
Chapter 10

Do It KWIC(er) (and Better)

Abstract This chapter expands upon the previous chapter in order to build
an interactive and reusable Keyword in Context (KWIC) application that
allows for quick and intuitive KWIC list building. Readers are introduced
to interactive R functions including readline and functions for data type
conversion.

10.1 Getting Organized

In the previous chapter, you learned how to find and access a series of index
positions in a vector and then how to return values on either side of the
found positions. In the practice exercise, you hard-coded a solution for finding
occurrences of the word dog in Sense and Sensibility and Moby Dick. In
this section you will learn how to abstract that code and how to create an
interactive and reusable application that will allow you to repeatedly find
keywords in context without having to hard-code the search terms.

If you have not already done so, now is the time to get organized. You will be
dealing with more and more files as this book continues, and unless you keep
your working spaces well-defined and organized things can get complicated.
Within your “TAWR2” directory, you already have a sub-directory labeled
“code.” This is where you should be storing all of your .R files. Now is a
good time to create a new sub-directory called “results.” In the last exercise
in this chapter, you will be generating a .csv file that you can save in your
“results” directory and then open again in R or in a spreadsheet application
such as Excel or Open Office.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_10

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_10

110 10 Do It KWIC(er) (and Better)

10.2 Separating Functions for Reuse

In the last chapter you created two functions, and in this chapter you will
create a third. Because you can reuse functions in separate projects, it is
convenient to keep them in a separate file so that you can access them from
different R scripts that you write for different projects. You should begin this
chapter, therefore, by copying your two functions from the last chapter into a
new file that you will title corpus_functions.R. Save this new file inside your
“code” sub-directory. Your functions file should include both show_files and
make_token_v from the last chapter. Here they are again, but without the
comments:

show_files <- function(directory_path, pattern = "\\.txt$"){
file_name_v <- dir(directory_path, pattern, full.names = TRUE)
for(i in seq_along(file_name_v)){

cat(i, file_name_v[i], "\n", sep = " ")
}

}
make_token_v <- function(file_path, pattern = "\\W"){

text_v <- scan(file_path, what = "character", sep = "\n")
text_v <- paste(text_v, collapse = " ")
text_lower_v <- tolower(text_v)
text_words_v <- strsplit(text_lower_v, pattern)
text_words_v <- unlist(text_words_v)
text_words_v[which(text_words_v != "")]

}

With your functions stored in a separate file, you can now call the cor-
pus_functions.R file as part of your working R script in order to load these
existing functions. Create a new R script (saved as “chapter10.R” in your
“code” directory) and enter the following expressions as the first two lines:

rm(list = ls())
source("code/corpus_functions.R")

The first line clears your workspace and the second line uses R’s source
function to load the contents of your external functions file. When this script
is executed, R will load all of the functions that you create and save in the
corpus_functions.R file.

As in Chap. 9, you need to show R where to find your text files, so next you
will define an input directory with a relative path to the data/plainText
directory.

input_dir <- "data/text"

10.4 readline 111

Since you also will be using R to create derivative data files that will need
to be saved out to another directory, you will need to tell R where to write
these files. Define an output directory variable, with the title “results,” like
this:
output_dir <- "results"

The objective now is to write an interactive Keyword in Context (KWIC)
function that will allow you to repeatedly enter different file paths and key-
words and then return the hits for those terms along with some amount of
context on either side of the key term.

10.3 User Interaction

R includes a set of built-in functions that, when invoked, require user feedback.
Thus far we have been hard-coding file paths in R, but we could have been
using R’s file.choose function instead. If you enter file.choose at the
R prompt, you will be prompted with a pop-up window that allows you to
navigate your file system and locate a file. Here is an example that you can
try on your system. Just enter the following expression at the R prompt in
the console pane and then use your computer’s windowing system to locate
the file in the exercise directory called “melville.txt.”

mytext <- scan(file.choose(), what = "character", sep = "\n")

If you did everything correctly, you should see the message:
Read 18172 items

You will now be able to enter
mytext

and see all the lines of Moby Dick.

10.4 readline

There are other functions in R that allow for user interaction as well, and
one that we will use for this section is readline. readline is a function that
will print information to the R console and then accept input entered into
the console by the user. Enter this expression into the console and hit return:

112 10 Do It KWIC(er) (and Better)

myyear <- readline("What year was Moby Dick published? \n")

You will see the quoted question appear in the console and the blinking
cursor prompt located after the question mark. At the cursor prompt, enter
a number (e.g., 1851) and hit return. If you now type myyear at the R prompt
and hit return, you will find that R has stored the value that you entered in
the myyear variable. Here is how it should look:

> myyear <- readline("What year was Moby Dick published? \n")
What year was Moby Dick published? 1851
> myyear
[1] "1851"

10.5 Building a Better KWIC Function

Using the readline function, you can write a KWIC list function that asks
the user (you) for a file to search, a keyword to find, and an amount of
context to be returned on either side of the keyword. We will name this
function doitKwic and call it in this fashion:

doitKwic(directory_path)

The only argument that you need to send this function is the location of
(path to) a directory on your system. Open your corpus_functions.R file and
begin writing this new function like this:

doitKwic <- function(directory_path){
instructions here will ask user for a file to search
a keyword to find and a "context" number for context
on either side of the of the keyword

}

Keep in mind that the argument name used inside the parentheses of the
function does not have to be the same as the name used outside of the function.
You already have an object called input_dir instantiated from above. This
object contains the path expression "data/text" that is the location of two
plain text files. So here we are defining a function that takes an argument
called directory_path, and when we call this function, we will send it the
information contained in the input_dir object.

You do not have to write your code this way (i.e., using different names when
inside or outside of the function), but we find it useful to name our function
arguments in a way that is descriptive of their content and a bit more abstract
than the names we give to objects within the main script. We may decide to

10.5 Building a Better KWIC Function 113

use this function on another project, and several months from now we may
have forgotten what input_dir means. Using directory_path is a bit more
descriptive, and it gives us some clues about what kind of data the function
is expecting.

As the commented sections of the code suggest, we want the new function
to ask the user for input. First it needs to ask which file in the directory to
search in, then what keyword to search for, and finally how much context to
display. For the first item, the function should display a list of the files that are
found inside the directory located at directory_path and then ask the user
to choose one. As it happens, we already have a function called show_files
that does exactly this, and we can call the show_files function from inside
the new doitKwic function! Remember that show_files is expecting to get
a directory path as its argument. That information is passed to show_files
in the directory_path argument. So as a next step, we might write the
following:

doitKwic <- function(directory_path){
show_files(directory_path)
more instructions here . . .

}

If doitKwic is called, it will successfully show the files found in the directory
sent as the argument directory_path, but then it will do nothing else. In
order to capture information from the user, we will need to wrap the call to
show_files inside a call to readline:

doitKwic <- function(directory_path){
readline(show_files(directory_path))
more instructions here . . .

}

This gets us a little bit closer, but we are not there quite yet. Recall that
show_files presents us with both an id number and a path for each file.
When you call show_files using data/text you get the following output:

1 data/text/austen.txt
2 data/text/melville.txt

Instead of having to copy or type in the entire file path that we want to
search in, let us have our user just enter the index number of the file instead.
We will capture that user input into a new object called file_id.

doitKwic <- function(directory_path){
file_id <- readline(show_files(directory_path))
more instructions here . . .

}

114 10 Do It KWIC(er) (and Better)

There is now one more thing we have to fix. The readline function accepts
input as character data, so if the user enters the number 2, to access the
“melville.txt” file, that 2 is converted to the character “2.” We must, therefore,
convert, or recast, the character to a numeric value using as.numeric.

doitKwic <- function(directory_path){
file_id <- as.numeric(readline(show_files(directory_path)))
more instructions here . . .

}

Now we can collect the other information we need: the keyword and the
amount of context. We will add two more lines to our evolving function:

doitKwic <- function(directory_path){
file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
more instructions here . . .

}

Notice that we need to use as.numeric again in the last line to be sure the
context the user enters is converted to a numeric value. With these three ingre-
dients, we now have enough information to access, tokenize, and search for a
keyword in a text file. The next thing to do is to take advantage of the function
that we have already written for handling the tokenization: make_token_v.
We will add a call to make_token_v to our function as follows:

doitKwic <- function(directory_path){
file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

dir(directory_path, full.names = TRUE)[file_id]
)

more instructions here . . .
}

This last line is a bit complicated, so let us break it down. Recall that
make_token_v takes a path argument. Here we have used the built-in dir
function with the full.names = TRUE argument to return a file path using a
combination of information that we have stored in the directory_path and
file_id objects. Recall that calling dir(directory_path, full.names =
TRUE) returns a vector object of file paths. We can access specific items in
this vector using bracketed sub-setting, and the specific index of the item
we want to access is now stored in the file_id object. Therefore, calling
dir(directory_path, full.names = TRUE)[file_id] will return the pre-
cise path to a single file. That file is then sent to make_token_v where it is
tokenized and returned into the word_v object.

10.6 Fixing Some Problems 115

All you need to do now is apply what you learned from the exercise in the
last chapter. Using which you will identify the positions in the word_v object
that match the user’s keyword and store them in an object called hits_v.
Then you will loop over the hits_v object using a for loop and along the
way add and subtract the context values from the found positions in order to
identify and display the user’s keyword in context. The (almost) completed
function looks like this:
doitKwic <- function(directory_path){

file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

file.path(directory_path, dir(directory_path)[file_id])
)

hits_v <- which(word_v == keyword)
for(i in seq_along(hits_v)){

start <- hits_v[i] - context
end <- hits_v[i] + context
before <- word_v[start:(start + context - 1)]
after <- word_v[(start + context + 1):end]
keyword <- word_v[start + context]
cat("----------------------", i, "----------------------", "\n")
cat(before,"[", keyword, "]", after, "\n")

}
}

10.6 Fixing Some Problems

Unfortunately, this simple solution cannot handle all of the possible search
scenarios that might occur, and we have left out some important arguments.
Recall, for example, that by default, our make_token_v converts all char-
acters to lowercase. If a user of our new doitKwic function were to enter
a keyword containing a capital letter, nothing would be found. We can fix
this very easily by altering the third line of the function to read keyword
<- tolower(readline("Enter a Keyword: ")). This ensures that what-
ever the user enters will be converted to lowercase. But what if you want
to search for a capitalized word? Right now that is not an option. And there
is another more serious problem. . .

What if the very first word in the file you are searching in is a hit? In this case
the first position in the hits_v vector would be 1 and that would cause start
to be set to 1 - (minus) context: that is one minus whatever number the
user entered for context. The result of that subtraction would be a negative

116 10 Do It KWIC(er) (and Better)

number and R would choke trying to access a value held at a negative vector
index! You cannot have that, so you need to add some code to deal with this
possibility. Here is one way to deal with the problem using an if conditional:

start <- hits_v[i] - context
if(start < 1){

start <- 1
}

A similar problem exists on the other end of the vector. What if the last word
is a hit? Adding some amount of context after the last hit will result in R
trying to return a value that does not exist after the last word. We can deal
with this issue in a similar manner: if the value of end is greater than or equal
to the length of the entire vector, we can set end equal to the length of the
entire vector.

end <- hits_v[i] + context
if(end >= length(word_v)){

end <- length(word_v)
}

We will deal with the lowercase issue and some other issues in the practice
exercises, but for now we at least have a function that will not break. Here
is the final version:
doitKwic <- function(directory_path){

file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

file.path(directory_path, dir(directory_path)[file_id])
)

hits_v <- which(word_v == keyword)
for(i in seq_along(hits_v)){

start <- hits_v[i] - context
if(start < 1){

start <- 1
}
end <- hits_v[i] + context
if(end >= length(word_v)){

end <- length(word_v)
}
output <- word_v[start:end]
output[which(output == keyword)] <- paste(

"[", keyword, "]", sep = ""
)

10.7 Practice 117

cat("----------------------", i, "----------------------", "\n")
cat(output, "\n")

}
}

Save this function to your corpus_functions.R file and then take it for a test
run using the following code:

source("code/corpus_functions.R")
input_dir <- "data/text"
doitKwic(input_dir)

10.7 Practice

1. In prior exercises and lessons, you have learned how to instantiate an empty
object outside of a for loop and then how to add new data to that object
during the loop. You have learned how to use cbind to add columns of data
and rbind to add rows. You have also learned how to use paste with the
collapse argument to glue together pieces in a vector of values and how
to use cat to concatenate items in a vector. And you have used colnames
to get and set the names of columns in a data frame. Using all of this
knowledge, modify the function written in this chapter (doItKwic) so that
the results of a KWIC search are put into a data frame object in which
each row is a single KWIC result. Name this new function doItKwicBetter.
Your resulting data frame should have four columns labeled as follows:
position, left context, keyword, and right context. The position column will
contain the index value showing where in the file the keyword was found.
The left column will contain the words in the file vector that were found to
the left of the keyword. The keyword column will contain the keyword, and
the right column, the context that was found to the right of the keyword.
Here is an example of results generated using the keyword dog with two
words of context in the file “melville.txt.”
position left keyword right

1 10643 like a newfoundland dog just from the
2 12464 that in the dog days will mow
3 23280 swimming like a dog throwing his long
4 47119 at last down dog and kennel starting
5 47195 be called a dog sir then be
6 47653 call me a dog blazes he called
7 70018 the sacred white dog was by far
8 103702 lives in a dog or a horse
9 103788 kindness of the dog the accursed shark
10 133135 ungracious and ungrateful dog cried starbuck he

118 10 Do It KWIC(er) (and Better)

11 133165 give way greyhounds dog to it i
12 143092 whale that a dog does to the
13 163384 the ram lecherous dog he begets us
14 166285 bunger bunger you dog laugh out why
15 166665 in pickle you dog you should be
16 167192 and like a dog strangely snuffing this
17 199028 feet high hang dog look and cowardly
18 202985 sagacious ship s dog will in drawing
19 203037 and then the dog vane and then

2. Copy the function you created in the exercise above and modify it to
include a feedback loop asking the user if the results should be saved as a
.csv file. If the user answers “y” for “yes,” generate a file name based on
the existing user input (keyword, file name, context) and write that file to
the results directory using a call to the write.csv function, as in this
example below. Save this new function in your corpus_functions.R file as
doItKwicStillBetter.

write.csv(results_df, file.path("results", some_file_name))

3. Neither of these “better” KWIC functions gives the user any options for
tokenizing the texts. Right now both functions rely on the default behavior
of the make_token_v function, which uses the regular expression "\\W". In
order to give users flexibility to change the way files get tokenized, we need
to alter the line of code that calls make_token_v to include a pattern
argument, and we also need to add a new argument to the parameters
of our KWIC function. Rewrite your doItKwicStillBetter function to
achieve this objective and save it as doItKwicBest. After you save the
function, you should be able to call it using the code shown below. Re-
call that [ˆA-Za-z0-9'] is a regular expression that retains apostrophes
and possessives. If your function is correct, you will be able to search for
instances of ahab’s. After you have coded this new version, check your so-
lution with the solution at the back of the book where you will find one
more useful iteration of this function explained. Once you have finished
the practice exercises for this chapter, save doItKwic, doItKwicBetter,
doItKwicStillBetter, and doItKwicBest to your corpus_functions.R
file so you can easily access them in the future.

doItKwicBest(input_dir, "[^A-Za-z0-9']")

	10 Do It KWIC(er) (and Better)
	10.1 Getting Organized
	10.2 Separating Functions for Reuse
	10.3 User Interaction
	10.4 readline
	10.5 Building a Better KWIC Function
	10.6 Fixing Some Problems
	10.7 Practice

