
Quantitative Methods in the Humanities
and Social Sciences

Matthew L. Jockers
Rosamond Thalken

Text Analysis
with R
For Students of Literature

Second Edition

Quantitative Methods in the Humanities
and Social Sciences

Editorial Board
Thomas DeFanti, Anthony Grafton, Thomas E. Levy, Lev Manovich,

Alyn Rockwood

Quantitative Methods in the Humanities and Social Sciences is a book series
designed to foster research-based conversation with all parts of the university
campus – from buildings of ivy-covered stone to technologically savvy walls
of glass. Scholarship from international researchers and the esteemed editorial
board represents the far-reaching applications of computational analysis, statistical
models, computer-based programs, and other quantitative methods. Methods are
integrated in a dialogue that is sensitive to the broader context of humanistic
study and social science research. Scholars, including among others historians,
archaeologists, new media specialists, classicists and linguists, promote this
interdisciplinary approach. These texts teach new methodological approaches for
contemporary research. Each volume exposes readers to a particular research
method. Researchers and students then benefit from exposure to subtleties of
the larger project or corpus of work in which the quantitative methods come to
fruition.

More information about this series at http://www.springer.com/series/11748

http://www.springer.com/series/11748

Matthew L. Jockers • Rosamond Thalken

Text Analysis with R
For Students of Literature

Second Edition

Matthew L. Jockers
College of Arts and Sciences
Washington State University
Pullman, WA, USA

Rosamond Thalken
Digital Technology and Culture Program
Washington State University
Pullman, WA, USA

ISSN 2199-0956 ISSN 2199-0964 (electronic)
Quantitative Methods in the Humanities and Social Sciences
ISBN 978-3-030-39642-8 ISBN 978-3-030-39643-5 (eBook)
https://doi.org/10.1007/978-3-030-39643-5

© Springer Nature Switzerland AG 2014, 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-39643-5

For our students,

past, present, and future

Preface to the Second Edition

A lot has changed in the R universe in the last 5 years. Almost as soon as
I began teaching from this book, some of the content and approaches were
already becoming old fashioned. Not obsolete, but old fashioned. The biggest
change came with the rise of the “tidyverse.” Tidyverse is a collection of
R packages developed by Hadley Wickham and his team at RStudio. Before
the advent of the tidyverse, there were ggplot and dplyr, two Wickham
packages that I began using in 2013 and 2014 at precisely the moment that
Text Analysis with R was going to the presses. I remember having had a
brief “stop the presses” moment, but also realizing that I needed more time
to adjust to the tidyverse before being able to teach it.

There is a pretty good chance that you have no idea what that last paragraph
is about. The important thing to know here is that in around 2013 the way
most people use R for data analytics began to change. The seeds of this
change were sown as early as 2005, or maybe 2007 depending on what you
want to count, when Hadley Wickham released an R package called ggplot2.1
ggplot2, along with dplyr and later tidyr, readr, and stringr, radically
changed the way that I write programs in R, and these packages simplified
many of the most difficult programming challenges presented in the first
edition of this book. So in many ways, these new packages are a driving force
justifying the need for this second edition. But there were a few other reasons
as well.

Most relevant, perhaps, is that I have learned a lot over the last 5 years.
I have gotten feedback from students in my classes and from readers, and
based on that learning and that feedback, I know there are ways to make
the content in this book more relevant and easier to digest. And this time
around, I have the benefit of a co-author. Rosamond Thalken, who joins me
for this new edition, was a student in the first class I taught using this book.

1For a great (and pithy) history of the tidyverse revolution, see Roger Peng’s article at
simplystats.org. vii

https://simplystatistics.org/2018/07/12/use-r-keynote-2018/

viii Preface to the Second Edition

She has lived through the transitions in R programming and joins me now in
rethinking and rewriting this book for a new R universe.

But this isn’t just the same book using tidyverse packages. We’ve changed
a lot of other things as well: we’ve updated our programming conventions,
completely overhauled several chapters, added a bunch of new material, in-
cluding five new chapters, that deal with such things as parsing dramatic text,
part of speech tagging, named entity recognition, and sentiment analysis.

Throughout all of this, however, we have stuck to the central principle of
the first edition: You do not have to be a programmer or statistician to dive
into this book. The subtitle, For Students of Literature, remains the guiding
principle.

Pullman, WA, USA Matthew L. Jockers
Kearney, NE, USA Rosamond Thalken
March 2020

Preface from the First Edition
(Still Relevant)

This book provides an introduction to computational text analysis using the
open source programming language R. Unlike other very good books on the
use of R for the statistical analysis of linguistic data2 or for conducting quan-
titative corpus linguistics,3 this book is meant for students and scholars of
literature and then, more generally, for humanists wishing to extend their
methodological toolkit to include quantitative and computational approaches
to the study of text. This book is also meant to be short and to the point.
R is a complex program that no single textbook can demystify. The focus
here is on making the technical palatable and more importantly making the
technical useful and immediately rewarding! Here I mean rewarding not in
the sense of satisfaction one gets from mastering a programming language,
but rewarding specifically in the sense of quick return on your investment.
You will begin analyzing and processing text right away and each chapter
will walk you through a new technique or process.

Computation provides access to information in texts that we simply cannot
gather using our traditionally qualitative methods of close reading and hu-
man synthesis. The reward comes in being able to access that information at
both the micro and macro scale. If this book succeeds, you will finish it with
a foundation, with a broad exposure to core techniques and a basic under-
standing of the possibilities. The real learning will begin when you put this
book aside and build a project of your own. My aim is to give you enough
background so that you can begin that project comfortably and so that you’ll
be able to continue to learn and educate yourself.

When discussing my work as a computing humanist, I am frequently asked
whether the methods and approaches I advocate succeed in bringing new
knowledge to our study of literature. My answer is a strong and resounding
“yes.” At the same time, that strong yes must be qualified a bit; not everything

2Baayen (2008).
3Gries (2009). ix

x Preface from the First Edition (Still Relevant)

that text analysis reveals is a breakthrough discovery. A good deal of compu-
tational work is specifically aimed at testing, rejecting, or reconfirming the
knowledge that we think we already possess. During a lecture about macro-
patterns of literary style in the nineteenth century novel, I used an example
from Moby Dick. I showed how Moby Dick is a statistical mutant among a
corpus of 1000 other nineteenth century American novels. A colleague raised
his hand and pointed out that literary scholars already know that Moby Dick
is an aberration, so why, he asked, bother computing an answer to a question
we already know?

My colleague’s question was good; it was also revealing. The question said
much about our scholarly traditions in the humanities. It is, at the same
time, an ironic question. As a discipline, we have tended to favor a notion
that literary arguments are never closed: but do we really know that Moby
Dick is an aberration? Maybe Moby Dick is only an outlier in comparison
to the other twenty or thirty American novels that we have traditionally
studied alongside Moby Dick? My point in using Moby Dick was not to
pretend that I had discovered something new about the position of the novel
in the American literary tradition, but rather to bring a new type of evidence
and a new perspective to the matter and in so doing fortify (in this case) the
existing hypothesis.

If a new type of evidence happens to confirm what we have come to believe
using far more speculative methods, shouldn’t that new evidence be viewed as
a good thing? If the latest Mars rover returns more evidence that the planet
could have once supported life, that new evidence would be important. Albeit,
it would not be as shocking or exciting as the first discovery of microbes
on Mars, or the first discovery of ice on Mars, but it would be important
evidence nevertheless, and it would add one more piece to a larger puzzle.
So, computational approaches to literary study can provide complementary
evidence, and I think that is a good thing.

The approaches outlined in this book also have the potential to present con-
tradictory evidence, evidence that challenges our traditional, impressionistic,
or anecdotal theories. In this sense, the methods provide us with some oppor-
tunity for the kind of falsification that Karl Popper and post-positivism in
general offer as a compromise between strict positivism and strict relativism.
But just because these methods can provide contradiction, we must not get
caught up in a numbers game where we only value the testable ideas. Some
interpretations lend themselves to computational or quantitative testing; oth-
ers do not, and I think that is a good thing.

Finally, these methods can lead to genuinely new discoveries. Computational
text analysis has a way of bringing into our field of view certain details and
qualities of texts that we would miss with just the naked eye.4 Using com-

4See, for example, Flanders (2005).

Preface from the First Edition (Still Relevant) xi

putational techniques, Patrick Juola recently discovered that J. K. Rowling
was the real author of The Cuckoo’s Calling, a book Rowling wrote under the
pseudonym Robert Galbraith. Naturally, I think Juola’s discovery is a good
thing too.

This is all I have to say regarding a theory for or justification of text analysis.
In my other book, I am a bit more polemical.5 The mission here is not to
defend the approaches but to share them.

Lincoln, NE, USA Matthew L. Jockers
January 2014

References

Baayen RH (2008) Analyzing Linguistic Data: A Practical Introduction to
Statistics using R, 1st edn. Cambridge University Press, Cambridge, UK; New
York

Flanders J (2005) Detailism, digital texts, and the problem of pedantry.
TEXT Technology (2):41–70

Gries ST (2009) Quantitative Corpus Linguistics with R: A Practical Intro-
duction, 1st edn. Routledge, New York, NY

Jockers ML (2013) Macroanalysis: Digital Methods and Literary History, 1st
edn. University of Illinois Press, Urbana

5Jockers (2013).

Contents

Part I Microanalysis

1 R Basics . 3
1.1 Introduction . 3
1.2 Download and Install R . 4
1.3 Download and Install RStudio . 5
1.4 Download the Supporting Materials . 5
1.5 RStudio . 6
1.6 Let’s Get Started . 7
1.7 Saving Commands and R Scripts . 9
1.8 Assignment Operators . 11
1.9 Practice . 11
References . 13

2 First Foray into Text Analysis with R . 15
2.1 Loading the First Text File . 15
2.2 A Word About Warnings, Errors, Typos, and Crashes 17
2.3 Separate Content from Metadata . 19
2.4 Reprocessing the Content . 22
2.5 Beginning Some Analysis . 27
2.6 Practice . 29

3 Accessing and Comparing Word Frequency Data 31
3.1 Introduction . 31
3.2 Start Up Code . 31
3.3 Accessing Word Data . 32
3.4 Recycling . 34
3.5 Practice . 35

xiii

xiv Contents

4 Token Distribution and Regular Expressions 37
4.1 Introduction . 37
4.2 Start Up Code . 37
4.3 A Word About Coding Style . 38
4.4 Dispersion Plots . 38
4.5 Searching with grep . 41
4.6 Practice . 46
Reference . 47

5 Token Distribution Analysis . 49
5.1 Cleaning the Workspace . 49
5.2 Start Up Code . 50
5.3 Identifying Chapter Breaks with grep . 51
5.4 The for Loop and if Conditional . 53
5.5 The for Loop in Eight Parts . 56
5.6 Accessing and Processing List Items . 59
5.7 Practice . 67

6 Correlation . 69
6.1 Introduction . 69
6.2 Start Up Code . 69
6.3 Correlation Analysis . 70
6.4 A Word About Data Frames . 73
6.5 Testing Correlation with Randomization 76
6.6 Practice . 79

7 Measures of Lexical Variety . 81
7.1 Lexical Variety and the Type-Token Ratio 81
7.2 Start Up Code . 82
7.3 Mean Word Frequency . 82
7.4 Extracting Word Usage Means . 84
7.5 Ranking the Values . 87
7.6 Calculating the TTR Inside lapply . 88
7.7 A Further Use of Correlation . 90
7.8 Practice . 90
Reference . 91

8 Hapax Richness . 93
8.1 Introduction . 93
8.2 Start Up Code . 93
8.3 sapply . 94
8.4 An Inline Conditional Function . 94
8.5 Practice . 97

Contents xv

9 Do It KWIC . 99
9.1 Introduction . 99
9.2 Custom Functions . 100
9.3 A Tokenization Function . 103
9.4 Finding Keywords and Their Contextual Neighbors 105
9.5 Practice . 107
Reference . 108

10 Do It KWIC(er) (and Better) . 109
10.1 Getting Organized . 109
10.2 Separating Functions for Reuse . 110
10.3 User Interaction . 111
10.4 readline . 111
10.5 Building a Better KWIC Function . 112
10.6 Fixing Some Problems . 115
10.7 Practice . 117

Part II Metadata

11 Introduction to dplyr . 121
11.1 Start Up Code . 121
11.2 Using stack to Create a Data Frame . 122
11.3 Installing and Loading dplyr . 124
11.4 Using mutate, filter, arrange, and select 125
11.5 Practice . 130

12 Parsing TEI XML . 133
12.1 Introduction . 133
12.2 The Text Encoding Initiative (TEI) . 134
12.3 Parsing XML with R Using the Xml2 Package 135
12.4 Accessing the Textual Content . 138
12.5 Calculating the Word Frequencies . 140
12.6 Practice . 143
Reference . 144

13 Parsing and Analyzing Hamlet . 145
13.1 Background . 145
13.2 Collecting the Speakers . 146
13.3 Collecting the Speeches . 148
13.4 A Better Pairing . 151
13.5 Practice . 157
Reference . 157

14 Sentiment Analysis . 159
14.1 A Brief Overview . 159
14.2 Loading syuzhet . 160

xvi Contents

14.3 Loading a Text . 160
14.4 Getting Sentiment Values . 161
14.5 Accessing Sentiment . 162
14.6 Plotting . 164
14.7 Smoothing . 166
14.8 Computing Plot Similarity . 169
14.9 Practice . 173
References . 174

Part III Macroanalysis

15 Clustering . 177
15.1 Introduction . 177
15.2 Corpus Ingestion . 177
15.3 Custom Functions . 181
15.4 Unsupervised Clustering and the Euclidean Metric 184
15.5 Converting an R List into a Data Matrix 187
15.6 Reshaping from Long to Wide Format 188
15.7 Preparing Data for Clustering . 189
15.8 Clustering the Data . 192
15.9 Practice . 193
Reference . 194

16 Classification . 195
16.1 Introduction . 195
16.2 A Small Authorship Experiment . 196
16.3 Text Segmentation . 196
16.4 Reshaping from Long to Wide Format 202
16.5 Mapping the Data to the Metadata . 203
16.6 Reducing the Feature Set . 205
16.7 Performing the Classification with SVM 206
16.8 Practice . 209
Reference . 210

17 Topic Modeling . 211
17.1 Introduction . 211
17.2 R and Topic Modeling . 212
17.3 Text Segmentation and Preparation . 212
17.4 The R Mallet Package . 219
17.5 Simple Topic Modeling with a Standard Stop List 220
17.6 Unpacking the Model . 225
17.7 Topic Visualization . 229
17.8 Topic Coherence and Topic Probability 230
17.9 Practice . 235
References . 235

Contents xvii

18 Part of Speech Tagging and Named Entity Recognition . . . 237
18.1 Pre-processing Text with a Part-of-Speech Tagger 237
18.2 Saving and Loading .Rdata Files . 242
18.3 Topic Modeling the Noun Data . 242
18.4 Named Entity Recognition . 243
18.5 Practice . 245

Appendix A: Variable Scope Example . 247

Appendix B: The LDA Buffet . 249

Appendix C: Practice Exercise Solutions . 253
C.1 Solutions for Chap. 1 . 253
C.2 Solutions for Chap. 2 . 253
C.3 Solutions for Chap. 3 . 254
C.4 Solutions for Chap. 4 . 256
C.5 Solutions for Chap. 5 . 257
C.6 Solutions for Chap. 6 . 257
C.7 Solutions for Chap. 7 . 258
C.8 Solutions for Chap. 8 . 259
C.9 Solutions for Chap. 9 . 261
C.10 Solutions for Chap. 10 . 262
C.11 Solutions for Chap. 11 . 267
C.12 Solutions for Chap. 12 . 268
C.13 Solutions for Chap. 13 . 269
C.14 Solutions for Chap. 14 . 270
C.15 Solutions for Chap. 15 . 271
C.16 Solutions for Chap. 16 . 272
C.17 Solutions for Chap. 17 . 273
C.18 Solutions for Chap. 18 . 274

Index . 275

About the Authors

Matthew L. Jockers is Professor of English and Data Analytics as well
as Dean of the College of Arts and Sciences at Washington State University.
Jockers leverages computers and statistical learning methods to extract infor-
mation from large collections of books. Using tools and techniques from lin-
guistics, natural language processing, and machine learning, Jockers crunches
the numbers (and the words) looking for patterns and connections. This com-
putational approach to the study of literature facilitates a type of literary
“macroanalysis” or “distant reading” that goes beyond what a traditional lit-
erary scholar could hope to study. The Bestseller Code, his most recent book,
with co-author Jodie Archer, has earned critical praise and the algorithms
at the heart of the research won the University of Nebraska’s Breakthrough
Innovation of the year in 2018 (See: https://youtu.be/dWbVsWnQz1g). In
addition to his academic research, Jockers has worked in industry, first as
Director of Research at a data-driven book industry startup company and
then as Principal Research Scientist and Software Development Engineer in
iBooks at Apple Inc. In 2017, he and Jodie Archer founded “Archer Jock-
ers, LLC,” a text mining and consulting company that helps authors develop
more successful novels through data analytics. In late 2019, Jockers and oth-
ers founded a new text mining startup that focused on helping independent
authors (“indies”).

Rosamond Thalken is an Instructor of English and Digital Technology
and Culture at Washington State University. Her research engages questions
about the intersections and impacts between digital technology, language,
and gender. She currently teaches College Composition and Digital Diversity,
a course which analyzes the cultural contexts within digital spaces, including
intersections of race, gender, class, and sexuality. In 2019, Thalken finished
her Master’s degree in English Literature at Washington State University.
Her thesis combined text analysis and close reading to explore the female
Supreme Court Justices’ rhetorical strategies for reinforcing ethos in court
opinions.

xix

https://youtu.be/dWbVsWnQz1g

List of Figures

1.1 Creating a new R project . 8
1.2 Locating the Files Tab . 9
1.3 Saving an R script . 10

2.1 R crashed . 19
2.2 Example plot . 29

3.1 Top ten words in Moby Dick . 35

4.1 Dispersion plot of “whale” in Moby Dick . 40
4.2 Dispersion plot of ‘ahab’ in Moby Dick . 41

5.1 Bar plot of “whale” and “ahab” side by side . 67

6.1 Histogram plot of random correlation coefficients 79

7.1 Bar plot of mean word use . 86
7.2 Mean word usage plot with scaling . 87
7.3 Plot of type-token ratios . 89

8.1 Hapax percentage plot . 96

11.1 Percentage of hapax . 126

12.1 Bar plot of whale frequency from XML file . 142
12.2 Bar plot of whale and ahab frequency from XML file 143
12.3 Occurrences of “whale” (blue) and “ahab” (red) 144

14.1 Raw sentiment values in Moby Dick . 165
14.2 Simple plot of Sense and Sensibility . 166
14.3 The shape of Moby Dick . 167
14.4 The shape of sense and sensibility . 168

xxi

xxii List of Figures

14.5 Moby Dick and Sense and Sensibility . 168
14.6 Moby Dick and sense and sensibility with rolling means 170
14.7 Moby Dick with DCT smoothing and time normalization 171
14.8 Moby Dick with DCT smoothing without time normalization 172
14.9 Two novels with DCT smoothing and time normalization 173

15.1 Two-dimensional plotting . 185
15.2 Cluster dendrogram of 43 novels . 193

17.1 Word cloud of topic 34 . 230
17.2 Bar plot of topic means in 43 documents . 234

18.1 Word cloud of noun based topic 11 . 243

List of Tables

13.1 Partial table of top speakers . 148
13.2 Partial table of speaker receiver pairs . 150
13.3 Partial table of frequent pairs . 150

xxiii

Part I

Microanalysis

Chapter 1

R Basics

Abstract This chapter explains how to download and install R and RStudio.
Readers are introduced to the R console, to R Projects, and shown how to
execute basic commands.

1.1 Introduction

There is a tradition in the teaching of programming languages in which stu-
dents write a script to print out (to their screen) the words hello world.
Though this book is about programming in R, this is not a programming
book. Instead this text is designed to get you familiar with the R environ-
ment while engaging with, exploring, and even addressing some real text
analysis questions. If you are like us, you probably launched R and started
typing in commands a few hours ago. Maybe you got stuck, hit the wall, and
are now turning to this book for a little shove in the right direction. If you
are like us, you probably headed to the index first and tried to find some
function name or keyword (such as frequency list or count word occurrences)
to get you rolling. You are ready to jump in and start working, and if you’ve
ever done any coding before, you may be wondering (maybe dreading) if this
is going to be another one of those books that grinds its way through all
sorts of data type definitions and then finally “teaches” you how to write an
elegant little snippet of code with a tight descriptive comment.

This is not that type of book—not that there is anything wrong with books
that are like that! This book is simply different; it is designed for the student
and scholar of literature who doesn’t already know a programming language,

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_1&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_1

4 1 R Basics

or at the very least does not know the R language, and, more importantly, is
a person who has come to R because of some text-oriented question or due to
some sense that computation might offer a new or particularly useful way to
address, explore, probe, or answer some literary question. You are not coming
to this book because you want to become a master programmer. You are a
student or scholar (probably in the humanities or social sciences) seeking to
learn just enough coding to probe some text-oriented research questions.

If you want to become a master R programmer, or someone who delivers
shrink-wrapped programs, or R packages, then this is not the book for you;
there are other books, and good ones, for that sort of thing.1 Here, however,
we’ll take our cues from best practices in natural language instruction and
begin with a healthy dose of full immersion in the R programming language.
In the first section, Microanalysis, we will walk you through the steps nec-
essary to complete some basic analysis of a single text. In the second part
of the book, Metadata, we’ll move from analysis of the words in a text to
analysis that is based on metadata about those words. In the final section,
Macroanalysis, we’ll take on a larger corpus to engage in such crowd pleasers
as clustering, classification, and even topic modeling. Along the way there
will be some new vocabulary and even some new or unfamiliar characters for
your alphabet. But all in good time. For now, let’s get programming. . .

1.2 Download and Install R

Download the current version of R (at the time of this writing version 3.6.0)
from the comprehensive R archive network (CRAN) website by clicking on
the link that is appropriate to your operating system (see http://cran.at.
r-project.org):

• If you use MS-Windows, click on “base” and then on the link to the exe-
cutable (i.e. “.exe”) setup file.

• If you are running Mac-OSX, choose the link to latest version that is
compatible with your system.2

• If you use Linux, choose your distribution and then the installer file.

Follow the instructions for installing R on your system in the standard or
“default” directory. You will now have the base installation of R on your
system.

1See, for example, Wickham and Grolemund (2017); Venables and Smith (2009); Braun
(2016); or any of the books in Springer’s Use R Series: http://www.springer.com/series/
6991?detailsPage=titles.
2To find what OS you are running, choose “About this Mac” from the Apple menu.

http://cran.at.r-project.org
http://cran.at.r-project.org
http://www.springer.com/series/6991?detailsPage=titles
http://www.springer.com/series/6991?detailsPage=titles

1.4 Download the Supporting Materials 5

• If you are using a Windows or Macintosh computer, you will find the R
application in the directory on your system where Programs (Windows)
or Applications (Macintosh) are stored.

• If you are on a Linux/Unix system, simply type “R” at the command line
to enter the R program environment.

New versions of R come out about once per year and there are any number
of minor updates throughout the year. It’s a good idea to keep your version
of R up to date by checking the CRAN site every few months.

1.3 Download and Install RStudio

The R application you installed is fine for a lot of simple programming; you
can launch the application and enter commands into the R console window,
but RStudio is an application that offers an organized user environment for
writing and running R programs. RStudio is an IDE, that’s “Integrated Devel-
opment Environment” for R. RStudio, like R, happily runs on Windows, Mac,
and Linux. After you have downloaded R (by following the instructions above)
you should download the “Desktop” version (i.e. not the Server version) of
RStudio from http://www.rstudio.com. Follow the installation instructions
and then launch RStudio like you would any other program/application. Just
like R, new versions of RStudio come out several times a year. When an up-
date is available, RStudio will notify you.

1.4 Download the Supporting Materials

Now that you have R and RStudio installed and running on your system, you
will also need to download the directory of files used for the exercises and
examples in this book. The materials consist of a directory titled “TAWR2”
that includes an empty sub-directory titled “code” and another sub-directory
titled “data” that contains two .csv files, a large .Rdata file that we use in
Chap. 18, and five sub-directories containing the plain texts and XML files
that you will work on throughout this book. You can download the supporting
materials from: github.com/mjockers/TAWR2. Once on the github page, click
on the button that says “Clone or Download” and then choose “Download Zip”
to download a .zip archive titled “TAWR2-master.zip”

Unzip the file and save the resulting directory (aka “folder”) as “TAWR2” (not
“TAWR2-master”) to a convenient location on your system. It’s important

http://www.rstudio.com
https://github.com/mjockers/TAWR2

6 1 R Basics

that you rename the directory “TAWR2”. If you are using a Mac, the file
path to this new directory might look something similar to the following:

"~/Documents/TAWR2"

It does not matter where you keep this new directory as long as you remember
where you put it. In the R code that you write, you may need to include
information that tells R where to find these materials.

1.5 RStudio

When you launch RStudio you will see the default layout which includes four
panes (or quadrants) and within each of the panes you can have multiple
tabs.3 You can customize this pane/tab layout in RStudio’s preferences area.
We set up our layout a bit different from the default: we like to have the
script editing pane in the upper right and the R console pane in the lower
right. You will discover what is most comfortable for you as you begin to
spend more time in the program.

The important point to make right now is that RStudio’s four window panes
each provide something useful, and you should familiarize yourself with at
least two of these panes right away. These are the script editing pane and the
console pane. The former provides an environment in which you can write R
programs. This pane works just like a text editor but with the added benefit
that it offers syntax highlighting and some other shortcuts for interacting
with R. As you become a more experienced coder, you will learn to love
the highlighting. RStudio’s script editor understands the syntax of the R
programming language and helps you read the code you write by highlighting
variables in one color, literal characters, comments, and so on in other colors.
If this does not make sense to you at this point, that is fine. The benefits of
syntax highlighting will become clear to you as we progress, especially since
the code samples shown throughout this book are highlighted to match what
you will see in RStudio. A second point about the script editing pane is that
anything you write in that pane can be saved to file. When you run commands
in the R console, those commands do not get saved into a file that you can
reuse.4 When you write your code in the script editor, you intentionally save

3The first time you launch RStudio you will be able to see only three of the panes. The R
scripting or Source pane will likely be collapsed so you will see only the word Source until
you either create a new script (File > New > R Script) or un-collapse the Source window
pane.
4This is not entirely true. RStudio does save your command history and, at least while
your session is active, you can access that history and even save it to a file. Once you quit
a session, however, that history may or may not be saved.

1.6 Let’s Get Started 7

this code as a “.R” file. You can then close and reopen these files to run, revise,
copy, etc.

Along with the scripting pane, RStudio provides a console pane. If you were
simply running R by itself, then this is all you would get: a simple console.5
In RStudio you can interact with the console just as you would if you had
only launched R. You can enter commands at the R prompt (represented by
a > symbol at the left edge of the console), hit return and see the results.

Because the scripting and console panes are integrated in RStudio, you can
write scripts in the one pane and run them in the other without having to
copy and paste code from the editor into the console. RStudio provides several
shortcuts for running code directly from the script editing pane. We’ll discuss
these and other shortcuts later. For now just know that if you are working in
the scripting pane, you can hit command + return to send the active line of
code (i.e. where your cursor is currently located) directly to the console.

Throughout this book, we will assume that you are writing all of your code in
the script editing pane and that you are saving your scripts to the “code” sub
directory of the main “TAWR2” directory you downloaded from the book’s
github page. To help get you started, we’ll provide specific instructions for
writing and saving your files in this first chapter. After that, we’ll assume you
know what you are doing and that you are saving your files along the way.

1.6 Let’s Get Started

If you have not already done so, launch RStudio.

The first thing to do is to set up an R project. Go to RStudio’s “File” menu
and select “New Project” from the drop-down menu. You will now have the
option to create a “New Directory,” choose an “Existing Directory” or check
out a project from “Version Control” (see Fig. 1.1).

The first option, “New Directory,” is useful if you are starting a new project
from scratch. The last option is beyond the scope of this book, but is some-
thing to be mindful of once you have mastered the basics and want to use
a version control repository, such as git. Here we are going to choose the
second option and then navigate (“Browse”) to the location of the “TAWR2”
directory that you downloaded from the textbook’s github page. Once you
have navigated to the directory, click on the “Create Project” button. After
you have created the new project, look for, and click on, the “Files” tab in
5The Console is a command line window where you enter commands. Sometimes this is
called a Terminal or Shell.

8 1 R Basics

Fig. 1.1 Creating a new R project

RStudio to see the items that are currently in your project (see Fig. 1.2).
Under the “Files” tab, you will see a directory labeled “data” and a new R
project file titled “TAWR2.Rproj.”

We’ll come back to the advantages of having defined an R project as we
progress through the next few chapters, but right now we want you to get
your fingers dirty typing a few simple R commands in the console. By default,
the RStudio console tab should be active, and you should see a bunch of in-
formation about the version of R that you have installed on your system and
some boilerplate text about R being “free software and comes with ABSO-
LUTELY NO WARRANTY.” Underneath all that boilerplate, you will find
a small blue greater than (>) symbol. That is the R “prompt”. Next to the
prompt, you will see a blinking cursor icon. If it’s not blinking, just click on it
to make that the active window pane in RStudio. You can now enter text on
the command line of the console. At the prompt, type 1 + 10 and then hit
return. You will then see a bracketed 1 ([1]) followed by a 11, like this: [1]
11. We’ll discuss what that [1] tells us a bit later, for now just experiment
with typing some other mathematical examples, such as 10 * 10 or 12 / 2.

The console is handy for entering quick, short commands that you you don’t
want to retain for later, but what you are really going to want to do is write
and save longer scripts that can be rerun later. We’ll cover that next.

1.7 Saving Commands and R Scripts 9

Fig. 1.2 Locating the Files Tab

1.7 Saving Commands and R Scripts

To create a new R script, go to the file menu and find “New File” in the
drop-down. Now select “R Script” from the “New File” drop-down (i.e. File >
New > R Script as in Fig. 1.3). Creating a new script file will add a fourth
quadrant to the default RStudio layout; this is the script editor pane. The new
script file will be given a temporary title of “Untitled1,” which you should see
represented as a tab at the top of the pane. Save this new file to your “code”
directory as “chapter1.R” by either clicking on the blue disk icon just below
the “Untitled1” tab or by choosing “save” from the File menu. Notice when
you do this, that RStudio already understands that your project is located
inside the “TAWR2” directory where there is already a “code” (and “data”)
sub-directory. If you have any experience with programming or even with
building web sites with html, you may already understand the advantages
of relative versus absolute paths. When you define an R project, as we have
done here, you don’t have to worry about setting a working directory or using
absolute paths; RStudio handles all that for you!

10 1 R Basics

Fig. 1.3 Saving an R script

At the top of your freshly saved script file, type in the mathematics expression
1 + 10. Unlike the example above where we typed commands into the console,
now we are typing commands into a script, which is essentially just a plain
text file. If we hit return, all that will happen is that the cursor will move
to the next line. If you want to see the output from the commands in your
script, you have to execute them in the console. You could copy and paste the
command into the console, but RStudio gives us a couple of quick shortcuts
for running scripts. You can execute any line of code in your script by hitting
command + return when your cursor is on that line. You can execute multiple
lines of code from your script by selecting them and hitting command +
return. If you want to run your entire script, you can click on the “Run” icon
in the tool bar at the top of the script editing pane. Try this with a few more
examples:
10 + 5

If all proceeded correctly, then R should perform the simple addition, and
you’ll see the following appear in your console6:

6Throughout this book, we will show output from the console proceeded by two hash marks
(##). These hash marks will not appear in your console output.

1.9 Practice 11

[1] 15

Like this example, to execute basic mathematical calculations in R, you use
a plus sign (+) for addition, a minus sign or hyphen (-) for subtraction, an
asterisk (*) for multiplication, a forward slash (/) for division, and a caret sign
(ˆ) for exponents. Other examples of useful built-in mathematical functions in
R include square root (sqrt), absolute value (abs), and (round) for rounding.
R also has some preset values, such as pi:
10 * pi
[1] 31.41593

If you want to create a sequence of numbers, called a vector, you can use a
colon:
1:10
[1] 1 2 3 4 5 6 7 8 9 10

1.8 Assignment Operators

Assignment operators are used to assign a value to a variable. You will find as-
signment operators to be increasingly important as you begin building more
complicated projects. R’s assignment operator is the less than symbol fol-
lowed by the hyphen: <- (The two symbols form an icon that looks like a left
facing arrow.) R also allows the “#” symbol for adding comments into your
scripts; anything you write after a “#” will be ignored by the R processor.
x <- 10 # Assign 10 to the variable "x"
x - 3 # subtract 3 from x

1.9 Practice

Go to the “Files” tab in RStudio and click on the “New Folder” icon to create
a new directory in your R project. Name the new directory “Practice.” Now
create a new R script and title it “practice1.R”). Save this file to the newly
created Practice directory in your “TAWR2” R project. Write the following
practice exercises into your new practice1.R script and then run them either
using the control + return shortcut or the run icon in the script editing pane
of RStudio.

12 1 R Basics

1. As in mathematics, in programming there are conventions around the order
in which mathematical expressions are evaluated. The expression 2 + 3
* 4 is interpreted to be 2 + (3 * 4) = 14 not (2 + 3) * 4 = 20. Run
the following two expressions and explain how the answers were derived.

10 * 2 / 5 - 1
10 * 2 / (5 - 1)

2. Variables can be set to contain specific values (x in the example below), or
they can be the result of a calculation (y in the example). Variables can
also be combined using the c function. The sum function will calculate the
sum of the items in a numerical vector. Explain the difference between the
output of sum(xy) and sum(xyz) in the example below.

x <- 5
y <- 24/4
xy <- c(x, y)
xy
z <- "whale"
xyz <- c(x, y, z)
xyz
sum(xy)
sum(xyz)

3. The == operator is used to test for equivalence, meaning “exactly equal to.”
Why is the result of the first expression “TRUE” and the second expression
“FALSE”?

x <- 5
y <- 10/2
x == y
"x" == "y"

4. In the following example, x is a vector containing 3 values. Explain how
the values of y are derived.

x <- (1:3)
y <- 2 * x
y

5. Vectors can be combined to create data frames, which are like tables (or
spreadsheets) with rows and columns. In the following example, we create
a data frame from two vectors and then call the dim function to access the
data frame’s dimensions. This tells us that there are 3 rows and 2 columns.
Using brackets ([]) we can access specific cells (or a range of cells) in the
data frame. The fifth line of code below shows how to access the first row
of the data frame. The sixth line shows how to access the second column.
How would you access the value in the third row, second column?

References 13

x <- (1:3)
y <- 2 * x
df <- data.frame(x,y)
dim(df)
df[1,]
df[, 2]

Answers to all practice questions can be found at the back of the book.

References

Braun W (2016) A First Course in Statistical Programming with R, 2nd edn.
Cambridge University Press, New York, NY, USA

Venables WN, Smith DM (2009) An Introduction to R, 2nd edn. Network
Theory Ltd.

Wickham H, Grolemund G (2017) R for Data Science: Import, Tidy, Trans-
form, Visualize, and Model Data, 1st edn. O’Reilly Media, Sebastopol, CA

Chapter 2

First Foray into Text Analysis
with R

Abstract In this chapter readers learn how to load, tokenize, and search a
text. Several methods for exploring word frequencies and lexical makeup are
introduced. The practice exercise at the end of the chapter introduces the
plot function.

2.1 Loading the First Text File

If you have not already done so, open your R project in RStudio. Now create
a new R script and title it “chapter2.R.” We will now write the R code needed
to read and analyze Herman Melville’s novel Moby Dick. We will do this using
the scan function.1

text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")

Type this command into your new R script, and then run it by either copying
and pasting into the console or using RStudio’s command + return shortcut
when your cursor is positioned on the line of code you have just written.

This is as good a place as any to mention that the scan function can also be
used to grab text (or html) files from the Internet. If you have an Internet

1Throughout this book we will use a naming convention when instantiating new R objects.
In the example seen here, we have named the object text_v. The _v extension is a conven-
tion we have adopted to indicate the R data type of the object, in this case a vector object,
hence the v. This will make more sense as you learn about R's different data types. For
now, just understand that you can name R objects in ways that will make sense to you as
a human reader of the code.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_2

15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_2&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_2

16 2 First Foray into Text Analysis with R

connection, you can enter a URL in place of the file path and load a file
directly from the web. In the example below, we show how you can download
the novel directly from Project Gutenberg.2

Not run
gutentext_v <- scan(

"http://www.gutenberg.org/cache/epub/2701/pg2701.txt",
what = "character",
sep = "\n"
)

Whether you load the file from your own system—as you will do for the
exercises in this book—or from the Internet, if the code has executed correctly,
you should see something like the following result:

Read 18172 items

We will explain what this “Read 18172 items” means in just a moment. In
case you do not see this result, or you get an error, check your code carefully
for typos. Programming code is extremely finicky. If you do not type the
commands exactly as they appear here, you will likely get an error. In our
experience about 95% of the errors and bugs one sees when coding are the
result of careless typing. If the program is not responding the way you expect
or if you are getting errors, check your typing. Everything counts: capital
letters must be consistently capitalized, commas between arguments must be
outside of the quotes and so on.

Remember that the > symbol seen here is simply a new R prompt indicating
that R has completed its operation and is ready for the next command. At
the new prompt, enter:
> text_v

You will see the entire text of Moby Dick flash before your eyes.3 Now try
examining just the first item using bracketed sub-setting. You will see the
contents of the first item in the text_v variable.4

> text_v[1]
[1] "MOBY DICK; OR THE WHALE"

2Bear in mind, however, that the copy of Moby Dick on the Project Gutenberg website
contains all of the Project Gutenberg boilerplate metadata at the top and bottom. The
plain text files used in this book were acquired from Project Gutenberg but we have
removed the metadata.
3Actually, you may only see the first 1000 or 10,000 lines. That is, because R has set the
max.print option to 1000 by default. If you wish to increase the default for a given work
session, just begin by entering options(max.print = 1000000).
4From this point forward, we will not show the R prompt in the code examples.

2.2 A Word About Warnings, Errors, Typos, and Crashes 17

When you used the scan function, you included an argument (sep) that told
the scan function to separate the file using \n. \n is a regular expression
or meta-character (that is, a kind of computer shorthand) representing (or
standing in for) the newline (carriage return) characters in a text file.5 What
this means is that when the scan function loaded the text, it broke the text up
into chunks according to where it found newlines in the text.6 These chunks
were then stored in what is called a vector, or more specifically a character
vector.7 In this single R expression, you invoked the scan function and put the
results of that invocation into a new object named text_v, and the text_v
object is an object of the type known as a character vector.8 Deep breath.

It is important to understand that the data inside this new text_v object
is indexed. Each line from the original text file has its own special container
inside the text_v object, and each container is numbered. You can access
lines from the original file by referencing their container or index number
within a set of square brackets.

Entering text_v[1] returns the contents of the first indexed container, in
this case, the first line of the text file, that is, the first part of the text file
you loaded up to the first newline character. If you enter text_v[2], you
will retrieve the second item, that is, the line between the first and second
newline characters.9

2.2 A Word About Warnings, Errors, Typos,
and Crashes

We did not want to scare you off in the first chapter, but when running R
scripts and installing and using R packages, you are bound to encounter an
error or warning message at some point.

5Wikipedia provides a fairly good overview of regular expressions and a web search for
“regular expressions” will turn up all manner of useful information.
6Be careful not to confuse newline with “sentence” break or even with “paragraph” break.
Also note that depending on your computing environment, there may be differences be-
tween how your machine interprets \n, \r and \n\r.
7If you have programmed in another language, you may be familiar with this kind of data
structure as an array.
8As noted above, we have found it convenient to append suffixes to the variable names to
indicate the type of data being stored in the variable. So, for example, text_v has a _v
suffix to indicate that the variable is a vector: v = vector. Later you will see data frame
variables with _df extensions and lists with a _l, and so on.
9Those who have programming experience with another language may find it disorienting
that R (like FORTRAN) begins indexing at 1 and not 0 like C, JAVA, and many other
languages.

18 2 First Foray into Text Analysis with R

Warnings Warning messages in R caution you about something that is going
on, but warnings do not halt your script from running. Sometimes warnings
can be ignored; other times they provide valuable information about some-
thing that might be a real problem. You should always investigate any code
that throws a warning to be sure you understand whether or not it can be
ignored.

Errors Errors are fatal (for your R code). They stop your code from execut-
ing. If you encounter an error, you will need to troubleshoot the problem.
Most errors that you encounter will be errors that other people have had be-
fore. Luckily, many of the folks who got these errors for the first time posted
them online and then other folks helped with the troubleshooting. We rarely
encounter errors today that have not been talked about somewhere online.
Googling the error will usually turn up a solution.

Typos The most common mistakes you will make (that we make) are typo-
graphical. A slip on the keyboard can ruin your day. A lowercase l where
you really needed a number 1 can cause all kinds of hair pulling. If your code
is not working, the first step is to read through it very carefully. Another
common mistake is to forget to close a parenthetical expression. In the code
at the beginning of this chapter, we loaded a text file using the scan func-
tion. But if for some reason we forgot to add the closing parentheses, then
we might have seen a strange plus (+) sign show up in the console, like this:

> text_v <- scan("data/text/melville.txt",
what = "character",
sep = "\n"

+

If you hit the return key again, you will see another + sign and so on. That +
is there to tell you that you forgot something. It is a signal to you that R is
expecting something more before it can close out and execute the command.
If you see that you forgot a) (as in this example), just click into the console
window and hit the escape key to cancel the command. You can then edit
your code to include the) and rerun.

Crashes Sometimes you do something in R that causes RStudio to freeze
up or show an “R Session Aborted” message (Fig. 2.1). The only thing to do
is to take a deep breath and restart the RStudio program and then try to
figure out what happened. Generally RStudio does a good job of reopening
the script you were working on, but you might need to reopen your R Project
by going to the File menu and selecting Open Project.

2.3 Separate Content from Metadata 19

2.3 Separate Content from Metadata

The electronic text that you loaded into text_v is the plain text version of
Moby Dick that is available from Project Gutenberg. Along with the text of
the novel, however, you also get a wee bit of metadata: specifically the title
of the book and the fact that it is “By Herman Melville.” Since you do not
want to analyze the metadata, you need to determine where the text of the
novel begins and, in some cases, ends.10 As it happens, the main text of
the novel, or more specifically, the first chapter heading, is found at index
3 (text_v[3]). One way to figure this out is to visually inspect the output
you saw (above) when you typed the object name text_v at the R prompt

Fig. 2.1 R crashed

and hit return. If you had lightning fast eyes, you might have noticed that
item text_v[3] contained the text string: “CHAPTER 1. Loomings.” Instead
of removing the book title and byline in advance, we opted to leave it in so
that we might explore ways of accessing the indices of a character vector.

Let us assume that you did not already know about index 3, but that you did
know that the first line of the book contained the character string “CHAPTER
1. Loomings.” You could use this information, along with R’s which function
to isolate the main text of the novel. To do this on your own, enter the
code below, but be advised that in R, and any other programming language

10As our friend Ryan Cordell likes to point out, this is not always a simple thing to
determine. In this book, we have removed of lot of front matter material from the beginning
of the novel so that our text here begins with the first chapter. Some people might want
to retain that preliminary material depending on their research goals.

20 2 First Foray into Text Analysis with R

for that matter, accuracy counts. The great majority of the errors you will
encounter as you write and test your first programs will be the results of
careless typing.11

start_v <- which(text_v == "CHAPTER 1. Loomings.")

In reality, of course, you are not likely to know in advance the exact contents
of the text items that scan created by locating the newline characters in
the file, and the which function requires that you identify an exact match.
Later on we will show a better way of handling this situation using the grep
function. For now just pretend that you know where all the chunks begin
and end.

You can now check to see if which correctly found the third index by entering
the new variable name at the prompt:
start_v

You should now see the following returned from R:
start_v
[1] 3

In a moment we will use this information to separate the main text of the
novel from the metadata, but first a bit more about character vectors. . .

When you loaded Moby Dick into the text_v object, you asked R to divide
the text (or delimit it) using the carriage return or newline character, which
was represented using \n. To see how many newlines there are in the text_v
variable, and, thus, how many lines of text, use the length function:

length(text_v)
[1] 18172

You will see that there are 18,172 lines of text in the file. But not all of
these lines, or character strings, of text are part of the actual novel that you
wish to analyze.12 Text files, especially novels, often come with some baggage
such as title pages, prefaces, introductions, afterwords, author’s notes, etc.,
and so you will probably want to remove the non-narrative material and just
keep the story: everything from “CHAPTER 1. Loomings. . . ” to “. . . orphan,”
which is the last word of the book. To get the meat of the novel, you need to
reduce the contents of the text_v variable to just the lines of the narrative
proper. Rather than throwing out the metadata, you can opt to save it to a

11In this expression, the two equal signs serve as a comparison operator that translates to
“exactly equal to” or “equivalent.” You got a bit of experience with this operator in the
Chap. 1 practice exercises. You cannot use a single equals sign because the equals sign can
also be used in R as an assignment operator, similar to <-. This is an idiosyncrasy of R.
For now just know that you need to use two equals signs to compare values.
12Sentences, lines of text, etc. are formally referred to as strings of text.

2.3 Separate Content from Metadata 21

new variable called metadata_v, and then keep the text of the novel itself in
a new variable called novel_lines_v. Enter the following two lines of code:

metadata_v <- text_v[1:start_v -1]
novel_lines_v <- text_v[start_v:length(text_v)]

The first line copies the text from the first and second indexed positions in
the text_v vector and puts them into a new vector called metadata_v. If you
are wondering about that start_v -1, remember that the start_v variable
you created earlier contains the value 3 and refers to a place in the text vector
that contains the words “CHAPTER 1. Loomings.” Since you want to keep
that line of the text (that is, it is not metadata but part of the novel) you
must subtract 1 from the value inside the start_v variable to get the 2.

The second line does something similar; it grabs all of the lines of text begin-
ning at the third index position (currently stored inside the start_v variable)
and then continues all the way to the end of the vector, which we reference
by calling the length function.

You can now compare the size of the original file to the size of the new
novel_lines_v variable that excludes the metadata:

length(text_v)
[1] 18172
length(novel_lines_v)
[1] 18170

If you want, you can even use a little subtraction to calculate how much
smaller the new object is: length(text_v) - length(novel_lines_v). The
answer should be 2.

The main text of Moby Dick is now in an object titled novel_lines_v, but
the text is still not quite in the format we need for further processing. Right
now the contents of the novel are spread over 18,170 line items derived from
the original decision to delimit the file using the newline character. Sometimes,
it is important to maintain line breaks: for example, some literary texts are
encoded with purposeful line breaks representing the lines in the original
print publication of the book or sometimes the breaks are for lines of poetry.
For our purposes here, maintaining the line breaks is not important, so we
will get rid of them using the paste function to join and collapse all the lines
into one long string:

novel_v <- paste(novel_lines_v, collapse = " ")

The paste function with the collapse argument provides a way of gluing
together a bunch of separate pieces using a glue character that you define as
the value for the collapse argument. In this case, we are gluing together the
lines (the pieces) using a blank space character (the glue). After entering this
expression, you will have the entire contents of the novel stored as a single

22 2 First Foray into Text Analysis with R

string of words, or more precisely, a string of characters. You can check the
size of the novel object by typing:

length(novel_v)
[1] 1

At first you might be surprised to see that the length is now 1. The variable
called novel_v is a vector just like novel_lines_v, but instead of having an
indexed slot for each line, it has just one slot in which the entire text is held.
If you are not clear about this, try entering:

novel_v[1]

A lot of text is going to flash before your eyes, but if you were able to scroll
up in your console window to where you entered the command, you would
see something like this:
novel_v[1]
[1] "CHAPTER 1. Loomings. Call me Ishmael. Some years ago..."

R has dumped the entire contents of the novel into the console. Go ahead,
read the book!

2.4 Reprocessing the Content

Now that you have the novel loaded as a single string of characters, you are
ready to have some fun. First use the tolower function to convert the entire
text to lowercase characters.

novel_lower_v <- tolower(novel_v)

You now have a big blob of Moby Dick in a single, lowercase string, and
this string includes all the letters, numbers, and marks of punctuation in the
novel. For the time being, we will focus on the words, so we need to extract
them out of the full text string and put them into a nice organized list. R
provides an aptly named function for splitting text strings: strsplit.

moby_word_l <- strsplit(novel_lower_v, "\\W")

The strsplit function, as used here, takes two arguments and returns what
R calls a list.13 The first argument is the object (novel_lower_v) that you
want to split, and the second argument, \\W, is another example of a regular
expression. Remember, a regular expression is a special type of character
string that is used to represent a pattern. In this case, the regular expression
13Because this new object is a list, we have appended “underscore l” (_l) to the variable
name.

2.4 Reprocessing the Content 23

will match any non-word character. Using this simple regex, strsplit can
detect word boundaries.

So far we have been working with vectors. Now you have a list. Both vectors
and lists are data types, and R, like other programming languages, has other
data types as well. At times you may forget what kind of data type one of
your variables is, and since the operations you can perform on different R
objects depends on what kind of data they contain, you may find yourself
needing the class function.

R’s class function returns information about the data type of an object you
provide as an argument to the function. Here is an example that you can try:

class(novel_lower_v)
[1] "character"
class(moby_word_l)
[1] "list"

To get even more detail about a given object, you can use R’s str or structure
function.

This function provides a compact display of the internal structure of an R
object. If you ask R to give you the structure of the moby_word_l list, you
will see the following:

str(moby_word_l)
List of 1
$: chr [1:253992] "chapter" "1" "" "loomings" ...

The output tells you that this object (moby_word_l) is a list with one item
and that the one item is a character (chr) vector with 253,992 items. R then
shows you the first few items, which happen to be the first few words of the
novel. If you look closely, you will see that the third item in the chr vector is
an empty string represented by two quotation marks: "". We will deal with
that in a moment. . .

Right now, though, you may be asking, why a list? The short answer is that
the strsplit function that you used to split the novel into words returns
its results as a list object. The long answer is that sometimes the object
being given to the strsplit function is more complicated than a simple
character string, so strsplit is designed to deal with more complicated
situations. A list is a special type of object in R. You can think of a list as
being like a file cabinet. Each drawer is an item in the list and each drawer
can contain different kinds of objects. In our file cabinet, for example, we
have three drawers full of file folders and one full of old diskettes, CDs, and
miscellaneous hard drives. You will learn more about lists as we go on.

It is worth mentioning here that anytime you want some good technical read-
ing about the nature of R’s functions, just enter the function name proceeded
by a question mark, e.g., ?strsplit. Try this now, and you will activate the

24 2 First Foray into Text Analysis with R

help tab in RStudio and an explanation for how strsplit works to “Split
the Elements of a Character Vector.”

This “question mark function name” sequence is how you access R’s built in
“help” files.14 Be forewarned that your mileage with R-help may vary. Some
functions are very well documented and others are like reading tea leaves.15
One might be tempted to blame poor documentation on the fact that R is
open source, but it is more accurate to say that the documentation often
assumes a degree of familiarity with programming and with statistics. R-
help is not geared toward the novice, but, fortunately, R has now become
a popular language, and if the built-in help is not always kind to newbies,
the resources that are available online have become increasingly easy to use
and newbie friendly.16 For the novice, the most useful part of the built-in
documentation is often found in the code examples that almost always follow
the more technical definitions and explanations at the bottom of the help
record. Be sure to read all the way down in the help files, especially if you
are confused. When all else fails, or even as a first step, consider searching
for answers and examples on sites such as http://www.stackexchange.com.

Because you used strsplit, you have a list, and since you do not need a list
for this particular problem, you can simplify it to a vector using the unlist
function:

moby_word_v <- unlist(moby_word_l)

When discussing the str function above, we mentioned that the third item
in the vector was an empty character string. Calling str(moby_word_l) re-
vealed the following:

str(moby_word_l)
List of 1
$: chr [1:253992] "chapter" "1" "" "loomings" ...

14Note that in RStudio the help window pane also has a search box where you can enter
search terms instead of entering them in the console.
15?functionName is a shortcut for R’s more verbose help(functionName). If you want
to see an example of how a function is used, you can try example(functionName).
args(functionName) will display a list of arguments that a given function takes. Finally, if
you want to search R’s documentation for a single keyword or phrase, try using “??your
keyword” which is a shorthand version of help.search(“your keyword”). We wish we could
say that the documentation in R is always brilliant; we cannot. It is inevitable that as you
learn more about R you will find places where the documentation is frustratingly incom-
plete. In these cases, the Internet is your friend, and there is a very lively community of
R users who post questions and answers on a regular basis. As with any web searching,
the construction of your query is something of an art form, perhaps a bit more so when it
comes to R since using the letter r as a keyword can be frustrating.
16This was not always the case, but a recent study of the R-help user base shows that
things have improved considerably. Trey Causey’s analysis “Has R-help gotten meaner over
time? And what does Mancur Olson have to say about it?” is available online at http://
badhessian.org/2013/04/has-r-help-gotten-meaner-over-time-and-what-does-mancur-ols
on-have-to-say-about-it.

http://www.stackexchange.com
http://badhessian.org/2013/04/has-r-help-gotten-meaner-over-time-and-what-does-mancur-ols
http://badhessian.org/2013/04/has-r-help-gotten-meaner-over-time-and-what-does-mancur-ols
on-have-to-say-about-it

2.4 Reprocessing the Content 25

As it happens, that empty string between 1 and loomings is where a period
character used to be. The \\W regular expression that you used to split the
string ignored all the punctuation in the file, but then left these little blanks,
as if to say, “if I’d kept the punctuation, it’d be right here.”17 Since you are
ignoring punctuation, at least for the time being, these blanks are a nuisance.
You will want to identify where they are in the vector and then remove them.
Or more precisely, you will identify where they are not!

First you must figure out which items in the vector are not blanks, and for
that you can use the which function in combination with the “not equal”
operator.

not_blanks_v <- which(moby_word_v != "")

Notice how the which function has been used in this example. which per-
forms a logical test to identify those items in the moby_word_v that are not
equal (represented by the “!=” operator in the expression) to blank (repre-
sented by the empty quote marks "" in the expression). If you now enter
“not_blanks_v” into R, you will get a list of all of the index positions in
moby_word_v where there is not a blank. Try it:
not_blanks_v

If you tried this, you just got a screen full of numbers. Each of these numbers
corresponds to an indexed position in the moby_word_v vector where there is
not a blank. If you scroll up to the top of this mess of numbers, you will find
that the series begins like this: [1] 1 2 4. . .

Notice specifically that position 3 is missing. That is because the item in the
third position was an empty string! If you want to see just the first few items
in the not_blanks_v vector, try showing just the first ten items, like this:

not_blanks_v[1:10]
[1] 1 2 4 6 7 8 10 11 12 14

With the non-blanks identified, you can overwrite moby_word_v like this18:

moby_word_v <- moby_word_v[not_blanks_v]

17There are much better, but more complicated, regular expressions that can be created
for doing word tokenization. One downside to \\W is that it treats apostrophes as word
boundaries. So the word can’t becomes the words can and t and John’s becomes John and s.
These can be especially problematic if, for example, the eventual analysis is interested in
negation or possession. You will learn to write more sophisticated regular expressions in
later chapters.
18Overwriting an object is generally not a good idea, especially when you are writing code
that you are unsure about, which is to say code that will inevitably need debugging. If
you overwrite your variables, it makes it harder to debug later. Here we are making an
exception because we are quite certain we are not going to need the vector with the blanks
in it.

26 2 First Foray into Text Analysis with R

Only those items in the original moby_word_v that are not blanks are re-
tained.19 Just for fun, now enter:
moby_word_v

After showing you the first 1000 words of the novel, R will give up and return
a message saying something like [[reached getOption("max.print") --
omitted 213891 entries]]. Even though R will not show you the entire
vector, it is still worth seeing how the word data has been stored in this vector
object, so you may want to try the following:

moby_word_v[1:10]
[1] "chapter" "1" "loomings" "call" "me"
[6] "ishmael" "some" "years" "ago" "never"

The numbers in the square brackets are the index numbers showing you the
position in the vector where each of the words is found.

R put a bracketed number at the beginning of each row. For instance, the
word “chapter” is stored in the first ([1]) position in the vector and the word
some is in the 7th ([7]) position. An instance of the word ago is found in
the 9th position and so on. If, for some reason, you wanted to know what the
99986th word in Moby Dick is you could simply enter

moby_word_v[99986]
[1] "by"

This is an important point (not that the 99986th word is by). You can access
any item in a vector by referencing its index. And, if you want to see more
than one item, you can enter a range of index values using a colon such as
this:

moby_word_v[4:6]
[1] "call" "me" "ishmael"

Alternatively, if you know the exact positions, you can enter them directly
using the c combination function to create a vector of positions or index
values. First enter this to see how the c function works:

mypositions_v <- c(4,5,6)

Now simply combine this with the vector:

moby_word_v[mypositions_v]
[1] "call" "me" "ishmael"

You can do the same thing without putting the vector of values into a new
variable. Simply use the c function right inside the square brackets:

19A shorthand version of this whole business could be written as moby_word_v <-
moby_word_v[which(moby_word_v != "")].

2.5 Beginning Some Analysis 27

moby_word_v[c(4,5,6)]
[1] "call" "me" "ishmael"

Admittedly, this is only useful if you already know the index positions you
are interested in. But, of course, R provides a way to find the indexes by also
giving us access to the contents of the vector. Say, for example, we want to
find all the occurrences of whale. For this we can use the which function and
ask R to find which items in the vector satisfy the condition of being the
word whale.

which(moby_word_v == "whale")

Go ahead and enter the line of code above. R will return the index positions
in the vector where the word whale was found. Now remember from above
that if you know the index numbers, you can find the items stored in those
index positions. Before entering the next line of code, see if you can predict
what will happen.

moby_word_v[which(moby_word_v == "whale")]

2.5 Beginning Some Analysis

Putting all of the words from Moby Dick into a vector of words (or, more
precisely, a character vector) provides a handy way of organizing all the
words in the novel in chronological order; it also provides a foundation for
some deeper quantitative analysis. You already saw how to find a word based
on its position in the overall vector (the word by was the 99986th word). You
then saw how you could use which to figure out which positions in the vector
contain a specific word (the word whale). You might also wish to know how
many occurrences of the word whale appear in the novel. Using what you just
learned, you can easily calculate the number of whale tokens using length
and which together20:

length(moby_word_v[which(moby_word_v == "whale")])
[1] 1150

Perhaps you would now also like to know the total number of tokens (words)
in Moby Dick? Simple enough, just ask R for the length of the entire vector:

20In R, as in many languages, there are often alternative ways of achieving the same goal.
A more elegant method for calculating the number of whale hits might look like this:
length(moby_word_v[moby_word_v == "whale"]). For beginners, the explicit use of which
can be easier to understand.

28 2 First Foray into Text Analysis with R

length(moby_word_v)
[1] 214891

With this information, you can easily calculate the percentage of whale oc-
currences in the novel by dividing the number of whale hits by the total
number of word tokens in the book. To divide, simply use the forward slash
character.21

Put a count of the occurrences of whale into whale_hits_v
whale_hits_v <-length(moby_word_v[which(moby_word_v == "whale")])

Put a count of total words into total_words_v
total_words_v <- length(moby_word_v)

Now divide
whale_hits_v / total_words_v
[1] 0.00535155

More interesting, perhaps, is to have R calculate the number of unique word
types in the novel. R’s unique function will examine all the values in the
character vector and identify those that are the same and those that are
different. By combining the unique and length functions, you can easily
calculate the number of unique words in Melville’s Moby Dick vocabulary.

length(unique(moby_word_v))
[1] 16872

It turns out that Melville has a fairly big vocabulary: In Moby Dick Melville
uses 16,872 unique words. That is interesting, but let us kick it up another
notch. What we really want to know is how often he uses each of his words
and which words are his favorites. We may even want to see if Moby Dick
abides by Zipf’s law regarding the general frequency of words in English.22
No problem. R’s table function can be used to build a “contingency” table
of word types and their corresponding frequencies.

moby_freqs_t <- table(moby_word_v)

You can view the first few items in the table using moby_freqs_t[1:10], and
the entire frequency table can be sorted from most frequent to least frequent
words using the sort function like this:

21In these next few lines of code, we have added some comments to explain what the code
is doing. This is a good habit for you to adopt; explaining or commenting your code so
that you and others will be able to understand it later on. In R you insert comments into
code by using a # symbol before the comment. When processing your code, R ignores
everything between that # and the next full line return.
22According to Zipf’s law, the frequency of any word in a corpus is inversely proportional
to its “rank” or position in the overall frequency distribution. In other words, the second
most frequent word will occur about half as often as the most frequent word.

2.6 Practice 29

sorted_moby_freqs_t <- sort(moby_freqs_t, decreasing = TRUE)

If you then want to see the first six items in the sorted table, you can use the
head function as a shortcut instead of bracketed sub-setting.

head(sorted_moby_freqs_t)
moby_word_v
the of and a to in
14176 6469 6325 4636 4539 4077

2.6 Practice

1. Having sorted the frequency table as described above, how do you find the
top ten most frequent words in the novel? Save the top ten words into a
new object called top_ten_t.

2. Once you have the top ten most frequent words stored in a vector, use R’s
built in plot (Fig. 2.2) function to visualize whether the frequencies of the
words correspond to Zipf’s law. The plot function is fairly straightforward.
To learn more about the plot’s complex arguments, just enter: ?plot. To
complete this exercise, consider this example:

mynums_v <- c(1:10)
plot(mynums_v)

2 4 6 8 10

2
4

6
8

10

Index

m
yn

um
s_

v

Fig. 2.2 Example plot

30 2 First Foray into Text Analysis with R

You only need to substitute the mynums_v variable with the top ten values
from sorted_moby_freqs_t. You do not need to enter them manually!23

23When generating plots in RStudio, you may get an error saying: “Error in plot.new()
: figure margins too large.” This is because you have not given enough screen real estate
to the plots pane of RStudio. You can click and drag the frames of the plotting pane to
resolve this issue.

Chapter 3

Accessing and Comparing Word
Frequency Data

Abstract In this chapter, we derive and compare word frequency data. We
learn about vector recycling, and the exercises invite you to compare the
frequencies of several words in Melville’s Moby Dick to the same words in
Jane Austen’s Sense and Sensibility.

3.1 Introduction

This chapter expands upon the code that we developed in the last chapter
to access word frequencies. Before beginning to work through this chapter,
create a new R script file, title it “chapter3.R” and save it in your code
directory. Now you can copy the necessary code from your chapter2.R script,
or use the chapter start up code provided here:

3.2 Start Up Code

text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]
novel_v <- paste(novel_lines_v, collapse = " ")
novel_lower_v <- tolower(novel_v)
moby_words_l <- strsplit(novel_lower_v,"\\W")
moby_word_v <- unlist(moby_words_l)
not_blanks_v <- which(moby_word_v != "")
moby_word_v <- moby_word_v[not_blanks_v]

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_3

31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_3&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_3

32 3 Accessing and Comparing Word Frequency Data

moby_freqs_t <- table(moby_word_v)
sorted_moby_freqs_t <- sort(moby_freqs_t, decreasing = TRUE)

3.3 Accessing Word Data

While it is no surprise to find that the word the is the most frequently oc-
curring word in Moby Dick, it is a bit more interesting to see that the ninth
most frequently occurring word is his. Put simply, there are a lot of men and
not a lot of women in Moby Dick. In fact, you can easily compare the usage
of he vs. she and him vs. her as follows:

sorted_moby_freqs_t["he"]
he
1876
sorted_moby_freqs_t["she"]
she
114
sorted_moby_freqs_t["him"]
him
1058
sorted_moby_freqs_t["her"]
her
330

Notice how unlike the original moby_word_v in which each word was indexed
at a position in the vector, here the word types are the indexes, and the
values are the frequencies, or counts, of those word tokens. When accessing
values in moby_word_v, you had to first figure out where in the vector those
word tokens resided. Recall that you can do this with vector indexing, as in

moby_word_v[4:6]
[1] "call" "me" "ishmael"

and that you can find specific matches using the which function to test for
the presence of a word, such as whale, in the vector.

With the data in a table object (sorted_moby_freqs_t), however, you get
both numerical indexing and named indexing. In this way, you can access a
value in the table either by its numerical position in the table or by its name.
Thus, the expression

sorted_moby_freqs_t[1]

3.3 Accessing Word Data 33

returns the same value as this one:

sorted_moby_freqs_t["the"]

These each return the same result because the word type the happens to be
the first ([1]) item in the vector. If you want to know just how much more
frequent him is than her, you can use the / operator to perform division.

sorted_moby_freqs_t["him"]/sorted_moby_freqs_t["her"]
him
3.206061

him is 3.206061 times more frequent than her, but, as you will see in the
next code snippet, he is 16.45614 times more frequent than she.

sorted_moby_freqs_t["he"]/sorted_moby_freqs_t["she"]
he
16.45614

Often when analyzing text, what you really need are not the raw number
of occurrences of the word types but the relative frequencies of word types
expressed as a percentage of the total words in the file. Converting raw counts
to relative frequencies allows you to more easily compare the patterns of usage
from one text to another. For example, you might want to compare Jane
Austen’s use of male and female pronouns to Melville’s. Doing so requires
compensating for the different lengths of the novels, so you convert the raw
counts to percentages by dividing each individual word count by a count of all
of the words in the whole text. These are called relative frequencies because
the frequencies are relative to the length of the text.

As it stands we have a sorted table of raw word counts. We want to convert
those raw counts to percentages, which requires dividing each count by the
total number of word tokens in the entire text. We can access the total number
of words using the length function on the original word vector.

length(moby_word_v)
[1] 214891

It is worth mentioning, however, that we could also find the total by cal-
culating the sum of all the raw counts in the tabled and sorted vector of
frequencies.

sum(sorted_moby_freqs_t)
[1] 214891

34 3 Accessing and Comparing Word Frequency Data

3.4 Recycling

To convert the raw counts into relative frequencies, we will use division and
then a little multiplication by 100 (multiplication in R is done using an
asterisk) to express the results as percentages:
moby_length_v <- sum(sorted_moby_freqs_t)
sorted_moby_rel_freqs_t <- 100*(sorted_moby_freqs_t/moby_length_v)

The key thing to note about this expression is that R understands that it
needs to recycle the result of sum(sorted_moby_freqs_t) and apply that
result to each and every value in the sorted_moby_freqs_t variable. This
recycling also works with definite values. In other words, if you wanted to
multiply every value in a vector by ten, you could do so quite easily. Here is
a simple example for you to try.

num_vector_v <- c(1, 2, 3, 4, 5)
num_vector_v * 10
[1] 10 20 30 40 50

Having applied the above calculation to the sorted_moby_freqs_t object,
you can now access any word type and return its relative frequency as a
percentage. Because you have multiplied by 100, this percentage shows the
number of occurrences per every 100 words.

sorted_moby_rel_freqs_t["the"]
the
6.596833

The word token the occurs 6.5968328 times for every 100 words in Moby
Dick.

If you want to plot the top ten words by their percentage frequency, you can
use the plot function as you learned in the practice exercise in Chap. 2. Here
we will add a few more arguments to plot in order to convey more information
about the resulting image, and then we will call the axis function to reset
the values on the x-axis with the names of the top ten words (Fig. 3.1).

Notice that the names function can be used to set, or in this case, get the
names of an object. The shape of the line in this plot is the same as in the
exercise for Chap. 2, but now the values on the y-axis have been converted
from raw counts to counts per hundred.

plot(
sorted_moby_rel_freqs_t[1:10], type = "b",
xlab = "Top Ten Words in Moby Dick",
ylab = "Percentage of Full Text",
xaxt = "n"

3.5 Practice 35

)
axis(

1, 1:10,
labels = names(sorted_moby_rel_freqs_t [1:10])
)

0
1

2
3

4
5

6

Top Ten Words

Pe
rc

en
ta

ge
 o

f F
ul

l T
ex

t

the of and a to in that it his i

Fig. 3.1 Top ten words in Moby Dick

3.5 Practice

1. In the same directory in which you found melville.txt, locate austen.txt and
produce a relative word frequency table for Austen’s Sense and Sensibility
that is similar to the one created in the Chap. 2 exercise using Moby Dick.1
Keep in mind that you will need to separate out the metadata from the
actual text of the novel just as you did with Melville’s text. Once you have
the relative frequency table (i.e., sorted_sense_rel_freqs_t), plot it as
above for Moby Dick and visually compare the two plots.

2. In the previous exercise, you should have noticed right away that the top
ten most frequent words in Sense and Sensibility are not identical to those
found in Moby Dick. You will also have seen that the order of words, from
most to least frequent, is different and that the two novels share eight
of the same words in the top ten. Using the c combination function join
the names of the top ten values in each of the two tables and then use the
unique function to show the twelve word types that occur in the combined

1The text of Austen’s Sense and Sensibility was acquired from Project Gutenberg. We
have stripped out the Project Gutenberg metadata.

36 3 Accessing and Comparing Word Frequency Data

name list. Hint: look up how to use the functions by entering a question
mark followed by function name (i.e., ?unique).

3. The %in% operator is a special matching operator that returns a logical
(as in TRUE or FALSE) vector indicating if a match is found for its left
operand in its right operand. It answers the question “is x found in y?”
Using the which function in combination with the %in% operator, write a
line of code that will compute which words from the two top ten lists are
shared.

4. Write a similar line of code to show the words in the top ten of Sense and
Sensibility that are not in the top ten from Moby Dick.

Chapter 4

Token Distribution and Regular
Expressions

Abstract This chapter explains how to use the positions of words in a vector
to create distribution plots showing where words occur across a narrative. We
introduce the grep function and show how to use regular expressions for more
nuanced pattern matching.

4.1 Introduction

By now you should be familiar with the process of creating a new R script file.
From here on out, we will assume that for each chapter you begin by creating
a new “chapter#.R” script in order to work through the code presented in the
chapters and in the practice exercises at the end. Remember that many of
the chapters in this book build on each other and that you will often be able
to recycle code from previous chapters to use in subsequent ones. In cases
where a new chapter depends upon code written in a previous chapter, we
will always provide the necessary code at the beginning of the chapter.

4.2 Start Up Code

text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]
novel_v <- paste(novel_lines_v, collapse = " ")
novel_lower_v <- tolower(novel_v)
moby_words_l <- strsplit(novel_lower_v, "\\W")

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_4

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_4&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_4

38 4 Token Distribution and Regular Expressions

moby_word_v <- unlist(moby_words_l)
not_blanks_v <- which(moby_word_v != "")
moby_word_v <- moby_word_v[not_blanks_v]

4.3 A Word About Coding Style

If you previously read the first edition of this book you might notice a few
changes to the way we are coding things in this new edition. For one thing, we
are now using the underscore (_) character in variable and function names. In
the first edition, there were periods (.) instead. We prefer the underscore be-
cause other programming languages use the period character in special ways,
and we do not want to confuse those who may have experience working in
one of these other languages. Another thing you might notice is the way that
we use spacing (white space). For example, before and after every assignment
operator (<-) we have a blank space. This is not required by R, but it makes
reading our code a lot easier. We also try to put spaces after commas between
arguments in a function, and on either side of an equals (=) sign. The truth
is that the spacing does not matter as far as whether the code will execute
or not. The spacing is just a “coding convention” that we have adopted to
make our code look better and be easier to read. You will also see that we
will sometimes break up a very long line of code onto multiple lines. Again,
this is not necessary, but it makes reading and troubleshooting our code a lot
easier.

4.4 Dispersion Plots

You have seen how easy it is to calculate the raw and relative frequencies
of words. These are global statistics that show something about the central
tendencies of words across a book as a whole. But what if you want to see
exactly where in the text different words tend to occur; that is, where the
words appear and how they behave over the course of a novel instead? At
what points, for example, does Melville really get into writing about whales?

For this analysis you will need to treat the order in which the words appear
in the text as a measure of time, novelistic time in this case.1 You now need
to create a sequence of numbers from 1 to n, where n is the position, or index
number, of the last word in Moby Dick. You can create such a sequence using

1For some very interesting work on modeling narrative time, see Mani (2010).

4.4 Dispersion Plots 39

the seq (sequence) function. For a simple sequence of the numbers, one to
ten, you could enter:

seq(from = 1, to = 10)
[1] 1 2 3 4 5 6 7 8 9 10

Instead of one through ten, however, you will need a sequence from one to
the last word in Moby Dick. You already know how to get this number n
using the length function. Putting the two functions together allows for an
expression like this:

n_time_v <- seq(from = 1, to = length(moby_word_v))

This expression returns an integer vector (n_time_v) containing the positions
of every word in the book.2 We have titled this object n_time_v because it
is a vector (_v) that will serve to represent narrative time (n_time) in the
novel.

Now you need to locate the position of every occurrence of whale in the novel,
or, more precisely, in the moby_word_v object. You have already learned how
the which function can be used to locate items meeting certain conditions,
so you can use which to identify the positions in the vector that are an
occurrence of whale and store them in a new integer vector called whales_v,
like this:

whales_v <- which(moby_word_v == "whale")

If you now enter the object name (whales_v) into the console and hit enter,
R will return a vector of the numerical index positions in the moby_word_v
object where it found an exact match for the character string whale.

Our goal here is to create a dispersion plot where the x-axis is novelistic
time. You have those x-axis values in the n_time_v object. Another vector
containing the values for plotting on the y-axis is now needed, and in this
case, the values need only be some reflection of the logical condition of TRUE
where a whale is found and FALSE or none found when an instance of whale is
not found. In R you can represent the logical value TRUE with a number 1 and
FALSE with a 0. Here, however, since we are not really counting items but,
instead, noting their presence or absence, we will introduce a special character
sequence NA—as in “not available”—for places where there is no found match.
Begin, therefore, by initializing a new vector object called “w_count_v” that
will be full of NA values. It needs to be the same length as the n_time_v
object, so you can use the rep or repeat function to repeat NA as many times
as there are items in the w_count_v variable.

2Remember that you can find out the data type of any R object using the class function.
For example, class(n_time_v).

40 4 Token Distribution and Regular Expressions

w_count_v <- rep(NA, times = length(n_time_v))

Now you simply need to reset the NA values to 1 in those places in the
moby_word_v where a match for whale is found. You already have those
numerical positions stored in the whales_v object, so the resetting is simple
with this expression:

w_count_v[whales_v] <- 1

With the places where each whale was found now set to a value of 1 and
everything else set to a value of NA, you can produce a very simple plot
showing the distribution of the word whale across the novel (Fig. 4.1)3:

plot(
w_count_v,
main = "Dispersion Plot of 'whale' in Moby Dick",
xlab = "Novel Time",
ylab = "whale",
type = "h",
ylim = c(0, 1), yaxt = 'n'
)

0 50000 100000 150000 200000

Dispersion Plot of 'whale' in Moby Dick

Novel Time

w
ha

le

Fig. 4.1 Dispersion plot of “whale” in Moby Dick

This simple dispersion plot shows that the greatest concentration of the word
whale occurs in what is, roughly, the third quarter of the novel. The first
significant concentration of whale begins just before 50,000 words, and then
there is a fairly sustained pod of whale occurrences from 100,000 to about
155,000, and then there is a final patch at the end of the novel, just after
200,000.

By changing just a few lines of code, you can generate a similar plot (Fig. 4.2)
showing the occurrences of ahab.

3Remember, if you get an error saying: “Error in plot.new() : figure margins too
large” you may not have enough screen real estate devoted to the plot pane of RStu-
dio. You can solve this problem by increasing the size of the plots pane (just click and drag
the frame). Your plot may also appear a lot taller (or thicker) than the one seen here. We
have shrunk the plotting pane height in RStudio to make the image fit this page better.

4.5 Searching with grep 41

ahabs_v <- which(moby_word_v == "ahab") # find 'ahab'
a_count_v <- rep(NA, length(n_time_v))
change 'w' to 'a' to keep whales and ahabs in separate variables
a_count_v[ahabs_v] <- 1 # mark the occurrences with a 1
plot(

a_count_v,
main = "Dispersion Plot of 'ahab' in Moby Dick",
xlab = "Novel Time",
ylab = "ahab",
type = "h",
ylim = c(0, 1),
yaxt = 'n'
)

0 50000 100000 150000 200000

Dispersion Plot of 'ahab' in Moby Dick

Novel Time

ah
ab

Fig. 4.2 Dispersion plot of ‘ahab’ in Moby Dick

4.5 Searching with grep

Comparing the two plots seems to indicate that when the word ahab appears,
there are less appearances of whale. Given that the novel is about Ahab’s
long search for a whale, this might be an interesting result. In terms of sheer
occurrences, whale dominates throughout the novel and appears especially
prominent in the third quarter of Moby Dick. Overall, there are twice as
many occurrences of the string whale than the string ahab. (There are 1150
occurrences of whale and 511 of ahab). But Melville does not always refer to
Ahab as ahab or to the whale as whale. As you can imagine, Ahab might be
referred to as captain or, more often, with the simple pronoun he. The whale,
on the other hand, might be referred to as it, as the monster, the leviathan,
and so on. In addition to synonyms and pronouns, our current accounting has
not considered possessives or plurals such as Ahab’s and whales. For finding
these variants, the which function is quite impoverished—it only allows for
exact matching.

Fortunately, we have an alternative to which in grep, which is a function
for searching a text for patterns that match a regular expression. You

42 4 Token Distribution and Regular Expressions

have already seen two examples of regular expressions in action. We used \n
as an argument in the scan function to find the line breaks when reading
the novel into the text_v object. And we used \\W as an argument in the
strsplit function to find word boundaries.4 In this next code example, we
create two very simple regular expressions that allow us to find some of these
more subtle variants of whale and ahab.5 Both of these expressions introduce
the | (or) operator allowing us to search for multiple variants.

whale_hits <- grep(
"whale|whales|whale's|monster|leviathan",
moby_word_v
)

ahab_hits <- grep(
"ahab|ahabs|ahab's|captain",
moby_word_v
)

You can read the first line as “search for occurrences of ‘whale’ or ‘whales’ or
‘whale’s’ or ‘monster’ or ‘leviathan’ in the moby_word_v vector.” Run these
two lines and then compare the number of found matches, to what you found
previously using which.

length(whales_v); length(whale_hits)
[1] 1150
[1] 1746
length(ahabs_v); length(ahab_hits)
[1] 511
[1] 863

Instead of 1150 occurrences of whale, we now have 1746 occurrences of whale
and the variants. And instead of 511 instances of ahab, we have 863 of ahab
and the variants.6

You can now use the index positions held in these two new objects to create
new dispersion plots. But before doing that, there is a problem that needs to
be resolved. As you may recall, the regular expression, \\W, that we used as
an argument of strsplit tokenized the text by treating all marks of punc-
tuation as non-word characters. What this means is that occurrences of the
possessives, ahab’s and whale’s do not actually exist in the moby_word_v
object. Before our new grep-based approach can be fully useful, we need
to rethink the way that we tokenized the text so that we keep the apostro-

4grep, by the way, is an acronym for Globally search a Regular Expression and Print.
5A full introduction to regular expressions is beyond the scope of this book, but you can
learn a lot more over at https://www.regular-expressions.info.
6Note in the code example we have introduced the use of a semi-colon between two ex-
pressions. In R you can separate expressions on the same line using the semi-colon. It is
just a short cut.

https://www.regular-expressions.info

4.5 Searching with grep 43

phes as word characters. For this, we need an alternative to the \\W regular
expression.

It is often useful in programming to create “dummy” examples upon which
to test and iterate your code. Here we will create a very simple string of text
and place it into a variable called eg_v. The dummy text includes a couple of
words using an apostrophe. We can then try different regular expressions as
arguments to strsplit until we get one that achieves the desired outcome.
First let us examine how our current expression works.
eg_v <- "this is a _test_ to see if we can keep ahab's and
other words such as contractions like can't and ain't. it
will also allow us to see some other oddities."
strsplit(eg_v, "\\W")
[[1]]
[1] "this" "is" "a" "_test_"
[5] "to" "see" "if" "we"
[9] "can" "keep" "ahab" "s"
[13] "and" "" "other" "words"
[17] "such" "as" "contractions" "like"
[21] "can" "t" "and" "ain"
[25] "t" "" "it" ""
[29] "will" "also" "allow" "us"
[33] "to" "see" "some" "other"
[37] "oddities"

When you run this code, you will see that the “s” from ahab’s and the two “t”
characters in can’t and ain’t are all being treated as individual word tokens
because \\W treats them as marks of punctuation and breaks the strings
in those places. It is worth mentioning here that \\W does treat one non-
alphanumeric mark of punctuation as a word character. The underscore (_)
is passed through as a word character. You might have noticed this when you
were looking at the frequency table we created in the last chapter. If you enter
the expression head(sort(table(moby_word_v))) you will find the tokens
ile and _you_. This is because both of these strings were present in the
text file of Moby Dick that we got from Project Gutenberg. You will see in
the example text here that we have included underscores around the word
test so that you can see how things change with the new regular expression
we are developing in this chapter; it will treat the underscore character just
like other non-word characters.

The \\W regular expression that we used initially is a shortcut for a more
complex regular expression that behind the scenes might look something like
this: [ˆA-Za-z0-9_]. When placed inside square brackets, the caret (ˆ) char-
acter at the beginning of this pattern is interpreted as a negation operator
that you can read to mean “not.” What follows after the not are three types
of character classes: the capital letters A through Z, the lowercase letters a

44 4 Token Distribution and Regular Expressions

through z, and then all the numbers 0 through 9. After the numbers, you
will also see the underscore character. When this expression is provided to
strsplit, the function “splits” the text on any characters that are not (ˆ)
in the set of characters represented by A-Za-z0-9_. In other words, the text
gets split on all the remaining characters, which include other marks of punc-
tuation and, of course, the space character. With this knowledge, it is not
too difficult to create a similar expression that substitutes the apostrophe for
the underscore, like this:
strsplit(eg_v, "[^A-Za-z0-9']")
[[1]]
[1] "this" "is" "a" ""
[5] "test" "" "to" "see"
[9] "if" "we" "can" "keep"
[13] "ahab's" "and" "" "other"
[17] "words" "such" "as" "contractions"
[21] "like" "can't" "and" "ain't"
[25] "" "it" "" "will"
[29] "also" "allow" "us" "to"
[33] "see" "some" "other" "oddities"

With this new expression, we retain the words that use apostrophes, and we
do not retain the underscores. We still have to deal with the empty “blanks” as
we did with the \\W, but now we have got a slightly more nuanced expression
for tokenizing the text.7 After testing on this dummy example, we can now
load and tokenize the text using the new expression:
text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]
novel_v <- paste(novel_lines_v, collapse=" ")
novel_lower_v <- tolower(novel_v)
moby_words_l <- strsplit(novel_lower_v, "[^A-Za-z0-9']")
moby_word_v <- unlist(moby_words_l)
not_blanks_v <- which(moby_word_v != "")
moby_word_v <- moby_word_v[not_blanks_v]

When we search for whale and ahab along with the variants using this new
expression, we will actually get the same number of hits. Recall that the orig-
inal expression that excluded apostrophes resulted in 1746 hits for variants
of whale and 863 for variants of ahab.

7As you may have gathered from this example, tokenization is not a simple matter, and
this is in no way meant to be an exhaustive discussion. One takeaway here, however, is
that you need to be very conscious of your decisions. In the new expression that we have
created, any single quotation mark will now be retained, and it is possible that some of
these might not be being used for contractions or possessives. Consider, for example, the
way that single quotes get used in a quotation of a quotation: e.g., Bob asked, “Did you
really hear Mary say ‘Holy Cow!’ when she saw the sacred bovine?” Tokenizing this text
with the regular expression [ˆA-Za-z0-9'] will result in tokens for both “’Holy” and “” ’.

4.5 Searching with grep 45

whale_hits_new <- grep(
"whale|whales|whale's|monster|leviathan",
moby_word_v
)

ahab_hits_new <- grep(
"ahab|ahabs|ahab's|captain",
moby_word_v
)

With the new expression we still get 1746 total hits for variants of whale and
863 for variants of ahab. That is because the first method was breaking ahab’s
into ahab and s and whale’s into whale and s; all the ahab and whale instances
still got counted, they just were not being counted in their possessive form.
Depending on what we are interested in, this may or may not be important.
To see why it might matter, let us use these hits to create some new frequency
tables that let us see how the variants are being used. Given that the values
contained inside the whale_hits_new and ahab_hits_new are index positions
within the larger moby_word_v object, we can use sub-setting to pull them
out:

whale_varients_v <- moby_word_v[whale_hits_new]
ahab_varients_v <- moby_word_v[ahab_hits_new]

We can now build two new frequency tables to see the relative use of the
variants and to reveal something else that we might not have even considered:
sort(table(whale_varients_v), decreasing = TRUE)
whale_varients_v
whale whales whale's leviathan whalemen
1030 246 120 79 68
monster whaleman whaler whalers leviathans
42 36 19 19 17
narwhale whalebone whaleman's leviathanic monsters
11 11 9 8 6
leviathan's monster's whaleboats whalemen's narwhales
4 4 4 3 2
whaleships leviathanism whaleboat's whaleboning whaled
2 1 1 1 1
whaleship whalesmen
1 1

sort(table(ahab_varients_v), decreasing = TRUE)
ahab_varients_v
ahab captain ahab's captains captain's ahabs
436 306 75 24 21 1

The first thing these new tables reveal, seen especially in the data about
whales, is that there are a variety of other token variants in the text that

46 4 Token Distribution and Regular Expressions

did not come immediately to mind. Whaleship and whalebone were probably
not what we were thinking about when considering occurrences of whale.
The second thing revealed here is a key difference between using the which
function and a regular expression. Where which finds exact matches, regular
expressions find patterns. Consider this example:

length(which(whale_varients_v == "whale"))
[1] 1030
length(grep("whale", whale_varients_v))
[1] 1585

The first line, using which, only finds exact matches, whereas the second
line, using grep, finds all the strings that include the sub-string whale. Nat-
urally, there are ways we could tweak the regular expression so that it also
finds the exact match. For this we might use the special regular expression
metacharacters ˆ and $. Instead of having the meaning of not that we de-
scribed previously when placed inside square brackets, the ˆ when placed at
the beginning of a search string has the meaning of start and it acts as an an-
chor. Anchor metacharacters do not match a specific character; instead, they
match a position (anchor) before, after, or between characters. The caret ˆ
matches the position before the first character in the string. The $ sign, is
similar, but it matches the position right after a character. These special
characters can, therefore, be used as start of string and end of string anchors.
To recreate the behavior of which, we could use the following:

length(grep("^whale$", whale_varients_v))
[1] 1030

Again, this section on regular expressions is meant to be a very general in-
troduction. There is a lot more to learn, and how you write your expressions
can radically change the way your text is tokenized. The other thing to keep
in mind, especially if you have used regular expressions elsewhere, is that we
have been searching for matches in a vector of tokens, and not in the entire
text file. Because we have already tokenized the novel into a vector of words,
grep is being recycled over all the values in the vector. But you can use
grep to search for patterns in a larger text. The exercises below will help you
explore a few more features and idiosyncrasies of using grep.

4.6 Practice

1. Now that you have a vector of all variations of the word whale (stored in
whale_variants_v), create a dispersion plot of the whale variants grouped
together. Compare this to your previous dispersion plot of the word whale
alone. What do you notice?

Reference 47

2. In addition to ˆ and $, the “dot” (.), or period is another special metachar-
acter within regular expressions. The . serves as a wildcard that can be
used to match any character. If you wanted to find and tally up all the
five character strings in Moby Dick that begin with w and ending with e,
you might write the following expression using three . wildcards:

table(moby_word_v[grep("^w...e$", moby_word_v)])
##
waive waste we're we've weave wedge whale where while white
1 2 2 2 2 2 1030 205 242 280
whole whose worse write wrote
137 85 21 4 3

Rewrite this expression to find five letter words that begin with wh and end
with e.

3. Adverbs often end with “ly.” Write an R script that finds all the words
ending in “ly” and then use table and sort(with the decreasing = TRUE
argument) to identify the three most frequently occurring adverbs in Moby
Dick. (You can do this as several lines of code or in one line by function
embedding. The solution at the back of the book shows both methods.)

Reference

Mani I (2010) The Imagined Moment: Time, Narrative, and Computation.
University of Nebraska Press, Lincoln

Chapter 5

Token Distribution Analysis

Abstract This chapter expands upon the introduction to regular expressions
and introduces several new functions including seq_along, rbind, apply, and
do.call. if conditionals and for loops are also presented as we explore how
to identify chapter breaks and build a distribution plot based on chapters.

5.1 Cleaning the Workspace

If you have been working through the chapters in the book without quitting
RStudio, then it is very likely that you have a bunch of variables instantiated
in memory. If you click on the “Environment” tab, you will be able to see
what is currently in memory. Recall, for example, that you have a variable
(novel_lines_v) containing the entire text from the original Project Guten-
berg file as a list of lines. If you have had the same R session opened for a
while, and especially if you have been experimenting with your own code as
you work your way through the examples and exercises in this book, it might
be a good idea to clear your workspace before moving on. As you work in a
given R session, R is keeping track of all of your variables in memory. When
you switch between different tasks during the same session, you can avoid a
lot of potential variable conflict (and headache) if you refresh, or clear, your
workspace. Since you are about to do something new with chapter breaks
instead of looking at the novel as a single string, now is a good time to get a
fresh start. In RStudio you can clean the slate by selecting Clear Workspace
from the Session menu. Alternatively, you can just enter rm(list = ls())
into the R console. Be aware that both of these commands will delete all of
your currently instantiated objects.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_5

49

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_5&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_5

50 5 Token Distribution Analysis

Enter the following expression to create a fresh session.

rm(list = ls())

If you now enter ls (short for “list objects”) you will simply see character(0).

ls()
character(0)

ls is a listing function that returns a list of all of your currently instantiated
objects. This character(0) lets you know that there are no variables instan-
tiated in the session. Now that you have cleared everything, you will need to
reload Moby Dick using the same code you learned earlier.

5.2 Start Up Code

text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]

You may recall from earlier that you can view the whole text of Moby Dick
in your R console, newline by newline, by entering the name of the variable:
novel_lines_v

If you try this now, it might take a few seconds to load, and the results
you will see are not going to be very pretty.1 One thing you might notice
in this long list is that the beginning of each new chapter follows a specific
pattern. Each new chapter starts with a new line followed by the capitalized
word CHAPTER and then a space character and then one or more digits.
For example, [1] "CHAPTER 1. Loomings." and [185] "CHAPTER 2. The
Carpet-Bag."

Because the Project Gutenberg text uses this CHAPTER convention to mark
the chapters, you can split the text into chapters by using this character
sequence (CHAPTER) as delimiter in a manner similar to the way that you
split the text into words using \\W.

1Do not be alarmed if you see a series of backslash characters in the text. These are escape
characters that R adds before quotation marks and apostrophes so that they will not be
treated as special characters and parsed by R.

5.3 Identifying Chapter Breaks with grep 51

5.3 Identifying Chapter Breaks with grep

In text analysis grep and its related functions are your ever-loyal friends. If
you have not already done so, be sure to access the grep help file by typing
?grep at the R prompt.

As we learned in the last chapter, grep is an R function for performing regular
expression pattern matching. Using the regular expression ˆCHAPTER \\d will
allow grep to identify lines in the novel_lines_v vector that begin2 with the
capitalized letters CHAPTER followed by a space and then, using the shorthand
\\d, any digit. Here is the full expression.

chap_positions_v <- grep("^CHAPTER \\d", novel_lines_v)

To check your work, enter the next R expression:

novel_lines_v[chap_positions_v]

If grep and the regex did their job, you will now see a character vector
containing all 135 of the chapter headings. Here is a truncated version showing
only the first six items:
head(novel_lines_v[chap_positions_v])
[1] "CHAPTER 1. Loomings." "CHAPTER 2. The Carpet-Bag."
[3] "CHAPTER 3. The Spouter-Inn." "CHAPTER 4. The Counterpane."
[5] "CHAPTER 5. Breakfast." "CHAPTER 6. The Street."

The object chap_positions_v holds the positions from the novel_lines_v
where the search string ˆCHAPTER\\d was found. The goal now will be to find
a way to collect all of the lines of text that occur between these positions: the
chunks of text that make up each chapter.

That sounds simple, but we do not yet have a marker for the ends of the
chapters; we only know where they begin. To get the ends, we can subtract 1
from the known position of the following chapter. In other words, if CHAP-
TER 10 begins at position 1524, then you know that CHAPTER 9 ends at
1524 - 1 or 1523.

This technique works perfectly except for the last chapter where there is no
following chapter! There are several ways we might address this situation, but
since the last item in the novel_lines_v contains the phrase THE END, we
can just add this final index number to the chap_positions_v object. If we
did not already know that THE END was the last item in the novel_lines_v
there are a couple of ways that we could have found it. One option would be
to use an expression such as this: novel_lines_v[length(novel_lines_v)].
But R provides two very handy functions for showing us either the first or

2Recall that the start of a line is marked by use of the caret symbol: ˆ.

52 5 Token Distribution Analysis

last six items in any vector. These functions are head and tail. To view the
last few items in the novel_lines_v vector, use tail:
tail(novel_lines_v)
[1] "they glided by as if with padlocks on their mouths; the s..."
[2] "sailed with sheathed beaks. On the second day, a sail dre..."
[3] "and picked me up at last. It was the devious-cruising Rac..."
[4] "her retracing search after her missing children, only fou..."
[5] "orphan."
[6] "THE END"

Now that you know that the last item in the novel_lines_v is THE END
and not part of the text of the chapter, which ends with the word orphan, you
can simply add the index number of THE END (length(novel_lines_v))
to your chap_positions_v object.

But let us slow down so that you can see exactly what is happening:

1. Enter chap_positions_v at the prompt to see the contents of the current
vector:

chap_positions_v
[1] 1 185 301 790 925 989 1062 1141 1222 1524
[11] 1654 1712 1785 1931 1996 2099 2572 2766 2887 2997
[21] 3075 3181 3323 3357 3506 3532 3635 3775 3893 3993
[31] 4018 4084 4532 4619 4805 5023 5273 5315 5347 5371
[41] 5527 5851 6170 6202 6381 6681 6771 6856 7201 7274
[51] 7360 7490 7550 7689 8379 8543 8656 8742 8828 8911
[61] 9032 9201 9249 9293 9555 9638 9692 9754 9854 9894
[71] 9971 10175 10316 10502 10639 10742 10816 10876 11016 11097
[81] 11174 11541 11638 11706 11778 11947 12103 12514 12620 12745
[91] 12843 13066 13148 13287 13398 13440 13592 13614 13701 13900
[101] 14131 14279 14416 14495 14620 14755 14835 14928 15066 15148
[111] 15339 15377 15462 15571 15631 15710 15756 15798 15873 16095
[121] 16113 16164 16169 16274 16382 16484 16601 16671 16790 16839
[131] 16984 17024 17160 17473 17761

2. Add a new item referencing the last position in the novel_lines_v object
to the end of the chap_positions_v object using the c function. In the
code below we have made this very explicit and then provided a commented
line of code that simplifies the command into one line.

last_position_v <- length(novel_lines_v)
chap_positions_v <- c(chap_positions_v , last_position_v)
alternatively,
chap_positions_v <- c(chap_positions_v , length(novel_lines_v))

5.4 The for Loop and if Conditional 53

3. Enter chap_positions_v at the prompt again, this time to see the entire
vector but now with a new value (18170) appended to the end3:

chap_positions_v
[1] 1 185 301 790 925 989 1062 1141 1222 1524
[11] 1654 1712 1785 1931 1996 2099 2572 2766 2887 2997
[21] 3075 3181 3323 3357 3506 3532 3635 3775 3893 3993
[31] 4018 4084 4532 4619 4805 5023 5273 5315 5347 5371
[41] 5527 5851 6170 6202 6381 6681 6771 6856 7201 7274
[51] 7360 7490 7550 7689 8379 8543 8656 8742 8828 8911
[61] 9032 9201 9249 9293 9555 9638 9692 9754 9854 9894
[71] 9971 10175 10316 10502 10639 10742 10816 10876 11016 11097
[81] 11174 11541 11638 11706 11778 11947 12103 12514 12620 12745
[91] 12843 13066 13148 13287 13398 13440 13592 13614 13701 13900
[101] 14131 14279 14416 14495 14620 14755 14835 14928 15066 15148
[111] 15339 15377 15462 15571 15631 15710 15756 15798 15873 16095
[121] 16113 16164 16169 16274 16382 16484 16601 16671 16790 16839
[131] 16984 17024 17160 17473 17761 18170

The trick now is to figure out how to process the text, that is, the actual
content of each chapter that appears between each of these chapter markers.
For this we introduce the for loop.

5.4 The for Loop and if Conditional

Most of what follows from here will be familiar to you from what we have
already learned about tokenization and word frequency processing. The main
difference is that now all of that code will be wrapped inside of a looping
function. A for loop allows us to do a task over and over again for a set
number of iterations. In this case, the number of iterations will be equal to
the number of chapters found in the text.

As a simple example, let us say you just want to print (to the screen) the
various chapter positions you found using grep. Instead of printing them all at
once, like you did above by dumping the contents of the chap_positions_v
variable, you want to show them one at a time. You already know how to
return specific items in a vector by putting an index number inside brackets,
like this

3You might be wondering what to do if the text you are analyzing does not happen to
include the final line THE END. A simple solution would be to add a new line to the end
of the novel_lines_v vector. You could add the words THE END as a final line, or it
could simply be blank. And, naturally, there are other more sophisticated ways of writing
your code so that you do not have to do any of this, but that is more than we want to get
into in this introductory text.

54 5 Token Distribution Analysis

chap_positions_v[1]
chap_positions_v[2]

Instead of entering the vector indexes (1 and 2 in the example above), you can
use a for loop to go through the entire vector and automate the bracketing
of the index numbers in the vector. Here is a simple way to do it using a for
loop:

for(i in 1:length(chap_positions_v)){
print(chap_positions_v[i])

}

Notice the for loop syntax; it includes two arguments inside the parentheses:
a variable (i) and a sequence (1:length(chap_positions_v)). These are
followed by a set of opening and closing braces. These braces contain (or
encapsulate) the instructions to perform within each iteration of the loop.4
Upon the first iteration, i gets set to 1. With i == 1 the program prints the
contents of whatever value is held in the 1st position of chap_positions_v.
In this case, the value is 1, which can be a bit confusing. When the program
gets to the second iteration, the value printed is 185, which is less confusing.
After each iteration of the loop, i is advanced by 1, and this looping continues
until i is equal to the length of chap_positions_v.

To make this even more explicit, we will add a paste function that will print
the value of i along with the value of the chapter position, making it all easy
to read and understand. Try this now.

for(i in 1:length(chap_positions_v)){
print(paste("Chapter ", i, " begins at position ",

chap_positions_v[i]), sep="")
}

When you run this loop, you will get a clear sense of how the parts are
working together. With this example under your belt, you can now return to
the chapter-text problem. As you iterate over the chap_positions_v vector,
you are going to be grabbing the text of each chapter and performing some
analysis. Along the way, you do not want to print the results to the R console
(as in our example above), so you will need a place to store the results of the
analysis during the for loop. For this you will create two empty list objects.
These will serve as containers in which to store the calculated result of each
iteration:

chapter_raws_l <- list()
chapter_freqs_l <- list()

4Using i is a matter of convention. You could name this variable anything that you wish:
e.g., my.int, x, etc.

5.4 The for Loop and if Conditional 55

Remember from Chap. 2 that a list is a special type of object in R. You can
think of a list as being like a file cabinet. Each drawer is an item in the list
and each drawer can contain different kinds of objects.

To summarize, the for loop will iterate over each item in the
chap_positions_v vector. When it gets to each item, it will use the chapter
position information stored in the vector to figure out the beginning and the
end of each chapter. With the chapter boundaries determined, the script will
then collect the lines and word tokens found within those boundaries and
calculate both the raw and relative frequencies of those word types using
the table function that you learned about earlier. The frequencies (both the
raw counts and the relative frequencies) will then be stored in the two list
variables that are instantiated prior to the loop.

Though the processing inside the loop is similar to what was done in the
previous chapters, there are one or two complicating factors that must be
addressed. The most problematic of these involves what to do when i is equal
to the length of chap_positions_v. Since there is no text following the last
position, you need a way to break out of the loop. For this an if conditional
is perfect. Below we have written out the entire loop. Before moving on to
the line-by-line explication that follows, take a moment to study this code
and see if you can explain each step.
for(i in 1:length(chap_positions_v)){

if(i != length(chap_positions_v)){
chapter_title <- novel_lines_v[chap_positions_v[i]]
start <- chap_positions_v[i] + 1
end <- chap_positions_v[i + 1] - 1
chapter_lines_v <- novel_lines_v[start:end]
chapter_words_v <- tolower(paste(chapter_lines_v, collapse = " "))
chapter_words_l <- strsplit(chapter_words_v, "\\W")
chapter_word_v <- unlist(chapter_words_l)
chapter_word_v <- chapter_word_v[which(chapter_word_v != "")]
chapter_freqs_t <- table(chapter_word_v)
chapter_raws_l[[chapter_title]] <- chapter_freqs_t
chapter_freqs_t_rel <- 100*(chapter_freqs_t/sum(chapter_freqs_t))
chapter_freqs_l[[chapter_title]] <- chapter_freqs_t_rel

}
}

Now that you have had a chance to think through the logic of this loop for
yourself, here is a line-by-line explication:

56 5 Token Distribution Analysis

5.5 The for Loop in Eight Parts

5.5.1

Initiate a for loop that iterates over each item in chap_positions_v.

for(i in 1:length(chap_positions_v)){

5.5.2

As long as the value of i is not equal to the length of the vector, keep iterating
over the vector.

if(i != length(chap_positions_v)){

Here we introduce the conditional if. if allows us to set a condition that will
evaluate to either TRUE or FALSE. If the condition is found to be TRUE, then
the code inside the curly braces of the if statement will be executed. This
has the effect of saying “so long as this condition is met, continue iterating.”
The condition here is that i not be equal (!=) to the length of the vector.
The reason we must set this condition is because there is no chapter text
after the last item in chap_positions_v. We do not want to keep the loop
going once it gets to the end!

Assuming that the condition stated in the if statement is met, we proceed
to the next line.

5.5.3

At this stage the program captures the chapter title which is found
at the place in the novel_lines_v indicated by the value held in the
chap_positions_v.

chapter_title <- novel_lines_v[chap_positions_v[i]]

If this is confusing, try this: In your console, set i to 1.
i <- 1

5.5 The for Loop in Eight Parts 57

Now enter:

novel_lines_v[chap_positions_v[i]]

When you hit return, you will see [1] "CHAPTER 1. Loomings.

If that is still not clear, you can break it down even further, like this:
i <- 1
chap_positions_v[i]
[1] 1
novel_lines_v[chap_positions_v[i]]
[1] "CHAPTER 1. Loomings."
i <- 2
chap_positions_v[i]
[1] 185
novel_lines_v[chap_positions_v[i]]
[1] "CHAPTER 2. The Carpet-Bag."

5.5.4

We know that the title of the chapter is at the ith line in novel_lines_v, so
we can add 1 to i and get the values of the next line in the vector. i + 1
will give us the position of the first line of the chapter text (i.e., excluding
the chapter title).

start <- chap_positions_v[i] + 1

5.5.5

What is done next is a bit more subtle. Instead of adding 1 to the value held
in the ith position of chap_positions_v, we must add 1 to i in its capacity
as an index. Instead of grabbing the value of the ith item in the vector, the
program is going to grab the value of the item in the next position beyond i
in the vector.

end <- chap_positions_v[i + 1] - 1

If this is not clear, you can break it down like this:
i <- 1
chap_positions_v[i]

58 5 Token Distribution Analysis

[1] 1
chap_positions_v[i + 1]
[1] 185

When i == 1, the value held in chap_positions_v[i] will be 1 because 1
happens to be the first value stored in the vector. When i == i + 1, in this
case 2, R will return the value held in the 2nd position in chap_positions_v,
or 185. In the next iteration, i will be 2 and so [i + 1] will be 3 and the
result will be 301, which is the third value stored in the vector.

chap_positions_v[i + 1] will return the next item in the vector, and the
value held in that spot is the position for the start of a new chapter. Since
we do not want to count the words in the chapter heading, we must subtract
1 from that value in order to get the line number in novel_lines_v that
comes just before the start of a new chapter. Thus we subtract 1 from the
value found in the [i + 1] position.

5.5.6

The code that follows should be familiar to you from previous sections. With
the start and end points defined, we grab the lines, paste them into a single
block of text, lowercase everything, and then split it all into a vector of words
that is tabulated into a frequency count of each word type.
chapter_lines_v <- novel_lines_v[start:end]
chapter_words_v <- tolower(paste(chapter_lines_v, collapse = " "))
chapter_words_l <- strsplit(chapter_words_v, "\\W")
chapter_word_v <- unlist(chapter_words_l)
chapter_word_v <- chapter_word_v[which(chapter_word_v != "")]
chapter_freqs_t <- table(chapter_word_v)

5.5.7

This next line of code is where the resulting table of raw frequency counts
is stuffed into the list object that was created before entering the loop. The
double bracketing here is used to assign a name or label to the list item, and
here each item in the list is named with the chapter heading extracted a few
lines above. It is not necessary to assign labels to list items in this way. If
you leave out the label, the list will just be created with numerical indexes.
The utility of this labeling will become clear later on.

5.6 Accessing and Processing List Items 59

chapter_raws_l[[chapter_title]] <- chapter_freqs_t

5.5.8

The last two lines in the loop simply convert the raw counts to relative fre-
quencies based on the number of words in the chapter. This relative frequency
table is then stuffed into the other list object that was created before entering
the for loop.
chapter_freqs_t_rel <- 100*(chapter_freqs_t/sum(chapter_freqs_t))
chapter_freqs_l[[chapter_title]] <- chapter_freqs_t_rel

5.6 Accessing and Processing List Items

With the two lists now populated with data, we need a way of accessing the
data and putting it into a usable structure that allows for easy comparisons
of word frequencies across chapters. For this we will utilize three functions:
rbind, lapply, and do.call and along the way you will learn something
more about vector recycling.

5.6.1 rbind

rbind is the simplest of the three functions introduced in this section. As
the name suggests, rbind is a function for binding rows of data together. For
rbind to work, the rows being bound must have the same number of columns.
Enter the following R code into your console window:

x <- c(1, 2, 3, 4, 5)
y <- c(6, 7, 8, 9, 10)

These expressions create two vectors of five numerical values each. If you now
use rbind to combine them, you get a matrix object with two rows and five
columns.

rbind(x, y)
[,1] [,2] [,3] [,4] [,5]

60 5 Token Distribution Analysis

x 1 2 3 4 5
y 6 7 8 9 10

Notice, however, what happens when we recreate the y vector so that x and
y are not of the same length:

y <- c(6, 7, 8, 9, 10, 11)
rbind(x, y)
Warning in rbind(x, y): number of columns of result is not a
multiple of vector length (arg 1)
[,1] [,2] [,3] [,4] [,5] [,6]
x 1 2 3 4 5 1
y 6 7 8 9 10 11

First, R reports a warning message that the vectors were not of the same
length. In R, a warning is just a warning; your script did not fail to execute.
In fact, you now have a sixth column. Take a moment to experiment with
this example and see if you can figure out what R is doing when it has two
vectors of different lengths.

5.6.2 More Recycling

What you should have discovered is something called recycling. The recycling
occurs because you are binding vectors of differing lengths. At some point R
discovers that the shorter vector is at its end and that the longer vector
still has uncombined elements. So R simply returns to the beginning of the
shorter vector and begins recycling its elements. R will keep recycling from
the shorter vector until it reaches the end of the process. The elements of
the shorter vector will be reused over and over again until the process is
complete. Sometimes this recycling is particularly useful. Say you want to
multiply every item in one vector by a value held in some other vector. Here,
for example, we multiply each number in the x vector by the number held in
the y vector.5

x <- c(1, 2, 3, 4, 5, 6)
y <- 2
x * y
[1] 2 4 6 8 10 12

5It might seem a bit odd, but in R even objects containing only one item are vectors. So
in this example the y object is a vector of one item. If you simply enter y into the console,
you will get a bracketed number 1 [1] followed by the value 2, which is the value held in
the first (and only) position of the y vector.

5.6 Accessing and Processing List Items 61

This recycling can get a bit confusing when you have more complicated vec-
tors. In the example above, each value in the x vector is multiplied by the
value in the y vector. When the y vector contains more than one item then
the recycling gets a bit more complicated. Consider this example:

x <- c(1, 2, 3, 4, 5, 6)
y <- c(2, 3)
x * y
[1] 2 6 6 12 10 18

Here, the 2 and 3 get recycled over and over again, in order, such that the
first item in the x vector is multiplied by the first item in the y vector (the
number 2), the second item in the x vector is multiplied by the second item
in the y vector (the number 3). But then when R gets to the third item in
the x vector it recycles the y vector by going back to the first item in the y
vector (the number 2) again. Deep breath.

5.6.3 apply

lapply is one of several functions in the apply family. lapply (with an “l”
in front of “apply”) is specifically designed for working with lists. Remember
that you have two lists that were filled with data using a for loop. These are:
chapter_freqs_l
chapter_raws_l

lapply is similar to a for loop. Like for, lapply is a function for iterating
over the elements in a data structure. The key difference is that lapply
requires a list as one of its arguments, and it requires the name of some other
function as one of its arguments. When run, lapply returns a new list object
of the same length as the original one, but it does so after having applied the
function it was given in its arguments to each item of the original list. Say,
for example, that you have the following list called x:

x <- list(a = 1:10, b = 2:25, b=100:1090)

This is a list of three integer objects (vectors), each containing a series of
numbers. Enter x at the R prompt to look at the contents of the x list.
Basically, x is like a file cabinet with three drawers, and each one of the
drawers contains an integer vector. If you now enter: lapply(x, mean), R
will return a new list in which the function (mean) is applied to each object
in the list called x.

lapply(x, mean)
$a

62 5 Token Distribution Analysis

[1] 5.5
##
$b
[1] 13.5
##
$b
[1] 595

R has calculated the mean for each of the integer vectors in the x list.

Now consider the construction of the lists you filled up using the for loop.
Each list contains a series of frequency tables. Each item in chapter_raws_l
contains a table of raw counts of each word type in each chapter, and each
list item in chapter_freqs_l contains a table of the relative frequencies of
each word type in a chapter.

If you want to know the relative frequency of the word type whale in the first
chapter of Moby Dick, you could get the value using bracketed sub-setting,
like this:

chapter_freqs_l[[1]]["whale"]

This expression tells R that you want to go to the first item in the
chapter_freqs_l list (list items are accessed using the special double
bracket [[]] notation), which is a frequency table of all the words from
chapter one, i.e.,

chapter_freqs_l[[1]]

But you also instruct R to return only those values for the word type whale.
Try it for yourself:

chapter_freqs_l[[1]]["whale"]
whale
0.1336898

The result indicates that the word whale occurs 0.1336898 times for every
one hundred words in the first chapter. Since you know how to get this data
for a single list item, it should not be too hard then to now use lapply to
grab the whale values from the entire list. In fact, you can get that data by
simply entering this:

lapply(chapter_freqs_l, '[', 'whale')

Well, OK, we will admit that using “[” as the function argument here is not
the most intuitive thing to do, and we will admit further that knowing you can
send another argument to the main function is even more confusing. So let us
break this down a bit. The lapply function is going to handle the iteration
over the list by itself. So basically, lapply handles calling each chapter from

5.6 Accessing and Processing List Items 63

the list of chapters. If you wanted to do it by hand, you would have to do
something like this:

chapter_freqs_l[[1]]
chapter_freqs_l[[2]]
. . .
chapter_freqs_l[[135]]

By adding “[” as the function argument to lapply, you tell lapply to “apply
bracketed sub-setting” to each item in the list. Recall again that each item
in the list is a table of word counts or frequencies. lapply allows us to add
another optional argument to the function that is being called; in this case
the function is “bracketed sub-setting.” When you send the keyword whale in
this manner, then behind the scenes R executes code for each item that looks
like this:

chapter_freqs_l[[1]]["whale"]
chapter_freqs_l[[2]] ["whale"]
. . .
chapter_freqs_l[[135]] ["whale"]

If you enter a few of these by hand, you will begin to get a sense of where
things are going with lapply.

Here is how to put all of this together in order to generate a new list of the
whale values for each chapter.

whale_l <- lapply(chapter_freqs_l, '[', 'whale')

Instead of just printing out the values held in this new list, you can then
capture the results into a single matrix using rbind.

One option would be to rbind each item in the whale_l list object by hand:
something like what follows here (but including more than just the first three
list items):
Not run
rbind(whale_l[[1]], whale_l[[2]], whale_l[[3]], . . . whale_l[[133]])

While this method works, it is not very scalable or elegant. Fortunately R
has another function for just this kind of problem: the function is do.call
and is pronounced do dot call.

64 5 Token Distribution Analysis

5.6.4 do.call (do dot call)

Like lapply, do.call is a function that takes another function as an argu-
ment. In this case the other function will be rbind. The do.call function
will take rbind as an input argument and call it over the different elements of
the list object. Consider this very simple application of the do.call function:
First create a list called x that contains 3 integer vectors.

x <- list(1:3, 4:6, 7:9)
x
[[1]]
[1] 1 2 3
##
[[2]]
[1] 4 5 6
##
[[3]]
[1] 7 8 9

To convert this list into a matrix where each row is one of the vectors and each
column is one of the three integers from each of the list items, use do.call.

do.call(rbind, x)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9

Using do.call in this way binds the contents of each list item row-wise.

The list of whale occurrences in Moby Dick is fairly similar to the list (x)
that was used in this example. In some ways whale_l is even simpler than
x because each integer vector only contains one item. You can use do.call,
therefore, to activate the rbind function across the list of whale results. Doing
this will generate a matrix object of 135 chapter rows by 1 column of relative
frequency values. A matrix object is like a very simple spreadsheet; a matrix
has rows and columns. One special (or limiting) thing about matrix objects
in R, however, is that they can only contain one type of data. That is, they
cannot contain text values in one column and numerical values in another. R
has another object for handling mixed data, and we will cover that later on.
For now, just think about a matrix as a simple spreadsheet. We will call this
new matrix whales_m:

5.6 Accessing and Processing List Items 65

whales_m <- do.call(rbind, whale_l)

After you have entered this expression, look at the results by entering
whales_m at the R prompt. Here is a truncated version showing just the
first six items:

head(whales_m)
whale
CHAPTER 1. Loomings. 0.13368984
CHAPTER 2. The Carpet-Bag. 0.06882312
CHAPTER 3. The Spouter-Inn. 0.10000000
CHAPTER 4. The Counterpane. NA
CHAPTER 5. Breakfast. NA
CHAPTER 6. The Street. 0.24067389

Using what you have learned thus far, you can create another matrix of
chapter-by-chapter values for occurrences of ahab. The only thing you need
to change in the code described already is the keyword: you will use ahab in
place of whale:

ahab_l <- lapply(chapter_freqs_l, '[', 'ahab')
ahabs_m <- do.call(rbind, ahab_l)

5.6.5 cbind

With both whales_m and ahabs_m instantiated in memory, you can easily
bind them together column-wise using cbind . As it happens, the individual
columns in a matrix object are individual vectors. In this example, the data
in the first column of the whales_m matrix is a numeric vector.

class(whales_m[,1])

Remember that a matrix is like a spreadsheet with rows and columns. You
can access any cell in the matrix by identifying its row and column number.
Here is a simple matrix created by cbind-ing several vectors together:

x <- c(1, 2, 3, 4, 5, 6)
y <- c(2, 4, 5, 6, 7, 8)
z <- c(24, 23, 34, 32, 12, 10)
test_m <- cbind(x, y, z)
test_m
x y z
[1,] 1 2 24
[2,] 2 4 23

66 5 Token Distribution Analysis

[3,] 3 5 34
[4,] 4 6 32
[5,] 5 7 12
[6,] 6 8 10

To access the value held in the second row and third column in this matrix,
you use bracketed sub-setting similar to what you have been using when
accessing values in a vector. Here, you will need to put both row and column
information into the brackets.

test_m[2, 3] # show the value in the second row third column
z
23

Inside the brackets 2 was entered to indicate the row number. This was
followed by a comma and then a 3 to indicate the third column. If you
wanted to see an entire row or an entire column, you would just leave the
field before or after the comma empty:

test_m[2,] # show all values in the second row
x y z
2 4 23
test_m[,1] # show all values in the first column
[1] 1 2 3 4 5 6

It is also worth knowing that if the columns have names, you can access them
by name. By default cbind names columns based on their original variable
name:

test_m[,"y"]
[1] 2 4 5 6 7 8

Now that you know how to access specific values in a matrix, you can easily
pull them out and assign them to new objects. You can pull out the whale
and ahab values into two new vectors like this:

whales_v <- whales_m[,1]
ahabs_v <- ahabs_m[,1]

You can now use cbind to bind these vectors into a new, two-column matrix.
The resulting matrix will have 135 rows and 2 columns, a fact you can check
using the dim function.

whales_ahabs_m <- cbind(whales_v, ahabs_v)
dim(whales_ahabs_m)
[1] 135 2

Previously we mentioned that by default cbind titles columns based on the
input variable names. You can reset the column names manually using the

5.7 Practice 67

colnames function in conjunction with the c function. To rename the two
columns in this example, use this expression:

colnames(whales_ahabs_m) <- c("whale", "ahab")

Once you have reset the column names, you can plot the results side by side
using the barplot function with the beside argument set to TRUE (Fig. 5.1).

barplot(whales_ahabs_m, beside = TRUE)

whale ahab

0.
0

0.
5

1.
0

1.
5

2.
0

Fig. 5.1 Bar plot of “whale” and “ahab” side by side

5.7 Practice

1. In section 5.6.3 we saw how we could use lapply with the mean function
to calculate the mean of numerical vectors that were stored in a list, x.
Instead of using lapply, write a for loop that achieves the same end.
Then, instead of saving the output to a new object, just print the results
of each iteration to the console.

2. Write code that will find the relative frequencies, per chapter, for another
word (e.g., queequeg) from the same chap_freqs_l object. Once you have
isolated all relative frequencies for that word in a list, convert the list to a
matrix by using rbind. Next, like you created whales_v from whales_m,
develop a single vector holding the chapter relative frequencies for queequeg.
After you have done this, bind whales_v, ahabs_v, and the new vector into
a single matrix with three columns.

3. These bar plots were derived from the list of relative frequency data. Write
a script to plot the raw occurrences of whale and ahab per chapter using
the chapter_raws_l you created.

Chapter 6

Correlation

Abstract This chapter introduces data frames, random sampling, and corre-
lation. Readers learn how to perform permutation tests to assess the signifi-
cance of derived correlations.

6.1 Introduction

It might be tempting to look at the graphs you have produced thus far and
begin forming an argument about the relative importance of Ahab versus the
whale in Melville’s novel. Occurrences of whale certainly appear to occupy
the central portion of the book, whereas Ahab is present at the beginning and
at the end. It might also be tempting to begin thinking about the structure
of the novel, and this data does provide some evidence for an argument about
how the human dimensions of the narrative frame the more naturalistic. But
is there, in fact, an inverse relationship?

6.2 Start Up Code

rm(list = ls()) # Clear Workspace
text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]
chap_positions_v <- grep("^CHAPTER \\d", novel_lines_v)
last_position_v <- length(novel_lines_v)
chap_positions_v <- c(chap_positions_v , last_position_v)

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_6

69

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_6

70 6 Correlation

chapter_raws_l <- list()
chapter_freqs_l <- list()
for(i in 1:length(chap_positions_v)){

if(i != length(chap_positions_v)){
chapter_title <- novel_lines_v[chap_positions_v[i]]
start <- chap_positions_v[i] + 1
end <- chap_positions_v[i + 1] - 1
chapter_lines_v <- novel_lines_v[start:end]
chapter_words_v <- tolower(paste(chapter_lines_v, collapse = " "))
chapter_words_l <- strsplit(chapter_words_v, "\\W")
chapter_word_v <- unlist(chapter_words_l)
chapter_word_v <- chapter_word_v[which(chapter_word_v != "")]
chapter_freqs_t <- table(chapter_word_v)
chapter_raws_l[[chapter_title]] <- chapter_freqs_t
chapter_freqs_t_rel <- 100*(chapter_freqs_t/sum(chapter_freqs_t))
chapter_freqs_l[[chapter_title]] <- chapter_freqs_t_rel

}
}
whale_l <- lapply(chapter_freqs_l, '[', 'whale')
whales_m <- do.call(rbind, whale_l)
ahab_l <- lapply(chapter_freqs_l, '[', 'ahab')
ahabs_m <- do.call(rbind, ahab_l)
whales_v <- as.vector(whales_m[,1])
ahabs_v <- as.vector(ahabs_m[,1])
whales_ahabs_m <- cbind(whales_v, ahabs_v)
colnames(whales_ahabs_m) <- c("whale", "ahab")

6.3 Correlation Analysis

Using the frequency data you compiled for ahab and whale, you can run a
correlation analysis to see if there is a statistically significant relationship
between the two variables. A correlation analysis attempts to determine the
extent to which there is a relationship, or linear dependence, between two sets
of points. Thought of another way, correlation analysis attempts to assess the
way that the occurrences of whale and ahab behave in unison or in opposition
to each other over the course of the novel. You can use a correlation analysis
to answer a question such as: to what extent does the usage of whale change
(increase or decrease) in relation to the usage of ahab? R offers a simple
function, cor, for calculating the strength of a possible correlation. But before
you can employ the cor function on the whales_ahabs_m object, you need
to deal with the fact that there are some cells in the matrix that contain the
value NA. Not every chapter in Moby Dick had an occurrence of whale (or
ahab), so in the previous practice exercise when you ran

6.3 Correlation Analysis 71

whale_l <- lapply(chapter_freqs_l, "[", "whale")

R found no hits for whale in some chapters of the novel and recorded an NA,
as in not available or missing. You may recall seeing this NA output when you
viewed the contents of whales_ahabs_m matrix:

whales_ahabs_m[1:16,]
whale ahab
[1,] 0.13368984 NA
[2,] 0.06882312 NA
[3,] 0.10000000 NA
[4,] NA NA
[5,] NA NA
[6,] 0.24067389 NA
[7,] 0.21097046 NA
[8,] NA NA
[9,] 0.24711697 NA
[10,] NA NA
[11,] NA NA
[12,] NA NA
[13,] 0.17341040 NA
[14,] NA NA
[15,] NA NA
[16,] 0.16037063 0.3385602

As you see here, there are no occurrences of whale in chapters 4 or 5 and
no occurrences of ahab until chapter 16. Because cor is a mathematical
function that requires numerical data, you need to replace the NA values
before running the correlation analysis. Since the appearance of an NA in
these cases is equivalent to zero (there are exactly zero occurrences of the
keyword in the given chapter), you can safely replace all the occurrences of
NA in the whales_ahabs_m matrix with zero. One way to do this is by em-
bedding the conditional is.na function inside a call to the which function as
in: which(is.na(whales_ahabs_m)). To set the values to 0, place the entire
expression inside the brackets of whales_ahabs_m and assign a 0 to those
items that meet the condition:

whales_ahabs_m[which(is.na(whales_ahabs_m))] <- 0

This is the short and easy way to achieve our objective, but for the sake of
illustration we will break it down with comments added to explain what is
going on:
identify the position of NA values in the matrix
the_na_positions <- which(is.na(whales_ahabs_m))
set the values held in the found positions to zero
whales_ahabs_m[the_na_positions] <- 0

72 6 Correlation

With the NAs set to zero, the correlation can be run.

cor(whales_ahabs_m)
whale ahab
whale 1.0000000 -0.2411126
ahab -0.2411126 1.0000000

Because whales_ahabs_m is a matrix of two columns, the result of calling cor
is a new matrix containing two rows and two columns. The row and column
names are the same, and the values held in the cells are the correlation values.
It is no surprise to see that whale is perfectly correlated with whale and ahab
with ahab. The positive 1.0000000 in these cells is not very informative,
which is to say that running cor over the entire matrix as we have done
here results in a lot of extraneous information. That is because cor runs the
correlation analysis for every possible combination of columns in the matrix.
With a two column matrix such as this, it is really overkill. The results could
be made a lot simpler by just giving cor the two vectors that you really want
to correlate:

mycor <- cor(whales_ahabs_m[,"whale"], whales_ahabs_m[,"ahab"])
mycor
[1] -0.2411126

The resulting number (−0.2411126) is a measure of the strength of linear
dependence between the values in the whale column and the values in the
ahab column. This result, called the Pearson Product-moment correlation
coefficient, is expressed as a number between -1 and +1. A negative one
(-1) coefficient represents perfectly negative correlation; if the correlation
between ahab and whale were -1, then we would know that as the usage of
whale increases, the usage of ahab decreases proportionally. Positive one (+1)
represents perfect positive correlation (as one variable goes up and down the
other variable does so in an identical way). Zero (0) represents no correlation
at all.

The further the coefficient is from zero, in either a positive or negative di-
rection, the stronger the correlation; conversely the closer the result is to
0, the less dependence there is between the two variables. Here, with whale
and ahab a correlation coefficient of −0.2411126 is observed. This suggests
that while there is a slight inverse relationship (i.e., negative correlation), it
is not strongly correlated since the result is closer to 0 than to -1. Having
said that, how one interprets the meaning, or significance, of the correlation
indicated by this coefficient is largely dependent upon the context of the anal-
ysis and upon the number of observations or data points under consideration.
Generally speaking a coefficient between -0.3 and -0.1 on the negative side
of 0 and between 0.1 and 0.3 on the positive side of 0 is considered quite
small. Strong correlation is usually seen as existing at levels less than -0.5
or greater than 0.5.

6.4 A Word About Data Frames 73

This correlation test does not lead us to any easy conclusions about the
relationship between occurrences of whale and occurrences of ahab. These
two data points, for ahab and whale, appear to show only a weak inverse
relationship. Nevertheless, there is much more to be considered.

Consider, for example, what we explored in Chap. 4, and how the use of
synonyms and pronouns complicates these results. When Ahab is not being
referred to by name, he is undoubtedly appearing as either he or him. The
same may be said for the whale and the various appellations of whale that
Melville evokes: monster, leviathan, etc. Using the techniques described in
Chap. 4, you could investigate all of these and more. But before leaving this
seemingly weak correlation, it might be useful to run a few more experiments
to see just how significant or insignificant the result really is.

As noted above, the number of samples can be a factor in how the im-
portance of the correlation coefficient is judged, and in this case there are
135 observations for each variable: one observation for each chapter in the
novel.

One way of contextualizing this coefficient is to calculate how likely it is
that we would observe this coefficient by mere chance alone. In other words,
assuming there is no relationship between the occurrences of whale and ahab
in the novel, what are the chances of observing a correlation coefficient of
−0.2411126? A fairly simple test can be constructed by randomizing the order
of the values in either the ahabs or the whales column and then retesting the
correlation of the data.

6.4 A Word About Data Frames

Before explaining the randomization test in detail, we want to return to
something mentioned earlier about the R matrix object and its limitations
and then introduce you to another important data object in R: the data
frame.
Thus far we have barely used data frames, but as it happens, data frames are
R’s bread and butter data type, and they offer us some flexibility that we do
not get with matrix objects. Like a matrix, a data frame can be thought of
as similar to a table in a database or a sheet in an Excel file: a data frame
has some number of rows and some number of columns, and each column
contains a specific type of data. A major difference between a matrix and
a data frame, however, is that in a data frame, one column may contain
character values and another numerical values. To see how this works, enter
the following code to create a simple matrix of three rows by three columns:

74 6 Correlation

x <- matrix(1, 3, 3)
x
[,1] [,2] [,3]
[1,] 1 1 1
[2,] 1 1 1
[3,] 1 1 1

If you ask R to return the data type (class) of any one of the values in this
matrix, it will return the class numeric.

class(x[1,2]) # get class of cell in first row second column
[1] "numeric"

Now change the value of one cell in this matrix so that it contains character
data instead of a number.

x[1,2] <- "Sam I am"
x
[,1] [,2] [,3]
[1,] "1" "Sam I am" "1"
[2,] "1" "1" "1"
[3,] "1" "1" "1"

You will notice right away that all of the values in the matrix are now shown
inside quotation marks. This is because the entire matrix has been converted
to character data. Those 1’s are no longer numbers, they are the 1 charac-
ter. Among other things, this means that you cannot perform mathematical
operations on them anymore! If you check the class, R will report the change:

class(x[1,2]) # get class of cell in first row second column
[1] "character"
class(x[1,3]) # get class of cell in first row third column
[1] "character"

To see the difference between a matrix and a data frame, recreate the first
matrix example and then convert it to a data frame, like this:

x <- matrix(1, 3, 3)
x_df <- as.data.frame(x)
x_df
V1 V2 V3
1 1 1 1
2 1 1 1
3 1 1 1

You can see immediately that a data frame displays differently. Instead of
bracketed row and column numbers, you now see column headers (V1, V2,
V3) and simple row numbers without the brackets. You can now repeat the

6.4 A Word About Data Frames 75

experiment from above and assign some character data into one of the cells
in this data frame.

x_df[1,2] <- "Sam I am"
class(x_df[1,2]) # get class of cell in first row second column
[1] "character"
class(x_df[1,3]) # get class of cell in first row third column
[1] "numeric"
x_df
V1 V2 V3
1 1 Sam I am 1
2 1 1 1
3 1 1 1

When using a matrix, the assignment of character data to any one cell resulted
in all the cells in the matrix being converted into character data. Here, with
a data frame, only the data in the column containing the target cell are
converted to character data, not the entire table of data. The takeaway is
that a data frame can have columns containing different types of data. This
will be especially useful as your data get more complicated. You may, for
example, want a way of storing character based metadata (such as author
gender, or chapter title) alongside the numerical data associated with these
metadata facets.

Another handy thing about data frames is that you can access columns of
data using a bit of R shorthand. If you want to see all the values in the second
column of the x_df variable, you can do so using bracketed index references,
just as you have done previously with matrix objects. To see the entire second
column, for example, you might do this:

x_df[,2]
[1] "Sam I am" "1" "1"

Alternatively, you can use the fact that the data frame has a header to get
column information by referencing the column name, like this:

x_df[,"V2"]
[1] "Sam I am" "1" "1"

And, most alternatively, you can use the shorthand ($) to get column data
like this:

x_df$V2
[1] "Sam I am" "1" "1"

That is a basic overview of data frames. Now we will return to correlating
values in Moby Dick.

76 6 Correlation

6.5 Testing Correlation with Randomization

In this section you will use your new knowledge of data frames. First convert
the matrix object whales_ahabs_m into a data frame called cor_data_df:

cor_data_df <- as.data.frame(whales_ahabs_m)

As a gut check, you can use the cor function on the entire data frame, just
as you did with the matrix object. The output should be the same.

cor(cor_data_df)
whale ahab
whale 1.0000000 -0.2411126
ahab -0.2411126 1.0000000

The goal now is to determine if that observed correlation coefficient of
−0.2411126 could have been likely to occur by mere chance. To assess this
you are going to take the values for one of the two columns in the data frame
and shuffle them into a random order. You will then run a new correlation
test with the randomized column. In this way, a chance distribution of the
values that is independent of the actual structure of the chapters in the book
can be simulated. If the correlation of the shuffled data is similar to the actual
(as in unshuffled) data, then you will have to concede that the relationship
between whale and ahab observed in the actual data is really no different
from what might be observed if you threw all the occurrences of whale and
ahab up in the air and then created 135 arbitrary piles.

The first step is to randomize the order of the values (the word frequency
measurements) in one of the two columns of data in cor_data_df. Since
the columns contain chapter-by-chapter measurements, this randomizing will
have the effect of shuffling the chapter order for one set of measurements and
leaving the other set in chronological order. R provides a function called
sample for generating a random shuffling of data. At its most simple, the
sample function requires a vector of values to shuffle. So, to get a random
ordering of the values in the whale column of cor_data_df you can simply
enter:

sample(cor_data_df$whale)

Go ahead and try entering this a few times and you will see that each time
sample randomly shuffles the order of the values from the whale column.

With the ability to randomize the values, you now need to correlate these
randomized values against the ordered values in the unshuffled ahab column.
Using the dollar sign to reference the columns in the data frame, the expres-
sion can be written as simply as this:

6.5 Testing Correlation with Randomization 77

cor(sample(cor_data_df$whale), cor_data_df$ahab)

In our first test of this code, R returned a correlation coefficient of −0.0094803.
Your results will be different given the random sampling. We then copied
and pasted this code ten more times and observed the following correlation
coefficients for the various shuffles of the data.

[1] 0.122331
[1] 0.00818978
[1] -0.01610114
[1] -0.1289073
[1] 0.05115036
[1] 0.0443622
[1] 0.08513762
[1] -0.1019796
[1] 0.07842781
[1] 0.04410211

As you see, in this small sample of ten randomizations, the highest positive
correlation coefficient was 0.122331 and the lowest negative correlation co-
efficient was -0.1289073. Remember that the actual correlation coefficient
before we began shuffling anything was -0.2411126. In other words, the ac-
tual data seems to be quite a bit below (i.e., further from 0) what is observed
when shuffling the data and simulating a chance distribution of values. Still,
10 randomizations are not very many. Instead of copying and pasting the code
over and over again, you can develop a more programmatic way of testing
the correlation using a for loop and 10,000 iterations!

With a for loop you can repeat the randomization and correlation test pro-
cess multiple times and at each iteration capture the result into a new vector.
With this new vector of 10,000 correlation values, it will be easy to generate
some statistics that describe the distribution of the random data and offer
a better way of assessing the significance of the actual observed correlation
coefficient in the unshuffled data.

The code required for this is simple. Begin by creating an empty container
variable called mycors_v, and then create a for loop that iterates a set num-
ber of times (10,000 in our example). Within the curly braces of that loop,
you will add code for shuffling and then correlating the vectors. At each step
in the loop, you will capture the correlation coefficient by adding it to the
mycors_v vector using the c function. Here is how we wrote it:
mycors_v <- NULL
for(i in 1:10000){

mycors_v <- c(
mycors_v,

78 6 Correlation

cor(sample(cor_data_df$whale),
cor_data_df$ahab)

)
}

With this step completed, you can now use some basic R functions such as
min, max, range, mean, and sd to get a general sense of the results.

Here is what our randomization tests returned; your results will be similar
but not identical:

min(mycors_v)
[1] -0.2992775
max(mycors_v)
[1] 0.3484449
range(mycors_v)
[1] -0.2992775 0.3484449
mean(mycors_v)
[1] -0.0003656731
sd(mycors_v)
[1] 0.08633026

What these descriptive statistics reveal is that our actual observed value is
more typical of the extremes than the norm. A low standard deviation
suggests that most of the values recorded are close to the mean, and here the
mean is very close to zero (−3.6567306 × 10−4), which you will recall from
above can be interpreted as meaning very little correlation. A high standard
deviation would indicate that the values are spread out over a wide range
of values. So even though the min value of -0.2992775 is slightly less than
our actual observed value of -0.2411126, that -0.2992775 is very atypical
of the randomized data. In fact, using a bit of additional code that we will
not explain here, we can generate a plot showing the distribution of all the
values in mycors_v (Fig. 6.1).
h <- hist(mycors_v, breaks = 100, col="grey",

xlab = "Correlation Coefficient",
main = "Histogram of Random Correlation Coefficients\n
with Normal Curve",
plot = T)

xfit <- seq(min(mycors_v), max(mycors_v), length = 1000)
yfit <- dnorm(xfit, mean = mean(mycors_v), sd = sd(mycors_v))
yfit <- yfit * diff(h$mids[1:2]) * length(mycors_v)
lines(xfit, yfit, col = "black", lwd = 2)

6.6 Practice 79

Histogram of Random Correlation Coefficients
 with Normal Curve

Correlation Coefficient

Fr
eq

ue
nc

y

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3

0
50

10
0

15
0

20
0

25
0

Fig. 6.1 Histogram plot of random correlation coefficients

The plot reveals, in dramatic fashion, just how much the data clusters around
the mean, which as you recall from above is nearly 0. It also dramatizes the
outlier status of the actual value (−0.2411126) that was observed. In 10,000
random iterations, only 19 correlation coefficients were calculated to be less
than the actual observed value and the actual observed value was nearly
3 (2.79) standard deviations away from the mean. In short, the probabil-
ity of observing a random value as extreme as the actual value observed
(−0.2411126) is just 0.48%.1

6.6 Practice

1. Add two more columns to the matrix with data for the words i and my
and then rerun the cor function. Though we have only used cor for two
columns so far, we can use it just as easily on a matrix with two or more
columns. Do not forget to set the frequencies for any chapters where the
word does not occur to zero. What does the result tell you about the usage
of the words i and my?

2. Calculate the correlation coefficient for i and my and run a randomization
test to evaluate whether the results are significant.

1Another way to test the significance of a correlation coefficient is to use the cor.test
function. Use ?cor.test to learn about this function and then run it using the method =
"pearson" argument. To make more sense out of the results, consider consulting http://
en.wikipedia.org/wiki/P-value on t-tests.

http://en.wikipedia.org/wiki/P-value
http://en.wikipedia.org/wiki/P-value

Chapter 7

Measures of Lexical Variety

Abstract In this chapter we will begin to transition from microanalysis to
macroanalysis. We will leave behind the study of single terms and begin
to explore two global measures of lexical variety: mean word frequency and
type-token ratios.

7.1 Lexical Variety and the Type-Token Ratio

Moby Dick is a complicated book with a complex vocabulary. Readers of the
book inevitably remember chapter 32. This is the cetology chapter in which
Melville offers a zoological and pseudo-scholarly, pseudo-comical account of
whale history and physiology. Students frequently complain that this section
of the novel is more complex or difficult. One way to measure the complexity
of the language is to calculate a measure of vocabulary richness. Such a
measure can be represented as a mean word frequency or as a relationship
between the number of unique words used (i.e., the working lexicon) and a
count of the number of word tokens in the document. Using either measure as
a proxy for lexical complexity or variety, you can compare the lexical variety
in the cetology chapter to the other chapters of the novel.

Vocabulary richness is more commonly expressed as a percentage or ratio of
unique word types to the total number of word tokens. A type-token ratio,
or TTR as it is generally called, is calculated by dividing the total number
of unique word types by the total number of word tokens. The result is then
typically multiplied by 100 so as to end with a percentage. As you can surmise,
a lower type-token ratio (TTR) is suggestive of less lexical variety.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_7

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_7&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_7

82 7 Measures of Lexical Variety

In the previous chapters, you learned how to use a for loop to generate two
list objects containing tables of words and their frequencies for each chapter of
Moby Dick. The list titled chapter_raws_l contains the raw counts of each
word type and chapter_freqs_l contains the relative frequencies of each
word type in the given chapter. To calculate the mean word frequency and
TTR values for each chapter of Moby Dick, you will need chapter_raws_l.

7.2 Start Up Code

rm(list=ls())
text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]
chap_positions_v <- grep("^CHAPTER \\d", novel_lines_v)
last_position_v <- length(novel_lines_v)
chap_positions_v <- c(chap_positions_v , last_position_v)
chapter_raws_l <- list()
chapter_freqs_l <- list()
for(i in 1:length(chap_positions_v)){

if(i != length(chap_positions_v)){
chapter_title <- novel_lines_v[chap_positions_v[i]]
start <- chap_positions_v[i] + 1
end <- chap_positions_v[i + 1] - 1
chapter_lines_v <- novel_lines_v[start:end]
chapter_words_v <- tolower(paste(chapter_lines_v, collapse = " "))
chapter_words_l <- strsplit(chapter_words_v, "\\W")
chapter_word_v <- unlist(chapter_words_l)
chapter_word_v <- chapter_word_v[which(chapter_word_v != "")]
chapter_freqs_t <- table(chapter_word_v)
chapter_raws_l[[chapter_title]] <- chapter_freqs_t
chapter_freqs_t_rel <- 100*(chapter_freqs_t/sum(chapter_freqs_t))
chapter_freqs_l[[chapter_title]] <- chapter_freqs_t_rel

}
}

7.3 Mean Word Frequency

To calculate mean word frequency on a chapter by chapter basis, you will
first get the total number of word tokens in each chapter by summing the
raw frequency counts in each, and then you will calculate the number of
unique word types in each chapter. These are two very simple calculations
that you can derive from the chapter_raws_l list object. It is worth taking

7.3 Mean Word Frequency 83

a moment to recall just exactly what this list contains. The first thing you
will want to know is the size or length of the list.

length(chapter_raws_l)
[1] 135

The length function reveals that there are 135 items in the list. As you will
recall, each list item corresponds to a chapter in the novel. If you want to see
the chapter titles, you can find them in another part of the list object that is
accessed via the names function. Here we will just look at the first six using
head.
head(names(chapter_raws_l))
[1] "CHAPTER 1. Loomings." "CHAPTER 2. The Carpet-Bag."
[3] "CHAPTER 3. The Spouter-Inn." "CHAPTER 4. The Counterpane."
[5] "CHAPTER 5. Breakfast." "CHAPTER 6. The Street."

Any item in a list may also be accessed and examined individually. Like so
much in R, such access is facilitated through bracketed sub-setting. In this
case, since you have also stored the chapter titles as names for each list item,
you can also use the $ shortcut character in the way that you did with data
frames in the previous chapter. The chapter_raws_l object contains a series
of table objects, which you can check by calling the class function on one
item of the list:

class(chapter_raws_l$"CHAPTER 1. Loomings.")
[1] "table"

Or, if you do not know the exact name, you can achieve the same result using
the numerical index:

class(chapter_raws_l[[1]])
[1] "table"

As you can see, the first item in the list is a table object. To access the
word frequency table for this first chapter, just remove the call to the class
function:

chapter_raws_l$"CHAPTER 1. Loomings."

Or you can use this expression:

chapter_raws_l[[1]]

You have already learned how to find useful information about R objects
using the class function. For even more detailed information, you saw how
to use str, the structure function. The class function tells us something
general about the kind of data an R object contains. For example, entering
class(chapter_raws_l) shows us that the object is a list. Alternatively,
str(chapter_raws_l) returns additional information about the size (135

84 7 Measures of Lexical Variety

items) and construction of the list, including a long string of output contain-
ing information about each of the 135 items in the list.

Enter str(chapter_raws_l) in the console and examine the output. Calling
str reveals that the first item of the main list is a table object with 854
items. The line of output that begins with the word table shows the counts
for the first 10 items in the table. The int that you see tells you that the
items are stored in an integer vector. Two lines below that is another line
showing a series of words: “a” “abandon,” etc. These are prefaced with the
chr marker. chr indicates that these values are stored as a character vector.
These, of course, are the actual word types from the chapter, and the integers
above them are the raw counts of the occurrences of these word types in the
chapter. The word a, for example, occurs 69 times in the first chapter. The
fourth word in the vector, about, occurs 7 times in the chapter and so on.

With an understanding of how and where the data are stored, it is a fairly
routine matter to calculate the mean word frequency for each chapter. Sum-
ming the integer values held in each chapter table will give you a count of all
word tokens in the chapter, and you can use the length function to return
the total number of word types.

sum(chapter_raws_l[[1]])
[1] 2244
length(chapter_raws_l[[1]])
[1] 854

Using these two results, the mean word frequency can be calculated by divid-
ing the total number of tokens by the total number of unique word types.

sum(chapter_raws_l[[1]])/length(chapter_raws_l[[1]])
[1] 2.627635

The result shows that each word type in the first chapter is used an average
of 2.6276347 times. A much simpler way of doing this is to just use R’s built
in mean function.

mean(chapter_raws_l[[1]])
[1] 2.627635

7.4 Extracting Word Usage Means

Since the chapters are already in a list object, all that you need now is a
method for extracting the frequency data from all of the chapters at once. For
this you can employ the lapply function that we have learned a bit about in
previous chapters. lapply is an alternative to for that in some sense simply

7.4 Extracting Word Usage Means 85

hides the operations of a for loop. In another sense, lapply simplifies the
code needed by automatically generating a new list object for a result. That
is, we do not need to create an empty list outside of a loop and then fill it with
each iteration of the loop. lapply takes two arguments: a list object and a
function to apply to the items in the list. To get the mean word usage for each
chapter in Moby Dick, for example, you could use the following command:

lapply(chapter_raws_l, mean)

Calling lapply in this way generates a new list object. In the example here,
we have just printed the results to the screen instead of saving the output
into a new object.

Since a list is not very handy for further manipulation, you can wrap this
lapply expression inside a do.call function, which will take the list output
from lapply and apply another function (rbind) to the results. This has the
effect of putting all of the results into neat rows in a matrix object. Since you
want to be able to plot this data, you can direct the results of all of this into
a new object called mean_word_use_m.

mean_word_use_m <- do.call(rbind,
lapply(chapter_raws_l, mean)
)

The dimensions of the resulting matrix can be obtained using the dim function
(for dimensions):

dim(mean_word_use_m)
[1] 135 1

dim reports that the matrix has 135 rows and 1 column. But there is a bit
more information stored in this matrix object, and you can get a hint of
that content by using the str function discussed above. During the creation
of this matrix, the individual chapter names were retained and assigned as
rownames. Entering rownames(mean_word_use_m) returns the names.

At this point, you can plot the values and visualize the mean word usage
pattern across the novel (Fig. 7.1). Calling plot with the type argument as
“h” returns a simple bar plot in which chapters with higher bars are, in one
manner of speaking, less rich.

plot(mean_word_use_m,
type = "h",
xlab = "Chapter",
ylab = "Mean Word Use"
)

In the chapters with high values, individual word types are used more often;
there is more repetition of the same word types. Alternatively, in chapters

86 7 Measures of Lexical Variety

0 20 40 60 80 100 120 140

1.
5

2.
0

2.
5

3.
0

3.
5

Chapter

M
ea

n
W

or
d

U
se

Fig. 7.1 Bar plot of mean word use

where the bar is low, each word type has a lower overall usage frequency. In
the chapters with high bars, the reader can expect to see the same words
repeated rather frequently, in the lower bar chapters the reader is treated
to a collection of words that might give the impression of greater variety for
being repeated less often.

By this measure of mean word use, the cetology chapter (chapter 32), which
readers so often remember as being one of denser, richer vocabulary is not
exceptional at all. Words in the cetology chapter are repeated fairly often. In
fact, each unique word type is used an average of 3.48 times.

To be more interpretable, you may want to consider normalizing these values
across the entire text. R provides a scale function for normalizing or scaling
data. In such scaling, the overall mean for all of the chapters is first calculated
and then subtracted from each of the individual chapter means. This method
has the effect of subtracting away the expected value (expected as calculated
by the overall mean) and then showing only the deviations from the mean.
The result is a vector of values that includes both positive and negative
numbers. You can look at the scaled values by entering:

scale(mean_word_use_m)

Instead of just studying the numbers, however, it might be better to visualize
the results as a bar plot similar to the one above. In the resulting plot, 0 on
the y-axis will correspond to the mean across the entire novel. You will only
see the deviations from the mean (Fig. 7.2).

7.5 Ranking the Values 87

plot(scale(mean_word_use_m),
type = "h",
xlab = "Chapter",
ylab = "Mean Word Use (scaled)"
)

7.5 Ranking the Values

To see where the cetology chapter ranks in terms of average word use, you
can employ the order function to arrange the data in decreasing rank order.
Beware, however, that the order function can be confusing. If you enter:

order(mean_word_use_m)

R will return a vector of numbers corresponding to the ranked positions of
each item in the mean_word_use_m vector. What this vector reveals is that
the first item in the mean_word_use_m object, the mean of the word usage in
chapter one of the novel, is the 122nd in rank when the means are sorted in
increasing order, from smallest to largest.

0 20 40 60 80 100 120 140

−2
−1

0
1

2
3

Chapter

M
ea

n
W

or
d

U
se

 (s
ca

le
d)

Fig. 7.2 Mean word usage plot with scaling

If you want to order them according to decreasing rank, you need to set the
decreasing argument of order to TRUE.

order(mean_word_use_m, decreasing = TRUE)

88 7 Measures of Lexical Variety

Again, just to emphasize this point, order does not sort the means; it returns
a vector of ranks in which the vector positions correspond to the positions in
the vector being ranked. The vector of means can then be reordered, sorted,
using this new vector of rank positions inside the brackets:

mean_word_use_m[order(mean_word_use_m, decreasing = TRUE),]

Here is a truncated look at the results:
CHAPTER 54. The Town-Hos Story.
3.748727
CHAPTER 3. The Spouter-Inn.
3.719777
CHAPTER 16. The Ship.
3.692105
CHAPTER 32. Cetology.
3.477622

After sorting you will see that the cetology chapter has the fourth largest
mean of the 135 chapters. Only three other chapters recycle words at the rate
of the cetology chapter! By this measure, it is not an especially interesting
chapter at all.

7.6 Calculating the TTR Inside lapply

The last few sections demonstrated how to use R’s built in mean function
with lapply to calculate the mean word frequency of each chapter. Mean
word usage is one way of thinking about lexical variety. A Type-Token Ratio
(TTR) provides a similar value for assessing lexical richness, but since R does
not already have a function for calculating TTR, you will need to modify the
arguments given to lapply. Instead of using mean, you will create your own
function.

Above, you saw that you could calculate the mean for one chapter using this
expression:

sum(chapter_raws_l[[1]])/length(chapter_raws_l[[1]])

You can calculate the TTR using a similar expression in which the numerator
and denominator are reversed, and here we will also multiply the result by
100.

length(chapter_raws_l[[1]])/sum(chapter_raws_l[[1]]) * 100
[1] 38.05704

7.6 Calculating the TTR Inside lapply 89

To run a similar calculation for all of the chapters as part of a call to lapply,
a generalized version of this calculation needs to be provided to lapply as
the function argument. As you have seen, lapply takes a function argument
such as mean or sum, etc. Since there is no function for TTR, you can provide
lapply with your own custom function. In place of an existing function such
as mean you can insert an inline function definition using a variable x to
stand in for each item in the main list.

ttr_l <- lapply(
chapter_raws_l,
function(x) {length(x) / sum(x) * 100}
)

Within the parentheses of lapply the TTR function is defined as follows:
function(x) {length(x) / sum(x) * 100. When executed, lapply will
treat each item in the chapter_raws_l list as the value for x (much in the
same way that we have been using i inside of a for loop). The calculations
will be performed on each item and the results returned in a new list object.
You can then run do.call with rbind just as you did when calculating the
means.

ttr_m <- do.call(rbind, ttr_l)

Now you can order and inspect the results:

ttr_m[order(ttr_m, decreasing = TRUE),]

Or you can visualize the results using a plot (Fig. 7.3):

plot(ttr_m, type = "h", xlab = "Chapter", ylab = "TTR")

0 20 40 60 80 100 120 140

30
40

50
60

Chapter

TT
R

Fig. 7.3 Plot of type-token ratios

90 7 Measures of Lexical Variety

7.7 A Further Use of Correlation

Unfortunately, measures such as mean word frequency and TTR are not
terribly useful because text length, or chapter length in this case, can be a
strong determiner in the rate at which words get recycled. As chapter length
increases you can generally expect more new words to be introduced. At the
same time, many of the existing words will see repeated use because they
provide the necessary structure or scaffolding for the introduction of new
words. The practice exercises that follow provide you an opportunity to test
these assertions.1

7.8 Practice

1. To test the assertion that document length is a strong determiner in the
rate at which words get recycled, measure the strength of correlation be-
tween chapter length and TTR. For this you need two vectors of data. You
already have the TTR values in the ttr_m matrix. Convert that data to a
vector using as.vector. You now need another vector of chapter lengths.
For this you can use lapply with the sum function instead of using mean.
Once you have the two vectors, run a correlation analysis similar to the
correlation you did previously with occurrences of whale and ahab. Write
up your code and an analysis of the result.

2. Run a similar correlation test using the values in the mean_word_use_m
instead of the TTR values. Write up your code and an interpretation of
the result.

3. Use randomization to test the likelihood that the correlation coefficient ob-
served with the TTR values could have been the result of chance. Explain
the outcome of the test.

4. Explain the difference between the results derived in practice questions 1
and 2.

1In addition to the two measures of lexical variety offered in this chapter, and another
approach offered in the next, readers may wish to consider Yule’s K (see Yule (2014)). Yule
attempts to compensate for text length and provide a stable measure of lexical variety in
what he called the K characteristic. A function for computing Yule’s characteristic constant
K can be found in the languageR R package.

Reference 91

Reference

Yule CU (2014) The Statistical Study of Literary Vocabulary, 1st edn. Cam-
bridge University Press

Chapter 8

Hapax Richness

Abstract This chapter expands the analysis of vocabulary by focusing on
words that occur very infrequently. Readers learn how to use sapply and
create another simple inline function.

8.1 Introduction

Another way of thinking about vocabulary richness and the experience of
reading a particular text is to consider how many words appear quite infre-
quently or even just once. These words that occur just once are sometimes
referred to as singletons or even one-zies, but they are more formally called
hapax legomena. Hapax (for short) may provide a different way of assessing
the lexical richness of a given segment of prose. In this chapter you will learn
how to calculate the total number of hapax and test if there is a correlation
between the number of hapax and the length of a chapter. The working hy-
pothesis will be that as chapter length increases, you would expect to see an
increase in the number of hapax legomena.

8.2 Start Up Code

rm(list = ls())
text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]
chap_positions_v <- grep("^CHAPTER \\d", novel_lines_v)

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_8

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_8&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_8

94 8 Hapax Richness

last_position_v <- length(novel_lines_v)
chap_positions_v <- c(chap_positions_v, last_position_v)
chapter_raws_l <- list()
chapter_freqs_l <- list()
for(i in 1:length(chap_positions_v)){

if(i != length(chap_positions_v)){
chapter_title <- novel_lines_v[chap_positions_v[i]]
start <- chap_positions_v[i] + 1
end <- chap_positions_v[i + 1] - 1
chapter_lines_v <- novel_lines_v[start:end]
chapter_words_v <- tolower(paste(chapter_lines_v, collapse = " "))
chapter_words_l <- strsplit(chapter_words_v, "\\W")
chapter_word_v <- unlist(chapter_words_l)
chapter_word_v <- chapter_word_v[which(chapter_word_v != "")]
chapter_freqs_t <- table(chapter_word_v)
chapter_raws_l[[chapter_title]] <- chapter_freqs_t
chapter_freqs_t_rel <- 100*(chapter_freqs_t/sum(chapter_freqs_t))
chapter_freqs_l[[chapter_title]] <- chapter_freqs_t_rel

}
}
chapter_lengths_m <- do.call(rbind, lapply(chapter_raws_l, sum))

8.3 sapply

For this analysis, you must return to the chapter_raws_l list. Instead of
extracting a count of all word tokens, you will compute a sum of all of the
word types that appear only once in each chapter. To extract a count of the
hapax, you can use the sapply function in combination with an argument that
identifies the values that are equal to 1. sapply is a simplified, or, as the R
documentation calls it, a user-friendly version of lapply. The main difference
between lapply and sapply is that sapply returns a vector instead of a
list. The arguments that you provide to sapply are going to be very similar
to those given to lapply, but here we are going to add some additional
conditions in the form of a custom function that calculates a sum of only
those values that meet the condition of being equal to 1. The function is
going to count how many words in the vector are used only once.

8.4 An Inline Conditional Function

Instead of using built in functions such as mean or sum, for this task we
need to construct our own function using the inline function(x) argument
of sapply followed by a definition, or declaration, of that function. This

8.4 An Inline Conditional Function 95

is similar to what we did in Chap. 7 when we computed the Type-Token
Ratio (TTR) of each chapter. In this case the custom function will enclose
a conditional expression that sums all the values in the raw counts table
that are equal to one. It is important to emphasize here that to express
equivalence, R expects us to use two equal signs (==). As you recall, this is
done to avoid confusing the use of a single equals sign, which can be used in
R as an assignment operator.1 The code required for counting the number of
hapax in each chapter, therefore, looks like this:
chapter_hapax_v <- sapply(chapter_raws_l, function(x) sum(x == 1))

Translating this code block into plain English, we might say something like
this: “For each item in chapter_raws_l, return the sum of the values that
are equal to one.” Since the values in this case are all one, sum will return
a count of the words that occur just once in each chapter. If you print the
contents of chapter_hapax_v to the console, you will see the hapax counts
for each chapter. Here we just show the first five values:

chapter_hapax_v[1:5]
CHAPTER 1. Loomings. CHAPTER 2. The Carpet-Bag.
605 433
CHAPTER 3. The Spouter-Inn. CHAPTER 4. The Counterpane.
1054 465
CHAPTER 5. Breakfast.
266

This is a start, but now we need to divide the number of hapax in each chapter
by the total number of words in each chapter. As it happens, we already have
these values in the chapter_lengths_m variable from the practice exercise
in the last chapter. Here it is again:

chapter_lengths_m <- do.call(rbind, lapply(chapter_raws_l, sum))

Since R easily facilitates matrix division (that is, R allows you to divide one
matrix of values by the corresponding values in another matrix) the code is
simple. Instead of having to perform the division on one value at a time, like
this:

chapter_hapax_v[1] / chapter_lengths_m[1]
CHAPTER 1. Loomings.
0.2696078
chapter_hapax_v[2] / chapter_lengths_m[2]
CHAPTER 2. The Carpet-Bag.
0.2980041

1In R values can be assigned to an object using either <- or =. Throughout this book we
use <- because it is the most common convention among users of R, and it avoids the whole
= vs. == confusion.

96 8 Hapax Richness

You can do it all at once, like this:

hapax_percentage <- chapter_hapax_v / chapter_lengths_m

This expression returns a new matrix containing the chapter names and the
percentage of hapax in each chapter. These values can then be plotted, so
that you can visualize the chapter-by-chapter hapax richness (Fig. 8.1).2

barplot(
hapax_percentage,
beside = TRUE,
col = "grey",
names.arg = seq(1:length(chapter_raws_l)),
xlab = "Chapters",
ylab = "Hapax Percentage"
)

1 8 16 25 34 43 52 61 70 79 88 97 108 120 132

Chapters

H
ap

ax
 P

er
ce

nt
ag

e

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fig. 8.1 Hapax percentage plot

Using the cor function, it is simple to calculate the extent of correlation
between the number of hapax in a chapter and the length of the chapter:

cor(chapter_hapax_v, chapter_lengths_m)
[,1]
[1,] 0.9677308

2When the “beside” argument is set to TRUE the columns are portrayed as juxtaposed
bars; otherwise, they will be stacked. Enter “?barplot” in the console for details.

8.5 Practice 97

The correlation between the number of hapax in a chapter and the length of
the chapter is extremely strong with an R-value of 0.9677308. As the chapters
of Moby Dick get longer, not only do we observe the same words repeated
more often, but we also see an increase in the number of new words being
introduced.

8.5 Practice

1. Use order to rank the values in hapax_percentage. How does the rank
of the cetology chapter compare to the others?

2. The correlation statistic found at the end of the chapter is not especially
useful in and of itself. It becomes much more interesting when compared
to another author’s work, such as Jane Austen’s Sense and Sensibility
that you will find in the same folder as you found Moby Dick : data/text.
First write the code necessary to get the chapter-by-chapter counts of
the hapax in Austen’s Sense and Sensibility. Save these in a list object
titled sense_raws_l. From this object calculate the number of hapax and
the chapter lengths for each chapter of Sense and Sensibility. Compute
the correlation and describe how the correlation results for Melville and
Austen compare and what they tell us about the two writers in terms of
vocabulary usage habits.

3. Use what you learned in Chap. 6 to test the likelihood that these two
correlation figures could have been the result of chance. To complete this
exercise you will need to code separate randomization tests for both Moby
Dick and Sense and Sensibility.

Chapter 9

Do It KWIC

Abstract In the last chapter a simple inline function was used within a call to
the sapply function. In this chapter we explore user-defined functions more
broadly and write a custom function for producing a Keyword in Context
(KWIC) list.

9.1 Introduction

KWIC or Keyword in Context searches are a standard way of addressing
Rupert Firth’s observation that you will know a word’s meaning, or sense, by
looking at the other words around it, that is, by its context.1 In this section
(including the practice exercises), you will learn how to build a flexible KWIC
tool in R. You will also be introduced to some R functionality that will allow
you to access and analyze multiple texts at once.

Unlike previous chapters where you loaded a single file using scan, you are
now going to access a collection of files in a directory. Begin by defining a
variable that contains the relative path to the directory of text files.

input_dir <- "data/text"

You can now call R’s dir function with this path variable as an argument
to retrieve the names of all of the files in the directory. In addition to the
path argument, which you have now stored in the input_dir object, the dir
function can take an optional search pattern string written using a regular
expression. Since you only want dir to return the files in the directory that
have a .txt file extension, use an escaped period (\\.) followed by txt and the
1See Firth (1957).

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_9

99

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_9

100 9 Do It KWIC

$ symbol (to mark the end of a string).2 This creates a pattern (in regular
expression speak) that will match any string of characters that ends with
.txt. The expression looks like this:

files_v <- dir(input_dir, "\\.txt$")
files_v
[1] "austen.txt" "melville.txt"

Adding the full.names = TRUE argument, instructs the dir function to in-
clude the full directory path in its result.

files_v <- dir(input_dir, "\\.txt$", full.names = TRUE)

Having run this, you should now type files_v into R and return a vector of
file paths; in this example, just two files will be returned.
files_v
[1] "data/text/austen.txt" "data/text/melville.txt"

9.2 Custom Functions

This console display of the content of the files_v vector is not very pretty
or especially useful, and once you get a corpus containing many files, it can
become difficult to read through this display. To better understand the idea
of custom functions, you will write code to make the contents of the files_v
vector display in a more organized and reader-friendly fashion.

Functions are, primarily, reusable chunks of code. You have already learned
about many of R’s built-in functions, and you have used and reused them
many times. You can also create your own custom functions and call them
over and over again. If you were baking a cake for a friend’s birthday, you
would buy some ingredients, pull out some pots and pans, and bake the cake.
If you decided to go into the cake baking business, you would probably invest
some time (and money) setting up a cake baking system that would take a
certain set of ingredients and pump out a cake on the other end. That is what
functions are; they are ingredient assembly systems.

In this section you will write a simple function called show_files that you
can use for displaying file names. The specific purpose of the function in this
example will be to display the contents of the files_v vector in an easy to
read format that includes the index id of the each file in the vector. In R
you begin a new function by giving it a name (show_files) and then using

2In regular expressions, the period is a special metacharacter. If you want to search for a
literal period character, you need to escape it using two backslash characters. If you do not
escape the period character, it will be treated as a wildcard that will match any character.

9.2 Custom Functions 101

the function, declaration (which looks like you are calling the function
function). Inside of parentheses, you will define the arguments (ingredients)
that the function requires: in this case, two arguments: the path to a directory
on your system (directory_path) and a regular expression (pattern).

Here is the basic outline of the function:

show_files <- function(directory_path, pattern = "\\.txt$"){
some code goes here

}

Notice in the arguments to the function that we have predefined a default
value for the pattern argument: "\\.txt$". When you call this function,
you can choose to use the default pattern or enter a different one. We will
explore that option later.

The parenthetical arguments section of the declaration is followed by a set
of opening and closing curly braces that surround the inner workings of the
function. This inner section, inside the curly braces, is where the instructions
(recipe) for what to do with the ingredients will be defined.

The objective of using this function is to provide an easy to read list of the
files in the directory that you send in the directory_path argument. You
learned above that you can use dir to generate a vector of files in a directory.
You can add that code here inside the curly braces:

show_files <- function(directory_path, pattern = "\\.txt$"){
file_name_v <- dir(directory_path, pattern, full.names = TRUE)

some more code goes here
}

Next we want to iterate over the items in the file_name_v object, and for
this we will use a for loop.

show_files <- function(directory_path, pattern = "\\.txt$"){
file_name_v <- dir(directory_path, pattern, full.names = TRUE)
for(i in seq_along(file_name_v)){

some more code goes here
}

}

The for loop will iterate over each of the items stored in the vector of
file names (file_name_v), one item at a time. Notice, however, that in-
stead of the familiar for(i in 1:length(file_name_v)), we have intro-
duced a new function, seq_along or “sequence along” as an alternative to
the 1:length construction. The seq_along function is a “safer” version of
1:length(file_name_v). It is safer because it knows how to behave if it is
accidentally sent a zero-length vector as an argument. Consider this example
in which we create an empty numeric vector x with length zero.

102 9 Do It KWIC

x <- vector(mode = "numeric", length = 0)

If we now inspect this variable using class and length, we find that it is
indeed a numeric vector with length of zero.

class(x)
[1] "numeric"
length(x)
[1] 0

However, if we use the 1:length(x) convention, we get a very odd result, a
vector containing two values, 0 and 1:

1:length(x)
[1] 1 0

You can check this as follows:

y <- 1:length(x)
length(y)
[1] 2

Even though x has zero length, the 1:length(x) construction results in a
vector with length 2. Though it seems unlikely that you would ever create a
vector with length zero, you can avoid this little paradox by using seq_along:

y <- seq_along(x)
length(y)
[1] 0

For printing lines into the R console (do not confuse this sense of the word
print with printing on paper to your printer), R has several functions you can
tap, but let us use the cat function here. cat is a function for concatenation
(joining) and printing. Here you want to join the file name with the index of
the file name in the vector and then add a line return (using the backslash
escape character and an n to mean newline). To achieve this, you will be
joining three items: the vector index key, the contents or value of the item
in the vector at that index position, and a newline character. To join these
pieces requires a bit of glue, so cat asks us to define a separator using the sep
argument. You can use a space character for the glue, and the final function
looks like this:

show_files <- function(directory_path, pattern = "\\.txt$"){
file_name_v <- dir(directory_path, pattern, full.names = TRUE)
for(i in seq_along(file_name_v)){

cat(i, file_name_v[i], "\n", sep = " ")
}

}

9.3 A Tokenization Function 103

Before taking the function for a test drive (cake walk?), there is one more
thing to do. Just as it is very easy to write complicated functions, it is also
very easy to forget what they do! So add a brief comment to the function so
that when you come back a week later you can be reminded of what it does:
Function to print a vector of file paths and their index
numbers in user-friendly format
show_files <- function(directory_path, pattern = "\\.txt$"){

file_name_v <- dir(directory_path, pattern, full.names = TRUE)
for(i in seq_along(file_name_v)){

cat(i, file_name_v[i], "\n", sep = " ")
}

}

In RStudio, you can run a whole block of code by selecting it in the editing
window and then hitting the control + return (for Mac) or Ctrl + Enter
(for Windows) keys at the same time. Select the above lines in your R script
and send them to the console using this shortcut. If you look in your “En-
vironment” tab, you will now see show_files under the “Functions” section.
Above that is the “Values” section where you should see both files_v and
input_dir that you instantiated above.

With all of this done, you can now call the show_files function with any
directory on your system and see the numbered result as output.

show_files(input_dir)
1 data/text/austen.txt
2 data/text/melville.txt

Mission accomplished, your first function!

9.3 A Tokenization Function

In previous chapters, you learned how to generate a tokenized vector of words
from a text file. Since you are now an expert function maker, you will build
a function that will do this task so that you can easily access the word data
from any file in a directory on your system. This new function will take two
arguments: a directory path and a tokenization pattern. It is always a good
idea to give your functions names that make sense; call this one make_token_v
and begin it with a comment:

Function returns an ordered vector of words (tokens)
from the file referenced in the file_path argument
make_token_v <- function(file_path, pattern){

more code needed here to:

104 9 Do It KWIC

read in the text file from file_path
convert text into a tokenized vector of words
Use the pattern argument for tokenizing
return vector of word tokens

}

Here we have entered a comment describing what we want this function to do
and some “pseudo code” describing what we still need to write. Articulating an
objective in advance can be a great way to guide your coding. The definition
says that we want to return a vector object and that the code we still need to
write should load a file and tokenize it. It turns out that everything required
in that comment is code that you have already written in previous sections
and/or exercises. By recycling code from your prior work you can produce
the following:

Function returns an ordered vector of words (tokens)
from the file referenced in the file_path argument
make_token_v <- function(file_path, pattern = "\\W"){

read the file in (notice that it is here that we need
to know the input directory and the file id)
text_v <- scan(file_path, what = "character", sep = "\n")
convert to single string
text_v <- paste(text_v, collapse = " ")
lowercase
text_lower_v <- tolower(text_v)
split text using regular expression from 'pattern' arg
text_words_v <- strsplit(text_lower_v, pattern)
unlist the result
text_words_v <- unlist(text_words_v)
remove the blanks
text_words_v <- text_words_v[which(text_words_v != "")]
return(text_words_v) # return the resulting vector

}

The only thing that you have not seen yet is the last line where we call
return. In R you do not always have to explicitly call return at the end of
a function. By default R will return whatever object is returned in the last
line of the function. Explicitly calling return, however, often makes it easier
to read and debug your function code.

You now have two functions. The first function show_files takes an input
directory argument and shows you the names of the files in that directory.
The utility of the show_files function will become more apparent in the
next chapter. The second function takes a path argument and creates and
returns a tokenized vector of words from the file in the path. Assume that
you have decided you want to tokenize the novel by Jane Austen, and that

9.4 Finding Keywords and Their Contextual Neighbors 105

you have already run show_files and learned the location of that file is
data/text/austen.txt. You would then tokenize the novel as follows:

austen_word_v <- make_token_v("data/text/austen.txt")

9.4 Finding Keywords and Their Contextual Neighbors

Now the fun begins. Consider that you have created an ordered vector of the
words from a file. If you were to enter austen_word_v[1:100] you would
get the first 100 words of Jane Austen’s novel, one word at a time. At this
point, we hope that you are already one step ahead of us and thinking to
yourself, “hey, if I have all the words in order, I can find any word in the text
and return its position in the text using a which statement.” You already did
this when you found the occurrences of whale in Moby Dick. Let us now find
anguish in Sense and Sensibility.

positions_v <- which(austen_word_v == "anguish")

This expression will return the position of every instance of the word anguish
in the austen_word_v vector. Go ahead and enter this now, and see what
you get. The result should be something like this:
positions_v
[1] 56584 108040

These are the positions of each separate occurrence of anguish in the file titled
austen.txt. And if you can find the position of every occurrence of anguish
in the word vector, you can find any other word (i.e., whale or dog). And, if
you can find a word’s position, you can also find the items that are next to it:
before it and after it. You can do this by simply adding or subtracting values
from the position of the found word. Deep breath.

To summarize, you have used the which statement to find all the instances
of anguish and stored those positions in a new vector called positions_v. If
you check the length of this positions_v vector, you will get a count of the
number of times anguish occurs in the file:

length(positions_v)
[1] 2

Let us say that you want to know the words that come just before and just
after the first instance of anguish in this file (i.e., the context in which anguish
appears). You might begin by specifically identifying the first instance:

106 9 Do It KWIC

first_instance <- positions_v[1]

Which is to say that you could put the value that is held in the first item in
the positions_v vector into a new variable called first_instance. If you
look at the full print out shown previously, you will see that the first value in
the positions_v vector is 56584. The first instance of anguish is the 56584th
word in the file. With this last R expression, you have put the number 56584
into the variable called first_instance.

If you want to check your work, just use that new variable in the original
word vector, like this:

austen_word_v[first_instance]
[1] "anguish"

Ta Da! Of course, since you already knew that anguish is the 56584th word
in the file, you could have also done this:

austen_word_v[56584]
[1] "anguish"

Ta Da! And, if you want to see the words just before and just after the
56584th word in the file, you could, of course, just do this:

austen_word_v[56583:56585]
[1] "the" "anguish" "of"

But consider that another way of getting access to the positions in the vector
that are before and after the keyword is to add and subtract from the position
of the keyword. Since 56584 is the value already stored in the first_instance
variable you could subtract from (or add to) the value inside first_instance.
With that in mind, you can use the following expression to achieve the same
result as above, but without hard-coding any of the vector positions.

austen_word_v[(first_instance-1):(first_instance+1)]
[1] "the" "anguish" "of"

If you want to see the results pretty printed, just use cat:

cat(austen_word_v[(first_instance-1):(first_instance+1)])
the anguish of

The practice exercise that follows will allow you to develop what you have
learned here to create a simple KWIC list.

9.5 Practice 107

9.5 Practice

1. Using the functions described in this chapter and what you now know
about vector indexing, write a script that will produce a five-word KWIC
list for all occurrences of the word dog in both Moby Dick and Sense and
Sensibility, separately.

2. For an even cleaner look, use your new knowledge of the cat function to
format your output so that it looks something like this:

----------------------- 1 -----------------------
all over like a newfoundland [dog] just from the water and

----------------------- 2 -----------------------
a fellow that in the [dog] days will mow his two

----------------------- 3 -----------------------
was seen swimming like a [dog] throwing his long arms straight

----------------------- 4 -----------------------
filling one at last down [dog] and kennel starting at the

----------------------- 5 -----------------------
not tamely be called a [dog] sir then be called ten

----------------------- 6 -----------------------
t he call me a [dog] blazes he called me ten

----------------------- 7 -----------------------
sacrifice of the sacred white [dog] was by far the holiest

----------------------- 8 -----------------------
life that lives in a [dog] or a horse indeed in

----------------------- 9 -----------------------
the sagacious kindness of the [dog] the accursed shark alone can

----------------------- 10 -----------------------
boats the ungracious and ungrateful [dog] cried starbuck he mocks and

----------------------- 11 -----------------------
intense whisper give way greyhounds [dog] to it i tell ye

----------------------- 12 -----------------------
to the whale that a [dog] does to the elephant nevertheless

----------------------- 13 -----------------------
aries or the ram lecherous [dog] he begets us then taurus

----------------------- 14 -----------------------
is dr bunger bunger you [dog] laugh out why don t

----------------------- 15 -----------------------
to die in pickle you [dog] you should be preserved to

----------------------- 16 -----------------------
round ahab and like a [dog] strangely snuffing this man s

----------------------- 17 -----------------------
lad five feet high hang [dog] look and cowardly jumped from

108 9 Do It KWIC

----------------------- 18 -----------------------
as a sagacious ship s [dog] will in drawing nigh to

----------------------- 19 -----------------------
the compass and then the [dog] vane and then ascertaining the

Reference

Firth JR (1957) Studies in Linguistic Analysis. Blackwell

Chapter 10

Do It KWIC(er) (and Better)

Abstract This chapter expands upon the previous chapter in order to build
an interactive and reusable Keyword in Context (KWIC) application that
allows for quick and intuitive KWIC list building. Readers are introduced
to interactive R functions including readline and functions for data type
conversion.

10.1 Getting Organized

In the previous chapter, you learned how to find and access a series of index
positions in a vector and then how to return values on either side of the
found positions. In the practice exercise, you hard-coded a solution for finding
occurrences of the word dog in Sense and Sensibility and Moby Dick. In
this section you will learn how to abstract that code and how to create an
interactive and reusable application that will allow you to repeatedly find
keywords in context without having to hard-code the search terms.

If you have not already done so, now is the time to get organized. You will be
dealing with more and more files as this book continues, and unless you keep
your working spaces well-defined and organized things can get complicated.
Within your “TAWR2” directory, you already have a sub-directory labeled
“code.” This is where you should be storing all of your .R files. Now is a
good time to create a new sub-directory called “results.” In the last exercise
in this chapter, you will be generating a .csv file that you can save in your
“results” directory and then open again in R or in a spreadsheet application
such as Excel or Open Office.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_10

109

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_10&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_10

110 10 Do It KWIC(er) (and Better)

10.2 Separating Functions for Reuse

In the last chapter you created two functions, and in this chapter you will
create a third. Because you can reuse functions in separate projects, it is
convenient to keep them in a separate file so that you can access them from
different R scripts that you write for different projects. You should begin this
chapter, therefore, by copying your two functions from the last chapter into a
new file that you will title corpus_functions.R. Save this new file inside your
“code” sub-directory. Your functions file should include both show_files and
make_token_v from the last chapter. Here they are again, but without the
comments:

show_files <- function(directory_path, pattern = "\\.txt$"){
file_name_v <- dir(directory_path, pattern, full.names = TRUE)
for(i in seq_along(file_name_v)){

cat(i, file_name_v[i], "\n", sep = " ")
}

}
make_token_v <- function(file_path, pattern = "\\W"){

text_v <- scan(file_path, what = "character", sep = "\n")
text_v <- paste(text_v, collapse = " ")
text_lower_v <- tolower(text_v)
text_words_v <- strsplit(text_lower_v, pattern)
text_words_v <- unlist(text_words_v)
text_words_v[which(text_words_v != "")]

}

With your functions stored in a separate file, you can now call the cor-
pus_functions.R file as part of your working R script in order to load these
existing functions. Create a new R script (saved as “chapter10.R” in your
“code” directory) and enter the following expressions as the first two lines:

rm(list = ls())
source("code/corpus_functions.R")

The first line clears your workspace and the second line uses R’s source
function to load the contents of your external functions file. When this script
is executed, R will load all of the functions that you create and save in the
corpus_functions.R file.

As in Chap. 9, you need to show R where to find your text files, so next you
will define an input directory with a relative path to the data/plainText
directory.

input_dir <- "data/text"

10.4 readline 111

Since you also will be using R to create derivative data files that will need
to be saved out to another directory, you will need to tell R where to write
these files. Define an output directory variable, with the title “results,” like
this:
output_dir <- "results"

The objective now is to write an interactive Keyword in Context (KWIC)
function that will allow you to repeatedly enter different file paths and key-
words and then return the hits for those terms along with some amount of
context on either side of the key term.

10.3 User Interaction

R includes a set of built-in functions that, when invoked, require user feedback.
Thus far we have been hard-coding file paths in R, but we could have been
using R’s file.choose function instead. If you enter file.choose at the
R prompt, you will be prompted with a pop-up window that allows you to
navigate your file system and locate a file. Here is an example that you can
try on your system. Just enter the following expression at the R prompt in
the console pane and then use your computer’s windowing system to locate
the file in the exercise directory called “melville.txt.”

mytext <- scan(file.choose(), what = "character", sep = "\n")

If you did everything correctly, you should see the message:
Read 18172 items

You will now be able to enter
mytext

and see all the lines of Moby Dick.

10.4 readline

There are other functions in R that allow for user interaction as well, and
one that we will use for this section is readline. readline is a function that
will print information to the R console and then accept input entered into
the console by the user. Enter this expression into the console and hit return:

112 10 Do It KWIC(er) (and Better)

myyear <- readline("What year was Moby Dick published? \n")

You will see the quoted question appear in the console and the blinking
cursor prompt located after the question mark. At the cursor prompt, enter
a number (e.g., 1851) and hit return. If you now type myyear at the R prompt
and hit return, you will find that R has stored the value that you entered in
the myyear variable. Here is how it should look:

> myyear <- readline("What year was Moby Dick published? \n")
What year was Moby Dick published? 1851
> myyear
[1] "1851"

10.5 Building a Better KWIC Function

Using the readline function, you can write a KWIC list function that asks
the user (you) for a file to search, a keyword to find, and an amount of
context to be returned on either side of the keyword. We will name this
function doitKwic and call it in this fashion:

doitKwic(directory_path)

The only argument that you need to send this function is the location of
(path to) a directory on your system. Open your corpus_functions.R file and
begin writing this new function like this:

doitKwic <- function(directory_path){
instructions here will ask user for a file to search
a keyword to find and a "context" number for context
on either side of the of the keyword

}

Keep in mind that the argument name used inside the parentheses of the
function does not have to be the same as the name used outside of the function.
You already have an object called input_dir instantiated from above. This
object contains the path expression "data/text" that is the location of two
plain text files. So here we are defining a function that takes an argument
called directory_path, and when we call this function, we will send it the
information contained in the input_dir object.

You do not have to write your code this way (i.e., using different names when
inside or outside of the function), but we find it useful to name our function
arguments in a way that is descriptive of their content and a bit more abstract
than the names we give to objects within the main script. We may decide to

10.5 Building a Better KWIC Function 113

use this function on another project, and several months from now we may
have forgotten what input_dir means. Using directory_path is a bit more
descriptive, and it gives us some clues about what kind of data the function
is expecting.

As the commented sections of the code suggest, we want the new function
to ask the user for input. First it needs to ask which file in the directory to
search in, then what keyword to search for, and finally how much context to
display. For the first item, the function should display a list of the files that are
found inside the directory located at directory_path and then ask the user
to choose one. As it happens, we already have a function called show_files
that does exactly this, and we can call the show_files function from inside
the new doitKwic function! Remember that show_files is expecting to get
a directory path as its argument. That information is passed to show_files
in the directory_path argument. So as a next step, we might write the
following:

doitKwic <- function(directory_path){
show_files(directory_path)
more instructions here . . .

}

If doitKwic is called, it will successfully show the files found in the directory
sent as the argument directory_path, but then it will do nothing else. In
order to capture information from the user, we will need to wrap the call to
show_files inside a call to readline:

doitKwic <- function(directory_path){
readline(show_files(directory_path))
more instructions here . . .

}

This gets us a little bit closer, but we are not there quite yet. Recall that
show_files presents us with both an id number and a path for each file.
When you call show_files using data/text you get the following output:

1 data/text/austen.txt
2 data/text/melville.txt

Instead of having to copy or type in the entire file path that we want to
search in, let us have our user just enter the index number of the file instead.
We will capture that user input into a new object called file_id.

doitKwic <- function(directory_path){
file_id <- readline(show_files(directory_path))
more instructions here . . .

}

114 10 Do It KWIC(er) (and Better)

There is now one more thing we have to fix. The readline function accepts
input as character data, so if the user enters the number 2, to access the
“melville.txt” file, that 2 is converted to the character “2.” We must, therefore,
convert, or recast, the character to a numeric value using as.numeric.

doitKwic <- function(directory_path){
file_id <- as.numeric(readline(show_files(directory_path)))
more instructions here . . .

}

Now we can collect the other information we need: the keyword and the
amount of context. We will add two more lines to our evolving function:

doitKwic <- function(directory_path){
file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
more instructions here . . .

}

Notice that we need to use as.numeric again in the last line to be sure the
context the user enters is converted to a numeric value. With these three ingre-
dients, we now have enough information to access, tokenize, and search for a
keyword in a text file. The next thing to do is to take advantage of the function
that we have already written for handling the tokenization: make_token_v.
We will add a call to make_token_v to our function as follows:

doitKwic <- function(directory_path){
file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

dir(directory_path, full.names = TRUE)[file_id]
)

more instructions here . . .
}

This last line is a bit complicated, so let us break it down. Recall that
make_token_v takes a path argument. Here we have used the built-in dir
function with the full.names = TRUE argument to return a file path using a
combination of information that we have stored in the directory_path and
file_id objects. Recall that calling dir(directory_path, full.names =
TRUE) returns a vector object of file paths. We can access specific items in
this vector using bracketed sub-setting, and the specific index of the item
we want to access is now stored in the file_id object. Therefore, calling
dir(directory_path, full.names = TRUE)[file_id] will return the pre-
cise path to a single file. That file is then sent to make_token_v where it is
tokenized and returned into the word_v object.

10.6 Fixing Some Problems 115

All you need to do now is apply what you learned from the exercise in the
last chapter. Using which you will identify the positions in the word_v object
that match the user’s keyword and store them in an object called hits_v.
Then you will loop over the hits_v object using a for loop and along the
way add and subtract the context values from the found positions in order to
identify and display the user’s keyword in context. The (almost) completed
function looks like this:
doitKwic <- function(directory_path){

file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

file.path(directory_path, dir(directory_path)[file_id])
)

hits_v <- which(word_v == keyword)
for(i in seq_along(hits_v)){

start <- hits_v[i] - context
end <- hits_v[i] + context
before <- word_v[start:(start + context - 1)]
after <- word_v[(start + context + 1):end]
keyword <- word_v[start + context]
cat("----------------------", i, "----------------------", "\n")
cat(before,"[", keyword, "]", after, "\n")

}
}

10.6 Fixing Some Problems

Unfortunately, this simple solution cannot handle all of the possible search
scenarios that might occur, and we have left out some important arguments.
Recall, for example, that by default, our make_token_v converts all char-
acters to lowercase. If a user of our new doitKwic function were to enter
a keyword containing a capital letter, nothing would be found. We can fix
this very easily by altering the third line of the function to read keyword
<- tolower(readline("Enter a Keyword: ")). This ensures that what-
ever the user enters will be converted to lowercase. But what if you want
to search for a capitalized word? Right now that is not an option. And there
is another more serious problem. . .

What if the very first word in the file you are searching in is a hit? In this case
the first position in the hits_v vector would be 1 and that would cause start
to be set to 1 - (minus) context: that is one minus whatever number the
user entered for context. The result of that subtraction would be a negative

116 10 Do It KWIC(er) (and Better)

number and R would choke trying to access a value held at a negative vector
index! You cannot have that, so you need to add some code to deal with this
possibility. Here is one way to deal with the problem using an if conditional:

start <- hits_v[i] - context
if(start < 1){

start <- 1
}

A similar problem exists on the other end of the vector. What if the last word
is a hit? Adding some amount of context after the last hit will result in R
trying to return a value that does not exist after the last word. We can deal
with this issue in a similar manner: if the value of end is greater than or equal
to the length of the entire vector, we can set end equal to the length of the
entire vector.

end <- hits_v[i] + context
if(end >= length(word_v)){

end <- length(word_v)
}

We will deal with the lowercase issue and some other issues in the practice
exercises, but for now we at least have a function that will not break. Here
is the final version:
doitKwic <- function(directory_path){

file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

file.path(directory_path, dir(directory_path)[file_id])
)

hits_v <- which(word_v == keyword)
for(i in seq_along(hits_v)){

start <- hits_v[i] - context
if(start < 1){

start <- 1
}
end <- hits_v[i] + context
if(end >= length(word_v)){

end <- length(word_v)
}
output <- word_v[start:end]
output[which(output == keyword)] <- paste(

"[", keyword, "]", sep = ""
)

10.7 Practice 117

cat("----------------------", i, "----------------------", "\n")
cat(output, "\n")

}
}

Save this function to your corpus_functions.R file and then take it for a
test run using the following code:

source("code/corpus_functions.R")
input_dir <- "data/text"
doitKwic(input_dir)

10.7 Practice

1. In prior exercises and lessons, you have learned how to instantiate an empty
object outside of a for loop and then how to add new data to that object
during the loop. You have learned how to use cbind to add columns of data
and rbind to add rows. You have also learned how to use paste with the
collapse argument to glue together pieces in a vector of values and how
to use cat to concatenate items in a vector. And you have used colnames
to get and set the names of columns in a data frame. Using all of this
knowledge, modify the function written in this chapter (doItKwic) so that
the results of a KWIC search are put into a data frame object in which
each row is a single KWIC result. Name this new function doItKwicBetter.
Your resulting data frame should have four columns labeled as follows:
position, left context, keyword, and right context. The position column will
contain the index value showing where in the file the keyword was found.
The left column will contain the words in the file vector that were found to
the left of the keyword. The keyword column will contain the keyword, and
the right column, the context that was found to the right of the keyword.
Here is an example of results generated using the keyword dog with two
words of context in the file “melville.txt.”
position left keyword right

1 10643 like a newfoundland dog just from the
2 12464 that in the dog days will mow
3 23280 swimming like a dog throwing his long
4 47119 at last down dog and kennel starting
5 47195 be called a dog sir then be
6 47653 call me a dog blazes he called
7 70018 the sacred white dog was by far
8 103702 lives in a dog or a horse
9 103788 kindness of the dog the accursed shark
10 133135 ungracious and ungrateful dog cried starbuck he

118 10 Do It KWIC(er) (and Better)

11 133165 give way greyhounds dog to it i
12 143092 whale that a dog does to the
13 163384 the ram lecherous dog he begets us
14 166285 bunger bunger you dog laugh out why
15 166665 in pickle you dog you should be
16 167192 and like a dog strangely snuffing this
17 199028 feet high hang dog look and cowardly
18 202985 sagacious ship s dog will in drawing
19 203037 and then the dog vane and then

2. Copy the function you created in the exercise above and modify it to
include a feedback loop asking the user if the results should be saved as a
.csv file. If the user answers “y” for “yes,” generate a file name based on
the existing user input (keyword, file name, context) and write that file to
the results directory using a call to the write.csv function, as in this
example below. Save this new function in your corpus_functions.R file as
doItKwicStillBetter.

write.csv(results_df, file.path("results", some_file_name))

3. Neither of these “better” KWIC functions gives the user any options for
tokenizing the texts. Right now both functions rely on the default behavior
of the make_token_v function, which uses the regular expression "\\W". In
order to give users flexibility to change the way files get tokenized, we need
to alter the line of code that calls make_token_v to include a pattern
argument, and we also need to add a new argument to the parameters
of our KWIC function. Rewrite your doItKwicStillBetter function to
achieve this objective and save it as doItKwicBest. After you save the
function, you should be able to call it using the code shown below. Re-
call that [ˆA-Za-z0-9'] is a regular expression that retains apostrophes
and possessives. If your function is correct, you will be able to search for
instances of ahab’s. After you have coded this new version, check your so-
lution with the solution at the back of the book where you will find one
more useful iteration of this function explained. Once you have finished
the practice exercises for this chapter, save doItKwic, doItKwicBetter,
doItKwicStillBetter, and doItKwicBest to your corpus_functions.R
file so you can easily access them in the future.

doItKwicBest(input_dir, "[^A-Za-z0-9']")

Part II

Metadata

Chapter 11

Introduction to dplyr

Abstract This chapter introduces the dplyr suite of functions.

11.1 Start Up Code

The following is a block of code with which you are now quite familiar.
You will begin this chapter by running this code and producing two lists:
chapter_raws_l and chapter_freqs_l. Remember, chapter_raws_l and
chapter_freqs_l respectively contain the raw and relative frequency of ev-
ery token in Moby Dick, by chapter.
rm(list = ls())
text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]
chap_positions_v <- grep("^CHAPTER \\d", novel_lines_v)
last_position_v <- length(novel_lines_v)
chap_positions_v <- c(chap_positions_v , last_position_v)
chapter_raws_l <- list()
chapter_freqs_l <- list()
for(i in 1:length(chap_positions_v)){

if(i != length(chap_positions_v)){
chapter_title <- novel_lines_v[chap_positions_v[i]]
start <- chap_positions_v[i] + 1
end <- chap_positions_v[i + 1] - 1
chapter_lines_v <- novel_lines_v[start:end]
chapter_words_v <- tolower(paste(chapter_lines_v, collapse = " "))
chapter_words_l <- strsplit(chapter_words_v, "\\W")
chapter_word_v <- unlist(chapter_words_l)
chapter_word_v <- chapter_word_v[which(chapter_word_v != "")]

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_11

121

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_11&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_11

122 11 Introduction to dplyr

chapter_freqs_t <- table(chapter_word_v)
chapter_raws_l[[chapter_title]] <- chapter_freqs_t
chapter_freqs_t_rel <- 100*(chapter_freqs_t/sum(chapter_freqs_t))
chapter_freqs_l[[chapter_title]] <- chapter_freqs_t_rel

}
}

11.2 Using stack to Create a Data Frame

In earlier chapters, you learned how to use do.call and rbind to move the
data contained inside a list object into a neater matrix of rows using the
following R code:

mean_word_use_m <- do.call(rbind, lapply(chapter_raws_l, mean))

If, instead of the mean word use in a chapter, we wanted to know the length
of each chapter in words, we could use the sum function instead of mean:

chapter_lengths_m <- do.call(rbind, lapply(chapter_raws_l, sum))

Another way of achieving a similar result is to use the stack function in-
stead of do.call. The stack function combines, or “concatenates” data from
several data structures into one:

chapter_lengths_df <- stack(lapply(chapter_raws_l, sum))

Notice, however, that stack returns a data frame object instead of a matrix.

class(chapter_lengths_m); class(chapter_lengths_df)
[1] "matrix"
[1] "data.frame"

If you examine the resulting data.frame (chapter_lengths_df), you will see
that it has two columns and that the columns are labeled “values” and “ind.”

head(chapter_lengths_df)
values ind
1 2244 CHAPTER 1. Loomings.
2 1453 CHAPTER 2. The Carpet-Bag.
3 6000 CHAPTER 3. The Spouter-Inn.
4 1674 CHAPTER 4. The Counterpane.
5 752 CHAPTER 5. Breakfast.
6 831 CHAPTER 6. The Street.

You can easily access the values column as a vector, using the $ shortcut.

11.2 Using stack to Create a Data Frame 123

chapter_lengths_df$values
[1] 2244 1453 6000 1674 752 831 948 968 3642 1567 732 890
[13] 1730 764 1215 5612 2345 1390 1258 934 1101 1677 371 1683
[25] 285 1230 1700 1419 1242 291 886 5206 982 2248 2632 2846
[37] 526 399 282 1641 3808 3655 318 2063 3573 1006 937 4041
[49] 845 1024 1525 726 1656 8101 1918 1320 965 1012 934 1492
[61] 1995 572 474 3080 1001 636 742 1209 443 894 2312 1676
[73] 2229 1660 1246 876 644 1672 948 913 4452 1161 789 815
[85] 2084 1861 4805 1195 1446 1062 2589 982 1647 1289 501 1842
[97] 246 1033 2527 2795 1790 1580 932 1441 1576 940 1066 1645
[109] 930 2283 427 950 1261 653 904 522 478 911 2583 184
[121] 649 49 1271 1223 1143 1425 742 1434 598 1727 434 1645
[133] 3638 3393 4917

Recall what you learned about using sapply as a way of simplifying a list
object. We found the number of hapax legomena in each chapter of Moby
Dick using sapply with a user-defined function:
chapter_hapax_v <- sapply(chapter_raws_l, function(x) sum(x == 1))

A similar result can be achieved using lapply and stack, like this:
chap_haps_df_l <- lapply(chapter_raws_l, function(x) sum(x == 1))
chap_haps_df <- stack(chap_haps_df_l)

The big advantage of stack is that it returns a data frame which is easy to
manipulate and essential as we begin exploring the benefits of dplyr and the
so-called tidyverse.

Using stack we now have two data frames, one that holds the total number
of words per chapter, chapter_lengths_df, and another that contains the
count of hapax per chapter, chap_haps_df. These can be easily combined
using the data.frame function:

a_data_frame <- data.frame(chapter_lengths_df, chap_haps_df)

Look at what has been achieved by simple combination:

head(a_data_frame)
values ind values.1
1 2244 CHAPTER 1. Loomings. 605
2 1453 CHAPTER 2. The Carpet-Bag. 433
3 6000 CHAPTER 3. The Spouter-Inn. 1054
4 1674 CHAPTER 4. The Counterpane. 465
5 752 CHAPTER 5. Breakfast. 266
6 831 CHAPTER 6. The Street. 343
ind.1
1 CHAPTER 1. Loomings.
2 CHAPTER 2. The Carpet-Bag.

124 11 Introduction to dplyr

3 CHAPTER 3. The Spouter-Inn.
4 CHAPTER 4. The Counterpane.
5 CHAPTER 5. Breakfast.
6 CHAPTER 6. The Street.

We now have a data frame with repeated information in the form of all the
chapter names. A better approach would be to take only what we need and
relabel the columns at the same time. Remember, we can get the values of a
column with $ and assign column names with = as arguments to data.frame.

hap_lens_df <- data.frame(
chap_names = chapter_lengths_df$ind,
chapter_lengths = chapter_lengths_df$value,
num_hapax = chap_haps_df$values
)

Now we have a very clean data structure containing only the data we need.
Take a peek at it:

head(hap_lens_df)
chap_names chapter_lengths num_hapax
1 CHAPTER 1. Loomings. 2244 605
2 CHAPTER 2. The Carpet-Bag. 1453 433
3 CHAPTER 3. The Spouter-Inn. 6000 1054
4 CHAPTER 4. The Counterpane. 1674 465
5 CHAPTER 5. Breakfast. 752 266
6 CHAPTER 6. The Street. 831 343

11.3 Installing and Loading dplyr

So far we have worked only with functions available in the base R installation.
But there are many “libraries” that can be installed into R. These libraries,
created by other R users, provide new functions. For this chapter you will
install and learn to apply several functions from the dplyr package.

In RStudio it is easy to install packages by going to the “Tools” menu and
selecting “Install Packages” from the drop-down menu. Under the “Install
From” menu, choose “Repository (CRAN).” Now enter dplyr in the “packages”
text field. Click the check-box to “Install Dependencies,” and then click the
Install button. Downloading the entire dplyr package with its functions is
that easy.1

1While it is possible to download all of the available packages for R, doing so would cer-
tainly take a long time and would clog up your installation with way too many irrelevant

11.4 Using mutate, filter, arrange, and select 125

Now that the package is installed, you will need to “load” it. In R we load
a package by going to the package “library.” That is, we use the library
function to check out and load the package.

library(dplyr)

With dplyr loaded, you have access to all the functions in the package. If you
enter ?dplyr in the console, you can see the help files for the package. You
will notice that dplyr is described as a “grammar for data manipulation.”

11.4 Using mutate, filter, arrange, and select

dplyr has a number of handy functions. Four of the most useful are mutate,
filter, arrange, and select. All of these will be relatively familiar to you
because they are functions for performing the same kinds of tasks you have
already learned using cbind, which, sort and $.

11.4.1 Mutate

At its most simple, mutate is a way of “cbinding” new columns into a data
frame. mutate allows you to create a new column in a data frame while
performing some calculation or transformation based on data within existing
columns. Consider the columns in our current object hap_lens_df. We have
the length of each chapter in words and a count of the number of words in
each chapter that are hapax. With mutate and a little division, we can easily
calculate the percentage of each chapter that is composed of hapax. Let us
do that using mutate.

features. The fact is that R is a multipurpose platform used in a huge range of disciplines
including: bio-statistics, network analysis, economics, data-mining, geography, and hun-
dreds of other disciplines and sub-disciplines. This diversity in the user community is one
of the great advantages of R and of open-source software more generally. The diversity
of options, however, can be daunting to the novice user, and, to make matters even more
unnerving, the online R user community is notoriously specialized and siloed and can ap-
pear rather impatient when it comes to newbies asking simple questions. Having said that,
the online community is also an incredible resource that you must not ignore. Because the
packages developed for R are developed by programmers with at least some amount of
ad hoc motivation behind their coding, the packages are frequently weak on documenta-
tion and generally assume some, if not extensive, familiarity with the academic discipline
of the programmer (even if the package is one with applications that cross disciplinary
boundaries).

126 11 Introduction to dplyr

new_df <- mutate(
hap_lens_df,
hap_percent = num_hapax/chapter_lengths
)

Our call to the mutate function includes two arguments: the data frame object
(hap_lens_df) and then the name of the new column we wish to create and
the calculation to use for populating the cells of the new column. In this case,
we create a new column titled “hap_percent” and we populate it with the
results of dividing the data in the “num_hapax” column by the data in the
“chapter_lengths” column. The mutate function understands that we want
to perform this calculation on a row by row basis.

If you look at this new data frame, you will see that there is now a column
called “hap_percent” and that it contains the values resulting from dividing
each hapax count by the chapter length. This result can now be easily plotted
(see Fig. 11.1):

barplot(
new_df$hap_percent,
names.arg = seq(1:length(chapter_raws_l)),
xlab = "Chapter",
ylab = "Percentage"
)

1 8 16 25 34 43 52 61 70 79 88 97 108 120 132

Chapter

Pe
rc

en
ta

ge

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Fig. 11.1 Percentage of hapax

To create the “hap_percent” column, we used some simple mathematical
division. Naturally, we can get more creative. Here is an example where we
use mutate with gsub to create a new column of short chapter titles.

11.4 Using mutate, filter, arrange, and select 127

nice_df <- mutate(
new_df,
short_title = gsub("\\..*$", "", chap_names)
)

head(nice_df)
chap_names chapter_lengths num_hapax
1 CHAPTER 1. Loomings. 2244 605
2 CHAPTER 2. The Carpet-Bag. 1453 433
3 CHAPTER 3. The Spouter-Inn. 6000 1054
4 CHAPTER 4. The Counterpane. 1674 465
5 CHAPTER 5. Breakfast. 752 266
6 CHAPTER 6. The Street. 831 343
hap_percent short_title
1 0.2696078 CHAPTER 1
2 0.2980041 CHAPTER 2
3 0.1756667 CHAPTER 3
4 0.2777778 CHAPTER 4
5 0.3537234 CHAPTER 5
6 0.4127557 CHAPTER 6

The regular expression \\..*$ finds the first period in each chapter heading
and replaces everything that follows it until the end of the string with nothing
(""). The mutate function then takes the output and places it into a new
column titled short_title. We put the output of this entire expression into
a new data frame called nice_df.

Here are the column names:

colnames(nice_df)
[1] "chap_names" "chapter_lengths" "num_hapax"
[4] "hap_percent" "short_title"

11.4.2 filter

The filter function takes the place of which. It allows for the selection of
items that meet a specific condition. The most common use of filter is to
find rows in a data frame that match some condition. Here is an example of
how you can use filter to identify the rows in new_df that have a percentage
of hapax that is greater than some arbitrarily selected percentage, such as 0.5:

filter(nice_df, hap_percent > 0.5)

128 11 Introduction to dplyr

Here we employ filter to identify all the rows in which the value in the
hap_percent column is greater than 0.5. Since we did not assign the output
to a new variable, the result simply prints to the console showing that there
were three chapters in Moby Dick that met the filter condition: chapters 97,
111, and 122.

11.4.3 select

What filter does for finding rows, select does for columns. We can use
select to isolate a particular column in our data frame. Here is an example
of how to use select to pull out all the hapax percentages from nice_df.
Since the “hap_percent” column has 135 rows (for 135 chapters), we will
just look at the first six rows, with help from the head function.

head(select(nice_df, hap_percent))

That is not a very exciting example, but you get the idea. Where filter,
select, and the other functions in dplyr get interesting is when we begin to
chain them together using a special operator that looks like this: %>% . This
little beauty is called a “chain” operator, and it is typically pronounced “then.”
It works like a pipe (“|”) in UNIX to chain together different operations. Say,
for example, that we want to filter our new_df data frame to include certain
rows and then we want to only show data from specific columns.

filter(nice_df, hap_percent > .5) %>%
select(short_title, hap_percent)

short_title hap_percent
1 CHAPTER 97 0.5040650
2 CHAPTER 111 0.5222482
3 CHAPTER 122 0.5306122

The %>% operator allows us to get even more creative because we can chain
together lots of different operations. Here is a more complex example in which
we filter the data frame, then select a column, and then compute some simple
summary statistics for the data:

filter(nice_df, hap_percent > .5) %>%
select(hap_percent) %>%
summary()

hap_percent
Min. :0.5041
1st Qu.:0.5132
Median :0.5222
Mean :0.5190

11.4 Using mutate, filter, arrange, and select 129

3rd Qu.:0.5264
Max. :0.5306

In the example above, we have only selected one column, but it is possible
to select more than one column as well. In the next example, we summarize
the data in two columns:

filter(nice_df, hap_percent > .5) %>%
select(hap_percent, chapter_lengths) %>%
summary()

hap_percent chapter_lengths
Min. :0.5041 Min. : 49.0
1st Qu.:0.5132 1st Qu.:147.5
Median :0.5222 Median :246.0
Mean :0.5190 Mean :240.7
3rd Qu.:0.5264 3rd Qu.:336.5
Max. :0.5306 Max. :427.0

The results reveal that for these three chapters, the average length is just
240.7 words and the average percent of hapax is about 52%.

11.4.4 arrange

As you might suspect, arrange is similar to the sort function that we ex-
plored in previous chapters. Like sort, arrange can organize items in ascend-
ing or descending order. Let us filter nice_df to include only the rows with
a hapax_percent greater than 40% (> .4) and then select the short_title
and hapax_percent columns. We will then arrange the rows according to the
percentage of hapax.

filter(nice_df, hap_percent > .4) %>%
select(short_title, hap_percent) %>%
arrange(hap_percent)

short_title hap_percent
1 CHAPTER 14 0.4083770
2 CHAPTER 6 0.4127557
3 CHAPTER 84 0.4171779
4 CHAPTER 37 0.4220532
5 CHAPTER 116 0.4329502
6 CHAPTER 69 0.4446953
7 CHAPTER 120 0.4456522
8 CHAPTER 39 0.4468085
9 CHAPTER 38 0.4486216

130 11 Introduction to dplyr

10 CHAPTER 131 0.4493088
11 CHAPTER 114 0.4609495
12 CHAPTER 95 0.4690619
13 CHAPTER 23 0.4797844
14 CHAPTER 30 0.4810997
15 CHAPTER 97 0.5040650
16 CHAPTER 111 0.5222482
17 CHAPTER 122 0.5306122

To reverse the order, we only need to change the last line to include the desc
function, which organizes the values in descending order:

filter(nice_df, hap_percent > .4) %>%
select(short_title, hap_percent) %>%
arrange(desc(hap_percent))

short_title hap_percent
1 CHAPTER 122 0.5306122
2 CHAPTER 111 0.5222482
3 CHAPTER 97 0.5040650
4 CHAPTER 30 0.4810997
5 CHAPTER 23 0.4797844
6 CHAPTER 95 0.4690619
7 CHAPTER 114 0.4609495
8 CHAPTER 131 0.4493088
9 CHAPTER 38 0.4486216
10 CHAPTER 39 0.4468085
11 CHAPTER 120 0.4456522
12 CHAPTER 69 0.4446953
13 CHAPTER 116 0.4329502
14 CHAPTER 37 0.4220532
15 CHAPTER 84 0.4171779
16 CHAPTER 6 0.4127557
17 CHAPTER 14 0.4083770

We will continue to explore the power of dplyr functions in the chapters that
follow. Complete the exercises in this chapter to develop a deeper familiarity
with package.

11.5 Practice

1. What do the three chapters with hapax percentages greater than 0.5 all
have in common? Use dplyr’s summary function to verify your guess.

11.5 Practice 131

2. Modify the code to identify rows with a hap_percent less than 0.2. What
do these chapters seem to have in common?

3. One of the chapters found in problem 2 is an outlier. What is odd about
it?

4. Mutate nice_df into a new data frame called repeat_df that includes
a new column called repeat_words that is calculated by subtracting
the number of hapax in each chapter from the total number of words
in each chapter. Use the %>% operator to filter the results such that
only rows with repeat_words greater than 3000 are retained. Select the
short_title, chapter_lengths, and repeat_words columns and arrange
the resulting data from largest to smallest repeat_words. Everything you
need is already in nice_df. Your result should look like this:

repeat_df
short_title chapter_lengths repeat_words
1 CHAPTER 54 8101 6677
2 CHAPTER 3 6000 4946
3 CHAPTER 16 5612 4620
4 CHAPTER 32 5206 4221
5 CHAPTER 135 4917 4013
6 CHAPTER 87 4805 3733
7 CHAPTER 81 4452 3495
8 CHAPTER 48 4041 3171

5. Mutate repeat_df again to include a new column that calculates the rate
at which repeated words are repeated in each chapter and then arranges
the result in descending order of repetition. Your result will look like this:

done_df
short_title chapter_lengths repeat_words repeat_rate
1 CHAPTER 87 4805 3733 1.287168
2 CHAPTER 48 4041 3171 1.274361
3 CHAPTER 81 4452 3495 1.273820
4 CHAPTER 32 5206 4221 1.233357
5 CHAPTER 135 4917 4013 1.225268
6 CHAPTER 16 5612 4620 1.214719
7 CHAPTER 54 8101 6677 1.213269
8 CHAPTER 3 6000 4946 1.213101

6. Start with the nice_df from above and use the %>% operator to do all of
the following in one expression:

• Mutate nice_df to extract the chapter number from the short_title
column as a new column called chap_num.

• Filter the data to keep chapters with word counts greater than 3000.

132 11 Introduction to dplyr

• Select all of the columns except for chap_names (HINT: there is an easy
way to do this using the minus character).

• Mutate the chap_num column which is currently a character vector into a
numeric vector using mutate and as.numeric.

• Arrange the result by descending chapter number.

Your result should look like this:
final_df
chapter_lengths num_hapax hap_percent short_title chap_num
1 4917 904 0.1838519 CHAPTER 135 135
2 3393 810 0.2387268 CHAPTER 134 134
3 3638 811 0.2229247 CHAPTER 133 133
4 4805 1072 0.2231009 CHAPTER 87 87
5 4452 957 0.2149596 CHAPTER 81 81
6 3080 642 0.2084416 CHAPTER 64 64
7 8101 1424 0.1757808 CHAPTER 54 54
8 4041 870 0.2152932 CHAPTER 48 48
9 3573 807 0.2258606 CHAPTER 45 45
10 3655 991 0.2711354 CHAPTER 42 42
11 3808 928 0.2436975 CHAPTER 41 41
12 5206 985 0.1892048 CHAPTER 32 32
13 5612 992 0.1767641 CHAPTER 16 16
14 3642 806 0.2213070 CHAPTER 9 9
15 6000 1054 0.1756667 CHAPTER 3 3
as_num
1 135
2 134
3 133
4 87
5 81
6 64
7 54
8 48
9 45
10 42
11 41
12 32
13 16
14 9
15 3

7. Why did we have to do the second mutation in problem 6?

Chapter 12

Parsing TEI XML

Abstract This chapter introduces readers to parsing XML in R with an
emphasis on TEI encoded XML.

12.1 Introduction

If you have ever downloaded a digital text from the Internet, you already
know that there is great variety when it comes to quality. Some digital texts
are available in what is referred to as dirty OCR. This means that the texts
have been scanned and run through an optical character recognition (OCR)
process but not subsequently hand checked and corrected or cleaned up by
a human editor (hence the term dirty). On the other end of the spectrum,
there are digital texts that have been carefully created by double keying and
human correction. Double keying involves the use of two typists who each key
the entire text into a computer. Once the two versions are completed, they
are compared to identify discrepancies. Double keying is not perfect, but it
is one of the more reliable methods for deriving a high quality digital version
of a text. Somewhere in between double keying and dirty OCR lies corrected
OCR. In this case an original document is scanned and then cleaned by a
human editor. While this method is still prone to errors, it is a significant step
beyond dirty OCR and frequently good enough for processing and analysis
tasks that involve generating global statistics, which is to say a big picture
perspective where a single mis-keyed word will have little impact on the
overall result.

Scholars working with digital text must at some point assess their corpus
and form an opinion about its quality and in what ways the quality of the
material will impact the analysis. Promising research by Maciej Eder (2013)

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_12

133

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_12&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_12

134 12 Parsing TEI XML

has examined the extent to which OCR errors impact stylometric analysis.
This research gives us hope of being able to quantify the margin of error
caused by OCR problems. And, make no mistake, this is a very big problem.
As the scanning efforts of Google continue and as projects such as the Internet
Archive and HathiTrust continue to make more and more dirty OCR text
available online, an algorithmic method for dealing with dirty OCR becomes
more and more important. Some have argued that at the large scale these
OCR issues become trivial. That is a hypothesis, however, and one born out
of frustration with the reality of our digital corpora. If we want to mine the
digital library as it exists today, we need to have a fairly high tolerance for
error.

But alongside these large and messy archives there are a good number of dig-
ital collections that have been carefully curated, and, in some cases, enriched
with detailed metadata. Two very fine examples are the Chadwyck Healey
and Alexander Street Press collections. Both of these content providers offer
carefully corrected, XML (or SGML) encoded digital texts. The high quality
of these texts does, however, come at a price: access to these corpora is avail-
able for a fee, and the fee is beyond the budget of a typical scholar. If your
institution does not subscribe to one of these collections, you are more or less
out of luck.

Somewhere in between the high quality products of vendors such as Chadwyck
Healey and Alexander Street Press and the dirty OCR of free resources such
as Google Books and the Internet Archive is Project Gutenberg. The texts
in Project Gutenberg tend to be of fairly high and fairly consistent quality.
Having said that, they lack detailed metadata, and text provenance is often
unclear. If your research does not demand the use of a particular edition, and
if you can tolerate some degree of textual error, then Project Gutenberg may
be a suitable source for digital texts. Project Gutenberg texts are frequently
available in multiple formats: plain text, html, epub, etc. In many cases, it is
possible to convert files in one format into another, and in our own work we
have developed scripts for converting Gutenberg’s plain text into TEI-XML.

12.2 The Text Encoding Initiative (TEI)

The Text Encoding Initiative (TEI) offers a document-encoding standard
that is commonly used by humanities scholars. The TEI markup scheme
provides a way of storing an original text file alongside an almost infinite
amount of metadata. Since the files are extensible and editable, the amount
of metadata available is only limited by the encoder’s willingness to modify
the documents. Say for example, you are collecting novels written by Irish-
and German-American authors. For this project you might have a metadata

12.3 Parsing XML with R Using the Xml2 Package 135

field in your document where you can indicate the author’s national origins.
You may have another field where you indicate the author’s gender, or birth
date, or race, or sexual orientation. Once metadata of this sort is added to
the XML files, it can be easily accessed by computer scripts and used, for
example, as a sorting facet for a particular type of analysis.

In this chapter you will be working with texts that are encoded in TEI com-
pliant XML. Unlike the plain text files (Moby Dick and Sense and Sensibility)
that you have processed thus far, these TEI-XML files contain extra-textual
information in the metadata of the <teiHeader> element. To proceed, you
must be able to parse the XML and extract the metadata while also sepa-
rating out the actual text of the book from the marked up apparatus around
the book. You need to know how to parse XML in R.

12.3 Parsing XML with R Using the Xml2 Package

An in-depth discussion of XML and of the TEI standard is beyond the scope
of this book. To understand the way that R parses XML, readers should be
familiar with the basic construction of an XML document as an ordered hi-
erarchy of content objects (OHCO) and should have some general familiarity
with the structure of a TEI document: its primary divisions into <teiHeader>,
<text>, <front>, <body>, and <back>.

In the last chapter, you learned how to install the dplyr package using the
RStudio interface. You can also install packages using R’s install.packages
function at the R prompt. First be sure to clear your workspace and then
install the xml2 package like this:

install.packages("xml2")

When you run this code in your console, you will see some console output
referencing the URL where the package is located in the CRAN repository
followed by a notice about the location on your computer of the “binary
packages.” Unless you see an error or a warning, you can assume that the
package was successfully downloaded to your machine.

Once the xml2 package (or any package for that matter) is installed, you must
call it into the active R session. For this you use the expression:

library(xml2)

Unlike the simple scan function that you used to read text files of Moby Dick
and Sense and Sensibility, with XML files you will need a more sophisticated
function that can understand the structure of XML. For this we will use the

136 12 Parsing TEI XML

read_xml function that is part of the xml2 package that you just loaded.
Begin by reading in the XML version of Moby Dick using read_xml1:

xml_doc <- read_xml("data/XML1/melville1.xml")

If you now enter class(xml_doc) into the console, you will see that the
object is a both an “xml_document” and an “xml_node.” If you just enter
the object name (xml_doc) by itself, you will see a bit more information
about the TEI encoding and the two primary nodes, first the teiHeader and
then the text node.

Recall that when working with the plain text version of Moby Dick, you found
the chapter breaks using grep; finding the chapter breaks in this encoded
XML file is a lot easier because the chapters are all marked up in XML using a
<div1> element and a “chapter” attribute. You can gather the chapters using
the xml_find_all function. Here is how the call to xml_find_all starts, but
we still need to modify it due to some subtleties of XML and TEI.
Not run
chapters_ns <- xml_find_all(

xml_doc, xpath = "//div1[@type='chapter']"
)

This code looks pretty complicated because along with the XML document
object (xml_doc), we also have to include an XPath argument. XPath is a
language for representing and selecting XML nodes, or elements in an XML
document. XPath uses forward slashes to represent the ordered hierarchy of
nodes in the document, much in the same way that R and UNIX and other
systems and languages use forward slashes to represent the structure of the di-
rectories (or folders) in your computer. To find the div1 elements that have a
chapter attribute, we use the XPath expression: //div1[@type='chapter'].
Effectively this tells the parser to read through the XML file and pull out all
the nodes (and their contents) that meet the condition of being inside a div1
element that has a type attribute with the value of “chapter.” For example,
the first chapter of the Moby Dick XML document is contained inside the
following element: <div1 type="chapter" n="1" id="_75784">.

Because the XML file we have loaded is a TEI encoded file that references a
namespace,2 we also have to use the ns argument to define the namespace.
This third argument, or parameter, is a bit tricky to understand because it
has to do with XML namespaces, which is not so much about R as it is about
XML. The xml_find_all function expects us to identify an XML namespace
as an item in a vector, so in what follows we have arbitrarily called that vector

1Notice the different path here. The XML version of Moby Dick is located in a different
sub-directory of the main “TAWR2.”
2<TEI xmlns = "http://www.tei-c.org/ns/1.0">.

12.3 Parsing XML with R Using the Xml2 Package 137

tei. After doing so, this new tei prefix must be used as a prefix in our XPath
expression. The final call to the xml_find_all function, therefore, looks like
this3:

chapters_ns <- xml_find_all(
xml_doc, xpath = "//tei:div1[@type='chapter']",
ns = c(tei = "http://www.tei-c.org/ns/1.0")
)

If you enter class(chapters_ns), you’ll see that chapters_ns is an
xml_nodeset. chapters_ns is a special kind of R list in which each item
in the list is an XML node. This means that as you iterate over the list,
you must employ XML-based functions to further refine the operations. For
example, each chapter node encloses a <head> node as a child.4 This <head>
node is where the title of the chapter is stored. Enter the following expression
to examine the contents of the first list item.

chapters_ns[[1]]

If you scroll up in the R console, you will see the beginning of the chapter:
{xml_node}
<div1 type="chapter" n="1" id="_75784">
[1] <head>Loomings</head>
[2] <p rend="fiction">Call me Ishmael. Some years ago-
never mind how long precisely- having little or no money ...

Notice that the chapter title, Loomings, is inside the <head> element. If you
enter class(chapters_ns[[1]]), you will see that the first item of this R
list is an xml_node that contains all the child nodes of the <div1> parent:

class(chapters_ns[[1]])
[1] "xml_node"

Let us say that we want to pull out the titles of all the chapters in the book.
We can use xml_find_all again with a slightly modified xpath expression.

titles_ns <- xml_find_all(
xml_doc, "//tei:div1[@type='chapter']/tei:head",
ns = c(tei = "http://www.tei-c.org/ns/1.0")
)

To then access the textual content of these nodes, we call the xml_text
function which returns the data in a character vector object.

3Notice that the xpath argument now includes the tei prefix.
4A node inside of another node is often referred to as a “child” node.

138 12 Parsing TEI XML

titles_v <- xml_text(titles_ns)
head(titles_v)
[1] "Loomings" "The Carpet-Bag" "The Spouter-Inn"
[4] "The Counterpane" "Breakfast" "The Street"

With a little understanding of R lists from the first part of this book and
with some sense of how TEI-XML files are structured, you can put all of this
together and generate a chapter-by-chapter analysis of Moby Dick exactly as
you did previously using the grep function.

12.4 Accessing the Textual Content

The textual data of each chapter of Moby Dick is stored inside the <p> (para-
graph) elements that are children of div1[@type='chapter']. This means
that for each chapter (<div1>) you want to extract both the title of the
chapter (found inside <head>) and the paragraphs (found inside <p>) as two
separate items. Ultimately it would be useful to store this data as a list object
in which each item in the list is named with the chapter title and the value of
the named list item is a table of words. This is exactly what you did with the
plain text files earlier in this book. From the XML file, you will now create
a list object identical to the one created from the plain text version of Moby
Dick in earlier chapters.

There are a variety of ways we could build this new object. In the earlier
chapter, we used a for loop and an empty list object that we filled with
data as we looped over the chapters. Here we will use a more efficient approach
that leverages lapply and our ability to create custom functions.

First we will write a custom function called get_node_text that takes three
arguments: an XML node object (node), an XPath expression (xpath), and a
namespace (ns). The node object will be an item sent from the chapters_ns
node list object. The later two arguments are familiar from what we just
covered above. The new function has three instructions to perform:

1. It needs to find all the child nodes in the node object that match the
pattern in the xpath argument.

2. It needs to extract the textual content from those nodes.
3. It needs to paste together all those text nodes into a single character string

that contains all the words from the chapter.

Here it is:

get_node_text <- function(node, xpath, ns){
paragraph_nodes <- xml_find_all(node, xpath, ns)

12.4 Accessing the Textual Content 139

paragraph_v <- xml_text(paragraph_nodes)
paste(paragraph_v, collapse = " ")

}

As written, this function will collect the text from each chapter. We can now
use this function as an argument in lapply. Recall that lapply loops over list
objects and applies the supplied function argument to each item in the list.
Previously, we used lapply with the built in mean function. Instead of using
one of R’s built in functions, we can use our newly created get_node_text
function.
Do not run
text_l <- lapply(chapters_ns, get_node_text)

But before you try this, remember that the get_node_text function requires
two more arguments. To complete our code, we need to define the xpath and
ns values as additional arguments:

text_l <- lapply(
chapters_ns,
get_node_text,
xpath = ".//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")
)

Notice a slight change to the xpath expression used here. Since we are sending
one node at a time from the chapters_ns node list, we do not need to use the
longer xpath. By adding a period (.) in front of the two forward slashes (//),
we indicate that we wish to work from the current node down. In this case,
the current node will always be a chapter because we have already captured
the chapters into the chapters_ns node list.

If you run the code above, you will now have a list object (text_l) with 134
items. Each of these items will contain the text of a chapter. If you wanted to
read the first chapter, you could simply enter text_l[[1]] into the console.

If you were paying close attention in earlier chapters, you may remember
that when we used grep to find chapters, we had a final list with 135 items.
But here we only have 134? And if you remember, the last word of the last
chapter of Moby Dick was orphan. But in this new list, generated from the
XML file, the last word of the last chapter is ago. Why?

It turns out that our chapter finding algorithm in Chap. 5 did not understand
that the novel actually contains an Epilogue, and it is the last word of the
Epilogue that is orphan. This is a great example of where an XML encoded
file can be more useful than a simple plain text file. Depending on the kind

140 12 Parsing TEI XML

of analysis you are doing, you may or may not want to treat the Epilogue
as a chapter. The editors of the TEI document we are using here made the
decision that the Epilogue should not be considered a chapter!5

12.5 Calculating the Word Frequencies

Now that we have the text of each chapter in a list, we can use lapply again,
on this new list, to tokenize each chapter. For this we will write another
useful function, called tokenize. Recall that we did something similar when
we created a function called make_token_v. The function we write here will
be even more versatile because it is more abstract, and it will have the added
option of allowing us to choose to lowercase the words or not. Here is the
function:
tokenize <- function(text_v, pattern = "[^A-Za-z0-9']", lower = TRUE){

if(lower){
text_v <- tolower(text_v)

}
word_v <- unlist(strsplit(text_v, pattern))
word_v[which(word_v != "")]

}

Much of this should look familiar. The default pattern argument is the one
we explored earlier that allows us to retain apostrophes. The lower argu-
ment is set to TRUE by default and, as a result, the condition of the if inside
the function is TRUE and the text gets sent to the tolower function by de-
fault. We then split the string using the regular expression pattern, remove
the blank values, and return the resulting vector. Save this function to your
“corpus_functions.R” file and test it as follows:

source("code/corpus_functions.R")
tokenize("This is a test.")
[1] "this" "is" "a" "test"

To apply this new function to all of the chapters, we just use lapply again to
create yet another list object, but this time each item is the tokenized vector
of words from each chapter:

5As long as we are on this subject, the editors also decided that the “Etymology” and
“Extracts” that come before the famous “Call me Ishmael” should not be treated as chapters
either. What those sections are, exactly, is something for scholars to debate.

12.5 Calculating the Word Frequencies 141

word_tokens_l <- lapply(text_l, tokenize)

And now, for our final move, we can call on lapply again with R’s built in
table function.

word_tables_l <- lapply(word_tokens_l, table)

If we are interested in the raw counts of a particular word, such as whale, we
can now use the exact same approach that we used in the beginning chapters
of this book. The expression below will return a vector containing the raw
counts of the word whale in each chapter.

unlist(lapply(word_tables_l, '[', 'whale'))
whale whale whale <NA> <NA> whale whale <NA> whale <NA>
3 1 3 NA NA 2 2 NA 7 NA
<NA> <NA> whale <NA> <NA> whale <NA> whale whale <NA>
NA NA 3 NA NA 8 NA 5 1 NA
<NA> whale <NA> whale <NA> whale whale <NA> <NA> whale
NA 2 NA 20 NA 2 4 NA NA 1
whale whale whale whale whale whale <NA> whale <NA> whale
2 106 6 1 10 19 NA 2 NA 3
whale whale <NA> whale whale whale whale whale whale whale
41 3 NA 10 38 4 3 8 7 3
whale whale whale whale whale whale whale whale whale whale
2 1 5 52 19 6 2 8 12 14
whale whale whale whale whale whale whale whale whale whale
6 5 24 7 1 7 23 4 6 14
whale whale whale whale whale whale whale whale whale whale
11 13 12 14 7 6 2 11 5 31
whale whale whale whale whale whale whale whale whale whale
15 13 8 17 17 27 5 12 10 25
whale whale whale whale whale <NA> whale whale whale whale
6 10 5 1 2 NA 3 3 15 10
whale whale whale whale whale whale <NA> <NA> whale whale
11 8 10 15 1 2 NA NA 5 2
<NA> whale whale whale whale whale <NA> whale <NA> <NA>
NA 2 1 4 4 2 NA 3 NA NA
<NA> <NA> <NA> <NA> whale <NA> whale whale whale whale
NA NA NA NA 1 NA 5 1 2 3
whale whale whale whale
1 19 19 29

And, naturally, this data can be easily plotted (Fig. 12.1).

142 12 Parsing TEI XML

barplot(
unlist(

lapply(word_tables_l, '[', 'whale')
),

names.arg = "Occurrences of Whale by Chapter"
)

Occurrences of Whale by Chapter

0
20

40
60

80
10

0

Fig. 12.1 Bar plot of whale frequency from XML file

And here’s another little trick. If you want to collect and plot (Fig. 12.2) more
than one word, just send them to lapply as a vector using the c function:

barplot(
unlist(

lapply(word_tables_l, '[', c('whale', 'ahab'))
),

names.arg = "Occurrence of Whale (blue) and Ahab (red)",
col = c("blue", "red"),
border = NA
)

Before you try the practice exercises, do not forget to save your new function
tokenize to the corpus_Functions.R file in your code directory so you can
use it again in the future.

12.6 Practice 143

Occurrence of Whale (blue) and Ahab (red)

0
20

40
60

80
10

0

Fig. 12.2 Bar plot of whale and ahab frequency from XML file

12.6 Practice

1. Alter the code below to find the chapter titles, rather than the chapter
text. Name the resulting list item chapter_titles_l.

text_l <- lapply(
chapters_ns,
get_node_text,
xpath = ".//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")
)

2. Take these two list items (text_l and chapter_titles_l) and convert
them into a data frame with two columns, one for the chapter title and
another for the chapter text.

3. Write a custom function called freq_table to use instead of table that
will return the relative frequencies instead of the raw counts. Here is how
you will call the new function inside lapply

Not run
word_tables_l <- lapply(word_tokens_l, freq_table)

Now use that function to create a new plot that charts the relative frequencies
of whale and ahab instead of the raw counts. The resulting plot should look
like this (Fig. 12.3).

144 12 Parsing TEI XML

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Fig. 12.3 Occurrences of “whale” (blue) and “ahab” (red)

Reference

Eder M (2013) Mind your corpus: systematic errors in authorship attribution.
Digital Scholarship in the Humanities 28(4):603–614, URL https://doi.org/
10.1093/llc/fqt039, https://doi.org/10.1093/llc/fqt039

https://doi.org/10.1093/llc/fqt039
https://doi.org/10.1093/llc/fqt039
https://doi.org/10.1093/llc/fqt039

Chapter 13

Parsing and Analyzing Hamlet

Abstract In this chapter, we leverage the rich metadata available in XML
and the power of dplyr to explore the interaction of speakers in a classic
drama.

13.1 Background

In Chap. 12 you learned about XML and gained some experience using the
xml2 package to parse a TEI encoded version of Moby Dick. In this chapter
you will learn to do more with XML by parsing a version of Shakespeare’s
Hamlet that has been encoded to include information about both the speakers
and receivers of the dialogue in the play. Our goal will be to understand a
bit more about how the characters in the play interact and with whom.

The XML file you will be parsing has been encoded with “SPEAKER” and
“RECEIVER” tags to indicate who is talking and who is being talked to. Each
exchange between characters is encoded inside a “SPEECH” tag. Because each
speech act is encoded in this manner, it is easy to compute who talks to whom
most often, and because you know how to count and aggregate information
about words, you can also study the content of the speeches. For example, you
might wish to explore how Hamlet speaks to Claudius compared to Ophelia.
Does Hamlet use a different vocabulary when speaking to different people?1

Here is an example of the XML encoding you will find in the play:
<SPEECH>
<SPEAKER>BERNARDO</SPEAKER>

1In his book Computation into Criticism, Burrows (1987) explores how the gender of
characters in Jane Austen’s novels are marked by certain habits of speech.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_13

145

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_13

146 13 Parsing and Analyzing Hamlet

<RECEIVER>FRANCISCO</RECEIVER>
<LINE>Who's there?</LINE>
</SPEECH>
<SPEECH>
<SPEAKER>FRANCISCO</SPEAKER>
<RECEIVER>BERNARDO</RECEIVER>
<LINE>Nay, answer me: stand, and unfold yourself.</LINE>
</SPEECH>
<SPEECH>
<SPEAKER>BERNARDO</SPEAKER>
<RECEIVER>FRANCISCO</RECEIVER>
<LINE>Long live the king!</LINE>
</SPEECH>

13.2 Collecting the Speakers

We begin, as we did in the previous chapter by loading the xml2 package and
then calling the read_xml function with the location of the XML file. In this
case, the file is located in the “drama” sub-directory of “data.” The specific
path is “data/drama/hamlet.xml.” In addition to the xml2 package, we will
also be utilizing functions from dplyr, so we will also load that package.

rm(list=ls())
library(xml2)
library(dplyr)
xml_doc <- read_xml("data/drama/hamlet.xml")

As seen above, each speaker’s name is encoded inside a <SPEAKER> element.
First we will use xml_find_all to collect all the speaker nodes:

speakers_ns <- xml_find_all(xml_doc, ".//SPEAKER")
length(speakers_ns)
[1] 1248

Notice that we did not need to include a namespace (ns) argument to the
xml_find_all function as we did in the previous chapter. This is because
the XML file we are parsing now, “hamlet.xml,” does not include a namespace
declaration as an attribute of the root element. This is something to be aware
of as you begin parsing files of your own. Encoding practices can vary wildly.

Calling length tells us that characters speak a total of 1248 times. If we
want to know who the speakers are, the dramatis personae if you will, we
could extract the text from these speaker nodes and use unique to show who
they are.

13.2 Collecting the Speakers 147

speaker_names_v <- xml_text(speakers_ns)
unique(speaker_names_v)
[1] "BERNARDO" "FRANCISCO" "HORATIO"
[4] "MARCELLUS" "KING CLAUDIUS" "CORNELIUS"
[7] "VOLTIMAND" "LAERTES" "LORD POLONIUS"
[10] "HAMLET" "QUEEN GERTRUDE" "All"
[13] "OPHELIA" "Ghost" "REYNALDO"
[16] "ROSENCRANTZ" "GUILDENSTERN" "First Player"
[19] "Prologue" "Player King" "Player Queen"
[22] "LUCIANUS" "PRINCE FORTINBRAS" "Captain"
[25] "Gentleman" "Danes" "Servant"
[28] "First Sailor" "Messenger" "First Clown"
[31] "Second Clown" "First Priest" "OSRIC"
[34] "Lord" "First Ambassador"

If we want to know how many times each character speaks, then instead
of using unique we could table the names in the speaker_names_v object
instead. To see the speakers in order based on who speaks the most to the
least, we just add a call to the sort function.

sort(table(speaker_names_v), decreasing = TRUE)
speaker_names_v
HAMLET KING CLAUDIUS HORATIO
402 129 116
LORD POLONIUS QUEEN GERTRUDE LAERTES
98 75 65
OPHELIA ROSENCRANTZ MARCELLUS
58 49 36
First Clown GUILDENSTERN OSRIC
35 33 25
BERNARDO Ghost REYNALDO
23 14 13
Second Clown FRANCISCO First Player
12 9 8
Captain PRINCE FORTINBRAS Player Queen
7 6 5
All Player King Danes
4 4 3
Gentleman Lord First Priest
3 3 2
First Sailor Messenger VOLTIMAND
2 2 2
CORNELIUS First Ambassador LUCIANUS
1 1 1

148 13 Parsing and Analyzing Hamlet

Prologue Servant
1 1

No surprise, Hamlet is the most frequent speaker, and he is so by a long
shot. Since it might be interesting to compare one play to another in terms
of the dominance of one character versus many others, we might want to
convert these raw counts to relative frequencies by dividing each character’s
raw count by the total number of speakers (Table 13.1).

Table 13.1 Partial table of top speakers

speaker_names_v Freq
HAMLET 0.3221154
KING CLAUDIUS 0.1033654
HORATIO 0.0929487
LORD POLONIUS 0.0785256
QUEEN GERTRUDE 0.0600962
LAERTES 0.0520833
OPHELIA 0.0464744
ROSENCRANTZ 0.0392628
MARCELLUS 0.0288462
First Clown 0.0280449

sort(
table(speaker_names_v)/length(speaker_names_v),
decreasing = TRUE
)

Doing so reveals that Hamlet accounts for 32.21% of the speech acts in the
play. How do you think that compares to King Lear or Macbeth?

13.3 Collecting the Speeches

Which character talks the most often is one point of interest, but we might
also be curious about to whom that character talks, and how often. For this
we need to know not just who the speaker is, but also who is the receiver of
the specific speech act.

As noted above, each speech act is encoded inside a <SPEECH> element. First
we will use xml_find_all to collect all the speech nodes and length to get
a count of how many speeches occur:

13.3 Collecting the Speeches 149

speeches_ns <- xml_find_all(xml_doc, ".//SPEECH")
length(speeches_ns)
[1] 1236

Now that we have all the speeches in a nodeset list object (speeches_ns), we
can iterate over the list extracting the speaker receiver pairs from each item.
In the first speech act, for example, Bernardo speaks to Francisco and says:
“Who’s there?”2 We might think of this as a type of relationship between
two characters in a social network. In the language of social network analysis,
or graph theory that studies the pairwise relationships between objects, we
might say that Bernardo and Francisco are “nodes” and the speech that gets
exchanged between them represents an “edge,” or a “relationship.” In this case
the edge is directional in that the speech act flows from Bernardo to Francisco.
We will get deeper into the dramatic network of characters in Hamlet as this
chapter progresses, but for now let us just figure out who is talking to whom.

For each speech act, we need to extract both the speaker and the receiver
as a specific pairing. For this we will utilize a custom function that we will
name get_pairing along with lapply much in the same way that we did in
the previous chapter. Here is the function:

get_pairing <- function(node){
speaker_v <- xml_text(xml_find_all(node, "SPEAKER"))
receiver_v <- xml_text(xml_find_all(node, "RECEIVER"))
paste(speaker_v, " -> ", receiver_v)

}

First notice the single argument, node. Since we are going to use lapply to
loop over the speeches_ns node list, each item sent to the function will be
an individual speech node. Next we pull out the text from both the SPEAKER
and RECEIVER elements and save them into new character vector objects
called speaker_v and receiver_v. We then use paste to combine these two
values along with a symbol (->) representing a directional arrow to show the
relationship. The result for the first speech act will look like this:
"BERNARDO -> FRANCISCO"

With the function ready, we can then call it inside of lapply and save the
result into a new list object called pairings_l.

pairings_l <- lapply(speeches_ns, get_pairing)

If we now use unlist we can get a simple character vector containing all the
pairs:

2Since speeches_ns is a type of list, you can access the contents of the first node by entering
speeches_ns[[1]] at the console prompt.

150 13 Parsing and Analyzing Hamlet

pairs_v <- unlist(pairings_l)

This vector can then be sent to the table function in a manner similar to
what we did above with the vector of speaker names. And if we want to have
the results in a more useful form than a table, we can enclose it all inside a
call to the data.frame function.

pairings_df <- data.frame(table(pairs_v))

This results in a data frame of 146 rows and 2 columns. The number of rows
tell us how many distinct pairs there are in the play and the two columns
contain the names of the pair and the number of times that pair appears.
The first few rows are shown in Table 13.2.

From this we can see that the character ALL speaks to itself twice. On the
other hand, BERNARDO speaks to FRANCISCO six times. And so on. Since
we are likely interested in knowing who talks the most and to whom, we might

Table 13.2 Partial table of speaker receiver pairs

pairs_v Freq
All -> All 2
All -> HAMLET 2
All -> LAERTES 1
BERNARDO -> FRANCISCO 6
BERNARDO -> HAMLET 4
BERNARDO -> HORATIO 9

Table 13.3 Partial table of frequent pairs

pairs_v Freq
HAMLET -> HORATIO 98
HORATIO -> HAMLET 83
HAMLET -> ROSENCRANTZ 47
HAMLET -> GUILDENSTERN 39
ROSENCRANTZ -> HAMLET 36
HAMLET -> QUEEN GERTRUDE 35

invoke the arrange function from dplyr to sort the data in the pairings_df
object:

arrange(pairings_df, desc(Freq))

Arranging the data in this way reveals that Hamlet speaks most often to
Horatio and that the next most frequent pairing is of Horatio talking back
to Hamlet (Table 13.3).

13.4 A Better Pairing 151

The pairings_df object is useful, but because we chose to represent the
direction of the speech with the symbol ->, we actually limited our ability
to do even more with this data. What if, for example, we are less interested
in the direction of the speech and simply interested in which pairs of char-
acters interact the most (regardless of the direction of the speech). In other
words, we would like to know the total interaction between Hamlet and Ho-
ratio as opposed to the specific directions of the speech. And, perhaps even
more interesting, what if we want to know how much speech was actually
exchanged?

13.4 A Better Pairing

To give us more flexibility, and more data to explore, we will modify the
get_pairing function to be a lot more powerful. First we will get rid of the
line that involves pasting together the speaker and receiver with an arrow
symbol. Instead we will save the speaker and receiver as separate items. Then
we will pull out the text of the speech from the occurrences of the <LINE>
element and paste them together using a space character as the glue with
the collapse argument. Finally, we will put all of these collected data into
a single vector using the c function to combine the items.

get_pairing <- function(node){
speaker_v <- xml_text(xml_find_all(node, "SPEAKER"))
receiver_v <- xml_text(xml_find_all(node, "RECEIVER"))
lines_v <- paste(

xml_text(xml_find_all(node, "LINE")),
collapse = " "
)

c(speaker_v, receiver_v, lines_v)
}

After loading the function, we can test it by sending it just one node. In this
example we send the first node in the speeches_ns object:

get_pairing(speeches_ns[[1]])
[1] "BERNARDO" "FRANCISCO" "Who's there?"

It seems to be working as expected, but, unfortunately, there are still some
problems that we need to resolve. Consider this case:
get_pairing(speeches_ns[[255]])
[1] "HAMLET"
[2] "HORATIO"
[3] "MARCELLUS"
[4] "Come on you hear this fellow in the cellarage Consent to swear."

152 13 Parsing and Analyzing Hamlet

Why do we see three characters? It turns out that Hamlet is talking to both
Horatio and Marcellus! If you enter speeches_ns[[255]] you can see how
this situation is encoded: there is one speaker and two receivers. There are a
variety of ways that we might deal with this situation: we could, for example,
consider this two separate speech acts and modify the function to return one
vector for each act. Alternatively, we could conflate Horatio and Marcellus
into a unified character. The second option is simpler, so we will implement
that here by revising the third line of the function to do something similar
to the fourth line.

get_pairing <- function(node){
speaker_v <- xml_text(xml_find_all(node, "SPEAKER"))
receiver_v <- paste(

xml_text(xml_find_all(node, "RECEIVER")),
collapse = "/"
)

lines_v <- paste(
xml_text(xml_find_all(node, "LINE")),
collapse = " "
)

c(speaker_v, receiver_v, lines_v)
}

Now when we enter get_pairing(speeches_ns[[255]]) the receiver field is
populated with HORATIO/MARCELLUS. Since it might also be possible to
have two speakers, speaking in unison, we might as well add the same code
to the second line of the function, so that our final version is as follows:

get_pairing <- function(node){
speaker_v <- paste(

xml_text(xml_find_all(node, "SPEAKER")),
collapse = "/"
)

receiver_v <- paste(
xml_text(xml_find_all(node, "RECEIVER")),
collapse = "/"
)

lines_v <- paste(
xml_text(xml_find_all(node, "LINE")),
collapse = " "
)

c(speaker_v, receiver_v, lines_v)
}

Unfortunately, there is now another problem. If you study the XML file, you
will see that there is an element <STAGEDIR> that sometimes appears as a
child node of <LINE>. Here is an example:

13.4 A Better Pairing 153

speeches_ns[[74]]
{xml_node}
<SPEECH>
[1] <SPEAKER>HAMLET</SPEAKER>
[2] <RECEIVER>HAMLET</RECEIVER>
[3] <LINE><STAGEDIR>Aside</STAGEDIR>A little more than kin, an ...

If you send this node to the get_pairing function, the word Aside is included
as part of the speech. So we need a way to exclude stage directions that are
embedded in lines of speech. While there are some convoluted ways that we
might resolve this issue with R coding, the simplest way forward is to modify
the xpath expression to exclude any <STAGEDIR> child nodes. We will not go
into the details of xpath here other than to say that we can add some specific
instructions ([not(self::STAGEDIR)]/text()) to the expression that will
ignore the <STAGEDIR> child nodes of <LINE>. The final function is as follows:
get_pairing <- function(node){

speaker_v <- paste(
xml_text(xml_find_all(node, "SPEAKER")),
collapse = "/"
)

receiver_v <- paste(
xml_text(xml_find_all(node, "RECEIVER")),
collapse = "/"
)

lines_v <- paste(
xml_text(xml_find_all(node, "LINE[not(self::STAGEDIR)]/text()")),
collapse = " "
)

c(speaker_v, receiver_v, lines_v)
}

Now that we have a satisfactory function for extracting the data from an
individual speech node, we should save it to the corpus_functions.R file and
then reload that file by calling it via source. We can then use lapply to send
every node to the function and return a new list object containing the data.

source("code/corpus_functions.R")
speech_data_l <- lapply(speeches_ns, get_pairing)

Each item in the resulting list is a vector containing three items. We can now
combine all of these into a new data frame using the technique we explored
earlier.

speech_data_df <- data.frame(
do.call(rbind, speech_data_l),
stringsAsFactors = FALSE
)

154 13 Parsing and Analyzing Hamlet

The result is a data frame with 1236 rows and 3 columns. The first column
contains the speaker, the second contains the receiver, and the third column
contains all of the text that was passed from the speaker to the receiver.
Presently, the columns are named with default values (“X1, X2, X3”), but we
can reset them with the colnames function:

colnames(speech_data_df) <- c("Speaker", "Receiver", "Speech")

With this information in a data frame, we can now leverage the functions
available in dplyr to perform some analysis. Let us begin by identifying all
of the unique speakers and unique receivers:

speakers_df <- select(speech_data_df, Speaker) %>%
unique() %>%
arrange(Speaker)

If you now examine speakers_df you will see there are 39 distinct speakers,
including a few dual speaker pairs—characters who spoke in unison according
to the encoding in the XML file. Here are the first ten speakers in alphabetical
order.

speakers_df[1:10,]
[1] "All" "BERNARDO"
[3] "Captain" "CORNELIUS/VOLTIMAND"
[5] "Danes" "First Ambassador"
[7] "First Clown" "First Player"
[9] "First Priest" "First Sailor"

We can easily do the same thing to see who the receivers are

receivers_df <- select(speech_data_df, Receiver) %>%
unique() %>%
arrange(Receiver)

And if we are interested in the distinct pairings of speakers to receivers, we
can find that quite easily as well using mutate to create a column containing
data very similar to what we created at the beginning of this chapter:

pairings_df <- mutate(
speech_data_df,
pair = paste(Speaker, Receiver, sep = " -> ")
) %>%
select(pair) %>%
unique() %>%
arrange(pair)

These are all interesting things to examine, but what about the text we have
captured in that third column? Would not it be interesting to see who says
the most (in words) and to whom? For this we will use dplyr along with a

13.4 A Better Pairing 155

modified version of the tokenize function that we wrote in the last chapter.
First we will edit the tokenize function so that it returns a count of the total
number of words in the input vector. We will rename it get_token_count
and, again, save it to corpus_functions.R:

get_token_count <- function(
text_v,
pattern = "[^A-Za-z0-9']",
lower = TRUE
){
if(lower){

text_v <- tolower(text_v)
}
word_v <- unlist(strsplit(text_v, pattern))
word_v <- word_v[which(word_v != "")]
length(word_v)

}

Now we will integrate a call to this new function into our dplyr expres-
sion using the rowwise function to ensure that the operations of the
get_token_count function are applied to each row and not to the entire
column. First we will reload the newly revised version of corpus_functions.R
and then perform the operation3:

source("code/corpus_functions.R")
speech_data_counts_df <- rowwise(speech_data_df) %>%

mutate(word_count = get_token_count(Speech))

If we sort this new data frame using arrange with the desc function, we
can quickly see who has the longer speeches and to whom those speeches are
directed:

sorted_speeches_df <- arrange(
speech_data_counts_df,
desc(word_count)
) %>%
select(Speaker, Receiver, word_count)

Interestingly enough, at 460 words, the longest speech is Hamlet’s soliloquy!

We know who has the longest speech, but it is also easy to use dplyr’s
group_by function, to see who has the most speech overall. In the next snippet
of code, we group the data by Speaker and then call summarize with the
sum function to add up all the word counts by each speaker.4

3If we omit the call to rowwise, we end up with the total word count of all words appearing
in every row.
4When you run the code below you will get a warning that “Grouping rowwise data frame
strips rowwise nature.” Warnings in R, unlike errors, mean that your code still ran success-

156 13 Parsing and Analyzing Hamlet

group_by(sorted_speeches_df, Speaker) %>%
summarize(Total = sum(word_count)) %>%
arrange(desc(Total))

A tibble: 39 x 2
Speaker Total
<chr> <int>
1 HAMLET 11661
2 KING CLAUDIUS 4096
3 LORD POLONIUS 2682
4 HORATIO 2040
5 LAERTES 1440
6 OPHELIA 1186
7 QUEEN GERTRUDE 1056
8 First Clown 742
9 ROSENCRANTZ 691
10 Ghost 679
... with 29 more rows

With 11,661 total words, Hamlet wins again! And Hamlet’s total speech is
more than double the next highest speaker, King Claudius. Naturally, we have
to wonder where all of this speech is going? On whom is Hamlet expending
all this breath? By adding another grouping column (“Receiver”), we can get
this information very easily:

group_by(sorted_speeches_df, Speaker, Receiver) %>%
filter(Speaker == "HAMLET") %>%
summarize(Total = sum(word_count)) %>%
arrange(desc(Total))

A tibble: 24 x 3
Groups: Speaker [1]
Speaker Receiver Total
<chr> <chr> <int>
1 HAMLET HORATIO 2771
2 HAMLET HAMLET 1848
3 HAMLET QUEEN GERTRUDE 1393
4 HAMLET ROSENCRANTZ/GUILDENSTERN 691
5 HAMLET OPHELIA 611
6 HAMLET Players 519
7 HAMLET LORD POLONIUS 476
8 HAMLET ROSENCRANTZ 465
9 HAMLET LAERTES 440
10 HAMLET First Player 357
... with 14 more rows

fully. The warning is there to tell you that something unexpected might have happened.
In this case, we can ignore the warning.

Reference 157

The only person Hamlet talks to more than himself is Horatio. Hamlet delivers
1848 words to himself and 2771 to Horatio.

13.5 Practice

1. In the first part of this chapter, we found that Hamlet accounts for 32.21%
of the speech acts in the play. Use a similar method to discover who receives
the greatest percentage of the speech acts.

2. Are there any characters who receive speech but do not speak? If so, who?

3. Use dplyr with sorted_speeches_df to calculate who hears the most
words directed at them? What do you notice when you compare this result
with to the result found in the first practice problem?

4. Using what you have learned here, and the tokenize function, find Ham-
let’s twenty most frequent words. Based on the top twenty words, what
subject would you say Hamlet is obsessed with?

5. Compute the same information for QUEEN GERTRUDE. What subject
appears to be of concern to the Queen? HINT: What word frequencies in
the Queen’s top twenty are higher than in Hamlet’s?

Reference

Burrows JF (1987) Computation into Criticism: A Study of Jane Austen’s
Novels. Oxford University Press, Oxford

Chapter 14

Sentiment Analysis

Abstract This chapter describes how to perform sentiment analysis using
the syuzhet package developed by Jockers. Readers will learn how to extract
sentiment values from a text and compare and visualize the emotional arcs
of two novels.

14.1 A Brief Overview

Novelist Kurt Vonnegut spurred our interest in sentiment analysis as a pos-
sible proxy for plot movement in fiction. Vonnegut argues that the highs
and lows of the conflict and conflict resolution can be understood as deriving
from the emotional highs and lows of the characters in the story. In his lecture
“On The Shape of Stories,” he even suggests that there is “no reason why the
simple shapes of stories cannot be fed into computers.”1 Taking a cue from
Vonnegut, Jockers (2015b) developed the syuzhet package for extracting and
plotting the use of emotionally charged language (“sentiment”) in stories. The
tool is designed to help us study the use of positive and negative sentiment
over the linear course of a narrative.

Studying sentiment from the beginning to the end of a narrative is similar to
what we explored in Chaps. 4 and 5 when we found the occurrences of whale
or ahab throughout Moby Dick. Instead of finding instances of a specific
token, such as whale, sentiment analysis maps specific word tokens to specific
sentiment values. These values, which are looked up in a sentiment dictionary
1You can watch the lecture on YouTube: https://www.youtube.com/watch?v=oP3c1h8
v2ZQ.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_14

159

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_14&domain=pdf
https://www.youtube.com/watch?v=oP3c1h8v2ZQ
https://www.youtube.com/watch?v=oP3c1h8v2ZQ
https://doi.org/10.1007/978-3-030-39643-5_14

160 14 Sentiment Analysis

(or “lexicon”) range from positive to negative according to the specific design
of the dictionary.2

To reveal and visualize the sentiment of novels, we will use the syuzhet
package. syuzhet’s style of sentiment analysis is suited for studying novels
because it helps us consider the progression of sentiment from the beginning
to the end of a text. This means that the focus is turned away from the
actual events in the novel, and more toward the author’s presentation or
organization of the plot.3

14.2 Loading syuzhet

Like other packages you have used in this book, download syuzhet by going
to RStudio’s tools menu, and choosing “Tools” –> “Install Packages.” Next,
search for the syuzhet package, and begin the download process. To initialize
syuzhet in your RStudio session, add the following code to the top of your
new R script:

rm(list = ls())
library(syuzhet)

14.3 Loading a Text

In this chapter we will be exploring the sentiment arcs in both Moby
Dick and Sense and Sensibility. To load these texts, we will use syuzhet’s
get_text_as_string. This function is similar to the scan function that we
used earlier in this book. The get_text_as_string function takes a single
file path argument.
moby_v <- get_text_as_string(path_to_file = "data/text/melville.txt")
sense_v <- get_text_as_string(path_to_file = "data/text/austen.txt")

The moby_v and sense_v objects contain the entire text of each novel as a
single long string. No tokenization or other text manipulation has been done.

2In this chapter we explore a lexicon-based approach to sentiment analysis. There are
other, more sophisticated, methods for performing sentiment analysis. These other methods
employ machine learning algorithms. See, for example, Socher et al. (2013).
3The word syuzhet comes from the Russian formalist Vladimir Propp who divided narrative
into the fabula and the syuzhet. The fabula are the specific elements of a plot, whereas the
syuzhet is the manner in which those elements are organized in the linear movement of the
narrative.

14.4 Getting Sentiment Values 161

If you enter either of these objects at the R prompt, you will see the entire
novel print to the console. If you want to know the overall sum of the senti-
ment in the entire novel, you can call the get_sentiment function with either
one or both of these text vectors. The get_sentiment function tokenizes the
text and then looks up every word in a sentiment lexicon assigning each word
a sentiment value. The sum of these values is returned. In this example, both
moby_v and sense_v are vectors of 1. If we send get_sentiment a vector
of more than one item, a vector of sentences, for example, the function will
return a new vector containing one sentiment value for each item in the input
vector.

get_sentiment(moby_v); get_sentiment(sense_v)
[1] -440.75
[1] -38.3

These results for moby_v and sense_v indicate that there is far more negative
than positive language in Moby Dick and that Moby Dick is, on the whole,
more negative than Sense and Sensibility. If you have read the two novels,
you will almost certainly agree with this assessment.4

14.4 Getting Sentiment Values

The syuzhet package gives us the option of tokenizing a text by word bound-
aries or by sentence boundaries. When we tokenize by sentences, the various
sentiment values, both positive and negative, for the words in a given sen-
tence will be summed in order to capture the overall sentiment of the sentence.
Arguably, it is the sentence that is the fundamental unit of composition, so
it makes sense to consider the overall sentiment of a sentence. Since we are
curious about the progression of sentiment throughout the novels rather than
learning about the overarching sentiment in each book, we will tokenize the
two strings of text, moby_v and sense_v into vectors of sentences. For this
we use syuzhet’s get_sentences function:

moby_sentences_v <- get_sentences(moby_v)
sense_sentences_v <- get_sentences(sense_v)

moby_sentences_v now holds the text of Moby Dick as a vector of 9573
sentences, and sense_sentences_v contains the 4800 sentences in Sense and

4We say “almost certainly” because our research has shown that there is some degree of
individual variation in how sentiment is assessed. See, for example, Jockers (2015a); Jockers
(2016).

162 14 Sentiment Analysis

Sensibility.5 get_sentences works differently from strsplit, which we used
earlier to parse texts. strsplit used a regular expression (\\W) that split
the string into vectors by words rather than sentences.6 Even if you are not
performing sentiment analysis, the get_sentences function may still come
in handy for other types of text analysis.

Each index position in the two vectors, moby_sentences_v and
sense_sentences_v, now contains a sentence of Moby Dick or Sense and
Sensibility, respectively. For example, the first three index positions in
moby_sentences_v, moby_sentences_v[1:3], are as follows:
moby_sentences_v[1:3]
[1] "MOBY DICK; OR THE WHALE By Herman Melville CHAPTER 1."
[2] "Loomings."
[3] "Call me Ishmael."

The same, of course, can be done for Sense and Sensibility.
sense_sentences_v[1:3]
[1] "SENSE AND SENSIBILITY by Jane Austen CHAPTER 1 The fa..."
[2] "Their estate was large, and their residence was at Norlan..."
[3] "The late owner of this estate was a single man, who lived..."

In this chapter we are not going to worry about removing the metadata at
the beginning of the file or whether or not to include the chapter headings
as “sentences.” Here everything will be included as part of the text. You will
notice right away that the first sentence of the text of Sense and Sensibil-
ity appears appended to the metadata and chapter heading from the novel.
Keep in mind that the sentence tokenization is only as good as the text it is
tokenizing. In this case, the file, “austen.txt,” lacks the sort of punctuation
required for a high quality parse. If you look a few sentences further down
(i.e., sense_sentences_v[5:10]), however, you will find that the tokenizer
is generally quite good at detecting sentence boundaries.

14.5 Accessing Sentiment

Now that you have parsed and prepped the novels, you are ready for some
analysis! We will use syuzhet’s get_sentiment function, which assigns
a sentiment value to each item in an input vector. The get_sentiment
function takes two arguments: a character vector (in this case, either

5That the novels have different lengths will be important to remember when we explore
plotting them on the same graph.
6The get_sentences function implements a sentence splitting function from the textshape
package.

14.5 Accessing Sentiment 163

moby_sentences_v or sense_sentences_v) and a method that deter-
mines which of syuzhet’s built-in sentiment dictionaries to employ. The
default dictionary is called “syuzhet,” but other possible methods are “bing,”
“afinn,” “nrc,” and “stanford.”7 Try using syuzhet’s get_sentiment on
moby_sentences_v and sense_sentences_v, with the default “syuzhet”
method:

moby_sentiments_v <- get_sentiment(moby_sentences_v)
sense_sentiments_v <- get_sentiment(sense_sentences_v)

To understand what we have achieved here, take a look at the new object,
moby_sentiments_v, with the str function.

str(moby_sentiments_v)
num [1:9573] 0 0 0 0.85 0 -1.6 -0.4 0.8 0 0.75 ...

Using str, we can see that moby_sentiments_v is a vector of numeric
values, of the same length as moby_sentences_v. As you might have
guessed, each value in moby_sentiments_v corresponds to a sentence in
moby_sentences_v, and each of its index positions contains a sentiment
value derived from the corresponding sentence.

Let us take a closer look by examining the actual values stored at the begin-
ning of moby_sentiments_v.

head(moby_sentiments_v)
[1] 0.00 0.00 0.00 0.85 0.00 -1.60

According to this vector of sentiment values, the most positive sentence of the
first six sentences in Moby Dick is the 4th sentence; the most negative is the
6th. We can look up the corresponding sentences in the moby_sentences_v
object:

moby_sentences_v[c(4,6)]

When reading through the second sentence, negative words immediately jump
out, words such as grim, coffin, funeral, etc.

Whenever I find myself growing grim about the mouth; whenever it is a damp,
drizzly November in my soul; whenever I find myself involuntarily pausing before
coffin warehouses, and bringing up the rear of every funeral I meet; and especially
whenever my hypos get such an upper hand of me, that it requires a strong moral
principle to prevent me from deliberately stepping into the street, and methodically
knocking people’s hats off–then, I account it high time to get to sea as soon as I
can.

7The syuzhet dictionary was developed in the Nebraska Literary Lab where it was tuned
specifically for fiction. The words and values in the default dictionary were extracted from
a collection of 165,000 human coded sentences taken from a small corpus of contemporary
novels.

164 14 Sentiment Analysis

In comparison, the sentiment in the first few sentences of Sense and Sensibility
show much more variance. The first 6 sentiment scores for Moby Dick were 0,
0, 0, 0.85, 0, −1.6. Only two of the first few sentences had values that were
above or below zero (neutral). In comparison, Sense and Sensibility begins
with the following sentiment ratings:

head(sense_sentiments_v)
[1] 0.80 2.90 1.00 -0.40 0.75 0.50

From these initial values, we could guess that the beginning of Sense and
Sensibility is presented with a broader range of sentiment. If we wanted to
compare the central tendency of sentence level sentiments in Moby Dick and
Sense and Sensibility, we could look at the means:

mean(moby_sentiments_v); mean(sense_sentiments_v)
[1] 0.02839758
[1] 0.5121146

and at the standard deviations:

sd(moby_sentiments_v); sd(sense_sentiments_v)
[1] 1.053748
[1] 1.378005

Overall, Moby Dick is a bit more negative than Sense and Sensibility ; its
mean value of (0.0283976) is lower than Sense and Sensibility ’s (0.5121146).
The standard deviations suggest that Sense and Sensibility has more over-
all variance in sentiment values, and so we might expect a novel with more
emotional twists and turns. Though this comparison is of too small a scale
to derive any meaningful conclusions about Moby Dick and Sense and Sen-
sibility, it is an interesting point of exploratory analysis that may lead to a
variety of testable hypotheses, including the question of whether or not Sense
and Sensibility does indeed have more emotional turns than Moby Dick.

14.6 Plotting

These measures of central tendency can be informative, even intriguing, but
they tell us very little about how the narrative is structured and how the
use of positive and negative language is deployed throughout the text. You
may, therefore, find it useful to plot the values in a graph where the x -axis
represents the passage of narrative time from the beginning to the end of the
text, and the y-axis measures the degree of positive and negative sentiment
in those narrative moments. Though looking at each integer value and its
corresponding sentence might be valuable for targeting particular moments

14.6 Plotting 165

in a narrative, it is unlikely that the human mind can understand and retain
the overall sentiment arc of a novel that contains thousands of sentences with
fluctuating positive and negative values. A plot visualization that generalizes
the highs and lows by smoothing the sentence to sentence fluctuations can
usefully represent and convey the overall narrative arc.

Before we get to this smoothing, consider what a visualization of the data
would look like if we simply plotted the raw sentiment values (Fig. 14.1). You
can do this using the plot function:

plot(
moby_sentiments_v,
type = "l",
xlab = "Novel Time",
ylab = "Sentiment",
main = "Raw Sentiment Values in Moby Dick"
)

While this type of plotting could have been telling when plotting sentiment
for a short text selection, in this graph there is too much visual information
and “noise” to interpret the presentation of sentiment throughout the novel.

To reveal the overall trend in the data, the simple shape if you will, we can
employ some form of smoothing. simple_plot is syuzhet’s out-of-the-box
way to add smoothing and trend lines to the data. simple_plot’s output

0 2000 4000 6000 8000

−1
0

−5
0

5
10

15
20

Novel Time

S
en

tim
en

t

Fig. 14.1 Raw sentiment values in Moby Dick

uses and compares three different types of smoothing methods, including a
moving average, loess, and a discrete cosine transformation (DCT). A call to
simple_plot produces an image (Fig. 14.2) with two graphs for each text.

166 14 Sentiment Analysis

simple_plot(sense_sentiments_v,
title = "Sense and Sensibility Simple Plot"
)

The top graph includes three lines based on three different ways of smoothing
the data. This allows for easy comparison and different levels of detail. The
second graph shows only the DCT smoothed line, but does so on a normalized
time axis. Notice that the x -axis in the top graph goes from zero to over
4000. These points correspond to the sentences in the text. Though the three
lines do not have the exact same trajectory, their plot shapes follow similar
patterns. According to the lower graph, Sense and Sensibility ’s plot begins
in positive territory, reaches a low point around midway, and then becomes
more positive at the close of the novel.

14.7 Smoothing

Where simple_plot offers a quick and easy way to visualize a text’s sentiment
progression, it is not very flexible, and it is not useful if we wish to plot more
than one novel on the same graph. One of the challenges of comparing the

0 1000 2000 3000 4000

−1
.0

0.
0

1.
0

Sense and Sensibility Simple Plot

Full Narrative Time

S
ca

le
d

S
en

tim
en

t

Loess Smooth
Rolling Mean
Syuzhet DCT

0 20 40 60 80 100

−1
.0

0.
0

1.
0

Simplified Macro Shape

Normalized Narrative Time

S
ca

le
d

S
en

tim
en

t

Fig. 14.2 Simple plot of Sense and Sensibility

14.7 Smoothing 167

sentiment trajectories from two different texts is that no two texts are the
same length. As we saw above, Moby Dick has 9573 sentences and Sense and
Sensibility has just 4800. Though these novels are different in the number of
sentences, we could argue that they are the same in that both are narratives
with beginnings, middles, and ends. They are both linear narratives meant to
be read from beginning to end and both are meant to be complete, enclosed
narratives. There is no perfect or even ideal number of sentences required for
telling a good story. But if we want to understand how similar one plot shape
is to another, we need a way of comparing them. One option is to graph their
shapes and compare them visually (Figs. 14.3 and 14.4):

Though in the pages of this book the two images occupy the same width, you
can see by looking at the x -axis that Moby Dick is twice as long as Sense and
Sensibility. If we plotted these two sentiment trajectories on the same graph,
we would get Fig. 14.5:

As we noted above, the length in sentences is not ultimately what matters in
terms of our experience of the narrative as a linear progression from beginning
to end. To see how these two novels shape up against each other, we need a
way of normalizing narrative time.

0 2000 4000 6000 8000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Narrative Time

S
en

tim
en

t

Fig. 14.3 The shape of Moby Dick

For purposes of plotting the two images, there is a simple solution. We can
convert the values on the x -axis to percentages. The rescale_x_2 function
is designed for exactly this task of re-scaling values to a normalized x - and
y-axis. Assume that we want to compare the shapes produced by applying
a rolling mean to two different sentiment arcs. Having computed the raw
sentiment values in Moby Dick and Sense and Sensibility, we can use the
rollmean function from the zoo package. You will need to install and load
the zoo package (as we have done with other packages elsewhere). Sometimes
when you install a new package, that package includes other packages as

168 14 Sentiment Analysis

0 1000 2000 3000 4000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Narrative Time

S
en

tim
en

t

Fig. 14.4 The shape of sense and sensibility

0 2000 4000 6000 8000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Narrative Time

S
en

tim
en

t

Fig. 14.5 Moby Dick and Sense and Sensibility

dependencies. If you already have one of those packages loaded, you may get
a message indicating “one or more of the packages that will be updated by
this installation are currently loaded.” In this case, you will need to restart
R and rerun your script from the beginning in order to take advantage of the
updated packages.

install.packages("zoo")
library(zoo)

A rolling mean (sometimes called a moving average) is a calculation that
summarizes a data set by creating a series of averages of different subsets of
the data. The first value in the moving average is obtained by calculating
the average of a subset of values inside a specified “window.” The average is
recorded and then the window is shifted to the right and a new average is
calculated. The method proceeds in this manner until the window reaches

14.8 Computing Plot Similarity 169

the end of the series. For this exercise, we will set a window size that is equal
to 10% of the length of the data series (number of sentences in each novel).

moby_window <- round(length(moby_sentiments_v)*.1)
moby_rolled <- rollmean(moby_sentiments_v, k = moby_window)
sense_window <- round(length(sense_sentiments_v)*.1)
sense_rolled <- rollmean(sense_sentiments_v, k = sense_window)

We now have two new objects, moby_rolled and sense_rolled, that contain
the moving averages for the sentiments in the two novels. We can now send
each of these to the rescale_x_2 function:

moby_scaled <- rescale_x_2(moby_rolled)
sense_scaled <- rescale_x_2(sense_rolled)

If you consult the help files for rescale_x_2 you will see that the function
returns a list of three vectors (x, y, z). x is a vector of values from 0 to 1
that is equal in length to the input vector v. y is a scaled (from 0 to 1) vector
of the input values equal in length to the input vector v. z is a scaled (from
-1 to +1) vector of the input values equal in length to the input vector v.
We can now use the data in the x and z vectors of the list objects to create
a graphic (Fig. 14.6) that plots the two smoothed sentiment trajectories on
the same plot with an x -axis that represents narrative time as a percentage
rather than as a specific length.
plot(moby_scaled$x,

moby_scaled$z,
type="l",
col="blue",
xlab="Narrative Time",
ylab="Emotional Valence",
main = "Moby Dick and Sense and Sensibility with Rolling Means"
)

lines(sense_scaled$x, sense_scaled$z, col="red")

14.8 Computing Plot Similarity

While this approach works well for plotting and visualizing the two shapes,
because the two trajectories are still of different lengths, we do not have
an easy way to compare them mathematically. Say, for example, we are
interested in knowing whether or not the two shapes are highly corre-
lated (and therefore highly similar.) Because moby_scaled$z has 8617 val-
ues and sense_scaled$z has 4321, we cannot compute their correlation us-
ing cor(moby_scaled$z, sense_scaled$z). Consider a research situation

170 14 Sentiment Analysis

in which you have Moby Dick, Sense and Sensibility, and 98 other novels.
You want to figure out which of these novels has a sentiment arc most sim-
ilar to Moby Dick. You can see from the plot (Fig. 14.6) that we just made
that Sense and Sensibility does not seem very similar, but without looking
at another 98 graphs, you cannot possibly know for sure.

0.0 0.2 0.4 0.6 0.8 1.0

−1
.0

−0
.5

0.
0

0.
5

1.
0

Narrative Time

E
m

ot
io

na
l V

al
en

ce

Fig. 14.6 Moby Dick and sense and sensibility with rolling means

Another problem with these rolling means is that there is a lot of data
lost both at the beginning and at the end of each series. Consider that
moby_sentiments_v has 9573 but moby_rolled has only 8617. With a rolling
mean, we will always lose a number of values from the beginning and end
of the series that is equal to the size of the window: half at the start of the
series and half at the end.

All smoothing methods have difficulty dealing with the beginning and ends
of a series, but some handle them better than others. If you go back and look
at the output of the simple_plot function, you will notice that the blue and
red lines, produced by using the loess and DCT smoothing functions, start at
zero on the x -axis and go all the way to the end. Whereas the rolling mean
starts late and ends early.

In the next example, we will use the get_dct_transform function to smooth
the two data series. By default, get_dct_transform not only smooths the
data, but also returns a result that is exactly 100 units long. We will set
the scale_range argument to TRUE which will rescale the smoothed values
to range from -1 to +1 on the y-axis. Setting scale_range to TRUE scales
the values so that the most negative sentiment score in the novel is set to -1
and the most positive value is set to +1. All the values in between are scaled
proportionally.

14.8 Computing Plot Similarity 171

moby_dct <- get_dct_transform(
moby_sentiments_v,
scale_range = T
)

plot(moby_dct,
type="l",
col="blue",
xlab="Narrative Time",
ylab="Emotional Valence",
main = "Moby Dick with DCT smoothing and time normalization"
)

0 20 40 60 80 100

−1
.0

−0
.5

0.
0

0.
5

1.
0

Narrative Time

E
m

ot
io

na
l V

al
en

ce

Fig. 14.7 Moby Dick with DCT smoothing and time normalization

As you can see in Fig. 14.7, the x -axis is 100 units. If we wanted to see the
entire series, we could change the value of the x_reverse_len argument. In
the next example, we set the x_reverse_len argument equal to the length
of the original series.
moby_dct <- get_dct_transform(

moby_sentiments_v,
x_reverse_len = length(moby_sentiments_v),
scale_range = T
)

plot(moby_dct,
type="l",
col="blue",
xlab="Narrative Time",
ylab="Emotional Valence",
main = "Moby Dick with DCT smoothing without time normalization"
)

172 14 Sentiment Analysis

0 2000 4000 6000 8000

−1
.0

−0
.5

0.
0

0.
5

1.
0

Narrative Time

E
m

ot
io

na
l V

al
en

ce

Fig. 14.8 Moby Dick with DCT smoothing without time normalization

Notice that the shapes of the sentiment arcs (Figs. 14.7 and 14.8) in both
images are the same. The only difference is that in the first shape we have
only 100 values on the x -axis instead of 9573. If we use the same approach
to smooth and scale both novels, we can then compare them both visually
and mathematically.

normed_moby_shape <- get_dct_transform(
moby_sentiments_v,
x_reverse_len = 100,
scale_range = TRUE
)

normed_sense_shape <- get_dct_transform(
sense_sentiments_v,
x_reverse_len = 100,
scale_range = TRUE
)

The length of both of these new vectors is now the same for each novel:

length(normed_moby_shape); length(normed_sense_shape)
[1] 100
[1] 100

So we can easily plot them together (Fig. 14.9):
plot(normed_moby_shape,

type="l",
col="blue",
xlab="Narrative Time",
ylab="Emotional Valence",
main = "Two Novels with DCT Smoothing and Time Normalization"
)

lines(normed_sense_shape, col="red")

14.9 Practice 173

0 20 40 60 80 100

−1
.0

−0
.5

0.
0

0.
5

1.
0

Narrative Time

E
m

ot
io

na
l V

al
en

ce

Fig. 14.9 Two novels with DCT smoothing and time normalization

And now we can also compare them mathematically:

cor(normed_moby_shape, normed_sense_shape)
[1] 0.1456098

In this case, the correlation coefficient of 0.15 is very close to zero indicating
that the two shapes are not very similar.8

14.9 Practice

1. Use the summary function on the two vectors of novel sentiment valences
(moby_sentiments_v and sense_sentiments_v). How do the novels com-
pare?

2. Combine the vectors for Moby Dick ’s sentences and sentiment values into
a data frame. One column should contain the sentences and the accom-
panying column should hold the sentiment value that the sentence was
assigned. Label these columns “sentences” and “sentiment,” respectively.
Do not forget to ensure that all of the sentiment values are stored as
numeric values.

3. Use your knowledge of dplyr to split this data frame into two new data
frames; one for sentiment values above the mean sentiment (which you
found in the first practice problem) and another for sentences with sen-
timent values below the mean. For each new data frame, also order the

8In this chapter we have only scratched the surface of the features available in the
syuzhet package. If you would like to learn more about syuzhet’s capabilities, enter
browseVignettes("syuzhet") in the console and then click the link for the HTML version.

174 14 Sentiment Analysis

sentiment column so that the sentences with the most extreme sentiment
are listed first.

4. Take a look at the most positive sentences in Moby Dick. Do you, as a
human reader, identify these sentences as positive? How about the negative
sentences?

References

Jockers ML (2015b) Syuzhet: Extract sentiment and plot arcs from text. URL
https://github.com/mjockers/syuzhet

Socher R, Perelygin A, Wu J, Chuang J, Manning CD, Ng A, Potts C (2013)
Recursive deep models for semantic compositionality over a sentiment tree-
bank. URL https://www.aclweb.org/anthology/D13-1170

Jockers M (2015a) That Sentimental Feeling Matthew L. Jockers. URL
http://www.matthewjockers.net/2015/12/20/that-sentimental-feeling/

Jockers M (2016) More syuzhet validation Matthew L. Jockers. URL http://
www.matthewjockers.net/2016/08/11/more-syuzhet-validation/

https://github.com/mjockers/syuzhet
https://www.aclweb.org/anthology/D13-1170
http://www.matthewjockers.net/2015/12/20/that-sentimental-feeling/
http://www.matthewjockers.net/2016/08/11/more-syuzhet-validation/
http://www.matthewjockers.net/2016/08/11/more-syuzhet-validation/

Part III

Macroanalysis

Chapter 15

Clustering

Abstract This chapter moves readers from the analysis of one or two texts
to a larger corpus. Machine clustering is introduced in the context of an
authorship attribution problem, and we reuse some functions developed in
previous chapters.

15.1 Introduction

This chapter introduces document clustering using a small corpus of 43 novels.
It might be good to think about this experiment as a prototype, or model,
for a much larger experiment. Many of the basic tasks will be the same,
but instead of working with 4300 books you will develop your skills using
just 43. Much of the processing done in this chapter will be familiar to you
from previous parts of this book where we developed code to compare the
vocabulary richness of Moby Dick on a chapter by chapter basis. Here, instead
of chapters, you will have entire books to work with. The raw materials and
the basic R objects will be the same.

15.2 Corpus Ingestion

The files you will use in this clustering experiment are all stored in the direc-
tory located at “data/XMLAuthorCorpus.” The first thing you will require
is a bit of R code that will go to this directory and survey its contents. To

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_15

177

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_15&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_15

178 15 Clustering

keep things neat, put the path to this directory into an R object and call it
input_dir.

rm(list=ls())
input_dir <- "data/XMLAuthorCorpus"

You can now use the dir function to generate a vector containing the names
of all the files contained inside input_dir.

files_v <- dir(path = input_dir, pattern = ".*xml")

Notice how in addition to the path argument, we have added a pattern argu-
ment. This pattern, a regular expression, tells dir to return only those files
with names matching the regular expression.1 The files_v variable now con-
tains a vector of character strings that are the file names of the 43 XML files
found inside the XMLAuthors folder. Here they are
files_v
[1] "anonymous.xml" "Carleton1.xml" "Carleton10.xml"
[4] "Carleton11.xml" "Carleton12.xml" "Carleton13.xml"
[7] "Carleton14.xml" "Carleton2.xml" "Carleton3.xml"
[10] "Carleton4.xml" "Carleton5.xml" "Carleton6.xml"
[13] "Carleton7.xml" "Carleton8.xml" "Carleton9.xml"
[16] "Donovan1.xml" "Donovan2.xml" "Driscoll1.xml"
[19] "Driscoll2.xml" "Driscoll3.xml" "Edgeworth1.xml"
[22] "Jessop1.xml" "Jessop2.xml" "Jessop3.xml"
[25] "Kyne1.xml" "Kyne2.xml" "LeFanu1.xml"
[28] "LeFanu2.xml" "LeFanu3.xml" "LeFanu4.xml"
[31] "LeFanu5.xml" "LeFanu6.xml" "LeFanu7.xml"
[34] "Lewis.xml" "McHenry1.xml" "McHenry2.xml"
[37] "Norris1.xml" "Norris2.xml" "Norris3.xml"
[40] "Norris4.xml" "Polidori1.xml" "Quigley1.xml"
[43] "Quigley2.xml"

In this chapter, you will use text analysis and unsupervised clustering to
compare the word frequency signal of the anonymous novel to the signals
of the others, and then, based on that comparison, you will take a guess
at which author in the corpus is the most likely author of this anonymous
novel. Notice that the very first of these files in the files_v object is titled
anonymous.xml. This is the file whose authorship is uncertain.

With the file names stored in the files_v variable, you must now write code
to iterate over all of these file names and, at each name, pause to load and
process the text corresponding to the file name; for each file name in the
files_v vector, you want the script to perform some other bit of processing

1Enter ?regex at the prompt to learn more about regex in R.

15.2 Corpus Ingestion 179

related to that file. This is very similar to code you developed in Chap. 12
and you will be able to reuse two functions you developed previously.

Begin with a for loop and a new variable called i (for integer):
Not run
for (i in seq_along(files_v)){

Some code here
}

This expression tells R to begin by setting i equal to 1 and to iterate over
(seq_along) all of the elements of the vector files_v and to stop only when
it has finished with the 43rd item.

Remember from Chaps. 12 and 13 how you used the functions in the xml2
package to parse an XML file. Here we will use the same functions inside a for
loop to parse all 43 files. So first, above the for loop in your script, you will
need to load the package:

library(xml2)

Recall the way we used the read_xml function to load an XML file. This
xml2 function requires a path argument that points to the location of the file
on your computer. The first question you must address, therefore, is how to
give the program the information it requires in order to figure out the file
path to each of the files in the corpus directory.

You already know how to access one of the items in the files_v object via
sub-setting, so now consider the following expression that uses the file.path
function to join together the two objects you have instantiated:

file.path(input_dir, files_v)

Used in this way, file.path returns a series of file paths as a vector. Here
we examine the first six file paths using the head function:

head(file.path(input_dir, files_v))
[1] "data/XMLAuthorCorpus/anonymous.xml"
[2] "data/XMLAuthorCorpus/Carleton1.xml"
[3] "data/XMLAuthorCorpus/Carleton10.xml"
[4] "data/XMLAuthorCorpus/Carleton11.xml"
[5] "data/XMLAuthorCorpus/Carleton12.xml"
[6] "data/XMLAuthorCorpus/Carleton13.xml"

Once wrapped inside a loop, you will be able to easily iterate over these file
paths, loading each one in turn. Before you start looping, however, set the
new variable i equal to 1. Doing so will allow you to do some prototyping
and testing of the code without running the entire loop.

180 15 Clustering

i <- 1

With i equal to 1, reenter the previous expression with the value i inside the
brackets of the files_v variable, like this:

file.path(input_dir, files_v[i])
[1] "data/XMLAuthorCorpus/anonymous.xml"

Instead of returning the paths for all of the files, you get just the first file
(alphabetically) in the files_v object.

With the xml2 package loaded and this path name business sorted out, you
can now use the read_xml function to ingest, or load, the first XML file.
Rather than assigning the result of the file.path command to another vari-
able, you can just embed one function inside the other, like this:

xml_doc <- read_xml(file.path(input_dir, files_v[i]))

If you enter this expression, and then type xml_doc at the R prompt, you
will see an abbreviated set of XML elements from the contents of the file
titled anonymous.xml. Success! You must now embed this expression within
your for loop so that you can iterate over all of the XML files in the files
directory. Do this as follows:
Not run
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
some more code goes here. . .

}

This code will consecutively load each of the XML files into an object called
xml_doc. Each time the program starts a new loop, the previous contents of
the xml_doc object will be overwritten by the new XML file. So, before the
next iteration begins, you need to process the contents of the xml_doc object
and store the results in some other variable that will persist beyond the loop.
For this, we will create an empty list called book_freqs_l and place it outside
of, and before, the for loop. This list will serve as a container for the results
that will be generated during the processing that takes place inside the loop.
Putting it all together, your code should now look like this:
Not run
library(xml2)
input_dir <- "data/XMLAuthorCorpus"
files_v <- dir(path = input_dir, pattern = ".*xml")
book_freqs_l <- list()
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
#some more code goes here. . .

}

15.3 Custom Functions 181

15.3 Custom Functions

Now that you have code for handling the iteration and loading of the XML
files, you need to process the loaded files to extract the word frequencies. As
luck would have it, you already built the two functions needed for this work
and stored them in the corpus_functions.R file in the code directory. Here
they are again as a reminder:
get_node_text <- function(node, xpath, ns){

paragraph_nodes <- xml_find_all(node, xpath, ns)
paragraph_v <- xml_text(paragraph_nodes)
paste(paragraph_v, collapse = " ")

}

tokenize <- function(text_v, pattern = "[^A-Za-z0-9']", lower = TRUE){
if(lower){

text_v <- tolower(text_v)
}
word_v <- unlist(strsplit(text_v, pattern))
word_v[which(word_v != "")]

}

These two functions need to be called at the top of your script so that they
get loaded before the for loop. You can add a call to the source function to
the top of your script:
Not run
library(xml2)
source("code/corpus_functions.R") # Load the functions
input_dir <- "data/XMLAuthorCorpus"
files_v <- dir(path = input_dir, pattern = ".*xml")
book_freqs_l <- list()
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
some more code goes here. . .

}

With the functions loaded, we must now finish the instructions inside the
loop. We have an XML file loaded into the xml_doc object and need to
extract out the contents of the text. Since these are TEI encoded XML files,
the textual content is enclosed inside <p> elements that are child nodes of
the <body> element. Recall that we did something similar when we extracted
chapters from Moby Dick. Here, instead of chapters, we will extract all of the
paragraphs. For this we will call our custom function get_node_text and
store the result in a new variable called para_text.

182 15 Clustering

Not run
library(xml2)
source("code/corpus_functions.R") # Load the functions
input_dir <- "data/XMLAuthorCorpus"
files_v <- dir(path = input_dir, pattern = ".*xml")
book_freqs_l <- list()
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(xml_doc,

xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
some more code goes here. . .

}

Remember that get_node_text takes three arguments:

1. an xml_document object
2. an xpath expression that identifies the specific part(s) of the XML tree

that we are interested in extracting
3. a namespace as the ns argument

In this case our document is stored in xml_doc; our xpath expression for
finding the paragraph nodes that are the children of <body> that is a child
of <text> is /tei:TEI/tei:text/tei:body//tei:p; and our namespace for
the TEI declaration is c(tei = "http://www.tei-c.org/ns/1.0"). When
get_node_text is called, it returns a character string of all the words found
in the target nodes. This means that para_text will contain one long string
of all the text from each novel. We can now send this text to the tokenize
function in order to parse the long string into a vector of individual word
tokens. We will store these in a new object called word_v.
Not run
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(xml_doc,

xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
some more code goes here. . .

}

All we need now is to use table to count the occurrences of each word, and
since we ultimately want the relative frequencies and not the raw counts,
we can take advantage of recycling to divide each count by the length of the
entire vector. We will store this result inside a new object called freq_table.

15.3 Custom Functions 183

Not run
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(xml_doc,

xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
freq_table <- table(word_v)/length(word_v)
some more code goes here. . .

}

Next we want to insert this result into the list object (book_freqs_l) that
we created above the for loop. But before we do that, we will convert the
freq_table object from a table to the more flexible data frame type using
as.data.frame. And since it might be useful down the road to know which
file each frequency table was generated from, we will add the name of each
file as an index in the list object. The completed loop, which you can now
run, should look like this:

library(xml2)
source("code/corpus_functions.R") # Load the functions
input_dir <- "data/XMLAuthorCorpus"
files_v <- dir(path = input_dir, pattern = ".*xml")
book_freqs_l <- list()
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(xml_doc,

xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
freq_table <- table(word_v)/length(word_v)
book_freqs_l[[files_v[i]]] <- as.data.frame(

freq_table, stringsAsFactors = FALSE
)

}

When the entire script is run, it will take several seconds, the values returned
from processing each text are added to the book_freqs_l. The only thing
that might look odd here is the stringsAsFactors argument in the call to
the as.data.frame function. By default, the as.data.frame function will
treat strings as a special type of data called a factor. This can be useful in
certain cases, but right now we want the word tokens to be kept as character
strings and not treated as factors.

184 15 Clustering

After processing, all of the data necessary for continuing the clustering ex-
periment will be contained in the single list. Before you go on, however, you
might want to inspect this new object. Try a few of these commands, and be
sure that the results all make sense to you:

class(book_freqs_l)
names(book_freqs_l)
str(book_freqs_l)

You might also want to examine how the data in this list are stored. Remem-
ber that each list item is a data frame object with two columns. To peek at
the first one, you can use head(book_freqs_l[[1]]). You will notice that
the columns were automatically assigned the names word_v and Freq.

15.4 Unsupervised Clustering and the Euclidean Metric

Many years of authorship attribution research have taught us that the most
effective way to distinguish between the text of one author and another is
by comparing the different usages of high-frequency features in their writing.
High-frequency features include words such as the, of, and, to, etc. as well
as, in some studies, marks of punctuation and even common bigrams, such
as of the. Here we will assume some familiarity with the concept of distinct
stylistic signals and jump right into describing a process for comparing the
word usage patterns of the writers in the sample corpus.2

The technique that we describe here involves a measurement known as Eu-
clidean distance. Using the Euclidean metric, or what is sometimes called
the Pythagorean metric, you can calculate each single book’s distance from
every other book in a corpus. Books with a closer distance will have more
in common in terms of their feature usage habits, and books with a greater
relative distance will be dissimilar. For the sake of illustration, assume that
you have just three books and only two features for each book. Call the three
books a, b, and c, and the two features f1 and f2. Assume further that the
measurements of the two features in each of the book are frequencies per 100
words, as follows:
my_m
f1 f2
a 10 5
b 11 6
c 4 13

2For a brief overview of how this work is conducted, see Jockers (2013), pp. 63–67.

15.4 Unsupervised Clustering and the Euclidean Metric 185

In book a, feature f1 occurs 10 times per 100 words and feature f2 occurs
5 times per hundred. In book b feature f1 is found 11 times for every 100
words and so on. You can represent this information in an R matrix using
this code:

a <- c(10, 5)
b <- c(11, 6)
c <- c(4, 13)
my_m <- rbind(a, b, c)
colnames(my_m) <- c("f1", "f2")

These feature measurements can in turn be represented as x and y coordinate
values and plotted in a two-dimensional space, as in Fig. 15.1.

Once plotted, you can measure (as with a ruler) the distance on the grid
between the points. In this case, you would find that books a and b are
closest (least distant) to each other. Naturally, you do not want to actually
plot the points and then use a ruler, so instead you can employ the dist
function in R.

4 5 6 7 8 9 10 11

6
8

10
12

f1

f2

a

b

c

Fig. 15.1 Two-dimensional plotting

dm <- dist(my_m)
dm
a b
b 1.414214
c 10.000000 9.899495

The result reveals that the standard or ordinary distance between points a
and b is 1.4142136, the distance between a and c is 10, and the distance be-
tween b and c is 9.8994949. These distances provide a way of describing the
relative nearness of the points, and, therefore, the similarity of the documents
from which these values were extracted. For convenience, you can think of

186 15 Clustering

these distances as meters, feet, or miles; it does not ultimately matter since
you are only concerned with the relative closeness of the points. In this ex-
ample, using only two features (f1 and f2) you would conclude that book a
and book b are the most similar to each other within this closed set of three
books.

When there are only two dimensions (or features) as in this example, the
plotting and measuring is fairly simple and straightforward. It becomes more
complex when thought of in terms of fifty or five hundred features and twenty
or forty books. Nevertheless, the closeness of items in this high dimensional
space can still be calculated using the Euclidean metric (which is the default
method employed by R’s dist function). The metric is expressed like this:

d(p, q) =
√
(p1 − q1)2 + (p2 − q2)2 + . . .+ (pi − qi)2 + (pn − qn)2

where d is the distance and p and q are the two books.

p1

is the measure of feature one in book p and

q1

is the measure of feature one in book q, and so on through all of the features.

Assume you have a new data set in which there are four features:

a <- c(10, 5, 3, 5)
b <- c(11, 6, 5, 7)
c <- c(4, 13, 2, 6)
my_m <- rbind(a, b, c)
colnames(my_m) <- c("f1", "f2", "f3", "f4")

Using the Euclidean metric, the distances d between books (a, b, c) are
calculated as follows:

d(a, b) =
√
(10− 11)2 + (5− 6)2 + (3− 5)2 + (5− 7)2 = 3.162278

d(a, c) =
√
(10− 4)2 + (5− 13)2 + (3− 2)2 + (5− 6)2 = 10.09950

d(b, c) =
√
(11− 4)2 + (6− 13)2 + (5− 2)2 + (7− 6)2 = 10.39230

To get the same results in R, you simply enter

dist(my_m)
a b
b 3.162278
c 10.099505 10.392305

15.5 Converting an R List into a Data Matrix 187

You can see that the distance between a and b (10) is much smaller than
the distance between a and c. This indicates that a and b are more similar
to each other in terms of these four features. With R it is a trivial matter
to calculate the distances between every book and every other book in the
example corpus. Everything you need for doing this calculation is already
stored inside the book_freqs_l list object. You simply need to get that data
out of the list and into a data matrix in which each row is a book and each
column is one of the word features.

15.5 Converting an R List into a Data Matrix

Before we can apply the Euclidean metric to the authorship data, we need
to get the word frequency information out of the book_freqs_l list and
into a data matrix in which each row is a book and each column is a word
feature. The cells in this matrix will contain the relative frequency values that
were calculated inside the for loop. The first step in this process involves
converting the book_freqs_l into an R data frame.

We learned earlier how to bind data from a list into rows of a data frame
using the do.call function. We can do the same thing here to bind all 43
data frames from the list object into a single, and very long data frame.

freqs_df <- do.call(rbind, book_freqs_l)

If you now examine this data frame using head(freqs_df), you will see
that the names of the files (that we had stored in the list items) appear
as rownames. You will also notice, however, that each file name now has a
number appended to it. In order to transform this long form data frame into
the wide form that we need for the clustering, we will first need to remove
those appended numbers and move the file names into a column. First we
will extract the row names and use the gsub (grep substitute) function to
find and replace all the appended numbers:

text_names_v <- gsub(
pattern = "\\.\\d+",
replacement = "",
x = rownames(freqs_df)
)

gsub takes three arguments, a character pattern to search for, a
replacement for the found pattern, and a character object to search in.
You can think of the pattern as the “needle” and the character object as the
“haystack.” In this case our needle is a regular expression (\\.\\d+), which
means “a period character followed by one or more digits.” We will use this

188 15 Clustering

pattern to find and delete the appended numbers by setting the replacement
argument to nothing, represented by the two quotation marks with nothing
inside them. Examine the results of entering this expression:

head(text_names_v)
[1] "anonymous.xml" "anonymous.xml" "anonymous.xml"
[4] "anonymous.xml" "anonymous.xml" "anonymous.xml"

Now that we have the names of the files corrected, we need to bind this
character vector with our freq_df data frame as a new column.

long_df <- data.frame(text_names_v, freqs_df)

And finally, to make things easier to read and understand, we will rename
the columns:

colnames(long_df) <- c("file", "token", "freq")

With all this done, we can now reshape the data from long form to the wide
form needed for clustering.

15.6 Reshaping from Long to Wide Format

There are several ways we can reshape a data frame and the tidyr and
reshape packages both offer some options. But without having to load any
additional packages, we can use the built-in xtabs function. “xtab” is short
for “cross tabulation” and it works much like a pivot table in Excel. We need
to tell the function what values we want to appear in the cells and how to
conceive of the cross tabulation. In this case, we want the word frequencies
to appear in the cells, and we want the cross tabulation to be based on the
file names and the individual word tokens. To achieve this, xtabs expects
a formula that looks like this: freq ~ file + token. In addition to this
formula, we give xtabs a data argument—in this case the name of the long
form data frame that we wish to cross tabulate.3

wide_t <- xtabs(formula = freq ~ file + token, data = long_df)

Notice that the output of calling xtabs is not a data frame (class(wide_t)).
wide_t is a xtabs table object. For the clustering we will do in the next
step, we need to convert this table into a data.frame. As with most things

3Using this formula, the file names become the first column in the resulting matrix and
the tokens become the column headers. If, instead, we wanted to “transpose the matrix”
and have the file names as the column headers, we would just change the formula to read
token + file instead of file + token.

15.7 Preparing Data for Clustering 189

in R there are many ways to skin the cat. The simplest option here is to call
the as.data.frame.matrix function:

wide_df <- as.data.frame.matrix(wide_t)

15.7 Preparing Data for Clustering

While it is certainly the case that you could apply the Euclidean metric to
this large (i.e., 43 × 56674) data frame, doing so does not make a lot of
sense in the case of authorship attribution. The goal is to figure out which
of these texts is most stylistically similar to the anonymous text, and you do
not want to bias the results by clustering the texts based on the similarity
of their themes or content. Say, for example, that two of the books in this
corpus were about horses. These two books would likely be drawn together
in the clustering because they shared a similar subject and not necessarily
because they shared a similar style. Therefore, before clustering it is useful
to winnow the data to just those features that are extremely frequent.

There are many ways to do this winnowing; you could, for example, sort the
data and keep only the 100 most frequent words in the corpus. We prefer
to use a winnowing method based on setting a frequency threshold. In other
words, we will limit the feature list to only those words that appear across
the entire corpus with a mean relative frequency of some threshold. For this
example, we will set the threshold to 0.01, or 1%.

First we will calculate the column means across the entire data frame
(colMeans) and then we will check to see which of those means meets the con-
dition of being greater than or equal to our threshold. The colMeans function
returns a named vector of means.
token_means <- colMeans(wide_df)
head(token_means)
' '' ''' ''americans ''ansom
1.741339e-03 2.124454e-05 2.434679e-07 2.035591e-07 1.375302e-07
''appen
5.501210e-07

If you look at the first few values using head, you will see some tokens made of
apostrophe characters. Recall that our word tokenizing function specifically
allowed the apostrophe as a “word character.” What is important to see here
is that this is a named vector. Because the vector has names, we can extract
the names of the items in the vector that meet our threshold condition. For
this we will use which to create a sub-setting condition inside square brackets.
This we will enclose inside a call to the names function. We will call the result
keepers_v

190 15 Clustering

keepers_v <- names(token_means[which(token_means >= .01)])
head(keepers_v)
[1] "a" "and" "he" "his" "i" "in"

This keepers_v object can now be used to subset and select specific columns
in the wide_df data frame. If you wanted to see all the data about these
specific words in the first three files, you would just enter: wide_df[1:3,
keepers_v]. Notice that you can access the columns of a data frame using
the names of the columns. In this case the keepers_v object contains the
names of those columns that met the mean frequency threshold.

With all this done, we can now cluster the data. First we will apply the
Euclidean distance calculation by calling the dist function.

dist_m <- dist(wide_df[, keepers_v])

This produces a new matrix object that we have called dist_m. A distance
matrix is a special type of table that reports the distance between pairs of
objects. In this case the objects are the files. An object of type dist is difficult
to inspect. You can use str(dist_m) to get some basic information, but to
really peek inside, you may want to convert it to a simple matrix:

simple_dist_m <- as.matrix(dist_m)

Now you can apply some other function to really see what is going on:

dim(simple_dist_m)
[1] 43 43
colnames(simple_dist_m)
[1] "anonymous.xml" "Carleton1.xml" "Carleton10.xml"
[4] "Carleton11.xml" "Carleton12.xml" "Carleton13.xml"
[7] "Carleton14.xml" "Carleton2.xml" "Carleton3.xml"
[10] "Carleton4.xml" "Carleton5.xml" "Carleton6.xml"
[13] "Carleton7.xml" "Carleton8.xml" "Carleton9.xml"
[16] "Donovan1.xml" "Donovan2.xml" "Driscoll1.xml"
[19] "Driscoll2.xml" "Driscoll3.xml" "Edgeworth1.xml"
[22] "Jessop1.xml" "Jessop2.xml" "Jessop3.xml"
[25] "Kyne1.xml" "Kyne2.xml" "LeFanu1.xml"
[28] "LeFanu2.xml" "LeFanu3.xml" "LeFanu4.xml"
[31] "LeFanu5.xml" "LeFanu6.xml" "LeFanu7.xml"
[34] "Lewis.xml" "McHenry1.xml" "McHenry2.xml"
[37] "Norris1.xml" "Norris2.xml" "Norris3.xml"
[40] "Norris4.xml" "Polidori1.xml" "Quigley1.xml"
[43] "Quigley2.xml"
rownames(simple_dist_m)
[1] "anonymous.xml" "Carleton1.xml" "Carleton10.xml"
[4] "Carleton11.xml" "Carleton12.xml" "Carleton13.xml"

15.7 Preparing Data for Clustering 191

[7] "Carleton14.xml" "Carleton2.xml" "Carleton3.xml"
[10] "Carleton4.xml" "Carleton5.xml" "Carleton6.xml"
[13] "Carleton7.xml" "Carleton8.xml" "Carleton9.xml"
[16] "Donovan1.xml" "Donovan2.xml" "Driscoll1.xml"
[19] "Driscoll2.xml" "Driscoll3.xml" "Edgeworth1.xml"
[22] "Jessop1.xml" "Jessop2.xml" "Jessop3.xml"
[25] "Kyne1.xml" "Kyne2.xml" "LeFanu1.xml"
[28] "LeFanu2.xml" "LeFanu3.xml" "LeFanu4.xml"
[31] "LeFanu5.xml" "LeFanu6.xml" "LeFanu7.xml"
[34] "Lewis.xml" "McHenry1.xml" "McHenry2.xml"
[37] "Norris1.xml" "Norris2.xml" "Norris3.xml"
[40] "Norris4.xml" "Polidori1.xml" "Quigley1.xml"
[43] "Quigley2.xml"

As you can see, the matrix has 43 rows and 43 columns, and the names of
those rows and columns are the same. Let us look at just the first few rows
and columns:

simple_dist_m[1:3, 1:3]
anonymous.xml Carleton1.xml Carleton10.xml
anonymous.xml 0.000000000 0.009972217 0.01387051
Carleton1.xml 0.009972217 0.000000000 0.01144737
Carleton10.xml 0.013870508 0.011447373 0.00000000

The values stored inside the cells are the calculated distances between the file
in the row and the corresponding file in a column. So here you will see that
the distance from the anonymous.xml file to the file called Carleton1.xml is
0.0099722. But notice too that the distance from any file and itself is always
zero.

If you wanted to know which files were stylistically most similar to Car-
leton1.xml, you could select the Carleton1.xml column in the matrix and
then sort the rows from smallest to largest:

sort(simple_dist_m[, "Carleton1.xml"])
Carleton1.xml Carleton11.xml Carleton3.xml Carleton12.xml
0.000000000 0.006919052 0.008295471 0.008316020
Carleton14.xml Carleton8.xml Carleton7.xml Kyne1.xml
0.008601454 0.008920331 0.009459768 0.009658346
anonymous.xml Carleton13.xml Kyne2.xml Carleton9.xml
0.009972217 0.010229984 0.010628076 0.011129111
Carleton10.xml McHenry1.xml Lewis.xml McHenry2.xml
0.011447373 0.011909736 0.012000288 0.014090705
Carleton4.xml LeFanu4.xml Carleton5.xml LeFanu2.xml
0.017162130 0.018493421 0.019913792 0.019961477
Donovan2.xml Jessop2.xml LeFanu7.xml Norris1.xml

192 15 Clustering

0.020676630 0.021075639 0.021272332 0.021300657
Driscoll1.xml Carleton6.xml Norris3.xml LeFanu1.xml
0.021766826 0.022076064 0.022128428 0.022322383
Carleton2.xml Norris4.xml Donovan1.xml Edgeworth1.xml
0.022746003 0.023061154 0.023349734 0.024765604
Driscoll3.xml Jessop1.xml Driscoll2.xml Norris2.xml
0.024961006 0.024995979 0.025389137 0.025444092
LeFanu6.xml Jessop3.xml LeFanu5.xml Polidori1.xml
0.027021386 0.028094894 0.028801653 0.032060653
LeFanu3.xml Quigley2.xml Quigley1.xml
0.036337114 0.048055239 0.049171042

As you would expect, the file most similar to Carleton1.xml is Carleton1.xml !
What is interesting to see is that most of Carleton’s other books are highly
similar, which, of course, makes sense since the style in works by the same
author should be similar. From this result we can also see that the book that is
most dissimilar to Carleton1.xml is the book with the file name Quigley1.xml.
We could, of course, do the same thing for the anonymous.xml text, i.e.,
sort(simple_dist_m[, "anonymous.xml"]). But instead of doing that now,
let us use the hclust function to cluster all of the novels according to their
similarity and then produce a dendrogram plot of the clustering. In this way
we will be able to see all at once not only which books are most similar to the
anonymous book, but to each other as well. If years of research in authorship
attribution is valid, we should see books by the same authors clustering close
together.

15.8 Clustering the Data

Calling hclust produces a special “hclust” object that has a label attribute.
We can set the label names using the row names from the original data frame.

cluster <- hclust(dist_m)
cluster$labels <- rownames(wide_df)

From this we can produce a cluster dendrogram and visually inspect the
tree to identify the known authors and texts that are most similar to anony-
mous.xml.

plot(cluster)

15.9 Practice 193

Q
ui

gl
ey

1.
xm

l
Q

ui
gl

ey
2.

xm
l

E
dg

ew
or

th
1.

xm
l

Le
Fa

nu
1.

xm
l

Le
Fa

nu
6.

xm
l

N
or

ris
2.

xm
l

N
or

ris
4.

xm
l

N
or

ris
1.

xm
l

N
or

ris
3.

xm
l

Le
Fa

nu
5.

xm
l

Le
Fa

nu
4.

xm
l

Le
Fa

nu
7.

xm
l

C
ar

le
to

n4
.x

m
l

C
ar

le
to

n7
.x

m
l

C
ar

le
to

n9
.x

m
l

C
ar

le
to

n1
2.

xm
l

C
ar

le
to

n1
4.

xm
l

C
ar

le
to

n1
0.

xm
l

C
ar

le
to

n1
3.

xm
l

C
ar

le
to

n5
.x

m
l

C
ar

le
to

n1
.x

m
l

C
ar

le
to

n1
1.

xm
l

C
ar

le
to

n3
.x

m
l

C
ar

le
to

n8
.x

m
l

Ky
ne

2.
xm

l
an

on
ym

ou
s.

xm
l

Ky
ne

1.
xm

l
Le

w
is

.x
m

l
M

cH
en

ry
1.

xm
l

M
cH

en
ry

2.
xm

l
C

ar
le

to
n6

.x
m

l
Po

lid
or

i1
.x

m
l

C
ar

le
to

n2
.x

m
l

D
on

ov
an

1.
xm

l
D

on
ov

an
2.

xm
l

Je
ss

op
3.

xm
l

Je
ss

op
1.

xm
l

Je
ss

op
2.

xm
l

D
ris

co
ll1

.x
m

l
D

ris
co

ll2
.x

m
l

D
ris

co
ll3

.x
m

l
Le

Fa
nu

2.
xm

l
Le

Fa
nu

3.
xm

l

0.
00

0.
03

0.
06

Cluster Dendrogram

hclust (*, "complete")
dist_m

H
ei

gh
t

Fig. 15.2 Cluster dendrogram of 43 novels

If everything went well, you will have found anonymous.xml nestled comfort-
ably between Kyne1.xml and Kyne2.xml (see Fig. 15.2). Peter B. Kyne is,
in fact, the author of anonymous.xml ! You will also observe that books by
the same authors tend to cluster together. There is a big cluster of novels
by Carleton, books by Norris form another independent cluster, Jessop and
Driscoll both pull together independently.

Though this is a “canned” example corpus created for purposes of this chapter,
we did not engineer the data to lead to this result. In fact the corpus was
chosen based on just two criteria:

1. the works were out of copyright and could, therefore, be legally shared.
2. the works were clean and encoded in TEI compliant XML.

It is somewhat remarkable that the word frequencies from just 13 words can
produce such a compelling result.4

15.9 Practice

1. Now that you have the correct answer, go back to the line of code in which
you generated the keepers_v vector. Experiment with different threshold
values. Examine how the attribution result changes, or does not, depending

4All these books are by Irish or Irish-American authors. They were digitized and encoded
into TEI by Matthew Jockers as part of his work on the Irish-American West project at
Stanford back in the early 2000s.

194 15 Clustering

upon the number of features that you keep. What is the smallest number
of word features you could use in this clustering experiment and still arrive
at the same answer?

2. As a final experiment, write some code to see what happens if you select
a random collection of features. In other words, instead of selecting from
among the most high-frequency features, write code that uses the sample
function to grab a random sample of 50 or 100 word features and then
see if you still get accurate author clustering.

Reference

Jockers ML (2013) Macroanalysis: Digital Methods and Literary History, 1st
edn. University of Illinois Press, Urbana

Chapter 16

Classification

Abstract This chapter introduces machine classification in the context of
an authorship attribution problem. Various methods of text pre-processing
are combined here to generate a corpus of 430 text samples. These samples
are then used for training and testing a support vector machines supervised
learning model.

16.1 Introduction

The clustering described in the last chapter is not ideally suited to authorship
attribution problems. In fact, clustering is more often used in cases in which
the classes are not already known in advance. Clustering is often employed
in situations in which a researcher wishes to explore the data and see if
there are naturally forming clusters. When the classes are known in advance
(i.e., when there is a closed set of possible classes, or authors in this case)
supervised classification offers a better approach. In addition to providing
more information about feature level data, a supervised approach can also
provide probabilistic data about the likelihood of a given document being
written by one author versus another within the closed set of candidates.
Though we will use an authorship attribution example here, consider that
any category of metadata can be inserted into the place held by author. For
example, if you wished to gauge the extent to which Irish style differs from
British style, you could use nationality in place of author as the target class.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_16

195

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_16&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_16

196 16 Classification

16.2 A Small Authorship Experiment

For this chapter, you will use the same corpus of novels that was used in
the clustering chapter, and you will be able to recycle much of the code and
functions that you have already written. Begin by creating a new R script
with the following code from the last chapter:

rm(list=ls())
library(xml2)
source("code/corpus_functions.R") # Load the functions
input_dir <- "data/XMLAuthorCorpus"
files_v <- dir(path = input_dir, pattern = ".*xml")

16.3 Text Segmentation

In the last chapter, you wrote a for loop to load a series of XML files and then
send each XML document object to a set of custom functions that extracted
the text from the XML nodes and then tokenized that text into a vector of
words. In this chapter, instead of treating every novel as a single text, we
will break each text into a series of smaller segments. Instead of having 43
texts for training and testing a classification model, we will create 430 texts
by breaking each larger text into ten equally sized segments. Once a text has
been tokenized into a vector of words, it is a fairly trivial matter to split that
vector into a series of segments. For this we will use the aptly named split
function in combination with the cut function.

For the sake of example, consider a vector v that contains the capital letters
A–Z. Assume that we want to split this vector into thirteen equally sized
chunks.1 We first use the cut function to create a vector of integers that will
be used as factors for the second argument of the split function.
R has a small number of built-in constants.
LETTERS is one of them
x <- LETTERS
groups_v <- cut(1:length(x), breaks = 13, labels = FALSE)

If you run the code above and then enter groups_v into the console you
will see that the cut function has returned a vector of values. These values
correspond to the “groups.” The first two items in the vector contain the

1We know what you are thinking: there are 26 letters so what if you want an odd number
of groups, like five? The cut function described here will optimize the size of the segments
to be as close to equal as possible based on the length of the input vector.

16.3 Text Segmentation 197

number 1, for “group 1.” The next two items contain the number 2 for group
2 and so on. We can now use this groups vector as the second argument in
a call to the split function.

chunks_l <- split(x, groups_v)

The split function returns a list object. Inside each list item are the let-
ters from the original vector x that compose each group. With that as the
basic idea, we will apply this approach to segment each of the texts in our
corpus. In the code at the beginning of this chapter you loaded a set of func-
tions from your corpus_functions.R file and instantiated a new vector object
called files_v. This vector contains the names of the files to load, tokenize,
segment, and eventually use to build and test a classifier. The next step, then,
is to iterate over these files and perform the necessary operations. For this,
we will recycle some code from the last chapter and then add in our newly
developed chunking code:

library(xml2)
source("code/corpus_functions.R") # Load the functions
input_dir <- "data/XMLAuthorCorpus"
Not run
files_v <- dir(path = input_dir, pattern = ".*xml")
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(xml_doc,

xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
New code for chunking:
groups <- cut(1:length(word_v), breaks = 10, labels = FALSE)
chunks_l <- split(word_v, groups)
some new code goes here. . .

}

When you are developing code that involves loops, such as this for loop, it
can be annoying and time consuming to test and debug if you run the entire
loop. A useful way to test the code inside a loop, therefore, is to temporarily
set the value of i equal to 12 and then execute the code in your loop one
line at a time. Let us do that now to see how things are working. First we
will set i equal to 1 and then we will execute the first two lines of code. We
will then use head to peek at the first few values in the word_v object and
length to see the size of the vector.

2Or some other number that is less than or equal to the length of the vector you are
iterating over.

198 16 Classification

i <- 1
xml_doc <- read_xml(file.path(input_dir, files_v[i]))

para_text <- get_node_text(xml_doc,
xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
head(word_v)
[1] "in" "the" "summer" "of" "1850" "a"
length(word_v)
[1] 99560

This appears as expected, so we will now execute the grouping and chunking
parts of the script and examine the contents of the resulting list object using
str:

groups <- cut(1:length(word_v), breaks = 10, labels = FALSE)
chunks_l <- split(word_v, groups)
str(chunks_l)
List of 10
$ 1 : chr [1:9956] "in" "the" "summer" "of" ...
$ 2 : chr [1:9956] "timber" "at" "the" "edge" ...
$ 3 : chr [1:9956] "that" "i" "could" "stand" ...
$ 4 : chr [1:9956] "happy" "i'm" "delighted" "to" ...
$ 5 : chr [1:9956] "to" "hurry" "up" "lock" ...
$ 6 : chr [1:9956] "from" "cardigan" "a" "few" ...
$ 7 : chr [1:9956] "in" "the" "state" "timber" ...
$ 8 : chr [1:9956] "manager" "came" "on" "the" ...
$ 9 : chr [1:9956] "it" "poundstone" "looked" "up" ...
$ 10: chr [1:9956] "are" "won" "by" "the" ...

Calling str(chunks_l) reveals that the chunks_l object is a list of ten char-
acter vectors. These new character vectors are segments of the full word_v
object. Each of these can now be converted into a frequency table in the same
way that a table can be generated from the full vector.

As seen in previous chapters, the lapply function is well suited for use in
combination with the table function. You can now table each word vector
in the chunks_l list using a call to lapply.

chunk_table_l <- lapply(chunks_l, table)

Calling str(chunk_table_l) reveals a list of ten tables. These tables contain
the raw counts of each word token in each segment of the larger text. Since
there are multiple texts and, since the text segments across different novels
are not going to all be the same length, we must convert the raw counts to

16.3 Text Segmentation 199

relative frequencies. By now you should know that you can convert a single
table of raw counts to relative frequencies using division:

chunk_table_l[[1]]/sum(chunk_table_l[[1]])

But since we do not want to convert each table in the list one at a time, having
another function that we can use in a call to lapply is handy. Naturally R
has just such a function: prop.table. So instead of dividing by sum, we will
just call prop.table inside lapply.

chunk_frequencies_t_l <- lapply(chunk_table_l, prop.table)

In the resulting chunk_frequencies_l object, you now have a list object
containing the relative frequency data for 10 equally sized segments of the
text. Here is how the loop portion of your script should look at this point.
Not run
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(xml_doc,

xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
New code for chunking:
groups <- cut(1:length(word_v), breaks = 10, labels = FALSE)
chunks_l <- split(word_v, groups)
chunk_table_l <- lapply(chunks_l, table)
chunk_frequencies_t_l <- lapply(chunk_table_l, prop.table)
some more code goes here. . .

}

It is useful to pause here and consider the final object that we will need for the
classification experiment. Just as in the last chapter on clustering, we need
to create a wide form data matrix in which each row is a text segment and
each column is a word token or “feature.” Recall from the previous chapter
that we created the wide form matrix by transforming (reshaping) a long
form matrix. We will use the same approach here, but now we also need
to retain one additional piece of metadata. In addition to keeping track of
which data comes from which books, we also need to keep track of which
data comes from which segment of those texts. Consider the contents of the
chunk_frequencies_l object as it exists right now. It is a list of 10 tables
in which the names are the word tokens and the values are the calculated
relative frequencies of those tokens in the given segment. Before we can take
the next steps, we need to convert each of the tables in the list object to a
data frame. Using lapply allows us to employ the data.frame function over
each item in the list.

200 16 Classification

chunk_frequencies_df_l <- lapply(chunk_frequencies_t_l, data.frame)

If you examine the first part of the first item using:
head(chunk_frequencies_df_l[[1]])
you will see that each list item now contains a data frame with two columns
labeled Var1 and Freq. The next step is to bind all of the segments together
just as we did in the last chapter using do.call and rbind.

segments_df <- do.call(rbind, chunk_frequencies_df_l)

When you add this line to the evolving script, it looks like this:
Not run
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(xml_doc,

xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
New code for chunking:
groups <- cut(1:length(word_v), breaks = 10, labels = FALSE)
chunks_l <- split(word_v, groups)
chunk_table_l <- lapply(chunks_l, table)
chunk_frequencies_t_l <- lapply(chunk_table_l, prop.table)
chunk_frequencies_df_l <- lapply(chunk_frequencies_t_l, data.frame)
some more code goes here. . .
segments_df <- do.call(rbind, chunk_frequencies_df_l)

}

When we did this in Chap. 15, we did not need to worry about capturing
the segment metadata. As it happens, do.call automatically keeps track of
this information and saves it in the rownames of the resulting data frame. If
you enter head(segments_df) into the console, you will notice that each row
contains a row name like this 1.1 1.2 1.3 1.4 1.5 1.6. . . The first number,
before the decimal, is the chunk and the second number after the decimal is
the row number. So in the first chunk, the token ’em occurs with a frequency
of 0.0005022097.

It turns out that we do not need to retain the row numbers, just the segment
identifiers, but we also want to retain the name of the originating text files so
that we know which segments belong to which books. Since we do not need
to retain the row numbers, we can use gsub with a regular expression that
removes the decimal and the information that comes after the decimal in the
row names.

The approach is similar to what we did in Chap. 15, but with a different
regular expression. The regular expression "\\..*" will find the period (".")

16.3 Text Segmentation 201

character followed by any number of other characters.3 We will replace the
regex matches with nothing (""), and store the resulting strings in a new
variable called segment_ids_v.

segment_ids_v <- gsub("\\..*", "", rownames(segments_df))

Since all of the segments in the current segments_df object come from the
same book, it is easy to now add another “ID” column to the data frame that
contains the value of the files_v[i] object concatenated with the segment
identifiers using the paste function. The paste function glues each of these
new strings to the corresponding segment/chunk reference value in a new
column titled “ID.” In this case, we will use an underscore (_) character as
the glue.

book_df <- data.frame(
ID = paste(

files_v[i],
segment_ids_v,
sep="_"), segments_df
)

If you examine the top of the new book_df object using head, you will see
the column titled ID that contains a unique book and segment “key.” At this
point, you have everything you need extracted from this book. By setting i
equal to 1, we were able to test and debug the code inside the loop one line
at a time.

Before we run this loop, it is still necessary to create an empty container above
the start of the for loop. This will allow us to bind each individual book’s
data into a single long data frame. We will add long_df <- NULL before
the start of the loop, and then we will add long_df <- rbind(long_df,
book_df) as the last line of code inside the loop.

When running big loops that do time consuming processing, we have found
that it is also useful to add in one more line of code that reports out the
progress of the script to the console, a little note to let us know things are
progressing. The cat function is useful for this. cat will allow us to construct
a brief message that appears in the console each time the loop completes
processing of a file. In this way, we can easily monitor the progress of the
script. The final for loop section of our script looks like this:

3In regex the period character is used as a special wild card. So in this expression the first
period must be escaped using the double backslashes. This tells the regex engine to find
the literal period. The second period in the expression is the period being used as a wild
card metacharacter. The asterisk is another special character that is used as a multiplier.
So here the asterisk repeats the wild card character indefinitely, until the end of the search
string is reached.

202 16 Classification

long_df <- NULL
for (i in seq_along(files_v)){

xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(xml_doc,

xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
New code for chunking:
groups <- cut(1:length(word_v), breaks = 10, labels = FALSE)
chunks_l <- split(word_v, groups)
chunk_table_l <- lapply(chunks_l, table)
chunk_frequencies_t_l <- lapply(chunk_table_l, prop.table)
chunk_frequencies_df_l <- lapply(chunk_frequencies_t_l, data.frame)
some more code goes here. . .
segments_df <- do.call(rbind, chunk_frequencies_df_l)
segment_ids_v <- gsub("\\..*", "", rownames(segments_df))
book_df <- data.frame(

ID = paste(
files_v[i],
segment_ids_v, sep="_"
), segments_df

)
long_df <- rbind(long_df, book_df)
cat(

"Done Processing",
files_v[i],
"which is file",
i,
"of",
length(files_v),
"\r"
)

}

Run the script now and monitor the processing in the console.

16.4 Reshaping from Long to Wide Format

We will now use exactly the same method used in the previous chapter to
cross tabulate long_df from a long form object to a wide form object. First
rename the columns, then use xtabs to do the reshaping. After that convert
the result to a data frame object. This will result in a new data frame with

16.5 Mapping the Data to the Metadata 203

430 rows, 10 rows for each of the 43 novels in the corpus. Note that when
you run this code, the line calling xtabs may take half a minute or so to
complete.4 Here is the code:

colnames(long_df) <- c("file", "token", "freq")
wide_t <- xtabs(formula = freq ~ file + token, data = long_df)
wide_df <- as.data.frame.matrix(wide_t)
dim(wide_df)
[1] 430 56674

Enter wide_df[1:4, 1:4] in the console to see the first four rows and the
first four columns of data. You will notice that the new row names contain
the unique identifiers. If you would like to examine the values for any specific
word type, you can do that easily. Here is how to look at the frequencies for
the words of and the in the first ten rows:

wide_df[1:10, c("of", "the")]

Before you can use any of this data in a classification test, however, you still
have a bit more pre-processing to do. Since this is an authorship attribution
experiment, you probably want to reduce the data frame to include only the
very high-frequency features, and you will also need a way of keeping track
of the metadata, specifically which texts belong to which authors.

16.5 Mapping the Data to the Metadata

First and foremost, you need a way of mapping the word frequency data
contained in the rows to the specific authors, and not just to specific text
samples (i.e., not just the specific segments). In this corpus you have multiple
texts from multiple authors. In fact, excluding the anonymous book, there
are twelve authors, forty-two books, and 420 book segments. What you need
right away, therefore, is an author column. Because these files were named
with the author’s last name, you can extract the necessary metadata from
what is now in the row names of the wide_df object.

Begin by deriving a new matrix object (metacols_m) by splitting the row
names using that underscore character that was inserted during the paste
command above.

metacols_m <- do.call(rbind, strsplit(rownames(wide_df), "_"))
head(metacols_m)

4We say “or so” because the time it takes to complete this operation is dependent on your
computer’s processor and the configuration of your system. On our MacBook Pro it took
14.19 s.

204 16 Classification

[,1] [,2]
[1,] "anonymous.xml" "1"
[2,] "anonymous.xml" "10"
[3,] "anonymous.xml" "2"
[4,] "anonymous.xml" "3"
[5,] "anonymous.xml" "4"
[6,] "anonymous.xml" "5"

To keep things organized and human readable, reset the column names to
something that makes more sense:

colnames(metacols_m) <- c("sampletext", "samplechunk")
head(metacols_m)
sampletext samplechunk
[1,] "anonymous.xml" "1"
[2,] "anonymous.xml" "10"
[3,] "anonymous.xml" "2"
[4,] "anonymous.xml" "3"
[5,] "anonymous.xml" "4"
[6,] "anonymous.xml" "5"

Using head you can inspect the first few rows, but remember that for some
authors there are multiple books. If you want to see all of the unique values
in the sampletext column, the unique function is handy:

unique(metacols_m[,"sampletext"])
[1] "anonymous.xml" "Carleton1.xml" "Carleton10.xml"
[4] "Carleton11.xml" "Carleton12.xml" "Carleton13.xml"
[7] "Carleton14.xml" "Carleton2.xml" "Carleton3.xml"
[10] "Carleton4.xml" "Carleton5.xml" "Carleton6.xml"
[13] "Carleton7.xml" "Carleton8.xml" "Carleton9.xml"
[16] "Donovan1.xml" "Donovan2.xml" "Driscoll1.xml"
[19] "Driscoll2.xml" "Driscoll3.xml" "Edgeworth1.xml"
[22] "Jessop1.xml" "Jessop2.xml" "Jessop3.xml"
[25] "Kyne1.xml" "Kyne2.xml" "LeFanu1.xml"
[28] "LeFanu2.xml" "LeFanu3.xml" "LeFanu4.xml"
[31] "LeFanu5.xml" "LeFanu6.xml" "LeFanu7.xml"
[34] "Lewis.xml" "McHenry1.xml" "McHenry2.xml"
[37] "Norris1.xml" "Norris2.xml" "Norris3.xml"
[40] "Norris4.xml" "Polidori1.xml" "Quigley1.xml"
[43] "Quigley2.xml"

As you can see, there are 43 unique texts. You can also see that some texts
are by the same authors. You need a way to identify which books are by
the same author, for example, “Quigley1.xml” and “Quigley2.xml” are by the
same author. And you must do the same thing for the other authors from

16.6 Reducing the Feature Set 205

whom there are multiple samples. First remove all of the instances of the
string “.xml” using gsub.

meta_names_v <- gsub("\\.xml$", "", metacols_m[,"sampletext"])

Now use gsub again, with another regular expression that will find instances
of one or more digits (i.e., the 1 or 2 in Quigley1 and Quigley2) followed by
the end of string anchor metacharacter, which you indicate using the dollar
($) symbol. When a match is found, gsub will replace the matched string
with nothing (""), which has the effect of deleting the digits. The result can
be saved into a new object called author_v.

author_v <- gsub("\\d+$", "", meta_names_v)

You can then check your work using unique.
unique(author_v)
[1] "anonymous" "Carleton" "Donovan" "Driscoll" "Edgeworth"
[6] "Jessop" "Kyne" "LeFanu" "Lewis" "McHenry"
[11] "Norris" "Polidori" "Quigley"

With this new vector of author names, create a final data frame that binds
this vector as a new column along with the two columns in the metacols_m
variable to the existing final.df:

authorship_df <- data.frame(
author_v,
metacols_m,
wide_df,
stringsAsFactors = F
)

16.6 Reducing the Feature Set

At 430 by 56677, this new data frame contains way too many features for
an authorship attribution test. You can reduce the number of columns to
just those that contain the high-frequency features using the same approach
we used in the last chapter. First calculate the feature means for each token
and then set a retention threshold. For this example, we will use .005 for
the minimum threshold. Remember though, that the first three columns in
authorship_df are metadata (containing the author and text information),
so we only want to calculate the means for the columns containing the token
frequency data. To access only these columns, you can use bracketed sub-
setting and a sequence vector running from 4 through the number of columns
in the authorship_df object. To determine that end point, use ncol (number

206 16 Classification

of columns), another R function that is similar to length but specific to data
frames and matrices.

token_means <- colMeans(authorship_df[,4:ncol(authorship_df)])
keepers_v <- names(token_means[which(token_means >= .005)])

Since only a handful of words will meet this criteria of having a mean fre-
quency at or above .005, we can inspect the entire vector of “keepers.”
keepers_v
[1] "a" "and" "as" "at" "be" "but" "for." "had"
[9] "he" "her" "him" "his" "i" "in." "is" "it"
[17] "not" "of" "on" "she" "that" "the" "to" "was"
[25] "with" "you"

We can now use these names to identify the subset of columns in the
authorship_df object that we want to retain for analysis:
"# not run"
smaller_df <- authorship_df[, names(keepers_v)]

Since this line of code does not also retain the metadata columns about the
authors and texts that we were so careful to preserve and organize, we still
need to add those in. While you could just cbind those meta columns back
in to the new smaller_df like this,
"# not run"
smaller_df <- cbind(author_v, metacols_m, smaller_df)

a simpler solution is to identify the columns right from the start by combining
the names from the keeper_v vector with the column names of the first three
columns in the main authorship_df data frame.
smaller_df <- authorship_df[, c(names(authorship_df)[1:3], keepers_v)]

16.7 Performing the Classification with SVM

With all of the data preparation done, you are finally ready to perform the
classification analysis and see if you can figure out who wrote that anonymous
book! Begin by identifying the rows in the new data frame belonging to the
anonymous author.

anon_v <- which(smaller_df$author_v == "anonymous")

Next identify the data that will be used to train the model by telling R to
use only the rows of smaller.df that do not include those identified in the

16.7 Performing the Classification with SVM 207

anon_v vector. This negation of specific rows is achieved using the “-” opera-
tor before the object name. The minus sign has the effect of communicating
“all the rows except for these” or “less these.” For this classification, you also
do not want to include the first three columns where the metadata is stored,
so use 4:ncol(smaller.df) to grab only the 4th through last columns.

train <- smaller_df[-anon_v, 4:ncol(smaller_df)]

Next you need to identify a class column that the classifier will use to organize
the data. That is, you need to give the classifier a set of values for the classes
that are already known. In this case, the true author names are stored in
the column headed author_v. This new object needs to be a factor, which
is a special R data type. Factors are very similar to vectors except that in
addition to storing the vector data, in this case a set of character strings
referring to authors, the factor also stores levels. Factors provide an efficient
way of storing repetitive character data because the unique character values
are actually only stored once and the data itself is stored as a vector of
integers that refer back to the single character strings. To achieve this, use
the as.factor function:

class_f <- as.factor(smaller_df[-anon_v, "author_v"])

With the classes identified, you now need to pick a classifier and run the clas-
sification.5 To keep things simple and to avoid having to load a lot of complex
classification packages, we will use a comparatively familiar algorithm, SVM
or Support Vector Machines which is part of the e1071 package.

install.packages("e1071")
library(e1071)

At this point, you can generate a model using the svm classifier function and
the data contained in the train and class_f objects:

model_svm <- svm(train, class_f)

Once the model is generated, it is possible to examine the details using the
summary function.

summary(model_svm)

To test the accuracy of the model, use the predict function with the
model.svm and the training data in the train object.

5There are many good classification algorithms that can be used for authorship attribution
testing, see, for example, Jockers and Witten (2010). In this paper, Jockers and Witten
conclude that the Nearest Shrunken Centroids is especially good for authorship attribution
problems, but frankly, the others methods tested also performed quite well. Interested read-
ers might also look at the work of Jan Rybicki and Maciej Eder found at the Computational
Stylistics Group website: https://sites.google.com/site/computationalstylistics/.

https://sites.google.com/site/computationalstylistics/

208 16 Classification

pred_svm <- predict(model_svm, train)

The pred_svm object will now contain a vector of text labels and the ma-
chine’s guesses. Examine the contents of pred_svm as follows:

as.data.frame(pred_svm)

You should see a few misattributions, but for the most part, you will notice
that the model has done very well. To print out a summary in the form of a
confusion matrix you can use table:

table(pred_svm, class_f)

When you look at the Carleton column in the results, you will note that 139
of the Carleton samples were assigned correctly to Carleton. You will see
that 20 of the Donovan samples were correctly assigned to Donovan, and so
on. This model has performed very well in terms of accurately classifying the
known authors.

Based on this validation of the model’s accuracy in classifying the known
authors, you can classify the anonymous text with a good deal of confidence.
First isolate the test data:

testdata <- smaller_df[anon_v,4:ncol(smaller_df)]

Send the test data to the model for prediction, and view the results using
as.data.frame.

final_result <- predict (model_svm, testdata)
as.data.frame(final_result)
final_result
anonymous.xml_1 Kyne
anonymous.xml_10 Kyne
anonymous.xml_2 Kyne
anonymous.xml_3 Kyne
anonymous.xml_4 Kyne
anonymous.xml_5 Kyne
anonymous.xml_6 Kyne
anonymous.xml_7 Kyne
anonymous.xml_8 Kyne
anonymous.xml_9 Kyne

The results of this svm classification confirm what was observed in the clus-
tering test in Chap. 15; Kyne has been identified as the most likely author of
every single segment of the anonymous book!

16.8 Practice 209

16.8 Practice

1. Now that you know the author and have seen how the classifier correctly
guesses the author of each of the ten samples, increase the number of
features the model uses by decreasing the feature mean used to determine
the number of features retained in the keepers_v object. In the example
in this chapter, 26 high-frequency features were retained using a mean
relative frequency threshold of .005. Decrease this number in order to
observe how the attributions change with the addition of context sensitive
words. When using the 681 highest frequency word features, for example,
the classifier gets every single attribution wrong. Why?

2. For the example in this chapter, we used a corpus wide mean relative
frequency threshold to select the high-frequency features to keep for the
analysis. In the previous exercise you saw how increasing the number of
features can lead to incorrect results because author style gets lost in
context. Another winnowing method involves choosing features based on
the restriction that every selected feature must appear at least once in the
work of every author. Write code that will implement such winnowing in
order to generate a new set of values for the keepers_v object. Here is
some sample code for you to consider. Notice that feature f1 is not found
in either of the samples from author C and feature f5 is not found in any
of the samples from author A. Features f1 and f5 should, therefore, be
removed from the analysis.

authors <- c("A","A","B","B","C", "C")
f1 <- c(0, 1, 2, 3, 0,0)
f2 <- c(0, 1, 2, 3, 0,1)
f3 <- c(3, 2, 1, 2, 1,1)
f4 <- c(3, 2, 1, 2, 1,1)
f5 <- c(0, 0, 1, 2, 1,1)
author_df <- data.frame(authors, f1,f2,f3,f4, f5)
author_df # Show the original data frame
authors f1 f2 f3 f4 f5
1 A 0 0 3 3 0
2 A 1 1 2 2 0
3 B 2 2 1 1 1
4 B 3 3 2 2 2
5 C 0 0 1 1 1
6 C 0 1 1 1 1

210 16 Classification

Reference

Jockers ML, Witten DM (2010) A comparative study of machine learning
methods for authorship attribution. Digital Scholarship in the Humanities
25(2):215–223, https://doi.org/10.1093/llc/fqq001

https://doi.org/10.1093/llc/fqq001

Chapter 17

Topic Modeling

Abstract This chapter introduces topic modeling using the mallet package
and topic-based word cloud visualization using the wordcloud package. (In
this chapter we assume that readers are already familiar with the basic idea
behind topic modeling. Readers who are not familiar may consult Appendix
B for a general overview and some suggestions for further reading.)

17.1 Introduction

Topic modeling is a statistical method for identifying words in a corpus of
documents that tend to co-occur together and as a result share some sort of
semantic relationship. The words ship, ocean, and captain are semantically re-
lated to each other and might be described as words that we would expect to
appear in a topic called “seafaring.” Latent Dirichlet Allocation (LDA) is one
example of a topic modeling algorithm. LDA is the most popular topic mod-
eling approach, and though the mathematics involved is quite complicated,
the basic idea is fairly straightforward. The LDA algorithm treats every text
as a bag of words1 and attempts to identify collections of words that co-occur
together in each text but also co-occur in other texts throughout the corpus.
As you might imagine, any single document is likely to be “about” more than
one thing, and so the LDA model assumes that every document is a collection
of topics in different proportions. Likewise, the model assumes that the entire
corpus is a collection of topics in different proportions. Key here, however,
1This means that the order of the words in the text do not matter.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_17

211

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_17&domain=pdf
https://doi.org/10.1007/978-3-030-39643-5_17

212 17 Topic Modeling

is that the model also assumes that there is a finite number of possible top-
ics. One of the subtle and sometimes difficult decisions that you will have to
make involves how to set the number of topics to be harvested in the topic
modeling process.

17.2 R and Topic Modeling

At the time of this writing there are at least three topic modeling packages
for R. These include topicmodels from Bettina Grün and Kurt Hornik, lda
by Johnathan Chang, and mallet by David Mimno.2 Though the mallet
package for R is a relative newcomer, the Java package upon which it is
based is not. We have chosen to use the mallet package here because Mimno’s
implementation of topic modeling in the MALLET JAVA package is the de facto
tool used by literary researchers.3 In short, MALLET is the most familiar topic
modeling package in the humanities, and it makes the most sense to work
with it here.4

17.3 Text Segmentation and Preparation

Topic modeling treats each document as a bag of words in which word order is
disregarded. Since the topic model works by identifying words that tend to co-
occur, the bigger the bag, the more words that will tend to be found together
in the same bag. If novels, such as those we will analyze here, tended to be
constrained to only a very small number of topics, or themes, then treating
each entire novel as one bag might be fruitful. In reality, though, novels tend to
have some themes that run throughout their entirety and others that appear
at specific points and then disappear. In order to capture these transient
themes, it is useful to divide novels and other large documents into chunks

2The topicmodels package provides an implementation of (or interface to) the C code de-
veloped by LDA pioneer David Blei. See Blei et al. (2003). Johnathan Chang is a researcher
at Facebook who has worked with Blei and with whom he has co-authored several papers
including the influential topic modeling paper: Chang et al. (2009). David Mimno, a profes-
sor at Cornell, is the developer and maintainer of the Java implementation of LDA in the
popular MAchine Learning for LanguagE Toolkit (MALLET) developed at the University
of Massachusetts under the direction of Andrew McCallum: McCallum, Andrew Kachites.
See McCallum (2002).
3Mimno released (to CRAN) his R “wrapper” for the MALLET topic modeling package on
August 9, 2013. See Mimno (2013).
4We have used all three of these packages to good effect. Each one has its advantages and
disadvantages in terms of ease of use, but functionally they are all comparable.

17.3 Text Segmentation and Preparation 213

or segments, somewhat like we did in Chap. 16, and then run the model over
those segments instead of over the entire text.5 You must, therefore, begin
by pre-processing the novels in the corpus into segments.

Unlike the previous chapter where we segmented texts based on percentage
(i.e., each book was chunked into 10 equal sized portions), here we will write
a function that allows for chunking based on a set number of words. That is,
you will be able to set a specific chunk size, such as 1000 words, and then
divide each text into some number of word segments that are 1000, or roughly
1000, words long.

Begin by loading the xml2 package, referencing the corpus directory, and
then generating a vector of file names. This should be familiar from previous
chapters.

rm(list=ls())
library(xml2)
input_dir <- "data/XMLAuthorCorpus"
files_v <- dir(path = input_dir, pattern = ".*xml")

As in the last chapter, here too you will be able to recycle functions you
have already written by calling your corpus_functions.R file with the source
function.

source("code/corpus_functions.R") # Load the functions

Ultimately, the script written in this chapter is going to involve a for loop
that will iterate over the files stored in the files_v object. For testing pur-
poses, let us temporarily avoid dealing with the for loop and set i equal to 1
and recycle some code and custom functions (get_node_text and tokenize)
from the previous chapters to tokenize the XML document.
i <- 1
xml_doc <- read_xml(file.path(input_dir, files_v[i]))

para_text <- get_node_text(xml_doc,
xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)

Now create and set a variable called chunk_size.
chunk_size <- 1000 # number of words per chunk

5There appears to be no conventional wisdom regarding ideal text-segmentation parame-
ters. David Mimno reports in email correspondence that he frequently chunks texts down
to the level of individual paragraphs. Until new research provides an algorithmic alter-
native, trial and experimentation augmented by domain expertise appear to be the best
guides in setting segmentation parameters.

214 17 Topic Modeling

Here, the goal is to divide the text into an unknown number of segments
that are equal in length to the value set in the chunk_size variable. Recall
from the last chapter how we set the value of the breaks parameter of the
cut function to 10 in order to generate ten segments. To segment a text
based on the length of the segments, we will need to use a slightly different
approach. Your first thought might be to divide the length of the word_v by
the chunk_size and then use the resulting value as the value for the breaks
argument in the cut function. For example:
Not run
num_breaks <- length(word_v)/chunk_size

But notice that the value of num_breaks, 99.56, is not an even number. There
are 99 full segments of 1000 words each and then one segment at the end that
is only about half the size we want. When chunking a file using percentages,
as in the last chapter, each chunk is almost exactly the same size. When
we split a text into 500 or 1000 word chunks, however, the last chunk will
always be something smaller than the desired chunk size you have set. Thus,
you need a way of dealing with this “remainder” chunk.

Instead of using cut, we will use seq_along and a new function ceiling
along with the split function used for similar purposes in the last chapter.

x <- seq_along(word_v)
chunks_l <- split(word_v, ceiling(x/chunk_size))

The value of x in the code shown above is a simple vector of numbers that cor-
responds to the indices of the word_v vector. We have seen how the seq_along
function works in previous chapters. What is interesting here is the way that
we use x in combination with some division and the ceiling function.

To understand what is going on in this code, let us look at a simple example.
Instead of using the very long x by computing a sequence along the length
of word_v, we will just get a short sequence of 100 values.
some_vector <- 1:100
x <- seq_along(some_vector)
some_chunk_size <- 9
chunks_l <- split(some_vector, ceiling(x/some_chunk_size))

Run this code now and examine the contents of chunks_l. You will find a
list of 12 items. The first 11 each contains 9 values (9 is the chunk size we
set in some_chunk_size). The last list item, however, only includes 1 value.
That is because 100/9 = 11.11111. In other words, since 100 is not evenly
divisible by 9, there was some remainder.

OK, but what about ceiling? The ceiling function performs a type of
rounding. First consider what happens when we divide x by the value of
some_chunk_size (which is 9 in this example). Due to vector recycling, each

17.3 Text Segmentation and Preparation 215

value in x is divided by 9. When we wrap this result inside the ceiling
function, each of these resulting values is rounded up to the nearest whole
number. If you want to see this in action, just enter the following code:

x/some_chunk_size
ceiling(x/some_chunk_size)

What this second line of code effectively does is return the factor vector
that we can then use in the split function to identify the members of each
segment. So here again is the code that we need to create our text segments:

x <- seq_along(word_v)
chunks_l <- split(word_v, ceiling(x/chunk_size))

After running this code, you can check to see if the results match your expec-
tations in two ways. First, you may want to inspect one element of the list.
For example, to see values held in the first list item, enter chunks_l[[1]].
You should see a character vector of words from the first novel in the files_v
vector. Now enter length(chunks_l[[1]]) to return the length of the first
vector. It should be 1000. Now use lapply with the length function to re-
turn the length of all of the vectors: lapply(chunks_l, length). What you
will observe is that there are 99 items containing 1000 words and a 100th
item containing only 560 words!

A simple way to deal with this situation is to add the final “remainder” chunk
onto the second-to-last chunk, but you might not always want to do this. Say,
for example, that the chunk_size variable is set to 1000 words, and the last
chunk ends up being 950 words long. Would you really want to add those
950 words to the previous chunk resulting in a chunk of 1950 words? The
answer is, of course, a subjective one, but a chunk of 950 words is probably
close enough to 1000 to warrant full “chunk” status; i.e., it should remain a
chunk of its own. But what if the last chunk were just 500 words, or 100
words; those samples are getting comparatively small. Since you must pick a
cutoff value, it is convenient to set a condition such that the last chunk must
be at least one-half the size of the value set in the chunk_size variable. You
can code this exception easily using the length function and some simple
division wrapped up inside another if conditional, like this:

if(length(chunks_l[[length(chunks_l)]]) <= chunk_size/2){
chunks_l[[length(chunks_l)-1]] <- c(

chunks_l[[length(chunks_l)-1]],
chunks_l[[length(chunks_l)]]
)

chunks_l[[length(chunks_l)]] <- NULL
}

This conditional expression begins by getting the length of the word vector
held in the last item of the chunks_l list and then checks to see if it is

216 17 Topic Modeling

less than or equal to (<=) one-half of chunk_size. If the condition is met
(i.e., TRUE), then the words in the last chunk are added to the words in the
second-to-last chunk and the last chunk is then removed by setting it to NULL

In this case, since the length of the last vector is 560, the last segment will
be allowed to stay as a full chunk. Let us now put all of this code together:
i <- 1
xml_doc <- read_xml(file.path(input_dir, files_v[i]))

para_text <- get_node_text(xml_doc,
xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
chunk_size <- 1000
x <- seq_along(word_v)
chunks_l <- split(word_v, ceiling(x/chunk_size))
if(length(chunks_l[[length(chunks_l)]]) <= chunk_size/2){

chunks_l[[length(chunks_l)-1]] <- c(
chunks_l[[length(chunks_l)-1]],
chunks_l[[length(chunks_l)]]
)

chunks_l[[length(chunks_l)]] <- NULL
}

Because the topic modeling algorithm does its own built in tokenization, we
now need to reassemble all the word vectors in each item of the chunks_l
list back into strings. This is accomplished using lapply to apply the
paste function to each list item (chunk_strings_l <- lapply(chunks_l,
paste, collapse=" ")). The resulting list can then be morphed into a data
frame object using do.call and rbind (chunks_df <- do.call(rbind,
chunk_strings_l)). The entire script now looks like this:
i <- 1
xml_doc <- read_xml(file.path(input_dir, files_v[i]))

para_text <- get_node_text(xml_doc,
xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
chunk_size <- 1000
x <- seq_along(word_v)
chunks_l <- split(word_v, ceiling(x/chunk_size))
if(length(chunks_l[[length(chunks_l)]]) <= chunk_size/2){

chunks_l[[length(chunks_l)-1]] <- c(
chunks_l[[length(chunks_l)-1]],
chunks_l[[length(chunks_l)]]

17.3 Text Segmentation and Preparation 217

)
chunks_l[[length(chunks_l)]] <- NULL

}
chunk_strings_l <- lapply(chunks_l, paste, collapse=" ")
chunks_df <- do.call(rbind, chunk_strings_l)

With the basic code written and tested using the hard-coded value for i, all
we need now is to remove the hard-coded i and replace it with a for loop
that will send all of the files in the files_v variable through this process and
then bind all the results into a master data frame that we will call corpus_df.
Naturally, however, there is one complicating factor. In addition to keeping
track of the file names, you also need to keep track of the segment numbers.
Eventually you will want to be able to move from the topic model and return
to the original texts and the specific text segments. So you need to retain
this metadata in some form or another.

You did something similar in the previous chapter. First we will capture the
original file names from the files_v and massage them a bit using gsub to
remove the file extensions:

textname_v <- gsub("\\..*", "", files_v[i])

With the unique file names in hand, we can label the segments numerically
by generating a sequence of numbers from 1 to the total number of chunks,
which in this case is the same as the number of rows (found using the nrow
function) in the chunks_df variable: i.e., 1:nrow(chunk_df). We will call
these the chunk_ids_v: as in chunk_ids_v <- 1:nrow(chunks_df). The file
names and the chunk IDs can then be pasted together in order to create a
unique segment ID: chunk_names_v <- paste(textname_v, chunk_ids_v,
sep="_"). Finally, we combine the unique segment ID values with the seg-
ments together into a new data frame that we will call file_df.
i <- 1
xml_doc <- read_xml(file.path(input_dir, files_v[i]))

para_text <- get_node_text(xml_doc,
xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
chunk_size <- 1000
x <- seq_along(word_v)
chunks_l <- split(word_v, ceiling(x/chunk_size))
if(length(chunks_l[[length(chunks_l)]]) <= chunk_size/2){

chunks_l[[length(chunks_l)-1]] <- c(
chunks_l[[length(chunks_l)-1]],
chunks_l[[length(chunks_l)]]

218 17 Topic Modeling

)
chunks_l[[length(chunks_l)]] <- NULL

}
chunk_strings_l <- lapply(chunks_l, paste, collapse=" ")
chunks_df <- do.call(rbind, chunk_strings_l)
textname_v <- gsub("\\..*","", files_v[i])
chunk_ids_v <- 1:nrow(chunks_df)
chunk_names_v <- paste(textname_v, chunk_ids_v, sep="_")
file_df <- data.frame(

id = chunk_names_v,
text = chunks_df,
stringsAsFactors = FALSE
)

Note that we have added the stringsAsFactors = F argument to this call to
data.frame. By default, data.frame treats character strings as factors, and
since we most definitely want strings and not factors, we need to explicitly
set this argument to FALSE.

Now remove the hard-coded value for i and wrap all of this code inside a
for loop. Just before the loop we will instantiate an empty data frame ob-
ject (documents_df) into which we will collect each of the resulting file_df
objects. Here is the final script with the loop. Run this code now and then
inspect the results using the dim and str functions.

library(xml2)
input_dir <- "data/XMLAuthorCorpus"
files_v <- dir(path = input_dir, pattern = ".*xml")
source("code/corpus_functions.R") # Load the functions

documents_df <- NULL
chunk_size <- 1000

for (i in seq_along(files_v)){
xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(

xml_doc,
xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
word_v <- tokenize(para_text)
x <- seq_along(word_v)
chunks_l <- split(word_v, ceiling(x/chunk_size))
if(length(chunks_l[[length(chunks_l)]]) <= chunk_size/2){

chunks_l[[length(chunks_l)-1]] <- c(
chunks_l[[length(chunks_l)-1]],

17.4 The R Mallet Package 219

chunks_l[[length(chunks_l)]]
)

chunks_l[[length(chunks_l)]] <- NULL
}
chunk_strings_l <- lapply(chunks_l, paste, collapse=" ")
chunks_df <- do.call(rbind, chunk_strings_l)
textname_v <- gsub("\\..*","", files_v[i])
chunk_ids_v <- 1:nrow(chunks_df)
chunk_names_v <- paste(textname_v, chunk_ids_v, sep="_")
file_df <- data.frame(

id = chunk_names_v,
text = chunks_df,
stringsAsFactors = FALSE
)

documents_df <- rbind(documents_df, file_df)
}

If everything worked correctly you will have a new data frame with 3504 rows
and 2 columns labeled “id” and “text.” Mission accomplished; now let us do
some topic modeling!

17.4 The R Mallet Package

The first and most important thing to know about the mallet package is
that it is not a complete wrapper for the entire MALLET toolkit. As the doc-
umentation for the package notes: “Mallet has many functions, this wrapper
focuses on the topic modeling sub-package written by David Mimno.” So, do
not look to this R wrapper if you want to access any of MALLET's other func-
tions, such as document classification or hidden Markov models for sequence
tagging. This package is strictly for topic modeling. mallet is installed like
any other package in R and you will want to be sure to include any package
dependencies. Once installed it is invoked using the usual library(mallet)
expression.

library(mallet)

You will notice that mallet relies on the rJava package, which allows R to
create Java objects and call Java methods.6 Recall that MALLET is written in
Java, not R. When you first try to run mallet, it is possible you will get an
error related to rJava not being able to load:

6Methods in Java are more or less synonymous with functions in R.

220 17 Topic Modeling

Error: package or namespace load failed for ’rJava’:. . .

If you get this error on a Mac, you can usually resolve it by opening
your computer’s terminal and issuing the following command: sudo R CMD
javareconf. To access your terminal from within RStudio, start at the “Tools”
drop-down menu, “Tools” —> “Terminal” —> “New Terminal.”7 On Win-
dows, simply installing Java should resolve the issue (See https://www.java.
com/en/download/windows-64bit.jsp)

17.5 Simple Topic Modeling with a Standard Stop List

In the stylistic analysis that was covered in prior chapters, high-frequency
words were retained and used as markers of individual authorial style. In
topic modeling you will typically want to remove or stop-out high-frequency
words such as the, of, and, a, an, etc., because these words carry little weight
in terms of thematic or topical value. If you do not remove these common
function words, your topic model will generate topics (weighted word distri-
butions) that are less about shared semantic sense, that is, less about topics
or themes, and more about syntactical conventions. Here is an example show-
ing the top seven words from 20 “topics” that we derived from the exercise
corpus without using a stop list:
0 0.04674 the to a of and don in
1 0.06203 the to and of a bryce in
2 0.1085 of the and in a is to
3 0.14428 the of to and they their in
4 0.29792 the and of a in to was
5 0.16571 the a to of and was i
6 0.45213 you i to it a and that
7 0.24112 the of and a in by with
8 0.35832 i you to my and is me
9 0.55731 the of to and in that which
10 0.59945 a to of he was his had
11 0.13994 the to you an a that it
12 0.03846 hycy ye bryan an o a the
13 0.10359 the and a to of in susan
14 0.50041 the of and a in was which
15 0.07111 and the a of in with
16 0.18016 the a and of his sir is
17 0.39585 her she and the to was a
18 0.12091 and i a the in my
19 0.58441 he the his and was to him

7For more information, take a look at https://github.com/rstudio/rstudio/issues/2254.

https://www.java.com/en/download/windows-64bit.jsp
https://www.java.com/en/download/windows-64bit.jsp
https://github.com/rstudio/rstudio/issues/2254

17.5 Simple Topic Modeling with a Standard Stop List 221

As you can see, these are semantically meaningless.

In the data directory, we have included a stop list (stoplist.csv) containing
606 high-frequency words. In your own work you may want to add to or cut
this list to suit your research objectives, but this list will be sufficient for our
purposes here.

The first step in generating a topic model with the mallet package is to
invoke the mallet.import function. This function takes five arguments:

1. id.array
2. text.array
3. stoplist.file
4. preserve.case
5. token.regexp

The first argument (id.array) is an array, or vector, of document IDs. You
have this information stored in the first column of the documents_df data
frame object that you created above. The second argument (text.array)
is a vector of text strings, and you have this data in the second column of
the documents_df data frame object. Next is the stop list file which will be
referenced using a relative path to its location on your computer; in this case
the path will be data/stoplist.csv. The next argument, preserve.case,
is irrelevant in this example because you have already elected to lowercase all
of the words as part of the tokenize function. Had you not already done this,
mallet would allow you to choose to do so or not at this point.8 The final
argument, token.regexp, allows you to define a specific regular expression
for tokenizing the text strings. The default expression is one that keeps any
sequence of one or more Unicode characters. Because you have gone to a
lot of trouble to retain apostrophes, you will need to give mallet.import
a new value to replace the default token.regexp argument. To keep those
apostrophes, the default expression ([\\\\p\{L\}]+) should be replaced with
[\\\\p\{L\}']+. The complete expression, with the slightly modified regular
expression, is as follows:

mallet_instances <- mallet.import(documents_df$id,
documents_df$text,
"data/stoplist.csv",
FALSE,
token.regexp="[\\p{L}']+")

The mallet_instances object created here is a Java object that is called a
Mallet instance list. This is not an R object and must be accessed using other
Java methods. The mallet package provides other functions as a gateway or
bridge to those methods.

8mallet's default behavior is to convert to lowercase.

222 17 Topic Modeling

The next step is to create a topic model trainer object, which, for the moment,
can be thought of as a kind of place holder object that you will fill with data
in the next few steps. Notice that it is at this stage that the number of topics
that the model will contain is set.9 For the sake of this tutorial, we are setting
the number of topics equal to the number of novels in the corpus. The reasons
for this choice are purely pedagogical and will make more sense as we work
through the rest of this chapter.

topic_model <- MalletLDA(num.topics = 43)

Because the mallet package is simply providing a bridge to the Java appli-
cation, this might feel a bit obtuse, and it can be a bit disconcerting when
you are unable to employ R functions, such as class and str, to explore
the makeup of these objects. If you try, you will see references to the rJava
package.

class(topic_model)
[1] "jobjRef"
attr(,"package")
[1] "rJava"

In this case, jobjRef is a reference (or pointer) to a Java object that has
been created and masked behind the scenes. Unless you are willing to dig
into the actual source, that is, leave the world of R and go study the MALLET
Java application, then you will have to accept a bit of obscurity.10

With the trainer object (topic_model) instantiated, you must now fill it with
the textual data. For this you will call the loadDocuments method with the
mallet_instances object that was created a moment ago as an argument.

topic_model$loadDocuments(mallet_instances)

9How to set the number of topics is a matter of significant discussion in the topic mod-
eling literature, and there is no obvious way of knowing in advance exactly where this
number should be set. In the documentation for the MALLET program, Mimno writes: “The
best number depends on what you are looking for in the model. The default (10) will
provide a broad overview of the contents of the corpus. The number of topics should
depend to some degree on the size of the collection, but 200–400 will produce reason-
ably fine-grained results.” Readers interested in more nuanced solutions may wish to con-
sult chapter 8 of Jockers (2013), or visit http://www.matthewjockers.net/2013/04/12/
secret-recipe-for-topic-modeling-themes/ for Jockers’s “Secret” Recipe for Topic Modeling
Themes.
10The MALLET program is not terribly difficult to run outside of R and there are
many good tutorials available online. A few of these are specifically written with hu-
manities applications of topic modeling in mind. Perhaps the best place to start is
with Shawn Graham, Scott Weingart, and Ian Milligan’s online tutorial titled “Get-
ting Started with Topic Modeling and MALLET.” See http://programminghistorian.org/
lessons/topic-modeling-and-mallet.

http://www.matthewjockers.net/2013/04/12/secret-recipe-for-topic-modeling-themes/
http://www.matthewjockers.net/2013/04/12/secret-recipe-for-topic-modeling-themes/
http://programminghistorian.org/lessons/topic-modeling-and-mallet
http://programminghistorian.org/lessons/topic-modeling-and-mallet

17.5 Simple Topic Modeling with a Standard Stop List 223

When invoked, some initial processing of the documents occurs as mallet
prepares the data for modeling. Among other things, mallet will output to
the R console some information about the number of tokens found in the
entire corpus after stop word removal (total tokens) and about the length
of the longest individual document after stop word removal (max tokens).
At this point, if you wish to access a list of the entire vocabulary of the
corpus, you can invoke the getVocabulary method to return a character
vector containing all the words:

vocabulary <- topic_model$getVocabulary()

You can then inspect this character vector using typical R functions:

class(vocabulary)
[1] "character"
length(vocabulary)
[1] 55347
head(vocabulary)
[1] "summer" "topsail" "schooner" "slipped" "cove"
[6] "trinidad"
vocabulary[1:50]
[1] "summer" "topsail" "schooner" "slipped"
[5] "cove" "trinidad" "head" "dropped"
[9] "anchor" "edge" "kelp" "fields"
[13] "fifteen" "minutes" "small" "boat"
[17] "deposited" "beach" "man" "armed"
[21] "long" "squirrel" "rifle" "axe"
[25] "carrying" "food" "clothing" "brown"
[29] "canvas" "pack" "watched" "return"
[33] "weigh" "stand" "sea" "northwest"
[37] "trades" "disappeared" "ken" "swung"
[41] "broad" "powerful" "back" "strode"
[45] "resolutely" "timber" "mouth" "river"
[49] "john" "cardigan"

At this point, you can also access some basic information about the frequency
of words in the corpus and in the various documents of the corpus using the
R mallet method (function) mallet.word.freqs.

word_freqs <- mallet.word.freqs(topic_model)

Calling this function will return a data frame containing a row for each unique
word type in the corpus. The data frame will have three columns:

224 17 Topic Modeling

1. words
2. term.freq
3. doc.freq

The word types are in the words column; term.freq provides a count of the
total number of tokens of that given word type in the corpus; and, finally,
doc.freq provides a count of the total number of documents that contain
that word at least once. You can look at the first few rows in the data frame
using R’s head function:

head(word_freqs)
words term.freq doc.freq
1 summer 69 54
2 topsail 1 1
3 schooner 16 10
4 slipped 130 120
5 cove 7 7
6 trinidad 17 9

Invoking head reveals that the word type summer occurs 69 times in the
corpus in 54 different documents. The word topsail, on the other hand, occurs
just once in one document.11

With the documents pre-processed, you are now ready to run the actual
training process. Before that, however, you have the opportunity to tweak
the optimization hyperparameters! Though this step is not required (if you
skip it the default values of 200 burn-in iterations and 50 iterations between
optimization will be implemented), it is worth knowing that you can control
the optimization interval and the burn-in using the following expression12:
Not run
topic_model$setAlphaOptimization(40, 80)

Because hyperparameter optimization is on by default, you can skip this step
and go directly to the training of the model. The key argument that must
now be set is the number of iterations to use in training. This argument
determines the number of sampling iterations. In theory, as you increase the
number of iterations the quality of the model will improve, but model quality
is a rather subjective measure based on human evaluation of the resulting
topic word clusters. In our own tests, we have observed that as one increases
the number of iterations, topic quality increases only to a certain point and
then levels off. That is, after you reach a certain number of iterations, the

11Do not forget that prior to modeling you have chunked each novel from the example
corpus into 1000 word segments.
12The ramifications of resetting these values is beyond the scope of this chapter, but inter-
ested readers may wish to consult Hanna Wallach, David Mimno, and Andrew McCallum.
“Rethinking LDA: Why Priors Matter.” In proceedings of Advances in Neural Information
Processing Systems (NIPS), Vancouver, BC, Canada, 2009.

17.6 Unpacking the Model 225

composition and quality of the resulting topics does not change much.13 For
now, set the number of iterations to 400. In your own work, you may wish to
experiment with different values and examine how topic composition changes
with different values.

topic_model$train(400)

When you run this command, a great deal of output (which we have not
shown here) will be sent to your R console. After every 50 iterations, R will
spit out a set of the seven top words in each topic. Here is a small snippet of
that output:
INFO:
0 0.11628 sir reilly replied man mr woodward robert
1 0.11628 bejabers camp timber d'arcy men gold happy
2 0.11628 wid replied good night man ould ha
3 0.11628 man sir mr darby poor honor people
4 0.11628 man hand knew heard read told business
5 0.11628 man time black made eye stood appearance
6 0.11628 mrs doctor aunt dr face good half
. . .

R will also provide probabilistic information about how likely the data are
given the model as it exists at a specific moment in the process. This figure
is represented as a log-likelihood and appears as INFO: <190> LL/token:
-9.3141 in the output. Although the meaning of the log-likelihood number
is beyond the scope of this book, numbers closer to zero generally indicate
better fitting models.14

17.6 Unpacking the Model

With the model run, you can inspect the results and begin to see what
is revealed about the corpus in terms of its thematic content. Start by
exploring the composition and coherence of the 43 topics you instructed
mallet to identify. For extracting this information from the model, mallet
provides two functions that return R objects: mallet.topic.words and
mallet.top.words. Use the first of these to generate a matrix in which each
row is a topic and each column a unique word type in the corpus. Once run,
you can examine the size of the resulting matrix using dim:

13Our anecdotal experience seems consistent with more scientific studies, and interested
readers may wish to consult Griffiths and Steyvers (2004).
14David Mimno’s “Topic Modeling Bibliography” provides a comprehensive list of resources
for those wishing to go beyond this text. See http://www.cs.princeton.edu/~mimno/topics.
html.

http://www.cs.princeton.edu/~mimno/topics.html
http://www.cs.princeton.edu/~mimno/topics.html

226 17 Topic Modeling

topic_words_m <- mallet.topic.words(topic_model,
smoothed=TRUE,
normalized=TRUE)

The values that appear in the cells of this matrix vary depending upon how
you set the normalized and smoothed arguments. In this example we have
set both normalized and smoothed to TRUE. When normalization is set to
TRUE the values in each topic (row) are converted to percentages that sum to
one. This can be checked with the rowSums function:

rowSums(topic_words_m)

When set to FALSE, the value in any given cell will be an integer representing
the count of the occurrences of that word type that were assigned to a partic-
ular topic (row) during processing. If you want to explore this matrix further,
you can use bracketed sub-setting to access the values, for example15:

topic_words_m[1:3, 1:3]

These results are not terribly informative because there is no column header
to show which word types are associated with each column of values. You can,
however, retrieve that information from the model and then add the column
headers yourself using the colnames function.

vocabulary <- topic_model$getVocabulary()
colnames(topic_words_m) <- vocabulary
topic_words_m[1:3, 1:3]
summer topsail schooner
[1,] 1.327843e-06 1.327843e-06 1.327843e-06
[2,] 3.315951e-07 3.315951e-07 3.315951e-07
[3,] 8.043322e-07 8.043322e-07 8.043322e-07

Having set the column values, you can compare the relative weight of specific
word types (as a percentage of each topic). In this example, we use R’s c
function to create a vector of key words and then use that vector as a way
to select named columns from the matrix:

keywords <- c("california", "ireland")
topic_words_m[, keywords]
california ireland
[1,] 1.327843e-06 1.566520e-02
[2,] 3.315951e-07 3.315951e-07
[3,] 8.043322e-07 5.553145e-04
[4,] 9.570549e-07 3.813123e-03
[5,] 5.176236e-07 5.176236e-07

15Keep in mind that due to random sampling your values will not always match the values
shown in this book.

17.6 Unpacking the Model 227

[6,] 3.104906e-07 3.104906e-07
[7,] 2.321853e-07 2.899271e-03
[8,] 6.463212e-07 6.463212e-07
[9,] 6.805181e-07 6.805181e-07
[10,] 3.996122e-07 1.408482e-03
[11,] 5.218863e-07 5.218863e-07
[12,] 4.046535e-07 4.046535e-07
[13,] 9.352515e-07 9.352515e-07
[14,] 2.805931e-07 2.805931e-07
[15,] 1.894476e-07 1.894476e-07
[16,] 9.718746e-07 9.718746e-07
[17,] 1.500295e-07 1.500295e-07
[18,] 4.134300e-03 4.183471e-07
[19,] 6.640075e-07 6.640075e-07
[20,] 3.173902e-07 3.173902e-07
[21,] 1.143779e-03 1.065560e-06
[22,] 3.799342e-07 3.799342e-07
[23,] 1.502870e-06 1.502870e-06
[24,] 9.507115e-08 9.507115e-08
[25,] 5.710602e-07 5.710602e-07
[26,] 8.605327e-07 8.605327e-07
[27,] 4.034031e-07 4.034031e-07
[28,] 2.596278e-07 2.596278e-07
[29,] 4.874167e-07 4.874167e-07
[30,] 1.046529e-04 6.786784e-07
[31,] 1.126814e-06 1.126814e-06
[32,] 4.974650e-07 4.974650e-07
[33,] 8.536676e-07 8.536676e-07
[34,] 1.083956e-02 5.076536e-03
[35,] 1.525652e-03 8.294236e-07
[36,] 1.888693e-07 1.888693e-07
[37,] 2.919902e-07 2.919902e-07
[38,] 4.829628e-07 4.829628e-07
[39,] 1.650274e-07 1.650274e-07
[40,] 2.147678e-06 2.147678e-06
[41,] 5.317065e-07 5.317065e-07
[42,] 7.359953e-07 7.359953e-07
[43,] 1.304953e-03 8.107258e-07

You can calculate which of the topic rows has the highest concentration of
these key terms using R’s rowSums and max functions inside a call to which.
Save that row number in a new variable called imp_row. Keep in mind that
if you are copying and executing this code as you read along, your row values
and weights are likely to be different from what is shown here because the
topic model employs a process that begins with a random distribution of

228 17 Topic Modeling

words across topics. Though the topics you generate from this corpus will be
generally similar, they may not be exactly the same as those that appear in
this text.

imp_row <- which(
rowSums(topic_words_m[, keywords]) ==
max(rowSums(topic_words_m[, keywords]))
)

Examining these results shows that the topic in row 34 has the highest inci-
dence of these keywords in our model.16 While exploring the topic_words_m
object in this manner can be fruitful, we are usually less interested in specific
words and more interested in examining the top or most heavily weighted
words in each topic.

For this ranked sorting of topic words, mallet offers another function:
mallet.top.words. This function takes three arguments:

1. topic_model
2. word.weights
3. num.top.words

The first of these is the model itself, the second is a row from the matrix of
word weights that you have already created and stored in the topic_words_m
object, and finally a third argument stipulating a user-defined number of “top
words” to display. Assuming you wish to see the top 10 words from topic 34
(the row number you saved in the imp_row variable), you would enter:

mallet.top.words(topic_model, topic_words_m[imp_row,], 10)
words weights
irish irish 0.017365889
men men 0.012404349
san san 0.012022692
california california 0.010839555
city city 0.009083933
state state 0.008473282
mr mr 0.007748134
native native 0.007748134
people people 0.007709968
francisco francisco 0.007595471

16It must be noted here that in the MALLET Java program, topics are indexed starting at
zero. Java, like many programming languages, begins indexing with 0. R, however, begins
with 1. Were we to run this same topic modeling exercise in the Java application, the topics
would be labeled with the numbers 0-42. In R they are 1-43.

17.7 Topic Visualization 229

The most heavily weighted word in this topic is the word irish. Were you to
assign a label to this topic, you might, after examining all these top words,
choose Irish California or Irish-American West as a general descriptor.17

17.7 Topic Visualization

Looking only at the top ten words in a topic can be a bit misleading. Bear
in mind that each topic in this model consists of values for all of the word
types! Generally you will want to examine more than just the top ten words
when making a decision about how to label/interpret the topical or thematic
essence of a topic. It can, therefore, be useful to visualize a larger number of
the top words in the topic using a word cloud visualization. Thanks to Ian
Fellows, R has a package for generating word cloud images from exactly the
type of data returned by the mallet.top.words function.

Begin by installing and then loading the wordcloud package:

library(wordcloud)

Now employ the mallet.top.words function again to grab 100 of the top
words and their associated weights from the model. Instead of simply print-
ing the results to the R console, save the output into a new variable called
topic_top_words.

topic_top_words <- mallet.top.words(topic_model,
topic_words_m[imp_row,], 100)

You can now call the wordcloud function providing a vector of words and
a vector of word weights from the topic_top_words object as the first two
arguments. To these we have added three more arguments that control the
aesthetic look of the final word cloud (Fig. 17.1).18

wordcloud(topic_top_words$words,
topic_top_words$weights,
c(2, .4), rot.per=0, random.order=F)

17For those who may not have intuited as much, the corpus of texts used in this book is
composed of novels written entirely by Irish and Irish-American authors.
18To see how to control the look of the visualization, consult the help documentation for
the wordcloud function using ?wordcloud.

230 17 Topic Modeling

irish
men

san
california

citystate

mr

native

people

francisco

land
race

country

county

states

ireland
years

man

large

united

american

america

irishmen

government

sicjohn

made

governor

thomas

james
education

national hundred

irishman

senator

public

army

born

santa
o'brien

esq

lands

high
war

murphy

pacific

york

gold

colonel

place

general

party

birth

called
citizens

countrymen

names

thousand

races
coast

successful

honor

distinguished

great

number

captain

saxon

present
population

mining

'

class

educated

gentleman

british

americans

white

settled

early

railroad

descent

wealth

leading

martin

street

rich

popular

elected

engaged

millions

members
position

peter

clara

office

day

business

plains

history

fine

Fig. 17.1 Word cloud of topic 34

17.8 Topic Coherence and Topic Probability

Because we are familiar with this corpus, we know that choosing the words
california and irish will prove useful in identifying a topic that deals with the
Irish presence in California and San Francisco, a topic found prominently in
several books in this corpus. Often, however, you will be dealing with larger
corpora and you will have to inspect the makeup of each topic in order to
determine if the topics are coherent. You need to inspect them to see if they
are topical or thematic in nature. If you complete the first chapter exercise
right now, you will be able to examine 43 different word clouds. During
that inspection, you will inevitably notice a high number of character names
in many of the topics. Depending on your research goals, the presence of
character names could be a significant problem.

Let us assume that you are hoping to track thematic change throughout a
corpus. If that is the case, then the presence of character names is going to
skew your results rather dramatically. There is a topic, for example, where
the words nell, tim, and sheila are prominent. Without even doing the calcu-
lations, we can tell you that this topic is going to be dominant in one book in
the corpus (Josephine Donovan’s novel Black Soil). This same topic will be
comparatively absent from the other novels. We can also predict, based on
our knowledge of this corpus, that there will be another topic featuring gerald
from a book titled Gerald Ffrench’s Friends and still another topic with john
and big and flurry. These will be dominant in the book Kansas Irish where
Big Flurry is the nickname of the main character, Florence Driscoll.

17.8 Topic Coherence and Topic Probability 231

As noted previously, we intentionally picked 43 topics in order to highlight
this problem (as you will recall, there are 43 books in the corpus). Even
if we had not rigged the system, we would have had a way of exploring
the extent to which certain topics were more probable or present in certain
documents. mallet provides a function (mallet.doc.topics) for inspecting
the probability of each topic appearing in each document. Or in more simple
terms, mallet provides a function for assessing the proportion of a document
that is about each topic.

doc_topics_m <- mallet.doc.topics(topic_model,
smoothed = TRUE,
normalized = TRUE)

Calling this function returns a matrix object in which each column is a topic
and each row is a document from the corpus. The values in the cells of the
matrix are the corresponding probabilities of a given topic (column) in a
given document (row).

When the normalized argument is set to TRUE (as it is here) then the values
in each row will sum to one. In other words, summing the 43 topic probability
measurements for each document will return 1. This makes it easy to think
about the values as percentages or proportions of the document. In topic
modeling, we assume that documents are composed of topics in different
proportions. In truth, though, that is a bit of an oversimplification because
this is a closed system and the model is only able to assign proportions for
the 43 topics in this particular configuration. So, what we are really assuming
is that documents are composed of these 43 topics in differing proportions.
It would not be entirely fair to say that the book Gerald Ffrench’s Friends
is 36% about topic 8 (even though .36 is the mean proportion of this topic
across all the segments from this book). A slightly better way to express this
proportion might be to explicitly say: “of the 43 topics in this particular model
that could be assigned to Gerald Ffrench’s Friends, topic 8 is assigned with
the highest probability, a probability of 0.36.”

Let us now write some code to explore the proportions of each topic in each
document and see if there are documents in the corpus that are dominated by
specific topics. If you discover that a particular topic is more or less unique
to one particular text, then you might have grounds to suspect a problem. Of
course it is perfectly reasonable to imagine a situation in which there is one
outlier book in the corpus, perhaps one book about vampires in a corpus of
books about faeries. Here, however, you will find that there is a problem and
that it is most certainly associated with character names.

Recall that every book in this corpus was split into segments before modeling.
You now want to look at the books as a whole again and calculate the mean
topical values across the segments as a way of assessing the general satura-

232 17 Topic Modeling

tion of topics in books. You begin with the doc_topics_m object, a matrix
of dimension 3504 × 43. You know that these 3504 rows correspond to the
segments from all of the novels, and you still have a data frame object called
documents_df instantiated in the work space where these document ids are
stored. You can put those values into a new vector called file_ids_v.

file_ids_v <- documents_df[,1]
head(file_ids_v)
[1] "anonymous_1" "anonymous_2" "anonymous_3" "anonymous_4"
[5] "anonymous_5" "anonymous_6"

Now you must massage the names in this vector so that the chunk identifier
is split off into a separate vector from the main file name. You can use the
strsplit function to break these character strings on the underscore char-
acter and return a list object. You can then use lapply and do.call, as you
have done before, to convert these values into a two column matrix.

file_id_l <- strsplit(file_ids_v, "_")
file_chunk_id_l <- lapply(file_id_l, rbind)
file_chunk_id_m <- do.call(rbind, file_chunk_id_l)
head(file_chunk_id_m)
[,1] [,2]
[1,] "anonymous" "1"
[2,] "anonymous" "2"
[3,] "anonymous" "3"
[4,] "anonymous" "4"
[5,] "anonymous" "5"
[6,] "anonymous" "6"

The first column provides a way of identifying which rows in the
doc_topics_m object correspond to which text files. With that informa-
tion, you can then use dplyr's summarize function to calculate the topical
mean for each topic in each document. First save a copy of doc_topics_m
as a data frame because you will need an object that allows both character
data and numerical values.

doc_topics_df <- as.data.frame(doc_topics_m)

Now use data.frame to bind the character data values in the first column of
file_chunk_id_m to the topical values in doc.topics.df:

doc_topics_df <- data.frame(
file = file_chunk_id_m[,1],
doc_topics_df,
stringsAsFactors = F
)

17.8 Topic Coherence and Topic Probability 233

We can now use dplyr’s group_by and summarize_all functions to calculate
the mean usage of each topic across the segments of each document.

library(dplyr)
doc_topic_means_df <- group_by(doc_topics_df, file) %>%

summarize_all(mean)

The doc_topic_means_df object is a new data frame of 43 rows by 44
columns. There is now one row for each of the 43 texts and there is one
column for each of the 43 topics. Then there is one more column (the first)
with the file name, or group. With this data in one place, you have several
options for how to assess the mean values. Since you only have 43 documents
in the corpus, you can visualize the document means for any specific topic
using a simple bar plot. Here we show the means for topic number 18. But
notice that the column names in the doc_topic_means_df are each prefixed
with a “V” as in “V1” through “V43.” When you call barplot, you can use
the $ column reference shortcut along with the column name to send data
for all the rows and only the column you want. In this example (Fig. 17.2),
we will plot the values from column V18.19

barplot(
doc_topic_means_df$V18,
names.arg = c(1:43),
main = paste("Topic", key_topic),
xlab = "Books",
ylab = "Topic Mean"
)

Notice that for this topic, in our model, there is one outlier document, doc-
ument 26. This is the document in row 26 of the doc_topic_means_df
data frame. Your model will be different, but you can identify the names
of specific files by retrieving the value held in the file column of the
doc_topic_means_df object. Say we are interested in the name of the file
in the 12th row. We would retrieve that information with simple bracketed
sub-setting:
Not run
doc_topic_means_df[12, "file"] # Just using 12 for example.

19Remember that your plots will not look the same since each run of the topic model is
slightly different.

234 17 Topic Modeling

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43

Topic 18

Books

To
pi

c
M

ea
n

0.
00

0.
10

0.
20

0.
30

Fig. 17.2 Bar plot of topic means in 43 documents

In our model, the file at row 25 is titled Kyne2. The code below shows you
how to get the top ten words for topic 12.

top_words <- mallet.top.words(
topic_model, topic_words_m[12,],
10
)

Not surprisingly, the top words in this topic indicate that this is a largely
character-driven topic, which is why it is an outlier topic and only prominent
in one text. The top ten words in this topic are don, d’arcy, bejabers, parker,
farrel, horse, pablo, man, father, miguel. Seven of these ten are the names of
characters in Peter B. Kyne’s novel, The Pride of Palomar. If you look at the
barplot and the data again, you will find that the book with the next highest
use of this topic is another book by the same author. The novel with the file
name “Kyne2” is titled Tide of Empire and like The Pride of Palomar it is a
novel in the western genre. So words such as “ranch” that appear in this topic
are prominent in The Pride of Palomar and also appear with some regularity
in Tide of Empire. Though topics are not necessarily a marker of authorship,
in this case we have found a topic that, at least in this corpus, is primarily
used by only one of the authors.

While this is interesting, if we ultimately want to understand the themes and
topics in a corpus of novels, we probably do not want to harvest a lot of
topics that are dominated by the names of characters in particular books. If
you use the approach described above to look at the top words in some of
the other topics, you will find that there are many among the 43 that have
characters as prominent words.

References 235

One way to deal with the character name problem is to add these names to
the stop list. You will have the opportunity to do this and to compare your
results in one of the exercises below. Another, slightly more complicated,
way of dealing with character names and some related problems of topic
coherence involves pre-processing the corpus with a part-of-speech tagger and
then culling out words of different grammatical classes. This is the subject of
the next chapter.

17.9 Practice

1. Write a script that uses a for loop to iterate over all of the topics data in
order to produce a word cloud for each.

2. In the data directory you will find an expanded stop word list that includes
common names and high-frequency words: stoplist-exp.csv. Replace
the reference to stoplist.csv in the example code of this chapter with
stoplist-exp.csv and generate a new model with a new set of topics
and document proportions. Plot the means as you did in this chapter, and
then assess the extent to which these new topics are distributed across the
corpus. Make word clouds for each topic and consider how the new ones
compare to those that included character names.

References

Blei DM, Ng AY, Jordan MI (2003) Latent Dirichlet allocation. Journal of
Machine Learning Research 3(Jan):993–1022

Chang J, Gerrish S, Wang C, Boyd-Graber JL, Blei DM (2009) Reading
tea leaves: How humans interpret topic models. In: Advances in neural
information processing systems, pp 288–296

Griffiths TL, Steyvers M (2004) Finding scientific topics. Proceedings of the
National academy of Sciences 101(suppl 1):5228–5235

Jockers ML (2013) Macroanalysis: Digital Methods and Literary History, 1st
edn. University of Illinois Press, Urbana

McCallum AK (2002) Mallet: A machine learning for language toolkit. http//
mallet.cs.umass.edu

Mimno D (2013) mallet: A wrapper around the Java machine learning tool
mallet. https://CRAN.R-project.org/package=mallet, r package version
1.0

http//mallet.cs.umass.edu
http//mallet.cs.umass.edu
https://CRAN.R-project.org/package=mallet

Chapter 18

Part of Speech Tagging and
Named Entity Recognition

Abstract In this chapter we explore Part of Speech (POS) tagging using the
openNLP library. openNLP is an interface to the Apache’s Natural Language
Processing toolkit of the same name. Apache OpenNLP is a JAVA based
machine learning toolkit for the processing of natural language text. Much in
the way that the mallet package for R is an interface to MALLET, the openNLP
package in R provides and R-based interface to the Apache library.

18.1 Pre-processing Text with a Part-of-Speech Tagger

In the research for Chap. 8 of Macroanalysis, Jockers discovered that by “stop-
ping out” (removing) all but the nouns in his corpus of novels, he could gen-
erate highly coherent and highly thematic topics.1 In order to do this kind of
modeling, the novels in the corpus were pre-processed using a part-of-speech
(POS) tagger.

There are several R packages available today that perform a wide variety of
natural language processing tasks. Two that we have used are spacyr and
openNLP. The former is a “wrapper” to the spacy NLP package that is written
in the programming language Python. The latter is, similarly, a wrapper, for
the Apache openNLP library written in JAVA. We like the spacyr package a
great deal, but because of some idiosyncrasies associated with its installation,
we find it easy to introduce Part of Speech (POS) tagging and named entity
recognition (NER) using the openNLP library.
1All 500 of them can be viewed at http://www.matthewjockers.net/macroanalysisbook/
macro-themes/.

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5_18

237

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39643-5_18&domain=pdf
http://www.matthewjockers.net/macroanalysisbook/macro-themes/
http://www.matthewjockers.net/macroanalysisbook/macro-themes/
https://doi.org/10.1007/978-3-030-39643-5_18

238 18 Part of Speech Tagging and Named Entity Recognition

Begin by installing the openNLP package. When you do so, the rJava and
NLP packages will also be installed since openNLP depends on functionality in
both. Though you do not have to specifically load the rJava library, you will
need to load both openNLP and NLP:

rm(list = ls())
install.packages("openNLP")
library(openNLP)
library(NLP)

In the first part of this chapter, we will explore a very simple tagging task. In
the second half we will apply this learning to create a new topic model based
only on the nouns in the corpus documents. Begin by loading the libraries and
creating a simple “text” string to use for practice. Keep in mind that POS
tagging and NER are processor intensive. Depending on your computer’s
specifications, it can take anywhere from a few seconds to several minutes to
tag a long text. Developing your code with a very short example will save
you a lot of headaches as you test and debug your code.
sample_text_s <- as.String(

'This is a test. This sentence was written by Matthew Jockers
on October 4, 2019. The idea is to create an example that will
include a few "challenges." Such challenges might include words
inside quote marks, different types of names, including place
names. We wrote this sentence in "Washington state." Named
entity recognition is not perfect. This sentence was actually
written by Rosamond Thalken. This sentence is worth $1.50 on
the open market. Microsoft and Apple both offered us 30% of
the market value.'
)

Notice that we have introduced a new function here: as.String from the
NLP package. This function creates a string object from a character vector
and ensures that it is encoded in UTF-8 and that any lines separated by a
newline character are concatenated. This string object is also special because
it includes a useful sub-setting method that takes as indices the location of
characters in the string. So, for example, if we wanted to access the first
word in the sample text, we could enter sample_text_s[1,4] in the console.
Doing so returns the first four characters in the string, 1 through 4. This
sub-setting ability will be useful down the road.

After ensuring that we have a string object, we need to instantiate three
“annotators” from the openNLP library: The first is a sentence annotator, the
second is a word annotator, and the third is a POS tag annotator. These
Annotator objects become part of a text analysis “pipeline” as parameters
or arguments referenced in a call to the annotate function. The pipeline is
organized so that an input text string is first tokenized into sentences and then
into words and then annotated with the part of speech tags corresponding to

18.1 Pre-processing Text with a Part-of-Speech Tagger 239

the individual words. The annotate function computes the annotations for
the input text by iteratively calling each of the given annotators. The output
from calling annotate is an Annotation object which contains a set of lists.
sent_token_annotator <- Maxent_Sent_Token_Annotator()
word_token_annotator <- Maxent_Word_Token_Annotator()
pos_tag_annotator <- Maxent_POS_Tag_Annotator()
annotated_string <- annotate(sample_text_s, list(sent_token_annotator,

word_token_annotator, pos_tag_annotator))

If you wish to inspect the content of this Annotation object you can do
so using str or, since it is a type of list, by bracketed sub-setting, such
as annotated_string[[1]] which will reveal some information about the
contents of the first list item. If you examine the contents in depth, you will
see that the first four items in the list have a type attribute with the value
sentence. These four items correspond to the four sentences from the input
string, and each of them is annotated with information about their position
in the overall string. The first sentence, for example, has a start value of
1 and an end value of 15. If you look at the input string, you will see that
these numbers mark the position, from start to end, of the first sentence if you
counted one character at a time from left to right. If you now examine the fifth
item (annotated_string[[5]]), you will see that it provides the annotations
for the first word type. Notice, however, that we now also have POS=DT as
an annotated “feature.” “DT” is the POS tag for “determiner,” which is the
correct class of the first word (This) in the input string.2

With the text annotated in this way, we can use the subset function to select
only those list items meeting the condition where the type is “word.”

word_pos <- subset(annotated_string, type == "word")

The new word_pos object remains an Annotation list type object, so we can
use one of the apply family of functions to extract the contents. In this case
we will use sapply which effectively combines the functionality of lapply
and unlist in one function.

tags_v <- sapply(word_pos$features, "[[", "POS")

This new tags_v object is a vector of all the POS tags from the annotation
process. The corresponding words can be found by using the word_pos object
as the indices for accessing the contents of the string object held inside
sample_text_s:

words_v <- sample_text_s[word_pos]

2openNLP uses the treebank tag set from the Penn treebank Project. You can
find the full list of tags here: https://www.ling.upenn.edu/courses/Fall_2003/ling001/
penn_treebank_pos.html.

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

240 18 Part of Speech Tagging and Named Entity Recognition

We can now bind these two vectors into a data frame:

word_pos_df <- data.frame(
Token = words_v,
POS = tags_v,
stringsAsFactors = FALSE
)

With the results in a data frame object, it is a trivial matter to filter the
contents to retain only words that match a certain POS type:

library(dplyr)
nouns_df <- filter(word_pos_df, POS == "NN") %>%

select(Token) %>%
mutate(Token = tolower(Token))

If we now wish to use these nouns as the material for a new noun-based topic
model, we can paste them together into a single string and then create a data
frame similar to the one created in the last chapter.

text_v <- paste(nouns_df$Token, collapse = " ")
documents_df <- data.frame(

id = "some_filename",
text = text_v,
stringsAsFactors = FALSE
)

To run this POS tagging process over the entire corpus, we need to
modify the code from the last chapter to include the new tagging pro-
cess and a slight alteration to the chunking part of the script. Below
we show the complete script, but be advised that running this script is
processor intensive; it could take a while and could even crash your ma-
chine.3 If you have problems running this code, or if you would prefer to
move on with the chapter without doing the tagging yourself, just enter
load("data/documents_nouns_only_df_copy.Rdata") in the console to
load the tagged version of documents_df that we included with the text
book materials. In the next section, we explain how to save and load
.Rdata files.
library(xml2)
library(dplyr)
library(openNLP)
library(NLP)

3On our MacBook Pro, running this loop took 60 min to complete. Though there are
some things we could change in this script to better optimize the processing, ideally large
jobs such as this are done on a compute cluster where each text can be simultaneously
processed on a different node. Setting up and running a process like this on a cluster for
parallel processing is beyond the scope of this book.

18.1 Pre-processing Text with a Part-of-Speech Tagger 241

input_dir <- "data/XMLAuthorCorpus"
files_v <- dir(path = input_dir, pattern = ".*xml")
source("code/corpus_functions.R") # Load the functions

sent_token_annotator <- Maxent_Sent_Token_Annotator()
word_token_annotator <- Maxent_Word_Token_Annotator()
pos_tag_annotator <- Maxent_POS_Tag_Annotator()

documents_df <- NULL
chunk_size <- 1000

for (i in seq_along(files_v)){
xml_doc <- read_xml(file.path(input_dir, files_v[i]))
para_text <- get_node_text(xml_doc,

xpath = "/tei:TEI/tei:text/tei:body//tei:p",
ns = c(tei = "http://www.tei-c.org/ns/1.0")

)
text_s <- as.String(para_text)
annotated_string <- annotate(text_s, list(sent_token_annotator,
word_token_annotator, pos_tag_annotator))
word_pos <- subset(annotated_string, type == "word")
tags_v <- sapply(word_pos$features, `[[`, "POS")
words_v <- text_s[word_pos]
word_pos_df <- data.frame(

Token = words_v,
POS = tags_v,
stringsAsFactors = FALSE
)

nouns_df <- filter(word_pos_df, POS == "NN") %>%
select(Token) %>%
mutate(Token = tolower(Token))

word_v <- nouns_df$Token
x <- seq_along(word_v)
chunks_l <- split(word_v, ceiling(x/chunk_size))
if(length(chunks_l[[length(chunks_l)]]) <= chunk_size/2){

chunks_l[[length(chunks_l)-1]] <- c(
chunks_l[[length(chunks_l)-1]],
chunks_l[[length(chunks_l)]]
)

chunks_l[[length(chunks_l)]] <- NULL
}
chunk_strings_l <- lapply(chunks_l, paste, collapse=" ")
chunks_df <- do.call(rbind, chunk_strings_l)
textname_v <- gsub("\\..*", "", files_v[i])

242 18 Part of Speech Tagging and Named Entity Recognition

chunk_ids_v <- 1:nrow(chunks_df)
chunk_names_v <- paste(textname_v, chunk_ids_v, sep="_")
file_df <- data.frame(

id = chunk_names_v,
text = chunks_df,
stringsAsFactors = FALSE
)

documents_df <- rbind(documents_df, file_df)
cat("Done with", files_v[i], "\r")

}

18.2 Saving and Loading .Rdata Files

After running this loop, you can use the data inside the documents_df ob-
ject exactly as you did in the previous chapter. But since it took a good
deal of time to produce this data, it would be a good idea to save the
output into an .Rdata file so that you do not have to run this whole
POS tagging and text chunking script again. Here we will save the file as
documents_nouns_only_df.Rdata into the data sub-directory of the project.

save(documents_df, file = "data/documents_nouns_only_df.Rdata")

Once the file has been saved, you can load it at any time using the load
function:

load("data/documents_nouns_only_df.Rdata")

18.3 Topic Modeling the Noun Data

You can use the same code from the last chapter to build a new topic model
from the nouns-only text files. Here we will finish by creating a word cloud
(Fig. 18.1) of the eleventh topic.

library(mallet)
library(wordcloud)
mallet_instances <- mallet.import(documents_df$id,

documents_df$text,
"data/stoplist.csv",
FALSE,
token.regexp="[\\p{L}']+")

18.4 Named Entity Recognition 243

topic_model <- MalletLDA(num.topics=43)
topic_model$loadDocuments(mallet_instances)
word_freqs <- mallet.word.freqs(topic_model)
topic_model$train(400)
topic_words_m <- mallet.topic.words(topic_model,

smoothed=TRUE,
normalized=TRUE)

vocabulary <- topic_model$getVocabulary()
colnames(topic_words_m) <- vocabulary
topic_top_words <- mallet.top.words(topic_model,

topic_words_m[11,], 100)
wordcloud(topic_top_words$words,

topic_top_words$weights,
c(3, .5), rot.per = 0, random.order = F)

ould
father

pedlar
kindvoice

minuteface

head
darlin'

rate

cabin

ax

world

care divil meal

counthry

farm nothin

fire

side

mornin'

murdher
pocket

body

placefood

ha
daughter

box

state

hairsowl

goin'

bein'

sickness

coorse

famine

mane

wid

ay

purty

matther

fever

lie

barrin'

rest

corner

doin'

female

distress

hunger

neighborhood
prophet

answer

livin'

devil

villain

raison

pity

rain
crature

bit

misery

curse

thinkin'

troth

road

struggle

poverty

wanst

wather

aisy

miser

wondher

comin'

destitution

country

land

straw

glory

tongue
word

morsel

suspicion

wake

evenin'

pause

achora

end

simplicity

fate

thruth

stone
groan

blessin'

direction

lookin'

bekaise
home

Fig. 18.1 Word cloud of noun based topic 11

18.4 Named Entity Recognition

Named entity recognition (NER) using openNLP works very much like POS
tagging. Let us go back to our example sentence from the beginning of this
chapter. Notice that it has several names in it. To annotate for named en-
tities, we will need to add the Maxent_Entity_Annotator, and we will no

244 18 Part of Speech Tagging and Named Entity Recognition

longer need the Maxent_POS_Tag_Annotator annotator. Before running this
code, though, you will need to install the openNLP model. Unfortunately,
this cannot be installed directly from the CRAN repository, as you have done
with other R packages. Nevertheless, it is easy to acquire the model file from
the Institute for Statistics and Mathematics Resource Homepage using the
following code (note that this will take several minutes to download):

install.packages(
"openNLPmodels.en",
repos = "http://datacube.wu.ac.at/",
type = "source"
)

Once the model files are installed, you will be able to run the following code
to annotate the person entities:
sample_text_s <- as.String(

'This is a test. This sentence was written by Matthew Jockers
on October 4, 2019. The idea is to create an example that will
include a few "challenges." Such challenges might include words
inside quote marks, different types of names, including place
names. We wrote this sentence in "Washington state." Named
entity recognition is not perfect. This sentence was actually
written by Rosamond Thalken. This sentence is worth $1.50 on
the open market. Microsoft and Apple both offered us 30% of
the market value.'
)

sent_token_annotator <- Maxent_Sent_Token_Annotator()
word_token_annotator <- Maxent_Word_Token_Annotator()
entity_tag_annotator <- Maxent_Entity_Annotator(kind = "person")
annotated_string <- annotate(sample_text_s, list(sent_token_annotator,

word_token_annotator, entity_tag_annotator))

If you inspect the type column of the resulting annotated_string object,
you will see that in addition to sentence and word “types” there are now
also entity types.

entities <- subset(annotated_string, type == "entity")
sample_text_s[entities]
[1] "Matthew Jockers" "Rosamond Thalken"

Notice that when we called the Maxent_Entity_Annotator we included a
kind argument. This tells the annotator what kind of entities to detect. If
we want to find the place names, we have to be explicit and set kind equal
to “location.”
entity_tag_annotator <- Maxent_Entity_Annotator(kind = "location")
annotated_string <- annotate(sample_text_s, list(sent_token_annotator,

word_token_annotator, entity_tag_annotator))

18.5 Practice 245

entities <- subset(annotated_string, type == "entity")
sample_text_s[entities]
Washington

Other options for the kind argument include “date,” “location,” “money,” “or-
ganization,” “percentage,” “person,” and “misc”.

18.5 Practice

1. Revise the code at the end of the chapter to extract the following entities:

• October 4
• “Microsoft” “Apple”
• $1.50
• 30%

Appendix A: Variable Scope Example

This is an example of scope within functions. First create a variable outside
of a function.
my_var_to_process <- 10

Now create a function that uses the same name for an argument as an existing
variable.

my_func <- function(my_var_to_process){
overwrite the value in my.var.to.process
with a new value that adds ten
my_var_to_process <- my_var_to_process + 10 # add ten
return the new value
return(my_var_to_process)

}

The value returned by calling my_func is 20.

my_func(my_var_to_process)
[1] 20

But the value in the original variable is still 10 even though the same name
was used inside the function.
my_var_to_process
[1] 10

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5

247

https://doi.org/10.1007/978-3-030-39643-5

Appendix B: The LDA Buffet

A version of what follows was originally posted to http://www.matthewjockers.
net/macroanalysisbook/lda/ on August 12, 2012.

. . . imagine a quaint town, somewhere in New England perhaps. The town is a
writers’ retreat, a place they come in the summer months to seek inspiration. Melville
is there, Hemingway, Joyce, and Jane Austen just fresh from across the pond. In
this mythical town there is spot popular among the inhabitants; it is a little place
called the “LDA Buffet.” Sooner or later all the writers go there to find themes for
their novels. . .

One afternoon Herman Melville bumps into Jane Austen at the bocce ball court,
and they get to talking.

“You know,” says Austen, “I have not written a thing in weeks.”

“Arrrrgh,” Melville replies, “me neither.”

So hand in hand they stroll down Gibbs Lane to the LDA Buffet. Now, down at
the LDA Buffet no one gets fat. The buffet only serves light (leit?) motifs, themes,
topics, and tropes (seasonal). Melville hands a plate to Austen, grabs another for
himself, and they begin walking down the buffet line. Austen is finicky; she spoons
a dainty helping of words out of the bucket marked “dancing.” A slightly larger
spoonful of words, she takes from the “gossip” bucket and then a good ladle’s worth
of “courtship.”

Melville makes a bee line for the “whaling” trough, and after piling on an Ahab-sized
handful of whaling words, he takes a smaller spoonful of “seafaring” and then just a
smidgen of “cetological jargon.”

The two companions find a table where they sit and begin putting all the words
from their plates into sentences, paragraphs, and chapters.

At one point, Austen interrupts this business: “Oh Herman, you must try a bit of
this courtship.”

He takes a couple of words but is not really fond of the topic. Then Austen, to
her credit, asks permission before reaching across the table and sticking her fork in
Melville’s pile of seafaring words, “just a taste,” she says. This work goes on for a

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5

249

http://www.matthewjockers.net/macroanalysisbook/lda/
http://www.matthewjockers.net/macroanalysisbook/lda/
https://doi.org/10.1007/978-3-030-39643-5

250 Appendix B: The LDA Buffet

little while; they order a few drinks and after a few hours, voila! Moby Dick and
Persuasion are written . . .

[Now, dear reader, our story thus far provides an approximation of the first assump-
tion made in LDA. We assume that documents are constructed out of some finite
set of available topics. It is in the next part that things become a little complicated,
but fear not, for you shall sample themes both grand and beautiful.]

. . .Filled with a sense of deep satisfaction, the two begin walking back to the lodging
house. Along the way, they bump into a blurry-eyed Hemingway, who is just then
stumbling out of the Rising Sun Saloon.

Having taken on a bit too much cargo, Hemingway stops on the sidewalk in front
of the two literati. Holding out a shaky pointer finger, and then feigning an English
accent, Hemingway says: “Stand and Deliver!”

To this, Austen replies, “Oh come now, Mr. Hemingway, must we do this every
season?”

More gentlemanly then, Hemingway replies, “My dear Jane, isn’t it pretty to think
so. Now if you could please be so kind as to tell me what’s in the offing down at the
LDA Buffet.”

Austen turns to Melville and the two writers frown at each other. Hemingway was
recently banned from the LDA Buffet. Then Austen turns toward Hemingway and
holds up six fingers, the sixth in front of her now pursed lips.

“Six topics!” Hemingway says with surprise, “but what are today’s themes?”

“Now wouldn’t you like to know that you old sot.” Says Melville.

The thousand injuries of Melville, Hemingway had borne as best he could, but when
Melville ventured upon insult he vowed revenge. Grabbing their recently completed
manuscripts, Hemingway turned and ran toward the South. Just before disappearing
down an alleyway, he calls back to the dumbfounded writers: “All my life I’ve looked
at words as though I were seeing them for the first time. . . tonight I will do so again!
. . .”

[Hemingway has thus overcome the first challenge of topic modeling. He has a corpus
and a set number of topics to extract from it. In reality determining the number of
topics to extract from a corpus is a bit trickier. If only we could ask the authors, as
Hemingway has done here, things would be so much easier.]

. . . Armed with the manuscripts and the knowledge that there were six topics on
the buffet, Hemingway goes to work.

After making backup copies of the manuscripts, he then pours all the words from
the originals into a giant Italian-leather attache. He shakes the bag vigorously and
then begins dividing its contents into six smaller ceramic bowls, one for each topic.
When each of the six bowls is full, Hemingway gets a first glimpse of the topics that
the authors might have found at the LDA Buffet. Regrettably, these topics are not
very good at all; in fact, they are terrible, a jumble of random unrelated words . . .

[And now for the magic that is Gibbs Sampling.]

. . . Hemingway knows that the two manuscripts were written based on some mixture
of topics available at the LDA Buffet. So to improve on this random assignment of
words to topic bowls, he goes through the copied manuscripts that he kept as back
ups. One at a time, he picks a manuscript and pulls out a word. He examines the

Appendix B: The LDA Buffet 251

word in the context of the other words that are distributed throughout each of the six
bowls and in the context of the manuscript from which it was taken. The first word
he selects is “heaven,” and at this word he pauses, and asks himself two questions:

“How much of ‘Topic A,’ as it is presently represented in bowl A, is present in the
current document?” “Which topic, of all of the topics, has the most ‘heaven’ in it?”
. . .

[Here again dear reader, you must take with me a small leap of faith and engage
in a bit of further make believe. There are some occult statistics here accessible
only to the initiated. Nevertheless, the assumptions of Hemingway and of the topic
model are not so far-fetched or hard to understand. A writer goes to his or her
imaginary buffet of themes and pulls them out in different proportions. The writer
then blends these themes together into a work of art. That we might now be able to
discover the original themes by reading the book is not at all amazing. In fact we
do it all the time–every time we say that such and such a book is about “whaling”
or “courtship.” The manner in which the computer (or dear Hemingway) does this
is perhaps less elegant and involves a good degree of mathematical magic. Like all
magic tricks, however, the explanation for the surprise at the end is actually quite
simple: in this case our magician simply repeats the process 10 billion times! NOTE:
The real magician behind this LDA story is David Mimno. I sent David a draft,
and along with other constructive feedback, he supplied this beautiful line about
computational magic.]

. . . As Hemingway examines each word in its turn, he decides based on the calculated
probabilities whether that word would be more appropriately moved into one of the
other topic bowls. So, if he were examining the word “whale” at a particular moment,
he would assume that all of the words in the six bowls except for “whale” were
correctly distributed. He’d now consider the words in each of those bowls and in the
original manuscripts, and he would choose to move a certain number of occurrences
of “whale” to one bowl or another.

Fortunately, Hemingway has by now bumped into James Joyce who arrives bearing
a cup of coffee on which a spoon and napkin lay crossed. Joyce, no stranger to
bags-of-words, asks with compassion: “Is this going to be a long night.”

“Yes,” Hemingway says, “yes it will, yes.”

Hemingway must now run through this whole process over and over again many
times. Ultimately, his topic bowls reach a steady state where words are no longer
needing to be being reassigned to other bowls; the words have found their proper
context.

After pausing for a well-deserved smoke, Hemingway dumps out the contents of the
first bowl and finds that it contains the following words:

“whale sea men ship whales penfon air side life bounty night oil natives shark seas
beard sailors hands harpoon mast top feet arms teeth length voyage eye heart
leviathan islanders flask soul ships fishery sailor sharks company. . .”

He peers into another bowl that looks more like this:

“marriage happiness daughter union fortune heart wife consent affection wishes life
attachment lover family promise choice proposal hopes duty alliance affections feel-
ings engagement conduct sacrifice passion parents bride misery reason fate letter
mind resolution rank suit event object time wealth ceremony opposition age refusal
result determination proposals. . .”

252 Appendix B: The LDA Buffet

After consulting the contents of each bowl, Hemingway immediately knows what
topics were on the menu at the LDA Buffet. And, not only this, Hemingway knows
exactly what Melville and Austen selected from the Buffet and in what quantities.
He discovers that Moby Dick is composed of 40 percent whaling, 18 percent seafaring
and 2 percent gossip (from that little taste he got from Jane) and so on . . .

[Thus ends the fable.]

For the rest of the (LDA) story, see David Mimno’s Topic Modeling Bibliog-
raphy at https://mimno.infosci.cornell.edu/topics.html.

https://mimno.infosci.cornell.edu/topics.html

Appendix C: Practice Exercise Solutions

C.1 Solutions for Chap. 1

1. In the first expression, the multiplication operation is computed first: 10
* 2 = 20. The division is computed second: 20/5 = 4. The subtraction is
completed last: 4 − 1 = 3. In the second expression, the multiplication
operation is computed first: 10 * 2 = 20. Next the part of the expression
in parentheses is computed: 5−1 = 4. The division is then computed 20/4
= 5.

2. The xy variable is a vector containing two numerical values: 5 and 6. xyz
is a vector containing three character values: 5, 6, and whale. Notice that
when you combine variables that are of different types, i.e. numerical and
textual, the numerical values are converted to characters. Because the
values in xyz are not numerical, R gives us an error.

3. In the practice exercise 1.2 x was set to 5 and y was 6. Since 5 is not equal
to 6, R returns FALSE. Note that the equivalence operator can also evaluate
if two character strings are identical.

4. R uses something called vector recycling. So in this example, each value of
the vector x is multiplied by 2.

5. df[3,2]

C.2 Solutions for Chap. 2

1. The top ten most frequent words are found in the first through tenth
position in the sorted vector:

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5

253

https://doi.org/10.1007/978-3-030-39643-5

254 Appendix C: Practice Exercise Solutions

top_ten <-sorted_moby_freqs_t[1:10]
top_ten

2. Visualizing the results is as simple as using

plot(top_ten)

But adding a few more arguments to the plot() function gives you a more
informative graph.

plot(top_ten, type = "b",
xlab = "Top Ten Words", ylab = "Word Count", xaxt = "n")

axis(1, 1:10, labels = names(top_ten))

C.3 Solutions for Chap. 3

1. First load Moby Dick.
text_v <- scan("data/text/melville.txt", what = "character", sep = "\n")

Now remove the boilerplate and create a sorted frequency table.

start_v <- which(text_v == "CHAPTER 1. Loomings.")
novel_lines_v <- text_v[start_v:length(text_v)]
novel_v <- paste(novel_lines_v, collapse = " ")
novel_lower_v <- tolower(novel_v)
moby_words_l <- strsplit(novel_lower_v, "\\W")
moby_word_v <- unlist(moby_words_l)
not_blanks_v <- which(moby_word_v != "")
moby_word_v <- moby_word_v[not_blanks_v]
moby_freqs_t <- table(moby_word_v)
sorted_moby_freqs_t <- sort(moby_freqs_t, decreasing=TRUE)

Multiply the relative frequencies by 100 and plot the results for the first ten
values.

sorted_moby_rel_freqs_t <- 100 * (
sorted_moby_freqs_t/sum(sorted_moby_freqs_t)
)

plot(sorted_moby_rel_freqs_t[1:10],
main = "Moby Dick",
type = "b",
xlab = "Top Ten Words",
ylab = "Percentage",

C.3 Solutions for Chap. 3 255

xaxt = "n")
axis(1,1:10, labels = names(sorted_moby_rel_freqs_t[1:10]))

Now do something similar by loading Sense and Sensibility.
text_v <- scan("data/text/austen.txt", what = "character", sep = "\n")
start_v <- which(text_v == "CHAPTER 1")
novel_lines_v <- text_v[start_v:length(text_v)]
novel_v <- paste(novel_lines_v, collapse=" ")
novel_lower_v <- tolower(novel_v)
sense_words_l <- strsplit(novel_lower_v, "\\W")
sense_word_v <- unlist(sense_words_l)
not_blanks_v <- which(sense_word_v != "")
sense_word_v <- sense_word_v[not_blanks_v]
sense_freqs_t <- table(sense_word_v)
sorted_sense_freqs_t <- sort(sense_freqs_t , decreasing=TRUE)
sorted_sense_rel_freqs_t <- 100 * (

sorted_sense_freqs_t/sum(sorted_sense_freqs_t)
)

plot(sorted_sense_rel_freqs_t[1:10],
main = "Sense and Sensibility",
type = "b",
xlab = "Top Ten Words",
ylab = "Percentage",
xaxt = "n")

axis(1,1:10, labels = names(sorted_sense_rel_freqs_t[1:10]))

2. Answer shown in the code below.

unique(c(names(sorted_moby_rel_freqs_t[1:10]),
names(sorted_sense_rel_freqs_t[1:10])))

3. Answer shown in the code below.

names(sorted_sense_rel_freqs_t[
which(names(sorted_sense_rel_freqs_t[1:10])

%in% names(sorted_moby_rel_freqs_t[1:10]))])

4. Answer shown in the code below.

presentSense <- which(names(sorted_sense_rel_freqs_t[1:10])
%in% names(sorted_moby_rel_freqs_t[1:10]))

names(sorted_sense_rel_freqs_t[1:10])[-presentSense]
presentMoby <- which(names(sorted_moby_rel_freqs_t[1:10])

%in% names(sorted_sense_rel_freqs_t[1:10]))
names(sorted_moby_rel_freqs_t[1:10])[-presentMoby]

256 Appendix C: Practice Exercise Solutions

C.4 Solutions for Chap. 4

1. To find the occurrences of the whale variants, we can use the same code
as before but replace which(moby_word_v == "whale") with grep() and
the multiple whale variants. From this point, the code is the same.

w_varient_v <- rep(NA, length(n_time_v))
whale_hits <- grep(

"whale|whales|whale's|monster|leviathan",
moby_word_v
)

w_varient_v[whale_hits] <- 1
plot(

w_varient_v,
main ="Dispersion Plot of 'whale' variants in Moby Dick",
xlab = "Novel Time",
ylab = "whale(s)",
type = "h",
ylim = c(0,1),
yaxt = 'n'
)

One thing you might notice when comparing the plots is that though the new
plot is more concentrated with occurrences of “whale” and its variants, the
overall pattern remains the same. Even when accommodating for synonyms
of whale, the plot shows the most occurrences a little after the novel’s halfway
point.

2. Answer shown in the code below.

table(moby_word_v[grep("^wh..e$", moby_word_v)])

3. With function embedding:
sort(table(moby_word_v[grep("ly$", moby_word_v)]), decreasing = T)[1:3]

Or more verbose:

ly_positions <- grep("ly$", moby_word_v)
ly_hits <- moby_word_v[ly_positions]
ly_frequencies <- table(ly_hits)
sorted_lys <- sort(ly_frequencies, decreasing = T)
sorted_lys[1:3]

C.6 Solutions for Chap. 6 257

C.5 Solutions for Chap. 5

1. Answer shown in the code below.

for(i in 1:length(x)) {
result <- mean(x[[i]])
print(result)

}

2. Answer shown in the code below.

whales_l <- lapply(chapter_freqs_l, '[', 'whale')
whales_m <- do.call(rbind, whales_l)
whales_v <- whales_m[,1]

ahabs_l <- lapply(chapter_freqs_l, '[', 'ahab')
ahabs_m <- do.call(rbind, ahabs_l)
ahabs_v <- ahabs_m[,1]

queequeg_l <- lapply(chapter_freqs_l, '[', 'queequeg')
queequeg_m <- do.call(rbind, queequeg_l)
queequeg_v <- queequeg_m[,1]

whales_ahabs_queequeg_m <- cbind(whales_v, ahabs_v,queequeg_v)
barplot(whales_ahabs_queequeg_m, beside = T, col="grey")

3. Answer shown in the code below.

whale_raw_l <- lapply(chapter_raws_l, '[', 'whale')
whale_raw_m <- do.call(rbind, whale_raw_l)
whale_raw_v <- whale_raw_m[,1]
ahab_raw_l <- lapply(chapter_raws_l, '[', 'ahab')
ahab_raw_m <- do.call(rbind, ahab_raw_l)
ahab_raw_v <- ahab_raw_m[,1]
whales_ahabs_raw_m <- cbind(whale_raw_v, ahab_raw_v)
barplot(whales_ahabs_raw_m, beside = T, col="grey")

C.6 Solutions for Chap. 6

1. Answer shown in the code below.

my_l <- lapply(chapter_freqs_l, "[", "my")
my_m <- do.call(rbind, my_l)

258 Appendix C: Practice Exercise Solutions

my_v <- my_m[,1]
i_l <- lapply(chapter_freqs_l, "[", "i")
i_m <- do.call(rbind, i_l)
i_v <- i_m[,1]
whales_ahabs_my_i_m <- cbind(whales_v, ahabs_v, my_v, i_v)
whales_ahabs_my_i_m[which(is.na(whales_ahabs_my_i_m))] <- 0
cor(whales_ahabs_my_i_m)

2. Answer shown in the code below.

my_i_m <- cbind(my_v, i_v)
my_i_m[which(is.na(my_i_m))] <- 0
my_i_cor_data_df <- as.data.frame(my_i_m)
cor(my_i_cor_data_df$i, my_i_cor_data_df$my)
i_my_cors_v <- NULL
for(i in 1:10000){

i_my_cors_v <- c(
i_my_cors_v,
cor(sample(my_i_cor_data_df$i),

my_i_cor_data_df$my)
)

}
min(i_my_cors_v)
max(i_my_cors_v)
range(i_my_cors_v)
mean(i_my_cors_v)
sd(i_my_cors_v)

C.7 Solutions for Chap. 7

1. Answer shown in the code below.

ttr_v <- as.vector(ttr_m)
chapter_lengths_m <- do.call(

rbind, lapply(chapter_raws_l, sum)
)

chap_len_v <- as.vector(chapter_lengths_m)
cor(ttr_v, chap_len_v)

A correlation coefficient of -0.7971711 indicates strong negative correlation.
As the length of the chapter increases, the TTR scores decrease.

C.8 Solutions for Chap. 8 259

2. Answer shown in the code below.

mean_word_use_v <- as.vector(mean_word_use_m)
cor(mean_word_use_v, chap_len_v)

A correlation coefficient of 0.8924156 indicates a strong positive correlation.
As the length of the chapter increases, the overall mean word frequency in-
creases as well. More words in the chapter means more repeated words.

3. Answer shown in the code below.

cor(ttr_v, chap_len_v)
my_cors_v <- NULL
for(i in 1:10000){

my_cors_v <- c(my_cors_v, cor(sample(ttr_v), chap_len_v))
}
min(my_cors_v)
max(my_cors_v)
range(my_cors_v)
mean(my_cors_v)
sd(my_cors_v)

The permutation test reveals that the observed correlation is highly unlikely
to be seen by mere chance alone. In 10,000 iterations the highest positive
correlation in our test was 0.3132262 and the lowest negative correlation
was -0.311472. The mean() hovered near zero indicating that the observed
correlation was far outside the norm expected by chance.

C.8 Solutions for Chap. 8

1. After using order() to figure out the ranks, you can use data.frame()
to create a table with columns for each of the values. If you want, you
can then order the values in the data frame by their ranks. The Cetology
chapter is 76th.

ranks <- order(hapax_percentage, decreasing=TRUE)
df <- data.frame(hapax_percentage, ranks)
df[order(df$ranks),]

3. A correlation coefficient of 0.8673559 indicates that Jane Austen is less
consistent than Melville when it comes to the introduction of new words
into her novel even while she increases the length of her chapters. It turns
out, in fact, that in terms of vocabulary size and richness, Austen is very
consistent. Her working vocabulary in Sense and Sensibility contains 6325
unique word types and from one of her novels to the next she rarely de-

260 Appendix C: Practice Exercise Solutions

viates far from a base vocabulary of about 6300 word types. For com-
parison, recall that Melville’s vocabulary in Moby Dick contains 16,872
unique word types spread over 214,889 tokens. Austen uses 6325 types
over 120,766 tokens. Even though Austen’s Sense and Sensibility is much
shorter than Moby Dick, Austen has a smaller vocabulary, and she repeats
words much more often. Austen uses each word an average of 19 times
whereas Melville uses each word in his vocabulary only about 13 times on
average.

text_v <- scan("data/text/austen.txt", what="character", sep="\n")
start_v <- which(text_v == "CHAPTER 1")
end_v <- which(text_v == "THE END")
novel_lines_v <- text_v[start_v:end_v]
novel_lines_v <- unlist(novel_lines_v)
chap_positions_v <- grep("^CHAPTER \\d", novel_lines_v)
last_position_v <- length(novel_lines_v)
chap_positions_v <- c(chap_positions_v , last_position_v)
sense_raws_l <- list()
for(i in 1:length(chap_positions_v)){

if(i != length(chap_positions_v)){
chapter_title <- novel_lines_v[chap_positions_v[i]]
start <- chap_positions_v[i]+1
end <- chap_positions_v[i+1]-1
chapter_lines_v <- novel_lines_v[start:end]
chapter_words_v <- tolower(paste(chapter_lines_v, collapse=" "))
chapter_words_l <- strsplit(chapter_words_v, "\\W")
chapter_word_v <- unlist(chapter_words_l)
chapter_word_v <- chapter_word_v[which(chapter_word_v!="")]
chapter_freqs_t <- table(chapter_word_v)
sense_raws_l[[chapter_title]] <- chapter_freqs_t

}
}
sense_chapter_hapax_v <- sapply(sense_raws_l, function(x) sum(x == 1))
sense_chapter_lengths_m <- do.call(rbind, lapply(sense_raws_l,sum))
sense_hapax_lenghts_m <- cbind(

sense_chapter_hapax_v,
sense_chapter_lengths_m
)

cor(sense_chapter_hapax_v, sense_chapter_lengths_m)

4. In both novels, the observed correlations are way beyond (many standard
deviations) the means found in random sampling.

Test the Moby Dick Result
moby_cors_v <- NULL
for(i in 1:10000){

moby_cors_v <- c(
moby_cors_v,

C.9 Solutions for Chap. 9 261

cor(
sample(chapter_hapax_v),
chapter_lengths_m

)
)

}

Test the Sense and Sensibility Result
sense_cors_v <- NULL
for(i in 1:10000){

sense_cors_v <- c(
sense_cors_v,
cor(

sample(sense_chapter_hapax_v),
sense_chapter_lengths_m

)
)

}

Combine and compare the discriptive stats

moby_stats_v <- c(
observed = cor(chapter_hapax_v, chapter_lengths_m),
random_mean = mean(moby_cors_v),
random_std = sd(moby_cors_v)
)

sense_stans_v <- c(
observed = cor(

sense_chapter_hapax_v,
sense_chapter_lengths_m
),

random_mean = mean(sense_cors_v),
random_std = sd(sense_cors_v)

)

data.frame(moby_stats_v, sense_stans_v)

C.9 Solutions for Chap. 9

1. Answer shown in the code below.

austen_word_v <- make_token_v("data/text/austen.txt")
moby_word_v <- make_token_v("data/text/melville.txt")

262 Appendix C: Practice Exercise Solutions

context <- 5
dog_positions_sense <- which(austen_word_v == "dog")
dog_positions_moby <- which(moby_word_v =="dog")

Answer for Sense and Sensibility
for(i in seq_along(dog_positions_sense)){

start <- dog_positions_sense[i]-context
end <- dog_positions_sense[i]+context
cat(austen_word_v[start:end], "\n")

}

Answer for Moby Dick
for(i in seq_along(dog_positions_moby)){

start <- dog_positions_moby[i]-context
end <- dog_positions_moby[i]+context
cat(moby_word_v[start:end], "\n")

}

2. What follows below is not a perfect solution, but it has the advantage of
being simple. In the sixth line, we use which() with paste() to find and
replace instances of the keyword with the same keyword surrounded by
brackets. In the next chapter, you will learn about some cases that would
make this loop break and how to fix them.

for(i in seq_along(dog_positions_moby)){
start <- dog_positions_moby[i]-context
end <- dog_positions_moby[i]+context
output <- moby_word_v[start:end]
keyword <- moby_word_v[start+context]
output[which(output == keyword)] <- paste("[", keyword, "]", sep = "")
cat("----------------------", i, "----------------------", "\n")
cat(output, "\n")

}

C.10 Solutions for Chap. 10

1. The key changes to the doitKWIC() function we wrote in the chapter are
in the 7th line where we instantiate a data frame object with a number
of rows equal to the number of hits found for the user’s keyword and in
the last few lines where we populate the rows of the data frame with data
that is bound together into columns using cbind(). By instantiating the
data frame to the exact size we need, R is able to work more efficiently
by setting aside the amount of memory it needs for the final size of the
object.

C.10 Solutions for Chap. 10 263

doItKwicBetter <- function(directory_path){
file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

file.path(directory_path, dir(directory_path)[file_id])
)

hits_v <- which(word_v == keyword)
results_df <- data.frame(

matrix(nrow=length(hits_v),
ncol=4)
) # create an empty data frame

colnames(results_df) <- c("position", "left", "keyword", "right")
for(i in seq_along(hits_v)){

start <- hits_v[i] - context
if(start < 1){

start <- 1
}
end <- hits_v[i] + context
if(end >= length(word_v)){

end <- length(word_v)
}
position <- hits_v[i]
left <- paste(word_v[start:(hits_v[i] - 1)], collapse = " ")
right <- paste(word_v[(hits_v[i] + 1):end], collapse = " ")
df_row <- cbind(position, left, keyword, right)
results_df[i,] <- df_row

}
return(results_df)

}

2. The solution below is better because it gives the user an option to save
the KWIC output to a csv file.

doItKwicStillBetter <- function(directory_path){
file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

file.path(directory_path, dir(directory_path)[file_id])
)

hits_v <- which(word_v == keyword)
results_df <- data.frame(

matrix(nrow=length(hits_v), ncol=4)
) # create an empty data frame

colnames(results_df) <- c("position", "left", "keyword", "right")
for(i in seq_along(hits_v)){

264 Appendix C: Practice Exercise Solutions

start <- hits_v[i] - context
if(start < 1){

start <- 1
}
end <- hits_v[i] + context
if(end >= length(word_v)){

end <- length(word_v)
}
position <- hits_v[i]
left <- paste(word_v[start:(hits_v[i] - 1)], collapse = " ")
right <- paste(word_v[(hits_v[i] + 1):end], collapse = " ")
df_row <- cbind(position, left, keyword, right)
results_df[i,] <- df_row

}
toprint <- readline(

"Would you like to save this
result to afile: enter y/n \n"
)

if(toprint == "y"){
file_name <- paste(

keyword, "in",
context, "in",
dir(directory_path)[file_id],
"csv",
sep = "."
)

write.csv(results_df, file.path("results", file_name))
}
return(results_df)

}

3. The solution here allows users to pass a regular expression through
doItKwicBest() out to make_token_v().

doItKwicBest <- function(directory_path, regex){
file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

file.path(
directory_path,
dir(directory_path)[file_id]),

pattern = regex
)

hits_v <- which(word_v == keyword)
results_df <- data.frame(

matrix(nrow=length(hits_v), ncol=4)

C.10 Solutions for Chap. 10 265

) # create an empty data frame
colnames(results_df) <- c("position", "left", "keyword", "right")
for(i in seq_along(hits_v)){

start <- hits_v[i] - context
if(start < 1){

start <- 1
}
end <- hits_v[i] + context
if(end >= length(word_v)){

end <- length(word_v)
}
position <- hits_v[i]
left <- paste(word_v[start:(hits_v[i] - 1)], collapse = " ")
right <- paste(word_v[(hits_v[i] + 1):end], collapse = " ")
df_row <- cbind(position, left, keyword, right)
results_df[i,] <- df_row

}
toprint <- readline("Would you like to save this

result to a file: enter y/n \n")
if(toprint == "y"){

file_name <- paste(
keyword,
"in",
context,
"in",
dir(directory_path)[file_id],
"csv",
sep = "."
)

write.csv(results_df, file.path("results", file_name))
}
return(results_df)

}

Despite the name, there is still a lot more we could do to improve this function.
We might, for example, want to update the make_token_v() function to
accept an argument directing the function to lowercase the text or not. We
could then add that argument to doItKwicBest() as a further option. Here
is how the two functions might be revised to be more flexible:
Revised make_token_v() with option for lowercasing.
Default behavior is strill to lowercase the input file.
make_token_v <- function(file_path, pattern = "\\W", lowercase = TRUE){

text_v <- scan(file_path, what = "character", sep = "\n")
text_v <- paste(text_v, collapse = " ")
if(lowercase){

text_v <- tolower(text_v)

266 Appendix C: Practice Exercise Solutions

}
text_words_v <- strsplit(text_v, pattern)
text_words_v <- unlist(text_words_v)
text_words_v <- text_words_v[which(text_words_v != "")]
return(text_words_v)

}

Slightly revised doItKwicBest() function that implements
a "make_lower" argument that can be set to either TRUE or FALSE.
This argument is passed to make_token_v() as the "lowercase"
argument
doItKwicBest <- function(directory_path, regex, make_lower){

file_id <- as.numeric(readline(show_files(directory_path)))
keyword <- readline("Enter a Keyword: ")
context <- as.numeric(readline("How many words of context? "))
word_v <- make_token_v(

file.path(directory_path, dir(directory_path)[file_id]),
pattern = regex,
lowercase = make_lower
)

hits_v <- which(word_v == keyword)
results_df <- data.frame(

matrix(nrow=length(hits_v), ncol=4)
) # create an empty data frame

colnames(results_df) <- c("position", "left", "keyword", "right")
for(i in seq_along(hits_v)){

start <- hits_v[i] - context
if(start < 1){

start <- 1
}
end <- hits_v[i] + context
if(end >= length(word_v)){

end <- length(word_v)
}
position <- hits_v[i]
left <- paste(word_v[start:(hits_v[i] - 1)], collapse = " ")
right <- paste(word_v[(hits_v[i] + 1):end], collapse = " ")
df_row <- cbind(position, left, keyword, right)
results_df[i,] <- df_row

}
toprint <- readline("Would you like to save this

result to a file: enter y/n \n")
if(toprint == "y"){

file_name <- paste(
keyword,
"in",

C.11 Solutions for Chap. 11 267

context,
"in",
dir(directory_path)[file_id],
"csv",
sep = "."
)

write.csv(results_df, file.path("results", file_name))
}
return(results_df)

}

With the two functions revised in this way, you should now be able to search
for the keyword “Ahab’s” in Moby Dick.

C.11 Solutions for Chap. 11

1. We can use this code from the chapter to isolate the three chapters with
a hapax percentage greater than .5.

filter(nice_df, hap_percent > .5)

They appear to be some of the shorter chapters when looking at the chapter
lengths column, but we can use dplyr to double check this hypothesis. If we
use summary(), we will note that the minimum chapter length is 49, and
the mean chapter length is 1587. The three chapters with hapax percentage
greater than .5 have lengths of 246, 427, and 49; all of which are much shorter
than the mean chapter length.

select(nice_df, chapter_lengths) %>%
summary()

2. To find the chapters with hapax percentage less than .2, we can use the
following code:

filter(nice_df, hap_percent < .2)

If we look at the chapter length column again for this new result, we will note
that the chapters all appear to be rather long. According to the summary
statistics we found in practice problem 1, the chapters with the least amount
of hapax are some of the longest chapters.

3. Chapter 19 of Moby Dick is not long. In fact, with a length of only 1258
words, this is on the shorter end of Moby Dick chapter lengths.

4. Answer shown in the code below.

repeat_df <- mutate(
nice_df,

268 Appendix C: Practice Exercise Solutions

repeat_words = chapter_lengths - num_hapax
) %>%
filter(repeat_words > 3000) %>%
select(short_title, chapter_lengths, repeat_words) %>%
arrange(desc(repeat_words))

5. Answer shown in the code below.

done <- mutate(
repeat_df,
repeat_rate = chapter_lengths / repeat_words
) %>%
arrange(desc(repeat_rate))

6. Answer shown in the code below.

final <- mutate(
nice_df,
chap_num = gsub("CHAPTER", "", short_title)
) %>%
filter(chapter_lengths > 3000) %>%
select(-chap_names) %>%
mutate(as_num = as.numeric(chap_num)) %>%
arrange(desc(as_num))

7. Because the value in the chap_num column was derived from character
data, it must be converted to numeric data.

C.12 Solutions for Chap. 12

1. Answer shown in the code below.

chapter_title_l <- lapply(
chapters_ns, get_node_text,
xpath = ".//tei:head",
ns = c(tei = "http://www.tei-c.org/ns/1.0")
)

2. Answer shown in the code below.

chapter_title_df <- do.call(rbind, chapter_title_l)
text_df <- do.call(rbind, text_l)
combined_df <- cbind(chapter_title_df, text_df)

C.13 Solutions for Chap. 13 269

3. Answer shown in the code below.

freq_table <- function(word_v){
table(word_v)/length(word_v)

}
word_freq_tables_l <- lapply(word_tokens_l, freq_table)
barplot(

unlist(lapply(word_freq_tables_l, '[', c('whale', 'ahab'))),
names.arg = "Occurrence of Whale (blue) and Ahab (red)",
col = c("blue", "red"),
border = NA
)

C.13 Solutions for Chap. 13

1. Answer shown in the code below.

receiver_names_l <- xml_find_all(xml_doc, ".//RECEIVER")
receiver_names_v <- xml_text(receiver_names_l)
sort(

table(receiver_names_v)/length(receiver_names_v),
decreasing = TRUE
)

Unsurprisingly, Hamlet also accounts for the majority of heard speech acts.
He receives 28% of the play’s speech acts, with Horatio and Claudius behind
him, at 10.5% and 7.6%, respectively.

2. Answer shown in the code below.

unique_speakers <- unique(speaker_names_v)
unique_receivers <- unique(receiver_names_v)
unique_receivers[-which(unique_receivers %in% unique_speakers)]

The characters who receive speech but never engage in speech are the Atten-
dants, Players, and Soldiers.

3. Answer shown in the code below.

group_by(sorted_speeches_df, Receiver) %>%
summarise(Total = sum(word_count)) %>%
arrange(desc(Total))

Hamlet again hears the most words directed to him, hearing 6455 total words.
Horatio comes in second, with 3565 words, and then Laertes comes in third,
hearing 2849 words. Interestingly, if we compare this to exercise 13.1’s result,
even though Laertes only comes in 5th for total number of overheard speech

270 Appendix C: Practice Exercise Solutions

acts, he comes in 3rd for most words directed to him. This means that even
though he hears less speech acts than other characters, when characters are
speaking to him they tend to be more verbose.

4. Answer shown in the code below.
tokenize <- function(text_v, pattern = "[^A-Za-z0-9']", lower = TRUE){

if(lower){
text_v <- tolower(text_v)

}
word_v <- unlist(strsplit(text_v, pattern))
word_v[which(word_v != "")]

}

hamlet_speaks_df <- filter(
speech_data_counts_df,
Speaker == "HAMLET"
) %>%
select(words = Speech)

ham_words_v <- paste(hamlet_speaks_df$words, collapse = " ")
sort(table(tokenize(ham_words_v)), decreasing = T)[1:20]

5. Answer shown in the code below.

QG_speaks_df <- filter(
speech_data_counts_df,
Speaker == "QUEEN GERTRUDE"
) %>%
select(words = Speech)

QG_words_v <- paste(QG_speaks_df$words, collapse = " ")
sort(table(tokenize(QG_words_v)), decreasing = T)[1:20]

C.14 Solutions for Chap. 14

1. Answer shown in the code below.

summary(moby_sentiments_v)
summary(sense_sentiments_v)

2. Answer shown in the code below.

sentiment_df <- data.frame(
"sentences" = moby_sentences_v,
"sentiment" = as.numeric(moby_sentiments_v)
)

sentiment_df[1,] # show the first row

C.15 Solutions for Chap. 15 271

3. Answer shown in the code below.

library(dplyr)
Finding the most positive sentences
positive_df <- sentiment_df %>%

arrange(desc(sentiment))

Finding the most negative sentences
negative_df <- sentiment_df %>%

arrange(sentiment)

4. Answer shown in the code below.

positive_df[1,]
negative_df[1,]

C.15 Solutions for Chap. 15

1. Answer shown in the code below.
still works at .0275 with 3 features left
keepers_test_v <- names(token_means[which(token_means >= .0275)])
length(keepers_test_v)
dist_m <- dist(wide_df[, keepers_test_v])
cluster <- hclust(dist_m)
cluster$labels <- rownames(wide_df)
plot(cluster)

no longer works at .03
keepers_test_2 <- names(token_means[which(token_means >= .03)])
length(keepers_test_2)
dist_m <- dist(wide_df[, keepers_test_2])
cluster <- hclust(dist_m)
cluster$labels <- rownames(wide_df)
plot(cluster)

2. Answer shown in the code below.
sample 50 random features
keepers_sample_v <- names(sample(token_means, size = 50))
dist_m <- dist(wide_df[, keepers_sample_v])
cluster <- hclust(dist_m)
cluster$labels <- rownames(wide_df)
plot(cluster)

272 Appendix C: Practice Exercise Solutions

sample 100 random features
keepers_sample_v <- names(sample(token_means, size = 100))
dist_m <- dist(wide_df[, keepers_sample_v])
cluster <- hclust(dist_m)
cluster$labels <- rownames(wide_df)
plot(cluster)

C.16 Solutions for Chap. 16

1. With 681 features, the model is unable to detect a latent author signal
because there are far too many open-class context words.

2. Solving this one is not easy and requires some out of the box thinking.
We want to know whether an author uses or does not use a given feature
in any one (or more) of his/her texts. If an author uses a feature at least
once, we keep it. If an author never uses the feature in any text, we want
to remove it from consideration. Another way of thinking about this is
that we want to remove any feature in which the sum of that feature for
any given author is equal to zero. The key part of that sentence was “the
sum of that feature is equal to zero.” To solve this problem we use the
aggregate() function to group rows by author and then calculate the
sum of the values in each column in that author group. Here is a dummy
example. Below the example, we offer the solution for the problem in the
chapter.

First we create a dummy data frame:

authors <- c("A","A","B","B","C", "C")
f1 <- c(0, 1, 2, 3, 0,0)
f2 <- c(0, 1, 2, 3, 0,1)
f3 <- c(3, 2, 1, 2, 1,1)
f4 <- c(3, 2, 1, 2, 1,1)
f5 <- c(0, 0, 1, 2, 1,1)
author_df <- data.frame(authors, f1,f2,f3,f4, f5)
author_df # Show the original data frame

Now we will use the aggregate() function to group rows and get the group
sum for each author.

author_sums <- aggregate(author_df[, 2:ncol(author_df)],
list(author_df[,1]), sum)

Examine the author_sums object to see that it includes one row for each
author and the values in each cell are the sum of the values from that author

C.17 Solutions for Chap. 17 273

for that feature (column). We can reduce that data frame to remove any
columns with a 0. Then we grab the column names of the columns that
survive the winnowing into keepers_v.
reduced_author_sums <- author_sums[, colSums(author_sums == 0) == 0]
keepers_v <- colnames(reduced_author_sums)[2:ncol(reduced_author_sums)]
smaller_df <- author_df[, c("authors", keepers_v)]
smaller_df # show the new data frame

Below is the solution using the authorship_df data frame from the
chapter. Running aggregate() on this larger data frame is processor in-
tensive and will take several minutes to complete. Notice that we use
4:ncol(authorship_df) to omit the first three metadata columns.
author_sums <- aggregate(authorship_df[, 4:ncol(authorship_df)],

list(authorship_df[,1]), sum)
reduced_author_sums <- author_sums[, colSums(author_sums == 0) == 0]
keepers_v <- colnames(reduced_author_sums)[2:ncol(reduced_author_sums)]
smaller_df <- authorship_df[, c("authors", keepers_v)]
dim(smaller_df) # show the new data frame

C.17 Solutions for Chap. 17

1. Answer shown in the code below.

for(i in 1:43){
topic_top_words <- mallet.top.words(

topic_model,
topic_words_m[i,], 100)

print(
wordcloud(

topic_top_words$words,
topic_top_words$weights,
c(4,.8), rot.per=0,
random.order=F)

)
}

2. Answer shown in the code below.

mallet_instances <- mallet.import(documents_df$id,
documents_df$text,
"data/stoplist-exp.csv",
FALSE,
token.regexp="[\\p{L}']+")

topic_model <- MalletLDA(num.topics = 43)

274 Appendix C: Practice Exercise Solutions

topic_model$loadDocuments(mallet_instances)
word_freqs <- mallet.word.freqs(topic_model)
topic_model$train(400)
topic_words_m <- mallet.topic.words(topic_model,

smoothed=TRUE,
normalized=TRUE)

vocabulary <- topic_model$getVocabulary()
colnames(topic_words_m) <- vocabulary

for(i in 1:43){
topic_top_words <- mallet.top.words(topic_model,

topic_words_m[i,], 100)
print(

wordcloud(
topic_top_words$words,
topic_top_words$weights,
c(4,.8), rot.per=0,
random.order=F)

)
}

C.18 Solutions for Chap. 18

1. Simply change the “kind” argument to indicate the type of entity you wish
to extract.

entity_tag_annotator <- Maxent_Entity_Annotator(kind = "date")
entity_tag_annotator <- Maxent_Entity_Annotator(kind = "organization")
entity_tag_annotator <- Maxent_Entity_Annotator(kind = "money")
entity_tag_annotator <- Maxent_Entity_Annotator(kind = "percentage")

Index

A
assignment operators, 11
authorship attribution, 178, 184, 189, 195

C
clustering, 195
code commenting, 11
console, 7
correlation, 70, 169

D
dendrogram, 192
dispersion plots, 38

E
equivalence operator, 95
Euclidean distance, 184, 190

F
feature winnowing, 189
for loop, 53, 101, 179
frequency tables, 198
function embedding, 180
functions

annotate, 238
arrange, 129, 150
c, 26
cat, 102, 201
cbind, 65
ceiling, 215
class, 23, 83

cor, 71
cut, 196
data.frame, 183, 218
dist, 185
do.call, 64, 85, 187
filter, 127
get node text, 182
get sentiment, 162
grep, 41
group by, 155
gsub, 187
hclust, 192
head, 29
lapply, 61, 84, 139, 149
length, 20
load, 242
mallet.import, 221
mallet.top.words, 228
mallet.word.freqs, 223
mutate, 125
order, 87
paste, 21, 201
plot, 34
prop.table, 199
rbind, 59, 85
read xml, 136, 146, 179
readline, 111
rep, 39
rescale x 2, 167
sample, 76
sapply, 94
save, 242
scale, 86
scan, 15
select, 128

© Springer Nature Switzerland AG 2020
M. L. Jockers, R. Thalken, Text Analysis with R, Quantitative Methods in
the Humanities and Social Sciences,
https://doi.org/10.1007/978-3-030-39643-5

275

https://doi.org/10.1007/978-3-030-39643-5

276 Index

functions (cont.)
seq, 39
seq along, 101
simple plot, 165
sort, 28
source, 110
split, 196
stack, 122
str, 23
strsplit, 22
sum, 84
summarize, 155
svm, 207
table, 28
tolower, 22
unique, 28
unlist, 24
which, 20, 105
wordcloud, 229
xml find all, 136, 146
xml text, 137
xtabs, 188

H
hapax legomena, 93
high frequency, closed class features, 184

I
if conditional, 55
inline function definition, 89

K
keyword in context (KWIC), 99, 105, 112

L
latent Dirichlet allocation (LDA), 211
lexical variety, 81, 88

M
mallet instance list, 221
mean word frequency, 82, 84
metadata, 19, 75, 134

N
NA, 39
named entity recognition (NER), 237
Natural Language Processing (NLP), 237

O
objects

data frame, 73, 123
distance matrix, 190
list, 22, 23, 83
matrix, 64, 73, 187
table, 32
vector, 17

optical character recognition (OCR), 133

P
packages

dplyr, 124, 146
e1071, 207
mallet, 219
openNLP, 237
reshape, 188
syuzhet, 160
tidyr, 188
xml2, 135

part of speech (POS) tagging, 237, 240
Pearson product-moment correlation

coefficient, 72
prompt, 7

R
R packages, 124, 135
R projects, 7
R script, 9
R-help, 24
randomization, 76
regular expressions, 17, 22, 41, 99, 200
relative frequencies, 199
relative frequency, 33, 148
rolling mean, 168
RStudio, 5

S
script editor, 6
sentiment analysis, 159
support vector machines (SVM) classifier,

207
syntax highlighting, 6

T
TEI, 181
Text Encoding Initiative (TEI), 134
text segmentation, 196, 214
then operator, 128
tokenization, 103
topic modeling, 211, 220, 242
type-token ratio (TTR), 81, 88

Index 277

U
unique words, 28
user-defined functions, 88, 94, 100, 112, 138,

149, 181

V
vector recycling, 34, 60

W
word frequencies, 31
word tokens, 27

X
XML, 135
XML nodes, 137
XPath, 136

	Preface to the Second Edition
	Preface from the First Edition (Still Relevant)
	Contents
	About the Authors
	List of Figures
	List of Tables
	Part I Microanalysis
	1 R Basics
	1.1 Introduction
	1.2 Download and Install R
	1.3 Download and Install RStudio
	1.4 Download the Supporting Materials
	1.5 RStudio
	1.6 Let's Get Started
	1.7 Saving Commands and R Scripts
	1.8 Assignment Operators
	1.9 Practice
	References

	2 First Foray into Text Analysis with R
	2.1 Loading the First Text File
	2.2 A Word About Warnings, Errors, Typos, and Crashes
	2.3 Separate Content from Metadata
	2.4 Reprocessing the Content
	2.5 Beginning Some Analysis
	2.6 Practice

	3 Accessing and Comparing Word Frequency Data
	3.1 Introduction
	3.2 Start Up Code
	3.3 Accessing Word Data
	3.4 Recycling
	3.5 Practice

	4 Token Distribution and Regular Expressions
	4.1 Introduction
	4.2 Start Up Code
	4.3 A Word About Coding Style
	4.4 Dispersion Plots
	4.5 Searching with grep
	4.6 Practice
	Reference

	5 Token Distribution Analysis
	5.1 Cleaning the Workspace
	5.2 Start Up Code
	5.3 Identifying Chapter Breaks with grep
	5.4 The for Loop and if Conditional
	5.5 The for Loop in Eight Parts
	5.5.1
	5.5.2
	5.5.3
	5.5.4
	5.5.5
	5.5.6
	5.5.7
	5.5.8

	5.6 Accessing and Processing List Items
	5.6.1 rbind
	5.6.2 More Recycling
	5.6.3 apply
	5.6.4 do.call (do dot call)
	5.6.5 cbind

	5.7 Practice

	6 Correlation
	6.1 Introduction
	6.2 Start Up Code
	6.3 Correlation Analysis
	6.4 A Word About Data Frames
	6.5 Testing Correlation with Randomization
	6.6 Practice

	7 Measures of Lexical Variety
	7.1 Lexical Variety and the Type-Token Ratio
	7.2 Start Up Code
	7.3 Mean Word Frequency
	7.4 Extracting Word Usage Means
	7.5 Ranking the Values
	7.6 Calculating the TTR inside lapply
	7.7 A Further Use of Correlation
	7.8 Practice
	Reference

	8 Hapax Richness
	8.1 Introduction
	8.2 Start Up Code
	8.3 sapply
	8.4 An Inline Conditional Function
	8.5 Practice

	9 Do It KWIC
	9.1 Introduction
	9.2 Custom Functions
	9.3 A Tokenization Function
	9.4 Finding Keywords and Their Contextual Neighbors
	9.5 Practice
	Reference

	10 Do It KWIC(er) (and Better)
	10.1 Getting Organized
	10.2 Separating Functions for Reuse
	10.3 User Interaction
	10.4 readline
	10.5 Building a Better KWIC Function
	10.6 Fixing Some Problems
	10.7 Practice

	Part II Metadata
	11 Introduction to dplyr
	11.1 Start Up Code
	11.2 Using stack to Create a Data Frame
	11.3 Installing and Loading dplyr
	11.4 Using mutate, filter, arrange, and select
	11.4.1 Mutate
	11.4.2 filter
	11.4.3 select
	11.4.4 arrange

	11.5 Practice

	12 Parsing TEI XML
	12.1 Introduction
	12.2 The Text Encoding Initiative (TEI)
	12.3 Parsing XML with R Using the Xml2 Package
	12.4 Accessing the Textual Content
	12.5 Calculating the Word Frequencies
	12.6 Practice
	Reference

	13 Parsing and Analyzing Hamlet
	13.1 Background
	13.2 Collecting the Speakers
	13.3 Collecting the Speeches
	13.4 A Better Pairing
	13.5 Practice
	Reference

	14 Sentiment Analysis
	14.1 A Brief Overview
	14.2 Loading syuzhet
	14.3 Loading a Text
	14.4 Getting Sentiment Values
	14.5 Accessing Sentiment
	14.6 Plotting
	14.7 Smoothing
	14.8 Computing Plot Similarity
	14.9 Practice
	References

	Part III Macroanalysis
	15 Clustering
	15.1 Introduction
	15.2 Corpus Ingestion
	15.3 Custom Functions
	15.4 Unsupervised Clustering and the Euclidean Metric
	15.5 Converting an R List into a Data Matrix
	15.6 Reshaping from Long to Wide Format
	15.7 Preparing Data for Clustering
	15.8 Clustering the Data
	15.9 Practice
	Reference

	16 Classification
	16.1 Introduction
	16.2 A Small Authorship Experiment
	16.3 Text Segmentation
	16.4 Reshaping from Long to Wide Format
	16.5 Mapping the Data to the Metadata
	16.6 Reducing the Feature Set
	16.7 Performing the Classification with SVM
	16.8 Practice
	Reference

	17 Topic Modeling
	17.1 Introduction
	17.2 R and Topic Modeling
	17.3 Text Segmentation and Preparation
	17.4 The R Mallet Package
	17.5 Simple Topic Modeling with a Standard Stop List
	17.6 Unpacking the Model
	17.7 Topic Visualization
	17.8 Topic Coherence and Topic Probability
	17.9 Practice
	References

	18 Part of Speech Tagging and Named Entity Recognition
	18.1 Pre-processing Text with a Part-of-Speech Tagger
	18.2 Saving and Loading .Rdata Files
	18.3 Topic Modeling the Noun Data
	18.4 Named Entity Recognition
	18.5 Practice

	Appendix A: Variable Scope Example
	Appendix B: The LDA Buffet
	Appendix C: Practice Exercise Solutions
	C.1 Solutions for Chap.1
	C.2 Solutions for Chap.2
	C.3 Solutions for Chap.3
	C.4 Solutions for Chap.4
	C.5 Solutions for Chap.5
	C.6 Solutions for Chap.6
	C.7 Solutions for Chap.7
	C.8 Solutions for Chap.8
	C.9 Solutions for Chap.9
	C.10 Solutions for Chap.10
	C.11 Solutions for Chap.11
	C.12 Solutions for Chap.12
	C.13 Solutions for Chap.13
	C.14 Solutions for Chap.14
	C.15 Solutions for Chap.15
	C.16 Solutions for Chap.16
	C.17 Solutions for Chap.17
	C.18 Solutions for Chap.18

	Index

