
Chapter 6

Correlation

Abstract This chapter introduces data frames, random sampling, and corre-
lation. Readers learn how to perform permutation tests to assess the signifi-
cance of derived correlations.

6.1 Introduction

It might be tempting to look at the graphs you have produced thus far and
begin forming an argument about the relative importance of Ahab versus the
whale in Melville’s novel. Occurrences of whale certainly appear to occupy
the central portion of the book, whereas Ahab is present at the beginning and
at the end. It might also be tempting to begin thinking about the structure
of the novel, and this data does provide some evidence for an argument about
how the human dimensions of the narrative frame the more naturalistic. But
is there, in fact, an inverse relationship?

6.2 Start Up Code

rm(list = ls()) # Clear Workspace
text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]
chap_positions_v <- grep("^CHAPTER \\d", novel_lines_v)
last_position_v <- length(novel_lines_v)
chap_positions_v <- c(chap_positions_v , last_position_v)

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_6

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_6

70 6 Correlation

chapter_raws_l <- list()
chapter_freqs_l <- list()
for(i in 1:length(chap_positions_v)){

if(i != length(chap_positions_v)){
chapter_title <- novel_lines_v[chap_positions_v[i]]
start <- chap_positions_v[i] + 1
end <- chap_positions_v[i + 1] - 1
chapter_lines_v <- novel_lines_v[start:end]
chapter_words_v <- tolower(paste(chapter_lines_v, collapse = " "))
chapter_words_l <- strsplit(chapter_words_v, "\\W")
chapter_word_v <- unlist(chapter_words_l)
chapter_word_v <- chapter_word_v[which(chapter_word_v != "")]
chapter_freqs_t <- table(chapter_word_v)
chapter_raws_l[[chapter_title]] <- chapter_freqs_t
chapter_freqs_t_rel <- 100*(chapter_freqs_t/sum(chapter_freqs_t))
chapter_freqs_l[[chapter_title]] <- chapter_freqs_t_rel

}
}
whale_l <- lapply(chapter_freqs_l, '[', 'whale')
whales_m <- do.call(rbind, whale_l)
ahab_l <- lapply(chapter_freqs_l, '[', 'ahab')
ahabs_m <- do.call(rbind, ahab_l)
whales_v <- as.vector(whales_m[,1])
ahabs_v <- as.vector(ahabs_m[,1])
whales_ahabs_m <- cbind(whales_v, ahabs_v)
colnames(whales_ahabs_m) <- c("whale", "ahab")

6.3 Correlation Analysis

Using the frequency data you compiled for ahab and whale, you can run a
correlation analysis to see if there is a statistically significant relationship
between the two variables. A correlation analysis attempts to determine the
extent to which there is a relationship, or linear dependence, between two sets
of points. Thought of another way, correlation analysis attempts to assess the
way that the occurrences of whale and ahab behave in unison or in opposition
to each other over the course of the novel. You can use a correlation analysis
to answer a question such as: to what extent does the usage of whale change
(increase or decrease) in relation to the usage of ahab? R offers a simple
function, cor, for calculating the strength of a possible correlation. But before
you can employ the cor function on the whales_ahabs_m object, you need
to deal with the fact that there are some cells in the matrix that contain the
value NA. Not every chapter in Moby Dick had an occurrence of whale (or
ahab), so in the previous practice exercise when you ran

6.3 Correlation Analysis 71

whale_l <- lapply(chapter_freqs_l, "[", "whale")

R found no hits for whale in some chapters of the novel and recorded an NA,
as in not available or missing. You may recall seeing this NA output when you
viewed the contents of whales_ahabs_m matrix:

whales_ahabs_m[1:16,]
whale ahab
[1,] 0.13368984 NA
[2,] 0.06882312 NA
[3,] 0.10000000 NA
[4,] NA NA
[5,] NA NA
[6,] 0.24067389 NA
[7,] 0.21097046 NA
[8,] NA NA
[9,] 0.24711697 NA
[10,] NA NA
[11,] NA NA
[12,] NA NA
[13,] 0.17341040 NA
[14,] NA NA
[15,] NA NA
[16,] 0.16037063 0.3385602

As you see here, there are no occurrences of whale in chapters 4 or 5 and
no occurrences of ahab until chapter 16. Because cor is a mathematical
function that requires numerical data, you need to replace the NA values
before running the correlation analysis. Since the appearance of an NA in
these cases is equivalent to zero (there are exactly zero occurrences of the
keyword in the given chapter), you can safely replace all the occurrences of
NA in the whales_ahabs_m matrix with zero. One way to do this is by em-
bedding the conditional is.na function inside a call to the which function as
in: which(is.na(whales_ahabs_m)). To set the values to 0, place the entire
expression inside the brackets of whales_ahabs_m and assign a 0 to those
items that meet the condition:

whales_ahabs_m[which(is.na(whales_ahabs_m))] <- 0

This is the short and easy way to achieve our objective, but for the sake of
illustration we will break it down with comments added to explain what is
going on:
identify the position of NA values in the matrix
the_na_positions <- which(is.na(whales_ahabs_m))
set the values held in the found positions to zero
whales_ahabs_m[the_na_positions] <- 0

72 6 Correlation

With the NAs set to zero, the correlation can be run.

cor(whales_ahabs_m)
whale ahab
whale 1.0000000 -0.2411126
ahab -0.2411126 1.0000000

Because whales_ahabs_m is a matrix of two columns, the result of calling cor
is a new matrix containing two rows and two columns. The row and column
names are the same, and the values held in the cells are the correlation values.
It is no surprise to see that whale is perfectly correlated with whale and ahab
with ahab. The positive 1.0000000 in these cells is not very informative,
which is to say that running cor over the entire matrix as we have done
here results in a lot of extraneous information. That is because cor runs the
correlation analysis for every possible combination of columns in the matrix.
With a two column matrix such as this, it is really overkill. The results could
be made a lot simpler by just giving cor the two vectors that you really want
to correlate:

mycor <- cor(whales_ahabs_m[,"whale"], whales_ahabs_m[,"ahab"])
mycor
[1] -0.2411126

The resulting number (−0.2411126) is a measure of the strength of linear
dependence between the values in the whale column and the values in the
ahab column. This result, called the Pearson Product-moment correlation
coefficient, is expressed as a number between -1 and +1. A negative one
(-1) coefficient represents perfectly negative correlation; if the correlation
between ahab and whale were -1, then we would know that as the usage of
whale increases, the usage of ahab decreases proportionally. Positive one (+1)
represents perfect positive correlation (as one variable goes up and down the
other variable does so in an identical way). Zero (0) represents no correlation
at all.

The further the coefficient is from zero, in either a positive or negative di-
rection, the stronger the correlation; conversely the closer the result is to
0, the less dependence there is between the two variables. Here, with whale
and ahab a correlation coefficient of −0.2411126 is observed. This suggests
that while there is a slight inverse relationship (i.e., negative correlation), it
is not strongly correlated since the result is closer to 0 than to -1. Having
said that, how one interprets the meaning, or significance, of the correlation
indicated by this coefficient is largely dependent upon the context of the anal-
ysis and upon the number of observations or data points under consideration.
Generally speaking a coefficient between -0.3 and -0.1 on the negative side
of 0 and between 0.1 and 0.3 on the positive side of 0 is considered quite
small. Strong correlation is usually seen as existing at levels less than -0.5
or greater than 0.5.

6.4 A Word About Data Frames 73

This correlation test does not lead us to any easy conclusions about the
relationship between occurrences of whale and occurrences of ahab. These
two data points, for ahab and whale, appear to show only a weak inverse
relationship. Nevertheless, there is much more to be considered.

Consider, for example, what we explored in Chap. 4, and how the use of
synonyms and pronouns complicates these results. When Ahab is not being
referred to by name, he is undoubtedly appearing as either he or him. The
same may be said for the whale and the various appellations of whale that
Melville evokes: monster, leviathan, etc. Using the techniques described in
Chap. 4, you could investigate all of these and more. But before leaving this
seemingly weak correlation, it might be useful to run a few more experiments
to see just how significant or insignificant the result really is.

As noted above, the number of samples can be a factor in how the im-
portance of the correlation coefficient is judged, and in this case there are
135 observations for each variable: one observation for each chapter in the
novel.

One way of contextualizing this coefficient is to calculate how likely it is
that we would observe this coefficient by mere chance alone. In other words,
assuming there is no relationship between the occurrences of whale and ahab
in the novel, what are the chances of observing a correlation coefficient of
−0.2411126? A fairly simple test can be constructed by randomizing the order
of the values in either the ahabs or the whales column and then retesting the
correlation of the data.

6.4 A Word About Data Frames

Before explaining the randomization test in detail, we want to return to
something mentioned earlier about the R matrix object and its limitations
and then introduce you to another important data object in R: the data
frame.
Thus far we have barely used data frames, but as it happens, data frames are
R’s bread and butter data type, and they offer us some flexibility that we do
not get with matrix objects. Like a matrix, a data frame can be thought of
as similar to a table in a database or a sheet in an Excel file: a data frame
has some number of rows and some number of columns, and each column
contains a specific type of data. A major difference between a matrix and
a data frame, however, is that in a data frame, one column may contain
character values and another numerical values. To see how this works, enter
the following code to create a simple matrix of three rows by three columns:

74 6 Correlation

x <- matrix(1, 3, 3)
x
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1

If you ask R to return the data type (class) of any one of the values in this
matrix, it will return the class numeric.

class(x[1,2]) # get class of cell in first row second column
[1] "numeric"

Now change the value of one cell in this matrix so that it contains character
data instead of a number.

x[1,2] <- "Sam I am"
x
[,1] [,2] [,3]
[1,] "1" "Sam I am" "1"
[2,] "1" "1" "1"
[3,] "1" "1" "1"

You will notice right away that all of the values in the matrix are now shown
inside quotation marks. This is because the entire matrix has been converted
to character data. Those 1’s are no longer numbers, they are the 1 charac-
ter. Among other things, this means that you cannot perform mathematical
operations on them anymore! If you check the class, R will report the change:

class(x[1,2]) # get class of cell in first row second column
[1] "character"
class(x[1,3]) # get class of cell in first row third column
[1] "character"

To see the difference between a matrix and a data frame, recreate the first
matrix example and then convert it to a data frame, like this:

x <- matrix(1, 3, 3)
x_df <- as.data.frame(x)
x_df
V1 V2 V3
1 1 1 1
2 1 1 1
3 1 1 1

You can see immediately that a data frame displays differently. Instead of
bracketed row and column numbers, you now see column headers (V1, V2,
V3) and simple row numbers without the brackets. You can now repeat the

6.4 A Word About Data Frames 75

experiment from above and assign some character data into one of the cells
in this data frame.

x_df[1,2] <- "Sam I am"
class(x_df[1,2]) # get class of cell in first row second column
[1] "character"
class(x_df[1,3]) # get class of cell in first row third column
[1] "numeric"
x_df
V1 V2 V3
1 1 Sam I am 1
2 1 1 1
3 1 1 1

When using a matrix, the assignment of character data to any one cell resulted
in all the cells in the matrix being converted into character data. Here, with
a data frame, only the data in the column containing the target cell are
converted to character data, not the entire table of data. The takeaway is
that a data frame can have columns containing different types of data. This
will be especially useful as your data get more complicated. You may, for
example, want a way of storing character based metadata (such as author
gender, or chapter title) alongside the numerical data associated with these
metadata facets.

Another handy thing about data frames is that you can access columns of
data using a bit of R shorthand. If you want to see all the values in the second
column of the x_df variable, you can do so using bracketed index references,
just as you have done previously with matrix objects. To see the entire second
column, for example, you might do this:

x_df[,2]
[1] "Sam I am" "1" "1"

Alternatively, you can use the fact that the data frame has a header to get
column information by referencing the column name, like this:

x_df[,"V2"]
[1] "Sam I am" "1" "1"

And, most alternatively, you can use the shorthand ($) to get column data
like this:

x_df$V2
[1] "Sam I am" "1" "1"

That is a basic overview of data frames. Now we will return to correlating
values in Moby Dick.

76 6 Correlation

6.5 Testing Correlation with Randomization

In this section you will use your new knowledge of data frames. First convert
the matrix object whales_ahabs_m into a data frame called cor_data_df:

cor_data_df <- as.data.frame(whales_ahabs_m)

As a gut check, you can use the cor function on the entire data frame, just
as you did with the matrix object. The output should be the same.

cor(cor_data_df)
whale ahab
whale 1.0000000 -0.2411126
ahab -0.2411126 1.0000000

The goal now is to determine if that observed correlation coefficient of
−0.2411126 could have been likely to occur by mere chance. To assess this
you are going to take the values for one of the two columns in the data frame
and shuffle them into a random order. You will then run a new correlation
test with the randomized column. In this way, a chance distribution of the
values that is independent of the actual structure of the chapters in the book
can be simulated. If the correlation of the shuffled data is similar to the actual
(as in unshuffled) data, then you will have to concede that the relationship
between whale and ahab observed in the actual data is really no different
from what might be observed if you threw all the occurrences of whale and
ahab up in the air and then created 135 arbitrary piles.

The first step is to randomize the order of the values (the word frequency
measurements) in one of the two columns of data in cor_data_df. Since
the columns contain chapter-by-chapter measurements, this randomizing will
have the effect of shuffling the chapter order for one set of measurements and
leaving the other set in chronological order. R provides a function called
sample for generating a random shuffling of data. At its most simple, the
sample function requires a vector of values to shuffle. So, to get a random
ordering of the values in the whale column of cor_data_df you can simply
enter:

sample(cor_data_df$whale)

Go ahead and try entering this a few times and you will see that each time
sample randomly shuffles the order of the values from the whale column.

With the ability to randomize the values, you now need to correlate these
randomized values against the ordered values in the unshuffled ahab column.
Using the dollar sign to reference the columns in the data frame, the expres-
sion can be written as simply as this:

6.5 Testing Correlation with Randomization 77

cor(sample(cor_data_df$whale), cor_data_df$ahab)

In our first test of this code, R returned a correlation coefficient of −0.0094803.
Your results will be different given the random sampling. We then copied
and pasted this code ten more times and observed the following correlation
coefficients for the various shuffles of the data.

[1] 0.122331
[1] 0.00818978
[1] -0.01610114
[1] -0.1289073
[1] 0.05115036
[1] 0.0443622
[1] 0.08513762
[1] -0.1019796
[1] 0.07842781
[1] 0.04410211

As you see, in this small sample of ten randomizations, the highest positive
correlation coefficient was 0.122331 and the lowest negative correlation co-
efficient was -0.1289073. Remember that the actual correlation coefficient
before we began shuffling anything was -0.2411126. In other words, the ac-
tual data seems to be quite a bit below (i.e., further from 0) what is observed
when shuffling the data and simulating a chance distribution of values. Still,
10 randomizations are not very many. Instead of copying and pasting the code
over and over again, you can develop a more programmatic way of testing
the correlation using a for loop and 10,000 iterations!

With a for loop you can repeat the randomization and correlation test pro-
cess multiple times and at each iteration capture the result into a new vector.
With this new vector of 10,000 correlation values, it will be easy to generate
some statistics that describe the distribution of the random data and offer
a better way of assessing the significance of the actual observed correlation
coefficient in the unshuffled data.

The code required for this is simple. Begin by creating an empty container
variable called mycors_v, and then create a for loop that iterates a set num-
ber of times (10,000 in our example). Within the curly braces of that loop,
you will add code for shuffling and then correlating the vectors. At each step
in the loop, you will capture the correlation coefficient by adding it to the
mycors_v vector using the c function. Here is how we wrote it:
mycors_v <- NULL
for(i in 1:10000){

mycors_v <- c(
mycors_v,

78 6 Correlation

cor(sample(cor_data_df$whale),
cor_data_df$ahab)

)
}

With this step completed, you can now use some basic R functions such as
min, max, range, mean, and sd to get a general sense of the results.

Here is what our randomization tests returned; your results will be similar
but not identical:

min(mycors_v)
[1] -0.2992775
max(mycors_v)
[1] 0.3484449
range(mycors_v)
[1] -0.2992775 0.3484449
mean(mycors_v)
[1] -0.0003656731
sd(mycors_v)
[1] 0.08633026

What these descriptive statistics reveal is that our actual observed value is
more typical of the extremes than the norm. A low standard deviation
suggests that most of the values recorded are close to the mean, and here the
mean is very close to zero (−3.6567306 × 10−4), which you will recall from
above can be interpreted as meaning very little correlation. A high standard
deviation would indicate that the values are spread out over a wide range
of values. So even though the min value of -0.2992775 is slightly less than
our actual observed value of -0.2411126, that -0.2992775 is very atypical
of the randomized data. In fact, using a bit of additional code that we will
not explain here, we can generate a plot showing the distribution of all the
values in mycors_v (Fig. 6.1).
h <- hist(mycors_v, breaks = 100, col="grey",

xlab = "Correlation Coefficient",
main = "Histogram of Random Correlation Coefficients\n
with Normal Curve",
plot = T)

xfit <- seq(min(mycors_v), max(mycors_v), length = 1000)
yfit <- dnorm(xfit, mean = mean(mycors_v), sd = sd(mycors_v))
yfit <- yfit * diff(h$mids[1:2]) * length(mycors_v)
lines(xfit, yfit, col = "black", lwd = 2)

6.6 Practice 79

Histogram of Random Correlation Coefficients
 with Normal Curve

Correlation Coefficient

Fr
eq

ue
nc

y

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
50

10
0

15
0

20
0

25
0

Fig. 6.1 Histogram plot of random correlation coefficients

The plot reveals, in dramatic fashion, just how much the data clusters around
the mean, which as you recall from above is nearly 0. It also dramatizes the
outlier status of the actual value (−0.2411126) that was observed. In 10,000
random iterations, only 19 correlation coefficients were calculated to be less
than the actual observed value and the actual observed value was nearly
3 (2.79) standard deviations away from the mean. In short, the probabil-
ity of observing a random value as extreme as the actual value observed
(−0.2411126) is just 0.48%.1

6.6 Practice

1. Add two more columns to the matrix with data for the words i and my
and then rerun the cor function. Though we have only used cor for two
columns so far, we can use it just as easily on a matrix with two or more
columns. Do not forget to set the frequencies for any chapters where the
word does not occur to zero. What does the result tell you about the usage
of the words i and my?

2. Calculate the correlation coefficient for i and my and run a randomization
test to evaluate whether the results are significant.

1Another way to test the significance of a correlation coefficient is to use the cor.test
function. Use ?cor.test to learn about this function and then run it using the method =
"pearson" argument. To make more sense out of the results, consider consulting http://
en.wikipedia.org/wiki/P-value on t-tests.

http://en.wikipedia.org/wiki/P-value
http://en.wikipedia.org/wiki/P-value

	6 Correlation
	6.1 Introduction
	6.2 Start Up Code
	6.3 Correlation Analysis
	6.4 A Word About Data Frames
	6.5 Testing Correlation with Randomization
	6.6 Practice

