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Abstract One of the important objectives in the design of machines is the reduction
of dynamic errors caused by elastic vibrations of actuating mechanisms in a steady
state and transient conditions. This objective is especially relevant in the production of
high-performancemachines, such as industrial robots, positioning stages, and others.
The open kinematic structure of actuatingmechanisms results in a significantly lower
stiffness of the structure and greater dynamic loads, which in turn leads to intensive
vibrations of operating elements in transient conditions. Furthermore, dynamic errors
caused by free vibrations several times exceed static positioning errors of actuating
mechanisms. Therefore, conventional methods of reducing dynamic errors with the
use of flywheels, counterbalancemechanisms, shock absorber, dynamic dampers and
other passive means do not always prove to be efficient. Instead feedback control
systems have broader functional capabilities.

Keywords Chain system with the fixed end · Dynamic errors · Frequency
equation · Fundamental mode

1 Introduction

In modern machines, gears remain the primary way of transmitting power. This
is due to their small size, well-developed manufacturing technology, the ability to
accurately provide the required gear ratio.However, it is known that gears are a source
of internal vibration activity of the machine unit. The measure of this vibroactivity is
the perturbing moments caused by the rigidity of the gearing, the kinematic error of
the gear, and leading to dynamic errors. Under dynamic error understand deviations
of laws of movement of links from their program values. The vibrations caused by
them can lead to both the opening of the mating profiles of the teeth, and to the
shifting of the lateral gaps between the teeth of the wheels. Dynamic loads arising
in the drive, can thus be several times higher than the load from the moment of the
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resistance forces applied to the working body of the machine and determined from
the strength calculation of the transmission.

2 The Building of a Machine Aggregate Simulation Model

Earlier machine aggregate simulations incorporated a model of a mechanism with
rigid links [1]. However, in practice, structural elements of links and kinematic joints
transform under the action of static and dynamic loads emerging in a steady state
and in motion. As a result, laws of motion for a machine’s operating elements differ
from laws of motions imposed exclusively by engines. Therefore, one of the primary
objectives of machine dynamics is identification of static and dynamic errors caused
by the transformation of links and kinematic joints.

First, amplitudes of dynamic errors of a machine aggregate resulting from the
flexibility of its bearings should be estimated [2–7]. Figure 1 shows a dynamic model
of amachine aggregate. Gears 1 and 2 of a single-stage gear reducer and the actuating
element 3 are set into rotation by the engine rotor 0. The figure depicts elements that
are considered elastic; c01, c12, c23 are their stiffness; b01, b12, b23 are the damping
coefficients; J0, J1, J2, J3 are the moments of inertia of the masses relative to their
axes of rotation; M0 and Mc are the driving torque and the drag torque respectively.
The bending flexibility of shafts and the flexibility of the bearings shall be neglected.

The system under consideration has four degrees of freedom. Absolute rotation
angles of the engine rotor q0, gears q1−q2 and the actuating element q3 can be chosen
as generalized coordinates. It should be more convenient to align these coordinates
to the axis of the engine rotor, thus introducing new generalized coordinates:

ϕ0 = q0; ϕ1 = q1; ϕ2 = i12q2; ϕ3 = i12q3, (1)

where i12 is a transmission ratio of the gearing. Deformations of shafts and gears
connected to driving wheels can be defined as:

Fig. 1 A dynamic model of
a machine aggregate
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θ01 = ϕ1 − ϕ0; θ12 = rb2q2 − rb1q1 = rb1(ϕ2 − ϕ1); θ23 = i−1
12 (ϕ3 − ϕ2), (2)

where rb1, rb2 are radii of the base circles.
Next, kinetic and potential energies and the dissipative functions should be

determined to generate Lagrangian equations of the second order.
The kinetic energy of the system is defined as:

T = 1
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where

J0∗ = J0; J1∗ = J1; J2∗ = i−2
12 J2; J3∗ = i−2

12 J3 (4)

are the moments of inertia of links of the transmission device adduced to the rotation
axis of the engine rotor.

The potential energy of the system is defined as:
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where

c1∗ = c01; c2∗ = r2b1c12; c3∗ = i−2
12 c23. (6)

The dissipative functions of system are defined as:
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3∑
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bs∗(ϕ̇s − ϕ̇s−1)
2, (7)

where

b1∗ = b01; b2∗ = r2b1b12; b3∗ = i−2
12 b23. (8)

External forces in a mechanical system are the driving torque M0, applied to the
engine rotor, and the drag torqueMc, applied to the actuating element. The elementary
work of external forces in the virtual deformation of the system should be expressed
as:

δW = M0δq0 + Mcδq3. (9)

The generalized drag force for the generalized coordinate ϕ3 can be derived as:
M3 = i−1

12 Mc.
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Fig. 2 The reduced model
of a free chain system

By applying the following Lagrange equations:

d

dt

(
∂T

∂ϕ̇s

)
− ∂T

∂ϕs
= − ∂�

∂ϕs
− ∂�

∂ϕ̇s
+ Ms, (10)

it is apparent that (s = 0, 1, 2, . . . , 3):

Js ϕ̈s + bs(ϕ̇s − ϕ̇s−1) − bs+1(ϕ̇s+1 − ϕ̇s) + cs(ϕs − ϕs−1) − cs+1(ϕs+1 − ϕs) = Ms .

(11)

An asterisk is omitted in the system parameters for clarity and c0 = b0 = c4 =
b4 = 0, are applied.

The derived differential Eq. (11) describe motions in a transmission device as
belonging to a system of perfectly rigid bodies interconnected in series by instanta-
neous elastic and dissipative elements. As each rigid body has one degree of freedom,
such a one-dimensional model can be considered as a chain system. Figure 2 shows
a four-mass oscillating system compatible with the differential Eq. (11).

It is possible to produce a set of equations for obtaining ϕ0 − ϕ3 and the driving
torque when combining these equations with an engine performance equation M0.

The equations of motion in a mechanical system can also be written in another
way if the law of motion for the engine rotor is known. In this case, an equation can
be easily derived from the equations of motion (11), where s = 0:

J0ϕ̈0 − b1(ϕ̇1 − ϕ̇0) − c1(ϕ1 − ϕ0) = M0

Next, deformation coordinates should be considered that define the shifting of
masses relative to the engine rotor:

θs = ϕs − ϕ0(t). (12)

Finally, the equations of the system motion can be written as:

Js θ̈s + bs(θs − θ̇s−1) − bs+1(θ̇s+1 − θ̇s) + cs(θs − θs−1)

−cs+1(θs+1 − θs) = Ms − Js ϕ̈0(t), s = 1, 2, 3,
J0ϕ̈0 − b1θ̇1 − c1θ1 = M0.

⎫
⎬

⎭ (13)



Determination of Dynamic Errors in Machines with Elastic Links 167

Fig. 3 The reduced model
of a chain system with the
fixed end

where θ0 = θ̇0 = 0, c4 = b4 = 0, M1 = M2 = 0. are taken into account.
Figure 3 demonstrates a chain oscillating system. Its equations of forced oscil-

lations caused by the applied active inertia forces and the forces of moving space
−Js ϕ̈0(t) coincide with Eq. (13). The system depicted in Fig. 2 will be further called
a free system, while the system in Fig. 3 will be called a system with the fixed left
end [8–25].

3 Determination of Dynamic Errors in Transient
Conditions

First, the equations of motion (13) should be presented in a matrix:

J θ̈ + Bθ̇ + Cθ = M − J ϕ̈0 · 1,
J0ϕ̈0 − b1θ̇1 − c1θ1 = M0,

. (14)

where θ = (θ1, θ2, θ3)
T is a three-dimensional column matrix, the generalized

force matrix is M = (0, 0, M3)
T , 1 = (1, . . . , 1)T is a single column, and

three-dimensional symmetric matrices of dissipative and elastic system parameters
are:

J =
⎛

⎝
J1 0 0
0 J2 0
0 0 J3

⎞

⎠; B =
⎛

⎝
b1 + b2 −b2 0

−b2 b2 + b3 −b3
0 −b3 b3

⎞

⎠;

C =
⎛

⎝
c1 + c2 −c2 0
−c2 c2 + c3 −c3
0 −c3 c3

⎞

⎠.

Next, based on the generalized coordinates of a mechanical system, principal
coordinates can be calculated with the help of a linear conversion:
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θ =
3∑

m=1

hmzm . (15)

As columns hm , which are fundamental modes, are linearly independent, Eq. (15)
establishes one-to-one correspondence between generalized coordinates θm and
principal coordinates zm .

By introducing (15) into the first matrix system Eq. (14), the following equation
can be generated:

J
3∑

m=1

hm z̈m + B
3∑

m=1

hm żm + C
3∑

m=1

hmzm = M − J ϕ̈0 · 1.

Next, the equation should be consecutively multiplied by fundamental modes hs :

3∑

m=1

(Jhm)T hs z̈m +
3∑

m=1

(Bhm)T hs żm +
3∑

m=1

(Chm)T hszm = MThs − (J · 1)hs ϕ̈0.

(16)

Taking into consideration the mode orthogonality:

(Jhm)T hs = 0; (Chm)T hs = 0 if s �= m,

Eq. (16) can be written as follows:

αm z̈m +
3∑

m=1

βms żs + γmzm = Zm − gmϕ̈0 (m = 1, 2, 3), (17)

where

Zm = MThm, gm = (J · 1)T hm =
3∑

r=1

Jrhmr , βms = (Bhm)T hs .

The coefficient αm = (Jhm)T hm is called a modal moment of inertia (from the
English word mode), and a scalar γm = (Chm)T hm is called modal stiffness, or
stiffness adduced to the mode m.

A complete separation of variables in Eq. (17) may occur if the damping coeffi-
cients are zero or proportional to the respective stiffness (bm = λcm), or masses. In
this case, Eq. (17) can be defined as follows:

αm z̈m + βm żm + γmzm = Zm − gmϕ̈0 (m = 1, 2, 3). (18)

Next, Eq. (18) should be presented in an operator form (d()/dt → p()):
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(αm p
2 + βm p + γm)zm = Zm − gmϕ̈0 (m = 1, 2, 3). (19)

Thus,

zm = (αm p
2 + βm p + γm)−1Zm − (αm p

2 + βm p + γm)−1gmϕ̈0. (20)

Now, based on the principal coordinates, initial coordinates can be computed. For
s = 1, 2, 3, they are the following:

θs =
3∑

m=1

hmszm =
3∑

m=1

hms(αm p
2 + βm p + γm)−1Zm

−
3∑

m=1

hms(αm p
2 + βm p + γm)−1gmϕ̈0 =

3∑

r=1

esr (p)Mr − σs(p)ϕ̈0, (21)

where the operator of dynamic compliance linking the external moment with a
deformation error is:

esr (p) =
3∑

m=1

hmshmr

αm p2 + βm p + γm
, (22)

and the transfer function linking the kinematic force with a deformation error is:

σs(p) =
3∑

m=1

hmsgm
αm p2 + βm p + γm

. (23)

Assuming the engine rotor rotates steadily (ϕ̇0 = const), the drag torque M3 =
−M30 + M31sinνt is applied to the latest mass of a chain system and the positional
damping coefficient is bs = ψcs/2πν (ψ = 0.2−0.6—is the absorption coefficient),
a deformation error in a fixed end system in accordance with (21–22) ϕ̈0 = const
may be defined as follows (s = 1, 2, 3):

θs = �s + θ̃s = −M30|es3( j0)| + M31|es3( jν)| sin
[
νt + arg es3( jν)

]

= −M30

3∑

m=1

hmshm3

γm
+ M31

3∑

m=1

hmshm3

γm

√[
1 −

(
ν
km

)2
]2

+
(

ψ

2π

)2
sin(νt + ξm).

(24)

The equation includes tgξm = ψ/2π
(ν/km )2−1

, γm = k2mαm .

Next, deviations in the laws of motion ϕs(t) from the program ones should
be determined through identification of dynamic errors in the machine aggregate
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depicted in Fig. 1 under the following system parameters (see Fig. 3): c1 =
8 × 105N · m; c2 = 1.44 × 106N · m; c3 = 1.2 × 106N · m; J0 = 0.6 kg · m2;
J1 = 2.9×10−3 kg ·m2; J2 = 1.5×10−2 kg ·m2; J3 = 2.7 kg ·m2; M30 = 10 N ·m;
M31 = 50 N · m.

The frequency equation can be generated:

∣∣∣∣∣∣

c1 + c2 − J1k2 −c2 0
−c2 c2 + c3 − J2k2 −c3
0 −c3 c3 − J3k2

∣∣∣∣∣∣

= 0.00011745k6 − 111443k4 + 1.041333 × 1013k2

− 1.3834 × 1018 = 0,

that can be used to calculate fundamental frequencies: k1 = 364 s−1; k2 = 10243 s−1;
k3 = 29048 s−1 and fundamental modes:

h1 = (1, 1, 1)T ; h2 = (1.5553, 1.3442,−0.1437)T ;
h3 = (2.219,−0.0057, 0.00007)T .

Modal stiffness:

γ1 = (Ch1)
T h1 = 8 × 105 N · m; γ2 = (Ch2)

T h2 = 4.656289 × 106 N · m;
γ3 = (Ch3)

T h3 = 1.106678 × 106 N · m.

Static errors in principal coordinates zm0 = −M30hm3/γm , in particular z10 =
−0.27 × 10−4, z20 = 0.12 × 10−7, z30 = −0.68 × 10−10, and dynamic errors in
principal coordinates (m = 1, 2, 3):

z̃1 = M31h13

γ1

√[
1 −

(
ν
k1

)2
]2

+
(

ψ

2π

)2
sin(ν t + ξ1) = 0.137 × 10−2sin(350t − 0.681),

z̃2 = M31h23

γ2

√[
1 −

(
ν
k2

)2
]2

+
(

ψ

2π

)2
sin(ν t + ξ2) = 0.613 × 10−7sin(350t − 0.063),

z̃3 = M31h33

γ3

√[
1 −

(
ν
k3

)2
]2

+
(

ψ

2π

)2
sin(ν t + ξ3) = 0.342 × 10−10sin(350t − 0.063).

Thus, the static and dynamic errors are:
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θ10 = h11z10 + h21z20 + h31z30,
θ20 = h12z10 + h22z20 + h32z30,
θ30 = h13z10 + h23z20 + h33z30.

θ̃1 = h11 z̃1 + h21 z̃2 + h31 z̃3,
θ̃2 = h12 z̃1 + h22 z̃2 + h32 z̃3,
θ̃3 = h13 z̃1 + h23 z̃2 + h33 z̃3.

4 Determination of Dynamic Errors in Transient
Conditions

Determination of deformation errors in transient processes is of great significance
for the dynamic analysis of machines with program management (various machines,
robotmanipulators,multi-moving platforms and others), transient processes ofwhich
take a considerable amount of the operation time.

External moments in transient processes are assumed to be zero for clarity. It
should not be complicated to consider these moments in the calculation as the
equations of motion are presented in a linear set.

Eq. (21) at Mr = 0 (r = 1, 2, 3) can generate the following (s = 1, 2, 3):

θs = −σs(p)ϕ̈0 = −
n∑

m=1

gmhms

αm p2 + βm p + γm
ϕ̈0 = −

n∑

m=1

ρ(m)
s

τ2m p
2 + 2ζmτm p + 1

ϕ̈0,

(25)

where

gm = (J · 1)T hm =
3∑

r=1

Jrhmr ; ρ(m)
s = gmhms/γm .

The Duhamel integral should be applied to determine dynamic errors:

θs(t) = −
n∑

m=1

ρ(m)
s km√
1 − ξ2m

t∫

0

e−ξmkm (t−ξ)sin

[√
1 − ξ2mkm(t − ξ)

]
ε(ξ)dξ (s = 1, 2, 3).

(26)

It is evident that θs(t) represents free vibrations emerging in a system as a result of
disturbances caused by accelerated motion. These vibrations, which continue after
the positioning, are considered highly undesirable as they lead to oscillations in a
machine’s operating elements hindering proper operating processes.

InEq. (26) the first summand is of themost significance. This is due to two reasons.
First, the coefficients ρ(m)

s decline rapidly with a higher m. Second, the duration of a
transient process usually exceeds by several times the longest free vibrations period
of the system, that is T1. The most significant summand in Eq. (26) is the first one
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(m = 1), that corresponds to damped vibrations in the first mode:

θs(t) ≈ − ρ(1)
s k1√
1 − ξ21

t∫

0

e−ξ1k1(t−ξ)sin[
√
1 − ξ21k1(t − ξ)] ε(ξ)dξ (s = 1, 2, .., 3).

(27)

A dynamic error of a gear θ2(t) in a constant run-up and braking in a three-mass
system with the fixed end (see Fig. 3) can be determined with the Duhamel integral:

ε(t) = ε0η(t) − 2ε0η(t − tp) + ε0η(t − tT),

where ε0 = 10 s−2 is the acceleration amplitude, η(t) is the unit-step function,
tp = 3 s is the run-up time, tT = 2tp is the braking time. In the system under
consideration

g1 = J1h11 + J2h12 + J3h13 = 6.017 kgm2;
g2 = J1h21 + J2h22 + J3h23 = 0.0076 kgm2;
g3 = J1h31 + J2h32 + J3h33 = 0.948 × 10−6 kgm2;
ρ

(1)
2 = g1h12

γ1
= 0.169 × 10−4 s2;

ρ
(2)
2 = g1h22

γ2
= 0.229 × 10−8 s2;

ρ
(2)
3 = g3h32

γ3
= −0.126 × 10−10 s2, n1 = 1.

Thus, the dynamic error in the transient process is:

θ2(t) ≈ −ρ
(2)
1 k1 I1(t),

where

I1(t) =

⎧
⎪⎪⎨

⎪⎪⎩

ε0k
−1
1 (e−n1t cos k1t − 1) 0 ≤ t ≤ t,

ε0k
−1
1

[
1 + e−n1t cos k1t − 2e−n1(t−tp) cos k1(t − tp)

]
tp ≤ t ≤ tT,

ε0k
−1
1

[
e−n1t cos k1t − 2e−n1(t−tp) cos k1(t − tp)

+e−n1(t−tT) cos k1(t − tT)
] t ≥ tT.

Equation (27) demonstrates that amplitudes of dynamic errors with a predeter-
mined terminal angular velocity (in the case of run-up and braking) or with a prede-
termined rotation angle (in the case of positioning) are inversely proportional to the
time of the transient process and the square of the first fundamental frequency. There-
fore, the reduction of errors in transient processes can be achieved through decreased
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Fig. 4 The graph of the dynamic error that occurs in the machine during the run-up

masses or a greater stiffness of a transmission device and a longer transient process.
Figure 4 shows the dependency graph θ2(t).

In practice, implementation of these recommendations is limited. A greater stiff-
ness of a transmission device is usually accompanied by greater reciprocatingmasses,
thus failing to significantly increase the first fundamental frequency. A longer tran-
sient process results in a decreased machine performance, which is undesirable. In
conclusion, it can be stated that the reduction of dynamic errors in contemporary
machines is a complicated technical task.
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