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Preface

This book presents novel research in the areas of social identity and security when
using mobile platforms. The topics cover a broad range of applications related
to securing social identity as well as latest advances in the field, including the
presentation of novel research methods that are in the service of all citizens using
mobile devices. More specifically, academic, industry-related, and government (law
enforcement, intelligence, and defense) organizations will benefit from the research
topics of this book that cover the concept of identity management and security
using mobile platforms from various perspectives, i.e., whether a user navigates to
social media, accesses their own phone devices and their bank accounts, uses online
shopping service providers, accesses their personal documents or accounts with
valuable information, surfs the Internet, or even becomes a victim of cyberattacks. In
all of the aforementioned cases, there is a need for mobile-related technologies that
protect users’ social identity and well-being in the digital world, including the use
of biometrics, cybersecurity software and tools, active authentication and identity
anti-spoofing algorithms, and more.

The first part of the book covers a set of mobile-based privacy and security
technologies, including the following topics, namely, “Shared Images and Camera
Fingerprinting May Lead to Privacy Issues,” “Adversarial Attacks in Mobile
Environments,” and “Personalized Data Minimization Assurance Using Bluetooth
Low Energy.”

The second part of the book covers a set of biometrics technologies including
the following topics, namely, “On Designing a Forensic Toolkit for Rapid Detection
of Factors that Impact,” “Face Recognition Performance when Processing Large-
Scale Face Datasets,” “Classification of Soft Biometric Traits when Matching Near-
Infrared Long-Range Face Images Against Their Visible Counterparts,” “Quality
and Match Performance Analysis of Band-Filtered Visible RGB Images,” “Uncon-
strained Face Recognition Using Cell Phone Devices: Faces in the Wild,” and “Face
Detection in MWIR Spectrum.”

The third part of the book covers a set of mobile-based active authentication
technologies including the following topics, namely, “Mobile Active Authentication
Based on Multiple Biometric and Behavioral Patterns,” “Quickest Multiple User
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vi Preface

Active Authentication,” “Iris Recognition on Mobile: Real-Time Feature Extraction
and Matching in the Wild,” “A Protocol for Decentralized Biometric-Based Self-
Sovereign Identity Ecosystem,” and “Toward Wider Adoption of Continuous
Authentication on Mobile Devices.”

We hope this book can become a reference work for anyone working in the
government, industry, or academia that uses technologies for security, privacy, and
identity management. This book can also be used by researchers (academic or
not) and master’s and Ph.D. students who want to focus and be updated with the
current developments on this area of research. Finally, we would like to thank all
the contributors of the book for the high-quality work they have submitted to us and
their support in the coordination of this publication.

Morgantown, WV, USA Thirimachos Bourlai
Attica, Greece Panagiotis Karampelas
Baltimore, MD, USA Vishal M. Patel
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Shared Images and Camera
Fingerprinting May Lead to Privacy
Issues

Rahimeh Rouhi, Flavio Bertini, and Danilo Montesi

Abstract Social networks have become an indispensable part of everyday life by
providing users with different types of interaction. However, sharing different types
of data, such as text, image, video and etc., on social networks, gives rise to user
privacy concerns and risks, while the user is not aware of that. In this chapter, we
show how the images shared by users can be applied to fingerprint the acquisition
devices and link user profiles on social networks.

Keywords Camera fingerprinting · Social networks · User profile linking · User
privacy

1 Introduction

In recent years, social networks have revolutionized the web by providing users with
easy and inexpensive types of interactions [1], e.g., by sending texts and sharing
images and videos. Many social networks have introduced applications particularly
dedicated to major mobile devices (e.g., smartphones), introducing changes in user
habits regarding multimedia content on social networks [2]. The ever increasing use
of smartphones has led users to take more and more digital images and share them
across various social networks [3]. On the other hand, the users may not be aware
of putting their privacy at risk. Privacy issues make social networks to protect users’
privacy by anonymizing the shared data by the users. For example, some social
networks remove the metadata information from the file header of images and the
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Fig. 1 Different components embedded in camera

information is not even available from Exchangeable Image File Format (EXIF) [4].
Is this solution sufficient to protect users’ privacy?

In this chapter, we show how the images shared by users can be applied
to fingerprint the acquisition devices and link user profiles on social networks,
which may lead to privacy issues. Many approaches have been proposed to get
smartphone fingerprints using a variety of built-in sensors such as accelerometers
[5], gyroscopes [6], magnetometers [7, 8], cameras [9], and paired microphones and
speakers [10]. All of them have hardware imperfections, which are created during
the manufacturing process, and can be used to fingerprint each device. As it can
been seen from Fig. 1, digital cameras have mainly several built-in components such
as (a) lens, (b) Color Filter Arrays (CFA) and (c) sensors. More specifically, lens
produces a similar-prism phenomenon and divides the light beam into a spectrum of
rainbow colors. This causes a shift in the point where different wavelengths (colors)
converge, that is the characteristic of the lens. Optical anti-aliasing filter and CFA
are in front of the image sensor and reconstruct the color information. The color
subsampling is affected by noise [11]. The camera fingerprint formed by sensor
imperfections has been known as a reliable characteristic making a smartphone
trackable [12–14]. Particularly, the Sensor Pattern Noise (SPN), due to camera
sensor imperfections is considered as a unique characteristic to fingerprint a source
camera [12].

The SPN contains the Fixed Pattern Noise (FPN) and the Photo-Response Non-
Uniformity (PRNU) noise, see Fig. 2. The FPN, which is created by dark currents,
is the pixel-to-pixel differences when the sensor array is not exposed to light.
Since the FPN is an additive noise, some cameras suppress it automatically, by
subtracting a dark frame from every captured image. The FPN is affected by ambient
temperature and exposure. The dominant component in the SPN is the PRNU
noise. It is generated primarily by Pixel Non-Uniformity (PNU) defined as different
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Fig. 2 Pattern noise of
camera sensor

sensitivity of pixels to light, which is caused by the inhomogenity of silicon wafers
and imperfections. The character and origin of the PNU noise make it unlikely
that even sensors from the same wafer would present correlated PNU patterns. So,
the PNU noise is not dependent on temperature or humidity. Light refraction on
dust particles and optical surfaces and zoom settings also contribute to the PRNU
noise. These components are of low spatial frequency in nature and they are not a
characteristic of the sensor. Hence, only the PNU component, which is an intrinsic
characteristic of the sensor, is used for fingerprinting sensors [15]. The PRNU is a
strong tool for fingerprinting smartphones as it is unique for an individual device.
Besides, it is stable against environmental conditions [16].

Given a set of images captured by a specific smartphone, the SPN can be
approximated by averaging the residual noises existing in the images [12]. The
residual noise is the difference between the image content and its denoised version
obtained by a denoising filter. To fingerprint the acquisition camera sources of
the shared images, smartphone identification is defined, which deals with 1-to-m
matching problem and determines which smartphone out of m took a given image
[17]. In smartphone identification, the number of the acquisition smartphones has to
be known. However, when the number of the camera sources generated the images
is unknown, a SPN-based image clustering is needed [18]. The aim of clustering is
to group the residual noises into several clusters, each of them includes the residual
noises sharing the same SPN characteristics. Once the cameras are fingerprinted,
with having the profile tags, specifying each user on a social networks platform,
the profiles sharing images from the same source are linked. This is called User
Profile Linking (UPL) [19, 20]. It can be achieved within the same social network,
i.e., intra-layer UPL [21] or across social networks, i.e., inter-layer UPL [22]. In
this chapter, some proposed methods in the literature for smartphone identification,
SPN-based image clustering and UPL are mentioned, and their results are reported.

2 Background

2.1 Pre-processing

First of all, since images come from different devices, some pre-processing is
applied to images. As the SPN is dependent on the orientation of images, the correct
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Fig. 3 Normalization of images’ orientation: (a) the smartphones’ orientation along with the
resulting images, and (b) the corresponding images after rotation

image orientation has to be provided. Once an image is saved, its orientation may
be changed. By the EXIF tool, the metadata information of images is obtained to
get their correct orientation. Then, all the images can be rotated to either portrait or
landscape orientation [23], see Fig. 3. Some smartphone setting and social network
platforms remove the orientation information from the file header of images, due
to the user privacy. However, for those images whose orientation information is
lost there are still some ways to tackle the orientation issue. For example, in
[21], once the similarity between residual noises is calculated, one of the residual
noises is rotated 180◦ and again the similarity is computed. Next, the highest
value is considered as the similarity between the residual noises. This approach
is time consuming and is not applicable to large-scale datasets. However, in [24],
a rotation-invariant binary representation of SPN was proposed, which reduces the
computational cost.

Digital images can be represented in different color spaces, commonly RGB and
YCbCr. A color RGB image consists of three channels namely Red (R), Green
(G), and Blue (B), while YCbCr represents color images as brightness/luma (Y)
and two color difference signals, i.e., blue minus luma (Cb) and red minus luma
(Cr). The luma component in YCbCr color space is essentially the grayscale copy
of the image. Smartphones are equipped with RGB camera, however, the YCbCr
representation can be obtained through a mathematical coordinate transformation
from the associated RGB color space. The SPN extraction can be performed
using all these different channels. To reduce memory usage and the computational
cost, a specific channel should be considered. Based on our previous work [21],
among the components, the Y channel resulted in the best effectiveness in camera
fingerprinting.

Dark and saturated images do not provide trustworthy SPN [25]. Considering
these images makes the clustering task unreliable and computationally expensive
[18]. Hence, these images are removed. The value of each pixel in a grayscale



Shared Images and Camera Fingerprinting May Lead to Privacy Issues 7

image can be in the range [0–255], where the values 0 and 255 represent black
and white pixel intensity values, respectively. Accordingly, the image whose 70%
of pixel intensities are smaller than 50 or greater than 250 is considered as a dark or
saturated image, respectively.

2.2 Sensor Pattern Noise Extraction

Each residual noise is the difference between the image content and its denoised
version acquired by a denoising filter. The residual noises are extracted from the
pre-processed images as follows:

RN = I − d(I ) (1)

where I and d() are an image and a denoising filter, respectively. Then, by averaging
the residual noises extracted from n images taken by a given smartphone, the SPN,
i.e., the camera fingerprint, can be approximated by:

SPN = 1

n

n∑

j=1

RNj (2)

The quality of the extracted residual noise and SPN is dependent on d() and n. As
the denoising filter, Block-Matching and 3D (BM3D) introduced by [26], results in
better quality of SPNs. Through BM3D, non-unique artifacts are removed by using
zero-meaning all columns and rows, and Wiener filtering in the Fourier domain [25].

The process of content compression performed by social networks causes loss of
image details and weakens the SPN, so it is desirable to apply high resolutions
of residual noises. The heavy overhead on data storage and computation limits
using the residual noises with high resolutions, especially for clustering large-
scale datasets. In our works [21, 22, 27], after extracting the residual noises from
the full-size grayscale images, we resize them to a specific resolution by bicubic
interpolation [28], unlike many works which crop the central block of residual
noises. By resizing, the lowest and the highest resolutions can be upscaled and
downscaled, respectively, to a specific size for more efficient use of available
information, see Fig. 4. Resizing is a flexible way to calculate the similarities
between the residual noises with different resolutions. Given images with different
resolutions such as 2560 × 1920 and 960 × 720 px, to calculate similarities, all
the extracted residual noises from the images are typically cropped to the lowest
resolution, i.e., 960 × 720 px in this case. Hence, a large part of residual noises with
the highest resolution, i.e., 2560 × 1920 px, is discarded. In contrast, by resizing,
more efficient use of available information is provided. Although zero-padding can
be another option to handle the computation of similarities between residual noises
with different resolutions, it may have its own issues, e.g., memory usage.
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(a) (b)

Fig. 4 (a) Cropping versus (b) resizing

2.3 Classification and Clustering

Classification and clustering are the two types of learning methods which organize
objects into groups based on one or more features. They appear to be similar, but
they are different in the context of data mining. Classification is the process of
learning a model that elucidate different predetermined classes of data. It is a two-
step process composed of a learning step and a classification step. In the learning, a
classification model is constructed, and it is trained in a supervised approach, such
that predefined labels are assigned to objects by features. Then, the trained classifier
is given the objects whose labels are unknown, to assign them a label as their class.

On the contrary, clustering is performed in an unsupervised learning approach
where similar objects are grouped, based on their features. It does not involve
training or learning, and the training sample is not known previously. It organizes
objects into clusters where the objects reside inside a cluster will have high
similarity and the objects of two clusters would be dissimilar to each other. Here
the two clusters can be considered as disjoint [29, 30].

2.4 Similarity Measure for Camera Fingerprints

The classification and clustering are performed on the similarities between the
camera fingerprints, whether residual noises or SPNs. The Normalized Cross Corre-
lation (NCC) similarity between any two camera fingerprints fi = [x1, . . . , xl] and
fj = [y1, . . . , yl] is calculated as follows:

A(fi, fj ) =
∑l

n=1(xn − f i)(yn − f j )√∑l
n=1(xn − f i)

2
∑l

n=1(yn − f j )
2

(3)

where f i and f j represent the means of the two fingerprints, respectively.
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Because of the varying qualities of SPNs of different cameras, the average
correlation between the residual noises from one camera may differ from that of
other camera [31]. This makes the clustering of SPNs more challenging. To address
this issue, an alternative similarity measure is calculated based on Shared κ-Nearest
Neighbors (SNN) proposed by [32]:

W(ai, aj ) = |N(ρi) ∩ N(ρj )| (4)

where ρi and ρj are two values in the correlation matrix A in (3), and N(ρi) and
N(ρj ) are the SNN of ρi and ρj , so W(ai, aj ) results in the number of κ-nearest
neighbours shared by ρi and ρj . In other words, each element in the correlation
matrix, i.e., A(ai, aj ), is mapped to W(ai, aj ). Then, clustering is performed on
the resulted matrix W from SNN.

3 Shared Image Analysis

The SPN caused by camera sensor imperfections remains stable as the residual
noises in the images shared by users on their profiles. By analyzing the residual
noises, the smartphone generated the images can be fingerprinted and the profiles
sharing the images on social network platforms can be linked. That may give rise to
user privacy issues. As it is shown in Fig. 5, even if there is not a friendship between

Fig. 5 Using shared images
and fingerprinting the
acquisition smartphones may
lead to users’ privacy issues
by: (a) intra-layer UPL and
(b) inter-layer UPL
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users on social networks, their profiles can be linked by the shared images within the
same or across different social networks, i.e., intra-layer UPL and inter-layer UPL,
respectively.

3.1 Smartphone Identification

Smartphone identification is the task of identifying the source cameras generated
the images, and it can be achieved by clustering. Let I be a set including n images
shared by a user on a social network platform, and S = {S1, S2, . . . , Sm} be a set
of m camera sources generated the images. The aim is to group the images of I

into the right sources of S, where each camera source Si has its own set of images,
i.e., I〈1,i〉, . . . , I〈j,i〉, . . . , I〈n,i〉 ∈ Si , where I = ⋃

I〈i,j 〉, ∀ i = 1, . . . , n and j =
1, . . . , m.

The aim of clustering is to group the residual noises, extracted from the images,
into some clusters such that the residual noises in the same cluster have more simi-
larity compared with those in different clusters. The traditional clustering techniques
such as hierarchical [33], k-means [34] and k-medoids [35] have been frequently
applied to different fields of science. Hierarchical clustering typically organizes the
objects into a dendrogram. The dendrogram is a tree structure whose leaf nodes,
middle nodes and root represent, respectively, the individual data, merged groups
of similar objects, and all objects together [33]. In partitional clustering, i.e., k-
means and k-medoids, the objects are divided into some partitions, each of which
is considered as a cluster. The partitional clustering starts by initializing a set of
k cluster centers. Then, each object is assigned to the cluster whose center is the
nearest [36, 37]. K-medoids is an expensive approach, but it is a more reliable
technique in the presence of noise and outliers compared to the other clustering
methods [38]. In [21], the hierarchical, k-means and k-medoids have been used for
smartphone identification. The experimental results have shown the effectiveness of
the k-medoids clustering in fingerprinting smartphones, even for the images from
identical models of smartphones.

3.2 SPN-Based Image Clustering

The traditional clustering algorithms have to be provided by the initial information
about the number of camera sources. In the cases without the initial information,
usually combining different clustering algorithms is more effective. In [27], we
have presented a Hybrid Markov Clustering (HMC) algorithm to group the images
captured and shared by the users on social network platforms. Particularly, the
HMC exploits image resizing, hierarchical and graph-based clustering algorithms,
and an adaptive threshold [18] to group the images. We have shown that resizing
the residual noises to a specific resolution results in better qualities of the sensor
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pattern noises and better effectiveness for clustering. By using Markov clustering,
the hierarchical clustering is conducted in such a way that the representative clusters
with a higher probability of belonging to the same camera are selected for merging.
The adaptive threshold for merging the representative clusters depends on the
quality of the obtained clusters. The threshold that is updated during the hierarchical
approach can produce more precise clusters even for images from the same model of
smartphones. The HMC is applicable to large-scale datasets because it partitions the
dataset into batches to address the problem of memory constraint for loading many
residual noises into RAM. It exploits the inherent sparseness of correlation matrix
[18], and checks only the candidate clusters for a merging. The candidate clusters
are introduced by the Markov Clustering algorithm and a nearest neighboring. This
accelerates the clustering by calculating only a small portion (about 15%) of the
full-pairwise correlation matrix. The experimental results confirm the effectiveness
and efficiency of the proposed algorithm in comparison with the state-of-the-art
algorithms.

3.3 User Profile Linking

After clustering the residual noises extracted from the shared images on a social
network platform, with having the profile tags of users, the profiles sharing images
from the same source are linked. Especially, it results in intra-layer UPL shown in
Fig. 5a. In [22], an inter-layer UPL approach was proposed, where the clustering
is followed by a classification stage based on Artificial Neural Network (ANN), to
match the residual noises from one social network with the fingerprints obtained
from the clustering. More specifically, the correlation values between the residual
noises and the SPNs are computed and a similarity matrix is formed. The matrix is
used for training and test the ANN through a 10-folds cross validation evaluation
[39]. In the test, the trained ANN is provided by 10% of the rows in the correlation
matrix to classify each image. By using 10-fold cross validation, all the samples
in the correlation matrix are tested as there is a swap between training and test in
each iteration. With the results of classification and the profile tags of users, the
profiles sharing images from the same source camera, on different social networks
are linked, called inter-layer UPL shown in Fig. 5b.

3.4 Experimental Results

In the implementations, VISION image dataset introduced by [23] is applied, which
includes 7480 Native (N) images from 35 identical and also different smartphone
models and brands. The images were shared on social networks such as WhatsApp
(W), Facebook High (FH) resolution and Facebook Low (FL) resolution. They are
depicted by DN, DW, DFH and DFL, respectively.
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The clustering and classification can be validated by different measures. Four
definitions based on the agreement between two sets of labels, i.e., ground truth or
target clusters T = {t1, t2, . . . , tg} and the resulted clusters C = {c1, c2, . . . , co}
are available, where g and o are the number of the target and the resulted clusters,
respectively. Given two samples di and aj in a dataset D = {a1, a2, . . . , aN }, we
have the following definitions:

i. True Positive: TP = {(ai, aj ) : ti = tj and ci = cj }, which means that the two
samples ai and aj are from the same cluster in T , and they are also in the same
output cluster in C.

ii. False Negative: FN = {(ai, aj ) : ti = tj and ci �= cj }, which means that the
two samples ai and aj are from the same cluster in T , while they are not in the
same cluster in C.

iii. False Positive: FP = {(ai, aj ) : ti �= tj and ci = cj }, which means that the two
samples ai and aj are not from the same cluster in T , but they are in the same
output cluster in C.

iv. True Negative: TN = {(ai, aj ) : ti �= tj and ci �= cj }, which means that the
two samples ai and aj are not from the same cluster in T , and they are also not
in the same cluster in C.

Regarding the above definitions, Precision rate P, Recall rate R also known as
True Positive Rate (TPR), F1-measure F, Rand Index (RI), Adjusted Rand Index
(ARI), Purity and False Positive Rate (FPR) are depicted by (5)–(11):

P = |TP|
|TP| + |FP| (5)

R = |TP|
|TP| + |FN| (6)

F = 2 · P · R
P + R (7)

RI = |TP| + |TN|
|TP| + |FP| + |TN| + |FN| (8)

where |.| shows the number of the pairs in the corresponding set defined in (i)–(iv).
The value of RI varies between 0 and 1, respectively showing no agreement and
full agreement between the clustering results and the ground truth. For two random
clusters, the average of RI is a non-zero value. To get rid of this bias, ARI was
proposed by [40]:

ARI = RI − RI

1 − RI
(9)

Purity and FPR are defined as follows:
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Purity =
∑|C|

i=1
|̂ci ||ci |

|C| (10)

where |C| is the number of the obtained clusters, ĉi denotes the number of residual
noises with the dominant cluster label in the cluster ci , and |ci | is the total number
of residual noises in ci .

FPR = |FP|
|FP + TN| (11)

Also, for clustering evaluation, the ratio of the number of the obtained clusters
no over the number of ground truth clusters ng is computed:

N = no

ng

(12)

The results of resizing versus cropping the residual noises are presented in
Tables 1 and 2, respectively, for original-by-original SI and HMC methods. The
best value of each measure is highlighted in bold. The experiments were done
on the sample dataset DN

0 ⊆ DN. From each of 35 smartphones in DN, 100
images are randomly selected, so DN

0 includes 3500 images. The sample dataset
makes the resolution setting facilitative and it still includes images from a variety
of smartphone models and brands. As it can be seen from the tables, the resolution
1024 × 1024 results in the best effectiveness among the other resolutions.

In Fig. 6, the correlation matrices for the dataset DN are shown. The first matrix
shown in (a) is the full-pairwise correlation matrix, while the ones in (c) and
(e) are respectively the result of the mapping the matrix in (a) by SNN and the
computed correlation matrix by HMC. In sub-figures (b), (d) and (f), the proba-
bility distributions corresponding to the matrices can be seen. The full-pairwise
correlation includes intra-camera and inter-camera correlation values. While the
intra-camera correlations are related to the similarities between residual noises

Table 1 Results (%) of resizing versus cropping residual noises in original-by-original SI on
DN

0 , by testing different resolutions

Resizing Croppinga

Size P R F ARI Purity FPR P R F ARI Purity FPR

1280 × 1024 0.84 0.85 0.85 0.86 0.92 0.00 —— —— —— —— —— ——

1024 × 1024 0.85 0.87 0.86 0.86 0.92 0.00 —— —— —— —— —— ——

960 × 720 0.84 0.87 0.86 0.85 0.91 0.00 0.84 0.86 0.85 0.85 0.91 0.00
512 × 512 0.78 0.81 0.79 0.79 0.87 0.00 0.81 0.83 0.82 0.81 0.89 0.00
256 × 256 0.19 0.22 0.20 0.18 0.46 0.02 0.63 0.65 0.64 0.63 0.77 0.01

128 × 128 0.03 0.04 0.03 0.00 0.93 0.03 0.32 0.33 0.33 0.31 0.54 0.02
aThe highest resolution for cropping is 960 × 720 px corresponding to the highest image
resolution in DN

0
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Fig. 6 Pairwise similarities of residual noises: (a) correlation values (c) mapped correlation
values by SNN, and (e) computed correlation values by HMC, and (b), (d) and (f) are their
corresponding probability distributions
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from the same smartphones, the inter-camera correlations are the ones between
residual noises from different smartphones. They are represented in the full-
pairwise correlation matrix in sub-figure (a) as the diagonal and off-diagonal parts,
respectively. Generally, the more the intra-camera and inter-camera correlations
are separable, the better the quality of the clustering is obtained. Accordingly,
comparing the sub-figs (f) and (d) with the one in (b) shows the impact of SNN and
MCL on the computed correlation. The results of the methods on different datasets
are reported in Tables 3 and 4. The best and the worst results are related to DN and
DFL, respectively, since the resolutions of the native images is higher than those of
FL. The results of the dataset DN are also reported as a benchmark for the proposed
methods because native images have the highest resolutions.

The results of inter-layer UPL for all the possible pairs of social networks are
presented in Table 5. Using images in DW to classify the images in the other datasets
i.e., DFH and DFL concluded the best results. It is interesting that the classification

Table 3 Intra-layer UPL
based on smartphone
identification

Dataset P R F ARI Purity FPR

DN 0.827 0.834 0.831 0.825 0.894 0.005

DW 0.742 0.751 0.746 0.738 0.839 0.007

DFH 0.700 0.729 0.714 0.705 0.793 0.009

DFL 0.412 0.424 0.418 0.400 0.573 0.018

Table 4 Intra-layer UPL based on hybrid clustering

Dataset P R F ARI Purity FPR N
DN 0.992 0.720 0.834 0.830 0.994 0.000 37/35

DW 0.964 0.600 0.733 0.727 0.975 0.000 33/35

DFH 0.962 0.610 0.746 0.740 0.975 0.000 33/35

DFL 0.750 0.513 0.609 0.599 0.847 0.005 33/35

Table 5 Inter-layer UPL: Dj −Di denotes the images in Dj are classified based on the clustered
images in Di

Dataset P R F ARI Purity FPR

DW − DN 0.882 0.836 0.829 0.824 0.910 0.005

DFH − DN 0.795 0.821 0.808 0.802 0.900 0.006

DFL − DN 0.730 0.774 0.752 0.744 0.883 0.008

DN − DW 0.778 0.807 0.792 0.786 0.907 0.006

DFH − DW 0.755 0.785 0.772 0.762 0.878 0.007

DFL − DW 0.755 0.782 0.775 0.760 0.878 0.007

DN − DFH 0.756 0.798 0.776 0.769 0.900 0.007

DW − DFH 0.755 0.781 0.772 0.761 0.877 0.007

DFL − DFH 0.754 0.776 0.760 0.756 0.871 0.007

DN − DFL 0.632 0.665 0.648 0.638 0.772 0.011

DW − DFL 0.589 0.610 0.59 0.582 0.723 0.013

DFH − DFL 0.585 0.611 0.600 0.586 0.736 0.012
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of the images in DFL in inter-layer UPL compared with the clustering the images
in intra-layer UPL, see Tables 3 and 4, generates better results in fingerprinting
smartphones.

4 Concluding Remarks

It has been shown that even with removing the file header of images, there are still
some information in the shared images by users on their profiles, and it can be
extracted to fingerprint the acquisition cameras and even to do UPL. In particular,
it is possible to link user profiles on different social networks without using any
personal or privacy-sensitive data of the user. The quality of smartphone fingerprints
depends on the resolution of the images. The less the image resolution is lost during
the uploading process on social networks, the better the quality of residual noise and
subsequently camera fingerprint and UPL are obtained.

5 Exercises

1. Download a set of images, native or shared images on one social network, taken
by 18 smartphones available via the link http://smartdata.cs.unibo.it/datasets#
images, and try to apply the following steps to the dataset:

i. Extract residual noises from the images, by (1) and (2), the code of BM3D
can be downloaded from http://www.cs.tut.fi/~foi/GCF-BM3D/.

ii. Compute the similarity matrix of the extracted residual noises, by (3).
iii. Use a clustering algorithm with known or unknown number of smartphones.
iv. Validate the clustering results based on different measures, by (5)–(11).

2. How do the results change if filters, e.g., smartphone camera or Instagram filters,
are applied to the images?

3. How is the camera fingerprinting affected if the captured images by a smartphone
undergo some geometry transformations like cropping, resizing or rotation?
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Presentation Attacks in Mobile and
Continuous Behavioral Biometric
Systems

Tempestt Neal and Damon Woodard

Abstract Active authentication allows an individual’s identity to be continuously
verified in a transparent fashion. For devices centered on user convenience, active
authentication using behavioral biometrics is an appealing solution to user authen-
tication since behavioral data can be captured as consumers naturally interact with
their devices. However, while such implementations are user-friendly and help to
counter some of the challenges associated with knowledge-based authentication
methods (e.g., easily guessed passcodes), an adversarial attack must be carefully
considered. In this regard, to gain unauthorized access to a secured device, an
adversary may falsify biometric information through impersonating the legitimate
user. This attack is often referred to as a presentation attack or biometric spoofing.
Throughout this chapter, various attack scenarios on mobile devices are discussed
for gait, keystroke and touch dynamics, and user-device interaction modalities.
Presentation attacks are categorized according to the biometric modality, which
may differ given the context of the sensor component involved. This chapter
exposes multiple research gaps and challenges which could significantly strengthen
adversary detection once addressed, while discussing novel research in which no
sensor information is required.
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1 Introduction

Biometric recognition involves a methodical and (usually) fully automated process
for establishing or authenticating a person’s identity through the use of their physical
and behavioral attributes. When establishing an identity, or performing the task
of identification, a person’s biometric data, such as fingerprints or gait signals,
are extracted, decomposed into a digitized representation known as features, and
compared to the features acquired from n individuals already known to the biometric
system. Each known individual is said to be enrolled, and their enrolled features
collectively form a set of templates. The features in question, or query, are matched
against each template (i.e., one-to-many comparisons) to determine the most likely
candidate. On the contrary, authentication requires a single comparison between a
query and template (i.e., one-to-one comparison) due to the claiming of a template
[29]. Thus, authentication ensures that a person claiming access to resources has
the right to do so. In this chapter, biometric authentication on mobile devices is
expanded upon, with a particular emphasis on the vulnerability of these approaches
to adversarial attacks.

The use of biometric technology on mobile devices has surged over the past
decade. However, many devices continue to rely on the knowledge of the user
(e.g., passwords, personal identification numbers, or patterns) for access con-
trol [3, 4, 49, 61, 71, 73]. Hence, these methods are collectively referred to as
knowledge-based authentication schemes. Some argue, however, that knowledge-
based authentication is growing increasingly inefficient due to dictionary, shoulder
surfing, and smudge attacks, the lack of use, and poorly chosen password combi-
nations [13, 33, 35, 65]. On the other hand, since biometrics provide an automated
means to person recognition based on who a person is instead of what a person
knows, biometric authentication has gained a significant amount of commercial
attention for user authentication. Correspondingly, physical biometric solutions,
including face, fingerprint, and iris recognition, are becoming increasingly popular
due to commercialization, convenience, and a perceived increase in robustness at
reducing unauthorized device access [2, 5, 23, 66]. Unfortunately, physical biometric
characteristics are also associated with a wide range of concerns. For example, they
may degrade when the mobility of the device results in undesirable data acquisition
conditions, and they may also be less conducive to active authentication (though not
impossible [57]).

Active authentication involves the continuous acquisition of data; thus, a per-
son’s identity is continuously verified. The advantages associated with active
authentication are substantial. Since active authentication involves unobtrusive and
uninterrupted monitoring, individuals are not burdened with the authentication
process. Hence, active authentication may be regarded as more user-friendly and
secure compared to knowledge-based and point-of-entry biometric authentication
methods such as those currently used commercially. Since the latter does not provide
session-long protection, the application and its data, services, and other relevant
artifacts are available to whomever until the authorized session ends (e.g., the device
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locks automatically or manually). Further, there is never a guarantee, especially
with knowledge-based authentication, that the person claiming access to a device
is indeed an authorized individual. On the other hand, since biometric recognition
relies upon intrinsic data and active authentication continuously captures this data,
the combination is much more vigilant, and the output of many authentication
decisions over time is intended to reflect a higher level of awareness of a person’s
identity.

Behavioral characteristics may be more appropriate for supporting active authen-
tication. Behavioral biometrics seek to decouple the human and device in the
authentication process through passive and covert acquisition of data. Therefore,
they are less dependent on hardware, less constrained by external environmental
factors such as lighting conditions, and can be continuously and efficiently captured
as users naturally interact with their device. Nonetheless, as a whole, biometric sys-
tems are not unerring; in fact, biometric errors and attacks are both thriving research
topics [20, 21, 56]. Physical biometrics have a long history of being susceptible to
presentation attacks, or spoofing (i.e., an attacker presents false data that appears to
belong to a legitimate subject to bypass liveness detection schemes and ultimately
return an inaccurate matching decision), and reliance upon ubiquitous sensors in
uncontrolled and unattended environments such as accelerometers or fingerprint
scanners on mobile devices increases the risk of unauthorized access. Behavioral
biometrics are also susceptible to spoofing, especially through observation and
imitation. Threats against biometric systems are depicted in Fig. 1 and are defined
below.

1. Presentation/spoofing attack: A fake biometric (e.g., fingerprint mold or
synthetic irides [19, 67]) is presented to the sensor to appear as legitimate data.

2. Replay attack: Previously seen biometric data is resubmitted, or replayed, to the
feature extraction module; the sensing module is bypassed (i.e., no query data is
acquired) [28].

3. Override the feature extractor: The feature extraction algorithm is modified to
extract features of the attacker’s choice.

4. Template theft or modification: Stored data may be modified to allow an
attacker to appear as if (s)he is enrolled or to prevent access to a legitimate person.

5. Intercept communication channels: The channels connecting the feature
extractor to the database, feature extractor to the matcher, and database to
the matcher may be intercepted. For example, packet sniffers may be an effective
means for intercepting channels if preventative measures are not in place, such
as the Simple Network Management Protocol [11].

6. Override the matcher: The matching scheme is modified to produce a matching
score set/computed by the attacker.

7. Override the decision: The authentication decision (i.e., genuine or impostor) is
changed to suit the needs of the attacker [54].

On mobile devices, sensing components are much easier to access compared to
those found in traditional biometric systems. Face, fingerprint, and iris data rely
on uncontrolled and unattended cameras, lighting sources, and scanners. Thus,
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Fig. 1 Points of attack indicated by double lines in a biometric system

manufacturers tend to give their consumers more control, trust, and flexibility with
the biometric service with little protection against sensor tampering. Furthermore,
as shown in Fig. 1, biometric recognition is a delicate process; the flow of data
from a person to an identification decision is permeated with many points of
vulnerability. Beyond the direct entry point where presentation attacks are possible,
indirect attacks such as template theft and channel interception are also plausi-
ble. Fortunately, template protection schemes have been combined with various
protocols and specifications (e.g., The Fast Identity Online Alliance, Biometric
Open Protocol Standard, and Trusted Execution Environments) to minimize indirect
attack success [27, 28, 37, 51, 64, 74, 76]. However, spoofing remains a grave
concern considering easy-to-access sensors and the minimal amount of knowledge
required by an attacker regarding the internal configuration of the biometric system
to launch a successful presentation attack [53]. Due to a growing interest in active
authentication over the past few years (e.g., [62, 68]), it is important to consider not
only the practical potential of active authentication, but also theoretical and practical
implications regarding the vulnerability of such systems. This chapter highlights
many of these challenges and the current state of academic research.

1.1 Biometric Performance

The performance of a biometric system is measured by its likelihood to return an
incorrect decision (i.e., a legitimate, or genuine, subject is falsely rejected or an
attacker, or impostor subject, is falsely accepted). Generally, a threshold value, t ,
determines the similarity between a template and query. If the matching scores
are generated based on a similarity-based metric, then matching scores exceeding t

indicate a match, while scores less than t indicate a non-match. Likewise, if scores
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are produced based on the distance between the template and query, matching scores
below t indicate a match, while scores exceeding t indicate a non-match. Assuming
a distance-based matcher, as t decreases, the proportion of rejected genuine subjects
increases. As t increases, the proportion of accepted impostor subjects increases.
Thus, the threshold at which these two values are approximately equal, or the
equal error rate (EER), is usually sought after as the optimal operating point. Other
common measures of performance include:

• A true positive is the correct prediction of a genuine subject as genuine.
• A true negative is the correct prediction of an impostor subject as an impostor.
• A false positive is the incorrect prediction of an impostor as genuine.
• A false negative is the incorrect prediction of a genuine subject as an impostor.
• The true positive rate (TPR) is the proportion of true positives to all positives

(T P/T P + FN ).
• The true negative rate (TNR) is the proportion of true negatives to all negatives

(T N/T N + FP ).
• The false positive rate (FPR) (also referred to as the false accept rate (FAR)

or impostor pass rate (IPR)) is the proportion of false positives to all negatives
(FP/FP + T N ).

• The false negative rate (also referred to as the false reject rate (FRR)) is the
proportion of false negatives to all positives (FN/T P + FN ).

Successful presentation attacks increase the false positive rate, which in turn
increases the equal error rate. Many successful presentation attacks result in the
shifting of impostor scores closer to the distribution of genuine scores; thus, the
false rejection rate increases due to the increased amount of overlap between the
two distributions (Figs. 2 and 3). Thus, since mobile devices are used for multiple
purposes such as monitoring and managing social networking sites, composing and
receiving e-mails and other forms of communication, e-banking, and capturing and
storing various forms of media, this chapter focuses on a timely security issue facing
mobile biometrics. Up to now, the mobile device market has relied on physical
biometrics, and many people are habituated with these services. Meanwhile, studies
have shown that individuals tend to adopt methods which are most familiar [77],
and thanks to the influence of mobile biometrics, biometric technology is no longer
unusual. At the time of this writing, a simple Google Scholar search of ‘continuous
authentication’ returns over 19,000 publications, patents, and citations all published
from 2018. The adoption of behavioral biometrics on mobile devices for active
authentication may not be as far-fetched as it seems, and perhaps should be expected
rather than speculated. Thus, this chapter highlights the state of presentation
attack detection on mobile platforms assuming an active authentication approach.
Section 2 describes gait recognition and the accompanying academic literature
which explores the effectiveness of imitating a person’s walking patterns. Section 3
focuses on keystroke dynamics and touch gestures, and the many works which
consider the theft of keystroke data through remote spoofing attacks. Section 4
discusses the extraction of user-device interactions (e.g., mobile application usage)
as behavioral biometric data and how these data may be spoofed in the absence
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Fig. 2 Example score distribution assuming no spoofing attempts were made

Fig. 3 Example score distribution assuming several spoofing attempts were made and were
successful



Presentation Attacks in Mobile and Continuous Behavioral Biometric Systems 27

of specialized sensors. Remaining challenges and considerations are provided in
Sect. 5, with a chapter summary provided in Sect. 6.

2 Gait

Gait recognition, or the systematic process of extracting and utilizing a person’s
walking patterns for authentication, has prevailed as a biometric modality for at
least twenty years [48]. There are three main methods for acquiring gait data: video
recordings, floor sensors, and wearable sensors (WS) [75]. In each of these, data can
be acquired covertly with little to no user cooperation. However, the latter approach
is arguably most suitable for continuous authentication since the sensing mechanism
is attached to an individual and mobile devices have embedded inertial sensors (e.g.,
accelerometers and gyroscopes) which can capture walking patterns [47]. Since
many people carry their smartphones in a pocket, for instance, these sensors capture
rich and idiosyncratic movement signals [15].

The process of gait recognition involves five main steps: sampling, noise
reduction, cycle detection, feature extraction, and matching. Sampling is simply data
acquisition and there a variety of approaches explored in the academic literature
in terms of what type of sensing device is used (e.g., variations in accelerometer
hardware models) and where the device is placed (e.g., in a shirt pocket or on a
belt clip). Raw walking signals, which are usually three-dimensional accelerometer
measurements (Fig. 4), correspond with a variable number of steps per minute
infiltrated with unwanted noise. Inertial sensors are notorious for capturing spurious

Fig. 4 Three-dimensional
measurement of movement
via accelerometers on a
mobile device
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Fig. 5 Swing Phase of a Gait Cycle

movements, such as those resulting from breathing or inadvertent device movements
in a pocket. Linear or cubic interpolation is often used to create equal time intervals
between each data point, while smoothing methods, such as weighted moving
averaging, are also employed. The enhanced data is then used for cycle detection.

One cycle consists of two steps (Fig. 5); therefore, a walk is composed of several
cycles. There are various means to cycle detection; a common approach is to utilize
local minima and maxima in the enhanced data. Once each cycle is found, the
average cycle is computed and stored as a unique representation of a person’s gait.
Matching is thus performed between two average gait cycles.

There are a number of studies that consider presentation attacks in gait biometrics
in the context of video recordings [8, 25, 26, 38]. These efforts highlight the risks
of “clothing impersonation” [8]. However, muscular and skeletal attributes play a
larger role in WS approaches since visual information is not available. Presentation
attack success in WS approaches are therefore dependent on an attacker’s ability to
somehow adopt the musculoskeletal singularities of their target [16].

Two main presentation attacks on gait biometric systems have been explored:
passive and active. Passive spoofing attacks require minimal effort from the attacker;
the attacker has not been trained to mimic their target, nor has the attacker studied
their target’s walking style [16]. Passive attacks are commonly known as zero-
effort attacks throughout the biometric literature, where data from another randomly
chosen subject is used as attack data. Hence, the research literature refers to this
scenario as friendly. An active attack occurs when an attacker purposely tries to
match their target or select the most suitable person to target; appropriately, these
attacks create a hostile scenario. For example, Gafurov, Snekkenes, and Bours
used a motion-recording sensor attached to the hip to collect data at a rate of 100
samples per second to analyze passive and active presentation attacks [16, 17]. The

magnitude of the acceleration vectors,
√

x2
i + y2

i + z2
i , i = 1, . . . , k, was used to

combine the data from all directions into a single signal. The resulting signal was
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linearly interpolated and smoothed with a moving average filter. Cycle detection
involved searching for the minimal acceleration points, and average cycles were
compared using the Euclidean distance. One hundred subjects participated in the
friendly scenario, and 90 participated in the hostile scenario. In the latter, attackers
and targets were paired according to similarities in gender, age, height, and weight,
and having known each other prior to the study. While the EER for the friendly
scenario was 13%, a closest target attack, or a hostile attack where the attacker
chooses a target with similar walking patterns as their own, significantly increased
the FAR.

Searching for minima for cycle detection may lead to error, however, when the
first cycle is inaccurate (and thus, each cycle thereafter is also inaccurate). Ren et al.
utilized correlation for cycle detection as an alternative method [55]. Interestingly,
the authors found that a person’s cycles are highly correlated regardless of walking
speed. By placing HTC smartphones on the hip of 23 subjects, the authors found
that walks of at least 20 seconds maximized the attack detection rate in passive
scenarios. Thus, their results suggest that the amount of data has some bearing on
the ability to distinguish between genuine and impostor subjects.

Correlation-based gait recognition is not an uncommon approach. For instance,
a more aggressive attacker was assessed by Mjaaland et al. [41]. Attackers were
trained to mimic their targets by viewing video recordings, having access to
statistical data, and coaching. In this effort, dynamic time warping was used for
matching accelerometer readings since it copes with changes in speed. A motion
recording device was attached to the hip for capturing 100 samples per second.
Correlation between maxima in the walking signals was computed for estimating
cycle length, simplifying cycle detection. Two versions of hostile attackers were
analyzed; a short-term active attacker was trained by watching videos of their
victim’s walking style for an hour, while a long-term active attacker was trained
for six weeks. The goal of this study was to analyze the attackers’ abilities to
learn over time. A noticeable result of this study regarding spoofing abilities was
the identification of a plateau, or the point at which an attacker can no longer
improve his or her ability to mimic their target; they mathematically defined this
point as p = limx→∞ Y (X), where Y (X) was an observation at instance X [39].
Many attackers worsened their performance during training, but a few were able
to improve temporarily. One of the improving attackers learned to focus on certain
characteristics of his gait for improvement in mimicking their target, but expressed
frustration from the feeling of walking in an unnatural way. Another attacker which
improved made significant changes to his gait to do so, but also began to walk
unnaturally. Thus, the authors claimed that “if exactly one plateau exists for each
individual, then the success of an attacker is predetermined – the plateau has to
lie below or near the acceptance threshold for an impostor to ever be able to
succeed” [40].

In general, the research literature suggests that spoofing gait biometrics is not
an easy task. For example, work by Muaaz and Mayrhofer also demonstrates the
difficulty of spoofing gait biometric systems [43]. They analyzed two forms of
presentation attacks: reenact and coincide. In the former, the attacker walked behind
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their victim during rehearsal, and then mimicked alone during reenactment. In the
coincide method, the victim and attacker walked side by side. For both, victim and
attacker were instructed to wear similar clothing. Moreover, attackers were carefully
chosen; they were trained mime artists and thus specialized in copying body motions
and language. They were also similar to their victims in age, weight, height,
shoe size, and leg length. However, none of the attackers created a false positive
during reenactment or coincide. Thus, one may question whether the literature has
thoroughly considered the characteristics that make a target vulnerable.

There are a few additional open challenges associated with gait biometrics and
presentation attacks. As mentioned, several research efforts focus on visual-based
gait recognition (i.e., video recordings) and the risk of spoofing due to similarity
in items such as clothing. Future research should place more emphasis on WS-
based gait biometrics and active and passive attackers. Second, existing literature is
unfortunately limited in experimental conditions. Typically, laboratory settings are
used such that certain parameters are controlled and external noise is minimized.
For instance, it is common for gait recognition studies to restrict where the sensing
device is placed (e.g., on a belt clip) and the walking surface of the subjects (e.g.,
a hallway). However, this may lead to some discrepancy between experimental
and actual walking conditions. Another consideration is the trade-off between
minimizing attack detection time and the amount of time given for data capture.
When only a few steps are used for training (i.e., cycle detection), an individual’s
natural walking pattern may not fully form. Meanwhile, an attacker is not given
enough time for observation; therefore, both false positives and false negatives
may increase [41]. Nonetheless, gait biometrics is more than feasible on mobile
devices, and they support the continuous and passive nature of active authentication;
perhaps the future of gait recognition will lead to commercialized authentication
solutions given the current indication that spoofing such systems is a laborious task
for attackers.

3 Keystroke Dynamics and Touch Gestures

Keystroke dynamics were first explored on traditional QWERTY keyboards (top of
Fig. 6), where features such as key hold latency (time between press and release of
the same key), key press latency (time between press of a key and the next key),
and interkey latency (time between release of a key and press of the next key) were
extracted. As the design of mobile devices evolved through the years from mini 3D
QWERTY keyboards to touch screens (bottom of Fig. 6), keystroke dynamics and
touch gestures emerged as mobile behavioral biometric modalities. Touch gestures,
such as zooming, scrolling, and swiping (Fig. 7), are characterized using features
such as the starting position of the touch, finger pressure and area, and gesture
direction, distance, duration, and curvature [34].

There are two common themes in the academic literature concerning spoofing of
keystroke and touch data: the assumption of a generative, non-physical attack and
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Fig. 6 Variations in keyboards which have been explored in keystroke dynamics research

Fig. 7 Examples of two-finger, zoom, scroll, and double-press touch gestures, respectively

the analysis of such attacks on desktop computers. For example, Stefan, Shu, and
Yao explored an attacker that can successfully create a program to gather statistical
information regarding legitimate keystrokes to subsequently reproduce similar, but
spoofed, data [63]. Client-side malware would then inject false keystroke infor-
mation. Thus, their attack scenario assumes the attacker can generate statistically
similar keystroke data from a remote location by implementing a keylogger to
obtain actual data. Since several hardware and software keyloggers exist which can
covertly obtain keystroke data, while emulators (i.e., programs that can generate
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keystroke and touch events) are easy to develop, remote presentation attacks are a
concern for these modalities.

Rahman et al. also examined remote attacks; they referred to their model as a
snoop-forge-replay attack since the attacker snoops on their target’s data, forges
a similar copy, and replays the snooped data [52, 53]. They made the following
observations:

• The probability of error significantly increased during an attack; EERs increased
from 11% to over 58%.

• Spoofing was most successful when the forged copy of data was generated from
a small amount of legitimate data; the authors attributed this observation to the
heavy-tailed distribution of digraphs in the English language.

• Legacy keystrokes, or those occurring six months after training, were at risk of
spoofing.

• Shorter keystroke samples were also at risk of spoofing, but the forged samples
were not linguistically sound.

Despite the insights gained from these efforts, it remains unclear as to whether
these observations apply to mobile platforms. For example, in an active authen-
tication setting on mobile devices, legacy keystrokes may be less susceptible to
spoofing since keystroke features may change according to the location of the user.
In addition, a large amount of keystroke information may be available on desktop
computers, while keystroke data from mobile devices may be constrained to only a
few characters. Responses from key presses (3D button versus haptic feedback) may
also alter a person’s keystroke and touch input. Finally, because the literature has
focused on generative attacks (i.e., the attacker computes the statistical likelihood
of certain features to generate accurate spoofed data), an attacker is assumed to
have some knowledge regarding the likelihood of certain features, and uses this
knowledge to simulate keystroke activity [58, 59]. On mobile platforms, however,
keystroke and touch data may be more erratic; features may vary according to
task (e.g., gaming versus e-banking), while touch data has not been explored in
its entirety in regard to generative presentation attacks.

Nonetheless, there is one particular publication which has focused on active
authentication on mobile devices and presentation attacks [31]. Three popular touch
gesture schemes were evaluated for their robustness against spoofing: SilentSense
[7], Touchanalytics [14], and Li et al.’s method [34]. Fifty-five participants were
recruited from which touch data was collected along with multi-angled videos of
nine of the subjects. Thirty-two attackers were instructed on how to execute shoulder
surfing and offline training attacks. In the former, the attackers studied the video
recordings of the legitimate subjects; in the latter, a mobile application was used to
train the attackers on how to reproduce spoofed samples by providing guidance such
as “move start point towards right.” Attackers were incredibly successful in these
experiments, with attack success rates averaging 81.7% and 84.7% for shoulder
surfing and offline training, respectively. Moreover, attackers required very little
effort before gaining a sufficient amount of knowledge to succeed; for 15% of
successful shoulder surfing attacks, attackers only needed 30 seconds of video
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observation, while the majority required less than two minutes. The authors also
found a negative correlation between the number of retries during shoulder surfing
attacks and attack success rate, indicating that attackers were not required to obtain a
certain level of skill. Thus, while many works focus on generative attacks, it is clear
that actual presentation attacks through simple observation may also pose great risk
to mobile device users.

4 User-Device Interaction

An interesting way to support active authentication on mobile devices is to allow
the device to “get to know its owner” [6]. In such scenarios, emphasis is placed on
how the user interacts with their device; thus, explicit use of sensor information is
not a critical factor for data collection [44]. Instead, mobile devices are equipped
with several software-based services (i.e., mobile applications), and studying how
a person chooses to interact with these services (e.g., when a mobile application is
launched or how much time a person spends on an application) forms the basis for
user-device biometric data. In regard to spoofing these types of biometric systems,
there are various approaches that have been considered. There is a common theme,
however, to consider levels of attackers. Informed adversaries are knowledgeable
of some aspect of their target’s behavior (e.g., web browsing habits), while an
uninformed adversary is similar to a zero-effort or passive attacker. For example,
Neal et al. simulated presentation attacks derived from actual activities of legitimate
subjects [45]. They extracted association rules from application, Bluetooth, and
Wi-Fi activity logs as features from 189 subjects and implemented four levels
of informed adversaries. The first level was generated by creating a threat model
consisting of 50% legitimate data (from the attacker’s target) and 50% noise. The
second level reduced the amount of noise to 25%. All noise was removed in the
third level, while the fourth level was a near replication (with some discrepancies)
of the target’s features. Using the Jaccard distance for matching, they found that all
subjects were susceptible to the third and fourth level attacks. They implemented the
second level threat model in an active authentication protocol, where EERs reached
up to 44% [46].

Meanwhile, Bicakci et al. presented Device Comfort as an anomaly detec-
tion application [6]. Device Comfort’s functionality focused on contextualizing
application, Bluetooth, calling, text messaging, and Wi-Fi activities for computing
a anomaly score using the Reality Mining Dataset [12] (100 subjects) and the
Social Evolution Dataset [36] (80 subjects) for experimentation. The researchers
focused their efforts on diurnal patterns, where n days of data was used for training
and data following midnight of the last training data was used for testing. Their
approach used a variant of the k-nearest neighbors algorithm; samples with far or
few neighbors were considered anomalies. Using this methodology, their findings
indicated that certain data types were more informative than others. For instance,
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location, call history, and Bluetooth connectivity were most useful for the Social
Evolution dataset.

It is important to note that the few studies which have focused on user-
device interaction and presentation attacks tend to isolate certain elements of their
experimental designs and subject these elements to spoofing. For example, as men-
tioned, Neal et al. considered four levels of spoofing independently, while Bicakci
et al. assumed ‘daily’ spoofing attempts. In additional efforts, the ‘goodness’ and
‘badness’ of activities were analyzed, where a good event was associated with a
familiar action (such as calling a number in the phonebook), while a bad event was
unfamiliar [30, 60]. Similarly, Yazji et al. focused on spatio-temporal activities, or
users’ locations at particular times using area IDs (e.g., a library or office) [72].
Thus, there is ample room on the topic of user-device interactions for exploring
presentation attacks. Since this particular modality is sensor-independent, it may
be the case that an attacker would have to dedicate a significant amount of time to
observation. On the other hand, it could be possible that generative attacks, such
as those explored in keystroke dynamics, are more plausible since it would then
be less likely that an attacker would be noticed by their target. Nonetheless, both
presentation attack techniques deserve more attention for the derivation of effective
anti-spoofing measures.

5 Open Challenges

Although this chapter discusses several research efforts, many open challenges
remain. Our discussion shows that an emphasis is placed on generative attacks
in the research literature, which assumes that an attacker has prior knowledge of
the feature representation. Thus, choice of features is an important component of
presentation attack detection. There are also very few (if any) experiments ran in
the wild, while the data available to the research community is significantly limited.
This section elaborates on some of these challenges.

Importance of Features A presentation attack should be most successful when
the falsified biometric data yields relevant and statistically similar features to an
enrolled victim. Otherwise, attacks will likely be detected (assuming the attacker’s
data is not like that of someone other than the victim). This fact places considerable
importance on the feature extraction module, and consequently, feature generation.
Thus, feature generation should entail the process of ensuring an answer of very
little to the question of how much can an attacker learn about their target victim,
especially when considering generative presentation attacks.

Feature Representations People tend to use mobile devices in a habitual manner
due to many internal (e.g., neurological) and external (e.g., contextual) factors
[10, 50]. Thus, human behavior is quite obscure, creating a rather unconstrained
pattern recognition problem in terms of a biometric system [32, 70]. Yet, many
research efforts have utilized standard sets of hand-crafted features (e.g., keystroke
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timings), which may fail to accurately capture the complexity of behavioral
biometric modalities. Increasing the number of feature dimensions may create more
robust feature representations that decrease intra-person variance while increasing
inter-person (including attackers) separation. Since attackers would then be required
to generate a larger set of features, the task of accurately understanding the statistical
nature of legitimate features may become much harder. Another possible solution is
to utilize person-dependent feature selection, such that a standard feature set can no
longer be exploited by attackers, along with learned features through deep learning.

Error and Liveness Detection Physically detecting presentation attacks may be
more feasible when an actual human has obtained unauthorized possession of
a mobile device. However, as mentioned, many presentation attacks explored in
the research literature are generative attacks that occur remotely (e.g., the snoop-
forge-replay keystroke attack [52]). However, in one particular study of keystroke
dynamics, negative keystroke timing features were observed among legitimate
subjects [63]. The authors of this work suggested that it may be difficult for a
bot to replicate this behavior. Further, these features (i.e., negative inter-key timing
and duration) were the most salient. Since negative durations were only present
for longer texts, it would be interesting to observe how these findings translate to
mobile devices. If such claims generalize well to multiple platforms, it may be worth
considering the inclusion of features which focus exclusively on human error as a
means to detecting and preventing remote presentation attacks.

Assessment of Actual Attacks The research community is unfortunately limited in
experimental environments. This may lead to discrepancy between actual environ-
ments that are (or are not) conducive to presentation attacks and those used during
experimentation. For example, in a study of gait recognition, attackers are trained to
mimic their targets, but all experiments were conducted indoors on the same flooring
[41]. In many studies on keystroke dynamics, subjects provide input on desktop
computers with a traditional keyboard [42]. Thus, there may exist a significant gap
between theory and practice.

Lack of Benchmark Datasets There is a significant lack of benchmark datasets.
As a result, many efforts cannot be replicated, while many research challenges
remain. For instance, a dataset which consists of several types of subjects (e.g.,
variations in age, ethnicity, and employment) would aid in determining the char-
acteristics of people that make them more or less vulnerable to certain spoofing
attacks.

6 Summary

Biometric recognition has gained a significant amount of attention for user authen-
tication on mobile devices. Presentation, or spoofing, attacks, where an attacker
falsifies data to appear legitimate, are one of several threats against biometric
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systems [18, 24, 69]. Presentation attacks which occur during active authentication
are interesting in their own right, and current research continues to focus on this
problem. Since presentation attacks occur at the sensor level, they are quite fright-
ening for mobile device users. These systems are unattended and uncontrolled, and
these characteristics alone are alarming, especially considering the large population
which interact with these systems.

This chapter discusses presentation attacks on mobile devices regarding gait,
keystroke dynamics and touch gestures, and user-device interactions. These modal-
ities were chosen since they are the most likely to be considered commercially
for active authentication and have received a significant amount of attention in
recent years from the research community. Further, current biometric systems on
mobile devices rely on physical data, and manufacturers seem to have a solid grasp
on implementing solutions for reliably detecting adverse situations for physical
modalities.

Unfortunately, the research literature is minimally standardized on this topic;
most efforts are not replicated, while many approaches are extremely controlled.
However, since Apple’s Touch ID was introduced in 2013 [1, 22], there has been
a significant shift in the adoption of biometric technology. In fact, biometric
technologies are so pervasive that they are becoming an important factor in the
overall design of mobile devices [9]. Even though the mobile device market has
relied on physical biometrics, active authentication has caught on as well over
the past few years, and it could very well become a part of daily life in the near
future. Thus, this chapter explores a timely research topic and an active research
area; it is expected that presentation attack detection regarding behavioral biometric
modalities will continue to improve over the next few years.
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Personalized Data Minimization
Assurance Using Bluetooth Low Energy

Evangelos Sakkopoulos, Zafeiria-Marina Ioannou, and Emmanouil Viennas

Abstract Mobile identity applications allow people to use a mobile phone as a
form of secure digital identity (ID) card for identification purposes. In this paper, we
present a novel transferring method for identity data such as electronic passport or
other identification document data between two mobile devices, i.e. mobile identity
holder and reader, over a BLE channel and propose the definition of a new GATT
(Generic Attributes) profile suitable for mobile identity applications. Using the
proposed approach, we show that BLE standard profiles can simplify and speed
up mobile identity data exchange for several use cases.

1 Introduction

Mobile identity applications allow people to use a mobile device as a form of secure
digital identity (ID) card. Like the identity card, the mobile identity application can
be used for the identity verification of the holder by a reader device.

BLE is a light-weight subset of classic Bluetooth and was introduced by the Blue-
tooth Special Interest Group (SIG) [1] as part of the Bluetooth core specification.
BLE has gained very high momentum, as witnessed by its widespread presence in
smartphones, wearables and other consumer electronics devices. Nowadays, most
of the mobile operating systems including iOS, Android, as well as macOS, Linux,
Windows, natively support BLE.

In this paper, we present an extended version of a proposed transferring method
for identity data [2–4]. Identity data for face to face encounters are usually stored
in electronic document as ePassports, eIDAS documents [5, 6]. Only recently the
idea to store personal data is including mobile apps, i.e. a mobile identity holder
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and a mobile identity verifier/reader app. Carrying personal information into a
mobile device is generally referred to as mobile ID, or mobile Passport. It is a
work under research and development to finalize a common cross-world approach
on how to transform personal information typically stored in a travel identification
document into a mobile identification app that will be possibly read by any third
party.

In order to facilitate identity information transfer, we have proposed that existing
architectures can be helpful such as the GATT profile specification for BLE. GATT
profiles are available for a number of predefined services and use cases such as
subscribing to a headset or transferring data from a wristband. GATT profiles are
data specific and also incorporate certain orchestration for each case. In our work [7]
we have introduced a new GATT profile that may transfer personal information data
over a BLE channel. We have proposed in [7] the definition of a new GATT (Generic
Attributes) profile suitable for mobile identity applications. In this work, we provide
further details on data minimization based on that approach. Data minimization is a
core topic in privacy protection processes especially as governed by GDPR the EU
Regulation on General Data Protection. The proposed method simplifies and speeds
up the process of identity data transferring between mobile devices.

The rest of the paper is organized as follows: in Sect. 2 we present the
related work. Section 3 describes an overview of BLE protocol. Sections 4 and
5 presents the mobile ID GATT profile definition and a proposed mobile identity
data transferring method over BLE. In Sect. 5 provides practical examples of use
cases for the proposed method using real data; it includes also a data minimization
discussion that shows the potential of our approach in enforcing privacy protection.
Finally, Sect. 6 presents our conclusions and thoughts for future work.

2 Related Work

Electronic Machine Readable Travel Documents (eMRTDs), also called as ePass-
ports or biometric passports, differ from the ordinary passports as they additionally
has an embedded contactless Integrated Circuit (IC). The IC stores the personal data
printed on the passport data page, one or more biometric features of the passport
holder e.g. facial image, fingerprints, iris and a security object, a digitally signed
file to check authenticity and integrity of content. The data encoded in the IC
are protected by Public Key Infrastructure (PKI) cryptographic technology against
tampering and unauthorized reading and cloning by security mechanisms.

The International Civil Aviation Organization (ICAO) has specified the Logical
Data Structure (LDS) in the part 10 of Doc 9303 [8] for eMRTDs that defines a
standardized data structure for the organization of data stored in the contactless IC,
including identity and biometric data. This was to achieve the global interoperability
for electronic reading of the eMRTDs. The data stored in LDS are organized as a
collection of Data Groups (DG) each one of which consists of standardized Data
Elements and is stored in a separate Elementary File (EF). More specifically, the
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Table 1 Logical data
structure – data groups

Data group Description

DG1 Details recorded in MRZ
DG2 Encoded face
DG3 Encoded fingers
DG4 Encoded eyes
DG5 Displayed portrait
DG6 Reserved for future use
DG7 Displayed signature or usual mark
DG8 Data features
DG9 Structure features
DG10 Substance features
DG11 Additional personal details
DG12 Additional document details
DG13 Optional details
DG14 Security options
DG15 Active authentication public key info
DG16 Persons to notify
EF.COM Common data
EF.SOD Document security object

LDS defines 16 Data Groups, DG1-DG16, where the two first are mandatory while
all the other are optional. Additionally, there are two more mandatory Elementary
Files, EF.COM and EF.SOD (Table 1).

For instance, DG1 defines the details of the Machine Readable Zone (MRZ),
DG2 contains the encoded face image of the passport holder, EF.COM consists of
the version information and a list of the existing Data Groups and EF.SOD, which
is used to validate the integrity of stored data, contains the hashes of existing data
groups as well as a digital signature of the hashes. Data groups 3 and 4 are optional
and contain additional biometric features, i.e. the encoded fingerprints and encoded
irises of the passport holder.

Currently available solutions for reading eMRTDs or other electronic identity
documents using mobile devices are based on Near-field communication (NFC)
[9, 10] as a transmission protocol. NFC is a short-range wireless connectivity
technology and its standards are provided by the NFC forum.

An NFC enabled device can work in three operation modes:

• reader/writer: an NFC-enabled device is capable of reading information stored
on NFC tags embedded e.g. in labels or smart posters.

• peer-to-peer: Two NFC-enabled devices can communicate directly with each
other and exchange data.

• card emulation: an NFC-enabled device can act like a contactless smart card.
This mode enables contactless payments and ticketing.

NFC relies on the ISO/IEC 14443 standard that defines proximity identification
cards and the transmission protocols for communicating with it. Also, NFC
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enabled devices are compatible with ISO/IEC 14443. Consequently, eMRTDs are
compatible with NFC enabled devices that support the reader/writer operation mode.
Additionally, an eMRTD can be implemented on an NFC enabled mobile device
using the card emulation operation mode.

The communication between mobile reader devices and contactless smart cards
is achieved through commands and responses known as Application Protocol Data
Units (APDUs) in order to establish a secure messaging mechanism or to receive
each one of the data group files of the LDS. The basic structure of an APDU is
defined by ISO/IEC 7816-4. There are two categories of APDUs, command APDUs
and response APDUs (Tables 2 and 3).

The Regulation (EU) N◦910/2014 on electronic identification and trust services
for electronic transactions in the internal market (eIDAS Regulation [11]) adopted
on 23 July 2014 provides a predictable regulatory environment to enable secure and
seamless electronic interactions between businesses, citizens and public authorities.

Table 2 Command APDU structure

Field name Length (bytes) Description

Header
CLA 1 Class of instruction: indicates the type of command, e.g.

interindustry or proprietary
INS 1 Instruction code: indicates the specific command, e.g. read

binary
P1-P2 2 Instruction parameters 1 and 2 for the command, e.g. offset into

file at which to write the data
Body
Lc 0, 1 or 3 Encodes the number (Nc) of bytes present in the data field of

the command:
0 bytes denotes Nc = 0
1 byte with a value from 1 to 255 denotes Nc with the same

value
3 bytes, the first of which must be 0, denotes Nc in the range

1 to 65 535 (all three bytes may not be zero)
Data field Nc Nc String of bytes sent in the data field of the command
Le 0–3 Maximum number of bytes (Ne) expected in the data field of

the response to the command
0 bytes denotes Ne = 0
1 byte in the range 1 to 255 denotes that value of Ne, or 0

denotes Ne = 256
2 bytes (if extended Lc was present in the command) in the

range 1 to 65 535 denotes Ne of that value, or two zero bytes
denotes 65 536

3 bytes (if Lc was not present in the command), the first of
which must be 0, denote Ne in the same way as two-byte Le



Personalized Data Minimization Assurance Using Bluetooth Low Energy 45

Table 3 Response APDU structure

Field name Length (bytes) Description

Response data Nr (at most Ne) Response data
SW1-SW2
(Response trailer)

2 Status Bytes 1 and 2: command processing status and
command processing qualifier, e.g. the value 90 00
(hexadecimal) indicates success

In this regard, the eIDAS Regulation:

• ensures that people and businesses can use their own national electronic iden-
tification schemes (eIDs) to access public services in other EU countries where
eIDs are available.

• creates a European internal market for electronic trust services – namely
electronic signatures, electronic seals, time stamp, electronic delivery service and
website authentication – by ensuring that they will work across borders and have
the same legal status as traditional paper based processes.

However, no systematic and specific provisions [12] have been made in order to
transform in any way eID into mobile ID (mID) before 2019 especially by reusing
BLE standard architecture.

In this work, we propose a new data transferring method for mobile identity
applications based on the Bluetooth Low Energy protocol. The method based on a
new defined GATT profile simplifies and speeds up the process of data transferring
between two mobile devices, the mobile ID holder and mobile ID reader. The key
advantages of our approach is that it reduces the number of commands and responses
that are required be sent in order to the identity data to be transferred when it is
compared to typical chip based data exchange using APDU commands.

3 Overview of BLE Protocol

In this section we present the key architectural approach for the BLE Protocol.
Instead of using the BLE transmission protocol in an agnostic manner i.e. as a
transport medium, BLE specs set the basis for our proposed data for identification
mobile exchange. The BLE protocol stack is composed of three main layers:
Controller, Host and Application, as depicted in Fig. 1.

In particular, the Controller includes Physical Layer (PHY) that controls radio
communication of transmitting/receiving data and Link Layer (LL) that defines
packet structure, includes the state machine and radio control, and provides link
layer-level encryption. The Host Controller Interface (HCI) provides a standard
interface for communication between the Controller and Host layers. The Host
consists of the following layers: Logical Link Control and Adaptation Protocol
(L2CAP), Security Manager (SM), Attribute Protocol (ATT), Generic Attribute Pro-
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Physical Layer (PHY)

Controller

Fig. 1 Bluetooth low energy (BLE) protocol stack

file (GATT) and Generic Access Profile (GAP). The L2CAP supports higher level
protocol multiplexing, performs packet segmentation and reassembly operations,
along with the conveying of quality of service information. The SM defines methods
and protocols for device pairing and key distribution. The ATT defines the protocol
of transferring the attribute data and provides GATT related procedures such as
read, write and notification. The GATT built on the top of the ATT defines and
creates the types of attributes and how they can be used for a given application
while ATT provides an information exchange mechanism between devices in the
form of attributes. The GAP is responsible for the advertisement and connection
functionality, allows a device to be visible to other devices and manages the
communication between devices.

Also, according to GAP a device can operate in one or more of the following
roles specified in GAP:

Broadcaster: A device that broadcasts advertising data packets.
Observer: A device that listens to BLE devices and processes data from the

advertising packets send by broadcaster. There is no connection between a
broadcaster and observer.
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Peripheral: A device that advertises its presence so central devices can establish
a connection. After connecting, peripherals no longer broadcast data to other
central devices and stay connected to the device that accepted connection request.

Central: A device that initiates a connection with a peripheral device by first
listening to the advertising packets. A central device can connect to many other
peripheral devices.

Finally, the Application layer works as the interface between the user application
and BLE protocol stack.

Our focus is on GATT layer since the goal is to extend original BLE approach
widely used for typically smaller amounts of information exchange with a new
profile that has appropriate format and placeholders for all needed identification
information. A profile defines a specific use case, roles and general behaviors based
on the GATT functionality. The GATT defines a hierarchical data structure that is
exposed to connected BLE devices. A GATT profile consists of two main elements:
service and characteristic. The service is a collection of one or more characteristics
and characteristics consist of data value, a set of properties which defines the
operations that characteristic supports as well as a set of permissions regarding the
security. The available properties of a characteristic are:

Read: if set, allows reads of characteristic value.
Write: if set, allows writes of characteristic value (with or without response).
Notify: if set, allows notifications of a characteristic value (without acknowledge-

ment) when the characteristic value has been updated.
Indicate: if set, allows indications of a characteristic value (with acknowledgement)

when the characteristic value has been updated.

A characteristic may also contain one or more descriptors which give information
about the characteristic or allow the configuration of a behavior involving the
characteristic. For example, notifications or indications can be enabled or disabled
by using a descriptor called the Client Characteristic Configuration Descriptor.
Generally, the profile is a group of services and services contain characteristics
where each characteristic contains values, properties and additional description. The
hierarchical data structure of a GATT profile is shown in Fig. 2.

Similar to GAP, there are two GATT roles: GATT Server and GATT Client.
GATT Server is a device that stores attributes and makes them available when a
device in GATT Client role sends a request. GAP and GATT roles are essentially
independent of one another.

There are the following methods for transferring data between a GATT Server
and a GATT Client over a BLE connection:

(a) Write: The Client sends data to the Server by writing the value to a characteris-
tic,

(b) Read: The Server sends data to the Client when the Client sends a command to
read the value of a characteristic,

(c) Notifications/Indications: The Client receives data via notifications or indica-
tions when it has enabled these operations. In this case, the Client receives data
without the need of sending a request.
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Fig. 2 GATT profile hierarchy

The Bluetooth specification provides several profiles but also allows developers
to define their own profiles for use cases that are not covered by the existing SIG-
defined profiles. In the following section, we present the definition of a custom
profile suitable for mobile identity applications.

4 Mobile Identification Data Profile

The proposed Profile is used to transmit mobile identification data over a BLE link.
One service needs to be defined over the GATT layer with two characteristics.
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Fig. 3 Relationship between
service and profile roles

mID Reader Mobile Identity
Service

mID Holder

The profile defines two roles: the reader and the data owner. The reader is the
device that sends commands to the data owner requesting retrieval. The data owner
receives the commands and sends responses via notifications to the reader device.
The data owner includes the Mobile Identity Service.

In our server based approach, the owner shall be a GATT Server while the
reader shall be a GATT Client. The specification allows the positioning of client
and server to be vice versa but that does not affect the validity and effectiveness
of our approach. Figure 3 shows the relationships between service and two profile
roles.

The data holder device instantiates one and only one Mobile Identity Service.
So the data holder shall use the GAP Peripheral role, while the reader shall use

the GAP Central role.

4.1 Mobile Identification Data Service

The mobile identification data – mID Service enables to send data to the Reader over
a BLE link. The service is not dependent upon any other services. Requirements
include mandatory server objects for Write Characteristic Value, Notifications, Read
Characteristic Descriptors, Write Characteristic Descriptors.

4.2 Service Characteristics

The Service contains the following two characteristics:

1. Mobile Identity Data

This characteristic is used to send mobile identity data to the mID Reader Device.
It includes mandatory properties such as Notify and Mandatory Descriptors

such as Client Characteristic Configuration Requirement with permissions read and
write.

In order to facilitate the personal information data transfer in an organized
manner we devised the following structure for the value fields (Table 4):
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Table 4 Client characteristic configuration permissions

Name
Accept to send mID
data

Deny sending
mID data

Field requirement Mandatory Mandatory
Format Byte array uint16
Minimum value N/A N/A
Maximum value N/A N/A
Additional information Header (1 byte) Data Header (1 byte)

1 h Number of blocks to be
sent (4 bytes)

3 h

Length of mID data to
be sent (4 bytes)

2 h One block of mID data

Table 5 Mobile identity control point value fields

Name Request

Field requirement Mandatory
Format uint48
Minimum value N/A
Maximum value N/A
Additional information Bit Description

0–1 Mode: 00 for offline or 01 for online
2–3 Type of request: 00 for requesting complete mID data or 01

for requesting age verification data
4–35 Reader ID number
36–47 Reserved for future use

The reader shall control the configuration of the notifications via the Client
Characteristic Configuration descriptor of the Mobile Identity Data characteristic
and shall be able to receive multiple notifications from the data owner.

The Reader shall determine the data content of the Mobile Identity Data
characteristic based on the header of value field. In particular, a header with value:

(a) 0x01: indicates that mID Reader has accepted the request for sending mID data
and the receiving data packet contains the number of blocks as well as the length
of mID data to be received. These two values should be used by mID Reader to
verify the correct reception of received data.

(b) 0x02: indicates that the receiving data packet contains a block of mID data.
(c) 0x03: indicates that the mID Holder has rejected the request to send mID data.

2. Mobile Identity Control Point

The mID Control Point Characteristic allows the mID Reader to send request
commands to the mID Holder Device for receiving mobile identity data. It needs
write permissions and the value fields is proposed to follow the following structure
(Table 5).
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The reader sends the request to receive data by writing a value to the Control
Point characteristic. The value may contain additional information, such as the
operation mode of the Reader device (e.g. online/offline or other supported oper-
ation modes), the type of request, for example requesting complete data or only age
verification data including age attestation/date of birth and facial image, as well as
the reader ID Number which could be used by data owner device for verifying the
identity of the device that makes the request.

5 Data Transferring Method

The reader device in the Central role scans, looking for advertisement, while the
data owner device in the Peripheral role makes the advertisement of a Service and
its characteristics. Following we describe the method step by step in order to achieve
successful data exchange.

(a) Service Discovery

The mID Reader device performs service discovery using the GATT Discover All
Primary Services sub-procedure or the GATT Discover Primary Service by Service
UUID sub- procedure to discover the Mobile Identity Service with “mID Service”
for the service UUID.

(b) Characteristic Discovery

The mID Reader device performs the GATT Discover All Characteristics of
a Service sub-procedure or the GATT Discover Characteristics by UUID sub-
procedure to discover all the characteristics and characteristic descriptors of the
mID Service.

(c) Sending the request command

When a BLE connection has been established between the mID Holder and mID
Reader devices, the mID Reader transmits a request command to the mID device to
receive mobile identity data. Before sending any command, the mID Reader shall
set the Client Characteristic Configuration Descriptor of the Mobile Identity Data
Characteristic to enable Notifications. It is also recommended that the mID Reader
(Client) should request an increase of the Maximum Transmission Unit (MTU) to
the maximum possible value.

The MTU corresponds to the maximum size of a single packet that can be
transmitted over the BLE connection and the default value of MTU is 23 bytes.
During this procedure, the Client informs the Server about its maximum supported
receive MTU size and the Server responses with its maximum supported receive
MTU size. The procedure can only be initiated by the Client and must be performed
on each BLE connection. After the exchange procedure, the MTU value for the
current connection is set as the minimum value of the Client MTU and Server MTU
values. For example, if the Client maximum supported MTU size is 250 bytes and
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Server maximum supported MTU size is 200 bytes, then the MTU size has to be set
to 200. Increasing the MTU size increases the size of data that can be transmitted
in a single packet and further speeds up the data transferring process. The increase
of MTU size is an important step when transferring large amounts of data, as in the
case of mobile identity data.

For sending a request to the mID device, the mID Reader writes a value to
the Mobile Identity Control Point Characteristic including the operation mode
(online/offline) based on internet connection availability as well as the reader
identification number.

(d) Receiving the request and sending mID Data

The mID device receives the incoming request from the mID Reader and the mID
Holder must accept or deny the request for sending mID data. The mID data has to
be in the form of a byte array. The mID device reads the value of the mID Control
Point characteristic including the operation mode and reader identity number.

In case of acceptance the mID device:

1. The length of mID Data as well as the number of blocks to be sent according to
the MTU size of the connection and then transferred to mID Reader by writing
values on the Mobile Identity Data Characteristic and sending a notification. In
particular, the number of blocks to be send can be calculated using the following
Eq. (1):

Number of Blocks = Length of mID Data/ (MTU–3–1) (1)

where 3 is the number of bytes required as header when sending a Write,
Read, Notification or Indication packets, 1-byte for OP-Code indicating the ATT
Operation and 2-bytes for Attribute Handle for identification of the data and 1 is the
header defined for mID data.

2. The mID Data are fragmented into blocks according to the MTU size and each
block is transmitted by writing the value on the Mobile Identity Data Character-
istic and sending a notification. Between writing blocks on the characteristic and
sending notifications, a delay of about 100ms must be added.

In case of denial, a byte array with value 3 h is sent by writing the value on the
Mobile Identity Data Characteristic and sending a notification.

(e) Receiving mID Data

The mID Reader device receives via notifications the denial response or the
length of mID Data, the number of blocks as well as all the blocks of mID Data.
At the end of the transmission process, the data blocks have to be merged into one
and according to the length of mID Data as well as number of blocks values the
correctness of the mID data has to be verified. The mID Reader is able to request a
retransmission of data if the received data are not correct. Finally, the mID Reader
closes the BLE connection between two devices. Figure 4 shows a sequence diagram
of the described mID data transferring method.
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Fig. 4 mID data transferring method

6 Use Case Example

In this section, we provide practical examples of use cases presenting the data
transferring method with real data.
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6.1 Complete mID Data Request

Suppose that the complete mobile identity data is required by the mID Reader
and that the mID data including full name, date of birth, date of issue, date of
expiry, document id, address, facial image, gender, eye color, height and weight
are represented in JSON format on mID Holder device as following:

{“LASTNAME”:“SMITH”,
“FIRSTNAME”:“JANE”,
“DATEOFBIRTH”:“1986-03-30”,
“DATEOFISSUE”:“2008-06-19”,
“DATEOFEXPIRY”:“2051-03-30”,
“DOCUMENTID”:“111111111”,
“ADDRESS”:“1600 Pennsylvania Ave NW, Washington DC 20005”,
“FACIALIMAGE”:“ . . .”,
“GENDER”:“FEMALE”,
“EYES”:“BLUE”,
“HEIGHT”:65,
“WEIGHT”:111}
and are stored in a byte array of size 8000. The mID Reader device can operate
in two different modes, online and offline, according to the internet connection
availability. In offline mode, all the fields of mID data must be sent by the mID
holder, while in the online mode only the fields of document id, date of birth and
date of expiry in JSON format must be sent as the mID Reader can then retrieve all
the mID dataset from the server providing the three fields as parameter.

After a BLE connection has been successfully established between mID Holder
and mID Reader device, the mID Reader enables notifications using the Client
Characteristic Configuration Descriptor of the Mobile Identity Data Characteristic
and further requests an increase of the MTU size. Suppose, also, that the maximum
supported MTU size between the two devices has set to 512 bytes.

6.1.1 Offline Mode

The mID Reader sends a request command to the mID device to receive mID data
by writing the following value to the Mobile Identity Control Point Characteristic
(Table 6).

The first two bits of the value indicate that the mID Reader device works in the
offline mode, the following two bits determine the requested type of data i.e. the

Table 6 Offline request command

Mode 00
Type of data 00
Reader ID number 00000111010110111100110100010101
Reserved for future use 000000000000
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Table 7 First packet of data

Header 00000001
Number of blocks 00000000000000000000000000010000
Length of mID data to be sent 00000000000000000001111101000000

Table 8 Packets of data

Header 00000010
Block of mID data (maximum block length: 512–3-1 = 508 bytes)

complete mID data, while the last 32 bits correspond to the reader identity number
with the value 12345678910.

The mID device receives the incoming request and reads the value sent to the
mID Control Point characteristic and checks the operation mode, the type of data,
as well as the validity of reader id number.

(a) In case of acceptance:

Suppose that the mID holder accepts the request. The number of blocks to be sent
is calculated following the Eq. (1) as 8000/ (512 – 3 – 1), or 16 blocks. Subsequently,
the data owner sends the first packet including the header, the length of Data as well
as the number of blocks to be sent by writing the following value on the Mobile
Identity Data Characteristic and sending a notification (Table 7).

In the following 16 packets, the Holder device sends the blocks of data as follows
(Table 8):

by writing the value on the Mobile Identity Data Characteristic and sending a
notification.

(b) In case of deny:

Suppose that the mID holder denies the request e.g. due to security reasons, such
as in the case of an invalid reader identity number. In this case, the mID holder
device sends the denial response value by writing it on the Mobile Identity Data
Characteristic and sending a notification (i.e. 00000011).

6.1.2 Online Mode

In online operation mode, the mID Reader sends the request command to the mID
device to receive mID data by writing the following value to the Mobile Identity
Control Point Characteristic (Table 9):

The first two bits of the value indicate that the Reader device works in the online
mode.

The data owner device receives the incoming request and reads the value of the
Control Point characteristic and checks the operation mode as well as the validity
of reader id number. In case of acceptance, the Reader is required to send only the
following three fields of data in JSON format.
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Table 9 Denial response

Mode 01
Type of data 00
Reader ID number 00000111010110111100110100010101
Reserved for future use 000000000000

Table 10 First packet of mID data

Header 00000001
Number of blocks 00000000000000000000000000000001
Length of mID data to be sent 00000000000000000000000001010001

{“DATEOFBIRTH”:“1986-03-30”,
“DATEOFEXPIRY”:“2051-03-30”,
“DOCUMENTID”:“111111111”}

The length of byte array is 81 and, consequently, all the data can be sent in one
block.

The mID Holder device sends in the first packet the length of data and the number
of blocks by writing the following value on the Mobile Identity Data Characteristic
and sending a notification (Table 10).

In the second packet, the mID data are sent in one block by writing the following
value i.e. 00000010 on the Mobile Identity Data Characteristic and sending a
notification (81 bytes).

Finally, the mID Reader device can retrieve all the mID dataset from the server
providing the received fields as parameters.

6.2 Age Verification Data Request

Suppose that the age verification data is required by the mID Reader to verify the
age of the customer for example in case of the purchase of certain commodities such
as alcohol or tobacco products. The age verification data including date of birth and
facial image are represented in JSON format on mID Holder device as following:

{“DATEOFBIRTH”:“1986-03-30”,
“FACIALIMAGE”:“ . . .”}
and are stored in a byte array of size 5000.

After a BLE connection has been successfully established between mID Holder
and mID Reader device and the increase of the MTU size, the mID Reader sends a
request command to the mID device to receive the age verification data by writing
the following value to the Mobile Identity Control Point Characteristic (Table 11).

The first two bits of the value indicate that the mID Reader device works in the
offline mode, the following two bits determine the requested type of data i.e. the
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Table 11 Age verification data request command

Mode 00
Type of data 01
Reader ID number 00000111010110111100110100010101
Reserved for future use 000000000000

Table 12 First packet of mID data

Header 00000001
Number of blocks 00000000000000000000000000001010
Length of mID data to be sent 00000000000000000001001110001000

age verification data, while the last 32 bits correspond to the reader identity number
with the value 12345678910.

The mID device receives the incoming request and reads the value sent to the
mID Control Point characteristic and checks the operation mode, the requested type
of data, as well as the validity of reader id number.

(a) In case of acceptance:

Suppose that the mID holder accepts the request. The number of blocks to be sent
is calculated following the Eq. (1) as 5000/ (512 – 3 – 1), or 10 blocks. Subsequently,
the mID sends the first packet including the header, the length of mID Data as well
as the number of blocks to be sent by writing the following value on the Mobile
Identity Data Characteristic and sending a notification (Table 12).

In the following 10 packets, the mID Holder device sends the blocks of data
using header 00000010 and maximum 508 bytes by writing the value on the Mobile
Identity Data Characteristic and sending a notification.

(b) In case of deny:

Suppose that the mID holder denies the request e.g. due to security reasons, such
as in the case of an invalid reader identity number. In this case, the mID holder
device sends the denial response value by writing it on the Mobile Identity Data
Characteristic and sending a notification.

7 Conclusion

In this paper, we present a new method for transferring mobile identity data using
the architectural approach that governs Bluetooth Low Energy specifications and
not merely using BLE as a link or transport medium. In this way we enable
advantages that come with the capabilities that BLE GATT profiles provide for
security, and integrity. Further, we minimize the number of handshake steps needed
in comparison to a chip based data transporting. The proposed method is using a
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new defined GATT profile specially designed for identification data which are by
design larger than typical vital sign or other BLE devices logged data. As a result,
it simplifies and further speeds up the process of transferring mobile identity data
between two mobile devices by reducing the number of commands and responses
that are required be sent in order to the identity data to be transferred. Our future
work focusses in the following two directions: (a) standardization of the proposed
GATT profile as well as the data transferring solution, and (b) extension of the
method in order to include further capabilities, such as commands.
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Mobile-Based Biometric Technologies



On Designing a Forensic Toolkit for
Rapid Detection of Factors that Impact
Face Recognition Performance When
Processing Large Scale Face Datasets

J. Rose and T. Bourlai

Abstract Due to the overlap between the fields of forensic investigation and bio-
metric recognition, including face recognition, there have been several interesting
applications that bridge the gap between the two sciences and better connect the
associated communities. These applications have been developed with the intent
to assist law enforcement officers with computer assisted and biometrics related
capabilities. Thus, utilizing biometric algorithms within the forensics field can
support law enforcement investigations in a wide array of applications, including
fingerprint comparisons, sketch-to-photo face comparisons, and even find persons
of interest via soft biometrics such as scars, marks, and tattoos. In this book
chapter, we focus on facial recognition, which can help provide clues when other
forensic evidence is not present or available and, most importantly, help investi-
gators eliminate the time consuming processes of interviewing potential witnesses
or manually searching through thousands of mugshots to determine a suspect’s
identity. To aid in this mission, we propose a software toolkit to automatically
and hierarchically categorize face images with a set of binary classifiers using
three different attributes, which depending on their true label/condition can affect
facial recognition performance. These attributes are: based on facial photo, (1)
determining whether a subject’s eyes are open or closed, (2) whether the subject
is wearing glasses or not, and (3) whether the facial pose of the subject is either
frontal or non-frontal. Our toolkit offers batch processing and therefore can aid
forensic operators with a capability to rapidly categorize large scale face datasets
in terms of the aforementioned attributes, and thus, determine, which individuals
have a higher chance to be identified based on their face information. The proposed
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forensic toolkit will allow the operators to analyze, enhance, group, or exclude face
data before being used for face matching.

1 Introduction

In this section, we provide a brief introduction on forensic biometrics. Next, related
work in this area, mainly face recognition and how it is affected by the three factors
we are categorizing, is highlighted. The final part of this section describes our
motivations and contributions for the work we present in this chapter.

The goal of both biometric recognition and forensic science is to link biological
data to an individual [1]. However, the ability to use biometric systems successfully
in forensic scenarios is quite challenging. The challenges in this field, often referred
to as forensic biometrics, as well as their similarities and differences are well
documented in [1–8]. According to [3], biometric technology plays a role in several
forensic applications: the identity management and the identity verification in the
criminal justice chain, the identification of missing persons from a mass disaster,
and the forensic investigation and intelligence as well as the forensic evaluation of
biometric evidence in court, which together form the field of forensic biometrics.
More specifically, and explained in [4], forensic biometric systems are used as
sorting tools which do not make any final identification decisions. For forensic face
recognition scenarios, an unknown probe face image is compared to every other
face image in a gallery database. The FR system computes a similarity score for
the probe with each sample in the gallery and the top-K matches are returned, often
ordered from most to least similar. Then the forensic investigator performs a visual
inspection of each candidate from the list to determine if any of the returned faces
are a match to the unknown probe, meaning that the forensic biometric system is an
external tool from the manual identification process.

1.1 Related Work

Forensic biometric systems are available for many modalities including face, sketch-
to-photo-face, fingerprint, ear, forensic speaker recognition, and soft biometrics
like scars, marks, and tattoos (SMT). In situations where primary biometrics
like face and fingerprints are not available or sufficient, tattoos, which are often
collected by law enforcement to aid in identification, are commonly used. In [8],
the authors propose the Tattoo-ID automatic tattoo matching and retrieval system,
which extracts SIFT keypoints and then uses a matching algorithm to measure visual
similarities between the probe and gallery images before retrieving the database
images with the largest similarity. It proved to be a significant improvement over
using the ANSI/NIST-ITL1-2011 standard that uses defined classes to query tattoo
images [9].
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One of the most valuable tools for forensic biometrics is face recognition
[10, 11]. Biometric face recognition can aid law enforcement in several ways,
including the detection of multiple records in a database, an additional method of
identification when fingerprints or other information may not be available, rapid
identity checks in the field, and a lead generator for investigations. Perhaps most
importantly, biometric FR systems can quickly return a list of potential suspects
to forensic operators who must manually perform the final identification of a
suspect, leading to improved efficiency in both time and recognition accuracy.
Returning accurate candidate lists is especially important due to the inherent
human error when conducting face recognition. In [12], the authors test human
performance on FR candidate lists of both adults and children. Results showed
very poor face matching performance, with untrained participants making over 50%
identification errors and trained participants making 20% fewer errors. Often face
recognition scenarios require the investigator to match low quality images captured
in uncontrolled conditions against a very large database. Jain et al. discuss many
of the face recognition and image retrieval challenges in forensics in [6] and [7].
Some of the major challenges in unconstrained face recognition are variations in
pose, expression, occlusion, age, and image quality factors such as illumination,
blurriness, and brightness. To improve face recognition performance it is important
to identify which images in a database have these attributes so that they may be
further analyzed or enhanced. The three factors we will focus on are (1) whether a
subject’s eyes are open or closed, (2) whether the subject is wearing glasses or not,
and (3) whether the facial pose of the subject is either frontal or non-frontal.

• Eyes are Open or Closed: Detecting the eyes in face images is an important step
in many automated face recognition algorithms and facial landmark localization
[13]. Much like face detection, the eyes have variations in appearance due to
size, pose, rotation, occlusion such as glasses, opening and closure of eyes,
and illumination conditions [14]. Common factors such as closed eyes and
glasses can affect different eye localization methods as observed in [15–17]
and therefore, FR systems. Several studies have shown that face normalization
schemes based on the centers of the eyes contribute to decreased face recognition
performance if eye locations are inaccurate [18] or eyeglasses are occluding the
face [19]. To overcome some of these challenges, for example, law enforcement
has used image editing and enhancement techniques of probe images, such as
manually replacing closed eyes with open eyes to yield additional and more
accurate returns, leading to thousands of arrests [20].

The classification of open and closed eyes has applications in various fields
including driver drowsiness detection, facial expression classification, and iris
recognition. Extensive research has been done in this area using various methods
including feature based [21–25], motion based [26–28], and appearance-based
techniques [29–31]. More recently, Ji et al. [25] detected eye state by extracting
contour features that are fitted by extracting sclera border points before deter-
mining eye state using a proposed eyelid closure value. In [24], a deep residual
Convolutional Neural Network (CNN) structure is trained and tested with images
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collected in two different environments, achieving a lower equal error rate (EER)
for classification when compared to other CNN methods like AlexNet and
GoogLeNet, and other non-CNN based methods. The authors in [23] combine
a deep neural network and a deep CNN to construct a deep integrated neural
network for characterizing useful information in the eye region using a joint
optimization method and a transfer learning strategy to extract effective abstract
eye features and improve classification capability in uncontrolled scenarios.
Their experiments showed that the proposed method outperformed current state-
of-the-art methods.

• Wearing Glasses or Not: Eyeglasses are the most common occurrence of
facial occlusions and have a significant effect on face recognition performance.
Not only do eyeglasses occlude the face, eyeglass frames can also be used to
intentionally fool FR systems like the frames proposed in [32]. The quick and
accurate detection and, if necessary, removal of eyeglasses can be a critical factor
in forensic biometric scenarios.

The detection and removal of eyeglasses has been thoroughly studied and
methods fall into two main categories, conventional handcrafted features [33–
37] and deep learning approaches [38–40]. In [33], filtered edge intensities on
grayscale images are used to determine the presence of glasses before using
PCA reconstruction and inpainting to extract and remove the glasses respectively.
Alorf and Abbott [34] used local descriptors and support vector machines to
detect eye state, mouth state, and presence of glasses to achieve state-of-the-art
performance when compared to CNN methods. In [36], a method for eyeglasses
detection, location, and a frame discriminant based on edge information is
proposed. By finding the horizontal and vertical nose bridge, the existence
of eyeglasses is determined and the location found using a bidirectional edge
information projection. The authors then check the existence of frames and can
measure frame width based on the location of the left and right glasses. An
eyeglasses detection framework based on a shallow CNN is created in [38].
Using the pretrained GoogLeNet architecture fine-tuned for images with and
without eyeglasses, the learned weights from GoogLeNet are copied to the
corresponding layers in the shallow CNN and used as a feature extractor to
be classified by a trained linear SVM. The shallow architecture CNN reduced
detection time by almost a factor of two while retaining high detection accuracy.
Wang et al. [39] propose a facial obstructions removal scheme based on an
Enhanced Cycle-Consistent Generative Adversarial Network (ECGAN) for face
recognition. Eyeglasses are used as facial obstructions, which are detected using
a CNN. The eyeglasses are then removed using the ECGAN, improving accuracy
of face recognition compared to other existing approaches.

• Pose is Frontal or Non-Frontal: Face recognition with non-frontal pose is
another common problem that has yet to be completely solved and degrades
FR performance [41]. The same is true of face recognition with frontal pose,
where changes in terms of roll, pitch, and yaw angles impact FR performance
as well. Examples of several techniques to handle face recognition across pose
are discussed in [41–49]. In [44], pose variations are handled by a method
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for reconstructing the virtual frontal view from a given non-frontal face image
using Markov random fields and a variant of the belief propagation algorithm.
The approach divides the input image into overlapping patches, estimating a
globally optimal set of local warps to transform the patches to the frontal view.
Oh et al. [47] propose an analytic Gabor feedforward network to handle pose
invariance. The network works directly on raw face images using a single sample
per identity, and produces directionally projected Gabor magnitude features in
the hidden layer. Next, several sets of magnitude features obtained from various
orientations and scales are fused in the output layer for classification. The work
in [49] handles extreme out-of-plane pose variations. Using their proposed Pose-
Aware Models (PAM), face images are processed using several pose-specific
deep CNNs. 3D rendering synthesizes multiple face poses from input images
to train the models and provide additional robustness to pose variations at test
time. Their results show the approach outperforms existing methods evaluated
on the IARPA Janus Benchmarks A (IJB-A) and PIPA datasets.

Face image quality factors such as contrast, focus, sharpness, brightness and
illumination can also impact FR systems. The work in [50] used a face quality
index to show that the filtering of low quality face images can enhance face
recognition performance. However, in this work we will only focus on factors
1–3, not image quality. For more on image quality please see [50].

1.2 Our Motivation and Contribution

The goal of our work in this book chapter is to help the forensic operator by
improving the process of returning an accurate rank list of potential suspects. We
propose a toolkit that can rapidly categorize large databases for several factors that
can degrade FR accuracy by detecting facial photos where the subject’s eyes are
closed, the subject is wearing glasses, or has a non-frontal face pose. The ability
to identify these attributes from facial photos in a large database can benefit law
enforcement and give operators the option to exclude, group, or enhance these
images. An overview of the proposed system is presented in Table 1 where we can
see that first, the system input is a mugshot or other face image from the database
to be categorized. Then, face detection is performed as well as eye pair detection
if possible. Next, HOG features are extracted from the detected face and eyes and
each of the three factors are categorized by trained classifiers. The results are then
recorded and available for analysis by the examiner.
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Input Mugshot from
Database

Face and Eye Detection
and Normalization

HOG Feature
Extraction

Rapid Detection of
Factors with Trained

Classifiers

Record Factors

Trained Models
Classify Face and

Eyes

Results are Recorded
and Returned to the

Operator

Fig. 1 Overview of our toolkit work flow. Step 1: a mugshot image is imported into the interface.
Step 2: the face and eye pair (if possible) are detected. Step 3: HOG features are extracted from
the detected face and eyes. Step 4: the features are used for classification. Step 5: The classification
results are recorded and returned to the examiner

2 Methodology

In this section we explain the databases used in our experiments, feature extraction
techniques, and the experiments performed to choose the classifiers for our factors.

2.1 Databases

In order to account for the variation in image sizes between each database, we first
detect faces using the MTCNN face detector [51] and normalize each face to 130 ×
130 pixels. The entire cropped face image is used for classification of the frontal face
factor, while the eye pairs from each face are found with a cascade object detector
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Fig. 2 Sample images from DB1 captured at −90° to +90° poses at 45° intervals. Additionally,
every subject has an identical set of images with the eyes closed

Fig. 3 Sample images from DB2 with various poses, backgrounds, and illumination conditions

using the Viola-Jones algorithm [52]. The eye pair is then cropped to 90 × 30 pixels
to classify the eyes and glasses factors.

• Good Quality Face Database (DB1): The database contains face images
collected indoors at a distance of 2 meters from 1 session with a Canon EOS 5D
Mark II and Mark III camera. Images were captured from −90° to +90° poses at
45° intervals, each with the subject’s eyes open and closed. Overall, the database
is composed of 1719 subjects and 15,240 images. This data closely represents
high quality mugshot photos and is therefore used as our baseline database for
classification. A sample of these images can be seen in Fig. 2.

• Multiple Encounter Dataset II (DB2): This database is a collection of law
enforcement submissions of deceased persons with multiple prior encounters.
The dataset consists of 518 subjects collected indoors at various profile, near
frontal, and frontal poses under variable illumination conditions. The sensors
used to capture these images are unknown and result in a wide range of image
dimensions, with 70% being approximately 0.3 mega-pixels. The number of
samples per subject varies, with 262 of the subjects having 1 sample and the
remaining 256 subjects having anywhere between 2 and 18 samples, totaling
1,309 images. This mugshot data represents the range of variations that can be
frequently encountered in real world scenarios. A sample of these images can be
seen in Fig. 3.
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Table 1 Summary of the number of images used in each scenario from every database. A *
denotes the addition of augmented data

Number of images

Databases Eyes open Eyes closed Glasses No glasses Frontal Non-frontal

Good quality face database 1636 1614 1174 1181 3283 6558

Multiple encounter dataset II 905 904* 287* 336* 940 1077*

Combined database 2541 2518 1461 1517 4223 7635

• Combined Database (DB3): This database is the combination of DBs one and
two. By combining these databases, we can train classifiers that capture the
variance in both high and low quality mugshot submissions.

• Database Partitioning: While the experiments are the same across each of
the three factors, the data used for each factor is unique. The eyes and glasses
classification data in DB1 and DB2 are composed of only frontal face images
where both eyes can be detected. In order to compensate for the low number of
glasses, closed eyes, and non-frontal face samples in DB2, data augmentation is
performed in order to balance the classes. Synthetic data was created to augment
the eyes and face factors. For the eyes, all 21 subjects with closed eyes were
augmented, creating 42 additional images per subject and 882 images total.
Each closed eye pair was flipped along the horizontal axis. Then these two
eye pairs, the original and flipped samples, were additionally augmented with
Gaussian noise, salt and pepper noise, two levels of increased contrast, two levels
of increased and two levels of decreased brightness by changing the gamma
parameter, and two increasing levels of Gaussian blur, creating 22 total images.
Finally, each of these 22 augmented images is given a random x and y axis
translation of ± 5 pixels. For the face factor, the non-frontal face images were
flipped along the x axis and Gaussian blur was added to the original, creating two
additional images per sample totaling 718 additional non-frontal face images.
Lastly, the glasses factor was supplemented with subjects from the Labeled Faces
in the Wild [53] database, containing labeled faces that span a range of in the wild
conditions including pose, lighting, race, accessories, occlusion, and background.
280 subjects with glasses and 324 subjects without glasses were used from this
database to supplement DB2. A summary of the number of images by database
for each factor is shown in Table 1.

2.2 Feature Extraction

In this work we tested two common global feature descriptors, Histogram of
Oriented Gradients (HOG) [54], and Local Binary Patterns (LBP) [55]. The LBP
operator is a texture descriptor that computes patterns in an image by thresholding
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local neighborhoods, commonly 3 × 3, around every pixel in an image at the central
pixel. The resulting possible 256 8-bit patterns are then converted to decimal form.
The binary pattern for the pixels in a 3 × 3 neighborhood are computed as follows,

LBP(Xc, Yc) =
7∑

n=o

h(gn − gc)2
n (1)

where (Xc,Yc) is the location of the center pixel c, n is the number of neighbor
pixels, gn is the grayscale value at pixel n, gc is the grayscale value at c, and
h(gn−gc) is 1 if h(gn−gc) ≥ 0 and 0 otherwise.

HOG features were introduced in [54] for human detection and have been used
successfully in a number of applications in object detection and classification.
HOG features divide the image into small regions called cells, where a histogram
of gradient directions are computed. To make the descriptor more invariant to
illumination changes, the histograms are then normalized by accumulating a
measure of local histogram energy over larger spatial regions called blocks, the
results of which are used to normalize all cells in the block. The combination of
all normalized histograms create the final HOG descriptor. A visualization of the
HOG descriptor can be seen in Fig. 1 for both a face and eye pair sample.

After several comparisons using both methods we found that HOG features
consistently outperformed LBP for every factor, especially on more challenging
data. Therefore, in all experiments HOG features were used for classification using
a cell size of 8 × 8 pixels and a 2 × 2 block size for the eyes and glasses factors.
This created a feature descriptor for each sample of length 720. The cell size for the
frontal face descriptor was increased to 16 × 16 and used the same block size in
order to reduce each sample dimensionality for training. These descriptors were of
length 1764.

2.3 Conventional Models for Classification

We used 23 different models to perform our classification experiments, which
including multiple Support Vector Machines [56], K-Nearest Neighbors [57],
Decision Trees [58], and Ensemble classifiers [59]. To select the best performing
classification models, we perform 10-fold cross-validation on each factor in every
database with all available models, creating 9 total scenarios. The results from these
experiments allow us to choose the models that will generalize best to classify each
of our factors across diverse data.
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2.4 Convolutional Neural Networks for Classification

In addition to using the previously mentioned models, we also trained two popular
CNNs, AlexNet and GoogLeNet, on DB3 for each of our three classification factors.

AlexNet Architecture AlexNet [60] is an eight layer CNN consisting of five
convolutional layers, three fully connected layers, and takes an input image of size
227 × 227 pixels. The output of the last fully-connected layer is fed to a 1000-way
Softmax layer which outputs probabilities for 1000 class labels. For our purposes
we use transfer learning and change the last three layers to instead classify 2 labels
for each factor, e.g. are the eyes open or closed.

GoogLeNet Architecture GoogLeNet [61] is a 22 layer CNN that takes an input
image of size 224 × 224 pixels and can also classify 1000 class labels. GoogLeNet
uses nine Inception modules that convolve 1 × 1, 3 × 3, and 5 × 5 filters in parallel,
followed by a 3 × 3 max pooling. We again change the last three layers of this
network to classify 2 labels for each factor.

Training, Testing, and Optimization In the experiments performed with CNNs,
DB3 was split using 60% of the data for training, 20% for validation, and 20% for
testing each of the three factors. To train the networks we selected a batch size of
100 for the eyes and frontal face factors, and 50 for the glasses factor due to the
much smaller amount of available data, and conducted empirical optimization on
learning rate, epoch, and momentum parameters, repeating the same process for
both networks that resulted in the best classification accuracy for each factor. First,
an initial range of eight learning rates (LR) were tested, evenly spaced from 0.01 to
0.0001, holding all other parameters the same. Then a sub-range of learning rates
that performed best was selected, and a final set of five evenly spaced LRs were
chosen from this subset. Using each of these selected LRs, experiments for every
combination of epochs from 4, 8, . . . , 20, and momentum of 0.6, 0.65, . . . , 0.95
were conducted. An epoch value of 16 worked best for both networks in the eyes
and frontal face classifiers, and a value of 12 for both networks for the glasses.
AlexNet momentum values of 0.85, 0.9, and 0.85 were the best for eyes, frontal
face, and glasses respectively, and 0.95 for every experiment using GoogLeNet.

3 Experimental Results

In this work, we use CNNs, an array of traditional classifiers with different kernel
functions, including quadratic, cubic, and Gaussian to perform classification. In our
first experiments, we illustrate what models perform the best on our datasets using
HOG features with both good quality and challenging data. We also find the models
that generalize the best to the combination of those two datasets and can perform
well on real world data. In our second experiment, we train and test two CNNs on
DB3 to observe any improvements over using HOG features, as well as implement



On Designing a Forensic Toolkit for Rapid Detection of Factors that Impact. . . 71

1

0.9

0.95

0.85

A
cc

ur
ac

y 
(%

)

DB1 DB2

Eyes
DB3 DB1 DB2

Faces
DB3 DB1 DB2

Glasses
DB3

Fig. 4 Classification results for open and closed eyes (Left), frontal and non-frontal faces
(Middle), and presence or absence of glasses (Right) on the same axis

score level fusion of the traditional and CNN classifiers by summing the final scores
from each class.

3.1 Classification Results

For the classification of eyes, frontal faces, and glasses in Experiment 1 we found
that SVMs achieved the best classification results with the exception of a Fine KNN
for classifying eyes open or closed in DB2. As expected, accuracy was nearly the
same or lower for DB2 in each of the three classification scenarios. This is due to
the unconstrained environments in which these images were captured as well as
the relatively low number of training images compared to DB1. The classification
performance across each database and each factor can be seen in the box plot in
Fig. 4. It is important to note that the substantially larger number of training images
in DB1 could skew the overall accuracy reported in Table 2 on DB3 by classifying
a large number of good quality images and a much smaller number of low quality
images. The results in Table 2 show the best achieved accuracy for each of the three
DBs, with DB3’s columns detailing how accurate that classifier was on DB1 and
DB2 data and the final accuracy on DB3. Table 2 also shows the accuracy of the best
classifiers trained only on DB1 and only on DB2 data separately. Our results show
that the accuracy achieved with the classifier trained on DB3 was nearly identical
to the performance when training on each dataset individually. This means that the
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Table 2 Summary of the average classification accuracy for each factor using 10-fold cross-
validation in all databases. The three DB3 columns show the average cross-validation classification
accuracy in terms of the data from DB1 and DB2 individually, as well as the combined databases,
DB3, in order to show how well the final trained model can classify both good and challenging
data

Average classification accuracy

DB3

Factors DB1 DB2 DB1 DB2 DB3

Eyes open or closed 99.0 99.2 98.7 98.5 98.7

Frontal or non-frontal faces 99.9 93.5 99.8 93.2 98.8

Glasses present or absent 99.6 89.2 99.6 89.7 97.6

Table 3 Comparison of the average classification accuracy on DB3 from 10-fold cross-
validation using SVMs, the best achieved accuracy from parameter optimized CNNs on DB3
test data, and fusion of SVM and CNNs

Accuracy: SVM vs CNN

Factors SVM Alexnet GoogLeNet SVM+AlexNet SVM+GoogLeNet

Eyes open or closed 98.7 99.4 99.2 99.5 99.5

Frontal or non-frontal faces 98.8 98.4 98.7 99.7 99.7

Glasses present or absent 97.6 99.0 99.8 99.9 99.8

best performing classifier of DB3 generalized very well to the combined data and
can accurately classify good and poor quality images.

For our second experiment, we optimized AlexNet and GoogLeNet to train and
test on DB3 and compare classification accuracy against the SVMs from experiment
1. The results are shown in Table 3. We observed that both CNNs improved
classification of open and closed eyes by as much as 0.7% and the glasses factor
by over 2%. However, the CNNs for frontal and non-frontal face classification were
nearly the same as the SVM. After fusing the scores across all scenarios, we were
able to achieve almost 100% accuracy for all 3 factors.

4 Conclusions and Future Work

We investigated the advantages of rapid categorization of factors that impact face
recognition performance when processing large scale face datasets collected under
constrained and unconstrained conditions. To perform the experiments we used
three databases, Good Quality Face Dataset, Multiple Encounter Dataset II, and
a combination of the two. We propose a software toolkit that uses multiple trained
classifiers to classify face images as frontal or non-frontal, eyes open or closed, and
presence or absence of glasses. To perform this classification we trained a variety
of algorithms with 10-fold cross-validation, including SVMs using LBP and HOG
features as well as two well known convolutional neural networks.
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Several scenarios were trained for each factor, testing 23 different conventional
models with a number of kernel functions in order to select the model and kernel
function combination that best classified each factor. CNNs were optimized to find
the ideal parameters for training and testing. Our experimental results show that our
models were able to classify each factor in our most challenging database at least
90% of the time, and over 99% for all factors in DB3 after implementing score
level fusion. The most challenging factor was frontal and non-frontal faces from
DB2. This is likely due to the subjective nature of the labeling process of these face
images as either frontal or non-frontal because many of them were very close to
being in either class. The same can be said of the eyes open or closed data, where a
majority of the misclassified samples were eyes that were very slightly open. When
combined with variations in expression, lighting, distance, and background, many
of these samples proved to be quite challenging to classify correctly.

Based on our results we conclude that a toolkit which almost simultaneously
classifies several well-known factors that affect facial recognition systems can be
very beneficial to law enforcement and forensic operators at identifying individuals
in the gallery. The use of hand crafted features with well-known models such as
SVMs and popular CNNs can quickly find and categorize well over 90% of face
images in a large database correctly, raising the overall quality of images to match
against the gallery by excluding or grouping poor quality faces, or even enhancing
them. In the future, we intend to improve this work by including additional factors
that affect FR performance.
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Classification of Soft Biometric Traits
When Matching Near-Infrared
Long-Range Face Images Against Their
Visible Counterparts

Neeru Narang and Thirimachos Bourlai

Abstract In this chapter, we investigate the advantages and limitations of the
heterogeneous problem of matching Near-Infrared (NIR) long-range, night time,
face images against their visible counterparts. Image quality degradation can result
due to a variety of factors including low illumination, variable standoff distance, and
is responsible for performance degradation of conventional face recognition (FR)
systems. In addition to intra-spectral matching (i.e. NIR vs. NIR face images), cross-
spectral matching (i.e. matching NIR face images against their visible counterparts)
is a challenging matching scenario that increases system complexity. In this work,
we propose the usage of a set of FR algorithms when working with operational-
based face matching scenarios, namely, where the face images used are collected by
a night vision, long range (from 30 to 120 m), NIR-based face imaging system. First,
we establish a system identification baseline using a set of commercial and academic
face matchers. To improve baseline performance, we propose a scenario dependent
convolutional neural network (CNN) to, first, categorize the face images of our
challenging face dataset, in terms of gender, ethnicity, and facial hair. For each of the
aforementioned generated categories, we apply our proposed algorithmic pipeline
including, image restoration and a multi-feature based fusion scheme. Then, a set of
FR algorithms are used before and after image restoration and data categorization.
Based on the experimental results, we conclude that our proposed image restoration
and fusion schemes, as well as the usage of demographic-based face categories,
result in improved identification performance. For example, for the 30 m vs. 30 m
NIR face matching scenario, the rank-1 identification rate is improved from 48% (all
vs. all) using a commercial face matching system to 73% (all vs. all) and to 82% (if
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we use only the male with beards face data category). Experimental results suggest
that our proposed methodological approach can improve system performance (i.e.
efficiently identifying the subject of interest) on various cross-spectral face matching
scenarios.

1 Introduction

The existing standard face recognition (FR) systems result in high identification
rates when operating in controlled conditions, e.g. indoors, during day time and
at short standoff distances [1, 2]. However, in law enforcement and security appli-
cations, investigators deal with mixed FR scenarios that involve matching probe
face images captured by different camera sensors, under un-controlled conditions
(e.g. the subject is far away from the camera, outdoors and at night time conditions)
against the good quality face images (e.g. mug shots), acquired using high definition
camera sensors (e.g. DSLR cameras) [3]. Under such challenging conditions,
conventional face recognition algorithms (using handcraft features such as Local
Binary Patterns, HOGs etc.) often provide unsatisfactory results. Thus, efficient and
reliable FR systems need to be developed, which are capable of supporting law
enforcement officers establish high identification rates under all conditions. While
modern approaches (e.g. based on convolutional neural networks) are promising,
one complementary solution is to use demographic information, namely age, gender,
and ethnicity so that face images are grouped before matching is performed [4].
These traits are also referred to as soft biometric traits, which provide several
advantages to operational capabilities of traditional biometric systems [5].

Soft biometric traits, have been regularly used by the biometrics research
community in various applications [6–8]. For example, Jain et al. [5], utilized soft
traits such as ethnicity, weight, gender and height before matching and concluded
that they can significantly improve the recognition performance of fingerprint or
other biometric systems. When performing the automatic classification of soft traits
in controlled conditions, e.g. indoors, outdoors, during day time, at short ranges
etc., the capabilities of the existing classification systems can result in classification
rates of acceptable performance. However, automatic classification when working
under un-controlled conditions e.g. face images collected outdoors, at night time
conditions, and when the subject is far away from the camera, is a very interesting
and challenging research topic. What follows is a discussion on the goals and
contributions of this chapter.

1.1 Goals and Contributions

In our original work found in [2] we report the rank-1 identification accuracy results
of an inter-distance and intra spectral FR system, which was designed to collect
face images at large standoff distances (30, 60, 90 and 120 m) in both daytime
and nighttime conditions. In [9], we extended that work and focused on a cross-
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distance and cross-spectral face recognition system. There we reported the rank-1
identification rates before and after demographic grouping of the data (grouping was
performed manually) into a male and a female class.

In this work we continue investigating some of the challenges of un-constrained
face recognition by focusing on a set of FR scenarios. We use a dual-band (visible
and NIR) private face database collected at night time conditions and variable
standoff distances, ranging from 30 to 120 m, in a 30 m interval as shown in Fig. 1.
We perform both intra-spectral and cross-spectral face matching experiments, before
and after using demographic grouping of this face database. Thus, we propose a deep
learning based, scenario-dependent, and band-adaptable (it is working well for both
visible and NIR face images) algorithmic approach for the automated classification
of a set of soft biometric traits. These include the following classes, namely, male
vs. female, followed by a male class with and without having a beard. The female
class is also sub-categorized into an Asian and a Caucasian class. Since we are
dealing with low quality face images, in our approach, we take advantage of an
image restoration approach, which improves the quality of distorted, long range
NIR face images. Then, we use a multi-feature based fusion scheme: first, Gabor
Wavelets, Histogram of Gradients (HOG) and Local Binary Pattern (LBP) based
feature descriptors are empirically selected and, then, a set of fusion score level
schemes are proposed to improve FR performance.

In this work, both commercial and academic face matchers are used and a
set of experiments is performed, indicating that our proposed image restoration,
fusion schemes and the usage of demographic information of the database, achieves
significantly better performance results than the established baseline, e.g. for the
30 m vs. 30 m NIR face matching scenario, the rank-1 identification rate is improved
from 48% (all vs. all) using a commercial face matching system to 73% (all vs. all)
and to 82% (if we use only the male with beards face data category).

To our knowledge, this is the first time a VIS-NIR face recognition system is
evaluated using such an approach, using demographic grouping and a set of image
restoration, fusion and face matching algorithms. Also, there is no reported work
that evaluates the impact of demographic grouping (in terms of ethnicity, gender
and facial hair) in a cross-spectral (VIS against NIR) FR system performance.

2 Background

Liu et al. [10], proposed a method to synthesize visible from NIR face images.
The authors reported that there was significant improvement in the face verification
results after image synthesis. Chen et al. [11], proposed a method of synthesizing
the VIS from NIR images based on patch based transformation method. Klare
et al. [12], performed cross-spectral matching between NIR and VIS face images for
the database collected at a short distance of 0.7 m under controlled environmental
conditions as represented in Table 1. In [2], a NIR sensor was used to capture face
images at long-range stand-off distances and at night time conditions. All NIR face
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Fig. 1 Overview of our proposed VIS – NIR face recognition system

images were acquired at four different standoff distances (30, 60, 90 and 120 m).
Using the face datasets generated for each standoff distance, intra distance and
cross-spectral face matching experiments were performed.

Maeng et al. [13], performed cross distance and cross-spectral matching between
VIS and NIR band (V IS 1 m and NIR 60 m). In [14], cross distance and cross-
spectral matching for short and long range distances was performed, in both daytime
and night time environments (V IS 1 m and NIR at 60, 100 and 150 m). In [14], the
authors used the SIFT descriptors for feature extraction and the LDA based subspace
to minimize the intra-subject differences due to the modality difference. They used
the CASIA HFB (NIR-VIS) database at a distance of 1.2 m to train the system and
long distance heterogeneous face (LDHF)-DB long range distance data for testing.
Yi et al. [15], proposed a learning based approach, where a canonical correlation
analysis (CCA) based method was used in order to learn the correlation between
NIR and VIS images (image synthesis). In that study, the authors used the short
distance (1.5 m) indoor, visible band, face database as the gallery set. Similar work
on image synthesis but when operating in the MWIR vs. the NIR band was reported
in [16, 17].

Kang et al. [24], proposed an image restoration method for cross-spectral
matching. The developed algorithm was trained using low-quality face images
(150 m NIR) and their corresponding high-quality face images (1 m NIR). Omri
et al. [22], proposed a method to fuse the images collected under different spectral
bands (VIS and NIR) at the score level. They further extended their work to a long
range face database collected under challenging conditions at 60, 100 and 150 m
distances [23].

Most of the work reported in the literature in the area of heterogeneous face
matching in the VIS and NIR bands, is based on learning subspace methods. To
generate the subspace [1, 2, 10, 12, 13, 24], good quality face images, collected
at a short standoff distance (i.e. 1.0 m in both VIS and NIR bands) were used
for training and long distance data (60, 100 and 150 m) was used for testing as
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Table 1 Previous work related to heterogeneous face matching

Related papers Distance range
Cross spectral match-
ing approach Accuracy results %

Short range Synthesis based
Liu et al. [10] VIS – NIR (0.5 m ∼ 1.2 m) CCA 30.0 (ROC)

Wang et al. [18] VIS – NIR (∼ 1.5 m) Face Analogy 95.0 (ROC)

Zhang et al. [19] VIS – NIR (∼ 1.5 m)
Sparse
Representation 99.5 (CMC)

Chen et al. [11] VIS – NIR (∼1.5 m) Learning Mapping 97.3 (CMC)

Subspace based
Klare et al. [12] VIS – NIR (∼ 0.7 m) HOG-LBP 97.06 (ROC)

Yi et al. [15] VIS – NIR (∼1.5 m) PCA/LDA/CCA 85.5 (ROC)

Goswami et al. [20] VIS – NIR (∼1.5 m) LBPH and LDA 89.5 (CMC)

Raghavendra et al.
[21] VIS – NIR (∼1.5 m)

Particle Swarm Opti-
mization 98.25 (ROC)

Omri et al. [22] VIS – NIR (∼1.5 m) ∼1.5 m DWT multispectral 96.00 (ROC)

Long range
Fusion and subspace
based

Maeng et al. [13] VIS – NIR (1 m, 60 m) DoG-SIFT 28.0 (CMC)

Omri et al. [23] VIS – NIR (1 m vs. 60 m) DWT 44.0 (ROC)

VIS – NIR (1 m vs. 100 m), DWT 20.0 (ROC)

VIS – NIR (1 m vs. 150 m), DWT 15.0 (ROC)

Maeng et al. [14] VIS – NIR (1 m vs. 60 m) SIFT-LBP 81.0 (ROC)

VIS – NIR (1 m vs. 100 m), SIFT-LBP 61.0 (ROC)

VIS – NIR (1 m vs. 150 m), SIFT-LBP 20.0.0 (ROC)

Kang et al. [24] VIS – NIR (1 m vs. 60 m) Dictionary: LLE 80.0 (ROC)

VIS – NIR (1 m vs. 100 m), Dictionary: LLE 70.0 (ROC)

VIS – NIR (1 m vs. 150 m), Dictionary: LLE 33.0.0 (ROC)

Bourlai et al. [2] VIS – NIR (30 m vs. 30 m), CSU 98.0 (CMC)

VIS – NIR (60 m vs. 60 m), CSU 91.0 (CMC)

VIS – NIR (90 m vs. 90 m), CSU 90.0 (CMC)

VIS – NIR (120 m vs. 120 m) CSU 87.0 (CMC)

represented in Table 1. However, in the case of operational FR scenarios, we are not
always provided with good quality probe and query face images. Thus, in this work
we propose a new image restoration method to solve the problem of dealing with
low quality face images captured at long ranges as shown in Fig. 1. The method is
based on image de-noising and super-resolution techniques (see Sect. 3) and when
combined with demographic grouping and face matching algorithms, the baseline
rank-1 identification rate is improved.
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3 Methodology

In this section, we outline the system design set-up developed for the collection
of our face database. We first discuss, the algorithm proposed for the automated
extraction of demographic information. Then, we provide details on the, restoration
of low quality face images and the selection of fusion schemes (sum and weighted
fusion). Finally, vis analysis we decide which of the approaches has the most
significant impact in cross-spectral recognition performance.

3.1 System Design Set Up and Database Collected

A visible and a NIR camera imaging system was used in our live subject capture
setup: Canon EOS 5D Mark II is used to collect standard RGB, ultra-high-resolution
frontal pose face images in the VIS spectrum. The mid-range NIR camera imaging
system is used, provided by Vumii Imaging Inc., which operates at 850 nm. Four
standoff distances (30, 60, 90 and 120) were considered to collect face images (see
Fig. 2). The database was collected outdoors, at night time, spanning over a time
period of 20 days. Recordings of the faces of the subjects were taken with the
mid-range camera. Then, the subjects’ mug shots were taken using the VIS camera
in an indoor controlled environment. In total, 103 subjects (69 male + 34 female)
participated in this experiment, and the database included video sequences of full
frontal mid-range NIR and VIS faces of different subjects, resulting in a total of
103 × 5 videos (103 × 4 NIR outdoors and 103 VIS indoors) per subject.

3.2 Proposed CNN Network for Automatic Prediction of
Demographic Information

The classification is performed for two scenarios including, (i) Intra-spectral, where
the visible images are selected for both the training and testing, (ii) Cross-spectral,
where the visible images are selected for training and NIR images for testing. To
perform the intra-spectral and cross-spectral classification, we selected the visual
geometry group (VGG) CNN architecture [26]. The deep learning model consists
of a number of convolutional layers, max pooling layers and rectified linear unit
(ReLU) activation layer along with fully connected layers [26–28]. The output of
fully connected layer is fed to a soft-max layer that assign a label to each class, i.e.
it will assign a label male or female in terms of gender and Asian or Caucasian in
terms of ethnicity class.
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Fig. 2 The live subject-capture setup using the VIS and mid-range NIR cameras. At the bottom
we can see a set of face image samples acquired by our system at a night time environment and at
variable standoff distances. (Reproduced from Narang et al. [25])

3.2.1 Training and Testing

In the experiments performed, the subjects in the training and test sets are different,
and the images were captured at different locations, days and times. We based our
work on our previous original approach [29], where we proposed CNN based gender
and ethnicity classification approach. In this chapter, we extended our original work
to further classify the gender class with the most significant attributes within that
class. For the male class, we selected the facial hair as the most discriminating
attribute and sub-grouped our male class into a male with or without beard classes.
The female class is also further sub-grouped into a female Asian or a female
Caucasian class.

Training Data For the limited amount of training data, CNN pre-trained on
large databases (ImageNets) is used by the researchers for the recognition and
classification tasks. To collect a large training database from available image
repositories and to label the database manually is time consuming process. There
was no pre-trained multi-sensor network model available to use for our CNN
network therefore we trained the models for our original database. To train the
system, we have selected 9 different types of databases collected indoors, outdoors,
with different camera sensors, expressions, ethnicity, locations and times as shown
in Fig. 3.

Testing Data To evaluate the performance of our system, we selected the database
collected in our lab, which includes a short distance (1.5 m) visible band face
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Fig. 3 An overview of our proposed CNN architecture applied to our male vs. female classifica-
tion problem

dataset and a NIR face dataset, collected at night time and at various stand-off
distances (30 to 120 m) (as shown in Fig. 3). Two scenarios are selected to perform
the classification including:

Scenario 1: All 9 face databases available are selected to train our system,
including, the WVU visible-thermal profile face (VTPF) database, WVUM
database [30], Tinders Database [31], QFire FEI [32] and the Libor Spacek
Facial database [33]. Our system is finally tested using our own WVU database
discussed above.

Scenario 2: A 25% of our (VIS 1.5 m) database and all the 9 databases are
selected to train the system, where the rest of our dual band, multi-distance
database for the testing without any subjects overlap.

3.3 Face Identification Steps

After the demographic grouping of the data using the proposed CNN method,
a face database is selected to perform the face matching experiments including,
image pre-processing, feature extraction and matching, as discussed in the following
subsections.

3.3.1 Pre-processing of Images

To remove the difference in appearance between face images captured in NIR and
VIS band and to improve the quality of images, an image restoration approach is
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Fig. 4 Raw image (top left), geometrically normalized image (bottom left) and photo-metrically
normalized images from a selected set of normalization techniques [36] (right)

proposed. The pre-processing of images is composed of three main steps including:
geometrical normalization (GN), image restoration and photometric normalization
(PN). Geometrical Normalization compensates for slight perturbations in the frontal
pose. It included two main steps, eye detection and affine transformation and
all the faces are canonicalized to the same dimension of 128 × 128 pixels. In
image restoration, the good quality face images are reconstructed from an image
enhancement method using a de-noising (DN) and a super-resolution (SR) method.
Super-Resolution is performed based on an example-based SR and a DN method
discussed in [34] and [35] respectively. Finally, PN is used to compensate for
illumination variations. The advantage of the proposed pre-processing steps is that
they can eliminate the irrelevant information while, still preserving face appearance
details that are required for face recognition.
In this work, we empirically investigated 19 different PN techniques [36] including:
adaptive non local means (norm 1), adaptive single scale retinex (norm 2) etc. (as
shown in Fig. 4). To optimize the set up (for each scenario), the PN method that
provides us with the best performance results is selected. The performance results
with rank-1 identification rate are shown in our experimental results section (see
Figs. 6 and 7).

3.3.2 Combination of Pre-processing Methods

The main challenge is to select the best order of combinations for pre-processing,
as we cannot randomly select either PN, DN or SR. To deal with this problem,
we selected five combinations such as comb1 (GN+PN), comb2 (GN+DN+PN),
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Fig. 5 PN techniques applied to restored images (using our proposed image restoration method)

comb3 (GN+SR+PN), comb4 (GN+DN+SR+PN) and comb5 (GN+SR+DN+PN).
The selection the order of each of pre-processing techniques is critical and also
of key importance in improving cross-spectral matching performances in terms of
rank-1 identification rate. The results for LBP, LTP, Gabor, HOG is shown in our
experimental results section in Figs. 6 and 7.

First, we performed a set of experiments including: applying PN directly on raw
images comb1 and then on restored images (DN and SR). In Fig. 5, we see histogram
plots for gallery (VIS) and probe image (NIR), where PN is implemented to the
restored face images. the intensity values for gallery and probe images. Whereas,
this variation is minimized when we applied the PN on the restored images as shown
in Fig. 5 and specifically for restored images using comb3 and comb4.

3.3.3 Face Matching

This section will describe the method used for the matching of NIR images to
their VIS counterparts. The methods used to represent the face images, to reduce
the dimensionality of feature space, and adopted decision level scheme to fuse the
features scores to perform the matching. In face recognition, discriminant based
approaches provide us with high performance results specifically for the database
collected under different illumination conditions [37]. Our work is unique when
compare to the aforementioned paper in three different ways: (i) In terms of our
image restoration approach, (ii) In terms of our feature extraction (FE) approach
composed of three different FE methods, namely, Gabor, LBP and HOG. (iii) In
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Fig. 6 CMC curves comparing the identification performance (first 5 ranks) for cross-spectral
matching (Gallery-VIS and Probe-NIR): LBP-CHI (top-left), LBP-DT (top-right), LTP-CHI
(bottom-left) and LTP-DT (bottom-right). Five pre-processing combinations selected such as
comb1, comb2, comb3, comb4 and comb5

Fig. 7 CMC curves comparing identification performance (for rank to rank 5) results, for cross-
spectral matching, for five selected combinations of pre-processing techniques: LBP/KLDA (top-
right), GABOR/KLDA (top-left) and HOG/KLDA (bottom-left)

terms of our proposed fusion scheme, where we tested about 11 different fusion-
based scenarios, e.g. sum fusion, weighted fusion etc. We also developed and tested
the FU-GLBHG face matching method, based on the fusion (FU) of Gabor, LBP
and HOG features.

– Feature Extraction Facial representation is defined as the description of facial
information, to transform the matrix array for face into column vector. Global



88 N. Narang and T. Bourlai

and local descriptors are extracted. We selected three feature descriptors Local
Binary Patterns (LBP), Gabor wavelets and histogram of gradients (HOG). LBP
is a gray scale-invariant local image descriptor and used to get the appearance
and texture information [9]. Gabor method is used to detect high frequency
components (edges) in different images. HOG has proved as one of the successful
local shape descriptor and significantly outperforms the available feature sets
including wavelets [38]. The main idea is to estimate the local histograms of
image gradient orientation in a dense grid.

– Feature Subspace After the extraction of features based on LBP, Gabor and
HOG methods in both the cross-spectral bands (NIR and VIS images), the main
challenge was to reduce the dimensionality of the feature space. We adopted
the method used by Tan et al. [37]. They used LBP and Gabor image feature
descriptors. We extended our work to LBP, Gabor and HOG and used KLDA
learning based analysis for the good quality face images restored from our
proposed image restoration method.

– Matching For the training phase, we selected both VIS (1 m) and long range
NIR images (30 m). Matching is performed only for non-overlapping subjects,
those not present in the training set. To perform matching on test set, we apply
the following steps including pre-processing, to restore the good quality face
images, and feature extraction.

For a given input face image (gallery/probe), its Gabor, HOG and LBP features
are extracted and separately projected to the optimal discriminant feature space. The
features extracted from the visible band face images (gallery set) [37] and probe face
images are projected to feature space. The distance scores are measured using the
cosine distance score method.

To normalize the scores, well known methods are available namely the following,
z-score, min, max, tanh etc. [22, 39]. In this work, score normalization is performed
using the z-score (score values lie between 0 and 1). The normalized scores
zLBP , zHOG and zGABOR are fused based on a decision score level method. In
most research papers, fusion is performed based on either the sum method or the
weighted fusion method [22, 37, 39]. The significance of the work is represented in
process flow presented in Algorithm 1. The algorithm automatically select the best
combination of features (among 8 fusion combinations). No human intervention is
required to select the combination of features (LBP, Gabor, HOG). Fusion varies
from images collected at different distances and environment conditions. In this
work to achieve the best rank-1 identification rate, we, first, tested 8 different fusion
scenarios (see pseudo code for developed FU-GLBHG method in Algorithm 1
in Sect. 3.2.1), and finally, selected the scenario that achieved the best rank-1
identification rate for the matching scenarios investigated.

Next, we performed cross-spectral matching experiments on a demographic
database. To the best of our knowledge, this is first time where cross-spectral
matching of VIS and NIR images (collected in night time and at long distances) is
performed, using a matching scheme based on stratification or soft biometric based
clusters such as, gender, ethnicity and facial hair.
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4 Experimental Results

In this section, first generated the baseline results from commercial and academic
face matchers. We discussed the classification results for soft biometric traits
based on proposed CNN network. Our cross-spectral face matching results under
three different conditions are discussed. The first, is when we are using the
LBP and LTP matchers and different distance metrics. The second, is when we
utilize a set of feature descriptors (LBP, Gabor and HOG) and their fusion under
multiple scenarios, including the usage of various pre-processing combinations.
Finally, we investigate whether our proposed novel approach improves the baseline
performance when using demographic grouping, namely a set of soft biometrics.
All three conditions are discussed in detail below.

4.1 Baseline Face Matching Across Different Scenarios

We selected two different sets of face matching experiments including:

Experiment 1: Intra-spectral matching, where the NIR images (60, 90 and
120 m) in the probe set are matched against the NIR images (30 m) in the gallery
set and rank-1 identification rate is generated. For this we used commercial and
academic software for the baseline results.

Experiment 2: Cross-spectral matching, where the NIR images (collected in
night time, at stand-off distances from 30 to 120 m) in the probe set are matched
against the visible images (1.5 m) in the gallery set and rank-1 identification
rate is generated. For this we used commercial and academic software for the
baseline results.

Baseline Face Matchers: We used both commercial and academic FR matchers.
In terms of the commercial off-the-shelf (COTS) software, we used the Identity
Tools G8 (www.l1id.com) provided by L1 Systems. In the academic software,
we used standard FR methods are provided by the Academic Face Identification
Evaluation System (AFIES) CSU.

In the inter-spectral matching, based on the results of the baseline experiments
(see in [29] for more detailed information for the experiments performed), we
determined that the rank-1 identification rate is 88% for AFIES (LDA-EUC and
LDA lda-soft). On the other hand, identification results are very low using COTS
software, where the rank-1 identification rate is 16%. For both 90 and 120 m NIR
probe images, the rank-1 identification rate is 68% and for 120 m achieves 46%
from AFIES (PCA MahaCosine). With usage of demographic information, the rank-

www.l1id.com
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Table 2 In this table we show the rank-scores of the cross-spectral, cross-distance matching
scenarios for all databases used before and after the usage of demographic grouping: Experiments
were run several times and the rank-1 identification rate presented here are the means values

VIS 1.5 m vs.
Cross-spectral (VIS vs. NIR), cross-distance matching (rank-1)

NIR 30 m NIR 60 m NIR 90 m NIR 120 m

ALL DATA

AFIES 0.19 0.22 0.21 0.15

COTS 0.48 0.03 0.02 0.01

MALE Class

AFIES 0.34 0.33 0.26 0.18

COTS 0.52 0.03 0.02 0.02

FEMALE class

AFIES 0.30 0.25 0.18 0.23

COTS 0.65 0.08 0.08 0.03

Asian class

AFIES 0.37 0.39 0.32 0.28

COTS 0.70 0.48 0.04 0.05

Caucasian class

AFIES 0.30 0.23 0.14 0.28

COTS 0.47 0.67 0.06 0.05

1 identification rate is improved from 88% to 94% for 60 m, from 68% to 79% for
90 m and 46% to 52% for 120 m distance for Male class using AFIES.

For cross-spectral matching, based on the results of the baseline experiments,
we determined that the rank-1 identification rate is 48% for COTS system (VIS-
NIR30 m). After the demographic information, rank-1 identification accuracy is
improved from 48% to 52% for male class and to 65% for the female class, to 70%
for Asian class as represented in Table 2. The rank-1 identification rate decreases
with increase in the distance from 30 to 120 m from both the baseline matchers.

4.2 Demographic Grouping from Proposed CNN Architecture

In the first set of experiments, our experiments aim to illustrate how the scenario
adaptable deep learning system performs for intra-spectral band, where both the
training and testing data is selected from the same band (VIS-VIS) under controlled
conditions. Finally, in order to determine the extent of which the performance of the
classification system is affected when the standoff distance increases, we performed
cross-spectral experiments, where we selected the face images from visible band
(short distance) for the training and NIR face images from a distance of 30 up to
120 m away for testing. To train the CNN network two scenarios are selected (see
in Sect. 2.2) including:
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Scenario 1: In this total 9 databases for training and our database is used for
testing.

Scenario 2: Both our databases and 9 other databases for the training and our
database is used the testing (without overlap of subjects).

For intra-spectral case, for both the scenarios 1 and 2, the face images collected
in the visible band (at different locations, time, expressions and illumination
conditions, expressions) are selected. For the cross-spectral case, images collected
in the visible band are selected to train the network and NIR images collected at a
distance of 30 to 120 m are selected for the testing part. To compare the results with
baseline system, we selected the bag of words model.

Classification for Gender and Ethnicity Class In our previous work [29], we
reported the results for gender and ethnicity class. To perform the classification,
selected LDHF database and our database in the visible band [13] for the training
and our database collected at long distance for the testing. For the gender class,
we used the classification results from [29] (see for more detailed information for
the experiments performed) as presented in Table 3 and for the ethnicity class to
improve the performance of the classification system, extended the training data
with 9 databases (as discussed in Sect. 2.2) and results are presented in Table 4 for
CNN and BOW model. To improve the overall classification results, combined the
final results and performance reaches more than 80% for all the distances from 30
to 120 m.

Classification for Male Class into with or without Beard Categories In this
CNN network is proposed for the grouping of the male class into with or without
beard. Table 5, depicts the accuracy results for proposed CNN architecture with best
epoch value and baseline model. For intra-spectral classification, for Scenario 1 the
highest classification accuracy achieved was 53.75% from scenario 1 as presented
in Table 5. For cross-spectral classification, the classification accuracy is more
than 60% for scenario 1, when the visible images are selected for the training and
NIR images collected at a distance of 30 m for testing. For VIS vs. NIR 60 m, the
classification accuracy is more than 65% from scenario 2 and better results are
achieved than the baseline model (BOW). For VIS vs. NIR 90 m, the classification
accuracy is more than 60% from scenario 2 and better results are achieved than
the baseline model (BOW). For VIS vs. NIR 120 m, the classification accuracy
is improved from 40% (the baseline BOW model) to 67% from proposed CNN
network. Based on the results, we concluded that for cross-spectral, we achieved
better performance results from proposed CNN network for scenario 2. For intra-
spectral, we achieved the better performance results from the baseline model (BOW)
for scenario 1.
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Table 3 Summary of
classification results for the
ethnicity and gender class
based on CNN for each
dataset. To perform CNN, the
model is trained for the
challenging testing database

Classification accuracy

Datasets Gender class Ethnicity class

train-test (LDHF+our) − (our)

VIS-VIS 1.5 m 96.41 99.04 78.98

VIS-NIR 30 m 86.14 95.34 64.49

VIS-NIR 60 m 89.45 85.10 60.23

VIS-NIR 90 m 93.52 76.86 65.02

VIS-NIR 120 m 94.12 73.53 61.83

Table 4 Summary of
classification results for the
Ethnicity class based on CNN
for each dataset. To perform
CNN, model is trained on 9
different databases

Ethnicity class: scenario 1 (training with extended database)

Datasets: train VIS (9 databases) vs. test (own database)

Parameters CNN BOW

VIS 1.5 m 71.33 45.65

NIR 30 m 57.88 58.56

NIR 60 m 58.02 52.04

NIR 90 m 60.60 59.24

NIR 120 m 65.63 62.23

Classification for Female Class into Asian or Caucasian In this CNN network is
proposed for the grouping of the female class into Asian or Caucasian (intra-spectral
and cross-spectral classification). In Table 5, classification results are presented with
best epoch value. Based on the results, we concluded that the best performance
results for cross-spectral classification are achieved from proposed CNN network
in comparison to the baseline BOW model. For VIS-NIR30 m, the classification
accuracy reaches greater than 70% from proposed CNN network for scenario 2. The
classification accuracy is improved from 59% from baseline BOW model to 71%
from our proposed CNN network. For VIS-NIR 90 m, the classification accuracy is
improved from 58% from baseline BOW model to 64%. The classification results
are similar for VIS-NIR60 m and VIS-NIR 120 m and for intra-spectral.

Datasets: train VIS (9 databases) vs. test (own database)

4.3 Face Matching Result Without Demographic Information
Using Proposed Pre-processing Method

Figure 6, shows the extent to which the performance of a FR system is improved
by selected set of pre-processing combinations (for selected sets of combinations
from comb1, comb2 to comb5). Based on the results we concluded that the selection
of a certain combination of pre-processing techniques is critical in improving
cross-spectral matching performances in terms of rank-1 identification rate (see
Fig. 6). Our experimental results demonstrate that when the LBP/LTP descriptors are



Classification of Soft Biometric Traits When Matching Near-Infrared Long-. . . 93

Table 5 Summary of classification results for the ethnicity and gender class based on CNN for
each dataset. To perform CNN, the model is trained for the challenging testing database

Classification accuracy for male class into with or without beard

Datasets: train vs. test

VIS vs. VIS 1.5 m NIR 30 m NIR 60 m NIR 90 m NIR 120 m

Scenario 1: CNN 53.75 60.36 63.21 61.25 62.50

Scenario 1: BOW 69.46 62.14 62.68 61.607 40.36

Scenario 2: CNN 52.64 55.53 68.51 63.94 67.31

Scenario 2: BOW 45.53 40.00 38.04 37.32 37.67

Classification accuracy for female class into Asian or Caucasian class
Scenario 1: CNN 74.24 66.67 57.95 57.58 64.01

Scenario 1: BOW 75.75 56.06 55.68 56.06 57.58

Scenario 2: CNN 71.12 71.00 68.50 64.00 60.00

Scenario 2: BOW 36.00 59.50 66.00 58.00 62.00

employed, better results are obtained for comb2, when first we use DN and then PN
(single scale self quotient). This order (comb 2) results in 36% rank-1 identification
rate (e.g. for LBP-CHI) and similar for other descriptors and distance metrics (see
Fig. 6), a 25% improvement in comparison to when using the raw images without
selected pre-processing combination (No Norm).

Our experimental results indicated that for LBP/LTP based methods, the highest
overall accuracy i.e. 36% and, hence, these results are not satisfying. Thus, we
investigated an alternative, more complicated, but much more efficient approach. We
first, replaced the DT and CHI distance transform methods into a kernel subspace
method [37].

To train the system, we used 60% of the data, 63 subjects and 8 samples per
subject (4 face images in VIS and 4 face images in NIR band for each subject). The
rest of the data is used for testing, i.e. 4 face images for each test subject in the
visible band for gallery set and 4 face images for the NIR probe set. Note that there
is no subject overlap between the training and test sets.

We followed the same procedure as applied before when using the LBP and
LTP descriptors including: usage of various pre-processing combinations based
on proposed image restoration approach following PN method. We investigated 5
different combinations for pre-processing and, finally, selected the best combination
based on the performance results. We concluded that (as shown in Fig. 7), the
selection of the combination of pre-processing technique is critical in improving
the matching performance for each selected feature descriptor.

First, we selected the PN, for each feature descriptor and identified the best
combination that provided us with best rank-1 identification rate as shown in
Fig. 7. Our experimental results demonstrate that when HOG/KLDA descriptor is
employed, better results are obtained for comb2, i.e. when first we use denoising
and then isotropic smoothing. This ordered pre-processing of the face images
results in 65% rank-1 identification rate (see bottom-left table in Fig. 7). When
the LBP/KLDA descriptor is used, better results are obtained for comb5, when,
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first, we use super-resolution, second, we use denoising and, then, single scale self
quotient normalization. This ordered pre-processing of the face images results in
53% rank-1 identification rate (see top-left Fig. 7). Finally, when the Gabor/KLDA
descriptor is used, better results are obtained for comb1, i.e. when we use the Tann
and Triggs photometric normalization technique. This order results in 58% rank-1
identification rate (see top-right Fig. 7). The selection of pre-processing combination
and PN techniques depends on the feature descriptor used.

4.4 Face Matching Results Without Demographic Information
Using Proposed Fusion Scheme

As we discussed above, we compare visible to NIR face images under diverse
conditions. In the previous subsection we empirically determined which feature
descriptor and pre-processing combination results in the best rank-1 identification
rate using proposed FU-GLBHG method. We investigated 8 different fusion scenar-
ios based on sum and weighted fusion as presented in pseudo code Algorithm 1.
Here, schemes A1, A2 and A3 are without any fusion and based on individual
methods. For sum fusion method, the fusion of normalized distance scores, z1 for
Gabor/KLDA, z2 for LBP/KLDA and z3 for HOG/KLDA is performed using four
different cases (presented in pseudo code Algorithm 1). When the weighted fusion
method is used, the weights are assigned to the normalized scores based on the rank-
1 identification rates that were achieved from the other independent methods tested.
When the weighted fusion scheme is used, weights are automatically selected for
each of combination (comb1 to comb5). The fusion of normalized distance scores
with assigned weights is performed using four different cases (Gabor-HOG, Gabor-
LBP, LBP-HOG and Gabor-LBP-HOG). Fusion scenarios are selected from A4 to
A11 as presented in pseudo code Algorithm 1. The first four fusion schemes are
based on sum fusion (A4 to A7) and rest on weighted fusion (A8 to A11).

The accuracy of the system is represented as rank-1 identification rate (R1) for
all the five pre-processing combinations (i.e. for comb1, A1 is 58% (only Gabor),
A2 is 45% (only LBP) and A3 is 60% (only HOG) for without fusion). The best
performance result is 69% and achieved for comb3 from sum fusion scheme A7
(z1+z2+z3) based on face recognition test. For rest of the four combinations, best
performance scores from comb1 to comb5, are achieved from weighted fusion
scheme for Gabor, LBP and HOG. The rank-1 scores are close for comb1 and
comb2. Finally, we selected the comb1 for All-Database set (for probe images at
30 m distance in NIR band) (Table 6).



Classification of Soft Biometric Traits When Matching Near-Infrared Long-. . . 95

Algorithm 1 Proposed FU-GLBHG method
1: procedure SELECTED SCENARIO
2: z1 ← Gabor Features
3: z2 ← LBP Features
4: z3 ← HOG Features
5: w1 = 0.60 and w2 = 0.40 ← weight1 and weight2 for 2 set of features
6: w1 = 0.70, w2 = 0.15 and w3 = 0.15 ← weight1, weight2 and weight 3 for 3 set of features
7: i ← Selected Scenario
8: A(i) ← Accuracy of System or Rank-1 Identification Rate from Selected Scenario
9: top:

10: A(1)=z1, A(2)=z2 and A(3)=z3
11: Based on Sum Fusion scenario (2 features)
12: A(4)=z1+z2
13: A(5)=z1+z3
14: A(6)=z2+z3
15: Based on Sum Fusion scenario (3 features)
16: A(7)=z1+z2+z3
17: Based on Weighted Fusion scenario (2 features)
18: if A(1) > A(2) then
19: A(8)=w1*z1+w2*z2
20: else
21: A(8)=w1*z2+w2*z1
22: if A(1) > A(3) then
23: A(9)=w1*z1+w2*z3
24: else
25: A(9)=w1*z3+w2*z1
26: if A(2) > A(3) then
27: A(10)=w1*z2+w2*z3
28: else
29: A(10)=w1*z3+w2*z2
30: Based on Weighted Fusion scenario (3 features)
31: if A(1) > A(2) AND A(1) > A(3) then
32: A(11)=w1*z1+w2*z2+w3*z3
33: else if A(2) > A(1) AND A(2) > A(3) then
34: A(11)=w1*z2+w2*z1+w3*z3
35: else if A(3) > A(1) AND A(3) > A(2) then
36: A(11)=w1*z3+w2*z1+w3*z2
37: Accuracy ← highest rank-1 identification rate from i : 1 to 11 selected Scenarios Accu-

racy=maxval(A(i))

4.5 Experimental Results with Usage of Demographic
Information Using Proposed Pre-processing and Fusion
Scheme

The use of demographic information (soft biometrics) is proposed to improve
the performance of traditional FR systems. Soft biometric traits are physical
and behavioral features (weight, height, gender, ethnicity etc.), and offer several
advantages over the traditional systems. In our work, we considered three main
strata or traits: gender, ethnicity and facial hair. For female data, grouped the
database into Female Asian (FA) and Female Caucasian (FC) and for male into
male with beard (MWB) and male without beard (MWOB) strata. The selection of
grouping for female class into FA and FC, for male class into MWB and MWOB
is performed based on identification results from face recognition system. We
conducted face matching experiments for female and male class into Asian and
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Table 6 Cross-spectral face matching results (Gallery in VIS and Probe images in NIR band):
Rank-1 identification rate for All-Database, for selected combinations of our proposed pre-
processing techniques. comb1, comb2, comb3, comb4 and comb5. Accuracy of system (R1: rank-1
identification rate) based on distance scores: Gabor/KLDA: A1, LBP/KLDA: A2 and HOG/KLDA:
A3. Normalized distance scores are z1: Gabor/KLDA, z2: LBP/KLDA and z3: HOG/KLDA

Pre-processing combination

comb 1 2 3 4 5

Rank-1 identification rate R1 R1 R1 R1 R1

A1 0.58 0.55 0.55 0.52 0.53

A2 0.45 0.50 0.48 0.48 0.53

A3 0.60 0.65 0.55 0.62 0.60

A4 0.68 0.66 0.63 0.61 0.70

A5 0.65 0.60 0.61 0.57 0.65

A6 0.60 0.61 0.60 0.66 0.60

A7 0.69 0.70 0.69 0.63 0.66

A8 0.73 0.68 0.60 0.61 0.71

A9 0.67 0.62 0.63 0.59 0.65

A10 0.64 0.62 0.65 0.67 0.59

A11 0.69 0.73 0.62 0.67 0.66

Caucasian class. For male class into Asian and Caucasian the maximum rank-1
identification accuracy reaches to 70%. On the other hand, for male class with
and without beard, we achieved better results and achieved more than 80% rank-
1 identification accuracy.

Based on the results using face recognition system, for female stratum as
shown in Fig. 8, we concluded that selection of combination of pre-processing
technique (comb1, comb 2, . . . , comb5) is the key factor in improving the matching
performance. Our experimental results demonstrate that for FA stratum, better
results are obtained for comb5, when first we use SR, second we use DN and then
PN (adaptive single scale retinex named as norm 2 see in top-right Fig. 8). The
performance of the system increases (rank-1 identification rate) from 55% to 75%.
For FC stratum, results are similar for all the combinations (see in bottom-left). We
selected comb5, based on our results for first 5 ranks and this combination results
in 53% rank-1 identification rate. For a comparison between with and without the
usage of stratification of the database results are presented in bottom-right.

Same set of experiments is repeated for male strata into male with and without
beard. Based on the face matching results, we evaluated that comb5 for MWOB and
comb2 for MWB are selected as the best combinations. The rank-1 identification
rate with best results using the five pre-processing combinations for MWB and
MWOB are shown in Fig. 9. Based on the results, we concluded that better
performance results are obtained from comb2 for MWB and from comb5 for
MWOB. The performance of the system increases (rank-1 identification rate) from
58% to 75% for MWOB (bottom left), for comb5, 63% to 82% for MWB (top right).
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Fig. 8 Cross-spectral matching results for Female Stratum: CMC curves comparing the perfor-
mance for the face images restored from our proposed method with raw images

Fig. 9 Cross-spectral matching results for Male Cluster: CMC curves comparing the perfor-
mance of FR system for the face images restored from our proposed method with raw images

4.5.1 Cross-Matching Results for Long Distances

We repeated each experiment (five scenarios: All Database, MWB, MWOB, FA
and FC) 10 times, where we randomly selected the training and testing data and
performed the feature extraction and finally system evaluation to remove the bias in
the results. For the scenario without the usage of demographic information database
(All Data), the best rank based identification accuracy results (rank-1 to rank-5) are
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reported in Table 7. For the selected set of strata, the best rank based identification
accuracy results are reported in Table 8.

We performed the same set of experiments (10 times) for NIR database at
distance of 60, 90 and 120 m for the five scenarios (All Database, FA, FC, MWB
and MWOB).

Based on the results for the scenario with all the database for 4 different distances
NIR 30, 60, 90 and 120 m (see Table 7), it was determined that for all distances,
better performance results are achieved from our proposed methods in comparison
to the commercial off the shelf (COTS) G8 system (L1 Systems). For 30 m distance,
performance reaches almost 48% for COTS system, whereas, the accuracy reaches
almost 73% when using our proposed approach. For the 30 m distance dataset, the
rank-1 identification accuracy results are very close to each other for comb1 and
comb2. We have selected comb1 based on a comparison among the first 5 rank-1
identification rate.

For the 60 m NIR images collected at long standoff distance, the rank-1 identi-
fication rate is 10% when the COTS system software is used. We achieved better
performance results from our proposed pre-processing and fusion schemes, i.e. the
rank-1 identification rate in our approach is more than 5 times improved, or 56%
for comb2 (see Table 7). For the 90 m images collected at long standoff distance,
the rank-1 identification rate is 1% when the COTS system software is used. We
achieved better performance results from our proposed pre-processing and fusion
schemes, i.e. the rank-1 identification rate in our approach is more than 30 times
improved, or 30% for comb3. Finally, for 120 m images the rank-1 identification
rate in our approach is more than 28 times improved, or 28% for comb3.

Without usage of demographic information (All Database), the rank-1 identifi-
cation rate is improved from 48% for COTS system, 19% for AFIES to 73% when
using our proposed approach (see in Table 9) 30 m distance. For 60 m distance, the
rank-1 identification rate is improved from 3% for COTS system, 22% for AFIES
to 56% using proposed approach. There is an increase in rank-1 identification rate
for 90 and 120 m distance as represented in Table 9.

The identification experiments were performed for the database with demo-
graphic information or soft biometric traits (FA, FC, MWB and MWOB) and each
experiment is repeated 10 times (randomly selected training and test data) and
results from best set is reported in Table 8. For 30 m distance, without stratification
for all the database performance results achieved were 73% from our proposed
method (see in Table 7) and after stratification it was determined that the better
performance results are achieved, for FA 75%, for MWOB 75% and for MWB 82%.
For 90 and 120 m distance there is great improvement in the results for the data
with demographic information. For 90 m, the performance of the systems increases
from 30% to 41% for FA, 43% for MWB and 38% for MWOB. For 120 m, the
performance of the system increases from 28% to 38% for FA, and 38% for MWB.

The overall best results are attained for FA, MWB and MWOB (soft biometric
traits) for 30, 90 and 120 m in comparison to all the database (without stratification)
as illustrated in Table 8. For one of soft biometric trait, FC, we did not achieve
as good results as originally expected. A valid reason for these results is the type of
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Table 7 Cross-spectral Matching Results (Gallery in VIS (1 m-indoor) under controlled con-
ditions and Probe images in NIR): Rank Identification Rate for probe images at 4 different
distances in nighttime environment: 30, 60, 90 and 120 m distance

Rank identification accuracy R1 R2 R3 R4 R5

Probe images at 30 m
Pre-processing

combination
comb1 0.73 0.86 0.88 0.91 0.92
comb2 0.73 0.86 0.89 0.90 0.91

comb3 0.69 0.83 0.85 0.91 0.94

comb4 0.67 0.83 0.89 0.91 0.92

comb5 0.70 0.78 0.82 0.85 0.91

COTS 0.48 0.51 0.55 0.60 0.62
Probe images at 60 m
comb1 0.44 0.59 0.69 0.74 0.79

comb2 0.56 0.67 0.76 0.84 0.86
comb3 0.51 0.61 0.70 0.77 0.85

comb4 0.48 0.63 0.73 0.77 0.83

comb5 0.39 0.54 0.61 0.68 0.78

COTS 0.01 0.02 0.03 0.04 0.05
Probe images at 90 m
comb1 0.20 0.30 0.40 0.45 0.52

comb2 0.25 0.33 0.40 0.47 0.53

comb3 0.30 0.39 0.49 0.54 0.59
comb4 0.22 0.30 0.36 0.40 0.44

comb5 0.24 0.30 0.37 0.41 0.47

COTS 0.01 0.01 0.02 0.02 0.04
Probe images at 120 m
comb1 0.16 0.26 0.37 0.41 0.47

comb2 0.23 0.37 0.44 0.51 0.54

comb3 0.28 0.40 0.48 0.52 0.58
comb4 0.20 0.30 0.36 0.42 0.46

comb5 0.18 0.28 0.32 0.36 0.43

COTS 0.01 0.01 0.02 0.04 0.04

stratum and very small difference in the subjects’ appearance. For the 60 m distance,
the results are very close, with and without using stratification. Our proposed
methods including: image restoration, feature selection, decision level fusion and
finally the selection of soft biometric traits (stratification of database) result in
significant improvement in face identification results than available commercial FR
matcher.
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Table 8 Cross-spectral matching results for Soft Biometric Traits (Gallery in VIS (1 m-indoor)
under controlled conditions and Probe images in NIR): Rank identification accuracy for probe
images at 4 different distances in nighttime environment: 30, 60, 90 and 120 m distance

Rank identification accuracy R1 R2 R3 R4 R5

Female Asian:
Distances
30 m 0.75 0.83 0.91 0.95 1

60 m 0.37 0.58 0.79 0.96 0.96

90 m 0.41 0.54 0.67 0.87 1

120 m 0.38 0.58 0.75 0.91 0.96

Female Caucasian:
30 m 0.53 0.68 0.75 0.93 1

60 m 0.50 0.66 0.72 0.84 0.84

90 m 0.28 0.47 0.63 0.78 0.88

120 m 0.25 0.47 0.56 0.65 0.75

Male with beard:
30 m 0.82 0.95 0.97 1 1

60 m 0.52 0.73 0.89 0.98 0.98

90 m 0.43 0.54 0.75 0.84 0.90

120 m 0.38 0.52 0.68 0.80 0.82

Male without beard:
30 m 0.75 0.82 0.89 0.97 0.97

60 m 0.49 0.72 0.80 0.84 0.88

90 m 0.38 0.53 0.58 0.65 0.71

120 m 0.27 0.43 0.50 0.61 0.65

5 Conclusion

In this work, we study the challenges of matching NIR face images collected in
heterogeneous environments i.e. when the face images are captured in night time,
at variable long standoff distances against the visible (good quality) images. We
investigated the impact of usage of demographic information in terms of ethnicity,
gender and facial hair to the performance of cross-spectral face recognition system.
We proposed a deep convolutional neural network based architecture to classify the
visible and multi-distance NIR face images for the male class into with or without
beard and female class into Asian and Caucasian class. The proposed network is
designed to make it adaptable with intra-spectral (VIS vs. VIS) and cross-spectral
(VIS vs. NIR) scenarios at variables distances. In the experiments we performed,
we trained the model when using a multi-band database, where the training data
is selected from the visible band dataset (controlled conditions at a short standoff
distance) and the testing data is selected from the NIR band multi-distance face
images (30 up to 120 m).
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Table 9 In this table we investigate the cross-spectral, cross-distance matching scenarios for
database before and after the usage of proposed image restoration and demographic grouping
of male class into with or without beard and female class into Asian and Caucasian class:
Experiments were run several times and the rank-1 identification accuracy presented here are
the means. Proposed-Set 1: Only Proposed Fusion Scheme applied to the images, Proposed-Set
2: Both proposed image restoration and fusion Scheme applied to the images. For Set 2 with
Male and Female Class further sub-clustering is performed: MWB, MWOB, FA and FC class

VIS 1.5 m vs.
Cross-spectral (VIS vs. NIR), cross-distance matching (rank-1)

NIR 30 m NIR 60 m NIR 90 m NIR 120 m

ALL DATA
AFIES 0.19 0.22 0.21 0.15

COTS 0.48 0.03 0.02 0.01

Proposed-set 1 0.56 0.34 0.21 0.16

Proposed-set 2 0.73 0.56 0.30 0.28
MALE class
AFIES 0.34 0.33 0.26 0.18

COTS 0.52 0.03 0.02 0.02

Proposed-set 1 0.34 0.33 0.26 0.18

Proposed-set 2: MWB 0.82 0.52 0.43 0.38

Proposed-set 2: MWOB 0.75 0.49 0.38 0.27

Female class
AFIES 0.30 0.25 0.18 0.23

COTS 0.65 0.08 0.08 0.03

Proposed-set 1 0.37 0.39 0.32 0.28

Proposed-set 2: FA 0.75 0.37 0.41 0.38

Proposed-set 2: FC 0.53 0.50 0.28 0.25

Based on experiments, the proposed CNN architecture provided us with signif-
icant classification results for the selected challenging databases. The experimental
results show that from the proposed CNN network, we achieved significant improve-
ment in the classification results when compared to the baseline bag of words model.
For the female class into Asian and Caucasian, for cross-spectral scenario, e.g. for
VIS-NIR120 m, the classification is improved from 59% to 71% for VIS vs. NIR
60 m and 58% to 64% for VIS vs. NIR 120 m.

We proposed a pre-processing method, composed of a set of image restoration
approach and PN techniques, as well as our proposed scenario dependent fusion
schemes were evaluated under 5 different matching scenarios, (i) Original Database
and the following sub-sets (ii) Female Asian, (iii) Female Caucasian, (iv) Male
With Beard and (v) Male Without Beard. Based on our experimental results, when
using stratification of the datasets resulted in significant improvement in our rank-1
identification rate for each cross-spectral scenario investigated. For long distances
particularly at 90 and 120 m, there is significant improvement in rank identification
rate (from rank 1 to rank 5). The best results we achieved for FA, MWB and MWOB.
For FC, the results are not satisfactory and one of the main reason is, less between
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class variation e.g. eyes color, hair color etc. On the contrary, for FA, MWB and
MWOB, involves subjects from different races with different eyes color, hair color
and size of the faces. These are the factors responsible for better performance.
Since, the database was very limited for African American class in comparison to
Caucasian and Asian class and it belongs to male class. To address this challenge,
we selected only Caucasian and Asian for female class and for male class selected
most discriminating features (with and without beard). In future, we will collect
more database to consider other groups for ethnicity classification.

Based on the experimental results, we conclude that: First, a CNN can be used
to classify the data in terms of ethnicity and gender class into with or without
beard when using both constrained and unconstrained face datasets. We show that
the proposed image restoration approach and fusion schemes achieve significantly
better performance across all the scenarios compared to the commercial FR matcher.
We evaluated that for long distances particularly for 60, 90 and 120 m, our proposed
system can be utilized to improve cross-spectral matching performance on diverse
scenarios when compared to the commercial FR matcher. In future work, we plan to
investigate other factors, for example generating subsets based on facial expression,
pose etc. in our experiments.
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Quality and Match Performance Analysis
of Band-Filtered Visible RGB Images

Jeremy Dawson, John Goodwyn, S. Means, and Jason Crakes

Abstract Face recognition performance in operational scenarios is can be
improved by using cameras that capture multispectral or hyperspectral images
at specific bands within the visible spectrum. Band-selected images have shown
promise to improve face recognition performance, but the requisite camera systems
needed to achieve multi-filter or hyperspectral imaging are often to complex
and cost-prohibitive for many law enforcement applications. In order to find a
more cost-effective solution, the work presented here aims to determine if simple
band-filtered images, captured by placing bandpass filters on conventional RGB
imagers, show any application advantages over broad-spectrum visible facial
imagery. After data collection was completed, matching studies were performed
to determine what performance enhancement, if any, is gained using band-filtered
imaging. Results indicate that image quality may play a bigger role in the facial
recognition performance of band-filtered images rather than simple band-filtering
alone, warranting further study in this area.

Keywords Facial recognition · Unconstrained · Band selection · Multi-spectral

1 Introduction

Operational surveillance scenarios often present challenges to facial recognition sys-
tems, including uncontrolled lighting conditions and non-optimal pose angles. There
are many scenarios in which facial recognition performance should be improved
to enhance field operations, specifically: fixed location surveillance operations and
end-to-end video analytics. One method of improving face recognition perfor-
mance in operational scenarios is to employ cameras that capture multispectral or
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hyperspectral images at specific bands within the visible spectrum. These band-
selected images have shown promise to improve face recognition performance under
operational conditions. However, multi-filter or hyperspectral approaches are often
to complex and cost-prohibitive for many law enforcement applications. In order
to find a more cost-effective solution, the work presented here aims to determine if
simple band-filtered images, captured by placing bandpass filters on conventional
RGB imagers, show any application advantages over broad-spectrum visible facial
imagery. For this work, the specific performance advantages evaluated were: (1)
facial recognition matching performance using commercial facial matchers and (2)
image quality assessed using machine learning techniques. The flowing section
will provide a review of the relevant literature pertaining to multispectral and
hyperspectral imagery and their application in the field of human facial recognition.

1.1 Literature Review

1.1.1 Image Quality Assessment

Image Quality Assessment is an essential part of the creation of a face recognition
system. In [1] Wang et al. discuss the difficulties of image quality assessment. The
way the human eye perceives quality is the most accurate, but the methods employed
in image quality systems to mimic this are both computationally expensive and
monetarily expensive to include. There are also error sensitivity based frameworks,
but these are highly reliant on many assumptions, including having a reference
image of perfect quality, which is very difficult to achieve. They go on to propose
a new method, which models image degradation as structural distortions instead of
errors, which has shown promising results.

Wang and Bovik [2] demonstrate two different approaches to image quality
assessment, the mathematical approach and measurement methods that consider
human visual system characteristics. They propose a new universal quality index
which is modeled as a combination of three factors: loss of correlation, luminance
distortion, and contrast distortion. Although their approach is highly mathematical,
and no human visual system model is used, it has shown to perform significantly
better than other widely used models.

Wang et al. [3] further image quality research by discussing traditional methods
that attempt to quantify the differences between a distorted image and a reference
image using a variety of known properties of the human visual system. The authors
propose an alternative complementary framework based on the degradation of
structural information. The new system performed well compared to other methods
across a database containing images of various quality.

Sellahewa and Jassim [4] discuss how automated face recognition systems are
affected by lighting condition changes between enrollment and identification images
and how it leads to a decrease in recognition accuracy. They propose a quality-based
approach to the face recognition problem by measuring the illumination quality,
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using a global quality normalization scheme, and using the illumination quality
measure to adaptively select weighting parameters. Our image quality assessment
is similar in nature but focused on finding the best image and wavelength for
hyperspectral face recognition.

Likewise, Abaza et al. [5] discussed the importance of image quality in auto-
mated face recognition systems. They proposed an effective image quality index in
order to provide real-time feedback for reducing the number of poor-quality face
images acquired during enrollment and validation in a face recognition system. The
authors use a database of visible face images and find values for several image
quality metrics in which they discuss which quality metric is the most important
in face recognition and propose a new face image quality index that combines these
metrics into one score. This process is an outline of how we have set up our system,
but we have optimized the metrics used for hyperspectral face images and the
process of determining which wavelength best suits hyperspectral face recognition.

The topic of image quality in the visible spectrum been heavily discussed in
the open literature, however, the exploration of image quality in other imaging
spectrums is still largely an unexplored topic. Martin and Bourlai [6] study tattoo
images in biometrics and forensic-related applications. In this paper, they discuss
detection in the shortwave infrared spectrum and use image quality metrics to
determine the best wavelength range for the tattoo modality and how different skin
pigments affect the outcome. This paper helps us to realize that image quality
can vary based on the wavelength the image is captured in. We took this into
account when creating our system and employ similar methods to determine the
best wavelength for our work.

1.1.2 Face Image Quality Assessment

Best-Rowden et al. [7] define biometric sample quality as a measure of a sample’s
utility to automatic matching. It should be an indicator of recognition performance;
wherein poor quality biometric samples cause recognition to fail and good quality
samples will pass. They discuss the benefits of being able to detect poor quality faces
for multiple reasons, including being able to deal with them properly before entering
them into a recognition system. They cite this to be of importance, especially
in a security scenario, where a subject might want to evade camera systems by
obstructing faces, moving to cause blur, or various other reasons. For these reasons,
face quality metrics are important to put into place, and include pose, illumination,
expression, occlusion, resolution, and other intrinsic or extrinsic face properties. In
their study, the compare face quality assessment by human quality ratings (matcher-
independent) and quality values computed from a similarity scores obtained from
face matchers (matcher-dependent). The results of their experiments showed that
automatic systems rejected the bottom 5% of images, while humans rejected the
bottom 13%. This shows that automatic systems are promising, and they suggest
that in the future face quality systems may improve with the implementation of face
detection and alignment prior to assessing the quality.
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Khryashchev et al. [8] discuss the challenges of face recognition in both indoor
and outdoor video surveillance applications. The discuss the various challenges
surrounding real time face detection, including face image quality, uncooperative
subjects, and uncontrolled environments. The face quality metrics they address are
motion blur, illumination, small face regions, face rotation, compression artifacts,
and focus. To combat these issues, the authors proposed an automatic face quality
assessment in which images are fed into a face detection algorithm, are post-
processed, and their quality is evaluated. They then discard low quality images
and only images of a suitable quality are used in further analysis. From their
experiments, they determined that using quality measures in their application
increased the recognition accuracy and also reduced the computational complexity
of the system. In [9] the authors go on to discuss the use of image quality
systems as a strategy to choose face images with the best quality from a group of
images taken from video (i.e. surveillance cameras) to improve real-time recognition
systems. The authors come to the conclusion that in low light scenarios, the blur
measure is better correlated to recognition systems, whereas in normal and high
illumination scenarios their proposed measure based on symmetry of landmark
points outperforms all other quality measures tested.

Chen et al. [10] also address the topic of face image quality and its role in face
recognition in security applications. Their application first uses a Convolutional
Neural Network to normalize faces in a frame, this is typically very slow process
causes degradation of the face since most systems have not perfected this method,
but they have adapted this process to be more efficient using a circle around the
face and using its properties to calculate the best rotation. They then take a Deep
Learning approach to face quality by creating a feature vector and finding the
value of rank weight. Their method assumes that images of the same database are
all a similar quality. This approach does not always work, especially in security
applications, such as mugshot images, where image quality can vary depending on
the police department that collected the images.

1.1.3 Hyperspectral Face Detection and Recognition

Di et al. [11] discuss face recognition studies completed using hyperspectral
imagery in the visible spectrum. The authors focus on absorption bands related
to hemoglobin, citing them as being more discriminative than other bands and
therefore selecting feature bands based on the physical absorption characteristics.
In their experiments, they found that this selection outperformed using conventional
RGB color bands, single band selections, and using the whole band.

Pan et al. [12] discuss human face recognition using hyperspectral imagery in
the near infrared range using the subsurface tissue structure which varies greatly
from person to person, but stays relatively stable over time. They propose a system
that exploits spectral measurements for multiple facial tissue types and show that it
performs well over time in the presence of changes in facial pose and expression.
In [13] they discuss the applications that this algorithm has in homeland security
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applications, and in [14] how a similar system can work in variable lighting
conditions.

In [15] Pulecio et al. discuss the use of image quality assessment for face images
in the infrared spectrum. They recognize the impact of common image distortions
on infrared face recognition and propose a method to improve identification rates by
aggregating perceptual quality-aware features. Results of their study show that their
method is robust against image distortions and applying image quality assessments
prior to recognition experiments increased the overall performance of the matching
system.

Likewise, Robila [16] discusses the use of infrared images in face detection,
but goes on to discuss that pairing infrared imaging with the visible spectrum,
to make up a hyperspectral range, is a more natural choice for face recognition
because it is able to provide information beyond the normal visible spectrum,
and would therefore exceed human sensing which could give computer vision an
upper hand. Although their system was not as complex as typical commercial
biometric applications, their experiments show that infrared images provide a
valuable complementary database to use in face recognition.

2 Methodology

This section provides details of the data collection, facial recognition, and quality
assessment efforts performed for this work. An indoor data collection was under-
taken to capture visible-wavelength RGB facial images from 500 participants at
a distance of 2 meters, using both unfiltered (ground truth) and filtered DSLR
cameras. In addition to variations in filter wavelength, variable lighting was used
to introduce inter-session variability. Matching experiments were performed using
the NeuroTech VeriLook face matcher to evaluate the impacts of filters and lighting
variation on template creation and match score values. Quality assessment of band
filtered images to determine impact of band filtering on overall image quality
were performed using machine learning techniques to perform face detection and
quality assessment based on 5 different quality metrics: contrast, brightness, focus,
sharpness, and illumination. The following sections provide more details for each
of these aspects of the study.

2.1 Data Collection

The data collection (WVU IRB # 1605114472) was performed using protocols
developed at WVU for the collection of SAP5/51 mugshot photos, with mod-
ifications made to meet the needs of this effort. A schematic view of the live
subject-capture setup is shown in Fig. 1.
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Fig. 1 Arrangement of image collection equipment used to collect images at 2 m

A Wescott neutral grey cloth backdrop was placed behind the participant who
was seated on an adjustable-height armless seat. Standard 3-point tungsten lighting
was used to provide uniform illumination on the face for ground truth images. A
fourth light fixture (‘Down’ in Fig. 1) was included for variable lighting image
capture, as described in the following Sect. 2.1.1. Two different camera/lens
combinations were co-located on a camera stand situated 2 m away from the subject.
These were as follows:

1. A Canon 5D Mark III DSLR camera, including: (a) a Canon Electro-focus (EF)
70-200 mm f/2.8 L, (b) Image Stabilization (IS) II and (c) an Ultrasonic Motor
(USM) telephoto zoom lens for ground truth visible face images

2. A Canon 5DS R DSLR camera, including (a) a Canon Electro-focus (EF)
200 mm f/2 L, (b) Image Stabilization (IS) II, and (c) an Ultrasonic Motor (USM)
telephoto lens used to capture band-filtered images

The camera/lens combination chosen in item (2) in the list above was based on
the improved low-light performance of the Canon 5DS R camera body (better for
narrowly-filtered imaged with lower light intensity) and the ability of the 200 mm
lens to accept standard 52 mm diameter filters. A selection of bandpass filters
was purchased for this camera/lens combination from Andover Corp. based on the
range of visible bands reported in the literature to have better facial recognition
performance. The filters actually used in the collection were selected based on the
amount of light entering the 5DS R camera. Because wavelengths above 670 nm
made the images too dark, the selected filters were as follows:
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Fig. 2 Co-located arrangement of hyperspectral ground truth (GT) visible, and filtered visible
imagers. The filter list provides an indication of the dominant colors of each wavelength

• 10 nm bandpass filters centered at 550 nm, 570 nm, 590 nm, 610 nm, 630 nm,
650 nm, and 670 nm

• 20 nm bandpass filters centered at 550 and 650 nm

Figure 2 shows the co-located cameras and the selected filters and their wave-
lengths.

The Canon DSLR cameras were connected to a PC via micro USB cables, and the
hyperspectral camera was connected via a Camera Link cable and video interface
card installed in the tower PC. The collection process from the multiple camera
arrangement was controlled using a custom Collection Manager interface designed
to allow operation of the Canon cameras (via an interface developed using the Canon
SDK).

2.1.1 Collection Scenarios

Initially, facial images were captured with uniform 3-point lighting for angles
varying from left to right profile in 22.5-degree angular yaw increments. In addition
to these yaw angles, pitch angle was adjusted by having the participant look up
and down. However, upon initial evaluation of these images it was discovered that
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Fig. 3 Sample images for filtered face collection. Top Row: Angular variations with 3-point
lighting. Bottom Row: frontal pose with single-point lighting

intersession variability was not significant enough. As such, the collection was
changed to collect 17 different images from each participant with both angle and
lighting variations, as follows:

• Three images at yaw rotations of −90, 90, and 0 degrees, with head tilted up,
head tilted down, and no pitch rotation (9 images total)

• At the 0-degree yaw rotation position (frontal), 4 additional images were captured
with lighting variation, using only on light to illuminate the face:

– Top-light-only, left-light-only, right-light-only, bottom-light-only

• One image at 22.5, −22.5, 45, and −45 degrees yaw rotation with no pitch
variation (4 images total).

Sample images from right profile to frontal pose at one filter wavelength are
shown in Fig. 3.

2.1.2 Image Post-processing

In order to normalize the variations in pose angle in the images, a manual image
cropping and co-registration tool was developed. The main functions of this tool are:
(1) co-registering images based on pupil location, (2) normalizing pose to remove
roll angle (if any). A view of the interface is shown in Fig. 4.

2.1.3 Data Collection Demographics

Data was collected from 500 individuals over 8 months of collection activity based
on an average of 12 appointment slots per day. Table 1 provides a breakdown of the
age, gender, and ethnicity of participants.
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Fig. 4 Image cropping and co-registration interface

Table 1 Demographic information

Age Ethnicity Gender (# for each ethnicity)

18–19 – 18.4% Caucasian – 66.4% M – 161
F – 171

20–29 – 68.6% Asian Indian – 8.6% M – 25
F – 18

30–39 – 8.6% East Asian – 8.2% M – 22
F – 19

40–49 – 1.6% Middle Eastern – 4.4% M – 12
F – 10

50–59 – 1.4% African American – 4.0% M – 14
F – 6

60–69 – 0.6% Hispanic – 4.0% M – 12
F – 8

70–79 – 0.2% African – 2.2% M – 9
F – 2

80–89 – 0.2% Other – 1.6% M – 3
F – 5

Not reported – 0.4% Pacific Islander – 0.6% M – 2
F – 1

The Caucasian demographic had the highest percentage of participation (66.4%),
followed by East Asian/Indian totaling a combined 16.8%. Participation by other
ethnicities ranged from 1.6% to 4%. The 20–29 age group had highest participation
(68.6%), followed by the 18–19 group (18.4%) and the 30–39 group (8.6%). All
other age ranges showed participation of 1.6% or less. The age and ethnicity



114 J. Dawson et al.

distributions are consistent with the staff and student population of WVU, from
which the majority of participants were recruited. Male participation outweighed
male participation for all ethnicities except the ‘Other’ category.

2.2 Matching Evaluation of Band-Filtered Facial Images

Matching experiments were performed to determine any notable differences of gen-
uine and impostor probability distributions produced from a commercial matcher
between datasets of frontal pose face images taken using different visible light
filters and under different lighting conditions. The commercial matcher used was
the Neurotechnology MegaMatcher 6.0 (Revision #158433) with the VeriLook
6.0 SDK. Using the SDK, faces are detected followed by template creation using
proprietary algorithms. Template information is internally processed and saved to
‘.dat’ files, which are read by the Neurotechnology client for matching. The user
can set a matching threshold to tailor the true matches based on their application.
For this work, the threshold was set to zero so all match scores would be reported.

2.2.1 Matching Experiment Details

The image data used to create the matching gallery consisted of five front-facing
images per subject. These images include a uniformly illuminated face (0_2) and
one image each for lighting only on the left side of the face (LEFT), right side
(RIGHT), above the face (TOP), and below the face (DOWN). Sample images are
shown in Fig. 5.

The probe images consisted of filtered indoor face images grouped by the filter
wavelength used on the camera when the image was taken. Each filtered dataset is
identified by the wavelength and bandwidth size. For example, the dataset 550 nm10
represents the images taken with a 550 nm wavelength with 10 nm bandwidth
filtered lens, whereas the 550 nm20 dataset contains images using the 550 nm
wavelength with 20 nm bandwidth filtered lens. Following this scheme, we defined

0_2 DOWN LEFT RIGHT TOP

Fig. 5 Sample gallery images for one individual
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550nm10 550nm20 570nm10 590nm10 610nm10

630nm10 650nm20 650nm10 670nm10 Unfiltered

Fig. 6 Sample probe images for each wavelength for one individual

all the datasets as 550 nm10, 550 nm20, 570 nm10, 590 nm10, 610 nm10, 630 nm10,
650 nm10, 650 nm20, 670 nm10, and Unfiltered, which contains images taken with
no filter. Sample images are shown in Fig. 6.

2.2.2 Matching Experiment Results

The impact of band filtered images used as probes in the VeriLook matcher can
be observed via analysis of template creation. Figure 7 provides a summary of
template creation and failure for each wavelength, with Fig. 8 providing further
detail on template creation and failure for each lighting type. While processing
templates using the Neurotechnology VeriLook 6.0 SDK, increasing the filter
wavelength led to fewer templates created, with as few as 10% of the images
passing template creation for the longest filter wavelength of 670 nm. Figure 8
highlights the differences in template creation for images with nonuniform lighting,
with top, down, left, and right directional lighting causing template creation to
fail significantly, especially for band-filtered images. In general, images filtered to
590 ± 10 nm were most likely to pass template creation for this matcher.

Figure 9 provides examples of images that passed and failed template creation
for each filter wavelength.

The images in Fig. 9 illustrate that, supporting the result in Fig. 8, variations and
non-uniformity in lighting impact template creation. However, it can also be seen
that band-specific image contrast due to skin tone can also impact template creation
for images captured under uniform illumination as well.
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Fig. 8 Template generation success/failure lighting variation in each filter wavelength

The CMC curves for images that passed template creation for all wavelengths
and light source variations are shown in Figs. 10 and 11. In each case, probe images
consisting of the band-filtered images captured at each wavelength under different
forms of illumination were matched against a gallery of uniformly-lit unfiltered
images. Matching results of unfiltered probes matched against the unfiltered gallery
are provided in each plot as a baseline. These results indicate similar recognition
performance for uniformly-illuminated (three-point) lighting and left- and right-
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Fig. 9 Example images for each wavelength that both passed and failed template creation

illuminated face images. The results for bottom-illuminated facial images indicate
that 550 nm, 590 nm, 610 nm, and unfiltered images showed poorer matching
performance compared to other bands. The results for top-illuminated images
indicate that 610 nm, 630 nm, and 650 nm showed poorer performance compared to
other bands. It should be noted that the unsuccessful template creation for images
with nonuniform illumination across all wavelengths (as described in Fig. 9) add
bias to these results by greatly reducing the number of images that were able to be
tested.

The results presented in this section indicate that applying passband filters to
RGB images does not produce a significant performance improvement in facial
recognition matching results. Combined band filtering and illumination variation
causes a high percentage of template creation failure as the filter wavelength is
increased, with as few as 10% of the images passing template creation for the longest
filter wavelength of 670 nm. One interesting observation from this study was that
band-filtered images captured at 590 ± 10 nm were most likely to pass template
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Fig. 10 CMC curves for images that passed template creation for (a) uniform 3-point illumination
and (b) left-side illumination only for all filter passbands. The right column is a ‘zoomed in’ version
of the image in the left column

creation for this matcher, even in cases of non-uniform illumination. This indicates
that band filtering may have a higher impact on overall image quality rather than
base match scores.

2.3 Image Quality Assessment

The performance of face recognition systems can be greatly impacted by the quality
of the input image. Significant work has been completed to combat this issue for
images in the typical visible band, but very little has been done for other wavelengths
or filtered images. In this section we will discuss the Image Quality Assessment we
have used on the data collected for this project and the parallels it has shown between
image quality and face matcher performance for hyperspectral images.
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Fig. 11 CMC curves for images that passed template creation for (a) right-side illumination only,
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(b))
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Fig. 12 Example images for each wavelength demonstrating the difference between the normal
grayscale conversion method and our proposed method

2.3.1 Image Quality Assessment Experiments

The frontal-pose, uniform (3-point) illumination, indoor multispectral images cap-
tured using the Canon 5DS R camera were analyzed to determine if image quality
is varied across the wavelengths collected.

• First, the images were cropped and converted to greyscale
• Then they were processed using a Multi-Task Cascaded Convolutional Neural

Network (MTCNN) to perform face detection

Built-in grayscale conversion in MATLAB was not sufficient for this problem
since there was not an equal distribution of Red, Green, and Blue pixels, so we
developed our own method. The comparison of images can be seen in Fig. 12.

The first step was to separate the image into three separate images, one containing
only red values, one containing only green values, and one containing only blue
values. From here, the pixel intensities were found by determining the total number
of Red pixels, Green pixels, and Blue pixels. The following formulas were then
computed to find the true grayscale image.
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Table 2 Face detection percentages for each imaging wavelength

Wavelength Total number of faces Number of detected faces Percentage

550 nm 3654 3456 94.58
570 nm 3626 3472 95.75
590 nm 3626 3563 98.26
610 nm 3626 3592 99.06
630 nm 3626 3601 99.31
650 nm 3624 3581 98.91
670 nm 3613 3464 95.88
Norm 3624 3620 99.89

T otal = V alueRed + V alueGreen + V alueBlue

Avgcolor = V aluecolor

T otal

Grayscale=AvgRed ∗ ImageRed+AvgGreen ∗ ImageGreen+AveBlue∗ImageBlue

The number of faces detected at each wavelength are presented in Table 2.
These results indicate that the 630 nm-filtered images exhibit the highest face

detection performance, with all filter wavelengths performing above 94%.
After face detection was completed, the images were processed using a quality

assessment tool.
Our image quality assessment tool computes values for contrast, brightness,

focus, sharpness, and illumination based on Abaza et al. work in Design and
Evaluation of Photometric Image Measures for Effective Face Recognition. We ran
the image quality assessment over all frontal face images from the data collection
mentioned above (29,019 images).

Contrast is defined as the difference in color intensities that makes the face
distinguishable. We used the following equation [17] to find face contrast in our
tool

CRMS =
∑M

x=1
∑N

y=1 [I (x, y) − μ]2

MN

Where μ is the mean intensity of the face image represented by I(x,y) of size N × M.
Brightness in our tool is determined by the equations [18].
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The first is the normalization of RGB (red, green, blue) to a range of 0–1 and
the second is the conversion from RGB values into HSB (hue, saturation, and
brightness). Brightness is an important attribute because it determines whether a
visual stimulus appears to be more or less intense.

Focus refers to the degree of blurring of face images in our toolbox we compute
two measures for focus that were originally proposed by Yap and Raveendran [19],
the L1-norm of the image

FL1 =
M∑

x=1

N∑

y=1

|Gxx (x, y)| + | Gyy (x, y) |

And the energy of the Laplacian of the image

FEL =
M∑

x=1

N∑

y=1

[
Gxx (x, y) + Gyy (x, y)

]2

Where Gxx and Gyy are the second derivatives in the horizontal and vertical
directions. We combine these measures and find the average of the two for our final
focus measurement.

Image sharpness is defined as being the clarity of coarse and fine details in a face
image. There are several sharpness measures that have previously been proposed,
but for our tool we use an average of the following equations. The equation for S1
was proposed by Kryszczuk and Dryhajilo [20] and S2 was proposed by Gao et al.
[17].

S1=1

2

⎡

⎣ 1

(N − 1) M

M∑

x=1

N−1∑

y=1

∣∣Ix,y−Ix,y+1
∣∣+ 1

(M − 1) N

M−1∑

x=1

N∑

y=1

|Ix,y−Ix+1,y |
⎤

⎦
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S2 =
M−2∑

x=1

N−2∑

y=1

G(x, y)

Where G(x,y) is the gradient value at (x,y).
The illumination measure [21] we chose to use is calculated using the following

equation

I2 =
4∑

i=1

4∑

j=1

wij ∗ I ij

Where an image is divided into (4 × 4) blocks and wij is the weight factor of each
block.

Once values were computed for each category, normalization was completed.
Initially we only used min-max normalization to see which wavelength performed
best for each category, for this we used the following equation.

Xi = Xi − min(X)

max(X) − min(X)

We found that overall 630 nm performed best across all categories. We then went
one step further to create a fused score so that overall image quality could be
assessed. In order to do this we first completed TanH normalization for all categories
in order to normalize the distribution so that we can fuse the scores fairly. This is
completed using the following equation

Xi = 0.5 ∗
(

tanh

(
0.01 ∗ Yi − mean(Y )

std(Y )

)
+ 1

)

We then use the mean fusion technique to fuse the scores into one.

Fusedi = Contrasti + Brightnessi + Focusi + Sharpnessi + I lluminationi

5

Once fusion is complete we use min-max normalization again to distribute the
values between 0 and 1, with 0 being the worst quality image and 1 being the best
quality image. This again showed that 630 nm produced higher quality images when
compared to all other wavelengths.
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Wavelength Contrast Brightness Focus Sharpness Illumina�on

550nm 0.895 0.839 0.625 0.830 0.869

570nm 0.861 0.593 0.442 0.627 0.592

590nm 0.858 0.893 0.547 0.680 0.830

610nm 0.888 0.885 0.532 0.631 0.952

630nm 0.921 0.924 0.475 0.570 0.960

650nm 0.916 0.926 0.503 0.624 0.945

670nm 0.899 0.864 0.642 0.776 0.851

Norm 0.786 0.903 0.515 0.474 0.899

Fig. 13 Top: sample face images before and after face detection. Bottom: Sample image quality
results for a selected Caucasian female

2.3.2 Image Quality Assessment Results

Normalized results from each wavelength using min-max normalization are pre-
sented a single participant in Fig. 13, along with sample images of the individual.

In concordance with the face detection results, these images indicate that the
630 nm-filtered images possess higher overall quality scores for these two examples.

Average quality scores computed for all images in the indoor dataset for each
quality category, along with a fused quality score that provides an overall image
quality measure are provided in Table 3, and illustrated in a bar graph in Fig. 14.

These results show that the average and fused quality scores for all images are
higher for the 630 nm-filtered face images. Box plots for each separate quality
category, as well as the fused quality scores, are shown in Figs. 15 and 16.

The results indicate that contrast and sharpness generally have higher scores for
all filtered images, with brightness, focus, and illumination having higher values for
the 630 nm-filtered images.
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Table 3 Average and fused image quality scores

Wavelength Contrast Brightness Focus Sharpness Illumination Fused score

550 nm 0.6470 0.2563 0.1580 0.3419 0.2695 0.4144
570 nm 0.6145 0.2029 0.1082 0.2840 0.2127 0.3576
590 nm 0.6948 0.2908 0.1694 0.3648 0.3092 0.4510
610 nm 0.7674 0.4309 0.3121 0.4918 0.4691 0.5955
630 nm 0.7748 0.4463 0.3348 0.5020 0.4909 0.6129
650 nm 0.7389 0.3658 0.2424 0.4219 0.4044 0.5282
670 nm 0.6125 0.2016 0.0941 0.2436 0.2246 0.3457
Norm 0.7730 0.4953 0.3604 0.5640 0.5219 0.6485

Contrast Brightness Focus Sharpness Illumination Fused Score
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Fig. 14 Bar graph of quality scores presented in Table 2

3 Observations and Conclusions

Filtering RGB images does not produce the same effect as hyperspectral imaging
systems, which do not employ color-specific pixels for imagery. The lack of
significantly different matching performance of band-filtered RGB imagers is most
likely due to the nature of the sensor. Because of the architecture of color CMOS
imaging sensors, the filters simply provide a ‘weighting’ to either red, green, or blue
pixels depending on the filter wavelength. This effectively decreases the amount of
light reaching these pixels, and lowers overall image contrast. This phenomenon
was clearly observed with longer wavelength filters (630 nm+) leading to a high
degree of template creation failure for the matcher used in this study.
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Fig. 15 Box plots of all quality categories for 550–610 nm filter wavelengths

Although these results are specific to the frontal-pose, uniform (3-point) illu-
mination, indoor multispectral images captured using the Canon 5DS R camera,
they indicate that band-filtered images possess varying quality within the range of
wavelengths used in the data collection.

Contrast and sharpness quality categories seem to be the best quality metrics to
use for band-filtered images, with images filtered to 630 nm possessing the highest
quality scores, both in two specific examples extracted from the dataset as well as
in the average quality scores across the entire dataset, both in each quality category
and as fused scores.

While not an exhaustive exploration of operational scenarios, these results indi-
cate that image quality may play a bigger role in the facial recognition performance
of band-filtered images rather than simple band-filtering alone, warranting further
study in this area.
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Fig. 16 Box plots of all quality categories for 630–650 nm filter wavelengths, as well as unfiltered
(norm) images
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Unconstrained Face Recognition Using
Cell Phone Devices: Faces in the Wild

Michael Martin and Thirimachos Bourlai

Abstract The ever growing field of face recognition is constantly expanding to
tackle new and more challenging, problems as the advances in algorithms yield
higher accuracy results. The most recent advances have opened up the possibility
of conducting high accuracy face recognition on faces from completely uncon-
trolled sources, such as search engines, social-media, and other online sources.
Conducting face recognition in this area is usually deemed as faces-in-the-wild,
given the unbounded nature in which faces are collected. While performing face
recognition on faces-in-the-wild datasets has many advantages, it can make it
difficult to determine the limitations of the face recognition algorithm in terms
of the scenarios in which the faces were collected. In this work, we will collect
a simulated faces-in-the-wild dataset using four cell phones (common sources for
faces-in-the-wild) in varying scenarios (distance, lighting, background, etc.) to fully
demonstrate the capability of newly proposed deep learning based methods of face
recognition. Furthermore, we will contrast this with previous, standard, methods of
face recognition in the same scenarios to see how recent improvements in the filed
have opened up new capabilities.

1 Introduction

Face recognition has many important security, military, and government applica-
tions that extend far beyond the base principle of being able to recognize a person
by their face. While in many of these applications, an official or agent can control
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the manner in which the face is collected, there exist some applications where
manual control over face collection is not possible. Such applications may include
surveillance, crowd monitoring, commercial store theft prevention and analytics,
identification of combatants on a battlefield, with a near endless possibilities of use
cases.

The process of face recognition has been heavily studied by the academic,
industry, and government communities. Many methods have been proposed, with
the successfulness being dependent on the use case and approach. Face recognition
can generally be broken into two tasks of identification or verification [6]. In the
instance of identification, a probe face image of unknown identity is matched to a set
of gallery face images with known identity in the attempt to determine the identity
of the probe image, also called 1-to-many matching. This is most commonly used
in law enforcement applications when the identity of a individual is trying to be
determined in the connection of a crime or illegal act. It is also used to check if an
individual is on a watch-list, such as a no-fly list or a list of known terrorists. Face
verification is used when the identity of a individual is combined with a probe face
image and matched against the gallery entry for that individual for the purpose of
confirming or rejecting that person’s identity, also called 1-to-1 matching. It is most
commonly used in security instances with cooperative subjects, but is not limited to
this stipulation. We will perform experiments to explore both of these scenarios and
demonstrate the accuracy differences.

Standard face recognition systems compare frontal facial images or probes,
captured under controlled or challenging conditions with gallery, good quality face
images to establish identity. These systems typically perform well when using good
quality visible band cameras, when there is no illumination variation, and when
subjects are cooperative and close to the camera. However, many law enforcement
applications deal with mixed Face Recognition (FR) scenarios that involve matching
probe face images, captured by different portable devices (cell phones, tablets,
etc.), at variable distances and light conditions, against good quality face images
(e.g., mug shots) acquired using high definition camera sensors (e.g., DSLR
cameras). Although most portable devices operate in the visible band, the problem
of cross-scenario matching, e.g., matching face images captured by different camera
sensors and devices and at different conditions (indoor, outdoors, variable distances
and illumination) is still an open area for research. This is also known as the
heterogeneous FR problem and a potential solution will enable interoperability by
adding a device-independent matching component.

Several works have focused on the use of faces-in-the-wild and the use of cell
phone images for face recognition. One of the first works focusing on faces-in-the-
wild proposed the use of a dataset captured from local new sources [7]. The use of
datasets collected from online image search engines, such as Google and Bing, have
also show to be of great advantage in constructed datasets of faces form uncontrolled
sources [8, 20]. However, changes in the API for Google image search to limit the
number of images that can be searched will likely hurt the creation of these types of
databases in the future.
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The exploration of mobile phones in biometrics has been of interest since the
incorporation of cameras in their design [5]. The popularity of cell phones makes
them a perfect medium from which a large number of images are collected by indi-
viduals. In 2016, there were an estimated 4.3 billion mobile phone users, covering
62.9% of people on the planet [15]. These numbers are only expected to increase,
with a projected 67% by 2019, adding to the number of images being collected
from mobile phones. For these reasons, the use of more advanced techniques in face
recognition have begun to be explored in the academic community [9, 12, 18] and
in industry as an additional security measure [11]. In this work, we will demonstrate
the use of standard and state-of-the-art face recognition techniques on a simulated
faces-in-the-wild cell phone dataset that was collected using common sensors in
known, but varying, scenarios.

1.1 Cell Phone Image Capture

The image capture process in cell phones differs greatly from the image capture
process in traditional cameras. The optics of cell phones are much less dependent
on movement of lens and more dependent on software processing of the image.
This is largely due to the form factor requirements of optics on mobile devices
when compared to their traditional counterparts. In this work we describe traditional
cameras as cameras that contain a distinct lens system, such as mirror-less and
single-lens-reflex.

2 Cell Phone Face Database Creation

A database consisting of test subjects cell phone images in various scenarios was
collected to test the performance of biometric algorithms. Data was collected for
a total of 100 subjects, with a total of 80 videos being collected for each subject.
A total of 4 cell phones were used, with 20 videos collected per phone. These 20
videos consisted of both indoor and outdoor conditions at various distances. In the
instance of indoor conditions, both low lighting and full lighting scenarios were
considered at a distance of 1, 5, and 10 m. Furthermore, image from both the front
and rear cameras were captured for each scenario. For the outdoor, since the lighting
could not be controlled, only one lighting scenario was considered. Demographic
information for each test subject was also collected. This information can be seen in
Fig. 1.

The four cell phones used in this collection were the Samsung Galaxy S4 Zoom,
Nokia 1020, iPhone 5S and Samsung Galaxy S5. Videos were taken of each scenario
with the subject rotating their head yaw from +90◦ to −90◦. Test datasets were
created from this database for the remaining test scenarios presented in this chapter.
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Gender Distribution Ethnicity Distribution
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Fig. 1 Gender and ethnicity graphs of 100 subjects collected with cell phone cameras. The images
were collected indoor and outdoor, at various lighting conditions, at distances of 1, 5 and 10 m, and
with both the rear and front camera of the phone

3 Face Detection

The topic of face detection has been heavily explored in recent years leading to many
breakthroughs in techniques and approaches. In this section we will demonstrate the
performance of previously proposed traditional methods [17] and current state-of-
the-art methods [1].

3.1 Traditional Methods

The most famous face detection algorithm of the past 20 years was proposed by
Viola and Jones in [17]. This algorithm advanced the Adaboost learning method [3]
used to train cascade based detection methods using more advanced features. In its
traditional implementations, the algorithm places a bounding box on the objects it
has been trained to detect, in this case, faces. Traditional implementations were not
able to detect sub-facial landmarks (i.e. points on eyes, nose, mouth, etc.) without a
separately trained cascade for each landmark, something that is possible with more
modern techniques of face detection. Implementations of the Viola Jones algorithm
(also often referred to as Haar-feature based cascade classifiers) are available with
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Fig. 2 Face detection demonstrated on images collected from mobile phones, captured under
various conditions: (a) indoor-1 m, (b) indoor-10 m, (c) outdoor-1 m, (d) outdoor 10 m. The
detected bounding boxes of the face are indicated in red

the popular Open Source Computer Vision Library (OpenCV1) for frontal face,
profile face, and eye detection.

To demonstrate the capabilities of the Viola Jones algorithm, we tested its face
detection on a test subset of cell phone images from our database. The testing subset
consisted of 13 different scenarios for 100 subjects, 4 cell phones, distances of 1, 5,
and 10 m, indoor and outdoor, and with a head yaw angle from +90◦ to −90◦. The
Viola Jones algorithm was found to perform well for indoor and outdoor conditions
at close range, as shown in Fig. 2. However, long distances outdoors proved to be
much more challenging and more errors were found. In face detection, there are two

1OpenCV: https://opencv.org/

https://opencv.org/


134 M. Martin and T. Bourlai

Fig. 3 Successful cases of face detection via the Viola Jones algorithm on cell phone images are
shown in “a–d”, while “e–g” represent cases with false positives, in which a non-face region has
been falsely identified as a face, and “h” demonstrates false negative, in which a face was falsely
not identified

types of errors that can occur. These types of errors are False Positives, in which
erroneous areas of the image are indicated as faces, and False Negatives, in which
faces are not correctly indicated by the detection algorithm as faces. Examples of
successful face detections and cases with errors are shown in Fig. 3.

Often, the Viola Jones is found to be insufficient to handle many of the
challenging scenarios faced in today’s atmosphere of faces-in-the-wild. Fortunately,
many more advanced techniques have been developed that are capable of not only
performing face detection more accurately in challenging scenarios, but also detect
sub-facial features that can be used to locate areas of the face and pose estimation.

3.2 Face Detection with Pose Estimation

Many methods of face detection are capable of estimating the pose of the subject or
detecting sub-facial features (i.e. eyes, noise, mouth, points on the jaw, etc.). This
information is often important to filter out faces that are at extreme angles, or to
extract information for certain regions of the face. To demonstrate this capability,
we tested our cell phone dataset on a newly proposed method of face detection
[19]. In this work the authors proposed a coupled technique combining cascade
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Fig. 4 Face Detection with
Subfacial Features The
detected face is indicated by a
red box, with the subfacial
features around the noise,
jaw, eyes, and mouth
indicated with a green plus

(Viola Jones) based detection with Convolutional Neural Networks (CNNs). An
example detected face using this method is shown in Fig. 4. The sub-facial features
are indicated by green points along the jaw, mouth, noise, eyes, and brow line.

Estimating the pose does not always require finding sub-facial features, many
methods have been proposed that can classify face images into rough pose cate-
gories, such as profile (side of the face at a yaw angle of 90◦ or −90◦) or frontal.
There are three types of face pose rotation angles such as yaw, pitch and rolling
angle. We used the algorithm developed by Aghajanian et al. [2]. to estimate the
face pose, for the database collected under un-controlled conditions. This algorithm
classifies the detected face images into three categories left profile, frontal and right
profile, with yaw angle from −90°to 90°(see Fig. 5).

4 Face Recognition

In this section, we will describe several approaches to face recognition and
demonstrate their use with images from our cell phone face dataset. Similarly to
face detection, face recognition has many different approaches with many being
variations on a fundamental approach. We will describe several different approaches
with several different scenarios.

4.1 Previous Methods

In the early years of face recognition, the use of texture based algorithms were
a common method of matching faces. Using texture based methods, hand crafted
face features can be extracted that, when compared, allow the determination of
a distance metric between two face images. These methods are used to get the
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Fig. 5 Face Detection with Probe Estimation Face pose is estimated from −90◦ to +90◦ angles
for the detected face images

appearance and texture information and is invariant to change in illumination
conditions. Many variations of these algorithms exist, but the most popular texture
algorithms proposed have been the Local Binary Patterns (LBP) [10] and Local
Ternary Patterns (LTP) [21].

4.1.1 Simple Experiment

To test face recognition on our challenging-in-the-wild cell phone dataset with
traditional methods, we used the LBP feature extraction algorithm in a series of
face recognition experiments. Face videos were collected indoors, outdoors, at a
standoff distance of 1 and 10 m. Data from 48 subjects in the collection was used to
conduct the experiment. For each subject to run the experiments selected 4 samples
per subject. To perform the experiments the probe and gallery sets were formed as
described below:

• Gallery Set: Good quality neutral face images collected under controlled
conditions were selected to form the gallery set. A single image was used per
subject, resulting in a gallery size of 48 images.

• Probe Set: Face images from uncontrolled conditions, including indoors and
outdoors were used to construct probe sets for each of the 48 individuals. A total
of 16 samples from each phone (4 cell phones in total: 64 images in total for one
subject) were used for each scenario of indoors/outdoors at a standoff distance of
1 and 10 m. This resulted in a total size of 3072 images for the probe set.

Texture based methods are particularly susceptible to inconsistencies in feature
extraction due to the features being extracted from localized regions within the
image. To help compensate for this, face images can be geometrically normalized,
a process in which the images are rotated and scaled such that the face location
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Fig. 6 Gallery Set Raw
image (Left) and normalized
image (Right)

Fig. 7 Probe Set Face images in unconstrained light conditions including, Indoors 1 m, Indoors
10 m, Outdoor 1 m and Outdoors 10 m. Raw Images (Top) and Normalized Images (Bottom) with
size of 111×121 Pixels

within the image is standardized. The geometric normalization scheme compensates
for slight deviations in the frontal pose. It is composed of two main steps, eye
detection and affine transformation. The eye center positions are first located by
manual annotation and are used to geometrically normalize the images. Based on
the located eye coordinates, the canonical faces were automatically constructed by
applying an affine transformation. Faces are first aligned by placing the coordinates
of the eyes in the same row such that the slope between the right and left eye is zero
degrees. Finally, all the faces are canonicalized to the dimension of 111×121 pixels.
The geometrically normalized images can be seen Figs. 6 and 7.

The results of our experiments are shown in Fig. 8 and Table 1. The results
of the identification experiments are shown in the form of a Cumulative Match
Characteristic (CMC) curve, where each the probably of identification in the
number of top results is indicated on the horizontal axis as ranks. To elaborate,
the probability of identification at a particular rank X corresponds to the probability
that a correct match has a better or equal score to the Xth highest score. The results
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Fig. 8 Face Identification Results for faces-in-the-wild using basic matchers The Cumulative
Match Characteristic (CMC) curve is shown for an identification experiment involving cell phone
images with a gallery size of 48 images and a probe set size of 3072 in varying scenarios

Table 1 Results for LBP-CHI matcher for 1-m distance

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

LBP-CHI 0.53 0.61 0.66 0.70 0.73

of our experiment indicate that traditional face recognition methods are not able to
compensate for the challenges associated with faces-in-the-wild collected from cell
phones and various conditions. The true identification rate (Rank-1 score) achieved
was 53%, which is anticipated given the nature of the experiment.

4.1.2 Same Distance Matching

In the next experiment, we will slightly constrain the faces-in-the-wild nature of
our dataset to images captured from the same distance and the same phone in order
to observe the effect on our recognition rates. We will also use the TBP texture
based feature extraction method in addition to LBP. The gallery and probe sets were
created as described below:

• Gallery Set: The gallery consists of baseline images collected for each phone
at the distances of 1 and 5 m. Faces images at 5 m were collected by manually
zooming the digital focus of the camera on the face. For this experiment, two
images for each of the 100 subjects, to make a total size of 200 images per phone
and distance.
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Table 2 Results for LBP-CHI matcher for 1-m distance

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

iPhone 5S 0.95 0.96 0.96 0.97 0.97

Nokia 1020 0.82 0.87 0.89 0.89 0.90

Samsung Galaxy S5 0.89 0.92 0.95 0.96 0.96

Samsung Galaxy S4 Zoom 0.94 0.96 0.97 0.97 0.98

Table 3 Results for LBP-CHI matcher for 5-m distance

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

iPhone 5S 0.70 0.73 0.75 0.77 0.77

Nokia 1020 0.63 0.69 0.72 0.74 0.75

Samsung Galaxy S5 0.68 0.73 0.77 0.78 0.80

Samsung Galaxy S4 Zoom 0.75 0.80 0.84 0.85 0.88

Table 4 Results for LTP-CHI matcher for 1-m distance

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

iPhone 5S 0.96 0.96 0.96 0.97 0.97

Nokia 1020 0.81 0.87 0.88 0.89 0.90

Samsung Galaxy S5 0.90 0.92 0.95 0.96 0.96

Samsung Galaxy S4 Zoom 0.94 0.96 0.97 0.97 0.97

Table 5 Results for LTP-CHI matcher for 5-m distance

Rank 1 Rank 2 Rank 3 Rank 4 Rank 5

iPhone 5S 0.70 0.74 0.75 0.76 0.87

Nokia 1020 0.64 0.70 0.72 0.74 0.76

Samsung Galaxy S5 0.68 0.73 0.78 0.79 0.80

Samsung Galaxy S4 Zoom 0.76 0.80 0.84 0.86 0.89

• Probe Set: Similarly, the probe set consists of 200 images with two images per
subject for each of the 100 subjects at distances of 1 and 5 m.

The results of these experiments are shown in Tables 2, 3, 4 and 5 and are separated
by distances.

4.2 State-of-the-Art Methods

While previous methods of face recognition may not be sufficient for faces-in-
the-wild, recent advances in technology have opened up the possibilities of using
uncontrolled face images in high accuracy scenarios. To fully demonstrate this we
have repeated our experiment of same distance matching using newly proposed
face recognition scheme, FaceNet [14]. This new method uses Convolutional Neural
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Networks (CNNs) to extract deep facial features that exhibit much higher accuracy.
The use of CNNs was first proposed in [4] and has become a very important
algorithm in the modern community for image classification, feature extraction, and
object detection. The base concept uses layers of image convolution with filters that
have been optimized to extract ever more complex information as the number of
layers grow. A more in depth understanding of the state of this technology can be
found in [13]. In our instance, the output of the CNN would be a set of deep facial
features that have been optimized for use with face recognition. These deep facial
features are able to achieve high accuracy due to nature of being learned through
annotated training data instead of hand-selected like previous techniques of feature
extraction.

The first step in performing face recognition using these new methods is to
crop our face images using a newly proposed algorithm, Multi-Task Convolutional
Neural Network (MTCNN) [22]. This algorithm performs face detection much
quicker and more accurately than the previously discussed methods, and normalizes
the faces to be a square 160 × 160 image that can be used for face recognition
with FaceNet. No geometric normalization is used as it is not essential to FaceNet
that the images be geometrically normalized. In order to use FaceNet, we must
first select the architecture we wish to use and train the model. Reported by the
authors [14] as being the highest performing model, we chose to use the Inception-
Resnet-V1 model proposed by Google in [16]. We trained the model with the
CASIA face database [20] as described in the paper [14] to create the model
which we will use for feature extraction in our recognition experiments. To perform
the recognition experiments, cropped face images are fed through the network to
produce a deep face feature vector. Feature vectors can then be compared using
basic Euclidean distance to create distance metrics between two faces. Finally, we
generate a distance matrix where an entry in the matrix Dist (Xi, Yj ) corresponds
to the distance score between the ith entry in the Probe set X and the j th Gallery
entry in the set Y . This entire process completes the scheme for performing face
recognition using this advanced deep learning methodology.

In order to test this method with the previously discussed methods, we devised
a series of experiments for both face identification and verification. In the instance
of identification, we repeated the same-distance matching experiment performed in
Sect. 4.1.2 in which we matched 1 and 5 m images in varying scenarios. Using the
distance matrix previously defined, we can easily compute the CMC curves and
Ranks. The results of these experiments are shown in Tables 6 and 7. From these
tables, we can see that the results are drastically different, with many of the scenarios
achieving a 100% Rank-1 score for the true identification rate. The only instances
where 100% was not achieved, was in the longer distance scenarios of 5 m with the
iPhone 5S and Nokia 1020.

In the instance of verification, the distance matrix is still used but only the
instances of the diagonal Dist (Xi, Yi) are considered, assuming that the indices
of Xi and Yi correspond to the same identity. The most common way of reporting
accuracy for biometric verification, is the use of the Receiver Operator Characteris-
tic (ROC) curve. This ROC curve shows the trade-off between the True Positive Rate



Unconstrained Face Recognition Using Cell Phone Devices: Faces in the Wild 141

Table 6 Results for FaceNet
for 1-m distance

Rank 1 (%)

iPhone 5S 100

Nokia 1020 100

Samsung Galaxy S5 100

Samsung Galaxy S4 Zoom 100

Table 7 Results for FaceNet
for 5-m distance

Rank 1 (%)

iPhone 5S 99.0

Nokia 1020 95.0

Samsung Galaxy S5 100

Samsung Galaxy S4 Zoom 100
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Fig. 9 Face verification Results for 1 m vs 1 m distance The Equal Error Rate (EER) for all the
phones were found to be 0%, except the Nokia 1020 which had a EER of about 1%

(the rate at which a face is correctly verified as a matching identity) and the False
Positive Rate (the rate at which a non-match is incorrectly verified as a matching
identity). These results for the 1 and 5 m scenarios are shown in Figs. 9 and 10. The
Equal Error Rates (EER), which correspond to when both the True Positive Rate
(TPR) and False Positive Rate (FPR) are equal, if found to achieve a perfect result
of 0% for all scenarios at 1 m except the Nokia 1020 (which achieved around 1%
EER) The results were slightly worse at 5 m, where only the Samsung scenarios
achieved a EER of 0%.
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Fig. 10 Face verification Results for 5 m vs 5 m distance The Equal Error Rate (EER) for the
Samsung Phones are found to be 0%, with a slightly higher EER for the Nokia 1020 and iPhone
5S

5 Summary

In this chapter we have discussed the uncontrolled nature of face recognition with
faces-in-the-wild collected by cell phones and other devices. For that proposed we
used a dataset of cell phone face images we collected in various controlled and
uncontrolled scenarios. We have demonstrated the performance standard and state-
of-the-art (available to us) face detection and face recognition methods. From the
experiments, it can be seen that previous conventional FR techniques were not
capable of achieving high accuracy (rank-1) in the uncontrolled scenarios seen with
faces-in-the-wild. However, recent breakthroughs with deep learning have allowed
the relaxing of these conditions such that we can now conduct face recognition in a
variety of scenarios that previously were not possible.
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Face Detection in MWIR Spectrum

Suha Reddy Mokalla and Thirimachos Bourlai

Abstract The capability to perform face recognition in the visible and thermal
spectra is of prime interest in many law enforcement and military organizations.
Face detection is an important pre-processing step for face recognition. Though
many algorithms are available for face detection in the visible spectrum, an
assessment of how these algorithms can be retrained for the thermal spectrum is
an important study. Current available visible-based face detection algorithms are
very effective in daytime conditions, however, when there are extreme changes in
illumination conditions like very low-light to no light (night-time), these become
challenging. Due to limited amount of data available for researchers from sensors
in the thermal band (due to the increased cost of having and operating state of
the art thermal sensors), there are only a few proposed algorithms. In this work,
we conducted a study to determine the impact of factors such as indoor/outdoor
environment, distance from the camera, application of sunscreen, training set
size, etc. on training deep-learning models for a face detection system in the
thermal spectrum that simultaneously performs face detection and frontal/non-
frontal classification. Existing deep learning models such as SSD (Single Shot
Multi-box Detector), R-FCN (Region Based Fully Convolutional Network) and R-
CNN (Region Based Convolutional Neural Network), are re-trained using thermal
images for face detection and pose estimation tasks. Results from each model are
compared, and the model with the best performance is further trained and tested
on different datasets, including indoor, outdoor at different stand-off distances. The
highest accuracy is achieved using a Faster R-CNN model with ResNet-101 and the
accuracy is 99.4% after a 10-fold cross-validation. More experiments are performed
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to further study the efficiency and limitations of this model. The data set we use was
collected under constrained indoor and unconstrained outdoor conditions.

1 Introduction

Biometrics is the measurement and statistical analysis of people’s unique physical
and behavioral characteristics. The technology is mainly used for identification and
access control, or for identifying individuals under surveillance. The basic premise
of biometric authentication is that every individual can be accurately identified by
his/her intrinsic physical and behavioral traits. There are several types of biometric
modalities, including, but not limited to, fingerprint and retinal scanning, facial
recognition and voice analysis. Face recognition holds high importance since it is
non-intrusive, understandable, and can be collected in a covert manner at various
stand-off distances. Multi-spectral face recognition, especially thermal-to-visible
gained a lot of interest over the recent years due to the fact that thermal imagery
best suits low light and nighttime conditions and face detection is an important pre-
processing step for face recognition. Most of the face detection algorithms available
in the open literature operate in the visible spectrum (390–700 nm). However,
algorithms like eye detection, face detection, and pose estimation operating in
the thermal spectrum are of much interest in many government and surveillance
applications since the camera may need to be operated in a low-light to night-
time zero visibility environment. The infrared (IR) spectrum plays an important
role in such circumstances. The IR spectrum is divided into two categories – active
IR and passive IR (also known as thermal). The active IR consists of Near IR
(0.7–0.9 μm) and the lower range of Short-Wave IR (0.9–2.5 μm). During data
acquisition in the active IR band, the subject’s face is usually illuminated using
an external light source. The passive IR consists of the Mid-Wave IR (MWIR) (3–
5 μm) and the Long Wave IR (LWIR) (7–14 μm) bands. IR radiation in the form of
heat is emitted from the subject’s face and is detected by the camera sensor whenever
data is acquired in the passive IR band. Passive IR sensors provide a significant
capability of acquiring human biometric signatures under obscure environments
without allowing the location of the sensor to be detected.

1.1 Related Work

There are many algorithms using deep learning and traditional approaches in the
visible spectrum proposed in the open literature. However, the work done for
face detection in the MWIR spectrum is limited. A couple of publications use
local features combined with an AdaBoost classifier. Ma et al. [19] proposed a
face detection algorithm that uses AdaBoost classifier with local features such as
Haar-like, MB-LBP (Multi-Block Local Binary Pattern) and HOG (Histogram of
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Oriented Gradients) and the task is accomplished by building stages by comparing
the performance of different local features at each stage. Ma et al. [18] proposed
two approaches based on local features – one is, they created new feature types
by extending multi-block LBP and second is, an AdaBoost training method to
get cascade classifiers with multiple types of local features, thus enhancing the
description power of local features. Zheng [31] proposed face detection and eyeglass
detection in thermal band using image denoising and normalization. Region growing
algorithm is used for segmenting face in the image and a novel eyeglass detection
method is proposed. Murata et al. [20] proposed a face detection algorithm that
automatically extracts the target facial region from the thermal image by focusing
on the temperature distribution of the facial thermal images as well as examine
the automation of the evaluation. Reese et al. [22] presented and compared three
face detection algorithms – Viola-Jones algorithm, Gabor feature extraction and
classification using Support Vector Machines and a projection profile analysis using
both Visible and LWIR spectra. They concluded that Gabor feature extraction can
be re-trained using thermal images. However, the algorithm is extremely slow and
projection profile analysis is applicable only to thermal images. Eveland et al. [6]
proposed a human head tracking algorithm using three components – Method for
modeling thermal emission from human skin that can be used for segmenting,
segmentation model is applied to the condensation algorithm and tracking results
are used to refine the segmentation estimate. Kwaśniewska et al. [15] re-trained
the Inception v3 model using thermal images (transfer learning) and utilized CNN
localization ability to get information about classes’ localization to detect and track
faces in low-resolution thermal videos. Dowdall et al. [5] proposed a face detection
algorithm in NIR spectrum in the following steps – frame acquisition, foreground-
background segmentation, Near IR luminance calculation, Near IR illumination
adjustment, skin detection and face detection.

There are a few algorithms that detect objects in the thermal spectrum other
than face. Komatsu et al. [14] proposed a 3D imaging technique based on integral
imaging. Using an LWIR camera multiple 2D images are captured that are known as
elemental images of a scene with each image having a unique perspective of the 3D
objects. A 3D scene is re-constructed and object detection using correlation filters
and Support Vector Machines is performed. Herrmann et al. [2] proposed a person
detection algorithm in which IR images are transformed as close as possible to
visual RGB images and the remaining domain gap is corrected by training the CNN
using a limited set of IR images. Biswas et al. [1] proposed a mid-level attribute
in the form of multi-dimensional template using Local Steering Kernel (LSK) as
low-level descriptors for detecting pedestrians in far IR images. In order to learn the
LSK a new similarity kernel is introduced.

There are many face detection algorithms in visible spectrum available in the
open literature using CNNs. Zhu et al. [32] proposed a Contextual Multi-Scale
Based CNN with two contributions – the multi-scale information is grouped both
in region proposal and RoI (Region of Interest) to deal with tiny face regions,
second, the proposed network allows explicit body contextual reasoning inspired
from the intuition of human vision system. Yang et al. [28] proposed Faceness-net,
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a new method to finding faces through scoring facial parts responses by their spatial
structure and arrangement and the scoring mechanism is data-driven and carefully
formulated to detect faces under severe occlusion and unconstrained pose variations.
Jiang et al. [13] demonstrated state-of-the-art face detection results using the
Faster R-CNN on three popular face detection benchmarks and compared different
generations of region-based CNNs and a variety of other recent high-performing
detectors. Ranjan et al. [21] proposed HyperFace, a deep multi-task learning
framework that is used for simultaneous face detection, landmark localization, pose
estimation and gender recognition and proposed two variants of HyperFace – 1.
HyperFace-ResNet and 2. Fast-HyperFace. Sun et al. [24] proposed a face detection
algorithm to improve the state-of-the-art faster R-CNN framework by combining a
number of strategies, including feature concatenation, hard negative mining, multi-
scale training, model pre-training and proper calibration of key parameters.

Zhang et al. [30] proposed joint face detection and alignment using Multi-Task
Cascaded convolutional Neural Networks (MT-CNN) that exploits the inherent
correlation between detection and alignment to boost up their performance. They
leveraged a cascaded architecture with three stages and introduced an online hard-
sample mining. Yang et al. [29] proposed a face detection algorithm using scale-
friendly deep convolutional neural networks that could handle faces at extremely
different scales. Farfade et al. [7] proposed a multi-view face detection algorithm,
which they called Deep Dense Face Detector (DDFD), a method that does not
require pose/landmark annotation and is able to detect faces in a wide range of
orientations using a single model based on deep convolutional neural networks.

The goals of this work are (1) to conduct an experimental study to determine the
impact of training deep learning object detection models to detect faces in MWIR
images and classify the faces into frontal and non-frontal (profile) simultaneously
(2) to determine the most efficient model and suitable learning rates and (3) to
determine in which conditions (training set size, scenario etc.) the performance
starts degrading. The existing deep learning models available for different tasks
such as object detection, image recognition, face matching etc. are trained using
millions of images. Training a CNN with many weights requires millions of
samples, as well as High Performance Computing Sources and requires few days,
sometimes, weeks for training. Transfer learning stands an acceptable alternative for
this problem, where the model available for the required task is re-trained using a
few hundred or thousand samples. It can be defined as re-utilizing the knowledge
learned from one problem to another related one.

The goals listed are achieved by re-training and optimizing different deep
learning models [12]. The dataset includes images collected at different distances
(5 and 10 m) collected in both indoor and outdoor environments. The dataset also
contains images in which sunscreen is applied to human subjects’ faces. Application
of sunscreen affects the vein pattern of the face, by penetration of nano particles
of sun-screen into the epidermis [3]. Therefore, this may affect the information
captured by the thermal camera. In this work, we propose a unified system that
integrates face detection and classification using Convolutional Neural Networks
(CNNs) into one nighttime face detection system. The work flow of the proposed
system is shown in Fig. 1. First, MWIR frontal images are collected at distances of
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Fig. 1 Proposed system design for face detection and frontal/Non-frontal classification (Dataset
Explained in 3 Section)

5 and 10 m, indoor and outdoor and non-frontal images are collected at 5 m, indoor.
These images are used to train and validate the deep learning models by tuning the
network (transfer learning) and the outputs from each model are compared. The best
performing model is used to perform further face detection experiments described
in the 2 section.

2 Methodological Approach

This section provides the theoretical framework of the fundamental restorative
building blocks used that include conducting an empirical study to—(1) evaluate
different models, and (2) determine the model that yields highest precision for
the face detection and frontal/non-frontal classification. Understanding these key
building blocks provides the reader an analytical foundation of each independent
strategy. Additionally, this understanding also helps compliment the experimental
testing and observations of each of the key building blocks and their combination
described in the following section.

2.1 Deep Learning Models and Feature extractors

The deep learning models trained, tested, and optimized for face detection and
frontal/non-frontal classification in this work are SSD, R-FCN, Faster R-CNN with
MobileNet, Inception v2, Inception, v3, ResNet 101 as primary feature extractors.
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All the aforementioned models are trained and tested using the MWIR data resulting
in a total of approximately 100 experiments and the results summarized in 3 section.
Meta architectures of the models are described below

• SSD: SSD [17] is a feed-forward CNN that produces a set of bounding boxes
with confidence scores for the presence of object in those boxes. This is
followed by a non-maximum suppression step that detects the object. The
early networks are standard CNN layers that are used for classification in high
quality images called base network and are truncated before any classification
layers. Convolutional feature layers are added to the truncated base network that
decrease in size and generates detections at multiple scales. Each added feature
layer produces a fixed set of predictions using a set of convolutional networks
which are different for each feature layer.

• Faster R-CNN: Faster R-CNN [23] is a relatively fast version of Fast R-CNN. It
has two components. First is an RPN (Region Proposal Network) that takes image
as an input and outputs a set of rectangular object proposals, each with score of
the presence of object class in the box. To generate proposals, a small network
is slid over the convolutional feature map output by the last shared convolutional
layer and each sliding window is mapped into a lower-dimensional vector which
is fed into two sibling fully-connected layers—a box regression layer and a box
classification layer. The second component is the Fast R-CNN [8].

• R-FCN: The R-FCN [4] follows R-CNN in adopting the two-stage object
detection strategy explained above. Candidate regions are extracted by RPN,
after which R-FCN classifies the ROIs (Regions of Interest) into categories
and background. The last layer of R-FCN is a position-sensitive ROI pooling
layer that aggregates the outputs of the last convolutional layer. The backbone
architecture of R-FCN is ResNet-101 which is explained later in this section. The
significant change made in the ResNet-101 architecture is reducing the effective
stride from 32 pixels to 16 pixels, increasing the score map resolution.

Feature extractors are explained below
• Mobilenets: MobileNets [11] is basically designed for Mobile Vision appli-

cations and is a relatively faster convolutional network compared to the other
models explained here. It is based on depth-wise separable convolutions which is
a form of factorized convolutions which factorize a standard convolution into a
depth-wise convolution and a 1 × 1 convolution called a point-wise convolution.
The depth-wise convolution applies a single filter to each input channel and the
point-wise convolution applies a 1 × 1 convolution to combine the outputs of the
former.

• Inception: Inception [25], known popularly as GoogleNet, is the base architec-
ture for Inception v2 and v3, follows the basic idea to operate filters with multiple
sizes on the same level. This model has 9 inception modules stacked linearly in
22 layers and uses global average pooling at the end of the last inception module.
To address the problem of vanishing gradient [10], which is common in any very
deep classifier, two auxiliary layers are introduced.
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• Inception v2: Inception v2 [26] is similar to GoogleNet with the following
changes. Representational bottleneck is reduced as reducing the dimensions
drastically may cause loss of information. To achieve this, filter banks in the
module are expanded. 5×5 convolutions are factorized to two 3×3 convolutions
and any n×n convolutions are factorized to 1×n and n×1 convolutions. This
reduces the computational cost, as larger convolutions are extremely expensive
than smaller ones.

• Inception v3: Inception v3 [26] includes all the upgrades mentioned above for
Inception v2. Additionally, the following details are added to the architecture
— RMSProp optimizer, factorized 7 × 7 convolutions, Batch Normalization is
applied to the auxiliary classifiers and label smoothing to prevent over-fitting.

• ResNet 101: ResNet [9] uses of referenced mapping instead of unreferenced i.e.,
the input from one layer is directly connected to the next layer along with the
output from the previous layer. The intuition behind this approach is that it is easy
to use a referenced mapping than it is to optimize a non-referenced mapping.

These networks are trained and tested using the thermal data explained in the above
sections. The parameter tuning and corresponding results obtained are presented
in 3 section.

2.2 Further Experiments Using Faster R-CNN with
ResNet-101

Among all the models used, Faster R-CNN with ResNet-101 as the primary
feature extractor yielded the highest accuracy. More face detection experiments are
conducted using this model to further study the efficiency and limitations of the
network. First group of experiments include changing the number of training images
used i.e., the training set size is reduced by 10% each time. These experiments are
performed to validate the network trained with a smaller number of images each
time. The second set includes using data from one of the eight scenarios for training
and data from the other scenarios to validate the data one after the other, for instance,
data from 5 m, indoor without sunscreen is used for training and data from rest of
the scenarios is used for testing. All the experiments performed are described in
detailed in the next section.

3 Experimental Evaluation

An experimental study is conducted to assess the performance of the deep learning
models for face detection in the MWIR spectrum. We froze all the parameters for
the networks as described in their original works except the learning rate which is
varied to tune the network and improve results.
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Table 1 Number of images per category

Category 5IN 5IS 5ON 5OS 10IN 10IS 10ON 10OS

Number of images 795 780 795 690 810 795 765 777

3.1 Dataset Description

Number of subjects participated in the study is 56. The number of images in each of
the eight categories is presented in Table 1 and the scenarios are explained here.

1. 5IN – 5 m, Indoor, no sunscreen applied to subject’s face
2. 5IS – 5 m, Indoor, sunscreen applied to subject’s face
3. 5ON – 5 m, Outdoor, no sunscreen applied to subject’s face
4. 5OS – 5 m, Outdoor, sunscreen applied to subject’s face
5. 10IN – 10 m, Indoor, no sunscreen applied to subject’s face
6. 10IS – 10 m, Indoor, sunscreen applied to subject’s face
7. 10ON – 10 m, Outdoor, no sunscreen applied to subject’s face
8. 10OS – 10 m, Outdoor, sunscreen applied to subject’s face.

The non-frontal data is comprised of 56 subjects, each with approximately 12
images per pose, totaling 1400 images. All non-frontal data was collected indoors
at a distance of 5 m. No pre-processing or augmentation techniques are used on this
data.1

3.2 Initial Experiments to Compare Different Models

All of the data (from eight scenarios and non-frontal images) is used to train and test
the networks. First, each image is manually annotated to extract a face bounding box
for training and validation purposes. Next, training and validation is performed as
described in the 2 section. We use 90% of the data from each scenario for training
and 10% for validation. The resulting model detects faces and classifies them as
frontal or non-frontal classes. The precision values for our models, the time it takes
to detect one face, and the learning rate used are summarized in Table 2.

It can be observed from Table 2, that the SSD model with MobileNet resulted
in an accuracy of 92% with a learning rate of 3e-6 and it is relatively faster than
the other networks. It can also be observed from the table that SSD with MobileNet
took 1 ms for single detection with a learning rate of 0.00003, whereas, SSD with
Inception v2, R-FCN with Resnet 101 and Faster R-CNN with Resnet 101 took 12
ms for single detection. Comparing the accuracy for all the four networks used,

1Release of MWIR Face Dataset: This is currently a private database with availability determined
on case-by-case basis. If interested in working with this database, please contact the corresponding
author.
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Table 2 Face detection accuracy of different models

Model LR Training time (hours) Detection time (ms) Precision (%)

SSD with MobileNets 0.004 did not converge – –

SSD with MobileNets 1e-4 1.5 1 62%

SSD with MobileNets 3e-5 1.75 1 74%

SSD with MobileNets 3e-6 2.15 1 92%

SSD with Inception v2 1.85 12 1.85 71%

SSD with Inception v2 2.5 12 2.5 86%

R-FCN with Resnet 101 1e-4 2.25 45 72%

R-FCN with Resnet 101 3e-5 3.5 45 91%

Faster R-CNN with Resnet
101

2 1e-4 60 77%

Faster R-CNN with Resnet
101

3e-5 2. 5 60 100%

Fig. 2 Detection results
using Faster R-CNN
algorithm for an image at
5 m, indoor

Original Image

Faster R-CNN Network

Region Proposal
Network (RPN) Fast R-CNN

Detection Output

it can be noticed that Faster R-CNN network with ResNet 101 network as feature
extractor performed the best for our data with a learning rate of 0.00003.

3.3 Different Experiments Using Faster R-CNN Model with
ResNet 101

Our initial experiments found that Faster R-CNN and 10-fold cross-validation
yielded a maximum accuracy of 100% and average of 99.4% across all folds
(Fig. 2). This model is further trained using different learning rates for different
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Table 3 Accuracy of Faster
R-CNN for different divisions
of training and validation sets

(Training, validation) Learning rate Precision (%)

(80,20) 0.00003 100

(70,30) 0.00003 99.26

(60,40) 0.0004 98.72

(50,50) 0.0004 98

(10,90) 0.001 96.40

Table 4 Accuracy of Faster R-CNN for different indoor scenarios as training and validation sets
(Rows: Validation Set, Columns: Training Set)

(Training, validation) 5IN 5IS 5ON 5OS 10IN 10IS 10ON 10OS

5IN – 99.87 100.00 99.00 63.36 56.98 59.95 57.56

5IS 98.32 – 98.46 100.00 71.80 76.98 51.44 67.05

5ON 99.87 97.20 – 99.67 86.32 87.13 61.44 58.21

5OS 97.56 97.92 96.44 – 82.79 90.77 61.63 59.21

10IN 88.76 85.16 91.31 82.17 – 99.64 100.00 99.27

10IS 82.78 84.74 76.10 85.67 99.67 – 99.72 100.00

10ON 78.66 72.81 79.47 82.49 100.00 99.76 – 100.00

10OS 76.90 77.87 71.43 89.87 96.57 100.00 98.90 –

combinations of training and validation sets. The training data is decreased by 10%
for each experiment until only 10% data is available for training. Results for these
experiments are presented in Table 3.

It can be observed from Table 3 that the model performed well for all scales
of data. The only change made from the previous experiments is the learning rate
value. The learning rate is changed based on whether the model converged, the
amount of time taken for convergence and accuracy observed on the validation set.
Different learning rates are used for different sets of data and the results summarized
in Table 3 are the best considering all the aforementioned conditions.

This model is further used to perform only face detection (not including the
frontal/non-frontal classification) experiments using data from one of the indoor
categories for training and the remaining seven are used for validation. Different
learning rates are used to perform the experiments and a learning rate of 0.0003 was
found to converge well for the training data. The results are summarized in Table 4.
Figure 3 shows the images, where the face detection model failed.

4 Discussions

For all the experiments described in the previous section, different learning rates
were used for each training set and the best results are presented. In Table 2,
different models with different learning rates are trained with MWIR images. The
SSD model using MobileNet is the fastest to converge for the data. However, this
model is less accurate compared to the other models. When the learning rate is



Face Detection in MWIR Spectrum 155

Fig. 3 Failed Detection
Outputs – (a) when trained on
10 m and validated on 5 m,
(b) when trained on 5 m and
validated on 10 m

further decreased to 3e-6, the model converged after 4 h and the accuracy decreased
because of overfitting. R-FCN performed poorly compared to SSD and Faster R-
CNN with an accuracy of 91% and took 3.5 h to converge over the training data. It
experienced the problem of overfitting when the learning rate is further decreased.
Faster R-CNN network converged after training for 2.5 h for the training set with a
learning rate of 3e-5 and the accuracy over the validation set is 100%.

An empirical study was conducted to analyze the performance of the Faster R-
CNN and to determine when the network starts degrading related to the size of
training dataset and the scenarios used for training and testing. It can be seen in
Table 3 that, when 80% of the data was used for training, accuracy of the face
detection over the validation set was still 100%. The accuracy dropped to 99.26%
when 70% of the data was used for training. When the size of the training set
is further reduced to 60%, the model did not converge due to a higher learning
rate. Learning rate is then decreased to 0.0004 and the accuracy over the test set is
98.72%. This is repeated for 50% and 10% of the images as training data, and the
learning rate values used are 0.0004 and 0.001 respectively. The accuracy values are
98% and 96.4% respectively. It can also be noted that the accuracy of the detector
is 96.4% when only 10% of the data (622 images) was used for training and the
time taken to converge is about 1.5 h. This indicates that this model needs as few
as a few hundred images for transfer learning and can perform well when validated
using relatively large test dataset (5,600 images in this case). Considering detection
speed, determined by the time taken for single detection, SSD with MobileNets is
the fastest at 1ms per detection and Faster R-CNN with ResNet-101 is the slowest.

In the next set of experiments, all the images from one of the categories are used
for training the model and it is validated over the images from all the other categories
one after the other. The learning rate used was 0.0003 for these experiments. The
model, when trained on images from 5IN performed well when validated over 5IS
(99.87% accurate), however, performance decreased when trained with 5IN alone
and validated using 10IN and 10IS. The results were similar when trained with 5IS
alone and validated over 5IN, 10IN and 10IS. Accuracy is high when validated over
5IN and dropped down drastically for 10IN and 10IS. When the model is trained
with 10IN alone, the accuracy is high when validated over 10IS and the performance
degraded when validated over 5IN and 5IS and same is the case for 10IS as training
set. It can be inferred from these experiments that, stand-off distance (distance of



156 S. R. Mokalla and T. Bourlai

subject from the camera) had a high impact on the performance of the detector,
while applying sunscreen had little impact.

Figure 3 shows two failed cases, the first one is trained using images at 10 m and
validated for 5 m, and the second one was trained for 5 m and validated for 10 m.
In the second one, though the RPN generated various ROIs, Fast R-CNN network
failed to correctly detect the actual position of the face.

5 Conclusions and Future Work

Though there are many algorithms available for face detection, frontal-non/frontal
classification, pose estimation, and face recognition in visible spectrum, the algo-
rithms developed or re-trained using thermal images are very limited. In this work,
different deep learning models were trained, validated, and optimized using MWIR
images collected in different scenarios (different combinations of distances, indoor
and outdoor) and the results are compared to determine the one model that works
better than others for the task and a suitable learning rate that gave good results for
our data.

The models compared are SSD, R-FCN, R-CNN with MobileNet, Inception v2,
Inception v3, ResNet 101 as feature extractors. All the parameters were frozen to be
the same as in the original works, only the learning rate was changed to improve the
results in terms of accuracy and speed. Faster R-CNN with ResNet-101 performed
the best for our data. Also, this model was further trained and tested using different
combinations of training and test data, and it performed exceptionally well for
training data as small as 10% of the overall data.

Finally, the same model was trained using images from one scenario and
validated using images from the other scenarios. The results were poor when the
model was trained using images at 5 m and validated using images at 10 m and vice
versa. This was due to the fact that the faces in the images at different distances are
at different scales as shown in Fig. 1. The efficient model in this case may not be the
most effective model for all the object detection applications. It gave good results
only for the MWIR images we collected.

However, the data we used for this work is highly limited due to the cost of
collection. To overcome this, we plan on scaling the images into different sizes
to be able to detect faces in the images at different distances when all we have is
only the data collected at one distance. In the future, our efforts will be focused on
augmenting the data not only at different scales but also using different contrast
settings, and adding different types of noise like Gaussian and filtering out the
noises.

This work also presented a frontal/non-frontal classifier with images at 5 m in the
indoor setting which was trained and tested only on images that are fully frontal or
fully non-frontal (profile). This can be extended to pose estimation (determining the
transformation of an object in a 2D image which gives the 3D object) using active
shape models.
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Abstract In this chapter we evaluate mobile active authentication based on an
ensemble of biometrics and behavior-based profiling signals. We consider seven
different data channels and their combination. Touch dynamics (touch gestures and
keystroking), accelerometer, gyroscope, WiFi, GPS location and app usage are all
collected during human-mobile interaction to authenticate the users. We evaluate
two approaches: one-time authentication and active authentication. In one-time
authentication, we employ the information of all channels available during one
session. For active authentication we take advantage of mobile user behavior across
multiple sessions by updating a confidence value of the authentication score. Our
experiments are conducted on the semi-uncontrolled UMDAA-02 database. This
database comprises of smartphone sensor signals acquired during natural human-
mobile interaction. Our results show that different traits can be complementary
in terms of mobile user authentication and multimodal systems clearly increase
the performance when compared to individual biometrics systems with accuracies
ranging from 82.2% to 98.0% depending on the authentication scenario.
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1 Introduction

Services are migrating from the physical to the digital domain in the information
society. Examples can be found in e-government, banking, education, health, com-
merce, and leisure. This digital revolution is associated with a massive deployment
of mobile devices, including multiple sensors (e.g. camera, gyroscope, GPS, touch
screens, etc.), and full connectivity (e.g. bluetooth, WiFi, 4G, etc.). The mobile
market has expanded to the point where the number of mobile devices in use is
nearly equal to the world’s population [1]. Mobile devices are rapidly becoming
data hubs, used to store e-mail, personal photos, online history, passwords, and even
payment information. Recent studies have shown that about 34% or more users
do not use any form of authentication mechanism on their devices [2]. In similar
studies, inconvenience is always shown to be one of the main reasons why users do
not use any authentication mechanism. In [3], researchers show that mobile device
users spent up to 9% of the time they use their smartphone on unlocking their
screens, and the 2018 Meeker Report [4] indicated that the average smartphone
user checks his/her device 150 times per day. Those factors lead individuals to
make less security conscious decisions like leaving their smartphones unprotected or
just protecting them using simple to break authentication mechanisms (e.g., simple
Google unlock graphical patterns vulnerable to over-the-shoulder attacks [5]).

Biometric technologies improve traditional recognition technologies in several
ways based on passwords or swipe patterns. The advantages of biometric systems
are many in terms of security and convenience of use, which has led these technolo-
gies to take on a leading role in the last years. In fact, there is a growing interest in the
biometrics research community towards more transparent and robust authentication
methods that make use of the interaction signals originated when using smartphones
[6, 7]. Signals generated with the sensors already embedded in mobile devices
(e.g., gyroscope, magnetometer, accelerometer, GPS, and touchscreen interactions)
along with metadata associated to our use of the technology (e.g. internet point
access, browsing history, app usage) could assist in user authentication avoiding the
inconveniences of traditional unlocking systems. All this information is originated
naturally during the normal usage of the user with a smartphone, and it has been
demonstrated that can be used for person identification under certain conditions [7].
By regularly conducting unobtrusive identity checks of the mobile user during a
normal session, a continuous authentication system can verify if the device is still
being operated by the authorized user. With this active system, if the mobile device
is stolen, it should quickly recognize the presence of an unauthorized user.

The aim of this chapter is to analyze multi-modal approaches to improve the
performance of mobile authentication. Our experiments include up to four different
biometric traits (touch gestures, keystroking, gyroscope, and accelerometer) and
three behavioral-based profiling techniques (GPS, WiFi, and app usage). The
experiments are conducted on the UMDAA-02 mobile database [8], a challenging
dataset acquired under natural conditions.
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Previous works have demonstrated the potential of biometric and behavioral-
based profiling patterns for user authentication under controlled scenarios. However,
the performance of biometric mobile authentication based on human interaction
raises doubt under challenging non-supervised scenarios. The contributions of this
work are: (i) performance analysis of user authentication based on 4 biometric
data channels (touch gestures, keystroking, accelerometer, and gyroscope) and 3
behavior profiling data sources (WiFi, GPS, and App usage), obtained during natural
human-smartphone interaction; (ii) study of multimodal approaches for smartphone
user authentication based on various combinations of the previous 7 data channels,
both for One-Time Authentication and for Active Authentication schemes (i.e.,
continuously over multiple sessions). The results showed in this chapter suggest
that user-profiling techniques can help to improve performances of behavioral-based
biometrics authentication systems in all scenarios evaluated.

The rest of this chapter is organized as follows: Section 2 links the present works
with related research. Section 3 describes the architecture of our approach. Section
4 explains the experimental protocol, describing the database and the experiments
performed. Section 5 presents the final results for single and multimodal architecture
and Sect. 6 summarizes the conclusions and future work.

2 Related Works

Mobile authentication based on soft biometrics traits has been extensively studied in
the last years [9–11]. In Table 1 we summarize some of the most relevant state-of-
the-art works in this field. Swipe dynamics is one of the most popular traits analyzed
[9]; however, it has been shown not to have enough discriminative power to replace
traditional technologies.

Accelerometer and gyroscope sensors have been studied traditionally for gait
recognition, and some works have demonstrated also their utility for user authenti-
cation with acceptable performance [12].

Geo-location based verification approaches are scarce in the literature. In [13],
Mahbub and Chellappa developed a mobile authentication system using trace
histories by generating a confidence score of the new user location taking into
account the sparseness of the geo-location data and past locations. For this purpose,
they employed modified Hidden Markov Models (HMMs) considering the human
mobility as a Markovian motion. In a similar way, in [14] a variation of HMMs was
used to develop a user authentication mobile system by exploiting application usage
data. They suggest that unforeseen events and unkno applications have more impact
in the authentication performance than the most common apps used by the user. The
potential of WiFi history data was analyzed in [10] for mobile authentication. They
explored: (i) the WiFi networks detected by the smartphone, (ii) when the detection
occurs, and (iii) how frequently those networks are detected during a period of time.

Regarding keystroke traits, in [11] a fixed-text keystroking system for mobile
user authentication was studied using not only time and space based features (e.g.
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hold and flight times, jump angle or drag distance) but also studying the hands
postures during typing as discriminative information. In [15], a novel fixed-text
authentication system for laptops and mobile devices based on Partially Observable
HMMs was studied. This model is an extension of HMMs, in which the hidden state
is conditioned on an independent Markov chain. The algorithm is motivated by the
idea that typing events depend both on past events and also on a separate process.

Finally, building a multimodal system that integrates all these heterogeneous
information sources for mobile user authentication is still a challenge [16]. Noisy
data, intra class variation or spoofing attacks [17] are some inevitable problems in
unimodal systems that can be overcome by multimodal architectures [7, 16]. In [18],
a multimodal user authentication system was based on the fusion at decision level
of voice, location, multi-touch, and accelerometer data. Their preliminary results
suggest that these four modalities are suitable for continuous authentication. In [19],
a fusion was performed also at decision level of behavioral-based profiling signals
such as web browsing, application usage, and GPS location with keystroking data
achieving 95% of user authentication accuracy using information from one-minute
window.

More recently, in [20] a fusion also at decision level of touch dynamics, power
consumption, and physical movements modalities achieved 94.5% of accuracy with
a dataset that was captured under supervised conditions. In [21], an unobtrusive
mobile authentication application is designed for single and multimodal approaches.
They collected data from WiFi, Bluetooth, accelerometer, and gyroscope sources
in unsupervised conditions and fused them at score level achieving up to 90% of
accuracy in the best scenario. In [22], they propose a Siamese Long ShortTerm
Memory network architecture to merge up to 8 modalities (keystroke dynamics,
GPS location, accelerometer, gyroscope, magnetometer, linear accelerometer, grav-
ity, and rotation sensors) for mobile authentication, achieving 97.15% of accuracy
using data from a 3 s window for each of the modalities considered individually.

Previous works fusing different modalities ([19, 21, 22]) have focused their
approach on obtaining time windows from the different modalities and then carry
out the fusion. However, this does not represent a realistic scenario due to not all
modalities fused can always be captured in a specific time windows. In this work
we go a step forward by merging the modalities at session level (time during an
unlock and the next lock of the device), and therefore fusing only the modalities
available at each session.

3 System Description

In this chapter we analyze 4 biometric data channels (touch gestures, keystroking,
gyroscope, and accelerometer) and 3 behavior data sources (GPS, WiFi, and app
usage). We study 2 approaches for user authentication (see Fig. 1):
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Fig. 1 System architecture. Blue boxes correspond to one-time authentication, and green boxes
are add-on modules for active authentication

• The first approach (blue boxes in Fig. 1), referred to as One-Time Authentication
(OTA) is based on unimodal systems trained with the information extracted
from the mobile sensors during a user session. Remember that a session is
defined as the elapsed period between the device unlock and the next lock.
Therefore, sessions have a variable duration and information obtained from
sensors varies depending on the usage of the device during the session. The
information provided by the sensors is employed to model the user according to
the seven systems mentioned before: keystroking, touch gestures, accelerometer,
gyroscope, WiFi, app usage, and GPS location. Each system provides a single
authentication score and these scores are combined to generate a unique score
for each session.

• The second approach, called Active Authentication (green boxes in Fig. 1), is
based on updating a confidence value generated from the One-Time Authentica-
tion during consecutive sessions.

The seven systems are categorized into two main groups according to the nature
of the information employed to model the user: biometric and behavior-based
profiling systems. In this work, biometric systems refer to the top 4 channels in the
Sensors Data module of Fig. 1 (red boxes). The way we carry out touch gestures,
typing, or handle the device is determined by behavioral aspects (e.g. emotional
state, attention) and neuromotor characteristics of users (e.g. ergonomic, muscles
activation/deactivation timing, motor abilities). Behavioral-based profiling refers
to those systems that identify the owners of the device according to the services
they use during their daily habits (orange boxes in Fig. 1, bottom 3 channels in the
Sensors Data module).
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Table 2 Example of an
app-usage user template
generated according the data
captured during 6 days

Event Time slot Frequency

WhatsApp 4 5
Navigator 4 3
YouTube 5 1
WhatsApp 5 1
Facebook 7 2

3.1 Behavioral-Based Profiling Systems

WiFi, app usage, and GPS location system are based on a similar template-based
matching algorithm. A user template is defined as a table containing the time stamps
and the frequency of the events [10]. For this, we divided the time (24 h of the
day) into N equal time slots (e.g. if we choose N = 48 we will have 48 time slots
of 30 min), giving to each time slot a number ID. Then, we store in the template
the event’s name, the number ID of the time slot and the occurrence frequency of
that event (number of times this event occurs during this particular time slot on a
window of consecutive days). Table 2 shows an example of the app-usage template
for a given user generated according the data obtained during 6 days; in this case the
WhatsApp application, for instance, is detected in the fourth time slot during five
out of six total days considered, meanwhile the same app is detected only one out
of 6 days in the fifth time slot. Note that multiple detections of the same event in the
same time slot and day are ignored, but they are stored if they belong to different
time slots or days. Depending on the system, the event could be the name of the WiFi
network, latitude and longitude of a location (with two decimals of accuracy), or the
name of a mobile app for WiFi, GPS location, and app usage systems, respectively.

Finally, we test the systems by calculating a behavior-based confidence score
[10] for each test session as:

score =
∑S

i=1
f 2

i (1)

where fi is the frequency of the event stored in the template that match with the test
event i in the same time slot and S is the total number of events detected in that
test session. For example, if the test session includes the usage of WhatsApp and
Navigator apps during the fourth slot, the score confidence will be 52 + 32 = 34
(according to the template showed in Table 1). Based on this explanation, a higher
score in the test session implies higher confidence for authentication.

3.2 Biometric Systems

For touch gestures, keystroking, accelerometer and gyroscope systems, the feature
extraction and classification algorithms are adapted to model the user information.
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In the touch gestures system, the feature set employed is a reduced set of the
global features presented in [23] (commonly used for online handwriting sequence
modeling) and adapted for swipe biometrics in [7]. Mean velocity, max acceleration,
distance between adjacent points, or total duration are some examples of this subset
of 28 features extracted (see [23] for details).

For accelerometer and gyroscope, the data captured are comprised of the x, y, and
z coordinates of the inclination vector of the device (gyroscope) and the acceleration
vector (accelerometer) in each time stamp. For these 2 sensors we use the feature set
proposed in [12]: mean, median, maximum, minimum, distance between maximum
and minimum, and the standard deviation for each array of coordinates. Moreover,
we propose the 1 and 99 percentiles1 and the distance between them as additional
features.

Regarding keystrok dynamics, the keys pressed were encrypted in order to ensure
users’ privacy. Thus, systems based on graphs were discarded and we adopted
traditional timing features: hold time, press-press latency, and press-release latency
as in [24, 25]. Finally, we propose a feature set based on six statics (mean, median,
standard deviation, 1 percentile, 99 percentile, and 99-1 percentile). Note that
UMDAA-02 keystroke data can be considered as a free text scenario. However,
the limited samplesper session and the encrypted keys difficult the application of
popular free-text keystroke authentication methods.

For classification we train different Support Vector Machines (SVM) with a
radial basis function (RBF) kernel, one for each feature set and user with an
optimization of both hyperparameters (C, σ).

4 Experiments

4.1 Database

The experiments were conducted with UMDAA-02 database [8]. This database
comprises 141.14 GB of smartphone sensor signals collected from 48 Maryland
University students over a period of 2 months. The participants used a smart-
phone provided by the researchers as their primary device during their daily life
(unsupervised scenario). The sensors captured are touchscreen (i.e. touch gestures
and keystroking), gyroscope, accelerometer, magnetometer, light sensor, GPS, and
WiFi, among others. Information related to mobile user’s behavior such as lock and
unlock time events, start and end time stamps of calls and app usage are also stored.
Table 3 summarizes the characteristics of the database. During a session, the data
collection application stored the information provided by the sensors in use.

1Indicate the value below which a given percentage of observation (samples in this case) in a group
of observation falls.
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Table 3 General
UMDAA-02 dataset
information

Description Statistics

Gender 36 M/12F
Age 22–31 years
Avg. days/user 10 days
Avg. sessions/user 248 sessions
Avg. time/session 224 s
Avg. systems/session 5.2 systemsa

aSystems: refers to the number of sys-
tems available out of the 7 studied in
this work

4.2 Experimental Protocol

The experiments are divided into two different scenarios: One-Time Authentication
(OTA) and Active Authentication (AA). In OTA the performance is calculated using
only one session to authenticate the user meanwhile in AA we employ multiple
consecutive sessions in order to improve the confidence in the authentication. For
all experiments the dataset is divided into 60% days for training (first sessions) and
the remaining 40% days for testing in order to have train and test sets as more
balanced as posible. This means that we employ 6 days in average to model the user
and 4 days in average to test such a model. The performance for both scenarios is
presented in terms of average correct classification rate computed as 100 − EER
(Equal Error Rate).2

4.2.1 One-Time Authentication

In OTA experiments, all 7 systems are trained separately for each user and the
scores are calculated at session level, generating 7 scores for each test session as
maximum (note that the number of systems available during a session varies). The
4 biometric systems considered can produce more than one score per session (e.g.
multiple gestures or multiple keystroking sequences during a text chat). In those
cases, the scores available during the session are averaged to obtain one score for
each biometric system and session. Finally, we normalize with tan normalization
and fuse the scores (mean rule) to calculate a single score [14] according to the
different fusion set-ups proposed. The scores from the best fusion set-up will be
used in the AA scenario (details are provided in Sect. 4.2.2 below).

2EER refers to the value where False Acceptance Rate (percentage of impostors classified as
genuine) and False Rejection Rate (percentage of genuine users classified as impostors) are equal.
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4.2.2 Active Authentication

For AA experiments we consider the QCD algorithm (Quickest Change Detection)
as explained in [26]. The QCD-based algorithm updates a confidence score based on
previous events (sessions in this work) by performing a cumulative sum of scores.
This cumulative sum will be almost zero if the scores belong to the genuine user,
and will grow if an impostor takes the control, until it reaches a certain threshold
that would detect the intruder. The cumulative sum is calculated as follow:

scoreAA
j = max

(
scoreAA

j−1 + Lj , 0
)

(2)

where j means the actual session and scoreAA
j−1is the previous cumulative score. Lj is

the contribution of the actual session calculated as the log-likelihood ratio between
score distributions:

Lj = log

(
fI

(
scorej

)

fG

(
scorej

)
)

(3)

where fG and fI are the probability distributions of the genuine and impostor scores
respectively calculated previously in the OTA fusion scenario, and scorej is the OTA
fused score of the actual session. According to (3), the log-likelihood ratio Lj will
be negative if scorej belongs to a genuine user and positive in the opposite case
and, therefore, multiple consecutive sessions of an impostor in control will increase
the cumulative sum (scoreAA

j ). Figure 2 depicts an example of scoreAA
j evolution.

At the time the mobile starts to be operated by an intruder (session number sixteen
in Fig. 2) the scoreAA

j (j > 16) will tend to increase until reaching the threshold.
The time elapsed between the intrusion start and the intrusion detection is known as
Detection Delay (DD) measured in number of sessions.

Fig. 2 An example of
QCD-based curve with a
sequence of 30 sessions (15
genuine and 15 impostors).
The dashed line is the
intruder detection threshold
and the grey box shows the
Detection Delay (DD)
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5 Results and Discussion

5.1 One-Time Authentication

In this section we analyze the OTA scenario: the accuracy for the 4 biometric sys-
tems and the fusion with each behavior-based profiling system. Table 4 summarizes
the final results by ranking from the best individual biometric system performance
to the worst one. The first column shows the performance obtained for each single
biometric system. From the second to the fourth column, we show the performance
for the fusion of each biometric system with each behavior-based profiling system,
and the fifth column shows the fusion with all of them. Firstly, the poor performance
achieved by some biometric systems can be caused by the uncontrolled acquisition
conditions of the database and the limited number of samples per session (e.g. free
text keystroke usually requires large sequences) but the combination of all of them
(last row in Table 4) shows acceptable performance for unsupervised scenarios.
Secondly, we can observe that behavior-based profiling systems always improve
biometric systems performances in all fusion schemes. In fact, the combination of
all behavior-based profiling approaches with each biometric system achieves the
most competitive performance, improving them in more than 18% of accuracy in
the best case. If we analyze each single behavior-based profiling fusion, we can
observe that the GPS system achieves the best improvements, boosting biometric
systems performances in more than 13% of accuracy. Finally, in Fig. 3 we plot the
ROC curves for each single biometric system and the best fusion set-up, i.e. the
fusion of all behavior-based profiling systems with each biometric system (column
5 in Table 4). The results in OTA scenario suggest that behavior-based profiling
systems always improve the biometric ones and the best performance is achieved by
fusing with all of them, and therefore, the scores obtained from this fusion scheme
will be used in the AA scenario.

Table 4 Results achieved for both One-Time and Active Authentication (AA) scenarios in terms
of correct classification rate (%) according to different number of biometric systems and their
fusion with behavior-based profiling systems. In brackets, average number of sessions employed
(ADD)

System Acc. +WiFi + GPS + App usage All AA

Touch gestures 72.0 78.2 78.3 75.4 83.1 95.0 (6)
Keystroking 62.5 72.6 70.9 67.8 79.1 92.9 (7)
Accelerometer 61.3 70.8 77.3 64.7 78.7 93.7 (7)
Gyroscope 59.5 69.7 72.6 63.4 78.4 92.3 (6)
Combined 73.2 77.3 78.9 75.3 82.2 97.1 (5)

Bold indicates the best accuracy achieved for each system
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Fig. 3 ROC curves
(One-Time Authentication)
for individual biometrics and
the best fusion set-up
incorporating the 3
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5.2 Active Authentication

Even performance metrics used for Active Authentication and One-time Authen-
tication can be similar, we want to highlight some important differences:

• Probability of False Detections (PFD): is the percentage of genuine users
detected as intruder during a sequence of genuine sessions. It means that scoreAA

j

reaches the intruder detection threshold during a genuine session sequence
(genuine curve in Fig. 2). PFD is similar to FMR (False Match Rate) in One-
Time Authentication.

• Probability of Non-Detection (PND): is the percentage of intruders not detected
during a sequence of intruder sessions. It means that scoreAA

j does not reach
the intruder detection threshold during the intruder sessions sequence (impostor
curve in Fig. 2). PND is similar to FNMR (False Non-Match rate) in One-Time
Authentication.

• Average Detection Delay (ADD): is the average number of impostor sessions
needed to detect an intruder (the grey box in Fig. 2).

To calculate the correct classification rate in AA we plot in Fig. 4 the PND vs.
PFD and ADD vs. PFD curves. The PND-PFD curves are similar to FMR-FNMR
curve in one-time authentication with the main difference that those results are
obtained from a sequence of stacked scores instead of only one. The equal error rate
(EER) will be the value where PND and PFD are equal and the correct classification
rate will be computed as 100 − EER. The ADD-PFD curve shows the number of
sessions needed to detect an intruder according to the PFD. This curve allows us
to know how many sessions are needed to achieve the EER reported. For instance,
the PND-PFD curves in Fig. 4 (right) show that the EER in Active Authentication
is 2.9% and the ADD to achieve that EER is 5 sessions. This means that we can
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Fig. 4 PND vs PFD curves of active authentication for the best fusion schemes (left), PND vs
PFD and ADD vs PFD curves for the best fusion set-up (right). The dark dashed line shows the
EER and the red one shows the Average Detection Delay for that EER in the right plot

improve OTA results at the cost of having more sessions to detect an intruder. All
curves were calculated for each user and averaged.

Finally, all AA results are summarized in the last column of Table 4. Remember
that scores employed in the QCD-based algorithm come from the fusion scores of
the best OTA scenario (fusing with all behavior-based profiling systems) so both
performances are correlated. Each performance in Table 4 for AA is followed by
the average detection delay in brackets needed to achieve it. As we expected, in
all different fusion set-ups the AA algorithm improves the accuracy at the cost
of needing more sessions to detect the intruder. In fact, for the best fusion set-up
the performance improves from 82.2% to 97.1% by using 5 consecutive intruder
sessions to detect the impostor. Comparing all scenarios, the greatest improvement
occurs with all biometric systems combined (14.9% of improvement in the last row
of Table 4) with an average 5 sessions.

The cost of need up to 5 sessions to detect an intruder could be unacceptable
in some real life scenarios (e.g. prevent unauthorized use of devices during distrac-
tions). However, as some recently surveys suggest [27], the market of secondhand
mobile phone is constantly growing and some of these devices have a provenance
of dubious legality. In these scenarios Active Authentication approaches can serve
to persuade burglars and unathorized usages.

5.3 Temporal Dependency in Behavioral-Based Profiling
Systems

As mentioned in [10], the performance of behavioral-based profiling systems could
be affected by differences in our routines in our daily life. For example, the places
we visit during the week could vary at weekends or the WiFi signals detected are
different if we are at work (working hours) or at home (leisure hours). In order to
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Table 5 Results achieved for behavioral-based profiling systems and the Combined + All fusion
scenario according to the temporally division in week/weekend and working/leisure time

Profiling System Acc. Week Weekend Working time Leisure time

WiFi 77.5 77.1 77.9 74.4 85.0
GPS 75.4 74.0 80.1 70.1 83.7
App usage 67.4 67.6 69.2 66.2 69.7
Combined + all 82.2 81.6 82.0 82.1 86.7

study these assumptions, we divide the score sessions of the OTA scenario in two
groups depending on when the session was performed: week time (from Monday
to Friday) or weekend (Saturday and Sunday), and working time (from 9 a.m to 6
p.m from Monday to Friday) or leisure time (the remaining hours for all days of the
week). The results are shown in Table 5 for all behavioral-based profiling systems
separately (i.e. using only the scores of profiling systems in each sessions) and the
best fusion scenario of OTA (Combined + All).

First of all, the results of week/weekend division suggest that only GPS system
improves their performance by using the scores of the weekend sessions due to
at weekends the users move to more locations than during the week, making the
GPS system more discriminant at weekends. Secondly, if we divide the sessions
according to whether they belong to working time or leisure time we find out that
all behavioral-based profiling systems improve their performance in leisure hours,
specially GPS and WiFi systems. The invariance across daily hours of App usage
system suggest that users usually employ almost the same mobile applications at
work as they do at home.

It is worth noting that these conclusions relate heavily on the nature of the
database considered, where most of the users are students of the same university,
who therefore share similar location patterns during weekdays and working hours.
On a much broader database we would probably expect to have different trends,
maybe having better results for working hours where probably users follow a more
constant location pattern.

Finally, the last row in Table 5 shows the variation of the best fusion set-up in
OTA scenario according to the proposed time division. As we expected, the best
improvement is achieved during leisure time (see Fig. 5 for details) due to the
improvement of the behavioral-based profiling systems, raising the accuracy up to
86.7%.

Regarding AA scenario, if we employ only the sessions from leisure time in the
best fusion OTA set-up (combined + All), we achieve an accuracy of 98.0% with
4 sessions, improving the best result of Table 4, where we achieved a 97.1% of
accuracy for AA with 5 sessions, but considering data from all hours and not only
leisure time.
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Fig. 5 ROC curves for the
best OTA scenario (combined
+ ALL) according to the
proposed time division:
week/weekend,
working/leisure time
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6 Conclusions and Future Work

In this chapter, we have studied user mobile active authentication based on multiple
biometric and behavior-based profiling systems. For this, we studied two scenarios
according to the number of sessions used: one session (One-Time Authentication)
and multiple sessions (Active Authentication). The results suggest that some swipe
and keystroking modalities work better than accelerometer and gyroscope in the
scenarios evaluated in this work. The fusion with behavior-based profiling systems
improves the results of single biometric modalities, achieving accuracies up to
82.2% in the best case for an OTA scenario. Our experiments also suggest that
Active Authentication improves the accuracy of One-time Authentication scenario
with up to 14% of enhancement using information from 5 sessions. As we
mentioned in the section before, Active Authentication algorithms are useful in
those scenarios where the intruder attempt to use the mobile phone during mid-
term periods (e.g. to use it as their personal device, reselling in the second-hand
mobilephone market, etc). According to this, a continuous usage of the stolen
mobilephone in which One-Time verification system has already been hacked
and intruders has no limitations regarding device’s usage. Active Authentication
continuously monitorizes and check the identity of users. These approaches can
serve to persuade robberies and unauthorized usages.

For future works we will work to improve the performance of individual systems,
especially biometrics systems. Better individual performances will produce better
fused schemes. The combination of heterogeneous data at data and feature level will
be evaluated in order to merge correlations between systems (e.g. touch gestures and
apps used are highly correlated).

Regarding the temporary dependency in behavioral-based profiling systems, note
that all participants of UMDAA02 database are students from the same university
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so probably some of them share work places and leisure activities, and therefore,
these variations reported could be greater in other mobile databases with users from
different places and habits.
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Quickest Multiple User Active
Authentication

Pramuditha Perera, Julian Fierrez, and Vishal M. Patel

Abstract In this chapter, we investigate how to detect intruders with low latency for
Active Authentication (AA) systems with multiple-users. We extend The Quickest
Change Detection (QCD) framework is extended to the multiple-user case and
the Multiple-user Quickest Intruder Detection (MQID) algorithm is formulated.
Furthermore, the algorithm is extended to the data-efficient scenario where intruder
detection is carried out with fewer observation samples. The effectiveness of the
method is evaluated on two publicly available AA datasets on the face modality.

1 Introduction

Balancing the trade-offs between security and usability is one of the major
challenges in mobile security [4]. Longer passwords with a combination of digits,
letters and special characters are known to be secure but they lack usability in
the mobile applications. On the other hand, swipe patterns, face verification and
fingerprint verification have emerged as popular mobile authentication methods
owing to the ease of use they provide. However, security of these methods are
challenged due to different types of attack mechanisms employed by intruders
ranging from simple shoulder attacks to specifically engineered spoof attacks. In this
context, Active Authentication (AA), where the mobile device user is continuously
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monitored and user’s identity is continuously verified, has emerged as a promising
solution [5, 20, 23].

Authors in [28] identified three characteristics that are vital to a practical AA
system; accuracy, latency and efficiency. However, for AA to be deployed in the
real-world, it needs to be equipped with another functionality – transferability.
Mobile devices are not private devices that people use in isolation. In practice, it is
common for mobile devices to be used interchangeably among several individuals.
For example, these individuals could be the members of a family or a set of
professionals operating in a team (such as physicians in a hospital). Therefore,
it is important that the AA systems facilitate smooth transition between multiple
enrolled individuals [26].

The presence of multiple enrolled subjects poses additional challenges to an
AA system. Detecting intrusions with low latency in this scenario is even more
challenging. With this new formulation, the device cannot simply declare an
intrusion when there is a change in the device usage pattern. This is because two
legitimate users operating on the phone could potentially have different behavior
patterns. As a result, the systems is not only expected to identify intrusions, but
also to provide smooth functioning when there is a transfer of legitimate users. For
example, consider the scenario shown in Fig. 1. There are two legitimate users of the
device in this scenario. The first user operates the mobile device between frames (a)
and (c). At frame (d), the device is handed over to a second legitimate user. At this
point, although there is a change in pattern in device usage, the AA system should
not declare an intrusion. On the other hand, when an intruder starts using the device
at frame (h), the device is expected to declare an intrusion.

In this chapter, we extend the work proposed in [28] and study the effectiveness
of Quickest Change Detection (QCD) algorithm for multiple-user AA. Specifically,
we study possible strategies that can be used to extend Mini-max QCD in AA to
the case where multiple users are enrolled in the device. Furthermore, we study the
effectiveness of data-efficient sampling for this case. In the experimental results
section, we show that the QCD algorithm and it’s data-efficient extension are
effective even in the case of multiple-user AA.

Fig. 1 Problem of quickest detection of intruders in multiple-user active authentication. In this
example, there are two users enrolled in the mobile device. First user uses the device between
frames (a) to (c). At frame (d), another legitimate user starts using the device. The second user
uses the device between frames (d) to (g). At frame (h), an intruder starts using the device (In
this work we assume that intruders do not attempt to hide their identity using a spoofing method).
The goal of quickest intrusion detection is to detect the change with the lowest possible latency.
However, intruder detector should not declare a false detection prior to frame (h)
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2 Related Work

Initial works of AA predominantly focused on introducing new biometric modalities
or increasing the performance of well-known modalities. Gait [15, 34], keystroke
[9, 13], voice, swipe patterns [11, 30] and face images [6, 8, 17, 19, 21] are some of
the commonly used modalities in mobile AA. In addition, micro movements of the
user’s touch gestures [3] and behavioral profiling based on stylometry, GPS location
and web browsing patterns [12] have also been used for AA in the literature.

More recent works in AA focused on obtaining better authentication performance
either by improving the performance in each individual modality or by fusing two
or more biometric modalities. In [14], adaboost classifier and LBP features are
used for face detection and face authentication in mobile devices. In [29], a facial
attribute-based continuous face authentication was proposed for AA. A domain
adaptive sparse dictionary-based AA system was proposed in [33], by projecting
observations of different domains into a common subspace through an iterative
procedure. McCool et al. [19] proposed to fuse face and voice data for obtaining
more robust AA. In [6], face modality was fused with gyroscope, accelerometer,
and magnetometer modalities for more robust authentication.

However, all of these methods focus on the single user authentication problem.
Furthermore, the latency of decision making is not quantified in these works. In
[26], the problem of single user AA was extended to the multiple user scenario. The
authors proposed an SVM-based solution where the scores of each SVM output are
fused using a new fusion rule. In speaker recognition, the need to have multiple user
systems have been previously discussed [7, 18]. In [24] multiple user authentication
is formulated as a conjunction between a classification task and a verification task.
Based on the same principle, the authors of [27] introduced sparse representation-
based intruder detection scheme for multiple-user AA. In [25], authors proposed
to use the principles of QCD for AA. In [28], this formulation was extended with
data-efficient QCD with the aim of producing highly accurate predictions with low
latency while obtaining low number of sensor observations. In this work, we extend
the algorithms presented in [28] and [25] to the multiple-user case and study it’s
effectiveness in face-based mobile AA.

3 Proposed Method

When a user or multiple users start using a mobile device, typically they are required
to register with the device. This process is called enrollment of the user(s) to the
mobile device. During enrollment, the device gathers sensor observations of the
legitimate users and creates user-specific classifiers. Let m be the number of users
enrolled in a given device. Technically, m could be any finite number greater or
equal to one. However, in practice, it’s not common for a mobile device to be shared
between more than 5–7 individuals (i.e. normal family size).
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For each user i, the device gathers enrollment data Yi = {yi,1, yi,2, . . . , yi,k}.
Then, the device develops a set of user specific classifiers ci for each user which
produces a classification score for each user. This classifier can be a simple template
matching algorithm or a complex neural network. In our experiments, we consider
a template matching algorithm due to the easiness in training the classifier. Our
template matching classifier ci generates a user specific score si = ci(y) =
min(cos(y, Yi)) for a given input y where cos(.) is the Cosine angle between the
two inputs.1

In addition, matched and non-match distributions with respect to the learned
classifier are obtained and stored during the enrollment phase. Match distribution
f0,i (.) of user i can be obtained by considering pairwise score values of Yi with
respect to ci . On the other hand, a known set of negative samples can be used
to obtain the non-matched scores f1,i (.) of user i. This process is illustrated in
Fig. 2. In this work, we approximate the score distribution of intruders with the
non-matched distribution. Therefore, we use the terms matched distribution and
pre-change distribution interchangeably. Similarly, in the context of this paper, non-
matched distribution and post-change distribution will also mean the same.

As the AA system receives observations {x1, x2, . . . , xn}, at time n, it produces
a decision dn = f (C1(x1), . . . , Cn(xn)) ∈ {0, 1} based on the set of classifiers
C = {c1, . . . , cm} where f (.) is a mapping function. If dn = 1, an intrusion is
declared. Given this formulation, the goal of an AA system is to detect intrusions

Fig. 2 Overview of the problem setup for the case of two enrolled users. For each enrolled user,
i, the enrolled images are obtained during the enrollment phase. These images are used to train a
user specific classifier ci . A matched score distribution f0,i and a non-matched distribution f1,i is
obtained for each user. A known set of negative users are used to obtain the latter. If more users
are present the same structure will be cascaded. During inference, Multi-user Quickest Intruder
Detection (MQID) module will produce a decision (d) by considering the obtained distributions
and past decision scores

1Score si represents dissimilarity.
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with the lowest possible latency when a new observation is received. If an intrusion
occurs at time T , the following two properties are desired from the AA system.

• Low detection delay. The latency between an intrusion occurring and the system
detecting the intrusion should be low. If the system detects an intrusion at time τ ,
detection delay is given by (τ −T )+ where [(x)+] denotes the positive part of x.
For all users, this property is quantified using Average Detection Delay (ADD)
defined as ADD(τ) = E[(τ − T )+]. Here T denotes the real change point.

• Low false detections. In practice, detection delay alone cannot characterize the
desired functionality of an AA system. It is also desired that the AA system does
not produce false detections prior to the intrusion point. This phenomena can be
quantified by considering Probability of False Detections (PFD) as PFD(τ) =
P [τ < T ].

It is desired for an AA system to have low ADD and low PFD.

3.1 Quickest Change Detection (QCD)

Quickest Change Detection is a branch of statistical signal processing that thrives to
detect the change point of statistical properties of a random process [1, 2, 31]. The
objective of QCD is to produce algorithms that detect the change with a minimal
delay (ADD) while adhering to false alarm rate constraints (PFD). Consider a
collection of obtained match scores, s1, s2, · · · , sn, from the AA system. Assuming
that the individual scores are mutually independent, QCD theory can be used to
determine whether a change has occurred before time n or not. In the following
subsections we present two main formulations of QCD.

QCD has been studied both in Baysian and a Mini-max frameworks in previous
works. In the Baysian setting, it is assumed that the system has prior information
about the distribution of intrusions. However, in the case of AA, probability of an
intrusion happening cannot be modeled. Therefore, this assumptions does not hold.
Therefore, for this work we only consider QCD in a non-Bayesian setting. MiniMax
QCD formulation treats the change point τ as an unknown deterministic quantity
[1, 2]. However, as mentioned before, it is assumed that pre-change distribution, f0,
and post-change distribution, f1, are known.

Due to the absence of prior knowledge on the change point, a reasonable measure
of PFD is the reciprocal of mean time to a false detection as follows

PFD(τ) = 1

E∞[τ ] .

Based on this definition of PFD, Lorden proposed a minimax formulation for QCD
[2, 16]. Consider the set of stopping times Dα for a given constraint α such that
Dα = {τ : PFD(τ) � α}. Adhering to this constraint, Lorden’s formulation
optimizes a cost function to solve the minimax QCD problem. In particular, the cost
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function is the supremum of the average delay conditioned on the worst possible
realizations as follows

WADD(τ) = sup
n�1

ess sup En[(τ − n)+|Sn].

Lorden’s formulation tries to minimize the worst possible detection delay subjected
to a constraint on PFD [16]. It was shown in [1], that the exact optimal solution for
Lorden’s formulation of QCD can be obtained using the CumSum algorithm [22].

3.1.1 CumSum Algorithm

Define the statistic W(n) such that

W(n) = max
1�k�n+1

n∑

i=k

log(L(si)),

and W0 = 0, where L(sn) = f1(sn)/f0(sn) is the log likelihood ratio. It can be
shown that the statistic W(n) has the following recursive form

Wn+1 = (Wn + log(L(sn+1))
+).

Time at which a change occurred (τ ) is chosen such that τc = inf{n � 1 : Wn � b},
where b is a threshold. More details about the CumSum algorithm can be found in
[1, 2, 22, 31].

3.2 Efficient Quickest Change Detection

Quickest Change Detection (QCD) is a branch of statistical signal processing that
thrives to detect the change point of statistical properties of a random process
[1, 2, 31]. The objective of QCD is to produce algorithms that detect the change
with a minimal delay (ADD) while adhering to false alarm rate constraints (PFD).
Consider a collection of obtained match scores, s1, s2, · · · , sn, from the AA system.
Assuming that the individual scores are mutually independent, QCD theory can be
used to determine whether a change has occurred before time n or not.

Consider a sequence of time instances t = 1, 2, · · · , i in which the device
operates. At each time i, i > 0, a decision is made whether to take or skip an
observation at time i + 1. Let Mi be the indicator random variable such that Mi = 1
if the score xi is used for decision making, and Mi = 0 otherwise. Thus, Mi+1 is a
function of the information available at time i, i.e. Mi+1 = φi(Ii), where φi is the
control law at time i, and Ii = [M1,M2, · · · ,Mi, s

M1
1 , s

M2
2 , · · · , s

Mi

i ] represents the
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information at time i. Here, s
Mi

i represents si if Mi = 1, otherwise xi is absent from
the information vector Ii . Let S be the stopping time on the information sequence
{Ii}. Then, average percentage of observations (APO) obtained prior to the change

point can be quantified as APO = E

[
1
S

∑S
n=1 Mn

]
.

In a non-Bayesian setting, due to the absence of a priori distribution on the
change point, a different quantity should be used to quantify the number of
observations used for decision making. Work in [1, 2], proposes change Duty Cycle

(CDC) as CDC = limn sup 1
n
En

[∑n−1
k=1 Mk|τ ≥ n

]
for this purpose. It should be

noted that both CDC and APO are similar quantities. With the definition of CDC,
efficient QCD in a minimax setting can be formulated as the following optimization
problem

minimize
φ,τ

ADD(φ, τ)

subject to PFD(φ, τ) ≤ α, CDC(φ, τ) ≤ β.

(1)

In [2], a two threshold algorithm called DE-CumSum algorithm, is presented as
a solution to this optimization problem. For suitably selected thresholds chosen
to meet constraints α and β, it is shown to obtain the optimal lower bound
asymptotically as α → 0. The DE-CumSum algorithm is presented below.

Start with W0 = 0 and let μ > 0, A > 0 and h ≥ 0. For n ≥ 0 use the following
control rule Mn+1 = 0 if Wn < 0 otherwise 1 if Wn ≥ 0. Statistic Wn is updated as
follows

Wn+1 =
{

min(Wn + μ, 0), if Mn+1 = 0

max(Wn + log L(sn+1),−h), if Mn+1 = 1,

where L(s) = f1(s)
f0(s)

. A change is declared at time τW , when the statistic Wn passes
the threshold A for the first time as τW = inf{n ≥ 1 : Wn > A}.

3.3 Multi-user Quickest Intruder Detection (MQID)

Based on the discussion above, we introduce the Multiple-user Quickest Intruder
Detection (MQID) algorithm. Whether an intrusion has occurred or not is deter-
mined using a score value. When the score value is above a pre-determined
threshold, an intrusion is declared. At initialization, it is assumed that the user
operating the device is a legitimate user; therefore the score is initialized with zero.
The algorithm updates the score value when new observations are observed. During
the update step, the algorithm considers matched and non-matched distributions of



186 P. Perera et al.

all users along with the current score value to produce the updated score. Pseudo
code of the algorithm is shown in Algorithm 1.

The algorithm has three arguments. Argument Efficient determines whether to
use data-efficient version of QCD or not. If data-efficient QCD is used then the
parameter γ determines the floor threshold. Parameter D governs how fast the score
is increased.

During training, enrolled images of each user along with the known negative
dataset is used to construct matched and non-matched score distributions. In
addition, enrolled images of the user are used to construct a classifier ci . During
inference, given an observation x, first classification scores from each classifier are
obtained. Then, the likelihood of the obtained classifier score is evaluated using the
likelihood ratio of each matched and non-matched distribution belonging to each
user. The minimum likelihood ratio is considered as the statistic to update the current
score of the system.

Updating the score based on the distribution is done as per the Algorithm
considering the parameters as well as the magnitude of previous score value.

Algorithm 1: Algorithm to update the score based on the observations for
the proposed method

input : score, xn, {f0,i , f1,i , ci |∀i}, γ,D, Efficient
output: score

L = mini log(
f1,i (ci (xn))

f0,i (ci (xn))
)

if Efficient then
if score < 0 then

score = min(score + D, 0);
else

score ← max(score + L,−γ ) ;
end

else
score ← score + L ;

end
Return (score);

4 Experimental Results

We test the proposed method on two publicly available Active Authentication
datasets – UMDAA01 [8] and UMDAA02 [17] using the face modality. First, we
explain the protocol used for evaluation. Then, we describe the performance metric
used. Finally, we introduce the two datasets and present evaluation performance on
these datasets (Fig. 3).
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Fig. 3 Sample face images from the (a) UMDAA01 dataset and (b) UMDAA02 dataset used for
evaluation. Samples from the same subject are shown in each column

Fig. 4 Policy used to select the enrolled users for testing. The enrolled users considered together
for a trial are denoted in the same color. For the case of 7 enrolled users, there are three trials. For
the case of a single user, there are 22 trials

4.1 Protocol and Metrics

In both datasets, the first 22 users were used as possible enrolled users. Users 23–
33 were used as the known negative samples. Remaining users were considered as
intruders. From the enrolled users 10% of data were randomly chosen to represent
the enrolled images. These image frames were removed from the test set. For each
dataset, we varied the number of enrolled users from 1 to 7. If the number of enrolled
users is m, we partitioned the first 22 users into disjoint groups of m and carried out
floor(22/m) trials. For example, in the case of 7 users, users 1–7 were considered
to be enrolled in the first trial. For the second trial, users 8–14 were considered to
be enrolled. Remaining users were not considered for testing. An illustration of the
partitions obtained for several trials is shown in Fig. 4. In each trial, the intruder
classes were considered one at a time and an intrusion was simulated.

In order to simulate an intrusion, the following process was followed. The entire
video clips of the enrolled users were appended in the order of their index to form
an augmented video for each trial. Then, each intruder from the intruder set was
considered one at a time. Considered intruder’s video clip was appended at the end
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of the augmented video clip to produce the test video clip. Shown in Fig. 1 is a
summary of such a clip for the case of two enrolled users.

During training, we extracted the image frames from the video clip with a
sampling rate of 1 image per 3 seconds. We used the Viola-Jones face detector
to detect faces in the extracted image frame and performed local histogram
normalization. The extracted image was resized to 224 × 224 and image features
were extracted from the ResNet18 deep architecture which was pre-trained on the
ImageNet dataset. For all cases, we considered the distance to the nearest neighbor
as the user specific classifier ci .

The performance of a quickest change detection scheme depends on ADD and
PFD. Ideally, an AA system should be able to operate with low ADD and PFD. In
order to evaluate performance of the system following [28], we used the ADD-PFD
graph. We report ADD values required to obtain a PFD of 2% and 5% in Tables 1
and 2, respectively. These tables indicate the latency of detecting an intrusion in
average while guaranteeing a false detection rate of 2% and 5%, respectively.

4.2 Methods

We evaluated the following methods using the protocol presented. For a fair
comparison, in all cases except for in Pn(FG17) we used the statistic L =
mini log(

f1,i (ci (xn))

f0,i (ci (xn))
) as the score value to perform intrusion detection.

Single score-based authentication (SSA) Present score value L alone is used to
authenticate the user. If the score value is above a predetermined threshold, the user
is authenticated otherwise treated as an intrusion.

Time decay fusion (Sui et al.) [32] In this method, two score samples fused by a
linear function is used along with a decaying function to determine the authenticity
of a user as, sn = wLn−1 + (1 − w)Ln × eτδt , where, w, τ are constants and δt is
the time elapsed since the last observation.

Confidence functions (Crouse et al.) [6] A sequential detection score Slogin is
calculated by incorporating time delay since the last observation and a function of
the present score xn. The detection score is evaluated as, Slogin,n = Slogin,n−1 +
fmapsn + ∫ tnow

tprev
fdecdt. Functions fmap and fdec are empirical functions presented

in [6].

Probability of Negativity (Pn(FG17)) [26] This method is proposed for multi-
user AA. Matched and non-matched distributions of each user is used to produce an
individual score. These uncertainty scores are then fused to produce the Probability
of Negativity (Pn). For this baseline, we combined Pn score values sequentially
using the method proposed in [32].

Multi-user Quickest Intruder Detection (MQID) The method proposed in this
paper with the Min-Max formulation.
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Data Deficient Multi-user Quickest Intruder Detection (DEMQID): The
method proposed in this paper using the Min-Max formulation with data-efficient
constraints. We selected parameter D by constraining the average number of
observations to be 50% of all observations for the case of the single user. In
our experiments we found this parameter to be 100.

4.3 Results

We carried experiments on the UMDAA01 and UMDAA02 datasets. The ADD-
PFD curves are shown in Figs. 5 and 6 when the number of users are varied from 1
to 7. ADD values obtained for PFD of 2% and 5% are tabulated for UMDAA01 and
UMDAA02 in Tables 1 and 2, respectively.

UMDAA01 Face Dataset The UMDAA-01 dataset [8] contains images captured
using the front-facing camera of an iPhone 5S mobile device of 50 different
individuals captured across three sessions with varying illumination conditions.
Images of this dataset contain pose variations, occlusions, partial clippings as well
as natural facial expressions as evident from the sample images shown in Fig. 3a. For
our experiments we concatenated videos from all three sessions to form 50 classes.

In all considered cases MQID method has performed better than the other
baseline methods when it was desired to achieve a PFD of 2%. It is also seen that
Pn(FG17), which is a method proposed for multi-user AA has also outperformed
SSH method which uses log-likelihood ratio in all cases. Furthermore, data-efficient
version of the algorithm, DEMQID, has performed on par with MQID, even
performing better in certain cases. Average percentage of observations obtained in
DEMQID for this dataset was 0.304.

However, it can be observed that when 5% of PFD is allowed, even other baseline
methods perform reasonably well. For example, in majority of the cases SSH has
performed on par with MQID. We also observe that DEMQID is slightly worse
than MQID in this case. This suggests that for the employed deep feature, a PFD
rate of 5% can be obtained even when the sequence of data are not considered.
DEMQID takes more sparse samples when deciding the score value. As a result,
when the score function is noisy, DEMQID is not affected by the noise as much as
MQID. Even-though sparser sampling would result in some latency in detection,
overall trade-off can be beneficial. This is why, DEMQID outperforms MQID
when decision making is more challenging (as was the case when PFD of 2% was
considered).

However, when the decision making becomes easier, DEMQID does not con-
tribute towards improving the detection accuracy as score values are less noisy. This
is why in the case of 5% of PFD, DEMQID performs worse than MQID.

UMDAA02 Face Dataset The UMDAA-02 Dataset [17] is an unconstrained
multimodal dataset with 44 subjects where 18 sensor observations were recorded
across a two month period using a Nexus 5 mobile device. Authors of [17] have
made the face modality and the touch-data modality[10] publicly available. In our
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Fig. 5 The ADD-PFD curves corresponding to the UMDAA01 dataset when the number of users
are varied from 1 to 7
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work we only consider the face modality to perform tests. A sample set of images
obtained from this dataset is shown in Fig. 3b. UMDAA02 is a more challenging
dataset compared to UMDAA01 as apparent from the sample images shown in
Fig. 3. In particular, we note the existence of a huge intra-class variations in this
dataset in terms of poses, partial faces, illumination as well as appearances of the
users.

As a result of having higher complexity, detecting intruders become more
challenging in UMDAA02 compared to UMDAA01. However, due the challenging
behavior of the dataset, the importance of the proposed method is magnified. In all
ADD-PFD curves obtained for UMDAA02 in Fig. 6, it is evident that the proposed
methods significantly outperform the baseline methods. Furthermore, DEQID has
outperformed QID in most of the cases showing the significance of data efficient
QCD.

In our evaluations we show that even when the number of users are increased, the
performance of the proposed system does not drop drastically. For the UMDAA01
dataset, only 2.35 additional samples were required to maintain a probability of false
detection of 2% when the users were increased from 1 o 7. In a more challenging
UMDAA02 dataset, 4.33 more samples were required on average to maintain the
same false detection rate.

5 Concluding Remarks

It has been previously showen that AA yields superior detection performance when
the QCD algorithm is used [28]. In this chapter we study the problem of quickest
change detection in a multiple-user AA scenario. We proposed MQID algorithm for
multiple-user AA with low latency. Furthermore, we extended the initial formulation
to a data efficient version by proposing DEMQID algorithm. We evaluated the
performance of the proposed methods on the UMDAA01 and UMDAA02 datasets.
Our experiments suggest that the proposed method is more effective compared to
the baseline methods we considered. It was also shown that, the proposed method
allows the number of enrolled users to be increased with a relatively smaller cost in
terms of observations. Only 2.35 and 4.33 observations were required on average to
maintain a false detection rate of 2% when the users were increased from 1 to 7 in
the UMDAA01 and UMDAA02 datasets, respectively.
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Iris Recognition on Mobile: Real-Time
Feature Extraction and Matching in the
Wild

Gleb Odinokikh and Alexey Fartukov

Abstract Methods of biometric recognition are becoming an essential part of vari-
ous mobile applications. Their usability is determined by the accuracy and the speed
of recognition in a highly variable environment. Complex textural features make the
human iris one of the most reliable biometric traits. The changing environment and
limited computational power of mobile devices give rise to a need for robust and fast
feature extraction techniques. A method for iris feature extraction and matching is
here proposed. It uses deep and element-wise representations of the discriminative
features in combination with characteristics describing the environment. The model
outperforms state-of-the-art methods in terms of both accuracy and speed. It has
also been tested on a specially collected dataset that contains two-second videos
simulating the natural enrollment and verification attempts of the user of the device.
The dataset was collected considering the changes in environment and possible
behavior of the user. The testing was performed in two scenarios: image-to-image
and also video-to-video. A method for iris fusion (both eyes) is also proposed in this
paper. Several such methods are studied and compared.

Keywords Iris recognition · Mobile biometrics · Feature extraction · Matching ·
Multi-instance fusion

1 Introduction

Mobile devices, such as smartphones and tablets, have become an integral part of
many people’s lives. Nowadays, the transfer and processing of personal information
and various financial transactions are carried out using mobile devices. They are
personal, which means the presence of an authentication procedure.

G. Odinokikh (�) · A. Fartukov (�)
Samsung R&D Institute Russia, Moscow, Russia
e-mail: g.odinokikh@gmail.com; a.fartukov@samsung.com

© Springer Nature Switzerland AG 2020
T. Bourlai et al. (eds.), Securing Social Identity in Mobile Platforms, Advanced
Sciences and Technologies for Security Applications,
https://doi.org/10.1007/978-3-030-39489-9_11

197

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39489-9_11&domain=pdf
mailto:g.odinokikh@gmail.com
mailto:a.fartukov@samsung.com
https://doi.org/10.1007/978-3-030-39489-9_11


198 G. Odinokikh and A. Fartukov

The methods of biometric authentication have been actively promoted to replace
conventional schemes that use keys, personal identification numbers, etc. The
growth of interest in biometric technologies is associated mainly with the strength-
ening of the security requirements of the system and its usability. A lot of attention
has been paid to mobile biometrics in recent years [1–3].

The present paper is focused on the human iris as the most reliable biometric
modality. The goal of iris recognition is to recognize a human’s identity through the
textural characteristics of the muscular patterns of the iris. A typical iris recognition
system consists of the following stages: iris image acquisition, iris image segmen-
tation, feature extraction, and pattern matching [4]. Iris image acquisition is usually
performed using a high resolution camera which is either near-infrared (NIR) or
visible-spectrum (VIS), under controlled environmental conditions [5]. The minimal
requirements for iris image capturing are summarized in ISO/IEC 19794-6:2011 [6].

Since the mobile market is global, all the possible behavioral- and race-dependent
features of the final users must be taken into account. For this reason, in particular,
only the NIR spectrum is considered in this paper. The advantages of using NIR
images have been well explained in the literature [6–9]. It should be noted that the
development and implementation of an iris capturing camera for mobile devices is
outside the scope of the present paper. Most of the issues related to the iris capturing
device are well summarized in [5, 7].

In the case of a mobile device, it is not always possible to satisfy all the mentioned
requirements imposed on the camera. There are two main reasons for this: the
camera module should be small enough and not expensive to manufacture. The costs
of production play a significant role in the case of a mass market. Another challenge
is that capturing the iris image is performed under uncontrolled environmental
conditions. These factors greatly affect the quality of the iris image.

This paper describes a method of iris feature extraction and matching that is
capable of working in real-time on a mobile device equipped with an NIR camera.

The rest of this paper is organized as follows: the key issues of iris recognition
on a mobile device are explained in Sect. 2; Sect. 3 surveys related work; the
proposed approach is presented in Sect. 4; and experimental results and conclusions
are presented in Sects. 5 and 6 respectively.

2 Problem Statement

A mobile biometric sensor should be able to handle the data under constantly
changing environmental conditions and consider user inherent features. In biometric
systems that use an image as input data, the factors of the environment are becoming
more important. One of them is the ambient illumination, which varies over a range
from 10−4 at night to 105 Lux under direct sunlight. Another is the randomness of
the locations of the light sources, along with their unique characteristics, which
creates a random distribution of the illuminance in the iris area. These factors
lead to a deformation of the iris structure caused by a change in the pupil size,
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Fig. 1 Examples of iris images captured with a mobile device

making users squint, and degrading the overall image quality. Several examples of
iris images are given in Fig. 1. The influence of the environment is well described
in the literature [10–13]. Other factors inherent to the user also affect the quality
of the output, such as the use of glasses or contact lenses, the existence of a hand
tremor, or the mere act of walking, thereby introducing a shaking of the device, the
variation in distance to the iris causing the iris to move out of the camera’s depth of
field, and occlusion of the iris area by eyelids and eyelashes if the user’s eye is not
opened enough [10]. All these and many other factors affect the quality of the input
biometric data thus influencing the accuracy of the recognition [14, 15].

Mobile applications should be simple and convenient in use. In the case of
a biometric system on a mobile device, being convenient means providing an
easy user interaction and a high recognition speed, which is determined by the
computational complexity. Mobile secure systems that process any personal data are
even more limited in computational resources. Not many researchers have attached
importance to this. These systems typically represent a system-on-a-chip (SoC)
completely abstracted from external resources, keeping all the processing inside
itself. Such systems were initially developed to carry out simple operations with
simple data (PINs, passwords etc.) and did not require huge resources. Neither
were they ready for the complex processing of biometric information, but they have
continued to be improved. The latter system’ restrictions usually meant even more
reduced CPU frequency and limited RAM.

All these problems greatly complicate iris feature extraction, making most of the
existing methods unreliable, and promising techniques such as deep neural networks
(DNN) inoperable.

There are several commercial mobile iris recognition solutions known to date.
The first smartphones enabled with the technology were introduced by Fujitsu [16]
and Microsoft [17] in 2015. All Samsung flagship devices were equipped with iris
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recognition technology during 2016–2018 [18]. Some B2B and B2G applications
of the technology are also known in the market, such as Samsung Tab Iris [19] and
IrisGuard EyePay Phone [20]. The scope of the applications of this technology is
growing and has brought about a demand for its further improvement.

The present paper is focused on the feature extraction and matching parts of the
iris recognition pipeline. Feature extraction, in this case, means a numeric repre-
sentation of the unique iris features extracted from the preliminarily determined iris
area of the image. Matching means calculating a measure of dissimilarity between
the two extracted feature vectors.

3 Related Work

Recent achievements in the field of deep learning have allowed a significant leap
in the reliability and quality of the research in the field of biometrics and, in
particular, in iris recognition. One of the first attempts to explore the capabilities
of DNNs was a feasibility analysis of DNN embeddings trained on ImageNet for
classification, with the PCA+SVM applied over the VGG embeddings [21] by
Minae et al. Furthermore, Gangwar et al. [22] introduced their DeepIrisNet as a
model combining all successful deep learning techniques known at the time. They
thoroughly investigated the obtained features and produced a strong baseline as a
robust foundation for future research. A year later, similar work based on these
embeddings was introduced by Tang et al. [23]. At the same time, Proenca et al. [24]
presented IRINA. The idea was to use a DNN to find corresponding patches from the
examined images, use MRF to perform precise deformable registration, and a SVM
to classify genuine and impostor data. They achieved unprecedented robustness
to pupil/iris variations and segmentation errors, but the accuracy of the solution
was traded off against performance. The proposed design significantly limited the
applicability of the method for mobile applications. Another approach with two
fully-convolutional networks with a modified triplet loss function has been proposed
recently [25]. One of the networks is used for iris template extraction whereas the
second produces the accompanying mask. Fuzzy image enhancement combined
with simple linear iterative clustering and an SOM neural network were proposed
in [26]. Although this method was designed for iris recognition on a mobile device,
real-time performance was not achieved. Another recent paper [13] meant to be
suitable for the case of a mobile device proposed a two-headed (iris and periocular)
CNN with a fusion of the embeddings. Thus, there is no fully optimal solution for
iris feature extraction and matching in the published papers.
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4 Iris Feature Extraction and Matching

The proposed method represents a CNN designed to use the advantages of the
normalized iris image as an invariant, both low and high level discriminative feature
representations, and information about the environment. It contains iris feature
extraction and matching parts trained together.

4.1 Recognition Pipeline

A common iris recognition pipeline consists of several stages separated by inter-
mediate quality checks. The feature extraction part is preceded by the segmentation
stage and followed by the matching. All the input data for the feature extraction
(normalized iris and mask images) were obtained automatically by an algorithm
developed in our lab. The basic structure of the algorithm was taken from [10] with
two modifications: (i) the scheme that contains a special quality buffer was replaced
with a straightforward structure as depicted in Fig. 2; (ii) the feature extraction and
matching parts were also replaced with the new ones. All the other parts of the
algorithm and quality checks were used with no modifications.

4.2 Low-Level Feature Representation

It is known from the previous literature [27, 28] that shallow layers in CNNs are
responsible for the extraction of low-level textural information while high-level

Fig. 2 Quality assessment scheme
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representation is achieved with depth. Methods of iris feature extraction based on
local texture characteristics, which are calculated by spatially and spectrally local
transformations [9, 29] are basically attempts to use low-level description of the
texture. These methods have proven their reliability for scenarios with an almost
unchanging environment, but are highly sensitive to environmental variations.

A normalized image of the iris allows textural element-wise features to be
useful in the case of narrow changes of environmental conditions. They remain
well aligned with each other in such a case. For this reason, iris recognition is
a good example of a task for which the profitability of using low-level feature
representations could be investigated in the context of CNN-based methods and a
wide range of environmental changes.

The influence of shallow features in the context of CNNs on recognition
performance is studied in this paper. A classic approach [9] using a Hamming-
distance based dissimilarity score has been taken as the basis. The vector FVsh

of elements xi is used as a representation of low-level discriminative features:

xi =
∑ |FM

Sq

1,i − FM
Sq

2,i | × Mc∑
Mc

, (1)

where FM
Sq
k,i is the ith feature map of the kth iris after normalization to zero mean

and unit variance, binarized by sign; Mc is a binary mask representing noise; and
Mc is a combination of M1 and M2.

The shallow feature extraction block is depicted in Fig. 3 and the structure of
the convolution block #1 is presented in Table 1. Depth-wise separable convolution
block structures, first proposed in [30] as memory and computationally efficient,
were picked as the basic structural elements for the entire network. Feature maps
FM

Sq

1,i and FM
Sq

2,i in (1) are obtained after the first convolution layer (Table 1).
After 100 epochs of training, the distributions of the elements of FVsh for

genuine and impostor comparisons from the validation set appear as in Fig. 4.
Although the filters vary considerably, the distributions look very similar. The shape
of the distributions for both classes resemble a Gaussian, therefore d’ and EER
values were chosen for the evaluation of their separation degree. How the values for
each filter were changed during training is presented in Fig. 5. The results presented
in Table 3 show that the model using FVsh as an additive factor obtains slightly
better results for the baseline model with 3×3 kernels on the first layer. It is also
shown that for the larger kernels, the difference in performance becomes more
significant (Table 3).

4.3 Deep Feature Representation

Deep (high-level) feature representation is obtained with convolution block #2.
The feature maps FM

Sq

1,i and FM
Sq

2,i are concatenated after block #1 by channels
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Fig. 3 Proposed model scheme

Table 1 Structure of the convolution blocks

Layer Input shape Convolution block

Conv. 3x3 (s′ = 1, act. = tanh) 1 × 49 × 161 #1

Depthwise Sep. Conv. Block (s′ = 2) 8 × 47 × 159

Depthwise Sep. Conv. Block (s′ = 2) 32 × 23 × 79 #2

Depthwise Sep. Conv. Block (s′ = 2) 32 × 11 × 39

Depthwise Sep. Conv. Block (s′ = 1) 32 × 5 × 19

FC layer + BatchNorm + ReLU 1 × 1632

and passed through it (Fig. 3). The meaning of the concatenation at this stage is
in the invariance property of the normalized iris image. Experiments showed the
advantages of this approach in comparison with standard techniques [31] where the
feature vectors had highly decreased dimensionality. However, the large sizes of the
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Fig. 4 Distributions of elements of FVsh after 100 epochs
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Fig. 5 The dependency of d’ (left) and EER (right) for each filter on the number of epochs

vectors and the complexity of the matching procedure are among the drawbacks of
this approach. The structure of the block is presented in Table 1. The output vector
FVdeep ∈ R128 reflects a high-level representation of the discriminative features
and is assumed to handle complex non-linear distortions of the iris texture.

4.4 Matching Score Calculation

The analysis of outliers along with the nature of the distributions of the elements
of FVsh gave rise to the idea of using a variational inference technique for
regularization. What this means is that some vectors are being represented as n-
dimensional random variables with a certain shape distribution. In the present paper,
the representations of both FVsh and FVdeep vectors are described as having multi-
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variate normal distributions FV ′
sh ∼ N(μsh,
sh) and FV ′

deep ∼ N(μdeep,
deep)

respectively, where μ is the vector of mean values and 
 is the covariance
matrix. Variational inference is performed with the so called re-parametrization trick
described in [32]. Sampling from the distributions is performed only for training,
while only the values of μ are used for inference. A sigmoid activation function
is then applied to the result. The same procedure is further performed for the
concatenated vectors FV ′

sh, FV ′
deep and FVenv . Here, FVenv reflects environment

conditions and contains information about iris area and pupil dilation: FVenv =
{�NPR,AOI }, and the area of intersection AOI = 
Mc/M

h
c ×Mw

c with �NPR

given by

�NPR =
∣∣∣∣∣
R

p

1

Ri
1

− R
p

2

Ri
2

∣∣∣∣∣ (2)

where Rp and Ri are the radii of the pupil and the iris, respectively. The output
vector FV ′

d ∈ R128 is an input for the last fully-connected layer with two nodes
describing the classes. A SoftMax classifier is applied to the values from the nodes
for probability (matching score) estimation.

According to the obtained results (Table 3), the application of variational infer-
ence (VI) improved the recognition performance (VI = No means the replacement
of the VI structure with simple fully-connected layers of the same dimensionality
and activations), but it is also worth mentioning that it becomes less reasonable with
an increasing amount of training data.

4.5 Weighted Loss

A specially designed loss function is another proposed feature. Sometimes two
images of the same iris are very different from each other. This can happen for
various reasons: the different parts of the iris can be occluded by some noise, one of
the images can be badly distorted due to segmentation errors, etc. Thus, it is almost
impossible to attribute them to the same class and for this reason a certain part of
all genuine comparisons in the training data obstruct the convergence of the model.
So, it is reasonable to consider or even completely ignore these comparisons when
training. The following algorithm is proposed: (i) calculate the loss function (e.g.,
cross-entropy) for each comparison in the batch; (ii) apply weights = {w0..wK}
to the top k highest values among the genuine matches; (iii) output the overall sum.
In this paper, the values were set to: weights = 0 and k = 10%. This approach
provided better convergence and achieved a better recognition performance.
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4.6 Multi-instance Iris Fusion

The input images may contain both eyes, as depicted in Fig. 6. In this case both
irises can be used at the same time [33], which is the obvious way to increase the
reliability and convenience of the recognition. It has been observed that at least
40% of the iris area should be visible to achieve the given accuracy level. In other
words, the user should open the eyes wider during one-eye recognition, which is not
always convenient. Often the iris is significantly occluded by the eyelids, eyelashes,
highlights, etc. This happens mainly because of the complex environment, in which
the user cannot open the eyes wide enough (bright illumination, windy weather,
etc.). It makes the application of the iris multi-instance approach reasonable.

An ideal scenario for matching is when both compared irises are well aligned
to each other spatially and the conditions of the capturing are the same in both
cases [15, 34]. This is impossible to satisfy in practice, especially in the mobile
case. But it is reasonable to use information about the initial relative position of the
compared irises before the normalization. A method that performs the fusion of the
two irises and uses the relative spatial information and several factors that describe
the environment is also considered as an important path of the presented research.

The final dissimilarity score is calculated as a logistic function of the form

score = 1

1 + e−∑
wi ·Mi

(3)

where M ∈ R7 is the set of the following measures:

M = {
�d0, davg, AOImin, AOImax,�NDmin,�NDmax�PIRavg

}
(4)

Fig. 6 Examples of the images captured with the mobile device equipped with an NIR camera
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where

�d0 is the normalized score difference for two pairs of irises,

�d0 =
∣∣∣dlef t

0 − d
right

0

∣∣∣

d
lef t

0 + d
right

0

(5)

davg is the average score for the pair,

davg = 0.5 · (d
lef t

0 + d
right

0 ) (6)

AOImin, AOImax are the minimum and maximum values of the area of intersec-
tion between the two binary noise masks Mprb and Menr in each pair,

AOI = 
Mc/(M
h
c × Mw

c ), Mc = Mprb × Menr (7)

�NDmin,�NDmax are the minimum and maximum values of the normalized
distance �ND between the centers of the pupil and the iris,

�ND =
√

(NDXprb − NDXenr)2 + (NDYprb − NDYenr)2 (8)

NDX = xP − xI

RI

,NDY = yP − yI

RI

, (9)

where xP and yP are the coordinates of the center of the pupil and RP is its radius,
while xI and yI , are the coordinates of the center of the iris and RI is its radius, as
depicted in Fig. 7.

The measure �PIRavg reflects the difference in pupil dilation during the
enrollment and probe using the value of PIR = RP /RI :

�PIRavg = 0.5 ·
(∣∣∣PIR

lef t
enr − PIR

lef t
prb

∣∣∣ +
∣∣∣PIR

right
enr − PIR

right
prb

∣∣∣
)

(10)

where RP and RI are the radii of the pupil and the iris, respectively.

Fig. 7 Parameters of the
pupil and iris used for the iris
fusion
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The weight coefficients for the logistic function were obtained after the training
of the classifier on genuine and impostor matches on a small subset of the data. In
case only one out of two feature vectors is extracted, all the pairs of values used in
the weighted sum are assumed to be equal.

The proposed method helped to increase the recognition accuracy. It is also
allowed to decrease the threshold for the visible iris area from 40% to 29% during
verification/identification without any loss in the accuracy and performance, which
means a decreased overall FRR as a result.

A comparison of the proposed method with well-known consensus and minimum
rules was carried out. According to the consensus rule, a matching is considered
as successful if both d

lef t

0 and d
Right

0 are less than the decision threshold. In
the minimum rule, what is required is that the minimum of the two values
min(d

lef t

0 , d
right

0 ) should be less than the threshold. The testing results are presented
in Table 7.

5 Experimental Results

The main objectives of the biometric system performance evaluation include
assessing the progress in improving the accuracy during the development of the
algorithms and providing an objective reflection of the performance when the
system is in operation [35]. To meet these goals, two types of evaluation were
conducted: (i) an image-to-image evaluation of the proposed feature extraction
and matching method with state-of-the-art methods on several datasets, including
publicly available ones; (ii) a video-to-video evaluation to simulate real-world usage
of the whole iris recognition solution and test the proposed multi-instance iris fusion
approach.

5.1 Image-to-Image Evaluation

Three different datasets were used for the comparison. The following methods were
selected as state-of-the-art: (1) FCN+ETL proposed by Zhao and Kumar in [25],
which is one of the most cutting edge solutions, with the highest recognition
performance; (2) DeepIrisNet [22], representing a classic deep neural net approach
as one of the earliest applications of deep learning in the field of iris recognition. A
lightweight CNN recently proposed in [13] could also be used for comparison since
the results were obtained on the same dataset. Refer to the original paper [13] for
the results on the CASIA-Iris-M1-S3 dataset [36].

Many methods were excluded from consideration due to their computational
complexity and therefore unsuitability for mobile applications.



Iris Recognition on Mobile: Real-Time Feature Extraction and Matching in the Wild 209

Table 2 Datasets details Dataset Images Irises Outdoor Subjects

CMS2 7723 398 0 Asian

CMS3 8167 720 0 Asian

IM 22966 750 4933 Asian & Caucasian

5.1.1 Dataset Description

The following datasets were used for training and evaluation: CASIA-Iris-M1-
S2 (CMS2) [36], CASIA-Iris-M1-S3 (CMS3) [36], and Iris-Mobile (IM). The
collection of the last one was performed privately using a mobile device with
an embedded NIR camera to simulate real authentication scenarios of the user
of a mobile device. The images were captured under a wide range of changes
in illumination, both indoors and outdoors, with and without glasses (Table 2).
Examples of images are presented in Fig. 1. Images from all the datasets were
marked automatically by an algorithm developed in our lab. Examples of iris and
mask images are presented in Fig. 3. Each dataset was initially divided into training,
validation, and testing subsets in proportions of 70/10/20 (%) respectively. This was
so that there were would be no images of the same iris in two different subsets.

5.1.2 Training

The number of genuine comparisons NG was much smaller than the number of
impostor comparisons. Therefore all genuine comparisons were used for training
and the number of impostor comparisons was fixed as NI = 10NG. The model
that showed the lowest EER on the validation set was selected for evaluation on
the testing dataset. All the models were trained for 150 epochs using the Adam
optimizer. The training of the proposed model was performed so that one epoch was
equivalent to one iteration over all the genuine comparisons whereas the impostors
are always randomly selected from the entire set for each batch. The proportion of
genuine and impostor comparisons in a batch was set to Nb

I = 10Nb
G and AOI ≥

0.2 for all the image pairs.

5.1.3 Performance Evaluation

The recognition accuracy results are presented in Table 4 and Fig. 8. The proposed
feature extraction and matching method outperforms the chosen state-of-the-art
ones on all the datasets. Since the number of comparisons for the CMS2 and
CMS3 testing sets did not exceed 10 million after the division into subsets, it was
impossible to estimate the FNMR at FMR = 10−7. Another experiment was used to
estimate the performance of the proposed model on those datasets without training
on them. The model trained on IM was evaluated on the entire CMS2 and CMS3
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Table 3 Recognition
performance results for
several model modifications
on IM dataset

Conv1 VI FVsh EER FNMR d’

8 × 3 × 3 Yes Yes 0.0116 0.1925 4.3155

8 × 3 × 3 No Yes 0.0120 0.2027 4.2048

8 × 3 × 3 Yes No 0.0125 0.2085 4.1253

8 × 9 × 9 Yes Yes 0.0134 0.1566 4.3034

8 × 9 × 9 Yes No 0.0172 0.1694 3.9850

Table 4 Recognition performance evaluation results

EER

Method CMS2 CMS3 IM Testing FPS

DeepIrisNet [22] 0.0709 0.1199 0.1371 WithinDB 11

FCN+ETL [25] 0.0093 0.0301 0.0607 WithinDB 12

Proposed 0.0014 0.0190 0.0116 WithinDB 250

0.0003 0.0086 – CrossDB

datasets in order to obtain FNMR at FMR = 10−7 (CrossDB). The results presented
in Table 4 and Fig. 8 demonstrate the high generalization ability of the model.
However, it is fair to note that the IM dataset contains much more data than the
other two.

A mobile device equipped with Qualcomm Snapdragon 835 CPU was used for
estimating the overall execution time for these iris feature extraction and matching
methods. It should be noted that a single core of CPU was used. The results are
summarized in Table 4.

5.2 Video-to-Video Evaluation

In fact, both the registration and verification procedures involve the processing of
not one, but a sequence of images. The video format gives more information about
the possible behavior of the user and the environment. Unfortunately, there are no
such publicly available iris datasets. So, in order to test the recognition performance
on data that would be close to real-world scenarios, an additional dataset was
collected privately. It is a set of two-second video sequences, each of which is a
real enrollment/verification attempt.

5.2.1 Dataset Description

The dataset was collected using a mobile device with an embedded NIR camera.
It contains videos captured in different environment: (i) indoors (IN) and outdoors
(OT); (ii) with and without glasses; (iii) at different distances. The conditions of
illumination during the capturing were set as: (i) three levels for the indoor samples
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Fig. 8 ROC curves obtained for comparison with state-of-the-art methods on different datasets:
(a) CASIA-Iris-M1-S2 (CMS2), (b) CASIA-Iris-M1-S3 (CMS3) and (c) Iris Mobile (IM)

Table 5 Dataset
specification

Dataset Non-glasses Glasses

Users in dataset 476 224

Max comparisons 22 075 902 10 605 643

Race Asian & Caucasian

Eyes on video Two

Videos per user 10 ± 2

Video length 30 frames

Capturing distance 25–40 cm

Camera resolution 1920 × 1920

(0–30, 30–300 and 300–1000 Lux); (ii) a random value in the range 1–100 K Lux
(data was collected on a sunny day); Different arrangements of the device relative
to the sun were also considered during the capturing. A detailed description of the
dataset is presented in Table 5. The Iris Mobile (IM) dataset used for the image-
to-image evaluation was randomly sampled from, as well. Examples of the pictures
from the videos are depicted in Fig. 6.
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5.2.2 Testing Procedure

All the video sequences were used for simulating both the enrollment and ver-
ification transactions (attempts) in the non-glasses (NG) case. The sequences
captured for users wearing glasses (G) were used for simulation of the verification
attempts only. Each video sequence is considered as a single attempt. The extracted
probe/enrollment template is the result of a successful attempt and may contain
a maximum of 60 (30 frames × 2 eyes) iris feature vectors. The successful
construction of the feature vector means passing all the intermediate quality checks
in the recognition pipeline.

The testing procedure consists of the following steps:

1. Passing of all the videos that satisfy the condition IN&NG through the feature
extraction to produce the enrollment template: the template is considered as
successfully created if the following requirements are met:

a. At least 5 feature vectors were constructed for each eye;
b. At least 20 out of 30 frames were processed.

2. Passing of all the videos through the feature extraction to produce the probe
template, which is considered as successfully created in the case of at least 1
feature vector being constructed;

3. Creating of a pair-wise matching table of the dissimilarity scores for all the
comparisons: each probe template is compared with all enrollment templates
except the ones generated from the same video;

4. Calculating of the measures: FTE, FTA, FNMR(FMR) and FRR(FAR).

One important thing that makes the enrollment and verification different are the
values of the following thresholds: (i) the normalized eye opening (NEO) value,
described in [10], was set as 0.5 for the enrollment and 0.2 for the verification; (ii)
the non-masked area of the iris (not occluded by any noise) was set as 0.4 and 0.29
for the enrollment and probe, respectively.

5.2.3 Performance Evaluation

The recognition accuracy results are presented in Table 6. The proposed feature
extraction and matching method is compared with the one proposed in [10] as a
part of the whole pipeline. The compared method is based on Gabor wavelets with
an adaptive phase quantization technique (Gabor+AQ). Both methods were tested in
three different verification environments: indoors without glasses (IN&NG), indoors
with glasses (IN&G), and outdoors without glasses (OT&NG). The enrollment was
always carried out only indoors without glasses and, for this reason, the value of
FTE = 3.15 is the same for all the cases. The target FMR = 10−7 was set in every
experiment.

Applying different matching rules was also investigated. The proposed multi-
instance fusion showed advantages over the other compared rules (Table 7).
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Table 6 Recognition accuracy in different verification conditions

Verification condition

Error rate, % Method IN&NG IN&G OT&NG

EER Proposed 0.01 0.09 0.42

Gabor + AQ [10] 0.10 0.35 3.15

FNMR Proposed 0.48 5.52 10.1

Gabor+AQ [10] 1.07 8.94 32.5

FTA – 0.21 4.52 0.59

Table 7 Recognition accuracy for different matching rules

Error rate, % Method Fusion Minimum Consensus

EER Proposed 0.01 0.21 0.21

Gabor+AQ [10] 0.10 1.31 1.31

FNMR Proposed 0.48 0.92 1.25

Gabor+AQ [10] 1.07 3.17 4.20

The overall execution time for the whole pipeline was measured on a single core
of Qualcomm Snapdragon 835 CPU and was 55 milliseconds, which is about 18
FPS real-time performance.

6 Conclusion

A novel approach to iris feature extraction and matching was proposed in this
paper. It showed robustness to the high variability of the iris representation caused
by changes in the environment and physiological features of the iris itself. The
profitability of using shallow textural features, feature fusion, and variational
inference as a regularization technique, was also investigated in the context of
the iris recognition task. One more feature of the proposed solution is its multi-
instance iris fusion, which helps to increase the performance in case the input image
contains both eyes at the same time. The proposed solution was tested in the video-
to-video scenario and showed its ability to work in real-time in an uncontrolled
environment. Although it showed high accuracy indoors, the outdoor recognition is
still challenging.

Acknowledgements This research was also supported in part by a research grant 19-07-01231 of
Russian Foundation of Basic Research.



214 G. Odinokikh and A. Fartukov

References

1. Meng W, Wong D, Furnell S, Zhou J (2015) Surveying the development of biometric user
authentication on mobile phones. IEEE Commun Surv Tutorials 17(3):1268–12937

2. Rui Z, Yan Z (2018) Survey on biometric authentication: toward secure and privacy-preserving
identification. IEEE Access 7:5994–6009

3. Das A, Galdi C, Han H, Ramachandra R, Dugelay J, Dantcheva A (2018) Recent advances
in biometric technology for mobile devices. In: 2018 IEEE 9th international conference on
biometrics theory, applications and systems (BTAS), pp 1–11. https://doi.org/10.1109/BTAS.
2018.8698587

4. Li YH, Savvides M (2009) Iris recognition, overview. Encyclopedia of biometrics. Springer,
New York, pp 810–819

5. Prabhakar S, Ivanisov A, Jain AK (2011) Biometric recognition: sensor characteristics and
image quality. IEEE Instrum Meas Soc Mag 14(3):10–16

6. Information technology (2011) biometric data interchange formats – part 6: iris image data,
annex b. ISO/IEC 19794-6:2011

7. Corcoran P, Bigioi P, Thavalengal S (2014) Feasibility and design considerations for an
iris acquisition system for smartphones. In: 2014 IEEE fourth international conference on
consumer electronics Berlin (ICCE-Berlin), pp 164–167. https://doi.org/10.1109/ICCE-Berlin.
2014.7034328

8. Bowyer KW, Hollingsworth K, Flynn PJ (2008) Image understanding for iris biometrics: a
survey. Comput Vis Image Underst 110(2):281–307. https://doi.org/10.1016/j.cviu.2007.08.
005

9. Daugman J (2004) How iris recognition works. IEEE Trans Circuits Syst Video Technol
14(1):21–30. https://doi.org/10.1109/TCSVT.2003.818350

10. Odinokikh GA, Fartukov AM, Eremeev VA, Gnatyuk VS, Korobkin MV, Rychagov MN
(2018) High-performance iris recognition for mobile platforms. Pattern Recognit Image Anal
28(3):516–524. https://doi.org/10.1134/S105466181803015X

11. Thavalengal S, Corcoran P (2016) User authentication on smartphones: focusing on iris bio-
metrics. IEEE Consum Electron Mag 5(2):87–93. https://doi.org/10.1109/MCE.2016.2522018

12. Zhang M, Zhang Q, Sun Z, Zhou S, Ahmed NU (2016) The BTAS competition on mobile iris
recognition. In: 2016 IEEE 8th international conference on biometrics theory, applications and
systems (BTAS), pp 1–7. https://doi.org/10.1109/BTAS.2016.7791191

13. Zhang Q, Li H, Sun Z, Tan T (2018) Deep feature fusion for iris and periocular biometrics on
mobile devices. IEEE Trans Inf Forensics Secur 13(11):2897–2912. https://doi.org/10.1109/
TIFS.2018.2833033

14. Tabassi E (2011) Large scale iris image quality evaluation. In: Proceedings of international
conference of the biometrics special interest group (BIOSIG), pp 173–184

15. Matveev I, Novik V, Litvinchev I (2018) Influence of degrading factors on the optimal spatial
and spectral features of biometric templates. J Comput Sci 25:419–424

16. Fujitsu develops prototype smartphone with iris authentication. Press Release (2015). https://
www.fujitsu.com/global/about/resources/news/press-releases/2015/0302-03.html

17. Callaham J (2015) Microsoft Lumia 950 and Lumia 950 XL smartphones officially announced.
Windows Central. Mobile Nations. https://www.windowscentral.com/microsoft-lumia-950-
and-lumia-950-xl-smartphones-officially-announced

18. How does the iris scanner work on Galaxy S9, Galaxy S9+, and Galaxy Note9? (2019) https://
www.samsung.com/global/galaxy/what-is/iris-scanning/

19. Galaxy tab iris (sm-t116izkrins) specification (2019) https://www.samsung.com/in/business/
tablets/galaxy-tab-iris-7-0-t116ir/sm-t116izkrins/

20. Irisguard EyePay Phone (IG-EP100) specification (2019) https://www.irisguard.com/node/57
21. Minaee S, Abdolrashidi A, Wang Y (2016) An experimental study of deep convolutional

features for iris recognition. In: 2016 IEEE signal processing in medicine and biology
symposium (SPMB), pp 1–6

https://doi.org/10.1109/BTAS.2018.8698587
https://doi.org/10.1109/BTAS.2018.8698587
https://doi.org/10.1109/ICCE-Berlin.2014.7034328
https://doi.org/10.1109/ICCE-Berlin.2014.7034328
https://doi.org/10.1016/j.cviu.2007.08.005
https://doi.org/10.1016/j.cviu.2007.08.005
https://doi.org/10.1109/TCSVT.2003.818350
https://doi.org/10.1134/S105466181803015X
https://doi.org/10.1109/MCE.2016.2522018
https://doi.org/10.1109/BTAS.2016.7791191
https://doi.org/10.1109/TIFS.2018.2833033
https://doi.org/10.1109/TIFS.2018.2833033
https://www.fujitsu.com/global/about/resources/news/press-releases/2015/0302-03.html
https://www.fujitsu.com/global/about/resources/news/press-releases/2015/0302-03.html
https://www.windowscentral.com/microsoft-lumia-950-and-lumia-950-xl-smartphones-officially-announced
https://www.windowscentral.com/microsoft-lumia-950-and-lumia-950-xl-smartphones-officially-announced
https://www.samsung.com/global/galaxy/what-is/iris-scanning/
https://www.samsung.com/global/galaxy/what-is/iris-scanning/
https://www.samsung.com/in/business/tablets/galaxy-tab-iris-7-0-t116ir/sm-t116izkrins/
https://www.samsung.com/in/business/tablets/galaxy-tab-iris-7-0-t116ir/sm-t116izkrins/
https://www.irisguard.com/node/57


Iris Recognition on Mobile: Real-Time Feature Extraction and Matching in the Wild 215

22. Gangwar AK, Joshi A (2016) DeepIrisNet: deep iris representation with applications in iris
recognition and cross-sensor iris recognition. In: ICIP 2016, Phoenix, 25–28 Sept 2016, pp
2301–2305. https://doi.org/10.1109/ICIP.2016.7532769

23. Tang X, Xie J, Li P (2017) Deep convolutional features for iris recognition. In: Chinese
conference on biometric recognition, pp 391–400. Springer

24. Proença H, Neves JC (2017) IRINA: iris recognition (even) in inaccurately segmented data.
In: 2017 IEEE conference on computer vision and pattern recognition, CVPR 2017, Honolulu,
21–26 July 2017, pp 6747–6756. https://doi.org/10.1109/CVPR.2017.714

25. Zhao Z, Kumar A (2017) Towards more accurate iris recognition using deeply learned spatially
corresponding features. In: IEEE international conference on computer vision, ICCV 2017,
Venice, 22–29 Oct 2017, pp 3829–3838. https://doi.org/10.1109/ICCV.2017.411

26. Abate AF, Barra S, D’Aniello F, Narducci F (2017) Two-tier image features clustering for
iris recognition on mobile. In: Petrosino A, Loia V, Pedrycz W (eds) Fuzzy Logic and Soft
Computing Applications. Lecture Notes in Artificial Intelligence, vol 10147, pp 260–269

27. Zeiler MD, Fergus R (2014) Visualizing and understanding convolutional networks. In:
Proceedings of ECCV

28. Harley AW (2015) An interactive node-link visualization of convolutional neural networks. In:
Proceedings of ISVC

29. Pavelyeva E, Krylov A (2010) An adaptive algorithm of iris image key points detection. In:
20th international conference on computer graphics and vision, GraphiCon’2010, pp 320–323

30. Howard A, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M, Hartwig
A (2017) Mobilenets: efficient convolutional neural networks for mobile vision applications.
CoRR abs/1704.04861 . http://arxiv.org/abs/1704.04861

31. Koch G, Zemel R, Salakhutdinov R (2015) Siamese neural networks for one-shot image
recognition. In: Proceedings of the 32th international conference on machine learning

32. Kingma DP, Salimans T, Welling M (2015) Variational dropout and the local reparameteriza-
tion trick. In: Cortes C, Lawrence ND, Lee DD, Sugiyama M, Garnett R (eds) Advances in
neural information processing systems, vol 28, pp 2575–2583. Curran Associates, Inc. http://
papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick.pdf

33. Ross A, Jain A, Nandakumar K (2006) Handbook of multibiometrics. Springer, New York
34. Matveev I, Novik V (2019) Using optimal circular path method to match piecewise iris

templates. Pattern Recognit Image Anal 29(1):194–202
35. Dunstone T, Yager N (2009) Biometric system and data analysis: design, evaluation, and data

mining. Springer, Boston
36. Chinese Academy of Sciences, Institute of Automation (CASIA), CASIA-Iris-Mobile-V1.0

(2015) http://biometrics.idealtest.org/

https://doi.org/10.1109/ICIP.2016.7532769
https://doi.org/10.1109/CVPR.2017.714
https://doi.org/10.1109/ICCV.2017.411
http://arxiv.org/abs/1704.04861
http://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick.pdf
http://papers.nips.cc/paper/5666-variational-dropout-and-the-local-reparameterization-trick.pdf
http://biometrics.idealtest.org/


A Protocol for Decentralized
Biometric-Based Self-Sovereign Identity
Ecosystem
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Abstract Most user authentication methods and identity proving systems rely
on centralized databases. Such information storage presents a single point of
compromise from a security perspective. If this system is compromised, it poses a
direct threat to a significant number of users’ digital identities. A recent example of
compromised data includes the Equifax breach, which affected 140 million people.
The other issue with these centralized systems that individuals don’t have a control
of how much of their Personal Identifying information (PII) is shared in different
contexts.

This chapter discusses a decentralized biometric-based authentication protocol
for identity ecosystems, called the Horcrux (The term “Horcrux” comes from the
Harry Potter book series in which the antagonist (Lord Voldemort) places copies of
his soul into physical objects. Each object is scattered and/or hidden to disparate
places around the world. He cannot be killed until all Horcruxes are found and
destroyed.) protocol, in which there is no such single point of compromise. The
Horcrux protocol is founded on the principle that an individual should have a control
over the use of their own PII. The decentralization of control over the components of
individual identities will allow them proof of their PII – secured by blockchains and
cryptography – to governmental and private-sector entities. Meanwhile, BOPS will
enable these entities to undertake an advanced risk assessment, verify identities and
provide seamless access through secure mobile biometric recognition technology.
All of this can be achieved without the need to store PII in one central database
and pose too great a risk for stakeholders. Horcrux protocol relies on decentralized
identifiers (DIDs) under development by the W3C Verifiable Claims Community
Group and the concept of self-sovereign identity. In this chapter, we discuss the
specification and implementation of a decentralized biometric credential storage
option via blockchains using DIDs and DID documents within the IEEE 2410–2017
Biometric Open Protocol Standard (BOPS).
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1 Introduction

The mobility of applications and networks have made the access to our Personal
Identifying Information (PII) widely distributed, but most security and privacy
preservation schemes are still primarily based on archaic, static models that don’t
work anymore and it is getting worse. The latest evidence of this is recent breaches
disclosed by Yahoo, Equifax [1, 13], and Target stores [7] that has exposed identity
information for millions of individuals. Hacking attacks are not targeting only enter-
prises but also federal agencies, such as the stolen database of fingerprint images in
the US Office of Personnel Management breach of 2015 [30], and like other PII
that is stolen, the unauthorized access of biometric data can be quite damaging to an
individual. Despite these breaches and attacks, enterprises and national governments
continue to take on enormous risk by aggregating unnecessary personal data while
customers cannot manage the massive number of IDs, passwords and PII required
to interact with every online connection.

We believe that the common denominator across most aspects of Personal
Identifying information (PII) protection is identity. An identity is inextricably linked
to a person, device, application, system or network and it is the most dependable
‘perimeter’ we can rely upon to determine how to make information available
securely and adequately. Meanwhile, user authentication is the security requirement
in any identity ecosystem to access PII. User authentication can be described as
a process in which a user offers some form of proof that s/he is the same user
who registered the account. Proof of identity can be any piece of information that
an authentication server accepts: something users have in their possession (e.g.,
tokens), something they know (e.g., username and password) or something they
are (e.g., a biometric).

By reviewing current identity proving ecosystems (see Fig. 1), we can determine
these systems rely on specific parties: an issuer, end-user, verifier, and inspector.

Issuers such as governments associate identity credentials to end-users. Then,
the issuer shares personal information and credentials of the end-user with a
verifier. If the end-user applies for a bank account, credit card, or car loan, the
inspector contacts a verifier to prove the claimed identity by the end-user. Therefore,
especially if this process is online, the inspector presents a multiple-choice quiz
about past addresses or who financed the user’s last car. That is an identity
verification service that verifier provides to lenders and others, i.e., inspectors. Based
on the answers or prove of holding the credentials, the inspector will verify the
claimed identity by the end-user and grantee the required service.
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Fig. 1 Traditional identity
proving ecosystem

In current digital and interconnected practice, these verifiers become a central-
ized database which stores the data used for authentication. When the user offers
the requested proof of identity, the authentication server evaluates this proof and
grants access to the user. For example, when a user tries to access his account on a
typical web application, he is prompted to enter a password. Traditionally, the web
application holds the information about the user’s account and his password. When
the user submits his password during the log-in process, the application compares
the stored password to the submitted password. If they match, the user is granted
access to the application. In other words, all the information needed to authenticate
the user is held on a single system. Even if the authentication system is a biometric-
based system, most of the deployed systems is still use the same centralized
model.

In these traditional authentication and identity models, users are forced to
relinquish personal information such as credit histories, credentials such as birth
certificate, or biometric data such fingerprint template to a third party, with a
centralized database. Moreover, users do not have their own consolidated digital
identity; they have tens or hundreds of fragments of themselves scattered across
different organizations, with no ability to control, update or secure them effectively.
These security flaws encapsulate perfectly why identity became the new attack
surface [16].

Hence, it is of paramount importance to facilitate an identity ecosystem that
leverages personas, reduces liability for the enterprises, provides distributed access
to authorized services, and provides the user full control over their identity accessing
via a privacy-centric biometric-based authentication model.

In this chapter, we discuss the specification and implementation of our Horcrux
protocol that combines the new decentralized self-sovereign identity ecosystem with
2410–2017 IEEE Biometric Open Protocol Standard (BOPS) [2].
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Self-sovereign identity (SSI) is a new decentralized ecosystem for private and
secure identity management that is being implemented by several projects [6, 17]
as the replacement for traditional identity proving systems. Self-sovereign identity
puts end-users – not the organizations that traditionally centralize identity – in
charge of decisions about their privacy and disclosure of their personal information
and credentials. Self-sovereign identity utilizes distributed ledgers (DLT), i.e.,
blockchain technology, to establish a web-of-trust [9].

Biometrics Open Protocol Standard, or BOPS, is an IEEE standard 2410–2017
[2]. BOPS supports a distributed storage model, which is neither device- nor server-
centric storage [28], where the user’s biometric template is distributed using a secret
sharing scheme between the user’s mobile device and the service provider. Both
shares of the biometric data are encrypted, and for the authentication process to be
successful, both shares are required [2].

Horcrux protocol utilizes SSI and BOPS to implement a secure and robust
identity-authentication solution capable of supporting different business require-
ments as well as the privacy of users by allowing them to manage the storage
and access of their Personal Identifying information (PII)1 via a distributed mobile
biometric authentication system. This marriage of these two models (SSI and BOPS)
via the Horcrux protocol will guarantee the following principles:

• Existence: users must have an independent existence that can not only exist
wholly in the digital form, and by using a biometric-based protocol, i.e., BOPS
[2] for enrolling and authentication, this guarantees that the digital identity has
been created and will always be verified by an existing end-user.

• Control: users must control the storage and access to their identities. Under the
Self-sovereign identity ecosystem, users are always able to refer to, update, or
even hide their personal information and credentials. The Horcrux protocol will
assure that the access is always secure by their biometric which also is securely
stored via the decentralized ecosystem, along with their personal information.

• Portability and interoperability: BOPS [2] and self-sovereign identity have been
designed around these principles.

• Protection: the security of the Horcrux protocol is trusted because it is based on
strong cryptography and governed by self-sovereign identity using a blockchain
technology and BOPS.

The rest of the chapter is organized as follows. Section 2 gives a quick overview
of the different identity models and evolution of these models into the new self-
sovereign identity ecosystem that provides users with full control over their identity
access and storage. In Sect. 3, we discuss the biometric authentication standard
BOPS and the unique way to store biometric data in a distributed matter to preserve
the privacy and security of the stored biometric data. Section 4 looks at the Horcorx
protocol where both BOPS and SSI model can be deployed together to provide a

1Personal Identifying information are Data about an individual which considered to be sensitive
and thus subject to security and privacy protections such as biometric and demographic data.
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new way for users to establish a portable, secure and controllable biometric-based
identity system which is intrinsically theirs. Finally, Sect. 5 summarizes the chapter.

2 Self-Sovereign Identity Ecosystem

The internet and online services were built without a standard, explicit way of
identifying people or organizations. So websites simply began offering their own
local accounts with usernames and passwords, and this has been the predominant
solution ever since.

But this silo-based approach, where users must maintain identities for every
site they interact with, has become untenable. It is not just a usability disaster for
individuals, it also creates a multitude of data honeypots for hackers which when
breached, compromises trust in all Internet services. At the same time, there is a
growing economic inefficiency when organizations have to collect, store and protect
the same sort of personal data in their own silos. It is reaching a tipping point.

To solve this problem, in some current implementations, the authentication server
can be completely separated from the server running web applications or biometric
authentication database. For example, single sign-on (SSO) schemes [24] are based
on this concept. SSO schemes rely on a third-party identity provider (IdP) to broker
authentication using protocols such as SAML [12] and OpenID Connect [29]. Since
their introduction in 2002 and 2010 respectively, only 5% of sites use any of over 50
disparate IdP [32] SSO services (e.g., “login with Facebook”, “login with Google”,
etc.).

However, these have produced inadvertent side effects such as concentrating
control around a small number of providers, increasing data leakage through
inadvertent sharing, and raising privacy concerns, all while not actually giving the
individual real control.

Surveys of users show an overwhelming dissatisfaction with single-sign-on
(SSO), a feeling of “lack of control” over their data [19, 27, 31] and a desire
to control it themselves. Recent legislation, such as the General Data Protection
Regulations (GDPR) [3, 15] and Payment Services Directive II (PSD2) [10], are
pressuring institutions, both private and public, to place citizen or customer data
into the end user’s control.

Therefore, recently digital identity ecosystems are moving from centralized to a
common identity layer that allows people, organizations and things to have their own
self-sovereign identity—a digital identity they own and control, and which cannot
be taken away from them.

Self-sovereign identity is a new identity ecosystem where individuals (or even
organization) to whom the identity pertains, control and manage their identities. In
this sense the individual is their own identity provider – no external party can claim
to “provide” the identity for them because it is intrinsically theirs. In other words,
self-sovereign identity is as a digital record or container of identity transactions that
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end-users control. The end-user can add more data to it, or ask others to do so, reveal
some the data or all of it some of the time or all the time.

Moreover, end-users can record their consent to share data with others, and
easily facilitate that sharing. It is persistent and not reliant on any single third
party. Claims made about an end-user in identity transactions can be self-asserted
or asserted by a 3rd party whose authenticity can be independently verified by
a relying party. The infrastructure of self-sovereign identity has to reside in an
environment of diffuse trust which is not controlled by any single organization or
even a small group of organizations. The cryptographically secure blockchain is the
breakthrough technology that makes this possible. It enables multiple entities such
as organizations and governments to cooperate mutually via distributed consensus
to form decentralized blockchains, where data is replicated in multiple locations to
be resistant to faults and tampering. While distributed ledger technology has been
around for some time, new blockchain applications, such as Bitcoin, have resulted in
realizations of its potential, particularly with respect to decentralization and security.

Figure 2 provides an overview of the self-sovereign identity architecture. The
followings are the brief descriptions of the architecture entities. Note that in
this architecture, the information is no longer centralized and connections are
individually permissioned.

• DID: Decentralized Identifiers (DIDs) are a new type of identifier intended for
a self-sovereign identity system, i.e., entirely under the control of an entity and
not dependent on a centralized registry or certificate authority. DIDs are opaque,

Fig. 2 Self-sovereign identity ecosystem architecture
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unique sequences of bits, that get generated when a user accepts a claim from
an issuer along with a corresponding DID Document. DIDs have a foundation
in (Universal Resource Identifiers) URIs [18, 25]; therefore, they achieve global
uniqueness without the need for a central registration authority.

• DID document: A DID resolves to a corresponding DID Document—a simple
document that contains all the metadata needed to interact with the DID.
Specifically, a DID Document typically contains at least three things along
with personal information or credentials. The first is a set of mechanisms that
may be used to authenticate as a particular DID (e.g., public keys, biometric
templates, or even an encrypted share of biometric data). The second is a set
of authorization information that outlines which entities may modify the DID
Document. The third is a set of service endpoints, which may be used to initiate
trusted interactions with an entity [25].

• Blockchains: In this architectural construct, the blockchain acts as an index of
identifiers and audit trail of permissioned exchanges between the issuer of claims,
the holder of claims, and the inspector of claims.

• Identity hubs and repositories: These hubs are secure personal data repositories
that curate and coordinate the storage of signed/encrypted DID documents, and
relay messages to identity-linked devices. Examples of identity hubs include
Dropbox, Google drive, and Storj.

• Issuer: An entity that creates DID and DID documents, associates it with a
particular subject and transmits it to a holder. Examples of issuers include
corporations, governments, and individuals.

• Inspector/Verifier: Inspectors request claims in the form of DIDs from subjects
and organizations in order to give them access to protected resources. The
inspector verifies that the credentials provided via DID and in the DID document
are fit-for-purpose, also checks the validity of the DID in the blockchain.
Examples of inspectors include employers, security personnel, and websites.

• Holder: Holders receive DIDs from issuers, store DID Documents via identity
hubs, and provide DID Documents to inspectors. The entity which controls a
particular DID can be the subject of the DID document, but not necessarily. An
inspector can also resolve DIDs into their corresponding DID documents and
discover DIDs across a decentralized system. Examples of holders are users—
students, employees, and customers. Other examples of holders that have the
permissions to handle subject’s claims include web services or mobile apps
installed on the subject’s personal devices.

SSI users have the liberty to manage their identity data on their mobile devices
or cloud repositories. Mobile devices have become an essential part of our lives. We
use mobile devices to store our credentials and payment. Therefore, while physical
documents and storage of identity attributes on the cloud and third-party identity
providers may exist for the years to come, storing identity data on mobile devices is
the next natural step towards the realization of Self-Sovereign Identity and using
mobile biometric can help in facilitating this to protect and authenticate digital
identities.
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Although mobile biometric authentication has the potential to offer significant
value to enterprises, the unauthorized access of biometric data can be quite
damaging to individuals due to its uniqueness and intrinsic to them. Currently,
biometric data is stored in the mobile or server. These data storages are done within
encryption layers including choosing a proper compliance system and infrastructure,
which considers the particularly sensitive nature of biometric data. Nevertheless,
with the news of stolen and hacked biometric data from phones [33], as well as
servers breaches [30], means these schemes of storage are not the best solution.

3 IEEE Biometric Open Protocol Standard (BOPS) Storage
Model

In traditional authentication systems such as password and PIN, only one centralized
database stores the data used for authentication. When the user offers the requested
proof of identity, the authentication server evaluates this proof and grants access to
the user. While most security experts and enterprises see the benefits of biometric-
based mobile authentication in comparison to knowledge-based systems (usually,
password and PIN), the underlying architecture with which to implement biometrics
is still the same centralized storage model2; more specifically, whether a server or
mobile-centric storage approach. The following describes the server- and mobile-
centric approaches. Then we describe the distributed storage model that has been
adopted by IEEE BOPS.

3.1 Server-Centric Approach

In this setup, biometric identity data is captured by trusted means and then stored
centrally on a secure server. The server-centric biometric authentication architecture
is managed by the service provider. To perform a user verification, the captured
biometric sample is sent to the server for processing and matching against the
enrolled data stored centrally.

A server-centric approach is likely preferred for organizations that desire a high
degree of control over the end-to-end process of biometric authentication and to
manage and secure the storage and use of the biometric data.

This approach also supports users accessing digital services via a wide range of
endpoints such as computers, mobile devices, smart TVs, and physical locations
(bank branch, enterprise access control, and in-store retail scenarios). Organizations

2The enrollment stage of most of the deployed biometric systems generates a digital representation
of an individual’s biometric trait that is stored in the system storage database [14].
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can also analyze the biometric data they collect to improve the performance of
matching algorithms.

Finally, by storing more resources and functions in the cloud rather than on
the device itself, it reduces app size and complexity. As a result, server-centric
authentication may also function more effectively with devices that have limited
memory and processing power.
Comments on server-centric approach:

The major concerns with this approach are security and privacy. A server-based
biometric database becomes a “honeypot” target for criminals, hostile governments
and hacking groups. As the 2015 OPM hack [30], which led to the theft of
millions of United States government personnel fingerprint data, demonstrated
storing peoples’ biometric data in network accessible databases can lead to wide-
scale theft of sensitive data. Furthermore, there is the privacy concern of function
creep where the biometric data is used in different purposes than authentication such
as improving matching algorithms, databases linkage without consent, and deriving
additional demographic information [20, 23].

Moreover, it is a generally accepted privacy principle that individuals must be
able to access their PII and update it where necessary; therefore, some jurisdictions
have already specifically referenced biometric data in privacy guidance and legisla-
tion such as European General Data Protection Regulation (GDPR) [3].

GDPR is European Union’s new set of policies on data protection that officially
took effect on May of 2018. While this regulation focuses on the citizens of
European Union (EU), and reshapes the way organization across Europe handle
citizens’ PII data, any organization outside of EU that collects or processes data of
EU citizens is also affected. GDPR expressly identifies biometric data as a category
of sensitive personal data and requires the development of solutions with adequate
privacy measures in place giving individuals’ choice and control of their data. This
means that organizations must ensure that individuals can access their biometric data
as and when they request it. Further, organizations must have processes in place to
allow individuals to correct, update and delete their data where necessary.

Based on such data privacy regulation, compared to sever-centric storage of
biometric data, the storage and matching of biometric data on smartphones for
authentication purposes is a compelling and more straightforward approach to
satisfy global privacy requirements.

3.2 Mobile-Centric Approach

In this setup, biometric template creation, storage, and matching all occur locally
on the device which allows an organization such as a bank to enable strong
biometric authentication into their mobile app without having to manage PII on
a central server. The mobile-centric biometric systems are getting growing support
for solutions which are incorporating FIDO authentication protocols [5]. In a FIDO-
compliant system, a successful biometric match grants access to a private key stored



226 A. Othman and J. Callahan

on the device, which is in turn used to respond to a Public Key Infrastructure (PKI)
challenge3 [4] from a relying party, such as a bank or retailer whose app is running
on the device.

A mobile-centric approach is likely the best option for organizations with a
primary objective of preventing large-scale breaches of customer data and satisfying
global privacy requirements. Storing and matching biometric data on a device gives
users more control over their data.

The mobile-centric approach for storing biometric data is also gaining momen-
tum because now most major smartphone manufacturers are shipping devices
that support biometric authentication and providing access to third-parties via
APIs. These advances are enabling organizations to swiftly roll-out mobile-based
biometric authentication services. Therefore, this mobile-centric model is being
adopted by organizations, including banks and payment service providers (PSPs),
as a quick way of solving the “password” problem.
Comments on Mobile-centric approach:

The manufacturer-led, mobile-centric model only solves part of the problem of
providing secure and convenient access. Organizations are still looking at alter-
natives to ensure that an authentication solution is available to a large percentage
of their users base. The mobile-centric approach only offers biometric authenti-
cation to those equipped with the latest mobile devices with integrated biometric
sensors and secure hardware to store sensitive biometric data. In addition mobile
biometric apps are consuming more disk and runtime footprints since the biometric
processes all take place on the app, which less powerful devices may not easily
support.

Moreover, as the data remains on the device, there are no transfers of the
biometric data unless users perform backups to the cloud to avoid re-enrolling in
cases of lost or damaged devices. However, most of the organizations that adopt the
mobile-centric approach do not provide such backup services.

Finally, there are genuine concerns for organizations operating in highly regu-
lated sectors, such as finance and healthcare, that this model to capture and store
biometric data is managed by smartphone manufacturers using algorithms tuned to
be more convenient than secure.

Although most of these deployed mobile biometric authentication systems by
manufacturers are applying mechanisms to protect the integrity and confidentiality
of data storage and code execution (i.e., TrustedExecution Environments [11] and
Secure Elements [26]), Zhang et al. [33] revealed some severe issues with one of the
deployed Android fingerprint frameworks which is using an embedded fingerprint
sensor. They exploited an HTC One device with malware and demonstrated that
an attacker can collect fingerprint images of victims every time they swipe their
fingers.

3The private key is used to respond to the PKI challenge and never leaves the mobile device.



A Protocol for Decentralized Biometric-Based Self-Sovereign Identity Ecosystem 227

3.3 BOPS Distributed Storage Approach

The choice of either a device- or server-centric biometric authentication method
provides organizations with both positive and negative consequences. However,
the main concern with both approaches that there is a single point to compromise
biometric data.

There is, however, a third approach that is a privacy-centric and also pro-
vides service providers with a mechanism of managing the storage of their
customers/employees data without relying only on the operating system provided
by a device manufacturer. This model is a distributed storage model that has been
introduced by Othman and Ross [23] and adopted by the Biometrics Open Protocol
Standard, or BOPS, which is IEEE standard 2410–2017.

The IEEE 2410–2017 Biometrics Open Protocol Standard (BOPS) [2] demands
high levels of assurance to control communication between an organization server
and its clients via two-way secure socket layer/transport layer security (SSL/TLS)
and to monitor authentication logs and patterns with enhanced intrusion detection
system (IDS) analytics.

The difference between BOPS approach and the aforementioned approaches
(server- or mobile-centric) that the biometric enrolled data, i.e., representation of
a fingerprint, voice, facial features, is cryptographically protected into two shards
using a secret sharing scheme, i.e., Visual Cryptography [21]. These encrypted
shards are stored, respectively, on a client device and a remote BOPS server, such
that the biometric data is not kept in a single point to compromise.

Visual Cryptography Scheme [21] (VCS) is a simple and secure way to share a
secret such that decryption can be performed using a simple binary operation. The
basic scheme is referred to as the k-out-of-n visual cryptography scheme which is
denoted as (k, n) VCS [21]. Given an original binary data T , it is encrypted into
shares, such that:

T = Sh1 ⊕ Sh2 ⊕ Sh3 ⊕ . . . ⊕ Shk
(1)

where ⊕ is a boolean operation, Shi
, hi ∈ 1, 2, . . . ., k is a share which appears

as white noise image, k ≤ n, and n is the number of these shares. It is difficult
to decipher the secret T using individual Shi

’s [21]. The encryption is undertaken
in such a way that k or more out of the n generated shares are necessary for
reconstructing the original secret T .

As shown in Fig. 3, BOPS defines three steps during enrollment. First, the remote
server generates a public-private key pair (RKP) in which the public key is sent to
the mobile device. Then, a biometric template (called the initial biometric vector
or “IBV") is collected, encrypted into two shares (shard I and II) using 2-out-of-2
scheme, and then paired with a device-generated public-private key pair (LKP). In
the third step, the LKP private key is reserved locally and the LKP public key along
with the biometric share II are encrypted with the RKP public key for transmission
to the server over a two-way TLS connection and IBV is discarded. The client
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Fig. 3 Illustration of distributed model steps during the biometric enrollment stage. (1) Server
sends an enrollment request along with the RKP public key, (2) Biometric capture is encrypted
into two shares (I and II) using visual cryptography, and (3) Biometric share II and device (LKP)
public key are encrypted by the server (RKP) public key and send to the server via two-way TLS

certificate for the TLS connection is installed a priori via application installation
on the mobile device.

During authentication, a candidate biometric vector (CBV) is acquired for
matching with IBV. BOPS defines two configuration modes for authentication:

• Local Match: The server is requested to encrypt (using its RKP private key) IBV
share II it holds and returns them to the local device. The CBV is collected, IBV
shares from local (I) and remote (II) combined and matched on the local device.
The CBV and combined IBV are subsequently wiped from volatile memory.

• Remote Match: The collected CBV and the local IBV share I are encrypted in an
envelope with the RKP public key and transmitted to the server. On the server,
the incoming IBV share from the local device is combined with server-based
share and compared to the incoming CBV. The CBV and combined IBV are
subsequently discarded.

A distributed storage approach combines convenience, personal privacy, and
enhanced security to create a model that makes it harder for attackers to compromise
a system.

The fundamental idea of this distributed approach is utilizing secret sharing
scheme [21] that, rather than encrypting the data as a single file using the standard
public and private key pairing methodology, biometric data is encrypted randomly
into multiple shares. These shares must be combined in order to recreate the original
biometric data, ensuring that only the people, or devices, that possess the encrypted
share files are able to recombine them and gain access to the protected information
without any influence to the overall matching performance. Therefore, in the BOPS
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model, if the central biometric database, i.e., server is hacked, then attackers still
need to have the user device’s share of the biometric vector to break the system.
Conversely, if a user has their mobile device compromised, an attacker still needs
to break into the central database. This ensures that the biometric data is protected
from data breaches, provides peace of mind for the end user that their biometric
cannot be easily compromised, and enhances the storage architecture to eliminate
misuse of the data. Moreover, this distributed model has two different matching
configurations which allow an organization to customize their solutions based on
their customer-base used technologies and network connectivity.

Hence, this simple IEEE open protocol standard solves the single point of failure
and control concerns with a storage model that can lead to the deployment of more
secure, flexible, and interoperable biometric authentication solutions.

In the following section, we discuss our Horcorx protocol where both BOPS
and SSI model can be deployed together to provide a new way for users to
establish a portable, secure and controllable biometric-based identity system which
is intrinsically theirs.

4 The Horcrux Protocol

The IEEE 2410–2017 standard allows for interoperablility at several layers includ-
ing the persistence cluster ([2] section 7.3.3) provided it satisfies security require-
ments for storage of encrypted biometric shares. We propose any BOPS server
can act as a holder of biometric shares via blockchain using methods outlined
in the W3C Decentralized Identity (DID) specification [25]. A BOPS server can
enroll a user by storing biometric share(s) as DID Documents using off-chain
storage providers owned by the user. The corresponding DID acts as the identity
assertion associated with the enrolled biometric. Figure 4 depicts a standard BOPS
enrollment flow (adapted from [2] section 7.2). The user (via a browser user-
agent) is prompted to enroll their biometrics with a service provider acting as an
issuer. The initial biometric vector (IBV) is encrypted (via visual cryptography)
into two shares. One share is reserved on the local mobile device while the second
is transmitted to the BOPS server. Instead of an RDBMS or persistence cluster (e.g.,
SOLR) backend, the BOPS server relies on a blockchain store in this case using
a decentralized identifier (DID) [25] for persistence. DIDs provide a blockchain-
agnostic method for resolving DID Documents much like URIs [18] uniquely
characterize web resources via URNs and URLs, but for disparate blockchain
ecosystems. The W3C Verifiable Claims Community Working Group has defined
DID method specifications [25] for implementors of CRUD operations specific
to a particular blockchain. The BOPS server acts as a resolver given a DID to
fetch the corresponding DID Document if possible. The DID and corresponding
DID Document are cryptographically associated with each other via blockchain
transactions such that any tampering with the DID Document for a given DID would
be evident. After persisting the DID document and registering the associated DID
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Fig. 4 Enrollment sequence

on a blockchain, the user is notified of success (or failure) of their enrollment. It
should be noted that no biometric shares are stored on any blockchains, only in
DID Documents that are persisted “off-chain” via identity hubs or personal storage
providers.

The encrypted biometric share is still within an encrypted envelope as per [2] but
the share is persisted on a corresponding blockchain with an associated DID. The
DID can be used as a claim with another BOPS server acting as a verifier. Again,
this is possible because any tampering with the DID Document associated with a
given DID will be detectable due to their relationship via a recorded blockchain
transaction [25]. Figure 5 shows an example of a different BOPS server being used
by a verifier. In this example, the user tries to access a resource on a web site (e.g.,
the service provider) using a mobile client application (MCA) with a DID created
by an issuer (4) and a public key created at enrollment. The service provider relies
on a BOPS server to resolve the DID and fetch the corresponding DID Document
via a blockchain from the storage provider. If the DID document is a valid claim, the
BOPS server checks if the issuer of the claim is known (via its public key in the DID
document) and that the enrollment public key matches for this user as well. If valid,
the user (via their MCA) is requested for their candidate biometric vector (CBV)
and complement share of the IBV as per [2]. Upon receiving the complementary
share and CBV from the client (as described in 3 – Remote configuration mode),
the enrollment public key is used to decrypt the client’s share, combine the IBV
shares and match them to the CBV. If successful, the user is authenticated.
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In the case of remote authentication, the service provider, acting as a verifier, uses
a different BOPS server instance to authenticate the user even though this user has
never registered at this service provider. Furthermore, the user and service provider
are the only parties needed at authentication time unlike SAML or OAuth that rely
on 3rd party identity providers (IdPs) to broker identity claims in traditional single-
sign-on (SSO) systems. The Horcrux protocol supports self-sovereign identity [8]
by using blockchain technology to secure credentials issued by valid authorities (i.e.,
issuers) for later use directly by the user who owns the credentials. The user may
store such credentials via several personal cloud storage providers such as Dropbox,
Google drive, Amazon S3, etc. but delegate management (via OAuth tokens) to
a holder such as the BOPS server. The holder can access issued claims like the
encrypted biometric shares on behalf of the user during authentication, but require
biometric authentication as specified in the authenticationCredentials
section of the claim [25].

The local configuration mode of BOPS is also available such that a combination
of biometric shares occurs on the mobile device. Figure 6 shows this variation
in which the second biometric share is retrieved via DID referencing from the
corresponding DID document but is transmitted to the client by a service provider
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and its BOPS server. The biometric share is opaque to the service provider and
BOPS server in this case, but the server knows that the corresponding share on
the mobile device is used for matching due to the HMAC of the encrypted second
share. The enrolled share is never sent to the device, but both shares are kept locally
as per BOPS local configuration mode. The mobile device must hold the private key
associated with the enrolled share for the DID because it computes an HMAC using
the share and sends it to the server. The server can compare the HMAC key with
the opaque encrypted share from the DID document. It is possible, however, that the
user could resolved a given DID, retrieve the corresponding DID document, extract
the opaque encrypted share and construct the HMAC thus spoofing possession of
that share and falsifying the biometric match. We are in the process of investigating
methods for securing DIDs on a mobile device and/or using server-based key
mechanism to prevent this attack vector.

The IEEE 2410–2017 standard allows for more than two encrypted shares.
Algorithms such as visual cryptography [28] and, Naor and Shamir secret sharing
[21] allow for larger number of shares. Using DIDs and associated DID documents
for more biometric shares across different blockchains and replicating copies of
shares could further protect users from compromise and increase availability.
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5 Summary

The threat of cyberattacks and the explosive growth of mobile and connected devices
has ignited the quest for practical, secure and privacy-preserving digital identity and
access management (IdM) architectures with highly secure authentication solutions.

While the Self-Sovereign Identity (SSI) model is the next evolution of identity
management paradigm in which users have complete ownership and control over
their digital identity, there is the need to provide the users with a secure, reliable
and interpretable biometric authentication model to control the storage and access
to their digital identities. The Horcrux protocol is a method for secure exchange
of biometric credentials within an existing standard (IEEE 2410–2017 BOPS
[2]) implemented across next-generation blockchain-based self-sovereign identity
platforms based on open standards like DIDs and DID Documents [25]. By using
blockchain and off-chain storage as an alternative to the persistent layer in BOPS,
we use new blockchain-agnostic standards to enroll via an issuer and authenticate
on a verifier that is not part of a real-time trust network. Instead, they rely
on user-controlled biometric credentials that are cryptographically encrypted into
multiple shares across the user’s device and blockchain-linked personal storage
providers. The protocol is generalized for two or more biometric shares that can
be stored across mobile devices and personal storage providers with redundancy for
availability and safety. Future plans include a reference implementation and detailed
analysis of the protocol for performance and correctness using TLA+ in a manner
similar to the protocol analysis of WPA found in [22].

Acknowledgements The authors would like to thank Ward Rosenberry for his help in editing and
proofreading the chapter.
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Towards Wider Adoption of Continuous
Authentication on Mobile Devices

Sanka Rasnayaka and Terence Sim

Abstract Continuous Authentication (CA) is the process of constantly checking for
the authorized user’s presence, which brings unique advantages and disadvantages.
CA is more secure and facilitates schemes with multiple levels of authentication
security; however, it can consume more resources and cause user anxiety about
privacy. In this chapter we seek to understand the practical aspects of CA; in
particular, user perception and resource consumption. To gauge user perception
towards CA, we conducted a survey with roughly 500 respondents. We found that
users desire multiple levels of authentication security. Furthermore, users are willing
to adopt CA for mobile devices. We then analyzed factors like security awareness,
gender, and mobile device OS, to draw statistically significant conclusions regarding
their effect on users’ willingness to adopt CA, and user perceptions about CA. We
also compare between biometric modalities based on their resource consumption,
as measured by their Resource Profile Curve (RPC). This Curve reveals the trade-
off between authentication accuracy and resource usage, and is helpful for different
usage scenarios in which a CA system needs to operate. In particular, we explain
how a CA system can intelligently switch between RPCs to conserve battery
power, memory usage, or to maximize authentication accuracy. We argue for
the importance of understanding user perceptions and using RPCs to guide the
development of practical CA systems.
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1 Introduction

Prolog: Bob meets Alice on his way to work. Bob unlocks and gives his phone
to Alice to show her the new game he installed yesterday. After playing the
game for a while, Alice tries to open Facebook in Bob’s phone while he is not
looking. Since the phone is unlocked, Alice can go through Bob’s social media
profile. What can Bob do to better secure his mobile device?

With the rapid increase of mobile phone usage in day-to-day activities, including
banking and e-commerce applications, the security requirement of these devices has
increased drastically. However, this increased security requirement is not met by
current authentication schemes available. The predominant authentication method
currently used is one-time, session-based authentication, in which the user produces
a secret known only to him (e.g. PIN, Password), or some form of biometrics (e.g.
Fingerprint, Face) to authenticate himself before using the computing device.

This session-based authentication scheme was developed for desktop environ-
ments where, (i) the device would be physically near the user only while he is using
it; (ii) each session would last for a long time; (iii) there would be few (one or two)
such long sessions during the day; and (iv) the device would not be easily shared.
However adopting the same authentication method on mobile devices raises many
issues due to the inherent differences of usage between desktops and mobile devices.
These differences are illustrated in Fig. 1.

Sessions on mobile devices tend to be very short and there would be many of
these during a day (e.g. a few seconds to scroll through notifications, or to check
Facebook). Therefore the time taken to authenticate at the beginning of each short
session is a considerable overhead. Since mobile devices are compact, they tend to
be more vulnerable to theft. Furthermore, mobile devices are readily shared, making
them more vulnerable to exposing private information to family or friends.

Fig. 1 Differences between Desktop and Mobile environments
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Fig. 2 Process of a Continuous Authentication system

Continuous Authentication(CA) is gaining traction as a better alternative to
session-based authentication for mobile devices. A CA system works by monitoring
the user of a system transparently using biometrics. The usual process of a CA
system is depicted in Fig. 2. CA computes a confidence value that reflects the
presence of the logged-in user at any given time. This confidence value allows
the phone to enforce different security levels for different apps. For an example,
a banking app would require a higher level of security when compared with a clock
app to tell the time.

Continuous Authentication addresses the drawbacks of one-time authentication
schemes highlighted above. With the use of biometrics the authentication process
could be automated requiring little to no user involvement. Therefore the overhead
of unlocking multiple times for the larger number of shorter sessions throughout
the day is reduced. The mobile phone can continually monitor the authorized user
because the device will be physically closer to the user even when it is unused. This
will allow the device to notice as soon as the phone is shared with someone else,
in which case access to sensitive data can be denied. This shows how CA can be
useful in the scenario given in the Prolog at the beginning of the chapter. Refer to
the Epilog for more details.

However, compared to desktop PCs, mobile devices are resource-constrained.
They have limited amount of energy, computational capabilities, and memory.
Continuously checking biometric signals would be an additional strain on these
limited resources. Therefore CA researchers should be more aware of how different
biometrics consume resources and how to effectively manage these resources.

As with any new technology dealing with security and privacy, widespread
adoption will depend on how the end users perceive the technology, as well as
how practical implementations of the technology can be incorporated into current
hardware. Therefore this chapter looks into two aspects which are critical for the
successful adoption of CA systems on mobile devices, namely, User Acceptance,
and Resource Consumption.
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1.1 User Acceptance

We analyze how people perceive Continuous Authentication, by introducing the
concept using a scenario-based video and textual descriptions.

After introducing the respondents to CA, we analyze their perceptions toward
biometrics, multi-level authentication and Continuous Authentication. The main
objective is to identify the key concerns users have when moving to a new
authentication method. Another objective is to understand the different factors
influencing their perceptions. This understanding will then help software developers
better design and implement CA, leading to greater user acceptance.

1.2 Resource Consumption

In a resource-limited environment like mobile devices, any utility provided should
be measured with respect to the resources it consumes. The different levels of
authentication security that each biometric can provide, and the resources used to
provide them, can be characterized by a Resource Profile Curve (RPC). This paper
is the first in the research literature for such an analysis.

The proposed Resource Profile Curves will have real-life implications for CA
implementations. The following scenarios explain how RPCs will be useful.

• Security-First Scenario: Each app can specify a minimum level of authentica-
tion security before it can be started. (e.g. a banking app can specify a minimum
level of 95%, while a clock app can specify a lower minimum of 10%.) RPCs
can then be used to select the biometric modality (or combination of modalities)
that achieves this minimum before launching the app.

• Resource-First Scenario: The user may choose to conserve battery power when
his battery level is low, and he prioritizes phone calls over other apps. RPCs
can be used to restrict what apps can be launched, because the app’s minimum
authentication level requires too much power to achieve (or warn the user of this).

• Context-Based Scenario: Depending on what activity the user is currently
doing (e.g. walking and talking, or standing still and texting), some biometric
modalities might not be available. For example, when the user is walking and
talking on the phone, his facial image is not available, but his voice and gait are.
The opposite is true when the user is standing still and texting. RPCs can be
used to choose the available biometric modalities that can achieve the minimum
authentication level for any app.

By understanding how each biometric modality performs within resource con-
straints a CA system can provide the highest possible security while maintaining
the lowest possible resource consumption.
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2 Related Work

2.1 Continuous Authentication

Many researchers have introduced Continuous Authentication schemes using var-
ious biometrics. Early attempts at CA used keystroke dynamics [3] and mouse
dynamics [37] for desktops computers.

As different biometric modalities became available, they were adopted for CA
systems as well. In the research literature, we can find CA systems that use face,
fingerprint [33], gait [27], bioAura [25] touch gesture [14, 15], soft biometrics [26]
and behavioural biometrics [10]. In addition, there are works that fuse multiple
biometric modalities to achieve better authentication accuracy [21, 35].

Despite all these research, actual commercial implementations of CA systems
for mobile devices are rare: as of this writing, UnifyID (https://unify.id) is the only
commercial vendor that claims to provide CA for mobile phones. This dearth of
commercial offerings could be due to the lack of understanding of user perceptions
of CA. We hope the research presented here will help address this issue.

2.2 User Perceptions

Mobile phone authentication. Ben-Usher et al. [1] validated that every mobile phone
user want their device to be secure. Authors also found that users perceive the
security provided by PIN to be neither adequate nor convenient. Therefore a more
secure and convenient unlock method is needed for mobile devices. This finding has
been corroborated by other researchers in [7] and [4].

Biometrics. There have been several user surveys asking the respondents to rank
different biometric modalities based on their percieved security. Deane et al. carried
out the survey in 1995 [12], Seiger et al. [32] did a similar survey in 2010 and our
survey includes a similar question in [29] which was done in 2018. A comparison
of these three surveys revealed that secrets-based authentication schemes (like PIN)
are now perceived as less secure when compared to biometric based authentication
methods (like fingerprint).

Casanova et al. [17] carried out a survey and ranked different biometrics like
voice, face and hand biometrics with respect to comfort of use and how secure they
are perceived to be. Since Continuous Authentication will use biometrics, similar
perceptions are applicable.

Device sharing. A key difference between desktops and mobile devices is that the
latter is frequently shared. This creates unique security and privacy issues in mobile
devices which are not present in the desktop setting.

Karlson et al. [18] studied the willingness of users to share the phone along with
the security and privacy concerns of sharing mobile phones. The authors highlight

https://unify.id
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the requirement of multiple levels of security for different applications rather than
the single level security model used today.

Mattewes et al. [22] have studied the device-sharing dynamics. The authors
found that trust among the shares and user convenience were the highest influencing
factors for device sharing.

CA is presented as a viable solution to overcome security issues arising from
device sharing.

Multiple levels of security. Seiger et al. [32] propose the idea of graded security.
The focus here was to get a mapping between the biometric methods and levels
of security needed. Researchers concluded that using one biometric for all security
levels was preferred, rather than using different biometrics for the different levels of
security.

This finding aligns within the context of one-time authentication, since having
to use different methods depending on what you want to do is very inconvenient.
However it is interesting to see how people would perceive multi-level security in
the context of CA, which we will focus upon.

Different factors influencing security perceptions have been studied extensively
in many previous work [2, 17, 24, 31]. Similar kind of analysis with respect to
security awareness, age, gender, current mobile operating system (android vs iOS)
will be carried out in the work presented in this paper.

Continuous Authentication Clarke et al. [8] developed a prototype CA system and
evaluated the convenience and the intrusiveness with a control study of 27 people.
This work gives a stepping stone to understanding how people perceive CA.

Khan et al. [19] carried out a more comprehensive analysis on the usability,
convenience/annoyance and security of CA. Throughout the controlled lab study
and survey of 37 respondents these factors were analyzed using Likert scale
questions.

Our work builds upon these two studies by (1) Having a larger sample size and
backing up our hypotheses with statistical analysis. (2) Analyzing different factors
affecting the perceptions. Specifically analyzing the impact of security awareness
towards the perceptions. (3) Providing design considerations for a CA system in
order for it to be acceptable to users.

2.3 Resource Consumption

Since mobile devices are resource-constrained, especially in energy and memory,
there have been many studies on analyzing and profiling these resources for different
aspects (e.g. apps, embedded software etc.). In [28] Qian et al. did a resource
usage profiling for mobile devices in different layers (transport layer, application
layer etc.) of a mobile device and proposed a resource optimizer. In [13] Falaki
et al. proposed a smartphone resource usage monitoring tool which measures usage
context (CPU and memory) for research deployments. A similar usage measurement
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tool was proposed by Wagner et al. in [38] which collects usage based information
from Android smart phones and quantifies resource usage by the collaborators.

Carroll et al. carried out a direct approach to measure the significance of energy
drawn by components in a smartphone in [5], where they have analyzed the energy
consumption as well as battery lifetime for usage patterns. Tiwari et al. in their work
[36] proposed a power analysis technique which has been applied to two commercial
microprocessors for embedded software. In the earlier stages of smart phones,
researchers from Nokia came up with a software profiling tool [11] that could be
used by developers to measure the power consumption of their applications.

Even though several analyses have been done on the usability and security of
CA [9, 20, 29], no work has been done on how CA may negatively impact a
device with limited resources. Our work tries to address this gap and provides a
new dimension to answer the practical question: How should a CA system choose
between different biometric modalities and algorithms to achieve good accuracy
while reducing energy and memory consumption?

We explore this in Chap. 4; but let us begin with User Perceptions.

3 User Perceptions

3.1 Methodology: Survey Design

The goal of this study is to identify user perceptions towards biometrics, Contin-
uous Authentication and multilevel security. Our survey was designed to test the
following hypotheses,

Security Awareness

• H1. Gender has an impact on security awareness
• H2. Age has an impact on security awareness
• H3. Occupation has an impact on security awareness
• H4. Education level has an impact on security awareness
• H5. Mobile device OS has an impact on security awareness

Perceptions towards mobile phone authentication

• H6. Current unlock methods are perceived to be inconvenient
• H7. There is a perceived requirement of different levels of security
• H8. The perceived requirement of different levels of security depends on security

awareness

Perceptions towards Continuous Authentication

• H9. Users are willing to use Continuous Authentication for mobile devices
• H10. Security awareness has an impact on the willingness to use CA
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• H11. Convenience, Security, Transparency and Interruptions introduced by
Continuous Authentication is perceived differently based on gender, current
mobile device OS and security awareness

The survey was designed to evaluate above hypotheses with three sections,
Section 1: Demographics
First section of the survey focused on getting demographic information of the
respondents including age, gender, education level and occupation, current mobile
device and unlock methods. A 5 point Likert scale was employed to evaluate the
convenience of the current unlock method. Finally a free text question was given
for them to express any issues or concerns they have regarding the current unlock
method.
Section 2: Biometrics and CA
At the beginning of this section a demonstration video that explained the basic
concept of Continuous Authentication and how it would work using a scenario based
animation was shown. (link to video: https://youtu.be/ksSCWuUB6Ps).

After watching the video, respondents were asked to answer questions about the
requirement of different levels of security and Continuous Authentication.

– Yes/no questions were used to evaluate requirements of different levels of
security and the willingness to use CA

– 5 point Likert scale questions were used to evaluate perceptions toward conve-
nience, security, transparency and interruptions in CA

– 3 ranking activities were used to evaluate, (1) perception of security of different
biometrics, (2) different apps according to security requirement and (3) different
factors considered when selecting a new authentication scheme

The items in each ranking question were presented in a randomized order to each
survey participant.
Section 3: Security Awareness
Final section was a quiz of multiple choice questions, focusing on mobile security
awareness. These questions were set using common misconceptions about mobile
phone security. The score from these questions will be used as a measure for the
security awareness of the respondents.

The complete set of questions used in this survey can be found in the full
paper [29].

Survey responses were gathered through online portals SurveyMonkey and Cint
in January 2018. The respondents were paid based on the standard rates in the online
platforms. The impact of security awareness on different categories was tested using
p-values.

https://youtu.be/ksSCWuUB6Ps
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3.2 Results

The responses from the survey were analyzed in order to understand the perception
of the users towards CA. Different demographic and other factors influencing these
perceptions is also studied here.

3.2.1 Response Demographics

In total 695 people responded to the survey, out of which 494 (71%) were complete
responses. These 494 was used for the rest of the analysis. The age demographics
of the respondents is shown in Fig. 3.

Out of the respondents 328 (66%) were female and 163 (33%) were male, 3
people (1%) preferred not to disclose their gender.

Majority of the respondents (90%) were from the USA.
In total 6 (1.2%) respondents did not attend school, 223 (45%) respondents had

completed high school education, 175 (35%) has completed university degree and
90 (18%) has a higher degree, MSc or PhD.

Out of the respondents, 82 (17%) identified themselves as working in Computer
& technology related fields.

Fig. 3 Age demographics of
the respondents
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3.2.2 Security Awareness

The respondents were surveyed with 5 questions and the scored out of 5. The mean
score for security awareness quiz is μ = 2.66 and variance is σ = 1.26 These
scored were used to categorize the users into two categories,

1. High Security Awareness (HSA): Scoring 3 and above on the quiz (294 - 60%)
μ = 3.5340 and σ = 0.6690

2. Low Security Awareness (LSA): Scoring below 3 on the quiz (199 - 40%) μ =
1.3768 and σ = 0.7062

These scores were used to analyze the hypotheses H1 - H5 as follows,

• H1. Gender impact on security awareness
Males have above average security awareness (P = 0.04975). Even though
mean score for females was below average, there was no statistically significant
evidence that females were less security aware. (P = 0.07706)

• H2. Age impact on security awareness
Our survey shows that people got are more security aware as they got older. This
finding went against common belief that younger people are more technology
aware.

• H3. Impact of occupation
There was no impact from the occupation being Computer related and non-
Computer related towards the security awareness. (P = 0.2107 & P = 0.2289)

• H4. Impact of education level
Security awareness increases with education level by looking at these results.

For a more detailed analysis about these conclusions with statistical significance
value calculations please refer to the paper [29].

3.2.3 Mobile Device OS

Current mobile phone usage of the respondents was analyzed and shown in Fig. 4.
The figure show the HSA and LSA respondents for each device type.

0 50 100 150 200 250

Android

iOS

Windows

Other

Number of respondents

HSA

LSA

Fig. 4 Device OS and security awareness
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Fig. 5 Current screen unlock
method
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H5. Impact of device OS to security awareness
Looking at the individual scores in each category of mobile device we can

conclude the following with statistical significance,

• People using iOS phones have below average security awareness. (P = 0.0449)
• People using Android phones do not show statistically significant differences of

security awareness. (P = 0.1256)
• People using other phones have above average security awareness. (P = 0.0194)

Benenson et al. in [2] attempted to measure the security awareness by the
presence or absence of a virus guard in the users mobile device. However having
a virus guard is not a direct measure of security awareness. Here we use the quiz
score which provides a direct measure of security awareness.

3.2.4 Current Screen Lock Method (H6)

Different screen lock methods used by the respondents is shown in Fig. 5.
The most popular unlock method is fingerprint with the others follow in order of

Swipe, Pin, Password, Pattern, Other and FaceID.
It is important to note that the second most popular authentication method is

Swipe (i.e. not having any authentication).
Convenience of screen lock method

A 5 point Likert scale was used to evaluate the different unlock methods used
based on their convenience. The results of this question is shown in Fig. 6.

Fingerprint and swipe are the most convenient unlock methods followed by face.
PIN and password have the highest inconvenient ratings, and it is interesting that
none of the pattern users marked it as inconvenient.

The respondents were asked to highlight issues and inconveniences with pos-
sible improvements to their current authentication methods. Most common issues
included the authentication method being slow and not registering in one try. The
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Fig. 6 Convenience of current authentication method

Fig. 7 Requirement of levels
of security
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comments show that, even with the widespread usage of current unlock methods
there are many issues with reliability and convenience in each of those.

3.2.5 Levels of Security (H7)

The respondents were asked if different apps require different security levels, the
result of this question is shown in Fig. 7.

An overwhelming 83.16% agree that different apps require different security
levels.

H8. The perceived requirement of different levels of security depends on security
awareness

• The people who said “No” have below average security awareness (μ = 1.1938,
P-value 0.00002)

• The people who said “Yes” have above average security awareness. (P =
0.0212).

With this evidence it is clear that varying security levels is a requirement evident
to end users. However existing mobile phone operating systems do not provide a
multilevel security scheme.

The respondents were asked to rank different applications in the order of security
requirement. This ranking activity resulted in a security requirement score for each
app shown in the Fig. 8.
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Fig. 8 Security requirement for different mobile applications/features

The averages from all responses, HSA and LSA are given separately. There is a
slight difference between the ordering given by HSA and LSA. It is clear that both
HSA and LSA think Banking apps require the highest level of security.

• HSA have rated Files/Storage higher than LSA responses
• LSA have rated social media and Messaging(SMS) higher than HSA responses

It is evident that security requirements differ from person to person and the
personal preference might be affected by factors like security awareness.

3.2.6 Biometrics

The respondents were asked to rank different biometrics and traditional secrets-
based authentication methods from the least secure to the most secure. The score
obtained by this ranking is given in Fig. 9.

The overall ranking of the biometrics from most secure to least secure is as
follows, (1) Iris Scan, (2) Fingerprint, (3) Face, (4) Voice, (5) Password, (6) PIN
and (7) Pattern.

The only difference in the ranking between HSA and LSA was, LSA ranked
Fingerprint above Iris. An interesting observation is that all biometrics-based
authentication methods were ranked above secrets-based authentication methods.

3.2.7 Continuous Authentication

Willingness to use (H9)
Based on the demonstration video and descriptions of CA the respondents were
asked about their willingness to use it. The responses are evaluated in Fig. 10.
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Fig. 9 Security perception for different authentication methods

Fig. 10 Willingness to use
CA
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46.6% would use CA, while 20% will not, the other 33.4% responded with
maybe.

H10. Security awareness has an impact on the willingness to use Continuous
Authentication

• Respondents who said “Maybe” are people with higher security awareness. (P =
0.0132)

• People who said “Yes” are people with lower security awareness. (P = 0.0393)

This highlights how lower security aware people are more trusting towards new
technologies and are willing to try without further investigation. Whereas people
who said “Maybe” are more security aware and needs more proof and assurance
about the new authentication system.

Most of the people who were willing to use CA cited the convenience, security
and safety provided and ease of sharing the device with friends or family.

The people who are not willing to use CA say they do not think it is secure and
they do not trust it. Some people find the concept too complicated and they feel the
current methods are sufficient. Another issue is the worry about biometrics, “I don’t
want my phone constantly checking biometrics.”

Finally the people unsure of CA who responded “Maybe” said, they need more
information before deciding. These users are more security aware and they needed
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Fig. 11 Perceptions toward Continuous Authentication

to try it out and see how secure it is. Another common question raised is about the
power consumption, “it seems to me that continuously monitoring biometric signals
will consume a lot of battery.”

Looking at these responses we can see that, in order to propose a CA system for
the masses, its essential to clearly show how it is more secure, how the collected
biometric data will be handled and ensure that there is less overhead in terms of
resource consumption like power.

Perceptions toward CA (H11)
5 point Likert scale questions were employed to evaluate user perceptions across 4
different aspects of CA. Figure 11 shows the results for these four, Convenience,
Security, Interruptions and Transparency.

Over 60% found CA very convenient or convenient. Only 10% found it Inconve-
nient.

Over 65% found CA more secure than traditional methods.
The additional interruptions that might be introduced due to CA were seen as

annoying by over 20% of the respondents. Similarly, the transparency of CA was
seens as a negative by roughly 20% of the respondents. Therefore a feedback
mechanism to ensure constant feedback to the user regarding the authentication
process is essential.

In order to understand how different factors affect the perceptions toward CA,
chi-square tests was run on all the Likert scale questions considering Security
awareness, Gender and Current mobile device. The complete results of these tests
are presented in our paper [29].

In order to identify what aspects users consider when selecting an authentication
scheme, they were asked to rank 5 aspects from the least important to the most
important. The results from this ranking was consistent with HSA and LSA
respondents. The final ranking of the factors from most important to least important
was as follows, (1) Security, (2) Ease of use, (3) Time taken to unlock, (4) Power
Consumption and (5) Ease of setup.
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3.3 Discussion

The respondents gave suggestions and what they felt about CA in an open-ended
question. Majority of the users (160 responses) gave positive responses and showed
willingness to adopt CA if it is deployed. Some of the suggestions and desired
features are highlighted with following quotes,

– Configurable security levels for user profiles
– Configurable security levels for apps
– To have a toggle switch to easily turn off CA for instances where free device

sharing is needed,
– Have a feedback mechanism to show which user the phone identifies currently.
– Ease of use and setup,
– To ensure its fast and reliable

These suggestions could be used as key considerations when developing a
Continuous Authentication system for widespread use on mobile devices.

3.4 Limitations

We identified the following limitations of the survey design and response collection
process, which might have an adverse effect on the statistical results generated.

• A major limitation of the survey is that the respondents did not actually use a
Continuous Authentication system themselves; instead, they watched a scenario-
based video that explained the concept. This could lead to respondents being
optimistic about the pitfalls, such as the inconvenience of frequent false rejects,
in a Continuous Authentication scheme.

• Respondents could be more technology-aware than the general population since
they were recruited from an online portal. Therefore the security awareness,
education level and perceptions analyzed might not be representative of the
general population.

• Respondents’ demographics might not properly represent the total smart phone
user base. For example, 66% of the respondents were females, while only 33%
were males. This might affect how well one can generalize our survey results to
a target market.
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4 Resource Consumption

4.1 Methodology

In this section, the goal is to understand how accurate a biometric modality
(say, fingerprint) is, in relation to how much computation resources it consumes.
Intuitively, the more resources a modality can use (e.g. extracting more features,
combining different classifiers), the more accurate we expect its authentication to
be. Conversely, if a modality uses very little computation power (e.g. by random
guessing), then its accuracy will be low.

On the one hand, the accuracy of a given biometric modality depends on two
main factors:

1. The Inherent Uniqueness of the biometric modality. It is well known that some
modalities, like fingerprint and iris, are more unique (ie. more discriminative)
than face or voice or gait.

2. The Discriminating Power of the classification algorithm, which depends on the
features extracted, and the choice of classifier.

On the other hand, the resources consumed by the biometric modality also
depend on two factors:

1. Acquisition overhead: This refers to the energy consumed by the sensor(s) that
acquire the said biometric modality. Examples: for voice, the sensor is the
microphone (which may be turned off when not in use); for gait, the sensor is
the accelerometer and gyroscope (which are usually turned on all the time).

2. Algorithm consumption: This refers to the energy and memory used by the
algorithm, which in turn vary according to the features and classifier used.

We will be measuring all these factors to derive the Resource Profile Curves for
each biometric modality being considered.

4.1.1 Biometric Algorithms

In order for a biometric modality to be suitable for use in a CA scenario, the signal
acquisition should be passive and non-intrusive. Therefore some physiological
biometrics like fingerprint and iris are not suitable as they are implemented today
because they require users active cooperation to capture. In our study, we have
selected,

1. Face
2. Voice
3. Touch Screen Gestures
4. GAIT
5. Soft/Geometric Face Features
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Table 1 Datasets used

Dataset Modalities Identities Sessions

MOBIO [23] Video, Audio 152 total 2 sessions, 6 rounds each

Touchalatics [16] Smartphone touch 40 people 1

HuGaDB [6] Accelerometer data 18 people Variable number

as the biometric modalities which allow the acquisition to be done transparently.
In order to characterize the resource consumption vs utility of each of these

biometric modalities, some of the popular implementations for these biometric
modalities were selected and implemented.

Multiple variations of algorithms for these biometric modalities were analyzed.
Multiple combinations of features, classifiers along with variations of different
parameters were used to get different configurations of algorithms for each modality.
More details of the algorithms are provided in the paper [30]. These different
configurations will later be profiled in terms of energy consumption and memory
consumption to get their Resource Profile Curves.

4.1.2 Datasets

In order to test all of the different algorithms on a fair grounds we needed a dataset
which provides input for all 5 modalities. Since there is no existing dataset that
satisfies the requirement, we combined 3 different datasets as shown in Table 1 to
create virtual identities.

A key consideration when selecting the datasets was that, they have to emulate
the realistic complexity of biometric modalities captured within a mobile environ-
ment for CA. Therefore all the datasets were selected to be captured in mobile
phones and in usual usage scenarios.

In order to keep the datasets in a similar complexity, we ensured the number of
different identities was kept similar. To achieve this we used the IDIAP collection
(26 identities) data on MOBIO and entire datasets of Touchalatics and HuGaDB(40
and 18 identities).

4.1.3 Resource Profile Curves (RPC)

The objective of the study is to plot a curve for resources consumed (horizontal
axis) versus the utility provided by each biometric modality (vertical axis). Here the
utility for any biometric is the level of security that modality is able to provide. The
level of security will be measured by its classification accuracy.

The ideal RPC would thus be an inverted “L” shape, where the perfect accuracy
is achieved with the minimum amount of resources. The worst case RPC would
be a horizontal line on the x-axis where, regardless of the resources consumed,
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the accuracy remains at a minimum. However, in reality, the worst case is lower-
bounded by the RandomGuesser – the algorithm that randomly accepts or rejects
the user.

Each of the algorithm configurations can be plotted with respect to accuracy vs
resource consumption in a scatter plot. Let,

S = {(resource, accuracy)pairsforeachmodality} (1)

Using the points in S an RPC needs to be generated. In order to generate this the
following observations were used,

• The least energy consuming algorithm will be a random guess which will also
give the lowest accuracy

• For any limit in available resource level, the algorithm which provides the best
accuracy for a lower resource consumption level will be selected

Therefore, the Resource Profile Curve will be lower bounded by the random
guessing algorithm. Any new points in the RPC should be to the right and above
this random point. Therefore the RPC will be a monotonically increasing curve.

To generate the RPC the critical points for each modality will be selected using
the method shown in the Algorithm 1. Here p.RC, q.RC refers to the resource
consumption and p.acc, q.acc refers to the accuracy of p and q.

The Resource Profile Curve will be drawn using the pairwise linear curve on
the critical points in Sc generated as shown in the algorithm. Following the same
method, two Resource Profile Curves were generated,

• Accuracy vs Energy consumption (EC) Profile
• Accuracy vs Memory consumption (MC) Profile

Algorithm 1: Isolating critical points
Data: S = {Points in the scatter plot}
Result: Sc = {Critical points}
Let Sc = { };
foreach p ∈ S do

critical = T rue

foreach q ∈ S | q.RC ≤ p.RC do
if p.acc ≤ q.acc then critical = False

end
if critical = T rue then Sc.add(p)

end
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4.1.4 Measuring Energy Consumption (EC)

The overall energy consumption for an authentication task can be analyzed in two
parts,

1. EC of the algorithm to perform authentication
2. EC of the sensor to acquire the biometric signal

Energy consumption (EC) for algorithm
Time consumed for recognition by each algorithm configuration was used as a proxy
for the EC. The main assumption was that the EC by the mobile device will be
proportional to the execution time for each algorithm,

Energy ∝ T ime (2)

Energy = k × T ime (3)

Here k is the constant of proportionality.
To calculate k, a simple algorithm with a set number of calculations was executed

in the PC as well as the Android environment. The runtime for one instance of the
algorithm will then be measured and the rate of discharge of the phone battery will
also be measured. These two values will be used in the Eq. 3 to calculate k.
Energy consumption for acquisition
An Android application was developed to continuously log the battery level over
time at a constant interval. The discharge rate was calculated for the following:
idle, capturing face image every 5 s, capturing a voice clip every 5 s, logging
accelerometer data, logging touch screen data.

In order to isolate the energy discharge rates for biometric signal inputs(RDsensor )
the rate of discharge of idle state (RDidle) was deducted from the total rate of
discharge (RDmeasured ) as shown in Eq. 4

RDsensor = RDmeasured − RDidle (4)

The energy consumption (Energyalgo) for a given algorithm can be then
calculated as follows,

Energyalgo = k × T imealgo + Rsensing (5)

The time consumption was measured on a core i7-6700 3.4 GHz CPU with 8 GB
of RAM. Mobile battery discharge rates were measured using an LG V10 android
device.

The main focus here, is on the time/energy consumed in the test environment.
The time consumption for training the models is not considered because in practice
training will be done only once, when registering the user of a smartphone. However,
the test scenario has to be run on the mobile devices continuously to achieve CA.
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Fig. 12 Energy consumption
of different sensors
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4.1.5 Measuring Memory Consumption

The total sizes of feature extraction models (where needed) and classification
models were added up for each configuration to measure the memory consumption
of each method.

4.2 Results

The rate of discharge results is shown in Fig. 12. The highest energy consuming
sensor is the camera and the lowest energy consuming sensor is the touch screen
sensor.

4.2.1 Calculating Energy Consumption

To calculate the constant of proportionality (k) a simple number addition algorithm
was implemented in both computer and mobile platforms and the time and energy
discharge rates were measured and the value for k was calculated using the Eq. 3.
The value for k was a very high value (≥150). Therefore, based on Eq. 5 the time
consumption of the algorithms would dictate the behavior of the curve and hence,
the energy consumption of sensing action has a negligible effect.

4.2.2 Accuracy vs Energy Consumption Profile

Figure 13 shows the energy consumption vs accuracy curve. The x-axis has been
log scaled in order to expand the smaller values and compress the larger values.
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Fig. 13 Energy profile for different biometrics (best viewed in color)

All the curves start with a low energy consumption, low accuracy state and they
provide higher accuracy with increasing energy consumption. The curves eventually
flatten out as energy consumption increases, this shows diminishing returns as the
amount of energy consumed is increased.

It can be observed that GAIT outperforms most biometrics in low energy
consumption, however, Face biometric outperforms all of the other modalities for
highest accuracy achieved. The highest performing algorithm configuration for Face
(VGG) consumes roughly 3 times the energy of the 2nd best Face-based user
recognition algorithm.

The random point shown in the graph is a baseline for the lowest energy
consumption and lowest accuracy, it can be observed that by increasing a very
small amount of energy we can achieve a slight increase in accuracy by using soft
biometric traits (skin color).

4.2.3 Accuracy vs Memory Consumption Profile

Figure 14 shows the memory consumption vs accuracy curve, similar to the previous
graph this graph’s x-axis has also been log-scaled.

When considering memory constraints there is no clear leader. We can achieve
a better than random accuracy without having to save a trained model by using
soft feature-based methods. Looking at the curves we can see that voice and GAIT
performs best for lower memory values and with larger model sizes face biometrics
outperforms the rest.

We will see practical usages of this curve in Sect. 5.

4.3 Discussion

Comparing Figs. 13 and 14, complex decisions can be made by a CA system.
Depending on the available memory and battery level an intelligent CA system
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should be able to provide the maximum possible security by using these RPCs.
We will illustrate the use-cases highlighted in Sect. 1 with the generated Resource
Profile Curves here,

Security-First
Higher security requiring applications like Banking would require a high-security

level (say, accuracy levels over 0.9). Using the RPCs in Figs. 13 & 14 it is clear that,
in order to achieve this level of accuracy the CA system can enforce the use of Face
biometric. If unable to capture Face passively the CA system could prompt the user
to explicitly provide an authentication before allowing access.

When using an application like YouTube the security requirement is compara-
tively lower. In a scenario like this, according to the RPC in Fig. 13 the CA system
can limit power consumption by using GAIT or Soft-Face biometrics. The CA
system can limit the memory consumption by using RPC in Fig. 14 to select Voice
or GAIT.

Resource-First
Modern smartphones allow the user to select an energy saver mode, which would

activate when the battery level of the device drops below a specified level. In a
scenario like this, a CA system can operate in a lower region of the x-axis in the
energy profile curve in Fig. 13.

A mobile device has a limited amount of free memory. If the available memory
is low, CA system can use the memory profile curve in Fig. 14 to operate in a lower
region of the x-axis. By choosing modalities like Soft-Face, GAIT and Voice the
CA system can minimize the use of memory.

It is important to note that the RPCs shown here are for unimodal systems.
Multiple points in these RPCs could be fused together to achieve higher levels of
accuracy at higher resource consumption levels. There is also a trade-off between
memory and energy which can be taken advantage of based on the resource
limitations.

Context based
Based on the current context the mobile device is being used, the availability of

the modalities will change. Following two examples illustrate these scenarios.
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1. Walking while answering a call: In this scenario only voice and GAIT modalities
will be available.

2. Sitting down, scrolling through an article: In this scenario only Face and Touch
modalities will be available

In any of these scenarios, using the RPC, a CA system can find comparable
algorithms for the available modalities. The modality selection can be based upon
the security required. If the accuracy required is around 0.7, by looking at Fig. 13
we can see that there are comparable algorithms for GAIT, Face, Touch and Voice
for this accuracy level.

For an example, when trying to select a biometric modality for CA when face and
GAIT are unavailable (due to low light, sensor occlusion in a stationary use-case) the
choice will depend on the level of accuracy needed. If the level of accuracy needed
is around 0.3, the best alternative would be Soft-Face; if the accuracy requirement
is around 0.6, the best alternative would be Touch and if the accuracy requirement
is over 0.75 the only option would be Voice. This illustrates how the RPC enables
smart choices for a CA system.

Even when a biometric modality is available, depending on the usage scenario
the suitability of the biometric might vary. For an example, voice biometric could
be appropriate in an indoor quiet environment, however it might be harder to use
in a noisy outdoor environment. A fusion method taking these acquisition quality
differences into account was proposed by Sivasankaran et al. [34].

4.4 Limitations

We identified the following limitations in the generated RPCs,

• The complexity of the datasets can affect the measurement of the Resource
Profile Curves. To minimize the impact of this we chose the datasets to be
comparable to actual usage in CA for mobile devices. For a given algorithm, the
energy consumption will not vary based upon the dataset, however, the accuracy
levels will vary based on the dataset. Therefore each modality can be represented
by a band of values more completely than the current curves.

• As technology improves these curves will keep changing. However, it is clear
that the curves can only keep moving up (achieving higher accuracy) and left
(consuming lower resources). Therefore we can view these curves as a snapshot
view of the biometric modalities. For an example, by looking at the Face RPCs
in both Figs. 13 and 14 we can see that there is potential to try and reduce the
memory consumed by Face-based authentication algorithms.



Towards Wider Adoption of Continuous Authentication on Mobile Devices 259

5 Conclusions and Future Work

We draw statistically significant conclusions about perception of biometrics and
other authentication methods which shows how the perceptions have shifted over
the years. It is clear that today’s society is more accepting towards biometrics based
methods compared to 20 years ago.

We see a very positive response towards multi-level security schemes for mobile
devices which can be a welcome addition to the current main stream mobile
operating systems.

Perceptions towards Continuous Authentication systems show that most people
find it very useful and are willing to adopt CA. We also highlight key concerns and
features that would need to be addressed in a Continuous Authentication system for
mobile devices.

The two sets of RPCs generated in this work provides a new perspective towards
evaluating the suitability of biometrics for constrained environments like mobile
devices. It is important to note that these curves will keep shifting as the algorithms
and hardware improve.

One of the future work is to extend the curves into bands of values by varying
the complexity of the datasets as discussed in Sect. 5.

Another target is to use these Resource Profile Curves in an intelligent decision-
making engine to dynamically switch between biometric modalities depending on
their availability, resource availability and security requirement.

Epilog: Bob should use Continuous Authentication on his phone. Now,
whenever bob picks up his phone, it will automatically detect the motion and
capture biometric data like face image or voice sample, and use biometrics to
automatically unlock the phone. The CA will keep on checking to see if Bob is
using the phone. When Bob passes his phone to Alice, the phone detects that the
user is no longer Bob. When Alice tries to open Facebook, CA will not allow
Alice to proceed into the personal details of Bob. With the new CA system Bob
does not worry about sharing his phone freely. The CA system uses RPCs to
conserve power consumption, and therefore, Bob does not have to worry about
phone battery drain either.
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