasma is only due to electrons. Moreover, we just treat the case of a
1D-1V distribution function, defined in a phase space consisting of the two one-
dimensional independent variables x (space) and v (velocity). The approximation
introduced in [8] has been initially developed and tested on Fourier-Fourier periodic
discretizations, for both variables in the phase space. In the successive paper [9],
the approximation in the variable v has been approached with the help of Hermite
functions, i.e., Hermite polynomials multiplied by the Gaussian weight exp (−v2).

Semi-Lagrangian methods for plasma physics calculations were originally pro-
posed in [5, 18] and more recently in [6, 15, 16]. By this approach, at different times,
the solution is approximated at the nodes of a Cartesian grid covering the space-
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velocity domain. The solution at each space-velocity node is traced back along the
characteristic curve originating backward from that node. In [8] a high-order Taylor
expansion of the characteristic curves is used to trace back the solution in time,
which is then approximated by spectral interpolation. Such a method guarantees the
conservation of the main physical quantities (charge, mass, and momentum).

The first attempt in using Hermite polynomials to solve the Vlasov equation dates
back to the work [10], where the Hermite basis is used in the velocity variable to
describe a plasma in a physical state near the thermodynamic equilibrium. Within
this approach, exact discrete conservation laws can be constructed [7, 13, 14, 20,
21]. The weight function of the Hermite basis can be generalized by introducing
a parameter α in such a way that it becomes exp(−α2v2). A proper choice of this
parameter can significantly improve the convergence [2, 3, 19]. This fact was also
confirmed in earlier works on plasmas physics based on Hermite spectral methods
(see [11, 17] and more recently [4]).

The paper is organized as follows. In Sect. 2, we present the continuous model,
i.e., the 1D-1V Vlasov equation. In Sect. 3, we introduce the spectral approximation
in the phase space. In Sect. 4, we present the semi-Lagrangian schemes based on an
approximation of the characteristic curves coupled with a second-order backward
differentiation formula (BDF). In Sect. 5, we numerically assess the performance of
the method for a standard test case, and we show how the solution’s behavior can
be affected by the choice of a certain parameter β, acting on the location of Hermite
weight function.

2 The Continuous Model

We deal with the 1D-1V Vlasov equation defined in the domain � = �x × R, with
�x ⊆ R. The unknown f = f (t, x, v) denotes the probability of finding negative
charged particles at the location x with velocity v. This is solution of the problem

∂f

∂t
+ v

∂f

∂x
− E(t, x)

∂f

∂v
= 0, t ∈ (0, T ], x ∈ �x, v ∈ R. (1)

At time t = 0 we have the initial distribution f (0, x, v) = f̄ (x, v). The problem is
nonlinear, since the electric field E is coupled with f . Indeed, we set

∂E

∂x
(t, x) = 1 − ρ(t, x) = 1 −

∫
R

f (t, x, v)dv, (2)

where ρ denotes the electron charge density. System (1)–(2) in the unknowns f and
E is a simplification of the Vlasov–Poisson equations in two or three dimensional
space domains. Uniqueness of the solution is ensured by imposing that

∫
�x

E(t, x)dx = 0, which implies that
∫

�x

ρ(t, x)dx = |�x |, (3)
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where |�x | is the size of �x . We assume periodic boundary conditions in the
variable x and a suitable exponential decay at infinity for the variable v. After
integration and by using the boundary constraints, we obtain the conservation of
mass

d

dt

∫
�

f (t, x, v) dx dv = 0. (4)

When f and E are smooth enough, for a sufficiently small δ > 0, the local system
of characteristics associated with (1) is given by the curves (X(τ), V (τ)) solving

dX

dτ
= −V (τ),

dV

dτ
= E(τ,X(τ)), τ ∈]t − δ, t + δ[, (5)

with the condition that (X(t), V (t)) = (x, v) when τ = t . With this setting we have
in mind that for τ > 0 we proceed backward. Under suitable regularity assumptions,
there exists a unique solution of the Vlasov–Poisson problem (1)–(2) which is
formally obtained by propagating the initial condition along the characteristic curves
described by (5), i.e. we have

f (t, x, v) = f̄ (X(t), V (t)), (6)

where we recall that f̄ is the initial datum. By using the first-order approximation

X(τ) = x − v(τ − t), V (τ) = v + E(t, x)(τ − t), (7)

the Vlasov equation is satisfied up to an error decaying as |τ − t |, for τ tending to t .

3 Phase-Space Discretization

We briefly recall the construction of the approximation method proposed in [8]. At
each point of a given grid, the new value of the discrete solution is set up to be equal
to the value obtained by going backward, by a suitably small amount, along the
local characteristic lines. The algorithm follows from a Taylor expansion of arbitrary
order, where the derivatives in the variable x and v are carried out with spectral
accuracy. In particular, for the variable x we consider the domain �x = [0, 2π [.
Given the positive integer N , we have the equispaced nodes xi = 2πi/N , i =
0, 1, . . . , N − 1. Regarding the direction v, when M is a given positive integer,
the nodes vj , j = 0, 1, . . . ,M − 1, are the zeros of HM , which is the Hermite
polynomial of degree M .

We introduce the polynomial Lagrangian basis functions for the x and v

variables, that are B
(N)
i (xn) = δin and B

(M)
j (vm) = δjm, where δij is the usual

Kronecker symbol. We recall that Hermite functions are obtained from Hermite
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polynomials after multiplication by the weight ω(v) = e−v2
. We also define the

discrete spaces

XN = span
{
B

(N)
i

}
i=0,1,...,N−1

, YN,M = span
{
B

(N)
i B

(M)
j ω

}
i=0,1,...,N−1
j=0,1,...,M−1

. (8)

Any function fN,M that belongs to YN,M can be represented as

fN,M(x, v) =
N−1∑
i=0

M−1∑
j=0

cij B
(N)
i (x) B

(M)
j (v) ω(v), (9)

where the coefficients of such an expansion are given by cij = fN,M(xi, vj ).

In the following, the matrices d
(N,s)
ni and d

(M,s)
mj denote the s-th derivative of B

(N)
i

evaluated at point xn and (B
(M)
j ω) evaluated at point vm

d
(N,s)
ni = dsB

(N)
i

dxs
(xn) and d

(M,s)
mj = ds

(
B

(M)
j ω

)
dvs

(vm). (10)

As a special case, we set d
(N,0)
ni = δni , d

(M,0)
mj = δmj .

Now, let us assume that the one-dimensional function EN ∈ XN is known. Given
�t > 0, by taking τ = t −�t in formula (7), we define the new set of points x̃nm =
xn − vm �t and ṽnm = vm + EN(xn)�t . To evaluate a function fN,M ∈ YN,M at
the new points (x̃nm, ṽnm) through the coefficients cij , we use a Taylor expansion in
time. By omitting the terms in �t of order higher than one, we get

B
(N)
i (x̃nm)

(
B

(M)
j ω

)
(ṽnm) ≈

δin δjmω(vm) − vm �t δjm d
(N,1)
ni ω(vm) + EN(xn)�t δin d

(M,1)
mj . (11)

By substituting (11) in (9), we obtain the approximation

fN,M(x̃nm, ṽnm) =
N−1∑
i=0

M−1∑
j=0

cij B
(N)
i (x̃nm) B

(M)
j (ṽnm) ω(ṽnm)

≈ cnmω(vm) − vmω(vm)�t

N−1∑
i=0

d
(N,1)
ni cim + EN(xn)�t

M−1∑
j=0

d
(M,1)
mj cnj ,

(12)

which is the main building block for more advanced schemes.
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4 Discretization of the Vlasov Equation

Given the time instants tk = k�t = k T /K for any integer k = 0, 1, . . . , K , we
consider the approximation of the unknowns f and E of problem (1)–(2), given by

(
f

(k)
N,M(x, v), E

(k)
N (x)

)
�

(
f (tk, x, v), E(tk, x)

)
, x ∈ �x, v ∈ R, (13)

where the function f
(k)
N,M belongs to YN,M and the function E

(k)
N belongs to XN .

Concerning the density function, we define

ρ
(k)
N (x) =

∫
�v

f
(k)
N,M(x, v) dv � ρ(tk, x). (14)

Hence, at any time step k, we express f
(k)
N,M in the following way

f
(k)
N,M(x, v) =

N−1∑
i=0

M−1∑
j=0

c
(k)
ij B

(N)
i (x) B

(M)
j (v)ω(v), (15)

where c
(k)
ij = f

(k)
N,M(xi, vj ). At time t = 0, we use the initial condition c

(0)
ij =

f (0, xi, vj ) = f̄ (xi, vj ).

Suppose that E
(k)
N is given at step k. According to [8], we write

E
(k)
N (x) = −

N/2∑
n=1

1

n

[
â(k)
n sin(nx) − b̂(k)

n cos(nx)
]
, (16)

where the discrete Fourier coefficients â
(k)
n and b̂

(k)
n , n = 1, 2, . . . , N/2, are suitably

related to those of ρ
(k)
N .

By taking τ = t − �t in (7), we define x̃nm = xn − vm �t and ṽnm =
vm + E

(k)
N (xn)�t . The distribution function f is expected to remain constant along

the characteristics. The most straightforward discretization method is obtained by
advancing the coefficients according to the approximation

f
(k+1)
N,M (xn, vm) ≈ f

(k)
N,M(x̃nm, ṽnm). (17)

This states that the value of f
(k+1)
N,M , at the grid points and time step (k + 1)�t ,

is assumed to correspond to the previous value at time k�t , recovered by going
backwards along the characteristics. To compute ṽnm, we should use E

(k+1)
N (xn)

instead of E
(k)
N (xn). However, the distance between these two quantities is of the

order of �t , so that the replacement has no practical effects on the accuracy of first-
order methods. Between each step k and the successive one, we need to update the
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electric field. This can be done by using the Gaussian quadrature formula in (14), so
obtaining

ρ
(k)
N (xi) =

M−1∑
j=0

1

ω(vj )
f

(k)
N,M(xi, vj ) wj =

M−1∑
j=0

1

ω(vj )
c
(k)
ij wj , (18)

where wj , for j = 1, . . . ,M − 1, are the quadrature weights. Afterwards, in order

to compute the new point-values E
(k+1)
N (xn) of the electric field, it is necessary to

integrate ρ
(k)
N . By using approximation (12) in (17), we end up with the first-order

explicit scheme of Euler type:

c(k+1)
nm = c(k)

nm + �t �(k)
nm, (19)

where

�(k)
nm = −vm

N−1∑
i=0

d
(N,1)
ni c

(k)
im + E

(k)
N (xn)

M−1∑
j=0

d
(M,1)
mj c

(k)
nj

1

ω(vm)
. (20)

The parameter �t must satisfy a suitable CFL condition, which is obtained by
requiring that the point (x̃nm, ṽnm) falls inside the box ]xn−1, xn+1[×]vm−1, vm+1[.
A straightforward way to increase the time accuracy is to use a multistep discretiza-
tion scheme as the second-order accurate two-step BDF scheme. We have

f
(k+1)
N,M (xn, vm) ≈ 4

3
f

(k)
N,M(x̃nm, ṽnm) − 1

3
f

(k−1)
N,M ( ˜̃xnm, ˜̃vnm), (21)

where (x̃nm, ṽnm) is the point obtained from (xn, vm) going back of one step �t

along the characteristic lines. Similarly, the point ( ˜̃xnm, ˜̃vnm) is obtained by going
two steps back along the characteristic lines, i.e., by using 2�t instead of �t when
computing x̃nm and ṽnm. Despite the fact that a BDF scheme is commonly presented
as an implicit technique, in our context (f constant along the characteristics) it
assumes the form of an explicit method. In terms of the coefficients, we end up with
the scheme

c(k+1)
nm = 4

3

(
c(k)
nm + �t �(k)

nm

)
− 1

3

(
c(k−1)
nm + 2�t �(k−1)

nm

)

= 4

3
c(k)
nm − 1

3
c(k−1)
nm + 2

3
�t

⎡
⎣−vm

N−1∑
i=0

d
(N,1)
ni (2c

(k)
im − c

(k−1)
im )

+E
(k)
N (xn)

M−1∑
j=0

d
(M,1)
mj (2c

(k)
nj − c

(k−1)
nj )

1

ω(vm)

⎤
⎦ . (22)



On the Use of Hermite Functions for the Vlasov–Poisson System 149

From theoretical considerations and the experiments in [8], it turns out that the
above method is actually second-order accurate in �t . Higher order schemes
can be obtained with similar principles. All the above schemes guarantee mass
conservation (see (4) for the continuous case), which is a crucial physical property.

For practical purposes, it is advisable to make the change of variable f (t, x, v) =
p(t, x, v) exp(−v2) in the Vlasov equation, so obtaining

∂p

∂t
+ v

∂p

∂x
− E(t, x)

[
∂p

∂v
− 2vp

]
= 0, t ∈ (0, T ], x ∈ �x, v ∈ R. (23)

At time step k, the function p(tk, x, v) is approximated by a function p
(k)
N,M(x, v) in

such a way that p
(k)
N,Me−v2

belongs to the finite dimensional space YN,M .
A generalization consists in introducing a real parameter α and assuming that

the weight function is ω(v) = exp(−α2v2). The approximation scheme can be
easily adjusted by modifying nodes and weights of the Gaussian formula, through
a multiplication by suitable constants. The difficulty in the implementation is
practically the same, but, as observed in [9], the results are quite sensitive to the
variation of α.

5 Numerical Experiments

The numerical scheme here proposed is validated in the standard two-stream
instability benchmark test. We consider the Vlasov–Poisson problem (1)–(2) where
we set �x = [0, 4π [, �v = [−5, 5]. The initial solution is given by

f̄ (x, v) = 1

2a
√

2π

[
GR(v) + GL(v)

]
(1 + ε cos (κx)), (24)

where GR(v) = e−α2(v−β)2
and GR(v) = e−α2(v+β)2

are two Gaussians centered
symmetrically at the points v = ±β. The parameters for (24) are: a = 1/

√
8,

ε = 10−3, κ = 0.5, α = ᾱ = 2, β = β̄ = 1.
In all the experiments that follow, we integrate up to time T = 30 using the

second-order BDF scheme with a suitably small time step, in order to guarantee
stability and a good accuracy. In this way we can concentrate our attention to the
spectral approximation in the variable x and v. A study of the convergence rate in
time of the proposed numerical scheme can be found in [8]. First of all, in Fig. 1 we
show the results at time T = 30 of the solution recovered by the Fourier-Fourier
method, by choosing N = 25, M = 26 and time step equal to �t = 0.00125.
This will be the referring figure for the successive comparisons. Besides we show
the corresponding time evolution of |â(k)

1 |, the first Fourier mode of the electric

field E
(k)
N in (16). The behavior of this last quantity is predicted by theoretical
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Fig. 1 Two-stream instability test: approximated distribution function at time T = 30 obtained by
using the Fourier-Fourier method with N = 25, M = 26, �t = 0.00125, and the corresponding
time evolution of the first Fourier mode of the electric field E

(k)
N , i.e. |â(k)

1 | in (16)

considerations, and the slope of the “segment” starting at T = 15 agrees with the
expectancy [1, Chapter 5].

As done in [9], we perform a series of experiments using less degrees of freedom
than those actually necessary to resolve accurately the equation. In practice, we
set N = M = 24. In this way, we could for instance detect what happens by
varying the parameters α and β. Of course, if we increase the number of degrees
of freedom, the numerical solution improves and cannot be distinguished from the
referring one shown in Fig. 1. The purpose in [9] was to check what happens by
varying the parameter α in the Hermite weight exp (−α2v2). The conclusions are
that the approximate solution is very sensitive to the choice of α and that there
are values of α that perform better than others. In general these values are those
belonging to a neighbourhood of α = 1. Moreover, in [9], we note that keeping α

constantly equal to the value that better fits the initial datum (i.e. α = ᾱ = 2 for (24))
may create instability as time increases. For such motivations, since at the moment
a practical algorithm able to vary α in a dynamical way during the computations is
not available, in the numerical experiments that follow we fix α = 1, while play
with β.

Due to the particular initial condition, we adopt a two-species decomposition of
the Vlasov equation, where the distribution function is given by the sum of two
electron distribution functions, i.e., f = fR + fL. These distribution functions
refer to the two initial electron distributions, so that fR = pRGR and fL =
pLGL, where pL and pR are given polynomials. We consider the two systems of
electrons described by the distribution functions fL and fR at the initial time as
distinct plasma species that maintain their diversity throughout the whole numerical
simulation. Therefore, we can split the Vlasov equation into two equations that
are still of Vlasov type and are solvable independently, although they are coupled
through the same electric field, which depends on the total charge density. This
amounts to approximate two independent equations of the same type of that given
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Fig. 2 Two-stream instability test: approximated distribution function at time T = 30 obtained
by using the Fourier–Hermite method with N = M = 24, �t = 0.01, α = 1 (left panel) and the
corresponding time evolution of the first Fourier mode of the electric field E

(k)
N , i.e. |â(k)

1 | in (16)
(right panel) when β = 0.5 (top), β = 1 (center) and β = 1.5 (bottom)
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in (23), respectively shifted by ±β, i.e.

∂pR

∂t
+ (v − β)

∂pR

∂x
− E(t, x)

[
∂pR

∂v
− 2α2(v − β)pR

]
= 0, (25)

∂pL

∂t
+ (v + β)

∂pL

∂x
− E(t, x)

[
∂pL

∂v
− 2α2(v + β)pL

]
= 0. (26)

The two unknowns are then coupled through the density function as in (2).
The plots of Fig. 2 show the numerical distribution function at time T = 30

obtained by using the Fourier–Hermite method with N = M = 24, �t = 0.01,
α = 1 and different values of the parameter β (i.e. β = 0.5, β = 1 and β = 1.5),
together with the corresponding time evolution of the (log of the) first Fourier mode
of the electric field E

(k)
N , i.e. |â(k)

1 | in (16).
The distribution functions presented in the left column of Fig. 2 are visibly and

significantly different depending on β, while the first Fourier mode of the electric
field shown in the right column seems to be less affected. These differences practi-
cally confirm that the choice of the Hermite weight functions ω(v) = exp(−α2(v ±
β)2) is a crucial aspect of the method (see also [11, 12, 17, 22]). This conclusion is
heuristic. Unfortunately, there is no space enough for a deeper quantitative analysis
in these pages. The question deserves however further investigation. Moreover, it
would be advisable to develop appropriate algorithms allowing for the automatic
adjustment of both parameters α and β during the time advancing procedure, in
order to optimize the performance.
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