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Preface

The 17th Workshop on Approximation and Online Algorithms (WAOA 2019) focused
on the design and analysis of algorithms for online and computationally hard problems.
Both kinds of problems have a large number of applications in a variety of fields.
WAOA 2019 took place in Munich, Germany, during September 12–13, 2019, and was
a success: it featured many interesting presentations and provided opportunity for
stimulating discussions and interactions. WAOA 2019 was part of the ALGO 2019
event that also hosted ALGOCLOUD, ALGOSENSORS, ATMOS, ESA, and IPEC.

Topics of interest for WAOA 2019 were: graph algorithms, inapproximability
results, network design, packing and covering, paradigms for the design and analysis of
approximation and online algorithms, parameterized complexity, scheduling problems,
algorithmic game theory, algorithmic trading, coloring and partitioning, competitive
analysis, computational advertising, computational finance, cuts and connectivity,
geometric problems, mechanism design, resource augmentation, and real-world
applications. In response to the call for papers, we received 38 submissions. Each
submission was reviewed by at least three referees. The submissions were mainly
judged on originality, technical quality, and relevance to the topics of the conference.
Based on the reviews, the Program Committee selected 16 papers. This volume con-
tains final revised versions of these papers as well as an invited contribution by our
invited speaker Laura Sanità. The EasyChair conference system was used to manage
the electronic submissions, the review process, the electronic Program Committee
discussions, and the collection of the final versions of the papers for the proceedings. It
made our task much easier.

We would like to thank all the authors who submitted papers to WAOA 2019 and all
attendees of WAOA 2019, including the presenters of the accepted papers. A special
thank you goes to the plenary invited speaker Laura Sanità for accepting our invitation
and giving a very interesting talk. We would also like to thank the Program Committee
members and the external reviewers for their diligent work in evaluating the submis-
sions and their contributions to the electronic discussions. Furthermore, we are grateful
to all the local organizer of ALGO 2019, Susanne Albers.

October 2019 Evripidis Bampis
Nicole Megow

The original version of the book was revised: The affiliation of the volume editor
Nicole Megow has been corrected. The correction to the book is available at https://doi.
org/10.1007/978-3-030-39479-0_17

http://dx.doi.org/10.1007/978-3-030-39479-0_17
http://dx.doi.org/10.1007/978-3-030-39479-0_17
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On the Hardness of Computing the Diameter
of a Polytope (Invited Talk)

Laura Sanità

University of Waterloo, 200 University Ave. W, Waterloo, Canada
laura.sanita@uwaterloo.ca

Abstract. The diameter of a polytope P is the maximum length of a
shortest path between a pair of vertices on the 1-skeleton of P, which is
the graph where the vertices correspond to the 0-dimensional faces of P,
and the edges are given by the 1-dimensional faces of P. Despite
decades of studies, it is still not known whether the diameter of a
d-dimensional polytope with n facets can be bounded by a polynomial
function of n and d. This is a fundamental open question in discrete
mathematics, motivated by the (still unknown) existence of a polyno-
mial pivot rule for the Simplex method for solving Linear Programs.

The diameter of a polytope has been studied from many different
perspectives, including a computational complexity point of view. In
particular, Frieze and Teng in 1994 showed that computing the diameter
of a polytope is weakly NP-hard. In this talk, I will show a strengthened
hardness result, obtained by exploiting the structure of a well-known
polytope in the optimization community: the fractional matching
polytope. Eventually, I will also show that the structure of the fractional
matching polytope can be used to derive some hardness results
concerning the performance of the Simplex method.
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Terrain-Like Graphs: PTASs for Guarding
Weakly-Visible Polygons and Terrains

Stav Ashur(B), Omrit Filtser, Matthew J. Katz, and Rachel Saban

Department of Computer Science, Ben-Gurion University of the Negev,
84105 Beer-Sheva, Israel

{stavshe,omritna}@post.bgu.ac.il, matya@cs.bgu.ac.il,

rachelfr@post.bgu.ac.il

Abstract. A graph G = (V, E) is terrain-like if one can assign a unique
integer from the range [1..|V |] to each vertex in V , such that, if both
{i, k} and {j, l} are in E, for any i < j < k < l, then so is {i, l}.
We present a local-search-based PTAS for minimum dominating set in
terrain-like graphs. Then, we observe that, besides the visibility graphs of
x-monotone terrains which are terrain-like, so are the visibility graphs of
weakly-visible polygons and weakly-visible terrains, immediately implying
a PTAS for guarding the vertices of such a polygon or terrain from its
vertices. We also present PTASs for continuously guarding the boundary
of a WV-polygon or WV-terrain, either from its vertices, or, for a WV-
terrain, from arbitrary points on the terrain. Finally, we compare between
terrain-like graphs and non-jumping graphs, and also observe that both
families admit PTASs for maximum independent set.

1 Introduction

We define a new family of graphs which we name terrain-like graphs. Let G =
(V,E) be a simple graph. We say that G is terrain-like if one can assign a
unique integer from the range [1..|V |] to each vertex in V , such that the following
property holds: If both {i, k} and {j, l} are in E, for any i < j < k < l, then so is
{i, l}. A well-known subfamily of terrain-like graphs (from which we borrowed the
name terrain-like) is the family of visibility graphs of x-monotone (1.5D) terrains.
Let T = (t1, . . . , tn) be an x-monotone polygonal line. Then, the visibility graph
of T is the graph V G(T ) = (V = {t1, . . . , tn}, E), where {ti, tj} ∈ E if and only
if ti and tj see each other, that is, the line segment connecting them does not
intersect the open region bounded from above by T (and from the sides by the
vertical lines through t1 and tn). T has the following property which is known
as the order claim [3]: For any four vertices ti, tj , tk, tl, where ti is the leftmost
among the four, tj is the second from the left, etc., if ti sees tk (i.e., {ti, tk} ∈ E)
and tj sees tl (i.e., {tj , tl} ∈ E), then ti sees tl (i.e., {ti, tl} ∈ E). Thus, V G(T )
is terrain-like (assign ti the number i, for i = 1, . . . , n).

M. J. Katz—Supported by grant 1884/16 from the Israel Science Foundation.

c© Springer Nature Switzerland AG 2020
E. Bampis and N. Megow (Eds.): WAOA 2019, LNCS 11926, pp. 1–17, 2020.
https://doi.org/10.1007/978-3-030-39479-0_1
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2 S. Ashur et al.

We describe a local-search-based PTAS for computing a minimum dominat-
ing set in a terrain-like graph. The PTAS and its proof are similar to the PTAS
and proof presented by Gibson et al. [14] for computing a minimum dominat-
ing set in the visibility graph of an x-monotone terrain, or, in other words, a
minimum guarding set for the terrain vertices (where guards are restricted to
vertices of the terrain). However, our PTAS immediately implies such a PTAS
in other subfamilies of terrain-like graphs. For example, we show that the family
of visibility graphs of polygons which are weakly visible from one of their edges
(see below) is also a subfamily of terrain-like graphs. Previously only a constant-
factor approximation algorithm for vertex guarding the vertices of such a polygon
was known [5].

From this point, the paper develops along two different paths. In the first
path we study various guarding problems, while in the second path we study
the family of terrain-like graphs and compare it with another family of graphs,
namely, non-jumping graphs [1,6,19], whose definition is similar in flavor to our
definition.

One of our major results in the first path is a PTAS for guarding a polygonal
line satisfying a condition which is much weaker than x-monotonicity. Let P =
(p1, . . . , pn) be a non-self-intersecting polygonal line, such that from every point
p on P , one can see the sky, or, in other words, from every point p on P , one can
shoot a ray that hits any horizontal line that lies above P . We present a PTAS
for continuously guarding such a polygonal line from arbitrary points on it. Our
proof is based on the proof of Friedrichs et al. [12], who presented a PTAS for
continuously guarding an x-monotone terrain from arbitrary points on it, but
some new observations are required.

A simple graph G = (V,E) is non-jumping if one can assign a unique integer
from the range [1..|V |] to each vertex in V , such that the following property
holds: If both {i, k} and {j, l} are in E, for any i < j < k < l, then so is {j, k}.
The name non-jumping was coined by Ahmed et al. [1] who studied the family of
non-jumping graphs, without realizing that this family has been studied before.
In particular, Soto and Caro [19] studied the family of graphs that admit a p-
Box-realization, focusing on the case where the boxes are intervals on the line.
This (sub)family of graphs was also studied by Catanzaro et al. [6], under the
name max point-tolerance graphs. Both Soto and Thraves Caro and Catanzaro
et al. observed that this family of graphs is equivalent to the family of non-
jumping graphs. Moreover, they, as well as Ahmed et al. showed that every
non-jumping graph can be realized as a monotone L-graph, i.e., the intersection
graph of L-frames whose corners lie on a line of slope −1, and vice versa. This
nice observation together with the local-search-based PTAS of Bandyapadhyay
et al. [2] for computing a minimum dominating set in monotone L-graphs, implies
a PTAS for computing a minimum dominating set in non-jumping graphs.

In Sect. 5 we show that despite the similarity in the definition, the two families
(i.e., terrain-like and non-jumping) are very different. In particular, we present
an infinite set of graphs which are terrain-like but not non-jumping, and an
infinite set of graphs which are non-jumping but not terrain-like. On the other
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hand, the families of, e.g., outerplanar graphs and convex bipartite graphs are
subfamilies of both non-jumping graphs and terrain-like graphs. Due to space
limitations, most of the details of this section are not included in this version.

Finally, let F be any family of graphs, which admits a local-search-based
PTAS for minimum dominating set. We observe that if the proof for the PTAS
is based on the proof scheme of Mustafa and Ray [18] and does not use the
fact that the optimal set (which is one of the parts in the constructed bipartite
graph) is minimum, then this proof can be applied verbatim to show that F
admits a local-search-based PTAS for maximum independent set. In particular,
we conclude that terrain-like graphs, as well as non-jumping graphs, admit a
PTAS for maximum independent set.

Additional (Closely) Related Work. Bhattacharya et al. [5] presented a 4-
approximation algorithm for vertex guarding the vertices of a weakly-visible poly-
gon and a 6-approximation algorithm for vertex guarding its boundary, where
a polygon P is weakly-visible if its boundary is weakly-visible from one of its
edges e, i.e., every point on P ’s boundary is seen by a point on e. Recently, by
applying these results, Bhattacharya et al. [4] obtained the first constant-factor
approximation algorithms for vertex guarding the vertices or the boundary of
a simple polygon, thus settling a conjecture of Ghosh (concerning the former
version) from 1987. By an inapproximability result of Eidenbenz et al. [10], the
latter version does not admit a PTAS.

As for 1.5D terrain guarding, following a series of constant-factor approxi-
mation algorithms [3,8,11,16], Gibson et al. [14] presented a local-search-based
PTAS for vertex guarding the vertices of a 1.5D terrain. Their proof is based
on the proof scheme of Mustafa and Ray [18]; see also [7]. Friedrichs et al. [12]
considered the continuous 1.5D terrain guarding problem, where the goal is to
guard the entire terrain either from vertices or from arbitrary points on the
terrain. They presented PTASs for these problems, by discretizing them and
applying the PTAS from [14]. Finally, King and Krohn [17] proved that the deci-
sion version of the 1.5D terrain guarding problem is NP-hard, by a reduction
from PLANAR 3-SAT.

Contribution. We see our main contribution in (i) defining the family of terrain-
like graphs and identifying the subfamilies of WV-polygons and WV-terrains,
(ii) adapting the PTASs of Gibson et al. [14] and of Friedrichs et al. [12] to
terrain-like graphs and to WV-polygons and WV-terrains, respectively, thus sig-
nificantly expanding the class of polygons and polygonal lines that are known to
admit PTASs for important versions of the art-gallery problem, (iii) observing
that the proof for a local-search-based PTAS for minimum dominating set often
constitutes a proof for such a PTAS for maximum independent set, as in the
case of terrain-like graphs and non-jumping graphs, (iv) presenting an infinite
collection of terrain-like graphs, which are not non-jumping, and vice versa.
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2 A PTAS for Minimum Dominating Set in Terrain-Like
Graphs

Let G = (V,E) be a terrain-like graph with n vertices. A minimum dominating
set in G is a minimum-cardinality subset Q of V , such that for each vertex v ∈ V ,
either v ∈ Q or v is adjacent to a vertex u ∈ Q (i.e., (u, v) ∈ E). We present a
local-search-based PTAS for computing a minimum dominating set in G, i.e., we
present a polynomial-time algorithm that computes a dominating set B in G of
size O(1+ε) ·OPT, for any constant ε > 0, where OPT is the size of a minimum
dominating set. We prove the bound on the size of B by adapting the proof of
Gibson et al. [14], who presented a PTAS for vertex guarding the vertices of
an x-monotone (1.5D) terrain, to our more general and abstract setting. The
proof of Gibson et al. [14], in turn, is based on the proof scheme of Mustafa and
Ray [18], which is used to show that a local-search algorithm is a PTAS (see
also [7]).

2.1 Algorithm

Given ε > 0, set k = α
ε2 , for an appropriate constant α > 0.

1. Q ← V .
2. Determine whether there exist subsets S ⊆ Q of size at most k and S′ ⊆

(V \ Q) of size at most |S| − 1, such that (Q \ S) ∪ S′ is a dominating set in
G.

3. If such S and S′ exist, set Q ← (Q\S)∪S′, and go back to Step 2. Otherwise,
return Q.

As usual, the running time of the algorithm is O(nO(1/ε2)).

2.2 Analysis

Assume that G’s vertices were assigned unique indices between 1 and n, such
that, for any i < j < k < l, if (i, k) and (j, l) are in E, then so is (i, l).

Let R (the red set) be a minimum dominating set and let B (the blue set) be
the dominating set obtained by the algorithm above. We say that r dominates
v and write r dom v, for r ∈ R and v ∈ V , if either r = v or (r, v) ∈ E. We need
to prove that |B| ≤ (1 + ε) · |R|. We may assume that R ∩ B = ∅; otherwise, we
prove that |B′| ≤ (1 + ε) · |R′|, where R′ = R \ B and B′ = B \ R (and both R′

and B′ dominate V \N [R∩B]). We construct a bipartite graph H = (R∪B,F ),
and prove that (i) H is planar and (ii) H satisfies the locality condition, that is,
for any vertex v ∈ V , there exist vertices r ∈ R and b ∈ B, such that r dom v,
b dom v, and (r, b) ∈ F . By the proof scheme of Mustafa and Ray [18], this
implies that |B| ≤ (1 + ε) · |R|.

For two vertices u, v ∈ V , we say that u precedes v (or v succeeds u) if u < v.
For a vertex w ∈ V , if there exists a vertex in R ∪ B that dominates w and
precedes it, then let λ(w) be the first such vertex; see Fig. 1. Similarly, if there
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1 2 3 4 5 6 7 8 9 10

Fig. 1. The vertices in R drawn as red squares and the vertices in B drawn as blue
circles; λ(10) = 1, λ(9) = 1, λ(8) = 2, etc. (Color figure online)

exists a vertex in R ∪ B that dominates w and succeeds it, then let ρ(w) be the
last such vertex. Notice that since R ∩ B = ∅ at least one of the two exists.

Let A1 = { ̂λ(w)w | w a vertex of V for which λ(w) is defined}. Let ̂λ(x)x
and ̂λ(y)y be two arcs in A1. Then, by definition, x 	= y. We say that the arcs
are crossing if either λ(x) < λ(y) < x < y or λ(y) < λ(x) < y < x. Additionally,
let x be a vertex in V . If there exists an arc ûv ∈ A1, such that u < x < v, then
let ̂λ(w)w be the arc among these arcs in which w is the smallest; ̂λ(w)w is the
arc of A1 associated with x.

Claim 1. The arcs in A1 are non-crossing.

Proof. Let ̂λ(x)x and ̂λ(y)y be two arcs in A1, such that λ(x) 	= λ(y). If λ(x) <
λ(y), then it is impossible that λ(x) < λ(y) < x < y, since this would imply
that (λ(x), y) ∈ E, which is impossible by the definition of λ(y). Similarly, if
λ(y) < λ(x), then it is impossible that λ(y) < λ(x) < y < x.

Constructing H. For each vertex x ∈ R ∪ B, do the following. If λ(x) is defined
and color(λ(x)) 	= color(x) (i.e., one is red and the other is blue), add the edge
(λ(x), x) to F1. If x has an arc of A1 associated with it, then let ̂λ(w)w be
this arc. Now, if color(λ(w)) 	= color(x), add the edge (λ(w), x) to F1 (unless,
̂λ(w)x ∈ A1, i.e., λ(w) = λ(x), and therefore it was already added to F1). See
Fig. 2.

H is Planar. We now prove that the bipartite graph H1 = (R ∪ B,F1) is
planar, by describing a planar embedding of H1 or, more precisely, of the graph
H1 = (V,A1 ∪ F1). We map the vertices in V to equally-spaced points on the
x-axis and the edges in A1 ∪ F1 to arcs between pairs of points, see Fig. 2. We
claim that the resulting set of arcs is non-crossing, i.e., we have obtained a planar
embedding of H1 and therefore also of H1. This follows from Claim 1 and by
observing that the edges in F1 \ A1 can be partitioned into a collection of ‘fans’,
where each fan is associated with an arc ̂λ(w)w of A1 and lies below it.

We now define the sets A2 and F2 by replacing λ with ρ, that is, A2 =
{ ̂wρ(w) | w a vertex of V for which ρ(w) is defined} and F2 is defined w.r.t. A2.
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1 2 3 4 5 6 7 8 9 10

Fig. 2. Referring to Fig. 1. The arcs in A1 are drawn in non-dashed black and gray,
where the former (i.e., (1, 10) and (2, 7)) are added as edges to F1. The other edges
added to F1 are drawn in dashed black. The ‘fan’ associated with the edge (2, 7) consists
of the edges (2, 3) and (2, 6).

We then observe that the bipartite graph H2 = (R∪B,F2) is planar, by describ-
ing a planar embedding of H2 = (V,A2∪F2). Moreover, we claim that the graph
H1 ∪H2 is planar, since we can embed the graph H1 ∪H2 by drawing the edges
of H1 above the x-axis and the edges of H2 below the x-axis.

Finally, we define the set F3 as follows. For each vertex x 	∈ R ∪ B, if both
λ(x) and ρ(x) are defined and color(λ(x)) 	= color(ρ(x)), then add the edge
(λ(x), ρ(x)) to F3. The final graph H = (R ∪ B,F ) where F = F1 ∪ F2 ∪ F3 is
planar, since H1 ∪ H2 is planar and each edge (λ(x), ρ(x)) ∈ F3 can be drawn
as the union of the arcs ̂λ(x)x ∈ A1 and ̂xρ(x) ∈ A2 (as x 	∈ R ∪ B).

H Satisfies the Locality Condition

Lemma 1. For any vertex x ∈ V , there exist vertices r ∈ R and b ∈ B, such
that r dom x, b dom x, and (r, b) ∈ F .

Proof. Let x be a vertex of V . We distinguish between two cases:
x 	∈ R∪B: If both λ(x) and ρ(x) are defined and color(λ(x)) 	= color(ρ(x)), then
(λ(x), ρ(x)) ∈ F3 and the condition holds. If both λ(x) and ρ(x) are defined
but color(λ(x)) = color(ρ(x)), then there exists a vertex w ∈ R ∪ B, such
that w dom x and color(w) 	= color(λ(x)), color(ρ(x)). Assume, w.l.o.g., that
λ(x) < w < x and let z be the first such vertex. Let ̂λ(y)y be the arc in A1

associated with z. Then λ(x) ≤ λ(y) < z < y ≤ x. Notice that λ(y) dom x,
since, if y 	= x, then by the terrain property (applied to λ(y), z, y, x) λ(y) dom x.
Now, since z is the “first such vertex”, color(z) 	= color(λ(y)), so the edge
(λ(y), z) ∈ F1 and the condition holds. If only λ(x) is defined, then we proceed
as above, that is, we consider the first vertex z ∈ R ∪ B, such that z dom x and
color(z) 	= color(λ(x)); in this case, λ(x) < z < x.

x ∈ R ∪ B: If λ(x) is defined and color(x) 	= color(λ(x)), then (λ(x), x) ∈ F1

and the condition holds. Similarly, if ρ(x) is defined and color(x) 	= color(ρ(x)),
then (x, ρ(x)) ∈ F2 and the condition holds. Otherwise, we conclude w.l.o.g.
that there exists a vertex w ∈ R ∪ B, such that w dom x and λ(x) < w < x and
color(w) 	= color(λ(x)). Let z be the first such vertex and proceed exactly as in
the previous case.
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A More General Version of the Problem. Consider the following slightly more
general version of the minimum dominating set problem, which is needed in
Sect. 4. Given a terrain-like graph G = (V,E), and two subsets C and W of V ,
where C is the set of candidate vertices and W is the ground set of vertices, find
a minimum-cardinality subset Q of C, such that Q dominates W . It is easy to
see that the PTAS above can be easily adapted to this general version. We thus
obtain:

Theorem 1. There exists a PTAS for (general) minimum dominating set in
terrain-like graphs. That is, for any ε > 0, there is a polynomial-time algorithm
which, given a terrain-like graph G = (V,E) and two sets C,W ⊆ V , returns
Q ⊆ C such that Q dominates W and |Q| ≤ (1+ ε) ·OPT ; here OPT is the size
of a minimum subset of C that dominates W .

2.3 Maximum Independent Set

Let G = (V,E) be a (simple) graph (not necessarily terrain-like) with n vertices.
Consider the following local-search algorithm for computing an independent set
in G.

Given ε > 0, set k = α
ε2 , for an appropriate constant α > 0.

1. Q ← ∅.
2. Determine whether there exist subsets S ⊆ Q of size at most k − 1 and

S′ ⊆ (V \ Q) of size at least |S| + 1 and at most k, such that (Q \ S) ∪ S′ is
an independent set in G.

3. If such S and S′ exist, set Q ← (Q\S)∪S′, and go back to Step 2. Otherwise,
return Q.

Let RI be a maximum independent set in G and let BI = Q be the inde-
pendent set obtained by the algorithm above. Then BI is maximal, i.e., for any
vertex v ∈ (V \ BI), the set BI ∪ {v} is not independent. So, both RI and
BI are also dominating sets in G, since any maximal independent set is also a
dominating set.

Now, assume that G belongs to some family of graphs (e.g., terrain-like
graphs), which admits a PTAS for minimum dominating set. More precisely,
assume that the algorithm of Sect. 2.1 computes a (1 + ε)-approximation of a
minimum dominating set RD in G, and that the proof for this is based on the
proof scheme of Mustafa and Ray [18] and does not use the fact that RD is mini-
mum. Then, this proof can be applied verbatim to show that |BI | ≥ (1−ε) · |RI |.
In particular, we conclude that terrain-like graphs, as well as non-jumping graphs,
admit a PTAS for maximum independent set. We may also conclude, for exam-
ple, that disk graphs admit a PTAS for maximum independent set, which is
of course already known even for pseudo-disks (see [7]), based on the PTAS of
Gibson and Pirwani [15] for minimum dominating set in disk graphs.
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Remark 1. If G is a non-jumping graph given by a valid realization, then one can
compute a maximum independent set in G in polynomial time [6,9]. Similarly,
if G is a terrain-like graph given by a valid realization, then one can compute a
maximum independent set in G in polynomial time, by adapting the algorithm
of Ghosh et al. [13] for computing a maximum hidden vertex set in a polygon
weakly visible from a convex edge.

3 Guarding the Vertices

In this section we consider several interesting families of polygons or polygonal
chains. For each of these families, we prove that the visibility graph V G(P ) of
any member P of the family is terrain-like, where V G(P ) is the graph whose
vertices correspond to the vertices of P and whose edges correspond to the pairs
of vertices of P that see each other. But this immediately implies that we have a
PTAS for guarding the vertices of P from its vertices, since any vertex guarding
set for P ’s vertices corresponds to a dominating set in V G(P ) and vice versa.

3.1 x-monotone (1.5D) Terrains

Let T = (t1, . . . , tn) be an x-monotone polygonal chain. Then, T has the fol-
lowing property which is known as the order claim [3]: For any four vertices
ti, tj , tk, tl, where ti is the leftmost among the four, tj is the second from the left,
etc., if ti sees tk and tj sees tl, then ti sees tl. Thus, V G(T ) is terrain-like (assign
ti the number i, for i = 1, . . . , n), and we have a PTAS for vertex guarding
T ’s vertices. Of course, this is not surprising, since such a PTAS was presented
several years ago by Gibson et al. [14], and, as mentioned, our proof in Sect. 2 is
obtained by adapting their proof for their PTAS.

The next two families of polygons are more interesting, in the sense that
a PTAS for vertex guarding the vertices of a member of one of them was not
previously known.

3.2 WV-polygons

Let P be a polygon, which is weakly visible from one of its edges e = uv. We first
assume that the angles at u and v are both convex. In this case, P \e is necessarily
contained in one of the open half-planes defined by the line containing e. Without
loss of generality, we assume that e is contained in the x-axis, where u is to the
left of v, and that P \ e is contained in the open half plane above the x-axis. We
now prove that (under the convexity assumption) V G(P ) is terrain-like.

Let v1, . . . , vn be the vertices of P , in clockwise order, beginning at v1 = u
and ending at vn = v. We assign the number i to vertex vi, for i = 1, . . . , n. It
remains to prove that the required property holds for this numbering. We prove
a more general property. For two points a and b on P ’s boundary, we say that
a precedes b (or b succeeds a) and write a ≺ b (or b � a), if when traversing P ’s
boundary clockwise from u, one reaches a before b.
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u v

a

b

c

d

o

e

Fig. 3. A polygon weakly visible from e = (u, v). The order claim: a ≺ b ≺ c ≺ d, a
sees c, b sees d =⇒ a sees d.

Claim 2 (The (clockwise) order claim for ‘convex’ WV-polygons). Let
a, b, c, d be four vertices (or points on P ’s boundary) such that a ≺ b ≺ c ≺ d,
and assume that a sees c and b sees d. Then a must also see d.

Proof. If a does not see d, then either a or d is not visible from a point on e, see
Fig. 3. Indeed, let o denote the intersection point of ac and bd. If the ray from
a in the direction of d hits P ’s boundary before reaching d, then P ’s boundary
enters and leaves the triangle Δaod through the edge ad without intersecting
the edges ao and od. If this happens before the boundary ‘reaches’ a (advancing
clockwise from u), then a cannot be seen from e, and if this happens before
the boundary ‘reaches’ d (advancing counterclockwise from v), then d cannot be
seen from e.

We have shown that V G(P ) is terrain-like, and therefore we have a PTAS
for vertex guarding its vertices. We now show that the convexity assumption is
not necessary, i.e., we still have such a PTAS, even if the angles at u and v are
concave.

a b

wa

wb

w

u v

P ′

Fig. 4. Removing the convexity assumption.

Removing the Convexity Assumption. We show how to remove the assumption
that the angles at u and at v are convex. Assume, e.g., that the angle at u is
concave, and let a be the first point on P ’s boundary (moving clockwise from
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u) that lies on the x-axis; see Fig. 4. Then, every point in the open portion of
the boundary between u and a is visible from u and is not visible from any
other point on the edge e = uv. Moreover, for any vertex w in this portion of
P ’s boundary, if w sees some point p on P ’s boundary above the x-axis, then
so does u. Indeed, since P is weakly-visible from e, there exists a point x ∈ e
that sees p. In other words, xp is contained in P , as well as uw and wp. Thus,
the quadrilateral uwpx does not contain points of P ’s boundary in its interior,
and since up is contained in it, we conclude that u sees p. Therefore, we may
assume that an optimal guarding set does not include a vertex from this portion.
Moreover, we may assume that the size of an optimal guarding set is greater than
some appropriate constant, since otherwise we can find such a set in polynomial
time. Let wa be the first vertex following a. We place a guard at u and replace
the portion of P ’s boundary between u and wa by the edge uwa. Similarly, if
the angle at v is concave, we define the point b and the vertex wb (by moving
counterclockwise from v), place a guard at v, and replace the portion of P ’s
boundary between v and wb by the edge vwb. Finally, we apply our local search
algorithm to the resulting polygon P ′, after adjusting k so that together with u
and v we still get a (1 + ε)-approximation of an optimal guarding set for P .

3.3 WV-terrains: Removing the Monotonicity Assumption

Let T = (t1, . . . , tn) be any simple polygonal chain. We say that ti and tj see each
other, where i < j, if either j = i + 1, or the directed line segment titj exits and
enters T from the left and does not intersect T (except at ti and tj), assuming T
is being traversed from t1 to tn. Let V G(T ) be the visibility graph of T . Then, if
V G(T ) happens to be terrain-like, then we have a PTAS for vertex guarding T ’s
vertices. This observation is not very useful, since, in general, we do not have
an efficient algorithm to determine whether V G(T ) is terrain-like. However, we
define below a new family of polygonal chains, which is much more general than
the family of x-monotone polygonal chains and which has the property that the
visibility graphs of its members are terrain-like.

p

Fig. 5. A WV-terrain.

Definition 1. A simple polygonal chain T is a WV-terrain, if one can see the
sky from every point on T , or, formally, if from every point p on T one can
shoot a ray, leaving T to the left, that hits a horizontal line which lies above T
without intersecting T (except at p); see Fig. 5.
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Observation. The visibility graph of a WV-terrain is terrain-like.

Proof. Let T = (t1, . . . , tn) be a WV-terrain and let V G(T ) be its visibility
graph. Let l be any horizontal line lying above T . Since T is a WV-terrain, there
exist points a and b on l, where a is to the left of b, such that, one can shoot a
ray that hits ab and does not intersect T , from every point on T . Now, consider
the polygon P = (a, t1, . . . , tn, b). P is a ‘convex’ WV-polygon and therefore, by
Claim 2, P satisfies the order claim. Finally, since T is contained in P ’s boundary,
we conclude that T also satisfies the order claim.

We will need the following slightly more general statement, whose proof at
this point is straight forward.

Theorem 2. Let T be a WV-terrain, and let C and W be two finite sets of
points on T . Then, the visibility graph of C ∪W with respect to T is terrain-like,
and thus there exists a PTAS for guarding the points in W by points in C.

4 Guarding the Boundary

Friedrichs et al. [12] considered two versions of the 1.5D-terrain guarding prob-
lem, where the goal is to guard the entire terrain. In the first, the semi-continuous
version, guards may lie only at vertices, while in the second, the continuous ver-
sion, guards may lie anywhere on the terrain. For both versions, they showed
how one can use a PTAS for vertex guarding the vertices of a 1.5D terrain, to
obtain a PTAS for guarding the entire terrain. In this section, we provide simi-
lar results, both for WV-polygons and WV-terrains in the semi-continuous case,
and for WV-terrains in the continuous case. More precisely, we show that the
x-monotonicity property of 1.5D terrains is not necessary for their PTASs.

4.1 The Semi-continuous Version

Let P be a polygon which is weakly visible from one of its edges e = uv. As
shown in the previous section, u and v together see the portion of P ’s boundary
from wa to wb (moving counterclockwise from wa), see Fig. 4. Notice that the
portion of P ’s boundary from wa to wb, moving clockwise from wa, is a WV-
terrain T (wa, wb). Therefore, given a PTAS for semi-continuously guarding a
WV-terrain, we can obtain a PTAS for semi-continuously guarding P , by placing
guards at u and v and removing from the witness set computed for T (wa, wb)
(see below) the witnesses that are already seen by u or v. We thus focus on
semi-continuously guarding a WV-terrain.

Let T be a WV-terrain and let V be its set of vertices. We denote by
OPT (V, T ) the minimum size of a set Q ⊆ V that guards T , i.e., every point p
on T is seen by at least one vertex in Q. The underlying idea is to construct a
polynomial-size set W of points on T , such that for any set Q ⊆ V it holds that
Q guards W if and only if Q guards the entire terrain T . The set W is called a
witness set of T . Then, we apply the PTAS of Theorem 2 to T , V and W , to
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obtain a set Q ⊆ V , such that Q guards W and |Q| ≤ (1+ε) ·OPT (V,W ), where
OPT (V,W ) is the size of an optimal solution for guarding W with vertices from
V . Since W is a witness set of T , the set Q guards the entire terrain T . Moreover,
OPT (V,W ) ≤ OPT (V, T ), and therefore |Q| ≤ (1 + ε) · OPT (V, T ).

Constructing a Witness Set. Let v ∈ V be a vertex of T . Consider the set of
(maximal) pieces of T that are visible from v. This set consists of at most n visible
pieces of v. Let W ′(v) be the set of endpoints of v’s visible pieces (see Fig. 6).

v

Fig. 6. The vertex v and its three visible pieces and their endpoints.

Set B =
⋃

v∈V W ′(v), and let b0, b1, . . . , bk be the points of B, sorted by their
order along T . The points of B divide T into k pieces (since the extreme vertices
of T are in B). Denote by Ti the piece between bi−1 and bi, for i = 1, . . . , k,
and let pi be any point in the interior of Ti (i.e. pi ∈ Ti \ {bi−1, bi}). Now, set
W (V ) = {p1, . . . , pk}.

Claim 3. W (V ) is a witness set for T .

Proof. Clearly, |W (V )| = O(n2), and any set Q ⊆ V that guards T also guards
W (V ). We need to show that if Q guards W (V ), then it also guards T .

Let g ∈ Q and pi ∈ W (V ) such that g sees pi. Notice that pi belongs to
a visible piece of g whose endpoints are in W ′(g). Since pi is not an endpoint,
this visible piece must contain Ti (otherwise, one of the endpoints in W ′(g) is
between bi−1 and bi). Therefore, g sees the entire piece Ti. Since for each point
pi ∈ W (V ), there exists a guard in Q that sees it, we conclude that Q guards
the set of pieces {T1, . . . , Tk}, whose union is exactly T .

4.2 The Continuous Version

Recall that in the continuous case, guards may lie anywhere on the polygon’s
boundary or the terrain. This forces us to restrict our discussion to WV-terrains,
since the order claim for WV-polygons is no longer true, once we include the
‘seeing’ edge uv, see Fig. 7.

We now describe a PTAS based on Theorem 2 for continuously guarding a
WV-terrain. Since, after removing the open edge uv from the boundary of a
WV-polygon, we remain with a WV-terrain (assuming the angles at u and v are
convex), we can also use the PTAS for continuously guarding the boundary of a
WV-polygon, where it is forbidden to place guards on the open edge uv.
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u v

b
c

d

p

fa

Fig. 7. A point p on the seeing edge uv, and points a ≺ b ≺ c ≺ d ≺ f . If c ≺ p, the
order claim breaks because a sees c, b sees p, but a does not see p. If p ≺ c, the claim
breaks because p sees d, c sees f , but p does not see f .

Given a WV-terrain T and a (possibly unbounded) set X of points on T , let
OPT (X,T ) be the minimum size of a set Q ⊆ X that guards T , i.e., every point p
on T is seen by at least one guard in Q. Now, the idea is to construct a polynomial-
size set C of terrain points (which will contain V ), such that OPT (C, T ) =
OPT (T, T ). We call C a candidate set of T . Then, we consider a ‘new’ WV-
terrain, T ′, which is obtained from T by adding the points in C \V to the vertex
set of T . Clearly, OPT (T, T ) = OPT (C, T ) = OPT (V ′, T ′), where V ′ = C is
the vertex set of T ′. Therefore, by applying the semi-continuous guarding PTAS
to T ′, we obtain a set of guards Q for T , such that |Q| ≤ (1 + ε) · OPT (T, T ),
as required.

As our candidate set, we take the set C = V ∪ W (V ), where W (V ) is as
above. Notice that when applying the semi-continuous guarding PTAS to T ′, we
compute a new different witness set W (V ′), for the vertex set V ′ of T ′.

Lemma 2. OPT (C, T ) = OPT (T, T ).

Proof. Let G ⊆ T be a guarding set for T , such that |G| = OPT (T, T ) and
G 	⊆ C. We show that for any guard g ∈ G \ C, there exists a point c ∈ C such
that (G \ {g}) ∪ {c} is still a guarding set for T . Thus, by replacing each of the
guards in G \ C by an appropriate point of C, we obtain a guarding set G′ ⊆ C
for T of size OPT (T, T ).

Let g be a guard in G \ C. Let cl and cr be the points in C just before g and
just after g, respectively (by the order along T ). Since V ⊆ C and g /∈ C, both
cl and cr exist. Moreover, g, cl and cr lie on the same edge of T . We show below
that either (G \ {g}) ∪ {cl} or (G \ {g}) ∪ {cr} is a guarding set for T .

We say that g is necessary for an edge e of T , if the set G \ {g} does not see
e completely. Clearly, there exists at least one edge e for which g is necessary.

Assume first that for each edge e for which g is necessary, g sees the entire
edge e. Let e = (vi, vi+1) be such an edge. Then, vi sees g and thus the visible
piece of vi that includes g must also include cl, which means that cl sees vi.
Similarly, we conclude that cl sees vi+1. Now, since cl sees both vi and vi+1, it
sees the entire edge e. So, in this case, (G \ {g}) ∪ {cl} is a guarding set for T .
Symmetrically, cr sees the entire edge e, so (G \ {g}) ∪ {cr} is also a guarding
set for T .
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Now, assume there is at least one edge for which g is necessary but g does
not see the entire edge. Let e = (vi, vi+1) be such an edge, and let vi ≺ p ≺ vi+1

be a point that is seen by g and vi ≺ p′ ≺ vi+1 be a point that is not seen by g.
Moreover, let g′ ∈ G be a guard that sees the point p′. Clearly, g is not on e, so
assume, without loss of generality, that g ≺ vi. We show that (G \ {g}) ∪ {cl} is
a guarding set for T . (If vi+1 ≺ g, we show that (G \ {g}) ∪ {cr} is a guarding
set for T .)

Let q be a point that is seen by g. If q is on the same edge as g (and cl and
cr), then cl clearly sees q. If q is not on the same edge as g and succeeds cr, then,
by the order claim (applied to cl, g, cr, q), cl sees q, see Fig. 8. The rest of the
proof is devoted to the case where q is not on the same edge as g and precedes
cl. We show that in this case q is also seen by g′.

Observe first that g′ necessarily succeeds vi+1, i.e., vi+1 ≺ g′. This is true,
since if g′ is on vivi+1, then g′ sees the entire edge e, which implies that g is not
necessary for e—a contradiction. Assume, therefore, that g′ ≺ vi. Since both g
and g′ see a point between vi and vi+1, and vi sees vi+1, we conclude, by the
order claim, that both g and g′ see vi+1. This means that g sees pvi+1 and g′

sees p′vi+1. Since g does not see p′, we have p′ ≺ p, but then pvi+1 ⊆ p′vi+1,
which again implies that g is not necessary for e—a contradiction.

Fig. 8. If q is on g’s edge or on any subsequent edge, g sees q =⇒ cl sees q. If q is on
any edge preceding g’s edge, g sees q =⇒ g′ sees q.

Hence, we have g ≺ vi ≺ vi+1 ≺ g′. Next, we observe that cl sees g′. Indeed,
g sees vi+1 (because g sees p and vi sees vi+1) and vi sees g′ (because vi sees
vi+1 and p′ sees g′), so g sees g′ (see Fig. 8). Moreover, since cl sees cr and g sees
g′, cl sees g′.

Finally, since q sees g and cl sees g′, we conclude that q is also seen by g′.
Thus, we can replace g with cl and remain with a guarding set for T .

5 Terrain-Like vs. Non-jumping

We slightly rephrase the definitions given above for non-jumping graphs and
terrain-like graphs. Let G = (V,E) be a graph with n vertices. A labeling of (the
vertices of) G is an injective function π : V → [n]. We say that π is a non-jumping
labeling of G if for any four vertices a, b, c, d such that π[a] < π[b] < π[c] < π[d],
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if both {a, c} and {b, d} are in E, then so is {b, c}. The graph G is non-jumping
if there exists a non-jumping labeling of G. Similarly, π is a terrain-like labeling
of G if for any four vertices a, b, c, d such that π[a] < π[b] < π[c] < π[d], if both
{a, c} and {b, d} are in E, then so is {a, d}, and G is terrain-like if there exists a
terrain-like labeling of G. Denote by FNJ the family of non-jumping graphs and
by FTL the family of terrain-like graphs.

Several well-known graph families, such as outerplanar graphs, convex bipar-
tite graphs, and complete graphs, are subfamilies of both FNJ and FTL. In this
section we investigate the relation between these two graph families, i.e., FNJ

and FTL. First, we present a natural infinite family of graphs which are in FTL

but not in FNJ, and give a short and simple proof for it. Moreover, the smallest
member of this family is a planar graph, which means that there exist planar
graphs which cannot be realized as monotone L-graphs (as is also shown in [6]).
Then, we present some basic properties of the terrain-like labeling function, and
use them to prove that there exists an infinite family of graphs that are in FNJ

but not in FTL. Finally, we present a family of graphs which are not in FTL∪FNJ.

Theorem 3. FTL 	⊆ FNJ.

Proof. Let Kn = (V = {v1, v2, . . . , vn}, E) be the complete graph on n vertices.
For n ≥ 6, let K−3

n = (V,E \ {e1, e2, e3}), where e1, e2, e3 are any three pairwise-
disjoint edges in E. We show that for any n ≥ 6, K−3

n ∈ FTL \ FNJ. Assume
w.l.o.g. that e1 = {v1, v2}, e2 = {v3, v4}, and e3 = {v5, v6}.
K−3

n ∈ FTL: Consider the labeling π[vi] = i. For any four vertices vi1 , vi2 , vi3 , vi4

such that i1 < i2 < i3 < i4, we have {vi1 , vi4} ∈ E since i4 − i1 ≥ 3, and thus π
is a terrain-like labeling.
K−3

n /∈ FNJ: Assume by contradiction that K−3
n ∈ FNJ, then there exists a non-

jumping labeling π of K−3
n . Assume w.l.o.g that π[v1] < π[v2]. We claim that

either π[v1] = 1 or π[v2] = n. Indeed, assume that π[vi] = 1 for some i 	= 1
and π[vj ] = n for some j 	= 2. Notice that since e1, e2, e3 are pairwise disjoint,
{vi, v2} and {v1, vj} are edges of the graph. But {v1, v2} is not an edge of the
graph, so π is not a non-jumping labeling w.r.t. vi, v1, v2, vj—a contradiction.
By symmetry, the above claim holds also for v3, v4 and for v5, v6, but then π is
not an injective function.

As a corollary, we get that not all planar graphs are non-jumping. Indeed, it
is easy to verify that K−3

6 is planar.

Some Properties of Labeling Functions. In order to prove the opposite direction,
i.e., that FNJ 	⊆ FTL, we need to reveal some of the properties of terrain-like and
non-jumping labeling functions. The properties and their proofs can be found in
the full version of this paper.

Theorem 4. FNJ 	⊆ FTL.

Proof. Let C6 be the cycle graph with vertex set V = {v1, v2, . . . , v6}, and Pn

the path graph with vertex set U = {u1, u2, . . . , un}, n ≥ 2. Consider the graph
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v1 v4 v3v2v6 v5u1 un

v1

v4

v3

v2v6

v5

u1

un

Fig. 9. Left: The graph G. Right: A non-jumping labeling of G, i.e., π[v6] = 1, π[v2] =
2, π[v1] = 3, . . . , π[v5] = n + 6.

G = (V ∪U,E), where E = E(C6)∪E(Pn)∪{{v1, u1}, {v4, un}}. In other words,
G contains an induced cycle on 6 vertices v1, v2, . . . , v6, and an induced path on
n + 2 vertices v1, u1, u2, . . . , un, v4; see Fig. 9 (left).

Figure 9 (right) shows a non-jumping labeling of G, so G is in FNJ. The rest
of the proof, in which we show that G is not in FTL, can be found in the full
version of this paper.

Finally, does every graph belong either to FTL or to FNJ? The answer is
clearly no, but it would be nice to see a concrete and simple example. In the full
version of this paper, we present an infinite family of graphs which are neither
in FTL nor in FNJ.
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Abstract. We improve the lower bound on the asymptotic competitive
ratio of any online algorithm for bin packing to above 1.54278.

We demonstrate for the first time the advantage of branching and the
applicability of full adaptivity in the design of lower bounds for the classic
online bin packing problem. We apply a new method for weight based
analysis, which is usually applied only in proofs of upper bounds. The
values of previous lower bounds were approximately 1.5401 and 1.5403.

1 Introduction

The bin packing problem [13,20] is a well-studied combinatorial optimization
problem with origins in data storage and cutting stock. The input consists of
items of rational sizes in (0, 1], where the goal is to split or pack them into
partitions called bins, such that the total size of items for every bin cannot exceed
1. The online bin packing problem [9] is its variant where items are presented
one by one, and the algorithm assigns each item to a bin before it can see the
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Hungarian grant EFOP-3.6.2-16-2017-00015 and by the National Research, Develop-
ment and Innovation Office of Hungary (NKFIH), grant no. SNN 129178. Gy. Dósa
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next item. This online bin packing is a core problem in online computation and
in competitive analysis.

For an algorithm A and an input I, let A(I) be the cost (number of bins) used
by A for I. The algorithm A can be an online or offline algorithm, and it can also
be an optimal offline algorithm OPT. The absolute competitive ratio of algorithm
A for input I is the ratio between A(I) and OPT (I). The absolute competitive
ratio of A is the worst-case (or supremum) absolute competitive ratio over all
inputs. Given an integer N , we can consider the worst-case absolute competitive
ratio over inputs where OPT (I) is not smaller than N . Taking this sequence and
letting N grow to infinity, the limit is the asymptotic competitive ratio of A.
This measure is the standard one for analysis of the bin packing problem, and
it is considered to be more meaningful than the absolute ratio (which is affected
by very small inputs).

The current best online algorithm with respect to the asymptotic competitive
ratio has an asymptotic competitive ratio no larger than 1.57829 [4], which was
found recently by development of new methods of analysis. Previous results were
achieved via a sequence of improvements [12,14–16,18,19,22]. In this work, we
consider the other standard aspect of the online problem, namely, of establishing
lower bounds on the asymptotic competitive ratio that can be achieved by online
algorithms.

The first lower bound on the asymptotic competitive ratio was found by
Yao [22], and it uses an input with at most three types of items: 1

7 + ε, 1
3 + ε,

and 1
2 + ε (where ε > 0 is sufficiently small). For this input, if the entire input

is presented, every bin of an optimal solution has one item of each type (and
otherwise there are larger numbers of items in a bin, but all bins are still packed
identically). It is possible to start the sequence with smaller items, for example,
it can be started with 1

1807 + ε and then 1
43 + ε, which increases the resulting

bound. This was discovered by Brown and Liang (independently) [8,17], who
showed a lower bound of 1.53635. Van Vliet [21] found an interesting method of
analysis and showed that the same approach (the above sequence with additional
items) gives in fact a lower bound of 1.5401474. Finally, Balogh, Békési, and
Galambos [5] showed that the greedy sequence above is actually not the best
one among sequences with batches of identical items, and proved a lower bound
of 248/161 ≈ 1.5403726 (see also [6] for an alternative proof). Their sequence
starts with decreasing powers of 1

7 plus epsilon (it can be started with items
complementing the other items to 1 but it does not change the bound), and the
items following the items of size 1

49 + ε are exactly those used by Yao [22]. This
result of [5] is the previously best known lower bound.

One drawback of the previous lower bounds is that while the exact input was
not determined in advance, the set of sizes used for it was determined prior to the
action of the algorithm by the input provider and it was known to the algorithm.
Moreover, for classic bin packing, in all previously designed lower bound inputs,
sizes of items were slightly larger than a reciprocal of an integer, and optimal
solutions consisted of bins with identical packing patterns. The possible item
sizes and numbers of items were known to the algorithm, but the stopping point
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of the input was unknown, and it was based on the action of the algorithm. It
seemed unlikely that such examples are indeed the worst-case examples.

Given an input sequence, the online algorithm should perform well on every
input prefix while the optimal solution should be optimal only at termination.
This sounds weak, but in decades of research this is the unique shortcoming of
online algorithms that the community has managed to exploit for proving lower
bounds for this core online problem. This holds for bin packing and basically
any other packing problem of this type.

We show here that different methods for proving lower bounds and new
approaches to sizes of items give an improved lower bound. The contribution
of this paper is that this weakness no longer holds. We show for the first time
that integrating branching and adaptivity into input constructions improves the
resulting lower bound for online bin packing substantially.

Other online problems that are very different from bin packing do not suffer
from this weakness. Many problems admit better lower bounds based on adap-
tivity and branching while the situation with bin packing variants was extremely
different as we mentioned above. One such example is makespan minimization
(see e.g. [10]).

1.1 New Features of Our Work

Previous lower bound constructions for standard bin packing were defined for
inputs without branching. Those are inputs where the possible inputs differ only
by their stopping points. Here, we use an input with branching, which makes
the analysis harder, as those branches are related (the additional items may
use the same existing bins in addition to new bins), but at most one of them
will be presented eventually. It is notable that branching was used to design an
improved lower bound for the case where the input consists of three batches [3]
(where for each one of the batches, all items are presented at once), but it was
unknown whether it can be used to design improved lower bounds for standard
online bin packing.

It was also not known whether one can exploit methods of constructing fully
adaptive inputs, where in some parts of the input every item size is based pre-
cisely on previous decisions of the algorithm. Such results were previously proved
for online bin packing with cardinality constraints, where (in addition to the con-
straint on the total size) every bin is limited to containing k items, for a fixed
parameter k ≥ 2 [1,2,7,11]. Thus, in addition to branching we will use the fol-
lowing theorem proved in [2] (see the construction in Sect. 3.1 and Corollary 3
in [2]).

Theorem 1. Let N ≥ 1 be a large positive integer and let k ≥ 2 be an inte-
ger. Assume that we are given an arbitrary deterministic online algorithm for a
variant of bin packing and a binary condition Con on the possible behavior of
an online algorithm for one item (on the way that the item is packed). That is,
Con is a logical condition whose value is revealed to the adversary once the item
is packed. An adversary is able to construct a sequence of values ai (1 ≤ i ≤ N)
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such that for any i, ai ∈
(
k−2N+3

, k−2N+2
)
, and in particular ai ∈ (

0, 1
k4

)
(defin-

ing item sizes is done using a given affine linear function of the values ai and
these are not necessarily the item sizes), such that for any item i1 satisfying Con
and any item i2 not satisfying Con, it holds that ai2

ai1
> k.

Examples for the condition Con can be the following: “the item is packed as a
first item of its bin”, “the item is packed into a non-empty bin”, “the item is packed
into a bin already containing an item of size above 1

2”, etc. Here, the condition Con
will be that the item is not packed into an empty bin (or a new bin).

Our method of analysis is based on a new type of a weighting function. This
kind of analysis is often used for analyzing bin packing algorithms, that is, for
upper bounds. It was used for lower bounds by [6] and by van Vliet [21] (where
the term weight is not used, and the values given to items are based on the
dual linear program, but the specific kind of dual variables and their usage can
be adapted to a weighting function). However, those weights were defined for
inputs without branching and we extend the use of these weights for inputs with
branching for the first time, which adds technical challenges to our work also in
the analysis. The advantage of weights is that we do not need to test all packing
patterns of an algorithm, whose number can be very large, and thus we obtain
a complete and verifiable proof with much smaller number of cases than that of
pattern based proofs (see for example [11]).

Our analysis based on this new weighting function makes the proof very
short and compact. The very limited case analysis that we carry out in our
proof is much less tedious than previous proofs and we provide the full details
of it. This compact case analysis is performed using combinatorial insights that
are employed to decrease the number of cases by orders of magnitude, and in
order to illustrate the power of our analysis we mention that our short proof was
constructed by hand without using a computer.

2 The Input

Let t ≥ 3 be an integer, let ε > 0 be small constant, let M be a large integer
and let N = M · 42t (N is a large integer divisible by 6 · 7t). We choose ε such
that ε < 1

(2058)t .
Given a specific algorithm ALG, we will analyze it for the set of inputs

defined here, where the input depends on the actions of ALG both with respect
to stopping the input, but also some of the sizes will be based on the exact action
of ALG, and on the previously presented items and their number.

Let Ct = 1
6·7t−1 − 294ε, and for 2 ≤ j ≤ t − 1, let Cj = 1+28ε

7j . The input
starts with batches of N items of the sizes Cj , for every j = t, t−1, . . . , 2, where
the input may be stopped after each one of these batches. An item of size Cj is
called a Cj–item.

Afterwards, there are N items called A–items. The sizes of A–items will be
all strictly larger than 1+ε

7 but strictly smaller than 1+2ε
7 . Any A–item packed

as a first item into a bin will be called a large A–item, and any other A–items
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will be called a small A–item. During the construction, based on the actions of
the algorithm, we will ensure that for any large A–item, its difference from 1+ε

7
is larger by a factor of more than 4 than the difference from 1+ε

7 of any small
A–item. The details of attaining this property are given below (see Lemma 1).

Let γ > 0 be such that the size of every small A–item is at most 1+ε+γ

7 while
the size of every large A–item is above 1+ε+4γ

7 (where γ < ε
4 ). The input may be

stopped after A–items are introduced (the number of A–items is N no matter
how many of them are small and how many are large). Let nL denote the number
of large A–items, and therefore there are N − nL small A–items. Even though
the A–items will have different sizes and they cannot be presented at once to
the algorithm, we see them as one batch.

If the input is not stopped after the arrival of A–items, there are three options
to continue the input (i.e., we use branching at this point). In order to define the
three options, we first define the following five items types. A B11–item has size
1+2ε
2 . A B21–item has size 1+ε

3 and a B22–item has size 1+ε
2 . A B31–item has size

5−2ε−3γ

14 and a B32–item has size 7+γ

14 = 1
2 + γ

14 < 1
2 + ε

56 (this size is above 1
2 ).

The first option to continue is with B11–items, such that a batch of N
3 such

items arrive. The second option is with a batch of B21–items, possibly followed
by a batch of B22–items. In this option, the number of items of each batch is N .
The third option is that a batch of B31–items arrive, possibly followed by a batch
of B32–items. In the last case, we define the numbers of items based on nL as
follows. The number of B31–items (if they are presented) is n31 = 7N−7nL

6 . The
number of B32–items (if they are presented) is n32 = 7N−5nL

6 . This concludes
the description of the input (see Fig. 1 for an illustration).

Fig. 1. An illustration of the input. Every box contains a set of items, and the input
may be stopped after presenting the items of any box. In cases with branching, at most
one path is selected, and any such path may be presented as an input.
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We conclude this section by showing that indeed we can construct the batch
(or subsequence) of A–items satisfying the required properties.

Lemma 1. The sizes of A–items can be constructed as described.

Proof. We use Theorem 1. Condition Con is that the item is packed into a bin
that already contains at least one item (this item may be of a previous batch of
items). Let k = � 1

ε
�. The items sizes are 1+ε+ai

7 . We find that all item sizes are in
( 1+ε

7 , 1+2ε
7 ). We also have for two items of sizes 1+ε+ai1

7 and 1+ε+ai2
7 , where the

second item does not satisfy Con while the first one satisfies Con that ai2
ai1

> k.
Let γ be the maximum size of any value ai of an item satisfying Con. Then, we
have 1+ε+ai1

7 ≤ 1+ε+γ

7 and 1+ε+ai2
7 ≥ 1+ε+kγ

7 > 1+ε+4γ

7 , as required. �	
In order to give some motivation regarding the sizes of items, note that by

ε < 1
(2058)t , we have 5−2ε−3γ

14 ≥ 5
14 − 2.75

14 · ε > 0.35714, while 1+ε
3 < 0.33334.

3 Bounds on the Optimal Costs

In this section we prove upper bounds on the optimal costs of our instances. We
denote the optimal cost after the batch of items of sizes Cj is presented by OPTj

(for j ≥ 2). Similarly, we denote an optimal cost after the batch of A–items by
OPT1.

Lemma 2. For t ≥ j ≥ 2, we have OPTj ≤ N
6·7j−1 , and OPT1 ≤ N

6 . Further-
more, let j ≥ 1, then the total size of one item of each batch up to the batch
of Cj–items (if j ≥ 2) or up to the batch of A–items (if j = 1) is at most

1
6·7j−1 − 293ε.

Proof. First, consider j ≥ 2. The total size of t − j + 1 items, each of a different
size out of Ct, Ct−1, . . . , Cj is

Ct +
t−1∑
i=j

Ci =
1

6 · 7t−1
− 294ε +

t−1∑
i=j

1 + 28ε

7i

=
1

6 · 7t−1
− 294ε +

1 + 28ε

7j

t−1∑
i=j

1
7i−j

=
1

6 · 7t−1
− 294ε +

1 + 28ε
7j

· 7 − 1/7t−j−1

6

=
1

6 · 7t−1
− 294ε + (1 + 28ε)

1/7j−1 − 1/7t−1

6
<

1
6 · 7j−1

− 293ε,

as
∑t−1

i=j
1

7i−j =
∑t−j−1

i=0
1
7i = 1−1/7t−j

6/7 = 7−1/7t−j−1

6 . Thus, it is possible to pack
6 · 7j−1 items of each size into every bin and get a feasible solution with N

6·7j−1

bins, so OPTj ≤ N
6·7j−1 .
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A similar bound can be used for the input up to the batch of A–items as well.
In this case the total size of one item of each size Cj together with one A–item
(small or large) is at most 1

6·7t−1 − 294ε+(1+28ε) 1/7−1/7t−1

6 + 1+2ε
7 < 1

6 − 293ε.
Thus, OPT1 ≤ N

6 (by packing six items of each batch into every bin). �	
We let OPT11, OPT21, OPT22, OPT31, OPT32, denote costs of optimal solu-

tions for the inputs after the batches of B11–items, B21–items, B22–items, B31–
items, and B32–items were presented, respectively. In the next lemma we present
upper bounds on these optimal costs.

The proof of the next lemma is omitted.

Lemma 3. We have OPT11 ≤ N
3 , OPT21 ≤ N

2 , OPT22 ≤ N , OPT31 ≤
7N−5nL

12 , and OPT32 ≤ 7N−5nL

6 .

Next, we prove that the optimal costs are at least M (for all possible inputs).
We have

Ct =
1

6 · 7t−1
− 294ε >

1
6 · 7t−1

− 294 · 1
2058t

>
1

6 · 7t−1 + 1

as 1
6·7t−1 − 1

6·7t−1+1 = 1
6·7t−1(6·7t−1+1) while 294 · 1

2058t = 1
6t−1·73t−2 , and

6 · 7t−1(6 · 7t−1 + 1) < 6t−1 · 7t−1 · 7t < 6t−1 · 73t−2

by t ≥ 2. Thus, as all inputs contain the first batch of Ct–items, and every bin
has at most 6 · 7t−1 such items, we get that an optimal solution has at least

N
6·7t−1 > M bins.

4 An Analysis Using Weights

In this section we provide a complete analytic proof of the claimed lower bound
that we establish using our construction. In fact we verified the tightness of our
analysis (for this construction) by solving a mathematical program for some very
small values of t but our analytic proof does not use this approach. Our analytic
proof is based on assigning weights to items, defining prices to bins using the
weights and bin types, and finally using these prices to establish the lower bound.

4.1 The Assignment of Weights to Items

We assign weights to items as follows. For a Cj–item, where 2 ≤ j ≤ t − 1, we
let its weight be 1

7j−1 . The weight of a Ct–item is 1
6·7t−2 . The weight of a large

A–item is denoted by w where w ∈ [1, 1.5] and we will specify later the exact
value of w. The weight of any other item is 1, those are B11–items, B21–items,
B22–items, B31–items, B32–items, and small A–items.
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4.2 Definition of Bin Types

For a bin packed by the algorithm, we say that it has type j if it has a Cj–item
for some 2 ≤ j ≤ t and no smaller items (i.e., for any k such that j < k ≤ t, it
has no Ck–item). We say that it has type 1 if it has an A–item and no smaller
items (i.e., it has no Ck–item for all 2 ≤ k ≤ t). We say that it is a double bin
if it has a B21–item or a B31–item and no smaller items (i.e., no Ck–item for all
2 ≤ k ≤ t and no A–item), and we say that it is a single bin if it has only items
of sizes above 1

2 , i.e., a B11–item or a B22–item or a B32–item (where every such
bin has exactly one item).

4.3 The Price of a Bin Type

We define the price of a bin type as follows. A bin D of a certain type may receive
additional items after its first batch of items out of which its first item comes.
Moreover, its contents may differ in different continuations of the input (due
to branching). Consider the contents of D for all continuations simultaneously
(taking into account the situation where these items indeed arrive), and define a
set of items S(D) based on this (one can think of S(D) as a virtual bin, which is
valid for any possible input). For example, if the bin has one (large) A–item, and
in the first continuation it will receive a B11–item, in the second continuation
it will receive one B21–item and one B22–item, and in the third continuation
it will receive two B31–items, then the set S(D) contains six items (one of size
approximately 1

7 , one of size approximately 1
3 , two of sizes approximately 1

2 , and
two of sizes approximately 5

14 ). The price of D is defined as the total weight of
items of S(D) (for the example, this price is w + 5). The price of a bin type is
the supremum price of any bin of this type.

4.4 Calculating the Prices of the Bin Types

Let Wj denote the price of bin type j, for 1 ≤ j ≤ t, let Wd denote the price of
a double bin, and let Ws denote the price of a single bin.

The proofs of the next two lemmas are omitted.

Lemma 4. For the weights defined above, we have Ws = 1, Wd = 2, and W1 =
w + 5.

Lemma 5. For the weights defined above, we have Wj = 7 − 1
7j−1 for 2 ≤ j ≤

t − 1, and Wt = 7.

4.5 Using the Prices of Bin Types to Establish the Lower Bound
on the Asymptotic Competitive Ratio

Let νj denote the number of bins opened for Cj–items (bins used for the first
time when the batch of Cj–items is presented). Let ν1 denote the number of bins
opened for A–items. Let νk� denote the number of bins opened for Bk�–items,
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for (k, �) ∈ ISB, where ISB = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2)}. Moreover, as
large A–items are exactly those A–items that are packed as first items of their
bins, we have ν1 = nL.

Let ALGj denote the cost of the algorithm for the input up to the batch of
Cj–items, and let ALG1 denote the cost of the algorithm up to the batch of A–
items. Let ALGk� denote the cost of the algorithm up to the batch of Bk�–items
for (k, �) ∈ ISB.

Let R be the asymptotic competitive ratio of ALG, and let f be a function
such that f(n) = o(n) and for any input I it holds that ALG(I) ≤ R ·OPT (I)+
f(OPT (I)).

We have ALGj ≤ R ·OPTj +f(OPTj) for 1 ≤ j ≤ t. We also have ALGk� ≤
R · OPTk� + f(OPTk�) for (k, �) ∈ ISB.

Let W denote the total weight of all items (for all branches, such that every
possible item is counted exactly once). Since 1

6·7t−2 +
∑t−1

j=2
1

7j−1 = 1
6 , we have

W = N · (
1

6 · 7t−2
+

t−1∑
j=2

1
7j−1

) + w · nL + (N − nL) +
N

3
+ 2N + n31 + n32

=
N

6
+ (w − 1)nL +

10N

3
+

7N − 7nL

6
+

7N − 5nL

6

= w · nL − 3 · nL +
35N

6
.

Lemma 6. We have

W ≤
t∑

j=1

Wjνj + Wd(ν21 + ν31) + Ws(ν11 + ν22 + ν32)

=
t∑

j=1

Wjνj + ν11 + 2ν21 + ν22 + 2ν31 + ν32.

Proof. The weight of every item is included in the price of exactly one bin used
by the algorithm. Thus, the total weight is equal to the total price of bins. Given
the supremum prices, we get an upper bound on the total price. This proves the
inequality, the equality holds by substituting the values of Wd and Ws. �	

Let n′
L = nL

N , and W ′ = W
N = w · n′

L − 3 · n′
L + 35

6 .
The proof of the next lemma is omitted.

Lemma 7. For any value of nL (0 ≤ nL ≤ N) and for any value of w (1 ≤
w ≤ 1.5), we have

R ≥ W ′

2133/588 − 1.25n′
L + 1

7·48·49t−2 + 1
48·49 + w/7

,

and therefore

R ≥ w · n′
L − 3 · n′

L + 35
6

8533/2352 − 1.25n′
L + w/7

.
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Theorem 2. We have R ≥ 1363−√
1387369

120 ≈ 1.5427809064729. That is, there
is no online algorithm for bin packing with asymptotic competitive ratio strictly
smaller than 1363−√

1387369
120 ≈ 1.5427809064729.

Proof. Let r = 1363−√
1387369

120 ≈ 1.5427809064729 and let

w =
√

1387369 − 1075
96

≈ 1.07152386690879,

where w = 3 − 1.25 · r.
We have

R ≥ w · n′
L − 3 · n′

L + 35
6

8533/2352 − 1.25n′
L + w/7

,

and we show that this expression is equal to r (for any n′
L, where 0 ≤ n′

L ≤ 1).
The denominator is positive as

8533/2352 − 1.25n′
L + w/7 > 8533/2352 − 1.25 + 1/7 > 2,

by n′
L ≤ 1 and w ≥ 1. Thus, it is equivalent to showing

w · n′
L − 3 · n′

L +
35
6

= r(8533/2352 − 1.25n′
L + w/7),

which is equivalent to

n′
L(w − 3 + 1.25 · r) +

35
6

− r(8533/2352 + w/7) = 0.

Indeed w − 3 + 1.25 · r = 0, by the choice of w and r. Additionally,

35
6

− r(8533/2352 + w/7) =
35
6

− r(8533/2352 + (3 − 1.25 · r)/7) = 0,

by the choice of r. �	
Remark 1. We note that our choice of w and r are optimal in the sense that the
lower bound of Lemma 7 cannot be used to prove a higher lower bound on R
using other values of w for the formula which we obtained. This can be observed
by solving the corresponding mathematical program of maximizing (over the
possible values of w) of minimizing (over the possible values of n′

L) of the ratio
function defined using these two parameters that we establish in Lemma 7. This
part of the analysis is the only one we can replace with a solution of a (small)
mathematical program. However, since this claim is not necessary for establishing
the correctness of the lower bound we omit this mathematical program and its
(analytic) solution.
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Abstract. The k-Canadian Traveller Problem consists in finding the
optimal way from a source s to a target t on an undirected weighted
graph G, knowing that at most k edges are blocked. The traveller, guided
by a strategy, sees an edge is blocked when he visits one of its endpoints.
A major result established by Westphal is that the competitive ratio of
any deterministic strategy for this problem is at least 2k+1. reposition
and comparison strategies achieve this bound.

We refine this analysis by focusing on graphs with a maximum (s, t)-
cut size µmax less than k. A strategy called detour is proposed and its
competitive ratio is 2µmax +

√
2(k − µmax) + 1 when µmax < k which

is strictly less than 2k + 1. Moreover, when µmax ≥ k, the competitive
ratio of detour is 2k + 1 and is optimal. Therefore, detour improves
the competitiveness of the deterministic strategies known up to now.

Keywords: Canadian traveller problem · Competitive analysis ·
Online algorithms

1 Introduction

Related Work. The k-Canadian Traveller Problem (k-CTP) was defined by
Papadimitriou and Yannakakis [8] and is PSPACE-complete [1,8]. Given an
undirected weighted graph G and two of its vertices s, t ∈ V , the objective
is to make a traveller walk from s to t on graph G in the most efficient way
despite the existence of some blocked edges E∗ � E. Parameter k is an upper
bound of the number of blocked edges: |E∗| ≤ k. The traveller does not know
which edges are blocked when he begins his walk. He discovers a blocked edge
e = (u, v) when he visits one of its endpoints u or v.

The traveller traverses graph G = (V,E, ω), where n = |V | and m = |E|.
Edge weights are given by the function ω : E → Q+. Our objective is to make
the traveller reach target t with a minimum cost (also called distance), which is

c© Springer Nature Switzerland AG 2020
E. Bampis and N. Megow (Eds.): WAOA 2019, LNCS 11926, pp. 29–42, 2020.
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the sum of the weights of edges traversed. A pair (G,E∗) is called a road map.
All the road maps considered are feasible: there is an (s, t)-path in G\E∗, the
graph G deprived of the obstructed edges E∗.

A solution to the k-CTP is an online algorithm, called a strategy. Its quality
can be assessed with competitive analysis [4]. Roughly speaking, the competitive
ratio is the quotient between the distance actually traversed by the traveller and
the distance he would have traversed, knowing which edges are blocked before
beginning his walk. Westphal [10] proved that no deterministic strategy achieves
a competitive ratio better than 2k + 1. Said differently, for any deterministic
strategy A, there is at least one k-CTP road map for which the competitive
ratio of A is at least 2k + 1.

Two strategies proposed in the literature reach this optimal ratio: reposi-
tion [10] and comparison [11]. reposition makes the traveller traverse the
shortest (s, t)-path. If there is a blocked edge (u, v) on this path, the traveller
discovers it when he visits vertex u. Then, he comes back to s passing through
the same path. The process starts again on G\E′

∗, the graph G deprived of the
blocked edges E′

∗ identified until now. comparison is based on a different prin-
ciple: when the traveller discovers a blockage (u, v) and stands on vertex u, he
compares the shortest (u, t)-path P

(u,t)
min (cost ω

(u,t)
min ) of G\E′

∗ with its shortest
(s, t)-path P

(s,t)
min (cost ω

(s,t)
min ). If ω

(s,t)
min ≤ ω

(u,t)
min , the traveller moves as in repo-

sition. If ω
(s,t)
min > ω

(u,t)
min , the traveller traverses the path P

(u,t)
min , etc.

Randomized strategies, i.e. strategies in which choices of direction depend
on a random draw, were also studied. Westphal [10] proved that there is no
randomized strategy achieving a ratio lower than k+1. Bender et al. [2] studied
graphs composed only of vertex-disjoint (s, t)-paths and proposed a polynomial-
time strategy of ratio k + 1. A slight revision of that strategy is reported in [9].
To the best of our knowledge, there is no polynomial-time randomized strategy
achieving a competitive ratio smaller than 2k + 1 on general graphs. Such a
strategy would not be memoryless [3].

Contributions. Our work exclusively concerns deterministic strategies. We
establish a relationship between the size μmax of the largest minimal (s, t)-cut
of a graph G and the competitive ratio that can be obtained on G, for any con-
figuration of blocked edges. Concretely, the competitive ratio of deterministic
strategies on graphs where μmax < k is studied.

According to the proof of Lemma 2.1 in [10], for any value μ ∈ N∗, there
is at least one graph (made up of vertex-disjoint (s, t)-paths only) such that
μmax = μ and no deterministic strategy has a competitive ratio less than 2k +1
on it if μmax ≥ k. In this study, we focus on graphs fulfilling μmax < k: we
assess the competitive ratio of strategies reposition and comparison under
this condition. We devise a more competitive strategy called detour. We list
our contributions:

– For any value μmax ≥ 4, we prove that there is at least one graph with
μmax < k for which both reposition/comparison strategies are (2k + 1)-
competitive.
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– We propose a polynomial-time strategy called detour with competitive ratio
2μmax +

√
2(k − μmax) + 1 when μmax < k. It outperforms the competitive

ratio of the existing deterministic strategies. In brief, ratio 2k + 1 is widely
defeated by a deterministic strategy on graphs G satisfying μmax < k.

Strategy detour is also (2k + 1)-competitive when μmax ≥ k. For this reason,
it becomes the best deterministic strategy known for the k-CTP because it per-
forms as well as reposition/comparison when μmax ≥ k and better than them
when μmax < k.

The organization of this article follows. In Sect. 2 we remind some definitions
related to online algorithms, paths and cuts. Section 3 contains the proof that
reposition and comparison are (2k + 1)-competitive, even if μmax < k. The
detour strategy is described in Sect. 4 and its competitive ratio is evaluated.
We conclude this study in Sect. 5 and provide some directions for future research.

2 Preliminaries

We present the definition of the competitive ratio and some notions associated
with paths and cuts.

Competitive Ratio. For any set of blocked edges E′
∗ ⊆ E∗, ωmin (G,E′

∗) is the
cost of the shortest (s, t)-path in graph G\E′

∗. Value ωopt = ωmin (G,E∗) is the
optimal offline cost for the road map (G,E∗). Concretely, this corresponds to
the distance the traveller would have traversed if he had known the blockages in
advance.

The competitive ratio is defined in [4]. We denote by ωA (G,E∗) the distance
traversed by the traveller guided by strategy A on graph G from source s to
target t with blocked edges E∗. The competitive ratio cA(G,E∗) of A over a
road map (G,E∗) is defined as cA(G,E∗) =

ωA(G,E∗)
ωopt

. The competitive ratio cA

of A is thus:
cA = max

(G,E∗)
cA (G,E∗) (1)

Similarly, we say strategy A is cA-competitive for a family F of graphs (for
example, F = {G : μmax < k}) if it is the maximum of value cA (G,E∗) over
road maps (G,E∗) such that G ∈ F .

Paths. A simple path P is a sequence of pairwise different vertices v1 · v2 · · · vi ·
vi+1 · · · v�, with departure v1 and arrival v�, such that two successive vertices
(vi, vi+1) are adjacent in G. All paths mentioned in this article are simple. To
improve readability, we abuse notations: v1 ∈ P and (v1, v2) ∈ P mean that
vertex v1 and edge (v1, v2) are on path P , respectively. If vertices u and v belong
to path P , then P (u,v) denotes the section of path P between vertices u and v.
Any path is naturally associated with a direction, from the departure to the
arrival. We say the successor of edge e in P is the edge arriving just after e in
P . The descendants of e are all edges arriving after e in P , i.e. edges further
than u from the departure of P . The predecessor and the ancestors are defined
symmetrically.
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Graphs may contain several shortest (s, t)-paths. Our algorithm in Sect. 4
requires to compute one of the shortest (s, t)-paths of any graph in a determin-
istic way. To achieve it, a solution is to associate any vertex with an identifier in
{1, . . . , n}. If two paths have the same distance, we compare their lexicographic
order. Dijkstra’s algorithm [6] is adapted to this extra criterion: for any vertex
v, it stores the shortest path from the start point to v with the smallest lexico-
graphic order. Whenever we refer to “the shortest (u, v)-path”, for any vertices
u and v, this process is executed.

Cuts. A set X ⊆ E is an edge (s, t)-cut if source s and target t are separated
in graph G deprived of edges X. We say that cut X is minimal if none of its
proper subsets X ′ � X is an (s, t)-cut. Let μmax be the maximum cardinality of
a minimal (s, t)-cut:

μmax = max
X minimal
(s,t)−cut

|X| . (2)

Any (s, t)-cut X where |X| > μmax is not minimal. If X is a minimal (s, t)-cut,
graph G\X contains exactly two connected components: one, denoted R(X, s),
contains all vertices reachable from s and another one, denoted R(X, t), all
vertices reachable from t. Largest minimal (s, t)-cuts Xmax, |Xmax| = μmax, are
called max-(s, t)-cuts throughout our study.

3 Competitive Ratio of Existing Strategies
When μmax < k

We study the family of graphs satisfying μmax < k. We assess, on such instances,
the competitiveness of the two best deterministic strategies known for now in
the literature. Indeed, reposition and comparison are (2k+1)-competitive for
general graphs. We prove that they do not benefit from the inequality μmax < k.
We begin with reposition strategy.

Theorem 1. For any k > 4, there is a road map (Gk, E∗,k), μmax = 4, such that
the competitive ratio of reposition on (Gk, E∗,k) is 2k + 1: crep (Gk, E∗,k) =
2k + 1.

Proof. The road map (Gk, E∗,k) is drawn in Fig. 1. Graph Gk has a horizontal
axis of symmetry Δ. On each side, there are �k

2 	 diamond graphs, i.e. cycles
of length 4, put in series. They are surrounded by two edges, one of weight 1
incident to s and one of weight ε 
 1 incident to t. For any diamond graph above
Δ, three of its edges are weighted with ε and the bottom left one is weighted
with 3ε. All the top right edges are blocked (red edges in Fig. 1). All diamonds
below Δ are identical, except for the one closest to s (weights 2ε, ε, 4ε, and ε, see
Fig. 1). If k is even, as in Fig. 1, the top right edges of all diamonds are blocked.
If k is odd, there is no blockage on the diamond below Δ which is the closest to
t. In this way, there are always k blocked edges in E∗,k and the max-(s, t)-cut
size of Gk is μmax = 4. Let g(k) = 2�k

2 	 ∈ {k, k + 1}. The cost of the shortest
(s, t)-path in Gk is 1 + (g(k) + 1)ε.
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Fig. 1. Graph G6 and blocked edges E∗,6 in red (Color figure online)

Guided by reposition, the traveller traverses the shortest (s, t)-path which
is above Δ and is blocked in the first diamond (distance 1+ε). Set E′

∗ denotes the
blocked edges discovered during the execution: for now, |E′

∗| = 1. The traveller
comes back to s (distance 1 + ε). The shortest (s, t)-path in graph G\E′

∗ is now
below axis Δ and its cost is 1 + (g(k) + 2)ε as it contains an edge of weight
2ε. The traveller traverses this path and is blocked in the first diamond below
Δ (distance 1 + 2ε). Then, the current shortest (s, t)-path in G\E∗ is above
Δ and its cost is 1 + (g(k) + 3)ε, etc. In summary, the traveller is blocked k
times traversing paths with cost larger than 1 + ε in two directions. The total
distance traversed drep satisfies drep ≥ 2k (1 + ε) + ωopt ≥ (2k + 1)(1 + ε). As
ωopt = 1 + (2g(k) + 1)ε, the competitive ratio of reposition crep is thus:

crep ≥ (2k + 1)
1 + ε

1 + (2g(k) + 1)ε
ε→0−→ 2k + 1.

As ε may tend to zero, there always is a road map on which reposition achieves
a ratio 2k + 1 − δ for any arbitrarily small value δ > 0. ��

This result remains true for any value μmax > 4 as we can artificially add
(s, t)-paths disjoint from Gk which make μmax increase. It suffices to assign
a sufficiently large cost to these paths, so that reposition never makes the
traveller traverse them. Now we focus on comparison strategy.

Theorem 2. For any k > 3, there is a road map (G′
k, E′

∗,k), μmax = 3, such that
the competitive ratio of comparison on (G′

k, E′
∗,k) is 2k+1: ccomp(G′

k, E′
∗,k) =

2k + 1.

Proof. Road map (G′
k, E′

∗,k) is drawn in Fig. 2. Axis Δ′ is represented to facilitate
the description of G′

k. Above Δ′, k−1 diamonds graphs are put in series and are
surrounded as in Gk (see Theorem 1). On each diamond, the edge weights are
ε, except for the bottom left edges weighted with value 1. The top left edges are
blocked. Moreover, the edge incident to t above Δ′ is also blocked, so

∣
∣
∣E′

∗,k

∣
∣
∣ = k.

Below Δ′, there is an open (s, t)-path with cost 1+2kε. The shortest (s, t)-path
in G′

k is above Δ′ and its cost is 1+ (2k − 1)ε. Graph G′
k is such that μmax = 3.

Guided by comparison, the traveller traverses the shortest (s, t)-path and
is blocked when he arrives on the first diamond (distance 1). Then, the cost
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Fig. 2. Graph G′
4 and blocked edges E′

∗,4 in red (Color figure online)

of the shortest (s, t)-path in G\E′
∗, i.e. 1 + 2kε, is compared with the shortest

distance between the current position of the traveller and t, i.e. 1 + (2k − 2)ε.
Since 1 + (2k − 2)ε < 1 + 2kε, the traveller chooses to take the shortest path
between its current position and t, which is above Δ′. He meets a second blockage
when arriving on the second diamond (distance 1 + ε). Then, he makes the
same decision and traverses the diamonds above Δ′. Eventually, when he meets
the last blockage incident to t, he travels back to s and finally passes through
the optimal offline path, below Δ′. The total distance traversed is dcomp =
2 + 2(k − 1)(1 + ε) + 1 + 2kε. The competitive ratio ccomp of comparison
strategy on the road map (G′

k, E′
∗,k) follows:

ccomp =
2 + 2(k − 1)(1 + ε) + 1 + 2kε

1 + 2kε

ε→0−→ 2k + 1.

Making ε tend to zero terminates the proof. ��
The existence of a deterministic strategy achieving a ratio less than 2k+1 on

graphs fulfilling μmax < k is still an open question after the results established
in Theorems 1 and 2. Indeed, we showed that the existing strategies cannot
defeat their global competitive ratio on this particular family of graphs. In the
remainder, we devise a strategy outperforming reposition and comparison
when μmax < k.

4 Detour Strategy

We first introduce in Subsect. 4.1 a parameterized strategy called α-detour.
It takes as input graph G, source s, target t, and a parameter α ∈ (0, 1). In
Subsect. 4.2, we provide an upper bound of its competitive ratio. This bound
is minimized for α =

√
2
2 and is 2μmax +

√
2(k − μmax) + 1 in this case. Strat-

egy detour mentioned earlier corresponds to
√
2
2 -detour. Finally, we provide

the execution time of detour strategy and discuss some of its properties in
Subsect. 4.3.
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4.1 Description of α-Detour Strategy

We present the α-detour strategy in Algorithm1. Variable pos keeps track of
the traveller’s current position. The idea is to perform successively two phases:
an exploration followed by a detour-backtracking. The exploration starts when
the traveller is on source s (line 8). He traverses the shortest (s, t)-path P

(s,t)
min

called the exploration path. Its cost ω
(s,t)
min = ωmin(G,E′

∗) is stored in ωexp (line
7). At this point, there are two possibilities:
(1) The traveller reaches t and the execution terminates (line 13).
(2) The traveller arrives at pos = u and discovers a blocked edge (u, v) ∈ P

(s,t)
min .

Then, the detour-backtracking phase begins.
Each exploration followed by a detour-backtracking phase can be seen as a

depth-first search (DFS). When the traveller is blocked on P
(s,t)
min , we ask whether

an α-detour, i.e. a (pos, t)-path with cost at most αωexp, exists. If an α-detour
exists, the traveller traverses the shortest path P

(pos,t)
min from the current position

pos to target t (line 9). Obviously, its cost satisfies ω
(pos,t)
min ≤ αωexp. Otherwise,

the traveller backtracks to the vertex before pos = u on the exploration path
(lines 14–16).

Algorithm 1. The α-detour strategy
1: Input: graph G, source s, target t, parameter α ∈ (0, 1)
2: E′

∗ ← ∅; G′ ← G\E′
∗; pos ← s; u0 ← s; ωexp ← ωmin(G, ∅);

3: stack ← Empty Stack; Vstack ← ∅;
4: while true do
5: u0 ← pos;
6: if u0 = s then
7: ωexp ← ωmin(G,E′

∗);
8: traverse the shortest (s, t)-path P

(u0,t)
min in G′;

else
9: traverse the shortest (u0, t)-path P

(u0,t)
min in G′\Vstack;

endif
10: update pos;
11: push the vertices visited in P

(u0,t)
min except pos on stack;

12: update E′
∗, G′, and Vstack;

13: if pos = t then break;
14: while pos �= s and there is no P

(pos,t)
min in G′\Vstack such that

ω
(pos,t)
min ≤ αωexp do

15: pos ← pop(stack);
16: Vstack ← Vstack\{pos};

end
end

As in a DFS, we use a stack to remember the previous vertices for backtrack-
ing. We denote by Vstack the set of vertices in the stack. We do not allow an
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α-detour P
(pos,t)
min to pass through any vertex v ∈ Vstack, since the section P

(v,t)
min

will be considered later on when pos = v. The vertices of an exploration path
traversed by the traveller are naturally put in stack. Moreover, when the trav-
eller is blocked on an α-detour P

(pos,t)
min , the vertices of P

(pos,t)
min from pos to the

endpoint of the blocked edge are put in stack. Finally, if the traveller backtracks
to s, the algorithm goes back to the exploration phase. At this moment, the
stack is empty.

Recall that E′
∗ represents the set of discovered blocked edges. Variable G′

contains the graph G deprived of the discovered blockages E′
∗ at any moment of

the execution. At each iteration of the while loop, the variables are updated as
follows: if the path P

(u0,t)
min currently traversed (lines 8–9) does not contain any

blockage, then the traveller reaches t, i.e. pos ← t. In this case, the algorithm
terminates since the destination is reached. Otherwise, let P

(u0,t)
min = u0 · · · ui ·

ui+1 · · · ur · t, where (ui, ui+1) is its first blocked edge. The traveller’s position is
updated from u0 to ui (line 10). Then, we update E′

∗ with the newly discovered
blockages including (ui, ui+1), and G′ ← G\E′

∗ (line 12). In addition, we push the
traversed vertices u0, . . . , ui−1 on the stack (except ui) and update accordingly
Vstack ← Vstack ∪{u0, . . . , ui−1}. In case there is no α-detour P

(ui,t)
min in G′\Vstack,

the algorithm backtracks by popping ui−1 from the stack and setting pos ← ui−1

(lines 14–16).
If α = 0, the algorithm does not take any detour. As a consequence, 0-

detour is equivalent to reposition, as both procedures perform an exploration
phase followed by backtracking without taking any detour. In the following, we
provide an upper bound of α-detour’s competitive ratio.

4.2 Competitive Analysis

We denote by P1, . . . , P� the exploration paths P
(s,t)
min such that the distance from

s to the blocked edge discovered on it is greater than α multiplied by their own
cost, i.e. αωi. In other words, the distance di traversed by the traveller on the
exploration paths Pi, 1 ≤ i ≤ �, satisfies di ≥ αωi. Paths Pi are sorted in order
to fulfil ω1 ≤ · · · ≤ ω�. The exploration paths P1,. . . ,P�−1 are blocked, while
path P� can be open. If P� does not contain any blockage, then the algorithm
terminates after the traveller traverses it.

Let us partition P1, . . . , P� into two sequences S1 = P1, . . . , Ph−1 and S2 =
Ph, . . . , P� such that 2αωh−1 < ω� ≤ 2αωh. In the particular case where ω� ≤
2αω1, then h = 1 and the two sets are S1 = ∅ and S2 = P1, . . . , P�. We denote
by G [Ph, . . . , P�] the subgraph of G induced by paths Ph, . . . , P�, i.e. containing
only the vertices and edges of paths Pi, h ≤ i ≤ �.

Theorem 3. The max-(s, t)-cut size induced on graph G [Ph, . . . , P�] is at least
� − h + 1.

Proof. We denote by bi the blocked edge discovered on Pi, for i ∈ {h, . . . , �}. We
construct inductively a set {eh, . . . , e�} of edges satisfying the following induction
hypotheses, for all i ∈ {h, . . . , �}:
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H1(i): {eh, . . . , ei} is a minimal (s, t)-cut of G [Ph, . . . , Pi],
H2(i): Either ei = bi or ei is an ancestor of bi in Pi,
H3(i): For j ∈ {i + 1, . . . , �}, Pj cannot pass through ei.

Basis: For i = h, G [Ph, . . . , Pi] contains only one path Ph. We choose eh =
bh, which fulfils H2(h). Since any edge of Ph is a max-(s, t)-cut of G [Ph], it
satisfies H1(h). Statement H3(h) is also true, as eh is blocked.

Inductive Step: Assume that H1(i) to H3(i) are true for a certain integer
i in {h, . . . , � − 1}. We will construct ei+1 and prove the induction hypothe-
ses H1(i + 1) to H3(i + 1). For simplicity, we denote sets R({eh, . . . , ei}, s) and
R({eh, . . . , ei}, t) in graph G [Ph, . . . , Pi] by Ri(s) and Ri(t), respectively.

Let P
(v0,vp)
i+1 = v0 · v1 · · · vp be the longest section in Pi+1, starting from

v0 = s, such that v0, . . . , vp ∈ Ri(s) and p ∈ N. Section P
(v0,vp)
i+1 contains at least

vertex v0 = s. For j ∈ {h, . . . , i}, all ancestors of ej in Pj belong to Ri(s), and
all descendants belong to Ri(t). Therefore, according to H2(i), all exploration
paths’ sections of the form P

(s,u)
j are open and equal to the shortest path from

s to u, for u ∈ Ri(s) ∩ Pj and j ∈ {h, . . . , i}. In particular, since P
(v0,vp)
i+1 is the

shortest (v0, vp)-path, we deduce that it is open as vp belongs to some Pj by
definition of Ri(s).

According to H3(i), P
(vp,t)
i+1 is a new path connecting Ri(s) to Ri(t), which

does not traverse any edge of the cut {eh, . . . , ei}. Furthermore, no vertex in
P

(vp+1,t)
i+1 belongs to Ri(s). Indeed, suppose for the sake of contradiction that

u ∈ P
(vp+1,t)
i+1 and u ∈ Ri(s). There would exist j ∈ {h, . . . , i}, such that P

(s,u)
j

is the shortest (s, u)-path, and all its vertices belong to Ri(s). This contradicts
with the fact that P

(s,u)
i+1 is also the shortest (s, u)-path and vp+1 /∈ Ri(s), by

definition. Let vp′ be the first vertex of Pi+1 belonging to Ri(t), i.e. vp′ ∈ Ri(t)

and p < p′. Such a vertex exists as t is a candidate. We derive that P
(vp,vp′ )
i+1 is

the unique path both connecting Ri(s) to Ri(t) and avoiding cut X. Figure 3
represents cut {eh, . . . , ei}, path Pi+1 and its vertices vp and vp′ .

We fix ei+1 differently depending on the position of bi+1. We already proved
that bi+1 /∈ P

(v0,vp)
i+1 , the remaining cases are:

– If bi+1 ∈ P
(vp,vp′ )
i+1 , then we set ei+1 = bi+1. As ei+1 ∈ E∗, H3(i + 1) is true.

– Otherwise, if bi+1 ∈ P
(vp′ ,t)
i+1 , we choose ei+1 = (vp′−1, vp′). We prove that the

cost of the current shortest (s, vp′)-path, P
(s,vp′ )
i+1 , is at least αωh. Indeed, as

vertex vp′ belongs to a certain path Pj′ , j′ ∈ {h, . . . , i}, the cost of P
(s,vp′ )
i+1 is

at least the cost of P
(s,vp′ )
j′ . If we have ω

(s,vp′ )
i+1 ≤ αωh, the distance traversed

by the traveller on Pj′ is less than αωh ≤ αωj′ , as vp′ ∈ Ri(t). This contradicts
with the fact that Pj′ ∈ {Ph, . . . , P�}. Moreover, after the (i + 1)-th detour-
backtracking phase, all remaining open (vp′ , t)-paths are longer than αωi+1 ≥
αωh. Therefore, the cost of any exploration (s, t)-path passing through vp′ is
greater than αωh+αωi+1 ≥ 2αωh. This is impossible since the last exploration
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path P� satisfies ω� ≤ 2αωh. As a consequence, no exploration path passes
through vp′ and H3(i + 1) is true.

Both cases fulfil naturally H2(i+1). It only remains to prove statement H1(i+1).
We showed that P

(vp,vp′ )
i+1 is the only path connecting Ri(s) to Ri(t), and ei+1 ∈

P
(vp,vp′ )
i+1 . Thus, {eh, . . . , ei+1} is an (s, t)-cut of G [Ph, . . . , Pi+1]. If we re-open

edge ei+1, path P
(vp,vp′ )
i+1 connects Ri(s) to Ri(t). If we re-open ej , j < i + 1,

there is a path in G [Ph, . . . , Pi] which connects Ri(s) to Ri(t) independently of
P

(vp,vp′ )
i+1 , according to the minimality of {eh, . . . , ei} in H1(i). As a consequence,

no proper subset of {eh, . . . , ei+1} is an (s, t)-cut. Cut {eh, . . . , ei+1} is minimal.

Fig. 3. Cut X = {eh, . . . , ei}, path Pi+1, and vertices vp, vp′−1, vp′

In summary, we derive by induction that {eh, . . . , e�} is a minimal (s, t)-cut
of G [Ph, . . . , P�]. The size of the max-(s, t)-cut is at least � − h + 1. ��

The following lemma states that the max-(s, t)-cut size of graph G [Ph, . . . , P�]
cannot exceed the max-(s, t)-cut size of the bigger graph G.

Lemma 1. The max-(s, t)-cut size on graph G [Ph, . . . , P�] is less than or equal
to the max-(s, t)-cut size μmax of the original graph G.

Proof. Let X be one of the max-(s, t)-cuts in graph G [Ph, . . . , P�]. Cut X is
minimal, so no subset X ′ � X is an (s, t)-cut. If X is an (s, t)-cut in G, then
it is also minimal in G as none of its subsets can be an (s, t)-cut. Therefore,
|X| ≤ μmax.

Suppose now that X is not an (s, t)-cut in G. We denote by Y the max-(s, t)-
cut in graph G deprived of edges X, i.e. G\X. Set X ∪ Y is thus a minimal
(s, t)-cut in graph G as Y is minimal in G\X. So, |X| ≤ |X ∪ Y | ≤ μmax. In
both cases, the max-(s, t)-cut size in G [Ph, . . . , P�] is at most μmax. ��

According to both Theorem 3 and Lemma 1, a relationship exists between
values �, h, and μmax, which is � − h + 1 ≤ μmax.

After traversing an exploration path Pi, the traveller performs a detour-
backtracking phase. The number of blockages discovered during this i-th detour-
backtracking phase is denoted by qi. We analyse the cost of traversing Pi and
performing the i-th detour-backtracking phase in Lemma 2.
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Lemma 2. The total cost of both the i-th exploration phase and the i-th detour-
backtracking phase is not greater than (2 + 2αqi)ωi.

Proof. The stack in Algorithm1 ensures that each edge is only traversed twice:
first time when moving towards t on an exploration path or a detour, and a
second time when backtracking. The exploration path costs ωi and each detour
costs no more than αωi. Besides, the number of detours is at most qi. Hence,
the total cost is at most 2ωi + qi2αωi, which concludes the proof. ��

We denote by k1 (resp. k2) the number of blocked edges discovered during the
exploration and detour-backtracking phases associated with paths P1, . . . , Ph−1

(resp. Ph, . . . , P�). Let k3 be the number of blockages discovered during the other
phases, so that k1 + k2 + k3 = k. We derive in Theorem 4 an upper-bound on
the competitive ratio as a function of k1, k2, k3, and α.

Theorem 4. The competitive ratio of α-detour is upper-bounded by:

k1
α

+ 2μmax + 2α(k2 + k3 − μmax) + 1. (3)

Proof. Since path P� is the shortest (s, t)-path of a certain graph G\E′
∗ where

E′
∗ ⊆ E∗, the offline optimal cost satisfies

ωopt ≥ ω�. (4)

According to Lemma 2, the distance traversed during the exploration and detour-
backtracking phases of P1, . . . , Ph−1 is not greater than

h−1∑

j=1

(2 + 2αqj)ωj ≤ 2ωh−1

h−1∑

j=1

(1 + qj) = 2k1ωh−1. (5)

Inequality (5) comes from the fact that ω1 ≤ · · · ≤ ωh−1 and
∑h−1

j=1 (1 + qj) = k1.
We evaluate the cost of the phases associated with Ph, . . . , P�. Path P� is

either open and traversed in one direction only (Case 1) or it is blocked and the
traveller reaches t via a detour (Case 2).

Case 1: If P� does not contain any blockage, then the algorithm terminates
after traversing it. This final exploration phase costs ω�. We have q� = 0 and
k2 =

∑�−1
j=h (1 + qj). Given Lemma 2, the cost of the h-th to �-th phases is less

than:

�−1∑

j=h

(2 + 2αqj)ωj + ω� =
�−1∑

j=h

(2α + 2αqj)ωj +
�−1∑

j=h

(2 − 2α)ωj + ω�,

≤ 2αk2ω� + (2 − 2α)(� − h)ω� + ω�, (6)

< 2αk2ω� + (2 − 2α)μmaxω� + ω�,

= 2α(k2 − μmax)ω� + 2μmaxω� + ω�. (7)
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We deduce Inequality (6) from ωh ≤ · · · ≤ ω�. By applying Theorem 3 and
Lemma 1 on S2 = Ph, . . . , P�, we derive that � − h ≤ μmax − 1 < μmax in
Inequality (7).

Case 2: Suppose that P� is blocked. The �-th exploration and detour-
backtracking phases cost at most (2 + 2αq�)ω� + αω�. Moreover, we have
k2 =

∑�
j=h (1 + qj). The distance traversed from the h-th to the �-th phases

is not greater than:

�−1∑

j=h

(2 + 2αqj)ωj + (2 + 2αq� + α)ω� =
�∑

j=h

(2 + 2αqj)ωj + αω�,

≤ 2αk2ω� + (2 − 2α)(� − h + 1)ω� + αω�, (8)
≤ 2αk2ω� + (2 − 2α)μmaxω� + αω�, (9)
≤ 2α(k2 − μmax)ω� + 2μmaxω� + ω�. (10)

Inequality (8) follows from ωh ≤ · · · ≤ ω�. We obtain (9) from �−h+1 ≤ μmax.
Finally, α ≤ 1 implies Eq. (10).

Contrary to P1, . . . , P�, some exploration paths P̂ may be such that the
distance traversed on them is at most α multiplied by their own cost ω̂. The
distance traversed during the phases which are not associated with P1, . . . , P�

is the cost of these exploration paths P̂ and their α-detours. As ω̂ ≤ ωopt, it is
at most 2αk3ωopt. Applying Eq. (4), the competitive ratio of α-detour admits
the following upper-bound:

ωα−detour

ωopt
≤ 2k1ωh−1 + 2α(k2 + k3 − μmax)ωopt + 2μmaxωopt + ωopt

ωopt
,

≤ k1ω�

αωopt
+ 2μmax + 2α(k2 + k3 − μmax) + 1, (11)

≤ k1
α

+ 2μmax + 2α(k2 + k3 − μmax) + 1. (12)

Inequality (11) follows from the partition {S1, S2} imposing 2αωh−1 < ω�. ��
Let cdet(k1, k2, k3, α) denote the value in (12). Parameters k1, k2, and k3

depend on the road map (G,E∗), so only α ∈ (0, 1) can be tuned. Value α =
√
2
2

minimizes cdet(k1, k2, k3, α) under the condition k1+k2+k3 = k for any k > μmax.
Formally, √

2
2

= argmin
0≤α≤1

max
k1,k2,k3∈N

k1+k2+k3=k

cdet(k1, k2, k3, α)

Corollary 1. The competitive ratio of detour is at most 2μmax +
√
2(k −

μmax) + 1.

Proof. We set α =
√
2
2 and k1 + k2 + k3 = k in Eq. (3). ��
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4.3 Discussion

In summary, strategy detour is as competitive as reposition/comparison
for the range μmax ≥ k but more competitive for the range 1 ≤ μmax < k. The
slope of the competitive ratio of detour when k varies is only

√
2 for μmax < k.

Figure 4 gives the shape of the competitive ratios of reposition (in blue) and
detour (in red) as a function of k.

detour strategy needs to identify the shortest (s, t)-paths and (pos, t)-paths
at any moment of its execution. To achieve it, Dijkstra’s algorithm [6] is com-
puted once between two discoveries of blocked edges with t as the start point.
Hence, the running time of detour is O(k(m + n log n)).

Fig. 4. Competitiveness of reposition (blue) and detour (red) versus k (Color figure
online)

As for reposition and comparison, the execution of detour strategy is
independent of the value of k. Thus, it can be used when no upper bound on the
number of blockages is known and its competitive ratio is 2μmax +

√
2(|E∗| −

μmax) + 1.
detour strategy can be executed without knowing the value μmax. Indeed,

the competitive ratio of detour depends on μmax but no decision is made based
on μmax in Algorithm1. In the next paragraph, we explain that value μmax cannot
be computed in polynomial time.

Finding one of the largest minimal (s, t)-cuts Xmax, |Xmax| = μmax is a NP-
hard problem, even for planar graphs [7]. A linear time algorithm computing
μmax exists only for series-parallel graphs [5]. In summary, it is not possible to
evaluate value μmax for any graph in polynomial time, assuming P�=NP. Given
an input graph G, the competitive ratio of detour strategy on any road map
(G,E∗) cannot be predicted fast. The only possibility is thus to execute detour,
which runs in polynomial time, on G directly and then to verify whether a gain
of competitiveness is obtained.
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5 Conclusion

Even if the global competitiveness of deterministic strategies for the k-CTP
was fully treated by Westphal [10], families of graphs for which a competitive
ratio better than 2k + 1 can be achieved, remained to be identified. In this
context, we designed detour strategy to improve significantly the competitive
ratio obtained on graphs satisfying μmax < k. Its competitive ratio is 2μmax +√
2(k − μmax) + 1.

Some open questions emerge from this study. First, we wonder if a better
strategy exists when μmax < k. In other words, we do not know whether detour
is optimal for this family of graphs. Second, randomized strategies may offer the
opportunity to decrease the ratio obtained with the deterministic framework,
i.e. to go below the slope

√
2 established in Corollary 1. More generally, lots of

strategies with a ratio less than 2k + 1 on certain families of graphs may exist.
We believe that local assessments of the competitive ratio can lead us to defeat
strategy reposition on many kinds of instances.
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Abstract. Online algorithms that allow a small amount of migration or
recourse have been intensively studied in the last years. They are essen-
tial in the design of competitive algorithms for dynamic problems, where
objects can also depart from the instance. In this work, we give a general
framework to obtain so called robust online algorithms for a variety of
dynamic problems: these online algorithms achieve an asymptotic com-
petitive ratio of γ + ε with migration O(1/ε), where γ is the best known
offline asymptotic approximation ratio. For our framework, we require
only two ingredients: (i) the existence of an online algorithm for the
static case (without departures) that provides a provably good solution
compared to the total volume of the instance and (ii) that the optimal
solution always exceeds this total volume. If these criteria are met, we
can complement the online algorithm with any offline algorithm.

While these criteria are naturally fulfilled by many dynamic prob-
lems, they are especially suited for packing problems. In order to show
the usefulness of our approach in this area, we improve upon the best
known robust algorithms for the dynamic versions of generalizations of
Strip Packing and Bin Packing, including the first robust algorithms for
general d-dimensional Bin Packing and Vector Packing.

Keywords: Online algorithms · Dynamic algorithms · Competitive
ratio · Recourse · Packing problems

1 Introduction

Online algorithms are a very natural way to deal with uncertain inputs. The
main challenge for these algorithms is to produce a sequence of good solutions
throughout the complete evolution of an instance. For a surprisingly large num-
ber of problems, one can obtain online algorithms that produce solutions within a
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constant factor of the optimal solutions. The worst-case ratio between an optimal
solution and a solution produced by the online algorithm is called the compet-
itiveness of the algorithm. For most algorithms with constant competitiveness,
the algorithms rely heavily on the fact that the instances evolve in a monotone
way: every object that becomes part of the instance will stay part of the instance
forever. This monotonicity property is often not present in real-world applica-
tions, where the objects might be removed from the instance later on. These
objects might be used at a different place, they might expire, or they are no
longer relevant. Hence, in order to still give a performance guarantee, the online
algorithms need to be able to modify parts of existing solutions. Clearly, such a
modification might be costly and should thus be minimized. If no such bound-
ary on the modification is given, one could easily use an offline approximation
algorithm. A natural way to measure the amount of modification needed is the
migration factor : it compares the total size of modified objects with the size of
the newly inserted or removed object. An algorithm with a bounded migration
factor roughly translates to the fact that the insertion or departure of a small
object can only lead to small changes in the structure of the current solution.
On the other hand, if a large (and thus impactful) object is inserted or removed,
we are allowed to modify a larger part of the solution.

It is easy to see that online algorithms without migration can in general not
achieve the same solution quality as offline algorithms. As an example, consider
the well-studied Bin Packing problem. No online algorithm (without migration)
can achieve a competitiveness smaller than 3/2 [27]. This lower bound was fur-
ther improved by van Vliet to 1.54014 [26] and by Balogh et al. to 1.54037 [3]. On
the other hand an offline algorithm with asymptotic approximation ratio of 1+ε
can be obtained in polynomial time [21]. The question how much these two val-
ues differ is one of the central questions in the field of online and approximation
algorithms.

Clearly, an online algorithm that is allowed a certain amount of migration is
able to gap between these extremes. If the amount of migration needed directly
corresponds to the improvement of the solution guarantee, we call such an algo-
rithm robust. A robust online algorithm would then have competitiveness 1 + ε
and migration factor f(1/ε) for some function. In other words, we only need to
increase the migration if we want to obtain a better solution. Such robust online
algorithms thus have a continuous behavior between the performance of the best
offline algorithm and the performance of the best online algorithm, depending
on the choice of ε.

In this paper, we describe a general framework to construct robust online
algorithms for certain dynamic packing problems. The only ingredients needed
for our framework are (i) a good offline approximation algorithm and a (ii)
suitably designed online algorithm for the static case that is related to the volume
of an instance. To show the versatility of our approach, we improve upon existing
robust algorithms and construct new robust algorithms.
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1.1 Related Works

The migration factor model was introduced by Sanders, Sivadasan and
Skutella [23]. They studied the classical problem of minimizing the makespan
on parallel identical machines and made elegant use of sensitivity results of inte-
ger programming to obtain a robust 1 + ε-competitive algorithm. This spanned
follow up works for many different problems:

– Skutella and Verschae [24] also studied the same problem and were able to
obtain a robust 1+ ε-competitive algorithm for the dynamic case, where jobs
may depart. They also studied the dual version of the makespan minimization
problem, where the minimum load should be maximized. This problem (called
Machine Covering or Santa Claus) also admits a robust 1+ε-competitive algo-
rithm even in the dynamic case. Furthermore, Skutella and Verschae proved
that for all ε > 0 there is no online algorithm for the Machine Covering
problem that achieves competitive ratio 20/19 − ε with worst-case migration
f(1/ε) for any function f . Gálvez et al. [17] gave two simple and elegant com-
petitive robust algorithms (one that is 1.7 + ε-competitive and one that is
4/3 + ε-competitive) with polynomial migration factor for the static version
of the problem of makespan minimization.

– For the Bin Packing problem, Epstein and Levin [13] gave the first robust 1+ε-
competitive algorithm for Bin Packing based on the same sensitivity results
for integer programming. Jansen and Klein [18] designed new techniques in
order to obtain a migration factor polynomial in 1/ε. These techniques were
refined by Berndt et al. [8] to handle the dynamic version of the Bin Packing
problem where items can also depart. In all of these works, the migration
factor is worst-case and can thus not be saved up for later use. In contrast,
Feldkord et al. [16] presented a nice robust 1 + ε-competitive algorithm with
amortized migration factor that also works for the dynamic case. Berndt
et al. showed that a worst-case migration factor of Ω(1/ε) is needed [8]. This
lower bound was shown to also hold for amortized migration by Feldkord
et al. [16]. Feldkord et al. also studied a problem variant, where the migration
needed for an item does not correspond to its size.

– Epstein and Levin [14] investigated a multidimensional extension of the Bin
Packing problem, called Hypercube Packing, where a set of hypercubes is to
be packed in the minimum number of unit-sized hypercubes. They present
a robust 1 + ε-competitive algorithm with worst-case migration by adapting
the offline algorithm of Bansal et al. [4].

– For the makespan problem, where jobs can be scheduled preemptively
(i. e. they can be split, but parts are not allowed to run simultaneously),
Epstein and Levin [15] designed an optimal online algorithm with migration
factor 1+1/m, where m is the number of machines. The migration factor used
here is worst-case. They also showed that exact algorithms for the makespan
minimization problem on uniform machines and for identical machines in the
restricted assignment setting have worst-case migration factor at least Ω(m).

– Berndt et al. [7] studied the dual problem of Bin Packing called Bin Covering.
They analyzed this problem both for worst-case migration and amortized
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migration and for the static and the dynamic case to obtain lower bounds
and matching algorithmic results (up to an additional additive term of ε).

The offline variants of the geometric packing problems have also been studied
intensively. See e. g. the survey of Christensen et al. [10] and the references
therein.

1.2 Our Results

We present a very general framework that allows to construct robust online
algorithms that have amortized migration factor of O(1/ε) and achieve the same
competitive ratio as the best known offline approximation algorithm (up to an
additive error of ε). Note that the achieved migration factor is optimal for some
of the problems we consider. See e. g. the work of Feldkord et al. [16] for a
corresponding lower bound regarding the Bin Packing problem. The algorithms
created by our framework can all deal with the dynamic versions of these prob-
lems, where items can also depart from the instance. The only requirement we
have is the existence of an offline approximation algorithm and the existence
of an online algorithm for the static case that is related to the volume of an
instance. To present this general framework, we introduce the notion of flexible
online algorithms and show that such algorithms can be combined with offline
approximation algorithms under certain circumstances. We then show the versa-
tility of our approach by looking at several well-studied problems including 2-D
Strip Packing, 2-D Bin Packing, and Vector Packing. We give robust algorithms
for the multi-dimensional variants of these problems, where we can also handle
both the departure and the rotation of items. This improves and generalizes sev-
eral known results (e. g. from [14,19]) and gives the first robust algorithms for
all of the other problems. Additionally, our compact and clean framework gives
much easier algorithms compared with the previously known algorithms. Due to
space constraints, detailed descriptions and analysis of the online algorithms are
omitted and can be found in the full version, which is attached in the appendix.
Results on higher-dimensional Strip Packing can also be found there.

2 Online Algorithms for Dynamic Problems:
A Framework

While the techniques presented in this paper also work for maximization prob-
lems, we will focus on minimization problems to improve the accessibility of our
results.

Definition 1. Let ITEMS ⊆ {0, 1}∗ be a prefix-free set describing some items.
A minimization problem Π = (I, sol,costs) consists of a set of instances
I ⊆ ITEMS, a mapping sol that maps an instance I ∈ I to a non-empty set of
feasible solution sol(I), and a mapping costs that maps a solution S ∈ sol(I)
to its costs costs(S) ∈ Q≥0. A solution S∗ ∈ sol(I) is called optimal, if
costs(S∗) ≤ costs(S) for all S ∈ sol(I). We denote the cost of any optimal
solution S∗ by opt(I) := costs(S∗).
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For the sake of simplicity, we sometimes treat Π and I interchangeably and also
write I ∈ Π to denote that I is an instance.

Throughout this paper, we make the following two natural assumptions that
hold for all problems considered in this work:

Assumption 1

1. For every instance I, every instance I ′ ⊆ I, and every solution S ∈ sol(I),
the solution S �I′ induced by the items in I ′ is also feasible, i. e. S �I′∈
sol(I ′). Hence, removing some items from a feasible solution results in a
feasible solution of the remaining items.

2. For every instance I, and every instance I ′ ⊆ I, we have opt(I ′) ≤ opt(I).
Hence, removing items from an instance can only decrease the optimum.

In the classical offline version of Π = (I, sol,costs), we are given the
complete instance I ∈ I all at once. An α-approximation for Π is a polynomial-
time algorithm A such that for all instances I ∈ I, we have A(I) ≤ αopt(I) + c
for some constant c not depending on the instance. Here, A(I) is the value of
the solution produced by A.

In the online version of a minimization problem Π = (I, sol,costs),
an online instance I is a sequence of instances I1, I2, . . . , I|I| ∈ I such that
|It�It+1| = 1 for all t = 1, . . . , |I| − 1, where � is the symmetric difference of
two sets. This means that we insert a new item i∗ (if It+1 \It = {i∗}) or an item
i∗ departs (if It \ It+1 = {i∗}). The set of online instances of Π is denoted as
Ion. An online algorithm A maintains a sequence of solutions S1, . . . , St, where
St ∈ sol(It) and furthermore, St+1(i) = St(i) for all i ∈ It+1 ∩ It. In the
static online version, we only have insertions and thus It � It+1. A non-static
problem is called dynamic. An online algorithm A producing such a sequence
of solutions S1, S2, . . . is β-competitive, if costs(St) ≤ β · opt(It) + c for all
t = 1, . . . , |I| and some constant c not depending on the instance. This notion of
competitiveness is sometimes also called asymptotic competitiveness in contrast
to the notion of absolute competitiveness, where no additional additive term c
is allowed. Whenever we talk about competitiveness, this is with regard to the
notion of asymptotic competitiveness.

Migration. Achieving bounded competitiveness is usually impossible for
dynamic problems, even for very simple problems such as Bin Packing where
every item has the same size: Consider an instance with k2 items of size 1/k.
Now, the adversary removes from each bin all items but one. If more than k bins
are remaining, the adversary further removes items until only k bins are left.
The optimal offline solution would pack these k items into a single bin, while the
online algorithms uses k bins. This impossibility is simply due to the fact that an
online algorithm is not allowed to change the position of an item once it is placed.
This very strict restriction comes with a high cost in regards to the competitive-
ness. As many real-world applications are not static, but allow the departure of
items, one must be more flexible. We will thus allow a small amount of repacking
to be able to handle dynamic problems. The model of repacking we use is called
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the amortized migration factor model. In this setting, every item i ∈ ITEMS
comes with a size vi ∈ Q≥0. Usually this size will be the space needed for an
item, such as its total area, volume or some similar criteria like the side length
of a hypercube. For a set of items I ⊆ ITEMS, we denote by vol(I) =

∑
i∈I vi

the complete volume of I. If I ∈ Ion is an online instance and S = (S1, . . . , S|I|)
is a sequence of solutions with Sj ∈ sol(Ij), the migrated items Mt(S) at time
t are defined as Mt(S) = {i ∈ It−1 ∩ It | St−1(i) �= St(i)}. The total migration
μ(S, t) used until time t is defined as μ(S, t) :=

∑t
j=1

∑
i∈Mj(S) vi, i. e. as the

sum of the sizes of the migrated items. Inserting an item i builds up a migration
potential of vi and migrating i has cost vi. More formally, for t = 1, . . . , |I|, let
At =

⋃
j∈{0,1,...,t−1}(Ij+1 \ Ij) be the set of items that were inserted until time t

and Dt =
⋃

j∈{0,1,...,t−1}(Ij \Ij+1) be the set of items that departed until time t.
Let A be an online algorithm that is allowed to migrate items. We say that A has
migration factor β, if μ(S, t) ≤ β[vol(At) + vol(Dt)] for all t = 1, . . . , |I| and
all I ∈ Ion. Here S is the sequence of solutions produced by A. Note that our
definition of migration is amortized, i. e. we can build a potential to use later on.
This will essentially allow us to repack the complete instance from time to time.
In contrast, in the notion of worst-case migration, the total size of all repacked
items is at most β · vt at each time t, i. e. one cannot save up migration for later
use.

If A is (γ +ε)-competitive for some constant γ and all ε > 0, and additionally
has migration factor bounded by f(1/ε) for some function f , we say that A is
robust. This is due to the fact that the migration needed only depends on the
desired quality of the solution.

The General Framework. Before we start looking at the specific problems, we
will introduce our very general framework. The simple algorithm presented by
Feldkord et al. [16] can be seen as a special case of our framework. By using the
concept of amortized migration, we can save up repacking potential, to be used at
a later time. Now the design of an algorithm boils down to three basic questions.
How do we pack arriving items? How do we repack already packed items? And
at what time do we repack items? The main idea behind our framework for
packing problems is to use general algorithms for the first two problems: an online
algorithm to pack arriving items and an offline algorithm for the repacking. The
third problem is then solved by a generic combination of the two algorithms. In
order for this approach to work, we need different criteria for both algorithms
and the packing problem that we are trying to solve.

Definition 2. Let Π be an minimization problem with sizes vi. We call Π space
related, if opt(I) ≥ vol(I) holds for all instances I ∈ Π. Here vol(I) :=∑

i∈I vi is the total size of I.

Intuitively, this definition captures the fact that Π is a packing problem
that needs to pack items of a certain volume in some non-overlapping way. All
problems in this paper will be space related. To make use of this relation, we
also need online algorithms such that competitiveness not only holds for the
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optimum opt(I), but also for the volume vol(I). We therefore also formally
introduce this necessity.

Definition 3. Let Π be an online minimization problem with sizes vi and A
be an online algorithm for Π. We say that A is space related with ratio β, if
costs(St) ≤ β · vol(It) + c for all online instances I ∈ Ion, all time points
t = 1, 2, . . . , |I| and some constant c. Here, St denotes the solution produced by
A at time t.

Trivially, a space related algorithm with ratio β for a space related prob-
lem implies β-competitiveness, like Next-Fit for the Bin Packing problem. As
indicated above, we will combine such an online algorithm with another offline
algorithm. To be able to efficiently combine these two algorithms the online
algorithms need to be able to build flexibly on top of the solution of the offline
algorithm.

More formally, we require that our online algorithm takes another optional
argument S ∈ sol(It) describing an existing solution to the previous instance It

to build upon.

Definition 4. Let Π be an online minimization problem with sizes vi and A be
a space related online algorithm for Π with ratio β. Furthermore let I ∈ Ion be
a static online instance (i. e. it does not need to handle departures), t < t′ ≤ |I|
two time points, and S be a solution of It. We say that A is flexible, if it also
accepts S as another parameter and produces upon input It′ and S a solution S′

with S′(i) = S(i) for all i ∈ It ∩ It′ .

Note that we define flexibility only with regard to static online instances
where no items depart. One advantage of our framework is that we only need
to design such online algorithms, but our combined algorithm will also be able
to deal with departures. Remember that our online algorithm A is given some
solution S to the previous items It. In order to be able to ignore the departure
of items in the combined approach, we need to guarantee that A only introduces
an error of β[vol(It′) − vol(It)] when it packs instance It′ .

Definition 5. We say that A is flexible with ratio β, if A is flexible and
A(It′ , S) ≤ costs(S) + β[vol(It′) − vol(It)] + c for some constant c, for all
instances I ∈ Ion, all t ∈ {1, . . . , |I|}, and all t′ ∈ {t + 1, . . . , |I|}.

For the problems we will address later, Bin Packing and Strip Packing, we
can simply solve the instance containing the newly arriving jobs separately and
pack the new partial solution on top of the old one. Therefore this will be a
property easily fulfilled by all online algorithms that we consider later. Note
that a flexible algorithm with ratio β is also space related with ratio β, as we
can simply choose t = 1 add a trivial solution S for this instance containing a
single item.

Combining the Algorithms. In order to obtain a robust PTAS or a robust
online algorithm that is γ+ε-competitive, we will need a flexible online algorithm
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Listing 1.1. Framework ALG(Aon,Aoff)

s e t Vtotal := 0 ; s e t Vchanged := 0 ;
l e t S be an empty s o l u t i o n ;
f o r each time t and a r r i v i n g or depart ing item i

i f item i a r r i v e s do
pack i accord ing to on l i n e a lgor i thm Aon and s o l u t i o n S ;

i f item i departs do
l eave i in i t s p o s i t i o n in the cur rent s o l u t i o n S ;

s e t Vchanged = Vchanged + vi ;
i f Vchanged > εVtotal do

compute o f f l i n e s o l u t i o n S f o r It with Aoff ;
Continue with new s o l u t i o n ;
s e t Vtotal = vol(It) ; s e t Vchanged = 0 ;

with a constant ratio. For the offline algorithm we will need an offline γ + ε-
approximation (in the case of γ = 1, this is simply a PTAS). Basically, our final
algorithm will have the same ratios as the offline algorithm and migration factor
O(1/ε). In order to achieve bounded competitiveness, we need to migrate items
at some special time points. These time points will be determined by the total
volume of items that have arrived or departed since the last such time point. At
these special time points, we will use the offline algorithm to rebuild the solution
completely. In between these points, we will only apply the online algorithm for
the static case. We will therefore define phases such that during a phase we only
apply the online algorithm.

Definition 6. Let Π be an online minimization packing problem with sizes vi

and I ∈ Ion be an online instance.
We partition I1, I2, . . . into phases as follows: The start time of the first

phase is 1. If τ is the start time of the current phase, and t ≥ τ is some time
point, we define the following values: (i) the complete volume of the instance at
time τ is denoted by Vτ = vol(Iτ ), (ii) the items inserted since τ are defined
as Inst =

⋃t−1
i=τ (Ii+1 \ Ii) and its volume is At = vol(Inst), and (iii) the items

departed since τ are defined as Dept =
⋃t−1

i=τ (Ii \ Ii+1) and its total volume is
Rt = vol(Dept). The current phase ends at the earliest point of time τ ′ > τ
such that Aτ ′ + Rτ ′ > εVτ . The next phase then starts at time τ ′.

Basically we end a phase when the total size of items that were added or
removed exceeds an ε factor of the total item size at the beginning of the phase.
So our final algorithm basically packs inserted items using the online algorithm
until a phase ends. Departed items stay at the same position. Whenever a phase
ends, we compute an offline solution for the current instance and repack our
solution completely. After that the next phase starts, where we again only pack
with the online algorithm. Now we will prove that this combination of algorithms
will be a robust γ + ε algorithm for γ ∈ O(1) and fixed ε > 0, when we combine
two algorithms with the right properties.
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Theorem 1. Let Π be a minimization problem fulfilling Assumption 1. Further-
more let Aoff be a (γ + ε)-approximation algorithm for the offline version of Π
for some constant γ ∈ O(1), let 1/2 ≥ ε > 0, and let Aon be a flexible algo-
rithm with ratio β. Then the combination of these two algorithms, denoted with
ALG(Aon,Aoff) (see Listing 1.1), is an (γ +O(1)βε)-competitive robust algorithm
for Π with amortized migration factor O(1

ε ).
The running time of ALG at time point t is at most Toff(t) + Ton(t), where

Toff(t) (resp. Ton(t)) is the worst-case running time of Aoff (resp. Aon) on an
instance of t items.

Proof. Migration factor: Let Iτ be the instance at the start of a phase with
volume Vτ = vol(Iτ ) and let τ ′ be the ending time of this phase. As the phase
ends at time τ ′, we have Aτ ′ + Rτ ′ > εVτ (where Aτ ′ and Rτ ′ are defined as in
Definition 6). As we only ever migrate items at the end of a phase, we only need
to consider the amortized migration factor at these time points. We assign the
volume of all items inserted and departed during the phase that ends at time τ ′

to this phase. Hence, a total migration potential of Aτ ′ +Rτ ′ was build up in this
phase. The total volume of the instance at this point is at most Vτ +Aτ ′ and our
amortized migration factor is thus Vτ+Aτ′

Aτ′+Rτ′ ≤ Vτ

Aτ′+Rτ′ +1 < Vτ

εVτ
+1 = O(1/ε). As

the phases are disjoint, the total amortized migration factor is thus also bounded
by O(1/ε).

Competitiveness: To show the competitiveness of ALG, assume that

Aoff(It) ≤ (γ + ε) · opt(It) + coff (∗off)

for some constant coff and furthermore

Aon(It′ , S) ≤ costs(S) + β[vol(It′) − vol(It)] + con (∗on)

for some constant con.
Let I ∈ Ion be some online instance and t ∈ {1, . . . , |I|}. We distinguish

whether t is the end of a phase or in the middle of a phase. If t = τ is the end
of a phase, we use the offline algorithm Aoff and thus have ALG(It) = Aoff(It) ≤
(γ + ε) ·opt(It)+ coff , where the inequality follows from eq. (∗off). Now consider
any point of time t during the phase starting at τ . Like above, let At, Rt denote
the total volumes of arrived and removed items in this phase up to time t. Note
that we have At + Rt ≤ εVτ , since otherwise we would repack at time t.

Claim. We have opt(Iτ ) ≤ opt(It) + βεVτ + con.

Proof. By Assumption 1, the value opt(It) is minimal if only departures hap-
pened. We can thus assume w. l. o. g. that up till time t some items were removed
and no new items arrived. Consider an optimal solution St for the instance It,
where items departed and let Dt = Iτ \ It be the set of departed items. Let
d1, . . . , dk be some total ordering of Dt. We now construct a new online instance
I ′ that somehow reverses the removal of Dt. The instance I ′ is of length t + k
with I ′

i = Ii for i ≤ t. For i > t, we define I ′
i = Ii−1 ∪ {di}. We now use the
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online algorithm Aon on this instance I ′ with solution St for instance It. At
the end of instance I ′, eq. (∗on) implies that Aon gives a feasible solution to
I ′
t+k = It ∪ Dt = Iτ with

Aon(I ′
t+k, St) ≤costs(St) + β[vol(It+k) − vol(It)] + con =

opt(It) + β[vol(Iτ ) − vol(It)] + con = opt(It) + βvol(Dt) + con ≤
opt(It) + βεVτ + con.

The last inequality follows from the fact that Rt = vol(Dt) by definition and
Rt ≤ εVτ by assumption. As Aon produces a feasible solution for I ′

t+k = Iτ , we
clearly have opt(Iτ ) ≤ Aon(I ′

t+k, St) thus proving the claim.

Since the problem Π is space related, we can conclude that

opt(It) ≥ vol(It) = Vτ + At − Rt ≥ Vτ − Rt ≥ Vτ − εVτ ≥ Vτ

2
. (∗)

Hence Vτ ≤ 2opt(It).
Let Sτ be the solution produced by Aoff at time τ that the online algorithm

Aon is building upon. Note that we only remove the departed item at a time
point where the offline algorithm is used. Hence, at time t, the online algorithm
does not produce a solution for the instance It, where the departed items are
already removed. The algorithm rather works on the instance that still contains
all items that have departed since time τ . This instance is denoted by I ′

t. We
thus have

ALG(It) = Aon(I ′
t, Sτ ) ≤ // eq. (∗on)

costs(Sτ ) + β[vol(I ′
t) − vol(Iτ )] + con = // Sτ produced by Aoff

Aoff(Iτ ) + β[vol(I ′
t) − vol(Iτ )] + con ≤ // eq. (∗off)

(γ + ε) · opt(Iτ ) + coff + β[vol(I ′
t) − vol(Iτ )] + con ≤ // Equation 2

(γ + ε) · [opt(It) + βεVτ + con] + coff + β[vol(I ′
t) − vol(Iτ )] + con =

(γ + ε) · [opt(It) + βεVτ + con] + coff + β[At] + con ≤ // At + Rt ≤ εVτ

(γ + ε) · [opt(It) + βεVτ + con] + coff + βεVτ + con =
(γ + ε)opt(It) + (γ + ε + 1)βεVτ + (γ + ε + 1)con + coff ≤ // eq. (∗)
(γ + ε)opt(It) + 2(γ + ε + 1)βεopt(It) + (γ + ε + 1)con + coff =
(γ + ε + 2(γ + ε + 1)βε)opt(It) + (γ + ε + 1)con + coff .

As γ, con, and coff are constants, the last term can be written as

(γ + ε + 2(γ + ε + 1)βε)opt(It) + (γ + ε + 1)con + coff ≤
(γ + O(1) · βε))opt(It) + O(1).

The running time bound follows easily from the fact that we essentially only
use Aon or Aoff at any given time.
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We further conclude that if β is constant, this framework gives us automatically
an online algorithm with a competitive rate of γ + ε, as we can scale down ε
appropriately.

Note that we do not assume that any of the algorithms run in polynomial
time. We could thus use an exact exponential-time algorithm for Aoff . This allows
us to conclude that all space-related minimization problems that have an exact
exponential-time algorithm and a flexible online algorithm can achieve a com-
petitive ratio of 1 + ε with migration factor O(1/ε) in exponential time. This is
a stark contrast to the setting without migration, where information-theoretic
lower bounds prevent the existence of such algorithms. An example of such an
information-theoretic lower bound is given by Balogh [3] for the bin packing
problem.

We can further note that we considered the case of asymptotic algorithms.
One can easily see, that this also works for algorithms with absolute ratios. If
both the flexible and the offline algorithm have absolute ratio, the constants
con, coff are set to 0 and even the resulting combined algorithm has an absolute
ratio.

3 2-Dimensional Strip Packing

In the online Strip Packing problem, we are given a two-dimensional strip of
width 1 and infinite height. At time t, either a rectangle rt with width w(rt) ≤ 1
and height h(rt) ≤ 1 is inserted and needs to be packed into this strip or a
rectangle rt is removed from the strip. A packing is valid if no two rectangles
intersect. The size v(r) of a rectangle r is defined as v(r) = h(r) · w(r). We first
focus on the case that rectangles are not allowed to be rotated and will later see
how to handle the rotations. In both cases, the goal is to minimize the height of
the produced packing. This problem has been studied intensively in the online
setting (see for example the works cited in [10]). Jansen et al. [19] studied the
static case in the migration scenario, where rectangles can only arrive.

To use our framework, we need the following ingredients:

(i) We need to show that the Strip Packing problem is space related;
(ii) We need to construct a flexible online algorithm with ratio β;
(iii) We need to construct an offline approximation algorithm.

Concerning the first point, it is well-known that opt(It) ≥ vol(It), as the
rectangles are not allowed to intersect and the width of the strip is exactly 1.

Remark 1. The Strip Packing problem is space related.

We will now present a flexible online algorithm with ratio β = 4. This
algorithm is a simple adaption of the shelf algorithms presented by Baker and
Schwarz [1]. In the notion of Csirik and Woeginger [12], this algorithm would be
denoted as SHELF(FirstFit, 1/2). We first define several types of containers. A
container c of type γ0 has width 1 and height h(c) = 1. For i ∈ N≥1, a container
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of type γi has width 1 and height h(c) = 2−i+1. For each i ∈ Z≥0, we will have at
most one active container of type γi. For all other containers of this type – which
we call closed – we will guarantee that at least 1/4 of their volume is used by
items. We perform the following operation whenever a new rectangle rt arrives:

– If w(rt) ≥ 1/2, check whether a container of type γ0 exists. If not, open a new
active container of type γ0 and place rt into it. If such a container c already
exists and h(rt) +

∑
r∈c h(r) > 1, declare c as closed and open a new active

container of type γ0. Otherwise (h(rt) +
∑

r∈c h(r) ≤ 1), put rt on top of the
top item in c.

– If w(rt) ≤ 1/2 and h(rt) ∈ (2−i, 2−i+1], check whether a container of type γi

exist. If not, open a new active container of type γi and place rt into it. If such
a container c already exists and w(rt)+

∑
r∈c w(r) > 1, declare c as closed and

open a new active container of type γi. Otherwise (w(rt) +
∑

r∈c w(r) ≤ 1),
put rt right to the right-most item in c.

We have at most one active container of type γi for each i ∈ Z≥0: we only open a
new active container if we simultaneously declare another container of the same
type as closed. This observation directly leads to the following theorem about
the competitiveness of the algorithm.

Theorem 2. The presented algorithm ASP is a flexible online algorithm for
Strip Packing with ratio 4.

We have now shown the first two ingredients for our framework: the problem
is space related and we gave a suitable online algorithm. The final piece – an
offline approximation algorithm – is given by the asymptotic fully polynomial
time approximation scheme (AFPTAS) of Kenyon and Rémila [22], which is an
1 + ε-approximation. We can thus use Theorem1 with γ = 1 + ε and β = 4 to
conclude the following theorem.

Theorem 3. There is a robust online algorithm for the dynamic Strip Packing
problem that is 1 + ε-competitive and has amortized migration factor O(1/ε).

Rotations. If rotations by 90◦ are allowed, the resulting problem is called Strip
Packing With Rotations. For an instance I, we denote the height of a corre-
sponding optimal packing by optR(I). As the volume of a rotated rectangle
does not change, we have optR(I) ≥ vol(I). Similarly, the volume bound of
Theorem 2 also remains true. We can thus conclude the following adaption of
Theorem 2.

Theorem 4. The presented algorithm ASP is a flexible online algorithm for
Strip Packing With Rotations with ratio 4.

Instead of using the classical AFPTAS by Kenyon and Rémila [22], we use
the AFPTAS of Jansen and van Stee [20] for the case that rotations are allowed.
Using Theorem 1 with γ = 1 + ε and β = 4 gives the following theorem.
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Theorem 5. There is a robust online algorithm for the dynamic Strip Packing
With Rotations problem that is 1 + ε-competitive and has amortized migration
factor O(1/ε).

The best known online algorithm with migration known is due to Jansen
et al. [19]. It also is 1 + ε-competitive, but an amortized migration factor of
O(1/ε9 log2(1/ε)), only works for the static case (no rectangles are removed),
and cannot handle rotations. The higher-dimensional case is treated in the full
version.

4 Bin Packing

2-Dimensional Bin Packing. In 2-D Bin Packing, each item i is given by
its height hi ≤ 1 and its width wi ≤ 1. The goal is to pack these items non-
overlapping into as few unit-sized squares (called bins) as possible. As above, we
will show the following: (i) We need to show that the 2-D Bin Packing problem
is space related; (ii) We need to construct a flexible online algorithm with ratio
β; (iii) We need to construct an offline approximation algorithm.

As the rectangles are not allowed to overlap and each bin has a total volume
of 1, 2-D Bin Packing is space related.

Remark 2. The 2-D Bin Packing problem is space related.

We will now present a flexible online algorithm. This algorithm is a sim-
ple extension of the classical algorithm presented by Coppersmith and Ragha-
van [11]. We categorize items as follows: We call an item vertical if wi ≤ hi

and horizontal if wi > hi. Note that squares with hi = wi will be considered as
vertical. Without loss of generality we will explain in the following how to pack
vertical items. Horizontal items can and will be placed into separate bins with
the same strategy, just altered for horizontal items. Note that we later also need
to account for these horizontal bins.

We further assign each item i a size class. Item i is in size class j ∈ N≥1 if
1/2j−1 ≥ hi > 1/2j. Further we say an item i is square-like, if i is in size class j
and furthermore wi > 1/2j. The general idea is that for every arriving item in
size class j, we will assign a square slot of size 1/2j−1 in some bin. A square slot
of this size is called a slot of class j. Note that an item of size class j always fits
into a slot of class j, as we only handle vertical items with wi ≤ hi here. Our
goal is to fill all opened slots with items until 1/4 of the total area of the slot
is covered. Square-like items will immediately fill such a slot to this extent. For
the other items, we will reserve such slots for a size class j and stack items from
left to right until the total width of all items in that slot exceeds 1/2j. Since the
height of items assigned to this slot exceed 1/2j as well, 1/4 of the total slot will
be covered at that point. A slot can have three states: it is either (i) empty and
thus contains no item, (ii) reserved for class j and thus only contains items of
class j or (iii) closed if at least 1/4 of its total volume is filled with items.
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In order to assign items to these slots, we will keep up to two open bins.
The first open bin will hold items of size class 1 and we use the complete bin as
a single reserved slot. The second open bin will receive items of size class ≥ 2.
Initially, this bin is split into four empty slots of class 2. The online algorithm
A2-D now assigns a new item either to a non-closed slot of its class or, if no such
slot exists, splits an empty slot of a larger class recursively. As every bin created
by the algorithm contains at most three empty slots of a certain class, we can
conclude the competitiveness of our algorithm.

Theorem 6. The proposed algorithm A2-D for 2-D Bin Packing is a flexible
online algorithm with ratio 48

5 .

Finally, we can use the approximation algorithm of Bansal and Khan [6] that
is an 1.405-approximation for 2-D Bin Packing. We can thus use Theorem1 with
γ = 1.405 and β = 48/5 to conclude the following theorem.

Theorem 7. There is a robust online algorithm for the dynamic 2-D Bin Pack-
ing problem that is 1.405 + ε-competitive and has amortized migration factor
O(1/ε).

To the best of our knowledge, this is the first robust online algorithm for
dynamic 2-D Bin Packing. Note that the best known lower bound for the compet-
itiveness of any online algorithm for online 2-D Bin Packing without migration
is 1.856 due to Van Vliet [25].

Rotations. As for Strip Packing, allowing rotations of the rectangles by 90◦

gives rise to a problem called 2-D Bin Packing With Rotations. The correspond-
ing optimal number of bins needed to pack instance I is denoted by optR(I).
Rotations are invariant with regard to the volume of a rectangle and thus
optR(I) ≥ vol(I). We can thus again use our online algorithm A2-D. The
approximation algorithm of Bansal and Khan [6] used above can also handle the
case of rotation and thus is an 1.405-approximation for 2-D Bin Packing With
Rotations. We can thus use Theorem 1 with γ = 1.405 and β = 48/5 to conclude
our theorem.

Theorem 8. There is a robust online algorithm for the dynamic 2-D Bin Pack-
ing With Rotations problem that is 1.405 + ε-competitive and has amortized
migration factor O(1/ε).

To the best of our knowledge, this is the first robust online algorithm for
dynamic 2-D Bin Packing With Rotations. Note that the best known lower
bound for the competitiveness of any online algorithm for 2-D Bin Packing With
Rotations without migration is at least 1.7515 due to Balogh et al. [2] improving
the bound of 1.6707 due to Blitz et al. [9].

Higher Dimensions. Our presented algorithm can be simply adapted to the
d-dimensional case to obtain the following result.

Theorem 9. The proposed algorithm Ad-D for d-Dimensional Hyperrectangle
Packing is a flexible online algorithm with ratio 22d−3·2d+1

22d(2d−1)
.
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Finally, we can use the offline APTAS with polynomial running time for constant
d from Bansal et al. [4] for the special case of Hypercube Packing. Using Theo-
rem 1 with γ = 1 + ε and β = 22d−3·2d+1

22d(2d−1)
allows the conclusion of the following

theorem.

Theorem 10. For every constant d ≥ 2, there is a robust online algorithm for
the dynamic d-Dimensional Hypercube Packing problem that is 1+ ε-competitive
and has amortized migration factor O(1/ε).

In contrast, the best known online algorithm with migration for the d-
Dimensional Hypercube Packing is due to Epstein and Levin [14]. It is also
1 + ε-competitive, but can only handle the static case and has migration factor
(1/ε)Ω(d). Note however that they use worst-case migration, i. e. they are not
allowed to repack the complete instance every once in a while but need to make
slight adaptions carefully throughout the run of the algorithm.

5 Vector Packing

In the online d-dimensional Vector Packing problem, at time t either a vector
wt ∈ (Q ∩ [0, 1])d is inserted and needs to be packed or is removed. The size
v(wt) of such a vector wt = (w[1], . . . , w[d]) is defined as the average sum of its
components, i. e. v(wt) =

∑d
j=1 w[j]/d. The goal is to pack these vectors into as

few as possible bins as possible. Here, a bin B is a subset of vector such that∑
w∈B w[j] ≤ 1 for j = 1, . . . , d. As each bin can contain items of volume at

most 1, it is easy to see that the problem is space related.

Remark 3. The d-dimensional Vector Packing problem is space related.

We will now present a flexible online algorithm with ratio β = 2d that is
a simple adaption of the well-known next fit online algorithm for bin packing.
Every bin will have an index to guarantee a linear ordering. Whenever a vector
w arrives, we first check whether w can be packed into an existing bin. If this is
possible, we add w to such a bin with minimal index. If no such bin exists, we
open a new bin containing w. If we are given a previous packing S, we simply
ignore the previous bins and do not put any vector in them.

Theorem 11. For every d ≥ 1, the presented algorithm AV P is a flexible online
algorithm for d-dimensional Vector Packing with ratio 2d.

We have now shown the first two ingredients for our framework: the problem is
space related and we gave a suitable online algorithm. The final piece – an offline
approximation algorithm – is given by the algorithm of Bansal et. al. [5] which is
a ln(d + 1) + 0.807 + ε-approximation that runs in polynomial time for constant
d. We can thus use Theorem 1 with γ = ln(d + 1) + 0.807 + ε and β = 2d to
conclude the following theorem. Note that if d is considered constant, so is β.

Theorem 12. For every constant d ≥ 1, there is a robust online algorithm for
the dynamic d-dimensional Vector Packing problem that is ln(d+1)+0.807+ ε-
competitive and has amortized migration factor O(1/ε).
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Abstract. We study approximation algorithms for the problem of min-
imizing the makespan on a set of machines with uncertainty on the pro-
cessing times of jobs. In the model we consider, which goes back to [3],
once the schedule is defined an adversary can pick a scenario where devi-
ation is added to some of the jobs’ processing times. Given only the
maximal cardinality of these jobs, and the magnitude of potential devi-
ation for each job, the goal is to optimize the worst-case scenario. We
consider both the cases of identical and unrelated machines. Our main
result is an EPTAS for the case of identical machines. We also provide
a 3-approximation algorithm and an inapproximability ratio of 2 − ε for
the case of unrelated machines.

Keywords: Makespan minimization · Robust Optimization ·
Approximation algorithms · EPTAS · Parallel machines · Unrelated
machines

1 Introduction

Classical optimization models suppose perfect information over all parameters.
This can lead to optimal solutions having poor performance when the actual
parameters deviate, even by a small amount, from the predictions used in the
optimization model. Different frameworks have been proposed to overcome this
issue, among which Robust Optimization which tackles the uncertainty by pro-
viding a set of possible values for these parameters, and considering the worst
outcome over that set. In this paper, we consider the problem of scheduling a
set of jobs J on the set of machines M , so as to minimize the makespan, and
considering that the processing times are uncertain. What is more, we consider
the budgeted uncertainty model introduced by [3] where each processing time
varies between its nominal value and the latter plus some deviation. Further, in

This work was partially supported by DFG Project, “Robuste Online-Algorithmen für
Scheduling-und Packungsprobleme”, JA 612/19-1, and ANR project ROBUST (ANR-
16-CE40-0018).

c© Springer Nature Switzerland AG 2020
E. Bampis and N. Megow (Eds.): WAOA 2019, LNCS 11926, pp. 60–71, 2020.
https://doi.org/10.1007/978-3-030-39479-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39479-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-39479-0_5


Approximation Results for Makespan Minimization 61

any scenario, at most Γ of the uncertain parameters take the higher values, the
other being at their nominal values.

Let us now formally define the Robust Scheduling on Unrelated Machines
(R|UΓ |Cmax) problem. For any job j ∈ J and machine i ∈ M , we denote by
pij ≥ 0 the nominal processing time of j on i, and by p̂ij ≥ 0 the (potential)
deviation of j on i. A schedule σ is a function from J → M . We write σi for the
subset of jobs scheduled on machine i. Let UΓ = {ξ ∈ {0, 1}|J| : ‖ξ‖1 ≤ Γ} be
the set of all possible scenarios where at most Γ jobs deviate. For any ξ ∈ UΓ ,
we set pξ

ij = pij + ξj p̂ij to be the actual processing time of j on i in scenario ξ.
Let us now formalize some common terms, but with dependence on scenario

ξ. The load of machine i in scenario ξ is calculated as
∑

j∈σi
pξ

ij . The makespan in
scenario ξ is the maximum load in scenario ξ, i.e., Cξ

max(σ) = maxi∈M

∑
j∈σi

pξ
ij .

Finally, CΓ
max(σ) = maxξ∈UΓ Cξ

max(σ) denotes the objective function we consider
in Robust Scheduling, where the adversary takes the worst scenario among UΓ .

Next, we will state important observations about the objective function. We
first need to introduce the following notations. Given a set of jobs Xi scheduled
on machine i, we define p(Xi) =

∑
j∈Xi

pij , p̂(Xi) =
∑

j∈Xi
p̂ij , Γ (Xi) as the set

of the Γ jobs of Xi with the largest p̂ij values (or Γ (Xi) = σi when |Xi| < Γ )
with ties broken arbitrarily. Finally, set p̂Γ (Xi) = p̂(Γ (Xi)).

By definition we have CΓ (σ) = maxξ∈UΓ maxi∈M

∑
j∈σi

Cξ(σ), and thus we
can rewrite CΓ (σ) = maxi∈M maxξ∈UΓ

∑
j∈σi

Cξ(σ) = maxi∈M CΓ (σi), where
CΓ (σi) = maxξ∈UΓ

∑
j∈σi

Cξ(σ) is the worst-case makespan on machine i. The
benefit of rewriting CΓ (σ) in this form is that it is now clear that CΓ (σi) =
p(σi) + p̂Γ (σi) as the worst scenario ξ for a fixed σi is obtained by picking the
Γ jobs with highest p̂ij and make them deviate. Thus, R|UΓ |Cmax can also
be thought as a “classical” scheduling problem (without adversary) where the
makespan on a machine CΓ (σi) is simply the sum of all the nominal processing
time of jobs of σi, plus only the Γ largest deviating values of jobs of σi. We are
now ready to define R|UΓ |Cmax.

Problem 1. Robust Scheduling on Unrelated Machines (R|UΓ |Cmax)

– Input: (J,M, p ∈ Q
|M |×|J|
+ , p̂ ∈ Q

|M |×|J|
+ ) where J is the set of jobs, M the set

of machines, p are the vectors of nominal processing times, and p̂ the vectors
of deviation

– Output: find a schedule σ : J → M
– Objective function: min CΓ (σ) = maxξ∈UΓ maxi∈M

∑
j∈σi

[pij + ξj p̂ij ] =
maxi∈M CΓ (σi), where CΓ (σi) = p(σi) + p̂Γ (σi).

Following the classical three field notation, we denote by R|UΓ |Cmax the
previous problem. Notice that when all p̂ij = 0 the problem corresponds to the
classical R||Cmax, for which we denote by C(σi) =

∑
j∈σi

pij the makespan on
machine i. We are also interested in a simplification of the above problem. This
simplification is Robust Scheduling on Identical Machines (P |UΓ |Cmax)
where each has two processing times (pj and p̂j), and we have pij = pj and
p̂ij = p̂j for any i.
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Robust scheduling has been considered in the past, mostly for finite uncer-
tainty sets without particular structure, see for instance [1,6,9,10,12]. More
recently, [2,5,13] considered robust packing and scheduling with the budgeted
uncertainty model UΓ from [4]. Specifically, [5] (with authors in common) pro-
vided a 3-approximation algorithm and a (1 + ε)-approximation (PTAS) for
P |UΓ |Cmax but only for a constant Γ , as well as a randomized approxima-
tion algorithm for R|UΓ |Cmax having an average ratio of O(log(m)). They also
considered problem 1|UΓ |∑j wjCmax, proving that the problem is NP-hard
in the strong sense, and providing a polynomial-time algorithm when wj = 1
for j ∈ J . Authors of [13] considered the robust one-machine problem for four
commonly-used objective criteria: (weighted) total completion time, maximum
lateness/tardiness, and number of late jobs. They showed that some of these
problems are polynomially solvable and provide mixed-integer programming for-
mulations for others. Their results considered UΓ as well as two closely related
uncertainty sets. Paper [2] (with also authors in common) considers robust bin-
packing problem for UΓ and one of the uncertainty sets considered by [13], and
provided constant-factor approximations algorithms for the two problems.

In this paper we improve the results of [5] for P |UΓ |Cmax and R|UΓ |Cmax. In
Sect. 2 we show that any c-approximation for the classical R||Cmax problem leads
to a (c + 1)-approximation for R|UΓ |Cmax, hence obtaining a 3-approximation
algorithm for the latter problem, and a (2 + ε)-approximation for P |UΓ |Cmax.
We point out that this result improves the ad-hoc 3-approximation of [5] for
P |UΓ |Cmax, while having a simpler proof. In Sect. 3, we show through a reduction
from the Restricted Assignment Problem that there exists no (2 − ε)-
approximation algorithm for R|UΓ |Cmax unless P = NP. This implies that the
best possible ratio (unless P = NP) for R|UΓ |Cmax is somewhere between 2 and
3, contrasting with the classical R||Cmax where the gap between 3

2 and 2 is still
open since [11].

In Sect. 4 we consider the P |UΓ |Cmax problem and present the first step of
our main result, namely a PTAS which is valid even when Γ is part of the input,
i.e., not constant. Having Γ in the input (and not constant) requires a totally
different technique from the one used in [5]. The algorithm is turned into an
EPTAS in Sect. 5, i.e., a PTAS where the dependency of ε is not in the exponent
of the encoding length.

2 A 3-Approximation for Unrelated Machines

Theorem 1. Any polynomial c-approximation for R||Cmax implies a polynomial
(c + 1)-approximation for R|UΓ |Cmax.

Proof (Proof of Theorem 1). We design a dual approximation, i.e., given an
instance I of R|UΓ |Cmax and an threshold T , we either give a schedule σ of I
with CΓ (σ) ≤ (c + 1)T , or prove that T < OPT(I). Using a binary search on T
this will imply a (c + 1)-approximation algorithm.

For that, given an instance I = (J,M, p, p̂) of R|UΓ |Cmax, and T the current
threshold, our objective is to define an instance I ′ = (J,M, p) of the classical
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R||Cmax problem. The transformation of a solution for I ′ to a solution for I will
be straightforward since the jobs and machines will be the same.

Given a machine i, let Bi = {j|p̂ij > T
Γ } and Si = J \ Bi. Define

pij :=

{
pij + p̂ij if j ∈ Bi

pij otherwise.
(1)

Let us now prove that (1) if OPT(I ′) > T then we have OPT(I) > T , and (2)
every schedule σ with makespan CI′

(σ) in I ′ has a makespan at most CI′
(σ)+T

in I (CΓ (σ) ≤ CI′
(σ) + T ).

For (1), we prove that OPT(I) ≤ T implies that OPT(I ′) ≤ T . Let σ be
an optimal solution of I and i a machine. CΓ (σ) ≤ T implies that CΓ (σi) ≤ T
for any i, and thus that p(σi) + p̂Γ (σi) ≤ T . Now, observe that Bi ⊆ Γ (σi).
Indeed, assume towards contradiction that there exists j ∈ Bi \ Γ (σi). This
implies that |Γ (σi)| = Γ . As by definition, any j′ ∈ Γ (σi) has p̂ij′ ≥ p̂ij > T

Γ ,
we get that p̂Γ (σi) > T , a contradiction. This implies CI′

(σi) = p(σi) + p̂(Bi) ≤
p(σi) + p̂Γ (σi) ≤ T .

For (2), let σ be a solution of I ′. Let i ∈ M . Observe that p̂(Γ (σi)) ≤ p̂(Bi)+T
as Γ (σi) contains at most Γ jobs in σi \ Bi, and these jobs have p̂ij ≤ T

Γ . Thus,
CΓ (σi) = p(σi) + p̂Γ (σi) ≤ p(σi) + p̂(Bi) + T = CI′

(σi) + T .
Thus, given a T and I we create I ′ as above and run the c-approximation

for R||Cmax to get a solution σ. If CI′
(σ) > cT then OPT(I ′) > T , implying

OPT(I) > T , and thus we reject T . Otherwise, we consider σ as a solution for
I, and CΓ (σ) ≤ (c + 1)T . �	

Using the well-known 2-approximation algorithm from [11], we obtain imme-
diately the following.

Corollary 1. There is a 3-approximation for R|UΓ |Cmax.

Since by this reduction identical machines stay identical we also obtain the
following using the EPTAS of [7] for the classical Q||Cmax problem.

Corollary 2. For every ε > 0 there is a (2 + ε)-approximation for P |UΓ |Cmax

running in time 2O(1/ε log(1/ε)4) + poly(n).

3 A 2 − ε Inapproximability for Unrelated Machines

For the classical R||Cmax problem, when all pij ∈ {1,∞}, deciding if the optimal
value is at most 1 is polynomially solvable as it can be reduced to finding a
matching in a bipartite graph. The result below shows that answering the same
question for R|UΓ |Cmax is NP-complete.

Theorem 2. Given an instance I of R|UΓ |Cmax, it is NP-complete to decide if
OPT(I) ≤ 1 or OPT(I) ≥ 2, and thus for any ε > 0 is no (2− ε)-approximation
algorithm for R|UΓ |Cmax unless P = NP, even for Γ = 1 and when each job
can be scheduled on at most 3 machines.
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Proof. Let us define a reduction from 3-SAT to R|UΓ |Cmax with Γ = 1. Let I0
be an instance of 3-SAT with clauses {Ci, i ∈ [m0]} and variables {xj , j ∈ [n0]}.
Each Ci is of the form l1i ∨ l2i ∨ l3i where lki ∈ {xj , x̄j} for some j. We define
an instance I of R|UΓ |Cmax with m = 2n0 machines and n = n0 + m0 jobs as
follows. To each variable xj we associate two machines {jf , jt}. We create a set
of n0 variable jobs where for any j ∈ [n0], pjf j = pjtj = 1, pi′j = ∞ for any
other i′, and p̂ij = 0 for any i ∈ [m]. For any clause Ci, i ∈ [m0] we define Mi:
the set of 3 machines corresponding to literals {lki } satisfying Ci. For example, if
C7 = x1∨x̄3∨x5 then M7 = {1t, 3f , 5t}. We now define a set of m0 clause jobs as
follows. For any j ∈ [n0 +1, n0 +m0], job j represents clause Cj−n0 with p̂ij = 1
iff i ∈ Mj−n0 , p̂i′j = ∞ for any other i′, and pij = 0 for any i ∈ [m]. For example,
job j = n0 + 7 is associated to C7 where in particular p̂1tj = p̂3f j = p̂5tj = 1.
Notice that each clause job can be scheduled on at most 3 machines. Let us now
verify that I0 is satisfiable iff OPT(I) = 1.

⇒. Suppose I0 is satisfied by assignment a. For any j ∈ [n0], we schedule j on
jt if xj is set to false in a and on jf otherwise. For any j ∈ [n0 + 1, n0 + m0], we
schedule job j on any machine i ∈ Mj−n0 corresponding to a literal satisfying Ci

in assignment a. Notice that in this schedule, a machine either receives exactly
one variable job, implying a makespan of 1, or only clause jobs, also implying a
makespan of 1 as Γ = 1.

⇐. Suppose that OPT(I) = 1 and let us define an assignment a. This implies
that any variable job j is either scheduled on machine jf , in which case we set
xj to true, or on machine jt, in which case we set xj to false. As OPT(I) = 1,
and clause job j ∈ [n0 + 1, n0 + m0] is scheduled on a machine i ∈ Mj−n0 that
did not receive a variable job, implying that clause j − n0 is satisfied by literal
i. �	

4 A PTAS for Identical Machines

Note that we can assume that m < n. If m ≥ n, a trivial schedule with every job
on a different machine is optimal. In some problems the encoding length may
be much smaller than m, when m is only encoded in binary. However, here a
polynomial time algorithm is allowed to have a polynomial dependency on m.

Recall that for the P |UΓ |Cmax problem, given two n dimensional vectors p̂
and p and the number of machine m, the objective is to create a schedule σ
that minimizes maxi∈M CΓ (σi). Recall also that CΓ (σi) = p(σi)+ p̂Γ (σi), where
p(σi) =

∑
j∈σi

pj , and p̂Γ (σi) is the sum of the p̂j values of the Γ largest jobs
(w.r.t. p̂j) of σi (or the sum of all p̂j values if |σi| ≤ Γ ). To obtain a PTAS for
P |UΓ |Cmax, we will reduce to the following problem, which admits an EPTAS
(see [8]).

Problem 2. Unrelated Machines with few Machine Types

– Input: n jobs and a set M of m machines with processing times pij ≥ 0
for job j on machine i. Moreover, there is a constant k and machine types
T1∪̇ · · · ∪̇Tk = {1, . . . , m}, such that every machine within a type behaves the
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same. Formally, for every k′, every i, i′ ∈ Tk′ and every j ≤ n it holds that
pij = pi′j

– Output: find a schedule σ : J → M
– Objective function: minimize makespan C(σ) = maxi∈M C(σi), where

C(σi) =
∑

j∈σi
pij

Notice that the EPTAS of [8] for this problem provides an (1 + ε)-
approximation running in time f(|I|, ε, k) = 2O(k log(k) 1

ε log4( 1
ε )) + poly(|I|).

We also introduce the following decision problem.

Problem 3. Unrelated Machines with few Machine Types and capac-
ities

– Input: as above, but in addition every machine i has a capacity ci ∈ (0, 1].
Moreover, capacities are the same among a type (for any k′ ∈ [k], for any
i, i′ ∈ Tk′ , ci = ci′)

– Output: decide if there is a schedule where C(σi) ≤ ci for any i.

Notice that the EPTAS for Problem2 allows to approximately decide Prob-
lem 3 in the following sense.

Lemma 1. There is an algorithm that for any ε > 0, either outputs a schedule
with C(σi) ≤ (1 + ε) · ci for any i, or reject the instance, proving that there is
no schedule with C(σi) ≤ ci for any i. This algorithm runs in time f(|I|, ε, k)
where f is the complexity of the above EPTAS to get a (1 + ε)-approximation.

Proof. Let A be the EPTAS of [8] for Problem 2. Given a input I of Problem3
we define an input I ′ of Problem 2 in the following way. For every j ≤ n, scale
pij to pij/ci. Then, if A(I ′) ≤ (1 + ε), we can convert the solution found by A
into a solution for I of makespan at most (1+ ε) · ci for any i. Otherwise, as A is
a (1 + ε)-approximation, it implies that OPT(I ′) > 1, and thus that no solution
can have makespan at most ci for any i. �	

Let us now describe the PTAS for P |UΓ |Cmax. Our objective is to provide a
(1 + O(ε)) dual approximation for P |UΓ |Cmax. The constant factor with ε can
be ignored, since we can divide ε with this constant in the preprocessing.

1. Guess the makespan and scale OPT to 1. Let I be an input of P |UΓ |Cmax,
and T be a positive value (representing the current threshold). We start by
redefining I by scaling pj := pj

T . Our objective is now to produce a schedule σ
with CΓ (σ) ≤ 1 + ε, or to prove that OPT(I) > 1.

2. Rounding deviations. Let us now define I1 (having vectors p1 and p̂1) in the
following way. For any j, if p̂j < ε/Γ then we set p̂1j ← 0. Intuitively, this will
only result in an error of at most Γ ·ε/Γ on every machine. Otherwise (p̂j ≥ ε/Γ ),
we define p̂1j by rounding p̂j to the closest smaller value of the form ε/Γ · (1+ ε)i.

Observation 1. In I1 there are at most O(1/ε log(Γ/ε)) deviation values, and
at most O(1/ε log(1/ε)) deviation values in the interval [ε/Γ, 1/Γ ].



66 M. Bougeret et al.

In the following, we will denote by CI′
Γ (σ) the cost of σ for instance I ′.

Observation 2. If OPT(I) ≤ 1 then OPT(I1) ≤ 1. If we get solution σ1 of I1,
then CI

Γ (σ1) ≤ (1 + ε)CI1

Γ (σ1) + ε

It only remains now to either produce a good solution of I1 (of cost at most
1 + O(ε)), or prove that OPT(I1) > 1.

3. Machine thresholds. Given any solution σ of I1 such that CI1

Γ (σ) ≤ 1, we can
associate to σ an outline t = o(σ) which is defined as follows. For any machine
i with more that Γ jobs, the threshold value ti is such that any job on i with
p̂j > ti deviates (belongs to Γ (σi)) and none of the jobs with p̂j < ti deviate.
Notice that among jobs with p̂j = ti, some may deviate, but not necessarily all.
For any machine i with at most Γ jobs, we define ti = 0, implying again that any
job with p̂j > ti deviates on i. Notice that in both cases we have p̂Γ (σi) ≥ Γ · ti.
Notice also that CI1

Γ (σ) ≤ 1 implies ti ≤ 1
Γ . Indeed, if we had ti > 1

Γ , there would
be Γ deviating jobs with p̂j > ti, implying CI1

Γ (σi) > 1, a contradiction. Let us
denote by Δ the set of all possible values of a ti. According to Observation 1 we
have |Δ| = O(1/ε log(1/ε)). Let P = Δm be the set of all outlines (of solutions
of cost at most 1).

Lemma 2. Consider a solution σ1∗ of I1 such that CΓ (σ1∗) ≤ 1, and let t∗ =
o(σ1∗). Then, we can guess in mO(1/ε log(1/ε)) time the vector t∗ (or a permutation
thereof).

Proof. As t∗ ∈ T , all the t∗i have a value in {0} ∪ [ ε
Γ , 1

Γ ]. Thus, as deviating
values are rounded in I1, there are only a constant number of possible threshold
value and we can guess them. For every possible threshold, we guess how many
machines in the optimal solution have it. �	

Thus, we can now assume that we know the vector t∗.

4. Constructing an instance with few machine types and capacities. To give an
insight of the correct reduction defined below, let us first see what happen if we
define an instance I2(t∗) of R||Cmax as follows. For simplicity, we also assume
that there are no job with p̂j = t∗i on each machine i in the previously considered
optimal solution of I1. For any machine i and job j, define the processing time
in I2(t∗) as pij = pj + p̂j if p̂j ≥ t∗i , and pij = pj otherwise. Then, consider the
following implications.

1. if OPT (I1) ≤ 1, then OPT(I2(t∗)) ≤ 1
2. for any solution σ′ of I2(t∗), CI1

Γ (σ′) ≤ CI2
(σ′) (implying that if there exists

σ′ with CI2
(σ′) ≤ 1 + ε, then we will have our solution for I1 of cost 1 + ε)

While Property (1) holds, this is not the case for Property (2). Indeed, suppose
that in σ′ there is a machine i such that for all jobs j scheduled on i, p̂j < t∗i .
This implies that C(σi) =

∑
j∈σi

pj . However, if we look now at σ′ in I1, we get
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CI1

Γ (σi) = CI2
(σi) + p̂(Γ (σi)), which is greater than the claimed value. To solve

this problem we have to remember in R||Cmax that there will be a space of size
at most Γ · ti which will be occupied by deviations.

Let us now turn to the correct version.

Definition 1. For any t ∈ P, we define the following input I2(t) of Problem 3.
We set the machine capacity to

ci := 1 − Γ · ti + ε.

The addition of ε is only a technicality to ensure that all ci are non-zero. Note
that if there are less than Γ jobs on i, then ti must be 0 and therefore ci = 1+ ε.
For every job j set

pij :=

{
pj + p̂j − ti if p̂j ≥ ti,

pj if p̂j < ti.

Note that at p̂j = ti, the values of both cases are equal. Notice also that in I2(t)
there are only |Δ| different machine types.

Lemma 3. If OPT(I1) ≤ 1 and t is the outline of an optimal solution σ2, for
any i, CI2(t)(σ2

i ) ≤ ci.

Proof. Let us consider jobs σ2
i scheduled on machine i. If ti = 0, then

∑

j∈σ2
i

pij =
∑

j∈σ2
i

pj + p̂j ≤ 1 < ci.

Assume now ti > 0, implying that |Γ (σ2
i )| ≥ Γ . By choice of ti, every job

j ∈ Γ (σ2
i ) has p̂j ≥ ti and every j ∈ σ2

i \ Γ (σ2
i ) has p̂j ≤ ti. This implies

∑

j∈σ2
i

pij =
∑

j∈Γ (σ2
i
)

pij +
∑

j∈σ2
i

\Γ (σ2
i
)

pij =
∑

j∈Γ (σ2
i
)

[pj + p̂j − ti] +
∑

j∈σ2
i

\Γ (σ2
i
)

pj ≤ 1 − Γ · ti < ci.

�	
Lemma 4. For any t ∈ P, if there is a solution σ2 of I2(t) such that
CI2(t)(σ2

i ) ≤ (1 + ε) · ci for any i, then CI1

Γ (σ2) ≤ (1 + ε)2.

Proof. Let i be a machine. Then for every j ∈ σ2
i ,

pij =

{
pj + p̂j − ti ≥ pj if p̂j ≥ ti,

pj if p̂j < ti.

Furthermore, for every j ∈ Γ (σ2
i ),

pij =

{
pj + p̂j − ti if p̂j ≥ ti,

pj > pj + p̂j − ti if p̂j < ti.
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This implies,

∑

j∈Γ (σ2
i
)

[pj + p̂j ] +
∑

j∈σ2
i

\Γ (σ2
i
)

pj ≤ Γ · ti +
∑

j∈Γ (σ2
i
)

[pj + p̂j − ti] +
∑

j∈σ2
i

\Γ (σ2
i
)

pj

≤ Γ · ti +
∑

j∈Γ (σ2
i
)

pij +
∑

j∈σ2
i

\Γ (σ2
i
)

pij = Γ · ti +
∑

j∈σ2
i

pij

︸ ︷︷ ︸
≤(1+ε)·ci

≤ Γ · ti + (1 + ε) · (1 − Γ · ti + ε) ≤ (1 + ε)
2
.

�	
Theorem 3. There is a (1+ε)-approximation algorithm for P |UΓ |Cmax running
in time O(mO(1/ε log(1/ε)) × f(|I|, ε, O(1/ε log(1/ε))) where f is the function of
Lemma 1.

Proof. Given I input of P |UΓ |Cmax and a threshold T , we run algorithm A of
Lemma 1 on I2(t) for any t ∈ P with a precision ε. If A rejects all the I2(t) then
we can reject T according to Observation 2 and Lemma 3. Otherwise, there exists
t0 such that A(I2(t0)) outputs a schedule σ2 where CI2(t0)(σ2) ≤ (1 + ε) · ci for
any i, implying CI

Γ (σ2) ≤ (1+ ε)CI1

Γ (σ2)+ ε ≤ (1+ ε)3 + ε ≤ 1+5ε according to
Observation 2 and Lemma 4 (for sufficiently small ε). Finally, the running time
is as claimed due to the bound of P in Lemma 2. �	

5 EPTAS for Identical Machines

The approach for an EPTAS is similar to the PTAS above. We would like to
remove the bottleneck from the previous section, which is the guessing the thresh-
olds. In the PTAS we notice that even if the thresholds were chosen incorrectly,
but we find a solution to the derived problem, we can get a good solution for
the initial problem. Informally, we will now still create an instance of Problem3,
but we only guess approximately the number of machines for each threshold.

We start by defining I1 as in the previous section. Given any solution σ1 of
I1 such that CI1

Γ (σ1) ≤ 1, we can associate to σ a restricted outline m = o(σ)
where m is defined as follows. Let t = o(σ). For any threshold value l ∈ Δ,
let ml = |{i|ti = l}| be the number of machines with threshold l in σ1. We
define ml ∈ {0, 1, 2, 4, 8, . . . , 2�log(m)�} such that ml ≤ ml < 2ml. Let P = {m ∈
{0, 1, 2, 4, 8, . . . , 2�log(m)�}Δ such thatm

2 ≤ ∑
l ml ≤ m} be the set of restricted

outlines (of solutions of cost at most 1).

Lemma 5. Consider a solution σ1∗ of I1 such that CΓ (σ1∗) ≤ 1, and let m∗ =
o(σ1∗). Then, we can guess in time 2O(1/ε log2(1/ε)) + mO(1) the vector m∗.

Proof. Clearly it suffices to iterate over all values mi ∈ {
0, 1, 2, 4, 8, . . . ,

2�log(m)�}, i.e., O(log(m)) many. Guessing this number for every thresh-
old value in Δ takes logO(1/ε log(1/ε))(m) time. Consider first the case when
log(m)/ log log(m) ≤ 1/ε log(1/ε). For sufficiently large m it holds that
log1/2(m) ≤ log(m)/ log log(m) ≤ 1/ε log(1/ε). Hence,
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log
O(1/ε log(1/ε))

(m) = (log
1/2

(m))
2·O(1/ε log(1/ε)) ≤ (1/ε log(1/ε))

O(1/ε log(1/ε)) ≤ 2
O(1/ε log2(1/ε))

.

If on the other hand log(m)/ log log(m) ≥ 1/ε log(1/ε), then

log
O(1/ε log(1/ε))

(m) ≤ log
O(log(m)/ log log(m))

(m) = 2
O(log(m)/ log log(m)·log log(m))

= m
O(1)

.

We conclude,

logO(1/ε log(1/ε))(m) ≤ 2O(1/ε log2(1/ε)) + mO(1).

From all the guesses, we report fail whenever
∑

i mi < m/2 or
∑

i mi > m. �	
For any m ∈ P, we define the following input I2(m) of Problem 3. We first

create for any l a set Ml of ml machines where for each machine i ∈ Ml the
capacity and the pij are defined as in Definition 1 for threshold ti = l. Then,
we create another set M ′

l of ml machines (that we call cloned machines) with
the same capacity and the same pij values. Let m′ =

∑
ml. Notice that the

total number of machines is 2m′, with m ≤ 2m′ < 2m. Thus, we have to ensure
that not too many machines are used in total. For that purpose we add a set of
2m′ −m dummy jobs D, where all j ∈ D have pij = ∞ on the original machines
i ∈ Ml and pij = ci on every cloned machine i ∈ M ′

l . Notice that the number of
types is now 2|Δ|, which is still small enough to get an EPTAS. Let us call the
non-dummy jobs regular jobs.

Lemma 6. If OPT(I1) ≤ 1 and m is the restricted outline of an optimal solu-
tion, then there exists a solution σ2 of I2(m) such that for any i, CI2(m)(σ2

i ) ≤ ci.

Proof. Let m∗
l = |{i|ti = l}| be the number of machines with threshold l in

the considered optimal solution of I1. Let l ∈ Δ be a threshold value. We first
schedule 2ml −m∗

l many dummy jobs on cloned machines of M ′
l . This will cover

all dummy jobs, since
∑

l

[2ml − m∗
l ] = 2

∑

l

ml −
∑

l

m∗
l = 2m′ − m.

We will now schedule all remaining jobs on the empty machines. For every thresh-
old value l we have 2ml − (2ml − m∗

l ) = m∗
l many empty machines. In other

words, we are left with an instance with the exact same number of machines for
each threshold as in the optimal solution and with the original jobs. As argued
in Lemma 3, we get the desired claim. �	
Lemma 7. For any m ∈ P, if there is a solution σ2 of I2(m) such that
CI2(m)(σ2

i ) ≤ ci + ε for any i, then we can deduce a solution σ3 for I1 with
CI1

Γ (σ3) ≤ (1 + 2ε)2.
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Proof. We will first normalize σ2. Since dummy jobs have pij = ci on cloned
machines, in a (1+ε)-approximation there can only be one per machine (assuming
that ε < 1). Indeed, there may still be a load of ε · ci from other jobs on the
same machine. We want to ensure that every machine either has a dummy job or
some regular load, but not both. For every threshold value l ∈ Δ, there can be at
most ml machines in M ′

l that have a dummy job. For any such machine in M ′
l ,

we remove all the regular jobs (of total load of at most ε · ci) from it and move
them to one of the original machines in Ml, without using the same machine in
Ml twice. Since for any i ∈ Ml we had CI2(m)(σ2

i ) ≤ (1 + ε)ci before moving
the jobs, and since regular jobs have the same processing time on machines Ml

and M ′
l , after moving the jobs we get CI2(m)(σ2

i ) ≤ (1 + 2ε)ci for any i ∈ Ml.
We now have a solution violating the capacities by at most 2ε · ci such that a
machine with a dummy job has no other jobs.

We now forget about all dummy jobs and the machines they are on. What
we are left with is a set of m machines (with some thresholds t) such that for
any i we have CI2(m)(σ2

i ) ≤ (1 + 2ε)ci. By Lemma 4 we get the desired result. �	
All in all, we were able to reduce the number of instances created to only

2O(1/ε log2(1/ε)) + mO(1) many and removed the bottleneck from the PTAS this
way. As in Theorem 3, given an instance of P |UΓ |Cmax we will use the algorithm
of Lemma 1 on I2(m) for any m ∈ P. This leads to the following result.

Theorem 4. There is a (1 + ε)-approximation algorithm for P |UΓ |Cmax run-
ning in time O(2O(1/ε log2(1/ε))+mO(1))×f(|I|, ε, O(1/ε log(1/ε))) where f is the
function of Lemma 1.
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Abstract. Problems involving the efficient arrangement of simple
objects, as captured by bin packing and makespan scheduling, are funda-
mental tasks in combinatorial optimization. These are well understood
in the traditional online and offline cases, but have been less well-studied
when the volume of the input is truly massive, and cannot even be read
into memory. This is captured by the streaming model of computation,
where the aim is to approximate the cost of the solution in one pass
over the data, using small space. As a result, streaming algorithms pro-
duce concise input summaries that approximately preserve the optimum
value.

We design the first efficient streaming algorithms for these fundamen-
tal problems in combinatorial optimization. For Bin Packing, we pro-
vide a streaming asymptotic 1 + ε-approximation with ˜O (

1
ε

)

memory,

where ˜O hides logarithmic factors. Moreover, such a space bound is essen-
tially optimal. Our algorithm implies a streaming d + ε-approximation
for Vector Bin Packing in d dimensions, running in space ˜O (

d
ε

)

. For
the related Vector Scheduling problem, we show how to construct an
input summary in space ˜O(d2 · m/ε2) that preserves the optimum value
up to a factor of 2− 1

m
+ε, where m is the number of identical machines.

Keywords: Streaming algorithms · Bin Packing · Scheduling

1 Introduction

The streaming model captures many scenarios when we must process very large
volumes of data, which cannot fit into the working memory. The algorithm makes
one or more passes over the data with a limited memory, but does not have ran-
dom access to the data. Thus, it needs to extract a concise summary of the huge
input, which can be used to approximately answer the problem under consider-
ation. The main aim is to provide a good trade-off between the space used for
processing the input stream (and hence, the summary size) and the accuracy of
the (best possible) answer computed from the summary. Other relevant param-
eters are the time and space needed to make the estimate, and the number of
passes, ideally equal to one.
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While there have been many effective streaming algorithms designed for a
range of problems in statistics, optimization, and graph algorithms (see surveys
by Muthukrishnan [37] and McGregor [36]), there has been little attention paid
to the core problems of packing and scheduling. These are fundamental abstrac-
tions, which form the basis of many generalizations and extensions [13,14]. In
this work, we present the first efficient algorithms for packing and scheduling
that work in the streaming model.

A first conceptual challenge is to resolve what form of answer is desirable in
this setting. If items in the input are too many to store, then it is also unfeasible
to require a streaming algorithm to provide an explicit description of how each
item is to be handled. Rather, our objective is for the algorithm to provide the
cost of the solution, in the form of the number of bins or the duration of the
schedule. Moreover, many of our algorithms can provide a concise description of
the solution, which describes in outline how the jobs are treated in the design.

A second issue is that the problems we consider, even in their simplest form,
are NP-hard. The additional constraints of streaming computation do not erase
the computational challenge. In some cases, our algorithms proceed by adopting
and extending known polynomial-time approximation schemes for the offline
versions of the problems, while in other cases, we come up with new approaches.
The streaming model effectively emphasizes the question of how compactly can
the input be summarized to allow subsequent approximation of the problem of
interest. Our main results show that in fact the inputs for many of our problems
of interest can be “compressed” to very small intermediate descriptions which
suffice to extract near-optimal solutions for the original input. This implies that
they can be solved in scenarios which are storage or communication constrained.

We proceed by formalizing the streaming model, after which we summarize
our results. We continue by presenting related work, and contrast with the online
setting.

1.1 Problems and Streaming Model

Bin Packing. The Bin Packing problem is defined as follows: The input consists
of N items with sizes s1, . . . , sN (each between 0 and 1), which need to be
packed into bins of unit capacity. That is, we seek a partition of the set of items
{1, . . . , N} into subsets B1, . . . , Bm, called bins, such that for any bin Bi, it holds
that

∑
j∈Bi

sj ≤ 1. The goal is to minimize the number m of bins used.
We also consider the natural generalization to Vector Bin Packing, where

the input consists of d-dimensional vectors, with the value of each coordinate
between 0 and 1 (i.e., the scalar items si are replaced with vectors vi). The
vectors need to be packed into d-dimensional bins with unit capacity in each
dimension, we thus require that ‖∑

v∈Bi
v‖∞ ≤ 1 (where the infinity norm

‖v‖∞ = maxi vi).

Scheduling. The Makespan Scheduling problem is closely related to Bin
Packing but, instead of filling bins with bounded capacity, we try to balance
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the loads assigned to a fixed number of bins. Now we refer to the input as com-
prising a set of jobs, with each job j defined by its processing time pj . Our goal
is to assign each job on one of m identical machines to minimize the makespan,
which is the maximum load over all machines.

In Vector Scheduling, a job is described not only by its processing time,
but also by, say, memory or bandwidth requirements. The input is thus a set of
jobs, each job j characterized by a vector vj. The goal is to assign each job into
one of m identical machines such that the maximum load over all machines and
dimensions is minimized.

Streaming Model. In the streaming scenario, the algorithm receives the input
as a sequence of items, called the input stream. We do not assume that the
stream is ordered in any particular way (e.g., randomly or by item sizes), so
our algorithms must work for arbitrarily ordered streams. The items arrive one
by one and upon receiving each item, the algorithm updates its memory state.
A streaming algorithm is required to use space sublinear in the length of the
stream, ideally just polylog(N), while it processes the stream. After the last
item arrives, the algorithm computes its estimate of the optimal value, and the
space or time used during this final computation is not restricted.

For many natural optimization problems outputting some explicit solution of
the problem is not possible owing to the memory restriction (as the algorithm can
store only a small subset of items). Thus the goal is to find a good approximation
of the value of an offline optimal solution. Since our model does not assume that
item sizes are integers, we express the space complexity not in bits, but in words
(or memory cells), where each word can store any number from the input; a
linear combination of numbers from the input; or any integer with O(log N) bits
(for counters, pointers, etc.).

1.2 Our Results

Bin Packing. In Sect. 3, we present a streaming algorithm for Bin Packing,
which outputs an asymptotic 1 + ε-approximation of OPT, the optimal number
of bins, using O (

1
ε · log 1

ε · logOPT
)

memory.1 This means that the algorithm
uses at most (1 + ε) ·OPT+ o(OPT) bins, and in our case, the additive o(OPT)
term is bounded by the space used. The novelty of our contribution is to combine
a data structure that approximately tracks all quantiles in a numeric stream [25]
with techniques for approximation schemes [17,32]. We show that we can improve
upon the logOPT factor in the space complexity if randomization is allowed or
if item sizes are drawn from a bounded-size set of real numbers. On the other
hand, we argue that our result is close to optimal, up to a factor of O (

log 1
ε

)
, if

item sizes are accessed only by comparisons (including comparisons with some
fixed constants). Thus, one cannot get an estimate with at most OPT+ o(OPT)
bins by a streaming algorithm, unlike in the offline setting [27]. The hardness

1 We remark that some online algorithms can be implemented in the streaming model,
as described in Sect. 2.1, but they give worse approximation guarantees.
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emerges from the space complexity of the quantiles problem in the streaming
model.

For Vector Bin Packing, we design a streaming asymptotic d + ε-
approximation algorithm running in space O (

d
ε · log d

ε · logOPT
)
. This is done

by a reduction to the 1-dimensional case and using the aforementioned streaming
algorithm; the details are deferred to the full version of the paper. We remark
that if vectors are rounded into a sublinear number of types, then better than
d-approximation is not possible [7].

Scheduling. For Makespan Scheduling, one can obtain a straightforward
streaming 1+ε-approximation2 with space of only O( 1ε · log 1

ε ) by rounding sizes
of suitably large jobs to powers of 1+ε and counting the total size of small jobs.
In a higher dimension, it is also possible to get a streaming 1+ε-approximation,
by the rounding introduced by Bansal et al. [8]. However, the memory required
for this algorithm is exponential in d, precisely of size O

((
1
ε log d

ε

)d
)
, and thus

only practical when d is a very small constant. Moreover, such a huge amount
of memory is needed even if the number m of machines (and hence, of big jobs)
is small as the algorithm rounds small jobs into exponentially many types.

In case m and d make this feasible, we design a new streaming(
2 − 1

m + ε
)
-approximation with O (

1
ε2 · d2 · m · log d

ε

)
memory, which implies

a 2-approximation streaming algorithm running in space O(d2 ·m3 · log dm). We
thus obtain a much better approximation than for Vector Bin Packing with
a reasonable amount of memory (although to compute the actual makespan from
our input summary, it takes time doubly exponential in d [8]). Our algorithm is
not based on rounding, as in the aforementioned algorithms, but on combining
small jobs into containers, and the approximation guarantee of this approach is
at least 2 − 1

m . We describe the algorithm in Sect. 4.

2 Related Work

We give an overview of related work in offline, online, and sublinear algorithms,
and highlight the differences between online and streaming algorithms. Recent
surveys of Christensen et al. [13] and Coffman et al. [14] have a more compre-
hensive overview.

2.1 Bin Packing

Offline Approximation Algorithms. Bin Packing is an NP-complete problem
and indeed it is NP-hard even to decide whether two bins are sufficient or at least
three bins are necessary. This follows by a simple reduction from the Partition
problem and presents the strongest inapproximability to date. Most work in

2 Unlike for Bin Packing, an additive constant or even an additive o(OPT) term does
not help in the definition of the approximation ratio, since we can scale every number
on input by any α > 0 and OPT scales by α as well.
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the offline model focused on providing asymptotic R-approximation algorithms,
which use at most R ·OPT+ o(OPT) bins. In the following, when we refer to an
approximation for Bin Packing we implicitly mean the asymptotic approxima-
tion. The first polynomial-time approximation scheme (PTAS), that is, a 1 + ε-
approximation for any ε > 0, was given by Fernandez de la Vega and Lueker [17].
Karmarkar and Karp [32] provided an algorithm which returns a solution with
OPT+O(log2 OPT) bins. Recently, Hoberg and Rothvoß [27] proved it is possible
to find a solution with OPT + O(logOPT) bins in polynomial time.

The input for Bin Packing can be described by N numbers, corresponding
to item sizes. While in general these sizes may be distinct, in some cases the input
description can be compressed significantly by specifying the number of items
of each size in the input. Namely, in the High-Multiplicity Bin Packing
problem, the input is a set of pairs (a1, s1), . . . , (aσ, sσ), where for i = 1, . . . , σ,
ai is the number of items of size si (and all si’s are distinct). Thus, σ encodes
the number of item sizes, and hence the size of the description. The goal is again
to pack these items into bins, using as few bins as possible. For constant number
of sizes, σ, Goemans and Rothvoß [23] recently gave an exact algorithm for the
case of rational item sizes running in time (log Δ)2

O(σ)
, where Δ is the largest

multiplicity of an item or the largest denominator of an item size, whichever is
the greater.

While these algorithms provide satisfying theoretical guarantees, simple
heuristics are often adopted in practice to provide a “good-enough” performance.
First Fit [31], which puts each incoming item into the first bin where it fits
and opens a new bin only when the item does not fit anywhere else achieves
1.7-approximation [16]. For the high-multiplicity variant, using an LP-based
Gilmore-Gomory cutting stock heuristic [21,22] gives a good running time in
practice [2] and produces a solution with at most OPT+σ bins. However, neither
of these algorithms adapts well to the streaming setting with possibly distinct
item sizes. For example, First Fit has to remember the remaining capacity of
each open bin, which in general can require space proportional to OPT.

Vector Bin Packing proves to be substantially harder to approximate,
even in a constant dimension. For fixed d, Bansal, Eliáš, and Khan [7] showed an
approximation factor of ≈ 0.807+ln(d+1)+ε. For general d, a relatively simple
algorithm based on an LP relaxation, due to Chekuri and Khanna [11], remains
the best known, with an approximation guarantee of 1 + εd + O(log 1

ε ). The
problem is APX-hard even for d = 2 [39], and cannot be approximated within a
factor better than d1−ε for any fixed ε > 0 [13] if d is arbitrarily large. Hence,
our streaming d + ε-approximation for Vector Bin Packing asymptotically
achieves the offline lower bound.

Sampling-Based Algorithms. Sublinear-time approximation schemes constitute a
model related to, but distinct from, streaming algorithms. Batu, Berenbrink, and
Sohler [9] provide an algorithm that takes Õ

(√
N · poly(1ε )

)
weighted samples,

meaning that the probability of sampling an item is proportional to its size.
It outputs an asymptotic 1 + ε-approximation of OPT. If uniform samples are
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also available, then sampling Õ (
N1/3 · poly(1ε )

)
items is sufficient. These results

are tight, up to a poly(1ε , log N) factor. Later, Beigel and Fu [10] focused on
uniform sampling of items, proving that Θ̃(N/SIZE) samples are sufficient and
necessary, where SIZE is the total size of all items. Their approach implies a
streaming approximation scheme by uniform sampling of the substream of big
items. However, the space complexity in terms of 1

ε is not stated in the paper,
but we calculate this to be Ω (ε−c) for a constant c ≥ 10. Moreover, Ω( 1

ε2 )
samples are clearly needed to estimate the number of items with size close to 1.
Note that our approach is deterministic and substantially different than taking
a random sample from the stream.

Online Algorithms. Online and streaming algorithms are similar in the sense that
they are required to process items one by one. However, an online algorithm must
make all its decisions immediately—it must fix the placement of each incoming
item on arrival. A streaming algorithm can postpone such decisions to the very
end, but is required to keep its memory small, whereas an online algorithm may
remember all items that have arrived so far. Hence, online algorithms apply in
the streaming setting only when they have small space cost, including the space
needed to store the solution constructed so far. The approximation ratio of online
algorithms is quantified by the competitive ratio.

For Bin Packing, the best possible competitive ratio is substantially worse
than what we can achieve offline or even in the streaming setting. Balogh et al. [5]
designed an asymptotically 1.5783-competitive algorithm, while the current
lower bound on the asymptotic competitive ratio is 1.5403 [6]. This (relatively
complicated) online algorithm is based on the Harmonic algorithm [34], which
for some integer K classifies items into size groups (0, 1

K ], ( 1
K , 1

K−1 ], . . . , ( 12 , 1]. It
packs each group separately by Next Fit, keeping just one bin open, which is
closed whenever the next item does not fit. Thus Harmonic can run in memory
of size K and be implemented in the streaming model, unlike most other online
algorithms which require maintaining the levels of all bins opened so far. Its com-
petitive ratio tends to approximately 1.691 as K goes to infinity. Surprisingly,
this is also the best possible ratio if only a bounded number of bins is allowed
to be open for an online algorithm [34], which can be seen as the intersection of
online and streaming models.

For Vector Bin Packing, the best known competitive ratio of d + 0.7 [19]
is achieved by First Fit. A lower bound of Ω(d1−ε) on the competitive ratio
was shown by Azar et al. [3]. It is thus currently unknown whether or not online
algorithms outperform streaming algorithms in the vector setting.

2.2 Scheduling

Offline Approximation Algorithms. Makespan Scheduling is strongly NP-
complete [20], which in particular rules out the possibility of a PTAS with time
complexity poly(1ε , n). After a sequence of improvements, Jansen, Klein, and
Verschae [30] gave a PTAS with time complexity 2 ˜O(1/ε) + O(n log n), which is
essentially tight under the Exponential Time Hypothesis (ETH) [12].
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For constant dimension d, Vector Scheduling also admits a PTAS, as
shown by Chekuri and Khanna [11]. However, the running time is of order
n(1/ε)

˜O(d)
. The approximation scheme for a fixed d was improved to an effi-

cient PTAS, namely to an algorithm running in time 2(1/ε)
˜O(d)

+ O(dn), by
Bansal et al. [8], who also showed that the running time cannot be signifi-
cantly improved under ETH. In contrast our streaming poly(d,m)-space algo-
rithm computes an input summary maintaining 2-approximation of the original
input. This respects the lower bound, since to compute the actual makespan from
the summary, we still need to execute an offline algorithm, with running time
doubly exponential in d. The state-of-the-art approximation ratio for large d is
O(log d/(log log d)) [26,29], while α-approximation is not possible in polynomial
time for any constant α > 1 and arbitrary d, unless NP = ZPP.

Online Algorithms. For the scalar problem, the optimal competitive ratio is
known to lie in the interval (1.88, 1.9201) [1,18,24,28], which is substantially
worse than what can be done by a simple streaming 1 + ε-approximation in
space O(1ε · log 1

ε ). Interestingly, for Vector Scheduling, the algorithm by
Im et al. [29] with ratio O(log d/(log log d)) actually works in the online set-
ting as well and needs space O(d · m) only during its execution (if the solution
itself is not stored), which makes it possible to implement it in the stream-
ing setting. This online ratio cannot be improved as there is a lower bound of
Ω(log d/(log log d)) [4,29], whereas in the streaming setting we can achieve a
2-approximation with a reasonable memory (or even 1 + ε-approximation for a
fixed d). If all jobs have sufficiently small size, we improve the analysis in [29]
and show that the online algorithm achieves 1 + ε-approximation; see Sect. 4.

3 Bin Packing

Notation. For an instance I, let N(I) be the number of items in I, let SIZE(I)
be the total size of all items in I, and let OPT(I) be the number of bins used in
an optimal solution for I. Clearly, SIZE(I) ≤ OPT(I). For a bin B, let s(B) be
the total size of items in B. For a given ε > 0, we use Õ(f( 1ε )) to hide factors
logarithmic in 1

ε and OPT(I), i.e., to denote O(
f( 1ε ) ·polylog 1

ε ·polylogOPT(I)
)
.

Overview. We first briefly describe the approximation scheme of Fernandez de la
Vega and Lueker [17], whose structure we follow in outline. Let I be an instance
of Bin Packing. Given a precision requirement ε > 0, we say that an item is
small if its size is at most ε; otherwise, it is big. Note that there are at most
1
εSIZE(I) big items. The rounding scheme in [17], called “linear grouping”, works
as follows: We sort the big items by size non-increasingly and divide them into
groups of k = �ε · SIZE(I)� items (the first group thus contains the k biggest
items). In each group, we round up the sizes of all items to the size of the biggest
item in that group. It follows that the number of groups and thus the number of
distinct item sizes (after rounding) is bounded by 	 1

ε2 
. Let IR be the instance
of High-Multiplicity Bin Packing consisting of the big items with rounded
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sizes. It can be shown that OPT(IB) ≤ OPT(IR) ≤ (1 + ε) · OPT(IB), where IB
is the set of big items in I (we detail a similar argument in Sect. 3.1). Due to the
bounded number of distinct item sizes, we can find a close-to-optimal solution
for IR efficiently. We then translate this solution into a packing for IB in the
natural way. Finally, small items are filled greedily (e.g., by First Fit) and it can
be shown that the resulting complete solution for I is a 1+O(ε)-approximation.

Karmarkar and Karp [32] proposed an improved rounding scheme, called
“geometric grouping”. It is based on the observation that item sizes close to
1 should be approximated substantially better than item sizes close to ε. We
present a version of such a rounding scheme in Sect. 3.1.

Our algorithm follows a similar outline with two stages (rounding and finding
a solution for the rounded instance), but working in the streaming model brings
two challenges: First, in the rounding stage, we need to process the stream of
items and output a rounded high-multiplicity instance with few item sizes that
are not too small, while keeping only a small number of items in the memory.
Second, the rounding of big items needs to be done carefully so that not much
space is “wasted”, since in the case when the total size of small items is relatively
large, we argue that our solution is close to optimal by showing that the bins
are nearly full on average.

Input Summary Properties. More precisely, we fix some ε > 0 that is used to
control the approximation guarantee. During the first stage, our algorithm has
one variable which accumulates the total size of all small items in the input
stream, i.e., those of size at most ε. Let IB be the substream consisting of all big
items. We process IB and output a rounded high-multiplicity instance IR with
the following properties:

(P1) There are at most σ item sizes in IR, all of them larger than ε, and the
memory required for processing IB is O(σ).

(P2) The i-th biggest item in IR is at least as large as the i-th biggest item in
IB (and the number of items in IR is the same as in IB). This immediately
implies that any packing of IR can be used as a packing of IB (in the
same number of bins), so OPT(IB) ≤ OPT(IR), and moreover, SIZE(IB) ≤
SIZE(IR).

(P3) OPT(IR) ≤ (1 + ε) · OPT(IB) + O(log 1
ε ).

(P4) SIZE(IR) ≤ (1 + ε) · SIZE(IB).

In words, (P2) means that we are rounding item sizes up and, together with
(P3), it implies that the optimal solution for the rounded instance approxi-
mates OPT(IB) well. The last property is used in the case when the total size of
small items constitutes a large fraction of the total size of all items. Note that
SIZE(IR) − SIZE(IB) can be thought of as bin space “wasted” by rounding.

Observe that the succinctness of the rounded instance depends on σ. First,
we show a streaming algorithm for rounding with σ = Õ( 1

ε2 ). Then we improve
upon it and give an algorithm with σ = Õ( 1ε ), which is essentially the best
possible, while guaranteeing an error of ε · OPT(IB) introduced by rounding
(elaborated on in Sect. 3.2). More precisely, we show the following:
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Lemma 1. Given a steam IB of big items, there is a deterministic streaming
algorithm that outputs a High-Multiplicity Bin Packing instance satisfying
(P1)–(P4) with σ = O (

1
ε · log 1

ε · logOPT(IB)
)
.

Before describing the rounding itself, we explain how to use it to calculate
an accurate estimate of the number of bins.

Calculating a Bound on the Number of Bins After Rounding. First, we obtain a
solution S of the rounded instance IR. For instance, we may round the solution
of the linear program introduced by Gilmore and Gomory [21,22], and get a
solution with at most OPT(IR) + σ bins. Or, if item sizes are rational numbers,
we may compute an optimal solution for IR by the algorithm of Goemans and
Rothvoß [23]; however, the former approach appears to be more efficient and
more general. In the following, we thus assume that S uses at most OPT(IR)+σ
bins.

We now calculate a bound on the number of bins in the original instance.
Let W be the total free space in the bins of S that can be used for small items.
To be precise, W equals the sum over all bins B in S of max(0, 1 − ε − s(B)).
Note that the capacity of bins is capped at 1 − ε, because it may happen that
all small items are of size ε while the packing leaves space of just under ε in any
bin. Then we would not be able to pack small items into these bins. Reducing
the capacity by ε removes this issue. On the other hand, if a small item does not
fit into a bin, then the remaining space in the bin is smaller than ε.

Let s be the total size of all small items in the input stream. If s ≤ W , then all
small items surely fit into the free space of bins in S (and can be assigned there
greedily by First Fit). Consequently, we output that the number of bins needed
for the stream of items is at most |S|, i.e., the number of bins in solution S for
IR. Otherwise, we need to place small items of total size at most s′ = s−W into
new bins and it is easy to see that opening at most 	s′/(1−ε)
 ≤ (1+O(ε))·s′+1
bins for these small items suffices. Hence, in the case s > W , we output that
|S| + 	s′/(1 − ε)
 bins are sufficient to pack all items in the stream.

It holds that the number of bins that we output in either case is a good
approximation of the optimal number of bins, provided that S is a good solution
for IR. The proof is deferred to the full version of the paper.

Lemma 2. Let I be given as a stream of items. Suppose that 0 < ε ≤ 1
3 , that

the rounded instance IR, created from I, satisfies properties (P1)–(P4), and that
the solution S of IR uses at most OPT(IR) + σ bins. Let ALG(I) be the number
of bins that our algorithm outputs. Then, it holds that OPT(I) ≤ ALG(I) ≤
(1 + 3ε) · OPT(I) + σ + O (

log 1
ε

)
.

3.1 Processing the Stream and Rounding

The streaming algorithm of the rounding stage makes use of the deterministic
quantile summary of Greenwald and Khanna [25]. Given a precision δ > 0 and an
input stream of numbers s1, . . . , sN , their algorithm computes a data structure



Streaming Algorithms for Bin Packing and Vector Scheduling 81

Q(δ) which is able to answer a quantile query with precision δN . Namely, for any
0 ≤ φ ≤ 1, it returns an element s of the input stream such that the rank of s is
[(φ−δ)N, (φ+δ)N ], where the rank of s is the position of s in the non-increasing
ordering of the input stream.3 The data structure stores an ordered sequence of
tuples, each consisting of an input number si and valid lower and upper bounds
on the true rank of si in the input sequence.4 The first and last stored items
correspond to the maximum and minimum numbers in the stream, respectively.
Note that the lower and upper bounds on the rank of any stored number differ
by at most �2δN� and upper (or lower) bounds on the rank of two consecutive
stored numbers differ by at most �2δN� as well. The space requirement of Q(δ) is
O(1δ ·log δN), however, in practice the space used is observed to scale linearly with
1
δ [35]. (Note that an offline optimal data structure for δ-approximate quantiles
uses space O (

1
δ

)
.) We use data structure Q(δ) to construct our algorithm for

processing the stream IB of big items.

Simple Rounding Algorithm. We begin by describing a simpler solution with
δ = 1

4ε2, resulting in a rounded instance with Õ( 1
ε2 ) item sizes. Subsequently,

we introduce a more involved solution with smaller space cost. The algorithm
uses a quantile summary structure to determine the rounding scheme. Given a
(big) item si from the input, we insert it into Q(δ). After processing all items,
we extract from Q(δ) the set of stored input items (i.e., their sizes) together
with upper bounds on their rank (where the largest size has highest rank 1, and
the smallest size has least rank NB). Note that the number NB of big items in
IB is less than 1

εSIZE(IB) ≤ 1
εOPT(IB) as each is of size more than ε. Let q

be the number of items (or tuples) extracted from Q(δ); we get that q = O(1δ ·
log δNB) = O(

1
ε2 · log(ε ·OPT(IB))

)
. Let (a1, u1 = 1), (a2, u2), . . . , (aq, uq = NB)

be the output pairs of an item size and the bound on its rank, sorted so that
a1 ≥ a2 ≥ · · · ≥ aq. We define the rounded instance IR with at most q item sizes
as follows: IR contains (uj+1 −uj) items of size aj for each j = 1, . . . , q − 1, plus
one item of size aq. (See Fig. 1.)

We show that the desired properties (P1)–(P4) hold with σ = q. Property
(P1) follows easily from the definition of IR and the design of data structure
Q(δ). Note that the number of items is preserved. To show (P2), suppose for
a contradiction that the i-th biggest item in IB is bigger than the i-th biggest
item in IR, whose size is aj for j = 1, . . . , q − 1, i.e., i ∈ [uj , uj+1) (note that
j < q as aq is the smallest item in IB and is present only once in IR). We get
that the rank of item aj in IB is strictly more than i, and as i ≥ uj , we get a
contradiction with the fact that uj is a valid upper bound on the rank of aj in
IB.

Next, we give bounds for OPT(IR) and SIZE(IR), which are required by
properties (P3) and (P4). We pack the �4δNB� biggest items in IR separately into
3 Note that if s appears more times in the stream, its rank is an interval rather than

a single number. Also, unlike in [25], we order numbers non-increasingly, which is
more convenient for Bin Packing.

4 More precisely, valid lower and upper bounds on the rank of si can be computed
easily from the set of tuples.
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Fig. 1. An illustration of the original distribution of sizes of big items in IB, depicted by
a smooth curve, and the distribution of item sizes in the rounded instance IR, depicted
by a bold “staircase” function. The distribution of I ′

R (which is IR without the �4δNB�
biggest items) is depicted a (blue) dash dotted line. Selected items ai, . . . , aq, with
q = 11, are illustrated by (red) dots, and the upper bounds u1, . . . , uq on the ranks
appear on the x axis. (Color figure online)

“extra” bins. Using the choice of δ = 1
4ε2 and NB ≤ 1

εSIZE(IB), we bound the
number of these items and thus extra bins by 4δNB ≤ ε ·SIZE(IB) ≤ ε ·OPT(IB).
Let I ′

R be the remaining items in IR. We claim that the i-th biggest item bi in IB
is bigger than the i-th biggest item in I ′

R with size equal to aj for j = 1, . . . , q. For
a contradiction, suppose that bi < aj , which implies that the rank rj of aj in IB
is less than i. Note that j < q as aq is the smallest item in IB. Since we packed the
�4δNB� biggest items from IR separately, one of the positions of aj in the ordering
of IR is i+ �4δNB� and so we have i+ �4δNB� < uj+1 ≤ uj + �2δNB�, where the
first inequality holds by the construction of IR and the second inequality is by
the design of data structure Q(δ). It follows that i < uj − �2δNB�. Combining
this with rj < i, we obtain that the rank of aj in IB is less than uj − �2δNB�,
which contradicts that uj − �2δNB� is a valid lower bound on the rank of aj .

The claim implies OPT(I ′
R) ≤ OPT(IB) and SIZE(I ′

R) ≤ SIZE(IB). We thus
get that OPT(IR) ≤ OPT(I ′

R)+�4δNB� ≤ OPT(IB)+ε ·OPT(IB), proving prop-
erty (P3). Similarly, SIZE(IR) ≤ SIZE(I ′

R) + �4δNB� ≤ SIZE(IB) + ε · SIZE(IB),
showing (P4).

Better Rounding Algorithm. Our improved rounding algorithm reduces the num-
ber of sizes in the rounded instance (and also the memory requirement) from
Õ( 1

ε2 ) to Õ( 1ε ). It is based on the observation that the number of items of sizes
close to ε can be approximated with much lower accuracy than the number of
items with sizes close to 1, without affecting the quality of the overall approxi-
mation. This was observed already by Karmarkar and Karp [32].

The full description of rounding, which also gives the proof of Lemma1, is
deferred to the full version of the paper. Here, we give a brief overview. Big items
are split into groups based on size such that for an integer j ≥ 1, the j-th group
contains items with sizes in (2−j−1, 2−j ]. Thus, there are 	log2

1
ε
 groups. For

each group j, we use a separate data structure Qj := Q(δ) with δ = 1
8ε.
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After all items arrive, we extract stored items from each data structure Qj

and create the rounded instance for each group as in the previous section. Then,
the input summary is just the union of the rounded instances over all groups.
We show that properties (P1)–(P4) hold for the input summary in a similar way
as for the simple rounding algorithm, also using the following observation: Let
Nj be the number of big items in group j. Then SIZE(IB) >

∑
j Nj ·2−j−1. This

holds as any item in group j has size exceeding 2−j−1.

3.2 Bin Packing and Quantile Summaries

In the previous section, the deterministic quantile summary data structure
from [25] allows us to obtain a streaming approximation scheme for Bin Pack-
ing. We argue that this connection runs deeper.

We start with two scenarios for which there exist better quantile summaries,
thus implying a better space bound for achieving a streaming 1+ε-approximation
for Bin Packing in a similar way as in Sect. 3.1. First, if all big item sizes
belong to a universe U ⊂ (ε, 1], known in advance, then it can be better to
use the quantile summary of Shrivastava et al. [38], which provides a guarantee
of O(1δ · log |U |) on the space complexity, where δ is the precision requirement.
Second, if we allow the algorithm to use randomization and fail with probability
γ, we can employ the optimal randomized quantile summary of Karnin, Lang,
and Liberty [33], which, for a given precision δ and failure probability η, uses
space O( 1δ · log log 1

η ) and does not provide a δ-approximate quantile for some
quantile query with probability at most η.

More intriguingly, the connection between quantile summaries and Bin
Packing also goes in the other direction. Namely, we show that a stream-
ing 1 + ε-approximation algorithm for Bin Packing with space bounded by
S(ε,OPT) (or S(ε,N)) implies a data structure of size S(ε,N) for the follow-
ing Estimating Rank problem: Create a summary of a stream of N numbers
which is able to provide a δ-approximate rank of any query q, i.e., the number of
items in the stream which are larger than q, up to an additive error of ±δN . A
summary for Estimating Rank is essentially a quantile summary and we can
actually use it to find an approximate quantile by doing a binary search over
possible item names. However, this approach does not guarantee that the item
name returned will correspond to one of the items present in the stream.

The reduction from Estimating Rank to Bin Packing is deferred to the
full version. In [15] we show a space lower bound of Ω( 1ε · log εN) for comparison-
based data structures for Estimating Rank (and for quantile summaries as
well).

Theorem 1 (Theorem 13 in [15]). For any 0 < ε < 1
16 , there is no deter-

ministic comparison-based data structure for Estimating Rank which stores
o
(
1
ε · log εN

)
items on any input stream of length N .

We conclude that there is no comparison-based streaming algorithm for Bin
Packing which stores o( 1ε · logOPT) items on any input stream (N = O(OPT)



84 G. Cormode and P. Veselý

in our reduction). Note that our algorithm is comparison-based if we employ
the comparison-based quantile summary of Greenwald and Khanna [25], except
that it needs to determine the size group for each item, which can be done by
comparisons with 2−j for integer values of j. Nevertheless, comparisons with a
fixed set of constants does not affect the reduction from Estimating Rank,
thus the lower bound of Ω

(
1
ε · logOPT

)
applies to our algorithm as well. This

yields near optimality of our approach, up to a factor of O (
log 1

ε

)
.

4 Vector Scheduling

We provide a novel approach for creating an input summary for Vector
Scheduling, based on combining small items into containers. Our streaming
algorithm stores all big jobs and all containers, created from small items, that are
relatively big as well. Thus, there is a bounded number of big jobs and contain-
ers, and the space used is also bounded. We show that this simple summarization
preserves the optimal makespan up to a factor of 2 − 1

m + ε for any 0 < ε ≤ 1.
Take m ≥ 2, since for m = 1 there is a trivial streaming algorithm that just
sums up the vectors of all jobs to get the optimal makespan. We assume that
the algorithm knows (an upper bound on) m in advance.

Algorithm Description. For 0 < ε ≤ 1 and m ≥ 2, the algorithms works as
follows: For each k = 1, . . . , d, it keeps track of the total load of all jobs in
dimension k, denoted Lk. Note that the optimal makespan satisfies OPT ≥
maxk

1
m · Lk (an alternative lower bound on OPT is the maximum �∞ norm of

a job seen so far, but our algorithm does not use this). For brevity, let LB =
maxk

1
m · Lk.

Let γ = Θ
(
ε2/ log d2

ε

)
; the constant hidden in Θ follows from the analysis.

We say that a job with vector v is big if ‖v‖∞ > γ · LB; otherwise it is small.
The algorithm stores all big jobs (i.e., the full vector of each big job), while it
aggregates small jobs into containers, and does not store any small job directly.
A container is simply a vector c that equals the sum of vectors for small jobs
assigned to this container, and we ensure that ‖c‖∞ ≤ 2γ · LB. Furthermore,
container c is closed if ‖c‖∞ > γ·LB, otherwise, it is open. As two open containers
can be combined into one (open or closed) container, we maintain only one
open container. We execute a variant of the Next Fit algorithm to pack the
containers, adding an incoming small job into the open container, where it always
fits as any small vector v satisfies ‖v‖∞ ≤ γ · LB. All containers are retained in
the memory.

When a new job vector v arrives, we update the values of Lk for k = 1, . . . , d
(by adding vk) and also of LB. If LB increases, any previously big job u that has
become small (w.r.t. new LB), is considered to be an open container. Moreover,
it may happen that a previously closed container c becomes open again, i.e.,
‖c‖∞ ≤ γ · LB. If we indeed have more open containers, we keep aggregating
arbitrary two open containers as long as we have at least two of them. Finally,
if the new job v is small, we add it in an open container (if there is no open
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container, we first open a new, empty one). This completes the description of the
algorithm. (We remark that for packing the containers, we may also use another,
more efficient algorithm, such as First Fit, which however makes no difference
in the approximation guarantee.)

Properties of the Input Summary. After all jobs are processed, we can assume
that LB = maxk

1
m ·Lk = 1, which implies that OPT ≥ 1. This is without loss of

generality by scaling every quantity by 1/LB. Since any big job and any closed
container, each characterized by a vector v, satisfy ‖v‖∞ > γ, it holds that there
are at most 1

γ · d · m big jobs and closed containers. As at most one container
remains open in the end and any job or container is described by d numbers, the
space cost is O

(
1
γ · d2 · m

)
= O (

1
ε2 · d2 · m · log d

ε

)
.

We now analyze the maximum approximation factor that can be lost by
this summarization. Let IR be the resulting instance formed by big jobs and
containers with small items (i.e., the input summary), and let I be the original
instance, consisting of jobs in the input stream. We prove that OPT(IR) and
OPT(I) are close together, up to a factor of 2 − 1

m + ε. Note, however, that we
still need to execute an offline algorithm to get (an approximation of) OPT(IR),
which is not an explicit part of the summary.

The crucial part of the proof is to show that containers for small items can
be assigned to machines so that the loads of all machines are nearly balanced
in every dimension, especially in the case when containers constitute a large
fraction of the total load of all jobs. Let LC

k be the total load of containers in
dimension k (equal to the total load of small jobs). Let IC ⊆ IR be the instance
consisting of all containers in IR.

Lemma 3. Supposing that maxk
1
m · Lk = 1, the following holds:

(i) There is a solution for instance IC with load at most max(12 , 1
m ·LC

k )+2ε+4γ
in each dimension k on every machine.

(ii) OPT(I) ≤ OPT(IR) ≤ (
2 − 1

m + 3ε
) · OPT(I).

The full proof is deferred to the full version; here we give its brief outline. To
show (i), we obtain the solution with the desired load from the randomized online
algorithm by Im et al. [29]. Although this algorithm has ratio O(log d/ log log d)
on general instances, we show that it behaves substantially better when jobs are
small enough, namely, that it creates a nearly balanced assignment as claimed
in (i). Item (ii) follows from an arbitrary combination of an optimal solution for
big jobs in IR only (i.e., excluding containers) and the solution ensured by (i)
for containers.

It remains open whether or not the above algorithm with γ = Θ(ε) also
gives (2 − 1

m + ε)-approximation, which would imply a better space bound of
O( 1ε ·d2 ·m). The approximation guarantee of this approach cannot be improved,
however, which we demonstrate by an example in the full version of the paper.
More importantly, it would be interesting to know whether or not there is a
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streaming O(1)-approximation with space poly(1ε , d, log m), that is, polyloga-
rithmic in m, or even independent of m. Recall that rounding from [8] achieves
space independent of m, but exponential in d.

Acknowledgments. The authors wish to thank Michael Shekelyan for fruitful dis-
cussions.
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5. Balogh, J., Békési, J., Dósa, G., Epstein, L., Levin, A.: A new and improved algo-
rithm for online bin packing. In: 26th Annual European Symposium on Algorithms
(ESA 2018), LIPIcs, vol. 112, pp. 5:1–5:14. Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2018)
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Abstract. The Ring Loading Problem emerged in the 1990s to model
an important special case of telecommunication networks (SONET rings)
which gained attention from practitioners and theorists alike. Given an
undirected cycle on n nodes together with non-negative demands between
any pair of nodes, the Ring Loading Problem asks for an unsplittable
routing of the demands such that the maximum cumulated demand
on any edge is minimized. Let L be the value of such a solution. In
the relaxed version of the problem, each demand can be split into two
parts where the first part is routed clockwise while the second part is
routed counter-clockwise. Denote with L∗ the maximum load of a min-
imum split routing solution. In a landmark paper, Schrijver, Seymour
and Winkler [22] showed that L ≤ L∗ + 3

2
D, where D is the maximum

demand value. They also found (implicitly) an instance of the Ring Load-
ing Problem with L = L∗ + 101

100
D. Recently, Skutella [25] improved these

bounds by showing that L ≤ L∗ + 19
14

D, and there exists an instance with
L = L∗ + 11

10
D. We contribute to this line of research by showing that

L ≤ L∗ + 13
10

D. We also take a first step towards lower and upper bounds
for small instances.

Keywords: Ring Loading Problem · SONET ring · Load balancing ·
Unsplittable flow

1 Introduction

Given an undirected cycle on n nodes together with non-negative demands
between any pair of nodes, the Ring Loading Problem asks for an unsplit-
table routing of the demands such that the maximum cumulated demand on
any edge is minimal. Formally, we are given a graph G = (V,E) with nodes
V = [n] := {1, . . . , n}, edges {i, i + 1} for each i ∈ V , where we assume through-
out the paper that {n, n + 1} := {n, 1}, and demands for each pair of nodes
i < j of value di,j ≥ 0. By a slight abuse of notation, we refer to both the
demand from i to j and its value as di,j . An unsplittable solution decides for
each demand whether it should be routed clockwise, sending all of its value along
the path {i, i + 1, . . . , j}, or counter-clockwise, sending all of its value along the

A preprint of this paper with full proofs is available at [4].
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path {i, i − 1, . . . , 1, n, . . . , j}. The load of an edge, for a given solution, is the
sum of all demand values that are routed on paths that use the edge. We call
the maximum load on any edge of the ring the load of the solution. The problem
is to find an unsplittable routing that minimizes the load. We denote with L the
load of such an optimal unsplittable solution. See Fig. 1 for an example.

Fig. 1. An instance of the Ring Loading Problem on 8 nodes and 4 non-zero demands
with d1,4 = d2,7 = d3,6 = d5,8 = 1 (left) together with an optimum unsplittable routing
of load 2 (right).

The problem was introduced by Cosares and Saniee [3] to mathematically
model survivable networks with respect to the emerging standard of synchronous
optical networks (SONET). The underlying structure to this technology, the
SONET ring, is a set of network nodes and links that are arranged in a cycle. In
this way, even in the event of a link failure, most of the traffic could be recov-
ered. See [1,11,27] for further resources on technical details. To the best of our
knowledge, Cosares and Saniee also established the name Ring Loading Problem.
They further showed via a reduction of the Partition Problem that the problem
is NP-hard and provided an algorithm that returns an unsplittable solution with
load at most 2L. Using a result from Schrijver et al. [22], Khanna [12] showed
that there exists a PTAS, i.e. a class of poly-time algorithms that return a solu-
tion with load at most (1 + ε) L, for each fixed ε > 0. If all non-zero demands
have the same value, Frank [7] showed that the Ring Loading Problem can be
solved in polynomial time.

Although a PTAS for the Ring Loading Problem exists, there remain unsolved
problems that connect unsplittable solutions to a relaxed version of the Ring
Loading Problem. To this end, consider the Ring Loading Problem where
demands are allowed to be routed splittably, i.e. a demand can be routed partly
clockwise while the remaining part is routed counter-clockwise. The definition of
the load of an edge and the load of a solution generalize naturally to the relaxed
version. We denote with L∗ the optimum load of a split solution. The relaxed
version of the Ring Loading Problem has a linear programming formulation [3]
and can thus be solved in polynomial time. Further effort was put into finding
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more efficient algorithms (see [5,18,19,22,26,28]). It was also shown in [5,19,22]
that L ≤ 2L∗, and this bound is tight ([19,22]).

In a landmark paper, Schrijver, Seymour and Winkler [22] proved in this
context that L ≤ L∗ + 3

2D, where we denote with D := maxi<j di,j the maxi-
mum demand value. They furthermore gave the “guarantee” that L ≤ L∗ + D,
which was later restated as conjecture in the survey on multicommodity flows by
Shepherd [23]. More recently, Skutella [25] improved the upper bound by show-
ing that L ≤ L∗ + 19

14D. He also found an instance of the Ring Loading Problem
with L = L∗ + 11

10D, disproving the long-standing conjecture by Schrijver et al.
and Shepherd. Skutella furthermore conjectured that L ≤ L∗ + 11

10D.
Interestingly, Schrijver et al. gave an instance of the Ring Loading Prob-

lem together with a split routing that cannot be turned into an unsplittable
routing without increasing the load on some edge by at least 101

100D, whereas
Skutella writes that this “does not imply a gap strictly larger than D between
the optimum values of split and unsplittable routings”. We show in Lemma7 that
this implication does hold, and that Schrijver, Seymour and Winkler therefore
(implicitly) found a counterexample to their own conjecture.

Our Contributions. The following theorem is the main contribution of this
work.

Theorem 1. Any split routing solution to the Ring Loading Problem can be
turned into an unsplittable routing while increasing the load on any edge by at
most 13

10D. In particular, we have L ≤ L∗ + 13
10D.

In order to prove the theorem, we first define a general framework that uni-
fies structural results of split routings introduced by Skutella. We then apply
this framework in a new way to obtain the better upper bound. The algorithm
implicitly given in the proof of Theorem1 runs in linear time. This result is the
first progress towards closing the remaining additive gap since Skutella.

As all previous lower bound examples are of relative small size, it is interesting
to settle these cases conclusively. We take a step into this direction by showing
upper and lower bounds for small instances. The upper bounds are deduced
from a mixed integer linear program that verifies for a given instance size that
no worse examples can exist. Although the lower bounds also follow from this
formulation, we provide further examples to enrich the view on instances where
the difference L−L∗ is large with respect to D. In fact, we give an infinite family
of instances with L > L∗ + D.

A summary of previous results on lower and upper bounds together with new
advancements is shown in Fig. 2 on the right vertical line, while on the left results
are given with respect to δ ∈ [

0, 1
2

]
that, loosely speaking, parametrizes instances

of the Ring Loading Problem and guarantees that all demands are either small or
large with respect to δ and D, i.e. all demand values lie in [0, δD]∪ [(1−δ)D,D].
A formal definition is given in Sect. 2.

Just as Schrijver et al. and Skutella before, we mention a nice combinatorial
implication of our result. Schrijver et al. define β to be the infimum of all reals α
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such that the following combinatorial statement holds: For all positive integers
m and nonnegative reals u1, . . . , um and v1, . . . , vm with ui + vi ≤ 1, there exist
z1, . . . , zm such that for every k, zk ∈ {vk,−uk} and

∣
∣
∣
∣
∣

k∑

i=1

zi −
m∑

i=k+1

zi

∣
∣
∣
∣
∣
≤ α.

Schrijver et al. prove that β ∈ [
101
100 , 3

2

]
. Skutella reduces the size of the

interval to β ∈ [
11
10 , 19

14

]
. As a result of our work, we obtain β ∈ [

11
10 , 13

10

]
.

Further Related Work. In the Ring Loading Problem with integer demand
splitting, each demand is allowed to be split into two integer parts which are
routed in different directions along the ring. The objective is to find an integer
split routing that minimizes the load. Let L′ be the load of an optimal integer
split routing solution. Lee et al. [15] showed an algorithm that returns an integer
split routing solution with load at most L′ + 1. Schrijver et al. [22] found an
optimal solution in pseudo-polynomial time. Vachani et al. [26] provided an
O

(
n3

)
algorithm. In [17] Myung presented an algorithm with runtime O (nk)

where k is the number of non-zero demands. Wang [28] proved the existence of
an O (k + tS) algorithm where tS is the time for sorting k nodes.

More recently, the weighted Ring Loading Problem was introduced where
each edge has a weight associated with it, and the weighted load of an edge
is the product of its weight and the smallest integer greater or equal than its
load. In the case where demand splitting is allowed, Nong et al. [20] gave an
O

(
n2k

)
algorithm. If integer demand splitting is allowed, the authors present a

pseudo-polynomial time algorithm. Later, Nong et al. [21] present an O
(
n3k

)

algorithm. If the demands have to be send unsplittably, Nong et al. [20] prove
the existence of a PTAS.

In a broader context, the Ring Loading Problem is a special case of unsplit-
table multicommodity flows. We mention the case of single source unsplittable
flows, as similarities between theorems and conjectures for these problems exist
(see [6,8,16,24]). We also refer to the survey of Shepherd [23].

A more geometric problem with similarities to the Ring Loading Problem is
the dynamic storage allocation problem. In this problem, axis-parallel rectangles
in the positive quadrant of the plane are given. The horizontal position is fixed
while vertical shifts are allowed. These rectangles have to be placed pairwise
disjoint such that the supremum of the y-coordinates is minimized. Each rect-
angle can be seen as demand whose value is its height. Multiple approximation
algorithms for the problem exist, e.g. [2,9,10,13,14].

Outline. In Sect. 2, we introduce some notation and provide useful results from
Schrijver et al. and Skutella that we need. We then continue in Sect. 3 with the
proof of Theorem 1. In Sect. 4, we turn our attention to upper and lower bounds
for small instances. We wrap everything up with our conclusions in Sect. 5.
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2 Preliminaries

In this section, we introduce further notation and mention results already pre-
sented in [22,25]. We start with a preprocessing step to reduce the size and
complexity of an instance to the Ring Loading Problem.

Fig. 2. Summary of known results dependent on δ (left) and independent of δ (right).
The currently best bounds are due to Theorem 1 together with the lower bound in [25].

Two demands di,j and dk,l are parallel if there exists a path from i to j and
a path from k to l that are edge-disjoint, otherwise they are crossing. Note that
the demands di,j and di,k are parallel.

As Theorem 1 only argues about the load increase on all edges for split routing
solutions, we can ignore and delete all demands that are routed unsplittably. The
following observation shows that we can assume that there are not too many
remaining demands.

Observation 1 ([22]). Given a split routing of two parallel demands d1 and
d2. The routing can be altered such that at most one demand is routed splittably,
without increasing the load on any edge.

If we apply Observation 1 to an arbitrary split routing and delete afterwards
all demands that are routed unsplittably, we can concentrate on instances with
pairwise crossing demands, implying in particular that every node is end point
of at most one demand. If a node is not the end point of a demand, the load
on its adjacent edges have the same value, allowing us to delete the node and
merge the edges.

After this process we are left with a ring on n = 2m nodes, demands di :=
di,i+m > 0 for i ∈ [m] and a split routing. We denote for all i ∈ [m] with ui > 0
the amount of flow from demand di routed clockwise and likewise with vi > 0
the remainder of flow routed counter-clockwise. Note that ui + vi = di, i ∈ [m].
From now on we refer to an instance with this structure as split routing solution.
An example is given in Fig. 3 on the left.
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Fig. 3. An example of a split routing solution on m = 5 pairwise crossing demands with
u = (2, 1, 2, 3, 1) and v = (2, 2, 1, 1, 1) together with the load on each edge (left). One
possible unsplittable solution with z = (v1, −u2, −u3, v4, v5) = (2, −1, −2, 1, 1) together
with load changes on every edge is shown on the right. The additive performance of z
is 3.

The following definition describes for a given δ ∈ [
0, 1

2

]
all split routing solu-

tions with small and large demands only (with respect to δ and D) and ensures
the existence of a demand on the boundary to medium demands. Formally we
call these split routing solutions δ-instances:

Definition 1. Let δ ∈ [
0, 1

2

]
. We call a split routing solution a δ-instance, if

di ∈ {δD, (1 − δ) D} for all i ∈ arg minj∈[m]

(∣∣ 1
2D − dj

∣
∣).

A 1
2 -instance for example has a demand of value 1

2D, whereas a 0-instance
only has demands of value D. An important property of δ-instances is that
di ∈ [0, δD] ∪ [(1 − δ) D,D] for all i ∈ [m]. All demands are therefore either
small or large with respect to δ and D.

In order to turn a given split routing solution into an unsplittable solution,
we have to decide for each demand di whether ui units of flow are rerouted to
use the counter-clockwise direction, or whether vi units of flow are rerouted to
use the clockwise direction. We encode this decision using z = (z1, . . . , zm), with
zi ∈ {vi,−ui} for all i ∈ [m], where zi = vi means that we send the demand
completely in clockwise direction, whereas zi = −ui means that we completely
send the demand in counter-clockwise direction. In either case the zi values
model exactly the increase of load on the clockwise edges from i to i + m, and
the decrease of load on the counter-clockwise edges. For k ∈ [m] the load on an
edge {k, k + 1} changes by

k∑

i=1

zi −
m∑

i=k+1

zi,
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while the load on the opposite edge {k + m, k + m + 1} changes by the negative
amount. The maximum increase of load on any edge is therefore

max
k∈[m]

∣
∣
∣
∣
∣

k∑

i=1

zi −
m∑

i=k+1

zi

∣
∣
∣
∣
∣
.

As described by Skutella [25], we refer to this quantity as the additive perfor-
mance of z. In Fig. 3 an example of the load change and the additive performance
is given.

Let x ∈ R be fixed, we define pz(k) := x +
∑k

i=1 zi, for k ∈ {0, . . . , m}. We
refer to pz as a pattern starting at x = pz(0) and ending at y = pz(m). We
denote with a := mink∈{0,...,m} pz(k) and b := maxk∈{0,...,m} pz(k) the minimum
and maximum of pattern pz, respectively. We refer to [a, b] as strip and say that
the pattern pz lives on the strip [a, b] of width b − a. As pz(k) − pz(k − 1) = zi,
when we refer to a pattern pz we also refer to the corresponding unsplittable
solution. As the choice of x might vary, multiple patterns correspond to a single
unsplittable solution. A pattern can be visualized as seen in Fig. 4.

Fig. 4. An example of a pattern pz that corresponds to the split routing given in Fig. 3
with z = (2, −1, −2, 1, 1) and start point x = 2, end point y = 3, minimum value a = 1
and maximum value b = 4. The additive performance of the pattern due to Observation
2 is max {2b − x − y, x + y − 2a} = 3.

Observation 2 ([25]). Given an unsplittable solution z with corresponding pat-
tern pz with start point x, end point y living on a strip of [a, b], then the additive
performance of pattern pz is

max
k∈[m]

∣
∣
∣
∣
∣

k∑

i=1

zi −
m∑

i=k+1

zi

∣
∣
∣
∣
∣
= max {2b − x − y, x + y − 2a} . (1)

Observation 3 ([25]). Let ε > 0. Given an unsplittable solution z with corre-
sponding pattern pz with start point x and end point y living on a strip of [a, b],
the additive performance of pattern pz is at most b−a+ε if and only if the pattern
starts at x and ends at y ∈ [yopt − ε, yopt + ε] ∩ [a, b] with yopt := a + b − x.
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Given a strip of width D, say [0,D]. Let x ∈ [0,D], we denote throughout
with x̄ := D − x the reflection of x across 1

2D. We can construct a pattern with
start point x living on a strip [a, b] ⊆ [0,D] by applying iteratively the following
observation.

Observation 4. Let d = e + f with e, f ∈ R≥0. If I is an interval of size at
least d and x ∈ I, then x + e ∈ I or x − f ∈ I (or both).

Formally, we construct the pattern pz by setting pz(0) = x for some x ∈ [0,D]
and choose zk ∈ {−uk, vk} iteratively such that pz(k) = pz(k − 1) + zk ∈ [0,D]
for all k = 1, . . . , m, which always works by Observation 4. If this decision
is not unique, we set zk such that

∣
∣ 1
2D − pz(k)

∣
∣ is minimal, i.e. pz(k) is as

close as possible to the middle 1
2D of the interval [0,D]. Remaining ties are

broken arbitrarily. A pattern that is constructed with respect to this procedure
is called a forward greedy pattern. For technical reasons, we call a forward greedy
pattern pz proper if its start point is far enough away from the boundary, i.e.
x ∈ [

δ
4D,

(
1 − δ

4

)
D

]
. This requirement is used in Lemma 2.

We obtain a backward greedy pattern pz by applying this procedure back-
wards. We define pz(m) = y, for some y ∈ [0,D], and iteratively choose
pz(k − 1) = pz(k) − zk, for all k = m, . . . , 1, such that

∣
∣pz(k − 1) − 1

2D
∣
∣ is

minimal. We call a backward greedy pattern proper if its end point is far enough
away from the boundary, i.e. y ∈ [

δ
4D,

(
1 − δ

4

)
D

]
.

A pattern is called a (proper) greedy pattern if it is either a (proper) forward
greedy pattern or a (proper) backward greedy pattern.

Using a forward greedy pattern with start point 1
2D together with Obser-

vation 3, Schrijver et al. [22] showed that any split routing solution to the Ring
Loading Problem can be turned into an unsplittable solution while increasing
the load on any edge by at most 3

2D.
Although the following structural properties of (greedy) patterns are crucial

for our results, we refer the reader for complete proofs to [25].

Definition 2 ([25]). Let ε ≥ 0. Two patterns pz and pz′ are said to be ε-close
if |pz(k) − pz′(k)| ≤ ε for some k ∈ {0, 1, . . . ,m}.

The following lemma combines two ε-close patterns to a single pattern while
preserving crucial properties.

Lemma 1 ([25]). Consider a fixed split routing solution. Let pz′ be a pattern
with start point x′ living on strip [a′, b′], and pz′′ a pattern with end point y′′

living on strip [a′′, b′′]. If the two patterns are ε-close for some ε ≥ 0, then there
is a pattern pz living on a sub-strip of

[
min {a′, a′′} − 1

2
ε,max {b′, b′′} +

1
2
ε

]

with start point x and end point y such that x + y = x′ + y′′.

This lemma describes situations where δ
2D-close patterns exist.
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Lemma 2 ([25]). Consider three proper greedy patterns pza
, pzb

, pzc
, all three

living on sub-strips of [0,D]. If the sorting of the patterns by their end points is
not a cyclic permutation of the sorting of their start points, then (at least) two
of the three patterns are 1

2δD-close.

At the end of the section reconsider Fig. 2. Both previous and new results
are shown with respect to δ on the left and the consequences for all instances
independent of δ on the right.

3 Improved Upper Bound

In this section we prove Theorem 1. We start by defining a general framework
that allows us to use Lemmas 1 and 2 in a very unified manner. The following
definition is at the heart of this framework (see Fig. 5).

Definition 3. Given a greedy pattern pza
living on a sub-strip of [0,D] with

start point xa and end point ya, we call a forward greedy pattern pzb
induced by

pza
, if it lives on a sub-strip of [0,D] with start point xb := 2

3 ȳa + 1
3xa. Likewise,

we call a backward greedy pattern pzc
induced by pza

, if it lives on a sub-strip
of [0,D] with end point yc := 2

3 x̄a + 1
3ya.

If a greedy pattern pza
and its induced patterns are proper, the following

lemma ensures the existence of a pattern with an additive performance that
only depends on the start and end points of pza

together with δ. It is therefore
possible to pick a single pattern, check if its induced patterns are proper, and
obtain a strong bound on the additive performance.

Lemma 3. For a δ-instance with δ ∈ [
0, 1

2

]
, let pza

be a greedy pattern living
on a sub-strip of [0,D] with start point xa and end point ya. Denote with pzb

a forward greedy pattern induced by pza
and with pzc

a backward greedy pattern
induced by pza

. If all three greedy patterns are proper, then there exists a pattern
with additive performance at most

max
{

4
3
D − 1

3
(xa + ya) +

δ

2
D,

2
3
D +

1
3

(xa + ya) +
δ

2
D

}
.

Proof. We first show that the sorting of the start points is not a cyclic per-
mutation of the sorting of the end points. This allows us to use Lemma2 that
guarantees the existence of two patterns that are δ

2D-close. We then conclude
the lemma by showing that if any two of the three patterns are δ

2D-close, that
there exists a pattern with the required additive performance. In Fig. 5 is an
illustration of the procedure.

By the definition of pzb
as forward greedy pattern induced by pza

and pzc

as backward greedy pattern induced by pza
, we know that xb = 2

3 ȳa + 1
3xa and

yc = 2
3 x̄a + 1

3ya. The definitions are such that the interval between xa and ȳa
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Fig. 5. An illustration of a greedy pattern pza with induced forward greedy pattern
pzb and induced backward greedy pattern pzc as defined in Definition 3.

is divided into three equal parts by the points xb and ȳc. A straightforward
computation shows that

ȳc =
xa + xb

2
, x̄b =

ya + yc

2
, (2)

i.e. the optimal start point for pattern pzc
is in the middle between xa and xb,

and the optimal end point of pxb
is in the middle between ya and yc. Because

|xa − ȳa| = |x̄a − ya|, and the symmetric definitions of xb and yc, it also holds
that |xa − xb| = |ya − yc|.

For the sake of brevity, we define ε := max
{

1
3D − 1

3 (xa + ya) + δ
2D, 1

3 (xa +
ya) − 1

3D + δ
2D

}
. In fact, we want to show that there exists a pattern with

additive performance at most D + ε.
We now show that |xa − xb| ≤ 2ε, which also implies that |ya − yc| ≤ 2ε. By

definition of xb = 2
3 ȳa + 1

3xa = 2
3D − 2

3ya + 1
3xa, we can conclude that

|xa − xb| = max {xb − xa, xa − xb}

= max
{

2
3
D − 2

3
(xa + ya) ,

2
3

(xa + ya) − 2
3
D

}

≤ 2max
{

1
3
D − 1

3
(xa + ya) +

δ

2
D,

1
3

(xa + ya) − 1
3
D +

δ

2
D

}

= 2ε,

(3)

where the inequality follows from the fact that δ ≥ 0. With Eqs. (2) and (3), it
follows that

|ȳc − xb| = |ȳc − xa| = |x̄b − ya| = |x̄b − yc| ≤ ε. (4)

If for the start point of pzc
holds xc ∈ [ȳc − ε, ȳc + ε], we know by Obser-

vation 3 that the additive performance of pzc
is at most D + ε, from which

the lemma follows. We can thus assume that xc ∈ [0, ȳc − ε] ∪ [ȳc + ε,D].
Using Eq. (4), we can therefore conclude that either xc ≤ ȳc − ε ≤ min {xa, xb}
or max {xa, xb} ≤ ȳc + ε ≤ xc.
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Equivalently, if for the end point of pzb
holds yb ∈ [x̄b − ε, x̄b + ε], we know

by Observation 3 that the additive performance of pzb
is at most D + ε, from

which the lemma follows. We can thus assume that yb ∈ [0, x̄b − ε] ∪ [x̄b + ε,D].
Using Eq. (4), we can therefore conclude that either yb ≤ x̄b − ε ≤ min {ya, yc}
or max {ya, yc} ≤ x̄b + ε ≤ yb.

Assume first that ȳa ≤ xa (as shown in Fig. 5), then ȳa ≤ xb ≤ ȳc ≤ xa and
x̄a ≤ yc ≤ x̄b ≤ ya, which implies that either xc ≤ xb ≤ xa or xb ≤ xa ≤ xc

and that either yb ≤ yc ≤ ya or yc ≤ ya ≤ yb. In either case, the sorting of the
patterns by their start points is not a cyclic permutation of the patterns by their
end points.

Assume now that xa ≤ ȳa, then xa ≤ ȳc ≤ xb ≤ ȳa and ya ≤ x̄b ≤ yc ≤ x̄a,
which implies that either xc ≤ xa ≤ xb or xa ≤ xb ≤ xc and that either
yb ≤ ya ≤ yc or ya ≤ yc ≤ yb. In either case, the sorting of the patterns by their
start points is not a cyclic permutation of the patterns by their end points.

As pza
, pzb

and pzc
are proper greedy patterns, we can apply Lemma 2,

ensuring the existence of two patterns that are δ
2D-close. We conclude the proof

by showing that the closeness of any two patterns guarantees the existence of a
pattern with the claimed additive performance.

(i) Assume that pza
and pzb

are δ
2D-close. Then Lemma 1 assures the existence

of a pattern with start point x and end point y such that x+ y = xb + ya =
2
3D + 1

3 (xa + ya) on a sub-strip of
[− δ

4D,D + δ
4D

]
. Using Observation 2,

a straightforward calculation shows that this pattern has additive perfor-
mance at most

max
{

4
3
D − 1

3
(xa + ya) +

δ

2
D,

2
3
D +

1
3

(xa + ya) +
δ

2
D

}
.

(ii) Assume that pza
and pzc

are 1
2δD-close. Then Lemma 1 assures the exis-

tence of a pattern with start point x and end point y such that x + y =
xa +yc = 2

3D+ 1
3 (xa + ya) on a sub-strip of

[− δ
4D,D + δ

4D
]
. Using Obser-

vation 2, a straightforward calculation shows that this pattern has additive
performance at most

max
{

4
3
D − 1

3
(xa + ya) +

δ

2
D,

2
3
D +

1
3

(xa + ya) +
δ

2
D

}
.

(iii) Assume that pzb
and pzc

are 1
2δD-close. Then Lemma 1 assures that there

exists a pattern with start point x and end point y such that x + y =
xb +yc = 4

3D − 1
3 (xa + ya) on a sub-strip of

[− δ
4D,D + δ

4D
]
. Using Obser-

vation 2, a straightforward calculation shows that this pattern has additive
performance at most

max
{

2
3
D +

1
3

(xa + ya) +
δ

2
D,

4
3
D − 1

3
(xa + ya) +

δ

2
D

}
.

In either case, the lemma follows.
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If both the start point and the end point of a greedy pattern pza
are far

enough away from the boundary, the next lemma ensures that its induced pat-
terns are proper. Note that this is a stronger requirement on pza

than being a
proper greedy pattern.

Lemma 4. For a δ-instance with δ ∈ [
0, 1

2

]
, let pza

be a greedy pattern living
on a sub-strip of [0,D] with start point xa and end point ya. Denote with pzb

a forward greedy pattern induced by pza
and with pzc

a backward greedy pattern
induced by pza

. If xa, ya ∈ [
δ
4D,

(
1 − δ

4

)
D

]
, then pza

, pzb
and pzc

are proper.

Proof. By definition, pza
is proper. For x ∈ [0,D] holds that x̄ ∈ [

δ
4D,

(
1 − δ

4

)
D

]

if and only if x ∈ [
δ
4D,

(
1 − δ

4

)
D

]
. By assumption, we therefore also know

that x̄a and ȳa are far enough away from the boundary. By the definition of
induced patterns, we know that xb = 2

3 ȳa + 1
3xa, which implies in particular

that min{xa, ȳa} ≤ xb ≤ max{xa, ȳa}. The start point xb of the induced forward
greedy pattern is consequently far enough away from the boundary. Using the
same argumentation for the definition of yc = 2

3 x̄a + 1
3ya, the lemma follows.

A crucial part of the proof of Theorem1, and the main contribution of this
work is the following auxiliary lemma.

Lemma 5. For a δ-instance with δ ∈ [
0, 1

2

]
there exists a pattern with additive

performance at most
(
7
6 + δ

3

)
D.

Proof. We start the proof by modifying the instance such that the special
demand of value either δD or (1 − δ)D is the last demand. These two cases
will be treated separately. In either case, we then use the nice structure of the
newly created instance to find a greedy pattern that can be used with Lemma3.

Let di be the demand that minimizes
∣
∣ 1
2D − di

∣
∣ over all i ∈ [m]. By the

definition of a δ-instance, we know that di ∈ {δD, (1 − δ) D}.
We now rotate the instance such that the specially chosen demand di has

index m, and is thus the last demand of the instance. By a slight abuse of
notation we will refer to this newly created instance again as instance. Recall
that now the demand dm has the property that dm ∈ {δD, (1 − δ) D}.

The following procedure is similar to the one described by Skutella [25] when
dealing with demands of medium size. An example is depicted in Fig. 6. We first
delete the last demand m to obtain a smaller instance. We define a backward
greedy pattern ending at 1

2 (D + dm) − vm and starting at some xa ∈ [0,D].
This backward greedy pattern can be extended in two possible ways to create a
pattern that includes demand m, once with end point y1

a := 1
2 (D − dm) and once

with end point y2
a := 1

2 (D + dm). A crucial observation is that both possible
extensions produce a valid backward greedy pattern for the original instance.
Depending on the particular start point xa, we choose in which way the pattern
will be extended: If xa ≤ 1

2D, we extend the pattern with end point y2
a, otherwise

we extend the pattern with y1
a. For the rest of the proof, we may assume that

xa is at most 1
2D and the pattern is therefore extended with end point ya := y2

a.
This assumption can be made, as the following construction is highly symmetric
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Fig. 6. An example of the construction step in Lemma 5. If xa ≤ 1
2
D, we extend the

pattern with ya = 1
2
(D + dm).

with respect to y1
a and y2

a, in fact, all arguments remain valid if we change start
and end points of subsequent patterns by reflecting their value around 1

2D. Let
pza

denote the resulting backward greedy pattern with start point xa and end
point ya.

We consider two cases, first that dm = (1 − δ) D and second that dm = δD.
For the sake of brevity, we define ε := 1

6D + δ
3D. In fact, we want to find a

pattern with additive performance at most D + ε.

Case (a). If dm = (1 − δ)D, we can rewrite ya = 1
2 (D + dm) = D − δ

2D.
The lemma follows immediately from Observation 3 if xa ∈ [ȳa − ε, ȳa + ε]. We
can therefore assume that xa falls either into the interval

[
0, δ

6D − 1
6D

]
or into

the interval
[
1
6D + 5

6δD, 1
2D

]
. Recall the assumption that xa is at most 1

2D.
It is easy to see that δ

6D − 1
6D is negative for all δ ∈ [

0, 1
2

]
. It follows that

xa ∈ [
1
6D + 5

6δD, 1
2D

]
. Note that this interval is also empty for all δ > 2

5 , and
the lemma is trivially correct. In fact, this is exactly the argumentation used by
Skutella [25] in his proof of Lemma6.

As ya = D − δ
2D ∈ [

δ
4D,

(
1 − δ

4

)
D

]
, the backward greedy pattern pza

is
proper. Because 1

2D ≥ xa ≥ 1
6D + 5

6δD ≥ δ
4D, it furthermore holds that xa

is far enough away from the boundary. We can thus apply Lemma4 together
with Lemma 3 and the fact that xa + ya ∈ [

7
6D + δ

3D, 3
2D − δ

2D
]

to obtain a
pattern with additive performance at most

max
{

17
18

D +
7
18

δD,
7
6
D +

δ

3
D

}
=

(
7
6

+
δ

3

)
D.

Case (b). If dm = δD, we can rewrite ya = 1
2 (D + dm) = 1

2D + δ
2D. The lemma

follows immediately from Observation 3 if xa ∈ [ȳa − ε, ȳa + ε]. We can therefore
assume that xa falls either into the interval

[
0, 1

3D − 5
6δD

]
or into the interval[

2
3D − δ

6D, 1
2D

]
. Recall the assumption that xa is at most 1

2D. It is easy to see
that 2

3D − δ
6D ≥ 1

2D for all δ ∈ [
0, 1

2

]
. It follows that xa ∈ [

0, 1
3D − 5

6δD
]
. Note

that this interval is also empty for all δ > 2
5 , and the lemma is trivially correct.

We need this assumption, when arguing that we can apply Lemma3.



102 K. Däubel

As ya = 1
2D + δ

2D ∈ [
δ
4D,

(
1 − δ

4

)
D

]
, the backward greedy pattern pza

is proper. As xa might be zero, we cannot apply Lemma 4. We therefore have
to argue that the induced patterns are proper. Let pzb

be a forward greedy
pattern induced by pza

and pzc
be a backward greedy pattern induced by pza

.
By definition, we have xb = 2

3 ȳa + 1
3xa and yc = 2

3 x̄a + 1
3ya. By substituting the

definitions and bounds of ya and xa, we obtain

xb =
1
3
D − δ

3
D +

1
3
xa ≥ 1

3
D − δ

3
D ≥ δ

4
D.

The start point xb is therefore far enough away from the boundary and the
pattern pzb

is thus proper. We similarly obtain

yc =
5
6
D +

δ

6
D − 2

3
xa ≤ 5

6
D +

δ

6
D ≤ D − δ

4
D,

for all δ ∈ [
0, 2

5

]
. As we assumed that δ ≤ 2

5 , the backward greedy pattern pzc

induced by pza
is proper. We can thus apply Lemma 3 together with the fact that

xa + ya ∈ [
1
2D + δ

2D, 5
6D − δ

3D
]

to obtain a pattern with additive performance
at most

max
{

7
6
D +

δ

3
D,

17
18

D +
7
18

δD

}
=

(
7
6

+
δ

3

)
D.

In either case, the lemma follows.

An easy consequence of Lemma 5 is that there exists for any split routing solu-
tion a pattern with additive performance at most 4

3D, which already improves
upon the best known previous result of 19

14D from Skutella [25]. However,
when combined with Skutellas [25] result on instances with medium demands
(see Lemma 6), we obtain our main Theorem 1.

Lemma 6 ([25]). For any δ-instance with δ ∈ [
0, 1

2

]
there exists a pattern with

additive performance at most
(
3
2 − δ

2

)
D.

Proof (of Theorem 1). Let δ ∈ [
0, 1

2

]
be such that the given split routing solution

is a δ-instance. If δ ≥ 2
5 , the theorem follows from Lemma 6, as

(
3
2 − δ

2

)
D ≤ 13

10D.
Otherwise, the theorem follows from Lemma 5, as

(
7
6 + δ

3

)
D ≤ 13

10D.

4 Bounds for Small Instances

In this section, we show lower and upper bounds for small instances of the
Ring Loading Problem. The main result in this section implies in particular that
in search of a lower bound example, stronger than Skutellas [25] instance with
L = L∗+ 11

10D, one can concentrate on split routing solutions with at least m ≥ 8
pairwise crossing demands. For full proofs, we refer to the preprint version [4].
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Theorem 2. Let m ≥ 2 be an integer. Any split routing solution to the Ring
Loading Problem with m split demands can be turned into an unsplittable solu-
tion without increasing the load on any edge by more than (1 + ε) D, if m ≤ 6,
and

(
19
18 + ε

)
D, if m = 7, for ε ≤ 5 × 10−6. Furthermore, there are instances of

the Ring Loading Problem with m pairwise crossing demands with L = L∗ + D,
for m ≤ 6, and L = L∗ + 19

18D, for m = 7.

Proof (Proof sketch). The upper bounds follow from a mixed integer linear pro-
gram (MILP) that outputs for a given integer m a split routing solution with m
demands that cannot be turned into an unsplittable routing without increasing
the load on some edge by at least αD, for α ≥ 0 as large as possible. Note that
the dependency on ε is unavoidable, as our technique depends on solutions to
large mixed integer linear programs that rely on floating point arithmetic. As the
MILP is growing rapidly for increasing values of m, we are restricted to m ≤ 7.

The (almost) matching lower bounds can also be deduced from MILP for-
mulation.

On the way, we show that any split routing solution can be turned into an
instance of the Ring Loading Problem while retaining the load increase. Note
that this can be used in conjunction with the split routing solution of Schi-
jver et al. [22] to provide a counterexample to their own conjecture, namely an
instance of the Ring Loading Problem with L = L∗ + 101

100D.

Lemma 7. Let α ≥ 0. Any split routing solution that cannot be turned into an
unsplittable routing without increasing the load on some edge by at least αD can
be turned into an instance of the Ring Loading Problem with L − L∗ ≥ αD.

5 Conclusions

We showed that any split routing solution to the Ring Loading Problem can be
turned into an unsplittable solution while increasing the load on any edge by at
most 13

10D. We furthermore showed that split routing solutions with at most 7
pairwise crossing demands cannot yield lower bounds with additive performance
worse than

(
19
18 + ε

)
D, for a small ε.

The obvious open problem is the correct value of additive load increase.
Skutella [25] conjectured that L ≤ L∗ + 11

10D, which is matched by the currently
best lower bound instance. After spending numerous hours on finding a stronger
lower bound, unfortunately without any success, we are tempted to believe that
this conjecture might be true. In any case, we highly doubt that the current best
upper bound is the definitive answer.

Acknowledgements. We thank Martin Skutella for introducing us to the Ring Load-
ing Problem and for many fruitful discussions and comments. We also thank Torsten
Mütze for reading an early draft of the paper.
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4. Däubel, K.: An improved upper bound for the ring loading problem (2019). https://
arxiv.org/abs/1904.02119
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Abstract. We study parallel online algorithms: For some fixed integer
k, a collective of k parallel processes that perform online decisions on the
same sequence of events forms a k-copy algorithm. For any given time
and input sequence, the overall performance is determined by the best of
the k individual total results. Problems of this type have been considered
for online makespan minimization; they are also related to optimization
with advice on future events, i.e., a number of bits available in advance.

We develop Predictive Harmonic3 (PH3), a relatively simple family
of k-copy algorithms for the online Bin Packing Problem, whose joint
competitive factor converges to 1.5 for increasing k. In particular, we
show that k = 6 suffices to guarantee a factor of 1.5714 for PH3, which is
better than 1.57829, the performance of the best known 1-copy algorithm
Advanced Harmonic, while k = 11 suffices to achieve a factor of 1.5406,
beating the known lower bound of 1.54278 for a single online algorithm.
In the context of online optimization with advice, our approach implies
that 4 bits suffice to achieve a factor better than this bound of 1.54278,
which is considerably less than the previous bound of 15 bits.

Keywords: Online algorithms · Bin packing · Competitive analysis

1 Introduction

When dealing with unknown future events, optimization with incomplete infor-
mation typically considers the competitive factor of an online algorithm as its
performance measure; the objective becomes to develop a single strategy that
performs reasonably well against the worst case. This focus on just one option is
more restrictive than hedging strategies in a wide variety of other scientific and
application fields; these typically make use of several parallel choices, thereby
increasing the chance that one of them will yield satisfactory results. Examples
include scenarios from biology, where a large and diverse progeny increases the
odds of surviving offspring; finance and insurance, where a suitable combination
of investment strategies is employed to balance a portfolio against extreme losses;
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and engineering, where redundancy is used to protect against catastrophic fail-
ure, either on individual components (such as parts in a machine) or on whole
systems (such as automata in a robot swarm or spacecraft in a group of satel-
lites), where it suffices that just one machine delivers a good outcome.

In this paper, we consider such parallel online strategies: Instead of making
a single sequence of decisions, we consider k parallel processes for some fixed
integer k, which we call a k-copy algorithm; the objective is to make the best of
these k outcomes as good as possible, even in the worst case. We demonstrate the
potential of this approach for the well-studied Bin Packing Problem, for which it
is known that no single deterministic online algorithm can achieve a competitive
factor below 1.5401.

1.1 Our Results

We define a family of k-copy algorithms for the online Bin Packing Problem,
called Predictive Harmonic3 (PH3), whose asymptotic competitive ratio con-
verges to 1.5 for large k. We show that k = 6 suffices to guarantee a factor of
1.5714, which is better than 1.57829, the performance of the best known 1-copy
algorithm Advanced Harmonic [3]. Moreover, k = 11 suffices to achieve a com-
petitive ratio of 1.5406 beating the known lower bound of 1.54278 for a 1-copy
algorithm [4]. In the context of online optimization with advice, our approach
implies that 4 bits suffice to achieve less than 1.5401, which is considerably less
than the previous bound of 16 bits of RedBlue by Angelopoulos et al. [2]; in
fact, for k = 16 (corresponding to four bits of advice) PH3 achieves a ratio of
1.5305, compared to 3.3750 for RedBlue, while k = 65, 536 (corresponding to
16 bits of advice) yields a factor of 1.5001 for PH3, but 1.5293 for RedBlue.

1.2 Related Work on Online Bin Packing

There is a wide range of online algorithms for bin packing. The Next Fit algo-
rithm [9] achieves a competitive ratio of 2, whereas “Almost Any Fit” algo-
rithms [13] like First Fit or Best Fit achieve competitive ratios of 1.7.

An important online bin packing algorithm is HarmonicM , introduced by
Lee and Lee [15], which achieves a competitive ratio of less than 1.692 for M →
∞. Based on HarmonicM , Son Of Harmonic by Heydrich and van Stee [12]
achieves a competitive ratio of 1.5816. The currently best known algorithm is
Advanced Harmonic, which achieves a competitive ratio of 1.57829 [3].

For lower bounds, Yao [20] established a value of 3/2 that was later improved
to 1.536, independently by Brown [8] and by Liang [16]. Using a generalization
of their methods, van Vliet [19] proved a lower bound of 1.5401. Balogh et al. [4]
improved the lower bound to 1.54278.

1.3 Related Work on Online Bin Packing with Advice

In the context of online algorithms with advice, Boyar et al. [7] showed that
an online algorithm with n�log(OPT (I))� bits of advice is sufficient and that
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at least (n − 2OPT (I)) · log(OPT (I)) bits of advice are necessary to achieve
optimality. In the same paper, they presented an online bin packing algorithm,
namely ReserveCritical, with O(log(n))+o(log(n)) bits of advice that is 1.5-
competitive and an algorithm with 2n+o(n) bits of advice that is 4

3 -competitive.
Zhao and Shen [21] developed an algorithm using 3n+o(n) bits of advice achiev-
ing a competitive ratio of 5

4opt + 2. Renault et al. [18] developed an (1 + ε)-
competitive algorithm using O( 1ε log 1

ε ) bits of advice per request.
Based on ReserveCritical, Angelopoulos et al. [2] developed the algorithm

RedBlue with constant advice that is 1.5-competitive. Their second algorithm
achieves a competitive ratio of 1.47012 + ε with finite advice that is exponen-
tially dependent of ε. However, to beat the competitive ratio of 1.5 already an
enormous amount of advice is needed, which makes the algorithm impractical.

In terms of lower bounds, Boyar et al. [7] proved that no competitive ratio
better than 9/8 can be reached by any algorithm that uses sub-linear advice.
Angelopoulos et al. [2] improved this bound to 7/6.

1.4 Related Work on Parallel Online Algorithms

Parallel algorithms have already been considered in the field of online algorithms
with advice. Boyar et al. [6] presented an algorithm for the online list update
problem, making use of 2 bits of advice to choose one out of three algorithms.
This algorithm achieves a competitive ratio of 5/3, beating the lower bound for
conventional online algorithms of 2. A practical application of this algorithm
was shown by Kamali and Ortiz [14], who applied it in the Burrows-Wheeler
transform compression. More work on parallel online algorithms include parallel
scheduling [1], finding independent sets [11] and the “multiple-cow” version of
the linear search problem [17].

While online algorithms with advice mostly focus on the amount of advice
to allow classification of online algorithms and problems, k-copy online algo-
rithms focus on small finite values for k and thus small finite amounts of advice,
with more emphasis on practical application. The perspective on different algo-
rithms running in parallel instead of abstract arbitrary information facilitates
finer optimization in some cases.

Also, when considering online algorithms with advice, the number of algo-
rithms can only be doubled by increasing the amount of advice by one bit. The
perspective of k-copy algorithms allows arbitrary k ∈ N for the number of algo-
rithms.

2 Preliminaries

2.1 k-Copy Online Algorithms

In this paper, we consider k online algorithms A1, . . . , Ak, each of them process-
ing the same input list I in parallel. We call the set A := {A1, . . . , Ak} a k-copy
online algorithm.
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For an input list I and an online algorithm A, let A(I) denote the number of
bins used by A and opt(I) denote the number of bins used in an optimal offline
solution. The absolute competitive ratio RA for a k-copy online algorithm A is
defined as

RA = sup
I

{
minA∈A A(I)

opt(I)

}
.

The asymptotic competitive ratio R∞
A for algorithm A is defined as

R∞
A = lim

n→∞ sup
I

{
minA∈A A(I)

opt(I)

∣∣∣∣ opt(I) = n

}

As already stated by Boyar et al. [5], any k-copy online algorithm can be
converted into an online algorithm with advice, and vice versa.

Lemma 1. Any k-copy online algorithm can be converted into an online algo-
rithm with l = �log2(k)� bits of advice that achieves the same competitive ratio.
Conversely, any online algorithm with l ∈ N bits of advice can be converted into
a k-copy online algorithm without advice with k = 2l that achieves the same
competitive ratio.

Proof. Let A = {A1, A2, . . . , Ak} be a k-copy algorithm. Construct the online
algorithm A′ that gets a value i ∈ {1, 2, . . . , k} as advice, specifying the index i
of the algorithm Ai ∈ A that performs best on the given input sequence. The
value i can be encoded using �log2(k)� bits. A′ then behaves like Ai and thus
achieves the same competitive ratio as A.

Let A be an online algorithm that gets l ∈ N bits of advice. Construct the
online k-copy algorithm A′ with k = 2l algorithms Ai, i ∈ {1, 2, . . . , k}. For each
i ∈ {1, 2, . . . , k}, the algorithm Ai behaves like A given i encoded in binary
as advice. As the values i ∈ {1, 2, . . . , k} cover every possible configuration of
the advice bits, for any advice given to A, there is an algorithm Ai ∈ A′, that
assumes this advice. Accordingly, there is an algorithm Ai ∈ A′, that performs
as well as A, i.e., the best algorithm Aj ∈ A that performs at least as well as A.
Thus, A′ performs at least as well as A.

2.2 Bin Packing

In the online version of bin packing, we are given a list of items I := 〈a1, . . . , an〉
with ai ∈ (0, 1] for i ∈ {1, . . . , n}. These items must be packed by an algorithm,
one at a time, without any information on subsequent items and without the
possibility to change previous decisions. The goal is to pack all items into a
minimum number of bins with unit capacity.

Definition 1 (Item size).
Let S =

[
0, 1

3

]
, M =

(
1
3 , 1

2

]
, L =

(
1
2 , 2

3

)
and XL =

[
2
3 , 1

]
. We call items in

S small, items in M medium, items in L large and items in XL extra large.
For a list I = 〈a1, a2, . . . an〉, the set of items Set(I) ∩ XL is noted as IXL for
improved readability. The subsets IL, IM and IS are used analogously.
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Definition 2 (Size function). Let S be a set (or list) of items. Then,
size(S) :=

∑
i∈S i. For a bin b, we refer to size(b) as the size of the bin, i.e., the

sum of items already packed in b.

Definition 3 (Sub-bins).
Given a bin b, it can be split into two parts b1 and b2, such that the sum of

their capacities is equal to the capacity of b. We refer to b1 and b2 as sub-bins.
We call a sub-bin with capacity C a C-sub-bin.

As sub-bins are not packed with an amount larger than their capacity, each
sub-bin can be packed independently from the other.

3 PREDICTIVE HARMONIC3

Now we introduce the algorithm Predictive Harmonic3 (PH3). Although
developed independently, it bears many similarities to ReserveCritical and
RedBlue. PH3 uses the same classifications as the other two algorithms and
tries to pack all large items with small items, such that the corresponding bins
are packed to a level of at least 2/3. However, in contrast to RedBlue, the
information needed by PH3 does not depend on the result of ReserveCritical,
but only on the number and size of certain item types, and can be calculated in
linear time.

The main idea of PH3 is to guess the ratio of how many small items must
be packed with large items to obtain a packing density of 2/3. Having multiple
instances of PH3, every instance can guess a different ratio to get close to a
competitive ratio of 1.5.

Algorithm 1 Predictive Harmonic3. Given a list I = 〈a1, a2, . . . , an〉 of
items ai ∈ (0, 1], i ∈ 1, . . . , n, and a ratio rL ∈ [0, 1], the algorithm packs the
items as follows:

– Extra large items are packed into individual bins. These bins are called XL-
bins, the set of all XL-bins is called BXL.

– Large items are packed into individual bins. These bins are called L-bins,
the set of all L-bins is called BL. Furthermore, we split each L-bin into a
2
3 -sub-bin (for large items) and a 1

3 -sub-bin (for small items).
– Medium items are packed into separate bins together with other medium

items (note that at most two of them fit into one bin). These bins are called
M-bins, the set of all M-bins is called BM .

– Small items are packed into a 1
3 -sub-bin of L-bins in a next fit manner, if the

size of small items packed into L-bins is smaller than rL times the total size
of small items packed so far; otherwise we pack the small item into S-bins.

3.1 Competitive Ratio

Using simple bounds for an optimal solution and performing a case analysis,
we can prove the following theorem. Due to space constraints, the proof can be
found in the full version [10].
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Theorem 2. Let r∗
L = min

{
|IL|

6 size(IS) , 1
}
1 and δ = rL − r∗

L. PH3 achieves the
asymptotic competitive ratio

R∞
PH3 ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
2

+ min

{
1

4r∗
L

,
3

6r∗
L + 2

}
(−δ) for δ ≤ 0

3
2

+ min

{
3

4r∗
L

,
9

6r∗
L + 2

}
δ for δ ≥ 0.

3.2 Tightness

Theorem 3. For any rL, r∗
L ∈ [0, 1], the asymptotic competitive ratio given in

Theorem 2 is tight.

Proof sketch: Let 〈a1, a2, . . . ak〉× n with n ∈ N denote n repetitions of the
sequence 〈a1, a2, . . . ak〉. Let I be a sequence consisting of concatenated sub-
sequences IS , IM and IL, where IS is a sequence consisting of two interleaved
sub-sequences ISL and ILL. With N ∈ N and ε = 1/(12N + 2), we define

IL =
(

1
2

+
ε

2

)
× nL with nL = �4r∗

LN�

IM =
(

1
3

+
ε

2

)
× nM with nM =

{
0 for r∗

L ≤ 1/3
�(6r∗

L − 2)N for r∗
L ≥ 1/3

ISS =
(

1
3

− 2ε,
1
6

− ε,
1
6

− ε, 12ε

)
×nSS with nSS = �n′

SS� = �(1 − rL)N�

ISL =
(

1
6

− ε, 3ε

)
× nSL with nSL = �n′

SL� = �4rLN�

The proof is based on a case analysis of which item appears next and in
which bin this item is packed by PH3. Due to space constraints, a full proof can
be found in the full version [10].

4 Parallel PREDICTIVE HARMONIC3

4.1 Competitive Ratio for PH3 as 1-Copy Online Algorithm

To optimize the performance for PH3 as a 1-copy algorithm, we determine the
optimal value for rL with respect to minimizing the asymptotic competitive ratio
over all r∗

L ∈ [0, 1].

1 The intuition of this value is that at least 1/2 of each 1/3-sub-bin must be filled to
guarantee a packing density of 2/3. Therefore, for |IL| bins, we have to fill up a total

capacity of |IL|
6

with small items.
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Lemma 2 (Monotonicity of competitive ratio of PH3). For any fixed
rL ∈ [0, 1], the competitive factor is monotonically decreasing for r∗

L ∈ [0, rL]
and monotonically increasing for r∗

L ∈ [rL, 1].

Proof. Assume rL to be fixed. Let r+,<, r−,< : [0, 1/3] → R and r+,>, r−,> :
[1/3, 1] → R with

r−,<(r∗
L) =

3
2

+
3

6r∗
L + 2

(−δ) = R∞
PH3 for δ ≤ 0, r∗

L ≤ 1
3

r−,>(r∗
L) =

3
2

+
1

4r∗
L

(−δ) = R∞
PH3 for δ ≤ 0, r∗

L ≥ 1
3

r+,<(r∗
L) =

3
2

+
9

6r∗
L + 2

δ = R∞
PH3 for δ ≥ 0, r∗

L ≤ 1
3

r+,>(r∗
L) =

3
2

+
3

4r∗
L

δ = R∞
PH3 for δ ≥ 0, r∗

L ≥ 1
3

Consider the derivative of r−,< and r−,>.

∂

∂r∗
L

r−,<(r∗
L) =

∂

∂r∗
L

(
3
2

+
3

6r∗
L + 2

(−δ)
)

=
∂

∂r∗
L

(
3(r∗

L − rL)
6r∗

L + 2

)

=
18rL + 6

(6r∗
L + 2)2

≥ 0 for 0 ≤ rL ≤ r∗
L ≤ 1

3
∂

∂r∗
L

r−,>(r∗
L) =

∂

∂r∗
L

(
3
2

+
1

4r∗
L

(−δ)
)

=
∂

∂r∗
L

(
r∗
L − rL

4r∗
L

)

=
rL

4(r∗
L)2

≥ 0 for 0 ≤ rL ≤ r∗
L and

1
3

≤ r∗
L ≤ 1

As the derivatives of r−,< and r−,> are both non-negative in their respective
domains, they are both monotonically increasing. Because r−,<( 13 ) = r−,>( 13 ),
we conclude that the competitive ratio is monotonically increasing for r∗

L ∈
[rL, 1].

Now consider the derivative of r+,< and r+,>.
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∂

∂r∗
L

r+,<(r∗
L) =

∂

∂r∗
L

(
3
2

+
9

6r∗
L + 2

δ

)

=
∂

∂r∗
L

(
9(rL − r∗

L)
6r∗

L + 2

)

=
−54rL − 18
(6r∗

L + 2)2
≤ 0 for r∗

L ≤ rL ≤ 1 and 0 ≤ r∗
L ≤ 1

3
∂

∂r∗
L

r+,>(r∗
L) =

∂

∂r∗
L

(
3
2

+
3

4r∗
L

δ

)

=
∂

∂r∗
L

(
3(rL − r∗

L)
4r∗

L

)

=
−3rL

4(r∗
L)2

≤ 0 for
1
3

≤ r∗
L ≤ rL ≤ 1

As the derivatives of r+,< and r+,> are both non-positive in their respective
domains, they are both monotonically decreasing. Because r+,<( 13 ) = r+,>( 13 ),
we conclude that the competitive ratio is monotonically decreasing for r∗

L ∈
[0, rL].

Because of Lemma 2, the competitive ratio does not decrease with r∗
L increas-

ing for δ ≤ 0. Thus, as an upper bound on the competitive ratio for δ ≤ 0, only
the competitive ratio for r∗

L = 1 has to be considered.

R∞
PH3 ≤ 3

2
+

1
4
(−δ) for δ ≤ 0

=
3
2

+
1
4
(1 − rL)

=
7
4

− rL

4

For δ ≥ 0, the competitive ratio does not decrease with r∗
L decreasing. In

this case, the competitive ratio for r∗
L = 0 is an upper bound on the competitive

ratio.

R∞
PH3 ≤ 3

2
+

9
2
δ for δ ≥ 0

=
3
2

+
9
2
(rL − 0)

=
3
2

+
9
2
rL

At the same time, these values are lower bounds on the overall competitive
ratio. Given these bounds, this linear program can be formulated to minimize
the competitive ratio:
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Minimize R∞
PH3

Subject to R∞
PH3 ≥ 7

4
− rL

4

R∞
PH3 ≥ 3

2
+

9
2
rL

rL ≥ 0
rL ≤ 1

The optimal solution for this linear program is rL = 1/19 and R∞
PH3 =

33/19 < 1.7369. Figure 1 shows the asymptotic competitive ratio of PH3 over r∗
L

for rL = 1/19.
Compared to other known algorithms for online bin packing, PH3 is not

a good choice for worst-case behavior. Among the classical algorithms, only
NF and WF, both of which are 2-competitive, are worse than PH3. Any AAF
algorithm achieves an asymptotic competitive ratio R∞

AAF = 1.7 [9] and thus
performs slightly better than PH3. The best-performing online algorithm for
bin packing currently known, Son Of Harmonic, is 1.5816-competitive and
thus clearly superior to PH3 [12].

However, if we know in advance that r∗
L is restricted to some interval Ir =

[a, b] ⊂ [0, 1], the above argument can be used to prove a better competitive
ratio.

4.2 Competitive Ratio for PH3 as k-Copy Online Algorithm

PH3’s property of achieving a better competitive ratio for r∗
L being further

restricted can be used to create a set of k ∈ N algorithms achieving a better
competitive ratio. For this purpose, the interval [0, 1] is split into k sub-intervals
I1, . . . , Ik ⊂ [0, 1] with ∪i∈{1,...,k}Ii = [0, 1]. Each interval Ii is covered by one
instance of the algorithm PH3 Ai, such that Ai achieves a targeted competitive
ratio R ∈ (3/2, 33/19) for r∗

L ∈ Ii.
R is restricted to (3/2, 33/19), because any competitive ratio above or equal

to 33/19 can be achieved with the instance of PH3 shown above, and k-copy PH3
cannot achieve a competitive ratio of 3/2 or less with finitely many algorithms.

To calculate the number k of algorithms needed to achieve a given competitive
ratio R, the following iterative approach can be used.

Let A be a set of algorithms. Initially, A := ∅. We initialize our iterative
approach with i = 0 and set r0max = 0. Then, while ri

max < 1, we increase i by
one and we compute three values ri

min, ri
L and ri

max. With these three values
we can define algorithm Ai for which ri

L denotes the value of rL, ri
min denotes

the minimal and ri
max denotes the maximal value for r∗

L for which Ai is still R-
competitive. By Lemma 2, Ai will be R-competitive for the interval [ri

min, ri
max].

All three values are computed as follows. We set ri
min = ri−1

max. Given ri
min, ri

L

can be computed:
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Fig. 1. Competitive ratio of the optimal 1-copy PH3 algorithm dependent on r∗
L for a

fixed rL.

If ri
min ≤ 1/3, we have R = 3

2 + 9
2+6ri

min
(ri

L − ri
min). Solving this equa-

tion for ri
L we get ri

L = ri
min +

(
R − 3

2

) (
2+6ri

min

9

)
. If ri

min ≥ 1/3, we have

R = 3
2 + 3

4ri
min

(ri
L − ri

min). Solving this equation for ri
L yields ri

L = ri
min +(

R − 3
2

) (
4ri

min

3

)
.

Having ri
L, we can compute ri

max. Because the competitive ratio is the min-
imum of two values, we get two candidates ri

max,1 and ri
max,2 for ri

max. We can
take the maximum of those two candidates, i.e., ri

max = max(ri
max,1, r

i
max,2),

because it is sufficient to be R-competitive in one case. In the first case
( 3
6r∗

L+2 < 1
4r∗

L
) we obtain ri

max,1 = 3ri
L−3+2R
12−6R and in the second case we get

ri
max,2 = ri

L

7−4R .
Now consider the case when ri

max ≥ 1. Because each algorithm A� with 1 ≤
� ≤ i is R-competitive for the interval [r�

min, r�
max] = [r�−1

max, r�
max] with r0min = 0,

there is an algorithm Am for any r∗
L ∈ [0, 1] that is R-competitive. Therefore, we

have a i-copy online algorithm for bin packing achieving the competitive factor
R.

Following this method, we see that k = 6 algorithms are sufficient to guaran-
tee a competitive ratio R = 1.5815. This beats the currently best 1-copy online
algorithm Son Of Harmonic with a competitive ratio of 1.5816. Figure 2 shows
the competitive ratio achieved by the individual algorithms over r∗

L ∈ [0, 1] for
R = 1.5815. Note that 1.5815 is not the best competitive ratio achievable by
6-copy PH3, as shown below in Fig. 3. Using k = 12 algorithms, a competitive
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Fig. 2. 6-copy PH3 beats the best 1-copy online algorithm known to date, achieving
an asymptotic competitive ratio R∞

PH3 < 1.5815.

ratio R = 1.5402 < 1.5403 can be achieved, beating the highest known lower
bound for 1-copy online algorithms.

To compute the best competitive ratio achievable by k ∈ N algorithms, we use
binary search on R starting in the interval [3/2, 33/19] and test in each iteration
if we can guarantee R-competitiveness with at most k algorithms. Figure 3 shows
the best competitive ratios achievable by k-copy PH3.
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Fig. 3. k-copy PH3 performance dependent on k.

4.3 Comparison to Related Algorithms

Because k-copy online algorithms can be translated to an online algorithm with
advice and vice versa (see Lemma 1), it seems natural to compare these two
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variants, even though k-copy allows a more precise analysis on the competitive
ratio. In this subsection we compare our algorithm to the best known online
algorithm with constant advice, namely RedBlue introduced by Angelopoulos
et al. [2]. Their second algorithm is 1.47012-competitive (and thus beats our
algorithm), but the amount of advice needed by this algorithm is too large. As
the focus of k-copy algorithms is to provide good solutions for small k, it is
reasonable to only compare k-copy PH3 to RedBlue.

Table 1 shows a comparison between RedBlue and k-copy PH3 for small
amounts of advice. The competitive ratios given are rounded up to the fourth
decimal place. The competitive ratios for RedBlue are computed using the
upper bound on the competitive ratio 1.5 + 15/(2�/2+1). The competitive ratios
for k-copy PH3 are calculated using binary search as described above.

Table 1. Comparison of the performance of k-copy PH3 and RedBlue.

Advice in bits k R∞
RedBlue R∞

PH3

4 16 3.3750 1.5305

5 32 2.8258 1.5155

6 64 2.4375 1.5078

7 128 2.1629 1.5040

8 256 1.9688 1.5020

9 512 1.8315 1.5010

10 1024 1.7344 1.5005

11 2048 1.6657 1.5003

12 4096 1.6172 1.5002

13 8192 1.5829 1.5001

14 16384 1.5586 1.5001

15 32768 1.5414 1.5001

16 65536 1.5293 1.5001

Table 1 clearly shows the advantage of k-copy PH3 over RedBlue for few bits
of advice. With as few as 5 bits of advice, or k = 32, k-copy PH3 achieves a better
competitive ratio than RedBlue with 16 bits of advice, which corresponds to
k = 65536 algorithms when used as k-copy algorithm.

Although RedBlue and k-copy PH3 work in a similar way, k-copy PH3
achieves a better competitive ratio due to the more precise analysis of the inter-
vals for r∗

L, in which each algorithm achieves the competitive ratio. By avoiding
overlaps in these intervals, fewer algorithms are needed.

On the other hand, RedBlue simply splits an interval for its parameter β
evenly into 2�/2 intervals; translated into a k-copy setting, this leads to overlaps
in the intervals covered by each algorithm.
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5 Conclusion

We studied the concept of parallel online algorithms for the Bin Packing Prob-
lem. We developed a k-copy online algorithm named PH3 and showed that PH3
has an asymptotic competitive ratio of 1.5 for large k; in particular, k = 11
suffices to break through the lower bound of a single online algorithm. We also
considered the relationship to online algorithms with advice and achieved a con-
siderable improvement compared to a previous algorithm.

There are various directions for future work. We saw that PH3 is (1.5 + ε)-
competitive if |IL|

6 size(IS) ≤ 1, i.e., when there is a surplus of small items. If there
are too few small items, PH3 is asymptotically (1.5 + ε)-competitive. Can we
make better use of the second case for an improvement? Can we guarantee an
absolute competitive ratio of 1.5(+ε)?

How does the asymptotic competitive ratio of PH3 depend on k? It seems to
be something like 3

2 +O
(

1
k+log2(k+1)

)
. Translated to an online algorithm with �

bits of advice, this would yield an asymptotic competitive ratio of 3
2 +O

(
1

2�+�

)
.

We also believe that the concept of k-copy algorithms is useful for a wide
range of other problems.
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Abstract. We extend the Mobile Server Problem introduced in [8] to
a model where k identical mobile resources, here named servers, answer
requests appearing at points in the Euclidean space. In order to reduce
communication costs, the positions of the servers can be adapted by a
limited distance ms per round for each server. The costs are measured
similar to the classical Page Migration Problem, i.e., answering a request
induces costs proportional to the distance to the nearest server, and
moving a server induces costs proportional to the distance multiplied
with a weight D.

We show that, in our model, no online algorithm can have a constant
competitive ratio, i.e., one which is independent of the input length n,
even if an augmented moving distance of (1 + δ)ms is allowed for the
online algorithm. Therefore we investigate a restriction of the power of
the adversary dictating the sequence of requests: We demand locality of
requests, i.e., that consecutive requests come from points in the Euclidean
space with distance bounded by some constant mc. We show constant
lower bounds on the competitiveness in this setting (independent of n,
but dependent on k, ms and mc).

On the positive side, we present a deterministic online algorithm with
bounded competitiveness when augmented moving distance and locality
of requests is assumed. Our algorithm simulates any given algorithm for
the classical k-Page Migration problem as guidance for its servers and
extends it by a greedy move of one server in every round. The resulting
competitive ratio is polynomial in the number of servers k, the ratio
between mc and ms, the inverse of the augmentation factor 1/δ and the
competitive ratio of the simulated k-Page Migration algorithm.
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1 Introduction

We consider a scenario where several devices continuously access a common set
of k identical resources. The devices pose requests for a resource which must be
answered by communicating with the resources, incurring cost for communica-
tion. The placement of resources is managed by an algorithm whose goal it is
to reduce the costs for communication and for moving the resources as much as
possible. Typically requests do not concern the complete resource (which may
be rather large) and it is cheaper to answer a request for a resource by commu-
nicating with the resource instead of moving it. We assume requests appear in
an online fashion, i.e., it is unknown to the algorithm where the next requests
will arrive while newly arriving requests must be answered instantly to provide
latency guarantees.

The scenario described above can be modeled based on the classical Page
Migration problem [5]: A single resource can be moved between two points a
and b for costs D · d(a, b), where d(a, b) is the distance between a and b and
D ≥ 1 is a constant. In every round a request appears at some point r, and
if the current position of the resource is p, it is served for costs d(p, r). This
problem was extended to the Mobile Server Problem [8], which puts a limit on
how much the resource (called server) can move in each time step and therefore
introduces the idea that the positions of resources can not be arbitrarily changed
in each time step.

In our work, we extend this idea to multiple resources: We consider k identical
servers located in the Euclidean space (of arbitrary dimension). Each of them
may move a distance of at most ms per time step. In each time step, a request
appears which has to be served by one of the servers by the end of the time step.
The cost function is the same as in the Page Migration Problem.

1.1 Related Work

Besides being a direct extension of the Mobile Server Problem [8], our work
builds on and is related to results surrounding the k-Server and Page Migration
problems. These problems have been examined in many variants and especially
for the k-Server Problem there are many algorithms for special metrics. In this
overview we only focus on most relevant results for our problem, which are mostly
algorithms with an (asymptotically) optimal competitive ratio.

In the classical k-Server Problem as introduced by Manasse et al. [13], k
identical servers are located in a metric space and requests are answered by
moving at least one of the servers to the point of the request. The associated
costs are equal to the total distance moved. Manasse et al. showed that no online
algorithm could be better than k-competitive on every metric with at least k+1
points. They stated as the k-Server Conjecture that there is a k-competitive
online algorithm for every metric space. Further, the conjecture is shown to hold
for k = 2 and k = n − 1 where n is the number of points in the metric space.

Since its introduction, many algorithms have been designed for special cases
of the problem. Most notable is the Double-Coverage Algorithm [7], which is
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k-competitive on trees. For general metrics, the best known result is the Work-
Function Algorithm, which is shown to be 2k − 1-competitive [11]. Although
this algorithm seems generally inefficient in case of runtime and memory, there
have been studies showing that an efficient implementation of this algorithm is
indeed possible [14,15]. It was also shown that the algorithm has an optimal
competitive ratio of k on line and star metrics, as well as metrics with k + 2
points [3].

The study of randomized online algorithms was initiated by Fiat et al. [10]
who gave a log(k)-competitive algorithm for the complete graph. It is specu-
lated that this factor can be obtained for all metrics, however the question is
still open. For general metrics, the first algorithm with polylogarithmic competi-
tive ratio was an O(log3 n·log2 k)-competitive algorithm by Bansal et al. [1]. This
was recently improved by Bubeck et al. [6] who gave an O(log2 k)-competitive
algorithm for HSTs which can be turned into an O(log9(k) · log log(k))-
competitive one for general metrics by a dynamic embedding of general metrics
into HSTs [12].

Regarding the Page Migration Problem [5] (also known as File Migration
Problem), most results focus on online algorithms which handle only a single
page. Contrary to the k-Server Problem, the design of such algorithms is not
trivial for the Page Migration Problem. To the best of our knowledge, the cur-
rent best results are a 4-competitive deterministic algorithm by Bienkowski et
al. [4] and a collection of randomized algorithms with competitive ratio of at
most 3 by Westbrook [16]. The most relevant results for our problem are two
constructions by Bartal et al. [2] who give both a deterministic and a random-
ized algorithm which transform a given algorithm for the k-Server problem into
a deterministic/randomized algorithm for the k-Page Migration Problem. If the
given k-Server algorithm is c-competitive, the deterministic algorithm is O(c2)-
competitive, the randomized algorithm is O(c)-competitive. Conversely, we use
the resulting algorithms as a black box in our constructions.

1.2 Our Results and Outline of the Paper

In [8] it was already shown that no online algorithm for our problem can be
competitive even on the real line and with just k = 1 server. As a consequence,
we employ the following methods to derive reasonable results for the problem:
On the one hand we restrict the adversary to the case with locality of requests,
i.e., we introduce a parameter mc by which we can define families of instances
classified by the maximum distance between two consecutive requests. On the
other hand we apply resource augmentation as in [8], i.e., we allow the online
algorithm to use a maximum movement distance of (1 + δ)ms. We show that,
for k ≥ 2, both methods are needed to yield competitive bounds independent
of the length of the instance. For k = 1, it was shown in [9] that a locality
of requests can improve the competitiveness, but is not necessary to achieve a
constant upper bound.

The parameters mc and ms have a crucial impact on the resulting competi-
tiveness and thus separate simple from hard instances. We are able to show that
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these parameters seem to naturally describe the problem, since we can prove a
lower bound of Ω(mc

ms
). For fast moving resources (mc < (1 + δ)ms), our algo-

rithm has an almost optimal competitive ratio when given an optimal k-Page
Migration algorithm. For the case of slow moving resources (mc ≥ (1 + δ)ms),
we can achieve bounds independent of the length of the input stream. In detail,
we obtain a bound of O( 1

δ4 · k2 · mc

ms
+ 1

δ3 · k2 · mc

ms
· c(K)), where c(K) is the com-

petitiveness of a given k-Page Migration algorithm. For the case D = 1, which
we call the unweighted problem, the k-Page Migration algorithm can be replaced
by a k-Server algorithm. Note that the parameter ε in Table 1 is indirectly given
as the relative difference between mc and ms. If mc < ms, then in the first row
we have ε > δ. Alternatively, if δ = 0, this case still yields an almost optimal
upper bound up to a factor of 1/ε.

Table 1. An overview of the results, using the best known deterministic algorithms
for k-Server/k-Page Migration. The results in the first row also hold without resource
augmentation when mc ≤ (1 − ε)ms.

Lower bound Unweighted (D = 1), Weighted (D > 1) Case

mc ≤ (1 + δ − ε)ms Ω(k) O(1/ε · k), O(1/ε · k2)

mc ≥ (1 + δ)ms Ω(k + mc
ms

) O(1/δ4 · k3 · mc
ms

), O(1/δ4 · k4 · mc
ms

)

The paper is structured as follows: A formal definition of our model can be
found in Sect. 2. All relevant lower bounds are established in Sect. 3. In terms of
upper bounds, we first give an algorithm for the unweighted problem in Sect. 4.
The analysis for instances with mc < (1 + δ)ms consists of a simple potential
function argument found in Sect. 4.1. The analysis of the other case is much
more challenging and is conducted in Sect. 4.2. The weighted case (D > 1) is
discussed in Sect. 5. While the basic approach stays the same, we need to modify
the movement of the online algorithm due to the higher movement costs. We
show how the algorithm can be adapted and present the resulting competitive
ratio following a similar structure as in the unweighted case.

2 Model and Notation

In this section we formally describe the model and some common notation used
throughout the paper.

Time is considered discrete and divided into time steps 1, . . . , n. An input to
the k-Mobile Server Problem is given by a sequence of requests r1, . . . , rn where
each rt occurs in time step t and is represented by a point in the Euclidean
space of arbitrary dimension. We are given k servers a1, . . . , ak controlled by our
online algorithm. At each point in time, one server occupies exactly one point in
the Euclidean space. We denote by a

(t)
i the position of server ai at end of time

step t, and by d(a, b) the Euclidean distance between two points a and b. For
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the distance between two servers a
(t)
i and a

(t)
j in the same time step t, we also

use the notation dt(ai, aj). We may also leave out the time t entirely if it is clear
from the context.

In each time step t, the current request rt is revealed to the online algorithm.
The algorithm may then move each server, such that d(a(t−1)

i , a
(t)
i ) ≤ ms for all

servers ai. The movement incurs cost of D · ∑k
i=1 d(a(t−1)

i , a
(t)
i ) for a constant

D ≥ 1. The request rt is then served by the closest server a
(t)
i , which incurs

cost of d(a(t)
i , rt). Note that the variables indexed with the time t represent the

configuration at the end of the time step t.
In our model, we consider the locality of requests dictated by a parameter

mc limiting the distance between consecutive requests, i.e., d(rt, rt+1) ≤ mc. We
also consider a resource augmentation setting, where the maximum distance an
online algorithm may move is in fact (1 + δ)ms for some δ ∈ (0, 1). The cost
of our online algorithm is denoted by CAlg. We compare the costs of an online
algorithm to an offline optimum, whose servers are denoted by o1, . . . , ok and
whose cost is COpt.

3 Lower Bounds

In this section, we will prove lower bounds for the competitive ratio of our
problem. They show the importance both of the resource augmentation and the
locality of requests introduced above. All our lower bounds already hold on the
line (and therefore in arbitrary dimensions, too). Since our model is an exten-
sion of the k-Page Migration Problem, Ω(k) is a lower bound for deterministic
algorithms inherited from that problem (which itself inherits the bound from
the k-Server Problem, see [2,13]). Even when mc is restricted, the lower bound
instance can simply be scaled down such that the distance limits are not relevant
for the instance.

We start by discussing the model without any restriction on the distance
between the requests in two consecutive time steps, i.e., the parameter mc is
unbounded. We also consider the case, that there is no resource augmentation,
i.e., the maximum movement distance of the online algorithm and of the offline
solution are the same. The following lower bound, originally formulated for k = 1,
carries over from [8]:

Theorem 1. Every randomized online algorithm for the Mobile Server Problem
(with k = 1) has a competitive ratio of Ω(

√
n

D ) against an oblivious adversary,
where n is the length of the input sequence.

For more than one server, we obtain an additional bound which can not be
resolved with the help of resource augmentation. The proofs of the following
theorems can be found in the full version of the paper.

Theorem 2. For k ≥ 2, every randomized online algorithm for the k-Mobile
Server Problem has a competitive ratio of at least Ω( n

Dk2 ), where n is the length
of the input sequence.
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Since we often consider input sequences for problems such as ours to be
potentially infinite, we deem competitive ratios dependent on the input length
undesirable. Hence, as a consequence of the bounds shown so far, we apply two
modifications to our model which help us to achieve a competitive ratio inde-
pendent of the length of the input sequence. We use the concept of resource
augmentation just as in [8] to allow the online algorithm to utilize a maximum
movement distance of (1 + δ)ms for some δ ∈ (0, 1) as opposed to the distance
ms used by the optimal offline solution. This measure alone does not address
the bound from Theorem2 (the ratio shrinks, but still depends on n). Hence,
we introduce the locality of requests, i.e., restrict the distance between two con-
secutive requests to a maximum distance of mc. Note, that only restricting the
distance between consecutive requests does also not remove the dependence on
n, as was shown in [9]. The following theorem can be obtained in a similar way
as Theorem 2:

Theorem 3. For k ≥ 2, every randomized online algorithm for the k-Mobile
Server Problem, where the distance between consecutive requests is bounded by
mc, has a competitive ratio of at least Ω(mc

ms
).

4 An Algorithm for the Unweighted Problem

In this section we consider the unweighted problem (D = 1). Our algorithm
does the following: We mainly follow around a simulated k-Server algorithm,
but always move the closest server greedily towards the request.

We use the following notation in this section: Denote by a1, . . . , ak the servers
of the online algorithm, c1, . . . , ck the servers of the simulated k-server algorithm
and o1, . . . , ok the servers of the optimal solution. For an offline server oi, we
denote by oa

i the closest server of the online algorithm to oi (this might be the
same server for multiple offline servers). Furthermore, we denote by a∗, c∗ and
o∗ the closest server to the request of the algorithm, the k-server algorithm, and
the optimal solution respectively. For a fixed time step t, we add a “′” to any
variable to denote the state at the end of the current time step, e.g., a1 = at−1

1

is the position of the server at the beginning of the time step and a′
1 = at

1 is the
position at the end of the current step.

Our algorithm Unweighted-Mobile Servers (UMS) works as follows:
Take any k-Server algorithm K with bounded competitiveness in the Euclidean
space. Upon receiving the next request r′, simulate the next step of K. Calculate
a minimum weight matching (with the distances as weights) between the servers
a1, . . . , ak of the online algorithm and the servers c′

1, . . . , c
′
k of K. There must be

a server ci for which c′
i = r′. If the server matched to c′

i can reach r′ in this turn,
move all servers towards their counterparts in the matching with the maximum
possible speed of (1 + δ)ms. Otherwise, select the server ã which is closest to r′

and move it to r′ with speed at most (1 + δ
2 )ms. All other servers move towards

their counterparts in the matching with speed (1 + δ)ms.
We briefly want to discuss the fact that both steps of our algorithm are

necessary for a bounded competitiveness. For the classical k-Server Problem, a
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simple greedy algorithm, which always moves the closest server onto the request
has an unbounded competitive ratio. We can show, that a simple algorithm
which just tries to imitate any k-Server algorithm as best as possible is also not
successful. Intuitively, the simulated algorithm can move many servers towards
the request within one time step and serve the following sequence with them,
while the online algorithm needs multiple time steps to get the corresponding
servers in position due to the speed limitation.

Simple algorithm: Let K be any given k-Server algorithm. The k-Mobile
Server algorithm does the following: Simulate K. Compute a minimum weight
matching (with the distances as weights) between the own servers and the servers
of K. Move every server towards the matched server at maximum speed.

Theorem 4. For k ≥ 2, there are competitive k-Server algorithms such that the
simple algorithm for the k-Mobile Server Problem does not achieve a competitive
ratio independent of n.

The remainder of this section is devoted to the analysis of the competitive
ratio of the UMS algorithm. In Sect. 4.1, we first consider the case that the
distance between consecutive requests mc is smaller than the movement speed
of the algorithm’s servers. This case is easier than the case of slower servers since
we can always guarantee that the online algorithm has one server on the position
of the request. In the other case (mc ≥ (1+δ)ms), described in Sect. 4.2, we need
to extend our analysis to incorporate situations in which our online algorithm
has no server near the request although the optimal offline solution might have
such a server. Details left out due to space constraints can be found in the full
version of the paper.

4.1 Fast Resource Movement

We first deal with the case that mc ≤ (1−ε)·ms for some ε ∈ (0, 1). We show that
we can achieve a result independent of the input length, even without resource
augmentation. At the end of this section, we briefly discuss how to extend the
result to incorporate resource augmentation, i.e., if the online algorithm has
a maximum movement distance of (1 + δ)ms, we handle all cases with mc ≤
(1 + δ − ε) · ms.

Theorem 5. If mc ≤ (1 − ε) · ms for some ε ∈ (0, 1), the algorithm UMS is
2/ε·c(K)-competitive, where c(K) is the competitive ratio of the simulated k-server
algorithm K.

Proof. We assume the servers adapt their ordering a1, . . . , ak according to the
minimum matching in each time step. Based on the matching, we define the
potential ψ := 2

ε · ∑k
i=1 d(ai, ci). Note that the algorithm reaches the point of

r in each time step, and hence only pays for the movement of its servers, i.e.,
CAlg =

∑k
i=1 d(ai, a

′
i). We assume, that c1 is on the request after the current

time step, i.e., c′
1 = r′.
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First, consider the case that a1 can reach r′ in this time step. Since each
server moves directly towards their counterpart in the matching, we have
Δψ = 2

ε · ∑k
i=1 d(a′

i, c
′
i) − 2

ε · ∑k
i=1 d(ai, ci)

≤ 2
ε · ∑k

i=1 d(ci, c
′
i) − 2

ε · ∑k
i=1 d(ai, a

′
i)

= 2
ε · CK − 2

ε · CAlg.

Now assume that a1 cannot reach r′ in this time step. The server moves
at full speed and hence d(a′

1, c
′
1) − d(a1, c

′
1) = −ms. Now, let a2 be the

server which is at range at most mc to r′ and does the greedy move possi-
bly away from c′

2 onto r′. It holds d(a′
2, c

′
2) − d(a2, c

′
2) ≤ mc. In total, we get

Δψ ≤ 2
ε (

∑k
i=1 d(a′

i, c
′
i) − ∑k

i=1 d(ai, c
′
i)) + 2

ε

∑k
i=1 d(ci, c

′
i)

≤ 2
ε (d(a′

1, c
′
1) − d(a1, c

′
1) + d(a′

2, c
′
2) − d(a2, c

′
2))

− 2
ε

∑k
i=3 d(ai, a

′
i) + 2

ε

∑k
i=1 d(ci, c

′
i)

≤ −2ms − 2
ε

∑k
i=3 d(ai, a

′
i) + 2

ε · CK

≤ −∑k
i=1 d(ai, a

′
i) + 2

ε · CK.

We can extend this bound to the resource augmentation scenario, where the
online algorithm may move the servers a maximum distance of (1+δ) ·ms. When
relaxing the condition appropriately to mc ≤ (1+δ−ε) ·ms, we get the following
result:

Corollary 1. If mc ≤ (1 + δ − ε) · ms for some ε ∈ (0, 1), the algorithm UMS
is 2·(1+δ)

ε · c(K)-competitive, where c(K) is the competitive ratio of the simulated
k-server algorithm K.

The proof works the same as above by replacing occurrences of ms by (1 +
δ)ms and changing the potential to 2·(1+δ)

ε

∑k
i=1 d(ai, ci).

At first glance, the result seems to become weaker with increasing δ if ε stays
the same. The reason is that by fixing ε the relative difference ((1+δ)ms−mc)/ms

between mc and (1 + δ)ms actually decreases, i.e., relatively speaking, mc gets
closer to (1 + δ)ms. It can be seen that if instead we fix the value of mc and
increase δ, the value of ε increases by the same amount and hence the competitive
ratio tends towards 2 · c(K).

4.2 Slow Resource Movement

This section considers the case mc ≥ (1 + δ)ms and is structured as follows: To
support our potential argument, we first introduce a transformation of the sim-
ulated k-Server algorithm which ensures that the simulated servers are always
located near the request. We then introduce an abstraction of the offline solution,
reducing it to the positioning of a single server ô which acts as a reference point
for a new potential function. The server ô approximates the optimal positioning
of the servers while at the same time obeys certain movement restrictions nec-
essary in our analysis. Finally, we complete the analysis by combining the new
derived potential function with the methods from the previous section.
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The k-Server Projection. Our goal is to transform a k-Server algorithm K into
a k-Server algorithm K̂ which serves the requests of a k-Mobile Server instance
such that all servers keep relatively close to the current request r. For the case
mc ≥ (1 + δ)ms, we want our algorithm to use this projection as a simulated
algorithm as opposed to a regular k-Server algorithm, hence we must ensure that
this projection is computable online with the information available to our online
algorithm. The servers of K are denoted as c1, . . . , ck and the servers of K̂ as
ĉ1, . . . , ĉk.

We define two circles around r: The inner circle inner(r) has a radius of
4k · mc and the outer circle outer(r) has a radius of (8k + 1) · mc. We will
maintain ĉi ∈ outer(r) for the entirety of the execution. The time is divided into
phases, where the phase starting at time t with the request at point rt ends on the
smallest t′ > t such that d(rt, r

′
t) ≥ 4k ·mc. During a phase the simulated servers

move to preserve the following: If ci ∈ inner(r), then ĉi = ci. At the end of the
phase, in addition to the previous condition, it should hold: If ci /∈ inner(r),
then ĉi is on the boundary of inner(r) such that d(ci, ĉi) is minimized. It is
obvious that the definition of the algorithm guarantees ĉi ∈ outer(r) for all i at
each point in time.

Proposition 1. For the servers ĉ1, . . . , ĉk of K̂ it holds d(ĉi, r) ≤ (8k + 1) · mc

during the whole execution.
The costs of K̂ are at most O(k) times the costs of K.

The Offline Helper. We define a new offline server ô, which approximates the
optimal position o∗ while managing the role change of o∗ in a smooth manner.
By â, we denote the server of the online algorithm with minimal distance to ô.
For a formal description of the behavior, we need the following definitions:

– The inner circle innert(oi) contains all points p with
dt(oi, p) ≤ δ2

48960k · dt(oi, o
a
i ).

– The outer circle outert(oi) contains all points p with
dt(oi, p) ≤ δ

48 · dt(oi, o
a
i ).

Abusing notation, we also refer to innert(oi) and outert(oi) as distances equal
to the radius defined above. This section is devoted to proving the following:

Proposition 2. There exists a virtual server ô which moves at a speed of at most
(2+ 1020k

δ )·mc per time step, for which d(â, ô) ≤ 2·d(o∗, o∗a)+d(a∗, r) at all times,
and for which the following conditions hold as long as dt(o∗, o∗a) ≥ 2 ·51483kmc

δ2 :

1. If r ∈ inner(o∗) at the end of the current time step, ô moves at a maximum
speed of (1 + δ

8 )ms, i.e., rt ∈ innert(o∗) ⇒ d(ô(t−1), ô(t)) ≤ (1 + δ
8 )ms.

2. If r ∈ inner(o∗) at the end of the current time step, then ô ∈ outer(o∗) at the
end of the current time step, i.e., rt ∈ innert(o∗) ⇒ ô(t) ∈ outert(o∗).

In the following, we show that it is possible to define a movement pattern
for ô in a way, such that invariants 1 and 2 of Proposition 2 hold as long as
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d(o∗, o∗a) ≥ 51483kmc

δ2 . Otherwise, ô will simply follow r and restore the proper-
ties once d(o∗, o∗a) ≥ 2 · 51483kmc

δ2 . In order to describe the movement in detail,
we introduce the concept of transitions.

In the input sequence and a given optimal solution, we define a transition
between two steps t1 < t2, if there are oi, oj such that oi = o∗ and r ∈ innert1(oi)
at time step t1 and oj = o∗ and r ∈ innert2(oj) at time step t2. In between these
two time steps, r /∈ inner(o∗). For such a transition, we define the transition
time as t∗ := t2 − t1. If t∗ > innert1(o

∗)/mc + 2, we call this a long transition.
Otherwise, we call it a short transition. We say that oi passes the request after
t1 and oj receives the request in t2. The concept is illustrated in Fig. 1.

Fig. 1. Example for a transition from oi to oj . By definition, r crosses the border
of inner(oi) after time step t1 (oi passes r after t1). The transition stops at step t2
when r has entered innert2(oj) (oj receives r in t2). Note that oj ’s position and the
radius of its inner circle may change from t1 to t2. The distance moved by r is at most
(t2 − t1) ·mc. The dotted line represents the estimation of dt1(oi, oj) used in Lemma 2.

The behavior of ô can be computed as follows:

1. During a long transition between time steps t1 and t2, move with speed
d(ô(t−1), ô(t)) ≤ (2 + 1020k

δ ) · mc towards rt whenever rt /∈ innert(o∗). In
the last two steps t2 − 1 and t2, move such that ô(t2−1) = rt2 at time t2 − 1
and do not move in t2 at all. Informally, ô moves one step ahead of r such
that ô = r after the transition, as soon as r ∈ inner(o∗).

2. For a sequence of short transitions starting with o∗ = oi in t1, determine
which of the following events terminating the current sequence occurs first:



130 B. Feldkord et al.

(a) A long transition from a server o� to oj between time t2 and t3 occurs. In
this case, ô simply moves towards o

(t)
� in each step t with speed at most

(1 + δ
8 )ms until t2.

(b) A short transition from a server o� to oj between time t2 and t3 occurs,
where at one point prior in the sequence d(oj , o

∗) > outer(o∗)/3. If ô can
move straight towards the final position of oj in t3 with speed (1 + δ

8 )ms

without ever leaving outer(o∗), then do that. Otherwise move towards a
point p with d(p, o�) = 2δ

145 ·d(o�, o
a
� ). Among those candidates, p minimizes

d(p, o
(t3)
� ). When this point is reached, keep the invariant d(ô, o�) = 2δ

145 ·
d(o�, o

a
� ) whenever the final position of oj is not within 2δ

145 · d(o�, o
a
� )

around o�. The position of ô on the circle around o� should be the one
closest to oj ’s final position. When o

(t3)
j is inside the circle, the position

of ô should be equal to o
(t3)
j .

3. If dt1(o
∗, o∗a) < 51483kmc

δ2 , treat the time until dt2(o
∗, o∗a) ≥ 2 · 51483kmc

δ2

as a long transition between t1 and t2, i.e., move towards r with speed (2 +
1020k

δ ) · mc and skip one step ahead of r during the last 2 time steps. (Steps
1 and 2 are not executed during this time.)

Note that the server ô is a purely analytical tool and hence the behavior as
described above does not have to be computable online.

Our goal is to show that all invariants described in Proposition 2 hold induc-
tively over all transitions. We divide the entire timeline into sequences, where
each sequence starts with both r and ô being in inner(o∗). A sequence ends
when one of the events stated in step 2 of the algorithm completes. The follow-
ing lemma states that the initial condition is restored after every long transition.

Lemma 1. If ô ∈ outert1(o
∗) at the beginning of a long transition between t1

and t2, then ô ∈ innert2(o
∗) at the end of the transition.

Our next goal is to analyze a sequence of short transitions. During these
transitions, r moves faster than ô and hence the distance of ô to o∗ increases
due to the role change after a transition. The next lemma establishes an upper
bound on that increase. Since we use the lemma in another context as well, the
formulation is slightly more general.

Lemma 2. Every short transition between oi in step t1 and oj in step t2 can
increase the distance of some server s, which moves at speed at most (1 + δ)ms,
to o∗ by at most
min{6.001 · δ2

48960k ·dt1(o
∗, o∗a)+8.001mc , 6.002 · δ2

48960k ·dt2(o
∗, o∗a)+8.002mc}.

Likewise, s decreases its distance to o∗ by at most
min{6.001 · δ2

48960k ·dt1(o
∗, o∗a)+8.001mc , 6.002 · δ2

48960k ·dt2(o
∗, o∗a)+8.002mc}.

We want to show, that ô ∈ inner(o∗) holds after a sequence of short transi-
tions is terminated by one of the conditions described in step 2 of the algorithm.
During the sequence, we must also show that ô ∈ outer(o∗). The main idea for
the following lemma is that o� never leaves outer(o∗)/3 per definition and hence
following it keeps ô inside outer(o∗).
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Lemma 3. Consider a sequence of short transitions which is terminated by a
long transition. If ô ∈ inner(o∗) at the beginning of the sequence, then ô ∈
inner(o∗) after the long transition. During the sequence of short transitions,
ô ∈ outer(o∗).

We show with the help of Lemma 2 that during the sequence of transitions,
ô does not loose too much distance to o∗, while oj , since at one point d(oj , o

∗) >
outer(o∗)/3, takes enough time to get into position for a short transition such
that ô can reach the final position of oj in time.

Lemma 4. Consider a sequence of short transitions which is terminated by a
short transition from o� to oj, where at one point prior in the sequence d(oj , o

∗) >
outer(o∗)/3. If ô ∈ inner(o∗) at the beginning of the sequence and d(o∗, o∗a) ≥
51483kmc

δ2 at all times, then ô ∈ inner(o∗) after the transition to oj. During the
sequence, ô ∈ outer(o∗).

Our analysis of the movement pattern of ô leads directly to the following
lemma, in which we mostly need to argue that either ô ∈ outer(o∗) or ô = r.

Lemma 5. During the execution of the algorithm, d(â, ô) ≤ 2 · d(o∗, o∗a) +
d(a∗, r) as long as the algorithm is in step 1 or 2.

So far we have shown that all claims of Proposition 2 hold as long as the
algorithm is not in step 3. It remains to analyze step 3 of the algorithm, using
similar arguments as for analyzing the long transitions earlier.

Lemma 6. After the execution of step 3 it holds ô = r. Furthermore, d(â, ô) ≤
2 · d(o∗, o∗a) + d(a∗, r) during step 3 of the algorithm.

Algorithm Analysis. We now turn our attention back to the analysis of the
UMS algorithm. In the following, we assume K to be a k-Server algorithm
obtained from Proposition 1. We use a potential composed of two major parts
which balance the main ideas of our algorithm against each other: φ will measure
the costs of the greedy strategy, while ψ will cover the matching to the simulated
k-Server algorithm.

Let ô be an offline server which fulfills the invariants stated in Proposition 2.
Recall that â denotes the currently closest server of the online algorithm to ô.
The first part of the potential is then defined as

φ :=
{

4 · d(â, ô) if d(â, ô) ≤ 107548 · kmc

δ2

4 · 1
δms

d(â, ô)2 − A if 107548 · kmc

δ2 < d(â, ô)

with A := 4 · ( 1
δms

(107548kmc

δ2 )2 − 107548kmc

δ2 ).
For the second part, we set

ψ := Y · mc

δms

k∑

i=1

d(ai, ci)
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where the online servers ai are always sorted such that they represent a mini-
mum weight matching to the simulated servers ci. We choose Y = Θ( k

δ2 ) to be
sufficiently large.

If we understand φ as a function in d(â, ô), then we can rewrite it as

φ(d(â, ô)) = max{4 · d(â, ô), 4 · 1
δms

d(â, ô)2 − A}.

Hence, when estimating the potential difference Δφ = φ(d(â′, ô′)) − φ(d(â, ô)),
we can upper bound it by replacing the term φ(d(â, ô)) with the case identical
to φ(d(â′, ô′)). This mostly reduces estimating Δφ to bounding the difference
d(â′, ô′) − d(â, ô).

For some of our estimations we use a slightly altered result from [8].

Lemma 7. Let s be some server with d(s′, r′) ≤
√

δ
2 · d(a′

i, r
′) and ai moves

towards r′ a distance of d(ai, a
′
i), then d(ai, s

′) − d(a′
i, s

′) ≥ 1+ 1
4 δ

1+ 1
2 δ

d(ai, a
′
i).

We start the analysis by bounding the second potential difference Δψ. The
bounds can be obtained by similar arguments as in the proof of Theorem5.

Lemma 8. Δψ ≤ Y · mc

δms
· CK − ∑k

i=1 d(ai, a
′
i).

Lemma 9. If d(a∗′
, r′) > 0, then Δψ ≤ Y · mc

δms
CK −

k∑

i=1

d(ai, a
′
i) − Y −4

2 mc.

Now consider the case that r′ /∈ inner(o∗′
). We have d(a∗′

, r′) ≤ d(o∗a′
, r′) ≤

d(o∗′
, o∗a′

)+d(o∗′
, r′) ≤ ( 48960k

δ2 +1) ·d(o∗′
, r′). The movement cost are canceled

by Δψ as in Lemma 8. It only remains to bound the possible increase of φ. We
use d(â′, ô′) − d(â, ô) ≤ (3 + 1020k

δ ) · mc.

1. d(â′, ô′) ≤ 107548 · kmc

δ2 : Δφ ≤ 4 · d(â′, ô′) ≤ 8 · d(o∗′
, o∗a′

) + 4 · d(a∗′
, r′) ≤

(12 · 48960k
δ2 + 4) · d(o∗′

, r′).
2. 107548 · kmc

δ2 < d(â′, ô′): Δφ ≤ 4
δms

(d(â′, ô′)2 − d(â, ô)2) ≤ 4
δms

(d(â′, ô′)2 −
(d(â′, ô′) − (3 + 1020k

δ ) · mc)2) ≤ O(k
δ ) · mc

δms
d(â′, ô′) ≤ O(k2

δ3 ) · mc

δms
d(o∗′

, r′).

In all of the above, the competitive ratio is bounded by O(k2

δ3 )· mc

δms
+Y · mc

δms
·c(K).

Finally, we consider the case r′ ∈ inner(o∗′
). When d(a∗, r′) > 102970kmc

δ2 ,
we use Lemma 7 to obtain the following:

Lemma 10. If d(a∗, r′) > 102970kmc

δ2 and r′ ∈ inner(o∗′
), then d(a′

i, ô
′) −

d(ai, ô) ≤ − δ
8ms.

With this lemma, φ can be used to cancel the costs of the algorithm in case
of a high distance to r.

Lemma 11. If r′ ∈ inner(o∗′
), then CAlg+Δφ+Δψ ≤ Y · mc

δms
·CK+2·d(o∗′

, r′).



Managing Multiple Mobile Resources 133

The resulting competitive ratio of Y · mc

δms
· c(K) + 2 is less than the O(k2

δ3 ) ·
mc

δms
+ Y · mc

δms
· c(K) bound from the former set of cases. Accounting for the loss

due to the transformation of the simulated k-Server algorithm, we obtain the
following result:

Theorem 6. If mc ≥ (1 + δ)ms, the algorithm UMS is O( 1
δ4 · k2 · mc

ms
+ 1

δ3 ·
k2 · mc

ms
· c(K))-competitive, where c(K) is the competitive ratio of the simulated

k-server algorithm K.

5 Extension to the Weighted Problem

In this section we consider our general model in which the movement costs are
weighted with a factor D > 1. We assume throughout the section that D ≥ 2
for convenience in the analysis. In case D < 2, we may just apply the algorithm
from the previous section, whose costs increase by at most a factor of 2 as a
result.

The main difference to the unweighted case is that our algorithm uses a
k-Page Migration algorithm as guidance, whose best competitive ratio in the
deterministic case so far is a factor Θ(k) worse than that of a k-Server algorithm
for general metrics. The analysis is slightly more involved since unlike in the k-
Server Problem, a k-Page Migration algorithm does not always have to have one
page at the point of the request. In case of small distances to r, the movement
costs have to be balanced against the serving costs by scaling down the movement
distance by a factor of D. Throughout this section, we use the same notation as
for the unweighted version.

Our algorithm Weighted-Mobile Servers (WMS) works as follows:
Take any k-Page Migration algorithm K. Upon receiving the next request r′,
simulate the next step of K. Calculate a minimum weight matching (with the
distances as weights) between the servers a1, . . . , ak of the online algorithm and
the pages c′

1, . . . , c
′
k of K. Select the closest server ã to r′ and move it to r′

at most a distance min(mc,
1
D (1 − ε) · d(ã, r′)) in case mc ≤ (1 + δ − ε)ms

and at most min((1 + δ
2 )ms,

1
D (1 − δ

2 ) · d(ã, r′)) in case mc ≥ (1 + δ)ms. All
other servers ai move towards their counterparts in the matching c′

i with speed
min((1+δ)ms,

1
D ·d(ã, r′)). If another server than ã is closer to r′ after movement,

then move all servers towards their counterpart in the matching with speed ms

instead.
The remainder of this section is devoted to the analysis of the WMS algorithm

and is structured similar to Sect. 4. Due to space constraints, we can only give
a brief overview and refer for the details to the full version.

We start by analyzing the case that mc ≤ (1 − ε) · ms for some ε ∈ (0, 1
2 ].

For ε ≥ 1
2 , our algorithm simply assumes ε = 1

2 . It can be easily verified, that
this does not hinder the analysis.

Theorem 7. If mc ≤ (1 − ε) · ms for some ε ∈ (0, 1
2 ], the algorithm WMS is√

2·11/ε · c(K)-competitive, where c(K) is the competitive ratio of the simulated
k-Page Migration algorithm K.
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We can extend this bound to the resource augmentation scenario, where the
online algorithm may move the servers a maximum distance of (1+δ) ·ms. When
relaxing the condition appropriately to mc ≤ (1 + δ − ε) · ms, then we get the
following result:

Corollary 2. If mc ≤ (1+δ−ε) ·ms for some ε ∈ (0, 1
2 ], the algorithm WMS is√

2·11·(1+δ)
ε ·c(K)-competitive, where c(K) is the competitive ratio of the simulated

k-Page Migration algorithm K.

Similar to the k-Server Projection discussed in Sect. 4.2, we obtain the fol-
lowing result which gives us a new k-Page Migration algorithm needed for the
case mc ≥ (1 + δ)ms.

Proposition 3. Let K be an online algorithm for the k-Page Migration Prob-
lem. There exists an online algorithm K̂ for the k-Page Migration Problem with
pages ĉ1, . . . , ĉk such that it holds d(ĉi, r) ≤ (32kD + 1) · mc during the whole
execution. The costs of K̂ are at most O(k) times the costs of K.

From here on we assume K to be a k-Page Migration algorithm obtained from
the transformation in Proposition 3. The offline helper and its invariants as stated
in Proposition 2 do not depend on the simulated algorithm and therefore all
insights gained from the corresponding section are still valid. We use a potential
composed of two major parts just as for the unweighted case.

Let ô be an offline server which fulfills the invariants stated in Proposition 2.
The first part of the potential is then defined as

φ :=
{

4 · d(â, ô) if d(â, ô) ≤ 107548D · kmc

δ2

4 · 1
δms

d(â, ô)2 + A if 107548D · kmc

δ2 < d(â, ô)

with A := 4 · (107548D kmc

δ2 − 1
δms

(107548D kmc

δ2 )2).
For the second part, we set

ψ := Y · D
mc

δms

k∑

i=1

d(ai, ci)

where the online servers ai are always sorted such that they represent a mini-
mum weight matching to the simulated servers ci. We choose Y = Θ( k

δ2 ) to be
sufficiently large.

We begin by analyzing ψ, reusing ideas from the proof of Theorem7.

Lemma 12. Δψ ≤ O(1) · Y · mc

δms
· CK − D · ∑k

i=1 d(ai, a
′
i).

Lemma 13. If d(a∗′
, r′) > d(c∗′

, r′), then

Δψ ≤ Y · mc

δms
CK − D ·

k∑

i=1

d(ai, a
′
i) − Y −4

2 D mc

δms
· min(ms,

1
D · d(ã, r′)).
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Now consider the case that r′ /∈ inner(o∗′
). We have d(a∗′

, r′) ≤ d(o∗a′
, r′) ≤

d(o∗′
, o∗a′

)+d(o∗′
, r′) ≤ ( 48960k

δ2 +1) ·d(o∗′
, r′). The movement costs are canceled

by Δψ as in Lemma 12. It only remains to bound the possible increase of φ. We
use d(â′, ô′) − d(â, ô) ≤ (3 + 1020k

δ ) · mc.

1. d(â′, ô′) ≤ 107548D · kmc

δ2 : Δφ ≤ 4 · d(â′, ô′) ≤ 8 · d(o∗′
, o∗a′

) + 4 · d(a∗′
, r′) ≤

(12 · 48960k
δ2 + 4) · d(o∗′

, r′).
2. 107548D · kmc

δ2 < d(â′, ô′): Δφ ≤ 4
δms

(d(â′, ô′)2 − d(â, ô)2) ≤ 4
δms

(d(â′, ô′)2 −
(d(â′, ô′) − (3 + 1020k

δ ) · mc)2) ≤ O(k
δ ) · mc

δms
d(â′, ô′) ≤ O(k2

δ3 ) · mc

δms
d(o∗′

, r′).

In all of the above, the competitive ratio is bounded by O(k2

δ3 )· mc

δms
+Y · mc

δms
·c(K).

Finally, we consider the case r′ ∈ inner(o∗′
). As in the previous Section,

whenever d(a∗, r′) > 102970D kmc

δ2 , we make use of Lemma 7 to obtain the fol-
lowing result, which then helps us bound Δφ:

Lemma 14. If d(a∗, r′) > 102970D kmc

δ2 and r′ ∈ inner(o∗′
), then

d(a′
i, ô

′) − d(ai, ô
′) ≤ − δ

8ms.

Lemma 15. If r′ ∈ inner(o∗′
), then CAlg+Δφ+Δψ ≤ Y · mc

δms
·CK+2·d(o∗′

, r′).

The resulting competitive ratio Y · mc

δms
·c(K)+2 is less than the O(k2

δ3 ) · mc

δms
+

Y · mc

δms
· c(K) bound from the former set of cases. Accounting for the loss due to

the transformation of the simulated k-Page Migration algorithm, we obtain the
following upper bound:

Theorem 8. If mc ≥ (1 + δ)ms, the algorithm WMS is O( 1
δ4 · k2 · mc

ms
+ 1

δ3 ·
k2 · mc

ms
· c(K))-competitive, where c(K) is the competitive ratio of the simulated

k-Page Migration algorithm K.

6 Open Problems

The gap between the upper and lower bound is closely related to the question of
the deterministic upper bound for k-Page Migration: Not only would an O(k)-
competitive algorithm for k-Page Migration directly improve the bound for D >
1, it could also give an idea how to improve the analysis of the greedy step in our
algorithm, such that the costly transformation of the simulated algorithm would
no longer be needed. This would potentially reduce the upper bound by another
factor of k. On the other hand, if Ω(k2) is a lower bound for k-Page Migration,
this carries over to our model as well. We believe that the main algorithmic idea
is suitable to reach an asymptotically optimal competitive ratio, but it remains
an open problem to derive a proof of that. The high constants in our proofs are
partially due to allowing easier argumentation in certain segments of the proof.
There is however also great potential in reducing constants by trying to extend
the potential analysis to operate in longer phases instead of doing a step-by-step
analysis.
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If we allow randomization, we can get an O(k)-competitive k-Page Migration
algorithm from [2]. As discussed in the related work section, the question of
the best possible competitive ratio of randomized algorithms for the k-Server
problem is still open, however we know that a result polylogarithmic in k can be
achieved [12]. As our construction is entirely deterministic, apart from potentially
the simulated algorithm, it would be interesting whether randomization can be
used to significantly improve the competitive ratio. The desired result would
be an algorithm with a competitive ratio polylogarithmic in k. More generally,
the problem of finding a randomized algorithm with competitiveness o(k) is still
open for the classical k-Page Migration problem.

References

1. Bansal, N., Buchbinder, N., Madry, A., Naor, J.: A polylogarithmic-competitive
algorithm for the k-server problem. J. ACM 62(5), 40:1–40:49 (2015). https://doi.
org/10.1145/2783434

2. Bartal, Y., Charikar, M., Indyk, P.: On page migration and other relaxed task sys-
tems. Theor. Comput. Sci. 268(1), 43–66 (2001). https://doi.org/10.1016/S0304-
3975(00)00259-0

3. Bartal, Y., Koutsoupias, E.: On the competitive ratio of the work function algo-
rithm for the k-server problem. Theor. Comput. Sci. 324(2–3), 337–345 (2004).
https://doi.org/10.1016/j.tcs.2004.06.001

4. Bienkowski, M., Byrka, J., Mucha, M.: Dynamic beats fixed: on phase-based algo-
rithms for file migration. In: Proceedings of the 44th International Colloquium on
Automata, Languages, and Programming (ICALP), pp. 13:1–13:14 (2017). https://
doi.org/10.4230/LIPIcs.ICALP.2017.13

5. Black, D.L., Sleator, D.D.: Competitive algorithms for replication and migration
problems. Technical Report CMU-CS-89-201, Department of Computer Science,
Carnegie-Mellon University (1989)

6. Bubeck, S., Cohen, M.B., Lee, Y.T., Lee, J.R., Madry, A.: k-server via multiscale
entropic regularization. In: Proceedings of the 50th Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC), pp. 3–16 (2018). https://doi.org/10.1145/
3188745.3188798

7. Chrobak, M., Karloff, H.J., Payne, T.H., Vishwanathan, S.: New results on server
problems. SIAM J. Discrete Math. 4(2), 172–181 (1991). https://doi.org/10.1137/
0404017

8. Feldkord, B., der Heide, F.M.A.: The mobile server problem. In: Proceedings of the
29th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA),
pp. 313–319 (2017). https://doi.org/10.1145/3087556.3087575

9. Feldkord, B., der Heide, F.M.A.: The mobile server problem. CoRR abs/1904.05220
(2019). https://arxiv.org/abs/1904.05220

10. Fiat, A., Karp, R.M., Luby, M., McGeoch, L.A., Sleator, D.D., Young, N.E.: Com-
petitive paging algorithms. J. Algorithms 12(4), 685–699 (1991). https://doi.org/
10.1016/0196-6774(91)90041-V

11. Koutsoupias, E., Papadimitriou, C.H.: On the k-server conjecture. J. ACM 42(5),
971–983 (1995). https://doi.org/10.1145/210118.210128

12. Lee, J.R.: Fusible HSTs and the randomized k-server conjecture. In: 59th IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2018, Paris,

https://doi.org/10.1145/2783434
https://doi.org/10.1145/2783434
https://doi.org/10.1016/S0304-3975(00)00259-0
https://doi.org/10.1016/S0304-3975(00)00259-0
https://doi.org/10.1016/j.tcs.2004.06.001
https://doi.org/10.4230/LIPIcs.ICALP.2017.13
https://doi.org/10.4230/LIPIcs.ICALP.2017.13
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1145/3188745.3188798
https://doi.org/10.1137/0404017
https://doi.org/10.1137/0404017
https://doi.org/10.1145/3087556.3087575
https://arxiv.org/abs/1904.05220
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.1145/210118.210128


Managing Multiple Mobile Resources 137

France, 7–9 October 2018, pp. 438–449 (2018). https://doi.org/10.1109/FOCS.
2018.00049

13. Manasse, M.S., McGeoch, L.A., Sleator, D.D.: Competitive algorithms for server
problems. J. Algorithms 11(2), 208–230 (1990). https://doi.org/10.1016/0196-
6774(90)90003-W

14. Rudec, T., Baumgartner, A., Manger, R.: A fast work function algorithm for solv-
ing the k-server problem. CEJOR 21(1), 187–205 (2013). https://doi.org/10.1007/
s10100-011-0222-7

15. Rudec, T., Manger, R.: A fast approximate implementation of the work function
algorithm for solving the k -server problem. CEJOR 23(3), 699–722 (2015). https://
doi.org/10.1007/s10100-014-0349-4

16. Westbrook, J.R.: Randomized algorithms for multiprocessor page migration. SIAM
J. Comput. 23(5), 951–965 (1994). https://doi.org/10.1137/S0097539791199796

https://doi.org/10.1109/FOCS.2018.00049
https://doi.org/10.1109/FOCS.2018.00049
https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1016/0196-6774(90)90003-W
https://doi.org/10.1007/s10100-011-0222-7
https://doi.org/10.1007/s10100-011-0222-7
https://doi.org/10.1007/s10100-014-0349-4
https://doi.org/10.1007/s10100-014-0349-4
https://doi.org/10.1137/S0097539791199796


On the Cycle Augmentation Problem:
Hardness and Approximation Algorithms

Waldo Gálvez1(B), Fabrizio Grandoni1, Afrouz Jabal Ameli1,
and Krzysztof Sornat2

1 IDSIA, Lugano, Switzerland
{waldo,fabrizio,afrouz}@idsia.ch

2 University of Wroc�law, Wroc�law, Poland
krzysztof.sornat@cs.uni.wroc.pl

Abstract. In the k-Connectivity Augmentation Problem we are given
a k-edge-connected graph and a set of additional edges called links. Our
goal is to find a set of links of minimum cardinality whose addition to
the graph makes it (k + 1)-edge-connected. There is an approximation
preserving reduction from the mentioned problem to the case k = 1
(a.k.a. the Tree Augmentation Problem or TAP) or k = 2 (a.k.a. the
Cactus Augmentation Problem or CacAP). While several better-than-2
approximation algorithms are known for TAP, nothing better is known
for CacAP (hence for k-Connectivity Augmentation in general).

As a first step towards better approximation algorithms for CacAP,
we consider the special case where the input cactus consists of a sin-
gle cycle, the Cycle Augmentation Problem (CycAP). This apparently
simple special case retains part of the hardness of the general case. In
particular, we are able to show that it is APX-hard.

In this paper we present a combinatorial
(
3
2

+ ε
)
-approximation for

CycAP, for any constant ε > 0. We also present an LP formulation with
a matching integrality gap: this might be useful to address the general
case of the problem.

Keywords: Approximation algorithms · Connectivity Augmentation ·
Cactus Augmentation · Cycle Augmentation

1 Introduction

The basic goal of Survivable Network Design is to construct low cost networks
that provide connectivity guarantees between pre-specified sets of nodes even
after the failure of a few edges/nodes (in the following we will focus on the egde
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failure case). This has many applications, e.g., in transportation and telecom-
munication networks.

A relevant subclass of these problems is given by Network Augmentation
problems. Here the goal is to augment a given graph G = (V,E) by adding extra
edges taken from a given set L (links), so as to satisfy given (edge-)connectivity
requirements. Several such problems are NP-hard, and in most cases the best
known approximation factor is 2 due to Jain [14].

In this paper we focus on the following k-Connectivity Augmentation Prob-
lem (k-CAP). Given a k-(edge)-connected1 undirected graph G = (V,E) and
a collection L of extra edges (links), the goal is to find a minimum cardinality
subset A ⊆ L such that G′ = (V,E ∪ A) is (k + 1)-connected. Dinitz et al. [8]
presented an approximation preserving reduction from this problem to the case
k = 1 for odd k, and k = 2 for even k. This motivates a deeper understanding
of the latter two special cases.

The case k = 1 is also known as the Tree Augmentation Problem (TAP).
The reason for this name is that any 2-connected component of the input graph
G can be contracted, hence leading to a tree. For this problem several better-
than-2 approximation algorithms are known [1,6,9,10,13,17,20]. The case k = 2
is also known as the Cactus Augmentation Problem (CacAP) since, similarly to
the previous case, the input graph can be assumed to be a cactus2 [8]. However,
here the best-known approximation factor is still 2 [14] (implying the same for
k-CAP in general).

For all the mentioned problems it makes sense to consider the weighted ver-
sion, where links have non-negative integral weights, and the goal is to find a
minimum weight (rather than minimum cardinality) subset of links A with the
desired properties. In particular we will speak about Weighted TAP (WTAP)
and Weighted CacAP (WCacAP). Here the best-known approximation factor
is 2 in both cases [14]. Moreover, improving on that approximation factor for
WTAP is considered as a major open problem in the area. We also notice that
we can turn a WTAP instance into an equivalent WCacAP instance by replacing
each edge with two parallel edges. Hence, approximating WCacAP is not any
easier than approximating WTAP (and the same holds for the corresponding
unweighted versions).

1.1 Our Results

As mentioned before, CacAP contains TAP as a special case when the cactus
consists of several short cycles. Hence, in order to make progress on CacAP,
it makes sense to consider the somehow complementary case where the input
cactus consists of a single cycle of n nodes. We call the corresponding subproblem

1 We recall that G = (V, E) is k-connected if for every set of edges F ⊆ E, |F | ≤ k−1,
the graph G′ = (V, E \ F ) is connected.

2 We recall that a cactus G is a connected undirected graph in which every edge
belongs to exactly one cycle. For technical reasons it is convenient to allow cycles of
length 2 consisting of parallel edges.



140 W. Gálvez et al.

the Cycle Augmentation Problem (CycAP), and its weighted version Weighted
CycAP (WCycAP). To the best of our knowledge, these special cases were not
studied before. However, as we will see, they still retain part of the difficulties
of the general cactus case. In more detail, we achieve the following main results.

Hardness of Approximation. We are able to show that WCycAP is as hard
to approximate as WCacAP. Therefore, improving on a 2-approximation for
WCycAP would imply a major breakthrough in the area (in particular, it would
imply the same for WTAP). This also justifies a more careful investigation of
CycAP. In our opinion it is a priori not so obvious that CycAP is even NP-hard.
Indeed, the special case of TAP (and even of WTAP) where the input graph is a
path can be solved exactly in polynomial time. The case of an input cycle might
closely remind the path case. Here we show that this intuition is not correct: we
prove that CycAP is NP-hard and even APX-hard via a simple but non-trivial
adaptation of the proofs in [11,16]. In particular, we need one extra step in the
reduction where we turn an intermediate CacAP instance into a CycAP one
while maintaining certain properties of the optimal solution.

Approximation Algorithms. As discussed, the best we can hope for CycAP
is some constant c > 1 approximation. We present better-than-2 approximation
algorithms for this problem. In particular, we present a simple 5

3 -approximation,
and a slightly more complex (3/2 + ε)-approximation for any constant ε > 0.
Notice that the latter approximation factor is not far from the best known
approximation factor for TAP which is equal to 1.458 [13]. Our algorithms are
purely combinatorial, and they consist of two main phases. In the first phase, we
greedily add some links to the solution under construction and contract them.
At the end of this phase we achieve an instance of CacAP that can be solved
exactly in polynomial time. In particular, for the 5

3 -approximation this reduces
to computing a spanning tree, while for the (3/2 + ε)-approximation we use an
FPT algorithm parameterized by a proper notion of maximum length of a link.

LP Gaps. The recent literature on TAP approximation [1,10,13] shows that
finding strong LP relaxations for the problem can be very helpful to design
improved approximation algorithms. In the same spirit, we tried to address the
problem of finding LP relaxations for CycAP with small integrality gap. For
both TAP and CacAP (hence CycAP) one can define a natural and simple
standard cut LP (more details later). While for TAP it was recently shown that
the standard cut LP has integrality gap smaller than 2 [21], interestingly for
CycAP (hence for CacAP) the standard cut LP has integrality gap 2. Here we
present a stronger LP that, for any ε > 0, has integrality gap at most 3

2 + ε
(hence matching the approximation ratio of our algorithm). In our opinion this
could be useful for future work on CacAP approximation.

1.2 Related Work

As mentioned before, the best known result in terms of polynomial time approx-
imation algorithms for k-CAP is a 2-approximation proposed by Jain [14]. How-
ever, if the set of links is equal to V × V it is possible to solve this problem
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optimally [22]. More recently, this problem has been studied in the framework
of Fixed-Parameter Tractability: Végh and Marx [19] proved that this problem
is in FPT when parameterized by the size of the optimal solution, and later the
running time of their algorithm was further improved [2].

Tree Augmentation has been extensively studied over the past few decades.
It was first shown that WTAP is NP-hard by Frederickson and Jájá [11], then
that TAP is NP-hard by Cheriyan et al. [5], and later that TAP is APX-hard
by Kortsarz et al. [16]. For WTAP, the best-known approximation guarantee is
2 and was first established by Frederickson and Jájá [11]. Their algorithm was
later simplified by Khuller and Thurimella [15]. A 2-approximation can also be
achieved by various other techniques developed later on, including a primal-dual
approach [12] and iterative rounding [14]. Improvements on the factor 2 have
only been obtained for restricted cases, including bounded diameter trees [7]
and bounded weights [1,10,13,21].

Regarding TAP, the first algorithm beating the approximation guarantee
of 2 is due to Nagamochi [20], achieving an approximation factor of 1.815 +
ε. This factor was subsequently improved to 1.8 [9] and to 1.5 [6,17]. These
results are combinatorial in nature, but LP-based results have been achieved
as well. As an example, recently Nutov [21] showed that the standard cut LP
for TAP has an integrality gap of at most 28/15 while a lower bound of 3/2
was known [6]. An LP-based

(
5
3 + ε

)
-approximation was given by Adjiashvili

[1] and then refined by Fiorini et al. [10] to obtain a
(
3
2 + ε

)
-approximation

(see also [3,4,18]). Both results are obtained by adding a proper family of extra
constraints to the standard cut LP. Recently, Grandoni et al. [13] achieved a
1.458 approximation for TAP, which is smaller than the integrality gap of the
standard cut LP.

The rest of this paper is organized as follows. In Sect. 2 we give some pre-
liminary definitions and results. The approximation algorithms and LP-gaps are
discussed in Sects. 3 and 4 respectively. Due to space limitations, some of the
results and proofs are deferred to the full version of the paper.

2 Preliminaries

For a set X and element y, we use the shortcut X \ y for X \ {y}, and similarly
for other set operations.

Given a graph G = (V,E), we let V (G) = V and E(G) = E. Recall that
in WCacAP we are given a cactus G = (V,E), a set of links L ⊆ (

V
2

)
and a

non-negative weight function c : L → R≥0. The task is to compute a subset of
links A ⊆ L such that the graph (V,E∪A) is 3-edge-connected while minimizing
c(A) :=

∑
�∈A c(�). The special case where G is a cycle is called WCycAP, and

the unweighted versions of the above problems are called CacAP and CycAP
respectively. By n we will denote the number of nodes of the considered instance
of the problem.

Notice that, given an instance (G,L) of CacAP, we can check in polynomial
time if the graph (V (G), E(G)∪L) is 3-edge-connected by exhaustively checking
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if the removal of any pair of elements from E(G) ∪ L disconnects the graph.
Hence we will assume along this work that the instance always admits a feasible
solution.

Remark 1. The 2-edge cuts of a cactus G are identified by pairs S = {e, e′} of
distinct edges belonging to the same cycle, and consist of the node sets (V ′, V ′′)
of the two connected components obtained by removing S from G. A necessary
and sufficient condition for a subset of links A to be a feasible solution for
WCacAP is that, for any such cut S, there is at least one � ∈ A crossing the cut
(in which case � satisfies the {e, e′}-cut).

Note that in the case of CycAP, Remark 1 implies that any feasible solution
must be an edge cover as 2-edge cuts defined by neighboring edges of the cycle
must be satisfied. Given a 2-edge cut S = {e, e′}, let LS be the subset of links
satisfying S. The standard cut LP for CycAP is as follows:

min
∑

�∈L

x� (standard cut LP)

s.t.
∑

�∈LS

x� ≥ 1 ∀S : S is a 2-edge cut

0 ≤ x� ≤ 1 ∀� ∈ L

Now we proceed to define a standard building block for our algorithms, the
contraction of a link.

Definition 1. Contracting a subset of nodes W consists of the following oper-
ations: (i) remove the nodes in W and all edges/links incident to them; (ii) add
a new node w and, for each original edge/link of type (y, x), x ∈ W, y /∈ W , add
the edge/link (y, w) (of the same weight for the case of links). Note that we do
not create loops this way but may introduce parallel links. We say that (y, w) is
the image of (y, x) and (y, x) is the preimage of (y, w).

We will sometimes slightly abuse notation and use the same label to denote a
link and its image: the meaning will be clear from the context.

For a link � = (u, v), we define a sequence w0, . . . , wq of boundary nodes
B(�) as follows. Consider a simple path from u to v in the cactus, and let
C1, C2, . . . , Cq be the ordered sequence of cycles visited3 by this path (possibly
q = 1). We define wi, i = 1, . . . , q − 1 as the unique common node between Ci

and Ci+1, and set w0 = u and wq = v.

Definition 2. Contracting a link � is the operation of contracting its boundary
nodes B(�). We denote by G|� the graph obtained by this operation. Contracting
a set of links A is the operation of contracting any � ∈ A, and then continue
recursively on G|� and on the image of A \ � until A becomes empty.

Note that contracting a link in a cactus yields again a cactus. We will exten-
sively use the following standard fact, whose proof is given in the full version of
the paper.
3 A path visits a cycle iff it includes an edge from the cycle.
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Lemma 1. Let (G,L) be a CacAP instance, A ⊆ L, and � ∈ A. Then A is
a feasible solution for (G,L) iff the image of A \ � is a feasible solution for
(G|�, L \ �).

3 Approximation Algorithms for Cycle Augmentation

In this section we present improved approximation algorithms for CycAP. We
start with a simple 5

3 -approximation to illustrate the main ideas, and then
present a slightly more complex

(
3
2 + ε

)
-approximation. The approach we will

follow in both cases is as follows: in a first phase we iteratively add a properly
chosen subset of a few links to the solution under construction, and then contract
them. Notice that, after the first contraction, the cycle structure may be lost and
we obtain a CacAP instance instead. These choices are designed so that, at the
end of the first phase, the remaining CacAP instance can be solved efficiently,
which is done in a second phase with an ad-hoc algorithm. We remark that the
running times of the presented algorithms is not analyzed in detail, and indeed
such a task may require to devise carefully crafted data structures.

3.1 A 5
3
-approximation

We next describe a simple greedy algorithm that provides a 5
3 -approximation for

CycAP. We need the following definitions.

Definition 3. A link � = (u, v) of a CacAP instance is internal if both its
endpoints belong to a common cycle, and external otherwise.

Definition 4. Given a CacAP instance, a pair of internal links {(u1, v1),
(u2, v2)} of a cycle C is crossing if they are node disjoint and deleting u2

and v2 disconnects u1 from v1 in C.

The kind of links that we want to add in the first stage of the algorithm
are external links plus crossing pairs of links. More in detail, the algorithm has
two main stages. The first stage consists of a set of rounds, where in each round
we first check if there exists an external link �, in which case we add it to our
solution, contract it and proceed to the next round. Otherwise, if there exists a
pair of (internal) crossing links �′ and �′′, we add them to our solution, contract
them and proceed to the next round. If none of the two cases above applies,
we are left with a CacAP instance without neither external links nor crossing
pairs of links which we address in the second stage of the algorithm. We refer to
this algorithm as crossing-first. As the following lemma states, in the second
stage we can efficiently compute the optimal solution.

Lemma 2. Consider an instance (G = (V,E), L) of CacAP. If there are no
external links and no crossing pairs of links, then every minimal solution has
size exactly |V | − 1 and induces a spanning tree over V .



144 W. Gálvez et al.

Proof. We prove the first part of the claim by induction on n = |V |. The base
case n = 2 is trivial since in this case the instance is just a cycle consisting of
two parallel edges and any link must be incident to the two nodes of G (hence
defining a feasible solution). For the inductive case, assume the claim is true up to
instances having n−1 nodes, and consider an instance of the problem defined by a
cactus G having n nodes with optimal solution OPT. If G is not a cycle of length
n, then it is defined by a set of cycles of length at most n− 1 where every link is
internal, so we can apply the inductive hypothesis to each cycle independently.
If G is a cycle of n nodes, then let � = (u, v) ∈ OPT. Contracting � leads to
a CacAP instance on two cycles C1 and C2 sharing a common node w, with
|V (C1)| + |V (C2)| = n. Let OPT′ be the optimal solution for the new instance.
By Lemma 1, |OPT| = |OPT′|+1. Observe that any remaining link �′ must have
both endpoints in the same Ci (otherwise � and �′ would be crossing). Thus by
the inductive hypothesis the optimum solution for the problem induced by Ci has
size |V (Ci)|−1. It then follows that |OPT′| = |V (C1)|−1+ |V (C2)|−1 = n−2.
Hence |OPT| = n − 1 as desired.

For the second part of the claim, it is sufficient to show that a minimal
solution does not induce a cycle. By contradiction, consider a minimal solution
containing a simple cycle L′, and consider now a solution where we remove
precisely one arbitrary link � = (u, v) from L′. Consider any pair of edges e1, e2
belonging to the same cycle such that � satisfies the {e1, e2}-cut. Since L′ \ �
induces a simple u-v path, then some �′ ∈ L′ \ � must satisfy the cut. Thus L′ \ �
is a feasible solution, contradicting the minimality of L′.

Now we proceed to prove the approximation guarantee of the algorithm.

Theorem 1. The CROSSING-FIRST algorithm is a 5
3 -approximation for CycAP.

Proof. Let OPT be the optimal solution and APX the computed solution. Let
also n′′ be the number of nodes remaining at the end of the first stage, and
APX′ (resp. APX′′) be the set of links added to the solution during the first
(resp. second) stage. Since contracting an external link decreases the number
of nodes by at least 2 and contracting any pair of crossing links decreases the
number of nodes by at least 3, we have that |APX′| ≤ 2

3 (n − n′′).
By Lemma 2, |APX′′| = n′′ − 1, and hence |APX| ≤ 2

3 (n − n′′) + n′′ − 1 =
2n+n′′ − 3

3 . On the other hand, since any feasible solution must be an edge cover,
we have that |OPT| ≥ n/2. Observe also that |OPT| ≥ n′′ −1 since by Lemma 1
contracting links cannot increase the cost of the optimum solution. Thus
|OPT| ≥ max{n/2, n′′ − 1}. We can conclude that |APX|

|OPT| ≤ (2n+n′′ − 3)/3
max{n/2,n′′ − 1} ≤ 5

3 ,
being n′′ − 1 = n/2 the worst case.

We complement this result with an asymptotically matching lower bound.

Lemma 3. The approximation ratio of the CROSSING-FIRST algorithm is not
better than 5

3 .

Proof. Consider the following construction: for each k ≥ 2 consider an instance
(Gk, Lk) of CycAP defined by a cycle of n = 6k nodes (assume that the cycle is
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defined by the order of the nodes v1, v2, . . . , v6k) and the following set of links
(see Fig. 1 (Left)):

– (v1, vn
2 +1) ∈ Lk;

– For each i = 1, . . . , n
2 − 1, (vi+1, vn+1−i) ∈ Lk;

– For each i = 1, . . . , n
6 , (v3(i−1)+1, v3(i−1)+3) ∈ Lk and (v3(i−1)+2, v3(i−1)+4) ∈

Lk;

Fig. 1. Left: Instance (G2, L2) from the lower bound construction in Lemma 3. Red
links define an optimal solution. Right: If the algorithm in the first phase picks and
contracts the crossing links {(v1, v3), (v2, v4)}, this is the obtained CacAP instance.
(Color figure online)

Notice that the first and second set of links define a feasible solution of size n
2 ,

hence being optimal: if we remove any two edges of the cycle, then we are either
satisfying the corresponding cut via (v1, vn

2 +1), or one side of the partition is
contained in either {v2, . . . , vn

2
} or in {vn

2 +2, . . . , vn} but the links selected form
a matching between those sets.

We will now prove that there exists a sequence of choices performed by our
algorithm that outputs a solution of size 5n

6 − 1, which implies that the approx-
imation ratio is at least 5

3 − 2
n and this value approaches 5

3 as k goes to infinity.
Notice first that the pair of links {(v1, v3), (v2, v4)} ⊆ Lk is crossing, and hence
the algorithm can include them in the solution in the first round (and finish
the round). Furthermore, after these links are contracted no link becomes exter-
nal as the new cactus instance consists of a cycle of length n − 3, and also the
links with endpoints vn, vn−1 and vn−2 are not part of any pair of crossing links
(see Fig. 1 (Right)). If we now iteratively pick all the pairs of crossing links
{(v3(i−1)+1, v3(i−1)+3), (v3(i−1)+2, v3(i−1)+4)} ⊆ Lk, i = 2, . . . , n

6 , after n
6 rounds

we end up with a cycle of length n
2 without crossing links, and the algorithm

must now take the remaining n
2 − 1 links to complete the solution. Thus, the

size of the computed solution is 2 · n
6 + n

2 − 1 = 5
6n − 1, proving the claim.
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3.2 A
(
3
2
+ ε

)
-approximation

The family of instances from Lemma 3 suggests that “short” crossing pairs of
links, although being locally profitable, may enforce the algorithm to take expen-
sive decisions in the end. In this section we present a more involved

(
3
2 + ε

)
-

approximation for CycAP that tries to avoid this kind of situation. Like in the
previous algorithm, there is a certain kind of links that we want to iteratively
add to our solution in a first phase, and in this case such links correspond to
external links and long links, which are defined as follows.

Definition 5. The length of an internal link (u, v) is the length of the shortest
path between u and v in the corresponding cycle. For a given parameter 0 < ε <
1, an internal link is called long if its length is at least 1

ε , and short otherwise.

Our algorithm consists of the following two main phases. In the first phase,
we iteratively check if there exists a long (internal) link �. Otherwise, we check
if there exists an external link �. In both cases, we add � to the solution under
construction and contract it. Observe that contracting links does not create new
long links, hence we will first select a set Llong of long links, and then a set Lext

of external links.
After exhausting the previous choices, we move to the second phase. Here we

are left with an instance where all links are short and internal, so we can solve
independently the sub-instance induced by each cycle. We refer to this algorithm
as long-first. This second stage can be solved efficiently, due to the lack of
long links, by means of the following lemma4.

Lemma 4. Given a CycAP instance, there exists an algorithm that returns the
optimal solution in time poly(n) · 2O(h2

max), where hmax is the maximum length
among the links.

Let Lshort be the collection of edges obtained in the second stage. The final
solution is Llong ∪ Lext ∪ Lshort.

Theorem 2. The previous algorithm is a (32 + ε)-approximation algorithm for
CycAP.

Proof. The running time of the algorithm is upper-bounded by poly(n)2O(1/ε2).
Consider next the approximation factor. Note first that |Llong| ≤ εn. Indeed,
contracting a long link always increases the number of cycles in the cactus by
one without decreasing the number of edges, and all these cycles always have
size at least 1/ε, so there are at most εn of them. Similarly to Theorem1, we
have that |OPT| ≥ |Lshort| and |OPT| ≥ n

2 .
If |Llong| + |Lext| + |Lshort| ≤ (3+2ε)n

4 then we already have a
(
3
2 + ε

)
-

approximation as |OPT| ≥ n
2 . Otherwise, since the contraction of each exter-

nal link reduces the number of nodes by at least 2 and the contraction of
any other link reduces the number of nodes by at least 1, we have that

4 This lemma implies that CycAP is FPT with parameter hmax.
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|Llong| + 2|Lext| + |Lshort| ≤ n. So |Lext| ≤ n − (3+2ε)n
4 = (1−2ε)n

4 and hence
|Lext| + |Llong| ≤ n+2εn

4 ≤ (
1
2 + ε

) |OPT|. Since |OPT| ≥ |Lshort|, we have that
in this case the size of the solution is also at most ( 32 + ε)|OPT|, concluding the
proof.

Remark 2. By replacing ε with 1/
√

log n in the above construction, we can
obtain a slightly improved approximation factor of 3/2+ o(1) which still runs in
polynomial time.

It remains to prove Lemma 4. We need some more notation. Recall that a
2-cut {e, e′} is satisfied iff there is some link crossing the cut. Given a link
� = (u, v), we say that the edges of the shortest path between u and v in the
cycle are covered by � (in case of multiple shortest paths we choose the one going
from u to v in counter-clockwise order along the cycle). Given an edge e of the
cycle, we define the cut-neighborhood of e, namely N (e), as the 2hmax − 1 edges
that are closest to e, e included. We also define NL(e) as the set of links in L
covering at least one edge from N (e).

Notice that in any feasible solution to a CycAP instance, at most one edge
of the cycle is not covered: if it is not the case, then the cut defined by two
uncovered edges is not satisfied as any link satisfying the cut would cover one of
these two edges. We can use this observation to characterize the feasibility of a
solution in terms of the cut-neighborhoods.

Lemma 5. Consider a CycAP instance and let A be a set of links such that
every edge of the cycle is covered by some link in A. A is feasible iff for each
edge e, all the {e, e′}-cuts, where e′ ∈ N (e), are satisfied.

Proof. If A is feasible then the required properties are clearly satisfied since every
cut is satisfied. On the other hand, suppose that A satisfies that every edge is
covered by some link in A and the {e, e′}-cuts are satisfied for every edge e and
e′ ∈ N (e). Consider a pair of edges {e, e′} such that e′ /∈ N (e). By definition
of N (e) there is no link in A covering both edges at the same time, and as e
is covered by some link, this link satisfies the {e, e′}-cut. This implies that A is
feasible as every cut is satisfied.

This lemma is useful as it implies that, given an edge e and a set of links S,
we can optimally complete S in order to satisfy every {e, e′}-cut in time 2O(h2

max)

just by guessing the subset of links from NL(e) that must be added, which are
O(h2

max) only. Now we proceed to present the algorithm.

Proof (Proof of Lemma 4).
Let us assume that we deal with instances of CycAP such that there exists an

optimal solution where every edge is covered by some link. If it is not the case,
as there may be only one uncovered edge, we can guess this edge and contract it;
this leads to an equivalent instance of the problem where we can require that the
optimum solution covers all the edges. We say that an edge e is satisfied by a set
of links A if it is covered by some link in A and furthermore every {e, e′}-cut is
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Fig. 2. Depiction of an iteration of the DP from Lemma 4, where we are currently at
edge ei. Left: Blue links correspond to L0, green links correspond to S and at this
point we must decide which extra links to add to S ∪ L0 in order to satisfy the edges
e1, . . . , ei. Right: This computation is done by looking at a proper previous cell in the
table (orange links) which contains S ∪ L0 and satisfies e1, . . . , ei−1, and then add the
extra required links A∗ (red links) in order to satisfy ei too. (Color figure online)

satisfied by A. In particular A is a feasible solution for the problem iff it satisfies
all the edges.

We next design a dynamic programming algorithm to compute a minimum
cardinality feasible solution. Let us name the nodes v1, v2, ..., vn in counter-
clockwise order starting from some arbitrary node v1, and let the edges be
ei = (vi, vi+1) for each i = 1, . . . , n (assuming vn+1 = v1). We start first by
guessing the set L0 of links from OPT that satisfy en. As proved in Lemma 5,
L0 is a subset of NL(en), hence we can guess it in time 2O(h2

max).
For each edge ei and S ⊆ NL(ei), we define a cell T [i][S] which will corre-

spond to a set S′ of links of smallest cardinality such that for each j ∈ {1, . . . , i},
ej is satisfied by S′, subject to L0 ∪S ⊆ S′. It is then sufficient to return T [n][∅].

We initialize the table by computing T [1][S] for each set S ⊆ NL(e1), which
can be done by guessing how to complete S ∪ L0 in order to satisfy e1 with
links from NL(e1). Then, for each i ≥ 2 and S ⊆ NL(ei), in order to fill the
cell T [i][S], we consider all the possible subsets A ⊆ NL(ei) such that S(A) :=
T [i − 1][(S ∪ A) ∩ NL(ei−1)] ∪ (S ∪ A) satisfies ei. Among them we select a set
A∗ that minimizes |S(A)|, and we set T [i][S] = S(A∗) (see Fig. 2 for a sketch).

The correctness of the computation follows by a simple induction on i. The
table can be filled in total time poly(n) · 2O(h2

max), plus an extra factor n from
the initial guessing of an uncovered edge (that is contracted).

We complement Theorem 2 with an asymptotically matching lower bound.

Lemma 6. The approximation ratio of the LONG-FIRST algorithm is at least
3
2 .
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Proof. Consider the following construction: for each k > 1
2ε consider an instance

(Gk, Lk) of CycAP defined by a cycle of n = 4k nodes (assume that the cycle is
defined by the order of the nodes v1, v2, . . . , v4k) and the following set of links
(see Fig. 3 (Left)):

– For each i = 1, . . . , n
2 − 1, (vi+1, vn+1−i) ∈ Lk;

– (v1, vn
2 +1) ∈ Lk;

– For each i = 1, . . . , n
4 − 1, (vi+1, vn

2 +1−i) ∈ Lk.

Fig. 3. Left: Instance (G4, L4) from the lower bound construction in Lemma 6. An
optimal solution is defined by red links. Right: If the algorithm picks first the thick red
link (which is long) and then the links which become external (blue links and (v1, v9))
we obtain this subinstance without crossing pairs of links. (Color figure online)

As argued in Lemma 3, the first and second set of links define an optimal
solution of size n

2 . We will now prove that there exists a sequence of choices
performed by our algorithm that outputs a solution of size 3n

4 −1, which implies
that the approximation ratio is at least 3

2 − 2
n and this value approaches 3

2 as k
goes to infinity. Notice first that the link (vn

4 +1, v 3n
4 +1) ∈ Lk has length 2k > 1

ε
and hence it is long so the first stage of the algorithm can include it in the
solution. After doing that, the second and third set of links become external
and thus the algorithm will include them in the solution. Once all these links are
included and contracted, we get a cactus consisting of two cycles of n

4 nodes each
and without crossing links (see Fig. 3 (Right)). Hence, the algorithm must pick
all the remaining links to complete the solution. The size then of this solution is
n
4 + 1 + 2

(
n
4 − 1

)
= 3n

4 − 1.

4 LP Relaxations for CycAP

We start by lower-bounding the integrality gap of the standard cut LP for
CycAP.
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Lemma 7. The standard cut LP for CycAP has integrality gap at least 2.

Proof. Consider a cycle of size k and, for each edge, a parallel link. The optimum
integral solution has size k − 1, while setting each variable to 1

2 gives a feasible
fractional solution of cost k

2 .

This shows that the standard cut LP is not strong enough even for instances
without crossing nor long links, cases that we can handle optimally via combi-
natorial algorithms. We next present a stronger LP that exploits a more general
set of constraints.

Let (G = (V,E), L) be a CycAP instance and S ⊆ E. We define the S-
reduced instance (GS , LS) as follows: We contract the edges of E \S, obtaining a
cycle with |S| edges which defines GS , and the set of links LS will correspond to
the images of L. Notice that there is a one-to-one relation between LS and the
links in L which satisfy some cut defined by a pair of edges from S. We denote
by OPTS the optimal solution for the instance (GS , LS)5. The following lemma
characterizes the feasibility of a solution.

Lemma 8. Given an instance (G,L) of CycAP, a solution A ⊆ L is feasible iff
for every S ⊆ E it holds that |A ∩ LS | ≥ |OPTS |.
Proof. Suppose that there exists S ⊆ E such that |A ∩ LS | < |OPTS |. This
means that A ∩ LS is not a feasible solution for (GS , LS) and hence there exist
two edges ei, ej ∈ S such that no link in A ∩ LS satisfies the {ei, ej}-cut. As
the remaining links in A \ LS also do not satisfy the cut by definition, this cut
remains unsatisfied in the original instance, implying that A is not feasible.

On the other hand, suppose that A satisfies the claimed property for every
set S. If we consider just sets S consisting of two edges this is exactly the
characterization of feasibility shown in Remark 1, implying that A is feasible.

This implies that we can add the constraint
∑

�∈LS
x� ≥ |OPTS | for S ⊆ E.

Unfortunately there is an exponential number of such constraints and most of
them require to compute |OPTS | for large instances. However, if we restrict
ourselves to sets of edges having constant size, we get an LP formulation with
polynomially many constraints that can be written in polynomial time. We call
this LP the k-edge-cut LP for a given constant k ∈ N, which is similar in spirit
to the bundle-LP for TAP introduced by Adjiashvili [1].

min
∑

�∈L

x� (k-edge-cut LP)

s.t.
∑

�∈LS

x� ≥ |OPTS | ∀S ⊆ E, |S| ≤ k

0 ≤ x� ≤ 1 ∀� ∈ L

Notice that for k = 2 this is exactly the standard cut LP. Now we will prove
some properties of this relaxation and bound its integrality gap.

5 For |S| ≤ 1, we simply set OPTS = ∅.
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Lemma 9. Given ε > 0, for k = 1
ε2 the k-edge-cut LP restricted to instances

with links of length at most 1
ε has integrality gap at most (1 + 2ε).

Proof. We will assume w.l.o.g. that the set of links L contains every possible link
of length 1. If it is not the case, let us include them obtaining a new set of links
L′ ⊇ L. The optimal LP value can only decrease while the size of the optimal
solution cannot decrease, implying that the integrality gap can only increase due
to this operation. To see this last fact, assume by contradiction that there exists
a solution OPT′ for the new instance having strictly smaller size than OPT.
Consider now a solution S consisting of OPT′ ∩ L plus a minimal set of links
from L that makes S feasible (this is possible since the instance admits a feasible
solution). If we in parallel iteratively contract the common links in S and OPT′

we arrive to the same CacAP instance, but now the remaining links from OPT′

have length 1 and the contraction of each of them reduces the number of nodes
in the instance by exactly one node while the contraction of the remaining links
in S reduces the number of nodes by at least 1. Thus |S| ≤ |OPT′| which is not
possible since S ⊆ L.

Let X = (x�)�∈L be an optimal solution for the k-edge-cut LP. We will
construct an integral feasible solution of size at most (1 + ε)

∑
�∈L x�. To do so,

we will partition the cycle into disjoint intervals as follows: We will first define an
interval of size k (which we will call a long interval) and then an interval of size 1

ε
(which we will call a short interval), and then continue with this procedure until
it is not possible to continue. If in the end there are at most 1

ε edges we define
a last short interval consisting of these remaining edges, otherwise we define a
short interval consisting of the last 1

ε edges and a long interval consisting of the
remaining edges (which will have size at most k). The number of short intervals
is upper bounded by 1 +

⌊
n

1/ε2+1/ε

⌋
≤ 1 + ε2n

1+ε ≤ ε2n assuming w.l.o.g. that n is
lower bounded by a large enough constant.

Notice that
∑

�∈L x� ≥ n/2 by a simple averaging argument over the n con-
straints corresponding to all the pairs of consecutive edges: every link appears
in exactly two such constraints and the right-hand side of each constraint is 1.
Since the total number of links of length 1 having both endpoints in a short
interval is at most ε2n · 1

ε = εn ≤ 2ε
∑

�∈L x�, we can add them to our solution
at a negligible cost.

Consider now the set of long intervals S1, S2, . . . , ST . Notice that no link has
endpoints in different long intervals, and hence the LP constraints associated
to such intervals do not share common variables. This implies that

∑
�∈L x� ≥

∑T
i=1 |OPTSi

|. Our feasible solution will consist of all the links of length 1 with
both endpoints in a short interval plus the optimal solutions OPTSi

for each long
interval Si. As argued before, the size of this solution is at most (1+2ε)

∑
�∈L x�

and the feasibility of the solution follows since every {e, e′}-cut where e is in a
short interval is satisfied by a link of length 1, while the remaining cuts are
satisfied by the links computed optimally.

Lemma 10. Given ε > 0, for k = 1
ε2 the k-edge-cut formulation has integrality

gap at most (1 + 4ε) restricted to instances without crossing pairs of links.
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Proof. Let X = (x�)�∈L be an optimal solution for the k-edge-cut LP. Suppose
that the instance does not contain links of length at least 1

ε , then we can conclude
the claim thanks to Lemma 9. Otherwise, we will pick any link of length at least
1
ε and contract it, obtaining a CacAP instance consisting of two cycles without
external links (as there are no crossing links), both of size at least 1

ε . If any
cycle still contains some long link, we iterate this procedure. Let Llong be the
set of long links we picked during this procedure and C1, C2, . . . , CT be the
set of cycles at the end. By the same argument as in Theorem 2, we have that
|Llong| ≤ εn ≤ 2ε

∑
�∈L x�.

If we apply now Lemma 9 to each cycle we obtain a feasible solution of size
at most (1+2ε)

∑T
i=1 OPTLPi

+ |Llong|, where LPi is the k-edge-cut LP defined
by each cycle Ci and its internal links. As there are no external links, the sum
of the previous LP solutions is the optimal solution for the following LP:

min
∑

�∈L\Llong

x�

s.t.
∑

�∈LS

x� ≥ |OPTS | ∀i ∈ {1, . . . , T},∀S ⊆ E(Ci), |S| ≤ 1
ε2

0 ≤ x� ≤ 1 ∀� ∈ L \ Llong

The set of constraints of this LP is a subset of the constraints of the original
LP as links in Llong do not appear in these constraints and the set of variables is
a subset of the original one. Thus we have

∑T
i=1 OPTLPi ≤ ∑

�∈L x�, and then
we can conclude that the constructed solution has size at most (1+4ε)

∑
�∈L x�.

Following the proof of Theorem2 plus the previous results we can get the
following bound on the integrality gap for general instances of CycAP.

Corollary 1. For any ε > 0, the integrality gap of the k-edge-cut LP for k = 1
ε2

is at most 3
2 + O(ε).

Proof. Let X = (x�)�∈L be an optimal solution for the k-edge cut LP and con-
sider the output of the

(
3
2 + ε

)
-approximation from Sect. 3.2 decomposed into

Llong, Lext and Lshort as in the proof of Theorem2. As argued before, we know
that

∑
�∈L x� ≥ n

2 and analogously to the proof of Lemma10 we have that
|Lshort| ≤ (1 + 2ε)

∑
�∈L x�. Hence essentially the same analysis as in Theorem 2

provides the same bound of 3/2 + O(ε) up to an extra (1 + ε) factor.

Acknowledgments. We would like to thank the anonymous reviewers for their helpful
comments.
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ilies. In: Nešetřil, J. (ed.) ESA 1999. LNCS, vol. 1643, pp. 510–520. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48481-7 44

6. Cheriyan, J., Karloff, H., Khandekar, R., Könemann, J.: On the integrality ratio
for tree augmentation. Oper. Res. Lett. 36, 399–401 (2008)

7. Cohen, N., Nutov, Z.: A (1 + Ln 2)-approximation algorithm for minimum-
cost 2-edge-connectivity augmentation of trees with constant radius.
APPROX/RANDOM 2011, 147–157 (2011)

8. Dinitz, E., Karzanov, A., Lomonosov, M.: On the structure of the system of mini-
mum edge cuts of a graph. Stud. Discrete Optim. 290–306 (1976)

9. Even, G., Feldman, J., Kortsarz, G., Nutov, Z.: A 1.8 approximation algorithm for
augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms 5,
21:1–21:17 (2009)

10. Fiorini, S., Groß, M., Könemann, J., Sanità, L.: Approximating weighted tree aug-
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Abstract. We show that the strong chromatic index of unit disk graphs
is efficiently 6-approximable. This improves on 8-approximability as
shown by Barrett, Istrate, Kumar, Marathe, Thite, and Thulasidasan [1].
We also show that strong edge-6-colourability is NP-complete for the
class of unit disk graphs. Thus there is no polynomial-time (7/6 − ε)-
approximation unless P= NP.

1 Introduction

A strong edge-k-colouring is a partition of the edges of a graph G into k parts
so that each part induces a matching (meaning that there exists no edge in G
between two edges of the same matching). The strong chromatic index is the
least k for which the graph admits a strong edge-k-colouring. If the vertices of
the graph represent communicating nodes, say, in a wireless network, then an
optimal strong edge-colouring may represent an optimal discrete assignment of
frequencies to transmissions in the network so as to avoid both primary and
secondary interference [1,18,20]. It is then relevant to model the network geo-
metrically, i.e. as a unit disk graph [9]. Our interest is in approximative algo-
rithmic aspects of strong edge-colouring in this model. This was considered by
Barrett, Istrate, Kumar, Marathe, Thite, and Thulasidasan [1] who showed that
the strong chromatic index of unit disk graphs is efficiently 8-approximable. We
revisit the problem and make some further advances.

– We prove efficient 6-approximability.
– We prove an efficient online 8-competitive algorithm.
– We show impossibility of efficient (7/6 − ε)-approximability unless P=NP.

It is ∃R-complete to decide if a given graph has an embedding as a unit disk
graph [11], but both of the approximation algorithms we use are robust, in the
sense that they efficiently output a valid strong edge-colouring upon the input
of any abstract graph. Our contribution is to prove that they are guaranteed to
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output a colouring with good approximation ratio upon the input of a unit disk
graph (regardless of any embedding).

Our work parallels and contrasts with work on the chromatic number of
unit disk graphs, for which the best approximation ratio known has stubbornly
remained 3 since 1991 [19]. Finding an optimal approximation for strong chro-
matic index may be similarly difficult.

1.1 Graph Colouring Preliminaries

In this subsection, we highlight some graph theoretic notation, concepts and
observations that are relevant to our study. For other standard background, con-
sult e.g. [6]. Given a graph G = (V,E), the minimum degree, clique number, chro-
matic number and maximum degree of G are denoted by δ(G), ω(G), χ(G) and
Δ(G), respectively. The degeneracy of G is defined as δ∗(G) = max{δ(H) |H ⊆
G} and G is called k-degenerate if δ∗(G) ≤ k. A simple but useful set of inequal-
ities for graph colouring is as follows. For any graph G,

ω(G) ≤ χ(G) ≤ δ∗(G) + 1 ≤ Δ(G) + 1. (1)

Note that the second inequality in (1) is algorithmic, in the sense that it fol-
lows from the use of an efficient greedy algorithm that always assigns the least
available colour, provided we consider the vertices one by one in a suitable order,
namely, according to degeneracy. Moreover, a greedy algorithm taking any order-
ing uses at most Δ(G) + 1 colours.

The line graph L(G) of G is the graph where a vertex in L(G) corresponds
to an edge in G and there is an edge between two vertices in L(G) if the cor-
responding edges in G share a vertex. The square G2 of G is the graph formed
from G by adding all edges between pairs of vertices that are connected by a
2-edge path in G. The strong chromatic index of G (as defined above) is denoted
χ′
2(G). Note that χ′

2(G) = χ(L(G)2). The strong clique number ω′
2(G) of G is

ω(L(G)2). Obviously, (1) implies that

ω′
2(G) ≤ χ′

2(G) ≤ δ∗(L(G)2) + 1 ≤ Δ(L(G)2) + 1. (2)

It is worth reiterating that the following greedy algorithm efficiently generates a
strong edge-(δ∗(L(G)2)+1)-colouring: order the edges of G by repeatedly remov-
ing from G an edge e for which degL(G)2(e) is lowest, and then colour the edges
sequentially according to the reverse of this ordering, at each step assigning as a
colour the least positive integer that does not conflict with previously coloured
edges. Again similarly, with an arbitrary ordering of the edges the greedy algo-
rithm produces a strong edge-(Δ(L(G)2) + 1)-colouring. Our main results then
follow from (2) by suitable bounds on δ∗(L(G)2) and Δ(L(G)2).

The strong chromatic index is a well-studied parameter in graph theory. Most
notably, Erdős and Nešetřil conjectured in the 1980s that χ′

2(G) ≤ 1.25Δ(G)2 for
all graphs G [7]. About a decade later, Molloy and Reed [17] proved the existence
of some minuscule but fixed ε > 0 such that χ′

2(G) ≤ (2−ε)Δ(G)2 for all graphs
G. Recently there have been improvements [2,3] and extensions [10,21], but
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all rely on Molloy and Reed’s original approach, a reduction to a Ramsey-type
colouring result. The conjecture remains wide open.

1.2 Unit Disk Graph Preliminaries

A graph G = (V,E) is said to be a unit disk graph if there exists a mapping
p : V → R

2 from its vertices to the plane such that uv ∈ E if and only if the
Euclidean distance between p(u) and p(v) is at most 1. Any explicit mapping
p that certifies that G is a unit disk graph is called an embedding. When we
have an embedding p, we often make no distinction between a vertex u and its
corresponding point p(u) in the plane.

The class of unit disk graphs is popular due to its elegance and its versatility
in capturing real-world optimisation problems [5]. For example, an embedded
unit disk graph may represent placement of transceivers so that circles of radius
1/2 centred at the points represent transmission areas. Indeed, the class was
originally introduced in 1980 to model frequency assignment [9], with chromatic
number being one of the first studied parameters. Clark, Colbourn and John-
son [5] published a proof that it is NP-hard to compute the chromatic number
of unit disk graphs. They also showed the clique number of unit disk graphs is
polynomial-time computable. Therefore, any upper bound C on the extremal
ratio r := sup{χ(G)/ω(G) |G is a unit disk graph} (algorithmic or not) implies
an efficient C-approximation of the chromatic number: simply output C · ω(G).
In 1991, Peeters [19] noted a simple 3-approximation which also shows r ≤ 3:
after lexicographically ordering the vertices of G according to any fixed embed-
ding, a basic geometric argument proves that G is 3(ω(G) − 1)-degenerate (and
then apply (1)). Since 3-colourability of unit disk graphs is NP-complete, there is
no efficient (4/3−ε)-approximation unless P=NP. It is known that r ≥ 3/2 [15].
The best approximation ratio known is 3.

1.3 Approximate Strong Edge-Colouring Preliminaries

Mahdian [13,14] showed in 2000 that it is NP-hard to compute the strong chro-
matic index, even restricted to bipartite graphs of large fixed girth. More recently,
Chalermsook, Laekhanukit and Nanongkai [4] showed that in general there is no
polynomial-time (n1/3−ε)-approximation algorithm (where n is the number of
vertices in the input) unless NP = ZPP.

To the best of our knowledge, no previous work has shown NP-hardness upon
restriction to the class of unit disk graphs. Nevertheless, Barrett et al. [1] have
initiated the study of approximate strong edge-colouring for unit disk graphs.
With an argument similar to in [19], they showed that δ∗(L(G)2) ≤ 8ω′

2(G)
for any unit disk graph G, which by (2) certifies an 8-approximation for the
strong chromatic index. Kanj, Wiese and Zhang [12] noted an efficient online
10-competitive algorithm with essentially the same analysis as in [1].
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1.4 Main Results and Outline

Our work improves significantly on [1] in several ways. In Sect. 2, we describe
the following.

Theorem 1. For any unit disk graph G, δ∗(L(G)2) ≤ 6(ω′
2(G) − 1).

Corollary 1. The greedy algorithm under a reverse degeneracy ordering of the
edges is an efficient 6-approximation for the strong chromatic index of unit disk
graphs.

The proof of Theorem1 is rather involved. It shows that, for any embedded
unit disk graph, some well-chosen edge-ordering certifies the required degeneracy
bound. It would be very interesting to improve on the approximation ratio of 6.
We prove the following in Sect. 3.

Theorem 2. For any unit disk graph G, Δ(L(G)2) ≤ 8(χ′
2(G) − 1).

Corollary 2. The greedy algorithm is an efficient online 8-competitive algo-
rithm1 for the strong chromatic index of unit disk graphs.

The proof of Theorem2 differs fairly from previous work [1,12] and from the
proof of Theorem1. Indeed the bound we give make use of the strong chromatic
index χ′

2(G) instead of the strong clique number ω′
2(G). To prove Theorem 2,

it suffices to solve the following kissing number-type problem. Given two inter-
secting unit disks C1 and C2 in R

2, what is the size of a largest collection of
pairwise non-intersecting unit disks such that each one intersects C1 ∪ C2? The
corresponding problem in R

3 seems quite natural.
In Appendix, we prove the following.

Theorem 3. Strong edge-k-colourability of unit disk graphs is NP-complete,
where k = 6 or k =

(
�
2

)
+ 4� + 6 for some fixed � ≥ 5.

Corollary 3. It is NP-hard to compute the strong chromatic index of unit disk
graphs. Moreover, it cannot be efficiently (7/6 − ε)-approximated unless P=NP.

For k ≤ 3, strong edge-k-colourability is polynomially-time solvable. The com-
plexity for k ∈ {4, 5} remains open. The proof of Theorem3 borrows from ideas
in the work of Gräf, Stumpf and Weißenfels [8], but with extra non-trivial diffi-
culties for strong edge-colouring.

1 To avoid any ambiguity, in the online setting vertices are revealed one at a time and
all edges between a newly revealed vertex and previous vertices must be immediately
and irrevocably assigned a colour.
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1.5 Further Discussion

We can state more general versions of our approximation results that not only
lend a more geometric flavour but also highlight a potential conceptual obstacle
to further improvements on our approximation results. We call a graph G =
(V,E) a twin unit disk graph if there exists a mapping p : V → R

2 × R
2, u 	→

(p(u)1, p(u)2) from its vertices to pairs of points in the plane such that

– the Euclidean distance between p(u)1 and p(u)2 is at most 1 for every u ∈ V ;
and

– uv ∈ E if and only if the Euclidean distance between p(u)1 and p(v)1, between
p(u)1 and p(v)2, between p(u)2 and p(v)1, or between p(u)2 and p(v)2 is at
most 1.

Equivalently, this is the intersection class over unions of pairs of intersecting unit
disks in R

2.
Note that, for any unit disk graph G, both G and L(G)2 are twin unit disk

graphs. (Indeed we represent L(G)2 by setting p(e)1 = p1 and p(e)2 = p2 for
any edge e = p1p2 in G.) So it is NP-hard to determine the chromatic number
of twin unit disk graphs.

We have the following stronger versions of Theorems 1 and 2, which imply
efficient 6-approximation and online 8-competitive algorithms for the chromatic
number of twin unit disk graphs (by (1)).

Theorem 4. For any twin unit disk graph G, δ∗(G) ≤ 6(ω(G) − 1).

Theorem 5. For any twin unit disk graph G, Δ(G) ≤ 8(χ(G) − 1).

Malesińska et al. [15] showed that there are unit disk graphs G for which δ(G) =
3(ω(G) − 1). In Appendix, we also show that there are twin unit disk graphs G
for which δ(G) ≥ 4(ω(G) − 2) + 1, and so the factor 6 in Theorem4 cannot be
improved below 4.

If we were able to efficiently compute or well approximate the clique num-
ber of twin unit disk graphs or, in particular, the strong clique number of
unit disk graphs, then we would have a strong incentive to bound r′

2 :=
sup{χ′

2(G)/ω′
2(G) |G is a unit disk graph}. This is a natural optimisation prob-

lem regardless. We only know r′
2 ≤ 6 by Theorem 1, and r′

2 ≥ 4/3 by considering
the cycle C7 on seven vertices (since χ′

2(C7) = 4 while ω′
2(C7) = 3). Relatedly,

we believe that the following problem is worth investigating.

Conjecture 1. It is NP-hard to compute the clique number of twin unit disk
graphs.

2 A 6-approximation

In this section we discuss the proof of Theorem 4, which has Theorem 1 as a
special case.
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To make the reader more familiar with the problem and the notations, we
first present a much shorter argument for a weaker approximation. The proof
is nearly the same as what Barrett et al. [1] used for an upper bound on the
approximation ratio of 8, but with a small twist.

Proposition 1. For any twin unit disk graph G, δ∗(G) ≤ 7(ω(G) − 1).

Proof. Let G = (V,E) be a twin unit disk graph. Fix any embedding p : V →
R

2 × R
2 of G in the plane. Equipped with such an embedding, we first define an

ordering of V and then use it to certify the promised degeneracy property.
The ordering we use for this result, a lexicographic ordering, is the same

used in [1]. This lexicographic order considers first the y-coordinate and then
the x-coordinate, (i.e. (a, b) is before (c, d) if and only if b < d or (b = d and
a ≤ c)). Throughout this paper, we simply refer to it as the lexicographic order
on R

2. Let (x1, y1), (x2, y2), . . . be a sequence of points in R
2 defined by listing

the elements of ∪u∈V {p(u)1, p(u)2} according to the lexicographic order on R
2.

We consider the points of this sequence in order and add vertices at the end of
our current ordering of V as follows. When considering point (xj , yj) for some
j ≥ 1, we add all vertices u ∈ V for which there is some i ≤ j such that
{p(u)1, p(u)2} = {(xi, yi), (xj , yj)}, and we do so according to the lexicographic
order on R

2.
It suffices to show that each vertex u ∈ V has at most 7(ω(G)−1) neighbours

that precede it in the lexicographic ordering. To do so, we show that every such
neighbour v of u satisfies that either p(v)1 or p(v)2 is contained in one of seven
unit (π/3)-sectors (each of which is centred around either p(u)1 or p(u)2). This
is enough, since the set of vertices that map one of their twin points into one
such sector induces a clique in G that includes u. The proof differs from what
Barrett et al. did in [1] by the fact that we use seven unit (π/3)-sectors instead
of eight.

Let u ∈ V and suppose without loss of generality that p(u)1 is before p(u)2 in
lexicographic order. First observe that, if v ∈ V is before u in the lexicographic
order, then both p(v)1 and p(v)2 must be in the region of R

2 that has smaller or
equal y-coordinate compared to p(u)2. If, moreover uv ∈ E, then p(v)1 or p(v)2
must lie in either a unit half-disk centred at p(u)2 or in the unit disk centred at
p(u)1. We partition the unit disk centred at p(u)1 into six unit (π/3)-sectors such
that the line segment [p(u)1, p(u)2] lies along the boundary between two of the
sectors. Note that any of the points in the two sectors incident to [p(u)1, p(u)2]
also lies in the unit disk centred at p(u)2. Figure 1 depicts the construction, with
sectors separated by solid lines. Therefore, the four other sectors together with
the three sectors that partition the unit half-disk centred at p(u)2 are the seven
unit (π/3)-sectors that we desire. 
�
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Fig. 1. The seven sectors
one of which must contain
p(v)1 or p(v)2.

It turns out that for Theorem4 we can take the
same approach as in Proposition 1, except with an
ordering that is more subtle and an analysis that
is substantially longer and more difficult. Since our
arguments are “only” geometric, we feel that the
ratio 6 can be improved, especially in Theorem 1. It
should be possible to exploit the structural graph
properties of L(G)2, but our efforts have so far
failed. This might be difficult.

2.1 Proof Outline of Theorem4

Let G = (V,E) be a twin unit disk graph. Fix any
embedding p : V → R

2 × R
2 of G in the plane.

Without loss of generality, we may assume that this
embedding satisfies for all u ∈ V that p(u)1 is before
p(u)2 according to the lexicographic order on R

2.
We define a preorder � on V as follows. For any u, v ∈ V ,

u � v if and only if p(u)1 is not after p(v)1 according to the lexicographic order on R
2.

Note that if p(u)1 = p(v)1, then both u � v and v � u.
For any u ∈ V , we define N−(u) as the set of v ∈ V , v = u such that

v ∈ N(u) and v � u. It suffices to show that |N−(u)| ≤ 6(ω(G) − 1) for each
u ∈ V .

Fix such a vertex u ∈ V . Let h+ be the open half-plane of points above p(u)1
and h− the closed half-plane of points not above p(u)1. For a point w, let Cw

(respectively Dw) denote the circle (respectively the closed disk) with radius 1
centred at w. Let X(u) be the union of X−(u) := (Dp(u)1 ∪ Dp(u)2) ∩ h− and
the set X+(u) of elements of (Dp(u)1 ∪ Dp(u)2) ∩ h+ at distance at most 1 from
a point of h− \ (Dp(u)1 ∪ Dp(u)2).

Similarly to the proof of Proposition 1, we aim to cover X(u) with six sections
that each correspond to a clique of G. Instead of requiring that these sections
have diameter at most 1 (as we do for proving Proposition 1), we make use of
sections having the following weaker property:

a section S ⊆ R
2 is small if it can be partitioned into two parts S+ and S−

of diameter at most 1 and such that

1. S+ ⊆ h+; and
2. for all points q ∈ S−, p2 ∈ S+ and p1 ∈ h− \ (Dp(u)1 ∪ Dp(u)2) such that p1

and p2 are at distance at most 1, the point q is at distance at most 1 from p1
or p2.

This property is always satisfied if S has diameter at most 1, as it then suffices
to take S− := S and S+ := ∅.
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Let S = S+ ∪ S− be a section, with S+ ⊆ h+. Let C be the set of vertices
v such that one of p(v)1 and p(v)2 is in S−, or (p(v)2 ∈ S+ and p(v)1 ∈ h− \
(Dp(u)1 ∪ Dp(u)2)). We say that S induces a clique if (v, w ∈ C =⇒ vw is an
edge).

Let S be a small section, with S+ and S− as in the definition. Then S induces
a clique. Indeed, take v, w ∈ C as defined above, and let us prove that vw is an
edge. If p(v) and p(w) both contain a point in S+ or both contain a point in S−,
then these points are at distance at most 1 because S+ and S− have diameter
at most 1, which implies that vw is an edge. Using the definition of C, we may
therefore assume without loss of generality that p(v)1 ∈ S−, p(w)2 ∈ S+ and
p(w)1 ∈ h− \ (Dp(u)1 ∪ Dp(u)2), which implies that p(v)1 is at distance at most
1 from p(w)1 or p(w)2 because S is small.

The theorem then follows from the following statement:

Claim 1. For every vertex u, X(u) can be covered by six sections S1, . . . , S6 that
induces a clique.

Let us first see why Claim 1 implies |N−(u)| ≤ 6(ω(G) − 1) (and therefore
Theorem 4). For each section Si, let S+

i and S−
i be as in the definition of inducing

a clique. For every i ∈ {1, . . . , 6}, let Ci be the set of vertices v such that one
of p(v)1 and p(v)2 is in S−

i , or (p(v)2 ∈ S+
i and p(v)1 ∈ h− \ (Dp(u)1 ∪ Dp(u)2)).

By definition, all Ci are cliques.
It remains to show that

⋃6
i=1 Ci covers N−(u). A vertex v is in N−(u) if

p(v)1 ∈ h− and one of p(v)1 and p(v)2 is in Dp(u)1 ∪ Dp(u)2 . In the case where
one of p(v)1 and p(v)2 is in S−

i for some i ∈ {1, . . . , 6}, then v ∈ Ci. We can
now assume that p(v) does not intersect

⋃6
i=1 S−

i . We know that S+
i ⊆ h+ for

every i ∈ {1, . . . , 6} and that
⋃6

i=1 Si covers X−(u), so p(v) does not intersect
X−(u) = (Dp(u)1 ∪ Dp(u)2) ∩ h−. This enforces that p(v)1 ∈ h−\(Dp(u)1 ∪ Dp(u)2)
and p(v)2 ∈ (Dp(u)1 ∪ Dp(u)2) ∩ h+. Since p(v)1 and p(v)2 are at distance
at most 1, the point p(v)2 belongs to X+(u), so there is i ∈ {1, . . . , 6} with
p(v)i ∈ S+

i . As a consequence, the vertex v is in the clique Ci.
It remains to prove Claim 1. Due to space limitations, parts of this proof are

postponed to Appendix. In the following, we mainly describe the construction
of the sections.

Construction of the Sections. Let ρ be the length and θ the argument of
the vector p(u)2 − p(u)1. Without loss of generality, we may assume that the
position of p(u)1 is (0, 0) and that both coordinates of p(u)2 are not negative,
so that 0 ≤ θ ≤ π/2. The position of p(u)2 is therefore ρ(cos(θ), sin(θ)).

We have three different constructions of the sections S1, . . . , S6 depending
on θ and ρ. We distinguish a first case when θ ≤ π/6, a second case when π/6 < θ
and ρ ≤ 2 cos θ, and a last one when 2 cos θ < ρ.

If w1, w2 and w3 are three points pairwise at distance 1, the thickened triangle
with vertices w1, w2 and w3 is the area Dw1 ∩ Dw2 ∩ Dw3 . A thickened triangle
has diameter 1.
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First Case: 0 ≤ θ ≤ π/6

Claim 2. Sections S4 and S6 have diameter at most 1 and Sections S1 and S2

are small.

Fig. 2. The six sections when 0 ≤ θ < π/6. (Color figure online)

Let a be the lower intersection of Cp(u)1 and Cp(u)2 . Let a′ be the point
(−1, 0) (so a′ is the leftmost intersection of Cp(u)1 and the abscissa line). Like-
wise, let a′′ be the point p(u)2 + (1, 0). Figure 2 shows the six sections we
are defining now. Section S1 (in yellow in Fig. 2) is defined as the intersection
between Dp(u)1 , Da′ , and the half-plane above the line through p(u)1 and the
point b := (−√

3/2,−1/2). Let Section S2 (in red in Fig. 2) be the intersection
between Dp(u)2 , Da′′ and the half-plane above the line through p(u)2 and the
point c := p(u)2 + (

√
3/2,−1/2). Let Section S3 (in purple) be the thickened

triangle with vertices p(u)1, b and q1 := (0,−1). Section S4 (in green) is defined
as Dp(u)1 ∩ Dp(u)2 ∩ Da \ (Db ∪ Dc). Section S5 in cyan is the thickened triangle
with vertices p(u)2, c and q2 := p(u)2 +(0,−1). Lastly, let S6 = X(u)\ (

⋃5
i=1 Si)

be the remaining section.
These six sections cover X(u) by the definition of S6. Sections S3 and S5

are thickened triangles so they have diameter 1. To prove the proposition in this
case, it is enough to show the following property.

For some values of ρ (for instance ρ = 1), when θ is greater than π/6, the
Euclidean distance between q1 and a is bigger than 1, hence so is the diameter
of S6. Therefore we have different constructions when π/6 < θ.

Second Case: π/6 < θ and ρ ≤ 2 cos(θ). Figure 3 depicts the six sec-
tions. A simple calculus shows that the position of a is 1

2 (ρ cos(θ) +√
4 − ρ2 sin(θ), ρ sin(θ) −

√
4 − ρ2 cos(θ). The fact that ρ is at most 2 cos(θ)

implies that the point a is not above the abscissa line. We denote by r the point
(−1, 0). The conditions π/6 < θ and ρ ≤ 2 cos(θ) do not imply anything on
whether (Dp(u)2 ∩ Dr) \ Dp(u)1 is empty or not. Let s1 be the highest point in
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Fig. 3. The six sections when π/6 < θ and ρ ≤ 2 cos θ. (Color figure online)

(Dp(u)1 ∩ Dr) \ Dp(u)2 . Note that if (Dp(u)2 ∩ Dr) \ Dp(u)1 is empty then the
position of s1 is (−1/2,

√
3/2). Let s2 be at the left intersection of Cs1 and the

abscissa line. Let s′
2 be the translated of s2 by the vector (1, 0). Let s3 be the

intersection of Cp(u)1 and Cs′
2

that is below the abscissa line (if p(u)1 and s′
2 have

the same position, the position of s3 is set to (0,−1)). Let s4 (respectively s5)
be the point at the intersection of Cp(u)1 and Cs3 that is on left side (respectively
right side) of the line (p(u)1, s3). Observe that if (Dp(u)2 ∩ Dr)\Dp(u)1 is empty
then the positions of s2, s′

2, s3, s4 and s5 are respectively (−1, 0), (0, 0), (0,−1),
(−1/2,−√

3/2) and (1/2,−√
3/2). Let S1 (in yellow) be the section defined as

the union of Dp(u)1 ∩ Dr ∩ h+ and the intersection between Dp(u)1 , h− and the
half-plane above the line (p(u)1, s4). If (Dp(u)2 ∩ Dr)\Dp(u)1 is empty, then S1 is
exactly as in the precedent case. Let S2 (in blue) be the thickened triangle with
vertices p(u)1, s3 and s4. Let S3 (in purple) be the thickened triangle with ver-
tices p(u)1, s3 and s5. Let p be the rightmost point of Cp(u)2 with height 1. Let q
be the point of Cp(u)2 such that pqp(u)2 is a clockwise equilateral triangle (there-
fore with sides of length 1). Let S4 (in red) be the thickened triangle with these
three vertices. Let S5 (in green) be the thickened triangle with vertices p(u)2, q,
and a third vertex inside the purple section S3. Let S6 = X(u) \ (

⋃5
i=1 Si) (in

grey) be the remaining section.
It is clear from the definition of S6 that

⋃6
i=1 Si covers X(u). Sections S2,

S3, S4 and S5 have diameter 1 as thickened triangles. To prove the proposition
in this case, it suffices to check the following.

Claim 3. Section S1 induces a clique and S6 is small.

When θ < π/6, for some values of ρ, the section S6 is too big, and does not
induce a clique. Likewise, for some values of ρ and θ with 2 cos θ < ρ, S6 is too
big. This is why we use different constructions for the two other cases.
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Fig. 4. The six sections when 2 cos θ < ρ. (Color
figure online)

Third Case: 2 cos(θ) < ρ.
The construction for this
last case is illustrated in
Fig. 4. Note that 2 cos(θ) <
ρ implies that θ is larger
than π/3. It also implies
that the point a is above
the abscissa line. The con-
struction of the six sec-
tions is more complicated in
this last case. We denote
by r0, r1, r2 and r3 the
points (−1, 0), (−1/2,−√

3/2),
(1/2,−√

3/2) and (1, 0). Let
S1 (in blue) be the thickened
triangle with vertices p(u)1,
r0 and r1. Let S2 (in green)
be the thickened triangle with
vertices p(u)1, r1 and r2 and
let S3 (in red) be the thick-
ened triangle with vertices
p(u)1, r2 and r3. Let b be the upper intersection between the circles Cp(u)2 and
Cr0 . Note that the circles Cb and Cr1 intersect in r0, and let c be their second
intersection. Let c′ be the translated of c by the vector (1, 0). Section S4 (in
purple) is defined as the thickened triangle with vertices c, c′ and a third point
uniquely defined with positive y-coordinate. Let S5 (in yellow) be the thickened
triangle with vertices r0, b and a point inside the section S4 (in purple). Set
S6 = X(u) \ (

⋃5
i=1 Si).

Sections S1, S2, S3, S4 and S5 have diameter 1 because they are thickened
triangles. To conclude this case and finish the proof, it suffices to show the
following property.

Claim 4. Section S6 is small.

For this construction, b must not be inside Dp(u)1 , otherwise the distance
between r0 and c would be greater than 1. This is always true when 2 cos θ <
ρ, but not guaranteed for other values. For instance if ρ = 1, then b is not
inside Dp(u)1 if and only if 2 cos(θ) ≤ ρ, i.e. θ ≥ π/3, which is why we use this
construction only for this case.

The proofs of Claims 2, 3 and 4 can be found in Appendix.

3 An Online 8-competitive algorithm

Our focus in this section is to prove Theorem 5, which directly implies Theo-
rem 2. As alluded to earlier, we make use of the following kissing number-type
result, which may be of independent interest. The corresponding problem in R

3

is interesting and may be difficult.
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Theorem 6. Let x1 and x2 be two points in R
2 within Euclidean distance 1.

Let Y be a collection of points in R
2 pairwise of Euclidean distance greater than

1 such that either y and x1 or y and x2 are within Euclidean distance 1 for any
y ∈ Y . Then |Y | ≤ 8.

Fig. 5. Theorem 6 is tight.

Note that this result is sharp as illus-
trated in Fig. 5. Take x1 and x2 to be
at Euclidean distance 1, and choose the
8 points in Y as in a partial optimal
circle packing configuration. Now it is
possible to shift one of the vertices that
are at Euclidean distance 1 from both
x1 and x2, and to perturb slightly the
position of the others, so that all points
in Y are pairwise of Euclidean distance
greater than 1. Before giving the proof
of Theorem 6, we first show how it readily implies Theorem 5.

Proof (Proof of Theorem 5). Let G = (V,E) be a twin unit disk graph and fix
an embedding p : V → R

2 × R
2. Let u ∈ V be a vertex of degree Δ(G) and

consider the set N(u) of neighbours of u in G. Without loss of generality, we
may assume that for any v ∈ N(u) either p(v)1 and p(u)1 or p(v)1 and p(u)2
are within distance 1. It follows from Theorem6 that the subgraph of G induced
by N(u) has no independent set with more than 8 vertices. We know that this
induced subgraph can be properly coloured with at most χ(G) − 1 colours. We
therefore conclude that Δ(G)/8 = |N(u)|/8 ≤ χ(G) − 1, which completes the
proof. 
�

We prove Theorem 6 through a succession of geometric lemmas. In these
lemmas, we treat points in R

2 as hypothetical vertices of an embedded unit disk
graph, so we speak of pairs of them as adjacent, i.e. within Euclidean distance
1, or not.

Lemma 1. Let u, v, v′ be points in R
2 such that u and v are adjacent, u and v′

are adjacent, and v and v′ are non-adjacent. If we shift v further from u in the
direction of the line segment [u, v] until u and v are non-adjacent, then v and v′

remain non-adjacent.

Proof. Assume without loss of generality that the position of u is (0, 0) and that
the first position of v is (z, 0) with 0 < z ≤ 1 before going to (1, 0). We denote
the position of v′ as (x, y). As can be deduced from the proof of the Lemma 3.1
in [16], the angle between the line segments [u, v] and [u, v′] is at least π/3.
Thus x ≤ 1/2, and so 2x ≤ 1 + z. Then we obtain 2x(1 − z) ≤ 1 − z2 and so
z2−2xz ≤ 1−2x. We also know (x−z)2+y2 > 1 since v and v′ are non-adjacent.
Now (x − 1)2 + y2 = x2 + 1 − 2x + y2 ≥ x2 + z2 − 2zx + y2 = (x − z)2 + y2 > 1.
Thus the distance between v and v′ is still larger than 1. 
�
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Lemma 2. Let u, v, u′, v′ be points in R
2 such that u and v are adjacent, u

and u′ are adjacent, v and v′ are adjacent, u and v′ are non-adjacent, v and u′

are non-adjacent, and u′ and v′ are non-adjacent. Then one of the following is
true.

– If we shift u′ further from u in the direction of the line segment [u, u′] until
u and u′ are non-adjacent, then u′ remains non-adjacent with v and v′.

– If we shift v′ further from v in the direction of the line segment [v, v′] until v
and v′ are non-adjacent, then v′ remains non-adjacent with u and u′.

Proof. Figure 6 depicts one potential situation covered by Lemma2. Assume
without loss of generality that the position of u is (0, 0) and the position of v
is (1, 0). If the abscissa coordinate of u′ or v′ is not between 0 and 1, then it
is possible to shift this point as claimed. Assume that the abscissa coordinate
of both points is between 0 and 1. Then one must be above the other. Assume
that u′ is above v′, for consistency with Fig. 6. We may also assume that they
are both above the abscissa line, otherwise the claim is immediately true. By
Lemma 1, we know that shifting u′ until its distance to u is 1 will not make it
adjacent to v. Moreover, since the abscissa of u′ and v′ is between 0 and 1, the
line segment [u, u′] goes through the disk with radius 1 centred at v′. As u′ is not
in this disk, and because a disk is convex, shifting u′ as claimed will not return
it to the disk. If instead v′ is above u′, then shifting will instead be possible for
v′ because of the same arguments. 
�

u v

u′

v′

w

• •

•

•

•

Fig. 6. By shifting u′ to the position of w, it remains non-adjacent to v and to v′.

Lemma 3. Let u and u′ be points in R
2 such that u and u′ are adjacent. Let

v1, . . . , v8 be eight pairwise non-adjacent points in R
2 each of which is adjacent

to u or to u′. Then some vi is adjacent to both u and u′.

Proof. We assume that no vi is adjacent to both u and u′, and show that this
leads to a contradiction. Without loss of generality, assume that the position
of u is (0, 0) and the position of u′ is (d, 0) with 0 < d ≤ 1. Denote by Vu

(respectively Vu′) the set of those vi adjacent to u (respectively u′). We add to
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the abscissa of u′ and all the points in Vu′ the value 1−d. Thus u and u′ are still
adjacent and the points in Vu′ are still adjacent to u′. Note that the bisector of
the line segment [u, u′] separates the points in Vu from the points in Vu′ . Indeed
if a point is in Vu, it is closer to u than u′, and vice versa. Thus the points {vi}i

are still pairwise non-adjacent. Now the position of u′ is (1, 0).
The star graph K1,6 is not a unit disk graph. Thus since the points in

Vu ∪ {u′} are pairwise non-adjacent and adjacent to u, we have |Vu| < 5. By the
same reasoning we obtain |Vu′ | < 5. Thus we have |Vu| = |Vu′ | = 4. Without loss
of generality, assume that we have Vu = {v1, v2, v3, v4} and Vu′ = {v5, v6, v7, v8}.
We order the points in Vu. For a point v we will consider the oriented angle
between the line segments [u, v] and [u, u′] taken in [0, 2π). Note that two points
cannot have the same angle value. Thus we can order the points from the small-
est angle value to the largest. We apply the same process to the points in Vu′ . For
a point v′, we consider the angle between [u′, v′] and [u′, u]. Without loss of gen-
erality we can assume that the points in Vu appear in the right order. Figure 7a
depicts the ordering. (Of course, since we are going to show a contradiction, the
graph in the figure cannot satisfy the assumptions we have taken.)

Now we move the point v2 further from u in the direction of the line segment
[u, v2] until the distance between v2 and u is 1. By Lemma 1, we know that
when v2 is shifted in this way, it will not become adjacent to any other point in
{vi}i. We apply the same process to v3, v6 and v7. By Lemma 2, it is possible
to shift either v1 or v8, and either v4 or v5. Without loss of generality, assume
that it is possible to shift v1. Denote by θ ∈ [0, 2π) the angle between the line
segments [u, v1] and [u, u′]. By the same arguments as above, we have θ > π/3.
Thus the angle between [u, v4] and [u, u′] taken in [0, 2π) is larger than θ + π.
Let us consider the angle between [u′, v7] and the abscissa line. It is less than
θ − π/3, because otherwise v8 must be adjacent to u or v1, as we prove in
the next paragraph. Thus the worst case is when the angle is exactly equal to
θ −π/3. We have u at position (0, 0), u′ at (1, 0), v1 at (cos(θ), sin(θ)) and v7 at
(1 + cos(θ − π/3), sin(θ − π/3)).

We move v8 so that it is at distance 1 from both u and v7. This is theoretically
not possible because v8 is not adjacent to those points, but we are going to show
that even in this case we have v8 at distance 1 from v1. Since this position is the
furthest v8 could be from v1, this shows a contradiction, and thus that the angle
between [u′, v7] and the abscissa line must be less than θ − π/3. Let us compute
the position (x, y) of v8. We have x2 + y2 = 1 and (x − 1 − cos(θ − π/3))2 + (y −
sin(θ − π/3))2 = 1. There are two possible solutions. One is (1, 0), which is the
position of u′, and the other is the position of v8: (cos(θ − π/3), sin(θ − π/3)).
Figure 7b depicts the position of the points. But then the distance between v1
and v8 is equal to 1. Thus, even if we take v8 to be the furthest possible from
v1, they are still too close. Thus we know that the angle between [u′, v7] and
the abscissa line taken in [0, 2π) must be larger than θ − π/3. Hence the angle
between [u′, v6] and the same line taken into [0, 2π) must be less than θ + 4π/3,
and the angle between [u′, v5] and the same line must be less than θ + π. We
have seen that either v4 or v5 can be pushed until their distance to u or u′ is 1.
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If it is possible for v4 we can apply what we did before to v4 and v6 to obtain a
contradiction. If it is possible for v5, we then apply the reasoning to v3 and v5.
In any case we have a contradiction, which concludes the proof of the lemma.
�
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(a) Ordering of the vertices.

• •
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u u′

v7v8

v1

(b) Position of the considered vertices at the
end of the proof.

Fig. 7. Illustration of Lemma 3

Proof (Proof of Theorem 6). Let Y in the statement of the theorem be
{y1, . . . , y9} for a contradiction. For any eight points in Y , Lemma 3 guaran-
tees that at least one of them is within Euclidean distance 1 of both x1 and x2.
Without loss of generality, we may thus assume that both y1 and y2 are within
Euclidean distance 1 to both x1 and x2. Of the seven remaining points of Y ,
at least four of them must be within Euclidean distance 1 of, say, x1, by the
pigeonhole principle. But then x1 is within Euclidean distance 1 of six points
that are pairwise of Euclidean distance greater than 1, which is impossible. 
�
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Abstract. We consider a single-machine scheduling problem with bipar-
tite AND/OR-constraints that is a natural generalization of (precedence-
constrained) min-sum set cover. For min-sum set cover, Feige, Lovàsz
and Tetali [15] showed that the greedy algorithm has an approximation
guarantee of 4, and obtaining a better approximation ratio is NP-hard.
For precedence-constrained min-sum set cover, McClintock, Mestre and
Wirth [30] proposed an O(

√
m)-approximation algorithm, where m is the

number of sets. They also showed that obtaining an algorithm with per-
formance O(m1/12−ε) is impossible, assuming the hardness of the planted
dense subgraph problem.

The more general problem examined here is itself a special case of
scheduling AND/OR-networks on a single machine, which was studied
by Erlebach, Kääb and Möhring [13]. Erlebach et al. proposed an approx-
imation algorithm whose performance guarantee grows linearly with the
number of jobs, which is close to best possible, unless P = NP.

For the problem considered here, we give a new LP-based approxi-
mation algorithm. Its performance ratio depends only on the maximum
number of OR-predecessors of any one job. In particular, in many rele-
vant instances, it has a better worst-case guarantee than the algorithm by
McClintock et al., and it also improves upon the algorithm by Erlebach
et al. (for the special case considered here).

Yet another important generalization of min-sum set cover is gener-
alized min-sum set cover, for which a 12.4-approximation was derived
by Im, Sviridenko and Zwaan [23]. Im et al. conjecture that generalized
min-sum set cover admits a 4-approximation, as does min-sum set cover.
In support of this conjecture, we present a 4-approximation algorithm
for another interesting special case, namely when each job requires that
no less than all but one of its predecessors are completed before it can
be processed.
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1 Introduction

In this paper, we consider the problem of scheduling jobs subject to AND/OR-
precedence constraints on a single machine. These scheduling problems are
closely related to (precedence-constrained) min-sum set cover [14,15,30] and gen-
eralized min-sum set cover [3,4,23,37]. Let N = A∪̇B be the set of n jobs with
processing times pj ≥ 0 and weights wj ≥ 0 for all j ∈ N . The precedence con-
straints are given by a directed graph G = (N,E∧ ∪̇ E∨), where (i, j) ∈ E∧ ∪E∨
means that job i is a predecessor of job j. The arcs in E∧ ⊆ (A × A) ∪ (B × B)
and E∨ ⊆ A × B represent AND- and OR-precedence constraints, respectively.
That is, a job in N requires that all its predecessors w.r.t. E∧ are completed
before it can start. A job in B, however, requires that at least one of its pre-
decessors w.r.t. E∨ is completed beforehand. The set of OR-predecessors of job
b ∈ B is P(b) := {a ∈ A | (a, b) ∈ E∨}. Note that P(b) might be empty for some
b ∈ B.

A schedule C is an ordering of the jobs on a single machine such that each
job j is processed non-preemptively for pj units of time, and no jobs overlap.
The completion time of j ∈ N in the schedule C is denoted by Cj . A schedule
C is feasible if (i) Cj ≥ max{Ci | (i, j) ∈ E∧} + pj for all j ∈ N (AND-
constraints), and (ii) Cb ≥ min{Ca | a ∈ P(b)} + pb for all b ∈ B with P(b) �= ∅
(OR-constraints). The goal is to determine a feasible schedule C that minimizes
the sum of weighted completion times,

∑
j∈N wjCj . We denote this problem by

1 | ao-prec = A ∨̇ B | ∑
wjCj , in an extension of the notation of Erlebach, Kääb

and Möhring [13] and the three-field notation of Graham et al. [18]. This schedul-
ing problem is NP-hard. In fact, it generalizes a number of NP-hard problems,
as discussed below. Therefore, we focus on approximation algorithms. Let Π be
a minimization problem, and ρ ≥ 1. Recall that a ρ-approximation algorithm for
Π is a polynomial-time algorithm that returns, for every instance of Π, a feasible
solution with objective value at most ρ times the optimal objective value. If ρ
does not depend on the input parameters, we call the algorithm a constant-factor
approximation.

Due to space limitations, we defer all proofs to the journal version of this
paper. As already indicated, the scheduling problem we consider is motivated by
its close connection to min-sum covering problems. Figure 1 gives an overview of
the related problems, which we describe briefly in the following paragraphs.

(Min-Sum) Set Cover. The most basic problem is min-sum set cover (MSSC),
where the input consists of a hypergraph with vertices V and hyperedges E .
Given a linear ordering of the vertices f : V → |V |, the covering time of hyper-
edge e ∈ E is defined as f(e) := minv∈e f(v). The goal is to find a linear ordering
of the vertices that minimizes the sum of covering times,

∑
e∈E f(e). MSSC is

indeed a special case of 1 | ao-prec = A ∨̇ B | ∑
wjCj : we introduce a job in

A for every vertex of V and a job in B for every hyperedge in E , and we set
pa = wb = 1 and pb = wa = 0 for all jobs a ∈ A and b ∈ B. Further, we let
E∧ = ∅ and introduce an arc (a, b) ∈ E∨ in the precedence graph, if the vertex
corresponding to a is contained in the hyperedge corresponding to b.
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MSSC was first introduced by Feige, Lovàsz and Tetali [14], who observed
that a simple greedy heuristic due to Bar-Noy et al. [6] yields an approximation
factor of 4. Feige et al. [14] simplified the analysis via a primal/dual approach
based on a time-indexed linear program. In the journal version of their paper,
Feige et al. [15] also proved that it is NP-hard to obtain an approximation factor
strictly better than 4. The special case of MSSC where the hypergraph is an
ordinary graph is called min-sum vertex cover (MSVC), and is APX-hard [15].
It admits a 2-approximation that is also based on a time-indexed linear program,
and uses randomized rounding [14,15].

Munagala et al. [31] generalized MSSC by introducing non-negative costs cv

for each vertex v ∈ V and non-negative weights we for each hyperedge e ∈ E .
Here, the goal is to minimize the sum of weighted covering costs,

∑
e∈E wef(e),

where the covering cost of e ∈ E is defined as f(e) := minv∈e

∑
w:f(w)≤f(v) cw.

The authors called this problem pipelined set cover, and proved, among other
things, that the natural extension of the greedy algorithm of Feige et al. for
MSSC still yields a 4-approximation. Similar to MSSC, we can model pipelined
set cover as an instance of 1 | ao-prec = A ∨̇ B | ∑

wjCj .
Munagala et al. [31] asked whether there is still a constant-factor approxi-

mation for pipelined set cover if there are AND-precedence constraints in form
of a partial order ≺ on the vertices of the hypergraph. That is, any feasible
linear ordering f : V → |V | must satisfy f(v) < f(w), if v ≺ w. This ques-
tion was partly settled by McClintock, Mestre and Wirth [30]. They presented
a 4

√|V |-approximation algorithm for precedence-constrained MSSC, which is
the extension of MSSC where E∧ = {(a′, a) ∈ A × A | a′ ≺ a}. The algorithm
uses a

√|V |-approximative greedy algorithm on a problem called max-density
precedence-closed subfamily. The authors also propose a reduction from the so-
called planted dense subgraph conjecture [7] to precedence-constrained MSSC.
Roughly speaking, the conjecture says that for all ε > 0 there is no polynomial-
time algorithm that can decide with advantage > ε whether a random graph
on m vertices is drawn from (m,mα−1) or contains a subgraph drawn from
(
√

m,
√

m
β−1) for certain 0 < α, β < 1.1 If the conjecture holds true, then this

implies that there is no O(|V |1/12−ε)-approximation for precedence-constrained
MSSC [30].

The ordinary set cover problem is also a special case of 1 | ao-prec = A ∨̇ B |∑
wjCj : we introduce a job in A with pa = 1 and wa = 0 for every set, a job in

B with pb = wb = 0 for every element, and an arc (a, b) ∈ E∨ in the precedence
graph, if the set corresponding to a contains the element corresponding to b.
Further, we include an additional job x in B with px = 0 and wx = 1, and
introduce an arc (b, x) ∈ E∧ for every job b ∈ B \ {x}. If the set cover instance
admits a cover of cardinality k, we first schedule the corresponding set-jobs in A,
so all element-jobs are available for processing at time k. Then job x can complete
at time k, which gives an overall objective value of k. Similarly, any schedule
with objective value equal to k implies that all element-jobs are completed before

1 A random graph drawn from (m, p) contains m vertices and the probability of the
existence of an edge between any two vertices is equal to p.



Precedence-Constrained Scheduling and Min-Sum Set Cover 173

time k, so there exists a cover of size at most k. Recall that set cover admits
an ln(m)-approximation [25,28], where m is the number of elements, and this is
best possible, unless P = NP [12].

A New Approximation Algorithm. W.l.o.g., suppose that E∧ is transi-
tively closed, i.e. (i, j) ∈ E∧ and (j, k) ∈ E∧ implies (i, k) ∈ E∧. We may
further assume that there are no redundant OR-precedence constraints, i.e. if
(a, b) ∈ E∨ and (a′, a) ∈ E∧, then (a′, b) /∈ E∨. Otherwise we could remove the
arc (a, b) from E∨, since any feasible schedule has to schedule a′ before a. Let
Δ := maxb∈B |P(b)| be the maximum number of OR-predecessors of a job in B.
One can see that Δ is bounded from above by the cardinality of a maximum
independent set in the induced subgraph on E∧ ∩ (A × A). Note that Δ is often
relatively small compared to the total number of jobs. For instance, if the prece-
dence constraints are derived from an underlying graph, where the predecessors
of each edge are its incident vertices (as in MSVC), then Δ = 2. Our first result
is the following.

Theorem 1. There is a 2Δ-approximation algorithm for 1 | ao-prec = A ∨̇ B,
pj ∈ {0, 1} | ∑

wjCj. Moreover, for any ε > 0, there is a (2Δ + ε)-approximation
algorithm for 1 | ao-prec = A ∨̇ B | ∑

wjCj.

In Sect. 2, we first exhibit a randomized approximation algorithm for
1 | ao-prec = A ∨̇ B, pj ∈ {0, 1} | ∑

wjCj , i.e. if all processing times are 0/1, and
then we show how to derandomize it. This proves the first part of Theorem1.
A natural question that arises in the context of real-world scheduling problems
is whether approximation guarantees for 0/1-problems still hold for arbitrary
processing times. As observed by Munagala et al. [31], the natural extension of
the greedy algorithm for MSSC still works, if the processing times of jobs in
A are arbitrary, but all jobs in B have zero processing time, and there are no
AND-precedence constraints. Once jobs in B have non-zero processing times,
the analysis of the greedy algorithm fails. In fact, it is not clear whether there
are constant-factor approximations. Our algorithm can be extended to arbitrary
processing times (which proves the second part of Theorem 1) and, additionally,
release dates.

Note that the result of Theorem 1 improves on the algorithm of [30] for
precedence-constrained MSSC in two ways. First, the approximation factor of
2Δ does not depend on the total number of jobs, but on the maximum number
of OR-predecessors of a job in B. In particular, we immediately obtain a 4-
approximation for the special case of precedence-constrained MSVC. Secondly,
the algorithm works for arbitrary processing times, additional AND-precedence
constraints on B × B, and it can be extended to non-trivial release dates of the
jobs. Note that, in general, Δ and

√|V | are incomparable. In most practically
relevant instances, Δ should be considerably smaller than

√|V |.
It is important to highlight that the approximation factor of 2Δ in Theo-

rem 1 does not contradict the conjectured hardness of precedence-constrained
MSSC stated in [30]. The set A in the reduction of [30] from the planted dense
subgraph problem contains a job for every vertex and every edge of the random
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graph on m vertices. Each vertex-job consists of the singleton {0} whereas each
edge-job is a (random) subset of [q] := {1, . . . , q}, for some non-negative inte-
ger q. Every element in [q] appears in expectation in mp2 many edge-jobs, where
p is a carefully chosen probability. If we interpret this as a scheduling problem,
we can remove the dummy element 0 from the instance. So the maximum inde-
gree of a job in B = [q] (maximum number of appearances of the element) is
Δ ≈ mp2 ≥ m

1
4 , see [30]. Hence the gap Ω(m

1
8 ) in the reduction translates

to a gap of Ω(
√

Δ) in our setting. Therefore, if the planted dense subgraph con-
jecture [7] holds true, then there is no O(Δ1/3−ε)-approximation algorithm for
1 | ao-prec = A ∨̇ B | ∑

wjCj for any ε > 0.
Note that in the reduction from set cover to 1 | ao-prec = A ∨̇ B | ∑

wjCj

the parameter Δ equals the maximum number of appearances of an element in
the set cover instance. Hochbaum [22] presented an approximation algorithm for
set cover with a guarantee of Δ. Hence the 2Δ-approximation of Theorem1 does
not contradict the hardness of obtaining a (1 − ε) ln(m)-approximation for set
cover [12]. If the planted dense subgraph conjecture [7] is false, then constant-
factor approximations for 1 | ao-prec = A ∨̇ B | ∑

wjCj with E∧ ⊆ A × A may
be possible. However, the reduction from set cover shows that, in general, we
cannot get a constant-factor approximation if E∧ ∩ (B × B) �= ∅.

Fig. 1. Overview of related problems and results. An arrow from problem Π1 to Π2

indicates that Π2 generalizes Π1. Problems in rectangular frames are explicitly consid-
ered in this paper, and our results are depicted in bold. Lower bounds indicated with
“??” are assuming hardness of the planted dense subgraph problem [7].

Generalized Min-Sum Set Cover. A different generalization of MSSC, called
generalized min-sum set cover (GMSSC), was introduced by Azar, Gamzu and
Yin [3]. The input of GMSSC is similar to MSSC, but, in addition, each hyper-
edge e ∈ E is associated with a covering requirement κ(e) ∈ [|e|]. Given a linear
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ordering of the vertices, the covering time of e ∈ E is now the first point in time
when κ(e) of its incident vertices appear in the linear ordering. The goal is again
to minimize the sum of covering times over all hyperedges.

In our notation, this means that E∧ = ∅ and each job b ∈ B requires at least
κ(b) ∈ [|P(b)|] of its OR-predecessors to be completed before it can start. The
extreme cases κ(b) = 1 and κ(b) = |P(b)| are MSSC and the minimum latency set
cover problem. The latter is, in fact, equivalent to single-machine scheduling with
AND-precedence constraints [40]. Over time, several constant-factor approxima-
tions for GMSSC were proposed. Bansal, Gupta and Krishnaswamy [4] presented
an algorithm with an approximation guarantee of 485, which was improved to 28
by Skutella and Williamson [37]. Both algorithms are based on the same time-
indexed linear program, but use different rounding techniques, namely standard
randomized rounding [4] and α-points [37], respectively.

The currently best-known approximation ratio for GMSSC is 12.4, due to
Im, Sviridenko and Zwaan [23]. However, Im et al. [23] conjecture that GMSSC
admits a 4-approximation. By adapting the proof of Theorem1, we obtain a
4-approximation for GMSSC if κ(b) = max{|P(b)| − 1, 1} for all b ∈ B. To the
best of the authors’ knowledge, this case, which we call all-but-one MSSC, was
not considered before. Here, each job (with more than one predecessor) needs
at least all but one of them to be completed before it can start. This is a nat-
ural special case inbetween MSSC and AND-precedence constrained scheduling
(where κ(b) = 1 and κ(b) = |P(b)|, respectively). Note that all-but-one MSSC
generalizes MSVC. The algorithm of Theorem2 is described in Sect. 3.

Theorem 2. There is a 4-approximation algorithm for all-but-one MSSC.

Related Work on Scheduling Problems. The first polynomial-time algo-
rithm for scheduling jobs on a single machine to minimize the sum of weighted
completion times is due to Smith [38]. Once there are AND-precedence con-
straints, the problem becomes strongly NP-hard [27]. The first constant-factor
approximation for AND-precedence constraints was proposed by Hall, Shmoys
and Wein [20] with an approximation factor of 4+ε. Their algorithm is based on
a time-indexed linear program and α-point scheduling with a fixed value of α.
Subsequently, various 2-approximations based on linear programs [10,19,34] as
well as purely combinatorial algorithms [8,29] were derived. Assuming a variant
of the Unique Games Conjecture of Khot [26], Bansal and Khot [5] showed that
the approximation ratio of 2 is essentially best possible.

If the precedence constraints are of AND/OR-structure, then the problem
does not admit constant-factor approximations anymore. Let 0 < c < 1

2 and
γ = (log log n)−c. It is NP-hard to approximate the sum of weighted comple-
tion times of unit processing time jobs on a single machine within a factor of
2log

1−γ n, if AND/OR-precedence constraints are involved [13]. The precedence
graph in the reduction consists of four layers with an OR/AND/OR/AND-
structure. Erlebach, Kääb and Möhring [13] also showed that scheduling the jobs
in order of non-decreasing processing times (among the available jobs) yields an
n-approximation for general weights and a

√
n-approximation for unit weights,
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respectively. It can easily be verified that 1 | ao-prec = A ∨̇ B | ∑
wjCj is a spe-

cial case of the problem considered in [13].
Scheduling unit processing time jobs with OR-precedence constraints only

on parallel machines to minimize the sum of completion times can be solved in
polynomial time [24]. However, once we want to minimize the sum of weighted
completion times, already the single-machine problem with unit processing times
becomes strongly NP-hard [24]. We strengthen this result and show that even
more restricted special cases are strongly NP-hard already.

Theorem 3. 1 | ao-prec = A ∨̇ B, pj ∈ {0, 1} | ∑
Cj and 1 | ao-prec = A ∨̇ B,

pj = 1 | ∑
wjCj with wj ∈ {0, 1} are NP-hard, even if E∧ = ∅.

Note that the latter problem is a special case of the problem considered
in [24], where it was denoted by 1 | or-prec, pj = 1 | ∑

wjCj , and that 1 |
ao-prec = A ∨̇ B, pj = 1 | ∑

Cj is trivial.

Our Techniques and LP Relaxations. The algorithms that lead to The-
orems 1 and 2 are based on time-indexed linear programs and the concept of
random α-point scheduling, similar to, e.g., [9,16,17,19,20,35]. One new ele-
ment here is to not use a global value for α, but to use different values of α
for the jobs in A and B, respectively. This is crucial in order to obtain feasible
schedules. We focus on time-indexed linear programs, since other standard LP
formulations fail in the presence of OR-precedence constraints; see Sect. 4.

More specifically, we show that these relaxations have an integrality gap
that is linear in the number of jobs, even on instances with Δ = 2 and E∧ = ∅.
In Sect. 4.1, we discuss a formulation in linear ordering variables that was intro-
duced by Potts [32]. We present a class of constraints that is facet-defining for the
integer hull (Theorem 4), and show that the integrality gap remains linear, even
if we add these inequalities. In Sect. 4.2, we consider an LP relaxation in comple-
tion time variables, which was proposed by Wolsey [41] and Queyranne [33]. We
first generalize the well-known parallel inequalities [33,41], that fully describe
the polytope in the absence of precedence constraints, to OR-precedence con-
straints (Theorem 5). Then we show that, even though we add an exponential
number of tight valid inequalities, the corresponding LP relaxation still exhibits
a linear integrality gap.

2 A New Generalization of Min-Sum Set Cover

Consider an instance of 1 | ao-prec = A ∨̇ B | ∑
wjCj . W.l.o.g., we may assume

that wa = 0 for all a ∈ A. Otherwise, we can shift a positive weight of a job in
A to an additional successor in B with zero processing time. Further, we may
assume that all data is integer and pj ≥ 1 for every job j ∈ N that has no
predecessors (otherwise such a job can be disregarded). So no job can complete
at time 0 in a feasible schedule.

Suppose that pj ∈ {0, 1} for all j ∈ N , and let T =
∑

j∈N pj be the time
horizon. We consider the time-indexed linear programming formulation of Sousa
and Wolsey [39] with AND-precedence constraints [20]. The binary variable xjt
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indicates whether job j ∈ N completes at time t ∈ [T ] or not. Additionally, we
introduce constraints corresponding to E∨. The resulting linear relaxation is

min
∑

b∈B

T∑

t=1

wb · t · xbt (1a)

s.t.
T∑

t=1

xjt = 1 ∀ j ∈ N, (1b)

∑

j∈N

t∑

s=t−pj+1

xjs ≤ 1 ∀ t ∈ [T ], (1c)

t+pb∑

s=1

xbs −
∑

a∈P(b)

t∑

s=1

xas ≤ 0 ∀ b ∈ B : P(b) �= ∅, ∀ t ∈ [T − pb], (1d)

t+pj∑

s=1

xjs −
t∑

s=1

xis ≤ 0 ∀ (i, j) ∈ E∧, ∀ t ∈ [T − pj ], (1e)

xjt ≥ 0 ∀ j ∈ N, ∀ t ∈ [T ]. (1f)

Constraints (1b) and (1c) ensure that each job is executed and no jobs overlap,
respectively. Note that only jobs with pj = 1 appear in (1c). Constraints (1d)
and (1e) ensure OR- and AND-precedence constraints, respectively. Note that
we can solve LP (1) in polynomial time, since T ≤ n.

Let x be an optimal fractional solution of LP (1). For j ∈ N , we call Cj =∑
t t · xjt its fractional completion time. Note that

∑
j wjCj is a lower bound

on the objective value of an optimal integer solution, which corresponds to an
optimal schedule. For 0 < α ≤ 1 and j ∈ N , we define its α-point, tαj :=
min{t | ∑t

s=1 xjs ≥ α}, to be the first integer point in time when an α-fraction
of j is completed [20].

The algorithm, hereafter called Algorithm 1, works as follows. First, solve
LP (1) to optimality, and let x be an optimal fractional solution. Then, draw
β at random from the interval (0, 1] with density function f(β) = 2β, and set
α = β

Δ . (Choosing α as a function of β is crucial in order to obtain a feasible
schedule in the end. This together with (1d) ensures that at least one OR-
predecessor of a job b ∈ B completes early enough in the constructed schedule.
The density function f(β) = 2β is chosen to cancel out an unbounded term of
1
β in the expected value of the completion time of job b, as in [16,35].) Now,

compute tαa and tβb for all jobs a ∈ A and b ∈ B, respectively. Sort the jobs
in order of non-decreasing values tαa (a ∈ A) and tβb (b ∈ B), and denote this
total order by ≺. If there is b ∈ B and a ∈ P(b) with tαa = tβb , then set a ≺ b.
Similarly, set i ≺ j, if (i, j) ∈ E∧ and tαi = tαj (for i, j ∈ A) or tβi = tβj (for
i, j ∈ B). (Recall that E∧ ⊆ (A×A)∪ (B ×B), so (i, j) ∈ E∧ implies i, j ∈ A or
i, j ∈ B.) Break all other ties arbitrarily. Our main result shows that ordering
jobs according to ≺ yields a feasible schedule and that the expected objective
value of this schedule is at most 2Δ times the optimum.
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Lemma 1. Algorithm 1 is a randomized 2Δ-approximation for 1 | ao-prec =
A ∨̇ B, pj ∈ {0, 1} | ∑

wjCj.

For fixed x and 0 < β ≤ 1 we call the schedule that orders the jobs according
to ≺ the β-schedule of x. Given x and 0 < β ≤ 1, we can construct the β-
schedule in time O(n). We derandomize Algorithm 1 by a simple observation
similar to [9,17]. List all possible schedules that occur as β goes from 0 to 1,
and pick the best one. The next lemma shows that the number of different β-
schedules is not too large.

Lemma 2. For every x there are O(n2) different β-schedules.

Lemmas 1 and 2 together prove the first part of Theorem1. Note that for
scheduling instances that are equivalent to MSVC, Δ = 2. Hence, we immedi-
ately obtain a 4-approximation for these instances.

Corollary 1. There is a 4-approximation algorithm for precedence-constrained
MSVC.

If we use an interval-indexed LP instead of a time-indexed LP, see e.g. [19,20],
then Algorithm 1 can be generalized to arbitrary processing times. This will
prove the second part of Theorem1. Let ε′ > 0, and recall that all processing
times are non-negative integers. Let T =

∑
j∈N pj be the time horizon and L

be minimal such that (1 + ε′)L−1 ≥ T . Set τ0 := 1, and let τl = (1 + ε′)l−1 for
every l ∈ [L]. We call (τl−1, τl] the l-th interval for l ∈ [L]. (The first interval is
the singleton (1, 1] := {1}.) We introduce a binary variable xjl for every j ∈ N
and for every l ∈ [L] that indicates whether or not job j completes in the l-th
interval. If we relax the integrality constraints on the variables we obtain the
following relaxation:

min
∑

b∈B

L∑

l=1

wb · τl−1 · xbl (2a)

s.t.
L∑

l=1

xjl = 1 ∀ j ∈ N, (2b)

∑

j∈N

l∑

k=1

pj xjk ≤ τl ∀ l ∈ [L], (2c)

l∑

k=1

xbk −
∑

a∈P(b)

l∑

k=1

xak ≤ 0 ∀ b ∈ B : P(b) �= ∅, ∀ l ∈ [L], (2d)

l∑

k=1

xjk −
l∑

k=1

xik ≤ 0 ∀ (i, j) ∈ E∧, ∀ l ∈ [L], (2e)

xjl ≥ 0 ∀ j ∈ N, ∀ l ∈ [L] : τl−1 ≥ pj . (2f)

Given ε′, the size of LP (2) is polynomial, so we can solve it in polynomial time.
Again (2b) ensures that every job is executed. Constraints (2c) are valid for any
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feasible schedule, since the total processing time of all jobs that complete within
the first l intervals cannot exceed τl. Constraints (2d) and (2e) model OR- and
AND-precedence constraints, respectively.

Let x be an optimal fractional solution of LP (2), and let Cj =
∑

l τl−1 xjl.
Note that

∑
j wj Cj is a lower bound on the optimal objective value of an integer

solution, which is a lower bound on the optimal value of a feasible schedule. Let
lαj = min{l | ∑l

k=1 xjk ≥ α} be the α-interval of job j ∈ N . This generalizes the
notion of α-points from before.

The algorithm for arbitrary processing times is similar to Algorithm 1. We
call it Algorithm 2 and it works as follows. In order to achieve a (2Δ + ε)-
approximation, solve LP (2) with ε′ = ε

2Δ and let x be an optimal solution.
Then, draw β at random from the interval (0, 1] with density function f(β) = 2β,
and set α = β

Δ . Compute lαa and lβb for all jobs a ∈ A and b ∈ B, respectively.
Sort the jobs in order of non-decreasing values lαa (a ∈ A) and lβb (b ∈ B) and
denote this total order by ≺. If lαa = lβb for some b ∈ B and a ∈ P(b), set a ≺ b.
Similarly, set i ≺ j, if (i, j) ∈ E∧ and lαi = lαj (for i, j ∈ A) or lβi = lβj (for
i, j ∈ B). Break all other ties arbitrarily. Finally, schedule the jobs in the order
of ≺. Note that ≺ extends the order for α-points from Algorithm 1 to α-intervals.

Lemma 3. For any ε > 0, Algorithm 2 is a randomized (2Δ+ε)-approximation
for 1 | ao-prec = A ∨̇ B | ∑

wjCj.

We can derandomize Algorithm 2 similar to Lemma 2. Algorithms 1 and 2
can be further extended to release dates. To do so, we need to add constraints to
LP (1) and LP (2) that ensure that no job completes too early. More precisely,
fix xjt = 0 for all j ∈ N and t < rj + pj in LP (1) and xjl = 0 for all j ∈ N
and τl−1 < rj + pj in LP (2), respectively. When scheduling the jobs according
to ≺, we might have to add idle time in order to respect the release dates. This
increases the approximation factor slightly.

Lemma 4. There is a (2Δ + 2)- and (2Δ + 2 + ε)-approximation algorithm
for 1 | rj , ao-prec = A ∨̇ B, pj ∈ {0, 1} | ∑

wjCj and 1 | rj , ao-prec = A ∨̇ B |∑
wjCj, respectively.

3 The Generalized Min-Sum Set Cover Problem

Recall that we can model GMSSC as a single-machine scheduling problem to
minimize the sum of weighted completion times with job set N = A ∪̇ B, pro-
cessing times pj ∈ {0, 1}, and certain precedence requirements κ(b) for each
job b ∈ B.

In this section, we prove Theorem 2. That is, we give a 4-approximation
algorithm for the special case of GMSSC where κ(b) = max{d(b) − 1, 1} with
d(b) := |P(b)| for all b ∈ B. So each job in B requires all but one of its prede-
cessors to be completed before it can start, unless it has only one predecessor
(all-but-one MSSC ). Suppose we want to schedule a job b ∈ B with d(b) ≥ 2 at
time t ≥ 0. Then we need at least d(b) − 1 of its predecessors to be completed
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before t. Equivalently, for each pair of distinct i, j ∈ P(b) at most one of the two
jobs i, j may complete after t. This gives the following linear relaxation with the
same time-indexed variables as before and time horizon T =

∑
j∈N pj ≤ n.

min
∑

b∈B

T∑

t=1

wb · t · xbt (3a)

s.t.
T∑

t=1

xjt = 1 ∀ j ∈ N, (3b)

∑

j∈N

t∑

s=t−pj+1

xjs ≤ 1 ∀ t ∈ [T ], (3c)

t+pb∑

s=1

xbs −
t∑

s=1

(xis + xjs) ≤ 0 ∀ b ∈ B, ∀i, j ∈ P(b), ∀ t ∈ [T − pb], (3d)

t+pb∑

s=1

xbs −
t∑

s=1

xis ≤ 0 ∀ b ∈ B : P(b) = {i}, ∀ t ∈ [T − pb], (3e)

xjt ≥ 0 ∀ j ∈ N, ∀ t ∈ [T ]. (3f)

Constraints (3b) and (3c) again ensure that each job is processed and no jobs
overlap, respectively. Note that only jobs with non-zero processing time con-
tribute to (3c). If d(b) = 1, then (3e) dominates (3d). It ensures that the unique
predecessor of b ∈ B is completed before b starts. Note that this is a classical
AND-precedence constraint which will not affect the approximation factor.

If d(b) ≥ 2, then (3d) models the above observation. Suppose at most d(b) − 2
predecessors of b complete before time t. Then there are i, j ∈ P(b) such that∑t

s=1(xis + xjs) = 0 ≥ ∑t
s=1 xbs, so b cannot complete by time t.

Note that we can solve LP (3) in polynomial time. Similar to the algorithms
of Sect. 2, we first solve LP (3) and let x̄ be an optimal fractional solution. We
then draw β randomly from (0, 1] with density function f(β) = 2β, and schedule
the jobs in A and B in order of non-decreasing β

2 -points and β-points, respec-
tively. Again, we break ties consistently with precedence constraints. (Choosing
β
2 for the jobs in A ensures that at most one of the predecessors of a job b ∈ B
is scheduled after b in the constructed schedule.) This algorithm is called Algo-
rithm 3.

Lemma 5. Algorithm 3 is a randomized 4-approximation for all-but-one MSSC.

One can derandomize Algorithm 3 similar to Lemma 2, which proves Theo-
rem 2. Note that Algorithm 3 also works if jobs in B have unit processing time.
It can be generalized to release dates and arbitrary processing times, if we use an
interval-indexed formulation similar to LP (2). If we choose ε′ = ε

4 and solve the
corresponding interval-indexed formulation instead of LP (3), then Algorithm 3
is a (4+ ε)-approximation for any ε > 0. Again, AND-precedence constraints do
not affect the approximation factor, similar to Lemmas 1 and 3.
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4 Integrality Gaps for Other LP Relaxations

In this section, we analyze other standard linear programming relaxations that
have been useful for various scheduling problems, and show that they fail in
the presence of OR-precedence constraints. More precisely, we show that the
natural LPs in linear ordering variables (Sect. 4.1) and completion time variables
(Sect. 4.2) both exhibit integrality gaps that are linear in the number of jobs,
even on instances where E∧ = ∅ and Δ = 2.

4.1 Linear Ordering Formulation

The following relaxation for single-machine scheduling problems was proposed
by Potts [32]. It is based on linear ordering variables δij , which indicate whether
job i precedes job j (δij = 1) or not (δij = 0). This LP has played an important
role in better understanding Sidney’s decomposition [11,36], and in uncovering
the connection between AND-scheduling and vertex cover [1,2,10,11]. A nice
feature of this formulation is that we can model OR-precedence constraints in a
very intuitive way with constraints

∑
a∈P(b) δab ≥ 1 for all b ∈ B. Together with

the total ordering constraints (δij + δji = 1), standard transitivity constraints
(δij + δjk + δki ≥ 1) and AND-precedence constraints (δij = 1) we thus obtain
a polynomial size integer program for 1 | ao-prec = A ∨̇ B | ∑

wjCj . The LP-
relaxation is obtained by relaxing the integrality constraints to δij ≥ 0.

min
∑

j∈N

∑

i∈N

wjpiδij (4a)

s.t. δij + δji = 1 ∀ i, j ∈ N : i �= j (4b)
δij + δjk + δki ≥ 1 ∀ i, j, k ∈ N (4c)

∑

a∈P(b)

δab ≥ 1 ∀ b ∈ B : P(b) �= ∅, (4d)

δij = 1 ∀ (i, j) ∈ E∧, (4e)
δii = 1 ∀ i ∈ N, (4f)
δij ≥ 0 ∀ i, j ∈ N. (4g)

We set δii = 1 in (4f) so the completion time of job j is Cj =
∑

i piδij . Note
that every feasible single-machine schedule without idle time corresponds to a
feasible integer solution of LP (4), and vice versa. If E∨ = ∅, i.e., P(b) = ∅
for all b ∈ B, then this relaxation has an integrality gap of 2 (lower and upper
bound of 2 due to [8] and [34], respectively). However, in the presence of OR-
precedence constraints, the gap of LP (4) grows linearly in the number of jobs,
even if E∧ = ∅ and Δ = 2.

Lemma 6. There is a family of instances such that the integrality gap of LP (4)
is Ω(n).

The instances of Lemma 6 consist of copies of an instance on three jobs, as
illustrated in Fig. 2. Note that these satisfy |P(b)| ≤ 2 for all b ∈ B. For this
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Fig. 2. Instance for which LP (4) exhibits an integrality gap that is linear in the number
of jobs. The processing times and weights are pjq = 0, piq = pkq = 1 and wjq = 1,
wiq = wkq = 0 for all q ∈ [m].

special case, we present facet-defining inequalities. If |P(b)| ≤ 2 for all b ∈ B,
then LP (4) can be reformulated as

min
∑

j∈N

∑

i∈N

wjpiδij (5a)

s.t. δij + δji = 1 ∀ i, j ∈ N : i �= j, (5b)
δij + δjk + δki ≥ 1 ∀ i, j, k ∈ N, (5c)

δab + δa′b ≥ 1 ∀ b ∈ B : P(b) = {a, a′}, (5d)
δij = 1 ∀ (i, j) ∈ E∧, or P(j) = {i}, (5e)
δii = 1 ∀ i ∈ N, (5f)
δij ≥ 0 ∀ i, j ∈ N. (5g)

Note that constraints (5b), (5c), and (5f) coincide with the corresponding
constraints in LP (4). Constraints (5d) model the OR-precedence constraints for
jobs b ∈ B with |P(b)| = 2. For b ∈ B with |P(b)| = 1, the corresponding
OR-precedence constraint is equivalent to an AND-constraint and is included
in (5e).

Theorem 4. For all b ∈ B and P(b) = {a, a′}, the constraints

δaa′ + δa′b ≥ 1 (6)

are valid for the integer hull of LP (5). Moreover, if they are tight, then they are
either facet-defining or equality holds for all feasible integer solutions of LP (5).

One can verify that the integrality gap of LP (5) remains linear for the
example in Fig. 2, even if we add constraints (6). Recall that in GMSSC each
job b ∈ B requires at least κ(b) ∈ [|P(b)|] of its predecessors to be completed
before it can start. This can also be easily modeled with linear ordering variables
by introducing a constraint

∑
a∈P(b) δab ≥ κ(b). However, note that the instance

in Fig. 2 is an instance of MSVC (which is a special case of MSSC and all-but-one
MSSC). So already for κ(b) = 1 or κ(b) = max{|P(b)| − 1, 1} and Δ = 2 this
formulation has an unbounded integrality gap.

4.2 Completion Time Formulation

The LP relaxation examined in this section contains one variable Cj for every job
j ∈ N that indicates the completion time of this job. In the absence of precedence
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constraints, the convex hull of all feasible completion time vectors can be fully
described by the set of vectors {C ∈ Rn | ∑

j∈S pjCj ≥ f(S) ∀S ⊆ N}, where

f(S) := 1
2

(∑
j∈S pj

)2

+ 1
2

∑
j∈S p2j is a supermodular function [33,41]. One

should note that, although there is an exponential number of constraints, one
can separate them efficiently [33]. That is, one can solve min

∑
j∈N wjCj sub-

ject to
∑

j∈S pjCj ≥ f(S) for all S ⊆ N in polynomial time. In the presence
of AND-precedence constraints, Schulz [34] proposed the first 2-approximation
algorithm. The algorithm solves the corresponding linear program with addi-
tional constraints Cj ≥ Ci + pj for (i, j) ∈ E∧ and schedules the jobs in non-
decreasing order of their LP-values.

For OR-precedence constraints, we use the concept of minimal chains, see
e.g. [21], to generalize the parallel inequalities of [33,41]. More specifically, we
present a class of inequalities that are valid for all feasible completion time vec-
tors of an instance of 1 | ao-prec = A ∨̇ B | ∑

wjCj , and that, in the absence of
precedence constraints, coincide with the parallel inequalities. We add inequal-
ities for AND-precedence constraints in the obvious way, Cj ≥ Ci + pj for
(i, j) ∈ E∧, so we assume E∧ = ∅ for the moment.

We call S ⊆ N a feasible starting set, if we can schedule the jobs in S
without violating any OR-precedence constraints. The set of feasible starting
sets is denoted by S. That is, S ∈ S, if j ∈ B ∩S implies that P(j)∩S �= ∅. The
length of a minimal chain of a job k w.r.t. a set S ⊆ N is defined as

mc(S, k) := min{
∑

j∈T

pj | T ⊆ N : ∃U ⊆ S ∪ T with k ∈ U ∈ S}. (7)

Intuitively, the value mc(S, k) is the minimal amount of time that we need to
schedule job k in a feasible way, if we can schedule the jobs in S for free, i.e. if
we assume all jobs in S have zero processing time. Let 2N be the power set of N .
For all k ∈ N , we define a set function fk(S) : 2N → R≥0 via

fk(S) :=
1
2

⎛

⎝
∑

j∈S

pj + mc(S, k)

⎞

⎠

2

+
1
2

⎛

⎝
∑

j∈S

p2j + mc(S, k)2

⎞

⎠ . (8)

Note that if k ∈ S ∈ S, then mc(S, k) = 0, so fk(S) = f(S). In particular, (8)
generalizes the function f : 2N → R≥0 of [33,41] to OR-precedence constraints.2

Theorem 5. For any k ∈ N and S ⊆ N the inequality
∑

j∈S

pjCj + mc(S, k)Ck ≥ fk(S) (9)

is valid for all feasible completion time vectors. If there is T ∈ argmin(mc(S, k))
such that S ∪ T ∈ S is a feasible starting set, then (9) is tight.

2 One can also show that mc(·, k) and fk(·) are supermodular for any k.
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Theorem 5 suggests the following natural LP-relaxation for 1 | ao-prec =
A ∨̇ B | ∑

wjCj :

min
∑

j∈N

wjCj (10a)

s.t.
∑

j∈S

pjCj + mc(S, k)Ck ≥ fk(S) ∀ k ∈ N, ∀S ⊆ N, (10b)

Cj − Ci ≥ pj ∀ (i, j) ∈ E∧. (10c)

Note that it is not clear how to separate constraints (10b). The gap of LP (10)
can grow linearly in the number of jobs, even for instances of 1 | ao-prec =
A ∨̇ B | ∑

wjCj with E∧ = ∅ and Δ = 2, see Fig. 3.

Lemma 7. There is a family of instances such that the gap between an optimal
solution for LP (10) and an optimal schedule is Ω(n).

j1 j2 · · · jm

i1 i2 · · · im

k

Fig. 3. Sketch of instance for which LP (10) exhibits a gap that is linear in the number
of jobs. The processing times and weights are pk = m

2
, wk = wiq = pjq = 0, and

wjq = piq = 1 for all q ∈ [m].

5 Conclusion

In this extended abstract, we analyze single-machine scheduling problems with
certain AND/OR-precedence constraints that are extensions of min-sum set
cover, precedence-constrained min-sum set cover, pipelined set cover, minimum
latency set cover, and set cover. Using machinery from the scheduling context,
we derive new approximation algorithms that rely on solving time-indexed linear
programming relaxations and scheduling jobs according to random α-points. In
a nutshell, one may say that the new key technique is to choose the value of α for
jobs in A dependent on the corresponding β-value of jobs in B. This observation
allows us also to derive the best constant-factor approximation algorithm for
an interesting special case of the generalized min-sum set cover problem—the
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all-but-one MSSC problem—which in itself is a generalization of min-sum vertex
cover. This 4-approximation algorithm may further support the conjecture of Im
et al. [23], namely that GMSSC is 4-approximable.

It is easy to see that one can also include AND-precedence constraints
between jobs in A and B, i.e., allow E∧ ⊆ (A × N) ∪ (B × B). This does not
affect the approximation guarantees or feasibility of the constructed schedules,
since α ≤ β and constraints (1e) imply tαa ≤ tβb for (a, b) ∈ E∧. Similarly, lαa ≤ lβb
for (a, b) ∈ E∧ follows from (2e). Note that it is not clear whether the analysis
of the algorithms in Sects. 2 and 3 are tight.

Besides deriving approximation algorithms based on time-indexed LPs, we
analyze other standard LP relaxations, namely linear ordering and completion
time formulations. These relaxations facilitated research on scheduling with
AND-precedence constraints, see e.g. [1,2,10,11,19,32–34]. For the integer hull
of the linear ordering relaxation we present a class of facet-defining valid inequal-
ities and we generalize the well-known inequalities of [33,41] for the completion
time relaxation. We show that, despite these additional constraints, both relax-
ations exhibit linear integrality gaps, even if Δ = 2 and E∧ = ∅. Thus, unless
one identifies stronger valid inequalities, these formulations seem to fail as soon
as OR-precedence constraints are incorporated. In view of the integrality gaps
in Sect. 4, it would be interesting to obtain stronger bounds on the integrality
gap of the time-indexed formulation considered in Sects. 2 and 3.
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Abstract. In a clustering with outliers problem, we are required to clus-
ter all but a specified number of points, called outliers. In a fault tolerant
clustering problem, the objective function incorporates the distance of
a point to its f -th closest center chosen in the solution. We combine
these two orthogonal generalizations, and consider Fault Tolerant Clus-
tering with Outliers problems for various clustering objectives, such as
k-center, k-median, and sum of radii. We essentially reduce the Fault
Tolerant Clustering with Outliers problem, to the corresponding (non
Fault Tolerant) Clustering with Outliers problem, for which constant
approximations are known. This can be seen as a generalization of the
framework of Kumar and Raichel [20] to handle the presence of outliers.
This reduction comes at a loss in the approximation guarantee; however,
we show that it is bounded by O(1) for the k-center objective, whereas it
is O(f) for k-median and sum of radii objectives, where f is the degree
of Fault Tolerance required in the solution. This implies O(1) and O(f)
approximations for these generalizations respectively.

1 Introduction

We take the k-center problem as a running example for the initial part of this
discussion. In the k-center problem, we are given a set X of n points, and a
distance function d that satisfies the metric properties. The objective is to select
a set C ⊆ X of at most k (1 ≤ k ≤ n) centers, that minimizes the maximum
distance of any point in X to its nearest center in C.

A small number of outliers may skew the performance of clustering algo-
rithms. However, if one is willing to ignore these outliers, the resulting clustering
is much better; which is reflected by much smaller cost of the solution. In the
context of k-center, this issue is captured by a generalization called the k-center
with outliers problem. Charikar et al. [8] introduced the outlier generalizations
of various clustering problems.1 Here, we are given an additional parameter p,
which specifies the coverage requirement. Now, the objective function is defined
1 Charikar et al. [8] use the adjective “robust” for the generalization described here,
and use the term “clustering with outliers” for the prize-collecting versions. Never-
theless, we adopt the aforementioned convention, which is otherwise standard in the
literature.
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with respect to p (1 ≤ p ≤ n) closest points to the set of chosen centers. For-
mally, we want to choose a set X ′ ⊆ X of size (at least) p, and a set C ⊆ X
of at most k centers, such that the maximum distance of any point in X ′ to its
nearest center in C is minimized. Here, the set X \ X ′ of size at most n − p can
be thought of as outliers. It is easy to generalize other clustering objectives in a
similar way.

Another orthogonal issue in the domain of clustering problems is that of Fault
Tolerance. In a given clustering problem (without outliers), the “service cost” of
each point is the distance to its closest center among the set of chosen centers.
However, if some centers undergo failure, there may be a large increase in the
service costs for some of the points. This issue is modeled by the fault tolerant
k-center problem ([20]). Suppose, the solution is required to tolerate failure of
at most f −1 centers in the solution, where 1 ≤ f ≤ k is a parameter. We define
the service cost of a point in X as its distance to the f -th closest center in C.
In the Fault Tolerant k-center problem, we want to find a set C of at most k
centers that minimizes the maximum service cost of any point in X. Note that
now we have a bound on the service cost of any point, even if any set of at most
f − 1 centers fail.

We consider a common generalization that we call Fault Tolerant Clustering
with Outliers (FTCwO). Here, the goal is to find a Fault Tolerant clustering
for all the points in X, excluding a specified number of outliers. In the Fault
Tolerant k-center with Outliers problem, we are required to find a set X ′ ⊆ X of
at least p points and a set C ⊆ X of at most k centers, such that the maximum
distance of any point in X ′ to its f -th closest center in C is minimized. The
formal definitions of the FTCwO versions for various clustering objectives are
given in the next section. But first, we discuss the related work.

1.1 Related Work

It is unsurprising that the clustering problems considered in this paper—even
without Fault Tolerance and Outliers—are NP-hard. We start with the k-center
problem. There are simple 2-approximations for this problem [12], and it is well-
known that obtaining an approximation ratio of 2 − ε is NP-hard from a simple
reduction from the Minimum Dominating Set problem [15]. Charikar et al. [8],
who introduced the k-center with outliers problem, gave a 3-approximation via
a simple greedy algorithm. This was recently improved to the optimal approx-
imation ratio of 2 [6,14]. Several constant factor approximations are known for
the Fault Tolerant k-center problem [17,20], and closely related variants thereof
[9,19].

k-median is another popular clustering objective function, where we seek
to minimize the sum of distances from each point to its closest center. The k-
median problem is also widely studied: the current best approximation ratio is
2.675 + ε [5], and there is a known lower bound of 1.736 [16]. The first constant
approximation for the k-median with outliers was given by Chen [10], but the
approximation ratio was a large unspecified constant. This was recently improved
by Krishnaswamy et al. [18] to 53.004+ ε using an iterative rounding algorithm,
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and they also extended it to k-means with outliers and other related problems.
Constant factor approximations for Fault Tolerant k-median problem are also
known ([20] and [13,24]). However, we note that the notion of Fault Tolerance
in [13,24] is more general compared to that of ours—they allow varying degrees
of Fault Tolerance for each client.

Sum of radii is yet another well-studied clustering objective. Here, we have
a set of clients and a set of servers. The goal is to open some balls centered at
(a subset of) servers, such that each client belongs to at least one opened ball,
while minimizing the sum of radii of the opened balls. A slight generalization
asks to minimize the sum of α-th powers of radii, for some fixed α ≥ 1. Another
related problem, called k-clustering, imposes a restriction of using at most k
balls in the solution. Constant approximations for these problems were given
by Charikar and Panigrahy [7]. There are subsequent results that give better
(possibly bicriteria) guarantees in quasi-polynomial time for these problems [2,
11]. A constant approximation for the k-clustering with outliers problem was
given by Ahmadian and Swamy [1]2. Constant approximations for the Fault
Tolerant generalizations of these problems were given by Bhowmick et al. [4].

Finally, we note that there is a generalization of the well-known Set Cover
problem, called Partial Set Multi-Cover, which is a covering analog of the prob-
lems considered here. There has been some recent work on this problem [22,23];
however their approximation guarantees can be polynomial in n in general, where
n is the number of elements in the set system. This is unsurprising, since even
the very restricted case of 2-Fault Tolerant Covering of edges with Outliers in an
undirected graph is closely related to the Densest k-subgraph problem. Assum-
ing ETH, there is an almost-polynomial lower bound on the approximation ratio
for this problem [21], and the best known upper bound is O(n1/4+ε) [3]. On the
other hand, clustering problems can be thought of as “soft” covering problems,
which intuitively explains why we can obtain constant approximation guarantees
in many cases.

In the next section, we set up notation, define the problems considered in the
paper, and give a brief overview of our general technique. In the subsequent sec-
tions, we give our approximation algorithms for various fault tolerant clustering
with outliers objectives.

2 Problem Statements and Results

Notation. Let (X, d) be a metric space. For a point x ∈ X, a set Z ⊆ X,
and an integer 1 ≤ i ≤ |Z|, let nni(x,Z, d) denote the i-th point z ∈ Z, in
the non-decreasing order of distance from x. Here, we assume the ties are bro-
ken according to an arbitrary global ordering. Furthermore, let NNi(x,Z, d) :=
⋃i

j=1 nnj(x,Z, d). Finally, let di(x,Z) := d(x, nni(x,Z, d)). The ball centered at
x ∈ X of radius r is Bd(x, r) := {y ∈ X | d(x, y) ≤ r}. Finally, when the distance
function d is obvious from the context, we may omit it from these notations.
2 In fact, Ahmadian and Swamy [1] give a constant factor approximation for a gener-
alization of k-clustering with lower bounds and outliers.
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2.1 Problem Statements

We denote a generic FTCwO instance by I = (X,Y, d, k, p, f). Here, X is a set of
points (or clients), Y is a set of centers (or servers), in a metric space (X ∪Y, d).
We also have 1 ≤ p ≤ |X|, and 1 ≤ f ≤ k ≤ |Y |. The objective of a generic
FTCwO problem pr is to find a solution σpr(I) consisting of X ′ ⊆ X and Y ′ ⊆ Y
such that:

1. |X ′| ≥ p,
2. |Y ′| ≤ k,
3. A problem-specific objective function μpr(·) is minimized, over all feasible

solutions σpr.

The problem objective μpr(·) can be defined differently to model different FTCwO
problems. A solution is said to be feasible if it satisfies Conditions 1 and 2.

For a problem pr, let optpr(I) denote an optimal solution for an instance I.
A solution σpr(I) is an α-approximate solution if μpr(σpr(I)) ≤ α · μpr(optpr(I)).
We will omit the subscript pr in the subsequent sections, since the problem will
be clear from the context.

We now specify the objective functions μ of the FTCwO versions of the prob-
lems in the notation defined above.

– k-center: max
x∈X′

df (x, Y ′)

– k-median (v1):
∑

x∈X′
df (x, Y ′)

– k-median (v2):
∑

x∈X′

f∑

i=1

di(x, Y ′)

– k-clustering:
∑

y∈Y ′
r(y)

Here, r : Y ′ → R+ is a “radius function” such that for any x ∈ X ′, |{y ∈ Y ′ |
d(x, y) ≤ r(y)}| ≥ f . That is, every point in X ′ belongs to at least f balls.

We note that two different objectives have been studied under the name
Fault Tolerant k-median. The first version (v1) was studied by [20], whereas (a
generalization of) the second one (v2) was studied by [13,24]. We also note that
for technical reasons, for the first three problems, we require that Y = X, i.e.,
the set of clients and servers be the same. For the k-clustering problem, however,
our algorithm also works in the general case where Y may not be the same as
X.

2.2 Our Results and Technique

For all the problems we consider, we know efficient constant factor approximation
algorithms when f = 1, i.e., the solutions are not required to be Fault Tolerant.
Our contribution is to show that with simple pre- and post-processing steps,
we can essentially reduce FTCwO problems, to the corresponding Clustering
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with Outliers problems, at the expense of increase in the approximation factors.
For the k-center and the k-median (v1) objective functions, the increase in the
approximation factor is constant. On the other hand, for k-median (v2) and k-
clustering objective functions, the increase in the approximation factor is O(f).
We summarize our results in the following table. These results are described in
Sects. 3 to 6 respectively.

Table 1. Known constant factor approximations for Clustering with Outliers problems
(second column) and our approximations for the corresponding FTCwO version (third
column).

Problem Outliers approx. Fault tolerance with outliers approx.

k-center 2 ([6,14]) 6

k-median (v1) 7.081 ([18]) 35.405

k-median (v2) 7.081 ([18]) 28.324 · f + 7.081

k-clustering 12.365 ([1]) 49.46 · f + 12.365

Our general strategy for finding an approximate solution for a FTCwO
instance I = (X,Y, d, k, p, f) is as follows. Let m := �k/f	, and let I ′ =
(X,Y, d′,m, p, 1) be a related instance. Notice that in the instance I ′, the cardi-
nality constraint has been reduced from k to �k/f	, and the distance function
d′ may be different from d. Furthermore, observe that a solution for I ′ is not
required to be Fault Tolerant, i.e., I ′ is an instance of a Clustering with Out-
liers problem, for which different constant factor approximation algorithms are
known (see Table 1). We use such an algorithm as a black box to obtain an
approximate solution (P,Q) such that: (1) P ⊆ X with |P | ≥ p, and Q ⊆ Y
with |Q| ≤ m. Now, let Y ′ =

⋃
y∈Q NNf (y, Y, d). That is, Y ′ consists of f nearest

centers from Y for all centers in the approximate set of centers Q. It is easy to
see that (P, Y ′) satisfies Conditions 1 and 2, and therefore it is feasible3. We
return this solution as an approximate solution for I. We note that, at a high
level, our approach can be seen as a generalization of the approach in [20], who
showed similar reductions from Fault Tolerant k-center and k-median (without
outliers) to their respective non Fault Tolerant versions. Our contribution here
is to handle the presence of outliers.

3 Fault Tolerant k-Center with Outliers

We consider the Fault Tolerant k-center with Outliers instance I =
(X,X, d, k, p, f), i.e., the set of points to be covered, X, is the same as the

3 For the k-clustering objective, the last step takes some more work, since we also have
to compute a radius assignment r : Y ′ → R+. However, at a high level, the strategy
is similar.
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set of centers. Recall that p is the number of points to be clustered, and f is the
degree of fault-tolerance required in the solution. Also, recall that the cost of a
feasible solution (X ′, Y ′), is defined as maxx∈X′ df (x, Y ′).

Algorithm. Notice that the cost of the optimal solution opt(I) = (X∗, Y ∗) must
be an inter-point distance between some x, y ∈ X. By parametric search, we
assume that we know the cost of the optimal solution, denoted by D. Let Xp =
{x ∈ X : df (x,X) ≤ D} be the set of points that have at least f points within a
ball of radius D. It is easy to see that since D is the correct guess for the optimal
cost, the set Xp has size at least p, since X∗ ⊆ Xp. Now, we will focus on the D-
neighborhoods of Xp, i.e., on the set T =

⋃
x∈Xp

Bd(x,D). Let m := �k/f	 and
let I ′ = (T, T, d,m, p, 1) be an instance of the m-center with outliers problem.
Note that I ′ has fault-tolerance of 1. Let σ(I ′) = (P,Q) be the solution returned
by an α-approximate algorithm A. Let Y ′ =

⋃
y∈Q NNf (y,X, d). We return

σ(I) = (P, Y ′) as the solution.
Before we analyze the cost of this solution, we need the following lemma (due

to Kumar and Raichel [20]) that will be useful in this as well as the subsequent
sections.

Lemma 1. Given a finite metric space (X, d), let Y ⊆ X be any non-empty
subset. Then for any integer parameter 1 ≤ h ≤ |Y |, and any subset Z ⊆ X,
there exists a subset S ⊆ Z such that

– |S| ≤ �|Y |/h	
– For any v ∈ Z, d(v, S) ≤ 2 · dh(v, Y ).

In other words, the set S is an approximation to the h-th nearest neighbors
from the set Y , and its size is bounded by |Y |/h. We note here that even though
we will only use this lemma in the analyses, such a set S can be found efficiently
using a simple iterative algorithm [20]. In the following lemma, we analyze the
cost of the solution σ(I) = (P, Y ′).

Lemma 2.
μ(σ(I)) ≤ (2α + 2) · μ(opt(I))

Proof. Fix a point x ∈ P . We first upper bound the connection cost of x to its
f -th closest center in Y ′. Let y ∈ Q denote a closest center of x in Q. Then,

df (x, Y ′) ≤ d(x, y) + df (y, Y ′) = d(x, y) + df (y,X) (1)

The equality follows from the fact that NNf (y,X) ⊆ Y ′. Now, let u ∈ Xp denote
a closest point to y from the set Xp. Then,

df (y,X) ≤ d(y, u) + df (u,X) = d(y,Xp) + df (u,X).

Since, y ∈ Q ⊆ T , we have that d(y,Xp) ≤ D. Similarly, since u ∈ Xp, df (u,X) ≤
D. Combining this with (1), we get that df (x, Y ′) ≤ d(x, y) + 2 · D. Taking
maximum over all x ∈ P , we get that,

μ(σ(I)) = max
x∈P

df (x, Y ′) ≤ max
x∈P

(d(x,Q) + 2 · D) ≤ α · μ(opt(I ′)) + 2 · D. (2)
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Where opt(I ′) = (P ∗, Q∗) is an optimal solution for the instance I ′. Recall
that opt(I) = (X∗, Y ∗) is an optimal solution for the original instance I. Let
S ⊆ T be the set guaranteed by Lemma 1, by setting Y ← Y ∗ ⊆ T , h ← f , and
Z ← X∗ ⊆ T . Therefore, we have that |S| ≤ m, and for any x ∈ X∗ we have
that, d(x, S) ≤ 2 ·df (x, Y ∗) ≤ 2 ·D. That is, (X∗, S) is a feasible solution for the
instance I ′, of cost at most 2D, which implies that μ(opt(I ′)) ≤ 2D. Combining
this with (2), yields the desired bound in the lemma. ��

Finally, we note that using an α = 2 approximation for k-center with Outliers
[6,14], we get a 6-approximation for the Fault Tolerant k-center with Outliers
problem.

4 Fault Tolerant k-Median with Outliers (v1)

The Fault Tolerant k-median With Outliers instance that we consider is I =
(X,X, d, k, p, f), i.e. the set of points X is the same as the set from which the
centers can be chosen. However, it is convenient to imagine the set of potential
centers, as a distinct copy of X, which we denote by Y . Recall that p is the
number of points to be clustered, and f is the degree of fault-tolerance required
in the solution. Also, recall that the cost of a feasible solution is (X ′, Y ′) is∑

x∈X′ df (x, Y ′).
Given the metric space (X ∪ Y, d), we create a new distance function d′ as

follows.

d′(x, y) = d′(y, x) =

⎧
⎪⎨

⎪⎩

d(x, y) if x, y ∈ X

d(x, y) + df (y, Y ) if x ∈ X, y ∈ Y

df (x, Y ) + d(x, y) + df (y, Y ) if x, y ∈ Y

It is easy to see that the distance function satisfies the metric properties, and
hence (X∪Y, d′) is a metric space. We use a known α-approximation algorithm on
the instance I ′ = (X,Y, d′,m, p, 1), where m := �k/f	. Notice that this is an m-
median with outlier instance, and here the fault-tolerance is 1. Let σ(I ′) = (P,Q)
be the α-approximate solution obtained, such that μ(σ(I ′)) =

∑
x∈P d′(x,Q) ≤

α · ∑
x∈P∗ d′(x,Q∗), where opt(I ′) = (P ∗, Q∗) is an optimal solution for I ′. We

return σ(I) = (P, Y ′) as a solution, where Y ′ =
⋃

y∈Q NNf (y, Y, d).

Lemma 3.
μ(σ(I)) ≤ 5α · μ(opt(I))

Proof. Recall that σ(I) = (P, Y ′). We fix a point x ∈ P and first analyze its
connection cost df (x, Y ′). Let y = nn1(x,Q, d′) denote a closest center to x from
the set Q, according to the new distance function d′. Then, we have the following.

df (x, Y ′) ≤ d(x, y) + df (y, Y ′) = d(x, y) + df (y, Y ) = d′(x, y) (3)
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Where the first equality follows from the fact that NNf (y, Y, d) ⊆ Y ′, i.e., Y ′

contains the f nearest neighbors of y from the set Y . The second equality fol-
lows from the definition of d′(x, y). Now, summing (3) over all x ∈ P , we get,
μ(σ(I)) =

∑

x∈P

df (x, Y ′) ≤
∑

x∈P

d′(x, y) =
∑

x∈P

d′(x,Q).

Observe that
∑

x∈P

d′(x, y) is the cost of the α-approximate solution σ(I ′).

Therefore,
μ(σ(I)) ≤ μ(σ(I ′)) ≤ α · μ(opt(I ′)) (4)

Recalling that, opt(I ′) = (P ∗, Q∗) is an optimal solution for the instance
I ′. Now, let opt(I) = (X∗, Y ∗) be an optimal solution for the original instance
I. Let S be the set guaranteed by Lemma 1, by setting Y ← Y ∗, h ← f , and
Z ← X∗. Therefore, we have that |S| ≤ m, and that for any x ∈ X∗,

d(x, S) ≤ 2 · df (x, Y ∗) (5)

Let S′ denote the set of centers in Y that are co-located with the points
in S. Notice that (X∗, S′) is a feasible solution for the instance I ′. Therefore,
μ(opt(I ′)) ≤ ∑

x∈X∗ d′(x, S′). We first bound the connection cost of a fixed
x ∈ X∗. Let s′ = nn1(x, S′, d), i.e., s′ is a nearest neighbor of x from the set S′,
according to the original distance function d. Then,

d′(x, S′) ≤ d′(x, s′) = d(x, s′) + df (s′, Y ) ≤ d(x, s′) + d(x, s′) + df (x, Y ) (6)

Where the equality follows from the definition of d′. Now, let s ∈ S be the point
co-located with s′ ∈ S′. Then, we get that, d′(x, S′) ≤ 2 · d(x, s) + df (x, Y ) ≤
4 · df (x, Y ∗) + df (x, Y ). Here the second inequality follows from (5).

Since df (x, Y ) ≤ df (x, Y ∗), we get that, d′(x, S′) ≤ 5 · df (x, Y ∗). Summing
this over all x ∈ X∗, we get,

μ(opt(I ′)) ≤
∑

x∈X∗
d′(x, S′) ≤ 5 ·

∑

x∈X∗
df (x, Y ∗) = 5 · μ(opt(I)) (7)

Combining inequalities (4) and (7) yields the lemma. ��
Using the α ≈ 7.081 approximation for k-median with Outliers [18], we get

a 35.405-approximation for the Fault-Tolerant k-median with Outliers problem
(v1).

5 Fault Tolerant k-Median with Outliers (v2)

Recall that the cost of a feasible solution of this version of Fault Tolerant k-
median with Outliers is μ(σ(I)) =

∑
x∈X′

∑f
i=1 di(x, Y ′). Despite many simi-

larities between the current and previous sections, we give all the details for the
sake of completeness.
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Given the metric space (X ∪ Y, d), we create a new distance function d′ as
follows.

d′(x, y) = d′(y, x) =

⎧
⎪⎨

⎪⎩

∑f
i=1 d(x, y) if x, y ∈ X

∑f
i=1(d(x, y) + di(y, Y )) if x ∈ X, y ∈ Y

∑f
i=1(d(x, y) + di(x, Y ) + di(y, Y )) if x, y ∈ Y

Similar to the previous section, let σ(I ′) = (P,Q) be an α-approximate solution
for the instance I ′ = (X,Y, d′,m, p, 1). We return σ(I) = (P, Y ′) as a solution,
where Y ′ =

⋃
y∈Q NNf (y, Y, d). Now we analyze the cost of this solution.

Lemma 4.
μ(σ(I)) ≤ (4f + 1) · α · μ(opt(I))

Proof. Recall that σ(I) = (P, Y ′). We fix a point x ∈ P and first analyze its
connection cost

∑f
i=1 di(x, Y ′). Let y = nn1(x,Q, d′) denote a closest center to x

from the set Q, according to the new distance function d′. We have the following.

f∑

i=1

di(x, Y ′) ≤
f∑

i=1

(d(x, y) + di(y, Y ′)) =
f∑

i=1

(d(x, y) + di(y, Y )) = d′(x, y).

(8)
Where the first equality follows from the fact that NNf (y, Y, d) ⊆ Y ′, i.e., Y ′

contains the f nearest neighbors of y from the set Y . The second equality follows
from the definition of d′(x, y). Now, summing (8) over all x ∈ P , we get,

μ(σ(I)) =
∑

x∈P

f∑

i=1

di(x, Y ′) ≤
∑

x∈P

d′(x, y) =
∑

x∈P

d′(x,Q).

Observe that
∑

x∈P d′(x, y) is the cost of the α-approximate solution σ(I ′).
Therefore,

μ(σ(I)) ≤ μ(σ(I ′)) ≤ α · μ(opt(I ′)). (9)

Recall that opt(I ′) = (P ∗, Q∗) is an optimal solution for the instance I ′.
Now, let opt(I) = (X∗, Y ∗) be an optimal solution for the original instance I.
Let S be the set guaranteed by Lemma 1, by setting Y ← Y ∗, h ← f , and
Z ← X∗. Therefore, we have that |S| ≤ m, and that for any x ∈ X∗,

d(x, S) ≤ 2 · df (x, Y ∗). (10)

Let S′ denote the set of centers in Y that are co-located with the points in
S. Notice that (X∗, S′) is a feasible solution for the instance I ′. Therefore,
μ(opt(I ′)) ≤ ∑

x∈X∗ d′(x, S′). We first bound the connection cost of a fixed
x ∈ X∗. Let s′ = nn1(x, S′, d), i.e., s′ is a nearest neighbor of x from the set S′

according to the original distance function d. Then,

d′(x, S′) ≤ d′(x, s′) =
f∑

i=1

(d(x, s′) + di(s′, Y )) ≤
f∑

i=1

(2 · d(x, s′) + di(x, Y )) .
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Let s ∈ S be a point co-located with s′ ∈ S′. Using (10), we get,
∑f

i=1 d(x, s) =
∑f

i=1 d(x, s) ≤ 2f · df (x, Y ∗). Therefore, we have,

d′(x, S′) ≤ 4f · df (x, Y ∗) +
f∑

i=1

di(x, Y ).

Adding this over x ∈ X∗, we get,

μ(opt(I ′)) ≤ 4f
∑

x∈X∗
df (x, Y ∗) +

∑

x∈X∗

f∑

i=1

di(x, Y ).

Now we claim that each of the sums on the right hand side is a lower bound on
μ(opt(I)). The cost of connecting a point x ∈ X∗ to f nearest centers in Y ∗ is at
least df (x, Y ∗). At the same time, the same cost is also at least

∑f
i=1 di(x, Y ).

Therefore, we get the following bound.

μ(opt(I ′)) ≤ (4f + 1) · μ(opt(I)) (11)

Finally, combining inequalities (9) and (11) yields the lemma.

Using the α ≈ 7.081 approximation for k-median with Outliers ([18]), we get
an 28.324 ·f +7.081 = O(f)-approximation for the Fault Tolerant k-median with
Outliers problem (v2).

6 Fault Tolerant k-Clustering with Outliers

In this section, we consider the Fault Tolerant k-Clustering with Outliers prob-
lem. Even though the details are somewhat involved, the high level ideas remain
similar to the ones employed in the previous section for the Fault Tolerant k-
median with Outliers problem (v2).

We are given an instance I = (X,Y, d, k, p, f). In this section, we do not
require the set of clients X to be the same as the set of servers Y . A feasi-
ble solution is (X ′, Y ′, r′), where |X ′| ≥ p, |Y ′| ≤ k. Furthermore, we need
to compute a radius assignment r′ : Y ′ → R+, such that for any x ∈ X ′,
|{y ∈ Y ′ : d(x, y) ≤ r′(y)}| ≥ f . In other words, if Br′ = {Bd(y, r′(y)) : y ∈ Y ′}
denotes the set of balls defined by the radius function r′, then there are at
least f balls in Br′ that contain each point x ∈ X ′. The cost of this solution
is

∑
y∈Y ′ r′(y). Without loss of generality, we can assume that in any feasible

solution (X ′, Y ′, r′), for any y ∈ Y ′, there is at least one client on the boundary
of the ball Bd(y, r′(y)) – for otherwise, we can obtain a new feasible solution of
a smaller cost by shrinking some of the balls. For y ∈ Y ′, we denote such a client
by xr′(y).

Recall that m := �k/f	. First, we prove an analogue of Lemma 1 for the
k-clustering objective. Intuitively, this lemma lets us relate the costs of solutions
to an f -Fault Tolerant k-Clustering with Outliers instance to an instance of
m-Clustering with Outliers.
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Lemma 5. Let I = (X,Y, d, k, p, f), and I = (X,Y, d,m, p, 1) be two instances.
Given any feasible solution σ(I) = (X∗, Y ∗, r∗), it is possible to obtain a feasible
solution σ(I) = (X∗, S, rS), such that,

1. S ⊆ Y ∗,
2.

∑

y∈S

df (y, Y ) ≤
∑

y∈S

rS(y) ≤ 3 ·
∑

y∈Y ∗
r∗(y),

3. Furthermore, for each s ∈ S, we identify a unique point u(s) ∈ B(s, r∗(s)) ∩
X∗ such that,

∑
s∈S

∑f
i=1 di(u(s), Y ∗) ≤ μ(σ(I)).

Proof. We construct the solution σ(I) iteratively from the solution σ(I). Let
Br′ be the set of balls corresponding to the solution σ(I). Initially, all points in
X∗, and all balls in Br∗ are unmarked. The set S is initialized to be the empty
set.

The algorithm proceeds in iterations, while there exists an unmarked point
in X∗. In each iteration, we select an unmarked ball B(y, r∗(y)) ∈ Br∗ of the
largest radius (ties are broken arbitrarily) containing an unmarked point of X∗.
We denote this point of X∗ by u(y). Let B′ ⊆ Br∗ be the set of balls that
intersect B(y, r∗(y)) (including itself). We mark all the balls of B′, and we also
mark points from X∗ that belong to any ball from B′. Finally, we add y to the
set S, and we set rS(y) := 3r∗(y). This completes the description of one iteration
of the algorithm.

It is easy to see that S ⊆ Y ∗, which establishes the first property. Note
that a point x ∈ X∗ is marked once any ball in Br∗ that contains x is marked.
Therefore, in the iteration when we select a ball B(y, r∗(y)) that contains a
(previously) unmarked point u(y) ∈ X∗, there are at least f unmarked balls in
Br∗ that contain u(y). That is, we mark at least f balls in each iteration. From
this, it follows that |S| ≤ m. Also from the same argument, it is easy to see
that for any y ∈ S, NNf (y, Y, d) ⊆ B(y, rS(y)). Thus, the first inequality in the
second property follows.

Recall that BrS
is the set of balls corresponding to the radius function rS .

Since in each iteration, we select an unmarked ball of the largest radius, and
expand it by 3, it is easy to see that the balls in BrS

cover the points in X∗.
From the same argument, the second inequality of the second property also
follows. This shows that σ(I) is a feasible solution.

Now we prove the third property. Consider an iteration of algorithm when we
add s ∈ Y ∗ to the set S. As argued earlier, we mark at least f balls containing
the point u(s) in this iteration. The cost of these f balls is lower bounded by
∑f

i=1 di(u(s), Y ∗). Furthermore, for distinct s, s′ ∈ S, the two sets of f balls
covering u(s) and u(s′) are disjoint. Combining these two facts yields the desired
lower bound on the cost of the solution μ(σ(I)). ��

Now, we discuss our algorithm. First, we define a new distance function d′

from the original distance function d – the definition is exactly the same as in
the previous section. Let σ(I ′) = (P,Q, λ) be an α-approximate solution for the
instance I ′ = (X,Y, d′,m, p, 1). Define Y ′ :=

⋃
q∈Q NNf (q, Y, d), which is the
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set of servers in the solution to be returned. We compute the radius assignment
r : Y ′ → R+, such that, if y ∈ Y ′ is one of the f nearest neighbors of q ∈ Q,
then Bd′(q, λ) ⊆ Bd(y, r). Formally, for any y ∈ Y ′, its radius r(y) is defined as
follows.

r(y) := max
q∈Q:y∈Nf (q,Y,d)

[
d(xλ(q), q) + d(q, y)

]
(12)

This ensures that each point of P is contained in at least f balls in the solution
σ(I) = (P, Y ′, r). Now we analyze the cost of this solution.

Lemma 6.
μ(σ(I)) ≤ (4f + 1) · α · μ(opt(I))

Proof. Recall that σ(I) = (P, Y ′, r).

μ(σ(I)) =
∑

y∈Y ′
r(y)

=
∑

y∈Y ′
max
q∈Q

(d(xλ(q), q) + d(q, y))

(max is taken over q ∈ Q s.t. y ∈ NNf (q, Y, d))

≤
∑

q∈Q

f∑

i=1

(d(xλ(q), q) + d(q, yi)) (Where yi = nni(q, Y, d))

=
∑

q∈Q

d′(q, xλ(q))

= μ(σ(I ′))
≤ α · μ(opt(I ′)) (13)

Recall that opt(I ′) = (P ∗, Q∗, λ∗) is an optimal solution for the instance I ′. Now,
let opt(I) = (X∗, Y ∗, r∗) be an optimal solution for the original instance I. Let
(X∗, S, rS) be the solution guaranteed by Lemma 5, by setting σ(I) ← opt(I).
Note that the distance function used for this solution is d. Consider the analogue
of this solution in the distance function d′. More formally, for any y ∈ S, let
x(y) := xrS

(y) be a point on the boundary according to the radius function
rS . Now, for y ∈ S, let r′

S(y) := d′(y, x(y)). Note that (X∗, S, r′
S) is a feasible

solution for the instance I ′. Therefore,

μ(opt(I ′)) ≤
∑

y∈S

r′
S(y)

=
∑

y∈S

d′(y, x(y))

≤
∑

y∈S

f∑

i=1

(d(y, x(y)) + di(y, Y ∗) (Since Y ∗ ⊆ Y )

≤
∑

y∈S

f∑

i=1

d(y, x(y)) +
∑

y∈S

f∑

i=1

d(y, u(y)) +
∑

y∈S

f∑

i=1

di(u(y), Y ∗)
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Where, for any y ∈ S, u(y) ∈ X∗ is the point guaranteed in the third property
of Lemma 5. Now, we bound each of the three terms separately.

We use the second property of Lemma 5 to bound the first term by 3f ·∑

y∈Y ∗
r∗(y).

Since d(y, u(y)) ≤ r∗(y), we bound the second term by f ·
∑

y∈S

r∗(y) ≤ f ·
∑

y∈Y ∗
r∗(y).

We use the third property of Lemma 5 to bound the third term by
∑

y∈Y ∗
r∗(y).

Combining the bounds on the three terms, we get that μ(opt(I ′)) ≤ (4f +1) ·
μ(opt(I)). Finally, combining this inequality with (13) gives the claimed bound
in the Lemma. ��

By using α ≈ 12.365 approximation for k-clustering with Outliers ([1]), we
get a 49.46 ·f +12.365 = O(f)-approximation for the Fault Tolerant k-clustering
with Outliers problem.
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Abstract. In the d-Scattered Set problem we are asked to select
at least k vertices of a given graph, so that the distance between any
pair is at least d. We study the problem’s (in-)approximability and offer
improvements and extensions of known results for Independent Set, of
which the problem is a generalization. Specifically, we show:

• A lower bound of Δ�d/2�−ε on the approximation ratio of any
polynomial-time algorithm for graphs of maximum degree Δ and
an improved upper bound of O(Δ�d/2�) on the approximation ratio
of any greedy scheme for this problem.

• A polynomial-time 2
√

n-approximation for bipartite graphs and even
values of d, that matches the known lower bound by considering the
only remaining case.

• A lower bound on the complexity of any ρ-approximation algorithm

of (roughly) 2
n1−ε

ρd for even d and 2
n1−ε

ρ(d+ρ) for odd d (under the
randomized ETH), complemented by ρ-approximation algorithms of
running times that (almost) match these bounds.

1 Introduction

In this paper we study the d-Scattered Set problem: given graph G = (V,E),
we are asked if there exists a set K of at least k selections from V , such that the
distance between any pair v, u ∈ K is at least d(v, u) ≥ d, where d(v, u) denotes
the shortest-path distance from v to u. The problem can already be seen to be
hard as it generalizes Independent Set (for d = 2) and thus the optimal k
cannot be approximated to n1−ε in polynomial time [15] (under standard com-
plexity assumptions), while an alternative name is Distance-d Independent
Set [9,20]. The problem has been well-studied, also from the parameterized
point of view [18,21], while approximability in polynomial time has already been
considered for bipartite, regular and degree-bounded graphs [9,10], perhaps the
natural candidate for the next intractability frontier.

This paper aims to advance our understanding in this direction by providing
the first lower bound on the approximation ratio of any polynomial-time algo-
rithm as a function of the maximum degree of any vertex in the input graph,
while also improving upon the known ratios to match this lower bound. On bipar-
tite graphs, our aim is to complete the picture by considering the only remaining
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open case for this class with an approximation algorithm whose ratio matches
the problem’s known inapproximability, before we turn our attention to super-
polynomial running times with the purpose of extending known upper/lower
bounds for Independent Set, so as to also take into account the range of val-
ues for d: we observe that d acts as a scaling factor for the size of the instance,
whereby the problem becomes easier when vertices are required to be much
further apart.

Before moving on to describe our results in detail, we note that these may be
dependent on the parity of our distance parameter d as being even or odd. Both
our running times and ratios can be affected by this peculiarity of the problem
that, intuitively, arises due to the (non)existence of a middle vertex on a path
of length d between two endpoints: if d is even then such a vertex can exist
at equal distance d/2 from any number of vertices in the solution, while if d is
odd there can be no vertex at equal distance from any pair of vertices in the
solution. This idiosyncrasy can change the way in which both our algorithms and
hardness constructions work and in some cases even entirely alters the problem’s
complexity (e.g. [9]).

Our Contribution: Our results are also summarized in Table 1 below. Section 3
concerns itself with strictly polynomial running times. We first show that there is
no polynomial-time approximation algorithm for d-Scattered Set with ratio
Δ�d/2�−ε in graphs of maximum degree Δ. Our complexity assumption is NP �⊆
BPP due to our use as a starting point of a randomized construction for Inde-
pendent Set from [6], that we then build upon to produce highly efficient (in
terms of maximum vertex degree and diameter) instances of d-Scattered Set.
This is the first lower bound that considers Δ and generalizes the known Δ1−ε-
inapproximability of Independent Set (see Theorem 5.2 of [6], restated here
as Theorem 2.1, as well as [1]). Maximum vertex degree Δ plays an impor-
tant role in the context of independence (e.g. [2,8,14]) and was specifically
studied for d-Scattered Set in [10], where polynomial-time O(Δd−1)- and
O(Δd−2/d)-approximations are given. We improve upon these upper bounds by
showing that any degree-based greedy approximation algorithm in fact achieves
a ratio of O(Δ�d/2�), also matching our lower bound. We then turn our atten-
tion to bipartite graphs and show that d-Scattered Set can be approximated
within a factor of 2

√
n in polynomial time also for even values of d, match-

ing its known n1/2−ε-inapproximability from [9] and complementing the known√
n-approximation for odd d [13].

Section 4 follows this up by considering super-polynomial running times, pre-
senting first an exact exponential-time algorithm for d-Scattered Set of com-
plexity O∗((ed)

2n
d ) based on a straightforward upper bound on the size of any

solution and then considering the inapproximability of the problem in the same
complexity range. We show that no ρ-approximation algorithm can take time

(roughly) 2
n1−ε

ρd for even d and 2
n1−ε

ρ(d+ρ) for odd d, under the (randomized) ETH.
This is complemented by (almost) matching ρ-approximation algorithms of run-
ning times O∗((eρd)

2n
ρd ) for even d and O∗((eρd)

2n
ρ(d+ρ) ) for odd d. We note that
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Table 1. A summary of our results (theorem numbers), for even/odd values of d.

Inapproximability Approximation

Super-polynomial 2
n1−ε

ρd (4.3)/2
n1−ε

ρ(d+ρ) (4.4) O∗((eρd)
2n
ρd ) (4.5)/O∗((eρd)

2n
ρ(d+ρ) ) (4.6)

Polynomial Δ�d/2�−ε (3.1) O(Δ�d/2�) (3.14)

Bipartite graphs n1/2−ε [9] 2
√

n (3.17)

the current state-of-the-art PCPs are unable to distinguish between optimal run-
ning times of the form 2n/ρ and ρn/ρ for ρ-approximation algorithms, due to the
poly-logarithmic factors added by even the most efficient constructions and we
thus do not focus on such factors differentiating our upper and lower bounds.
These results provide a complete characterization of the optimal relationship
between the worst-case approximation ratio ρ achievable for d-Scattered Set
by any algorithm, its running time and the distance parameter d, for any point
in the trade-off curve, in a similar manner as was done for Independent Set
in [6,7] (see also [4,5]). Due to space restrictions, some of our proofs (marked
with a �) are omitted in this extended abstract.

Related Work: Eto et al. [10] showed that on r-regular graphs the prob-
lem is APX-hard for r, d ≥ 3, while also providing polynomial-time O(rd−1)-
approximations. They also show a polynomial-time 2-approximation on cubic
graphs and a polynomial-time approximation scheme (PTAS) for planar graphs
and every fixed constant d ≥ 3. For a class of graphs with at most a polynomial
(in n) number of minimal separators, d-Scattered Set can be solved in poly-
nomial time for even d, while it remains NP-hard on chordal graphs and any odd
d ≥ 3 [20]. For bipartite graphs, the problem is NP-hard to approximate within
a factor of n1/2−ε and W[1]-hard for any fixed d ≥ 3. Further, for any odd d ≥ 3,
it remains NP-complete, inapproximable and W[1]-hard [9]. It is NP-hard even
for planar bipartite graphs of maximum degree 3, yet a 1.875-approximation is
available on cubic graphs [11]. Furthermore, [12] shows the problem admits an
EPTAS on (apex)-minor-free graphs, based on the theory of bidimensionality,
while on a related result [19] offers an nO(

√
n)-time algorithm for planar graphs,

making use of Voronoi diagrams and based on ideas previously used to obtain
geometric QPTASs. Finally, [18] presents tight upper/lower bounds on the struc-
turally parameterized complexity of the problem, while [21] shows that it admits
an almost linear kernel on every nowhere dense graph class.

2 Definitions and Preliminaries

We use standard graph-theoretic notation. For a graph G = (V,E), we let
V (G) := V and E(G) := E, an edge e ∈ E between u, v ∈ V is denoted by
(u, v) and for a subset X ⊆ V , G[X] denotes the graph induced by X. We let
dG(v, u) denote the shortest-path distance (i.e. the number of edges) from v to
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u in G. We may omit subscript G if it is clear from the context. The maxi-
mum distance between vertices is the diameter of the graph, while the minimum
among all the maximum distances between a vertex to all other vertices (their
eccentricities) is considered as the radius of the graph. For a vertex v, we let
Nd

G(v) denote the (open) d-neighborhood of v in G, i.e. the set of vertices at
distance ≤ d from v in G (without v), while for a subset U ⊆ V , Nd

G(U) denotes
the union of the d-neighborhoods of vertices u ∈ U . For an integer q, the q-th
power graph of G, denoted by Gq, is defined as the graph obtained from G by
adding to E(G) all edges between vertices v, u ∈ V (G) for which dG(v, u) ≤ q.
Furthermore, we let OPTd(G) denote the maximum size of a d-scattered set in G
and α(G) = OPT2(G) denote the size of the largest independent set. The Expo-
nential Time Hypothesis (ETH) [16,17] implies that 3-SAT cannot be solved in
time 2o(n) on instances with n variables (a slightly weaker statement), while the
definition can also refer to randomized algorithms. Finally, we recall here the
following result by [6] that some of our reductions will be relying on (slightly
paraphrased, see also [4]), that can furthermore be seen as implying the Δ1−ε-
inapproximability of Independent Set:

Theorem 2.1 ([6], Theorem 5.2). For any sufficiently small ε > 0 and any
r ≤ N5+O(ε), there is a randomized polynomial reduction that builds from a
formula φ of SAT on N variables a graph G of size n = N1+εr1+ε and maximum
degree r, such that with high probability:

• If φ is satisfiable, then α(G) ≥ N1+εr.
• If φ is not satisfiable, then α(G) ≤ N1+εr2ε.

3 Polynomial Time

3.1 Inapproximability

We show that for sufficiently large Δ and any ε1 > 0, d ≥ 4, the d-Scattered
Set problem is inapproximable to Δ�d/2�−ε1 on graphs of degree bounded by
Δ, unless NP ⊆ BPP. Let us first summarize our reduction. Starting from an
instance of Independent Set of bounded degree, we create an instance of d-
Scattered Set where the degree is (roughly) the d/2-th square root of that
of the original instance. As we are able to maintain a direct correspondence
of solutions in both instances, the Δ1−ε′

-inapproximability of IS implies the
Δ�d/2�−ε1-inapproximability of d-Scattered Set.

The technical part of our reduction involves preserving the adjacency between
vertices of the original graph without increasing the maximum degree (too far)
beyond Δ2/d. We are able to construct a regular tree as a gadget for each vertex
and let the edges of the leaves (their total number being equal to Δ) represent the
edges of the original graph. To ensure that our gadget has some useful properties
(i.e. small diameter), we overlay a number of extra edges on each level of the tree
(i.e. between vertices at equal distance from the root), only sacrificing a small
increase in maximum degree. Our complexity assumption is NP�⊆BPP, since for
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the Δ1−ε′
-inapproximability of IS we use the randomized reduction from SAT

of [6] (Theorem 2.1 above). In particular, we will prove the following theorem:

Theorem 3.1. For sufficiently large Δ and any d ≥ 4, ε ∈ (0, �d/2	), there is
no polynomial-time approximation algorithm for d-Scattered Set with ratio
Δ�d/2�−ε for graphs of maximum degree Δ, unless NP ⊆ BPP.

Construction: Let δ =
⌈

�d/2�√Δ
⌉
. Given ε1 ∈ (0, �d/2	) and an instance of

Independent Set G = (V,E), where the degree of any vertex is bounded by
Δ, we will construct an instance G′ = (V ′, E′) of d-Scattered Set, where
the degree is bounded1 by δ1+ε2 = 6δ1+2ε1/d, for ε2 = 2ε1/d + logδ 3 >
2ε1/d, while OPT2(G) = OPTd(G′). We assume Δ is sufficiently large for
ε1 ≥ d(log(log(Δ)) + c)

4 log(Δ)/d , where c ≤ 10 is a small constant, for reasons that become
apparent in the following.

Our construction for G′ builds a gadget T (v) for each vertex v ∈ V . For
even d, each gadget T (v) is composed of a (δ + 1)-regular tree of height d/2 − 1
and we refer to vertices of T (v) at distance exactly i from the root tv as being
in the i-th height-level of T (v), letting each such subset be denoted by Ti(v).
That is, every vertex of Ti(v) has one neighbor in Ti−1(v) (its parent) and δ
neighbors in Ti+1(v) (its children). For odd values of d, the difference is in the
height of each tree being �d/2	 instead of d/2 − 1. Since for even d the number
of leaves of T (v) is δd/2−1 = (Δ2/d)d/2−1 = Δ1−2/d and each such leaf also has
δ = Δ2/d edges, the number of edges leading outside each gadget is δd/2 = Δ
and we let each of them correspond to one edge of the original vertex v in G, i.e.
we add an edge between a leaf xv of T (v) and a leaf yu of T (u), if (v, u) ∈ E.

For odd d, the number of leaves is
(⌈

�d/2�√Δ
⌉)�d/2�

(i.e. at least Δ) and we let
each leaf correspond to an edge of the original vertex v in G, i.e. we identify two
such leaves xv, yu of two gadgets T (v), T (u), if (v, u) ∈ E in G. In this way, the
gadgets T (v), T (u) share a common “leaf” of degree 2, that is at distance �d/2	
from both roots tv ∈ T (v), tu ∈ T (u). See Fig. 1 for an illustration.

Next, in order to make the diameter of our gadgets at most equal to their
height, we will add a number of edges between the vertices of each height-level
i of each gadget T (v), for every v ∈ V . We will first add the edges of a cycle
plus a random matching (using a technique from [3]) and then the edges of
an appropriately chosen power graph of this subgraph containing the edges of
the cycle plus the matching. These edges will be overlaid on each height-level,
meaning our final construction will contain the edges of the tree, the cycle, the
matching, as well as the power graph.

For even d and each gadget T (v), we first make all vertices Ti(v) at each
height-level i < 1 + ε2 into a clique. For larger height-levels i ∈ [1 + ε2, d/2 − 1],
we first make the vertices into a cycle (arbitrarily ordered) and then also add
1 We note that this value of ε2 is for odd values of d. For d even, the correct value is

such that we have the (slightly lower) bound δ1+ε2 = δ + 3δ1+2ε1/d, but we write ε2
for both cases to simplify notation.
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Fig. 1. Our constructions for an example subgraph consisting of a path on three vertices
(u, v, z) and even/odd d. Ellipses in grey designate the overlaid edges on each height-
level.

a random matching, i.e. the edges between each pair of a random partition of
Ti(v) into disjoint pairs (plus a singleton if |Ti(v)| is odd). Letting Pi(v) denote
these edges of the cycle plus the matching for each Ti(v), we define the subgraph
Hi(v) = (Ti(v), Pi(v)) and compute the 
((1 + 2ε1/d) log2(δ))�-power graph of
Hi(v), finally also adding its edges to G′. For odd d and each gadget T (v), we
again make the vertices Ti(v) at each height-level i < 1 + ε2 into a clique and
for larger height-levels i ∈ [1 + ε2, �d/2	], we follow the same process.

This concludes our construction, while to prove our claims on the diameter
of our gadgets we also make use of the following statements:

Theorem 3.2 ([3], Theorem 1). Let G be a graph formed by adding a random
matching to an n-cycle. Then with probability tending to 1 as n goes to infinity,
G has diameter upper-bounded by log2(n) + log2(log(n)) + c, where c is a small
constant (at most 10).

Lemma 3.3 (�). Let G be a graph of diameter ≤ a. Then the diameter of the
b-power graph Gb is ≤ 
a/b�, for any integer b < a.

We are now ready to argue about the maximum degree of any vertex in the
instances built by our construction.

Lemma 3.4. The maximum degree of any vertex in G′ is ≤ δ + 3δ1+2ε1/d for
even d and ≤ 6δ1+2ε1/d for odd d.

Proof. Observe that for d even, the degree of any vertex is bounded by the sum
of the δ+1 edges of the tree plus the number of edges added by the power graph
(including the three edges of the cycle and matching):

∑�(1+2ε1/d) log2(δ)	
k=0 (3·2k) =

3 · 2�(1+2ε1/d) log2(δ)−1	 − 1 ≤ 3 · 2(1+2ε1/d) log2(δ) − 1 = 3 · δ1+2ε1/d − 1, for a total
of δ + 3δ1+2ε1/d.

For d odd, we note that the degree of all other vertices is strictly lower than
that of the “shared” leaves between gadgets, since each leaf between two gad-
gets T (v), T (u) (representing the edge (v, u) of G) will belong to two subgraphs
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H�d/2�(v) and H�d/2�(u). Thus their degree will be 2 + 2(3 · δ1+2ε1/d − 1) =
6δ1+2ε1/d. �

We then bound the diameter of our gadgets in order to guarantee that the
solutions in our reduction will be well-formed. Our statement is probabilistic
and conditional on our assumption on the size of Δ as being sufficiently large.

Lemma 3.5. With high probability, the diameter of each gadget T (v) is d/2−1
for even d and �d/2	 for odd d, for sufficiently large Δ.

Proof. First, observe that for sufficiently large n, c ≤ 10 and ε1 ∈ (0, �d/2	), it is
log2(log(n)) + c < (2ε1/d) log2(n). For even d, our construction uses n-cycles of
length n = δi for each i ∈ [1 + ε2, d/2 − 1], meaning that Δ must be sufficiently
large for ε1 ≥ d(log(2i log(Δ)/d) + c)

4i log(Δ)/d , while for odd d it is i ∈ [1 + ε2, �d/2	]. As
noted above, our assumption for Δ requires that it is sufficiently large for ε1 ≥
d(log(log(Δ)) + c)

4 log(Δ)/d , which is > d(log(2i log(Δ)/d) + c)
4i log(Δ)/d for the required range of i in both

cases.
By Theorem 3.2, the distance between any pair of vertices at height-level i

after adding the edges of Pi(v) is at most log2(δi)+ log2(log(δi)) + c (with high
probability). This is < (1 + 2ε1/d) log2(δi) for sufficiently large Δ. By Lemma 3.3,
taking the 
((1 + 2ε1/d) log2(δ))�-power of Hi(v) shortens the distance to at most
(1 + 2ε1/d) log2(δ

i)
�(1 + 2ε1/d) log2(δ)	 ≤ i, for each height-level i ∈ [1 + ε2, d/2−1]. For smaller values
of i, the vertices of each height-level form a clique and the distance between any
pair of them is thus at most 1.

For odd values of d, the size n of the cycles we use is again δi, with i ∈
[1 + ε2, �d/2	] and we thus have once more that for sufficiently large Δ the
distance between any pair of vertices after adding the edges of Pi(v) to each
height-level i of each gadget T (v) is at most (1 + 2ε1/d) log2(δi) (with high
probability) and at most i after taking the 
((1 + 2ε1/d) log2(δ))�-power of
Hi(v). Again, for smaller i < 1 + ε2, Ti(v) is a clique.

Since at each height-level i, no pair of vertices is at distance > i with i ≤
d/2 − 1 for even d and i ≤ �d/2	 for odd d, the distance between any vertex
x at some height-level ix to another vertex y at height-level iy > ix will be at
most ix from x to the root of the subtree of T (v) (at level ix) that contains y.
From there to y it will be at most d/2− 1− ix for even d and at most �d/2	− ix
for odd d. Furthermore, the distance from the root of T (v) to a leaf is exactly
d/2 − 1 for even d and exactly �d/2	 for odd d. �

We finalize our argument with a series of lemmas leading to the proof of The-
orem 3.1, that detail the behaviour of solutions that can form in our construction,
relative to the independence of vertices in the original graph.

Lemma 3.6. No d-Scattered Set in G′ can contain a vertex from gadget
T (v) and a vertex from gadget T (u), if (u, v) ∈ E.

Proof. Since (u, v) ∈ E, there is an edge (xv, yu) ∈ E′ between a leaf xv ∈ T (v)
and yu ∈ T (u) for even d, while for odd d the leaf x belongs to both T (v), T (u)
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and is at distance �d/2	 from each of their roots. Thus for even d the maximum
distance from any vertex of T (v) to yu ∈ T (u) is d/2−1+1 = d/2, by Lemma 3.5,
and for odd d this is �d/2	. Since, by the same lemma, the diameter of T (u) is
d/2 − 1 for even d and �d/2	 for odd d, there is no vertex of T (u) that can be in
any d-Scattered Set along with any vertex of T (v), as the maximum distance
is ≤ d/2 + d/2 − 1 = d − 1 for even d and ≤ �d/2	 + �d/2	 = d − 1 for odd d. �
Lemma 3.7. If (u, v) /∈ E, then the distance between the root tv of T (v) and
the root tu of T (u) is at least d.

Proof. Since (u, v) /∈ E, then there is no edge between any pair of leaves xu of
T (u) and yv of T (v) for even d. Thus the shortest possible distance between any
such pair of leaves is 2 for even d, through a third leaf zw of another gadget T (w)
corresponding to a vertex w adjacent to both u and v in G. The distance from tv
to any leaf of T (v) is d/2− 1 and the distance from tu to any leaf of T (u) is also
d/2−1. Thus the distance from tu to tv must be at least d/2 − 1 + d/2 − 1 + 2 =
d.

For odd d, there is no shared leaf x between the two gadgets, i.e. at distance
�d/2	 from both roots. Thus the distance between two leaves xu ∈ T (u) and
yv ∈ T (v) is at least 1, if each of these is shared with a third gadget T (w)
corresponding to a vertex w that is adjacent to both u and v in G. The distance
from tv to any leaf of T (v) is �d/2	 and the distance from tu to any leaf of T (u)
is also �d/2	. Thus the distance from tu to tv is at least 2�d/2	 + 1 = d. �
Lemma 3.8. For any independent set S in G, there is a d-Scattered Set K
in G′, with |S| = |K|.
Proof. Given an independent set S in G, we let K include the root vertex tv ∈
T (v) for each v ∈ S. Clearly, |S| = |K|. Since S is independent, there is no edge
(u, v) between any pair u, v ∈ S and thus, by Lemma 3.7, vertices tv and tu are
at distance at least d. �
Lemma 3.9. For any d-Scattered Set K in G′, there is an independent set
S in G, with |K| = |S|.
Proof. Given a d-Scattered Set K in G, we know there is at most one vertex
from each gadget T (v) in K, since its diameter is d/2−1 for even d and �d/2	 for
odd d, by Lemma 3.5. Furthermore, for any two vertices x, y ∈ K, we know by
Lemma 3.6 that if x ∈ T (u) and y ∈ T (v) for gadgets corresponding to vertices
u, v ∈ V , then (u, v) /∈ E and thus u, v are independent in G. We let set S
contain each vertex v ∈ V whose corresponding gadget T (v) contains a vertex
of K. These vertices are all independent and also |K| = |S|. �
Proof of Theorem 3.1. We suppose the existence of a polynomial-time approx-
imation algorithm for d-Scattered Set with ratio Δ�d/2�−ε1 for graphs of
maximum degree Δ and some 0 < ε1 < d/2. We assume Δ is sufficiently large
for ε1 ≥ d(log(log(Δ)) + 10)

4 log(Δ)/d .
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Starting from a formula φ of SAT on N variables, where N is also sufficiently
large, i.e N > Δ1/(5+O(ε′)) (where ε′ is defined below), we use Theorem 2.1 to
produce an instance G = (V,E) of Independent Set on |V | = N1+ε′

Δ1+ε′

vertices and of maximum degree Δ, such that with high probability: if φ is
satisfiable, then α(G) ≥ N1+ε′

Δ; if φ is not satisfiable, then α(G) ≤ N1+ε′
Δ2ε′

.
Thus approximating Independent Set in polynomial time on G within a factor
of Δ1−2ε′

, for ε′ > 0, would permit us to decide if φ is satisfiable, with high
probability.

We next use the above construction to create an instance G′ of d-Scattered
Set where the degree is bounded by 6δ1+2ε1/d = δ1+ε2 , for ε2 > 2ε1/d, by
Lemma 3.4. Slightly overloading notation, we let ε3 ≥ ε2 be such that δ1+ε2 =
(
Δ 1

�d/2� �)1+ε2 = (Δ
1

�d/2� )1+ε3 . We now let ε′ = ε1(1 + ε3) − ε3�d/2�
2�d/2� . Note that

ε′ > 0, since ε3 ≥ ε2 > 2ε1/d.
We then apply the supposed approximation for d-Scattered Set on

G′. This returns a solution at most (δ1+ε2)�d/2�−ε1 = Δ(1− ε1
�d/2� )(1+ε3) =

Δ1− ε1(1+ε3)−ε3�d/2�
�d/2� = Δ1−2ε′

from the optimum. By Lemma 3.9 we can find
a solution for Independent Set in G of the same size, i.e. we can approximate
α(G) within a factor of Δ1−2ε′

, again, with high probability (as Lemma 3.5 is
also randomized). This would allow us to decide if φ is satisfiable and thus solve
SAT in polynomial time with two-sided bounded errors, implying NP ⊆ BPP. �

3.2 Approximation

We next show that any (degree-based) greedy polynomial-time approximation
algorithm for d-Scattered Set achieves a ratio of O(Δ�d/2�), thus improving
upon the analysis of [10] and the O(Δd−1)- and O(Δd−2/d)-approximations given
therein.

Our strategy is to bound the size of the largest d-scattered set in any graph
of maximum degree at most Δ and radius at most d−1, centered on some vertex
v. The idea is that in one of its iterations our greedy algorithm would select v
and thus exclude all other vertices within distance d − 1 from v, yet an upper
bound on the size of the largest possible d-scattered set can guarantee that the
ratio of our algorithm will not be too large.

Fig. 2. An example graph G′ = MG2
G1

(v1, v2, [u1, u2], [w1, w2]) for G1, G2 shown on the
left, with edges added by the third merge operation shown in bold.
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The following definition of our “merge” operation (see also Fig. 2) will allow
us to consider all possible graphs of a given radius and degree and provide upper
bounds on the size of the optimal solution in such graphs. These bounds on the
size of the optimal are then used to compare it to those solutions produced by
our greedy scheme.

Definition 3.10 (Merge operation). For two connected graphs G1 =
(V1, E1), G2 = (V2, E2), the merged graph MG2

G1
(v1, v2,U,W), where U =

[u1, . . . , uk1 ], W = [w1, . . . , wk2 ] are ordered (possibly empty and with repeti-
tions allowed) sequences of vertices from V1 and V2, respectively, is defined as
the graph G′ = (V ′, E′) obtained by: (1) Identification of vertex v1 ∈ G1 and ver-
tex v2 ∈ G2, i.e. V ′ is composed of the union of V1, V2 after removal of vertices
v1, v2 and addition of a new vertex v′. (2) Replacement of all edges of v1, v2 by
new edges with v′ as the new endpoint (3)Addition of a number of edges between
vertices of G1, G2, i.e. E′ also contains an edge between every pair (ui, wj) from
U,W, for i = j.

Lemma 3.11. The maximum size of a d-scattered set in any graph of maximum
degree at most Δ and radius at most 
d/2� centered on some vertex v is at most
Δ.

Proof. Consider a graph of maximum degree Δ and radius 
d/2� centered on
some vertex v: the only pairs of vertices at distance d from each other must be
at distance ≥ 
d/2� from v (or �d/2	 in one side for odd d), as any vertex u
at distance < �d/2	 from v will be at distance < d from any other vertex z in
the graph, since z is at distance ≤ 
d/2� from v (due to the graph’s radius).
Furthermore, for every vertex in the d-scattered set, there must be an edge-
disjoint path of length at least 
d/2� to v that is not shared with any other
such vertex, i.e. these paths can only share vertex v at distance 
d/2� from
their endpoints (the vertices that can be in a d-scattered set). As the degree
of v is bounded by Δ, the number of such disjoint paths also cannot be more
than Δ. �
Lemma 3.12. Given two graphs G1, G2, for G′ = MG2

G1
(v1, v2,U,W) and any

U,W, it is OPTd(G′) ≤ OPTd(G1) + OPTd(G2).

Proof. Assume for the sake of contradiction that OPTd(G′) > OPTd(G1) +
OPTd(G2) and let S denote an optimum d-scattered set in G′ of this size, with
S1 = S ∩ {V1 \ {v1} ∪ {v′}} and S2 = S ∩ {V2 \ {v2} ∪ {v′}} denoting the parts
in G1, G2, respectively. Since |S| > OPTd(G1) + OPTd(G2), then for any pair
of optimal K1 ⊆ V1, K2 ⊆ V2 in G1, G2, there must be at least one vertex s in
S for which s /∈ K1 and s /∈ K2, but it must be s ∈ S1 or s ∈ S2 (or both, if
s = v′).

Observe that the distance between any pair of vertices in G1 (the same holds
for G2) cannot increase in G′ after the merge operation, since identification of a
pair of vertices between two graphs and addition of any number of edges between
the two can only decrease their distance Thus if s ∈ V1, then S1 is also a d-
scattered set in G1 (potentially substituting v′ for v1) and so, if |S1| > |K1| then
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K1 was not optimal for G1. If |S1| ≤ |K1|, it must be |S2| > |K2| contradicting
the optimality of K2 for G2. Similarly, if u ∈ V2 we have either |S1| > |K1| or
|S2| > |K2|. If u is the merged vertex v′ then there must be at least two other
vertices added from V1, V2 for |S| > |K1| + |K2|, since S can only contain v′ in
the place of v1 ∈ K1 and v2 ∈ K2. In this case the same argument as above gives
the contradiction. �
Lemma 3.13. For any graph G = (V,E) of maximum degree at most Δ and
radius at most d − 1 centered on some vertex v, it is OPTd(G) ≤ O(Δ�d/2�).

Proof. Any graph G of maximum degree at most Δ and radius at most d − 1
centered on a vertex v can be obtained by the following process: we begin with a
graph H of radius at most �d/2	−1 and maximum degree Δ. Let {v1, . . . , vk} ∈
H be the set of vertices at maximum distance from v, i.e. dH(v, vi) = �d/2	 − 1.
Since the degree of H is bounded by Δ, it must be k ≤ Δ�d/2�−1. We now let
Hi, for each i ≤ k, denote a series of at most k graphs of radius at most 
d/2�
centered on a vertex vi and maximum degree Δ.

Repeatedly applying the merge operation MHi

H (v1, vi,U,W) between graph
H (or the result of the previous operation) and such a graph Hi we can obtain
any graph G of radius at most d − 1: identifying a vertex vj ∈ H (for j ∈ [1, k])
at maximum distance from v with the central vertex vi of Hi and then adding
any number of edges between the vertices of H and Hi (while respecting the
maximum degree of Δ), we can produce any graph of radius ≤ d − 1, since the
distance from v to each vj is at most �d/2	−1 and from there to any vertex of Hi

it is at most 
d/2�. The remaining structure of G can be constructed by the cho-
sen structures of the graphs H,Hi and the added edges between them, i.e. the
sequences U,W. By Lemma 3.11 it is OPTd(Hi) ≤ Δ and by Lemma 3.12,
it must be OPTd(G) ≤ OPTd(H) +

∑k
i=1 OPTd(Hi) ≤ 1 + Δ · Δ�d/2�−1

≤ 1 + Δ�d/2�. �
Theorem 3.14. Any degree-based greedy approximation algorithm for d-
Scattered Set achieves a ratio of O(Δ�d/2�) on graphs of degree bounded
by Δ.

Proof. Let G = (V,E) be the input graph and consider the process of our sup-
posed greedy algorithm: it picks a vertex vi, removes it from consideration along
with the set Vi ⊆ V of vertices at distance at most d−1 from vi and continues the
process until there are no vertices left to consider. The sets V1, . . . , VALG thus
form a partition of G. By Lemma 3.13, the optimum size of a d-scattered set
in any such Vi is at most O(Δ�d/2�) and thus OPTd(G) ≤ ALG · O(Δ�d/2�),
by Lemma 3.12, since G can be seen as the merged graph of G[V1], . . . ,
G[VALG]. �

3.3 Bipartite Graphs

Here we consider bipartite graphs and show that d-Scattered Set is approx-
imable to 2

√
n in polynomial time also for even values of d. Our algorithm will
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be applied on both sides of the bipartition and each time it will only consider
vertices from one side as candidates for inclusion in the solution. Appropriate
sub-instances of Set Packing are then defined and solved using the known√

n-approximation for that problem.

Definition 3.15. For a bipartite graph G = (A ∪ B,E), let 1OPTd(G) denote
the size of the largest one-sided d-scattered set of G, i.e. a set that only includes
vertices from the same side of the bipartition A or B, but not both.

Lemma 3.16 (�). For a bipartite graph G = (A ∪ B,E), it is 1OPTd(G) ≥
OPTd(G)/2.

Theorem 3.17. For any bipartite graph G = (A ∪ B,E) of size n and d even,
the d-Scattered Set problem can be approximated within a factor of 2

√
n in

polynomial time.

Proof. We will consider two cases based on the parity of d/2 and define appro-
priate Set Packing instances whose solutions are in a one-to-one correspon-
dence with one-sided d-scattered sets in G. We will then be able to apply the√

n-approximation for Set Packing of [13]. We will repeat this process for
both sides A,B of the bipartition and retain the best solution found. Thus we
will be able to approximate 1OPTd(G) within a factor of

√
n and then rely

on Lemma 3.16 to obtain the claimed bound. Our Set Packing instances are
defined as follows: for d/2 even, we make a set ci for every vertex ai of A (i.e.
from one side) and an element ej for every vertex bj of B (i.e. from the other
side). For d/2 odd, we make a set ci for every vertex ai of A (again from one side)
and an element ej for every vertex bj of B and an element ri for every vertex
ai ∈ A (i.e. from both sides). Note that i, j ≤ n. In both cases we include an
element corresponding to vertex x ∈ G in a set corresponding to a vertex y ∈ G,
if dG(x, y) ≤ d/2−1. We then claim that for any collection C of compatible (i.e.
non-overlapping) sets in the above definitions, we can always find a one-sided
d-scattered set S ⊆ A in G with |C| = |S| and vice-versa.

First consider the case where d/2 is even. Given a one-sided d-scattered set
S ⊆ A, we let C include all the sets that correspond to some vertex in S and
suppose for a contradiction that there exists a pair of sets c1, c2 ∈ C that are
incompatible, i.e. that there exists some element e with e ∈ c1 and e ∈ c2. Let
a1, a2 ∈ A be the vertices corresponding to sets c1, c2 and b ∈ B be the vertex
corresponding to element e. Then it must be dG(a1, b) ≤ d/2−1 since e ∈ c1 and
dG(b, a2) ≤ d/2 − 1 since e ∈ c2, that gives dG(v1, v2) ≤ d − 2, which contradicts
S being a d-scattered set. On the other hand, given collection C of compatible
sets we let S ⊆ A include all the vertices corresponding to some set in C and
suppose there exists a pair of vertices a1, a2 ∈ S for which it is dG(a1, a2) < d.
Since d is even and a1, a2 ∈ A, if dG(a1, a2) < d it must be dG(a1, a2) ≤ d − 2,
as any shortest path between two vertices on the same side of a bipartite graph
must be of even length. Thus there must exist at least one vertex b ∈ B on
a shortest path between a1, a2 in G for which it is dG(a1, b) ≤ d/2 − 1 and
dG(b, a2) ≤ d/2 − 1. This means that the element e corresponding to vertex
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b ∈ B must be included in both sets c1, c2 corresponding to vertices a1, a2 ∈ A,
which contradicts the compatibility of sets in C.

We next consider the case where d/2 is odd. Given a one-sided d-scattered
set S ⊆ A, we again let C include all sets that correspond to some vertex in
S. If there exists a pair of sets c1, cs ∈ C that contain the same element e
corresponding to some vertex b ∈ B or some element r that corresponds to a
vertex a ∈ A, then by the same argument as in the even case we know that there
must exist paths of length ≤ d/2−1 from both vertices a1, a2 ∈ A (corresponding
to c1, c2 ∈ C) to vertex b ∈ B or a ∈ A and thus it must be dG(a1, a2) < d.
On the other hand, given a collection C of compatible sets we again let S ⊆ A
include all the vertices corresponding to sets in C. Supposing there exists a pair
a1, a2 ∈ S for which it is dG(a1, a2) < d, then again as d is even it must be
dG(a1, a2) ≤ d − 2. This means there must be a vertex a ∈ A on a shortest
path between a1 and a2 for which dG(a1, a) ≤ d/2 − 1 and dG(a, a2) ≤ d/2 − 1,
which means the corresponding sets c1, c2 ∈ C must both contain element r that
corresponds to this vertex a ∈ A, giving a contradiction.

Our algorithm then is as follows. For a given bipartite graph G = (A∪B,E),
we define an instance of Set Packing as described above (depending on the
parity of d/2) and apply the

√
n-approximation of [13]. Observe that |A|, |B| ≤ n.

We then exchange the sets A,B in the definitions of our instances and repeat
the same process. This will return a solution S of size |S| ≥ 1OPTd(G)√

n
, which by

Lemma 3.16 is ≥ OPTd(G)
2
√

n
. �

4 Super-Polynomial Time

We begin with a straightforward upper bound on the size of the solution in any
connected graph that is then employed in obtaining an exact exponential-time
algorithm that simply tries all subsets of vertices up to the size bound.

Lemma 4.1 (�). The maximum size of any d-Scattered Set in a connected graph
is

⌊
n

�d/2�
⌋
.

Theorem 4.2 (�). The d-Scattered Set problem can be solved in O∗((ed)
2n
d )

time.

4.1 Inapproximability

We now turn our attention to the problem’s hardness of approximation in super-
polynomial time. We use Theorem 2.1 in conjunction with standard reductions
from Independent Set to d-Scattered Set for the two cases, that depend
on the parity of d (see Fig. 3).

Theorem 4.3 (�). Under the randomized ETH, for any even d ≥ 4, ε > 0
and ρ ≤ (2n/d)5/6, no ρ-approximation for d-Scattered Set can take time

2

⎛
⎝ n1−ε

ρ1+εd1−ε

⎞
⎠

· nO(1).
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Fig. 3. Examples of the constructions for even (center) and odd (right) values of d.
Note the existence of an edge “gadget” for the odd case. This necessity is responsible for
the difference in running times and is due to the parity idiosyncrasies of the problem.

Theorem 4.4 (�). Under the randomized ETH, for any odd d ≥ 5, ε > 0
and ρ ≤ (2n/d)5/6, no ρ-approximation for d-Scattered Set can take time

2

⎛
⎝ n1−ε

ρ1+ε(d + ρ)1+ε

⎞
⎠

· nO(1).

4.2 Approximation

We complement the above hardness results with approximation algorithms of
almost matching super-polynomial running times. Similarly to the exact algo-
rithm of Theorem 4.2, the upper bound from the beginning of this section is
used for even values of d, while for the odd values this idea is combined with a
greedy scheme based on minimum vertex degree.

Theorem 4.5 (�). For any even d ≥ 2 and any ρ ≤ n
�d/2� , there is a ρ-

approximation algorithm for d-Scattered Set of running time O∗((eρd)
2n
ρd ).

Theorem 4.6 (�). For any odd d ≥ 3 and any ρ ≤ n
�d/2� , there

is a ρ-approximation algorithm for d-Scattered Set of running time
O∗((eρd)

2n
ρ(d+ρ) ).
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Abstract. We study online scheduling of unit-sized jobs in two related
problems, namely, restricted assignment problem and smart grid prob-
lem. The input to the two problems are in close analogy but the objective
functions are different. We show that the greedy algorithm is an opti-
mal online algorithm for both problems. Typically, an online algorithm is
proved to be an optimal online algorithm through bounding its compet-
itive ratio and showing a lower bound with matching competitive ratio.
However, our analysis does not take this approach. Instead, we prove
the optimality without giving the exact bounds on competitive ratio.
Roughly speaking, given any online algorithm and a job instance, we
show the existence of another job instance for greedy such that (i) the
two instances admit the same optimal offline schedule; (ii) the cost of the
online algorithm is at least that of the greedy algorithm on the respective
job instance. With these properties, we can show that the competitive
ratio of the greedy algorithm is the smallest possible.
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In this paper, we study online scheduling of unit-sized jobs in two related prob-
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to the two problems are in close analogy but the objective functions are dif-
ferent. We show that the greedy algorithm is an optimal online algorithm for
both problems by showing that both objective functions have led to the same
property of the greedy algorithm. The property is crucial for the optimality of
the greedy algorithm.

Smart Grid Scheduling. The smart grid scheduling problem arises in demand
response management in electrical smart grid [16,21,23,35,48] - one of the major
challenges in the 21st century [15,44,45]. The smart grid [17,37] makes power
generation, distribution and consumption more efficient through information and
communication technologies. One of the main challenges is that peak demand
hours happen only for a short duration, yet can make electrical grid very ineffi-
cient. For example, in the US power grid, 10% of generation assets and 25% of
distribution infrastructure are required for the peak hours which is roughly 5%
of the whole time [13,45]. Demand response management is to reduce peak load
by shifting demand to non-peak hours [11,26,34,36,38,41] through technological
advances in smart meters [27]. It is beneficial to both the power supplier and
consumers. On one hand, it can bring down the cost of for the supplier operating
the grid [34]. On the other hand, it can reduce electricity bill for consumers as
it is common that suppliers charge according to generation cost [41]. Research
initiatives in the area include [24,33,40,43].

We consider online scheduling of unit-sized requests with the following input.
A consumer sends in a power request j with unit power requirement, unit dura-
tion of service, and feasible timeslots F (j) that j can be served. The operator of
the smart grid selects a timeslot from F (j) for each request j. The load of the
grid at each timeslot t is the number of requests allocated to t. The energy cost
is modeled by a strictly increasing convex function f(t) on load(t). The objective
is to minimize the total energy cost over time, i.e., minimize

∑
t f(load(t)).

Restricted Assignment Problem. The assignment problem [19,20] and its
variant restricted assignment problem [7] have been extensively studied. The
assignment problem is concerned with a set of jobs and a set of machines in
which each job specifies a vector of processing times (a.k.a. load) it takes to
complete if it is assigned in the corresponding machine. The objective is to
minimize over the machines the total load of jobs scheduled on each machine.
For the restricted assignment problem, each job is associated with a processing
time (a.k.a. size) and a subset of machines that the job can be scheduled on.
As pointed out in [7], the restricted assignment problem can be applied to say
a wireless communication network where customers arriving one-by-one each
request a certain amount of service and must be assigned a base-station within
range to service it. We consider online scheduling of unit size jobs. This means
that a job increases the load of the assigned machine by one. The objective is to
minimize the maximum number of jobs assigned to any machine while satisfying
the assignment restriction constraints.

Our Contribution. Notice that with unit size, the input for the grid scheduling
problem and the restricted assignment problem is indeed the same. Timeslots
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in grid scheduling is in analogy to machines in restricted assignment; feasible
timeslots in analogy to subset of machines; load of timeslots in analogy to load
of machines. The difference of the two problems lie in the objective functions.
Our main contribution is the following theorem about both problems.

Theorem 1. When the input to the grid scheduling problem and the restricted
assignment problem is a set of unit-sized jobs, the greedy algorithm is an optimal
online algorithm having the best possible competitive ratio.

Typically, an online algorithm is proved to be an optimal online algorithm
through bounding its competitive ratio and showing a lower bound with match-
ing competitive ratio. However, our analysis does not take this approach. Instead,
we prove the optimality without giving the exact bounds on competitive ratio.

Roughly speaking, given any online algorithm and a load configuration (to
be defined precisely later), we show the existence of two job instances J1 and
J2 such that (i) J1 and J2 admit the same optimal offline schedule represented
by the given load configuration; (ii) the cost of the schedule produced by the
given online algorithm on J1 is at least the cost of the schedule produced by the
greedy algorithm on J2. This means that when we consider any job instance for
the greedy algorithm, there is always another job instance such that the ratio
versus the (same) optimal offline schedule of the greedy algorithm is not larger
than any online algorithm. Hence, we can show that the competitive ratio of
the greedy algorithm is the smallest possible. The existence of the two job sets
relies on a property about the relative costs of two comparable schedules (see
Theorem 2). We show that this property holds for both objective functions for
the two problems in concern, hence, the optimality holds for both problems.

Related Work on Grid Scheduling. The offline version of the grid problem
with unit power requirement and unit service duration can be solved optimally
in polynomial time [10]. The solution iteratively assigns each request and rear-
ranges the assignment to maintain optimality. However in the online setting
where a request must be irrevocably scheduled, rearrangement is not allowed.
It is interesting to study the performance of the greedy strategy without the
rearrangement. A previous work [18] has studied the greedy strategy on the
problem with unit power requirement, unit service duration and cost function
f(t) = load2(t) and claimed that the algorithm is 2-competitive. However, as
stated in [31], the greedy algorithm is indeed at least 3-competitive. Hence, it is
still an open problem that how good or bad the greedy strategy is. Our results
in this paper establish the optimality of the greedy algorithm.

For arbitrary power requirement and service duration, the problem becomes
NP-hard [10,26]. Theoretical study on this problem mainly focuses on the cost
function f(t) = loadα(t) [12,32]. In particular, Chau et al. [12] designed a greedy
algorithm based on a primal-dual approach and improved the upper bound on
the competitive ratio to O(αα), which is asymptotically optimal. Other work on
demand response management can be found in [26,34,35,41].

Related Work on (Restricted) Assignment Problem. Online (restricted)
assignment problem of jobs with arbitrary size has also been studied as the
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problem of load balancing. When jobs can be scheduled on any (unrestricted)
machine, Graham [19,20] has showed that the greedy algorithm is (2 − 1

m )-
competitive where m is the number of machines and this has been improved to
2− ε in [8]. For restricted assignment, Azar et al. [7] have shown that the greedy
algorithm is (�log m� + 1)-competitive and no online algorithm can do better
than �log(m + 1)�-competitive. This implies that the greedy algorithm is very
close to optimal. Our result indeed shows that the greedy algorithm is the best
possible online algorithm for unit-sized jobs although the precise competitive
ratio is yet to been established.

In the offline setting, the (unrestricted) assignment problem has also been
studied as scheduling on unrelated machines in which Lenstra et al. [30] have
shown a 2-approximation algorithm and that approximating the problem with
approximation ratio 3/2 is NP-hard. For restricted assignment, a breakthrough
was made by Svensson [42] who has shown that the integrality gap of the configu-
ration LP for the restricted assignment problem is at most 1.942. Various special
cases have been studied [14,22,25,29,39,46,47]. The (restricted and unrestricted)
assignment problem has also been studied for temporary jobs that depart [2–
4,6,28].

Organization of the Paper. We present some preliminaries in Sect. 2. We
then present a framework of analysis in Sect. 3 and establish the optimality of
the greedy algorithm in Sect. 4. Finally, we conclude in Sect. 5. Due to space
limit, proofs are given in the full paper.

2 Preliminaries

Problem Definition. We unify the two problems as follows. We are given a set
of machines. Each job j has unit size and a set of permitted machines Pj , which
is a subset of machines where the job can be assigned to. A job instance J is a
set of jobs together with their release order. Two job instances can contain the
same set of jobs but with different release orders.

A schedule S(J) of a job instance J is an assignment assigning each job to
a machine. We simply use S when the context is clear. We denote the machine
where j is assigned to by the schedule S by mS(j). A schedule S is feasible if
each job j ∈ J is assigned to one of the machines in Pj . That is, S is feasible
if mS(j) ∈ Pj for all j in the job instance. We denote by A(J) the schedule
produced by a scheduling algorithm A on J . We denote the optimal offline
algorithm by O and its schedule O(J).

In a schedule S of some job instance J , the load of machine i, loadS(i), is the
number of jobs assigned to the machine i. That is, loadS(i) = |{j : mS(j) = i}|.
The cost of machine i, costS(i) is a strictly increasing convex function of the
load of i and costS(i) = 0 if the load of i is 0. We overload the notation and use
S(J) to also denote the total cost of schedule S with instance J , which is the
sum of costS(i) over the machines. The goal is to minimize the total cost S(J).
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Online Model. We consider the online model. The jobs are released one by one,
and the released job has to be scheduled before the next one is released. And any
time, the online algorithm knows only the released jobs without any knowledge
about the future. The decisions of an online algorithm are made irrevocably.

We measure the performance of online algorithms by competitive ratio [9],
which is defined as the maximum ratio between the cost of the online algorithm
and the cost of an optimal offline algorithm knowing the whole input.

The Greedy Algorithm G. When a job arrives, it is assigned to the machine
with the smallest number of jobs currently assigned.

A Critical Theorem. We first introduce a theorem which is useful when com-
paring the costs of two schedules.

Definition 1. Consider an algorithm A, the level of job j decided by A,
levelA(j), is the number of jobs on the machine mA(j) right after the time when j
is assigned to it. That is, a job with levelA(j) means that it is the levelA(j)-th
job assigned to mA(j) by A.

Definition 2. Given a schedule S produced by an algorithm A on job instance
J , the accumulated size at level k, L

(k)
S , is defined as the total number of jobs

with level at most k. That is, L
(k)
S := |{j : levelS(j) ∈ [1, k]}|.

Theorem 2. Given two schedules S1 and S2 which have the same number of
jobs (which are not necessary of the same job instance), if L

(k)
S1

≥ L
(k)
S2

for all
k ≥ 1, then the cost of S1 is at most that of S2.

Proof. Let f(x) be the cost corresponding to load x. First of all, we observe that
the cost of schedule S can be written as

∑

j∈J

(

f
(
levelS(j)

) − f
(
levelS(j) − 1

)
)

. (1)

We claim that we can map each job j in S2 to a unique job j′ in S1 such that
levelS2(j) ≥ levelS1(j

′). The claim can be proved inductively by first mapping
jobs in S2 at level 1 and because of L

(1)
S1

≥ L
(1)
S2

, there are enough jobs in S1

at level 1 to have a unique mapping. Then we can map jobs in S2 at level 2
to unmapped jobs in S1 at level 1 and any jobs at level 2 because L

(2)
S1

≥ L
(2)
S2

.
Since the number of jobs up to level i in S1 is always at least that in S2, we
can repeat this mapping for each level. The claim then follows. Furthermore,
as the cost function f is convex, we have f

(
levelS2(j)

) − f
(
levelS2(j) − 1

) ≥
f
(
levelS1(j

′)
) − f

(
levelS1(j

′) − 1
)
. Summing up over all pairs of mapped jobs

using Eq. 1 concludes the theorem. ��

Remark: Note that Theorem 2 also holds for the objective of minimizing the
maximum load over machines. This objective is equivalent to �∞ norm by viewing
the loads of machines as a vector. Since �p norm for any p ≥ 1 is a valid total
cost function for the problem, the proof of Theorem 2 applies to �p norm.
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3 Framework of Analysis

In this section, we give a framework of the analysis and we then present the
details of analysis in the next section. As proved in Theorem 2, we can compare
schedules by looking at some aggregate property of the schedule instead of the
precise allocation of which job in which machine. We further formalize this notion
as configuration of a schedule.

Given an arbitrary schedule S, the configuration of S, config(S), is defined as
the multi-set of loads of the machines. Two schedules are considered as having
the same configuration if they have the same multi-set of machine loads even
with different order. Moreover, we represent the configuration of a schedule as
the sequence of loads sorted from low to high and we can compute the cost of a
certain configuration.

Example. Consider a case with five machines and ten jobs, and two schedules
S1 and S2. Let �i be the load on machine mi. Suppose the load of S1 is �1 = 1,
�2 = 2, �3 = 2, �4 = 5, and �5 = 0; the load of S2 is �1 = 2, �2 = 1, �3 = 0, �4 = 2,
�5 = 5. The two schedules S1 and S2 have the same configuration (0, 1, 2, 2, 5).

The high level idea of the analysis is roughly as follows. We attempt to
find some “bad” instances for the greedy algorithm G and show that for each
such bad instance we can always find another bad instance for every other online
algorithm A such that the ratio of G to O on its bad instance is no more than the
ratio of A to O on its own bad instance. We can then bound the competitive ratio
of G by that of A. We are going to find these bad instances through characterizing
the job instances by the configuration of their optimal schedules.

Let I be the set of all possible job instances. We partition I according to the
optimal configuration of job instances. Job instances J and J ′ are in the same
partition IC if and only if they both have the optimal configuration the same as
C. That is, config(O(J)) = config(O(J ′)) = C. The following are some properties
of IC .

Observation 1. Consider a partition IC and the corresponding optimal config-
uration C.

(1) Since the cost function is strictly increasing and convex, any two different
configurations have different cost. Hence, for each job instance J , there is
exactly one IC such that J ∈ IC, i.e., the partition is well defined.

(2) By definition, for any job instance J ∈ IC, config(O(J)) = C.
(3) For any two job instances J1, J2 ∈ IC, consider their optimal schedules O1

and O2, respectively. Although config(O1) = config(O2), O1 may not be a
feasible schedule for J2, and neither the other way round.

With the above partition, we can express the competitive ratio of G, denoted
by R(G), as follows.

R(G) = max
J∈I

G(J)
O(J)

= max
IC

max
J∈IC

G(J)
O(J)

= max
IC

max
J∈IC

G(J)
C .
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This means that we can characterize the competitive ratio by considering the job
instance in each IC with the highest greedy cost. We denote this job instance
as JG , i.e., for a given C, JG = arg maxJ∈IC G(J). It is not clear how to find
such job instances directly and instead we try to find their counter parts (bad
instances) for any online algorithm A which share the same C. Precisely, for any
online algorithm A, we show the existence of a job instance JA ∈ IC such that
A(JA) ≥ G(JG). This implies G(JG)

C ≤ A(JA)
C = A(JA)

O(JA) , where the last equality is
because that JA ∈ IC . We can then bound the competitive ratio of G by that of
A as follows:

R(G) = max
IC

max
J∈IC

G(JG)
C ≤ max

IC
max
J∈IC

A(JA)
O(A)

= R(A) .

Then we can conclude Theorem 1.

4 Optimality of the Greedy Algorithm

In this section, we construct JG and JA as required in the framework in Sect. 3.

4.1 The Job Instance JG for the greedy algorithm G
Given an optimal configuration C and the corresponding set of job instances IC ,
we aim to find a job instance JG ∈ IC such that JG is the most troublesome
job instance for G among all job instances in IC . That is, for any job instance
J ∈ IC , G(JG) ≥ G(J).

We find JG by artificially designing a job instance. More specifically, JG has
the same number of jobs as the given C, and we design the set of permitted
machines of each job and the release order of the jobs. First, we transform the
given C to schedule SG by changing the configuration. We make sure that C is the
optimal configuration of JG (Lemma 2) and the schedule SG is the consequence
of running a greedy algorithm on JG (Lemma 1). To achieve this, we design the
set of permitted machines of each job and choose the release order carefully.

Although the job instance JG seems to be artificial, we can prove that G(JG)
is the highest among all job instances in IC (Corollary 1). That is, consider any
job set and any release order, as long as the job set with the release order has
optimal configuration C, its greedy cost is no greater than the greedy cost of JG .

Construction of the Job Instance JG. We aim to construct a job instance
with high greedy cost, i.e., we want the greedy schedule for the job instance to
have as few jobs at each level as possible. This can be done by setting a small
set of permitted machines. However, this may result in a high optimal cost as
well and the ratio between the greedy cost and the optimal cost is still small.
Hence we have to balance the greedy schedule and the feasibility of optimal
configuration of the job instance.

First we explain how to transform the given optimal configuration C to sched-
ule SG . Assume that C = (v1, v2, · · · , vk), where 0 < v1 ≤ v2 ≤ · · · ≤ vk, we
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treat C as building blocks with k columns and each column i has vi blocks (where
each block corresponding to one job). The transformation runs in rounds, in each
round, we choose certain number of blocks, remove them from C and put them
in SG (which is initially empty) and produce another configuration. During the
process, the configuration C changes to reflect the removing of blocks. Hence,
the number of non-zero terms in the configuration changes over the process as
well. The number of non-zero terms in the configuration in each round takes an
important role in our construction. We denote the number of non-zero terms in
the configuration at the beginning of round i by ni. Note that ni is also the
number of non-zero terms in the configuration at the end of round i − 1.

At the beginning of round i, let m1,m2, · · · ,mni
be the non-empty columns

in the configuration and v1 ≤ v2 ≤ · · · ≤ vni
be the number of blocks in the

corresponding non-empty columns. We remove the jobs one by one from the
lowest load non-empty column m1 and update the number of v1 to reflect the
moving. The removing procedure stops once the number of the set of removing
blocks in this round, J

(i)
G , is greater than or equal to the number of non-empty

columns in the current configuration (that is, the configuration after removing
the jobs). Notice that by the construction, ni+1 ≤ |J (i)

G | ≤ ni+1 + 1.
In round i, after removing the blocks from C, we place them in SG (which is

initially empty at the beginning of the first round). Recall that there are ni+1

non-empty columns in the (updated) C at the end of round i. Let K ′
i denote the

corresponding set of these ni+1 non-empty columns. In SG , the blocks in J
(i)
G are

evenly placed at columns with highest load and cover all columns corresponding
to K ′

i (Observation 2).
Now we design other parameters of the job instance JG . As mentioned before,

each block is corresponding to one job. For each job j, its permitted machines
are the machines corresponding to the columns the block was in C and SG .
That is, Pj = {mC(j)} ∪ {mSG (j)}, where mC(j) and mSG (j) are the columns
of block j in the configurations C and SG , respectively. The release order of
the jobs in JG is exactly the order their corresponding blocks removed from C.
Algorithm 1 is a demonstration to find the job instance JG . Figure 1a gives an
example configuration and Fig. 1b is the corresponding JG of the configuration
in Fig. 1a.

The Construction Guarantees that C and SG are Feasible for JG. We
have to show that JG ∈ IC . Moreover, we show that SG generated during the
construction process is a greedy schedule for JG . That is, there is a greedy
algorithm for the input job set and the release order generating the schedule
SG (with a certain tie breaking).

Before showing the construction produces a desired JG , we first show that
Algorithm 1 is valid. More specifically, we prove that at the end of round i,
the level of each jobs j ∈ J

(i)
G is equal to i (that is, in Algorithm 1, Line 10 is

achievable). This property of the construction is essential for proving that the
resulting schedule SG is a greedy schedule for JG .
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Algorithm 1. Find JG
Input: The given configuration C = (v1, v2, · · · , vk), where 0 < v1 ≤ v2 ≤ v3 ≤ · · · ≤

vk.
Output: Job instance JG with job subsets J

(1)
G , J

(2)
G , · · ·

Schedule SG of JG
1: C′ ← C (we ignore all zero terms and only consider non-zero terms in C′)
2: while there is at least one job in the updated configuration C′ do
3: for round i = 1, 2, 3, · · · do
4: while |J(i)

G | < the number of non-zero entries in C′ = (v′
1, v

′
2, · · · , v′

k′
i
) do

5: Let j ← be a job with lowest level at v′
1 (which is the non-zero vector

with the smallest index in C′)
6: Add j to J

(i)
G

7: Remove j from C; update C′

8: end while
9: Let Mi be a set of |J(i)

G | machines such that Mi covers all non-empty

machines in C′ (which is K′
i) and the machine mC(j) of the last job j ∈ J

(i)
G

10: Arrange the jobs in J
(i)
G evenly at the machines in Mi such that levelSG (j)

are the same for all jobs j ∈ J
(i)
G

11: The permitted machines of job j is {mC(j)} ∪ mSG (j)}, where mC(j) and
mSG (j) are the machines j is assigned in C and SG , respectively.

12: end for
13: The release order of jobs is the order they are removed from C
14: end while

Let Mi be the subset of machines we choose to place jobs in J
(i)
G , and K ′

i be
the subset of non-empty machines in the updated configuration C′ at the end
of round i. We first observe the relation of machines in Mi and K ′

i, which then
lead to the feasibility of SG (Lemma 1).

Observation 2. There is a G with some tie breaking to choose a subset Mi of
|J (i)

G | machines such that K ′
i ⊆ Mi.

Proof. First we notice that |Mi| = |J (i)
G | and |J (i)

G | ≥ |K ′
i| by the construction

(Line 4 in Algorithm 1). By the construction (Line 9), Mi = K ′
i or Mi = K ′

i ∪
mC(j). The second case is the situation where mC(j) /∈ K ′

i, that is, the removing
of j from C creates another empty machine. In this case, |J (i)

G | = |K ′
i| + 1. ��

Observation 3. For all jobs j ∈ J
(i)
G , mC(j) ∈ K ′

i−1. (K ′
0 is defined as the

whole set of machines.)

Proof. In the updated C′, in the beginning of round i, the job j ∈ J
(i)
G is at one

of the non-empty machines. That is, the position of job j in C, mC(j) is one of
the machines in K ′

i−1. ��

Lemma 1. SG is a greedy schedule for JG.
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Fig. 1. An example of finding JG and JA. (a) is a configuration with 8 jobs and 4
machines. To obtain JG , we first remove from (a) the jobs j1, j2 and j3, which are
in the lowest-load machines and the number of such jobs is at least the number of
non-empty machines: m3 and m4. These 3 jobs are assigned to m2,m3 and m4 in
JG respectively. Then we remove j4 and j5 from (a) and assign them evenly on the
second level of JG . After that, we stack the remaining jobs onto JG such that each job
occupies a level since the current number of non-empty machines in (a) is at most 1.
The bottom part of (b) shows the permitted machines of each job which is the union
of machines the job assigned to in (a) and (b). On the other hand, for finding JA
for some A, we first release j1, which is at the lowest-load machine in (a), with all
machines being permitted and get that A schedules j1 to m1. Then we release j2 and
j3 with the permitted machines of the 3 highest-load machines in the current JA, which
are m1,m2 and m3. And then we release j4 and j5 with the permitted machines m1

and m3. Finally we release j6, j7 and j8 with the current highest-load machine as their
permitted machine.

Lemma 2. JG is a job instance in IC. That is, the optimal configuration of JG
is C.
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The Job Instance JG is the most Troublesome Among IC for G. Now
we show that the job instance JG has the highest greedy cost among all job
instances in IC . Recall that the schedule SG produced by Algorithm 1 is G(JG).
We compare SG with any greedy schedule of job instances in IC .

Lemma 3. Given any job instance J where J, JG ∈ IC for some IC, L
(k)
G(J) ≥

L
(k)
SG for all k.

By Lemma 3 and Theorem 2,

Corollary 1. Given any job instance J where J, JG ∈ IC for some IC, G(J) ≤
G(JG)

4.2 A Job Instance JA for an Online Algorithm A
Given an arbitrary online algorithm A and an optimal configuration C with the
corresponding set of job instances IC , we prove that there is a bad instance
JA ∈ IC for A such that A(JA) ≥ G(JG).

Find a Job Instance for Any Online Algorithm A. Similar to the con-
struction of JG , we aim to construct a job instance which has a high cost for the
online algorithm A. However, unlike the greedy strategy, we have no knowledge
about the behavior of A. Hence we reference A as an oracle and design the job
instance such that every decision made by A makes some trouble for itself in the
future. Note that since A is an online algorithm, it is practicable for us to make
use of the history of A and design the next group of released jobs such that the
previous decisions of A become bad choices.

Given an optimal configuration C = (v1, v2, · · · , vk) where 0 < v1 ≤ v2 ≤
· · · ≤ vk. In each round i, we release the set of jobs at column corresponding to
vi as J

(i)
A . The permitted machines of jobs j ∈ J

(i)
A is decided by the simulation of

A on jobs released in previous rounds. The number of these permitted machines
is k− i+1. Note that we can make the simulation since A is an online algorithm.
Algorithm 2 is a detailed instruction of finding JA. In the end, let SA be the
schedule returned by running A on JA.

Figure 1 is a demonstration to find the job instance JA. Figure 1c is the
corresponding JA for some online algorithm A of the configuration in Fig. 1b.

By the construction, the output schedule SA is the result of running A on
job set JA (Line 4 in Algorithm 2). Now we need to prove that the job instance
JA satisfied the requirement that JA ∈ IC .

Lemma 4. O(JA) and C have the same configuration.

The Property that A(JA) is at Least G(JG). Recall that the schedule SA
produced by Algorithm 2 is A(JA). We compare SA with the greedy schedule
SG = G(JG) produced by Algorithm 1.
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Algorithm 2. Find JA
Input: The given configuration C = (v1, v2, · · · , vk), where 0 < v1 ≤ v2 ≤ v3 ≤ · · · ≤

vk.
Online scheduling algorithm A

Output: Job instance JA with job subsets J
(1)
A , J

(2)
A , · · ·

Schedule SA of JA
1: for round i = 1, 2, · · · , k do
2: Let t1, t2, · · · , tk−i+1 be the first k − (i − 1) machines with highest load in

A(
⋃i−1

j=1 J
(j)
A ).

3: J
(i)
A ← jobs at machine vi in C, where for each job j ∈ J

(i)
A , Pj =

{t1, t2, · · · , tk−i+1}
4: SA ← A(

⋃i
j=1 J

(j)
A ).

5: end for
6: The jobs in J

(i)
A released after J

(i−1)
A . For jobs within J

(i)
A , the jobs with lower level

in C are released before the jobs with higher level.

Observation 4. Given an optimal configuration C, there exists constructions of
JG and JA such that for any job in C, the corresponding jobs in JG and JA have
the same position in the release orders in JG and JA.

Proof. The release orders are the same due to the Line 5 in Algorithm 1 and the
Line 6 in Algorithm 2. ��

Lemma 5. Consider the schedules SA and SG, L
(k)
SG ≥ L

(k)
SA for all k.

By Lemma 5 and Theorem 2, we have

Corollary 2. Given any online algorithm A, G(JG) ≤ A(JA).

5 Conclusion

We have shown the optimality of greedy algorithm for online grid scheduling
and restricted assignment problem for unit-sized jobs. Nevertheless, we have not
been able to derive the precise competitive ratio of the greedy algorithm. It is
therefore of immediate interest to find the competitive ratio. As mentioned in the
introduction, in the restricted assignment problem for arbitrary sized jobs, the
greedy algorithm is almost the best online algorithm. Deriving a similar result for
the grid scheduling problem would be of interest. Another direction of research is
to consider �p norm. The assignment problem and restricted assignment problem
have been studied in �p norm [1,5]. As far as we are aware, the general grid
problem with arbitrary duration and arbitrary power requirement has not been
studied in �p norm and it would be an interesting direction.
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Abstract. We study fair clustering problems as proposed by
Chierichetti et al. [CKLV17]. Here, points have a sensitive attribute and
all clusters in the solution are required to be balanced with respect to
it (to counteract any form of data-inherent bias). Previous algorithms
for fair clustering do not scale well. We show how to model and com-
pute so-called coresets for fair clustering problems, which can be used to
significantly reduce the input data size. We prove that the coresets are
composable [IMMM14] and show how to compute them in a streaming
setting. This yields a streaming PTAS for fair k-means in the case of
two colors (and exact balances). Furthermore, we extend techniques due
to Chierichetti et al. [CKLV17] to obtain an approximation algorithm
for k-means, which leads to a constant factor algorithm in the streaming
model when combined with the coreset.

1 Introduction

Our challenge is to support growth in the beneficial use of big data while
ensuring that it does not create unintended discriminatory consequences.
(Executive Office of the President, 2016 [MSP16]).

As the use of machine learning methods becomes more and more common
in many areas of daily life ranging from automatic display of advertisements on
webpages to mortgage approvals, we are faced with the question whether the
decisions made by these automatic systems are fair, i.e. free of biases by race,
gender or other sensitive attributes. While at first glance it seems that replacing
human decisions by algorithms will remove any kind of bias as algorithms will
only decide based on the underlying data, the problem is that the training data
may contain all sorts of biases. As a result, the outcome of an automated decision
process may still contain these biases.
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Recent findings in algorithmically generated results strengthen this concern.
For example, it has been discovered that the COMPAS software that is used to
predict the probability of recidivism is much more likely to assign an incorrect
high risk score to a black defendant and low risk scores to a white defendant
[ALMK16]. This raises the general question how we can guarantee fairness in
algorithms.

This questions comes with several challenges. The first challenge is to formally
define the concept of fairness. And indeed, it turns out that there are several
ways to define fairness which result in different optimal solutions [CPF+17], and
it has recently been shown that they cannot be achieved simultanuously unless
the data has some very special (unlikely) structure [KMR17].

In this paper we build upon the recent work by Chiericetti et al. [CKLV17]
and consider fairness of clustering algorithms using the concept of disparate
impact, which is a notion of (un)fairness introduced to computer science by
Feldman et al. [FFM+15]. Disparate impact essentially means that the result
of a machine learning task does not correlate strongly with sensitive attributes
such as gender, race sexual or religious orientation. More formally and illustrated
on the case of a single binary sensitive attribute X and cluster variable C, a
clustering algorithm does not show disparate impact if it satisfies the p% rule
(a typical value for p is 0.8) stating that Pr{C=i|X=0}

Pr{C=i|X=1} ≤ p. If we assume that
both attribute values appear with the same frequency, then by Bayes Theorem
the above translates to having at most p% points with a specific attribute value
in each cluster.

Chierichetti et al. model fairness based on the disparate impact model in
the following way. They assume that every point has one of two colors (red or
blue). If a set of points C has rC red and bC blue points, then they define its
balance to be min( rC

bC
, bC

rC
). The overall balance of a clustering is then defined as

the minimum balance of any cluster in it. Clusterings are then considered fair if
their overall balance is close to 1/2.

An algorithm ensuring fairness has to proceed with care; as mentioned before
an algorithm that obliviously optimizes an objective function may retain biases
inherent in the training set. Chierichetti et al. avoid this by identifying a set
of fair micro-clusters via a suitably chosen perfect matching and running the
subsequent optimization on the microclusters. This clever technique has the
benefit of always computing a fair clustering, as the union of fair micro clusters is
necessarily also fair. However, the min-cost perfect matching is computationally
expensive, and it needs random access to the data, which may be undesirable.
This raises the following question:

Question 1. Is is possible to perform a fair data analysis efficiently, even when
the size of the data set renders random-access unfeasible?

Our Contribution. We address the issue of scaling algorithms by investigating
coresets for fair clustering problems, specifically for k-means. Given an input
set P in d dimensional Euclidean space, the problem consists of finding a set
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of k centers c1, . . . , ck and a partition of P into k sets C1, . . . , Ck such that∑k
i=1

∑
p∈Ci

‖p − ci‖22 is minimized.
Roughly speaking, a coreset is a summary of a point set which has the prop-

erty that it approximates the cost function well for any possible candidate solu-
tion. The notion was proposed by Har-Peled and Mazumdar [HM04] and has
since received a wide range of attention. For clustering coresets, see for exam-
ple [BFL16,FL11,FMS07,FGS+13,FS05,LS10]. Coresets for geometric cluster-
ing are usually composable, meaning that if S1 is a coreset for P1 and S2 is a
coreset for P2, then S1 ∪ S2 is a coreset for P1 ∪ P2 [IMMM14]. Composabil-
ity is arguably the main appeal of coresets; it enables an easy reduction from
coreset constructions to streaming and distributed algorithms which scale to big
data. Dealing with fair clustering, composability is not obvious. In this work, we
initiate the study of fair coresets and their algorithmic implications:

– The standard coreset definition does not satisfy composability for fair cluster-
ing problems. We propose an alternative definition tailored to fair clustering
problems and show that this new definition satisfies composability. The defi-
nition straightforwardly generalizes to having � color classes and we show how
a suitable coreset (of size O(�k log nεd−1) for constant d) may be computed
efficiently. This implies a PTAS for fair k-means clustering if k is a constant
(we show this for the case of two colors and exact fairness preservation, as
will be defined later).

– We extend the coreset construction to the streaming setting. The main chal-
lenge to overcome is to reduce the dimension of our fair coresets in a streaming
fashion. Our key ingredient to do so is a novel application of the random pro-
jections proposed by Cohen et al. [CEM+15], which may be of independent
interest.

– Then we describe a constant factor approximation algorithm for fair k-means
clustering with two colors (and exact fairness preservation) based on the
approach of Chierichetti et al. [CKLV17]. The general technique to obtain
a constant factor algorithm is not new, but we do some adaptations to apply
it to the k-means case.

– Finally, we extend the practical approximation algorithm k-means++ to the
fair k-means setting and empirically evaluate the resulting algorithm and the
coreset approach.

Additional Related Work. The research on fairness in machine learning follows
two main directions. One is to find proper definitions of fairness. There are
many different definitions available including statistical parity [TRT11], dis-
parate impact [FFM+15], disparate mistreatment [ZVGRG17] and many others,
e.g. [BHJ+17,HPS16]. For an overview see the recent survey [BHJ+17]. Further-
more, the effects of different definitions of fairness and their relations have been
studied in [Cho16,CPF+17,KMR17]. A notion for individual fairness has been
developed in [DHP+12]. The other direction is the development of algorithms
for fair machine learning tasks. Here the goal is to develop new algorithms that
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solve learning tasks in such a way that the result satisfies a given fairness condi-
tion. Examples include [CKLV17,HPS16,ZVGRG17]. The closest result to our
work is the above described paper by Chierichetti et al. [CKLV17].

Polynomial-time approximation schemes for k-means were e.g. developed
in [BFL16,FL11,KSS10], assuming that k is a constant. If d is a constant, then
[CKM16,FRS16] give a PTAS. If k and d are arbitrary, then the problem is
APX-hard [ACKS15,LSW17]. Lloyd’s algorithm [Llo57] is an old but very pop-
ular local search algorithm for the k-means problem which can converge to arbi-
trarlity bad solutions. By using k-means++ seeding [AV07] as initialization, one
can guarantee that the computed solution is a O(log k)-approximation.

Chierichetti et al. [CKLV17] develop approximation algorithms for fair k-
center and k-median with two colors. This approach was further improved by
Backurs et al. [BIO+19], who proposed an algorithm to speed up parts of the
computation. Rösner and Schmidt [RS18] extend their definition to multiple col-
ors and develop an approximation algorithm for k-center. Bercea et al. [BGK+18]
develop an even more generalized notion and provide bicriteria approximations
for fair variants of k-center, k-median and also k-means. For k-center, they pro-
vide a true 6-approximation. Very recently, Kleindessner et al. [KAM19] pro-
posed a linear-time 2-approximation for fair k-center. This algorithm is not in
the streaming setting, but still faster then previously existing approaches for fair
clustering.

The fair k-means problem can also be viewed as a k-means clustering prob-
lem with size constraints. Ding and Xu [DX15] showed how to compute an expo-
nential sized list of candidate solutions for any of a large class of constrained
clustering problems. Their result was improved by Bhattacharya et al. [BJK18].

In addition to the above cited coreset constructions, coresets for k-means in
particular have also been studied empirically in various different works, for exam-
ple [AMR+12,AJM09,FGS+13,FS08,KMN+02]. Dimensionality reductions for
k-means are for example proposed in [BZD10,BZMD15,CEM+15,FSS13]. In
particular [CEM+15,FSS13] show that any input to the k-means problem can
be reduced to �k/ε� dimensions by using singular value decomposition (SVD)
while distorting the cost function by no more than an ε-factor. Furthermore,
[CEM+15] also study random projection based dimensionality reductions. While
SVD based reductions result in a smaller size, random projections are more ver-
satile.

1.1 Preliminaries

We use P ⊆ Rd to denote a set of n points in the d-dimensional vector space Rd.
The Euclidean distance between two points p, q ∈ Rd is denoted as ‖p − q‖. The
goal of clustering is to find a partition of an input point set P into subsets of
’similar’ points called clusters. In k-means clustering we formulate the problem
as an optimization problem. The integer k denotes the number of clusters. Each
cluster has a center and the cost of a cluster is the sum of squared Euclidean
distances to this center. Thus, the problem can be described as finding a set
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C = {c1, . . . , ck} and corresponding clusters C1, . . . , Ck such that cost(P,C) =
∑k

i=1

∑
p∈Ci

‖p − ci‖2 is minimized.
It is easy to see that in an optimal (non-fair) clustering each point p is

contained in the set Ci such that ‖p − ci‖2 is minimized. The above definition
can be easily extended to non-negatively and integer weighted point sets by
treating the weight as a multiplicity of a point. We denote the k-means cost of a
set S weighted with w and center set C and corresponding clusters S1, . . . , Sk by
costw(S,C) =

∑k
i=1

∑
p∈Si

w(p)‖p − ci‖2. Finally, we recall that the best center
for a cluster Ci is its centroid μ(Ci) := 1

|Ci|
∑

p∈Ci
p, which follows from the

following proposition.

Proposition 1. Given a point set P ⊂ Rd and a point c ∈ Rd, the 1-means
cost of clustering P with c can be decomposed into

∑
p∈P ‖p − c‖2 =

∑
p∈P ‖p −

μ(P )‖2 + |P | · ‖μ(P ) − c‖2.
Next, we give the coreset definition for k-means as introduced by Har-Peled and
Mazumdar.

Definition 1 (Coreset [HM04]). A set S ⊆ Rd together with non-negative
weights w : S → N is a (k, ε)-coreset for a point set P ⊆ Rd with respect to
the k-means clustering problem, if for every set C ⊆ Rd of k centers we have
(1 − ε) · cost(P,C) ≤ cost(S,C) ≤ (1 + ε) · cost(P,C).

Fair Clustering. We extend the definition of fairness from [CKLV17] to sensitive
attributes with multiple possible values. As in [CKLV17], we model the sensitive
attribute by a color. Notice that we can model multiple sensitive attributes by
assigning a different color to any combination of possible values of the sensitive
attributes. We further assume that the sensitive attributes are not among the
point coordinates. Thus, our input set is a set P ⊆ Rd together with a coloring
c : P → {1, . . . , �}.

We define ξ(j) = |{p ∈ P : c(p) = j}|/|P | as the fraction that color j has
in the input point set. Then we call a clustering C1, . . . , Ck (α, β)-fair, 0 < α ≤
1 ≤ β, if for every cluster Ci and every color class j ∈ {1, . . . , �} we have

α · ξ(j) ≤ |{p ∈ Ci : c(p) = j}|
|{p ∈ Ci}| ≤ β · ξ(j).

For any set C = {c1, . . . , ck} of k centers we define faircost(P,C) to be the
minimum of

∑k
i=1

∑
p∈Ci

‖p − ci‖2 where the minimum is taken over all (α, β)-
fair clusterings of P into C1, . . . , Ck. The optimal (α, β)-fair clustering C ′ is the
one with minimal faircost(P,C ′). Alternatively to ξ(j), we could demand that
the fraction of all colors is (roughly) 1/�. However, notice that the best achievable
fraction is ξ(j). Thus (α, β)-fairness is a strictly more general condition. It is also
arguably more meaningful if the data set itself is heavily imbalanced. Consider
an instance where the blue points outnumber the red points by a factor of 100.
Then the disparity of impact is at least 0.01. A (1, 1)-fair clustering then is a
clustering where all clusters achieve the best-possible ratio 0.01.
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2 Fair Coresets and How to Get Them

First, notice that the definition of coresets as given in Definition 1 does not
translate well to the realm of fair clustering. Assume we replace cost by faircost
in Definition 1. Now consider Fig. 1. We see two point sets P1 and P2 with eight
points each, which both have an optimum cost of Ω(Δ). Replacing the four left
and the four right points by one point induces an error of O(εΔ), which is an
O(ε)-fraction of the total cost. Thus, the depicted sets S1 and S2 are coresets.
However, when we combine P1 and P2, then the optimum changes. The cost
decreases dramatically to O(ε). For the new optimal solution, S1 ∪ S2 still costs
Ω(εΔ), and the inequality in Definition 1 is no longer satisfied.

Fig. 1. A simple example of non-composable coresets for the case of (1, 1)-fairness.

We thus have to do a detour: We define a stronger, more complicated notion
of coresets which regains the property of being composable. Then, we show that a
special type of coreset constructions for k-means can be used to compute coresets
that satisfy this stronger notion. It is an interesting open question to analyze
whether it is possible to design sampling based coreset constructions that satisfy
our notion of coresets for fair clustering.

For our detour, we need the following generalization of the standard k-means
cost. A coloring constraint for a set of k cluster centers C = {c1, . . . , ck} and
a set of � colors {1, . . . , �} is a k × � matrix K. Given a point set P with a
coloring c : P → {1, . . . , �} we say that a partition of P into sets C1, . . . , Ck

satisfies K if |{p ∈ Ci : c(p) = j}| = Kij . The cost of the corresponding

clustering is
k∑

i=1

∑

p∈Ci

‖p − ci‖2 as before. Now we define the color-k-means cost

colcost(P,K,C) to be the minimal cost of any clustering satisfying K. If no
clustering satisfies K, colcost(P,K,C) := ∞.

Notice that we can prevent the bad example in Fig. 1 by using the color-
k-means cost: If colcost(P,K,C) is approximately preserved for the color con-
straints modeling that each cluster is either completely blue or completely red,
then S1 and S2 are forbidden as a coresets.
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Definition 2. Let P be a point set with coloring c : P → {1, . . . , �}. A non-
negatively integer weighted set S ⊆ Rd with a coloring c′ : S → {1, . . . , �} is a
(k, ε)-coreset for P for the (α, β)-fair k-means clustering problem, if for every
set C ⊆ Rd of k centers and every coloring constraint K we have

colcostw(S,K,C) ∈ (1 ± ε) · colcost(P,K,C),

where in the computation of colcost(S,K,C) we treat a point with weight w as
w unweighted points and therefore a point can be partially assigned to more than
one cluster.

Definition 2 demands that the cost is approximated for any possible color
constraint. This implies that it is approximated for those constraints we are
interested in. Indeed, the fairness constraint can be modeled as a collection of
color constraints. As an example for this, assume we have two colors and k
is also two; furthermore, assume that the input is perfectly balanced, i.e., the
number of points of both colors is n/2, and that we want this to be true for
both clusters as well. Say we have a center set C = {c1, c2} and define Ki

by Ki
11 = i,Ki

12 = i,Ki
21 = n

2 − i,Ki
22 = n

2 − i, i.e., Ki assigns i points of
each color to c1 and the rest to c2. The feasible assignments for the fairness
constraint are exactly those assignments that are legal for exactly one of the
color constraints Ki, i ∈ {0, . . . , n

2 }. So since a coreset according to Definition 2
approximates colcost(P,C,Ki) for all i, it in particular approximately preserves
the cost of any fair clustering. This also works in the general case: We can model
the (α, β)-fair constraint as a collection of color constraints (and basically any
other fairness notion based on the fraction of the colors in the clusters as well).

Proposition 2. Given a center set C, |C| = k, the assignment restriction to be
(α, β)-fair can be modeled as a collection of coloring constraints.

Proof. Recall ξ(j) = |{p∈P : c(p)=j}|
|P | . Let C = {C1, . . . , Ck} be a clustering and

let K be the coloring constraint matrix induced by C. We observe that the ith
row sums up to |Ci| and the jth column sums up to |{p ∈ P : c(p) = j}|. Then
C is (α, β)-fair if and only if α · ξ(j) ≤ |{p∈Ci : c(p)=j}|

|Ci| = Ki,j∑k
h=1 Ki,h

≤ β · ξ(j) for
all i ∈ {1, . . . , k} and j ∈ {1, . . . , �}.

The main advantage of Definition 2 is that it satisfies composability. The
main idea is that for any coloring constraint K, any clustering satisfying K
induces specific color constraints K1 and K2 for P1 and P2; and for these, the
coresets S1 and S2 also have to satisfy the coreset property. We can thus prove
the coreset property for S and K by composing the guarantees for S1 and S2 on
K1 and K2.

Lemma 1 (Composability). Let P1, P2 ⊂ Rd be point sets. Let S1, w1, c1 be a
(k, ε)-coreset for P1 and let S2, w2, c2 be a (k, ε)-coreset for P2 (both satisfying
Definition 2). Let S = S1 ∪ S2 and concatenate w1, w2 and c1, c2 accordingly
to obtain weights w and colors c for S. Then S, w, c is a (k, ε)-coreset for
P = P1 ∪ P2 satisfying Definition 2.
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Proof. Let C = {c1, . . . , ck} ⊂ Rd be an arbitrary set of centers, and let K ∈
Nk×� be an arbitrary coloring constraint for C. We want to show that

colcostw(S,K,C) ∈ (1 ± ε)colcost(P,K,C).

Let γ : P → C be an assignment that minimizes the assignment cost among all
assignments that satisfy K, implying that colcost(P,K,C) =

∑
p∈P ||x−γ(x)||2.

Since γ satisfies K, the number of points of color j assigned to each center ci ∈ C
is exactly Kij . We split K into two matrices K1 and K2 with K = K1 + K2 by
counting the number of points of each color at each center which belong to P1

and P2, respectively. In the same fashion, we define two mappings γ1 : P1 → C
and γ2 : P2 → C with γ1(p) = γ(p) for all p ∈ P1 and γ2(p) = γ(p) for all p ∈ P2.

Now we argue that colcost(P,C,K) = colcost(P1, C,K1) + colcost
(P2, C,K2). Firstly, we observe that colcost(P,C,K) ≤ colcost(P1, C,K1) +
colcost(P2, C,K2) since γ1 and γ2 are legal assignments for the color constraint
K1 and K2, respectively, and they induce exactly the same point-wise cost
as γ. Secondly, we argue that there cannot be cheaper assignments for K1

and K2. Assume there where an assignment γ′
1 with

∑
p∈P1

||x − γ′
1(x)||2 <

colcost(P1, C,K1). Then we could immediately adjust γ to be identical to γ′
1

on the points in P1 instead of γ1, and this would reduce the cost; a con-
tradiction to the optimality of γ. The same argument holds for γ2. Thus,
colcost(P,C,K) = colcost(P1, C,K1) + colcost(P2, C,K2) is indeed true.

Now since S1, w1, c1 is a coreset for P1 and S2, w2, c2 is a coreset for P2,
they have to approximate colcost(P1, C,K1) and colcost(P2, C,K2) well. We get
from this that

colcostw(S1, C,K1) + colcostw(S2, C,K2)
∈ (1 ± ε) · colcost(P1, C,K1) + (1 ± ε) · colcost(P2, C,K2)
∈ (1 ± ε) · colcost(P,C,K).

Observe that colcostw(S,C,K) ≤ colcostw(S1, C,K1)+colcostw(S2, C,K2) since
we can concatenate the optimal assignments for S1 and S2 to get an assignment
for S. Thus, colcostw(S,C,K) ≤ (1 + ε) · colcost(P,C,K). It remains to show
that colcostw(S,C,K) ≥ (1 − ε) · colcost(P,C,K).

Let γ′ : S → C be an assignment that satisfies K and has cost
colcostw(S,C,K) (for simplicity, we treat S as if it were expanded by adding
multiple copies of each weighted point; recall that we allow weights to be split
up for S). Let γ′

1 : P1 → C and γ′
2 : P2 → C be the result of translating γ′

to P1 and P2, and split K into K ′
1 and K ′

2 according to γ′ as we did above.
Then colcostw(S,C,K) = colcostw(S1, C,K ′

1)+colcostw(S2, C,K ′
2) by the same

argumentation as above. Furthermore,

colcostw(S,C,K) = colcostw(S1, C,K ′
1) + colcostw(S2, C,K ′

2)
≥ (1 − ε)colcostw(P1, C,K ′

1) + (1 − ε)colcostw(P2, C,K ′
2)

≥ (1 − ε)colcost(P,C,K).
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where the first inequality holds by the coreset property and the second is true
since we can also use γ′ to cluster P , implying the inequalitycolcostw(P,C,K) ≤
colcostw(P1, C,K ′

1) + colcostw(P2, C,K ′
2). That completes the proof.

We have thus achieved our goal of finding a suitable definition of coresets for
fair clustering. Now the question is whether we can actually compute sets which
satisfy the rather strong Definition 2. Luckily, we can show that a special class
of coreset constructions for k-means can be adjusted to work for our purpose.
A coreset construction for k-means is an algorithm that takes a point set P as
input and computes a summary S with integer weights that satisfies Definition 1.

We say that a coreset construction is movement-based if

– all weights w(p), p ∈ S are integers
– there exists a mapping π : P → S with |π−1(p)| = w(p) for all p ∈ S which

satisfies that
∑

x∈P

||x − π(x)||2 ≤ ε2

16
· OPTk,

where OPTk = min
C⊂Rd,|C|=k

cost(P,C).

Movement-based coreset constructions compute a coreset by ‘moving’ points to
common places at little cost, and then replacing heaps of points by weighted
points. Examples for movement-based coreset constructions can be found in
[FGS+13,FS05,HM04]. Now the crucial observation is that we can turn any
movement-based coreset construction for k-means (say, a black-box algorithm
ALG) into an algorithm that computes coresets for fair k-means satisfying Def-
inition 2. The main idea is to run ALG to move all points in P to common
locations, and then to replace all points of the same color at the same location
by one coreset point. This may result in up to � points for every location, i.e.,
the final coreset result may be larger than its colorless counterpart by a factor
of at most �. The rest of the proof then shows that Definition 2 is indeed true,
following the lines of movement-based coreset construction proofs.

Theorem 1. Let ALG be a movement-based coreset construction for the k-
means problem. Assume that given the input P ⊂ Rd, k ∈ N and ε ∈ (0, 1),
the size of the coreset that ALG computes is bounded by f(|P |, d, k, ε). Then we
can construct an algorithm ALG′ which constructs a set S′ that satisfies Def-
inition 2, and the size of this set is bounded by � · f(|P |, d, k, ε), where � is the
number of colors.

Proof. For any P , ALG gives us a set S and a non-negative weight function w
such that Definition 1 is true, i.e.,

(1 − ε)cost(P,C) ≤ costw(S,C) ≤ (1 + ε)cost(P,C) (1)

holds for all set of centers C with |C| = k. Since ALG is movement-based, the
weights are integer; and there exists a mapping π : P → S, such that at most
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w(p) points from P are mapped to any point p ∈ S, and such that

∑

x∈P

||x − π(x)||2 ≤ ε2

16
· OPTk (2)

is true. Statement (2) is stronger than (1), and we will only need (2) for our
proof. We will, however, need the mapping π to construct ALG′. Usually, the
mapping will be at least implicitly computed by ALG. If not or if outputting
this information from ALG is cumbersome, we do the following. We assign every
point in P to its closest point in S. The resulting mapping has to satisfy 2, since
the distance of any point to its closest point in S can only be smaller than in any
given assignment. We may now assign more than w(p) points to S. We resolve
this by simply changing the weights of the points in S to match our mapping.
Since we now have S, w and π satisfying (2), we can proceed as if ALG had
given a mapping to us.

Now we do what movement-based coreset constructions do internally as well:
We consolidate all points that share the same location. However, since they may
not all be of the same color, we possibly put multiple (at most �) copies of any
point in S into our coreset S′. More precisely, for every p ∈ S, we count the
number np,i of points of color i. If np,i is at least one, then we put p into S′ with
color i and weight np,i. The size of S′ is thus at most � · f(|P |, d, k, ε).

The proof that S′ satisfies Definition 2 is now close to the proof that
movement-based coreset constructions work. To execute it, we imagine S′ in
its expanded form (where every point p is replaced by np,i points of color i.
We call this expanded version P ′. Notice that cost(P ′, C) = costw(S′, C) for all
C ⊂ Rd. We only need P ′ for the analysis. Notice that π can now be interpreted
as a bijective mapping between P and P ′ and this is how we will use it.

Let C be an arbitrary center set with |C| = k and let K be an arbi-
trary coloring constraint. We want to show that (1 − ε) · colcost(P,K,C) ≤
colcost(P ′,K,C) ≤ (1 + ε) · colcost(P,K,C). If no assignment satisfies K, then
colcost(P,K,C) is infinity, and there is nothing to show. Otherwise, fix an arbi-
trary optimal assignment γ : P → C of the points in P to C among all assign-
ments that satisfy K. Notice that γ and π are different assignments with different
purposes; γ assigning a point in P to its center, and π assigning each point in P
to its moved version in P ′.

We let vc(x) := ||x − γ(x)|| be the distance between x ∈ P and the center
its assigned to. Let vc be the |P |-dimensional vector consisting of all vc(x) (in
arbitrary order). Then we have

colcost(P,C,K) =
∑

x∈P

||x − γ(x)||2 =
∑

x∈P

vc(x)2 = ||vc||2.

Furthermore, we set vp(x) = ||π(x) − x|| and let vp be the |P |-dimensional
vector of all vp(x) (ordered in the same way as vc). We have

∑
x∈P ||π(x)−x||2 ≤

ε2

16
· OPTk by our preconditions.
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Now we want to find an upper bound on colcost(P ′, C,K). Since we only
need an upper bound, we can use γ for assigning the points in P ′ to C. We
already know that γ satisfies K for the points in P ; and the points in P ′ are
only moved versions of the points in P . We use this and then apply the triangle
inequality:

colcost(P ′, C,K) ≤
∑

y∈P ′
||y − γ(π−1(y))||2 =

∑

x∈P

||γ(x) − π(x)||2

≤
∑

x∈P

(||γ(x) − x|| + ||x − π(x)||)2

=
∑

x∈P

(vc(x) + vp(x))2 = ||vc + vp||2.

Now we can apply the triangle inequality to the vector vc +vp to get ||vc +vp|| ≤
||vc|| + ||vp|| ≤ √

colcost(P,C,K) +
√

ε2

16 · OPTk. So we know that

colcost(P ′, C,K) ≤ ||vc + vp||2 ≤ colcost(P,C,K) +
ε2

16
· OPTk

+ 2
√

colcost(P,C,K) ·
√

ε2

16
· OPTk

≤ colcost(P,C,K) +
ε2

16
· OPTk

+
ε

2
· colcost(P,C,K)

< (1 + ε) · colcost(P,C,K).

To obtain that also colcost(P,C,K) ≤ (1 + ε) · colcost(P ′, C,K), we observe
that the above argumentation is symmetric in P and P ′. No argument used that
P is the original point set and P ′ is the moved version. So we exchange the roles
of P and P ′ (we repeat the whole argumentation starting at the point where we
fix the center set C, so for example, γ is now an optimal assignment of P ′ to C)
to complete the proof.

We can now apply Theorem 1. Movement-based constructions include the
original paper due to Har-Peled and Mazumdar [HM04] as well as the practically
more efficient algorithm BICO [FGS+13]. For more information on the idea of
movement-based coreset constructions, see Sect. 3.1 in the survey [MS18]. For
BICO in particular, Lemma 5.4.3 in [Sch14] gives a proof that the construction
is movement-based. Using Theorem 1 and Corollary 1 from [FGS+13], we then
obtain the following.

Corollary 1. There is an algorithm in the insertion-only streaming model which
computes a (k, ε)-coreset for the fair k-means problem according to Definition 2.
The size of the coreset and the storage requirement of the algorithm is m ∈
O(� · k · log n · ε−d+2), where � is the number of colors in the input, and where d
is assumed to be a constant.
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The running time of the algorithm is O(N(m)(n + log(nΔ)m)), where Δ is
the spread of the input points and N(m) is the time to compute an (approximate)
nearest neighbor.

3 Streaming PTAS and Constant-Factor Approximations

In this section, we give a constant-factor approximation algorithm for fair k-
means with two colors, assuming that exactly half of the input points are colored
with each color, and demanding that this is true for all clusters in the clustering
as well. We call this special case exactly balanced. We also show how to obtain a
PTAS for the case that k is a constant.

We restrict to two colors since for multiple colors, no true approximation algo-
rithms are known even for the related case of k-median, and there is indication
that this problem might be very difficult (it is related to solving capacitated
k-median/k-means, a notoriously difficult research problem). Notice that the
coreset approach works for arbitrary (α, β)-fair k-means.

Fairlet Approach. For two colors, Chierichetti et al. [CKLV17] outline how to
transfer approximation algorithms for clustering to the setting of fair cluster-
ing, but derive the algorithms only for k-center and k-median. The idea is to
first compute a coarse clustering where the microclusters are called fairlets, and
then to cluster representatives of the fairlets to obtain the final clustering. The
following algorithm extends their ideas to compute fairlets for k-means.

Algorithm 1. Fairlet computation
1: Let B be the blue points and R be the red points
2: For any b ∈ B, r ∈ R, set c(r, b) = ||r − b||2/2
3: Consider the complete bipartite graph G on B and R
4: Compute a min cost perfect matching M on G
5: For each edge (r, b) ∈ M , add μ({r, b}) to F
6: Output F

The idea of the algorithm is the following. In any optimal solution, the points
can be paired into tuples of a blue and a red point which belong to the same
optimal cluster. Clustering the n/2 ≥ k tuples with n/2 centers cannot be more
expensive than the cost of the actual optimal k-means solution. Thus, we would
ideally like to know the tuples and partition them into clusters. Since we cannot
know the tuples, we instead compute a minimum cost perfect matching between
the red and blue points, where the weight of an edge is the 1-means cost of
clustering the two points with an optimal center (this is always half their squared
distance). The matching gives us tuples; these tuples are the fairlets. The centroid
of each fairlet now serves as its representative. The following theorem shows that
clustering the representatives yields a good solution for the original problem.
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Theorem 2. There is an algorithm that achieves the following. For any P ⊂ Rd

which contains |P |/2 blue and |P |/2 red points, it computes a set of representa-
tives F ⊂ P of size |P |/2, such that an α-approximate solution for the (plain)
k-means problem on F yields a (5.5α + 1)-approximation for the fair k-means
problem on P .

By combining Theorem 2 with a constant-factor approximation for k-means
(the currently best being the one proposed by Ahmadian et al. [ANSW17]), we
get the following corollary.

Corollary 2. There is a O(1)-approximation for exactly balanced fair k-means
with two colors.

Similarly to the fairlet computation, the problem of finding an fair assign-
ment, i.e., an cost-wise optimal assignment of points to given centers which is
fair, can be modeled as a matching problem. This algorithm, as well as algorithms
for fairlet computation and fair assignment for weighted points are described in
the full version of the paper [SSS18].

PTAS. We next give an algorithm to efficiently compute a (1+ε)-approximation
if k is a constant and not part of the input by extending known ideas to the fair
k-means++ case. The main additional step is to use an optimal fair assignment
problem algorithm.

We remark that the running time of the below stated algorithm algorithm
is worse than that of [BJK18,DX15]. However, it can be easily adapted to work
with weighted inputs. While we believe that in principle adapting the algorithms
in [BJK18,DX15] to the weighted case is possible, we preferred to stick to the
simpler slightly worse result to keep the paper concise.

Theorem 3. Let P ⊆ Rd be a weighted point set of n points such that half
of the point weight is red and the other half is blue. Then we can compute a
(1 + ε)-approximations to the fair k-means problem in time nO(k/ε).

We use the well-known fact that every cluster has a subset of O(1/ε) points
such that their centroid is a (1+ ε)-approximation to the centroid of the cluster.
We use the following lemma by Inaba et al.

Lemma 2. [IKI94] Let P ⊆ Rd be a set of points and let S be a subset of
m points drawn independently and uniformly at random from P . Let c(P ) =
1

|P |
∑

p∈P p and c(S) = 1
|S|

∑
p∈S p be the centroids of P and S. Then with

probability at least 1 − δ we have

‖
∑

p∈P

‖p − c(S)‖22 ≤ (1 +
1

δm
) · ‖

∑

p∈P

‖p − c(P )‖22 .

It immediately follows that for m = �2/ε� there exists a subset S of m points
that satisfies the above inequality. The result can immediately be extended to
the weighted case. This implies that Algorithm 2 gives a PTAS.

The running time of the algorithm is nO(k/ε) since line two can be imple-
mented in kO(k/ε) time and the partition problem can be solved in nO(1) time.
This implies the theorem.
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Algorithm 2. PTAS for fair k-means++
Input: (Weighted) point set P ⊆ Rd

1: Consider all subsets S ⊆ P of size k · �2/ε�.
2: Consider all partitions of S into k sets C1, . . . , Ck of size �2/ε�.
3: Solve the fair assignment problem for P and c(C1), . . . , c(Ck)
4: Return the best solution computed above

Streaming PTAS. We would like to extend the PTAS to the streaming setting,
using our coreset. Applying Corollary 1 directly incurs an exponential depen-
dency on the dimension d. The standard way to avoid this is to project the
data onto the first k/ε principal components, see [CEM+15,FSS13], and then to
use a technique called merge-and-reduce. Unfortunately, merge-and-reduce tech-
nique requires a rescaling of ε by a factor of log n. In other words, the resulting
streaming coreset will have a size exp(

(
log n

ε

)
, k · log n

ε ), which is even larger
than the input size. To avoid this, we show how to make use of oblivious ran-
dom projections to reduce the dependency of the dimension for movement-based
coreset constructions, and also recover a (1 + ε) approximate solution. This is a
novel combination of coreset techniques with a sketching technique due to Cohen
et al. [CEM+15] which may be of independent interest.

We review some of the algebraic properties. Given a matrix A ∈ Rn×d, we
define the Frobenius norm as ‖A‖F =

√∑n
i=1 ‖Ai∗‖2, where Ai∗ is the ith row

of A. For k-means, we will consider the rows of A to be our input points. The
spectral norm ‖A‖2 is the largest singular value of A.

Let us now consider the n-vector x = 1 · 1√
n
. x is a unit vector, i.e. ‖x‖2 =

1, and moreover, due to Proposition 1, the rows of xxT A are μ(A)T . Hence
‖A − xxT A‖2F is the optimal 1-means cost of A. This may be extended to an
arbitrary number of centers by considering the n by k clustering matrix X with

Xi,j =

{√
1/|Cj | if Ai∗ ∈ cluster Cj

0 otherwise
.

XXT is an orthogonal projection matrix and ‖A−XXT A‖2F corresponds to the
k-means cost of the clusters C1, . . . , Ck. If we lift the clustering constraints on X
and merely assume X to be orthogonal and rank k, ‖A−XXT A‖2F becomes the
rank k approximation problem. The connection between rank k approximation
and k-means is well established, see for example [BZMD15,DFK+04,FSS13].
Specifically, we aim for the following guarantee.

Definition 3 (Definition 1 of [CEM+15]). Ã ∈ Rn×d′
is a rank k-projection-

cost preserving sketch of A ∈ Rn×d with error 0 < ε < 1 if, for all rank k
orthogonal projection matrices XXT ∈ Rn×n,

‖Ã − XXT Ã‖2F + c ∈ (1 ± ε) · ‖A − XXT A‖2F ,

for some fixed non-negative constant c that may depend on A and Ã, but is
independent of XXT .
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Our choice of Ã is AS, where S is a scaled Rademacher matrix of target dimen-
sion m ∈ O(k/ε2), see Theorem 12 of [CEM+15]. In this case c = 0.

Algorithm 3. Dimension-Efficient Coreset Streaming
Input: Point set A processed in a stream
1: Initialize S ∈ Rd×m

2: Maintain a movement-based coreset T of AS
3: Let π−1(Ti∗) be the set of rows of AS that are moved to Ti∗
4: Let π−1

A (Ti∗) be the set of corresponding rows of A
5: Maintain |π−1

A (Ti∗)| and the linear sum L(Ti∗) of the rows in π−1
A (Ti∗)

6: Solve (α, β)-fair k-means on T using a γ-approximation algorithm � clustering
C1, . . . , Ck

7: For each cluster Cj return the center 1
∑

Ti∗∈Cj
|π−1

A
(Ti∗)| · ∑

Ti∗∈Cj
L(Ti∗)

We combine oblivious sketches with movement-based coreset constructions
in Algorithm 3. The general idea is to run the coreset construction on the rows
of AS (which are lower dimensional points). Since the dimensions of AS are
n times k/ε2, this has the effect that we can replace d in the coreset size by
O(k/ε2). Furthermore, we show that by storing additional information we can
still compute an approximate solution for A (the challenge is that although AS
will approximately preserve clustering costs, the cluster centers that achieve this
cost lie in a different space and cannot be used directly as a solution for A).

Theorem 4. Let 0 < ε < 1/2. Assume there is streaming algorithm ALG that
receives the rows of a matrix A ∈ Rn×d and maintains an (k, ε)-coreset T with
the following property: We can replace weighted points in T by a corresponding
number of copies to obtain a matrix A′ such that

∑n
i=1 ‖Ai∗ −Ai′∗‖2 ≤ ε2

16 ·OPT.
Furthermore, assume that ALG uses f(k, ε, d, log n) space. If we use ALG in
Step 2 of Algorithm3, then Algorithm3 will use f(k, ε/25, c′ · (k/ε)2, log n) · d +
O(kd/ε2) space to compute a set of centers C with

faircost(P,C) ≤ γ(1 + ε) · OPT

where OPT is the cost of an optimal solution for A and c′ > 0 is a constant such
that the guarantees of Theorem 12 from [CEM+15] are satisfied.

Proof. Let X be the optimal clustering matrix on input A′S and Y be the
optimal clustering matrix for input A. Let Z be the clustering matrix returned
by our (α, β)-fair approximation algorithm on input A′S (or, equivalently, on
input T ). Let ε′ = ε/25. Since we are using a γ-approximation algorithm, we
know that ‖ZZT A′S − A′S‖2F ≤ γ · ‖XXT A′S − A′S‖2F . We also observe that
‖ZZT A′S−ZZT AS‖F ≤ ‖ZZT ‖2‖A′S−AS|F = ‖A′S−AS‖F for an orthogonal
projection matrix ZZT . Furthermore, we will use that ‖XXT A′S − A′S‖F ≤
‖XXT A′S − XXT AS‖F + ‖XXT AS − AS‖F + ‖A′S − AS‖F and the fact
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that the spectral norm and Frobenius norm are conforming, e.g., they satisfy
‖AB‖F ≤ ‖A‖2‖B‖F . We obtain

(1 − ε′) · ‖ZZT A − A‖2F ≤ ‖ZZT AS − AS‖2F
≤ (‖ZZT A′S − ZZT AS‖F + ‖ZZT A′S − AS‖F

)2

≤ (‖ZZT A′S − ZZT AS‖F + ‖ZZT A′S − A′S‖F

+‖A′S − AS‖F )2

≤ (
2‖A′S − AS‖F +

√
γ‖XXT A′S − A′S‖F

)2

≤ ((2 +
√

γ)‖A′S − AS‖F

+
√

γ(‖XXT A′S − XXT AS‖F +
‖XXT AS − AS‖F ))2

≤ ((2 + 2
√

γ)‖A′S − AS‖F +
√

γ‖XXT AS − AS‖F )2

≤ ((
ε′

4
(2 + 2

√
γ) +

√
γ)‖XXT AS − AS‖F )2

≤ ((1 + ε′)
√

γ)‖XXT AS − AS‖F )2

≤ (1 + ε′)2γ‖Y Y T AS − AS‖2F
≤ (1 + ε′)3γ‖Y Y T A − A‖2F

where the first and the last inequality follows from the guarantee of Defi-
nition 3 and Theorem 12 of [CEM+15]. To conclude the proof, observe that
(1 + ε′)3/1 − ε ≤ (1 + 25ε′) = (1 + ε) for 0 < ε < 1

2 .

4 Practical Approximation Algorithms

Finally, we give some thought on how to extend the famous k-means++ algo-
rithm [AV07] to the fair k-means setting in a way that results in high quality
solutions. The k-means++ algorithm is a combination of an efficient random-
ized sampling technique that produces a O(log k)-approximate solution to the
k-means problem on the one hand, with a local search heuristic, Lloyd’s algo-
rithm, which refines the solution to a local optimum, on the other hand.

The straightforward way to adapt k-means++ is to use Theorem 2 (the fairlet
approach), run k-means++ on the fairlet representatives and use the resulting
centers. There are two variants of this: One can either use the assignment that
results directly from clustering the fairlets, or one can only use the computed
centers and recompute the assignment by using Algorithm4. We name the two
variants CKLV-k-means++ and Reassigned-CKLV-k-means++.

Algorithm 4. CKLV-k-means++
1: Compute fairlet representatives F with Algorithm 1 (or weighted)
2: Run standard k-means++ on F and assign fairlet points accordingly
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Algorithm 5. Reassigned-CKVL
1: Compute a center set C with Algorithm 4
2: Compute an optimal fair assignment of all points in P to C

Compared to k-means++, Reassigned-CKLV has the drawback that the com-
puted solution is not really optimal with respect to the original problem: After
the reassignment, it may be beneficial to change the centers again. To further
refine the solution, we propose to adapt Lloyd’s algorithm directly. Lloyd’s algo-
rithm is an iterative search heuristic which given initial centers, alternatingly
assigns points to their closest center and computes the optimum center for each
cluster (the centroid). The two steps are repeated until a stopping criterion is
met, for example until the algorithm is converged or has reached a maximum
number of iterations. For fair k-means++, we replace the assignment step by a
fair assignment step and call the resulting algorithm fair k-means++.

Algorithm 6. Fair k-means++
1: Compute initial centers C0 by Algorithm 4
2: For all i ≥ 0, unless a stopping criterion is met:
3: Assign every point to a center Ci by computing a fair assignment, partitioning P
into P 1

i , . . . , P k
i

4: Set Ci+1 = {μ(P j
i ) | j ∈ [k]}

4.1 Empirical Evaluation

In the full version [SSS18], we give a short empirical evaluation to demonstrate
the practicability of the streaming O(log k)-approximations and the coreset app-
roach. We compare CKLV-k-means++ (Algorithm 4), Reassigned-CKLV (Algo-
rithm5) and fair k-means++ (Algorithm 6). The experiments clearly show that
none of the algorithms can scale to big data, with fair k-means++ being par-
ticularly slow due to the repeated fair reassignment. However, using the coreset
allows all three algorithms to scale well.
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