
Renata Borovica-Gajic
Jianzhong Qi
Weiqing Wang (Eds.)

LN
CS

 1
20

08

31st Australasian Database Conference, ADC 2020
Melbourne, VIC, Australia, February 3–7, 2020
Proceedings

Databases Theory
and Applications

Lecture Notes in Computer Science 12008

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7409

http://www.springer.com/series/7409

Renata Borovica-Gajic • Jianzhong Qi •

Weiqing Wang (Eds.)

Databases Theory
and Applications
31st Australasian Database Conference, ADC 2020
Melbourne, VIC, Australia, February 3–7, 2020
Proceedings

123

Editors
Renata Borovica-Gajic
University of Melbourne
Parkville, Australia

Jianzhong Qi
School of Computing
and Information Systems
University of Melbourne
Parkville, VIC, AustraliaWeiqing Wang

Monash University
Clayton, Australia

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-39468-4 ISBN 978-3-030-39469-1 (eBook)
https://doi.org/10.1007/978-3-030-39469-1

LNCS Sublibrary: SL3 – Information Systems and Applications, incl. Internet/Web, and HCI

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-39469-1

Preface

It is our pleasure to present to you the proceedings of the 31th Australasian Database
Conference (ADC 2020), which took place in Melbourne, Australia. ADC is an annual
international forum for sharing the latest research advancements and novel applications
of database systems, data driven applications, and data analytics between researchers
and practitioners from around the globe, particularly Australia and New Zealand. The
mission of ADC is to share novel research solutions to problems of today’s information
society that fulfil the needs of heterogeneous applications and environments and to
identify new issues and directions for future research and development work. ADC
seeks papers from academia and industry presenting research on all practical and
theoretical aspects of advanced database theory and applications, as well as case studies
and implementation experiences. All topics related to database are of interest and
within the scope of the conference. ADC gives researchers and practitioners a unique
opportunity to share their perspectives with others interested in the various aspects of
database systems.

As in previous years, the ADC 2020 Program Committee accepted those papers to
be considered as being of ADC quality without setting any predefined quota. The
conference received 30 submissions and accepted 20 papers, including 14 full research
papers and 6 short papers. Each paper was peer reviewed in full by at least three
independent reviewers, and in some cases four referees produced independent reviews.
A conscious decision was made to select the papers for which all reviews were positive
and favorable. The Program Committee that selected the papers consists of 35 members
from around the globe, including Australia, China, New Zealand, Japan, the UK, and
the USA, who were thorough and dedicated to the reviewing process.

We would like to thank all our colleagues who served on the Program Committee or
acted as external reviewers. We would also like to thank all the authors who submitted
their papers, and the attendees. This conference is held for you, and we hope that with
these proceedings, you can have an overview of this vibrant research community and
its activities. We encourage you to make submissions to the next ADC conference and
contribute to this community.

December 2019 Renata Borovica-Gajic
Jianzhong Qi

Weiqing Wang

General Chair’s Welcome Message

On behalf of the organizers and Steering Committee for ADC 2020, I am honored to
welcome you to the proceedings from the conference. The Australasian Database
Conference has an extensive history; this is the 31st occurrence of the conference. In
the past decade, ADC has been held in Sydney (2019), Gold Coast (2018), Brisbane
(2017), Sydney (2016), Melbourne (2015), Brisbane (2014), Adelaide (2013),
Melbourne (2012), Perth (2011), Brisbane (2010), Wellington (2009), and Wollongong
(2008). This year, ADC was run under the umbrella structure of the Australasian
Computer Science Week, organized at Swinburne University in Melbourne.

The technical program was arranged by Dr. Renata Borovica-Gajic (The University
of Melbourne) and Dr. Jianzhong Qi (The University of Melbourne), who managed the
review process by a panel of distinguished researchers from many countries, and then
selected the papers from 30 submissions. The proceedings publication was arranged
and supervised by Dr. Weiqing Wang (Monash University). We also sincerely thank
the publicity chairs, Dr. Zhifeng Bao (RMIT University) and Zeyi Wen (National
University of Singapore), for all their efforts. We are all the beneficiaries of their
dedication.

As well as the conference, whose papers are found here, we held a co-located
workshop aimed at PhD students and early career researchers, with a range of out-
standing speakers, especially a keynote from Dr. Devish Srivastava (AT&T). This all
shows the vibrancy of the database research community in Australia and New Zealand,
and contributes to its continuation.

Best wishes to all
Chengfei Liu

Organization

General Chair

Chengfei Liu Swinburne University of Technology, Australia

PC Co-chairs

Renata Borovica-Gajic The University of Melbourne, Australia
Jianzhong Qi The University of Melbourne, Australia

Publication Chair

Weiqing Wang Monash University, Australia

Steering Committee

Rao Kotagiri The University of Melbourne, Australia
Timos Sellis RMIT University, Australia
Gill Dobbie The University of Auckland, New Zealand
Alan Fekete The University of Sydney, Australia
Xuemin Lin University of New South Wales, Australia
Yanchun Zhang Victoria University, Australia
Xiaofang Zhou The University of Queensland, Australia

Program Committee

Zhifeng Bao RMIT University, Australia
Renata Borovica-Gajic The University of Melbourne, Australia
Huiping Cao New Mexico State University, USA
Xin Cao University of New South Wales, Australia
Muhammad Aamir Cheema Monash University, Australia
Lisi Chen University of Wollongong, Australia
Farhana Murtaza

Choudhury
The University of Melbourne, Australia

Gianluca Demartini The University of Queensland, Australia
Janusz Getta University Of Wollongong, Australia
Yusuke Gotoh Okayama University, Japan
Michael E. Houle National Institute of Informatics, Japan
Wen Hua The University of Queensland, Australia
Guangyan Huang Deakin University, Australia
Zi Huang The University of Queensland, Australia
Jianxin Li The University of Western Australia, Australia

Lei Li The University of Queensland, Australia
Rong-Hua Li Beijing Institute of Technology, China
Jixue Liu University of South Australia, Australia
Jiaheng Lu University of Helsinki, Finland
Parth Nagarkar New Mexico State University, USA
Quoc Viet Hung Nguyen Griffith University, Australia
Jianzhong Qi The University of Melbourne, Australia
Lu Qin University of Technology Sydney, Australia
Junhu Wang Griffith University, Australia
Sheng Wang RMIT University, Australia
Sibo Wang The University of Queensland, Australia
Yajun Yang Tianjin University, China
Hongzhi Yin The University of Queensland, Australia
Weiren Yu Aston University, UK
Wenjie Zhang University of New South Wales, Australia
Ying Zhang University of Technology Sydney, Australia
James Xi Zheng Macquarie University, Australia
Rui Zhou Swinburne University of Technology, Australia
Yi Zhou University of Technology Sydney, Australia
Yuanyuan Zhu Wuhan University, China

x Organization

Contents

Full Research Papers

Semantic Round-Tripping in Conceptual Modelling Using Restricted
Natural Language . 3

Bayzid Ashik Hossain and Rolf Schwitter

PAIC: Parallelised Attentive Image Captioning . 16
Ziwei Wang, Zi Huang, and Yadan Luo

Efficient kNN Search with Occupation in Large-Scale
On-demand Ride-Hailing . 29

Mengqi Li, Dan He, and Xiaofang Zhou

Trace-Based Approach for Consistent Construction of Activity-Centric
Process Models from Data-Centric Process Models 42

Jyothi Kunchala, Jian Yu, Sira Yongchareon, and Guiling Wang

Approximate Fault Tolerance for Sensor Stream Processing 55
Daiki Takao, Kento Sugiura, and Yoshiharu Ishikawa

Function Interpolation for Learned Index Structures. 68
Naufal Fikri Setiawan, Benjamin I. P. Rubinstein,
and Renata Borovica-Gajic

DEFINE: Friendship Detection Based on Node Enhancement 81
Hanxiao Pan, Teng Guo, Hayat Dino Bedru, Qing Qing, Dongyu Zhang,
and Feng Xia

Semi-supervised Cross-Modal Hashing with Graph
Convolutional Networks. 93

Jiasheng Duan, Yadan Luo, Ziwei Wang, and Zi Huang

Typical Snapshots Selection for Shortest Path Query in Dynamic
Road Networks . 105

Mengxuan Zhang, Lei Li, Wen Hua, and Xiaofang Zhou

A Survey on Map-Matching Algorithms . 121
Pingfu Chao, Yehong Xu, Wen Hua, and Xiaofang Zhou

Gaussian Embedding of Large-Scale Attributed Graphs 134
Bhagya Hettige, Yuan-Fang Li, Weiqing Wang, and Wray Buntine

Geo-Social Temporal Top-k Queries in Location-Based Social Networks 147
Ammar Sohail, Muhammad Aamir Cheema, and David Taniar

Effective and Efficient Community Search in Directed Graphs Across
Heterogeneous Social Networks . 161

Zezhong Wang, Ye Yuan, Xiangmin Zhou, and Hongchao Qin

Entity Extraction with Knowledge from Web Scale Corpora. 173
Zeyi Wen, Zeyu Huang, and Rui Zhang

Short Papers

Graph-Based Relation-Aware Representation Learning
for Clothing Matching . 189

Yang Li, Yadan Luo, and Zi Huang

Evaluating Random Walk-Based Network Embeddings
for Web Service Applications . 198

Olayinka Adeleye, Jian Yu, Ji Ruan, and Quan Z. Sheng

Query-Oriented Temporal Active Intimate Community Search 206
Md Musfique Anwar

A Contextual Semantic-Based Approach for Domain-Centric
Lexicon Expansion . 216

Muhammad Abulaish, Mohd Fazil, and Tarique Anwar

Data-Driven Hierarchical Neural Network Modeling for High-Pressure
Feedwater Heater Group . 225

Jiao Yin, Mingshan You, Jinli Cao, Hua Wang, MingJian Tang,
and Yong-Feng Ge

Early Detection of Diabetic Eye Disease from Fundus Images
with Deep Learning. 234

Rubina Sarki, Khandakar Ahmed, Hua Wang, Sandra Michalska,
and Yanchun Zhang

Author Index . 243

xii Contents

Full Research Papers

Semantic Round-Tripping in Conceptual
Modelling Using Restricted

Natural Language

Bayzid Ashik Hossain(B) and Rolf Schwitter

Department of Computing, Macquarie University, Sydney, Australia
{bayzid-ashik.hossain,rolf.schwitter}@mq.edu.au

Abstract. Conceptual modelling plays an important role in information
system design and is one of its key activities. The modelling process usu-
ally involves domain experts and knowledge engineers who work together
to bring out the required knowledge for building the information system.
The most popular modelling approaches to develop these models include
entity relationship modelling, object role modelling, and object-oriented
modelling. These conceptual models are usually constructed graphically
but are often difficult to understand by domain experts. In this paper
we show how a restricted natural language can be used for writing a
precise and consistent specification that is automatically translated into
a description logic representation from which a conceptual model can be
derived. This conceptual model can be rendered graphically and then ver-
balised again in the same restricted natural language as the specification.
This process can be achieved with the help of a bi-directorial grammar
that allows for semantic round-tripping between the representations.

Keywords: Conceptual modelling · Restricted natural language ·
Knowledge representation · Round-tripping

1 Introduction

Information systems can be defined as a collection of relevant components that
work together to accumulate, process, store, and disperse information to support
decision making, coordination, analysis, and visualization in an organization [1].
A successful information system highly depends on its design. Conceptual mod-
elling is the first step towards designing an information system and is the most
important task in the planning and requirement analysis phase of the system
development life cycle [2]. The best way to specify an information system in
conceptual modelling is to use a language with names for individuals, concepts
and relations that are easily understandable by the domain experts in order to
maintain accurateness, adaptability, productivity and clarity [3]. This concep-
tual modelling phase generally includes identifying and understanding the data,
process and behavioral insights, and designing the actual database management

c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 3–15, 2020.
https://doi.org/10.1007/978-3-030-39469-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_1&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_1

4 B. A. Hossain and R. Schwitter

system (DBMS) that is used for the design of the information system [3]. Design-
ing a database means constructing a formal model based on any of the available
data models of the desired application domain which is often called as universe
of discourse (UOD). The conceptual modelling process depends on different par-
ties (e.g., domain experts and knowledge engineers) to brainstorm together and
determine the UOD. The knowledge engineers initiate a conceptual modelling
process by acquiring the necessary information from the domain experts and
then use well established modelling techniques [4–6] to design the information
system based on the acquired information. However, it is necessary to have a
clear understanding of the application domain as well as an unambiguous infor-
mation specification scheme to design the UOD. Conceptual models that are
built using existing modelling approaches are usually constructed graphically
and are therefore often difficult to understand by domain experts [7].

In order to address this problem, we suggest the use of a Restricted Nat-
ural Language (RNL) to specify the system requirements and to translate the
resulting specification automatically into a formal conceptual model that can
be verbalised again in RNL on demand. As we will see, this results in a form
of semantic round-tripping that makes the modelling process transparent to the
domain experts. An RNL is a subset of a natural language that is obtained by
constraining the grammar and vocabulary in order to remove ambiguity and
complexity of the natural language [8,9]. In this paper, we show how an RNL
can be used to write a specification for a particular information system and how
this specification can be processed to generate and verbalise a conceptual model
in a round-tripping fashion. The task of the grammar is to process our RNL
and to restrict the form of the input sentences. The language processor then
translates the individual RNL sentences into a version of description logic (DL).
The resulting DL representation can then be used to verify the specification and
to generate a conceptual model.

2 Motivation

The idea of using a RNL in conceptual modelling is not new. However, existing
RNL based approaches [10,11] do not use description logic for knowledge rep-
resentation and they have not considered the idea of semantic round tripping.
There is also previous research that looked at representing conceptual models
formally for verification [12–14] including consistency and redundancy checking.
These approaches allow knowledge engineers to build the conceptual model first
to represent the UOD and then use a formal language to formalize the concep-
tual model [15–17]. Later this formal representation is used for reasoning on
the UOD during the design phase and also for extracting necessary information
through query answering at run time. Popular conceptual modelling techniques
such as entity relationship modelling (ERM) and object oriented modelling (e.g.,
unified modelling language (UML)) are easy to generate and understand for the
knowledge engineers as they are well established. However, these conventional
modelling approaches also face some problems; they have no formal semantics
and verification support, and are therefore not machine processable, and as a

Conceptual Modelling Using Restricted Natural Language 5

result do not offer automated reasoning and question answering support [13]. To
overcome these problems, previous approaches used the DL ALCQI to formally
represent the conceptual models. The DL ALCQI is well suited to do reasoning
with ERM [14], UML [12], and ORM [18]. ALCQI is an extension of the basic
propositionally closed description logic AL and includes constructs for complex
concept negation, qualified number restriction, and inverse role. Finite model
reasoning with DL ALCQI is decidable and ExpTime-complete1.

However, using logic in the conceptual modelling process has some problems
too. It is difficult to generate these logical representations for domain experts, it
is also strenuous for them to understand these representations, and there are no
well established methodologies to formally represent the conceptual models. A
possible solution to these problems is to use an RNL for the specification [19] as
well as the verbalisation of conceptual models. RNLs have been used by several
existing ontology editing and authoring tools [20–22] for ontology specification
and translation into a DL representation. There are also works on mapping a
DL representation into an SQL schema and the other way around [23–26].

3 Proposed Approach

We propose to use an RNL as a language for specifying and verbalising concep-
tual models (in our case an ERM) in order to overcome the problems discussed
in the previous section. There are several benefits of using an RNL for specifying
and verbalising conceptual models:

(a) An RNL is a subset of a natural language, so it is easy for domain experts
to write a specification with a suitable authoring tool and to understand the
verbalisation of a conceptual model.

(b) An RNL gets its semantics via translation into a formal target language.
(c) The resulting formal target language can be used further to generate and

verbalise conceptual models.

In our previous works [19], we proposed to write the specification of a conceptual
model in RNL and then translate the specification into the DL ALCQI. We
showed that an existing DL reasoner (e.g., HermiT2) can be used to check the
consistency of the formal representation of the specification and a conceptual
model can be generated afterwards from this representation. Our approach was
to derive the conceptual model from the formal representation of the specification
whereas in conventional approaches knowledge engineers first draw the model
and then use programs to translate the model into a formal representation.

This paper refines our previous work and shows that the grammar of the RNL
can also be used to analyze as well as to generate a verbalisation for a conceptual
model. We show that conceptual modelling can be seen as a round-tripping pro-
cess where we start from a specification in RNL, translate the specification into
a formal representation from which we generate the conceptual model and vice
versa. Figure 1 shows the proposed system architecture for conceptual modelling.
1 http://www.cs.man.ac.uk/∼ezolin/dl/.
2 http://www.hermit-reasoner.com/.

http://www.cs.man.ac.uk/~ezolin/dl/
http://www.hermit-reasoner.com/

6 B. A. Hossain and R. Schwitter

Fig. 1. Conceptual modelling as a round-tripping process.

3.1 Scenario

For demonstration purpose let us consider the example scenario of a learning
management system for a university [19]:

A Learning Management System (LMS) keeps track of the units the stu-
dents do during their undergraduate or graduate studies at a particular
university. The university offers a number of programs and each program
consists of a number of units. Each program has a program name and a
program id. Each unit has a unit code and a unit name. A student can
take a number of units whereas a unit has a number of students. A stu-
dent must study at least one unit and at most four units. Every student
can enrol into exactly one program. The system stores a student id and a
student name for each student.

First, we reconstruct this scenario in RNL (Table 1) and after that the lan-
guage processor translates the RNL specification into an internal DL represen-
tation using a bi-directional definite clause grammar (DCG) [27]. This internal
DL representation can be built up during the parsing process and then trans-
lated into another serialization syntax (such as OWL/XML). The DCG follows
a similar approach as described in [28]. The advantage of using a DCG is that
it implements a logic program that allows us to build a bi-directional grammar
where only the pre-terminal rules need to be duplicated.

Our specification in RNL consists of function words and content words. Func-
tion words (e.g., determiners, quantifiers and operators) describe the structure
of the RNL; the number of these function words is fixed. Content words (e.g.,
nouns and verbs) are domain specific and can be added to the lexicon during
the writing process. It is important to note that the writing of a specification in
RNL is supported by a look-ahead text editor [29]. The reconstruction process
of the scenario is described in the following:

First, we declare the vocabulary in form of a type system that includes entity
types, data types and fact types. This vocabulary is then used to specify the
constraints. Entity types declare the entities in the scenario, data types declare
the attributes of these entities, and fact types declare the relationships between
these entities. All declarations are written without explicit quantifiers. Entity
types are declared with the help of a noun in subject position (e.g., program),

Conceptual Modelling Using Restricted Natural Language 7

followed by a copula (is), and the specific key phrase (an entity type) in object
position.

To declare a data type, we use a naming convention where the attribute
name (e.g., id) in subject position is prefixed by an available entity name (e.g.,
program); this data property name (program id) is followed by a copula (is), and
the specific key phrase (e.g., of integer data type). To declare a fact type, we use
an available entity type name in subject position and an available entity type
name in object position with a role name in between (e.g., Student is enrolled
in program).

Table 1. RNL specification of the example scenario.

Entity types

1. Program is an entity type

2. Student is an entity type

3. Unit is an entity type

Data types

4. Program id is of integer data type

5. Program name is of string data type

6. Student id is of integer data type

7. Student name is of string data type

8. Unit code is of integer data type

9. Unit name is of string data type

Fact types

10. Student is enrolled in program

11. Program is enrolled by student

12. Program is composed of unit

13. Unit belongs to program

14. Student studies unit

15. Unit is studied by student

Constraints

16. Every student is enrolled in exactly 1 program

17. Every program is enrolled by 1 or more students

18. Every program is composed of 1 or more units

19. Every unit belongs to 1 or more programs

20. Every student studies at least 1 and at most 4 units

21. Every unit is studied by 1 or more students

22. Every program has exactly 1 program id and has exactly 1 program name

23. Every student who has exactly 1 student id has exactly 1 student name

24. Every unit has exactly 1 unit code and has exactly 1 unit name

8 B. A. Hossain and R. Schwitter

After these types have been declared for the scenario, constrains can be
defined using the available vocabulary. To define the constraints, we use all
the entity type names and data property names with a quantifying expression:
either a quantifier (every, 1 or more) or a cardinality constraint (at least, at
most, exactly).

All the sentences use a universal quantifier in subject position. Sentence (16)
uses a cardinality quantifier (exactly 1) in object position whereas sentence (20)
uses a compound cardinality quantifier (at least 1 and at most 4) in the same
position. Sentence (17), (18), (19) and (21) use an existential quantifier (1 or
more) in object position. And finally, sentence (22), (23) and (24) employ a
coordinated verb phrase where the noun phrase in object position uses a data
property name (program id, student id, unit code).

4 RNL Specification to DL ALCQI Representation

First we use the bi-directional grammar to translate the RNL specification into
an intermediate DL representation (Listing 1.1). The bi-directional grammar has
been implemented using a Prolog DCG [27] and is called from a Python program-
ming interface. After that we translate this intermediate DL representation into
a DL ALCQI representation using the OWL/XML syntax [30]. We discuss the
two steps for translating the RNL specification into DL ALCQI representation
below.

Our RNL specification contains different types of sentences where each type
has an identical structure. The bi-directional grammar contains rules to translate
every sentence type of the specification. Below, we only show the grammar rules
with feature structures for the sentence (20) of the specification. These grammar
rules work in both directions from an RNL specification to an intermediate DL
representation and the other way around. That means we can feed the output
again to the grammar and get a sentence that is semantically equivalent to the
input.

Listing 1.1. Grammar Rules for a Constraint

% ---
% Input: (20) Every student studies at least 1 and at most 4 units.
% Output: forall(A, student(A)=>exists(B, unit(B) & min(1):study(A, B):max(4)))
% ---

:- op(900, yfx, ’=>’).
:- op(800, yfx, ’&’).
:- op(900, yfx, ’:’).

s([mode:M, sem:L]) -->
np([mode:M, num:N, func:subj, arg:X, sco:S, sem:L]),
vp([mode:M, num:N, arg:X, sem:S]), [’.’].

np([mode:M, num:N, func:subj, arg:X, sco:S, sem:L]) -->
qnt([mode:M, num:N, arg:X, res:R, sco:S, sem:L]),
n([mode:M, num:N, arg:X, sem:R]).

Conceptual Modelling Using Restricted Natural Language 9

np([mode:M, num:_N, func:obj, arg:X, sco:S, sem:L]) -->
cst([mode:M, num:N, arg:X, res:R, sco:S, sem:L]),
n([mode:M, num:N, arg:X, sem:R]).

vp([mode:M, num:N, arg:X, sem:L]) -->
v([mode:M, num:N, arg:X, arg:Y, sem:S]),
np([mode:M, num:_N, func:obj, arg:Y, sco:S, sem:L]).

qnt([mode:proc, num:N, arg:X, res:[[]|T]-[R, S], sco:[[]]-T,
sem:[L1|LR]-[[L2|L1]|LR]]) --> [Wfm|Wfms],

{ lexicon([cat:qnt, wfm:[Wfm|Wfms], num:N, arg:X, res:R, sco:S, sem:L2]) }.

qnt([mode:gen, num:N, arg:X, res:T-[[]], sco:[S, R]-[[]|T],
sem:[[L2|L1]|LR]-[L1|LR]]) --> { lexicon([cat:qnt, wfm:[Wfm|Wfms],
num:N, arg:X, res:R, sco:S, sem:L2]) }, [Wfm|Wfms].

cst([mode:proc, num:N, arg:X, res:[[]|T]-[R, S], sco:[[]]-T,
sem:[L1|LR]-[[L2|L1]|LR]]) --> [Wfm|Wfms],

{ lexicon([cat:cst, wfm:[Wfm|Wfms], num:N, arg:X, res:R, sco:S, sem:L2]) }.

cst([mode:gen, num:N, arg:X, res:T-[[]], sco:[S, R]-[[]|T],
sem:[[L2|L1]|LR]-[L1|LR]]) --> { lexicon([cat:cst, wfm:[Wfm|Wfms],
num:N, arg:X, res:R, sco:S, sem:L2]) }, [Wfm|Wfms].

n([mode:proc, num:N, arg:X, sem:[L1|LR]-[[L2|L1]|LR]]) --> [Wfm|Wfms],
{ lexicon([cat:n, wfm:[Wfm|Wfms], num:N, arg:X, sem:L2]) }.

n([mode:gen, num:N, arg:X, sem:[[L2|L1]|LR]-[L1|LR]]) -->
{ lexicon([cat:n, wfm:[Wfm|Wfms], num:N, arg:X, sem:L2]) }, [Wfm|Wfms].

v([mode:proc, num:N, arg:X, arg:Y, sem:[L1|LR]-[[L2|L1]|LR]]) --> [Wfm|Wfms],
{ lexicon([cat:v, wfm:[Wfm|Wfms], num:N, arg:X, arg:Y, sem:L2]) }.

v([mode:gen, num:N, arg:X, arg:Y, sem:[[L2|L1]|LR]-[L1|LR]]) -->
{ lexicon([cat:v, wfm:[Wfm|Wfms], num:N, arg:X, arg:Y, sem:L2]) }, [Wfm|Wfms].

lexicon([cat:qnt, wfm:[’Every’], num:sg, arg:X,
res:R, sco:S, sem:forall(X, R => S)]).

lexicon([cat:cst, wfm:[at, least, L, and, at, most, U], num:pl, arg:X,
res:R, sco:S, sem:exists(X, R & min(L) : S : max(U))]) :-

number(L), number(U), L>0, U>0, L<U.

lexicon([cat:n, wfm:[student], num:sg, arg:X, sem:student(X)]).
lexicon([cat:n, wfm:[units], num:pl, arg:X, sem:unit(X)]).
lexicon([cat:v, wfm:[studies], num:sg, arg:X, arg:Y, sem:study(X, Y)]).

The first grammar rule states that a declarative sentence (s) consists of a
noun phrase (np) and a verb phrase (vp), followed by a full stop (.). The gram-
mar rule contains additional arguments that implement feature structures in the
form of attribute:value pairs whereas the value can be a term or a difference
list (of the form [Head|Tail]-Tail). The feature structure mode:M specifies the
processing mode. The feature structure func:F specifies the syntactic function of
the phrase. The feature structure sem:L is used to build up the entire semantic
representation for the constraint, num:N deals with number agreement (singular
or plural), and arg:X defines the argument of a class. The feature structure sco:S

10 B. A. Hossain and R. Schwitter

stands for the information derived from the verb phrase. Note that the gram-
mar rules for the quantifier and the cardinality constraint play an important
role because they provide the main pattern for the internal representation. For
example, the grammar rule for the universal quantifier (every) results in a pat-
tern of the form sem:forall(X, R => S) that takes a restrictor R that contains
the information derived from the noun phrase in subject position and the scope
S of the verb phrase and turns this information into an implication. Finally,
cat:n defines a noun, cat:v defines a verb and wfm:[Wfm|Wfms] defines a word
form with potentially multiple elements. After generating the intermediate DL
representation from the RNL specification, we translate this representation into
the corresponding OWL/XML syntax.

An example of the ALCQI representation in OWL/XML syntax that is gen-
erated by the system for sentence (18) is given in (Listing 1.2). The intermedi-
ate representation stated below specifies that the class program has an object
property composed of with the class unit having minimum cardinality of 1 and
maximum cardinality of many.

Listing 1.2. ALCQI Representation in OWL/XML Syntax

<!-- Input: forall(A, program(A) => exists(B, unit(B) &
min(1):composed_of(A, B):max(*))) -->

<ObjectPropertyDomain>
<ObjectProperty IRI="#composed_of"/>
<Class IRI="#program"/>

</ObjectPropertyDomain>
<ObjectPropertyRange>

<ObjectProperty IRI="#composed_of"/>
<ObjectSomeValuesFrom>

<ObjectProperty IRI="#composed_of"/>
<Class IRI="#unit"/>

</ObjectSomeValuesFrom>
</ObjectPropertyRange>

5 DL ALCQI Representation to SQL Script

In the next step, we extract necessary information such as a list of classes, data
properties and object properties from the OWL/XML file. This information is
extracted by executing XPath3 queries over the OWL/XML syntax and is then
used to build an SQL script. Later, this SQL script is executed to create an
SQL schema to generate an ER-diagram. For mapping the DL representation
into an ER-diagram, we have used the approach described in [19]. All the classes
in the OWL/XML file become entities, object properties are mapped into rela-
tions between the entities, and data properties are mapped into attributes for
these entities. To generate the SQL script for the database schema, we first cre-
ate tables for each class from the class list. The data properties for each class
3 https://www.w3schools.com/xml/xml xpath.asp.

https://www.w3schools.com/xml/xml_xpath.asp

Conceptual Modelling Using Restricted Natural Language 11

become the attributes in the table. Data properties with the name “id” (e.g.,
program id) and “code” (e.g., unit code) are considered as primary keys in the
table. For each object property we identify the domain, range, and associated
cardinality constraints. If the cardinality constraint is “many to one” (i.e., con-
sider the sentence (16) in the RNL specification), then we add a foreign key to
the table representing the domain class, and we annotate the object property
name to the foreign key name for verbalisation. If the cardinality constraint is
“many to many” (i.e., consider the sentence (18) and (19) in the RNL spec-
ification) then we create a separate table to represent the object property in
the schema. In this case, we annotate the cardinality constraint (i.e., minimum
cardinality and maximum cardinality) as well as the object property name with
the foreign key name in the connecting table (i.e., 1 4 study student id). We
also use a specific naming convention containing the name of both domain and
range classes separated by an underscore () for the connecting tables. All the
tables representing a class have the prefix “et” (i.e, et student) that indicates
an entity. All the data properties have the prefix “dp” (i.e., dp student name)
and all the connecting tables representing a “many to many” relationship have
the prefix “op” (i.e., op student unit). Annotated information is separated by
a double underscore with the attribute name in the table. Inverse roles (e.g,
enrolled in and enrolled by) are also separated by a double underscore during
the annotation.

6 Conceptual Model Generation

The SQL script is executed by a MySQL4 database management system to
generate the corresponding database for the specification. After that, we use
MySQL workbench to generate the entity relationship diagram (Fig. 2) from the
database. We understand conceptual modelling as a round-tripping process. That
means a domain expert can write the RNL specification first, then automatically
generate the conceptual model from the specification, and then a knowledge
engineer might want to modify the conceptual model by following our naming
convention. These modifications will then be reflected on the level of the RNL by
verbalising the formal representation. During this modification process the DL
reasoner can be used to identify inconsistencies found in a given specification and
to give appropriate feedback to the knowledge engineer on the graphical level
or to the domain expert on the textual level. We generate an SQL script from
the modified conceptual model in the MySQL workbench and start the reverse
process in conceptual modelling to generate the verbalisation.

4 https://www.mysql.com/.

https://www.mysql.com/

12 B. A. Hossain and R. Schwitter

Fig. 2. Entity relationship diagram generated from the DL representation.

7 Database Schema to DL ALCQI Representation

The SQL script generated from the conceptual model serves as a starting point
for the verbalisation process. If there are any changes in the graphical model
then those changes are reflected in the SQL script. After that, we translate the
SQL script into a DL ALCQI representation. The verbalisation process is done
in two steps: 1. we create the database schema from the SQL script and then
translate it into OWL/XML syntax; and 2. we generate the intermediate DL
representation from the translated OWL/XML syntax.

To generate the OWL/XML syntax from the database schema, we look up
the following information by querying the database: 1. list of classes, 2. list of
data properties for each class, and 3. list of object properties with domain, range
and cardinality information. We get this information by querying the INFOR-
MATION SCHEMA5 table in the MySQL database management system. At
this stage, we take the advantage of the naming convention we followed during
the SQL script generation. For identifying the name, minimum cardinality and
maximum cardinality for an object property, we use the annotated information.
For mapping a SQL schema to the DL representation, we have used an approach
that follows the rule based translation of a relational database to OWL ontolo-
gies [24]. In this step, we extract the necessary information using XPath6 queries
over the file containing OWL/XML representation to extract a list of classes,
data properties and object properties. After that we transform the extracted
information into the intermediate DL representation.

8 DL ALCQI Representation to RNL verbalisation

Next, we feed the intermediate DL representation to the bi-directional DCG
which translates this intermediate representation into an RNL specification. This
is the last stage of the reverse process because the DCG verbalises the conceptual
model and completes the round-tripping process.

5 https://dev.mysql.com/doc/refman/8.0/en/information-schema-introduction.html.
6 https://www.w3schools.com/xml/xml xpath.asp.

https://dev.mysql.com/doc/refman/8.0/en/information-schema-introduction.html
https://www.w3schools.com/xml/xml_xpath.asp

Conceptual Modelling Using Restricted Natural Language 13

9 Evaluation

To evaluate the round-tripping process, we translate the specification S1 into
the DL representation R1 (that is used to generate the conceptual model) and
then execute two types of questions that collect the defined content words and
used constraints: (1) What are the entity type names/data property names/fact
type names? and (2) What are the domain, range and cardinality constraints
for the fact type names? and store the answers. Next we take the DL represen-
tation R1 and generate the verbalisation S2 of the specification. We then use
the same grammar to translate the verbalisation S2 into the DL representation
R2 and prove that S1 and S2 are semantically equivalent by showing that R1
and R2 produce the same answers for the questions (1+2). This mechanism is
important because, the sentence (23) “Every student who has exactly 1 student
id has exactly 1 student name” from the specification and its verbalisation (23’)
“Every student has exactly 1 student id and has exactly 1 student name” are
syntactically different but semantically equivalent.

Fig. 3. Comparison of specification and verbalisation based on the questions (1+2).

Since the original specification S1 and its verbalisation S2 produce the same
answer (Fig. 3) for the question (1+2), we can conclude that the two textual
representations are semantically equivalent.

10 Conclusion

In this paper we showed the outcome of our experiment to justify the proposed
approach for conceptual modelling. This experiment shows that it is possible to
generate formal representations from RNL specifications and to map these for-
mal representations to a conceptual model. Subsequently, this conceptual model
can also be mapped back to a formal representation and can then be verbalised
by using the same grammar. The proposed approach for conceptual modelling
is novel and addresses two research challenges7: (1) Providing the right set of
modelling constructs at the right level of abstraction to enable successful commu-
nication among the stakeholders (i.e., domain experts and knowledge engineers);

7 http://www.conceptualmodelling.org/Conceptualmodelling.html.

http://www.conceptualmodelling.org/Conceptualmodelling.html

14 B. A. Hossain and R. Schwitter

and (2) preserving the ease of communication by using a subset of natural lan-
guage (RNL) and enabling the generation of a database schema which is a part
of the application software. Our approach has several advantages: Firstly, it uses
a formal representation to generate conceptual models. Secondly, it makes the
conceptual modelling process easy to understand by providing a framework for
writing specifications, generating visualizations with the help of a case tool, and
verbalisations of these visualizations. Thirdly, it makes the conceptual models
machine-processable like other logical approaches and supports verification. Fur-
thermore, the support for verbalisation facilitates better understanding of the
modelling process which is only available in limited form in current conceptual
modelling frameworks and allows users to manipulate the models in a round-
tripping fashion.

References

1. Laudon, K.C., Laudon, J.P.: Management Information Systems: Managing the
Digital Firm Plus MyMISLab with Pearson eText - Access Card Package, 14th
edn. Prentice Hall Press, Upper Saddle River (2015)

2. Olivé, A.: Conceptual Modeling of Information Systems. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-39390-0

3. Bernus, P., Mertins, K., Schmidt, G.: Handbook on Architectures of Information
Systems. Springer, Heidelberg (2013)

4. Halpin, T.: Object-role modeling. In: Liu, L., Özsu, M.T. (eds.) Encyclopedia of
Database Systems, pp. 1941–1946. Springer (2009). ISBN 978-0-387-39940-9

5. Frantiska Jr., J.: Entity-relationship diagrams. Visualization Tools for Learning
Environment Development. SECT, pp. 21–30. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-67440-7

6. O’Regan, G.: Unified modelling language. In: Concise Guide to Software Engineer-
ing, pp. 225–238. Springer (2017). https://doi.org/10.1007/978-3-319-57750-0

7. Jarrar, M., Keet, C.M., Dongilli, P.: Multilingual verbalization of ORM conceptual
models and axiomatized ontologies (2006)

8. Schwitter, R.: Controlled natural languages for knowledge representation. In:
Proceedings of the 23rd International Conference on Computational Linguistics:
Posters, pp. 1113–1121. Association for Computational Linguistics (2010)

9. Kuhn, T.: A survey and classification of controlled natural languages. Comput.
Linguist. 40(1), 121–170 (2014)

10. Ambriola, V., Gervasi, V.: On the systematic analysis of natural language require-
ments with circe. Autom. Softw. Eng. 13(1), 107–167 (2006)

11. Harmain, H.M., Gaizauskas, R.: CM-builder: a natural language-based case tool
for object-oriented analysis. Autom. Softw. Eng. 10(2), 157–181 (2003)

12. Berardi, D., Calvanese, D., De Giacomo, G.: Reasoning on UML class diagrams.
Artif. Intell. 168(1), 70–118 (2005)

13. Calvanese, D.: Description Logics for Conceptual Modeling Forms of reasoning on
UML Class Diagrams. EPCL Basic Training Camp (2013)

14. Lutz, C.: Reasoning about entity relationship diagrams with complex attribute
dependencies. In: Proceedings of the International Workshop in Description Logics
2002 (DL2002), vol. 53, pp. 185-194. CEUR-WS (2002). http://ceur-ws.org

15. Fillottrani, P.R., Franconi, E., Tessaris, S.: The ICOM 3.0 intelligent conceptual
modelling tool and methodology. Semant. Web 3(3), 293–306 (2012)

https://doi.org/10.1007/978-3-540-39390-0
https://doi.org/10.1007/978-3-319-67440-7
https://doi.org/10.1007/978-3-319-67440-7
https://doi.org/10.1007/978-3-319-57750-0
http://ceur-ws.org

Conceptual Modelling Using Restricted Natural Language 15

16. Lembo, D., Pantaleone, D., Santarelli, V., Savo, D.F.: Easy OWL drawing with
the graphol visual ontology language. In: Fifteenth International Conference on
the Principles of Knowledge Representation and Reasoning (2016)

17. Lembo, D., Pantaleone, D., Santarelli, V., Savo, D.F.: Eddy: a graphical editor for
OWL 2 ontologies. In: IJCAI, pp. 4252–4253 (2016)

18. Franconi, E., Mosca, A., Solomakhin, D.: ORM2: formalisation and encoding in
OWL2. In: Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM 2012.
LNCS, vol. 7567, pp. 368–378. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-33618-8 51

19. Hossain, B.A., Schwitter, R.: Specifying conceptual models using restricted natural
language. In: Proceedings of the Australasian Language Technology Association
Workshop 2018, Dunedin, New Zealand, pp 44–52, December 2018

20. Davis, B., et al.: RoundTrip ontology authoring. In: Sheth, A., et al. (eds.) ISWC
2008. LNCS, vol. 5318, pp. 50–65. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-88564-1 4

21. Denaux, R., Dimitrova, V., Cohn, A.G., Dolbear, C., Hart, G.: Rabbit to OWL:
ontology authoring with a CNL-based tool. In: Fuchs, N.E. (ed.) CNL 2009. LNCS
(LNAI), vol. 5972, pp. 246–264. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-14418-9 15

22. Power, R.: OWL simplified English: a finite-state language for ontology editing.
In: Kuhn, T., Fuchs, N.E. (eds.) CNL 2012. LNCS (LNAI), vol. 7427, pp. 44–60.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32612-7 4

23. Brockmans, S., Volz, R., Eberhart, A., Löffler, P.: Visual modeling of OWL DL
ontologies using UML. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.)
ISWC 2004. LNCS, vol. 3298, pp. 198–213. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30475-3 15

24. Astrova, I., Korda, N., Kalja, A.: Rule-based transformation of SQL relational
databases to OWL ontologies. In: Proceedings of the 2nd International Conference
on Metadata and Semantics Research. Citeseer (2007)

25. Astrova, I., Korda, N., Kalja, A.: Storing owl ontologies in SQL relational
databases. Int. J. Electr. Comput. Syst. Eng. 1(4), 242–247 (2007)

26. Bagui, S.: Mapping OWL to the entity relationship and extended entity relation-
ship models. Int. J. Knowl. Web Intell. 1(1–2), 125–149 (2009)

27. Pereira, F.C.N., Shieber, S.M.: Prolog and Natural-Language Analysis. Center for
the Study of Language and Information (CSLI) Publications, Stanford (1987)

28. Schwitter, R.: Specifying and verbalising answer set programs in controlled natural
language. Theory Pract. Log. Program. 18(3–4), 691–705 (2018)

29. Guy, S.C., Schwitter, R.: The PENG ASP system: architecture, language and
authoring tool. Lang. Resour. Eval. 51(1), 67–92 (2017)

30. Motik, B., Parsia, B., Patel-Schneider, P.F.: OWL 2 web ontology language xml
serialization. World Wide Web Consortium (2009)

https://doi.org/10.1007/978-3-642-33618-8_51
https://doi.org/10.1007/978-3-642-33618-8_51
https://doi.org/10.1007/978-3-540-88564-1_4
https://doi.org/10.1007/978-3-540-88564-1_4
https://doi.org/10.1007/978-3-642-14418-9_15
https://doi.org/10.1007/978-3-642-14418-9_15
https://doi.org/10.1007/978-3-642-32612-7_4
https://doi.org/10.1007/978-3-540-30475-3_15
https://doi.org/10.1007/978-3-540-30475-3_15

PAIC: Parallelised Attentive
Image Captioning

Ziwei Wang(B) , Zi Huang , and Yadan Luo

School of Information Techonology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

ziwei.wang@uq.edu.au, huang@itee.uq.edu.au, lyadanluol@gmail.com

Abstract. Most encoder-decoder architectures generate the image
description sentence based on the recurrent neural networks (RNN).
However, the RNN decoder trained by Back Propagation Through Time
(BPTT) is inherently time-consuming, accompanied by the gradient van-
ishing problem. To overcome these difficulties, we propose a novel Paral-
lelised Attentive Image Captioning Model (PAIC) that purely employs
the optimised attention mechanism to decode natural sentences without
using RNNs. At each decoding phase, our model can precisely localise
different areas of image utilising the well-defined spatial attention mod-
ule, meanwhile capturing the word sequence powered by the well-attested
multi-head self-attention model. In contrast to the RNNs, the proposed
PAIC can efficiently exploit the parallel computation advantages of GPU
hardware for training, and further facilitate the gradient propagation.
Extensive experiments on MS-COCO demonstrate that the proposed
PAIC significantly reduces the training time, while achieving competi-
tive performance compared to conventional RNN-based models.

Keywords: Image captioning · Self-attention · Parallel training

1 Introduction

Image captioning has inspired research enthusiasm from both academia and
industry owing to its power of bridging the modality gap between visual content
and natural language. Notably, image captioning is an interesting yet challeng-
ing research problem, as it requires high-level visual understanding to interpret
the visual information into a natural language caption. Moreover, the explo-
sive growth in the volume of visual content highlights the difficulty in designing
efficient and effective image captioning methods.

Despite its challenging nature, many image captioning methods have been
intensively studied following the encoder-decoder architecture. Specifically, the
convolutional neural network (CNN) encoder encodes the given image into a
feature vector, and the recurrent neural network (RNN) decoder generates a
sentence. To learn a recurrent neural network, the standard process is utilising
back-propagation through time (BPTT) strategy. Consequently, the RNN-based
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 16–28, 2020.
https://doi.org/10.1007/978-3-030-39469-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_2&domain=pdf
http://orcid.org/0000-0002-0107-7347
http://orcid.org/0000-0002-9738-4949
http://orcid.org/0000-0001-6272-2971
https://doi.org/10.1007/978-3-030-39469-1_2

PAIC: Parallelised Attentive Image Captioning 17

Fig. 1. Image captions of two different models and human annotated ground-truth for
four example images. The LSTM is the baseline Model [27], and the one on the top is
generated by the proposed PAIC. It can be observed that PAIC successfully describes
major objects and interactions as well as their surrounding environment in details.
(Color figure online)

decoder methods often suffer from the issue of the gradient vanishing problem
especially in long-term dependencies learning. To this end, a recent surge of
interests in finding efficient alternatives for sequence modelling has been widely
discussed. Recent attempts on the above problem mainly focusing on extend-
ing the original RNN model. For example, the well-known Long-Short-Term-
Memory (LSTM [9]) alleviates the gradient vanishing or exploding by introduc-
ing the memory cell state. Recent work enhances the object recognition and
enrich the interpretation of the critical details by incorporating different learn-
ing models, such as object detection [11], semantic attributes [19,30], attention
[17,28,29,31], and reinforcement learning [18]. While some encouraging perfor-
mances are reported, training RNN-based decoder is still time-consuming and
incapable of parallel computing due to the limitation of BPTT. Moreover, pre-
serving the long-term dependencies is challenging since memorising all hidden
states occupies huge memory overhead, meanwhile the gradient is inevitably
vanishing through long path. Consequently, RNN-based decoder becomes a hin-
drance of the encoder-decoder architecture.

To alleviate the bottleneck of time consuming RNN training, we introduce
an efficient Parallelised Attentive Image Captioning Model (PAIC) that lever-
ages the pure attention mechanism as a decoder without RNNs. Inspired by
the recent successes of the Transformer model [26] for machine translation task,
PAIC employs a stack of multi-head self-attention to capture the word sequence,
and utilises another well-designed spatial attention module to localise different
areas of image. The Fig. 1 shows some generated captions from the proposed
model.

18 Z. Wang et al.

Fig. 2. Framework overview. The visual regions are firstly extracted from the original
image, which is further self-attended via a visual encoder. For language decoding, the
self-attention module firstly finds the relevant textual context, and the spatial-attention
module shifts the focus on most salient visual regions subsequently. The final word is
predicted based on the output from the spatial attention. All the time steps separated
by dot lines are able to trained in parallel efficiently.

Figure 2 illustrates an overview of the proposed PAIC. Technically, we develop
a new attentive decoder model by introducing a well-defined intra and inter-
attention mechanism followed by a simple feed-forward network. Specifically, the
self-attention can precisely capture the intra-relevance of the visual regions and
history words, and the spatial attention captures the inter-relevance between the
textual and visual features. After a stack of attention layers, the outputs are fed
to a projection and a softmax layer to predict next word to generate. Compared
to LSTM-based decoder model [27], PAIC denotes superior performance with
powerful parallel training capability.

The key contributions in this paper are three-fold:

1. This paper proposes a novel framework to explore the pure attention mech-
anism in image captioning, which allows the model to adaptively highlight
salient parts of textual and visual context.

2. The efficient intra and inter-attention mechanisms empower faster parallel
training benefits. At the same time, long-term dependencies are easier to be
learned during training.

3. Quantitative and qualitative analysis conducted on the challenging MS-
COCO dataset illustrate the efficiency and effectiveness of PAIC.

The rest of this paper is organised as follows: Sect. 2 discusses the related
work. Section 3 presents the details of the attentive captioning model. Section 4
shows experimental results of our method, followed by the conclusion in Sect. 5.

PAIC: Parallelised Attentive Image Captioning 19

2 Related Work

2.1 Image Captioning

Image captioning has been widely studied in computer vision community
recently. In general, most existing methods can be categorised into two groups:
template-based and language-based.

The main idea of template-based methods [6,10,15,20] is to reformulate the
captioning task as a ranking and template retrieval problem, and then fills in
template slots with outputs from object detection, attribute classification and
scene recognition. However, the diversity and complexity of generated captions
are limited to achieve satisfied performance due to the confined flexibility on
template.

The language-based models [2,5,7,24] intend to learn the mapping function
to form a full sentence from visual representations to semantic language embed-
dings. Benefiting from the prominent representation ability of CNNs, recent lit-
eratures focus on extracting effective deep features to guarantee high quality
captioning results. Vinyals et al. [27] proposed an end-to-end CNN-LSTM archi-
tecture to interpret visual content by generated word sequence.

2.2 Attention Model

Built on the encoder-decoder framework, the attention mechanism has been
demonstrated to make encouraging improvements at handling image captioning
and machine translation tasks [4,13,21,25]. Xu et al. [29] proposed a visual atten-
tion module to align latent correspondence when generating word sequence, and
similar visual attention methods [17,22] further improved the learning structure
by augmenting focused areas. However, all the existing methods above heavily
depend on the hidden states from each time step of recurrent units. Therefore,
all these attention mechanisms are hardly trained in parallel, and their long-term
dependencies learning abilities are clearly subject to RNNs.

3 Methodology

In this section, we elaborate our Parallelised Attentive Image Captioning Model
(PAIC) for efficient image captioning. As shown in Fig. 2, the Faster-RCNN
region features [1] are extracted to represent informative visual features. The
visual region features are firstly forwarded as the input of a multi-head self-
attended visual feature encoder to obtain the visual context vectors. For the
decoder, the language model takes the all the previous words as textual inputs
to obtain the self-attended textual features. Given the self-attended textual and
visual features, the important spatial inter-attention module is constructed to
select the focused area and assist its corresponding description at each posi-
tion. The proposed PAIC trains all time steps in the Fig. 2 in parallel which
significantly reduce the number of training iterations.

20 Z. Wang et al.

3.1 Problem Formulation

We denote the RGB-based original images as inputs I. The ultimate objec-
tive of the proposed model is to generate a preferable descriptive sentence
S = {S1, ..., SM} for given I, where M is the sentence length.

3.2 Preliminaries

To enable the parallelised model training, we build the PAIC based on multi-
head attention (MHA) following the Transformer model [26]. The attention
model maps the queries and a set of contextual key-value pairs to an output. To
formalise MHA, we define a set of dm-dimensional queries as matrices Q, which
can be computed simultaneously. Similarly, a set of dm-dimensional keys and
values are denoted as matrices K and V . MHA firstly reduces dm-dimensional
Q, K, V to dk, dk and dv dimensions by learning h linear projections, where h
is the number of attention heads. Then, each projected “mini” queries, keys and
values can be fed to each attention heads. The underlying reason is that all the
attention heads can capture different implicit alignments in parallel. We define
the multi-head attention module and the attention head as follows:

MHA(Q,K, V) = Concat(head1, ..., headh)W o (1)

headi = Att(QWQ
i ,KWK

i , V WV
i) (2)

Att(Q,K, V) = softmax(
QKT

√
dk

)V, (3)

where W o ∈ R
hdk×dm is output weight matrices, WQ

i ,WK
i ∈ R

dm×dk , WV
i ∈

R
dm×dv are projection parameters of Q, K and V respectively. Concat is a con-

catenation function to join all the outputs from h attention heads. softmax is
the softmax function to calculate the attention weights.

Fig. 3. Multi-head attention module. Fig. 4. Spatial attention module.

PAIC: Parallelised Attentive Image Captioning 21

3.3 The Attentive Encoder-Decoder

This section introduces the attentive encoder-decoder framework in general, and
then describes how to incorporate the efficient multi-head attention in the visual
feature encoder Sect. 3.4 and language decoder Sect. 3.5.

Existing image captioning models follow the encoder-decoder framework [27].
Given a pair of image I and caption S, the captioning model maximises the
probability of the correct image caption. The objective function is defined as:

θ∗ = arg max
θ

∑

(S,I)

log p(S|I; θ) (4)

where θ are the model parameters. The log likelihood over all the time steps S
is computed by chain rule:

log p(S|I) =
M∑

t=0

log p(St|I, S0, ..., St−1), (5)

where M is the sentence length.
In the encoder-decoder framework, each conditional probability depends on

I and all the previous positions in word sequence. The probability at position t
is modelled as follows:

log p(St|I, S0, ..., St−1) = f(c∗
t) (6)

c∗
t = σ(ctW1 + b1)W2 + b2 (7)
ct = MHA(at, Z, Z) + at, (8)

where f is a non-linear activation function that approximate probability of St. c∗
t

is output of two linear layers W1, W2, σ denotes ReLU function, the dimension
of inputs and outputs of Eq. 7 is dm = 512, and the inner-layer has the dimension
of dff = 2048. ct is the contextual visual attention output at position t, and at is
the self-attended language attention output at position t. Z is the self-attended
visual feature encoder output which will be discussed in Sect. 3.4. The details of
contextual vectors ct and at will be explained in Sect. 3.5.

3.4 Visual Feature Encoder

The Faster-RCNN features are firstly forwarded to a self-attention mechanism
to calculate the relevance between different object regions. We notate the region
features as G = [g0, g1, · · · , gk], k is the number of object regions. Since the fea-
ture encoder extracts the intra-relationships between the regions, so the queries,
keys and values are from the place:

Z = [MHAencoder(G,G,G) + G]×N (9)
G = [g0, g1, · · · , gk], (10)

where the subscripts N indicates we forward through a stack of N identical
MHA layers.

22 Z. Wang et al.

3.5 Language Decoder

In the decoder, the self-attention reasons the relevance of the previous and cur-
rent words, then this self-attended textual feature at is further utilised to find the
related visual regions, computing spatial attention ct for final word prediction.

Language Self-attention. As mention in Sect. 3.2, at is calculated given all the
previous and current positions. For self-attention, the queries, keys and values
are from same place. The self-attended feature at is modelled as:

at = MHA(qt, qt, qt) + qt (11)
qt = [x0, ..., xt], (12)

where qt is the queries sequence at position t, and the key-value pairs are essen-
tially queries themselves qt, xi ∈ x0, ..., xt is all the word vectors in previous
positions upon up to the current position t, vg is the dm-dimensional global
visual feature of the image. It is worth to mention in Eq. 11, we add second term
qt to serve as residual connection [8].

Spatial Attention. As formulated in Eq. 8, given at, we forward the textual
feature to second MHA spatial attention module to calculate the ct.

The spatial attention model efficiently learns the weights over image regions
given current word sequence representation at, and guide the language decoder
to focus on the most salient regions to predict next word. Spatial attention
illustrated in Fig. 4 is an alignment mechanism to give the language decoder
evidence to decide where are the most relevant regions at position t. The inputs
are the current language feature at and the self-attended region features Z.

4 Experiments

4.1 Experimental Settings

Dataset. We evaluate PAIC on on the MS-COCO [16] dataset for sentence cap-
tioning generation. For comparison, we follow the “Karpathy” split [12], which
provides train, val and test splits with 113 287, 5 000, 5 000 images, respectively.

Implementation Details. The proposed model consists of the region feature
extractor, intra-attentive visual feature encoder, language decoder, and spatial
attention modules. For region feature extractor, the region visual features are
extracted using Faster-RCNN with ResNet-101 following [1]. For all the multi-
head attentive modules, in the best model, we stack N = 3 layers of MHA, and
each layer has h = 8 attention heads. The batch size is 100 in all the experi-
ments. The word embedding dimension is empirically set to 512. The optimiser
is Adam [14] with learning rate 5e − 4. All the models are trained on a 40-Core
Intel(R) Xeon(R) E5-2660 CPU server, with 2 Nvidia GeForce GTX 1080 Ti
GPUs.

PAIC: Parallelised Attentive Image Captioning 23

Table 1. Performance comparison on MSCOCO Karpathy test split [12]. *Iter@Best
means the number of iterations taken to train a best model, smaller number indicates
faster training.

Model BLEU-3 BLEU-4 METEOR Rouge-L CIDEr Iter@Best*

NIC [27] 41.60 30.34 25.05 53.58 96.29 33k

Adaptive [17] 42.25 30.88 25.40 53.82 98.26 22k

SCST: Att2in [23] 43.31 31.83 25.73 54.50 102.29 32k

SCST: Att2all [23] 44.70 33.25 26.25 55.19 105.60 31k

UpDown [1] 44.58 33.14 26.45 55.37 106.14 33k

PAIC Small 43.47 32.80 26.53 54.46 105.3 12k

PAIC large 45.52 34.96 27.58 55.82 111.89 15k

Evaluation Metrics. We report the performance using automatic language
evaluation protocols [3] including BLEU-3, 4, METEOR, Rouge-L, and CIDEr.
All four metrics measures the similarity between the candidate and the reference
captions. For example, BLEU-n measures the n-gram precision scores for the
candidate caption given several reference captions. Iter@Best stands for the
number of training iterations (100 images per iteration) taken to train the model
with best performance.

Compared Methods. The compared methods are all conventional recurrent
neural networks based models. Neural Image Captioner (NIC) [27] is a basic
encoder-decoder framework, in which the encoder is a CNN extracting global
visual features, and the decoder is a LSTM-based language model for sequence
generation. Adaptive Attention [17], SCST-Att2in, Att2all [23], and UpDown
Attention [1] models are carefully-engineered variants of visual attention-based
models.

4.2 Quantitative Analysis

For fair comparison, we firstly extract Faster-RCNN region features following
the process similar to [1] for all the baseline models, and the language model is
a single-layer LSTM with hidden size of 512. Therefore, the reported results are
slightly different to the benchmarks from the original papers.

The main results of image captioning on MSCOCO dataset are demonstrated
in the Table 1. In general, the proposed PAIC demonstrates superior performance
in all the metrics comparing to the state-of-the-art methods showing the effec-
tiveness of attention-based language decoder with parallel training. In particular,
comparing to NIC, PAIC-Large significantly improves BLEU-4, METEOR, and
CIDEr by relatively 15%, 10%, and 16%, respectively. Moreover, if we compare
the proposed PAIC to the state-of-the-art UpDown [1] model, our model still
outperforms it by 5% in both BLEU-4 and CIDEr metrics relatively. This result

24 Z. Wang et al.

Fig. 5. Case studies of PAIC, LSTM and human annotated captions in different scenes.

indicates that the pure attention model efficiently learns long-term dependencies,
therefore improving the ability for better natural language generation.

In regards to the training efficiency, the PAIC takes only 12k iterations (100
images per iteration) to train a best model, while maintaining competitive per-
formance. For example, comparing to SCST: Att2all model, PAIC-Small only
takes 39% of training iterations while achieving similar performance. Similarly,
PAIC-Big only needs around half of the training iterations comparing to most
of the baseline models. Although the Adaptive model takes just 22k iterations,
the performance is not comparable without further time-consuming CNN fine-
tuning step reported in the original paper. More details with regard to training
curve will be discussed in Sect. 4.4.

4.3 Qualitative Analysis

To intuitively understand the performance of the proposed PAIC, we present
case studies on randomly chosen images in Fig. 5. The presented sentences are
generated by conventional LSTM-based model NIC [27] and the proposed PAIC
model. We also provide human annotated ground-truth (GT) captions for ref-
erence. With comparisons with LSTM, the PAIC model generates the sentence
in an accurate and visual-grounded manner. For example, in the third picture,
PAIC can precisely identify the “brown and white” colour of the dog, as well
as the “red fire hydrant” next to it. In comparison, the LSTM model success-
fully describes the dog, but it is lack of accurate details. Another example is
the first image, the woman is “blow drying” hair instead of “taking a selfie”.
The proposed PAIC clearly describes visually-grounded actions, but the LSTM
model only considers the general motion which leads to incorrect description. In
conclusion, the proposed attentive captioning model can identify more precise
details, and organise the words in a more human-readable order.

PAIC: Parallelised Attentive Image Captioning 25

(a) CIDEr (b) METEOR

Fig. 6. Training steps and performance of CIDEr and METEOR.

4.4 Training Efficiency Analysis

In this section, we study the training efficiency of the PAIC. The detailed per-
formance curves of the validation split are illustrated in Fig. 6. As shown in
the training curve, the green line on the top is the proposed PAIC showing
faster climbing and higher peak performance in both CIDEr and METEOR.
From CIDEr curve in Fig. 6a, we can observe that all the LSTM-based state-
of-the-art attention models (e.g. Updown, SCST:Attn2in, SCST:Attn2all) needs
around 15k iterations to climb up to CIDEr 1.00, while PAIC only taking around
5k training steps. To achieve the best performance, the LSTM-based baselines
grow slowly after 15k steps, and can hardly reach CIDEr 1.05 after 30k iterations
for the most competitive model UpDown. In the contract, PAIC demonstrates
strong learning ability reaching best performance CIDEr 1.08 within 16k itera-
tions, which is only the half number of steps comparing the baselines. The similar
trend also appeared in Fig. 6b for METEOR evaluation, where the PAIC shows
even larger relative margin above the baseline methods. However, the only draw-
back is that CIDEr tends to slightly overfit after reaching the peak due to the
complexity of multi-head attention. One of the effective training strategy is to
early terminate the model training after seeing the performance drop in several
consecutive epochs to eliminate overfitting.

4.5 Model Structure Comparison

In this section, we compare different model structures of PAIC. From Table 2,
we can find that the small models A and B (N = 1, dmodel = 512, 1024) achieve
promising results with fast training time. In practice, these two variants take
the smallest memory usage (4 GB among other bigger variants. However, the
small versions can hardly achieve better performance due to the limited num-
bers of learnable neural network layers. Moreover, the learning curve of Model
B (navy blue) experience fluctuations after 22k iterations. Therefore, it is nec-
essary to train the model with deeper multi-head attention networks. In the
further experiments, when we increase the number of attention layers, the mod-
els improve their performance as we can see in the model C and D. However,

26 Z. Wang et al.

Table 2. The performance of different
model structures in Test Set.

Model N dmodel Iter@Best CIDEr

A 1 1024 12k 105.30

B 1 512 15k 106.86

C 2 512 20k 109.64

D 3 512 15k 111.89

E 4 512 15k 110.03

F 5 512 14k 111.25

G 6 512 15k 110.89 Fig. 7. CIDEr score in validation set
for different parameter settings.

further increasing the depth of model does not show significant improvements as
shown in Model E, F, and G. On the contrary, over complex models are gener-
ally difficult to train and take up huge computation resources. Hence, we choose
N = 3, dmodel = 512 to build our best PAIC model.

5 Conclusion

In this work, we propose a parallelised attentive model for image captioning.
Towards preserving long-term dependences in the sentences, the proposed cap-
tioning model attends to visual and textual cues while language decoding. The
attentive captioning model is trained in parallel, therefore minimising number
of training iterations whilst maintaining superior performance. The experiments
demonstrate the effectiveness and efficiency of the proposed PAIC framework.

Acknowledgement. This work is partially supported by ARC DP190102353 and
ARC DP170103954.

References

1. Anderson, P., et al.: Bottom-up and top-down attention for image captioning and
visual question answering. In: CVPR, pp. 6077–6086 (2018)

2. Bin, Y., Yang, Y., Zhou, J., Huang, Z., Shen, H.T.: Adaptively attending to visual
attributes and linguistic knowledge for captioning. In: ACM MM, pp. 1345–1353
(2017)

3. Chen, X., et al.: Microsoft COCO captions: data collection and evaluation server.
CoRR abs/1504.00325 (2015)

4. Cheng, J., Dong, L., Lapata, M.: Long short-term memory-networks for machine
reading. In: EMNLP, pp. 551–561 (2016)

5. Donahue, J., et al.: Long-term recurrent convolutional networks for visual recog-
nition and description. TPAMI 39(4), 677–691 (2017)

6. Farhadi, A., et al.: Every picture tells a story: generating sentences from images.
In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314,
pp. 15–29. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-
1 2

https://doi.org/10.1007/978-3-642-15561-1_2
https://doi.org/10.1007/978-3-642-15561-1_2

PAIC: Parallelised Attentive Image Captioning 27

7. Guo, Z., Gao, L., Song, J., Xu, X., Shao, J., Shen, H.T.: Attention-based LSTM
with semantic consistency for videos captioning. In: ACM MM, pp. 357–361 (2016)

8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: CVPR, pp. 770–778 (2016)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Hodosh, M., Young, P., Hockenmaier, J.: Framing image description as a ranking
task: data, models and evaluation metrics. In: IJCAI, pp. 4188–4192 (2015)

11. Johnson, J., Karpathy, A., Fei-Fei, L.: Densecap: fully convolutional localization
networks for dense captioning. In: CVPR, pp. 4565–4574 (2016)

12. Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image
descriptions. TPAMI 39(4), 664–676 (2017)

13. Kim, Y., Denton, C., Hoang, L., Rush, A.M.: Structured attention networks. In:
ICLR (2017)

14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
15. Kuznetsova, P., Ordonez, V., Berg, A.C., Berg, T.L., Choi, Y.: Collective genera-

tion of natural image descriptions. In: ACL, pp. 359–368 (2012)
16. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D.,

Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp.
740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

17. Lu, J., Xiong, C., Parikh, D., Socher, R.: Knowing when to look: adaptive attention
via a visual sentinel for image captioning. In: CVPR, pp. 3242–3250 (2017)

18. Luo, Y., Huang, Z., Zhang, Z., Wang, Z., Li, J., Yang, Y.: Curiosity-driven rein-
forcement learning for diverse visual paragraph generation. In: ACM MM, pp.
2341–2350 (2019)

19. Luo, Y., Wang, Z., Huang, Z., Yang, Y., Zhao, C.: Coarse-to-fine annotation enrich-
ment for semantic segmentation learning. In: CIKM, pp. 237–246 (2018)

20. Mitchell, M., et al.: Midge: generating image descriptions from computer vision
detections. In: EACL, pp. 747–756 (2012)

21. Parikh, A.P., Täckström, O., Das, D., Uszkoreit, J.: A decomposable attention
model for natural language inference. In: EMNLP, pp. 2249–2255 (2016)

22. Pedersoli, M., Lucas, T., Schmid, C., Verbeek, J.: Areas of attention for image
captioning. In: ICCV, pp. 1251–1259 (2017)

23. Rennie, S.J., Marcheret, E., Mroueh, Y., Ross, J., Goel, V.: Self-critical sequence
training for image captioning. In: CVPR, pp. 1179–1195 (2017)

24. Song, J., Gao, L., Guo, Z., Liu, W., Zhang, D., Shen, H.T.: Hierarchical LSTM
with adjusted temporal attention for video captioning. In: IJCAI, pp. 2737–2743
(2017)

25. Sukhbaatar, S., Szlam, A., Weston, J., Fergus, R.: End-to-end memory networks.
In: NeurIPS, pp. 2440–2448 (2015)

26. Vaswani, A., et al.: Attention is all you need. In: NeurIPS, pp. 6000–6010 (2017)
27. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and tell: a neural image

caption generator. In: CVPR, pp. 3156–3164 (2015)
28. Wang, Z., Luo, Y., Li, Y., Huang, Z., Yin, H.: Look deeper see richer: depth-aware

image paragraph captioning. In: ACM MM, pp. 672–680 (2018)
29. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual

attention. In: ICML, pp. 2048–2057 (2015)

https://doi.org/10.1007/978-3-319-10602-1_48

28 Z. Wang et al.

30. Yao, T., Pan, Y., Li, Y., Qiu, Z., Mei, T.: Boosting image captioning with
attributes. In: ICCV, pp. 4904–4912 (2017)

31. Zhang, M., Yang, Y., Zhang, H., Ji, Y., Xie, N., Shen, H.T.: Deep semantic index-
ing using convolutional localization network with region-based visual attention for
image database. In: Huang, Z., Xiao, X., Cao, X. (eds.) ADC 2017. LNCS, vol.
10538, pp. 261–272. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
68155-9 20

https://doi.org/10.1007/978-3-319-68155-9_20
https://doi.org/10.1007/978-3-319-68155-9_20

Efficient kNN Search with Occupation
in Large-Scale On-demand Ride-Hailing

Mengqi Li, Dan He(B), and Xiaofang Zhou

The University of Queensland, Brisbane, Australia
mengqi.li2@uqconnect.edu.au, {d.he,uqxzhou}@uq.edu.au

Abstract. The intelligent ride-hailing systems, e.g., DiDi, Uber, have
served as essential travel tools for customers, which foster plenty of stud-
ies for the location-based queries on road networks. Under the large
demand of ride-hailing, the non-occupied vehicles might be insufficient
for new-coming user requests. However, the occupied vehicles which
are about to arrive their destinations could be the candidates to serve
the requests close to their destinations. Consequently, in our work, we
study the k Nearest Neighbor search for moving objects with occupation,
notated as Approachable kNN (AkNN) Query, which to the best of our
knowledge is the first study to consider the occupation of moving objects
in relevant fields. In particular, we first propose a simple Dijkstra-based
algorithm for the AkNN query. Then we improve the solution by develop-
ing a grid-based Destination-Oriented index, derived from GLAD [9], for
the occupied and non-occupied moving objects. Accordingly, we propose
an efficient grid-based expand-and-bound algorithm for the approach-
able kNN search and conduct extensive experiments on real-world data.
The results demonstrate the effectiveness and efficiency of our proposed
solutions.

Keywords: Intelligent raid-hailing system · kNN search ·
Location-based query · Moving object query

1 Introduction

Recent years, there appears a rapid development of on-demand ride-hailing ser-
vices such as Uber [4] and Didi [3]. With the proliferation of GPS-enabled devices,
e.g., smart phone, these ride-hailing services provide significant improvements
against traditional taxi service systems in terms of reducing taxi cruising time
and passengers’ waiting time. Meanwhile, they also foster plenty of studies for
location-based queries on road networks. In particular, given a set O of moving
objects and a query point q on a road network, the k Nearest Neighbor (kNN)
query returns the k nearest objects in O with the shortest road network distance
to q. The kNN query on moving objects provides important technical support
for the ride-hailing. For instance, in existing ride-hailing services, a traveler may

D. He—Equal contribution.

c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 29–41, 2020.
https://doi.org/10.1007/978-3-030-39469-1_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_3

30 M. Li et al.

request a taxi at his/her current location, and ride-hailing services then need to
find several taxis in its fleet that are the closest to this location and dispatch
one from the kNN results based on a certain strategy.

There exists a plethora of research works [9–13,17,20] that address the kNN
queries for moving objects on road networks, some of which can achieve very high
system throughput. However, most existing solutions query the moving objects,
e.g., taxi, under the assumption that all the candidate objects are available,
i.e., they can response to the request right after they are assigned. In practice,
with the large demand of user requests, there could be insufficient neighboring
objects for the new-coming queries, especially during peak hours. To explain,
most of the moving objects near the query locations might have been occupied
by some previous users. In this case, existing kNN solutions would either return
some available results those are very far away from the query locations, or fail to
response the requests. Nevertheless, some of occupied objects might arrive their
destinations soon. And if the destinations are happen to be close to some query
locations, these objects should be considered as the candidate objects to serve
the corresponding requests. For example, in Fig. 1, there are 6 moving objects
on this road network, while only O1 (the yellow taxi marked with a red flag) is
non-occupied. When there is a query Q, the existing kNN solutions will find O1

as the nearest object to Q. However, as we can see, O3 could approach Q much
earlier after it gets to its destination D3.

Fig. 1. AkNN example

Consequently, in our work, we study the Approachable kNN (AkNN) query
on non-occupied and occupied moving objects, which to the best of our knowl-
edge is the first to consider the occupation of moving objects. Given a set of
non-occupied/occupied moving objects and a query point on a road network,
we aim to return the k nearest objects those can earliest response the request

Efficient kNN Search with Occupation 31

after they finish the previous journey (arrive the destinations). These objects are
regarded as the imminent approachable candidates to serve the requests. Partic-
ularly, we measure the distance between the query location and a moving object
by combining the distance of the remaining journey and the distance from its
destination to the query. In this scenario, directly applying any of the existing
kNN solutions would fail to return the correct answers. To explain, after obtain-
ing the k nearest moving objects based on their current locations, we might find
some of results with very far destinations. Then the combining distances could
be larger than those of some other objects. For instance, in Fig. 1, the objects
O2 and O5 are the top-2 nearest objects to the query Q based on their current
locations, while O3 and O6 should be the exact nearest ones considering the
combinational distances.

Nevertheless, if the distances between any two nodes could be precomputed
in advance, we could slightly modify the existing kNN solutions to address the
AkNN query. To be specific, we can get a larger number of nearest candidates and
verify the final results by checking the distance from the object to its destination
and the distance from its destination to the query location. Obviously, the space
consumption for this solution would be huge, which is not desirable. Motivated by
this, we employ an efficient hop-labeling algorithm, i.e., the H2H [14] for distance
calculation, based on which we propose a simple Dijkstra-based algorithm for
the approachable kNN query. Then we improve the efficiency by developing a
grid-based index for the moving objects with occupation, which is derived from
GLAD [9]. In particular, we build a Destination-Oriented index and propose
the corresponding algorithm for approachable kNN search. Finally, we conduct
extensive experiments on real-world data set and the results show that the grid-
based algorithm outperforms the simple solution significantly.

Our work has three primary contributions:

– We introduce a novel and meaningful approachable kNN query on moving
objects for the ride-hailing service, which will consider the occupation of
objects.

– We first propose a Dijkstra-based algorithm to address the approachable kNN
query. Then we improve the efficiency by introducing a grid-based solution,
which can achieve a very good performance.

– We develop sufficient experiments with real-world data. And the results
demonstrate the superiority of our solution over the competitor.

2 Related Work

In this section, we discuss about the relevant studies of our work, which contains
two parts, kNN query and shortest path query.

2.1 kNN Queries

Dijkstra algorithm [7] is the most straightforward solution for the kNN search on
the graph, which is the most famous single source shortest path algorithm. Dijk-
stra’s algorithm is simple, requiring only search on the original graph without

32 M. Li et al.

auxiliary indexing structure. However, due to the large search scope, real-time
query cost for Dijkstra is high. ROAD [6] runs a Dijkstra algorithm on the index-
ing structure of hierarchical subgraphs. By indexing subgraphs, it can reduce the
search overhead by skipping the networks that do not contain any object. The
defect of ROAD algorithm is that when the objects are evenly distributed, the
subgraph structure degrades and the performance would be almost the same as
that of Dijkstra. Similarly, G-tree [20] also uses hierarchical subgraph structure.
It stores the boundary set of nodes and the corresponding distance matrix for
boundary nodes on the subgraph. Then during the exploration, it searches in a
top-down manner on the tree structure, and answers kNN query by computing
the distance between query node to the objects based on the pre-stored distance
matrix. G-tree improves query efficiency through index of tree structure, but at
the same time increases space cost. V-tree [17] adds local nearest active vertex
table on the basis of G-tree, regarding the nodes containing moving objects,
to facilitate the query of moving objects. TOAIN [12] uses SCOB index and
Contraction Hierarchy (CH) [8] structure. It builds a shortcut on the graph to
calculate in advance candidate downhill objects for kNN Dijkstra search results.
Also, TOAIN has optimized throughputs. GLAD [9] build a grid index to store
the moving objects and as for the road network, it applies the state-of-the-art
hop-labeling based structure H2H [14] to calculate the road network distance for
any two nodes on the graph. GLAD can achieve very little update cost since the
update of grid is cheap, thus to improve the system throughput. Meanwhile, it
also considers the conflict between queries in the concurrent processing.

2.2 Shortest Path Queries

Querying the shortest path between two nodes on road network has been studied
a lot [18–20]. Dijkstra is the most famous method, but it is expensive and not
suitable for large-scale road network. Bidirectional-Dijkstra [15] searches from
the starting node to the end node by Dijkstra simultaneously, reducing the visited
points to reduce the cost. Contraction Hierarchies (CH) [8] first sets the overall
order to allow Dijkstra to access the nodes in ascending order. This algorithm
calculates distance between pairs of points in advance and reduces the query time
for distance by shortcut. TRN [5] adds grid on the road network as an index,
then calculates and stores the shortest path of the relatively important points
around the grid in advance. Spatially Induced Linkage Cognizance (SILC) [16]
stores all the shortest paths in the graph in a summary form to improve efficiency
when querying. In addition, there is a lot of research work on shortest path or
shortest path query under certain conditions [18,19,21].

3 Preliminary

In this section, we introduce the basic definitions for our work and present our
problem statement accordingly.

Efficient kNN Search with Occupation 33

Definition 1 (Road Network). We define the road network to be a directed
graph, G = (V,E), where V is the set of vertices and E is the set of road
segments on this road network. For each edge (u, v) ∈ E, we associate it with a
weight w(u, v), which represents the distance from u to v.

Given two vertices u, v ∈ V , let P = 〈v0, v1, · · · , vl〉 be a path from u to v,
where v0 = u and vl = v, then the distance of P is defined as

∑l−1
i=0 w(vi, vi+1).

The shortest distance from u to v is defined as the minimum distance among
all the paths from u to v, denoted as SPD(u, v). Consider an object o located
on a road segment (uo, vo) such that the distance between o and vo is w(o, vo).
Given a query point q, which is located on a road segment (uq, vq), the distance
of vertex uq to q is w(uq, q). The distance from o to q is then:

SPD(q, o) = w(o, vo) + SPD(vo, uq) + w(uq, q). (1)

Following previous works [12,17,20], we assume that the query locations and
objects are all located on vertices, ignoring the offset of the objects to the vertices
(resp. the vertices to query locations) on the road network.

On road networks, it is difficult to monitor the locations of the moving
objects in ride-hailing continuously, e.g., taxi. Instead, for the moving objects
that include GPSs, the movement of these objects can be tracked periodically
with every second, or even with smaller periodicity [1]. In our work, we consider
the moving objects that might have been occupied by existing users. Thus we
define the moving object as follows.

Definition 2 (Moving Object). We define a moving object o on the road
network to be a tuple, i.e., o = (vc, vd, s), where vc (resp. vd) indicates the current
(resp. destination) location, and s represents the current status (occupied/non-
occupied) of the moving object. Note that vd = vc if o is non-occupied.

Next, we define the approachable kNN query on a set of the occupied moving
objects on the road network as follows.

Definition 3 (Approachable kNN Query (AkNN)). Given a query point
q, a set M of moving objects on a road network G(V,E), and an integer k ≤ |M |,
the approachable kNN query returns a set R ⊆ M of k moving objects such that
for all o′ ∈ M \ R, the following inequation suffices for any o ∈ R.

SDP (o′.vc, o′.vd) + SDP (o′.vd, q) ≥ SDP (o.vc, o.vd) + SDP (o.vd, q)

Different from the previous studies on kNN queries for moving objects, we
do not consider the distance between the query point to the current location
of the moving objects. Since the moving objects could have been occupied, we
instead consider the distance between the query location and the destination
of the moving objects, combining the distance from the current location to the
destination of the moving objects.

34 M. Li et al.

4 AkNN Query Algorithms

In this section, we present the algorithms to address the approachable kNN
query. We first introduce the simple Dijkstra-based algorithm, followed by the
grid-based algorithm which can achieve greater efficiency.

Algorithm 1. Dijkstra AkNN
Input: Road network G, query point q, Distance scheme D
Output: kNN of q
1: Let D(i) be the distance between i and q, and D(q) = 0. Let C be the candidate

set of kNN queries. Let Q be a priority queue of nodes, and every element in Q has
a distance as priority, Q ← {q}. Let θ be the upper bound of the distance of the
kNN, θ ← ∞. Let v be the currently accessed node v.dist ← 0, v.id ← q.

2: while (Q �= ∅) and (v.tDist < θ) do
3: v ← Q.top, dist[v] ← v.dist, Remove v from Q
4: for each object o on v node do
5: D ← H2H(oc, od) + H2H(od, q)
6: if C.size < k then
7: C ← o(D)
8: else
9: if D < C[k].dist then

10: θ ← D, Remove k-th object from C, C ← o, D
11: end if
12: end if
13: end for
14: for each unvisited node u is a neighbor of v do
15: if u in Q then
16: if dist[v] + w(v, u) < dist[u]) then
17: dist[u] ← dist[v] + w(v, u)
18: end if
19: else
20: Q ← u, (dist[v] + w(v, u))
21: end if
22: end for
23: end while
24: return C

4.1 Dijkstra AkNN

In this section, we introduce the simple Dijkstra-base algorithm for the approach-
able kNN. As we need to consider the distance of the reminding journey of an
occupied moving object, applying the basic Dijkstra algorithm straightforwardly
will cost huge. This is because, when we observed a moving object by Dijkstra,
we can only obtain the distance from the current location to the query, and even
might not reveal its destination. And the shortest distance from its current loca-
tion to its destination is unknown even we observe both locations by Dijkstra
from the query node.

Efficient kNN Search with Occupation 35

Consequently, unlike the traditional Dijkstra algorithm that is totally index-
free, in our work, we will need an auxiliary index structure for the AkNN search.
Our main observation is that the distance between nodes on the road network
does not change and only the objects are dynamically moving. Therefore, we
apply the H2H [14] on the road network, which is also used in [9]. We regard the
H2H index as a black box of distance scheme that can efficiently retrieve the road
network distance between any two nodes. In particular, during the exploration
on the graph, whenever we meet a moving object, we calculate the combinational
distances to verify if the candidate object could contribute to the final answers.
The algorithm terminates when k nearest objects are retrieved in terms of the
combinational distances.

The pseudo-code of the kNN query algorithm is as shown in Algorithm1.
We maintain an initially empty candidate set C containing up to k elements
for the candidate kNN objects and its combinational distance to q. Initially,
the upper bound threshold, θ of the query distance is ∞. If the current access
node is further from q than the distance upper bound, or if the queue Q is
empty, the algorithm terminates. We perform a basic Dijkstra exploration on
the road network. Differently, whenever an object is observed, we will calculate
the combinational distance from the current position of object to its destination
and then to q with the H2H distance scheme (Line 5). If the current candidate
results contain less than k objects, the newly observed object will be added
to candidate set C, with the combinational distance as the priority (Line 6–
7). Otherwise, we compare the distance of newly observed object with the kth
object in C to update the candidate results, as well as the distance upper bound
θ (Line 9–10). From line 14–21, the algorithm perform the edge relaxation which
is the same the origin Dijkstra algorithm. To this end, we will find the k nearest
objects regarding the combinational distance.

4.2 Grid-Based AkNN

In this section, we present a grid-based labeling index structure for moving
objects, which is derived from GLAD [9], to support efficient update and query
processing. Following the idea of GLAD, we partition the road network into
small grids, and then maintain a data structure to record the objects that fall
into the grid. However, unlike GLAD, here we consider the remaining trips of the
occupied moving objects, which contain two spatial fields. Thus, in this section
we introduce the Destination-Oriented index, and present the corresponding
search algorithm as follows.

We map the moving objects to the grid based on their destinations. In this
scenario, the update of the index will be less frequent than the previous type
of index, since the moving objects usually change their destination after they
finish the service journeys. The space consumption is linear, i.e., O(|M |), as
each object contains only one destination in any time. We update the grid index
object-by-object, i.e., whenever there is an object changing its destination, we
update the corresponding grid cells accordingly. We will show in the experi-
ment study (Sect. 5.3) that the Destination-Oriented index achieves better per-

36 M. Li et al.

Algorithm 2. Grid-base AkNN
Input: Road network G, query point q, Distance scheme D, Grid index L
Output: kNN of q
1: Let h be the grid containing q, H ← ∅, NH ← {h}. Let C(q) be the candidate set

of the kNN queries. Let UB be the upper bound of the distance of the k-th nearest
neighbor to q and initially set to ∞. Let LB ← 0 and L(o, q) denotes the Euclidean
distance from q to the destination of object o plus the Euclidean distance from the
current position of o to the destination of it.

2: while UB > LB do
3: Let L(NH) be the set of objects that their destinations fall in any grid in NH
4: for o ∈ L(NH) with L(o, q) < UB do
5: dist(o, q) ← D(o.c, o.d) + D(o.d, q)
6: if dist(o, q) < k-th object in C then
7: C ← o
8: end if
9: end for

10: H ← H ∪ NH
11: Update UB to the k-th distance in C
12: Let NH be the set of grids that are neighbors of H but excluding the grids in

H
13: Let LB be the Euclidean distance from q to edge of NH
14: end while
15: return objects in C

formance compared with the other two types of indexes (Object-Oriented and
Hybrid).

Next, we present the algorithm detail with the Destination-Oriented index as
Algorithm 2. Line 1 illustrates the initialization of this algorithm. We maintain
a set C to hold candidate kNN objects, and maintain a set H that holds the
grid accessed, initially empty. Then we maintain a set NH, to store H’s neighbor
grids, and add h to NH before the loop starts. We set UB to be the upper bound
of the distance of the kth nearest neighbor to q and initially set to ∞. Then
let LB be 0. L(o, q) denotes the Euclidean distance from q to the destination
of object o plus the Euclidean distance from the current position of o to the
destination of it. The algorithm terminates if UB is less than or equal to LB.
When searching all objects in the grids of NH, if L(o, q) of o is less than UB for
an object, then we calculate the road network distance from the current position
of o to its destination and then to q with H2H distance scheme (Line 4–5). We
verify the candidates in C if the distance is less than the kth objects (Line 6–7).
After checking all the objects in grids of NH, we merge the grids in NH into
H (Line 10). Update the upper bound with the combinational distance of the
kth object in C (Line 11). Update NH with the surrounding grids of H, and
update LB with Euclidean distance from q to the boundary of NH (Line 11–13).
Finally, we return the objects in C (Line 15).

Efficient kNN Search with Occupation 37

(a) vary size of moving objects (b) vary k

Fig. 2. Average distance between the query and kNN results

5 Experimental Study

In this section, we experimentally evaluate the proposed solutions for the
approachable kNN problem. All methods are implemented in C++ and com-
piled with full optimizations. All experiments are conducted on an Intel Core M
1.2 GHz CPU with 8 GB RAM running Mac OS Mojave (10.14.6).

5.1 Experiment Setup

We conduct our experiments on the New York (NY) road network, which includes
264K nodes and 733K edges. We obtain a real dataset from NYC Open Data [2],
which has 18K taxi trajectories. We map the starting point of each trajectory to
the nearest vertex on the road network. Then, the query locations are half gen-
erated from random starting points of the trajectories and half generated from
random vertices on the road network. The current position of moving objects are
generated uniformly from the road network. For the non-occupied objects, the
destinations are set to be the same as their current location. For the occupied
objects, we generate the destination of half of the objects to be the end points
of the trajectories. In terms of the rest, we generate the destinations that are
randomly distributed.

5.2 Case Study

In this section, we perform a case study to show the significance of the approach-
able kNN problem in ride-hailing service. In particular, we generate 10000 mov-
ing objects while only 1000 of them are non-occupied. We random generate
5000 query locations, and obtain their kNN moving objects. For each query, we
compute the average distance from the query to its kNN results. We first vary
the total number of the moving objects and then vary the value of k to con-
duct the experiment, of which the results are shown in Fig. 2. From Fig. 2(a),
the average distances decrease when the number of occupied objects increases.
Specifically, when we perform 10NN search on only the non-occupied moving

38 M. Li et al.

objects, the average travel distance of the results is more than 24 km. However,
when we consider the occupied objects, the average distance reduces to 13 km.
Thus, considering the occupied moving objects in the ride-hailing can reduce the
travel distances of the candidate objects to the query locations, which in fact
can reduce the users’ waiting time for the service. For the result in Fig. 2(b),
by setting |M | = 10000, when we increase k, the average distances increase
accordingly, which is reasonable and straightforward.

5.3 Different Indexes

In this section, we conduct the experiment to show the effectiveness of the
Destination-Oriented index. Alternatively, we implement two other types of
indexes, Object-Oriented and Hybrid, as follows.

– Object-Oriented: We map the moving objects to the grid based on their
current locations. In this case, the index follows the same scheme with the
one in GLAD.

– Hybrid: In this type of index, we duplicate the moving objects and map each
object to the grid twice based on both its current location and destination.
For each grid cell, we will maintain two lists for the objects and destinations
respectively.

We compare the effectiveness and efficiency of these three types of indexes
regarding the query processing time and the update cost. The experimental
results are shown in Fig. 3, where OO represents the Object-Oriented index, DO
indicates the Destination-Oriented index. Note that in all settings, the size of
each grid cell is set to be 100 m × 100 m. As for the query processing time, we
perform AkNN search for 5000 queries with three index structures and record
the average query time used for each query. We vary the value of k from 5
to 40 as shown in Fig. 3(a). The results show that the Destination-Oriented
index always works the best. This is because, when we consider the occupied
objects, the distance from their destinations to the query location is the lower-
bound of the combinational distance. Thus, indexing the objects only by the

(a) query time (b) update time

Fig. 3. Effectiveness of different indexes

Efficient kNN Search with Occupation 39

(a) vary k (b)vary moving object size

Fig. 4. Effectiveness of different indexes

destinations can efficiently filter the unnecessary visited objects, i.e., the objects
with close current locations but far destinations from the query location. In terms
of update, since the destinations of the occupied moving objects will not change
frequently, thus the update cost is slight. In the experiment, we assume that the
destinations will be updated every 10 min on average, while the current locations
update every second. We compute the total update cost needed in every 10 min,
where the number of moving objects is 5000, with 1000 non-occupied and 4000
occupied objects. The result in Fig. 3(b) shows that, the Destination-Oriented
index needs the least update cost. Besides, the update cost our grid-based index
is very negligible.

5.4 AkNN Search Algorithms

In this section, we present the experiment about the efficiency of our proposed
grid-based Destination-Oriented AkNN search, compared with the Dijkstra-
based algorithm. We vary the parameter of k and the number of moving objects
to record the query processing time of each query. For each setting, we run 5000
query and compute the average query cost. Figure 4 shows the results of this set
of experiment. Under all the setting, the proposed grid-based algorithm outper-
forms the Dijkstra-based algorithm. Note that, in Dijkstra-based algorithm, we
also map each moving object to the graph according to its destination location
with the similar reason as analyzed in Sect. 5.3. In particular, when we increase
k, the number of moving objects is set to be 5000. The result in Fig. 4(a) shows
that the query time increases for both algorithms, which is straightforward to
understand. That is, when k increases, the exploration space has to be enlarged
to get more candidates. As we can see, the grid-based algorithm (denote as DO)
can always achieve more than 10 times faster than the Dijkstra-based algorithm.
Moreover, we vary the size of moving objects to see the performance of both algo-
rithms, where k is set to be 10. Figure 4(b) demonstrates that the query time for
the grid-based algorithm increases slightly when the number of moving object
increases. This is because, when the moving objects are more dense, there are
more objects in each grid. Then the algorithm will need to compute more for

40 M. Li et al.

the road network distance for the objects in each grid, while the bound does
not narrow too much. However, as for the Dijkstra-based algorithm, the running
time decreases obviously when the number of moving objects increases. When
the objects are very sparse, the Dijkstra will need to explore more on the graph
to find the candidate objects, i.e., it encounters many graph nodes that con-
tain no object, which is a waste of time. To sum up, the proposed grid-based
Destination-Oriented algorithm works much better than the alternative for the
approachable kNN query.

6 Conclusion

In this paper, we study a novel k nearest neighbor search for moving objects with
occupation on the road network, namely Approachable kNN Query. It differs
from the existing kNN in the measure of distance from objects to query location.
Accordingly, we introduce a simple Dijkstra-based algorithm and propose an
improved grid-based algorithm to address the approachable kNN search. Our
work shows the superiority to the existing related works in the scenario with
high-demanded requests in the ride-hailing service systems. As a future work,
we tend to study the approachable kNN query on the road network on dynamic
road network, i.e., the distance weight on each edge changes overtime.

References

1. https://news.thomasnet.com/fullstory/gps-receiver-provides-20-hz-update-rate-
587490

2. https://opendata.cityofnewyork.us/
3. Didichuxing. https://gaia.didichuxing.com/
4. Uber. https://www.uber.com/
5. Bast, H., Funke, S., Matijević, D.: Transit: ultrafast shortest-path queries with

linear-time preprocessing. In: 9th DIMACS Implementation Challenge-Shortest
Path (2006)

6. Demiryurek, U., Banaei-Kashani, F., Shahabi, C.: Efficient continuous nearest
neighbor query in spatial networks using Euclidean restriction. In: Mamoulis, N.,
Seidl, T., Pedersen, T.B., Torp, K., Assent, I. (eds.) SSTD 2009. LNCS, vol. 5644,
pp. 25–43. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02982-
0 5

7. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
mathematik 1(1), 269–271 (1959)

8. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA
2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-68552-4 24

9. He, D., Wang, S., Zhou, X., Cheng, R.: An efficient framework for correctness-aware
kNN queries on road networks. In: ICDE, pp. 1298–1309 (2019)

10. He, D., Wang, S., Zhou, X., Cheng, R.: Glad: a grid and labeling framework with
scheduling for conflict-aware kNN queries. TKDE (2019)

https://news.thomasnet.com/fullstory/gps-receiver-provides-20-hz-update-rate-587490
https://news.thomasnet.com/fullstory/gps-receiver-provides-20-hz-update-rate-587490
https://opendata.cityofnewyork.us/
https://gaia.didichuxing.com/
https://www.uber.com/
https://doi.org/10.1007/978-3-642-02982-0_5
https://doi.org/10.1007/978-3-642-02982-0_5
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1007/978-3-540-68552-4_24

Efficient kNN Search with Occupation 41

11. Kolahdouzan, M., Shahabi, C.: Voronoi-based k nearest neighbor search for spatial
network databases. In: PVLDB, pp. 840–851 (2004)

12. Luo, S., Kao, B., Li, G., Hu, J., Cheng, R., Zheng, Y.: TOAIN: a throughput
optimizing adaptive index for answering dynamic k nn queries on road networks.
PVLDB 11(5), 594–606 (2018)

13. Nutanong, S., Zhang, R., Tanin, E., Kulik, L.: The v*-diagram: a query-dependent
approach to moving knn queries. PVLDB 1(1), 1095–1106 (2008)

14. Ouyang, D., Qin, L., Chang, L., Lin, X., Zhang, Y., Zhu, Q.: When hierarchy meets
2-hop-labeling: efficient shortest distance queries on road networks. In: SIGMOD,
pp. 709–724 (2018)

15. Pohl, I.: Bidirectional and heuristic search in path problems. Technical report
(1969)

16. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: SIGMOD, pp. 43–54 (2008)

17. Shen, B., et al.: V-tree: efficient knn search on moving objects with road-network
constraints. In: ICDE, pp. 609–620 (2017)

18. Wang, S., Lin, W., Yang, Y., Xiao, X., Zhou, S.: Efficient route planning on public
transportation networks: a labelling approach. In: SIGMOD, pp. 967–982 (2015)

19. Wang, S., Xiao, X., Yang, Y., Lin, W.: Effective indexing for approximate con-
strained shortest path queries on large road networks. PVLDB 10(2), 61–72 (2016)

20. Zhong, R., Li, G., Tan, K.-L., Zhou, L., Gong, Z.: G-tree: an efficient and scalable
index for spatial search on road networks. TKDE 27(8), 2175–2189 (2015)

21. Zhu, A.D., Xiao, X., Wang, S., Lin, W.: Efficient single-source shortest path and
distance queries on large graphs. In: SIGKDD, pp. 998–1006 (2013)

Trace-Based Approach for Consistent
Construction of Activity-Centric Process

Models from Data-Centric Process
Models

Jyothi Kunchala1(B), Jian Yu1, Sira Yongchareon1, and Guiling Wang2

1 School of Engineering, Computer and Mathematical Sciences,
Auckland University of Technology, Auckland, New Zealand
{kunchala.jyothi,jian.yu,sira.yongchareon}@aut.ac.nz

2 Beijing Key Laboratory on Integration and Analysis of Large-Scale Stream Data,
North China University of Technology, Beijing, China

wangguiling@ncut.edu.cn

Abstract. In recent years, artifact-centric paradigm as a data-centric
approach to business process modeling has gained momentum. Com-
pared to the traditional activity-centric paradigm that focuses on process
control-flow and treats data as simple black boxes that act as input and
output to these activities, the artifact-centric paradigm provides equal
support to both the control-flow and data. Most of the existing pro-
cess modeling is activity-centric, although the artifact-centric modeling
enables higher process flexibility and reusability. This is mainly due to
the existence of numerous notations, tools and technologies that pro-
vide increased support to activity-centric process modeling and execu-
tion. Therefore, this paper proposes a trace-based approach to transform
artifact-centric process models into activity-centric process models and
to analyse the consistency of transformed and base models. A case study
is utilized to demonstrate the feasibility of the proposed approach.

Keywords: Activity-centric process modeling · Data-centric process
modeling · Artifact-centric process modeling · Model transformation

1 Introduction

In the dynamic marketplace, business process modeling (BPM) is a fundamental
tool for many organizations to stay competitive and gain operational benefits.
The activity-centric and data-centric approaches are the well-known modeling
paradigms in BPM. The activity-centric approach represents the flow of business
activities, where the underlying data is annotated as input and output of these
activities. There exist a multitude of activity-centric modeling notations includ-
ing UML, BPMN that provide many intuitive constructs, which can be naturally
mapped to executable languages such as BPEL [1]. The activity-centric approach

c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 42–54, 2020.
https://doi.org/10.1007/978-3-030-39469-1_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_4&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_4

Trace-Based Approach to Model Transformation 43

is imperative in nature, which requires a process model (or model) to explicitly
specify every alternative execution sequence during design-time. Thus, a flow
that is not specified in such a model is not allowed [2].

In contrast, the data-centric approach focuses on representing the informa-
tion about business objects including their attributes and temporal relations.
Based on the notion of data-centric modeling, a new approach called artifact-
centric approach has been proposed in recent years. Compared to the data-centric
approach which is based on a more abstract object-oriented concept that only
captures the information aspect of a business object, the artifact-centric app-
roach considers both the information and lifecycle aspects including attributes,
states and the interrelations of key business entities called artifacts [7], and may
also include activities that invoke these artifacts to represent a business process.

The artifact-centric modeling supports a declarative style to describe the
process behavior, where the execution sequence of activities can be governed
by specifying business constraints [10]. Thus, artifact-centric models are more
expressible and offer more freedom compared to the activity-centric models.
However, these models are less comprehensible than the activity-centric models,
due to their unstructured sets of business rules that often impede their adoption
[1,4]. Therefore, this paper proposes an approach to transform artifact-centric
models into activity-centric models. Mainly, the proposed approach is comprised
of algorithms used to construct an activity-centric model from an artifact-centric
model and to check the consistency between the constructed and base models. A
case study is also utilized to demonstrate the feasibility of the proposed approach.

This paper is organized into seven sections. Section 2 introduces a motivating
example. Section 3 formally defines some key notions. Section 4 presents algo-
rithms for the proposed approach. Section 5 presents a case study. Section 6
discusses the related work. Section 7 concludes this paper.

2 Motivating Example

This section presents an artifact-centric process (ACP) model [10] that describes
a customer order processing scenario, which is closely related to the one used in
[6] to demonstrate the proposed approach. The ACP model presented in Table 1
consists of artifacts, services and business rules. Artifacts represent key business
entities, which contain a finite set of attributes and states. The Order, Product
and Invoice are the three artifacts of the given process model that have a finite
set of states. The attributes, for example, OrderID and CustomerID are not
specified in this model, as we consider them at the implementation level.

Services represent business activities or tasks that take some artifacts as
input, and output some artifacts and/or modify their attributes and/or states.
The given process model has a set of activities, each of which is labelled with an
alphabet to easily referring them throughout the discussion. Business rules are

44 J. Kunchala et al.

Table 1. Artifact-centric Process Model (ACP Model)

for associating artifacts with activities, where every rule specifies conditions (pre,
post) for one or more activities to invoke the associated artifact(s) by following
the Condition-Action [10] style. The complete set of business rules specify the
control flow of the ordering process from its initiation to the completion.

It can be observed from Table 1, the process starts with the initiation of an
order request by the customer. After receiving the order request for a product,
the customer information is analysed to decide whether to confirm the order
or to reject it in which case the corresponding order is immediately closed and
the process is terminated. When confirmed, the order is analysed to check the
availability of the ordered product. The order is shipped to the customer if the
requested product is in stock, otherwise, the product is planned, manufactured
and then shipped. Then, the order is invoiced and sent to the customer in which
case, the process is terminated after receiving the payment from the customer.

Table 2. ACP log

Log traces Business rules Activities

1 R1R2R3R4R5R6R7R8R9R10 ABCDEFGHIJK

2 R1R2R3R4R5R8R9R10 ABCDEIJK

3 R1R2R3R11 ABCL

Trace-Based Approach to Model Transformation 45

Table 2 presents the process log that contains the execution traces of the
ACP model presented in Table 1. These traces can be the recorded traces during
the process execution or manually defined traces by analysing the process model.
It is assumed that the above process log is compliant with the process model,
meaning that it contains every possible execution trace of the given ACP model.
This process log is used to check the consistency between the ACP model and
the activity-centric process model that will be constructed from this model.

3 Preliminaries

This section formally defines some of the key notions including ACP Model
(based on [6,10]), Activity-Centric Process Model, Process Log and Trace Match.

Definition 1. (ACP Model). An ACP model Π is a three tuple (Z, V,B) where,

– Z is a finite set of artifacts. Every artifact has a set of attributes, a set of
states S, an initial state and a set of final states;

– V is a finite set of activities. Every activity contains a label and a finite set
of artifacts manipulated by this activity;

– B is a finite set of business rules. Every rule consists of a pre (α) and post
(β) conditions that comprise a set of in-state (λ) and defined (δ) functions
using logical operators (∧, ∨) and activities that manipulate the associated
artifacts.

The logical operators can reveal the relation between artifacts or dependencies
between their states that correspond to either a pre- or post-condition of a busi-
ness rule. From such a relation/dependency, the control flow relation of activities
(executed in parallel or exclusive) that take these artifacts and states as input
or produce them as output can be derived. For example, the states confirmed
and rejected of Order artifact have an exclusive relationship between them as
they are connected using the ∨ operator, therefore, the corresponding activi-
ties ConfirmOrder and CloseOrder must also execute in this exclusive manner.
Similarly, the states planned and scheduled of Product artifact connected using
the ∧ operator have a parallel relationship, thus the corresponding activities
PlanProduct and ScheduleProduct must also execute in parallel.

The BPMN notation is used to represent the constructed activity-centric
process model. Thus, the following definition is based on this notation.

46 J. Kunchala et al.

Definition 2. (Activity-Centric Process (or ACT) Model). An ACT model
denoted with ΠP = (E, A, G, F, D, Sp, I, O), where E is a finite set of event
nodes, E.Type = {Start, End}; A is a finite set of activity nodes; G is a finite
set of gateways, G.Type = {XOR, AND}; F ⊆ (E ∪ A ∪ G) × (E ∪ A ∪ G) is the
set of sequence flow relations; D is a finite set of artifacts; Sp is a finite set of
states; I and O are the input and output relations among artifacts and activities.

Definition 3. (Process Log). A process log P is a finite set of execution traces
TE, where E is the finite set of activities of P . Every trace te = e1, e2, ...en is a
finite non-empty sequence of activities, where ei ∈ E and t ∈ TE.

Definition 4. (Trace Match). Let t ∈ Π.T and tp ∈ ΠP .TA, we say t matches
tp that is t ∼= tp if for every ai ∈ t, ∃aj ∈ tp and ai = aj. The ∼= symbol is used
to represent the consistency between two process traces or two process models.

4 Transformation Approach

This section presents algorithms for each phase of the proposed approach includ-
ing: model construction and model consistency checking. In the first phase, an
activity-centric process (ACT) model is constructed by obtaining activities and
associated artifacts with states from the business rules of the ACP model. In
the second phase, the execution traces of the resulting ACT model are extracted
and analysed over the ACP traces to check their consistency.

4.1 Model Construction

Algorithm 1 defines the ConstructACTModel() function that is recursively
invoked for every business rule of the ACP model, from which the activities
and the associated input and output artifacts and states are retrieved to con-
struct the ACT model. This function takes as input the ACP model, an ACT
model with a start node and a data condition (cond) based on which a business
rule of the ACP model is invoked. Initially, the pre-condition of the first business
rule is assigned to the cond and is updated with the pre- or post-condition of the
corresponding business rule in each invocation of this function and as defined in
line 2, a business rule is invoked only if it is not marked as completed, meaning
that the activities of this rule were not added in the ACT model.

Algorithm 1 defines three conditions, where every rule needs to satisfy one of
these conditions in order to be invoked by the ConstructACTModel() function.
According to the first condition (line 3) that is when the pre-condition of a rule
matches the given data condition (cond), the activities of the corresponding rule

Trace-Based Approach to Model Transformation 47

with their associated artifacts and states are added into the ACT model. In case
the pre-condition of a rule is a subset of cond (line 24), then for one or more
artifacts and states of this cond, every next rule is traversed to check if its pre-
condition matches with the artifact(s) and state(s) of the given cond. Therefore,
the recursive function is called for every such rule whose pre-condition is a subset
of cond (line 28). The third condition is where the cond is a subset of the pre-
condition of a business rule (line 32). Then the algorithm checks that for every
artifact and state of this pre-condition, there an artifact and state associated with
an activity node in the ACT model. If these artifacts and states are associated
with different activity nodes that belong to different branches of a gateway, then
all its open branches are merged using the MergeBranches() function (that adds
a sequence flow from each branch (activity) node to the close gateway node)
before adding the activities of this rule into the ACT model. Then the recursive
function is called with this rule and its pre-condition.

The algorithm also defines conditions (line 4 and 14) for adding the activities
of each business rule into the ACT model. As in line 4, when a business rule
contains a single activity, that it can be added directly to the ACT model with
the associated input and output artifacts and states. The algorithm also checks
if two states of an output artifact of an activity are in exclusive relation (lines 6–
13). In this case, an XOR open gateway node is added in sequence to this activity
node in the ACT model. Then, for every artifact and state that is logically
connected (using ∨ operator), a new branch with that branch condition (artifact
[state]) is added to the gateway. To add activities to these branches, every next
business rule is traversed until all the activities of rules whose pre-conditions
match with the branch conditions are found and added to the corresponding
branches of the gateway in the ACT model. The MergeOpenGatewayBranches()
is for merging those branches that contain no nodes, as their branch conditions
do not match the pre-conditions of any rules in the ACP model.

Similarly, a parallel (AND) gateway is used (lines 14–21), when a business
rule has more than one activity. In this case, each activity of a business rule is
added to a different branch of the AND open gateway node and is annotated
with the associated artifacts and states. For each of these branch nodes, the
ConstructACTModel() function can be called (line 18). This invocation is mainly
to add the activities that must be added in sequence to these branch nodes. In
this manner, starting at the first rule Algorithm1 continues until every following
rule is invoked and completed, after which an end node can be added into the
ACT model. Thus the time complexity of this algorithm is analysed as O(B×S).

48 J. Kunchala et al.

Algorithm 1. Construction of an ACT Model from the ACP Model
Input : ACP Model (Π), ACT Model (ΠP) with start node (n)
Output: Complete ACT Model (ΠP)

1 Function ConstructACTModel(rule : Π, n : ΠP , cond : rule):
2 if rule �= null and is not marked as completed then
3 if rule.α = cond then
4 if |rule.v| = 1 then
5 ΠP .AddInSequence(v)
6 if z.s ∈ v.O and states of z are in exclusive relation then
7 ΠP .AddInSequence(XOR.GOpen)
8 foreach z.s ∈ v.O do
9 GOpen.AddBranch(branch, z.s)

10 ConstructACTModel(GetNext(rule), ΠP , z.s)

11 end

12 MergeOpenGatewayBranches(XOR.GClose)

13 end

14 else if |rule.v| > 1 then
15 ΠP .AddInSequence(AND.GOpen)
16 foreach v ∈ rule do
17 GOpen.AddBranch(branch, v)

18 ConstructACTModel(GetNext(rule), ΠP , v.O)

19 end

20 MergeOpenGatewayBranches(AND.GClose)

21 end
22 Mark(rule)
23 cond ← rule.β

24 else if rule.α ⊂ cond then
25 foreach z.s ∈ cond do
26 r ← GetRule(rule, cond)
27 while r �= null do
28 if z.s ∈ r.α then ConstructACTModel(r, ΠP , r.α)
29 r ← GetNext(r)

30 end

31 end

32 else if cond ⊂ rule.α then
33 foreach z.s ∈ α do
34 if ∃d.sp ∈ ΠP and then
35 if d.sp ∈ ΠP .ni and ni ∈ G.branchi then

MergeBranches(G)

36 ConstructACTModel(rule, ΠP , rule.α)

37 end

38 end

39 end

40 ConstructACTModel(GetNext(rule), ΠP , cond)

41 end

42 End Function

Trace-Based Approach to Model Transformation 49

4.2 Extract Model Traces

Algorithm 2. Extract the Activity-Centric (ACT) Model Traces

Input : ACT Model (ΠP) and its Log (ΠP
L) with empty trace τp

Output: Complete Log (ΠP
L) of the ACT Model (ΠP)

1 Function BuildTrace(n : ΠP , τp: ΠP
L):

2 if n 	= null then
3 if n ∈ A then
4 τp.AddInSeq(n)
5 else if n ∈ GOpen and n is not marked then
6 if n.type = AND then
7 foreach bn ∈ n do
8 if bn is not marked then BuildTrace(bn, τp)
9 end

10 else if n.type = XOR then
11 foreach bn ∈ n do
12 if bn is not marked then
13 BuildTrace(bn, τnew)
14 τp.AddInSeq(τnew)
15 (Πp

L).Add(τp)
16 end
17 end
18 end
19 end
20 Mark(n)
21 n ← GetSeqNext(n)
22 BuildTrace(n, τp)
23 end
24 End Function

Algorithm 2 defines the BuildTrace() function that is recursively called to
extract each execution trace of the ACT model. This function starts at the start
node of the ACT model and traverses through every next sequence flow node
until it reaches the end node and adds the activity nodes (with their input and
output artifacts) that it finds on the path to generate a process trace.

As defined in line 3 and 5, the type of each node is checked first, such as
activity or an open gateway node. In the case of activity, the node is added
to the process trace. For a gateway type, the algorithm defines two conditions,
where, in case of an AND gateway (lines 6–9), for every branch of this gateway
the BuildTrace() function is called with the same process trace that is used to
add all the branch nodes of that gateway as all of them are executed.

For every branch of an XOR gateway node (lines 10–18), a new trace is used
to traverse through the corresponding branch nodes. After traversing a branch
of this gateway, the new trace is appended in sequence to the existing process
trace, which is then added to the process log. As defined in line 20, every activity

50 J. Kunchala et al.

node is marked as visited, once that completes the traversal, while a gateway is
marked after all its branches are traced. The time complexity of this algorithm is
analysed as O(n + e), the number of nodes (n) and edges(e) of the ACT model.

4.3 Trace-Based Analysis

Algorithm 3 defines the ConsistencyCheck() function for the trace-based analysis
of both process logs. This function takes as input the execution traces of the
ACP, ACT models and a count variable that is initialized to zero and outputs
the resulting consistency of the two models. According to the algorithm (lines
2–7), for a trace in the ACP process log if there is a trace that contains the same
set of activities in the same execution sequence in the ACT process log, then the
value of count is incremented.
Algorithm 3. Analysing the execution traces of ACP and ACT Models
Input : ACP Process Log (ΠL), ACT Process Log (ΠP

L)
Output: Consistency (∼=) of ACP and ACT Models

1 Function ConsistencyCheck(τ : ΠL, τp : ΠP
L , count):

2 foreach τ ∈ ΠL do
3 foreach τp ∈ ΠP

L do
4 if τp ∼= τ then count ← count + 1
5 end
6 end
7 if count = |ΠL.τ | then ΠL

∼= ΠP
L

8 End Function

After traversing all the process traces, if the count equals the number of
traces in the ACP process log (line 7), then the two models are consistent. The
time complexity of this algorithm is analysed as linear O(n).

5 Case Study

The ACP model and its process log given in Tables 1 and 2 are utilized to
demonstrate the feasibility of the proposed approach. To construct an ACT
model presented in Fig. 1, Algorithm 1 starts at the rule R1 of the ACP model.
As the pre-condition of R1 matches with the cond (that contains pre-condition
of R1), the InitiateOrder activity of this rule is added in sequence to the start
node of the ACT model with the associated input and output artifacts and
states. The algorithm then updates the cond with the post-condition of R1.
Next, the pre-condition of rule R2 is checked with the cond, as there is a match,
the ReceiveOrder is next added to the ACT model. Similarly, AnalyseOrder
of R3 is also added, as its pre-condition satisfies the cond (post-condition of
R2). As the states (confirmed, rejected) of R3 are logically connected (using ∨
operator), a new XOR open gateway node is added to the ACT model, and
for every pair (artifact, state), a new branch with the corresponding branch
condition (artifact [state]) is added to the gateway node. Then, the activities of

Trace-Based Approach to Model Transformation 51

R4 and R11 that satisfy the branch conditions are added to different branches
of the XOR gateway. According to the algorithm, these branches are merged
after traversing all the next rules and adding activities of rules that satisfy the
branch conditions. For instance, after adding the ConfirmOrder activity of R4,
the CheckStock activity of R5 is added, and again a new XOR open gateway
node is added in sequence to this node, as there are logically connected states
(in stock, not in stock). Similarly, an AND gateway is used for R6 that contains
more than one activity including PlanProduct and ScheduleProduct, which have
to be executed in parallel. As shown in the figure, the branches of this gateway are
merged before adding the ManufactureProduct activity of R7. Similarly, branches
of two XOR gateways are merged before adding the activities of R8, R9 and R10.

Fig. 1. The constructed Activity-Centric Process (ACT) model

Next, to extract the execution traces of the ACT model, Algorithm 2 starts
with an empty trace {} from the start node and traverses to the next node
InitiateOrder (A), as this node is an activity it is added to the empty trace {A}.
Then the next two sequence flow nodes ReceiveOrder (B) and AnalyseOrder
(C) are also added {ABC} in sequence to this trace. Then, for each branch of
the first XOR gateway, a new trace is created and used to trace all the branch
nodes. For example, in Fig. 1, for the branch that contains a branch condition
Order[rejected], a new empty trace is created and the CloseOrder (L) node is
added {L}. As there is no activity or an open gateway node following this node,
the new trace {L} is added to the existing trace {ABCL} and then it is added
to the process log. Then a new empty trace is created for the next gateway
branch that contains a branch condition Order[confirmed]. The branch nodes
ConfirmOrder (D) and CheckStock (E) are added to the new trace {DE} and is
added in sequence to the existing trace {ABCDE}. Then again for the next XOR
gateway, similar procedure is followed and the new traces {IJK} and {FGHIJK}
are created and they are added in sequence to the existing trace {ABCDE}. The

52 J. Kunchala et al.

resulting process traces {ABCDEIJK} and {ABCDEFGHIJK} are then added
to the process log as two different execution traces of the ACT model. For the
AND gateway, the existing trace is used to add all its branch nodes, instead
of adding a new trace for each of its branches. In the resulting trace, a branch
relation is used between the branch nodes of an AND gateway. The extracted
traces can be observed from Fig. 2, where the activities are referenced with their
labels for ease of understanding.

Fig. 2. Process traces and analysis

Then, each of the recorded traces of the ACP model is analysed over the
(extracted) execution traces of the ACT model using Algorithm 3 to check their
consistency. As shown in Fig. 2, every trace of the ACP model matches with a
trace of the ACT model. Thus, it is clear that the constructed ACT model is
consistent with the given ACP model.

6 Related Work and Discussion

There are some approaches to construct activity-centric process models from the
data-centric process models. An approach to transforming declarative models
into Petri Net models is presented in [8]. This approach maps the declarative
constraints of the input model into regular expressions, transforms them into the
Finite State Automaton and then derives a Petri Net. However, this approach
has a drawback that it produces duplicate tasks in the resulting process models
that can increase the complexity with a higher number of execution alternatives.

Algorithms to translate declarative models into the BPMN-D (extension of
BPMN) models have been presented in [2], where a Finite State Automaton of
the input model is first translated into a Finite-state Constraint Automaton,
then into the BPMN-D model. These algorithms do not produce the parallel
states of objects in the BPMN models. Similarly, an approach to automatically
translating artifact-centric models into activity-centric models has been proposed
in [3]. This approach consists of an algorithm that follows a mapping between
the two models to achieve the proposed translation. However, this approach is
also not useful for translating declarative process models.

Trace-Based Approach to Model Transformation 53

There exist a few approaches to construct activity-centric models using data-
centric counterparts such as the synchronized/unsynchronized object lifecycles.
An approach to generate process models from the reference object lifecycles is
presented in [5]. The conformance and coverage notions are used for checking
the compliance violations between the generated models and object lifecycles.
The approach proposed in [9] is also used to transform the object behaviour
models represented in state machines into the YAWL models. The transforma-
tion is based on the identification of causal relations in the state machine and
encoding those in a heuristics net, from which a Petri Net is generated and fur-
ther used to derive the YAWL model. The algorithm presented in [6] also uses
the synchronized object lifecycles to generate activity-centric models.

As discussed above, there are some approaches for the transformation of
data-centric models into activity-centric models. However, these approaches use
object lifecycles rather than the declarative models that contain business rules;
or they result in models with duplicate tasks and cannot handle parallelism.
Therefore, the proposed approach is useful to transform the data-centric models
that contain business rules and address the aforementioned limitations. It is
worth mentioning that in comparison to the activity-centric models that allow
tracing the process flow, the declarative models such as the ACP models can
be used to trace both the data and process flows. Due to the nature of the
proposed transformation one has to compromise on the limited flexibility and
expressibility offered by the resulting activity-centric models [1]. However, the
resulting activity-centric models improve the comprehensibility and allow for
executing the data-centric models.

7 Conclusion

This paper proposed a trace-based approach to transforming artifact-centric
process models into activity-centric process models. The approach is comprised of
algorithms to construct an activity-centric process model, extract the execution
traces of the constructed model and to analyse these traces over the execution
traces of base model in order to check their consistency. A case study is used to
demonstrate the feasibility of the proposed approach. In the future, a thorough
evaluation of the proposed approach is conducted using real process models.

Acknowledgements. This work is partially supported by the National Key Research
and Development Program of China (No. 2018YFB1402500) and National Natural
Science Foundation of China under Grant 61832004 and Grant 61672042.

54 J. Kunchala et al.

References

1. Caron, F., Vanthienen, J.: Exploring business process modelling paradigms and
design-time to run-time transitions. Enterp. Inf. Syst. 10(7), 790–813 (2016).
https://doi.org/10.1080/17517575.2014.986291

2. De Giacomo, G., Dumas, M., Maggi, F.M., Montali, M.: Declarative process mod-
eling in BPMN. In: Zdravkovic, J., Kirikova, M., Johannesson, P. (eds.) CAiSE
2015. LNCS, vol. 9097, pp. 84–100. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-19069-3 6

3. Fan, B., Li, Y., Liu, S., Zhang, Y.: Run JTA in JTang: modeling in artifact-centric
model and running in activity-centric environment. In: Bae, J., Suriadi, S., Wen, L.
(eds.) AP-BPM 2015. LNBIP, vol. 219, pp. 83–97. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19509-4 7

4. Haisjackl, C., Zugal, S.: Investigating differences between graphical and textual
declarative process models. In: Iliadis, L., Papazoglou, M., Pohl, K. (eds.) CAiSE
2014. LNBIP, vol. 178, pp. 194–206. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07869-4 17

5. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process models for
object life cycle compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM
2007. LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-75183-0 13

6. Meyer, A., Weske, M.: Activity-centric and artifact-centric process model
roundtrip. In: Lohmann, N., Song, M., Wohed, P. (eds.) BPM 2013. LNBIP,
vol. 171, pp. 167–181. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
06257-0 14

7. Nigam, A., Caswell, N.S.: Business artifacts: an approach to operational specifica-
tion. IBM Syst. J. 42(3), 428–445 (2003). https://doi.org/10.1147/sj.423.0428

8. Prescher, J., Di Ciccio, C., Mendling, J.: From declarative processes to imperative
models. In: SIMPDA, vol. 14, pp. 162–173 (2014). http://ceur-ws.org/Vol-1293

9. Redding, G., Dumas, M., Hofstede, A.H.T., Iordachescu, A.: Generating business
process models from object behavior models. Inf. Syst. Manag. 25(4), 319–331
(2008). https://doi.org/10.1080/10580530802384324

10. Yongchareon, S., Liu, C.: A process view framework for artifact-centric business
processes. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2010. LNCS, vol.
6426, pp. 26–43. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
16934-2 6

https://doi.org/10.1080/17517575.2014.986291
https://doi.org/10.1007/978-3-319-19069-3_6
https://doi.org/10.1007/978-3-319-19069-3_6
https://doi.org/10.1007/978-3-319-19509-4_7
https://doi.org/10.1007/978-3-319-19509-4_7
https://doi.org/10.1007/978-3-319-07869-4_17
https://doi.org/10.1007/978-3-319-07869-4_17
https://doi.org/10.1007/978-3-540-75183-0_13
https://doi.org/10.1007/978-3-540-75183-0_13
https://doi.org/10.1007/978-3-319-06257-0_14
https://doi.org/10.1007/978-3-319-06257-0_14
https://doi.org/10.1147/sj.423.0428
http://ceur-ws.org/Vol-1293
https://doi.org/10.1080/10580530802384324
https://doi.org/10.1007/978-3-642-16934-2_6
https://doi.org/10.1007/978-3-642-16934-2_6

Approximate Fault Tolerance for Sensor
Stream Processing

Daiki Takao(B), Kento Sugiura, and Yoshiharu Ishikawa

Graduate School of Informatics, Nagoya University, Nagoya, Japan
{takao,sugiura}@db.is.i.nagoya-u.ac.jp, ishikawa@i.nagoya-u.ac.jp

Abstract. Some distributed stream processing systems store their inter-
nal states (e.g., partial aggregation results) in non-volatile storage to
guarantee fault tolerance, but such checkpointing has a negative effect
on system performance. To solve this problem, an existing method pro-
posed to support an approximate guarantee of fault tolerance by omitting
some checkpoints based on user-specified thresholds. However, it is diffi-
cult for a user to set appropriate thresholds because it is unclear how the
thresholds affect the final output. Hence, we propose a method to support
approximate fault tolerance for sensor stream processing. In our method,
since we use the error bounds and the confidence threshold of recovery
as user-specified thresholds, a user can set these thresholds intuitively
according to his/her service level agreement (SLA). Our method models
the correlation between sensing data by using a multivariate gaussian
distribution, and reduces backup data if we can recover such data from
the partial backup data and the probabilistic model. In this paper, we
focus on average, sum, max, and min queries and propose a greedy-based
backup selection algorithm. We evaluate the validity and efficiency of our
approach by using synthetic data. Our experimental study shows that
our approach achieves both of the reduction of backup data and approx-
imate recovery that satisfies SLA.

Keywords: Stream processing · Fault tolerance · Approximate
processing

1 Introduction

Distributed data stream processing systems are used in many applications due to
rapidly increasing data size and speed of decision making. Since stream process-
ing assumes that processing data is sent to the system intermittently, stream pro-
cessing systems require different architecture from batch ones such as Hadoop [2].
Therefore, open-source software of distributed stream processing systems, such
as Storm [3], Flink [1], and Samza [5], is being actively developed and attracting
a great deal of attention in both industrial and academic fields. Although fault
tolerance is one of the important requirements of a distributed stream processing
system, it has a negative effect on system performance. In many systems, fault

c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 55–67, 2020.
https://doi.org/10.1007/978-3-030-39469-1_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_5&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_5

56 D. Takao et al.

tolerance is guaranteed by checkpointing. Checkpointing stores internal states
of a system in local or remote storage during processing. Huang et al., however,
showed that checkpointing could reduce throughput up to 50% [8]. As such a
significant performance decrement is not desirable, it is required to develop a
more effective mechanism for fault tolerance.

To solve this problem, Huang et al. proposed an approximate guarantee of
fault tolerance [8]. This method requires thresholds of the difference of internal
states (input/output queues and intermediate results of processing) and gets a
new checkpoint only if the difference between current states and stored ones
exceeds thresholds. That is, the existing method improves throughput by reduc-
ing the frequency of checkpointing.

However, this method has a problem that it is difficult to set appropriate
thresholds to satisfy the user’s service level agreement (SLA). Although this
method uses thresholds of the difference of internal states, it is unclear how
thresholds affect final output. For example, consider the threshold of an input
queue. It indicates the number of unprocessed tuples that are allowed to be
lost when a failure occurs. If some of the lost tuples have a large effect on
processing results, the difference between original output and recovered ones
may be unacceptably large. For instance, in the case of max aggregation, it is
crucial whether lost tuples include the true maximum value.

In this paper, we propose an approximate fault tolerance approach based
on a probabilistic model for sensor stream processing. Compared to the exist-
ing method [8], we focus on sensing data and simple aggregation queries (i.e.,
average, sum, max, and min) to use a probabilistic model for recovery. First,
we model the correlation between sensors as a multivariate gaussian distribu-
tion. Then, we select some sensors that accurately recover aggregation results
by using a multivariate gaussian distribution, and store only selected sensors as
backup in processing. If a failure occurs, we estimate all sensing data by using
stored data and a probabilistic model, and then reprocess aggregation queries
to recover internal states. Since we use two user-specified parameters, the error
bounds and the confidence threshold of recovery, to select backup sensors, a
user can set these parameters intuitively according to his/her SLA. Although
our assumption restricts applicable services, existing frameworks, such as Struc-
tured Streaming in Spark [6], demonstrate that such simple aggregation queries
are sufficiently useful for real applications.

Fig. 1. A sensor stream

Approximate Fault Tolerance for Sensor Stream Processing 57

For example, consider a sensor stream shown in Fig. 1. Sensors X1 and X2

are correlated in this stream and can be modeled by a multivariate gaussian
distribution. That is, we can estimate the value of X2 (X1) accurately when we
observe that of X1 (X2). Thus, we can remove the observations of X2 (X1) from
backup if this approximate recovery satisfies user’s SLA (i.e., the error bounds
and the confidence threshold of recovery). In this paper, we also propose how to
determine a minimum set of sensors for backup.

The rest of the paper is organized as follows. First, we provide basic concepts
to discuss approximate fault tolerance in Sect. 2, and we define our problem in
Sect. 3. Next, we explain how partial backup affects the final output for each
aggregation query in Sect. 4, and we propose a greedy algorithm to select backup
data in Sect. 4.2. Finally, we evaluate validity and efficiency of the proposed
method by experiments in Sect. 5, and we conclude the paper in Sect. 6.

2 Preliminaries

In this section, we provide fundamental concepts to discuss approximate fault
tolerance. First, we define an input data stream and introduce a sliding window
to divide an infinite stream into finite ones. Second, we explain how to estimate
sensing data by using a multivariate gaussian distribution. Third, we describe
target aggregation queries.

2.1 Data Streams

First, we define a sensor data stream.

Definition 1. Let n be the number of sensors and let X = {X1,X2, . . . , Xn}
be the set of all sensors. We assume that all sensors measure simultaneously at
a certain interval. A data stream DS is defined as an infinite series of sensing
data xt = {xt

1, x
t
2, . . . , x

t
n} at each time t:

DS = 〈x1,x2, . . . ,xt, . . . 〉. (1)

Note that we use the upper case (e.g., X1) to specify sensor ids or random
variables, and the lower case (e.g., x1) indicates an actual observation of a certain
sensor.

To apply aggregation queries, we divide an infinite stream into finite ones by
using sliding windows.

Definition 2. Let w be the width of a time window and let l be the width of
slides. A time window x[t,t+w) contains a finite stream in a time span [t, t + w):

x[t,t+w) = 〈xt,xt+1, . . . ,xt+w−1〉. (2)

Applying a sliding window, a data stream DS is divided into time windows as
follows:

WDS =
{
x[t,t+w) | t = 1 + i · l, i ∈ N 0

}
. (3)

58 D. Takao et al.

2.2 Estimation Based on a Multivariate Gaussian Distribution

We estimate sensor values by using a multivariate gaussian distribution N (x |
µ,Σ) that represents a correlation between sensors X. Suppose that µ and Σ
denote a mean vector and a covariance matrix of X, respectively.

We evaluate the validity of estimated values by using the error bounds ε and
the confidence threshold 1 − δ, such as in [7]. Let Y ∈ X be a target sensor
and let v be an estimated value. We can check whether estimation is reliable by
using the following equation:

P (Y ∈ [v − ε, v + ε]) =
∫ v+ε

v−ε

N (y | μY , σY)dy > 1 − δ. (4)

If this equation is true, we consider that estimation is sufficiently reliable.
Furthermore, estimation quality can be improved by using a posterior prob-

ability distribution. Let O ⊆ X \{Y } be observed sensors and let o be observed
values. We can calculate a posterior distribution N (y | μY |o , σY |o) as follows:

μY |o = μY + ΣY OΣ−1
OO (o − µO) and (5)

σY |o = ΣY Y − ΣY OΣ−1
OOΣOY . (6)

The subscripts of each symbol indicate corresponding rows/columns in µ and
Σ. For instance, ΣY O is a sub matrix of Σ formed by a row Y and columns O
(i.e., a covariance vector of Y regarding O). Since a posterior distribution has a
smaller variance than a prior one, we can estimate lost data more accurately by
using a posterior distribution.

Note that the variance of a posterior distribution is independent of observa-
tions o. As shown in Eq. (6), σY |o is calculated by only sub covariance matrices.
It means that we can calculate the variance of a posterior distribution before
processing starts. To specify this property, we denote σY |o as σY |O in the rest
of the paper.

2.3 Aggregation Queries

In this paper, we deal with four aggregation queries: average, sum, max, and min.
Aggregation queries are applied to each time window x[t,t+w) ∈ WDS . Let Yi be
a random variable of an aggregation query of Xi ∈ X at a certain time window.
We consider recovery to be sufficiently reliable when a recovered aggregation
value v satisfies the following equation:

P (Yi ∈ [v − ε, v + ε]) > 1 − δ. (7)

3 Problem Definition

In this section, we introduce a problem definition for approximate fault toler-
ance. First, we define backup cost and a confidence score of approximate recov-
ery. Then, we define a problem of approximate fault tolerance as backup cost
minimization.

Approximate Fault Tolerance for Sensor Stream Processing 59

3.1 Backup Cost

Our approach is based on replay-based recovery and does not use checkpoint-
ing. When a failure occurs, all input data is replayed and internal states (i.e.,
intermittent aggregation results) are recomputed.

However, we do not store all sensing data as backup. As described in Sect. 2.2,
we can accurately estimate some observed values by using a multivariate gaussian
distribution (i.e., correlation between sensors). That is, we can omit backup of
such sensing data to reduce the volume of backup and I/O cost, and replay
estimated values if necessary.

Hence, we define backup cost based on the number of stored sensing data.

Definition 3. Let o[1,t] ⊆ DS be stored backup data at time step t. The cost of
backup is the number of stored data:

C (o[1,t]) =
t∑

i=1

∣∣oi
∣∣ . (8)

Note that we define an inclusive relation ⊆ between data streams as follows.

Definition 4. Let DS = 〈x1,x2, . . . ,xt, . . . 〉 be an infinite stream and let
o[1,t] = 〈o1,o2, . . . ,ot〉 be a finite stream. If all the sensors in o[1,t] is included
by DS for every time step in [1, t], there is an inclusive relation between DS and
o[1,t]:

o[1,t] ⊆ DS ⇔
t∧

i=1

Oi ⊆ Xi. (9)

3.2 Confidence Score of Recovery

As described in Sect. 2.3, we have to recover all aggregation results for each time
window when a failure occurs. That is, we need to guarantee that all recovered
aggregation results satisfy user’s SLA (i.e., the error bounds ε and the confidence
threshold 1 − δ). To formalize this requirement, we define a confidence score as
the minimum reliability of recovered aggregation results from backup.

First, we define the reliability of recovery for a certain time window.

Definition 5. Given backup of a certain window o[t′,t′+w) and the error bounds
ε, let Yi be a random variable of an aggregation query of Xi ∈ X and let vi be
an estimated aggregation result. The reliability of recovery of this time window
is the minimum probability that recovered aggregation results are in the error
bounds:

R(o[t′,t′+w)) = min
Xi∈X

P (Yi ∈ [vi − ε, vi + ε] | o[t′,t′+w)). (10)

Then, we define overall reliability for all time windows.

60 D. Takao et al.

Definition 6. Given backup o[1,t] and the error bounds ε, let Wo[1,t] be windowed
backup, where:

Wo[1,t] =
{
o[t′,t′+w) | t′ = 1 + i · l, i ∈ N 0, t′ + w − 1 ≤ t

}
. (11)

A confidence score of backup is the minimum reliability of recovery for every
window:

R(o[1,t]) = min
o[t′,t′+w)∈W

o [1,t]

R(o[t′,t′+w)). (12)

That is, if a confidence score R(o[1,t]) is greater than a confidence threshold 1−δ,
we consider that recovery is sufficiently reliable.

3.3 Problem Definition

We introduce our problem definition for approximate fault tolerance by using
the above cost/confidence functions.

Definition 7. Given a data stream DS, a window width w, a sliding width l,
error bounds ε, and a confidence threshold 1 − δ, we retain backup o[1,t] at time
step t, where:

minimize C (o[1,t])
subject to o[1,t] ⊆ DS

R(o[1,t]) > 1 − δ.

(13)

That is, we try to keep backup data to a minimum as much as possible unless
recovered aggregation results become unreliable.

4 Backup Selection for Approximate Fault Tolerance

In this section, we explain how to select sensors for backup. Since we consider the
reliability of the final output in this paper, aggregation functions significantly
affect backup strategies. For example, consider average/sum aggregation. If we
use average aggregation, some estimation errors are obscured because all the
aggregated values are flattened in a window. On the other hand, we have to
select backup sensors carefully for sum aggregation because estimation errors
are stacked up.

Furthermore, we have to select backup sensors before processing starts for
efficient backup. Although we can select backup sensors in processing, it is ineffi-
cient to check whether sensors are beneficial to recovery at each time step. That
is, we have to consider the confidence of recovery based on not observed sensors
O[1,t] instead of actual observations o[1,t].

To achieve this requirement, we modify probability distributions of aggrega-
tion queries and derive upper bounds of variance for each sensor. As described in
Sect. 2.2, the variance of a posterior distribution σY |O is independent of actual
observations. Thus, we derive the required variance of probability distributions

Approximate Fault Tolerance for Sensor Stream Processing 61

for each aggregation query, and then modify it into upper bounds of variance for
each sensor.

In the following, we derive upper bounds of variance for each sensor with
average/max queries. Then, we propose a greedy-based algorithm for backup
sensor selection that satisfies the derived upper bound. Note that we omit the
explanations of sum/min queries in this paper because their upper bounds are
derived in the same way with average/max queries, respectively.

4.1 Upper Bounds Derivation for Variance of Sensors

Average Queries. Since a gaussian distribution is the family of stable distri-
butions, the sum of gaussian distributions also become a gaussian distribution.
Without temporal correlation, an average value Yi of a sensor Xi ∈ X and its
mean and variance are represented as follows:

Yi =

∑
t∈[t′,t′+w) Xt

i

w
, (14)

μYi
=

∑
t∈[t′,t′+w) μXt

i

w
, and (15)

σYi
=

∑
t∈[t′,t′+w) σXt

i

w2
. (16)

That is, the mean and variance of an average query can be calculated by the
linear sum of those of a sensor in a window. Note that the above equations
correspond to a prior distribution but those of a posterior distribution can be
calculated in the same way.

To consider the confidence of an average query, we regard the mean of a
probability distribution (i.e., μYi

) as an aggregation result. That is, reliability
for Eq. (10) can be calculated as follows:

P (Yi ∈ [μYi|o[t′,t′+w) − ε, μYi|o[t′,t′+w) + ε] | o[t′,t′+w))

=
∫ μ

Yi|o [t′,t′+w)+ε

μ
Yi|o [t′,t′+w)−ε

N (yi | μYi|o[t′,t′+w) , σYi|O [t′,t′+w))dyi.
(17)

Although this equation depends on actual observations o[t′,t′+w), we can remove
the dependence by translating a distribution to μYi

= 0 [7]:
∫ ε

−ε

N (y′
i | 0, σYi|O [t′,t′+w))dy′

i. (18)

To derive upper bounds of variance of Xi, we consider the maximum variance
σ∗ of an average query with minimum reliability:

∫ ε

−ε

N (y′
i | 0, σ∗)dy′

i = 1 − δ. (19)

62 D. Takao et al.

Fig. 2. Confidence calculation for a max query

That is, if the variance of an average query σYi|O [t′,t′+w) is lower than σ∗, we can
recover an average of Xi reliably. We can derive the following relation between
the variance of Xi and this reliability requirement by using Eq. (16):

∑
t∈[t′,t′+w) σXt

i |O t

w2
< σ∗. (20)

When we assume that backup sensors O are unchanged in processing, variance
for every time step σXt

i |O t has the same value. Hence, we can derive the following
upper bound of the variance of Xi:

σXi|O < wσ∗. (21)

That is, if we can select backup sensors O that satisfies Eq. (21) for every sensor
Xi ∈ X, we can recover all averaged values reliably.

Max Queries. Unfortunately, the result of max aggregation does not follow a
gaussian distribution. Thus, if we use a straightforward way, we have to calculate
the following probability density function:

P (Yi = yi) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
P (x[t′,t′+w)

i)1l[max(x[t′,t′+w)
i) = yi]dx

[t′,t′+w)
i , (22)

where 1l[φ] is an indicator function. However, as this equation has multiple inte-
gral with 1l[φ] function, it is difficult to derive upper bounds of variance for each
sensor.

Thus, we derive stricter upper bound for max queries. First, we consider the
maximum posterior mean μXt∗

i |ot∗ as a recovered maximum value and calculate
the reliability of a recovered maximum value by using the following equation:

Approximate Fault Tolerance for Sensor Stream Processing 63

Fig. 3. Greedy-based backup sensor selection

P (Xt∗
i ∈ [μXt∗

i |ot∗ − ε, μXt∗
i |ot∗ + ε] | ot∗

)
∏

t∈[t′,t′+w)∧t�=t∗
P (Xt

i < μXt∗
i |ot∗ + ε | ot). (23)

Figure 2 shows this equation graphically. In Fig. 2, the maximum mean is esti-
mated at time step 3. It corresponds to the first term in Eq. (23) that indicates
the estimated maximum value must be in the error bounds (an area filled in
red). The other time steps (e.g., X1

2 and X2
2) correspond to the second term

in Eq. (23) that indicates the other values in a time window must be smaller
than the estimated maximum value (an area filled in red and blue). If Eq. (23)
is greater than the confidence threshold 1 − δ, the reliability requirement (i.e.,
Eq. (10)) is also satisfied.

However, since Eq. (23) depends on actual observations ot, we have to remove
this dependence. Thus, we narrow down integral interval of the second term in
Eq. (23) to the error bounds (an area filled in red in Fig. 2):

∏
t∈[t′,t′+w)

P (Xt
i ∈ [μXt

i |ot − ε, μXt
i |ot + ε] | ot). (24)

Although this modification makes upper bound stricter, we can remove the
dependence on actual observations by translating gaussian distributions to
μ = 0 [7] as follows.

∏
t∈[t′,t′+w)

∫ ε

−ε

N(xt
i | 0, σXt

i |O t)dxt
i ≥ 1 − δ. (25)

Since backup sensors O are unchanged in processing, we can derive the following
equation: ∫ ε

−ε

N(xi | 0, σXi|O)dxi ≥ (1 − δ)
1
w . (26)

That is, we can calculate upper bounds σ∗ by solving Eq. (26) with an equal
sign.

4.2 Greedy-Based Backup Selection

In the previous subsection, we derive the upper bounds σ∗ for each sen-
sor. Although we can recover aggregated values reliably if all sensors satisfy

64 D. Takao et al.

σXi|O < σ∗, the number of candidates of O increases exponentially with the
number of sensors n. Thus, we propose greedy-based backup selection.

Figure 3 summarizes our greedy backup selection. In this paper, we use the
maximum variance as a greedy objective function:

V ar(X | O) = max
Xi∈X

σXi|O . (27)

That is, we select a sensor Xnew ∈ X\O that has maximum variance reduction
until the variance of all sensors become smaller than upper bounds σ∗:

Xnew = arg max
Xi∈X \O

V ar(X | O) − V ar(X | O ∪ {Xi}). (28)

5 Experimental Evaluation

In this section, we demonstrate the efficiency and validity of the proposed method
by experiments. We explain experimental settings and then describe the detail
experimental results. Note that we omit the results of sum/min queries because
they have the same tendency with average/max queries, respectively.

5.1 Experimental Settings

We evaluate the performance of our method by using simple synthetic data.
The generated data has 10, 000 tuples for 12 simulated sensors. The sensors are
divided into three groups (group A, B, and C) and sensors in each group have
a strong correlation as shown in Fig. 4. That is, each sensor’s value in the same
group can be estimated accurately. To generate such correlated sensing data, we
use rmvnorm function in R language [4] under the following settings:

– mean: we set mean to 10 for group A, 20 for group B, and 30 for group C,
and

– variance and covariancewe set variance of each sensor to 1.0, covariance within
the group to 0.8, and covariance between groups to 0.

0

10

20

30

40

6

10

14

Fig. 4. Simulated sensing data

Approximate Fault Tolerance for Sensor Stream Processing 65

In the experiments, we evaluate performance by changing the error bounds ε
and the confidence threshold 1−δ with a static sliding window (w = 5 and l = 5).
That is, each aggregation query is performed to two thousand time windows
for each setting, and we check the number of backup sensors and accuracy of
recovered aggregation results.

5.2 Experimental Results

We evaluate the performance of the proposed method by efficiency and validity.

Efficiency. We evaluate the efficiency of our approach based on the number
of backup sensors. That is, we check how much the volume of backup data
decreases.

Figures 5 and 6 show that the number of backup sensors for average/max
queries, respectively. These graphs show that the number of backup sensors
decreases by increasing the error bounds ε and the acceptable error δ. When the
reliability requirement is relaxed, we can estimate more sensor values by using
a multivariate gaussian distribution. Thus, our approach can reduce the volume
of backup data.

Validity. To evaluate the validity of our approach, we calculate the accuracy of
recovery. First, we calculate the accuracy for each sensor. We consider the ratio
of successful recovery as accuracy in this paper. That is, we count how many
times recovered aggregation values are within the error bounds for each sensor.
Then, we use the minimum accuracy of all sensors as an overall accuracy score.

Fig. 5. The number of backup sensors for a max query

Fig. 6. The number of backup sensors for an average query

66 D. Takao et al.

Fig. 7. Accuracy of an average query

Fig. 8. Accuracy of a max query

Figures 7 and 8 show the accuracy of average/max queries, respectively. The
dotted lines in the figures show the required accuracy 1 − δ. That is, if accuracy
scores are above the dotted line, the recovery based on a probabilistic model
satisfies the confidence requirement. These graphs show that our approach can
recover all the aggregated values reliably from partial backup data.

Note that accuracy scores are variable with the change of parameters. For
example, in Fig. 7, the accuracy score decreases with ε = 0.5 but increases with
ε = 0.75. It means that some recovery fails with ε = 0.5 because the proposed
method removes some observed sensing data from backup, as shown in Fig. 5, and
estimates these values by using a multivariate gaussian distribution. However,
if we relax the reliability requirement (i.e., increasing ε to 0.75), some recovery
errors are accepted and accuracy scores improve.

6 Conclusion

In this paper, we proposed approximate fault tolerance based on a probabilistic
model for sensor stream processing. To specify the user’s reliability requirement
intuitively, we introduced the error bounds ε and the confidence threshold 1−δ as
user-specified parameters. We defined approximate fault tolerance problem as the
backup minimization and solve this problem for simple aggregation queries (i.e.,
average, sum, max, and min) by using the greedy-based backup selection. The
experimental results demonstrated that our approach can achieve a sufficiently
reliable recovery while reducing the amount of backup data. Our future work
includes consideration of disordered and incomplete data streams, combination
with checkpointing-based recovery, and exhaustive experiments with not only
synthetic data but also real data.

Approximate Fault Tolerance for Sensor Stream Processing 67

Acknowledgement. This study was partly supported by KAKENHI (JP16H01722
and JP19K21530) and New Energy and Industrial Technology Development Organiza-
tion (NEDO).

References

1. Apache Flink: Stateful Computations over Data Streams. https://flink.apache.org/.
Accessed 24 Sept 2019

2. Apache Hadoop. https://hadoop.apache.org/. Accessed 24 Sept 2019
3. Apache Storm. https://storm.apache.org/. Accessed 24 Sept 2019
4. Mvnorm function—R Documentation. https://www.rdocumentation.org/packages/

mvtnorm/versions/1.0-11/topics/Mvnorm. Accessed 24 Sept 2019
5. Samza. http://samza.apache.org/. Accessed 24 Sept 2019
6. Armbrust, M., et al.: Structured streaming: a declarative API for real-time applica-

tions in apache spark. In: Proceedings of SIGMOD, pp. 601–613 (2018)
7. Deshpande, A., Guestrin, C., Madden, S.R., Hellerstein, J.M., Hong, W.: Model-

based approximate querying in sensor networks. VLDBJ 14(4), 417–443 (2005)
8. Huang, Q., Lee, P.P.C.: Toward high-performance distributed stream processing via

approximate fault tolerance. PVLDB 10(3), 73–84 (2016)

https://flink.apache.org/
https://hadoop.apache.org/
https://storm.apache.org/
https://www.rdocumentation.org/packages/mvtnorm/versions/1.0-11/topics/Mvnorm
https://www.rdocumentation.org/packages/mvtnorm/versions/1.0-11/topics/Mvnorm
http://samza.apache.org/

Function Interpolation for Learned
Index Structures

Naufal Fikri Setiawan(B), Benjamin I. P. Rubinstein,
and Renata Borovica-Gajic

School of Computing and Information Systems, University of Melbourne,
Melbourne, Australia

{naufal.setiawan,brubinstein,renata.borovica}@unimelb.edu.au

Abstract. Range indexes such as B-trees are widely recognised as effec-
tive data structures for enabling fast retrieval of records by the query key.
While such classical indexes offer optimal worst-case guarantees, recent
research suggests that average-case performance might be improved by
alternative machine learning-based models such as deep neural networks.
This paper explores an alternative approach by modelling the task as one
of function approximation via interpolation between compressed subsets
of keys. We explore the Chebyshev and Bernstein polynomial bases, and
demonstrate substantial benefits over deep neural networks. In particu-
lar, our proposed function interpolation models exhibit memory footprint
two orders of magnitude smaller compared to neural network models,
and 30–40% accuracy improvement over neural networks trained with
the same amount of time, while keeping query time generally on-par
with neural network models.

Keywords: Indexing · Databases · Function approximation

1 Introduction

Databases use indexes to organise data for fast data retrieval, with B-trees and
variants offering optimal worst-case lookup being the most popular. Viewed
through the lens of machine learning, querying a B-tree is analogous to a model
prediction, wherein a specific query key—an instance feature vector—is mapped
to a record’s location—a predicted label. Recent research has introduced the
tantalising possibility of replacing classical range indexes with a model learned
from data (e.g., a neural network [16]) to perform queries on a pre-sorted set
of records, with the aim being to either reduce index space requirements or to
improve average-case query time. More broadly, significant efforts have explored
the possibility to develop approximate and data-aware structures for specialised
purposes [7,17].

For large datasets, maintaining a B-tree can become resource intensive in
terms of I/O operations and space requirements. While the space complexity of
a B-tree [2] is O(N) in the number of database records, query time is O(log N)—
space costs are justified given that B-tree’s perfect retrieval accuracy minimises
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 68–80, 2020.
https://doi.org/10.1007/978-3-030-39469-1_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_6&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_6

Function Interpolation for Learned Index Structures 69

subsequent access times. By comparison, deep neural networks [11] have proven
capable of generalising in a variety of problem domains: even large network
models are compact relative to dataset size, presenting an opportunity to strike
desirable trade-offs between the space and time complexity for use in databases,
assuming prediction accuracy can be controlled. One cost of such learners is
construction time, in that their effective use requires hyperparameter tuning
(i.e., grid search over learning rates, network topology, activation functions, and
regularisation strategies). While GPUs can be used to accelerate the training of
deep neural networks in domains such as computer vision, commodity database
servers rarely have access to such hardware [19].

The reduction of index construction and key lookup to supervised learning
is via (1) pre-sorting record locators by the key in an auxiliary data structure
such as an array or B-tree, and (2) learning to predict a rank from the key.
Normalised by the dataset size, this corresponds to fitting a monotonic function
with co-domain the unit interval. A core observation in [16] is that such functions
are cumulative distribution functions. Based on the association with probability
theory, they apply tools from machine learning in supervised regression.

This paper introduces classical polynomial interpolation methods as an alter-
native approach to supervised regression when learning index models. We note
that not only is there no need to generalise from training data to unseen test
data in such a case—the typical requirement in statistical learning theory [23]—
but that there is no latent population distribution on keys, rather a set (with
uniform measure). As such we argue for a function approximation view [5] as
opposed to a statistical learning view.

We examine both Chebyshev and Bernstein polynomial bases for function
approximation. We find that these methods can outperform single neural network
models in terms of query time. Polynomial models also generally occupy less
space than neural networks. Fitting of a polynomial model, in most observed
cases, also requires fewer resources and less time than do training of neural
networks. A key computational requirement of neural networks, that can go
unreported, is hyperparameter tuning which also contributes to learned index
construction cost. On the contrary, the only hyperparameter needed to create a
polynomial model is just the specified degree m.

In the following we discuss related work pertaining to learned and classical
indexes. Section 3 summaries necessary background in data structures and poly-
nomial interpolation methods. We describe our main contribution, an approach
to index structures based on polynomial approximation, in Sect. 4. Experimental
results are presented in Sect. 5, and Sect. 6 offers our conclusions.

2 Related Work

Indexes have for decades attracted the interest of database researchers and prac-
titioners due to substantial query processing speed-ups on offer. We here discuss
recent efforts pertaining to reducing the size of indexes through data-, workload-
and hardware-aware optimisations or recently introduced learned models.

70 N. F. Setiawan et al.

Space-Aware Indexes. Since traditional B+trees consume a substantial
amount of memory space, many alternative approaches have explored tech-
niques to reduce their size, including prefix or suffix truncation, or key nor-
malisation [10,12]. The past decade has also witnessed an increasing number of
techniques where the index structure is adjusted to fit the properties of modern
hardware, such as CSB+ trees, FAST trees, and Adaptive Radix Trees [15,18,21].
Partial and adaptive indexes similarly aim to reduce the memory footprint
of indexes by building an index over a subset of data only, driven by user
queries [14,24]. Such techniques are orthogonal to (and could be extended with)
our approach that uses function interpolation to approximate the positions of
the keys within the leaves of the index.

Learning Indexes. When it comes to reducing the size of indexes the closest
to our work is the line of research on approximating indexes with statistical
machine learning models, such as learning indexes [16], fitting trees [7], or hybrid
models such as sandwiched bloom filters or interpolation friendly B-trees [13,
20]. While the former two use learned models to actually replace the index
structure to some extent (they still may use small indexes at the lowest levels to
improve approximation accuracy), the latter two focus on improving the index
performance by extending indexes with learned models as “helper functions”.

3 Background

We now briefly overview the framing of range indexes as approximating a cumu-
lative distribution function, and summarise key results from approximation the-
ory.

3.1 Range Indexes as Cumulative Distribution Functions

The B-tree, and range indexes in general, can be seen as a model that maps a key
to a position on disk with perfect accuracy. As records stored in a B-tree require
ordering on a column, the positions of records are proportional to a cumulative
distribution function (CDF): a monotonic increasing function mapping key space
into [0, 1]. Suppose we have N records in the database and we are querying a
specific key k, then we may conclude that the requested records position as:

pos = N × Pr(x ≤ k). (1)

Any model that can approximate the function f(k) = Pr(x ≤ k) can replace
the role of a B-tree, provided that an error correction step follows predictions
in order to retrieve the data when the model guesses an inaccurate position.
This observation was made in [16], where deep neural networks (DNNs) were
proposed as a means to approximate cumulative distribution functions.

The modelling choice of (regularised) supervised learning as in a typical
DNN [16] presumes that the task of fitting f(k) is one of inductive learning
wherein the ultimate goal is to minimise risk as measured by expected loss of

Function Interpolation for Learned Index Structures 71

predictions on random draws of labelled examples from a latent population dis-
tribution.

We argue further in Sect. 4 that on fixed datasets1 the problem of indexing
does not require the model to extrapolate outside of existing data. That is,
making good predictions on future unseen data is irrelevant to approximating
f(k) on existing and known keys.

3.2 Polynomial Interpolation

Interpolation uses a family of functions with uniform domain B = {f1, f2, · · · }
(a basis) such that any function to be approximated ψ that shares the same
domain as the fi satisfies ψ(x) ≈ limn→∞

∑∞
n=0 αnfn(x) for some αi coefficients.

Compare this situation with supervised regression. Function approximation seeks
accurate reconstruction over the entire domain of target φ, while supervised
regression trains to fit on a small finite sample of training instances and aims to
generalise to any likely inputs in the future.

Since function approximation approaches adopt specific but fixed function
bases, only the vector of the coefficients 〈α0, α1, · · · , αN 〉 need be stored per
target φ. This allows an interpolation polynomial to act as a lossy compression
of a B-tree. The number of coefficients that need to be stored depends on the
rate of convergence of the interpolation function and the accuracy that is desired.
Most polynomial approaches require that target φ be continuous and piecewise
smooth in order to provide theoretical guarantees on accuracy, but not in order to
yield some approximation. To implement interpolation as a compressed learned
index, we simply interpolate over the function ψ that maps a numeric key to a
position in an auxiliary array (as the database may be sorted based on different
keys rather than the one we are using for the index).

We next summarise the two major polynomial interpolation methods used
in the remainder of this paper.

Chebyshev Interpolation Method. The Chebyshev polynomials of the first
kind are used in numerical methods in which good approximations and error
bounds are needed [4], for example in the solution of least-squared problems.
Chebyshev interpolation is regarded as accurate, due to its ability to minimise
Runge’s phenomenon as with other polynomials that sample from the Chebyshev
nodes (the oscillation behaviour that can occur between sample points of the
function being interpolated) [3].

Definition 1 (Chebyshev Polynomial). The Chebyshev polynomials of the
first kind are defined by the recurrence relation

Tn(x) =

⎧
⎪⎨

⎪⎩

1, if n = 0,

x, if n = 1,

2xTn−1(x) − Tn−2(x), o.w.
. (2)

1 It is sufficient but not necessary to prohibit insertions/deletions as done in [16].

72 N. F. Setiawan et al.

Proposition 1. An equivalent expression for the Chebyshev polynomials is
Tn(x) = cos (n arccos x) for x ∈ [−1, 1].

To express other functions in terms of the Chebyshev polynomials we project
into the basis by performing the discrete Chebyshev transformation on the func-
tion ψ that we want to interpolate [9].

Definition 2 (Discrete Chebyshev Transform). The coefficients of the
Chebyshev polynomial of the first kind (of degree N) that interpolates ψ are
given by:

αi =
pi
N

N−1∑

k=0

ψ

(

− cos
(

π

N

(

k +
1
2

)))

cos
(

mπ

N

(

N + k +
1
2

))

, (3)

where p0 = 1 and pi = 2 when i > 0.

The Chebyshev interpolation method is used to estimate the erf function
that is evaluated as part of the cumulative distribution functions of the normal
and log-normal distributions [22]. This fact will prove convenient later as the
keys in datasets may be distributed in one of these ways.

Bernstein Interpolation Method. The Bernstein polynomials form another
important basis. They were originally used in a constructive proof of the Stone-
Weierstrass approximation theorem which states that any continuous function
can be uniformly approximated by a polynomial. They are also used as the basis
for Bézier curves and privacy-preserving function release [1].

Definition 3 (Bernstein Polynomials). The v-th Bernstein polynomial of
order n is defined by the expression

Bn
v (x) =

(
n

v

)

xv(1 − x)n−v, (4)

which corresponds to the Binomial probability mass function representing the
probability of observing v heads out of n i.i.d coin flips each with heads probability
x.

Definition 4 (Bernstein Interpolation). Let ψ be an arbitrary continuous
function with domain [0, 1]. The order n Bernstein interpolation of ψ is defined
by

Bn[ψ](x) =
n∑

i=1

(
n

i

)

ψ

(
i

n

)

xn(1 − x)n−i, (5)

which corresponds to the expectation EV ∼Binom(n,x)[ψ(V)].

Function Interpolation for Learned Index Structures 73

4 Indexes by Function Approximation

We next detail the construction and application of indexes based on polynomial
interpolation.

As observed in Sect. 3, the existing literature on learned indexes leverages
inductive learning: fitting models on existing (training) data to minimise loss on
future (test/population) data.

To see why inductive learning is an inappropriate formulation of the range
index problem, consider the B-tree and its classical structure variants. The B-
tree is prevalent in database systems despite it being an (efficient) lookup table.
It does not generalise to new, unseen keys, in that an existing B-tree cannot be
used to ‘guess’ the locations of keys of records not yet stored or encountered.

The astute machine learning reader may then wonder whether our goal should
be one of transductive learning [8] in which one seeks to minimise loss on specific,
given, test cases. While this appears closer to our task, the only test keys we seek
to accurately query are in the training set. Further, there is no randomness in
the locations of stored records, as would warrant supervised learning. Therefore
we advocate for learning without accounting for population sampling or label
randomness—pure function approximation.

4.1 Interpolant Construction

To obtain from a database D, a cumulative distribution function for structure
construction, we must first extract the (sorted) set of keys. Suppose we choose
a column K to be summarised with a range index, then an intermediary array
is needed that allows us to map the key that we choose with the actual stored
position of the record. Start by generating an array A of pairs 〈key, pos〉 that is
sorted on key. Refer to Fig. 1(a). The position of the entry 〈key, pos〉 in A will
then define an unnormalised cumulative distribution function.

Formally, cumulative distribution functions are right continuous, monotonic
and have range space minimum 0 and maximum 1, as depicted in Fig. 1(b).
Both polynomial interpolation methods considered require the target function
ψ to be continuous and piecewise smooth (i.e., accuracy of the approximation
ψ(x) ≈ limi→∞

∑∞
n=0 fi(x) will not typically be guaranteed when ψ is not piece-

wise smooth and continuous). For this reason, we transform the step-function
cumulative distribution function seen in Fig. 1(b) to a piecewise linear, con-
tinuous function as in Fig. 1(c). In this step, we also rescale the key from the
domain of [KMIN,KMAX] to the preferred domain of the interpolation function
[IMIN, IMAX]. In this paper, this is taken as the unit [0, 1] for the Bernstein
interpolation method, and [−1, 1] for the Chebyshev interpolation method.

Lastly we choose a degree n and interpolation method (either Chebyshev
or Bernstein) for application to the smoothed cumulative distribution function
to obtain the parameters αi for the chosen polynomial basis coefficients. The
dashed line ψ(x) in Fig. 1(d) is the original piecewise linear function that passes
through all the data points, the (orange) interpolated polynomial example here
is B5[ψ].

74 N. F. Setiawan et al.

Fig. 1. Transforming (a) key positions to (b) normalised but step-function CDF, (c)
piece-wise linear continuous smoothed CDF, (d) polynomial-interpolated CDF. (Color
figure online)

Model for ψkeyi

Array A

<key, pos>

<key, pos>

<key, pos>

<key, pos>
pos | null

Fig. 2. The polynomial model creates a prediction ˆposA, then the linear seek error
correction algorithm starts looking for the entry with key starting at ˆposA.

4.2 Query Processing

The lookup process of any record in the database then consists of three steps
depicted in Fig. 2 and described as follows:

1. Prediction. First we predict the position of a query key as a location inside
the auxiliary index array A. We call this prediction ˆposA.

2. Error Correction. As predictions are only approximate, some correction/
follow-up search might be necessary. Any incorrect prediction is corrected by

Function Interpolation for Learned Index Structures 75

linearly seeking through the auxiliary array until the requested key is found or
it can be concluded that the key does not exist.

3. Retrieval. After the 〈key, pos〉 mapping is found in the auxiliary array we can
retrieve the record from its actual position on disk.

5 Experimental Results

To investigate how polynomial interpolation performs compared to conventional
indexes such as the B-tree, and neural network learned indexes, we performed
several experiments reported here. We first explore the model creation time,
memory footprint, and query accuracy and time, and then present a sensitivity
analysis of interpolation methods with respect to their interpolation degree.

The neural network is set to have 2 hidden layers and 32 neurons. We opted
not to use a GPU to reflect the setup of most common database servers—all
training and computation was performed by CPU. Neural networks were imple-
mented using the torch package [6] and the B-Tree data structure was imple-
mented using the OIBTree Python module.

Datasets. We use three different datasets each containing two million entries and
build a neural network index on top of it as well as a regular B-tree. These three
datasets are created randomly to follow the uniform, normal and log-normal
distributions.

Hardware. All experiments are performed on a commodity laptop with 4× Intel
i7 CPU cores and 16 GB of RAM. For our implementation we use Linux 5.2.14
and CPython 3.7.4 running on gcc 9.

5.1 Model Creation Time

In our first experiment, we benchmark the time needed to create each polynomial
model from degree 1 to degree 50. We use the notation Bn and Cn for Bern-
stein and Chebyshev polynomials of degree n respectively. We have repeated the
experiment on each dataset ten times in succession and report the average time
across all, since the overall observed discrepancy was less than 100 ms. Neural
networks are not included in this experiment since they are able to be trained

Table 1. Model creation time (in seconds) results for B-tree, and polynomial indexes.

Number of entries B-tree B5 B10 B15 B20 B25 C5 C10 C15 C20 C25

500,000 7.102 0.786 0.773 0.762 0.765 0.783 0.527 0.581 0.634 0.727 0.820

1,000,000 14.953 1.570 1.551 1.583 1.557 1.547 1.093 1.205 1.362 1.551 1.760

1,500,000 23.611 2.357 2.357 2.350 2.366 2.357 1.661 1.850 2.081 2.395 2.691

2,000,000 34.575 3.279 3.286 3.371 3.277 3.366 2.324 2.631 2.942 3.245 3.809

76 N. F. Setiawan et al.

further for better accuracy while interpolation models have their accuracy and
parameters ‘set in stone’ after creation.

The results in Table 1 show that on existing data, the polynomial models are
able to be created significantly faster than B-trees (by a factor of 10) for a
specified number of entries. This is due to operations performed when assembling
the B-tree, since rebalancing a B-tree can be expensive. The time complexity of
creating a fresh, full B-tree index is O(n log n), where n is the number database
records. On the contrary, for m degree of the polynomial approximation, cre-
ation of the Bernstein polynomial is fixed O(n), improvable to O(m log n), while
creation of the Chebyshev polynomial is O(m2 log n).

5.2 Memory Footprint

We next evaluate the size of the polynomial models in comparison to the B-tree
and neural network structures, across multiple datasets. We obtain consistent
results for all three datasets and hence report only the average results. While
conducting this experiment, it is important to note that B-trees do not need
to store the 〈key, pos〉 pairs inside an auxiliary array as these pairs are already
stored in the leaves of the B-trees themselves. In this experiment, we refer to the
storage of the pair as the ‘data segment’. In the case of a B-tree, the term ‘data
segment’ refers to the leaf slots where the 〈key, pos〉 is stored. In the case of the
polynomial models, ‘data segment’ refers to the auxiliary array.

Table 2. Memory footprint results for B-tree, and Neural Network (in megabytes MB
and kilobytes KB).

Dataset entries B-tree (MB) Neural network (KB)

500K 33.034 210.73

1 M 66.126 210.73

1.5 M 99.123 210.73

2 M 132.163 210.73

Table 3. Memory footprint results for the polynomial index models (in bytes B).

Dataset entries B5 B10 B15 B20 B25 C5 C10 C15 C20 C25

500 K 1016 1240 1632 1832 1400 1632 1882 1352 1392 1442

1 M 1016 1240 1632 1832 1400 1632 1882 1352 1392 1442

1.5 M 1016 1240 1632 1832 1400 1632 1882 1352 1392 1442

2 M 1016 1240 1632 1832 1400 1632 1882 1352 1392 1442

Tables 2 and 3 show the memory footprint of the alternatives with the data
segment stripped off. This metric shows how much memory overhead is added

Function Interpolation for Learned Index Structures 77

for the index structure. The overhead introduced by B-tree scales with the size
of the data as pointer overheads are needed. The polynomial models require the
storage of coefficients only. Similarly, neural networks have a fixed number of
parameters, causing them to be independent of the size of database.

According to Table 3, the size of polynomials does not increase with the size
of the dataset. This property is also exhibited by the neural networks, although
the memory footprint of the polynomial indexes is still 2 orders of magnitude
lower. The higher memory footprint in the case of neural networks is attributed
to the larger number of parameters that a neural network has.

5.3 Query Accuracy and Time

We next examine the retrieval accuracy using the polynomial models, and com-
pare them against the classical B-Tree and Neural Network. We present the
model prediction time, root mean squared error (RMSE) of the prediction, and
the total query time (involving all three steps discussed in Sect. 4.2).

Table 4. Prediction time (in ns), prediction root-mean-squared-error (RMSE) and
total query time (in ns) for Normal (No), Uniform (Un) and Log-normal (Ln) datasets.

Dataset Prediction time (ns) RMSE Query time (ns)

Model type No Un Ln No Un Ln No Un Ln

B5 133 46.6 148 25805.22 109.55 80214.85 23500 133 92200

B10 158 71.9 189 18014.59 84.90 70304.07 16500 111 65300

B15 196 103 238 14155.66 70.70 57078.78 12400 133 58500

B20 237 133 288 11687.71 68.70 47333.16 9780 151 48100

B25 277 166 336 9973.57 62.58 39566.59 8080 192 40200

C5 17.9 9.87 27.2 1430.38 57.92 12779.95 10.6 56.3 11800

C10 20.1 11.0 28.4 166.03 52.71 2137.22 11.4 51.6 1860

C15 22.8 12.8 29.2 65.02 45.031 1224.74 68.8 92.2 1020

C20 22.9 14.6 30.4 60.39 28.53 951.37 62.0 48.1 751

C25 25.9 16.4 31.7 57.14 26.39 474.905 62.1 40.2 415

B-tree 24.4 41.5 40.1 N/A 31.5 56.3 46.0

Neural network 433 148 806 105.84 22.67 711.12 402 516 1100

The time taken to predict a key is generally very low in the scenarios exam-
ined, being less than 500 ns for all models. However, the total query times for all
of the models are always far higher than the time taken simply to predict a key,
since most of the cost of retrieving a key is in the error correction. Referring to
Table 4, we see that the Bernstein polynomials are far less accurate compared
to the Chebyshev polynomials, causing them to take a greater amount of time.
A majority of the Bernstein polynomials take longer than our baseline models
(i.e., the B-tree and neural network models).

Some of the higher-order Chebyshev models are however significantly faster
than the neural networks. Starting at C10 onwards the Chebyshev polynomials

78 N. F. Setiawan et al.

are able to outperform the neural networks in terms of speed. While the error
is generally larger, the Chebyshev polynomial models do not have the opera-
tion overhead that neural networks have (attributed to activation functions and
matrix multiplication) and are able to outperform the neural network as a result.

5.4 Rate of Convergence of Polynomial Models

The results presented in Fig. 3 show the sensitivity of the polynomial models
with respect to the degree increase.

Fig. 3. Rates of convergence of the (a) Chebyshev and (b) Bernstein interpolations for
the normally distributed dataset.

For the normal dataset, the Bernstein polynomial converges more slowly
than the Chebyshev polynomial model, and the Chebyshev polynomial of lower
degrees performs far better than the Bernstein polynomial in lower degrees in
terms of accuracy. This, consequently leads to them being faster as there is less
work required during error correction.

In the log-normal dataset (not presented here due to lack of space), both
polynomial models have high errors relative to their performance in the other
datasets (see Table 4). The Chebyshev model still performs better than the Bern-
stein model and still converges faster. To illustrate, C10 is 83% faster than C5

while B10 is only 12% faster than B5.
The uniform distribution is a special case where the Chebyshev model does

not converge as fast as it does with the other data sets. However, errors are
already minimal even with low-degree models and again, the Chebyshev model
still performs better than the Bernstein model.

As seen from Fig. 3(a), the fast rate of convergence of the Chebyshev polyno-
mials allows us to accurately model the cumulative distribution function using a
much smaller memory footprint. The Chebyshev interpolation method converges
to an interpolant function at an exponential rate [3].

Function Interpolation for Learned Index Structures 79

6 Conclusion

We advocate for a function approximation approach to range indexes as an
alternative to learned indexes typified by deep neural networks. We argue that
supervised learning approaches unnecessarily avoid overfitting in favour of gen-
eralisation, and unnecessarily model uncertainty in ground-truth labels. In the
range index problem of databases, such considerations are inappropriate.

The two methods introduced in this paper—polynomial bases with corre-
sponding interpolation/fitting operators—have lightweight overhead in construc-
tion time and memory footprint compared to neural networks. Moreover poly-
nomial approximation techniques are far simpler to implement. As such, our
methods represent feasible options as replacement models for learned indexes,
and a tantalising direction for further investigation.

References

1. Aldà, F., Rubinstein, B.I.P.: The Bernstein mechanism: function release under
differential privacy. In: AAAI, pp. 1705–1711 (2017)

2. Bayer, R., McCreight, E.: Organization and maintenance of large ordered indices.
In: SIGFIDET, pp. 107–141 (1970)

3. Boyd, J.P., Ong, J.R.: Exponentially-convergent strategies for defeating the Runge
phenomenon for the approximation of non-periodic functions, part I: single-interval
schemes. Commun. Comput. Phys. 5(2–4), 484–497 (2009)

4. Brisebarre, N., Joldeş, M.: Chebyshev interpolation polynomial-based tools for rig-
orous computing. In: Proceedings of the 2010 International Symposium on Sym-
bolic and Algebraic Computation, pp. 147–154. ACM (2010)

5. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York
(1966)

6. Collobert, R., Kavukcuoglu, K., Farabet, C.: Torch7: a Matlab-like environment
for machine learning. In: BigLearn NIPS Workshop (2011)

7. Galakatos, A., Markovitch, M., Binnig, C., Fonseca, R., Kraska, T.: Fiting-tree: a
data-aware index structure. In: SIGMOD, pp. 1189–1206 (2019)

8. Gammerman, A., Vovk, V., Vapnik, V.: Learning by transduction. In: UAI, pp.
148–155 (1998)

9. Gil, A., Segura, J., Temme, N.M.: Numerical Methods for Special Functions. Soci-
ety for Industrial and Applied Mathematics (2007)

10. Goldstein, J., Ramakrishnan, R., Shaft, U.: Compressing relations and indexes. In:
ICDE (1998)

11. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge
(2016)

12. Graefe, G., Larson, P.A.: B-tree indexes and CPU caches. In: ICDE, pp. 349–358
(2001)

13. Hadian, A., Heinis, T.: Interpolation-friendly B-trees: bridging the gap between
algorithmic and learned indexes. In: EDBT, pp. 710–713 (2019)

14. Idreos, S., Kersten, M.L., Manegold, S.: Database cracking. In: CIDR, pp. 68–78
(2007)

15. Kim, C., et al.: Fast: fast architecture sensitive tree search on modern CPUs and
GPUs. In: SIGMOD, pp. 339–350 (2010)

80 N. F. Setiawan et al.

16. Kraska, T., Beutel, A., Chi, E.H., Dean, J., Polyzotis, N.: The case for learned
index structures. In: SIGMOD (2018)

17. Kubica, J.M., Moore, A., Connolly, A.J., Jedicke, R.: Spatial data structures for
efficient trajectory-based queries. Technical report, CMU-RI-TR-04-61, Carnegie
Mellon University (2004)

18. Leis, V., Kemper, A., Neumann, T.: The adaptive radix tree: artful indexing for
main-memory databases. In: ICDE, pp. 38–49 (2013)

19. Microsoft: Hardware and software requirements for installing SQL server
20. Mitzenmacher, M.: A model for learned bloom filters, and optimizing by sandwich-

ing. In: NIPS, pp. 462–471 (2018)
21. Rao, J., Ross, K.A.: Making b+-trees cache conscious in main memory. In: SIG-

MOD, pp. 475–486 (2000)
22. Schonfelder, J.: Chebyshev expansions for the error and related functions. Math.

Comput. 32(144), 1232–1240 (1978)
23. Shalev-Shwartz, S., Ben-David, S.: Understanding Machine Learning: From Theory

to Algorithms. Cambridge University Press, Cambridge (2014)
24. Stonebraker, M.: The case for partial indexes. SIGMOD Rec. 18(4), 4–11 (1989)

DEFINE: Friendship Detection Based
on Node Enhancement

Hanxiao Pan1, Teng Guo1, Hayat Dino Bedru1, Qing Qing1, Dongyu Zhang1,
and Feng Xia2(B)

1 School of Software, Dalian University of Technology, Dalian, China
2 School of Science, Engineering and IT, Federation University Australia,

Ballarat, Australia
f.xia@ieee.org

Abstract. Network representation learning (NRL) is a matter of impor-
tance to a variety of tasks such as link prediction. Learning low-
dimensional vector representations for node enhancement based on nodes
attributes and network structures can improve link prediction perfor-
mance. Node attributes are important factors in forming networks, like
psychological factors and appearance features affecting friendship net-
works. However, little to no work has detected friendship using the NRL
technique, which combines students’ psychological features and perceived
traits based on facial appearance. In this paper, we propose a framework
named DEFINE (Node Enhancement based Friendship Detection) to
detect students’ friend relationships, which combines with students’ psy-
chological factors and facial perception information. To detect friend rela-
tionships accurately, DEFINE uses the NRL technique, which considers
network structure and the additional attributes information for nodes.
DEFINE transforms them into low-dimensional vector spaces while pre-
serving the inherent properties of the friendship network. Experimental
results on real-world friendship network datasets illustrate that DEFINE
outperforms other state-of-art methods.

Keywords: Node enhancement · Friendship detection · Social network

1 Introduction

Information networks are general data structures to explore complex relation-
ships in the real-world. Social networks and academic networks have been widely
investigated [8,21,23]. Mining friendship in networks also has drawn continu-
ous attention in academia. The data collected by mobile phones can form the
dynamic evolution of personal relationships and identify friend relationships
accurately [5]. Most friendship detection researches are based on the information
obtained from online social networks; little friendship prediction studies focus
on social network structure and node attributes. However, exploring the hid-
den friendship among students is challenging. At present, the existing research
literature predicts friendship by depicting characters according to the behavior
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 81–92, 2020.
https://doi.org/10.1007/978-3-030-39469-1_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_7&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_7

82 H. Pan et al.

data of students. Attractive appearances and similar psychological characteris-
tics are important factors in the development of friendship [15,20]. As a kind
of social relationship, the formation of friendships is affected by complex social
relationships and the students’ characteristics. However, little work has been
done to detect friendship combining social network structure and node attribute
proximity.

To tackle the above challenges, we present a new framework, named Node
Enhancement based Friendship Detection (DEFINE) for predicting friend rela-
tionships. Our framework forms an intelligent solution for detecting friend rela-
tionship based on hidden attributes in student social network. As shown in Fig. 1,
our framework considers both network structure and node attributes which con-
tain students’ psychological features and facial perception information. DEFINE
transforms the friendship network into low-dimensional vector spaces while pre-
serving the inherent properties of the friendship network to detect friendship
accurately.

In summary, our main contributions are concluded as follows:

(1) We propose a framework named DEFINE based on the NRL technique, to
discover students’ friend relationships by combining the network structure
and node attribute proximity.

(2) DEFINE considers both students’ psychological factors and facial percep-
tion information as node attributes. Experimental results demonstrate the
outstanding capabilities of DEFINE on the friendship detection task.

(3) DEFINE not only considers the structural attributes of the social network
but also combines node attribute information, which performs better than
other NRL models.

We organize the remainder of this paper as follows. Section 2 summarizes
related work which contains the theoretical dimensions of the research. In Sect. 3,
we focus on the details of problem formulation. Section 4 introduces the details
of the proposed framework. We present experiments and results in Sect. 5. In
Sect. 6, we present the conclusion of the research.

+

++

++

+ +

Friendship

Psychological FeaturesFacial Percerption
Friendship Network

Fig. 1. The overview of friendship detection in our framework.

DEFINE: Friendship Detection Based on Node Enhancement 83

2 Related Work

2.1 Network Representation Learning

NRL aims to represent the nodes in the network as low-dimensional vectors
that are easy to be the input of machine learning classifier and applied in social
network tasks. The common network embedding methods are based on network
structure information. Perozzi et al. [14] proposed the Deepwalk algorithm in
2014, which is the first to consider the introduction of deep learning techniques
to express nodes in vector form in the network. Deepwalk uses the random walk
that is a repeatable access depth-first search method, to sample the nodes in the
network and learns vector representation of nodes using co-occurrence relation
between nodes. Since sampling only depends on local information, Deepwalk is
suitable for distributed and online systems.

According to the concept of Deepwalk, lots of scholars proposed improved
algorithms. Large-scale Information Network Embedding (LINE) [17] consid-
ered neighborhood information of nodes in a network and is designed based on
the breadth-first search. It redefines the similarity between nodes that contains
first-order proximity and second-order proximity and constructs its unique rep-
resentation. Grover and Leskovec [6] extended Deepwalk and proposed Node2vec
by changing the generation of random walk sequence. Node2vec considers the
characteristic of depth-first search and breadth-first search while choosing the
next node by adding two parameters p and q to control the jumping direction. It
also uses the network structure information to learn suitable node representation
in a semi-supervised learning approach.

In addition to network structure information, current researches explore the
impact of extra information in the network node, such as texts. Some researches
combine both the attributes and the network structure to represent the nodes
in the network. Yang et al. [24] proposed a text-related Deepwalk model named
TADW (text-associated DeepWalk), integrating text information of nodes into
NRL. This work proves the Deepwalk algorithm is equivalent to matrix decom-
position. Graph2Gauss [2] embedded each node as a Gaussian distribution to
capture uncertainty about the representation.

2.2 Friendship Prediction

Analyzing and predicting the social relationship between people by using individ-
ual information in the social network is the practical application of network link
prediction [22]. Parimi et al. [13] applied the Latent Dirichlet Allocation (LDA)
topic model to quantify users’ interest in social media and predict friendship links
based on the similarity of users’ interest. Zhang et al. [26] quantified the distance
between user’s frequent movement areas and proved the geographic distance is
an effective metric for distinguishing friends and strangers. They experimented
with Twitter data and applied machine learning classifiers to predict friendship.
Valverde-Rebaza et al. [18] reviewed research studies about friendship prediction

84 H. Pan et al.

Table 1. The description of notations

Notation Description

n The number of nodes in the friendship network

s The score of student’s psychological and facial perception for each node

V The set of n nodes

ε The set of edges

α Balance module of Skip-gram and the loss of autoencoder

β The l2 norm regularizer coefficient

K The number of encoding layers

T The weighted average neighbor of each node

vi The representations of “context” node

d The dimension of node representation

X ∈ R
n×m The node attribute information matrix

Y ∈ R
|V|×d The final representation of the friendship network

in location-based social networks, including their approaches, advantages, and
disadvantages, emphasizing the role of location in prediction.

Link prediction has become an interesting focus of friendship prediction, use-
ful models can find the potentially important information in real-world networks.
Highly scalable node embedding (HSEM) [1] embedded nodes into a vector with
a lower and fix dimension by learning the co-occurrence features of node pairs
to solve the link prediction problem in very large-scale networks. Li et al. [9]
proposed two novel node-coupling clustering approaches and their extensions for
link prediction. The models consider the different roles of nodes for prediction
and combine the coupling degrees of the common neighbor nodes with the clus-
tering information of a network. DLPA is [4] a novel link prediction approach
for dynamic networks using the levels of the related nodes and their attraction
force to calculate the connection probability for each potential link.

However, most social network research is based on online social networks;
little friendship prediction studies focus on social networks in real life. Zhang et
al. [25] analyzed the social networks of college students. They collected social
networks and appearance data of students and studied the effect of facial per-
ception on social networks. Appearance attributes are considered as features to
understand the social status of the student.

3 Problem Formulation

We denote a friendship network G = (V, ε,X), where V denotes the set of n
nodes, and ε is the set of edges. X ∈ R

n×m is a matrix that encodes score si for
i. Y ∈ R

|V|×d is the representation of G in d dimension. The mapping function
of vi �→ yi ∈ R

d preserves both network structure and attribute information,
where d � |V|. zi is the label in the prediction model. The notations mainly
used in this paper are listed in Table 1.

DEFINE: Friendship Detection Based on Node Enhancement 85

Since we focus on friendship in the student social network, we collect friend-
ship information to construct the friendship network G = (V, ε,X). We assumed
that there is a photo of student i and evaluated by attractiveness, trustworthi-
ness, amiableness, and dominance. In the psychological aspect, each student i
has extroversion, agreeableness, conscientiousness, and dominance score. Above
all, each student i gets score si on psychological features and facial perception
dimensions. Our purpose is to detect whether two students will become friends
using their psychological features and facial perception information.

Input: Students who are associated with s and G.
Output: Whether students will become friends?

4 Design of DEFINE

To solve the problem that detects friend relationships in the social network
combining psychological features and facial perception, we propose a framework
named DEFINE. In this framework, we embed psychological features and facial
perception into the network representation, to incorporate both network struc-
ture and node attribute information effectively. Then we reconstruct the network
via link prediction for the friendship network with node attribute information.
DEFINE intelligently combines node attribute information and network con-
struction to detect whether students will become friends. The DEFINE frame-
work is depicted in Fig. 2.

Entropy-Based Pre-processing. As mentioned before, each photo is evalu-
ated by a certain number of participants. To eliminate the impact of noise from
participants evaluating photos, we use the method mentioned in [25], which bor-
rowed the concept of entropy in information theory to remove these meaningless
data.

E = −
∑

p(x) log p(x) (1)

where p(x) represents the probability of occurrence of sample x.

Features Processing. Each student has psychological features scores and facial
perception scores. We need to convert this information into a matrix which
only contains 0 and 1. In the field of network research, the Cora dataset is
widely used [10,16]. The Cora dataset includes 2708 scientific publications. Each
publication in the dataset is described by a 0 or 1 valued word vector indicating
the absence or presence of the corresponding word from the dictionary. Inspired
by the composition of the Cora data set, we map node attributes information
into matrix dimensions as follows. First, we made a dictionary according to the
psychological features and facial perception scores, each score corresponds to a
position in the dictionary. Then, we convert these attributes information score
si to a 0 or 1 valued word vector. Finally, we got xi for each node to represent
node attributes.

86 H. Pan et al.

Link
Prediction

Node
Attributes

Psychological
Features

Facial Perception
Information

Attributed
Network

Representation
Learning

?

Friendship Network

Facial Perception

Entropy Based
Data Processing

Coded Attributes

Node Representation

Features Processing

Friendship

Friendship Network

Fig. 2. The framework of DEFINE, which contains four critical components: (1)
entropy-based data processing part, (2) feature processing part, (3) attributed net-
work representation part, and (4) link prediction part.

Attributed Network Representation Learning. Attributed network rep-
resentation learning via deep neural networks (ANRL) can uninterruptedly
integrate node attributes affinity and network structural proximity into low-
dimensional representation spaces [27]. Therefore, we input each node vi in
friendship network V and node attributes X into the ANRL model to get the
node representations YεR|V|×d.

The goal of the ANRL model is to minimize the objective function:

L = Lsg + αLae +
β

2

K∑

k=1

(
∥∥Wk

∥∥2

F
+

∥∥∥Ŵ(k)
∥∥∥
2

F
) (2)

where Lsg and Lae are defined in Eqs. (3) and (6), respectively. For the rest
of the formula, α is the hyper parameter which can balance Skip-gram module
Lsg and the loss of autoencoder module Lae, and β is the l2 norm regularizer
coefficient. xi represents node vi’s feature vector, which includes student psy-
chological features and facial perception information. y(K) is the representation
for node vi after encoding with K layers. W(k) is weight matrix in the k-th layer
for encoder, and Ŵ(k) is same for decoder. uv corresponds to the v-th column
in the weight matrix U for graph context prediction.

Lsg = −
n∑

i=1

∑

cεC

∑

−b≤j≤b,j �=0

log p(vi+j |xi) (3)

where n is the total number of nodes, C is the set of node sequences generated
by random walks, and b is the window size. p(vi+j |xi) is the likelihood of the
target context given the node attributes, and is defined as:

p(vi+j |xi) =
exp(v′T

i+jf(xi))∑n
v=1 exp(v′T

v f(xi))
(4)

DEFINE: Friendship Detection Based on Node Enhancement 87

(a) Friendship Network

0

10

20

30

40

50

60

70

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Fr
eq

ue
nc

y

Indegree

(b) Histogram of Indegree

Fig. 3. (a) A sketch of friendship network. (b) histogram of indegree for friendship
network.

where v′
i is the representations when node vi is regarded as “context” node.

When directly optimizing Eq. 4, the summation over the entire set of nodes
is computationally expensive. Therefore, sampling multiple negative samples
according to some noisy distributions [11] is convenient. In detail, for a specific
node-context pair (vu, vi+j), the objective is as follows:

log σ(v′T
i+jf(xi)) +

|neg|∑

s=1

Evn∼Pn(v)[log σ(−v′T
nf(xi))] (5)

where |neg| is the number of negative samples and σ(x) = 1/(1 + exp(x)) is the
sigmoid function. Pn(v) ∝ d

3/4
v is set as suggested in [11], where dv is the degree

of node v.

Lae =
n∑

i=1

‖x̂ − T (vi)‖22 (6)

where x̂ is the reconstruction output decoder. T (vi) is adopted by a weighted
average neighbor and incorporates prior knowledge into the model to return the
target neighbors of vi. That is to say, T (vi) = 1

|N (i)|
∑

jεN (i) ωijxj , where N(i)
is the neighbors of node vi in the friendship network, wij = 1 for unweighted
friendship network, and xj is the attributes associated with node vj .

Link Prediction. We generate the labeled dataset of edges [6,19,27], which
holds out existing links as positive instances randomly. We also sample an equal
number of non-existing links randomly to get negative instances. Then, we use
the network to train the ANRL model. After having obtained the representations
for each node, we use these representations Y ∈ R

|V|×d to perform link prediction
task in the labeled edge dataset. We choose linear SVC as the link prediction
model to deal with this task [3,12,25], that is,

88 H. Pan et al.

⎧
⎨

⎩
maxw,b

2
‖w‖

s.t. yi(wT zi) ≥ 1, i = 1, 2, 3 · · · ,

(7)

where w is the normal vector of the hyperplane, node representations yi is the
feature of the ith sample, and zi is label in the train set.

5 Experiments

In this section, we describe all the data we used in our research and evaluate our
framework by comparing it with some classical methods.

5.1 Datasets

We use 454 students’ online survey results, which include the Big Five Person-
ality questionnaire results, the dominance scale scores [7], facial images, and
questionnaire results about listing their friends. We also collect facial perception
scores by recruiting volunteers to rate the facial images. Figure 3(a) shows the
sketch of the friendship network. The node represents student i, and the color
depth of the nodes in the friendship indicates the indegree of nodes. The darker
the color, the higher the indegree. Figure 3(b) is the distribution of indegree
for each node in the friendship network which looks like left-skewed bell-shaped
curves. Tables 2, 3, and 4 are Pearson’s correlation coefficient for psychological
features and facial perception information. To distinguish these two features, we
marked namesake in Table 3 using P to represent psychological features.

5.2 Prediction

Comparison with DEFINE Variants. The first competitor considers node
attributes information only, which is used to verify the validity of NRL in the
link prediction task. Then we use competitors to learn low-dimensional vec-
tor representations for nodes based on network structure and node attributes.
We compare DEFINE with the node attributes that only include psychologi-
cal features or facial perception. The DEFINE variants are used to verify the
performance of our proposed framework.

Table 2. Pearson’s correlation coefficient for psychological features

Dominance Extroversion Agreeableness Conscientiousness

Dominance - - - -

Extroversion −0.209** - - -

Agreeableness −0.488** 0.446** - -

Conscientiousness −0.315** 0.551** 0.580** -

*p < 0.05; **p < 0.01

DEFINE: Friendship Detection Based on Node Enhancement 89

Table 3. Pearson’s correlation coefficient for facial perception

Attractiveness Trustworthiness Agreeableness Dominance

Attractiveness - - - -

Trustworthiness 0.664** - - -

Agreeableness 0.425** 0.583** - -

Dominance 0.569* 0.470** −0.012 -

*p < 0.05; **p < 0.01

Comparison with Baseline Methods. To prove the advantages of our frame-
work combining network structure and node attributes, we compare DEFINE
framework with several classical NRL methods as follows:

• Structure-only: This group competitors ignore the node attributes and
leverage network structure information only. Node2vec [6] and Deepwalk [19]
generate node sequences by using truncated random walks and obtain the
latent node representations by feeding them into the Skip-gram model.

• Attribute + Structure: The competitor of this group is competitive
because it tries to preserve node attributes information and network structure
proximity. We consider TADW [24] as our competitor, the detailed descrip-
tions can be found in Sect. 2. It is also used to verify the effectiveness of the
Skip-gram model because the main idea of TADW is matrix decomposition.

Prediction Results. In this part, we evaluate the ability of our framework by
comparing it with other baseline methods and DEFINE variants. Our goal is to
reconstruct the friendship network structure via link prediction. First of all, we
learn the representation based on different representation learning algorithms
and DEFINE variants. Secondly, we generate the labeled dataset of edges by
holding out existing links as positive instances and randomly sample an equal
number of non-existing links for negative instances. Then, we use linear SVC to
make link prediction. Finally, we divide the labeled nodes into the training set
and testing set. The portion ratio of training nodes varies from 50% to 90%. To
evaluate the framework quality and the results, we employ the Accuracy, Recall,
and F1 score, and higher value indicates a better performance.

Table 4. Pearson’s correlation coefficient for psychological features and facial percep-
tion

Dominance (P) Extroversion Agreeableness (P) Conscientiousness

Attractiveness −0.079 0.129** 0.132** 0.063

Trustworthiness −0.118** 0.078 0.122** 0.049

Agreeableness −0.145** 0.088 0.102* 0.039

Dominance −0.029 0.068 0.062 0.074

*p < 0.05; **p < 0.01

90 H. Pan et al.

0.49

0.51

0.53

0.55

0.57

0.59

0.61

0.63

0.65

0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y

Fraction of Training Set

Attributes
Facial Perception
Psychological information
DEFINE

(a) Accuracy

0.48

0.53

0.58

0.63

0.68

0.5 0.6 0.7 0.8 0.9

R
ec

al
l

Fraction of Training Set

Attributes
Facial Perception
Psychological information
DEFINE

(b) Recall

0.47

0.49

0.51

0.53

0.55

0.57

0.59

0.61

0.63

0.65

0.5 0.6 0.7 0.8 0.9

F1
 S

co
re

Fraction of Training Set

Attributes
Facial Perception
Psychological information
DEFINE

(c) F1 Score

Fig. 4. The results of the DEFINE variants link prediction experiment with the fraction
of the training set.

0.51

0.53

0.55

0.57

0.59

0.61

0.63

0.5 0.6 0.7 0.8 0.9

A
cc

ur
ac

y

Fraction of Training Set

Node2vec Deepwalk
TADW DEFINE

(a) Accuracy

0.51

0.53

0.55

0.57

0.59

0.61

0.63

0.65

0.67

0.5 0.6 0.7 0.8 0.9

R
ec

al
l

Fraction of Training Set

Node2vec Deepwalk
TADW DEFINE

(b) Recall

0.51

0.53

0.55

0.57

0.59

0.61

0.63

0.5 0.6 0.7 0.8 0.9

F1
 S

co
re

Fraction of Training Set

Node2vec Deepwalk
TADW DEFINE

(c) F1 Score

Fig. 5. Link prediction performance comparison of different baseline methods with the
fraction of the training set.

• We can observe that DEFINE performs well than DEFINE variants. Figure 4
presents the result. Even though node attributes can detect friendship, this
competitor performs not very well because of lacking NRL.

• Link prediction using each part of node attributes also performs worse,
even though converting these attributes and network structure into low-
dimensional vectors by the NRL model.

• We can observe that the performance of DEFINE is better than other baseline
methods, as seen in Fig. 5.

• Node2vec and Deepwalk both use Skip-gram to represent nodes in the friend-
ship network. Their performance is not good enough because they only con-
sider network structure.

• TADW combines both network structure and node attributes. However, this
model is not as good as DEFINE because it is based on matrix decomposition
instead of Skip-gram, which does not consider network structure very well.

6 Conclusion

In this paper, we focus on the problem of student friendship detection by devel-
oping an effective framework called DEFINE based on Node Enhancement. To
our best knowledge, we are the first to combine students’ psychological features

DEFINE: Friendship Detection Based on Node Enhancement 91

and facial perceptions with friendship in this problem. Our experiment indicates
DEFINE performs well in the prediction of student friendship while compared
with the NRL models which use the structure information as the only con-
sideration, such as Deepwalk and Node2vec. Even when both node attributes
and network structure are taken into account, our framework still performs bet-
ter than the NRL model without the leverage of Skip-gram. Compared to the
DEFINE variant, experimental results on the real-world friendship network show
the outstanding performance of our proposed framework. With its effective and
accurate detection in our student friendship network, we consider deploying the
framework on larger friendship networks. We also intend to extend DEFINE to
the networks with other social relationships such as academic collaboration and
trustworthy networks.

References

1. Aakas, Z., Liang, X., Chen, Y.: HSEM: highly scalable node embedding for link
prediction in very large-scale social networks. World Wide Web 22, 1–26 (2018)

2. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of graphs: unsupervised
inductive learning via ranking. In: International Conference on Learning Represen-
tations, pp. 1–13 (2018)

3. Bottou, L., Curtis, F.E., Nocedal, J.: Optimization methods for large-scale machine
learning. SIAM Rev. 60(2), 223–311 (2018)

4. Chi, K., Yin, G., Dong, Y., Dong, H.: Link prediction in dynamic networks based
on the attraction force between nodes. Knowl.-Based Syst. 181, 104792 (2019)

5. Eagle, N., Pentland, A.S., Lazer, D.: Inferring friendship network structure by
using mobile phone data. Proc. Natl. Acad. Sci. 106(36), 15274–15278 (2009)

6. Grover, A., Leskovec, J.: Node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864. ACM (2016)

7. Hamby, S.L.: The dominance scale: preliminary psychometric properties. Violence
Vict. 11(3), 199 (1996)

8. Kong, X., Shi, Y., Yu, S., Liu, J., Xia, F.: Academic social networks: modeling,
analysis, mining and applications. J. Netw. Comput. Appl. 132, 86–103 (2019)

9. Li, F., He, J., Huang, G., Zhang, Y., Shi, Y., Zhou, R.: Node-coupling clustering
approaches for link prediction. Knowl.-Based Syst. 89, 669–680 (2015)

10. Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML-2003), pp. 496–503 (2003)

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

12. Morente-Molinera, J.A., Mezei, J., Carlsson, C., Herrera-Viedma, E.: Improving
supervised learning classification methods using multigranular linguistic modeling
and fuzzy entropy. IEEE Trans. Fuzzy Syst. 25(5), 1078–1089 (2016)

13. Parimi, R., Caragea, D.: Predicting friendship links in social networks using a topic
modeling approach. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011.
LNCS (LNAI), vol. 6635, pp. 75–86. Springer, Heidelberg (2011). https://doi.org/
10.1007/978-3-642-20847-8 7

14. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

http://arxiv.org/abs/1301.3781
https://doi.org/10.1007/978-3-642-20847-8_7
https://doi.org/10.1007/978-3-642-20847-8_7

92 H. Pan et al.

15. Pittman, L.D., Richmond, A.: University belonging, friendship quality, and psycho-
logical adjustment during the transition to college. J. Exp. Educ. 76(4), 343–362
(2008)

16. Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., Eliassi-Rad, T.: Collec-
tive classification in network data. AI Mag. 29(3), 93–93 (2008)

17. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067–1077 (2015)

18. Valverde-Rebaza, J.C., Roche, M., Poncelet, P., de Andrade Lopes, A.: The role
of location and social strength for friendship prediction in location-based social
networks. Inf. Process. Manag. 54(4), 475–489 (2018)

19. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1225–1234. ACM (2016)

20. Wang, S.S., Moon, S.I., Kwon, K.H., Evans, C.A., Stefanone, M.A.: Face off: Impli-
cations of visual cues on initiating friendship on Facebook. Comput. Hum. Behav.
26(2), 226–234 (2010)

21. Xia, F., Ahmed, A.M., Yang, L.T., Luo, Z.: Community-based event dissemination
with optimal load balancing. IEEE Trans. Comput. 64(7), 1857–1869 (2015)

22. Xia, F., Ahmed, A.M., Yang, L.T., Ma, J., Rodrigues, J.: Exploiting social relation-
ship to enable efficient replica allocation in ad-hoc social networks. IEEE Trans.
Parallel Distrib. Syst. 25(12), 3167–3176 (2014)

23. Xia, F., Liu, L., Jedari, B., Das, S.K.: PIS: a multi-dimensional routing protocol for
socially-aware networking. IEEE Trans. Mob. Comput. 15(11), 2825–2836 (2016)

24. Yang, C., Liu, Z., Zhao, D., Sun, M., Chang, E.: Network representation learning
with rich text information. In: Twenty-Fourth International Joint Conference on
Artificial Intelligence (2015)

25. Zhang, D., et al.: Judging a book by its cover: the effect of facial perception on
centrality in social networks. In: The World Wide Web Conference, pp. 2290–2300.
ACM (2019)

26. Zhang, Y., Pang, J.: Distance and friendship: a distance-based model for link pre-
diction in social networks. In: Cheng, R., Cui, B., Zhang, Z., Cai, R., Xu, J. (eds.)
APWeb 2015. LNCS, vol. 9313, pp. 55–66. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25255-1 5

27. Zhang, Z., et al.: ANRL: attributed network representation learning via deep neural
networks. IJCAI 18, 3155–3161 (2018)

https://doi.org/10.1007/978-3-319-25255-1_5
https://doi.org/10.1007/978-3-319-25255-1_5

Semi-supervised Cross-Modal Hashing
with Graph Convolutional Networks

Jiasheng Duan(B), Yadan Luo, Ziwei Wang, and Zi Huang

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

j.duan@uqconnect.edu.au, {y.luo,ziwei.wang}@uq.edu.au,
huang@itee.uq.edu.au

Abstract. Cross-modal hashing for large-scale approximate neighbor
search has attracted great attention recently because of its significant
computational and storage efficiency. However, it is still challenging to
generate high-quality binary codes to preserve inter-modal and intra-
modal semantics, especially in a semi-supervised manner. In this paper,
we propose a semi-supervised cross-modal discrete code learning frame-
work. This is the very first work of applying asymmetric graph convo-
lutional networks (GCNs) for scalable cross-modal retrieval. Specifically,
the architecture contains multiple GCN branches, each of which is for one
data modality to extract modality-specific features and then to generate
unified binary hash codes across different modalities, so that the under-
lying correlations and similarities across modalities are simultaneously
preserved into the hash values. Moreover, the branches are built with
asymmetric graph convolutional layers, which employ randomly sam-
pled anchors to tackle the scalability and out-of-sample issue in graph
learning, and reduce the complexity of cross-modal similarity calcula-
tion. Extensive experiments conducted on benchmark datasets demon-
strate that our method can achieve superior retrieval performance in
comparison with the state-of-the-art methods.

Keywords: Cross-modal hashing · GCN · Semi-supervised learning

1 Introduction

Multimedia data on the Internet always exist in heterogeneous modalities, such
as image, text, video and etc, which gives rise to an increasing requirement
of effective multimedia retrieval technology on large-scale multimedia data. In
recent years, the analysis of correlations among heterogeneous modalities has
been extensively explored. A cross-modal retrieval system generally takes queries
from one modality (e.g., text) to search data from the other modalities (e.g.,
images) with similarity metrics. The key is how to model the similarity rela-
tionships across modalities under the heterogeneity of multi-modal data, i.e.,
data residing in different feature spaces. A common practice is binary represen-
tation learning, known as hashing, which aims to project high-dimensional data
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 93–104, 2020.
https://doi.org/10.1007/978-3-030-39469-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_8&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_8

94 J. Duan et al.

in various modalities into a shared low-dimensional discrete Hamming space,
meanwhile the underlying inter- and intra-modal correlations are preserved. The
cross-modal hashing work can be roughly categorized into unsupervised hashing
and supervised hashing. Unsupervised hashing [3,9,12,15,17,18,20,25,27] learns
similarity relationships based on the data distribution with none but numeric
features available, while supervised hashing [1,5,7,10,13,21–24,26] adopts guid-
ance information, e.g., class labels, to define the similarity among heteroge-
neous data. It is worth mentioning that most deep supervised hashing methods
are proposed in an end-to-end fashion to build modality-specific pathways for
encoding data features into binary hash codes, respectively, such as DCMH [7],
MCSCH [23] and etc. However, the similarity computation for each pair of data
across modalities results in excessive memory and time cost. To be specific, for
m text entities and n images, the computational complexity of directly calcu-
lating the similarity of all image-text pair is O(mn). Compared to supervised
learning, unsupervised methods are obviously easier to cater large amount of
unlabeled data since the acquisition of labeled data consumes expensive human
labors, while supervised methods usually achieve better training results due to
the guidance from discriminative semantic information. Hence, semi-supervised
hashing provides a feasible solution to benefit from both supervised information
and cheap unsupervised data to produce considerable learning performance.

Fig. 1. The Architecture of Asymmetric Graph Convolutional Network for semi-
supervised Cross-modal Hashing.

To overcome these limitations, we propose a novel semi-supervised cross-
modal graph convolutional network hashing (CMGCNH) method, which for

Semi-supervised Cross-Modal Hashing with Graph Convolutional Networks 95

the first time exploits asymmetric GCN architecture in scalable cross-modal
retrieval tasks. Without loss of generality, in this paper, we concentrate on bi-
modal (images and text) hashing, and our framework can be easily extended
to multiple branches to handle more modalities. As shown in Fig. 1, we first
select a small number of paired anchors from different modalities, then image
and text data points are organized into two undirected graphs, in which the
nodes represent data entities and edges are defined as their relationships with
the anchors. Then, a dual-branch asymmetric GCN framework is designed to
learn specific-modality hash functions by implementing the convolution opera-
tions on the two graphs. The outputs of these two branches are integrated and
sent into the well designed loss functions, so that we can implement cross-modal
cooperative learning strategy. Since the graph structure is fixed during the for-
ward propagation through multiple layers in the learning process, the semantic
relationships within a modality are well preserved, meanwhile, the information of
semantic labels directly propagates from the labeled data to the unlabeled data
through the anchors. Besides, within one modality, the computational complex-
ity is reduced from O(n2) to O(np) (p << n), where n and p are the number of
data points and the pairs of anchors, respectively, because for one data entity,
the similarity calculation is only needed between itself and the anchors of the
same modality rather than with all data points of the other modality. With
the asymmetric architecture, anchors receive information from some data and
pass it to other data, so that the convolution operations are only implemented
on these small number of anchors, which allows to split large-scale dataset into
small batches in the learning process instead of passing all data into the network
at a time.

The key contributions of this paper are summarized as follows. Firstly, we
propose a novel Asymmetric Graph Convolutional Network (CMGCNH) method
for semi-supervised cross-modal hashing. To the best of our knowledge, this is
the first attempt to employ asymmetric GCNs for scalable cross-modal hashing.
Secondly, CMGCNH carries out cooperative learning strategy to preserve the
inter-modality similarity relationships and the graph-based architecture within
each branch to achieve the preservation of intra-modality correlation structure.
Thirdly, different from other multi-pathway architecture, which directly calcu-
late the similarity score of each image-text pair, CMGCNH only computes the
similarity with p anchors within a branch, where (p << m) ∨ (p << n). The
complexity is reduced to O(m+n). Finally, extensive experiments on two cross-
modal benchmark datasets demonstrate that CMGCNH can achieve superior
performance in comparison with other cross-modal hashing methods.

2 Related Work

A rich line of existing cross-modal hashing work have been proposed, which
are roughly categorized into unsupervised and supervised hashing. Unsuper-
vised hashing [3,9,12,15,17,18,20,25,27] learns similarity relationships based
on data distribution or structure property with only numeric features available,

96 J. Duan et al.

such as Canonical correlation analysis (CCA) [4], predictable dual-view hash-
ing (PDH) [15], collective matrix factorization hashing (CMFH) [3], cross-view
hashing (CVH) [9] and Composite Correlation Quantization hashing (CCQ) [12].
The most significant advantage of unsupervised hashing is the large amount of
cheap data which can be easily collected, but it is performance is limited due to
no additional guidance information. Supervised hashing [1,5,7,10,13,21–24,26]
typically works with guidance information, such as common class labels and
pair-wise information of modalities, to define the similarity relationships among
heterogeneous data, such as semantic correlation maximization (SCM) [24],
semantics-preserving hashing (SePH) [10] and Metric Learning by Similarity-
Sensitive Hashing (CMSSH) [1]. It generally achieves better performance due to
the guidance information but is limited by data collection, since the acquisition
of labeled data is quite expensive. Hence, we propose a semi-supervised hashing
method in this paper to benefit from both of the learning strategies.

3 Proposed Method

In this section, we describe the dual-branch Asymmetric Graph Convolutional
Network for semi-supervised Cross-modal Hashing (CMGCNH) network. We
first introduce the Graph Convolutional Networks (GCNs) as the base algorithm,
and then discuss the proposed architecture and the objective functions in details.

3.1 Preliminaries

Graph Convolutional Network (GCN) is the base algorithm of CMGCNH. A
typical GCN applies spectral graph theory with parameterized filters to integrate
information from the neighbors of a node into the features of itself. It consists of
one or multiple convolutional layers that conduct spectral convolution operations
on a given graph. Kipf et al. [8] simplified this operation by approximating the
Chebyshev polynomials and defined the graph convolution as:

H(l+1) = σ
(
ÂH(l)W(l)

)
(1)

where H(l) and H(l+1) denote the input and output features of layer l, respec-
tively; Â = D̃− 1

2 ÃD̃− 1
2 is the normalized adjacency matrix of all the graph

nodes with self-connected edges, in which Ã = A + I (A represents the node
relationships, i.e., edges; I is the graph node identity matrix), and D̃ is the diag-
onal node degree matrix of Ã; W(l) represents the weight matrix of layer l that
is what is aimed to learn; σ is an activation function selected in line with the
specific tasks.

3.2 Problem Formulation

In CMGCNH, given a set of n multi-modal objects, we denote it as O = [Ol,Ou],
since it consists of two data subsets, i.e., supervised data Ol and unsupervised

Semi-supervised Cross-Modal Hashing with Graph Convolutional Networks 97

data Ou. In the supervised set, images and texts are in pairs with class labels,
so we define Ol = [Vl,Tl] indicating the labeled image set and labeled text set.
In the unsupervised set, there are no class labels or pair information provided,
and it is defined as Ou = [Vu,Tu], where Vu and Tu are the unlabeled image
and text set. We also denote V =

[
Vl,Vu

]
and T =

[
Tl,Tu

]
where V and T

are the whole image and text set.
The objective of CMGCNH is to represent V and T with a common set

of binary codes B = [Bl,Bu] through learning modal-specific hash functions
Fv

(
v
)

and Ft

(
t
)

for images and texts, respectively, where Bl and Bu repre-
sent the hash codes of supervised and unsupervised data points. B can be also
denoted as B =

{
bi

}n

i=1
∈ {

+1,−1
}C×n, where bi is the C-bit hash code for the

object oi ∈ O. We learn Fv

(
v
)

and Ft

(
t
)

through a dual-path deep Asymmet-
ric GCN architecture, i.e., to organize data into graph-based structures with a
small number of anchors and implement convolution operations on these graphs.
Specifically, for one modality, we model the data into an undirected graph where
the nodes denote the data and anchor entities, and the edges connect the general
data nodes and the anchor nodes and indicate if they are related, i.e., similar.
The edges, i.e., similarity, between the data nodes and anchors, are defined as:

eij =

⎧
⎨

⎩

1, if((xi,aj) ∈ P)or(aj ∈ N(xi))

0, otherwise
(2)

where P represents the set, in which a labeled data point xi and an anchor aj

share at least one class label; N(xi) denotes the set of k nearest anchor neighbors
of an unlabeled data point xi. The constructed graph of images is denoted as
Gv and the text graph is Gt.

3.3 Dual-Branch Graph Convolutional Network Hashing

To implement convolution operations on the large-scale graphs, inspired by [28],
we take full advantage of the anchors to build an asymmetric GCN architecture.

Suppose we have p pairs of anchors. We construct two anchor graphs for
image and text modalities, respectively. The normalized graph adjacency matrix
Âv and Ât with shape p×p are constructed as described in Sect. 3.1 and the rela-
tionships between anchors are defined as the same as labeled data. We also build
Ẑv and Ẑt for Gv and Gt, which are row-normalized asymmetric graph adjacency
matrices that indicate the relationships with modality-specific anchors.

CMGCNH contains two modality-specific branches and each is built with two
Asymmetric Graph Convolutional (AGC) layers and a group of typical Graph
Convolutional (GC) layers between them. Here, for the sake of simplicity, we
assume the number of GC layers is one. Take the image branch as an example,
the branch architecture is as follows:

V1
g = σ

(
ẐT

v VW1
v

)
(3)

V2
g = σ

(
ÂvV1

gW
2
v

)
(4)

98 J. Duan et al.

Uv = ϕ
(
ẐvV2

gW
3
v

)
(5)

Here, W1
v, W

2
v and W3

v are the weight matrices of the three layers, which are
CMGCNH aims to learn. The first AGC layer (3) aggregates the filtered features
of the neighbors to the anchor nodes through convolution operations, and V1

g

is the output of this layer. The middle GC layer (4) convolves the aggregated
anchor data points V1

g with their adjacency matrix Âv and outputs V2
g. These

two layers are followed by activation function σ (e.g., ReLU [14]). The last AGC
layer (5) calculates the low-dimension features of each node with the weighted
summation of anchors V2

g and is followed by a Tanh function ϕ. Uv = [Uvl,Uvu]
represents the final output of this branch. Uvl and Uvu denote the soft binary
codes of labeled and unlabeled image data, respectively.

The other branch is built for text, which has the same architecture as the
image-branch as shown below:

T1
g = σ

(
ẐT

t TW1
t

)
(6)

T2
g = σ

(
ÂtT1

gW
2
t

)
(7)

Ut = ϕ
(
ẐtT2

gW
3
t

)
(8)

Here, Ut = [Utl,Utu]. We implement the two branches simultaneously and then
merge Uvl and Utl with coefficients λ1 and λ2 as follows:

Ul = λ1 ∗ Uvl + λ2 ∗ Utl (9)

Then, Ul is relaxed to the unified hash code Bl through sign function. The third
part employs a fully connected layer as a linear classifier, which takes the binary
code Bl as the input and outputs the class label prediction of the data object oi.
Furthermore, we perform L2 norm penalty to force Ulv and Ult to approximate
to Bl as close as possible, so that Bl acts as the bridge of the two modalities
to preserve the inter-modal similarity relationships. For the unlabeled data, the
calculated Uvu and Utu are constrained to be bit uncorrelated and balanced.

3.4 Objective Function

As depicted above, we expect to learn two sets of modality-specific hash functions
Fv

(
v
)

and Ft

(
t
)

for images and texts to produce the unified binary codes B
for O through projecting two modalities into a common Hamming space, i.e.,
the generated Ulv and Ult are transformed to a common B through the sign
function, therefore, we employ the quantization loss between the continuous Ulv,
Ult and the discrete Bl as following:

min
Bl,U

L1 = μlv ‖Bl − Ulv‖2 + μlt ‖Bl − Ult‖2 (10)

in which μlv and μlt are the properly selected penalty parameters; ‖·‖2 denotes
the L2 norm of vectors.

Semi-supervised Cross-Modal Hashing with Graph Convolutional Networks 99

We also consider the original semantic structures, i.e., similarity relation-
ships. We strive to make the distance between the encoded objects with shared
labels as close as possible, otherwise, far away from each other. Hence, we pro-
pose to minimize the classification error from the hash codes Bl of all labeled
nodes. That is:

min
Bl,W

L2 = ‖Ll − BlWc‖2 (11)

where Wc is the weight matrix of a fully connected layer that acts as the clas-
sifier; Ll represents the label annotation matrix of the labeled data.

Since unlabeled data have no class constrain, we directly transform Uuv

and Uut to Buv and But through the element-wise sign function. To keep the
code bits uncorrelation and balance, we add two constrains to maximize the
information entropy:

min
B

L3 = η(
∥
∥BT

uvBuv − n2IC
∥
∥2

+
∥
∥BT

utBut − n2IC
∥
∥2

)

+ γ(
∥
∥BT

uv

∥
∥2

+
∥
∥BT

ut

∥
∥2

)
(12)

where η and γ are the trade-off hyper-parameters. The final objective function
of CMGCNH is

min
B,U,W

L = L1 + L2 + L3 (13)

3.5 Learning and Testing

Since we have three parameters, B,U,W, to learn, we leverage the alternating
learning strategy in training. Only one parameter is learned each time with the
other parameters fixed.

In the test phase, given a query q, the feature vector is sent into the well-
trained corresponding branch. The graph asymmetric adjacency matrices are
built as the way of training unsupervised data, which is based on the similari-
ties between q and the anchors. Then we obtain the hash code Bq by forward
propagation. That is

Bq = sign(ϕ
(
Ẑq(σ

(
Â(σ

(
ẐT

q qTW1
)
)W2

)
)W3

)
) (14)

The Hamming distances between Bq and hash codes of database are calcu-
lated and ranked, then we gain q’s most similar data in the other modality.

4 Experiments

To verify the effectiveness of the proposed method CMGCNH, we conduct exper-
iments on two widely-used cross-modal datasets: NUS-WIDE [2] and MIRFlickr-
25K [6], and compare the testing results with 6 state-of-the-art work.

100 J. Duan et al.

4.1 Datasets and Features

NUS-WIDE dataset [2] contains 269,498 images, each of which has a series of
corresponding textual tags. In our experiment, each data entity has multiple of
10 most common labels selected from the total 81 concepts. The corresponding
181,364 entities form the dataset that consists of 2000 image-text pairs as the
query set, and 179,364 pairs as the training set, in which, 1,000 randomly sampled
pairs are used as labeled data, and the rest are unlabeled. We represent images
with 4,09 6-D deep feature vectors extracted from the 19-layer VGGNet [16] and
text with 1,392-D Bag-of-Visual-Words vectors.

Table 1. The MAP scores of two retrieval tasks on MIRFlickr-25K (a) and NUS-WIDE
(b) with different lengths of hash codes.

(a) MIRFlickr-25K

Methods
image→text text→image

16-bits 32-bits 64-bits 128-bits 16-bits 32-bits 64-bits 128-bits

CVH 0.602 0.587 0.578 0.572 0.607 0.591 0.581 0.574

PDH 0.623 0.624 0.621 0.626 0.627 0.628 0.628 0.629

CMFH 0.659 0.660 0.663 0.653 0.611 0.606 0.575 0.563

CCQ 0.637 0.639 0.639 0.638 0.628 0.628 0.622 0.618

CMSSH 0.611 0.602 0.599 0.591 0.612 0.604 0.592 0.585

SCM 0.585 0.576 0.570 0.566 0.585 0.584 0.574 0.568

CMGCNH (ours) 0.696 0.709 0.723 0.719 0.670 0.670 0.672 0.680

(b) NUS-WIDE

Methods
image→text text→image

16-bits 32-bits 64-bits 128-bits 16-bits 32-bits 64-bits 128-bits

CVH 0.458 0.432 0.410 0.392 0.474 0.445 0.419 0.398

PDH 0.475 0.484 0.480 0.490 0.489 0.512 0.507 0.517

CMFH 0.517 0.550 0.547 0.520 0.439 0.416 0.377 0.349

CCQ 0.504 0.505 0.506 0.505 0.499 0.496 0.492 0.488

CMSSH 0.512 0.470 0.479 0.466 0.519 0.498 0.456 0.488

SCM 0.389 0.376 0.368 0.360 0.388 0.372 0.360 0.353

CMGCNH (ours) 0.575 0.578 0.589 0.596 0.576 0.578 0.602 0.613

MIRFlickr 25 K dataset [6] consists of 25,000 images. The images are asso-
ciated with multiple textual tags and each belongs to at least one of the total
24 categories. Only the tags appearing at least 20 times are selected, hence we
totally have 17,142 image-text pairs and randomly select 1,000 as the query set,
and the rest form the training set, which includes 1,000 labeled and 15,142 unla-
beled data. Images are represented with 4,096-D deep feature vectors from a
19-layer VGGNet [16] and text with 1,000-D BOW vectors.

4.2 Experiment Settings

Evaluation Metrics. We evaluate Hamming ranking and hash lookup proce-
dures of CMGCNH and the baselines. The widely used metric Mean average
precision (MAP) [11] is employed to measure the accuracy of Hamming ranking
procedure, and the Precision-Recall Curve is used to measure the accuracy of
the hash lookup.

Semi-supervised Cross-Modal Hashing with Graph Convolutional Networks 101

Fig. 2. Precision-recall curves on MIRFlickr (a, b) and NUS-WIDE (c, d) dataset. The
code length is 64 bits.

Baselines. We compare CMGCNH with 6 state-of-the-art work. CVH [9] adapts
the spectral hashing [19] to cross-view hashing with a generalized eigenvalue for-
mulation. PDH [15] embeds proximity of original data and designs an optimized
objective function based on block coordinate descent algorithm, to maintain
the predictability of the generated binary code. CMFH [3] builds an undirected
asymmetric graph to capture the fusion similarity among different modalities
by collective matrix factorization. CCQ [12] proposes a seamless latent seman-
tic analysis framework with multimodal correlation and composite quantization
integrated, so that data in various modalities are encoded into an isomorphic
latent space. CMSSH [1] solves a binary classification problem with learning a
mapping which can be efficiently learned using boosting algorithms. SCM [24]
proposes a semantic correlation maximization method based on semantic labels
for improving the efficiency of cross-modal hashing.

4.3 Implementation Details

Our code is based on PyTorch. All experiments are conducted on a server with
two GeForce GTX 2080 Ti GPUs.

As discussed in Sect. 2, the CMGCNH contains two branches and each branch
consists of two AGC layers and a group of GC layers. The input of these two
branches, i.e., the input of the first AGC layer, is 4,096D embedding. The output

102 J. Duan et al.

of the first layer is in 2,048D. The input and output of the group of GC layers are
set to 2,048D and the hash code length i.e., 16, 32, 64 and 128. We implement
experiments to explore the influence of the depth, i.e., the number of GC layers.
The two branches are implemented simultaneously and then merged based on
the measure, Ul = λ1 ∗Uvl +λ2 ∗Utl. In the experiment, we use a validation set
to choose the hyper-parameter λ1 and λ2 and find the best performance achieved
with λ1 = 0.7 and λ2 = 0.3. Therefore, we set that λ1 is fixed to 0.7 and λ2 is
0.3. In the same way, we fix the loss coefficients μv, μt, η and γ at 1, 1, 1e-3 and
1e−4. For exploring the influence of the number of anchors, we implement the
experiments with different anchor numbers.

Fig. 3. Performance of cross-modal retrieval using different number of anchors (a) and
network depth (b) on MIRFlickr dataset.

4.4 Experiment Results and Analysis

Comparisons with Baselines. The mAP results on different hash code lengths
are listed in Table 1. The Precision-Recall curves (with 64-bit hash code) are
plotted in Fig. 2. The experiment results show that CMGCNH performs the best
in all methods. For MIRFlickr-25K dataset, CMGCNH keeps the best average
mAP of 0.723 on image → text and 0.680 on text → image task. Compared with
CMFH [3], which performs the best in all unsupervised methods, CMGCNH
increases the mAP score by around 0.06 on 64-bits in two tasks. In comparison
with the supervised method CMSSH, the mAP score of our method is about 1.00
higher in image → text task and about 0.08 higher on 128-bits in text → image.
Likewise, in NUS-WIDE dataset, the performance of our method is satisfactory.
For example, the mAP score of CMGCNH with 128-bits in the text → image
task is about 0.1 higher than PDH [15] which performs the second best here.

From the Precision-Recall curves, it can be observed that CMGCNH outper-
forms all baselines, which means our method achieves a better precision-recall
balance in the lookup procedural than other work. For instance, in image → text
task on MIRFlickr-25K, with the same recall at 0.4, the precision of CMGCNH
reaches 0.76, which is around 0.08 higher than the second best method CMFH

Semi-supervised Cross-Modal Hashing with Graph Convolutional Networks 103

[3]. This indicates that CMGCNH can find the same number of relevant data
candidates by retrieving less data in the database than other methods.

Effect of Anchor Selection. To explore influence of the number of anchors,
we implement the experiment to calculate the mAP when this number changes
from 100 to 1000 on 64-bits. In Fig. 3(a), it can be seen that the performance
is getting better along with the number of anchors increase overall. This can be
explained as that the more anchors used in the graph, the more information of
the data nodes is preserved and propagated. It also demonstrates that the design
of anchors used to keep and transfer semantic information is effective.

Effect of Model Parameters. For exploring how the depth of GC layers affects
performance, we conduct an experiment to observe the changes of mAP when
the depth rises from 1 to 10. From Fig. 3(b), we can see that the score reaches
the peak at 3-depth and then starts to drop down. Hence, we suggest that the
over-deep GC model will lose information during forward propagation, while
over-shallow GC network cannot adequately aggregate and retrieve the node
features. We fix the depth to 3 in experiments to achieve the best performance.

5 Conclusion

In this paper, we propose a novel semi-supervised cross-modal hashing frame-
work, CMGCNH, which is the very first work of applying asymmetric graph
convolutional network for scalable cross-modal retrieval. With the well designed
graph anchors and asymmetric architecture, it implements cooperative multi-
modal learning strategy to encode data into hash codes with the intra- and inter-
modality correlations well preserved, and dramatically reduces the computation
complexity. Experiments on two datasets demonstrate its superior performance.

References

1. Bronstein, M.M., Bronstein, A.M., Michel, F., Paragios, N.: Data fusion through
cross-modality metric learning using similarity-sensitive hashing. In: CVPR, pp.
3594–3601 (2010)

2. Chua, T., Tang, J., Hong, R., Li, H., Luo, Z., Zheng, Y.: NUS-WIDE: a real-world
web image database from national university of Singapore. In: CIVR, pp. 368–375
(2009)

3. Ding, G., Guo, Y., Zhou, J.: Collective matrix factorization hashing for multimodal
data. In: CVPR, pp. 2083–2090. IEEE Computer Society (2014)

4. Hardoon, D.R., Szedmák, S., Shawe-Taylor, J.: Canonical correlation analysis: an
overview with application to learning methods. Neural Comput. 16(12), 2639–2664
(2004)

5. Hu, Y., Jin, Z., Ren, H., Cai, D., He, X.: Iterative multi-view hashing for cross
media indexing. In: ACMMM, pp. 527–536 (2014)

104 J. Duan et al.

6. Huiskes, M.J., Lew, M.S.: The MIR flickr retrieval evaluation. In: SIGMM, pp.
39–43 (2008)

7. Jiang, Q.Y., Li, W.J.: Deep cross-modal hashing. In: CVPR, pp. 3270–3278 (2017)
8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional

networks. In: ICLR (2017)
9. Kumar, S., Udupa, R.: Learning hash functions for cross-view similarity search. In:

IJCAI, pp. 1360–1365 (2011)
10. Lin, Z., Ding, G., Hu, M., Wang, J.: Semantics-preserving hashing for cross-view

retrieval. In: CVPR, pp. 3864–3872 (2015)
11. Liu, W., Mu, C., Kumar, S., Chang, S.: Discrete graph hashing. In: NeurIPS, pp.

3419–3427 (2014)
12. Long, M., Cao, Y., Wang, J., Yu, P.S.: Composite correlation quantization for

efficient multimodal retrieval. In: SIGIR, pp. 579–588 (2016)
13. Luo, Y., Yang, Y., Shen, F., Huang, Z., Zhou, P., Shen, H.T.: Robust discrete code

modeling for supervised hashing. Pattern Recogn. 75, 128–135 (2018)
14. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann

machines. In: ICML, pp. 807–814 (2010)
15. Rastegari, M., Choi, J., Fakhraei, S., Hal, D., Davis, L.S.: Predictable dual-view

hashing. In: ICML, pp. 1328–1336 (2013)
16. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale

image recognition. In: ICLR (2015)
17. Sun, L., Ji, S., Ye, J.: A least squares formulation for canonical correlation analysis.

In: ICML (2008)
18. Wang, D., Cui, P., Ou, M., Zhu, W.: Learning compact hash codes for multimodal

representations using orthogonal deep structure. IEEE Trans. Multimed. 17(9),
1404–1416 (2015)

19. Weiss, Y., Torralba, A., Fergus, R.: Spectral hashing. In: NeurIPS, pp. 1753–1760
(2008)

20. Wu, G., et al.: Unsupervised deep hashing via binary latent factor models for
large-scale cross-modal retrieval. In: IJCAI, pp. 2854–2860 (2018)

21. Wu, L., Wang, Y., Shao, L.: Cycle-consistent deep generative hashing for cross-
modal retrieval. IEEE Trans. Image Process. 28(4), 1602–1612 (2019)

22. Xu, X., Shen, F., Yang, Y., Shen, H.T., Li, X.: Learning discriminative binary codes
for large-scale cross-modal retrieval. IEEE Trans. Image Process. 26, 2494–2507
(2017)

23. Ye, Z., Peng, Y.: Multi-scale correlation for sequential cross-modal hashing learn-
ing. In: ACMMM, pp. 852–860 (2018)

24. Zhang, D., Li, W.J.: Large-scale supervised multimodal hashing with semantic
correlation maximization. In: AAAI, pp. 2177–2183 (2014)

25. Zhang, J., Peng, Y., Yuan, M.: Unsupervised generative adversarial cross-modal
hashing. In: AAAI, pp. 539–546 (2018)

26. Zhen, Y., Yeung, D.: Co-regularized hashing for multimodal data. In: NeuIPS, pp.
1385–1393 (2012)

27. Zhou, J., Ding, G., Guo, Y.: Latent semantic sparse hashing for cross-modal simi-
larity search. In: SIGIR, pp. 415–424 (2014)

28. Zhou, X., et al.: Graph convolutional network hashing. IEEE Trans. Cybern. 1–13
(2019)

Typical Snapshots Selection for Shortest
Path Query in Dynamic Road Networks

Mengxuan Zhang(B), Lei Li, Wen Hua, and Xiaofang Zhou

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

mengxuan.zhang@uqconnect.edu.au, {l.li3,w.hua}@uq.edu.au,
zxf@itee.uq.edu.au

Abstract. Finding the shortest paths in road network is an important
query in our life nowadays, and various index structures are constructed
to speed up the query answering. However, these indexes can hardly
work in real-life scenario because the traffic condition changes dynam-
ically, which makes the pathfinding slower than in the static environ-
ment. In order to speed up path query answering in the dynamic road
network, we propose a framework to support these indexes. Firstly, we
view the dynamic graph as a series of static snapshots. After that, we
propose two kinds of methods to select the typical snapshots. The first
kind is time-based and it only considers the temporal information. The
second category is the graph representation-based, which considers more
insights: edge-based that captures the road continuity, and vertex-based
that reflects the region traffic fluctuation. Finally, we propose the snap-
shot matching to find the most similar typical snapshot for the current
traffic condition and use its index to answer the query directly. Extensive
experiments on real-life road network and traffic conditions validate the
effectiveness of our approach.

Keywords: Shortest path · Snapshot selection · Dynamic road
network

1 Introduction

Shortest path query is a fundamental operation in road network routing and
navigation. A road network can be denoted as a directed graph G(V,E) where
V is the set of road intersections, and E ⊆ V × V is the set of road segments.
Each edge is associated with a numerical weight representing the length of a road
segment or the time required to travel through. The road network is static if both
the structure and the edge weights (i.e., V and E) do not change over time. As
for the real-life road network, the traffic condition changes almost all the time, we
model the road network as a dynamic graph. Here we treat this dynamic graph as
a series of snapshots, with each snapshot is static by itself but dynamic between
each other, and answer the path queries using their corresponding snapshot
graphs.
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 105–120, 2020.
https://doi.org/10.1007/978-3-030-39469-1_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_9&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_9

106 M. Zhang et al.

The shortest path problem has been extensively studied and the approaches
can be grouped into two categories depending on if an index is created or not.
The index-free methods like Dijkstra’s, A* [1,2], and cache-based [3], find the
path only with the graph information. Therefore, they can adapt to the dynamic
environment by simply running on the new graph. But they suffer from low query
efficiency or inaccurate results, so various index-based methods [4–7] have been
proposed to speed up the query answering. However, these indexes all take time
to construct, and the traffic condition may have already changed before their
construction finishes. Therefore, there are two extreme cases to use index on
a dynamic graph. The first one is building an index for each snapshot, which
is not space efficient and has much redundant information. The other one is
creating a big time-dependent index [8] for the entire time domain like TCH [9]
and T2Hop [10]. However, their index sizes are huge and they essentially require
the graph to be static from the perspective of “change”. Therefore, we aim to
seek a balance between the two extremes by identifying some typical snapshots
from the dynamic graphs and only build indexes for them. Given queries in a
specific current traffic condition, we first match the traffic condition to the most
similar typical snapshot and use its index to answer the queries. When none of
the existing snapshots is similar enough, we regard the current road network as
a new snapshot and construct an index for it.

However, it is unclear how to choose those typical snapshots and how to
classify the current traffic condition. We try to represent multiple similar snap-
shot graphs as one typical graph and then process queries in it at the cost of
query accuracy. There are two lines of studies focus on graph similarity mea-
surement. The first one is the graph edit distance [11–13]. It uses the minimum
edit operation number to transform one graph into another. The other one is the
feature-based distance [14], where the similarity is not measured on the graph
directly but on the abstraction of a graph. Existing methods in both these two
lines consider either attribute similarity or structural similarity. However, the
road network is a special graph where the topological structure does not evolve
frequently because the road construction and closure are not very common. In
addition, the edges and vertices in the road network are not associated with
labels. It is the edge weight or the speed that varies with time, and we suppose
that the structure remains stable for the road network. Therefore, the existing
graph similarity measurement can hardly solve our problem. However, we also
represent the graph as a feature vector but use the edge weight vector and vertex
vector, and we focus on the speed profile change rather than the change of the
topological structure or the associated labels. To the best of our knowledge, it
is the first time to specify the representation and the similarity measurement
of the road network. Then multiple snapshots are clustered, the representative
snapshot in each cluster can be selected as the typical snapshot. When there
comes a query, we classify the current road network as the most similar typical
snapshot and process the shortest path on it.

To support accurate clustering and classification of the snapshots, three chal-
lenges must be addressed. The first challenge is that the original representation

Typical Snapshots Selection for Shortest Path Query 107

of the road network encounters the high-dimension curse. Various dimension
reduction techniques such as PCA and LDA are proposed, but they are general
methods and none are specified to the road network. Here, we reduce the dimen-
sion by calculating the covariance of each edge first and filtering the edges whose
values are smaller than the threshold. Also, we propose another two represen-
tations with much lower dimension: Edge-based and Vertex-based. The second
challenge is how to incorporate the road network features like region property
and road network continuity into the selection. The two proposed graph repre-
sentation methods focus on different aspects of the network feature. The Edge-
based graph representation uses path to capture the continuity of the network.
The Vertex-based representation selects the “hot spots” (typical vertices) in net-
working by evaluating the fluctuation of the traffic condition around the vertices.
The third challenge is how to choose the typical graph given the current traffic
condition. When there comes a query, we convert the graph in the two proposed
ways and then match the current graph with one typical graph by using the
classification algorithm. The contributions in this work can be summarized as
follows:

– We formally study the problem of shortest path query in dynamic graphs.
– We propose two categories of the methods to select the typical snapshots: The

time-based approaches that choose the snapshots directly, and the graph-
representation approaches (edge-based and vertex-based) that consider the
features like continuity, region condition.

– We present how to do the graph clustering and classification in our graph-
representation.

– We conduct extensive evaluations using a large real-world road network and
traffic condition. The experimental results verify the effectiveness of our
approaches.

The remaining of this paper is organized as follows: We first discuss the cur-
rent literature of the pathfinding and graph similarity measurement in Sect. 2.
Section 3 introduces some common notions and defines the sub-problems: Typical
Snapshots Selection and Snapshot Matching. For the first sub-problem, we pro-
pose two time-based approaches in Sect. 4, and present two graph representation-
based methods in Sect. 5. The actual typical snapshot selection and the second
matching sub-problem are discussed in Sect. 5.3. Evaluations of the proposed
methods in a real-life dynamic road network are presented in Sect. 6. Finally,
Sect. 7 concludes the paper.

2 Related Work

2.1 Shortest Path Algorithm

In the past decades, various techniques have been proposed for the shortest
path calculation in road networks. The fundamental shortest path algorithms
are Dijkstra’s and A* algorithms. The Dijkstra’s is inefficient as it needs to

108 M. Zhang et al.

traverse the entire network for the shortest path search. And the A* improve
the query efficiency by directing the traversal towards the destination with the
help of the heuristic distance. Then there comes a line of research that acceler-
ates the query answering by pre-calculating the index. Particularly, algorithms
such as Contraction Hierarchy [4] prune the search space by referring to infor-
mation stored in the index. Other algorithms like 2-Hop Labeling [5] and SILC
framework [6], attempt to materialize all the pairwise shortest path results in
a concise or compressed manner such that a given shortest path query can be
answered directly via a simple table-lookup or join. These index-based algo-
rithms are usually efficient for query answering so as to return the query result
within microseconds, but the major premise behind them is that the road net-
work should be static. Since the index construction is often time-consuming and
the road network evolves almost all the time, the rebuilt index cannot always
fit the current refreshed network condition. Therefore, these algorithms do not
adapt well to the dynamic environment.

Another line of research attempts to process the query in dynamic environ-
ment. It uses functions to describe the road condition directly [8,15,16]. However,
the complexity of finding the fastest path is Ω(T (|V | log |V | + |E|)), where T is
a large number related to the function. This complexity lower bound determines
it is much slower to find a fastest path compared with the static environment.
To further speed up the query efficiency, time-dependent indexes like TCH [17]
and T2Hop [10] are proposed. However, these time-dependent algorithms essen-
tially view the dynamic environment statically, because their time-dependent
functions are stable. Any change of their function would result in the failure of
the existing index and have to endure a time-consuming reconstruction process.
Therefore, some works drop the time-dependent functions and run the query in
the dynamic graph directly. Because it is hard to build an index for the dynamic
graph, shared computation [1,2,18] is introduced to improve the query efficiency.
Nevertheless, their efficiency is still not comparable with index-based approaches.
In this work, we aim to bring the index back to the dynamic environment with
the help of snapshots.

2.2 Graph Similarity Measurement

The graph distance can be measured mainly in two ways: graph edit distance
[11,13] and feature-based distance [19,20]. Graph edit distance has been widely
accepted for the graph similarity measurement, and two graphs whose distance
is less than a similarity threshold is considered to be similar. It is a metric
which can be used in various graphs such as directed or undirected, labeled
or unlabeled, as well as single or multi-graphs. The distance is calculated as
the minimal steps of graph edit operations including the insertion, deletion, or
alteration of vertex or edge to transform one graph to another. In this way, this
method can reflect the topological differences between graphs. However, it is not
applicable to our problem because the topological structure of the road network
does not change often and is supposed to be static here. For the feature-based

Typical Snapshots Selection for Shortest Path Query 109

distance, most of the existing works focus on the structure-based, attributed-
based or structural/attribute distance. In [19], some labeled edges are selected
as the features and one graph is represented as a feature vector where each
dimension indicates the existence or the frequency of the corresponding edge.
The neighborhood random walk model is proposed to combine the structural
closeness and attribute similarity for the graph clustering [20]. However, in our
scenario, the edges are associated with the length or travel time rather than the
labels, and the structure is supposed to be static as mentioned above. In this
work, we aim at distinguishing multiple snapshots by their speed profile, and we
need to measure the graph similarity from the combination of edge weights and
graph structure. Therefore, the existing graph similarity measurement is difficult
to be applied here.

3 Problem Definition

Definition 1 (Road network). Road network is formalized as a dynamic
weighted graph GD(V,E,W (T)), where the vertex v ∈ V (resp. edge e ∈ E)
denoting road intersection (resp. segment) and the edge weight w(e, t) → R, t ∈ T
can change with time.

If we take a snapshot of the dynamic graph at some time point t, then
each edge on the snapshot gi = GS(V,E,W (ti)) is associated with only one
weight value. Suppose the road traffic condition is constant around a small time
interval of the snapshot, then the dynamic graph can be treated as the set of
multiple snapshots with the timestamp, that is GD = {gi = GS(V,E,W (ti))|ti ∈
T,

⋃{ti} = T}.
We focus on the shortest path query in the dynamic road network. Given

k typical snapshots with their corresponding indexes, and the shortest path
queries in the current road network, we try to match the current graph to the
most similar typical graph and use its index for the query answering. Therefore,
two sub-problems typical snapshot selection and snapshot matching appear and
they are defined as followed.

Definition 2 (Sub-Problem 1: Typical Snapshots Selection). Given mul-
tiple snapshots G = {g0, g1, . . . , gn−1} of a road network, typical snapshots selec-
tion puts them into k (k < n) clusters such that the snapshots in the same
cluster are similar and those in different clusters are dissimilar. One represen-
tative snapshot is taken from each cluster as the typical snapshot.

Definition 3 (Sub-Problem 2: Snapshot Matching). Given one snapshot
gi and k typical snapshots GT = {g1, g2, . . . , gk} of the road network, where gi
is not necessary in GT , snapshot matching captures the snapshot g∗ that is the
most similar with gi from GT .

Apparently, both of the two sub-problems need the graph similarity mea-
surement. We measure the similarity of road networks by first abstracting the

110 M. Zhang et al.

features and then use the distance between the feature vectors as the graph
similarity.

To evaluate the difference or quality between the selected typical graph gi
and the actual graph g∗, we need an error measurement. We compute the trav-
eling time li(p) and l∗(p) by using the edges of gi and g∗ for each p ∈ P . The
error p is error(p) = |li(p) − l∗(p)|/|l∗(p)|, and the error between gi and g∗ is

error(gi, g∗) =
∑

error(p)
|P | . Because the trajectories are collected from the taxi,

this measurement focuses more on the actual impact on real-life traveling.

4 Time-Based Typical Snapshot Selection

The dynamic road network can be viewed as a time series of snapshots. Because
the traffic on road network changes incrementally in real life and several continu-
ous snapshots can be approximately the same. Based on the observation, we can
select the typical snapshots by sampling on the time dimension. In the following,
we present two baseline selection methods: uniform sampling and non-uniform
sampling.

4.1 Uniform Sampling

Suppose the total snapshot number is n. The uniform sampling method selects
the snapshots with the same step x starting from the yth snapshot (y < x). In
other words, GT = {gi|i = y + kx, 0 ≤ i < m}. When x = 1, all n snapshots are
selected, and its error is 0; when x = 2, every odd or even snapshot is selected,
and it has some error; when x ≥ n

2
, only one snapshot is selected, and it has

the largest error. The number of the typical graph is k = �m/x�. Obviously,
the error could be inversely proportional to the typical snapshot number k, and
we test the performance of different k. This method can control the number of
snapshots, but it cannot guarantee the worst case error. The time complexity is
O(n).

4.2 Non-uniform Sampling

The change rate of traffic conditions differs in each time period. For example,
the road network is almost the same from midnight to the early morning because
little traffic appears on road. But it can change dramatically during peak hours.
Therefore, we select the typical snapshots non-uniformly according to how the
traffic changes by time, which can be captured by the path-based error.

The sampling works in a sliding window fashion. First of all, an error thresh-
old ε is set. After that, we visit the snapshots in the increasing order of times-
tamps and put the current visiting snapshot gi into the current window G′.
For each gj ∈ G′, we compute its error error′(gj) = max(error(gj , gi)), where
gi ∈ G′ and gj 	= gi. Then the gj with the minimum error′(gj) is selected as
the typical graph of the current window. If error′(gj) ≤ ε, the windows keep

Typical Snapshots Selection for Shortest Path Query 111

expanding and test the next snapshot. Otherwise, a typical graph selected for
the previous windows and a new window is created with gi as the first snap-
shot. This procedure runs on until all the snapshots are visited. Apparently,
this method can control the worst error, but it cannot determine the number of
typical snapshots. The time complexity is O(n2).

5 Graph Representation-Based Selection

5.1 Edge-Based Representation

Suppose the road network structure does not change, which means V and E is
steady, then only the weight vectors differ for multiple graphs. Therefore, in our
first type of representation, we use the weight vector and the delta weight vector
to denote one graph.

Single Edge Representation. If we denote one graph as the weight vector,
then one snapshot Gi is directly represented as Wi = [e1, e2, . . . , e|E|], which
contains every edge’s weight. And its variant is the delta weight vector, that is we
can express one snapshot gi as δ(Wi), where W0 is the weight vector of g0 (treated
as referenced graph), and δ(Wi) = Wi −W0 = [δe1, δe2, . . . , δe|E|]. Because both
of Wi and δ(Wi) has the same dimension number of |E|, which could be hundreds
of thousands in real-life and suffers from the curse of dimension, we have to
reduce the dimension number before computing the similarity.

The first approach of dimension reduction we apply is PCA (Principal Com-
ponent Analysis). However, it is a general dimension reduction algorithm and
does not perform well in our scenario. In the road network, it is those edges that
change dramatically over that distinguish a typical snapshot. Then we use the
coefficient of variation cv (standard deviation divided by the mean) of each edge
to measure how various an edge is and use a threshold to identify those various
ones to construct a lower-dimensional weight vector.

Aggregated Edge Representation. The weight vector shows the weight of
every edge in a graph, but it loses the information of the connection and conti-
nuity of road segments. Usually, it is the continuous road segments in some areas
that are busy or congested rather than the individual road segments or all the
road segments in one area. Therefore, we try to use the aggregated edge length
of multiple paths to represent one graph and we call these paths as typical paths.

Each path p is a sequence of connected edges with p = [e0, e1, . . . , en] and
the length of a path is d(p) =

∑n
i=0 w(ei). Suppose there are k typical paths,

then one snapshot is represented as gAE = [d(p0), d(p1), . . . , d(pk−1)].

112 M. Zhang et al.

To better represent a graph, the typical paths set should meet the following
conditions: (1) The coverage of typical paths should be as large as possible to
represent the graph completely; (2) The similarity between typical paths should
be small to avoid the redundant representation; (3) The length (calculated as
the total time passing through) of the same path should vary greatly so as to
differ multiple snapshots . And according to the observation of traffic in daily
life that the congested road segments are usually within local areas, such as the
discontinuous red or yellow segments along one long path, we set the minimum
static length lmin and the static maximum length lmax (calculated as the total
length) of the candidate typical paths as 2 km and 3 km, respectively.

To meet the first condition of path selection, we partition the graph evenly
into 4 × 4 regions R = {R0, R1, . . . , R15}. An example of the selected paths in
each region is shown in Fig. 1. The selected paths number pnumi in region Ri is
proportional to the vertices number in it with pnumi = pnum × |Vi|/|V |, where
pnum is the typical paths total number and |Vi| is the vertices number in Ri. The
paths generated at this step are the candidates. To meet the second condition,
we compute the similarity between typical paths in a region and remove one
of those that are larger than a threshold. The similarity here is the Jaccard

Coefficient (
|pi ∩ pj |
|pi ∪ pj |) over the edges. In the following, we present different ways

to select the candidate typical paths.
Random Selection. The simplest way is to randomly select pnumi paths in
each region Ri with path length between lmin and lmax. First of all, a length
threshold η is determined randomly. After that, a starting edge is selected ran-
domly, and we choose one of its neighbors randomly. The path keeps growing
until the length is larger than η. Repeated edge is avoided for better coverage.
Edge-Constrained Selection. To increase the representativeness of the typical
paths, we select those paths whose edges’ coefficient of variations is no less than a
threshold threshcv. However, it is inefficient to generate and validate candidates
forwardly, so we do the coefficient of variation filtering first and construct a
sub-graph only with the highly changing edges. After that, the candidates are
generated on this sub-graph instead of the original graph.
Edge-Greedy Selection. The random selection ignores the weight variation
totally so it suffers from generating the qualified candidates repeatedly, while
the edge-constraint selection is limited to a small sub-graph so it faces the
headache of high similarity between the candidates. Therefore, we propose a
greedy method to generate the candidates considering both the weight variation
and path distinction. This approach also runs on the original graph and select
the starting edge randomly. As for growing the candidate path, the next selected
out-edge is the one with the largest cv. To maintain the effectiveness of the path,
a smaller threshold threshcv is applied to validate the edge.

Typical Snapshots Selection for Shortest Path Query 113

Fig. 1. Typical paths distribution Fig. 2. Typical Vertex Selection

5.2 Vertex-Based Representation

In real life, there always exist some temporal hot spots in the road network,
such as the inevitable road intersection during rush hour, the scenic spots on
weekend, and the business area after work. Meanwhile, the traffic conditions in
other “cold” areas stay normal at the same time. Then how about detecting
these “key” vertices (called typical vertices) and use the aggregation of traffic
conditions around them to represent the traffic condition on the whole road
network? Consequently, two problems need to be solved: (1) how to find the
typical vertices? (2) how to use the typical vertices to represent one snapshot
for the similarity measurement among different snapshots?

Graph Representation. Suppose these typical vertices VT = {vi}, vi ∈ V in a
road network have already been known in advance. Inspired by the tree-based q-
gram approach for graph similarity join problem [11,21], we represent the traffic
condition around each typical vertex vi as the set of vertices that can be reached
from vi in a breath-first-search within a fixed time period (for example, 2 min). If
a driver arrives at a hot spot, he or she is likely to be blocked by the traffic flow
and could pass through fewer road intersections within the time period. Usually,
the smoother the traffic condition around vk in gi is, the larger the value of
|Sik| will be, and vice versa. Obviously we cannot learn much from the absolute
value of |Sik|, and we care more about the congestion than the smoothness of
the traffic. We define the block coefficient of a vertex vk in gi as

b(vik) = max{|S1k|, |S2k|, . . . , |Snk|}/|Sik| (1)

where max{|S1k|, |S2k|, . . . , |Snk|} represents the maximum reachable vertex
number from vk among multiple snapshots, and it reflects the non-block traffic
condition around vk in other words. The larger the block coefficient b(vik), the
more congested around vk at time period ti.

In the first type of vertex-based representation, we denote one snapshot as
the block coefficient of the typical vertices (called vertex-bc representation),
that is gi = [b(vi0), b(vi1), . . . , b(vi|VT |)]. We can also represent one snapshot
as the vertex set of typical vertices (called vertex-set representation), that is

114 M. Zhang et al.

gi = [Si1, Si2, . . . , Si|VT |] with Sik denoting the vertex set reached from vk within
t0 time in gi. And the reachable vertex set from the vertex vk in n snapshots
can be denoted as [S1k, S2k, . . . , Snk].

Typical Vertices Selection. The difference between the hot spots and the
“cold” vertices is that the traffic condition fluctuates more dramatically around
the hot spots. Hence, we define the traffic fluctuation f(vk) of vk as the coefficient
of variation of the block coefficient:

f(vk) =
σ{b(v1k), b(v2k), . . . , b(vnk)}
μ{b(v1k), b(v2k), . . . , b(vnk)} (2)

where σ and μ denotes the standard deviation and the mean of
{b(v1k), b(v2k), . . . , b(vnk)}..

To select the typical vertices, we visit the vertices in decreasing order of their
traffic fluctuation and choose the top |VT | vertices. Besides, during the selection,
we exclude the vertices that are close to the selected typical vertices because
they are likely to capture the traffic condition of the overlapped local area or
have the similar traffic fluctuation pattern.

Specifically, We first compute the vertex set Sik for each vertex on each
snapshot using BFS. However, the search does not stop at r but at 2r and also
generates a larger coverage set S′

ik. Sik is used to compute the block coefficient
b(vik) and traffic fluctuation f(vk), while S′

ik is used to avoid the typical vertices
being too close to each other. As shown in Fig. 2, the vertex coverage set of the
selected vertices have no intersection with each other. The procedure stops when
k typical vertices are selected. The time complexity is O(|V ||GD| × BFS(2r) +
|V | log |V |). Because the complexity of the BFS is dependent on a small radius
2r, we use BFS(2r) to denote its complexity.

5.3 Graph Clustering and Snapshot Matching

In this section, we discuss the methods to solve the two sub-problems. The
previous section introduced two types of graph representations, and we present
how to utilize them to select the typical snapshots. Section 5.3 presents how
the typical snapshots are determined and Sect. 5.3 solves the snapshot matching
sub-problem with graph classification.

Graph Clustering. Because the graphs are represented as low-dimensional
vectors, we can utilize general clustering methods to put similar ones together.
However, methods that tend to cluster arbitrary shapes like DBSCAN [22,23]
are not suitable for tasks like this because of their errors are not guaranteed.
Therefore, we use two types of methods: adaptive K-means based clustering and
agglomerative hierarchical clustering [24] that have a distance threshold to do
the clustering.

Typical Snapshots Selection for Shortest Path Query 115

Graph Classification. When the traffic condition changes, we can receive a
new snapshot g′. First of all, g′ is converted into one of the graph representations.
After that, it is compared with the existing typical snapshots and obtains the
most similar one g∗. If the similarity between satisfies the threshold, we use the
index of g∗ directly to answer the path queries. Otherwise, g′ is considered as a
new typical snapshot, and a new index is also built for it.

6 Experiments

In this section, we experimentally evaluate the performance (in terms of the
accuracy and efficiency) of the proposed typical snapshot selection and snapshot
matching approaches using the real-life road network with real traffic condition.

(a) Single-Edge Representation (b) Aggregated Edge Representation

Fig. 3. Performance of edge-based representation

6.1 Experimental Setup

We execute the experiments on the Beijing road network with 31,2350 vertices
and 40,3228 edges. Currently, there are 288 snapshots sampled every 5 min from
the traffic condition in 1st April 2015. These snapshots are obtained from the taxi
trajectories collected during that day. The original trajectory dataset contains
532,868 trajectories and 17,698,668 GPS points. We follow the same process of
[15] to generate the speed profile.

All the algorithms are implemented in C++, compiled with full optimiza-
tions, and tested on a Dell R730 PowerEdge Rack Mount Server which has two
Xeon E5-2630 2.2 GHz (each has 10 cores and 20 threads) and 378 G memory.
The data are stored on a 12 × 4 TB Raid-50 disk.

116 M. Zhang et al.

6.2 Typical Snapshot Selection

Edge-Based Representation. Figure 3(a) shows the result of the single-edge
representation test. These snapshots are clustered by K-means. The edge vector
and the edge delta vector are denoted as EdgePCA and EdgeDeltaPCA, with the
PCA dimension reduction. And we use EdgeCovaPCA and EdgeDeltaCovaPCA
to denote the combine of coefficient of variant and PCA dimension reduction.
The performance of single-edge presentation is better than the uniform sampling
method only when the typical snapshot number is over 40. Because in this kind
of representation, we only consider the weight of edge and ignore the connectivity
of edges and the underlying topological structure. Although the graph structure
stays the same for each snapshot, it has a great impact on the location of the
shortest path.

Figure 3(b) shows the performance of the aggregated-edge representation. The
random/edge-constrained/edge-greedy path selections are denoted as Random-
Path, ConstrainedPath, and GreedyPath. It can be seen that the aggregated-edge
representation performs slightly better than the uniform sampling method. And
the performance of these three variants is pretty much the same, which indicates
that the typical paths are still not enough to represent the snapshot. But since
the edge connectivity is considered in this representation, it performs better than
the singe-edge representation (all the lines are below the sampling, while the half
of the single-edge’s lines are above the sampling).

Vertex-Based Representation. For the vertex-set representation, we cluster
the snapshots by hierarchical clustering and the testing performance is named
as vertex-set. And we use both the K-means and Hierarchical Clustering in the
vertex-bc representation and the results are denoted as vertex-bc-Hier and vertex-
bc-Kmeans as shown in Fig. 4. In terms of vertex-based representation, it can be
seen that the shortest path error of vertex-set representation is always smaller
than that of the vertex-bc representation regardless of the clustering methods. In
vertex-bc representation, we consider both the reachable vertex number and the
vertex set distribution overlapping, which is proved reasonable in these experi-
mental results. In terms of typical vertex number, the error decreases distinctly
when the typical vertex number rise from 50 to 150. It makes sense because more
typical vertices can represent the snapshot and show the traffic characteristics
more completely so as to generate more accurate clustering results. When the
typical vertex number increase from 150 to 200, the errors are almost the same
for all three methods. This indicates that taking less than 150 typical vertices
is enough to represent the snapshot. What’s more, fewer typical vertices is good
for improving the snapshot matching efficiency. It is interesting to find that the
performance of selecting 50 typical vertices is almost the same as that of 200
typical vertices, which again shows the superiority of vertex-set representation.

Typical Snapshots Selection for Shortest Path Query 117

(a) 50 Typical Vertices (b) 100 Typical Vertices

(c) 150 Typical Vertices (d) 200 Typical Vertices

Fig. 4. Performance of vertex-based representation.

Time-Based Selection. In this section, we compare the performance of the
time-based methods and the graph representation-based methods. For the rep-
resentation method results, we choose ConstrainedPath from the edge-based,
vertex-set from the vertex-based because they are the best of their own categories.
The result is shown in Fig. 5. The worst method is the uniform sampling, followed
by the non-uniform sampling. The three graph representation-based methods are
all better than the time-based methods. Specifically, vertex-based is better than
edge-based.

6.3 Snapshot Matching

In this section, we evaluate the running time of the snapshot matching pro-
cedure. Because the graph representation-based methods have higher accuracy
than the time-based methods, we only show their results. The matching time
is made up of the representation time, which convert the current snapshot into
one of the representations, and the similarity computation time, which compares
with the existing typical snapshots and finds the most similar one. Specifically,
matching time = tr + k × tSimilarity, where k is the number typical snapshots.

The result is shown in Table 1. The Edge-based is the fastest to run because
it only needs edge weight concatenation. The Vertex-based is slower because it
has to run hundreds of Dijkstra’s to collect the vertex set. Nevertheless, all of
these methods can finish in one second, and the matching process like this only
needs to run once when the traffic condition changes.

118 M. Zhang et al.

Table 1. Snapshot matching
running time (sec)

Edge-based Vertex-based

Graph convert 6.012 × 10−6 4.121 × 10−4

Similarity k × 10−8 k × 4.9 × 10−5

Fig. 5. Performance comparison of four
methods

7 Conclusion

In this paper, we study the problem of supporting the index-based shortest
path query answering in the dynamic road network. Because of the dynamic
nature of the real-life traffic condition, none of the existing index structures
can adapt to the real dynamic environment. On the other hand, although the
traffic condition changes over time, it does not change dramatically in a short
period. Therefore, we view the dynamic road network as a series of snapshots
and only build the indexes on the typical ones. The first problem is how to
determine if one snapshot is typical or not. We propose two sets of time-based
and graph representation-based approaches to deal with it. After that, when
facing a new traffic condition snapshot, we use the snapshot matching to find
the most similar typical snapshot, and use its index to answer the path queries.
Our extensive experiments use the real-life road network, traffic condition to
validate the effectiveness of our methods.

References

1. Zhang, M., Li, L., Hua, W., Zhou, X.: Batch processing of shortest path queries in
road networks. In: Chang, L., Gan, J., Cao, X. (eds.) ADC 2019. LNCS, vol. 11393,
pp. 3–16. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12079-5 1

2. Zhang, M., Li, L., Hua, W., Zhou, X.: Efficient batch processing of shortest path
queries in road networks. In: 2019 20th IEEE International Conference on Mobile
Data Management (MDM), pp. 100–105. IEEE (2019)

3. Thomsen, J.R., Yiu, M.L., Jensen, C.S.: Effective caching of shortest paths for
location-based services. In: Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pp. 313–324. ACM (2012)

4. Geisberger, R., Sanders, P., Schultes, D., Delling, D.: Contraction hierarchies: faster
and simpler hierarchical routing in road networks. In: McGeoch, C.C. (ed.) WEA
2008. LNCS, vol. 5038, pp. 319–333. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-68552-4 24

https://doi.org/10.1007/978-3-030-12079-5_1
https://doi.org/10.1007/978-3-540-68552-4_24
https://doi.org/10.1007/978-3-540-68552-4_24

Typical Snapshots Selection for Shortest Path Query 119

5. Ouyang, D., Qin, L., Chang, L., Lin, X., Zhang, Y., Zhu, Q.: When hierarchy meets
2-Hop-labeling: efficient shortest distance queries on road networks. In: Proceedings
of the 2018 International Conference on Management of Data, pp. 709–724. ACM
(2018)

6. Samet, H., Sankaranarayanan, J., Alborzi, H.: Scalable network distance browsing
in spatial databases. In: Proceedings of the 2008 ACM SIGMOD International
Conference on Management of Data, pp. 43–54. ACM (2008)

7. Wang, S., Xiao, X., Yang, Y., Lin, W.: Effective indexing for approximate con-
strained shortest path queries on large road networks. Proc. VLDB Endow. 10(2),
61–72 (2016)

8. Li, L., Hua, W., Du, X., Zhou, X.: Minimal on-road time route scheduling on
time-dependent graphs. Proc. VLDB Endow. 10(11), 1274–1285 (2017)

9. Batz, G.V., Delling, D., Sanders, P., Vetter, C.: Time-dependent contraction hierar-
chies. In: Proceedings of the Meeting on Algorithm Engineering & Expermiments.
Society for Industrial and Applied Mathematics, pp. 97–105 (2009)

10. Li, L., Wang, S., Zhou, X.: Time-dependent hop labeling on road network. In: 2019
IEEE 35th International Conference on Data Engineering (ICDE), pp. 902–913,
April 2019

11. Zhao, X., Xiao, C., Lin, X., Wang, W.: Efficient graph similarity joins with edit
distance constraints. In: 2012 IEEE 28th International Conference on Data Engi-
neering, pp. 834–845. IEEE (2012)

12. Gouda, K., Hassaan, M.: CSI GED: an efficient approach for graph edit similarity
computation. In: 2016 IEEE 32nd International Conference on Data Engineering
(ICDE), pp. 265–276. IEEE (2016)

13. Li, Z., Jian, X., Lian, X., Chen, L.: An efficient probabilistic approach for graph
similarity search. In: 2018 IEEE 34th International Conference on Data Engineer-
ing (ICDE), pp. 533–544. IEEE (2018)

14. Chen, L., Gao, Y., Zhang, Y., Jensen, C.S., Zheng, B.: Efficient and incremental
clustering algorithms on star-schema heterogeneous graphs. In: 2019 IEEE 35th
International Conference on Data Engineering (ICDE), pp. 256–267. IEEE (2019)

15. Li, L., Zheng, K., Wang, S., Hua, W., Zhou, X.: Go slow to go fast: minimal on-road
time route scheduling with parking facilities using historical trajectory. VLDB J.-
Int. J. Very Large Data Bases 27(3), 321–345 (2018)

16. Li, L., Kim, J., Xu, J., Zhou, X.: Time-dependent route scheduling on road net-
works. SIGSPATIAL Spec. 10(1), 10–14 (2018)

17. Batz, G.V., Geisberger, R., Neubauer, S., Sanders, P.: Time-dependent contraction
hierarchies and approximation. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp.
166–177. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13193-
6 15

18. Li, L., Zhang, M., Hua, W., Zhou, X.: Fast query decomposition for batch shortest
path processing in road networks. In: 2020 IEEE 36th International Conference on
Data Engineering (ICDE)

19. Yan, X., Yu, P.S., Han, J.: Substructure similarity search in graph databases. In:
Proceedings of the 2005 ACM SIGMOD International Conference on Management
of Data. ACM, pp. 766–777 (2005)

20. Zhou, Y., Cheng, H., Yu, J.X.: Graph clustering based on structural/attribute
similarities. Proc. VLDB Endow. 2(1), 718–729 (2009)

21. Wang, G., Wang, B., Yang, X., Yu, G.: Efficiently indexing large sparse graphs for
similarity search. IEEE Trans. Knowl. Data Eng. 24(3), 440–451 (2010)

https://doi.org/10.1007/978-3-642-13193-6_15
https://doi.org/10.1007/978-3-642-13193-6_15

120 M. Zhang et al.

22. Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al.: A density-based algorithm for
discovering clusters in large spatial databases with noise. Kdd 96(34), 226–231
(1996)

23. Gan, J., Tao, Y.: DBSCAN revisited: mis-claim, un-fixability, and approximation.
In: Proceedings of the 2015 ACM SIGMOD International Conference on Manage-
ment of Data, pp. 519–530. ACM (2015)

24. Defays, D.: An efficient algorithm for a complete link method. Comput. J. 20(4),
364–366 (1977)

A Survey on Map-Matching Algorithms

Pingfu Chao, Yehong Xu(B), Wen Hua, and Xiaofang Zhou

School of Information Technology and Electrical Engineering,
The University of Queensland, Brisbane, Australia

{p.chao,yehong.xu,w.hua}@uq.edu.au,
zxf@itee.uq.edu.au

Abstract. The map-matching is an essential preprocessing step for most
of the trajectory-based applications. Although it has been an active topic
for more than two decades and, driven by the emerging applications, is
still under development. There is a lack of categorisation of existing solu-
tions recently and analysis for future research directions. In this paper,
we review the current status of the map-matching problem and survey
the existing algorithms. We propose a new categorisation of the solu-
tions according to their map-matching models and working scenarios.
In addition, we experimentally compare three representative methods
from different categories to reveal how matching model affects the perfor-
mance. Besides, the experiments are conducted on multiple real datasets
with different settings to demonstrate the influence of other factors in
map-matching problem, like the trajectory quality, data compression and
matching latency.

1 Introduction

Nowadays, the ubiquity of positioning devices enables the tracking of
user/vehicle trajectories. However, due to the intrinsic inaccuracy of the posi-
tioning systems, a series of preprocessing steps are required to correct the tra-
jectory errors. As one of the major preprocessing techniques, the map-matching
algorithm finds the object’s travel route by aligning its positioning data to the
underlying road network. It is the prerequisite of various location-based applica-
tions, such as navigation, vehicle tracking, map update and traffic surveillance.

The map-matching problem has been studied for more than two decades.
Despite hundreds of papers are proposed, to the best of our knowledge, only
several works were conducted [4,8,14,19] surveying them. More importantly,
even the most recent surveys [8] fail to categorise the existing methods com-
prehensively. They either classify them based on applications [8] that are not
very distinctive to each other, or follow the previous categorisation [14] that is
obsolete. Besides, various new techniques are introduced to the map-matching
problem recently, including new models (weight-based [15], multiple hypothesis
theory [16]), new tuning techniques (machine learning [12], information fusion

Y. Xu—Equal contribution.

c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 121–133, 2020.
https://doi.org/10.1007/978-3-030-39469-1_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_10&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_10

122 P. Chao et al.

[5,9]), new data types (DGPS, inertial sensor, semantic road network) and new
research topics (lane-level, parallel). Hence, it is about time to conduct a new
survey to summarise existing solutions and provide guidance to future research.

Note that the existing map-matching problem covers various scenarios, rang-
ing from indoor to outdoor and from pedestrian, vehicle to multimodal. However,
to ensure a unified setting for survey and comparison, in this paper, we target
the vehicle trajectory map-matching in an outdoor environment due to its pop-
ularity. We categorise the existing work from technical perspective. In addition,
we discuss the main properties of the methods and future research directions
according to the experiment results conducted on multiple matching algorithms.
Overall, our contributions are listed as follows:

– We review the map-matching solutions proposed since the last comprehensive
survey [14] and propose a new categorisation of the algorithms based on their
methodology. Our proposed categorisation can better distinguish the existing
methods from the technical perspective, which is beneficial for future study.

– We enumerate several map-matching challenges that are caused by low-
quality trajectory data. The challenges are exemplified and explained con-
cretely, which leads to future research directions.

– To further demonstrate the challenges, we implement three representative
map-matching algorithms and conduct extensive experiments on datasets
with different sampling rate, map density and compression level. Our claims
about the relationship between data quality and map-matching quality are
fully supported by the experiments.

The rest of the paper is organised as follows: In Sect. 2, we first formally define
the map-matching problem and enumerate the existing surveys and their limi-
tations. Then, we propose our new categorisation in Sect. 3. We further discuss
the current challenges which are demonstrated through experiments in Sect. 4
and we draw conclusions in Sect. 5.

2 Preliminaries

2.1 Problem Definition

We first define the map-matching problem and relevant datasets, including tra-
jectory (input), road network (input) and route (output):

Definition 1 (Trajectory). A trajectory Tr is a sequence of chronologically
ordered spatial points Tr : p1 → p2 → ... → pn sampled from a continuously
moving object. Each point pi consists of a 2-dimensional coordinate <xi, yi>,
a timestamp ti, a speed spdi (optional) and a heading θi (optional). i.e.: pi =
<xi, yi, ti, spdi, θi>.

Definition 2 (Road Network). A road network (also known as map) is a
directed graph G = (V,E), in which a vertex v = <x, y> ∈ V represents an
intersection or a road end, and an edge e = <o, d, l> is a directed road starting
from vertices e.o to e.d (e.o, e.d ∈ V) with a polyline l represented by a sequence
of spatial points.

A Survey on Map-Matching Algorithms 123

Definition 3 (Route). A route R represents a sequence of connected edges, i.e.
R : e1 → e2 → ... → en, where ei ∈ G.E(1 ≤ i ≤ n) and ek.d = ek+1.o.

Definition 4 (Map-Matching). Given a road network G(V,E) and a trajectory
Tr, the map-matching find a route MRG(Tr) that represents the sequence of
roads travelled by the trajectory.

For simplicity, we omit the subscript G and use MR(Tr) instead to repre-
sent the matching result as different trajectories are usually map-matched on
the same map. In general, the map-matching route is expected to be continu-
ous as it represents the vehicle’s travel history. However, it is quite often that
MR(Tr) contains disconnected edges due to incorrect map-matching, which will
be discussed in Sect. 4.

2.2 Related Work

Intuitively, since the vehicle usually runs on the roads, a fully accurate trajectory
sampled from a vehicle should always lie on the map. Therefore, apart from some
unexpected map errors, which happens less frequently and is addressed by map
update process [2], the difficulty of map-matching problem solely depends on the
quality of the input trajectories. As studied in many papers, the quality issues in
trajectories are pervasive, which mainly caused by inaccurate measurement and
low sampling rate. In terms of the measurement error, due to the unstable con-
nection between GPS device and satellites, the location of GPS samples usually
deviate from its actual position by a random distance. Meanwhile, the sampling
error is mainly caused by lowering the sampling frequency.

To deal with the quality issues, the map-matching problem has been studied
for more than two decades. In terms of the working scenarios and applications,
the current map-matching solutions can be classified into online mode and offline
mode. In online map-matching, the vehicle positions are sampled continuously
and are processed in a streaming fashion, which means each time the map-
matching is only performed on the current sample with a limited number of
preceding or succeeding samples [3,21] as reference. The process is usually simple
and fast for interactive performance. In contrary, the offline map-matching is
performed after the entire trajectory is obtained, so it aims for optimal matching
route with less constraint on processing time.

From the methodology perspective, Quddus et al. [14] first conducted a com-
prehensive review of the map-matching algorithms proposed before 2007. The
paper classified the methods into four categories, namely geometric, topology,
probabilistic and advanced. The geometric methods only focus on the distance
between trajectory elements and the road network, while the topology methods
take into consideration the connectivity and shape similarity. The probabilistic
methods try to model the uncertainty of trajectory, including the measurement
error and the unknown travel path between two samples, and they aim to find
a path that has the highest probability to generate the given trajectory. The
advanced category contains methods that are based on some advanced models,

124 P. Chao et al.

like Kalman Filter, particle filter and fuzzy logic. This categorisation shows the
evolution of map-matching research, which starts from simple, fast but inac-
curate geometric-based methods to more complicated but accurate probabil-
ity/advanced solutions. It is by far the most comprehensive survey of this field.
However, after more than ten years’ development, most of the methods men-
tioned in the paper has been outperformed by their new successors and the
previous categorisation also requires a revisit. Several surveys proposed after-
wards reviewed the methods in certain perspectives. Hashemi et al. [4] targeted
at the online map-matching scenario. Kubička et al. discussed the map-matching
problem based on the applications [8], namely navigation, tracking and mapping.
Other categorisations also appear recently (incremental max-weight, global max-
weight and global geometry [19]) which shows that there is still no consensus on
how to classify the algorithms technically. However, all of the existing categori-
sations inherit the same idea from Quddus’ survey [14] with minor variations,
which fail to categorise the recent methods for multiple reasons, explained in
Sect. 3.

3 Survey of Map-Matching Algorithm

According to our study, previous categorizations fail to classify the current solu-
tions due to three main reasons: (1) Categories for some primary methods, such
as geometric category [14], are no longer the focus due to their weak performance.
(2) Application-based classification [4,8] cannot fully distinguish the methods.
Many of the map-matching algorithms, like the Hidden Markov Model (HMM)
and Multiple Hypothesis Technique (MHT), apply to both online and offline sce-
narios for different applications. (3) Classifying algorithms by embedded math-
ematical tools are not feasible since many recent algorithms employ multiple
mathematical tools. Furthermore, the same tool implemented in different algo-
rithms may be used for different purposes, for example, an extended Kalman
filter can be used to either estimate biases in GPS or fuse measurements from
different sources [9].

Therefore, we establish a new classification that classifies the map-matching
algorithms by their core matching model, which is employed to coordinate their
techniques to finally achieve map-matching. In a map-matching algorithm, the
map-matching model is the overall framework or matching principle for the map-
matching process. A model usually consists of a set of computation components,
like the calculation of distance, transition and user behaviour modelling, and a
workflow connecting them. Those components are fixed while their definition and
implementation vary among different methods. Existing map-matching models
can be categorised into four classes: similarity model, state-transition model,
candidate-evolving model and scoring model.

3.1 Similarity Model

The similarity model refers to a general approach that returns the vertices/edges
that is closest to the trajectory geometrically and/or topologically. Intuitively,

A Survey on Map-Matching Algorithms 125

since a vehicle’s movement always follows the topology of the underlying road
network and the vehicle can never leap from one segment to another, the tra-
jectory should also similar to those of the true path on the map. Therefore, the
main focus in this category is how to define the closeness.

Distance-Based. Most of the earliest point-to-curve and curve-to-curve match-
ing algorithms [14] follow this idea. Specifically, the point-to-curve solution
projects each trajectory point to the geometric-closest edge, whereas the curve-
to-curve matching algorithms project each trajectory segment to the closest edge
where the closeness is defined by various similarity metrics. Fréchet distance is
the most commonly-used distance function [18] since it considers the monotonic-
ity and continuity of the curves. However, it is sensitive to trajectory measure-
ment errors since its value can be dominated by the outliers. As an alternative,
Longest Common Subsequence (LCSS)[23] divide a trajectory into multiple seg-
ments and find the shortest path on the map for each pair of start and end
points of a trajectory segment. The shortest paths are then concatenated and
form the final path while their corresponding LCSS scores are summed as the
final score. Then, the path whose LCSS score is higher than a predefined thresh-
old is regarded as the final matching result.

Pattern-Based. The pattern-based algorithms utilise the historical map-
matched data to answer new map-matching queries by finding similar travel
patterns [22]. The assumption is that people tend to travel on the same paths
given a pair of origin and destination points. Therefore, by referring to the his-
torical trajectories that are similar to the query trajectory, its candidate paths
can be obtained without worrying about the sparseness of trajectory samples.
Specifically, a historical trajectory or a trajectory obtained by concatenating
multiple historical trajectories will be referred to if each point of this trajectory
is in the safe region around the query trajectory. The algorithm finally uses a
scoring function to decide the optimal route. However, due to the sparsity and
disparity of historical data, the query trajectory may not be fully covered by
historical trajectories especially in some rarely travelled regions, which leads to
a direct matching process.

3.2 State-Transition Model

The state-transition models build a weighted topological graph which contains
all possible routes the vehicle might travel. In this graph, the vertices represent
the possible states the vehicle may be located at a particular moment, while the
edges represent the transitions between states at different timestamps. Different
from the road network, the weight of a graph element represents the possibility
of a state or a transition, and the best matching results comes from the optimal
path in the graph globally. There are three major ways of building the graph
and solving the optimal path problem, namely Hidden Markov model (HMM),
Conditional Random Field (CRF) and the Weighted Graph Technique (WGT).

126 P. Chao et al.

Hidden Markov Model. HMM is one of the most widely used map-matching
models as it simulates the road network topology meanwhile considers the rea-
sonability of a path. HMM focuses on the case when states in the Markov chain
are unobservable (hidden) but can be estimated according to the given observa-
tions associated with them. This model fits in the map-matching process nat-
urally. Each trajectory sample is regarded as the observation, while the vehicle
actual location on the road, which is unknown, is the hidden states. In fact,
due to the trajectory measurement error, all the roads near the observation can
potentially be the actual vehicle location (state), each of which with a probabil-
ity (emission probability). As the trajectory travels continuously, the transition
between two consecutive timestamps is concluded by the travel possibility (tran-
sition probability) between their candidate states. Therefore, the objective is to
find an optimal path which connects one candidate in every timestamp. The final
path is obtained by the Viterbi algorithm which utilises the idea of dynamic pro-
gramming. The major difference between various HMM-based algorithms is their
definition of emission probability and transition probability. Unlike the emission
probability, which is defined identically in most papers, the definition of the tran-
sition probability varies since the travel preference can be affected by plenty of
factors. Some works [11] prefers a candidate pair whose distance is similar to the
distance between the observation pair, while others consider velocity changes [3],
turn restriction [12], closeness to the shortest path, the heading mismatch and
travel penalty on U-turns, tunnels and bridges. Besides, HMM is also applied to
online scenario [3]. However, to build a reasonable Markov chain, online HMM-
based algorithms usually suffer from latency problems, which means a point is
matched after a certain delay.

Conditional Random Field. CRF is utilized in many areas as an alternative
to HMM to avoid the selection bias problem [6]. As both CRF and HMM are
statistic models, the major difference is that CRF models interactions among
observations while HMM models only model the relation between an observation
with the state at the same stage and its closest predecessor. Hunter et al. [6]
proposed a CRF-based map-matching algorithm that can be applied to both
online and offline situations with high accuracy. Its overall approach is similar to
HMM-based algorithms but with different transition probability which considers
the maximum speed limit and the driving patterns of drivers. However, the
problem shared by both HMM and CRF is the lack of a recovery strategy for
the match deviation. Since once a path is confirmed, it will be contained by all
future candidate paths, which hurts the online scenarios especially.

Weighted Graph Technique. WGT refers to a model that infers the match-
ing path from a weighted candidate graph, where the nodes are candidate road
points of location measurements and edges are only formed between two nodes
corresponding to two consecutive samples. In most WGT-based algorithms, can-
didate points are the closest points on road segments in a radius of measurements
[5,10], which is similar to HMM. The process of the WGT can be summarized

A Survey on Map-Matching Algorithms 127

as three steps: (1) Initializing the candidate graph. (2) Weighting edges in the
graph using a scoring function. (3) Inferring a path based on the weighted graph.

Algorithms fall in this category mainly differs from each other in weighting
functions. Lou et al. [10] firstly propose the WGT. It weights an edge simply
based on a spatial cost and a temporal cost, where the spatial cost is modelled
on the distance between candidate ci to its observed position pi and the shortest
length between ci and ci+1 whereas the temporal cost is modelled on the veloc-
ity reasonability. Based on Lou’s design, the following work further considers
mutual influences between neighbouring nodes, road connectivity, travel time
reasonability [5] and other road features (traffic lights, left turns, etc.).

3.3 Candidate-Evolving Model

Candidate-evolving model refers to a model which holds a set of candidates (also
known as particles or hypotheses) during map-matching. The candidate set is
initiated based on the first trajectory sample and keeps evolving by adding new
candidates propagated from old ones close to the latest measurements while
pruning irrelevant ones. Interpreting a candidate as a vote, by maintaining the
candidate set, the algorithms are able to find a segment with the most votes,
thereby, determining the matching path. Compare to the state-transition model,
the candidate-evolving model is more robust to the off-track matching issue since
the current matching is influenced not only by a previously defined solution, but
also by other candidates. The particle filter (PF) and the Multiple Hypothesis
Technique (MHT) are two representative solutions.

Particle Filter. PF is a state estimation technique that combines Monte Carlo
sampling methods with Bayesian Inference. This technique has been utilized to
support map-matching by the way of sensor fusion and measurement correction
[17], while it is also applicable to directly address map-matching problem [1].
The general idea of the PF model is to recursively estimate the Probability
Density Function (PDF) of the road network section around the observation as
time advances. Here, the PDF is approximated by N discrete particles, each
particle maintains a weight representing how consistent it is to the location
observation. The process of a PF can be summarized as follows: Initially, N
particles are sampled with the same weight representing different locations in
the local road network. The weight of each particle keeps getting updated as new
observations are received. Then the PDF for the road network section around
the new observations is calculated and the area with the highest probability is
determined as the matched region. A resampling stage starts afterwards, where
a new set of particles are derived based on the current set. The particles with
higher weights are more likely to propagate according to moving status to feed
particles for the next cycle, while those with low weights are likely to die out.

Multiple Hypothesis Technique. Similar to PF, the MHT also tries to main-
tain a list of candidate road matches for the initial trajectory point and the list

128 P. Chao et al.

is expected to be as large as possible to ensure correct result coverage. However,
different from the PF which iterate through all possibilities over time, the MHT
is a much simpler model that inherits the idea of maintaining hypotheses but
manages to reduce computation during the process. An MHT evaluates each
candidate road edge (or point) based on a scoring function instead of trying to
approximate the complicated PDF for the neighbour map area. Thereby, the
computation cost of the MHT is dramatically reduced. According to the intu-
ition, the MHT can be easily adopted in online scenario [16]. Moreover, since
it possesses all the possibility of previous hypotheses, Taguchi et al. [16] pro-
pose a prediction model which extends the hypotheses to further predict the
future route, which can achieve better online map-matching accuracy without
introducing latency.

3.4 Scoring Model

Näıve Weighting. A group of algorithms [13,15] apply the weight without
using a particular model. Instead, they simply assign a group of candidates to
each trajectory segment (or location observation) and find a road edge from
each group that maximizes the predefined scoring function. The found segment
in every timestamp is either returned if applied to the online scenario or waited
to be joint with other matched segments if applied in the offline scenario. Most
recent work in this category [15] achieves a lane-level map-matching performance.
The algorithm first identifies lanes in each road by utilising the road width infor-
mation in the map and partition them into grids accordingly. The algorithm then
finds candidate lane grids around the observed location and scores these grids
at each timestamp. The grid results in the maximum score are then returned.
The scoring function is a linear combination of four features, i.e. the proximity
between the grid and trajectory sample, the estimated location of the vehi-
cle at the next time stage, the reachability from the grid and the intention of
a turn. These features are modelled individually, their scores can be obtained
from the corresponding models in every timestamp. In addition, feature scores
are weighted differently in the scoring function whose coefficients are computed
by a training process before map-matching starts.

4 Challenges and Evaluations

Despite various of map-matching models are proposed to deal with trajectory
quality issues, the current solutions still fail to achieve decent matching quality
in all scenarios. Therefore, in this section, we will discuss several major chal-
lenges caused by data quality issues that are affecting the map-matching results.
We will demonstrate them both visually and experimentally to exemplify their
significance.

4.1 Experimental Settings

As listed in Table 1, we use four datasets for our experiments. The Global [7]
dataset is a public dataset for map-matching evaluation. It contains 100 GPS

A Survey on Map-Matching Algorithms 129

trajectories sampled from 100 different areas all over the world, each of which is
provided with a dedicate underlying map. Besides, we extract three sub-areas,
namely Beijing-U, Beijing-R and Beijing-M, from a commercial dataset which
contains taxi trajectories in Beijing. The reason for choosing these four datasets
is their diversity in terms of trajectory quality and map density. The Global
dataset has the best trajectory accuracy and its maps are also very sparse. The
Beijing-U and Beijing-R represent two maps extracted from urban and rural
areas, respectively. They have roughly the same size but different map density
(27.3vs13.9), so they can be used to evaluate the influence of map density to
map-matching results. Beijing-M is a larger map area with more trajectories for
large-scale performance test.

Table 1. Summary of experiment datasets

Name Input trajectory Road network

Trajectory
count

Trajectory
point count

Sampling
rate (sec)

of vertices
+ mini nodes

of
edges

Map size
(km2)

Map density
(km/km2)

Global 100 1 N/A N/A N/A N/A

Beijing-U 7,905 247,544 11.0 7,672 4,484 9.9 27.3

Beijing-R 3,106 119,612 8.6 3,927 1,326 9.9 13.9

Beijing-M 73,072 3,285,934 10.3 41,353 22,580 57.0 24.2

Our experiments are performed on a single server with two Intel(R) Xeon(R)
CPU E5-2630 with 10 cores/20 threads at 2.2 GHz each, 378 GB memory and
Ubuntu 16.04. Both the route matching result MR(Tr) and the corresponding
ground-truth are regarded as sets of road edges and are evaluated by F-measure,
which is commonly used in map-matching evaluation [15,19]. The candidate
map-matching algorithms used in the experiments include the most popular
offline HMM map-matching [11], the most-recent offline WGT algorithm [20]
and an online Scoring method [13].

4.2 Data Quality Challenges

According to our observations from the experiments, the current data quality
issues affect the map-matching in three major ways: the unnecessary detours,
the matching breaks and the matching uncertainty.

Unnecessary Detour. As an example shown in Fig. 1a, the matching result
sometimes may contain unnecessary detours, which happens more frequently
when the trajectory sampling rate is very high. In most scenarios, the detour
is caused by two consecutive trajectory samples being too close to each other
so that the succeeding point happens to be matched to the upper stream of its
preceding point. Therefore, the shortest path between these two points has to

130 P. Chao et al.

(a) Unnecessary detour (b) Matching break

Fig. 1. Example of map-matching challenges (Color figure online)

(a) Accuracy over different
sampling rate

(b) Down-sample v.s. com-
pression

(c) Influence of map density
and trajectory quality

Fig. 2. Experimental results

go through a long detour. To avoid such issue, the measurement error should
be considered when finding the shortest path, which means a certain degree of
backtrace should be allowable. Alternatively, instead of simply project trajec-
tory samples to the candidate roads to find candidate points, the actual match-
ing point should follow a distribution, according to the trajectory measurement
error, along the candidate road.

In general, as depicted in Fig. 2a, the detour problem strongly affects the
matching quality when the sampling rate is high. The result shows that it is not
always the case that a higher sampling rate leads to higher matching quality
especially when the measurement error becomes the major problem. Therefore,
a better way of modelling the measurement error is still required.

Matching Break. The matching break is a common problem in map-matching,
which is mainly caused by trajectory outliers. This happens more frequently
in the state-transition matching model when the correct state falls out of the
candidate range of the outlier. In this case, the states of two consecutive obser-
vations may be unreachable, leading to disconnected matching route, as shown
in the green circled area in Fig. 1a. Currently, most of the solutions [11] try to
overcome this problem by identifying and removing the outliers to remedy the
broken route. In Fig. 2b, we apply online scoring method on Beijing-M with

A Survey on Map-Matching Algorithms 131

random down-sample and trajectory compression (Douglas-Peucker algorithm),
respectively. The result shows that simple trajectory compression fails to prune
outliers as they are usually preserved as outstanding point, which means more
preprocessing step is required to remove such outliers. However, considering the
detour problem in high sampling rate data, the trajectory compression achieves
better performance compared with simply down-sample the trajectory as it bet-
ter preserve the shape of the trajectory, which is still beneficial.

Matching Uncertainty. Although the main goal of map-matching algorithms
is to reduce the uncertainty of trajectory, the matching uncertainty varies in
different scenarios. One of the main factor, which is not mentioned by any of
previous work, is the map density. Intuitively, the map-matching of trajectory is
much harder when the map area is full of roads compared with an emptier region.
As shown in Fig. 2, the map density can significantly affect the matching quality
as the Beijing-U has much worse performance than Beijing-R given both of
them have a similar trajectory quality. On the other hand, the trajectory quality
also plays an important role since the performance on Global is better than on
Beijing-U with similar map density. Therefore, achieving decent performance on
dense map area is still a challenging task for future map-matching research.

5 Conclusion

In this paper, we conduct a comprehensive survey of the map-matching problem.
We reveal the inability of all previous surveys in classifying new map-matching
solutions. On top of that, we propose a new categorisation of existing meth-
ods from the technical perspective, which consists of similarity model, state-
transition model, candidate-evolving model and scoring model. In addition, we
list three major challenges (unnecessary detour, matching break and matching
uncertainty) that the current map-matching algorithms are facing. To exemplify
and demonstrate their influence on the current map-matching algorithms, we
conduct extensive experiments over multiple datasets and map-matching algo-
rithms. Overall, this paper concludes the current state of the map-matching
problem and provides guidance to future research directions.

References

1. Bonnifait, P., Laneurit, J., Fouque, C., Dherbomez, G.: Multi-hypothesis map-
matching using particle filtering. In: 16th World Congress for ITS Systems and
Services, pp. 1–8 (2009)

2. Chao, P., Hua, W., Zhou, X.: Trajectories know where map is wrong: an iterative
framework for map-trajectory co-optimisation. World Wide Web, 1–27 (2019)

3. Goh, C.Y., Dauwels, J., Mitrovic, N., Asif, M.T., Oran, A., Jaillet, P.: Online
map-matching based on hidden markov model for real-time traffic sensing applica-
tions. In: 2012 15th International IEEE Conference on Intelligent Transportation
Systems, pp. 776–781. IEEE (2012)

132 P. Chao et al.

4. Hashemi, M., Karimi, H.A.: A critical review of real-time map-matching algo-
rithms: current issues and future directions. Comput. Environ. Urban Syst. 48,
153–165 (2014)

5. Hu, G., Shao, J., Liu, F., Wang, Y., Shen, H.T.: If-matching: towards accurate map-
matching with information fusion. IEEE Trans. Knowl. Data Eng. 29(1), 114–127
(2017)

6. Hunter, T., Abbeel, P., Bayen, A.: The path inference filter: model-based low-
latency map matching of probe vehicle data. IEEE Trans. Intell. Transp. Syst.
15(2), 507–529 (2014)

7. Kubička, M., Cela, A., Moulin, P., Mounier, H., Niculescu, S.I.: Dataset for test-
ing and training of map-matching algorithms. In: 2015 IEEE Intelligent Vehicles
Symposium (IV), pp. 1088–1093. IEEE (2015)

8. Kubicka, M., Cela, A., Mounier, H., Niculescu, S.I.: Comparative study and
application-oriented classification of vehicular map-matching methods. IEEE Intell.
Transp. Syst. Mag. 10(2), 150–166 (2018)

9. Li, L., Quddus, M., Zhao, L.: High accuracy tightly-coupled integrity monitoring
algorithm for map-matching. Transp. Res. Part C: Emerg. Technol. 36, 13–26
(2013)

10. Lou, Y., Zhang, C., Zheng, Y., Xie, X., Wang, W., Huang, Y.: Map-matching for
low-sampling-rate GPS trajectories. In: Proceedings of the 17th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Systems,
pp. 352–361. ACM (2009)

11. Newson, P., Krumm, J.: Hidden Markov map matching through noise and sparse-
ness. In: Proceedings of the 17th ACM SIGSPATIAL International Conference on
advances in Geographic Information Systems, pp. 336–343. ACM (2009)

12. Osogami, T., Raymond, R.: Map matching with inverse reinforcement learning. In:
Twenty-Third International Joint Conference on Artificial Intelligence (2013)

13. Quddus, M., Washington, S.: Shortest path and vehicle trajectory aided map-
matching for low frequency GPS data. Transp. Res. Part C: Emerg. Technol. 55,
328–339 (2015)

14. Quddus, M.A., Ochieng, W.Y., Noland, R.B.: Current map-matching algorithms
for transport applications: state-of-the art and future research directions. Transp.
Res. Part C: Emerg. Technol. 15(5), 312–328 (2007)

15. Sharath, M., Velaga, N.R., Quddus, M.A.: A dynamic two-dimensional (D2D)
weight-based map-matching algorithm. Transp. Res. Part C: Emerg. Technol. 98,
409–432 (2019)

16. Taguchi, S., Koide, S., Yoshimura, T.: Online map matching with route prediction.
IEEE Trans. Intell. Transp. Syst. 20(1), 338–347 (2018)

17. Wang, X., Ni, W.: An improved particle filter and its application to an INS/GPS
integrated navigation system in a serious noisy scenario. Meas. Sci. Technol. 27(9),
095005 (2016)

18. Wei, H., Wang, Y., Forman, G., Zhu, Y.: Map matching by Fréchet distance and
global weight optimization. Technical Paper, Departement of Computer Science
and Engineering, p. 19 (2013)

19. Wei, H., Wang, Y., Forman, G., Zhu, Y.: Map matching: comparison of approaches
using sparse and noisy data. In: Proceedings of the 21st ACM SIGSPATIAL Inter-
national Conference on Advances in Geographic Information Systems, pp. 444–447.
ACM (2013)

20. Yang, C., Gidofalvi, G.: Fast map matching, an algorithm integrating hidden
Markov model with precomputation. Int. J. Geogr. Inf. Sci. 32(3), 547–570 (2018)

A Survey on Map-Matching Algorithms 133

21. Yin, Y., Shah, R.R., Wang, G., Zimmermann, R.: Feature-based map matching for
low-sampling-rate GPS trajectories. ACM Trans. Spat. Algorithms Syst. (TSAS)
4(2), 4 (2018)

22. Zheng, K., Zheng, Y., Xie, X., Zhou, X.: Reducing uncertainty of low-sampling-rate
trajectories. In: 2012 IEEE 28th International Conference on Data Engineering, pp.
1144–1155. IEEE (2012)

23. Zhu, L., Holden, J.R., Gonder, J.D.: Trajectory segmentation map-matching app-
roach for large-scale, high-resolution GPS data. Transp. Res. Rec. 2645(1), 67–75
(2017)

Gaussian Embedding of Large-Scale
Attributed Graphs

Bhagya Hettige(B), Yuan-Fang Li, Weiqing Wang, and Wray Buntine

Monash University, Melbourne, Australia
{bhagya.hettige,yuanfang.li,teresa.wang,wray.buntine}@monash.edu

Abstract. Graph embedding methods transform high-dimensional and
complex graph contents into low-dimensional representations. They are
useful for a wide range of graph analysis tasks including link prediction,
node classification, recommendation and visualization. Most existing
approaches represent graph nodes as point vectors in a low-dimensional
embedding space, ignoring the uncertainty present in the real-world
graphs. Furthermore, many real-world graphs are large-scale and rich in
content (e.g. node attributes). In this work, we propose GLACE, a novel,
scalable graph embedding method that preserves both graph structure
and node attributes effectively and efficiently in an end-to-end manner.
GLACE effectively models uncertainty through Gaussian embeddings,
and supports inductive inference of new nodes based on their attributes.
In our comprehensive experiments, we evaluate GLACE on real-world
graphs, and the results demonstrate that GLACE significantly outper-
forms state-of-the-art embedding methods on multiple graph analysis
tasks.

Keywords: Graph embedding · Link prediction · Node classification

1 Introduction

Much real-world data can be expressed as graphs, e.g. citation networks [1,6,13],
social-media networks [8], language networks [12,13], and knowledge graphs [9].
Graph embedding methods transform graph nodes with highly sparse, high-
dimensional content into low-dimensional representations. They are effective
in capturing complex latent relationships between nodes [4,6,11,13] and have
been successfully employed in a wide array of graph analysis tasks such as link
prediction, node classification, recommendation and visualization. The effective
embedding of graph data faces a number of challenges.

Uncertainty modelling: Most of the previous work [4,6,11,13] on graph
node embedding represents nodes as point vectors in the embedding space, which
fails to capture the uncertainty in node representations. Furthermore, graphs
constructed from real-world data can be very complex, noisy and imbalanced.
Therefore, a mere point-based representation of the nodes may not be able to
capture the variability of the graph and so some hidden patterns [1]. Scalability:
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 134–146, 2020.
https://doi.org/10.1007/978-3-030-39469-1_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_11&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_11

Gaussian Embedding of Large-Scale Attributed Graphs 135

Many real-world graphs are very large, containing millions of nodes and edges.
The efficient embedding of such large graphs is thus important but challenging.
LINE [13] is handling large-scale graphs using an optimized loss function they
develop based on local and global network structure, but it does not consider
node attributes. Inductiveness: Most existing graph embedding approaches are
transductive and cannot infer embeddings for nodes unseen at training time. In
practice, however, graphs evolve with time, and new nodes and edges can be
added into the graph. There are a few recent studies [1,6] which tried to provide
a solution to this limitation. However, these methods either do not scale up to
large graphs, or require additional information about the graph structure.

In this paper, we propose GLACE, Gaussian representations for Large-scale
Attributed graph Content Embedding, a novel graph embedding method that
addresses all of the above challenges. GLACE learns node embeddings as prob-
ability distributions from both node attributes and graph structure information
in an end-to-end manner: we use node attributes to initialize the structure-
based loss function, and update and transfer the learning back to the encoding
function to minimize the loss. We use a proximity measure to quantify graph
properties to be preserved in the embedding space, i.e. first-order proximity
to learn from observed relations and second-order proximity to learn from a
node’s neighbourhoods. We learn from node attributes by a non-linear trans-
formation function (encoder), and then define Gaussian embedding functions
to model the uncertainty of the embedding by feeding the encoded representa-
tion. Therefore, the mean vector of the representation denotes the position of
the node in the embedding space, while the covariance matrix gives the uncer-
tainty of the node embedding. We deal with new nodes by learning from node
attributes, so that a learned model can be used to infer embeddings for new
nodes based on their attributes. The combination of node attributes and local
sampling allows GLACE to be scalable, being able to support graphs of hun-
dred thousand nodes with hundred thousand attributes and half a million edges
on modest hardware. GLACE derives embeddings from node attributes, which
allows it to converge faster during training. The main contributions of this work:
(1) we propose a novel, end-to-end method to embed nodes as probability dis-
tributions to model uncertainty of the embedding, (2) our model is inductive
as it can infer embedding for unseen nodes using node attributes, (3) our model
is scalable and efficient, and supports graphs with hundreds of thousands of
nodes on modest hardware with a fast convergence rate, while other methods
require significantly more memory, more time, or both, and (4) we perform
extensive experiments on real-world datasets for link prediction, node classifi-
cation, induction, and visualization, and GLACE significantly outperforms the
baselines.

2 Related Work

Below we give a brief overview of recent graph embedding techniques. A more
extensive introduction to the area can be found in these recent survey studies
[2,3,5].

136 B. Hettige et al.

Unsupervised graph embedding approaches attempt to preserve graph prop-
erties in the embedding space. Random walk-based methods such as Deep-
Walk [11] and node2vec [4] generate random walks for each node, and learn
embeddings using these node sequences with a technique similar to Skip-
Gram [10]. LINE [13] learns from proximity measures considering first- and
second-order proximity. SDNE [16] proposes a semi-supervised model, in which
they learn first-order proximity in the supervised component and second-order
proximity in the unsupervised component. Graph2Gauss [1] proposes a person-
alized ranking scheme such that for a given anchor node, nodes in the immediate
neighborhood are closer in the embedding space, while nodes multiple hops away
are placed increasingly more distant to the node. Variational graph auto-encoders
(VGAE) [7] is also an unsupervised learning method for undirected graphs.

Learning uncertainty of embeddings has been shown to produce meaningful
representations [1,15]. Word2gauss [15] proposes a Gaussian embedding space to
model word embeddings. Graph2Gauss [1] captures uncertainty of graph nodes
similarly. Both methods show that capturing embedding uncertainty learns more
meaningful representations in their evaluation tasks. Another recent study [17]
proposes to learn node embeddings as Gaussian distributions using the Wasser-
stein metric rather than KL divergence, as the former preserves edge transitivity.

Graphs can vary greatly in size (i.e. number of nodes and edges). Some
methods are designed to be scalable while others do not scale well due to high
space and/or time complexities. LINE [13] is a method designed to handle large-
scale graphs efficiently using negative sampling and edge sampling optimization
strategies. Graph2Gauss [1], on the other hand, exhibits poor scalability as it
needs to compute hops for each node up to a predefined number. This process
is not only time consuming, but also consumes significant memory.

3 GLACE Methodology

3.1 Notations and Problem Definition

Homogeneous Graph: Let G = (V,E,X) be an attributed homogeneous
graph, where V is the set of nodes, E is the set of edges between nodes in V,
where each ordered pair of nodes (i, j) ∈ E is associated with a weight wij > 0
for edge from i to j, and X ∈ R

|V|×D is the attribute matrix of the nodes which
represents an attribute matrix of V, where xi ∈ X is a D-dimensional attribute
vector of node i.

GLACE Embedding: GLACE aims to represent each node i ∈ V as a low-
dimensional Gaussian distribution embedding, zi = N (μi, Σi), where μi ∈ R

L,
Σi ∈ R

L×L where L is the embedding dimension with L � |V|,Dk, in embedding
space R

L, such that nodes close to each other in the original graph are also close
in the embedding space. We learn Σi as a diagonal covariance vector, Σi ∈ R

L,
instead of a covariance matrix to reduce the number of parameters to learn.

Gaussian Embedding of Large-Scale Attributed Graphs 137

3.2 Overall Architecture

GLACE is an end-to-end framework for learning node embeddings using both
node attributes and graph structure in an efficient manner. Node attributes are
first fed through a non-linear transformation function and then through two non-
linear transformation functions to obtain a mean vector and diagonal covariance
vector which represent a Gaussian embedding. GLACE is flexible in handling
different node attribute formats, such as text and images, since we can define
the encoder architecture accordingly. Our unsupervised loss function is defined
based on graph structure. We learn local and global graph structure using our
proximity measure, since we can optimize the function using negative sampling
[10] to achieve scalability. Local structure is learnt with first-order proximity,
i.e. based on edge weight between nodes [2], and global structure is learnt with
second-order proximity, i.e. based on similarity between neighborhoods of a pair
of nodes [2]. GLACE learns in an end-to-end manner: forward learning: we use
encoded node attributes as input to the optimization function of Graph Struc-
ture Encoding, and back-propagation: we minimize the optimization function
of Graph Structure Encoding by updating the node embeddings, and then prop-
agating the update back to the Node Attribute Encoding part.

3.3 Node Attribute Encoding

We learn node attributes using two levels of transformations, encoding and
Gaussian embedding. At the first level, we use a multi-layer perceptron (MLP)
to encode the node attribute information and generate an intermediate vector
from node attribute information. We use a feed-forward encoder, f : V → R

m

which takes an attribute vector xi ∈ X as input for node i, and outputs a
m-dimensional intermediate vector.

ui = f(xi) = Wxi + b (1)

The attribute encoder of the model is expressed using weight matrix W ∈ R
D×m

and bias vector b ∈ R
m where m is the dimension of the hidden representation.

Note here that, we can easily alter the encoder architecture such that it aligns
and captures different types of inputs (e.g. images, text). But for efficiency pur-
poses we have only considered an MLP architecture. This intermediate vector
ui is then used as input to two encoders fμ and fΣ to learn μ and Σ in the
Gaussian distributions. The final latent representation of node i of type k is
zi = N (μi,Σi), where μi = fμ(f(xi)) and Σi = fΣ(f(xi)).

μi = fμ(ui) = Wμui + bμ (2)
Σi = fΣ(ui) = ELU(WΣui + bΣ) + 1 (3)

The two functions defined in Eq. 2 with Wμ ∈ R
m×L and bμ ∈ R

L, and in
Eq. 3 with WΣ ∈ R

m×L and bΣ ∈ R
L denote the Mean Encoder and Covariance

Encoder respectively. Note that, as the difference between different node types

138 B. Hettige et al.

have been caught by ui generated by fk, all the node types share the same
Mean Encoder and Covariance Encoder in GLACE to achieve good scalability.
Here for the uncertainty representation, we constrain the covariance matrix to
be diagonal to reduce the number of parameters to learn. The exponential linear
unit (ELU) is used as the activation function in the Covariance Encoder. An
ELU can have negative values as well, and it drives the mean of the activation
outputs be closer to zero which makes learning and convergence much faster. We
add 1 to obtain positive covariance.

Note that, even inside the Node Attribute Encoding component, GLACE also
learns the parameters in an end-to-end manner. Through the shared parameter
ui, GLACE forwards the updating inside Encoder fk to Gaussian Encoders
fμ and fΣ , and propagates the updating inside Gaussian Encoders back to fk

automatically during the optimization process.

3.4 Graph Structure Encoding

GLACE aims at capturing both local (first-order) and global (higher-order) prox-
imity information in graphs. But considering the scalability to large-scale graphs,
for the global information, GLACE only encodes second-order proximity. For
each node i, the learned Gaussian distributions, zi, in Sect. 3.3 are used as the
input to the Graph Structure Encoding component in this section.

Dissimilarity Measure: Let d(zi, zj) be the dissimilarity measure between
latent representations of two nodes i, j ∈ V. Since zi and zj are Gaussian
distribution embedding, we should select a dissimilarity measure to be a func-
tion to measure the dissimilarity between two probability distributions. Therefore,
the dissimilarity measure between two latent representations is calculated using
asymmetric KL divergence, d(zi, zj) = DKL(zj ||zi). Alternatively, we could also
use a Wasserstein metric instead of KL divergence as in [17]. Since KL divergence
is asymmetric, for undirected graphs we extend the distance to a symmetric dis-
similarity measure as:

d(zi, zj) =
1
2
(DKL(zi||zj) + DKL(zj ||zi)) (4)

First-Order Proximity: We learn first-order proximity of nodes, by modelling
local pairwise proximity between two connected nodes in the graph. The empir-
ical probability for first-order proximity measure observed in the original graph
between nodes i and j is defined as the ratio of the weight of the edge (i, j) to
the total of the weights of all the edges in the graph. For each undirected edge
(i, j) we define the joint probability as a sigmoid function between node i and
j. These two functions can be defined as respectively:

Gaussian Embedding of Large-Scale Attributed Graphs 139

p̂1(i, j) =
wij

Σ(̂i,ĵ)∈Ewîĵ

and p1(i, j) =
1

1 + exp (d(zi, zj))
(5)

We preserve the first-order proximity by minimizing the distance between the
two distributions, O1 = DKL(p̂1||p1), for all edges. Motivated by this function,
we use the following objective function as in LINE [13] for first-order proximity:

O1 = −
∑

(i,j)∈E

wij log p1(i, j) (6)

Second-Order Proximity: Nodes which have more similar neighbourhoods
should be closer in embedding space with respect to the nodes with less similar
neighbourhoods. The empirical probability of second-order proximity observed
for edge (i, j) can be defined as the ratio of the weight of edge (i, j) to the total
weight of edges from node i to its immediate neighborhood, N(i). Similarly to
LINE, each node is represented with two complementary embeddings, the first
embedding zi, is as defined previously, and the second is the context embedding,
h′

i, defined in Eqs. 10 and 11. For each directed edge (i, j) (if the edge is undi-
rected, it can be treated as two edges with equal weights and opposite directions)
we define the probability of context j generated by node i as a softmax function.
The two probability distributions are defined as follows:

p̂2(j|i) =
wij

Σî∈N(i)wîi

and p2(j|i) =
exp (−d(zi, z′

j))
Σî∈V exp (−d(zi, z′

î
))

(7)

We preserve the second-order proximity by minimizing the distance between the
two distributions, O2 =

∑
i∈V λiDKL(p̂2(.|i)||p2(.|i)), where λi is the prestige of

node i. Motivated by this [13] we preserve the second-order proximity:

O2 = −
∑

(i,j)∈E

wij log p2(i, j) (8)

When we define the second-order proximity measure, the neighbourhood nodes
are considered as contexts for the anchor node. Therefore, we should define
another set of node attribute encoding functions to model the context repre-
sentations used for neighbourhood nodes, similarly to the Eqs. 1, 2 and 3. The
encoder for context nodes is f ′ : V → R

m. The latent representation of context
node i is z′

i = N (μ′
i,Σ

′
i), where μ′

i = f ′
μ(f ′(xi)) and Σ′

i = f ′
Σ(f ′(xi)).

u′
i = f ′(xi) = W′xi + b′ (9)

μ′
i = f ′

μ(ui) = W′
μui + b′

μ (10)

Σ′
i = f ′

Σ(ui) = ELU(W′
Σui + b′

Σ) + 1 (11)

140 B. Hettige et al.

3.5 Model Optimization

The objective function in Eq. 8 is a bottleneck as it requires evaluation on the
entire set of nodes for the optimization of one single edge as shown in Eq. 7. Based
on the negative sampling approach [10,13], we sample several negative edges (i.e.,
defined as N) for each edge in the training set to optimize the objective function.
With negative sampling our objective function O2 in Eq. 8 becomes:

∑

(i,j)∈E

(
log σ(−d(zi, z′

j)) +
N∑

n=1

Evn∼Pn(v) log σ(d(zi, z′
vn

))
)

(12)

Similarly, we can efficiently compute O1 in Eq. 6 with negative sampling:

∑

(i,j)∈E

(
log σ(−d(zi, zj)) +

N∑

n=1

Evn∼Pn(v) log σ(d(zi, zvn
))

)
(13)

where we draw negative edges from the noise distribution Pn(v) with negative
node probability distribution, Pn(v) ∝ out degree(v)3/4 for v ∈ V. Similarly, we
can optimize objective function O1 in Eq. 6, replacing z′

j and z′
vn

in Eq. 12 with zj

and zvn
respectively. We further optimize our training process by implementing

early stopping for training algorithm using a validation set and assessing the
performance at each iteration.

Table 1. Statistics of the real-world graphs.

Dataset |V1| |E| D1 #Labels

Cora-ML 2, 995 8, 416 2, 879 7

Cora 19, 793 65, 311 8, 710 70

Citeseer 4, 230 5, 358 2, 701 6

DBLP 17, 716 105, 734 1, 639 4

Pubmed 18, 230 79, 612 500 3

ACM 115, 772 539, 910 124, 856 –

3.6 Complexity Analysis

Training of GLACE takes O(T × b × (dN + (N + 2) × (Dm + mL + L))) =
O(T × b × N × (d + Dm + mL + L)), where T is the maximum number of iter-
ations, b is the batch size, d is the maximum node degree, N is the number of
negative samples, D is the attribute vector dimension, m is the intermediate vec-
tor dimension (hidden layer of Node Attribute Encoder), and L is the embedding
dimension. For each edge in the batch, fetching N negative samples takes O(dN)
time. For each of the (N +2) nodes, i.e., i, j and {vn}vn∈Neg(i), we compute and

Gaussian Embedding of Large-Scale Attributed Graphs 141

update parameters in the Node Attribute Encoder with two levels of transfor-
mations (i.e., fenc, fμ and fΣ) in O(Dm)+O(2mL)+O(2L) = O(Dm+mL+L)
time. Since GLACE initializes node embeddings using encoded node attribute
information, it can achieve faster convergence in optimization (in practice we
can see that GLACE starts to reach optimization point at T = 100. We will
discuss further our method’s scalability over LINE in the experiments section).

4 Experiments

We evaluate our method with state-of-the-art baselines on: link prediction, node
classification, inductive learning and visualization. In addition, we demonstrate
the scalability and inductiveness of our model. Source code for GLACE is pub-
licly available at https://github.com/bhagya-hettige/GLACE.

4.1 Datasets

We use six publicly available real-world attributed graphs (Table 1). These are
citation networks in which nodes denote papers and edges represent citation
relations. For each paper, we have TF-IDF vectors of the paper’s abstract as
attributes. Cora-ML is a subset extracted from the Cora citation network. The
larger ACM network is constructed using Aminer data [14].

4.2 Compared Algorithms and Setup

All the experiments were performed on a MacBook Pro laptop with 16 GB mem-
ory and a 2.6 GHz Intel Core i7 processor. For each of the following models, we
give maximum of 5 h as a threshold for training.

Attributes: for evaluation tasks, we use raw node attributes as input fea-
tures instead of node embeddings. node2vec [4]: is a random walk based
node embedding method that maximizes the likelihood of preserving nodes’
neighbourhood using biased random walks starting from each node. Therefore,
node2vec considers only second-order proximity. LINE [13]: is for large-scale
non-attributed graphs and uses first-order and second-order proximity informa-
tion. GraphSAGE [6]: is an inductive learning approach for attributed graphs
which learns an embedding function by sampling and aggregating features of
local neighbourhoods of nodes. We use the unsupervised version of GraphSAGE
with the pooling aggregator (which performed best for citation networks accord-
ing to [6]). Since we use node class labels in the node classification task, super-
vised version of GraphSAGE is not considered in evaluation. Graph2Gauss
(G2G) [1]: produces Gaussian node embeddings using node attributes and graph
structure, which introduces a personalized ranking of nodes based on neighbour-
ing hops. G2G is applicable to homogeneous graphs with plain/attributed nodes
and (un)directed and unweighted edges.

We also include a non Gaussian representation model to assess the effective-
ness of uncertainty modelling. LACE (without Gaussians): We use a version

https://github.com/bhagya-hettige/GLACE

142 B. Hettige et al.

of our method in which we represent nodes as vectors in an embedding space
using node attributes and graph structure. GLACE (with Gaussians): This is
the complete version of our method which produces Gaussian distribution rep-
resentations for graph nodes using node attributes and graph structure.

For LINE and GLACE, we consider first-order (1st), second-order (2nd) and
a concatenated representation of first- and second-order proximities (1st + 2nd).
Accordingly, the concatenated representation would have both local and global
information. For all the models, we use 128 as the dimension of the embedding.
Since GLACE learns two vectors for mean and variance respectively, we set
L = 64 to conduct a fair comparison with other methods, so the number of
dimensions learned for each node still remains the same.

4.3 Link Prediction

For all the methods we extract a test set containing 20% randomly selected
edges from the graph and an equal number of non-edges which are not present
in the graph. For all datasets we use the same splits for all the methods. The
remaining 80% of the edges are used for training the embedding models. In
probability distribution based embedding methods (G2G and GLACE) we use
negative KL divergence to rank the Gaussian embeddings. For other embedding
methods (attributes, node2vec, LINE and LACE), we use dot product similarity
of node embedding to ranking. We consider both 1st-order and 2nd-order proxim-
ity. We also consider joint embedding performance by concatenating the result-
ing embedding from the two proximity. For LINE, we record the concatenated
embedding of the two proximities, which is identified as the best-performing
setting for LINE [13]. AUC and AP scores of link prediction task are shown in
Table 2.

Table 2. Link prediction performance. Experiments not completed within threshold
settings are marked with “-”.

Algorithm Cora Citeseer DBLP Pubmed ACM

AUC AP AUC AP AUC AP AUC AP AUC AP

Attributes 82.98 77.71 81.53 75.60 75.89 69.56 82.98 77.71 - -

node2vec 87.86 87.19 79.91 82.08 87.03 84.36 88.74 86.58 91.18 91.49

LINE 75.23 77.96 71.20 72.11 80.01 83.09 79.97 82.86 75.32 76.81

GraphSAGE 85.30 84.72 83.33 85.38 89.63 90.12 89.43 90.90 - -

G2G 97.87 98.03 96.28 96.54 96.35 96.79 95.75 95.65 - -

LACE(1st) 96.59 96.66 94.21 94.95 91.91 92.68 83.89 84.26 95.14 95.07

LACE(2nd) 96.83 96.67 94.29 94.61 93.30 93.37 93.72 92.80 94.37 93.91

LACE(1st+2nd) 97.51 97.40 95.35 95.76 93.82 94.14 89.53 89.85 96.01 95.79

GLACE(1st) 98.54 98.46 96.41 96.40 98.48 98.33 97.69 97.42 98.00 97.94

GLACE(2nd) 98.43 98.31 97.22 97.20 98.16 97.95 97.02 96.56 97.94 97.79

GLACE(1st+2nd) 98.60 98.52 98.43 98.37 98.55 98.40 97.82 97.49 98.34 98.24

A number of important observations can be made from the tables. (1)
GLACE clearly outperforms the state-of-art embedding methods by a significant

Gaussian Embedding of Large-Scale Attributed Graphs 143

margin in both homogeneous and bipartite graphs. The introduction of uncer-
tainty modelling in GLACE improves performance considerably when compared
to models without Gaussian embedding, i.e. node2vec, LINE and LACE. (2)
In homogeneous graphs, GLACE(1st+2nd), which learns from both the explicit
edges in the graph and neighbourhood similarities, is the best performing model.
(3) G2G shows a very competitive performance to GLACE in smaller graphs
(Cora, DBLP and Pubmed) due to its hop-based node ranking scheme, but it
does not scale up for large-scale graphs, ACM and Stackoverflow. (4) GLACE’s
better scalability is also shown, as it is the only attributed graph embedding
model that completes the largest dataset, ACM.

4.4 Multi-class Node Classification

The node embeddings are obtained using the complete node set from the eval-
uated models. Similarly to [1,13], we randomly sample different percentages of
labeled nodes from the graph for training a logistic regression classifier to predict
class label, and use the rest of the nodes for evaluation. The percentages of nodes
used for training the classifier for node classification task are 10%, 20%, . . . , 90%.
The evaluation metric we report is F1-score, and the results are averaged over 10
trials. We performed this experiment on all the evaluated graphs, and we report
the results for Cora-ML, Citeseer, and DBLP datasets in Fig. 1.

(a) Cora-ML (b) Citeseer (c) DBLP

Fig. 1. Node classification performance. Improvements of GLACE are statistically sig-
nificant for p < 0.01 estimated by a paired t-test.

Based on the results, it can be seen that GLACE again consistently out-
performs the baseline methods. This is clearly due to uncertainty modelling
of the representations. As can be seen in the figures, there is a clear separa-
tion of node classification performance between the methods that consider node
attributes and the methods that do not. An exception to this observation is
GraphSAGE, which considers attributes but has a considerably poorer perfor-
mance than GLACE, G2G and LR. This can be due to its aggregation process
which magnifies any error. LACE (without Gaussians) is able to outperform some
of the baseline methods, and this is due to the incorporation of node attributes.

144 B. Hettige et al.

4.5 Inductive Learning

We have evaluated the inductive property by training the models with 10% and
50% nodes hidden from the original graph. Then we evaluate how well the models
can infer embeddings for unseen nodes on the link prediction task, comparing
our model against G2G [1], which also takes attributes into account. Although
GraphSAGE [6] is also an inductive node embedding method, it is not applicable
in this scenario as it requires unseen nodes to be connected to existing nodes.
We perform this task on Cora-ML, Citeseer, Pubmed and ACM graphs. Table 3
summarizes the results.

As can be seen from the table, GLACE outperforms G2G across all the
datasets over the two hidden percentage values. It can also be observed that,
GLACE suffers considerably less performance degradation than G2G when more
nodes are hidden (i.e. from 10% to 50%). Since G2G requires constructing hops
and keeping them in memory, we could not run experiments for G2G (with
maximum number of hops to consider > 1) on the ACM dataset, which also
demonstrates the scalability advantage of GLACE.

Table 3. Link prediction performance with inductive learning.

Algorithm [hidden %] Cora-ML Citeseer Pubmed ACM

AUC AP AUC AP AUC AP AUC AP

G2G [10%] 88.83 79.34 87.96 80.39 88.96 77.08 – –

GLACE [10%] 93.07 86.72 90.76 85.03 93.00 84.19 95.05 89.09

G2G [50%] 57.26 34.70 61.71 43.87 51.22 27.39 – –

GLACE [50%] 87.62 74.64 83.69 70.74 92.18 79.99 93.96 85.33

4.6 Scalability

LINE is a scalable embedding method for plain graphs. In this study we intro-
duced GLACE as an improved scalable embedding method for attributed graphs.
In this section we evaluate the efficiency of our method against the large-scale
embedding method, LINE, and see how the introduction of attributes and uncer-
tainty modelling assist GLACE in converging faster for optimization. We report
the validation AUC for link prediction task in ACM dataset against time. The
trend is similar in other datasets. It is worth noting that even though LINE is
designed for large-scale graphs, it takes a much longer time to converge (Fig. 2).
This is due to the fact that the number of iterations required by LINE for con-
vergence is proportional to the number of edges [13]. On the other hand, taking
advantage of node attributes and uncertainty modelling, GLACE achieves con-
vergence substantially faster. GLACE achieves a significant performance boost
even after 1 min of training.

Gaussian Embedding of Large-Scale Attributed Graphs 145

Fig. 2. GLACE’s faster convergence. Link prediction performance in ACM training.

4.7 Visualization

We evaluate the ability to visualize the Cora-ML citation network. First, each
model learns 128-dimensional node embeddings (L = 64 for Gaussians). Then,
the dimensions are reduced to 2 dimensions using t-SNE. Figure 3 shows the
visualizations from the models which produced the best layouts. The color of
a node (i.e. a paper) represents one of the seven research areas. G2G produces
moderately good clustering, but papers belonging to different areas are still not
clearly separated. LACE and GLACE learn node embeddings that can clearly
separate different classes. GLACE produces the best result in terms of tightly
clustered papers of the same area with clearly visible boundaries.

(a) G2G (b) LACE (c) GLACE

Fig. 3. Visualization of Cora-ML graph (L = 64).

5 Conclusion

We present GLACE, an unsupervised learning approach to efficiently learn node
embeddings as probability distributions to capture uncertainty of the represen-
tations. GLACE learns from both node attributes and graph structural informa-
tion, and is efficient, scalable and easily generalizable to different types of graphs.
GLACE has been evaluated with respect to several state-of-the-art embedding
methods in different graph analysis tasks, and the results demonstrate that our
method significantly outperforms all the evaluated baselines.

146 B. Hettige et al.

References

1. Bojchevski, A., Günnemann, S.: Deep gaussian embedding of attributed graphs:
unsupervised inductive learning via ranking. In: ICLR (2018)

2. Cai, H., Zheng, V.W., Chang, K.C.: A comprehensive survey of graph embedding:
problems, techniques, and applications. IEEE TKDE 30(9), 1616–1637 (2018)

3. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: a survey. KBS 151, 78–94 (2018)

4. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: ACM
SIGKDD (2016)

5. Hamilton, W.L., Ying, R., Leskovec, J.: Representation learning on graphs: meth-
ods and applications. IEEE Data Eng. Bull. 40(3), 52–74 (2017)

6. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. In: NIPS (2017)

7. Kipf, T.N., Welling, M.: Variational graph auto-encoders. In: NIPS Workshop on
Bayesian Deep Learning (2016)

8. Liao, L., He, X., Zhang, H., Chua, T.: Attributed social network embedding. IEEE
TKDE 30(12), 2257–2270 (2018)

9. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings
for knowledge graph completion. In: AAAI (2015)

10. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed represen-
tations of words and phrases and their compositionality. In: NIPS (2013)

11. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social represen-
tations. In: ACM SIGKDD (2014)

12. Tang, J., Qu, M., Mei, Q.: PTE: predictive text embedding through large-scale
heterogeneous text networks. In: ACM SIGKDD (2015)

13. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: WWW (2015)

14. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: Arnetminer: extraction and
mining of academic social networks. In: ACM KDD (2008)

15. Vilnis, L., McCallum, A.: Word representations via gaussian embedding. In: ICLR
(2015)

16. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: ACM
SIGKDD (2016)

17. Zhu, D., Cui, P., Wang, D., Zhu, W.: Deep variational network embedding in
wasserstein space. In: ACM SIGKDD (2018)

Geo-Social Temporal Top-k Queries
in Location-Based Social Networks

Ammar Sohail(B), Muhammad Aamir Cheema, and David Taniar

Faculty of Information Technology, Monash University, Melbourne, Australia
{ammar.sohail,aamir.cheema,david.taniar}@monash.edu

Abstract. With recent advancements in location-acquisition techniques
and smart phone devices, social networks such as Foursquare, Facebook
and Twitter are acquiring the location dimension while minimizing the
gap between physical world and virtual social networking. This in return,
has resulted in the generation of geo-tagged data at unprecedented scale
and has facilitated users to fully capture and share their geo-locations
with timestamps on social media. Typical location-based social media
allows users to check-in at a location of interest using smart devices which
then is published on social network and this information can be exploited
for recommendation. In this paper, we propose a new type of query called
Geo-Social Temporal Top-k (GSTTk) query, which enriches the semantics
of the conventional spatial query by introducing social relevance and
temporal component. In addition, we propose three different schemes
to answer such a query. Finally, we conduct an exhaustive evaluation
of proposed schemes and demonstrate the effectiveness of the proposed
approaches.

1 Introduction

The increasing use of smart phones, location-based services and recent advance-
ments in location-acquisition technologies such as GPS, have made location infor-
mation an essential part of social networks such as Facebook and Foursquare. In
location-based social network (LBSN), a relationship (edges) between two enti-
ties (nodes) is not only limited to friendship, but can also be of another type such
as works-at, lives-in and studies-at etc. [1]. The nodes and edges may also
contain spatial and temporal information respectively such as a user’s check-ins
at different locations. Consider an example of a Facebook user Alice who was
born in Germany, works at Monash University and checks-in at a particular
restaurant [1]. Facebook records this information by linking Facebook pages of
Monash University and Germany with Alice [2], e.g., Alice and Monash Uni-
versity are connected by an edge labelled works-at and Alice and Germany are
connected with an edge labelled born-in.

Social connections assist us in making right decisions in various activities
and events and thus impose some influence on us [3]. In the past few years, a
large body of work has studied a wide variety of queries on location-based social
networks to enable various applications. For example in [1,3], top-k queries were
studied that return k places based on their distances from query as well as their
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 147–160, 2020.
https://doi.org/10.1007/978-3-030-39469-1_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_12&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_12

148 A. Sohail et al.

popularity among the friends of the query user (e.g., are frequently visited by
the friends). A major limitation of the existing work on top-k queries is that they
ignore the temporal aspects, e.g., the popularity of a place is defined based on
the whole time dimension. In real world scenarios, the users may be interested in
the places that are popular during a specific time period (e.g., during Christmas
holidays, or within last six months etc.). Inspired by this, in this paper, we study
the problem of finding top-k places considering their distance from the query q
and popularity of a place in q’s social circle during given time interval. Consider
an example of a visitor from Switzerland visiting Melbourne and wants to find a
nearby café which serves Rösti (a traditional Swedish hot cake) with coffee and
has become popular (e.g., frequently visited) among people from Switzerland
during last year. This involves utilizing spatial information (i.e., nearby café,
check-ins), social information (i.e., people who were born-in Switzerland) as
well as temporal information (i.e., cafés that are visited during last year).

The applications of such queries are not limited to traditional location-based
social services and can also be used in disaster management, public health, secu-
rity, tourism etc. For example, in disease monitoring, we may want to find fre-
quently visited places (top-k) in last 6 months by people infected by Ebola virus
[3]. Consider a health-based social network where each health risk (e.g., Ebola)
is an entity and people affected by it are connected to it via an edge. One can
issue a query to find the top-k frequently visited places in the last 6 months by
the one-hop neighbors of the Ebola entity.

Although several types of queries have been investigated on LBSNs [4], to
the best of our knowledge, none of the existing methods are applicable to answer
the queries similar to the above; that aim at finding nearby places that are pop-
ular among a particular group of users satisfying social and temporal constraint.
Motivated by this, in this paper, we formalize this problem as a Geo-Social Tem-
poral Top-k (GSTTk) query and propose efficient query processing techniques.
Specifically, a GSTTk query retrieves top-k places (points of interest) ranked
according to their spatial, social and temporal relevance to the query user. A
formal definition is provided in Sect. 3.1 and we make the following contributions
in this paper.

– To the best of our knowledge, we are the first to study the GSTTk query
that retrieves nearby places popular among a particular group of users in the
social network during specified time interval.

– At first, we present two different approaches i.e., Social-First and Spatial-
First to solve our problem and then we propose our main algorithm called
Hybrid.

– We conduct an exhaustive evaluation of the proposed schemes using real
dataset and demonstrate the effectiveness of the proposed approaches. Our
experiments show that our main algorithm outperforms the other two.

2 Related Work

Geo-Social queries recently became more visible to researchers due to the emer-
gence of handheld technology [4,5]. In [5], they study skyline operator and intro-
duce a new type of query. In skyline queries, a query user does not need to have

Geo-Social Temporal Top-k Queries in Location-Based Social Networks 149

adequate domain knowledge to be able to decide upon the balance factor which
is mandatory for top-k queries. They adopted grid-based partitioning schemes to
quickly filter the places that cannot be the part of candidate objects. However,
their techniques cannot handle the temporal component and thus, cannot be
exploited to answer our work. Also, nearest neighbour queries have been widely
utilized in location-based social networks [6,7].

Top-k queries fetch top-k objects based on a user defined scoring function and
have been extensively studied [1,3,8]. In [3], they introduce a new type of group
query where a group of users may want to plan an activity and are looking for a
suitable venue based on its popularity among users’ social circles. However, their
work cannot be applied to answer our work which includes temporal information.
The work presented in this paper builds on our previous work [1,3] which study
top-k and skyline queries on LBSNs by considering social and spatial aspects.
However, the major difference is the temporal aspect which is addressed in this
paper.

Temporal queries retrieve query results based on given temporal properties.
It is noteworthy that time dimension has strong influence in many domains for
example, Topic Detection and Tracking, Spatial queries, Information retrieval,
Top-k queries, Geo-Textual queries [9,10]. Recently, researchers started investi-
gating periodic patterns of user preferences (e.g., weekend night interests). One
solution is to add a time dimension to user-item matrix and apply techniques
introduced in [11]. Work proposed in [12] offers time-aware recommendations
using a user-based collaborative filtering method. However, none of the proposed
works exploit user’s social circle to recommend point of interests (POIs).

In an early attempt on bulk insertion for an R-tree, the data items to be
inserted are first sorted by their spatial proximity and then packed into blocks
of B rectangles [13]. There is another work on the bulk insertion which uses a
STLT (small-tree-large-tree) approach [14]. If a small tree covers a large area,
the node of a large tree into which a small tree is inserted needs to be enlarged to
enclose it. This means the STLT only works well for highly skewed data sets [15].
However, this suffers with the same problem of the R-trees being inserted may
increase the overall overlap of the target R-tree. To the best of our knowledge,
none of existing techniques can be applied or trivially extended to solve GSTTk

query.

3 Preliminaries

3.1 Problem Definition

Location Based Social Network (LBSN): A location-based social network
consists of a set of entities U (e.g., users, Facebook Pages etc.) and a set of places
P as defined in our previous work [5].

Score of a Place p: Given a query user q, a range r and a temporal interval
I[st, et] (where st denotes start time and et denotes end time), the score of a
place p ∈ P is 0 if ||q, p|| ≥ r where ||q, p|| is the Euclidean distance between
query location and p. If ||q, p|| ≤ r, the score of p is a weighted sum of its spatial

150 A. Sohail et al.

score (pspatial) and its social score (number of q’s friends check-ins in the given
temporal interval I) (psocial).

p.score = α × pspatial + (1 − α) × psocial (1)

where α is a parameter used to control the relative importance of spatial and
social scores. The social score psocial is computed as in our previous work [5].
Let’s take the one-hop neighbors of the query user (denoted as Fq) considering
a particular relationship type for example, if the relationship is works-at and
the query entity is a Facebook Page for the company Samsung, then Fq is a set
of users who work at Samsung. Although our techniques can handle any type
of relationship, for the ease of presentation, in the rest of the paper we only
consider the friendship relationships [3]. In this context, Fq contains the friends
of the query user q. Let p.visitors denotes the set of all users that visited (i.e.,
checked-in at) the place p during given temporal interval I(st, et). The social
score psocial of place p is computed as follows:

psocial =
|Fq ∩ p.visitors|

|Fq| (2)

where |X| denotes the cardinality of a set X and the spatial score pspatial is
based on how close the place is to the query location. Formally, given a range
r, pspatial = 0 if the place does not lie in the range r. Otherwise, pspatial =
(r − ||q, p||) where ||q, p|| indicates Euclidean distance between query location
and p. Note that psocial is always between 0 to 1 and we normalize pspatial such
that it is also within the range 0 to 1, e.g., the data space is normalized such
that ||q, p|| ≤ 1 and r ≤ 1 [3].

Geo-Social Temporal Top-k (GSTTk) Query: Given an LBSN, a GSTTk

query q returns k places with the highest scores where the score p.score of each
place p is computed as described above.

Example 2.1: We extend the example given in [3] and Fig. 1(a) illustrates the
locations of a set of places P = {p1, p2, p3, p4} and a query q. Let’s assume that
the query q is with k = 2, range r = 0.15, temporal interval I is “during last
year” and has a set of friends Fq = {u1, u2....u9, u10}. The number in bracket
next to each place is the number of friends of q who visited the place during last
year. Figure 1(b) shows the Euclidean distances and visitors (from the friends of
q i.e., Fq) of each place during all times (column 3) as well as during last year
(column 4). Let’s assume α = 0.5, the spatial score of p2 is pspatial = 0.07, the
social score of p2 is psocial = 0.30 and by applying Eq. 1, we get the score of p2
i.e., p2.score = 0.5 × 0.07 + (1 − 0.5) × 0.30 = 0.185.

Similarly, for p1, the spatial score is pspatial = 0.05, the social score of p1
is psocial = 0.0 and by applying the same equation, we get the score of p1 i.e.,
p1.score = 0.5×0.05+(1−0.5)×0.0 = 0.025. For p3 and p4, their scores will be
Score(p3) = 0.205 and Score(p4) = 0.115 respectively. The result of the query
q is (p2, p3) according to scoring function in Eq. 1.

Geo-Social Temporal Top-k Queries in Location-Based Social Networks 151

(a) A Query q (b) Sample Dataset

Fig. 1. Temporal Top-k Query Example

3.2 Framework Overview

The proposed framework consists of three techniques to answer GSTTk query:
(I) Social-First, (II) Spatial-First and (III) Hybrid. The Social-First approach
first processes the social component (e.g., friendship relations and their check-
ins) for given temporal interval I and then processes spatial component (e.g.,
places in given range). The Spatial-First approach initially processes the spa-
tial component followed by processing the social component. In contrast, Hybrid
approach is capable of processing both social and spatial components simultane-
ously to answer the query [3]. It utilizes two types of pre-processed information
related to each user u ∈ U , her check-ins and summary of her friends’ check-in
and; the summary of visitor’s check-ins for each place p.

Precisely, we index places, users’ check-in information and visitor’s check-in
information by exploiting R-tree [16]. We create Facility R-Tree where all places
(p ∈ P) in a given dataset are indexed based on their location coordinates and
Friendship Index where for each user, her friends are indexed using B+-Tree
sorted on their IDs. This is used to efficiently retrieve the friends based on their
IDs [1].

3D Check-In R-Tree: For each user u, we create a 3D Check-In R-Tree which
indexes all the check-ins of the u. This is a 3 dimensional R-tree where two
dimensions belong to the location coordinates of the check-in and the third
dimension corresponds to the time of the check-in.

4 Proposed Techniques

4.1 Social-First Based Approach

In this approach, scores of the places in given range r are computed by consid-
ering the check-ins of each friend u ∈ Fq. Specifically, for each friend u ∈ Fq, its
3D Check-In R-Tree is traversed to obtain the places in the range where u has
checked-in during given temporal interval I. The social score of each checked-in
place by any friend is updated. When every user u ∈ Fq is processed, we have
the final social score of each place in the range. Next, the algorithm considers

152 A. Sohail et al.

each place in the range and computes its final score. Finally, the top-k places are
returned. Let’s assume, the score of current kth place p is Scorek, it was shown
in [1] that if the ||q, p|| ≥ (r − Scorek

α), we can prune that place p. Due to space
limitation, we skip in-depth details of the algorithm including its pseudocode.

4.2 Spatial-First Based Approach

Initially, this approach retrieves all places in given range r and computes spatial
score of each place p in ascending order of distance from q [1]. For each accessed
place, its social score is computed by exploring the visitors of the place and
the friends of the query user q. For each unaccessed place p, an upper bound is
computed using its distance from q and assuming its social score to be 1 (the
maximum possible). The algorithm terminates if the upper bound score of the
next place is smaller than the score of kth place found so far. Let’s assume, the
score of current kth place p is Scorek, it was shown in [1] that if the ||q, p|| ≥
(r − (Scorek−(1−α))

α), the process stops since every subsequent place p in the
priority queue is further than the current place p from q. Due to space limitation,
we skip in-depth details of the algorithm including its pseudocode.

4.3 Hybrid Approach

This section focuses on our third approach (i.e., Hybrid) to process GSTTk

queries which is capable of processing social, spatial and temporal components
simultaneously. Before presenting the technique in detail, we describe our index
and space partitioning techniques.

3D Friends Check-Ins R-Tree: In addition to the previous indexes, for each
user u, we introduce another index called 3D Friends Check-Ins R-tree (3DFCR-
Tree) which maintains the summary of check-ins of the user u’s friends. Specifi-
cally, 3DFCR-Tree stores check-in information of each friend of u by indexing a
few MBRs for each friend. Thus, it represents the summary of all friends check-
ins.

One approach is to use the root MBR of each of u’s friends 3D Check-In R-
Tree and index them in 3DFCR-Tree. The problem with indexing root MBR is
that, many root nodes may be too big (e.g., consider a user who has checked-in in
every continent) and this would result in huge overlap among the MBRs affecting
the effectiveness of the R-tree. To overcome the shortcoming, we propose to index
the children of the root nodes instead of the root nodes. Let’s assume a query
q ∈ U where the friends of q are Fq = {u1, u2, u3. . . u19, u20}. Figure 2(a)
illustrates the idea of the 3DFCR-Tree of q. Similarly, Fig. 2(b) shows one of
the leaf nodes of a 3DFCR-Tree which indexes child entries of root MBR of few
friends’ (e.g., u1, u3, u7) 3D Check-In R-Trees.

Visitors Check-Ins R-Tree (VCRTree): As described earlier, for each user,
we maintain her friends’ summary to prune irrelevant friends when a query
arrives. Similarly, each place p has visitors (p.visitors containing their IDs) and
their check-ins information during different times. To maintain this information,

Geo-Social Temporal Top-k Queries in Location-Based Social Networks 153

(a) Summary of Friends’ check-Ins (b) Leaf Node

Fig. 2. 3D Friends Check-Ins R-Tree

we create an R-tree (denoted as VCRTree) and each indexed point is a two-
dimensional point where one dimension is visitor ID and other dimension is
check-in time.

4.3.1 Algorithm Overview
Initially, when a query arrives, we create a two dimensional grid (which covers
given range r) on the fly. For each cell of the grid, we compute an upper bound
on score for each place that may lie in the cell (to be explained later) and
based on the upper bound, we access places in the order to prune unnecessary
places and friends which are not relevant. Secondly, by employing VCRTree for
remaining candidate places, we further prune the irrelevant ones based on social
and temporal criteria. Below, we explain the pruning criteria in detail with
pseudocode given in Algorithm 1.

Using Range Grid: In this step, we construct the on the fly 2D-Grid to prune
two kind of objects based on 3DFCR-Tree as follows.

1. Pruning Friends: If an MBR of 3DFCR-Tree does not overlap with
the grid or with given temporal interval I, we can prune it which in return,
prunes that particular friend. The pruned friends are the friends of the query
who have not checked-in in given range r during given temporal interval I.
Specifically, to compute the upper bound on social score of a cell cij of range
grid, the algorithm traverses 3DFCR-Tree of a query user q to compute number
of objects (child nodes of root of friends’ Check-In R-trees) intersecting with the
cell. Let’s consider an example in Fig. 3(a) where we have a range grid cell cij

and some 3DFCR-Tree objects belonging to q’s friends ranging from u1 to u5.
Since only u1, u4 and u5 overlap with cij , they might have checked-in at any
place p in the cell. Therefore, the maximum number of friends who might have
visited a place in the cell is 3, which can be used to obtain the upper bound on
social score.

2. Pruning Places: Each cell cij in the grid contains a list of places Pc that
lie inside it and a list of overlapping MBRs of 3DFCR-Tree (denoted as Vcell)

154 A. Sohail et al.

based on criteria described above. Once the list Vcell for each cell is fetched, an
upper bound on the score (denoted as Scorecell) of each cell is computed using
Eq. 3.

Scorecell = α(r − mindist(cell, q)) + (1 − α)
(|Vcell|

|Fq|
)

(3)

Since, |Vcell| denotes the number of query friends who might have visited a
place in the cell within the query temporal interval, the upper bound on social
score of a cell is computed as |Vcell|

|Fq| . Similarly, (r − mindist(cell, q)) gives an
upper bound on the spatial score of any place in the cell where mindist(cell, q)
denotes the distance between the query q and the nearest place p to the q in the
cell.

In first loop (at line 1), for each cell in descending order of the Scorecell, the
algorithm accesses each place p in the cell (at line 4) to compute score of the
place while maintaining the current kth place score (at line 7). If the current kth

place score is greater than the next cell’s Scorecell, the algorithm stops since
all the subsequent cells can not contain a place with higher score than current
kth place’s score (at line 3). Below, we describe how to compute the score of a
candidate place efficiently.

Algorithm 1. Hybrid Algorithm
1 foreach Range Grid cell cij in descending order of upper bound scores do
2 if Scorecell ≤ Scorek then
3 return top-k results;
4 foreach place p in cell cij do
5 ComputeScore(p) ; // Algorithm 2
6 end
7 Update top-k results and Scorek;
8 end

4.3.2 Computing Score of a Candidate Place

Intuition: A näıve approach: Let’s consider a query q with a list of friends and
their check-ins, and a place p with a list of visitors. To compute score of the
place, we have to traverse through whole friends’ list and visitors’ list to see if
a friend has visited the place during given temporal interval I. In general, the
above approach is not efficient since in many applications, the size of Fq may
be huge e.g., people born-in Germany. To speed-up the query processing, we
employ an R-Tree (VCR-Tree) to index visitor IDs and their check-in times (as
described earlier).

Let’s consider an example where we have three MBRs of VCR-Tree (R1, R2

and R3) shown in Fig. 3(b) along with given temporal interval I(20, 45) (shaded
area) and a list of friends Fq. Clearly, MBR R2 neither intersects with any user
in Fq (see the broken lines) nor with given temporal interval I. Therefore, we
can prune the MBR. Note that, MBR R3 does overlap with given temporal
interval I. However, it does not intersect with any user in Fq and can also be

Geo-Social Temporal Top-k Queries in Location-Based Social Networks 155

pruned. Similarly, we can prune user U11 since none of the three MBRs intersect
with it. Since MBR R1 intersects with both the Fq and given temporal interval
I, it might contain check-ins of the friends. In Fig. 3(b), the relevant users of
the query q are U14, U18 and U21 (shown in solid) who visited the place during
given temporal interval I. Next, we explain the technique in Algorithm 2 with
pseudocode given below.

(a) A cell’s Social Score Upper Bound (b) Social Score Computation

Fig. 3. Social Score

To compute the score of a candidate place p, the algorithm starts finding
the friends of q who visited the place p by traversing the Fq in ascending order
of friend IDs (at line 1). For this purpose, it accesses MBRs of VCRTree of the
place p based on their minimum visitor ID by first initializing a min-heap with
root MBR of VCRTree with minimum visitor ID as sorting key (at line 2). Then,
in first loop (at line 3), the algorithm starts de-heaping entries iteratively and
examines whether or not it intersects with the remaining number of friends in
Fq (to be verified as visitors and denoted as Fq.remaining) and given temporal
interval I (at line 7). If the entry E intersects with either of the two and is also
an object (i.e., check-in belongs to a friend in the Fq), the algorithm either
updates the social score of the place p or prunes it based on an upper bound on
the score of the place p (denoted as PmaxScore) using Eq. 4.

PmaxScore = α × pspatial + (1 − α) × PmaxSocial (4)

To choose from one of the two options, the algorithm first computes PmaxScore

of the place p using maximum possible social score of the place p (denoted as
PmaxSocial) which is computed as described in Eq. 5. Let Fq.traversed denotes a
subset of the Fq which has been traversed so far to find friends in the Fq who
visited the place p and assuming all the remaining friends in the Fq.remaining

have visited the place p.

PmaxSocial =
|Fq.traversed ∩ p.visitors| + |Fq.remaining|

|Fq| (5)

156 A. Sohail et al.

Intuitively, PmaxSocial is the maximum possible social score of a place p at
any point during the computation of final score of the place p. Consequently, if
PmaxScore of the place p is less than the current kth place score, the algorithm
terminates without computing the final score and prunes the place p (at line 10)
since it cannot be in top-k places. Otherwise, it updates the social score of the
place p (at line 12). Similarly, if the entry E does not overlap either with the
Fq.remaining or given temporal interval I, it is instantly pruned and consequently,
its child entries are not en-heaped.

Algorithm 2. ComputeScore(p)
1 F ← first friend in Fq ;
2 Initialize min-heap with Root of VCR-Tree;
3 while min-heap is not empty do
4 De-heap entry E;
5 if F < Minimum Visitor ID of E then
6 F ← binary search to find first F in Fq with ID >= minimum visitor

ID of E;
7 if (E overlaps with given temporal interval I or with the friend F then
8 if E is an object then
9 if PmaxScore < Scorek then

10 Prune the place p;
11 else
12 Update Social score ;

13 else
14 Insert child entries of E into min-heap with minimum visitor

ID as a key;

15 end
16 Return Score(p);

4.3.3 Handling Updates
Now, we provide a very high level idea of how to update the indexes. For this
purpose, we index last month data using a separate data structure in addition
to the data structure that maintains all previous months data and during query
processing, we use both the data structures. Similarly, to update the data struc-
tures, a periodic bulk update is performed.

5 Experiments

5.1 Experimental Setup

To the best of our knowledge, this problem has not been studied before and no
previous algorithm can be trivially extended to answer GSTTk queries. There-
fore, we evaluate the proposed algorithms on their performance by comparing
them with each other.

Each method is implemented in C++ and experiments are run on Intel Core
I 5 2.4 GHz PC with 8 GB memory running on 64-bit Ubuntu Linux. We use real
dataset of Gowalla [17] and various parameters such as number of queries, range

Geo-Social Temporal Top-k Queries in Location-Based Social Networks 157

(km), temporal interval (months), grid size, average number of friends and k. The
default values of the parameters used are 100, 100, 6, 16, 600 and 10 respectively.
Gowalla dataset contains 196,591 users, 950,327 friendships, 6,442,890 check-
ins over the period of February 2009 - October 2010 and 1,280,956 checked-in
places across the world [3]. The node size of Facility R-Tree index is set to
4096 Bytes and 1024 Bytes for 3D Check-In R-Tree, 3DFCR-Tree and VCR-
Tree indexes because they have fewer objects as compared to Facility R-Tree.
For each experiment, we randomly choose 100 users and consider them as query
users.

5.2 Performance Evaluation

Index Size: Figure 4(a) compares the index sizes of five different subsets of the
real dataset. To obtain these datasets, we randomly selected 100, 000 to 500, 000
places and we extracted their corresponding social networks based on visitors
of the places. The input data contains places, check-in information, friends and
their relationship information in few simple text files (without indexing). The
value on top of each Bar denotes how many times bigger the respective index
size is compared to the input data. For example, for 100, 000 places, the size
of indexes utilized by the Social-First algorithm is 2.29 times bigger than the
input data. Note that the size of all our indexes is linear to the input data for
all datasets (e.g., Hybrid is 3–4 times bigger than the input data). As expected,
Hybrid index is the largest index.

 0.0

 1.0

 2.0

 3.0

100k 200k 300k 400k 500k 1300k

In
d

e
x

 S
iz

e
 (

G
B

)

Number of Places

Input Data
Social-First

2
.2

9

2
.2

8

2
.2

8

2
.3

1

2
.2

6

2
.3

2

Spatial-First

1
.3

2

1
.2

2

1
.2

0

1
.2

0

1
.1

9

1
.2

1

Hybrid

4
.0

9 3
.7

6 3
.7

5 3
.7

5 3
.6

7

3
.6

1

(a) Index Size

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

8x8 16x16 24x24 32x32

C
P

U
 C

o
s

t
(S

e
c

)

Grid Size

Hybrid

0.311

0.199 0.214 0.218

(b) Effect of Grid Size

 0

 1

 2

 3

 4

 5

 6

 7

5 10 15 20

C
P

U
 C

o
st

 (
S

ec
)

Effect of K

Social-First

3
.9

1

3
.9

5

3
.9

6

3
.9

9

Spatial-Spatial

2
.9

8

3
.0

1

3
.0

2

3
.0

5

Hybrid

0
.3

2

0
.3

3

0
.3

5

0
.3

6

(c) CPU cost

 0

 150

 300

 450

 600

5 10 15 20

#I
O

Effect of K

Social-First

3
8
3

3
8
5

3
8
5

3
8
4

Spatial-First

3
9
3

3
9
2

3
9
2

3
9
3

Hybrid

3
3
0

3
3
1

3
3
0

3
3
1

(d) I/O cost

Fig. 4. Index and Grid Size; and Effect of k

Effect of Grid Size: In Fig. 4(b), we study the effect of different number of cells
in which grid is partitioned in Hybrid technique. The CPU cost also depends
on the number of cells because it affects grid partitioning and grid cells’ upper
bound computation which plays a vital role in pruning phase. In our study, we
found that the best CPU performance can be achieved by splitting the region
covering given range r into grid of 16 × 16 cells for the default parameters.

Effect of k: In this evaluation, we test our proposed techniques for various values
of k. As shown in Fig. 4(c), Hybrid is up to 15 times faster and the performance
is not significantly affected by the value of k. The reason is that, the main cost

158 A. Sohail et al.

depends on creating the grid and then computing upper bounds of the cells and
this dominant cost is not affected by k. Similarly, I/O cost remains unaffected
to much extent as illustrated in Fig. 4(d) for all the three algorithms since the
higher value of k does not incur more disk access. Note that, Hybrid performs
better than the other two even though it processes more indexes. However, due
to efficient pruning techniques, it incurs less I/O cost.

Effect of Range: Next, we evaluate the performance of our techniques for range
between 50 to 400 km in Fig. 5. The region in which we want to find top-k places
is defined by the given range r containing average number of places between
5, 000 to 100, 000. Note that, Spatial-First is linearly affected as we increase the
range r due to linear growth in number of places as shown in Fig. 5(a). Similarly,
Social-First shows a steady growth in CPU cost with the increase in range r.
Although it accesses the 3D Check-In R-Tree for each friend but the cost is
increased because the cost of range query on these R-trees is affected with the
range r. Note that, Hybrid performs several times better than the other two.
Further, in terms of I/O cost, as we increase the range r, Social-First again
shows a steady growth since the number of 3D Check-In R-Trees which need to
be processed, is independent of the range r as illustrated in Fig. 5(b). Note that,
Spatial-First is most affected since as we increase the range r, it has to process
more places which in return, incurs more disk access.

Effect of Average Number of Friends: In this experiment, we study the
effect of number of friends on the three techniques in Fig. 5. Note that the size of
3DFCR-Tree relies on number of query q’s friends and the distribution of each
friend’s check-ins in search space which determines the number of objects to be
indexed in 3DFCR-Tree. This in return affects the upper bound of grid cells in
Hybrid technique. In Spatial-First technique, CPU cost is mainly dependent on
the cost of range query on Facility R-Tree and to some extent on number of
query q’s friends which affect the social score computation module as depicted
in Fig. 5(c). Similarly, as we increase the number of friends, Social-First has to
process more 3D Check-In R-Trees which affects its CPU cost. Note that, when
we increase the average number of friends, we found that Social-First is linearly
affected since it requires to access 3D Check-In R-Tree for each friend as shown
in Fig. 5(d).

 0

 2

 4

 6

 8

50 100 200 400

C
P

U
 C

o
st

 (
S

ec
)

Range (km)

Social-First

2
.5

5 3
.1

1 3
.6

9

4
.1

8

Spatial-First

2
.5

9

2
.9

8 3
.8

7

5
.2

4

Hybrid

0
.1

6

0
.3

3

0
.4

9

0
.8

1

(a) CPU cost

 0

 220

 440

 660

 880

 1100

50 100 200 400

#I
O

Range (km)

Social-First

3
5
0

3
8
5

4
2
8

4
7
5

Spatial-First

3
3
4 3
9
2 4
8
3

7
9
6

Hybrid

3
0
4

3
3
0 3
9
9

5
6
7

(b) I/O cost

 0
 1
 2
 3
 4
 5
 6
 7
 8

200 400 600 800

C
P

U
 C

o
st

 (
S

ec
)

#Ave.Friends

Social-First

2
.5

9 3
.4

1 3
.9

9

4
.4

6

Spatial-First

2
.1

9

2
.4

1 2
.9

8

3
.3

3

Hybrid

0
.1

9

0
.2

5

0
.3

2

0
.4

1

(c) CPU cost

 0

 150

 300

 450

 600

 750

200 400 600 800

#I
O

Ave.Friends

Social-First

2
6
6 3
2
4 3

9
9 4
5
7

Spatial-First

3
7
6

3
9
8

4
2
3

4
2
9

Hybrid

3
7
1 4
1
0

4
2
1

4
1
7

(d) I/O cost

Fig. 5. Effect of varying Range and number of Friends

Geo-Social Temporal Top-k Queries in Location-Based Social Networks 159

Effect of Concurrent Number of Queries: Next, we compare the perfor-
mance of our techniques for various number of queries. Figure 6(a) shows average
CPU cost of the techniques which slightly varies depending on the number of
query q’s friends and query location. Social-First technique has higher CPU cost
for any number of queries than the other two because it accesses 3D Check-In
R-Tree for each friend and issues a range query as illustrated in the figure. Sim-
ilarly, Spatial-First has slightly different CPU cost because of different query
and number of places in range r. Note that, Hybrid algorithm performs several
times better and the cost for different number of queries is slightly affected by
the query location, number of friends and number of places in range r. Simi-
larly, for all the three algorithms, the average I/O cost is mainly independent of
the number of queries and is slightly affected by the query location, number of
friends and number of places in range r as depicted in Fig. 6(b).

Effect of Temporal Interval: In Fig. 6, we evaluate the effect of size of tempo-
ral interval I to test the performance of the three methods. Social-First algorithm
has higher CPU cost even for smaller temporal intervals because most of 3D
Check-In R-Trees overlap with the temporal interval as shown in Fig. 6(c). Sim-
ilarly, the CPU cost of Spatial-First method remains high specifically for bigger
temporal intervals due to more number of places to be processed. On the other
hand, in Hybrid technique, temporal interval affects cells’ upper bound com-
putation and consequently, the pruning phase gets affected. Note that, Hybrid
performs several times better than the others. Further, in terms of I/O cost, as
we increase the temporal interval I, Social-First shows a steady growth since the
number of 3D Check-In R-Trees which need to be processed, slightly depends
on the temporal interval I as illustrated in Fig. 6(d). Note that, Spatial-First is
most affected since as we increase the temporal interval I, it has to process more
places and is the main cause of high disk access.

 0

 2

 4

 6

 8

50 100 150 200

C
P

U
 C

o
st

 (
S

ec
)

Queries

Social-First

4
.1

6

3
.9

1

4
.0

3

3
.8

9

Spatial-Spatial

2
.8

2

2
.9

8

2
.8

6

2
.9

3

Hybrid

0
.3

4

0
.3

2

0
.3

7

0
.3

5

(a) CPU cost

 0

 150

 300

 450

 600

 750

50 100 150 200

#I
O

Queries

Social-First

3
6
5

3
6
4

3
6
7

3
6
2

Spatial-First

3
8
1

3
8
5

3
8
9 4
3
0

Hybrid

3
1
1

3
3
7

3
6
3

3
8
8

(b) I/O cost

 0

 2

 4

 6

 8

1 3 6 12

C
P

U
 C

o
st

 (
S

ec
)

Temporal Interval (Months)

Social-First

2
.6

7

3
.1

1 3
.8

9

4
.1

8

Spatial-First

2
.4

7

2
.6

8

3
.0

5

5
.2

4Hybrid

0
.1

5

0
.1

6

0
.2

9

0
.3

7

(c) CPU cost

 0

 170

 340

 510

 680

 850

1 3 6 12

#I
O

Temporal Interval (Months)

Social-First

3
2
5

3
3
9 3
8
5 4
3
5

Spatial-First

3
5
2

3
6
8

3
9
2

5
9
6

Hybrid

3
0
4

3
2
0

3
3
4

4
6
7

(d) I/O cost

Fig. 6. Effect of varying number of Queries and Temporal Interval

5.3 Conclusions

In this work, we are the first to formalize the problem of Geo-Social Tempo-
ral Top-k (GSTTk) query and propose efficient query processing techniques.
First, we present two different approaches i.e., Social-First and Spatial-First
to solve our problem and then, we propose our main algorithm called Hybrid.

160 A. Sohail et al.

Hybrid technique is capable of processing social, spatial and temporal compo-
nents simultaneously by utilizing a hybrid index specifically designed to handle
GSTTk queries. Results of empirical studies demonstrate the effectiveness of our
main algorithm (i.e., Hybrid).

Acknowledgements. Muhammad Aamir Cheema is supported by DP180103411 and
FT180100140.

References

1. Sohail, A., Murtaza, G., Taniar, D.: Retrieving top-k famous places in location-
based social networks. In: Cheema, M.A., Zhang, W., Chang, L. (eds.) ADC 2016.
LNCS, vol. 9877, pp. 17–30. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-46922-5 2

2. Curtiss, M., et al.: Unicorn: a system for searching the social graph. PVLDB 6(11),
1150–1161 (2013)

3. Sohail, A., Hidayat, A., Cheema, M.A., Taniar, D.: Location-aware group pref-
erence queries in social-networks. In: Wang, J., Cong, G., Chen, J., Qi, J. (eds.)
ADC 2018. LNCS, vol. 10837, pp. 53–67. Springer, Cham (2018). https://doi.org/
10.1007/978-3-319-92013-9 5

4. Armenatzoglou, N., Ahuja, R., Papadias, D.: Geo-social ranking: functions and
query processing. VLDB J. 24(6), 783–799 (2015)

5. Sohail, A., Cheema, M.A., Taniar, D.: Social-aware spatial top-k and skyline
queries. Comput. J. 61(11), 1620–1638 (2018)

6. Gao, H., Liu, H.: Data analysis on location-based social networks. In: Chin, A.,
Zhang, D. (eds.) Mobile Social Networking. CSS, pp. 165–194. Springer, New York
(2014). https://doi.org/10.1007/978-1-4614-8579-7 8

7. Cheema, M.A., et al.: Efficiently processing snapshot and continuous reverse k
nearest neighbors queries. VLDB J. 21(5), 703–728 (2012)

8. Cheema, M.A., et al.: A unified approach for computing top-k pairs in multidi-
mensional space. In: ICDE 2011, Hannover, Germany, pp. 1031–1042 (2011)

9. Li, F., et al.: Top-k queries on temporal data. VLDB J. 19(5), 715–733 (2010)
10. Hoang-Vu, T.-A., et al.: A unified index for spatio-temporal keyword queries. In:

CIKM (2016)
11. McInerney, J., et al.: Modelling heterogeneous location habits in human popu-

lations for location prediction under data sparsity. In: UbiComp 2013, Zurich,
Switzerland (2013)

12. Yuan, Q., Cong, G., Ma, Z., Sun, A., Magnenat-Thalmann, N.: Time-aware point-
of-interest recommendation. In: SIGIR 2013, Dublin, Ireland (2013)

13. Kamel, I., Khalil, M., Kouramajian, V.: Bulk insertion in dynamic r-trees. In:
Proceedings of the International Symposium on Spatial Data Handling, vol. 4, pp.
31–42 (1996)

14. Chen, L., et al.: Bulk-insertions info r-trees using the small-tree-large-tree app-
roach. In: ACM-GIS (1998)

15. Choubey, R., Chen, L., Rundensteiner, E.A.: GBI: a generalized r-tree bulk-
insertion strategy. In: Güting, R.H., Papadias, D., Lochovsky, F. (eds.) SSD 1999.
LNCS, vol. 1651, pp. 91–108. Springer, Heidelberg (1999). https://doi.org/10.1007/
3-540-48482-5 8

16. Guttman, A.: R-trees: a dynamic index structure for spatial searching. In: SIG-
MOD, Boston, Massachusetts. IEEE, New York (1984)

17. Cho, E., Myers, S.A., Leskovec, J.: Friendship and mobility: user movement in
location-based social networks. In: SIGKDD 2011, San Diego, CA, USA (2011)

https://doi.org/10.1007/978-3-319-46922-5_2
https://doi.org/10.1007/978-3-319-46922-5_2
https://doi.org/10.1007/978-3-319-92013-9_5
https://doi.org/10.1007/978-3-319-92013-9_5
https://doi.org/10.1007/978-1-4614-8579-7_8
https://doi.org/10.1007/3-540-48482-5_8
https://doi.org/10.1007/3-540-48482-5_8

Effective and Efficient Community Search
in Directed Graphs Across Heterogeneous

Social Networks

Zezhong Wang1, Ye Yuan1, Xiangmin Zhou2(B), and Hongchao Qin1

1 School of Computer Science and Engineering, Northeastern University,
Shenyang, China

zezhong wang@sina.cn, yuanye@mail.neu.edu.cn, qhc.neu@gmail.com
2 School of Science, RMIT University, Melbourne, VIC 3000, Australia

xiangmin.zhou@rmit.edu.au

Abstract. Communities in social networks are useful for many real
applications, like product recommendation. This fact has driven the
recent research interest in retrieving communities online. Although cer-
tain effort has been put into community search, users’ information
has not been well exploited for effective search. Meanwhile, existing
approaches for retrieval of communities are not efficient when applied
in huge social networks. Motivated by this, in this paper, we propose
a novel approach for retrieving communities online, which makes full
use of users’ relationship information across heterogeneous social net-
works. We first investigate an online technique to match pairs of users
in different social network and create a new social network, which con-
tains more complete information. Then, we propose k-Dcore, a novel
framework of retrieving effective communities in the directed social net-
work. Finally, we construct an index to search communities efficiently for
queries. Extensive experiments demonstrate the efficiency and effective-
ness of our proposed solution in directed graphs, based on heterogeneous
social networks.

Keywords: Community search · User identity linkage · Direction
of relationships

1 Introduction

Today, billions of users are now engaged in multiple online social networks, such
as Facebook, Twitter, Foursquare, and Weibo. Communities in social networks,
are useful for many real applications (product recommendation [1–4] and setting
up social events [5] and so on). A great deal of research has been conducted on
discovering communities. Classical methods [6,7] aim to extract all the commu-
nities for a social network. For one thing, they are not customized for a query
request and are not suitable for quick retrieval of communities. For another, these
solutions do not make full use of user’s relationship information. Meanwhile, the
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 161–172, 2020.
https://doi.org/10.1007/978-3-030-39469-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_13

162 Z. Wang et al.

users’ information in one single social network is not enough to retrieve cohesive
communities for the query user.

We study effective and efficient solutions for community search across hetero-
geneous social networks. Three key issues need to be addressed. First, we need
to find a way to make full use of users’ information in multiple social networks.
We propose a method to create a new social network in a short time, which con-
tains the users’ all information in multiple social networks. A given user often
simultaneously register in several social networks. Each social network platform
contains different and rich information of the person. Failing to utilize users’
all information could lead to the community discovery results with low quality.
Considering we retrieve communities in an “online” manner, we are supposed
to match pairs of users and create a new social networks in a short time. Sec-
ond, we need to construct a model based on query user, which can perform
well in directed graphs. This is vital, as users’ relationships is of significance for
understanding the social network’s structure. The direction of the relationship
are often meaningful and unsymmetrical [8,9]. Consider Trump, the president
of USA, has around 30 millions of followers in Twitter, but he only follows less
than 100 persons. If we ignore the direction of relationships and further simplify
the social networks’ structure into undirected graphs, we could get communities
with low cohesiveness and even wrong ones [10]. Finally, we need find a way to
save the user information processing time. We should further develop an index
to decrease the time cost.

To overcome these problems, we propose a framework (CS-HSN) for commu-
nity search by utilizing the users’ relationships in multiple social networks. We
first design algorithms to supplement the users’ relationships between vertices
based on information in multiple social networks. Then we build a novel model,
called k-Dcore(k-core in directed graphs). The contributions of the article are
highlighted as follows:

– We design a novel k-Dcore model, which measures the “goodness” of commu-
nities according to the relationships between the vertices. The communities
we generate could perform better the others.

– We propose a solution to match pairs of users in a short time and combine
multiple social networks into one. In this way, the users’ information could
be enriched greatly.

– We develop an index by using some compression techniques. Based on the
indexes, the query performance can be improved significantly.

The remainder of the paper is organized as follows. We briefly review the
related work in Sect. 2. We introduce problem definition in Sect. 3. In Sects. 4
and 5, we describe our approach of user identity linkage and the algorithm for
retrieving communities in directed graphs, respectively. In Sects. 6 and 7, we
show the approach’s cost analysis and report extensive experimental results.
Finally, Sect. 8 concludes the paper.

Effective and Efficient Community Search in Directed Graphs 163

2 Related Work

In this section, we review the existing research on two problems closely related
to our work, including the community search and user identity linkage across
heterogeneous social networks.

2.1 Community Search

Community search methods aim to retrieve communities in an “online” manner,
based on a query request. Sozio et al. [5] proposed the first algorithm Global
to find the k-core containing q. Cui et al. [1] proposed Local, which uses local
expansion techniques to enhance the performance of Global. We will compare the
two kind of solutions in our experiments. Some recent work [11–13] finds commu-
nities in attributed graphs. Some others focus on topological structure, including
k-clique [14], k-truss [15], and spectral cluster [16]. However, these community
search algorithms overlook direction of edges, which contains the rich informa-
tion and is meaningful in the social networks. Wang [10] proposed a method to
retrieve communities in directed graphs based on query user. Nevertheless, the
method ignores the information across heterogeneous social networks.

2.2 User Identity Linkage

According to the model construction of user identity linkage, we summarize exist-
ing models into three groups: supervised [17], semi-supervised [18] and unsuper-
vised models [19]. In order to math the users, Vosecky [17] proposes a supervised
method, which uses distance-based profile features and a supervised aggregating
method to link user identities. Liu [18] proposes a semi-supervised multiobjective
framework jointly modeling heterogeneous behaviors and structure consistency.
Considering the high cost to obtain matching users by using supervised and
semi-supervised methods, we cannot apply these models into our online search.
TLabitzke’s [17] algorithm tries to compare neighborhood based network fea-
tures for user identity linkage. The model is a typical aligning algorithm, which
is an “online” method. However, this method is not based on the query user,
which is not suitable for community search.

3 Problem Definition

This section provides a formal problem definition and describes our proposed
approach briefly.

Definition 1 (k-Dcore). Given a directed graph G and an integer k (k ≥ 1), a
k-Dcore is a strongly connected directed component of G, satisfying that, ∀ v∈
k-Dcore, in-degree and out-degree’s minimum of v ≥ k.

164 Z. Wang et al.

Definition 2 (Heterogeneous social network). A heterogeneous social net-
work can be modeled as a directed graph G= (V,E,N), where V= v1, v2...vn rep-
resents all vertices, E is the set of all the edges in the graph, which represents the
relationships between the vertices, and N is the set of all vertices’ name strings.

Problem 1 (User identity linkage of social networks). Given heterogeneous
social networks G1 = (V,E,N) and G2 = (V,E,N), it identifies and match
users vG11 ... and vG21 ... in G1, G2, as the same natural people across the social
networks, and combines the two social network into a new linked social network
Gl.

Definition 3 (Communities in the linked social network). The commu-
nities Glq is the k-Dcores we get in the linked social network Gl, which should
hold the following properties:

1. Strong Connectivity. Glq ⊆ Gl is strongly connected and contains q;
2. Structure cohesiveness. v ∈ Glq, mindegGlq (v) ≥ the threshold k;

Problem 2 (CS-HSN). Given heterogeneous social networks G1(V,E,N),
G2(V,E,N) and the vertex query q, CS-HSN (community search across het-
erogeneous social networks) returns a set of communities Glq ∈ Gl.

4 Our User Identity Linkage Approach

We aim to match users, by comparing their profiles from different social net-
works. We proceed as follows.

4.1 Retrieval of Valid User Sets

To retrieve right match, it is supposed to compare all the users. However, we
observe that there are often many users which are not meaningful for the search.
We thus investigate a pruning algorithm to get valid user sets.

Given the query user’s two accounts in SN1, SN2, we get 1-Dcores of SN1

and SN2, which we call VSN1 and VSN2 . We only compare the users in VSN1 and
VSN2 , because they are valid for the query. For one thing, our search is based on
the query user and retrieves communities from 1-Dcores (the process will be
introduced in Sect. 5). For another, the users in VSN1 and ones in VSN2 , which
are closely related to each other, are more possibly matched with each other. In
this way, we only compare the users in VSN1 and VSN2 , which significantly saves
time cost.

4.2 Comparisons of Users

In order to match the users, we should compare users’ profiles in VSN1 with the
ones’ in VSN2 . If Vp is one user in VSN1 and there are totally n users in VSN2 ,
we compare the profile of Vp with n profiles (1:n) and get a comparison set. We
illustrates the concept of comparison sets and get k comparison sets in Fig. 1(a).

Effective and Efficient Community Search in Directed Graphs 165

Fig. 1. Comparison of users

Then, we choose the comparison sets’ friend lists as the character of the
profile to compare. We all known that, most of users do not share all the private
information, such as, job, hometown and contact, in every social network, and
some methods of retrieving users’ information waste a lot of time, for example,
face recognition. In view of this, we choose the friend list. For one thing, friends
lists are publicly available. For another, comparisons of the users can be done via
simple string comparisons, which is suitable for online query. Then, we choose
users’ friends list, FL1 and FL2, to compare. Figure 1(b) depicts one single
comparison between Melissa Davis and Sarah Wilson.

4.3 Matching Users

In order to match users, we refer to the number of the intersection of FL1 and
FL2 (FL1 ∩ FL2) as overlap. We choose largest overlaps and distinction dis-
tance as a correlation metric to judge whether two compared users belong to
the same natural person. As shown in Fig. 2, the gap between the target com-
parison’ overlap value and the next lower one is called the distinction distance
and quantifies how distinct the target comparison stands from the other com-
parisons. Only if the two compared users’ overlap is maximum and distinctive
distance is greater than the threshold θ, we get the match.

4.4 Combination of Social Networks

Based on the result that pairs of users in different social networks are matched as
the same natural person, we can create a new social network which contains all the
information. As shown in Algorithm 1, we supplement vertices and relationships

166 Z. Wang et al.

Fig. 2. Histogram of detected comparison overlaps for a comparison set (1:15)

between vertices in G1 from ones in G2. In this way, we can get a new social network
containing more information and search communities in the new one.

Algorithm 1 Combination of social networks
1: Match(m) is the function that get the user n in the other social network, which is

matched with m.
Input: graphs of social networksG1 = (V,E,N) andG2 = (V,E,N), sets of matching

users MSN1 and MSN2;
Output: the graph of the new social networks Gn;
2: Gn:=G1;
3: for each i ∈ MSN1 do
4: for each j ∈ Match(i).friendlist do
5: if j ∈ MSN2 then
6: i.friendlist.add(Match(j));
7: else
8: G1.add(j);
9: i.friendlist.add(Match(j));
10: end for
11: end if
12: end for
13: return Gn;

5 Our Community Search Approach

In this section, we demonstrate how to get k-Dcore in the directed graphs and
construct an index for querying efficiently.

5.1 Cores Decomposition

For the question of retrieving communities in the directed graph, we define the
k-Dcore based on min-degree, which is minimum of the vertices’ in-degree value
and out-degree in the directed graph.

Effective and Efficient Community Search in Directed Graphs 167

Vladimir Batagelj present [20] an algorithm for k-core, which determines the
cores hierarchy, for implementing both functions and running in a constant time
(O(m)). For one thing, we improve the O(m) algorithm based on min-degree,
as shown in Algorithm 2 (line 2), which guarantees that the vertex is closely
linked with other vertices. For another, we apply strongly connected algorithm
for extract strongly connected subgraphs. Strong connectivity guarantees that
each member of the community is reachable to others. Tarjan’s strongly con-
nected components algorithm [20] takes a directed graph as input, and produces
a partition of the graph’s vertices into the l strongly connected components with
different core numbers (line 6). At meanwhile, Tarjan’s algorithm runs in linear
time, which is suitable for online search. In this way, we could avoid the effect
of celebrities and zombie fans as discussed in Sect. 1. Christos propose a method
called D-core [21], which is based on in-degree and out-degree. However, it is not
meaningful to set threshold for vertices’ in-degree and out-degree, respectively.
Vertices’ in-degree and out-degree are both of importance. If the threshold of
in-degree or out-degree is greater the other, it could cause the effect of celebrities
and zombie fans. Furthermore, it raises the complexity of time and space, which
is not suitable for online search.

In Fig. 3(a), given a graph G, we order the vertices in an increasing sequence
of their min-degree and get a strongly connected subgraph. We first get the
strongly connected component of G(A, B, C, D, E, F, G, H, I, J) (line 6), and
record them with core number 1. We move away F,G step by step (line 19),
which own lowest min-degree 1. In this way, we recount the min-degree of F and
G’s neighbors and reorder the rest, accordingly. Then, just as the process of core
number 1, we verify the strong connectivity again, and find that H, I, J and A,
B, C, D, E are two strongly connected components, v2,1 and v2,2. We move them
away and recount their neighbors’ min-degree. Finally, we get a 1-Dcore, two
2-Dcores, and a 3-Dcore.

5.2 Index Construction

In order to search communities efficiently, we construct a C-tree(Core tree)
according to the result of core decomposition. As shown in Fig. 3(b), we choose
F, G with lowest core number as root (r1,1). The vertices H, I, J(r2,1), are not
strongly connected with A, B, C, D, E(r2,2), so the two are the child nodes of
(r1,1). A, B, C, D, as (r3,1), is the child node of (r2,2). If A is the query vertex
and structure cohesiveness threshold is 2, we will find the community in the
subtree, which consists of (r2,2) and (r3,1).

168 Z. Wang et al.

Algorithm 2 Cores Decomposition
Input: Graph G = (V,E,N);
Output: strongly connected subgraphs with its core number;
1: initialize V0,0, V0,1, V1,0...Vkmax,kmax as empty sets;
2: order the set of vertices V in increasing order of their min-degree;
3: CoreNum := Degmin(V.head) ;
4: for each v ∈ V in the order do
5: if Degmin(v) ≥ CoreNum || v=V.head then
6: VCoreNum,l := Tarjan(V);
7: CoreNum := Degmin(v);
8: end if
9: for each u∈ Neighbourin(v) do
10: if u ∈ V then
11: Degout(v) := Degout(v)-1;
12: end if
13: end for
14: for each u∈ Neighbouriout(v) do
15: if u ∈ V then
16: Degin(v) := Degin(v)-1;
17: end if
18: end for
19: delete v from V;
20: reorder V accordingly
21: end for
22: return V0,0, V0,1, V1,0...Vkmax,kmax

Fig. 3. Process of index construction

6 Cost Analysis

In the process of user identity linkage, we match the users on the basis of simple
string comparisons of provided data rather than on the use of complex corre-
lation algorithms, so we can regard that the work is done in constant time a.
Combination of the two social network can be done in O(m). What’s more, the
k-core decomposition [20] can be done in O(m) and Tarjan’s algorithm used to
verify strongly connected component costs O(m + n). Besides, the C-tree could

Effective and Efficient Community Search in Directed Graphs 169

be constructed in O(l · n). We apply Tarjan’s algorithm in the subgraphs with
different core numbers. If maximum of structure cohesiveness is kmax, the total
time cost is O((kmax + 1)·m+(l + 1)·n).

7 Experiment Evaluation

This section demonstrates the effectiveness and efficiency of our proposed app-
roach, community search across heterogeneous social networks (CS-HSN).

7.1 Experimental Setup

We gather and select the data sets of Twitter and Foursquare in Singapore, from
2014.11 to 2016.01. The data set consists of user profiles, follow relationships,
contents and so on (Table 1).

Table 1. Datasets of the networks

Dataset Vertices Edges

Twitter 160,338 2,405,628

Foursquare 76,503 1,531,357

We randomly selected 200 query vertices, of which core numbers are higher
than 5. We calculate the averages of the 200 queries. Our methods were imple-
mented on a machine with CPU Inter(R) Core(TM)i7-2600, 8.00 GB memory,
3.40 GHz frequency, 500 GB hard disk. All programs are coded in Java.

7.2 Evaluation Methodology

In this part, we conduct experiments of classical algorithm in several different
data sets, and compare CS-HSN with other outstanding CS methods: Local
search [5], Global search [1].

To measure similarities, we apply a classical measure, the Jaccard index,
and develop the measure in our circumstance, called CMF (community member
frequency). Given algorithms A = {A1, A2, ..., Aψ}, CMF (A(q)), which ranges
from 0 to 1, states that two vertices are considered to be highly similar if they
share some common neighbors. The higher their value, the more cohesive is a
community. Nbr(v) is the set of v’s neighbours and C denotes the set of vertices
in a community.

– CMF: CMF (Aψ) = 1
|Ci|2

∑
u∈C

∑
v∈C

Nbr(u)∩Nbr(u)
Nbr(u)∪Nbr(u)

170 Z. Wang et al.

Global search is based on the undirected graph and retrieves a connected subraph
which contains the query vertex, q. Local search also overlooks direction of the
relationships. The algorithm explores from q, until it forms a cohesive subgraph.
The three methods all adopt minimum degree measurement to guarantee the
structure cohesiveness of communities. However, the algorithms and the graphs
they work on are different, which result in different effectiveness of retrieved
communities.

7.3 Effectiveness Evaluation

In Fig. 4, we compare CS-HSN with other CS methods about cohesiveness of
communities specifically, about CMF value for the two given datasets. The figure
shows that CS-HSN outperform in cohesiveness of communities, because CS-HSN
mainly considers the users’ information in other social networks, while Global
search and Local search do not. Furthermore, CS-HSN also show better perfor-
mance than others, since CS-HSN takes advantage of the relationships’ direc-
tion, by working on directed networks without any simplification. As we discuss
in Sect. 1, using undirected edges to represent unidirectional and bidirectional
relationships could leave negative influence on topological structure and further
produce wrong results. Notice that the CMF values for Twitter and Foursquare
are same, because we match the users in Twitter and Foursquare, and compare
the two to a new social network, in which we extract communities.

Fig. 4. Effectiveness of the algorithms

7.4 Efficiency Comparison

In this part, we compare the query efficiency with other CS methods for the two
given datasets, under different k, which is the threshold of community cohesive-
ness. A lower k renders a larger subgraph of the graphs simplified from networks
for all the algorithms. Extensive experiments were conducted to verify the effi-
ciency of CS-HSN. In Fig. 5, we can see Local search outperforms than Global
search in general, and it is apparent that CS-HSN executes more efficiently than
others because of index construction. The index we use to find communities for
a large number of queries, is not reconstructed in each time. Hence, there is a
little additional time on average, which could be ignored.

Effective and Efficient Community Search in Directed Graphs 171

(a) Twitter (b) Foursquare

Fig. 5. Efficiency of the algorithms about different k

8 Conclusion

In this paper, we investigate the problem of community search in directed graphs
and propose a novel framework CS-HSN to retrieve effective community with
strongly connected structure cohesiveness. To the best of our knowledge, this
is the first work on community search in directed graphs, across heterogeneous
social networks. We can also apply CS-HSN in undirected graphs, which shows
its wide applicability. As shown in experiments, CS-HSN method is efficient and
more effective than other methods.

References

1. Cui, W., Xiao, Y., Wang, H., Wei, W.: Local search of communities in large graphs.
In: SIGMOD (2014)

2. Zhou, X., Chen, L., Zhang, Y., Cao, L., Huang, G., Wang, C.: Online video rec-
ommendation in sharing community. In: SIGMOD, pp. 1645–1656 (2015)

3. Zhou, X., et al.: Enhancing online video recommendation using social user inter-
actions. VLDB J. 26(5), 637–656 (2017)

4. Zhou, X., Qin, D., Chen, L., Zhang, Y.: Real-time context-aware social media
recommendation. VLDB J. 28(2), 197–219 (2019)

5. Sozio, M., Gionis, A.: The community-search problem and how to plan a successful
cocktail party. In: SIGKDD (2010)

6. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in net-
works. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 69(2), 026113 (2004)

7. Yang, J., Mcauley, J., Leskovec, J.: Community detection in networks with node
attributes. In: ICDM (2013)

8. Zhang, J., Wang, C., Wang, J.: Who proposed the relationship?: recovering the
hidden directions of undirected social networks. In: WWW (2014)

9. Fang, Y., Wang, Z., Cheng, R., Wang, H., Hu, J.: Effective and efficient community
search over large directed graphs. IEEE Trans. Knowl. Data Eng. PP(99), 1 (2018)

10. Wang, Z., Yuan, Y., Wang, G., Qin, H., Ma, Y.: An effective method for community
search in large directed attributed graphs. In: Zhu, L., Zhong, S. (eds.) MSN 2017.
Communications in Computer and Information Science, vol. 747, pp. 237–251.
Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-8890-2 17

11. Fang, Y., Cheng, R., Luo, S., Jiafeng, H.: Effective community search for large
attributed graphs. Proc. VLDB Endowment 9(12), 1233–1244 (2016)

https://doi.org/10.1007/978-981-10-8890-2_17

172 Z. Wang et al.

12. Huang, X., Lakshmanan, L.V.S.: Attribute-driven community search. Proc. VLDB
Endowment 10(9), 949–960 (2017)

13. Chen, L., Liu, C., Liao, K., Li, J., Zhou, R.: Contextual community search over
large social networks. In: ICDE, April 2019

14. Cui, W., Xiao, Y., Wang, H., Lu, Y., Wei, W.: Online search of overlapping com-
munities. In: SIGMOD (2013)

15. Huang, X., Cheng, H., Qin, L., Tian, W., Yu, J.X.: Querying k-truss community
in large and dynamic graphs. In: SIGMOD (2014)

16. Li, Y., Jing, C., Liu, R., Wu, J.: A spectral clustering-based adaptive hybrid multi-
objective harmony search algorithm for community detection. In: Evolutionary
Computation (2012)

17. Vosecky, J., Dan, H., Shen, V.Y.: User identification across multiple social net-
works. In: International Conference on Networked Digital Technologies (2009)

18. Liu, S., Wang, S., Zhu, F., Zhang, J., Krishnan, R.: Hydra: large-scale social iden-
tity linkage via heterogeneous behavior modeling (2014)

19. Nie, Y., Yan, J., Li, S., Xiang, Z., Li, A., Zhou, B.: Identifying users
across social networks based on dynamic core interests. Neurocomputing 210,
S0925231216306178 (2016)

20. Zaversnik, M., Batagelj, V.: An o(m) algorithm for cores decomposition of net-
works. arXiv preprint, p. 0310049 (2003)

21. Giatsidis, C., Thilikos, D.M., Vazirgiannis, M.: D-cores: measuring collaboration
of directed graphs based on degeneracy. Knowl. Inf. Syst. 35(2), 311–343 (2013)

Entity Extraction with Knowledge
from Web Scale Corpora

Zeyi Wen1(B), Zeyu Huang2, and Rui Zhang2

1 The University of Western Australia, Perth, Australia
zeyi.wen@uwa.edu.au

2 The University of Melbourne, Melbourne, Australia
z.huang56@student.unimelb.edu.au, rui.zhang@unimelb.edu.au

Abstract. Entity extraction is an important task in text mining and
natural language processing. A popular method for entity extraction is
by comparing substrings from free text against a dictionary of entities.
In this paper, we present several techniques as a post-processing step for
improving the effectiveness of the existing entity extraction technique.
These techniques utilise models trained with the web-scale corpora which
makes our techniques robust and versatile. Experiments show that our
techniques bring a notable improvement on efficiency and effectiveness.

Keywords: Entity extraction · String matching · Pre-trained model

1 Introduction

Entity extraction is widely used in text mining and natural language processing.
For example, it can be used for pre-processing unstructured text: tagging and
highlighting the named entities of interest. A common approach for approximate
entity extraction is by comparing a substring against an entity. The approach
identifies the candidate substrings from free text that match a given list of named
entities. For ease of presentation, we use “dictionary” to refer to the list and
“entities” to refer to the named entities. Our previous work [16] developed the
“2ED” algorithm, which this paper is built on, represents a string matching
approach for entity extraction. 2ED is based a distance that considers both
character-level edit-distance and token-level edit-distance between a substring
from the text and an entity from the dictionary.

Although 2ED reaches a high F1 score with improved efficiency compared to
other techniques, the limitation of 2ED is that 2ED is based on lexical evidence
of the text and the dictionary, which lacks the ability to catch syntactical and
semantical evidence within the text and the dictionary. To improve 2ED, we pro-
pose multiple techniques including (i) using web-scale corpora for distinguishing
a typo from an intended token in the substring, (ii) estimating word similarity
using word embedding, and (iii) other improvements including more advanced
tokenisation. We implement our proposed techniques as a post-processing step

c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 173–185, 2020.
https://doi.org/10.1007/978-3-030-39469-1_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_14&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_14

174 Z. Wen et al.

for the 2ED algorithm. According to our evaluation, the post-processing brings
47% improvement measured by area under the Receiver Operating Characteris-
tic (ROC) curve, in predicting whether a matched substring represents a valid
entity in the dictionary.

2 Related Work

Another widely adopted approach to entity extraction is machine Learning
such as Recurrent Neural Networks (RNN) [15], Convolutional Neural Networks
(CNN) [2] and SVMs [17]. Most of the machine learning based approaches do not
require a dictionary consisting of entities of interest. In this paper, we mainly
focus on the string matching approach which finds the nearest neighbour of an
entity [6]. There have been various research in the area of entity extraction. Chiu
et al. [2] used an architecture combining Long Short-Term Memory (LSTM)
and CNN for named entity extraction, which can utilise both token-level and
character-level evidence. Wei et al. [15] applied an RNN to entity extraction
tasks in the medical domain. Besides the machine learning approaches, there
are also researches focused on string matching for entity extraction, like the
concept recognition system in [14] which implemented a dictionary based entity
extraction tool as a component of an NLP pipeline.

Recent works in language models also inspired our work in this paper.
Heafield [5] proposed an efficient language model enabling fast queries which
also uses space-efficient data structures like TRIE. The BerkeleyLM project [5]
enables the storage of large n-gram language models with a fast and small data
structure. Progress in the research of word embedding has facilitated many text
mining tasks. Mikolov et al. [12] explored the performance of representations of
words in a vector-space and demonstrated that these vectors captures various
features and rules in the language without human intervention during the train-
ing phase. Whitelaw et al. [18] proposed an spell-checking and autocorrection
method that utilises the web as a noisy corpus. The approach used shares some
common features with our method in this paper as it makes use of the web as
a source for training a language model. One major difference is that in their
approach a machine learning based classifier was further used while we rely on
a rule-based method for classification.

3 The 2ED Algorithm

The previous 2ED algorithm proposed a novel method for estimating the distance
(similarity) between a candidate substring and an entity called FuzzyED [16].
The novelty of FuzzyED is in that it proposed a function for measuring similarity
between two strings that consist of a sequence of tokens, by taking into consider-
ation both the character-level and the token-level edit-distances. Together with
the function is a series of techniques for improving the performance by produc-
ing highly promising candidate sub-strings in an efficient way [16]. We will first

Entity Extraction with Knowledge from Web Scale Corpora 175

introduce some key features of the 2ED algorithm which are related to the post-
processing work that we will discuss in this paper. We will also point out some
potential weaknesses of this previous work that enlightened the improvements
we will propose.

3.1 Features of the 2ED Algorithm

Using IDF to Assign Weights to Tokens: One important idea that is exploited
throughout the process of 2ED is that tokens in an entity should have discrim-
inated weights. The algorithm proposed using (normalised) Inverted Document
Frequency (IDF) as the weight for each token [16], which makes use of informa-
tion from the dictionary. The IDF of a token in the dictionary is a representation
of its relative importance in an entity. If a token is rarely seen in the dictionary,
the 2ED algorithm assumes it is more substantial in a named entity. Such tokens
are called “core” tokens and should form an essential part of an entity [16]. The
weights of tokens are widely used in several steps of the algorithm including the
sub-string generation step, where “core” tokens are used as the starting point for
spanning; the spanning step, for determining the point for terminating spanning
of the sub-string; the shrinking step, for updating the lower bound dissimilarity;
and finally the computation of FuzzyED.

Pruning and Filtering: Since the computation of FuzzyED is relatively expen-
sive, multiple methods for reducing the number of candidates are proposed. The
algorithm uses sophisticated spanning and shrinking techniques for generating
candidate substrings from the text which is proven to be more efficient than enu-
meration based substring generation algorithms [16]. In addition, some general
filters utilizing information from IDF are used to further reduce the candidates
for FuzzyED computation.

Calculation of FuzzyED Score: The final step for determining whether a can-
didate matches an entity is to calculate similarity between the two strings by
applying the FuzzyED algorithm. The formal definition is FuzzyED(E,S) =
CD(S) + CI(E) + CS(E,S), were E and S denotes the entity and the substring
respectively. CD(·) denotes the deletion cost of removing a token; CI(·) denotes
the insertion cost of inserting a token; CS(·) denotes the substitution cost of
substituting a token in S with a similar token in E.

As we can see, both character-level and token-level edit-distances are consid-
ered. The character-level edit-distance is in the substitution cost part, where the
cost of substituting a token with another is related to the edit-different of the
two tokens. The token-level edit-distance is calculated in a way similar to the
character-level version, which is a well studied dynamic programming problem.
The resulting FuzzyED score is in the range of [0, 1] representing the similarity
between the substring and the entity, where a score of 1 means exact match.
The pairs with a FuzzyED score greater or equal to the threshold will be added
to the extracted entity list.

176 Z. Wen et al.

Parameters in 2ED: The 2ED algorithm features hyper-parameters that can
be used to tune the thresholds for two levels of similarities [16]. The hyper-
parameters include δ for token-level similarity threshold and τ for character-level
similarity thershold. The two hyper-parameters are in domain [0, 1].

3.2 Drawbacks of the 2ED Algorithm

Applicability of IDFs as Token Weights: As described above, the 2ED algorithm
uses the dictionary as the source for obtaining Inverted Document Frequency.
The intuition of this approach is to assign different weights to the tokens within
an entity so that they can reflect their relative importance in the entity. Such
weights are finally used to calculate the FuzzyED score as in formula (1). How-
ever, the approach for weighing different tokens directly from the dictionary
may have some potential vulnerabilities. Suppose a data analysis practitioner
is interested in Australian educational institutes on Wikipedia and a dictionary
specifically designed for this purpose is used. Then the IDF of tokens such as
“Australian” and “University” can be much smaller than desired. In this case,
IDF from a more comprehensive corpus might be a better fit. In fact, the experi-
mental data sets used in the validation of the 2ED algorithm contain dictionaries
of millions of named entities, which makes it more appropriate to use IDF as
token weights.

Effectiveness of Token-Level Edit-Distance: The proposed function for FuzzyED
calculates the cost of token-level edit by the sum of three operations: insertion,
deletion and substitution. Thus the cost of transforming “Alpha Beta” to “Beta
Alpha” is one deletion and one insertion, which is the sum of weights of the
two words. This is because the same operations are used for token-edit and
character-edit. But as an observation from the English language, token-edit and
character-edit are different. In the above example, we might have over estimated
the distance between “Alpha Beta” and “Beta Alpha”. Consequently, more oper-
ations on the token level needs to be introduced and their costs should be studied
to reflect the linguistic “distance”. Another concern about including token-level
edit-distance in the FuzzyED algorithm is its significance in real world use cases,
i.e. how many matched pairs (between a substring and an entity) truly incur a
token-level edit operation. We will show that this concern is valid for the cor-
pus and dictionary we have chosen in the next section where statistics of the
validation of the current 2ED algorithm will be presented.

4 Improvement on 2ED

The effectiveness of the 2ED algorithm in terms of precision and recall was
studied in previous works [16]. The metrics used are listed in the Table 1 below.

Entity Extraction with Knowledge from Web Scale Corpora 177

Table 1. Metrics used for evaluating 2ED

Notation Description Definition

tp True positive count # of correctly returned entities

fp False positive count # of wrongly returned entities

fn False negative count # of missed entities

p Precision p = tp
tp+fp

r Recall r = tp
tp+fn

According to the study in [16], 2ED reached a recall of above 96% when
token-level threshold is set to 0.9, and above 99% when is set to 0.85 on some
data sets. While the results above are impressive, we also explored the previous
2ED algorithm in greater detail by focusing on its performance on two kinds
of edit-distances respectively. We use a lower threshold of at 0.8 to allow us to
observe as many matched pairs of substrings and entities (hereafter “matched
pairs”) as reasonably possible. The data set used at this stage is a corpus of IMDb
reviews [8] and a dictionary of movie titles obtained from the IMDb website [4].
The results of running 2ED algorithm on this data set are as follows: (i) the
number of sub-strings matched (with δ = τ = 0.8) is 39908, and (ii) the number
of sub-strings approximately matched (score< 1) is 7540.

The Table 2 below shows a summary of the labelled matched pairs.

Table 2. Summary of the labelled matched pairs from 2ED

Summary of labelled matched pairs Total fp tp

Number of matched pairs labelled 200 47 154

Matched pairs with token-level edit-distance 42 20 22

Matched pairs with character-level edit-distance 156 27 129

Matched pairs with both levels of edit-distance 2 0 2

Although the number of substrings labelled is relatively small, we can still
draw some qualitative conclusions: First, the number of approximately matched
substrings (score < 1) takes a considerable proportion of the number of all
matched substrings when the threshold δ is set to 0.8. Secondly, the true positive
matches takes up over 75% of the manually labelled sample. Thirdly, out of the
manually labelled sample, substrings with character-level edit-distance takes a
dominant majority and also contributes to the biggest proportion of the true
positive matches. Lastly, substrings with both levels of edit distance takes a lit-
tle proportion in the sample. According to the analysis above, we will focus on
improving the effectiveness of the previous work for extracting substrings with
character-level edit-distance.

178 Z. Wen et al.

4.1 Distinguishing a Typo from an Intended Token

Limitation of Lexical Edit-Distances. Previous experimental studies of the
2ED algorithm provided some intuitions for our improvement work. For example,
the following two matched pairs have a very close 2ED score but pair #1 is an
invalid match while pair #2 is valid (Table 3).

Table 3. Examples from 2ED

Substring Entity 2ED

1 About the premise About the promise 0.844754

2 Code of honor Code of honour 0.862025

To be more general, 2ED measures the similarity of two tokens by lexical
edit-distance. In example #1, the difference between this matched pair is within
the word pair “premise” and “promise”. 2ED measures the distance between the
word pair by number of character-level operations including insertion, deletion
and substitution. Thus, the difference is represented by a substitution opera-
tion that turns the letter “e” in word “premise” into the letter “o” in word
“promise”. Similarly in example #2, the distance is represented by an insertion
operation that turns the word “honor” into “honour”. However, the validity
of the two matched pairs is not represented by the lexical edit-distance within
these pairs. The pair in example #2 is valid because token “honor” is an vari-
ation of token “honour” in English; while the pair in example #1 is not valid
because “premise” and “promise” are two different words that share little simi-
larity in their grammatical position and semantical meaning. In fact, the lexical
edit-distance between two tokens is more applicable as a representation of their
similarity (distance) when one of them is a mis-spelled version (typo) of the
other. It is common that words that look similar may or may not have close
meanings and grammatical position (e.g. part-of-speech). Thus, some criteria
for distinguishing a typo from an intended token should be introduced to help
us judge whether it is appropriate to apply the FuzzyED which is based on
lexical edit-distance.

4.2 Using Language Models

We propose the following conditions for identifying a typo based on the above
analysis: suppose the substring contains a token ts that has a close lexical edit-
distance with the corresponding token te in the entity. We assume ts is not a
typo if and only if (i) ts is a valid word in the language and (ii) ts fits in the
context in the substring. The next step is to model these two conditions in a
feasible way. In fact, the conditions (i) and (ii) above can both be judged with
a corpus of its language, where the validity of a single token can be measured
by its frequency in the corpus and the validity of its context by the frequency of

Entity Extraction with Knowledge from Web Scale Corpora 179

word phrases or (token-level) n-grams. Since single tokens are just (token-level)
1-grams, the above conditions can be simplified as judging whether the n-grams
generated around ts are valid n-grams in the language, where n is in range [1, k]
and k ≥ 2. N-grams and language models. The application of (token-level) n-
grams in NLP tasks is versatile, one of them being a statistical language model.
A language model can help us tell (i) how likely a given n-gram will appear in
a language or (ii) the conditional probability that an n-gram is followed by a
certain word. According to the analysis above, we are using statistics of the n-
grams in a language without domain-specific knowledge or linguistic rules. Thus
it is appropriate to use a statistical language model trained from a large corpus.

Utilising Web-Scale Corpora: Since our task is to specifically use the lan-
guage model as a comprehensive corpus of a language, it is critical to find a
source where we can obtain large scale n-grams. In 2012, Lin et al. [7,8] pub-
lished the second version of the “Google Books Ngram Corpus, where frequencies
of n-grams in the Google Books collection are collected with historical statistics.
The corpus “reflects 6% of all books ever published” [7]. Considering the scale
and coverage of the corpus, we find it a great source for our purpose. Train-
ing from such a large corpus consisting of hundreds of gigabytes of data is not
trivial. Even if we leave out all historical information and use n-gram frequen-
cies collectively, maintaining a map of n-grams and their frequencies is still a
memory consuming task to be executed on a single machine. Besides memory
consumption of the training process, the complexity of the model is another
concern. Based on the above complexity analysis, we adopt a relatively sim-
ple model in this paper, the BerkeleyLM [13], which features a trained n-gram
based model using the Google Books Ngram Corpus. The model provides inter-
faces for querying (i) the (conditional) log-probability of an n-gram and (ii) the
raw count of an n-gram in the Google Books Ngram Corpus. The trained model
uses stupid back-off for estimating the (conditional) probability of an n-gram as
follows P (wi|w1, w2, ..., wi−1) = count(w1,w2,...,wi)

count(w1,w2,...,wi−1)
.

4.3 Estimating Word Similarity

As discussed in Sect. 4.1, we are interested in the case where an unmatched
token in the substring is not a typo and thus the applicability of the previous
2ED algorithm needs to be carefully reviewed. Here, the method we propose is
to use word embedding for measuring the distance between two tokens. From the
experimental results in Sect. 4.1, an observation is that the unmatched tokens in
a matched pair can belong to various cases. For example, (i) ts and te may be
variations of each other (e.g. “honour” and “honour”); (ii) ts may be the plural
form of te or vice versa (e.g. “survivors” and “survivor”). A word embedding
will help us capture the “distance” between the unmatched tokens. The word
embedding adopted in this paper is Google’s word2vec [1] which represents words
in a corpus by vectors of floats. According to Mikolov et al. [10–12], the trained
model can capture syntactic and semantic information of words in a language.

180 Z. Wen et al.

4.4 Other Improvements

Besides the introduction of language models and word embedding to replace
some functionality of the FuzzyED distance metric, we have also made other
minor improvements. The previous 2ED algorithm does not separate the period
from the last word in a sentence during its tokenisation phrase. Since many
approximately matched pairs are exact matches if we strip the period (dot)
from the last token in the substring, we make this operation an optional feature
in the implemented post-processing algorithm.

5 Implementation

The improved methods described in Sect. 4 is implemented in a pipeline. All
improvements are applied as post-processing steps to filter, examine and (pos-
sibly) re-score matched pairs selected by previous 2ED algorithm. We will walk
through the pipeline step by step in the rest of this section.

5.1 Obtain Candidate Pairs

The first step is finding matched pairs with character-level edit-distance as can-
didates for future re-scoring work. We apply the previous 2ED algorithm to our
corpus against a dictionary with token-level similarity threshold δ = 0.8 and
character-level similarity threshold τ = 0.8. was chosen according to the param-
eter optimization work in [16]; was chosen for error tolerance with the previous
algorithm. After obtaining the list of matched pairs, we filter out exact matches
(i.e. 2ED score = 1) because they are not the part of the result we are trying
to improve. For the rest of the matched pairs, we apply the following steps for
each pair.

5.2 Rescore Candiadte Pairs

Filter Out Pairs with Tokenisation Problems: An approximately matched
pairs with tokenisation problems as described in Sect. 4.2 is not processed into
the next step. Rather, we simply strip the ending period from the substring and
assume it an exact match. The stripping step is operational and improvement
from this operation is separately analysed as in Sect. 6.

Generate n-gram to Check Validity: With an approximately matched pair,
we compare each token pair in the corresponding position of the substring and
the entity to identify whether there is (only) a character-level edit-distance
between this pair. In this process, we have also obtained the position of the
ts and te as per notation in Sect. 4.1 if the token pair does exist. We then gen-
erate (token-level) n-gram pairs surrounding ts and te in the substring and the
entity term respectively. We first generate 3-grams. If the substring is too short
that it contains less than 3 tokens. We use the substring and the entity as a
whole, i.e. 2-grams or 1-gram, for a pair. The next step is to check the validity

Entity Extraction with Knowledge from Web Scale Corpora 181

of these n-grams in a language model to help us distinguish a typo from an
intended word according to the conditions described in Sect. 4.1. We use a toler-
ant criteria for this validity check, where the unmatched token in the substring
ts is considered an intended word as long as any n-gram pair from ts and te are
both valid or both invalid in the language model. For each (token-level) n-gram,
we use two thresholds accounting for the log-probability and raw count in the
language model respectively to help check its validity. The thresholds are set
according to empirical observations. The threshold for log-probability is −10.8
and the threshold for raw count is 0.

Apply Cosine Similarity to Rescore: When an unmatched token is identi-
fied as an intended word in the last step, we use the trained word2vec embedding
to calculate the similarity between the token pair ts and te. For the examples
in Sect. 4.1, the cosine similarity are shown in the table below. As we can see,
these scores represents the distance between the token pairs in English: the sim-
ilarity between “honor” and “honour” is significantly higher than that between
“premise” and “promise” since the former consists of variations of the same word
while the latter consists of two distinct words (Table 4).

Table 4. Cosine similarity for examples in Table 3

Substring Entity Cosine similarity

1 About the premise About the promise 0.245628

2 Code of honor Code of honour 0.637478

The cosine similarity between ts and te is normalised using the following
formula. This formula is chosen according to empirical observation of the dis-
tribution of the cosine similarity (denoted by cos in the formula). It guarantees
the following features: (i) normalised edit-distance is 0 when cos is 1, i.e. the
edit-distance is 0 for two identical words; (ii) normalised edit-distance is 1 when
cos is 0 (although cos is within range [−1,1], we observe that most empirical
results sits in [0, 1]); (iii) normalised edit-distance punishes low cos scores using
an exponential formula; (iv) base is a tunable parameter affecting the curve of
the normalization function: EDnorm = base1−cos−1

base−1 . A final score is applied to the
post-processed pair of substring and entity using the following formula. We take
the length of the entity as a normalizing parameter. This approach is similar to
the normalization in FuzzyED when we assign a uniform weight to the tokens
in the entity: Rescore = 1 − EDnorm

length(entity) .

6 Experimental Studies

Evaluation Setup: The validation was performed on the NeCTAR research
cloud [3] using a 12-core computing instance with 48 GB of RAM. The test

182 Z. Wen et al.

data set was obtained from a public corpus of Amazon reviews [9]. The cor-
pus consists of (i) millions of reviews on the Amazon website, further divided
into subsets by product category; (ii) metadata of the products available on the
Amazon website. From the review data set, we selected the books subset which
contains more than 8 million reviews and sampled 1000 reviews as the text for
the task. From the metadata which contains information about 9.4 billion prod-
uct items, we extracted only the titles of these items and use the result as the
dictionary for the task. Due to missing fields in the metadata, the dictionary
consists of 7.99 million product titles.

The corpus for training word2vec embeddings is obtained from various
resources on the web using the script provided in the toolset on [1]. The result-
ing training set consists of 6.1 billion tokens. After two runs of the word2phrase
pre-processing [1], we train the word2vec embedding with the Continuous Bag
of Word (CBOW) method and a vector size of 300 dimensions on the data set.
Another training method skipgram was also attempted but achieved lower pre-
cision using the provided validation tool in [1]; and it was not used in future
steps. The training process takes less than a day to finish on the cloud instance.

(a) Label = Y (b) Label = N

Fig. 1. Histogram of post-processing scores

We use (i) the distribution of the scores of re-visited pairs for positive pairs
and negative pairs respectively, and (ii) the Receiver Operating Characteristic
(ROC) curve to validate the effectiveness of the post-processing. We manually
labelled 113 pairs from the re-scored set, which comprises over 10% of its size
and use that labelled data to evaluate the result.

Effectiveness: Figure 1 shows the distribution of the re-visited scores separated
by their labels, where label Y means the matched pair is valid (according to
human evaluation) and label N means the pair is not. As we can see, by applying
the post-processing, the two groups have their scores distributed in two clusters
in distinct centroids.

The two ROC curves below compare the performance of using 2ED score and
post-processed score to predict validity of extracted substrings. As we can see,
the post-processed score achieves a higher true positive rate without sacrificing

Entity Extraction with Knowledge from Web Scale Corpora 183

(a) Label = Y (b) Label = N

Fig. 2. ROC curves for 2ED score and post-processing score

the false positive rate, while 2ED score performs like random guess in evaluation
of extracted substrings. Overall the post-processed score achieved an area under
curve (AUC) of 0.72, and outperforms 2ED score by 47%.

Efficiency: The efficiency of the algorithm is not the major concern in this paper.
We evaluate the performance of the post-processing algorithm by the time taken
to complete the task on the data set described earlier in this section. The task
typically finishes within 10 min, depending on the status of the cloud instance.
Majority of the time taken is on loading trained models into memory, so the
performance should also depend on the physical RAM available on the evaluation
instance. After loading the models, the application finishes processing over 2000
items in less than 5 s. Therefore, this algorithm should be suitable as a post-
processing step for the previous 2ED algorithm in terms of its performance.

7 Conclusion and Future Work

In this paper, we proposed several improvements to our previous entity extrac-
tion algorithm called “2ED”. Our proposed improvements include language mod-
els for typo detection, word embedding to measure word distances to capture
semantic features, and more advanced tokenization. We have implemented the
proposed techniques as a post-processing step on top of 2ED. Our proposed
techniques bring significant improvement to 2ED. The improvement mainly lies
in the introduction of web-scale corpora used for training relatively comprehen-
sive and versatile models. This finding shows that more information from the
web-scale corpora can facilitate entity extraction.

Some improvements and extensions to this work can be made to further
generalise its applicability, boost its performance and make better use of the
web-scale corpus. First, it is possible to combine evidence from postags. The
new version of Google Books Ngram Corpus features part-of-speech tag (i.e.,
postag) information. Such labels can be further utilised for measuring the dis-
tance between a token pair in addition to the n-gram used in the current imple-
mentation. Furthermore, beyond the post-processing approach, postags can facil-
itate the candidate substring generation process in 2ED. Second, it is promising

184 Z. Wen et al.

to tokenise text with punctuations. 2ED uses a tokenisation method which does
not separate the period of a sentence with its ending word. One major concern of
stripping periods from the ending words in the previous implementation is it is
hard to distinguish a “true” punctuation which ends a sentence or clause from an
ending dot of an abbreviation lexically. With the language models introduced in
this paper, potentially we are able to find effective ways to improve the tokenisa-
tion using linguistic evidence from these models. Third, learning parameters for
2ED is also helpful for users. The current implementation uses empirical settings
of parameters for judging n-gram validity and for normalising the cosine similar-
ity of a token pair. These parameters can be learned from labelled data. Finally,
our approach extracts entities in English, and our approach can be extended to
other languages.

References

1. Bengio, Y., Ducharme, R., Vincent, P., Jauvin, C.: A neural probabilistic language
model. J. Mach. Learn. Res. 3(Feb), 1137–1155 (2003)

2. Chiu, J.P., Nichols, E.: Named entity recognition with bidirectional LSTM-CNNs.
Trans. Assoc. Comput. Linguist. 4, 357–370 (2016)

3. Corbet, S.A., Delfosse, E.S.: Honeybees and the nectar of echium plantagineum l.
in Southeastern Australia. Aust. J. Ecol. 9(2), 125–139 (1984)

4. Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM
Trans. Interact. Intell. Syst. (TIIS) 5(4), 19 (2016)

5. Heafield, K.: KenLM: faster and smaller language model queries. In: Workshop on
Statistical Machine Translation, pp. 187–197. ACL (2011)

6. Jagadish, H.V., Ooi, B.C., Tan, K.-L., Yu, C., Zhang, R.: iDistance: an adaptive
B+-tree based indexing method for nearest neighbor search. Trans. Database Syst.
30(2), 364–397 (2005)

7. Lin, Y., Michel, J.-B., Aiden, E.L., Orwant, J., Brockman, W., Petrov, S.: Syntactic
annotations for the google books ngram corpus. In: ACL, pp. 169–174 (2012)

8. Maas, A.L., Daly, R.E., Pham, P.T., Huang, D., Ng, A.Y., Potts, C.: Learning
word vectors for sentiment analysis. In: Proceedings of the 49th Annual Meeting
of the Association for Computational Linguistics: Human Language Technologies,
vol. 1, pp. 142–150. Association for Computational Linguistics (2011)

9. McAuley, J., Leskovec, J.: Hidden factors and hidden topics: understanding rat-
ing dimensions with review text. In: Proceedings of the 7th ACM Conference on
Recommender Systems, pp. 165–172. ACM (2013)

10. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

11. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed repre-
sentations of words and phrases and their compositionality. In: Advances in Neural
Information Processing Systems, pp. 3111–3119 (2013)

12. Mikolov, T., Yih, W.-T., Zweig, G.: Linguistic regularities in continuous space
word representations. In: Proceedings of the 2013 Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 746–751 (2013)

13. Pauls, A., Klein, D.: Faster and smaller n-gram language models. In: ACL, pp.
258–267. ACL (2011)

http://arxiv.org/abs/1301.3781

Entity Extraction with Knowledge from Web Scale Corpora 185

14. Tseytlin, E., Mitchell, K., Legowski, E., Corrigan, J., Chavan, G., Jacobson, R.S.:
Noble-flexible concept recognition for large-scale biomedical natural language pro-
cessing. BMC Bioinf. 17(1), 32 (2016)

15. Wei, Q., Chen, T., Xu, R., He, Y., Gui, L.: Disease named entity recognition by
combining conditional random fields and bidirectional recurrent neural networks.
Database 2016 (2016)

16. Wen, Z., Deng, D., Zhang, R., Kotagiri, R.: An efficient entity extraction algorithm
using two-level edit-distance. In: ICDE, pp. 998–1009. IEEE (2019)

17. Wen, Z., Zhang, R., Ramamohanarao, K., Qi, J., Taylor, K.: MASCOT: fast and
highly scalable SVM cross-validation using GPUs and SSDs. In: ICDM, pp. 580–
589. IEEE (2014)

18. Whitelaw, C., Hutchinson, B., Chung, G.Y., Ellis, G.: Using the web for lan-
guage independent spellchecking and autocorrection. In: EMNLP, pp. 890–899.
ACL (2009)

Short Papers

Graph-Based Relation-Aware
Representation Learning
for Clothing Matching

Yang Li(B), Yadan Luo, and Zi Huang

The University of Queensland, Brisbane, Australia
yang.li@uq.edu.au, lyadanluol@gmail.com, huang@itee.uq.edu.au

Abstract. Learning mix-and-match relationships between fashion items
is a promising yet challenging task for modern fashion recommender sys-
tems, which requires to infer complex fashion compatibility patterns from
a large number of fashion items. Previous work mainly utilises metric
learning techniques to model the compatibility relationships, such that
compatible items are closer to each other than incompatible ones in the
latent space. However, they ignore the contextual information of the
fashion items for compatibility prediction. In this paper, we propose a
Graph-based Type-Relational Neural Network (GTR-NN) framework,
which first generates item representations through multi-layer ChebNet
considering k-hop neighbour information, and then outputs compatibil-
ity score by predicting the binary label of an edge between two nodes
under a specific type relation. Extensive experiments for two fashion-
related tasks demonstrate the effectiveness and superior performance of
our model.

Keywords: Fashion compatibility · Graph Neural Network

1 Introduction

The increasing demands of fashion recommender systems have boosted the devel-
opment of fashion-related researches, such as visual recognition [8–10,14], fash-
ion retrieval [1], fashion recommendation [11] and fashion compatibility learning
[5,13]. Different from fashion retrieval and conventional fashion recommenda-
tion that mainly focus on recommending visually similar items to users, fashion
compatibility learning aims at suggesting complementary items to users, which
finally forms an aesthetically pleasing outfit.

The mainstream of modelling pair-wise fashion compatibility mainly relies
on embedding learning and metric learning strategies, which maps item features
into a fashion style latent space where compatible items are closer to each other
than incompatible ones based on the Euclidean distance function or learnt met-
ric function. However, this kind of approaches suffers from two issues. Firstly,
they measure compatibility between two items in a single-relational space, such

c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 189–197, 2020.
https://doi.org/10.1007/978-3-030-39469-1_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_15&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_15

190 Y. Li et al.

that the distance function is fixed for compatibility estimation, e.g., Euclidean
distance or inner product. Such type-unaware latent space is likely to force
incompatible items to be close when inappropriate triangle situation occurs.
More concretely, if a t-shirt A matches pants B and a pair of shoes C match
B, then A is forced to be compatible with C in the same style latent space,
which is under-than-desirable. Secondly, due to the pair-wise training strategy,
these approaches model each compatibility relationship in an item-independent
manner, which does not consider the item’s other associated compatible items
for prediction. As a result, the distance between two items under the context-
unaware space is fixed, which may lead to sub-optimal performance.

To solve the above-mentioned limitations, in this paper, we propose an end-
to-end graph-based framework that explores compatibility relationships through
graph data structure as well as captures type-to-type relations by exploiting
edge features, namely Type-Relational Graph Neural Network (GTR-NN). The
overall architecture of our model is illustrated in Fig. 1, which has two main
components: graph-based item representation generator and Type-relation-aware
Compatibility Estimator. Specifically, we first construct an item graph where the
nodes represent different items and edges link compatible fashion items. Then, we
use graph convolutional network to generate items’ representation by aggregat-
ing their neighbours’ information. Finally, the prediction of compatibility score
between two items are output through a multilayer perceptron where the type
relations are taken into consideration. To increase the robustness of our model,
we also introduce edge-wise dropout regularisation which significantly helps our
model converge faster and achieve better performance. Our main contributions
can be summarised as below:

– We incorporate type-to-type relational information in Graph Neural Network
for fashion compatibility modelling by exploring edge relation labels.

– We design type-aware pair-wise projections for item-to-item compatibility
comparison.

– We introduce edge-wise regularisation training strategy that can be helpful
to increase the performance and robustness of our model.

– Extensive experiments have been conducted for fill-in-the-blank, compatibil-
ity score estimation and compatible fashion item retrieval tasks, which shows
that our model outperforms other baseline methods.

2 Related Work

2.1 Fashion Compatibility Learning

The main approaches of modelling fashion compatibility among fashion items
are to project the item features into a shared style latent space, such that com-
patible items are made to be closer than incompatible ones. McAuley et al. [11]
propose to learn an underlying compatibility space by Low-rank Mahalanobis
Transformation to minimise the distance between compatible pairs as well as

Graph-Based Relation-Aware Representation Learning 191

Fig. 1. The overview of our proposed Type-Relational Graph Neural Network (GTR-
NN) framework. It mainly contains two parts: a graph-based item representation gen-
erator and a type-aware compatibility estimator.

maximise those of incompatible ones. Veit et al. propose to learn a metric func-
tion that is trained with Siamese CNNs in an end-to-end manner. Following that
work, they introduce Conditional Similarity Network (CSN), which claims that
the compatibility measurement should be assessed from multiple aspects, i.e.,
colours, shapes, patterns, etc. Vasileva et al [13] develop a type-aware embed-
ding learning framework, which points that type label information would have
a positive impact on compatibility measurement, and thus items with different
type labels should be compared in different type-specific spaces.

2.2 Graph Neural Networks

Recently, Graph Neural Networks (GNNs) are proven to be an efficient and
effective framework for representation learning on graph-structured data, which
leads to breakthroughs in various areas. Technically, GNNs follow transformation
and aggregation schemes to merge neighbour information into each node, such
that each node’s representation is able to capture more contextual information
from its neighbours. The concept of Graph Neural Network is first introduced
by Scarselli et al. [12], which utilises a feed-forward network for information
propagation. After this work, an extensive number of GNN-based approaches
have been proposed. Generally, GNN-related methods can be categorised into
two groups according to the propagation types: spectral-based and spatial-based.
Spectral methods generalise convolution operations into graph domain. Deffer-
rard et al. [4] introduced to use a truncated expansion of Chebyshev polynomi-
als to recursively aggregate information from K orders. Kipf et al. [6] proposed
Graph Convolutional Network, which restricts the depth of convolution to 1,
such that it only considers 1th order aggregation operation on each GCN layer.

192 Y. Li et al.

3 Proposed Approach

In this section, we first formulate the problem to be solved in this paper. Then,
we introduce the main parts of our model, Graph-based Type-Relational Neural
Network (GTR-NN). Specifically, it mainly contains two parts, the first part is
used for item presentation generation, while the second part is for item-to-item
compatibility prediction. We finally introduce our training strategy.

3.1 Problem Formulation

In this paper, we aim to address the problem for modelling compatibility relation-
ships between fashion items. We model such relationships using an undirected
graph. We have a set of type labels denoted as τ , a collection of fashion items
denoted as S = x1, x2, x3, . . . , xn. Each item xi is associated with visual features
and type label ti from τ . Denote G = (V, E) be an undirected graph where node
i represents item xi, and edge e = (I, j) ∈ E connects two items xi and xj which
are observed to be compatible with each other and linked with a type-relational
label rti,tj .

3.2 Part 1: Item Representation Generation

The initial features of items are visual features extracted from pre-trained
ResNet, which contain multiple attributes, such as clothing colours, shapes and
patterns. We think that when measuring the compatibility score between two
items xi and xj , using other items that xi and xj are compatible with as ref-
erences would help the model to better capture the important characteristics
for compatibility prediction. In this paper, we use graph convolutional network
proposed by [4] to incorporate contextual information (i.e., information from
neighbour compatible items) into each node’s representation. Specifically, the
graph-based representation generator can be considered as a non-linear transi-
tion function that changes item i’s representation hi ∈ R

d into h̃i ∈ R
d′

. More
concretely, it applies an efficient convolution-like operation on graph domain
using a Laplacian operator. We denote a normalised normalised Laplacian graph
as L, which is calculated as follows:

L = I − D
1
2 AD

1
2 (1)

Here, I is an identity matrix, A is an adjacency matrix and D is a diagonal
degree matrix, where Dii =

∑j
k=0 Aik. The node representations are updated

following the formulas below:

H̃ =
K∑

k=1

Z(k) · Θ(k) (2)

where Θ(k) denotes the trainable parameters at k hop that transforms item fea-
tures Rd into R

d′
. Z(k) represents the calculated k−hop features. It is computed

Graph-Based Relation-Aware Representation Learning 193

recursively by the following equations:

Z(1) = H (3)

Z(2) = L̂ · H (4)

Z(k) = 2 · L̂ · Z(k−1) − Z(k−2) (5)

where L̂ is the scaled and normalised Laplacian computed by 2L
λmax−In

, which
limits the scaled eigenvalues ranged between −1 and 1.

3.3 Part 2: Type-Aware Compatibility Prediction

The compatibility score prediction between item pairs can be considered as a
link prediction problem on the graph. Therefore, the goal of the compatibility
estimator in our framework is to give a score ranging between 0 and 1 based
on two given node features. The common way for achieving this is to learn a
metric function f() that can represent a distance between two n − D vectors.
Inspired by the metric learning-related work [2,7], we choose to compute the
compatibility probability using the following formula:

compatibility = σ(W� |Hi − Hj | + b) (6)

where Hi and Hj are the features of two nodes i and j output from graph-based
representation generator. W is a weight matrix and b is R. σ() is a sigmoid func-
tion that limits the output value to be a valid probability score, i.e., p ∈ (0, 1).
We use absolute function to guarantee the symmetry of pair-wise measurement,
i.e., the value of f(Hi,Hj) is the same as f(Hj ,Hi). Moreover, we think that
items associated with different type labels should be treated differently when
measuring their distance. This idea is based on the fact that when people com-
pare whether two clothes are matching, they may focus on different aspects for
different type pairs. For example, we usually focus on the size and shape when
we measure the compatibility between a pair of pants and a t-shirt, while we
may pay attention to colour and pattern when we are about to find a hat to
match our tops. Therefore, we propose to construct type-relation-aware sub-
spaces to model such observation. Specifically, assume there are τ types in the
dataset, then there will be τ2−τ

2 type-relations (we also consider pairs of same
types). Therefore, as illustrated in Fig. 1 we design type-relation-specific masks
that project item features into their associated type-relational subspaces. Thus,
the compatibility score p of item i and j is computed as:

p = σ(W�
∣
∣
∣Hi � mrti,tj − Hj � mrti,tj

∣
∣
∣ + b) (7)

where ti and tj are the type labels of item i and j, while Hi and Hj are the
features of item i and j respectively. � represents dot product operation.

194 Y. Li et al.

3.4 Training Strategy

We treat the compatibility measurement task as graph completion task on a
large graph. More concretely, to train our model, we first randomly discard a
set of edges eij ∈ Epositive from the training adjacency matrix where Aij = 1,
which are labelled as 1. We then randomly sample the same sized set of negative
edges eij ∈ Enegative labelled as 0 from the A, i.e., Aij = 0. The adjacency
matrix A now becomes an incomplete adjacency matrix Â with a training edge
set Etrain = Epositive + Enegative. Finally, we use binary cross entropy objective
function to train the model to predict 1 for positive edges (i.e., items that are
compatible) and 0 for negative edges (i.e., incompatible pairs). The objective
function is defined as follows:

£ = −((a + b)log(p) + (1 − a)log(1 − p) + (1 − b)log(1 − p)),
a = 1, b = 0, p ∈ (0, 1)

(8)

where p represents the compatibility score calculated by Eq. (7).
To increase the robustness of our approach, we introduce edge-wise regu-

larisation strategy. Specifically, we randomly remove some edges from Â where
Aij = 1. In this way, the structure of the constructed item graph is continuously
changed over the training phase, and the model will be trained to be more robust
when less contextual information is given for representation learning.

4 Experiments

4.1 Dataset

Our experiments are conducted on the public fashion outfit dataset collected
from a fashion-focused online community, Polyvore, by Han et al. [5]. It contains
21,889 outfits with rich information including title, item description, image, num-
ber of likes and type label. We split the dataset into three subsets, i.e., training
set (17,316 outfits), validation set (1,497 outfits) and test set (3,076 outfits).

Table 1. Comparison on PolyvoreMaryland dataset based on two fashion-related tasks:
fill-in-the-blank (Accuracy) and compatibility estimation (AUC).

Method Maryland Polyvore

FITB
Accuracy

FITB (Hard)
Accuracy

Compat.
AUC

Compat.
(Hard) AUC

Siamese Net 54.2 54.4 0.85 0.85

Bi-LSTM 68.6 64.9 0.90 0.94

TA-CSN 86.1 65.0 0.98 0.93

CA-GAE 95.9 90.9 0.98 0.98

GTR-NN 97.3 92.1 0.99 0.98

Graph-Based Relation-Aware Representation Learning 195

4.2 Baselines

The brief descriptions of state-of-the-art methods are provided below.
Siamese Net: A metric learning method that minimises the distance of com-
patible image features and maximises the distance between incompatible images
through contrastive loss.
Bi-LSTM: The method uses a bidirectional LSTM to capture the underlying
compatibility relationships trained under cross-entropy optimisation criterion.
TA-CSN: The method constructs type-pair subspaces where items with differ-
ent type labels are compared in different subspaces trained via triplet loss.
CA-GAE: The state-of-the-art method employs Graph AutoEncoder architec-
ture, which has an encoder for item representation generation and a decoder for
pair-wise compatibility prediction. It receives the state-of-the-art result in both
fill-in-the-blank and compatibility prediction tasks.

4.3 Implementation Details

We implement GTR-NN using Tensorflow deep learning framework. The visual
features of each fashion item are extracted using ResNet with 2048 dimensions.
We stack three ChebNet layers with 350 hidden units in the item representation
generator and apply 0.5 and 0.3 to dropout layer in representation generator
and compatibility estimator respectively. We set the edge-wise dropout rate to
be 0.1. The whole item graph is fed into the model without a mini-batch train-
ing strategy. The optimiser we use is SGD with Adam updating strategy. The
learning rate is set to be 0.001 and a momentum of 0.9.

4.4 Task Description

To evaluate our model, we conduct experiments for two widely-applied fashion-
related tasks: fill-in-the-blank and outfit compatibility estimation on Polyvore
dataset. The details and analysis of these two tasks are described below.

Fill in the Blank. This task is to select the most suitable item from four
candidates to form a compatible outfit. In particular, we form four outfits with
the given four candidate items respectively. The candidate with the highest score
is selected as the answer. We also design a hard version of this task where all
four candidates are from the same category. The metric we use for evaluation in
this task is accuracy, which is widely used in recommendation evaluation [3,5].

Compatibility Prediction. This task requires the model to output an overall
compatibility score s, s ∈ (0, 1) for the given outfit. The test set contains 10,000
compatible outfits and 10,000 incompatible outfits. The negative outfits are gen-
erated by randomly replacing items in outfits with other fashion items. We use
AUC as our evaluation metric, whose value represents the probability that a ran-
domly chosen positive example is ranked higher than a randomly chosen negative
example, in this task.

196 Y. Li et al.

4.5 Performance Comparison

The results of the fill-in-the-blank task and compatibility prediction is repre-
sented in Table 1. It can be observed that GTR-NN achieves the best perfor-
mance in most cases. SiameseNet and Bi-LSTM methods perform poorly mainly
because they do not consider type information. The graph-based methods, CA-
GAE and our approach both receive better performance than BiLSTM. This
proves that modelling outfit data in graph structure can better capture second-
order relationships than in sequence structure. TA-CSN achieves 86.1% accu-
racy in FITB task but receives similar performance result in the hard version of
FITB task, which proves that pair-wise learning strategy could not distinguish
the intra-type items in the type-specific space well. CA-GAE reaches nearly 96%
and 91% in FITB&FITB(hard) task and 0.99 in compatibility prediction task,
however, their performance is lower than ours especially in terms of FITB tasks.
This mainly because our model measures compatibility relationships under type-
specific relations, which helps the model identify subtle patterns from different
types.

5 Conclusion

In this paper, we introduce a graph-based type-aware framework that not only
models item-to-item relationships via graph convolutional network but also
incorporate type relational information into final compatibility estimation. The
experiments conducted on Polyvore dataset have shown that our model can
achieve state-of-the-art performance on both fill-in-the-blank and compatibil-
ity estimation tasks. As for future work, we would like to study type-relation
information by directly exploring edge features during aggregation procedure in
graph convolutional network.

References

1. Bell, S., Bala, K.: Learning visual similarity for product design with convolutional
neural networks. ACM Trans. Graph. 34(4), 98:1–98:10 (2015)

2. Cucurull, G., Taslakian, P., Vazquez, D.: Context-aware visual compatibility pre-
diction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 12617–12626 (2019)

3. Cui, Z., Li, Z., Wu, S., Zhang, X., Wang, L.: Dressing as a whole: outfit compat-
ibility learning based on node-wise graph neural networks. In: The World Wide
Web Conference, WWW 2019, pp. 307–317 (2019)

4. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. In: Advances in Neural Information
Processing Systems 29: Annual Conference on Neural Information Processing Sys-
tems 2016, pp. 3837–3845 (2016)

5. Han, X., Wu, Z., Jiang, Y., Davis, L.S.: Learning fashion compatibility with bidi-
rectional LSTMs. In: Proceedings of the 2017 ACM on Multimedia Conference,
MM 2017, pp. 1078–1086 (2017)

Graph-Based Relation-Aware Representation Learning 197

6. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: 5th International Conference on Learning Representations, ICLR
2017 (2017)

7. Koch, G., Zemel, R., Salakhutdinov, R.: Siamese neural networks for one-shot
image recognition. In: ICML Deep Learning Workshop, vol. 2 (2015)

8. Luo, Y., Huang, Z., Zhang, Z., Wang, Z., Li, J., Yang, Y.: Curiosity-driven rein-
forcement learning for diverse visual paragraph generation. In: Proceedings of the
27th ACM International Conference on Multimedia, MM 2019, pp. 2341–2350
(2019)

9. Luo, Y., Wang, Z., Huang, Z., Yang, Y., Zhao, C.: Coarse-to-fine annotation enrich-
ment for semantic segmentation learning. In: Proceedings of the 27th ACM Inter-
national Conference on Information and Knowledge Management, CIKM 2018, pp.
237–246 (2018)

10. Luo, Y., Yang, Y., Shen, F., Huang, Z., Zhou, P., Shen, H.T.: Robust discrete code
modeling for supervised hashing. Pattern Recogn. 75, 128–135 (2018)

11. McAuley, J.J., Targett, C., Shi, Q., van den Hengel, A.: Image-based recommen-
dations on styles and substitutes. In: Proceedings of the 38th International ACM
SIGIR Conference on Research and Development in Information Retrieval, Santi-
ago, Chile, 9–13 August 2015, pp. 43–52 (2015)

12. Scarselli, F., Gori, M., Tsoi, A.C., Hagenbuchner, M., Monfardini, G.: The graph
neural network model. IEEE Trans. Neural Networks 20(1), 61–80 (2009)

13. Vasileva, M.I., Plummer, B.A., Dusad, K., Rajpal, S., Kumar, R., Forsyth, D.:
Learning type-aware embeddings for fashion compatibility. In: Ferrari, V., Hebert,
M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 405–421.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0 24

14. Wang, Z., Luo, Y., Li, Y., Huang, Z., Yin, H.: Look deeper see richer: depth-aware
image paragraph captioning. In: 2018 ACM Multimedia Conference on Multimedia
Conference, MM 2018, Seoul, Republic of Korea, 22–26 October 2018, pp. 672–680
(2018)

https://doi.org/10.1007/978-3-030-01270-0_24

Evaluating Random Walk-Based Network
Embeddings for Web Service Applications

Olayinka Adeleye1(B), Jian Yu1, Ji Ruan1, and Quan Z. Sheng2

1 Department of Computer Science, Auckland University of Technology,
Auckland 1010, New Zealand

{olayinka.adeleye,jian.yu,ji.ruan}@aut.ac.nz
2 Department of Computing, Macquarie University, Sydney, NSW, Australia

quan.sheng@macq.ac.au

Abstract. Network embedding models automatically learn low-
dimensional and neighborhood graph representation in vector space.
Even-though these models have shown improved performances in var-
ious applications such as link prediction and classification compare to
traditional graph mining approaches, they are still difficult to interpret.
Most works rely on visualization for the interpretation. Moreover, it is
challenging to quantify how well these models can preserve the topolog-
ical properties of real networks such as clustering, degree centrality and
betweenness. In this paper, we study the performance of recent unsuper-
vised network embedding models in Web service application. Specifically,
we investigate and analyze the performance of recent random walk-based
embedding approaches including node2vec, DeepWalk, LINE and HARP
in capturing the properties of Web service networks and compare the
performances of the models for basic web service prediction tasks. We
based the study on the Web service networks constructed in our previ-
ous works. We evaluate the models with respect to the precision with
which they unpack specific topological properties of the networks. We
investigate the influence of each topological property on the accuracy of
the prediction task. We conduct our experiment using the popular Pro-
grammableWeb dataset. The results present in this work are expected
to provide insight into application of network embedding in service com-
puting domain especially for applications that aim at exploiting machine
learning models.

Keywords: Embedding · Web service network · Link prediction

1 Introduction

Network (also known as Graph) models are important for encoding informa-
tion, and data in network format exist in various fields in real-world includ-
ing social, World Wide Web [3] and academics [7]. There has been significant
progress over the last decades in mining network data and unveiling global prop-
erties of these networks. Various empirical observations emphasizing the univer-
sal nature of certain topological features like the high clustering coefficient, heavy
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 198–205, 2020.
https://doi.org/10.1007/978-3-030-39469-1_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_16&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_16

Evaluating Network Embeddings for Web Service Applications 199

tail node degree distribution [3] and community formation in many real-world
networks [12] have been observed. In web service domain, there have been a
number of studies based on network analysis investigating topological features
and evolutionary properties of Web service ecosystem [1]. Some existing works
have demonstrated the potentials of mining Web service network features espe-
cially in common tasks such as service recommendation, network prediction [10]
and service discovery [2]. These applications usually exploit certain node or edge
features, which are predictive of their properties. The most straightforward net-
work representation used in the applications includes Mashups-APIs bipartite
network which could in turn be compressed by applying one-mode projection to
form an API-API network. The networks can be presented inform of sparse adja-
cency matrix where edges between nodes are presented as an entry into a square
matrix [10]. This sort of data representation requires further transformation
in low-dimensional vector space before they can be used as input for machine
learning related tasks. Recently, network embedding techniques which aim to
automatically learn low-dimensional, neighborhood and community-aware graph
representation in vector space has drawn increasing attention. These techniques
have been exploited in diverse domains and have shown promising performances
in various downstream tasks such as link-prediction and classification [6,8].

In this paper, we investigate the performance of the state-of-the-art, ran-
dom walk-based network embedding approaches including node2vec [9], Deep-
Walk [11], LINE [14] and HARP [5] in transforming Web service networks into
low-dimensional vector representation of the network elements. The resulting
representations can then be used as input to various machine learning models.
We consider our analysis in three key phases: First, we present three different
Web service complex networks and their global characteristics. Then, we evalu-
ate how well a particular embedding model can unpack the topological features
encoded in the networks. We achieved this by quantifying the accuracy with
which each embedding model can replicate the topological properties like node
degree, betweeness, clustering coefficient and so on. Second, we consider the
best performing embedding model for Web service prediction task with respect
to a given service network. This is done by building a node property predic-
tion classifier that is capable of predicting node-specific feature value given the
node embedding. We conjecture that achieving a high node-feature prediction
accuracy (score) by the classifier signifies effective encoding of the feature in
the embedding space. Hence, we score each embedding model by its ability to
train the classifier such that high performance in prediction task can be achieved
given the embedding. This idea is motivated by recent literature [6,8,13] that
attempted to interpret sentence and node representations in vector space. For
this work, we uniquely map various representations learning with the Web service
networks constructed in our previous works [1,2]. We aim to provide insights into
why an embedding algorithm performs better for a particular downstream task in
Web service domain?, and unearth the principal topological features responsi-
ble for optimum performance of a given node embedding approach in service
discovery/prediction task. The main contribution of this paper includes:

200 O. Adeleye et al.

1. We investigate and evaluate the performances of random walk-based network
embedding models in preserving global topological characteristics of Web ser-
vice ecosystem, which could be exploited in various machine-learning based
Web service applications.

2. From network perspective, we examine how well node-specific properties
encoded by the embedding models can be used to facilitate an elementary
web service recommendation application defined as a link-prediction task.

The rest of this paper is organized as follows. Section 2 presents overview of
various Web service networks. Section 3 presents the detail of our experimental
procedure, analysis and results; Finally, we draw our conclusion and discuss
future work in Sect. 4.

2 Web Service Networks and Their Properties

In this section, we present the overview of various Web service networks consid-
ered in this study. We focus on the networks that have been used in previous Web
service applications. We visualize these networks and discuss their topological
properties.

2.1 Composition - Service Network

A simple and most common way to build a social network for service ecosystems
such as ProgrammableWeb is to model Composition-Service (or Mashup-API)
invocation relationship in the service ecosystem as a affiliation network. This
network can then be compressed to form a Service-Service (or API-API) network
by applying One-mode projection to the service side of the affiliation network.
This approach have been employed in several service related application [1,10]
to model Web service network. Technically, this network is a bipartite graph,
where the edges indicate which Web services are invoked by which composition.
We define this network as affiliation Network G = (M � A,E) where M is the
set of service compositions (Mashups) and A is the set of Web services (Web-
APIs), and for any edge (m,a) ∈ E,m ∈ M and a ∈ A [1]. The overview of the
affiliation network visualized using the Force-Atlas layout in Gephi1 is shown in
Fig. 1a. The hubs are clearly visible in the figure as disks with Google-Maps API
being the largest one sitting at the bottom on of the network. Popular social
media Web-APIs such as Twitter, Youtube, Flickr, and Facebook also appear
667, 557, 484, and 382 times respectively in the network.

2.2 Popularity and Fitness-Based Service Evolving Networks

The affiliation network described in Sect. 2.1 is solely based on composition-
service usage record. However, the network show an apparent limitation in that

1 https://gephi.org/.

https://gephi.org/

Evaluating Network Embeddings for Web Service Applications 201

only Web services used in Compositions (suppose every composition contains
at least two Web service) will appear on the projected network. For example,
the ProgrammableWeb affiliation network contains only 1,525 Web-APIs, which
is less than 10% of the total 17,138 Web-APIs acquired from the repository.
Therefore, to generate a network that connects all the Web services in the ecosys-
tem, one way is to use generative network models that are capable of captur-
ing/preserving specific node attributes and structural properties of the service
ecosystem. Various mechanisms including Node fitness, Preferential Attachment-
PA and homophily have been advanced for this purpose. Among these mecha-
nisms, Preferential Attachment (PA) and node fitness have been more prominent
because of their simplicity and capability to explain certain universal topolog-
ical properties that emerge in real-world networks [12]. Topological properties
not found in most classic models of sparse random networks such as − scale-
independence (characterized with heavy-tailed degree distribution), self similar-
ity and hierarchy − all appear in most real-word networks like WWW, cita-
tion network and internet [3]. We have shown details in our previous work [1]
how to built a preferential attachment-based (or Popularity-based) Web service
network using the well-established Barabási-Albert (BA) generative model [3]
where attachment probabilities are proportional to target API node degree or
API popularity. Figure 1b shows the visual overview of the BA popularity-based
Web service network with the popular nodes labelled.

Another synthetic web service network considered in this work is the Prefer-
ential Attachment with Fitness based network which is an extension of BA model
proposed by Bianconi-Barabási (called BB or fitness model) [4]. Fitness gener-
ative model captures certain intrinsic qualities other than popularity (or node

Fig. 1. Visualization of Web service networks. 1a shows the overview of the Mashup-
API bipartite Network and 1b shows the overview of Popularity-based service net-
work [1].

202 O. Adeleye et al.

degree) posses by nodes in a network that influence the rate at which the nodes
can acquire new link. BA set-up makes it difficult for a node which enters late
into an open network to compete with the already established hubs of the net-
work. However, this is not always true in real-world scenario, latecomers like
Google service or nodes with minimal degree can actually acquire links relatively
quickly and others who arrived earlier like Alta Vista and Inktomi services may
not make it. The fitness model captures this behaviour by having on top of
growth and PA another concept called the fitness, which capture the intrinsic
quality of vertices. Fitness here is a quantitative measure of a node’s ability to
stay in front of the competition [3]. The higher the fitness, the higher the proba-
bility of attracting new edges. For detail construction of the fitness-based service
network − see [2].

We analyse the topological properties of Web services networks from node-
level. Since the Web service networks considered in this work are mainly driven
by node’s specific attributes (i.e. node’s popularity and fitness), we consider key
centrality indicators that characterized important nodes within the networks. We
measure node’s degree centrality2, betweenness centrality3, clustering coefficient
and eigenvector centrality4.

3 Analysis and Results

In this section, we describe the experimental procedure, analysis and the results
for both prediction tasks: links and network properties predictions. Given the
Web service networks described in Sect. 2, we aim to evaluate the performance of
each of the random-walk-based embedding model based on (i) its ability to encode
certain topological properties in the Web service networks. (ii) its performance in
basic link prediction downstream tasks. It is worth noting that the link prediction
task can be extended as service recommendation task [10]. We use two accuracy
measures including precision and variants of F-1 score.

– Embedding Models: All the embedding models used here have the same
objective, which is to learn a low-dimensional representation of a given net-
work in a vector space, such that the representation can preserve the topo-
logical features of the network. We get the embeddings of each network per
embedding model (node2vec [9], DeepWalk [11], LINE [14] and HARP [5]).
For details of the embedding models, we encourage readers to consult the
original publications.

– Link Prediction Task: For the link prediction task, we formulate the task
of predicting missing links as a binary classification problem that predicts if
a link exist between two nodes or not. We use Schur product of node pair
embeddings and centrality features to construct edge representation. We then
give the edge representation as input to a logistic regression classifier with

2 https://en.wikipedia.org/wiki/CentralityDegree-centrality.
3 https://en.wikipedia.org/wiki/CentralityBetweenness-centrality.
4 https://en.wikipedia.org/wiki/CentralityEigenvector-centrality.

https://en.wikipedia.org/wiki/CentralityDegree-centrality
https://en.wikipedia.org/wiki/CentralityBetweenness-centrality
https://en.wikipedia.org/wiki/CentralityEigenvector-centrality

Evaluating Network Embeddings for Web Service Applications 203

L2 regularization from the Scikit − learn − api and compute the precision
of the prediction. Since we are working with numerical data, we tried various
classifiers - starting from basic decision trees, SVM, logistic regression, Ran-
dom forest, Multi-Layer Perception (MLP). We finally based our evaluation
on RandomForest due to its superior accuracy in learning the embeddings
and predicting missing links. We evaluate how well the embedding models
node interaction by predicting unobserved connections.
First, we give the embeddings generated for each Web service network by
an embedding model to the link prediction model, and measure the accuracy
using precision and recall metrics for each network. For each network dataset,
we split into 2:8, with the 80% of the edges as the training set used to learn
the embeddings. The remaining 20% were used as test set to predict the edges
which are not observed in the training data using the learned embedding.
Figure 2 shows the prediction accuracy of each embedding models for all the
service networks. Eventhough the datasets used to construct the Web service
affiliation network is smaller compare to the other two synthetic networks (BA
and BB), the network produced better prediction results across the three net-
works for all the models with the HARP model producing superior accuracy
71.5% at top-50 service follow by node2vec and DeepWalk − with 58.0%
and 56.2% precisions respectively. We believe this could be attributed to
direct projection of service interactions ProgrammableWeb Ecosystem, which
is expected include lesser noise compare to the other two models. For BA and
BB models both node2vec and HARP provides better results. We believe
the low accuracy score in BA and BB model is due to the amount of noise
introduced to the networks during construction.

– Network Properties Prediction: For network property prediction task, we
build a feed-forward neural network (NN) model with Keras and Scikit-Learn
API5 for mapping the non-linear relationship between a node embedding as
input of the NN model to the node’s different centrality measures as single
output variable [13]. The architecture of our NN model comprises of the input
layer, two hidden layers, rectifier and Optimizer and output layer and. The
input layer takes the node representation from each of the embedding mod-
els. The dimension of this layer is based on the embedding dimension. The
two hidden dense layers use rectifier activation functions ReLU activation
unit. For the output layer, a Softmax function is defined to get the predic-
tion as discrete probability distribution. We use a logarithmic loss-function −
categorical-cross entropy. We perform grid search over different combinations
of possible hyper-parameter values to get the best combination. We evalu-
ate how well the embedding models capture specific node centrality measures
by predicting unobserved node features. Given a node embedding, we try to
predict the node attributes. We present the F1-score in Fig. 3 across the 3
networks for each embedding model with higher score signifying superior per-
formance. The results show that HARP , node2vec and DeepWalk perform
well in preserving specific topological features in the embedding space, espe-

5 https://keras.io/scikit-learn-api/.

https://keras.io/scikit-learn-api/

204 O. Adeleye et al.

Fig. 2. Precision@K of Link Prediction
for service Web service networks

Fig. 3. F1-Score of centrality measures
prediction for service Web service net-
works

cially node degree, eigenvector and closeness information, with HARP and
node2vec providing above 0.45 F1-score on average. These results validate
our hypothesis that embedding models can map the approximate network
topological features of Web service ecosystem to the vector space.

4 Conclusion and Future Work

In this paper, we studied the performance of recent unsupervised network embed-
ding models in Web service domain. We evaluate the models with respect to
the precision with which they unpack specific topological properties of the net-
works. We investigate the influence of each topological property on the accu-

Evaluating Network Embeddings for Web Service Applications 205

racy of the prediction task. We conduct our experiment using the popular Pro-
grammableWeb dataset. Our results show that HARP , node2vec and DeepWalk
perform well in preserving specific topological features in the embedding space,
especially node degree, eigenvector and closeness information, with HARP and
node2vec providing superior results. In future work, we plan to incorporate these
features into Web service application like Web service recommendation applica-
tion and study their individual influence on the performance of the application.

Acknowledgement. This work is partially supported by the National Key Research
and Development Program of China (No. 2018YFB1402500) and National Natural
Science Foundation of China (No. 61832004 and No. 61672042).

References

1. Adeleye, O., Yu, J., Yongchareon, S., Han, Y.: Constructing and evaluating an
evolving web-API network for service discovery. In: Pahl, C., Vukovic, M., Yin, J.,
Yu, Q. (eds.) ICSOC 2018. LNCS, vol. 11236, pp. 603–617. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-03596-9 44

2. Adeleye, O., Yu, J., Yongchareon, S., Sheng, Q.Z., Yang, L.H.: A fitness-based
evolving network for web-APIs discovery. In: Proceedings of the Australasian Com-
puter Science Week Multiconference, p. 49. ACM (2019)

3. Barabási, A.-L.: Network Science. Cambridge University Press, Cambridge (2016)
4. Bianconi, G., Barabási, A.-L.: Bose-Einstein condensation in complex networks.

Phys. Rev. Lett. 86(24), 5632 (2001)
5. Chen, H., Perozzi, B., Hu, Y., Skiena, S.: HARP: hierarchical representation learn-

ing for networks. In: AAAI Conference, 3rd ed. (2018)
6. Dalmia, A., Gupta, M., et al.: Towards interpretation of node embeddings. In:

Companion Proceedings of the The Web Conference 2018, pp. 945–952. Interna-
tional World Wide Web Conferences Steering Committee (2018)

7. Dawson, S., Gašević, D., Siemens, G., Joksimovic, S.: Current state and future
trends: a citation network analysis of the learning analytics field. In: Proceedings
of the Fourth International Conference on Learning Analytics and Knowledge, pp.
231–240. ACM (2014)

8. Goyal, P., Ferrara, E.: Graph embedding techniques, applications, and perfor-
mance: a survey. Knowl. Based Syst. 151, 78–94 (2018)

9. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 855–864. ACM (2016)

10. Huang, K., Fan, Y., Tan, W.: Recommendation in an evolving service ecosystem
based on network prediction. IEEE Trans. Autom. Sci. Eng. 11(3), 906–920 (2014)

11. Perozzi, B., Al-Rfou, R., Skiena, S.: DeepWalk: online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701–710. ACM (2014)

12. Pham, T., Sheridan, P., Shimodaira, H.: Joint estimation of preferential attachment
and node fitness in growing complex networks. Sci. Rep. 6, 32558 (2016)

13. Rizi, F.S., Granitzer, M.: Properties of vector embeddings in social networks. Algo-
rithms 10(4), 109 (2017)

14. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: LINE: large-scale infor-
mation network embedding. In: Proceedings of the 24th International Conference
on World Wide Web, pp. 1067–1077 (2015)

https://doi.org/10.1007/978-3-030-03596-9_44

Query-Oriented Temporal Active
Intimate Community Search

Md Musfique Anwar(B)

Jahangirnagar University, Dhaka, Bangladesh
manwar@juniv.edu

Abstract. Most of the existing research works on finding local commu-
nity mainly focus on the network structure or the attributes of the social
users. Some recent works considered users’ topical activeness in detect-
ing communities. However, not enough attention is paid to the degree
of temporal topical interactions among the members in the retrieved
communities. We propose a method to search temporal active intimate
community in which community members are densely-connected as well
as actively participate and have active temporal interactions among them
with respect to the given query consisting of a set of query nodes (users)
and a set of attributes. Experiments on real datasets demonstrate the
effectiveness of our proposed approach.

Keywords: Active intimate community · Topical activeness · Query
cohesiveness

1 Introduction

Discovering communities in Online Social Networks (OSNs) is classified into
two categories: (i) community detection and community search [1]. Earlier
approaches mainly concentrate on the network topology of OSNs ignoring the
rich attributes of the nodes. Some works taking into account the properties of
the users’ to find meaningful communities [4,10]. However, the above methods
tried to scan all the nodes of a graph to discover the desired communities which
is computationally very expensive, especially for larger graph. Again, they are
not customized for a query request (e.g., a user-specified query node).

Recently, some works try to find query oriented community also known as
community search [1,7] which aims to find densely connected communities con-
taining query node(s) and query attributes. However, these methods ignore the
topical interactions among the community members resulting less interactive
community. To avoid this inactivity problem, authors in [12] have proposed an
approach where they considered the frequency and pattern of users’ interactions.

We observe that users’ have different degree of intimacy among them for
different attributes. In this research work, we propose a method to find topic
oriented highly interactive temporal communities in OSNs, where the community
members should have certain degree of topical activeness as well as interactions
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 206–215, 2020.
https://doi.org/10.1007/978-3-030-39469-1_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_17&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_17

Query-Oriented Temporal Active Intimate Community Search 207

with others related to a given query. We also emphasize that the members in the
retrieved communities should actively interact with at least k other members
within the community. Below, we summarize our contributions:

– We investigate the users’ temporal activeness and degree of interactions
related to the given query to search active intimate community;

– We use a modified version of CL-tree index mechanism to efficiency search
the desired community and then further improve the result by introducing an
improved greedy algorithm.

– We conduct extensive experiments using real datasets to show the effective-
ness of our approach.

2 Related Work

Earlier methods for community detection are based on structural information
of the social graph such as modularity [3], edge betweenness [2] etc. Some
approaches like Topic-Link LDA model [10] and probabilistic generative model
named as CESNA [4] consider both the linkage structure and content similarities
of the edges to detect communities.

More recent approaches have focused on the interaction strengths between the
users to discover active communities. Kim et al. [12] proposed Highly Interactive
Community Detection (HICD) method which generates a weighted network using
the frequency of direct interactions between users. Correa et al. [5] proposed
iTop algorithm which greedily maximizes the local modularity in a weighted
graph based on user interactions and a set of seed users. Yang et al. [1] recently
proposed an approach based on k-core for community search. However, all these
methods ignored topic-wise users’ temporal interactions.

3 Preliminary and Problem Definition

k-CORE: Given an integer k(k ≥ 0), the k-core of a graph G, denoted by Ck,
is the largest subgraph of G, such that ∀u ∈ Ck, degCk(u) ≥ k, where degCk(u)
refers to the degree of node u in Ck. The core number of a node u in G is the
maximum k for which u belongs in the k-core of G.
Query: An input query Q = {Uq, Tq} consisting of a set of query nodes Uq and
a set of query topics Tq.
Activity: An activity tuple 〈ui, ψui

, tn〉 represents an action where ψui
indicates

the set of topics covered by the action performed by user ui at time tn. Again,〈
ui, ujψuiuj

, tn
〉

is used to indicate an action where ψuiuj
shows the set of topics

covered during the interaction between ui and uj at time tn.
Active User: An active user u performed at least γ(≥ 1) activities related to
Tq i.e., |{〈u, ψu, tj〉}| ≥ γ, where ψ ∈ Tq}. The set of active users denoted as UA

are h hops away from the query nodes Uq. The number of edges between the
users in UA is denoted as EA.

208 Md. M. Anwar

Recency Score: We apply exponential time-decay function in Eqs. 1 and 2
to emphasize greater importance to user’s most recent activities by a measure
called recency score, denoted by μ ∈ [0, 1]. The parameter a is used to control
the decaying speed and age〈ui,ψ,tn〉 indicates the amount of time passed since
the activity occurred [9].

μ〈ui,ψui
,tn〉 = exp(−a × age〈ui,ψ,tn〉) (1)

μ〈ui,uj ,ψuiuj
,tn〉 = exp(−a × age〈ui, uj , ψ, tn〉) (2)

Topical Activeness and Intimacy Score: For each user ui ∈ UA, we compute
individual activeness score (σui

) as well as pairwise (u,v) activeness score (σuiuj
)

to measure the involvement of ui towards query topics Tq, using Eqs. 5, where
tj ∈ Im, and ψ(ui,Tx,Im) is the user’s degree of activeness compared to the total
number of activities performed by all the active users.

Ωui
=

∑
μ〈ui,ψui

,tn〉 × |{〈ui, ψui
, tn〉}|

∑
uz∈UA |{〈uz, ψuz

, tn〉}| (3)

Ωuiuj
=

∑
μ〈ui,ujψuiuj

,tn〉 × |{〈ui, ujψui,uj
, tn〉}|

∑
ux,uy∈UA |{〈ux, uy, ψuxuy

, tn〉}| (4)

σui
=

Ωui

maxuz∈UA{Ωuz
} , σuiuj

=
Ωuiuj

maxux,uy∈UA{Ωuiuj
} (5)

Then the overall interaction strength between users ui and uj is,

wuiuj
= α × (σui

× σuj
) + (1 − α) × σuiuj

(6)

Definition 1 (Active Intimate Community (AIC)). Given an input query
Q, two integers k and h (hop numbers), we generate an weighted sub-graph
GQ

h (UA, EA,WA) from G, where WA is the set of weights (wuv ∈ [0, 1]) indi-
cates the interaction strength of the edge euv ∈ EA. Then an active intimate
community Hk

j is an induced subgraph that meets the following constraints:
(i) Connectivity. Hk

j ⊂ GQ
h is connected; (ii) Structure cohesiveness. ∀u ∈

Hk
j has interaction degree of at least k; and (iii) Active intimacy. ∀euv ∈ Hk

j ,
wuv ≥ θ and θ ∈ [0, 1] is a threshold.

We define an intimacy score function denoted as f(Hk
j , Q) for the detected

communities that establishes a balance of attribute homogeneity, coverage and
the structure cohesiveness.

f(Hj
k, Q) =

η

|Q| × |E(Hj
k)|

|U(Hj
k)|

, and η =
∑

Ti∈Q

|ETi ∩ E(Hj
k)|

|E(Hj
k)|

(7)

where ETi
∈ E(Hj

k) is an edge that overs query topic Ti ∈ Tq. In Eq. 7, η captures
the popularity of each query topic Ti inside the community Hk

j by calculating

Query-Oriented Temporal Active Intimate Community Search 209

the fraction of edges of Hk
j that cover Ti. Finally, the factor |E(Hk

j)|
|U(Hk

j)|
is used to

reward the communities that are structurally more cohesive.

Problem Definition. Given an attributed graph G, an input query Q, and
parameters k, h, the problem is to search an AIC with highest intimacy score.

C

2

2

2

2

2

2

D

AB

F

E

(a) Social Graph G (the number
denotes node core number)

(b) Interaction strength and coverage
of attributes in edge of G

(wAB=0.52, ψAB=T1,T2,T3), (wAE=0.43, ψAE=T1,T2,T3)
(wAD=0.48, ψAD=T1,T2), (wBC=0.53, ψBC=T1,T3)
(wBD=0.57, ψBD=T1,T2,T3), (wCD=0.53, ψCD=T1,T2,T3)
(wDF=0.41, ψDF=T1,T2), (wCF=0.43, ψCF=T1,T3)
(wED=0.55, ψED=T1,T2,T3)

Fig. 1. A graph G with interactive edges

Figure 1(a) shows a
graph G with the core
number for each node.
Figure 1(b) shows the
active interaction edges
for a given query Q =
{Uq = (B,C), Tq =
(T1, T2, T3)}. Suppose,
we want to find the
active intimate commu-
nities for k = 2 and
θ = 0.4. There are few
subgraphs that satisfy the criteria, for example, we get the candidate AICs
Hk

1 = {A,B,C,D,E}, Hk
2 = {A,C,D,E, F}, Hk

3 = {A,B,C,D,E, F} etc. We
see that the query topic T1 is covered by all the edges in all the candidate AICs.
Topics T2 and T3 are covered by 6 edges in Hk

1 , hence the intimacy score of Hk
1 is

f(Hk
1 , Q) =

(1+0.86+0.86)

3
× 7

5
= 1.27. In Hk

2 , T2 and T3 are covered by 6 and 5 edges

respectively. So the intimacy score of Hk
2 is f(Hk

2 , Q) =
(1+0.86+0.71)

3
× 7

5
= 1.2.

Similarly, f(Hk
3 , Q) =

(1+0.78+0.78)

3
× 9

6
= 1.28. Although the coverage of the query

topics in Hk
3 is lower than that of Hk

1 , but Hk
3 is structurally more cohesive than

Hk
1 , hence Hk

3 has slightly better intimacy score.

4 AIC Detection Algorithm

We adjusted an indexing mechanism called CL-tree (Core Label tree) [1] to
efficiently discover AIC. The CL-tree index is built based on the observations
that cores are nested, i.e., a (k+1) core must be contained in a k-core. Therefore
after computing the k-core of G, we assign each connected components induced
by k-core as a child node of a tree. Each node in the tree contains four elements:
(i) coreNum: the core number of the k-core, (ii) nodeSet: set of graph nodes,
(iii) invertedList: a list of <key, value> pairs, where the key is an attribute
contained by the nodes in nodeSet and the value is the list of nodes in nodeSet
containing key. In our proposed work, for each node, we add the number of
activities related to key, and (iv) childList: a list of child nodes.

210 Md. M. Anwar

C

K L

M N

PQ

OR

S

3

3

3

3

3

3

3

3

2

2

2

2

1

2

2

2

2

1

0
D

AB

E

J

G

FI

H

(a) A social Graph G with
node core numbers

ABCDEF
KLMNOS

ABC
DEF

ABCDE

ABCD

KLM
NO

KLMN

() tree structure () CL-tree index

0

1

2

3

1

2

F

E

ABCD

KLMN

0

1

2

3

1

2

a1: A(5), B(4), D(5)
a2: A(3), B(3), C(6), D(4)

a1: F(2)

{

a1: E(2){ a1: K(3), L(4), M(3)
 a2: K(2), M(4), N(2){

{ O a2: O(1)

A a1 5
A a2 3
B a1 4
B a2 3
C a2 6
D a1 5
D a2 4
E a1 2
F a1 2
K a1 3
K a2 2
L a1 4
M a1 3
M a2 4
N a2 2
O a2 1

(a) action log

{

S

iii iii

(b) CL-tree index for the graph in 2(a)

Fig. 2. Example of CL-tree index

4.1 Baseline Solution

In AIC-Basic (shown in Algorithm 1), we first compute the induced subgraph
GQ

h from the set of active nodes UA in G who are h hops away from any query
nodes of Uq (line 1–3). Then, We remove the inactive edges (whose wuv < θ)
from each connected k-core component Hk

j and compute f(Hk
j , Q) if exists (line

5–8). Removal of an edge euv decreases the degree of the end points (u and v) of
euv by 1 which may result into violation of the cohesiveness constraint by either
u or v or both. Finally, it outputs the desired Hk

j (line 9).

Algorithm 1. AIC-Basic
Input: G = (U, E, T), Q, k, h, α, β, γ, θ
Output: An AIC Hk

j with the maximum f(Hk
j , Q)

1: Find the set of active users UA who are h hops away from any of query nodes Uq

2: compute the induced graph GQ
h on UA

3: Maintain GQ
h as a k-core

4: for each connected k-core component Hk
j from GQ

h do
5: remove edge euv that has smallest weight wuv

6: Maintain Hk
j as a k-core

7: if Hk
j exists then

8: Compute the intimacy score f(Hk
1 , Q)

9: Output the Hk
j with the maximum f(Hk

j , Q) from GQ
h

4.2 Improved Greedy Algorithm

The basic algorithm has a limitation that they ignore the impact of the removal
of an inactive edge which may trigger the deletion of other nodes due to the
violation of k-core constraints. If these nodes have many query attributes, it can
severely limit the effectiveness of the algorithm. Thus, we need to look ahead the
effect of each removal node, and then decide which ones are better to be deleted.

Query-Oriented Temporal Active Intimate Community Search 211

Definition 2 (Node Marginal Gain). Given a graph Hk
j , query topics Tq and a

node u ∈ U(Hk
j), the marginal gain of u is defined as gainHk

j
(u,Hk

j) = f(Hk
j +

LHk
j
(u), Q) − f(Hk

j , Q)), where LHk
j
(u) ⊂ Hk

j is the set of nodes together with u

that violate k-core after the removal of u from Hk
j .

For example, consider the graph G in Fig. 1 with Q = {Uq = (B,C), Tq =
(T1, T2, T3)}, θ = 0.45 and k=2, we get H2

1 = {A,B,C,D} due to the removal of
the edges eAE , eCF and eDF which also delete nodes E and F resulting f(H2

1 , Q)
= 1.08. Now, LH2

1
(F) = {F} and we get H2

1 + LH2
1
(F) = {A,B,C,D,E} with

f(H2
1 + LH2

1
(F), Q) = 1.13. So the marginal gain of node F (gainH2

1
(F,H2

1) =
f(H2

1 + LH2
1
(F), Q) − f(H2

1 , Q)) = (1.13 − 1.08) = 0.05) doesn’t contribute
much to the intimacy score f(H2

1 , Q). Again, LH2
1
(E) = {E} and we get H2

1 +
LH2

1
(E) = {A,B,C,D,E} with f(H2

1 + LH2
1
(E), Q) = 1.27. We can see that

node E has significant marginal gain (gainH2
1
(F,H2

1) = f(H2
1 + LH2

1
(F), Q) −

f(H2
1 , Q)) = (1.27 − 1.08) = 0.19) in this case and should be included in H2

1 . So,
we can get better community using marginal gain as it estimates more accurately
the effectiveness of node deletion.

We propose an improved Algorithm 2 (AIC-Greedy) based on node marginal
gain that finds the set of nodes S (due to the removal of inactive edge wuv)
and compute their marginal gain gainHk

j
(S,Hk

j) for each Hk
j (line 5–6). If

gainHk
j
(S,Hk

j) < ε ((< ε where ε > 0)), then it removes S and with their
incident edges (line 7–8).

5 Experiment and Result

All experiments are performed on an Intel(R) Core(TM) i7-4500U 2.4 GHz Win-
dows 7 PC with 16 GB RAM. We choose two Twitter datasets: CRAWL [11] and
SNAP1 and apply Twitter-LDA [8] topic modeling to identify different topics as
node attributes. We set the input query topics as {politics, entertainment, online
social network service, food and health} in both CRAWL and SNAP datasets.
A user in Twitter interacts with others in the form of replies, mentions and
retweets. We use an academic coauthor (DBLP) dataset [6] and apply latent
dirichlet allocation (LDA) topic modeling [13] method on the abstracts of the
research papers to find the research topics. We set the input query topics as
{social network analysis, semantic web, machine learning, text mining}. Table 1
shows the statistics of our experimental data.

We compare AIC-Basic and AIC-Greedy algorithms with two other methods.
We select HICD method [12] based on users’ interaction frequencies with their
following links of celebrities of particular interest category. We also consider iTop
[5] that detects topical communities by first selecting a set of seed users who are
identified based on a textual search of their Twitter user profile biography. In
all cases, we set θ = 0.5, α = 0.5, γ = 5.

1 http://snap.stanford.edu/data/twitter7.html

http://snap.stanford.edu/data/twitter7.html

212 Md. M. Anwar

Algorithm 2. AIC-Greedy
Input: G = (U, E, T), Q, k, h, α, β, γ, θ, ε
Output: An AIC Hk

j with the maximum f(Hk
j , Q)

1: Find the set of active users UA who are h hops away from any of query nodes Uq

2: compute the induced graph Go on UA

3: Maintain GQ
h as a k-core

4: for each connected k-core component Hk
j from GQ

h do
5: if (wuv ∈ E(Hk

j)) < θ then
6: Find a set of nodes S and compute gain gainHk

j
(S, Hk

j)

7: if gainHk
j
(S, Hk

j) < ε then

8: Remove S and their incident edges
9: Maintain Hk

j as a k-core

10: if Hk
j exists then

11: Compute the intimacy score of f(Hk
j , Q)

12: Output the Hk
j with the maximum f(Hk

j , Q)

Table 1. Datasets

Dataset # of Nodes # of Edges # of Acivities

CRAWL 9,355 1,372,978 5,913,331

SNAP 100,000 3,916,456 847,536

Coauthor 16,614 49,758 192,721

5.1 Efficiency

Figure 3 shows the running time at different values of k. Observe that iTop
requires more time compare with other methods as it needs to recursively per-
form several steps in order to maximize local modularity. HICD also takes more
time as it requires to perform the Clique Percolation Method (CPM) on the
network generated by the set of celebrities and their followers. A lower k ren-
ders more subgraphs, due to which it takes more computation time for all the

0
10
20
30
40
50
60
70

4 6 8 10 12

Ti
m

e
(i

n
se

co
nd

s)

k

 iTop HICD

AIC-Basic AIC-Greedy

(a) DBLP

0

20

40

60

80

100

120

5 10 15 20 25

T
im

e
(i

n
se

co
nd

s)

k

 iTop HICD
AIC-Basic AIC-Greedy

(b) CRAWL

0

20

40

60

80

100

120

5 10 15 20 25

T
im

e
(i

n
se

co
nd

s)

k

 iTop HICD
AIC-Basic AIC-Greedy

(c) SNAP

Fig. 3. Run-time for different values of k

Query-Oriented Temporal Active Intimate Community Search 213

methods. Both AIC-Basic and AIC-Greedy outperforms the other methods.
AIC-Greedy takes more time than AIC-Basic as it requires to check the node
marginal gains.

5.2 Community Quality Evaluation

We vary the length of query topics |Tq| of Q to 2, 3, 4 and use two measures
of modularity and entropy to evaluate the quality of the generated candidate
communities generated. The definition of modularity and entropy are as follows:

modularity({Gj}n
j=1) =

1
2m

∑

ij

[Aij − didj

2m
]δ(si, sj) (8)

Here, m denotes the number of edges corresponding to an adjacency matrix A
of G, di denotes the degree corresponding to node ni, si denotes the community
membership of node ni and δ(si, sj) = 1 if si = sj .

entropy({Hk
j }rj=1) =

r∑

j

|U(Hk
j)|

|U | entropy(Hk
j) ,where entropy(Hk

j) = −
n∑

i=1

pij log2pij

and pij is the percentage of nodes in community Hk
j that are active on query topic

Ti. entropy({Hk
j }r

j=1) measures the weighted entropy considering all the query
topics over top-r communities. Entropy indicates the randomness of topics in
communities. A good community should have high modularity and low entropy.

(a) (b) (c)

Fig. 4. Modularity comparison on datasets: (a) DBLP, (b) CRAWL, (c) SNAP

Figure 4 shows the modularity comparison between the four methods. We set
k = 4 for DBLP as it has many small-sized research groups. In CRAWL, we set
k = 10 as it has very densely connected network. We set k = 7 in SNAP as it is
very sparse in structure. Both AIC-Basic and AIC-Greedy perform better than
iTop and HICD due to the consideration of users’ degree of intimacies and topical
activeness. The increase rate of modularity value by iTop method is not as good
as AIC-Basic and AIC-Greedy because it does not focus on the interactions

214 Md. M. Anwar

between the non-seed users. Similarly, HICD achieves poor modularity values
because it requires connection between normal users to the high profile users.

Figure 5 shows the entropy comparison between the four methods. Both
AIC-Basic and AIC-Greedy achieve better performance as they take into account
the relevance (topical activeness) of the users w.r.t. the query topics while form-
ing a community. As AIC-Greedy considers the node marginal gain, so it has
better percentage of users related to the query topics resulting better entropy
value than AIC-Basic. On the other hand, HICD achieves higher entropy value
because many connected normal users do not have interest in all the common
topics. iTop also achieves higher entropy value because it does not focus on topic
wise interactions between the seed users and their followers.

(a) (b) (c)

Fig. 5. Entropy comparison on datasets: (a) DBLP, (b) CRAWL, (c) SNAP

6 Conclusion

In this work, we studied the problem of finding query-oriented active intimate
community in OSNs considering users’ temporal topical activeness and inter-
actions with others. We first used an index based solution and then further
improved the baseline solution by considering node marginal gain.

References

1. Fang, Y., Cheng, R., Luo, S., Hu, J.: Effective community search for large
attributed graphs. In: VLDB, pp. 1233–1244 (2016)

2. Newman, M.E.J., Park, J.: Why social networks are different from other types of
networks. Phys. Rev. E 68, 036122 (2003)

3. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very
large networks. Phys. Rev. E 70, 066111 (2004)

4. Yang, J., McAuley, J., Leskovec, J.: Community detection in networks with node
attributes. In: ICDM, pp. 1151–1156 (2013)

5. Correa, D., Sureka, A., Pundir, M.: iTop - interaction based topic centric commu-
nity discovery on Twitter. In: PIKM, pp. 51–58 (2012)

Query-Oriented Temporal Active Intimate Community Search 215

6. Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., Su, Z.: ArnetMiner: extraction and
mining of academic social networks. In: KDD, pp. 990–998 (2008)

7. Huang, X., Lakshmanan, L.V.S.: Attribute-driven community search. In: VLDB,
pp. 949–960 (2017)

8. Zhao, W.X., et al.: Comparing twitter and traditional media using topic models.
In: ECIR, pp. 338–349 (2011)

9. Anwar, M., Liu, C., Li, J., Anwar, T.: Discovering and tracking active online social
groups. In: WISE, pp. 59–74 (2017)

10. Liu, Y., Niculescu-Mizil, A., Gryc, W.: Topic-link LDA: joint models of topic and
author community. In: ICML, pp. 665–672 (2009)

11. Bogdanov, P., Busch, M., Moehli, J., Singh, A.K., Szymanski, B.K.: The social
media genome: modeling individual topic-specific behavior in social media. In:
ASONAM, pp. 236–242 (2013)

12. Lim, K.H., Datta, A.: An interaction-based approach to detecting highly interactive
Twitter communities using tweeting links. In: Web Intelligence, pp. 1–15 (2016)

13. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

A Contextual Semantic-Based Approach
for Domain-Centric Lexicon Expansion

Muhammad Abulaish1, Mohd Fazil1, and Tarique Anwar2,3(B)

1 South Asian University, New Delhi, India
abulaish@sau.ac.in, mohdfazil.jmi@gmail.com

2 Macquarie University, Sydney, Australia
tarique.anwar@mq.edu.au

3 CSIRO Data61, Sydney, Australia

Abstract. This paper presents a contextual semantic-based approach
for expansion of an initial lexicon containing domain-centric seed words.
Starting with a small lexicon containing some domain-centric seed words,
the proposed approach models text corpus as a weighted word-graph,
where the initial weight of a node (word) represents the contextual
semantic-based association between the node and the target domain,
and the weight of an edge represents the co-occurrence frequency of
the respective nodes. The semantic-based association between a node
and the target domain is calculated as a function of three contextual
semantic-based association metrics. Thereafter, a random walk-based
modified PageRank algorithm is applied on the weighted graph to rank
and select the most relevant terms for domain-centric lexicon expansion.
The proposed approach is evaluated over five datasets, and found to per-
form significantly better than three baselines and three state-of-the-art
approaches.

Keywords: Text mining · Keyword extraction · Lexicon expansion ·
Contextual similarity

1 Introduction

Extraction of keywords or keyphrases from large text corpora is an important
task in many text information processing applications, in which important and
relevant words are extracted from the corpora. Such words are generally related
to all the different domains of interest. Research on this problem in the past few
decades has resulted into a rich literature [4]. While keywords are relevant to mul-
tiple domains of interest, they are not much effective in highlighting some spe-
cific domains. Lexicons, on the other hand, are able to effectively conceptualize
one particular domain with relevant words from the text corpus. Lexicon-based
approaches are highly effective in many applications, such as spam email clas-
sification, abusive language detection, sentiment analysis, and emotion mining.
Although there exists many works on lexicon generation in the literature, they
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 216–224, 2020.
https://doi.org/10.1007/978-3-030-39469-1_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_18&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_18

Domain-Centric Lexicon Expansion 217

predominantly ignore the contextual semantics. It makes them ineffective over
online social networks (OSN) data. Moreover, most of the existing lexicons are
generally curated through crowd-annotation [7,10], which is a time-consuming
and tedious task. There exists some well-established benchmark lexicons such
as Hatebase1, SocialSent2. But still there is a lack of sufficient lexicons to cover
every domain of interest. For example, there is no such lexicon of radical words
used by different extremist groups in the South Asian region. Through human
efforts, one can possibly identify only a limited number of radical words such
as kashmirfreedom, gazwaehind, khalistan. It is not feasible to manually identify
all other contextual words that are used by such extremist groups. Therefore,
automated lexicon expansion from a given initial lexicon of few seed words, is
an important research problem.

There exists some works in the direction of domain-centric lexicon expansion
from a text corpus, most of which use the concepts of contrasting corpora and
graph-based approaches [3,8,9]. Sarna et al. [9] utilized an initial lexicon of seed
words using a statistical significance analysis-based approach for its expansion.
However, it ignores the contextual semantic of corpus words with the seed words.
Overall, the existing works suffer from three major limitations. Firstly, most of
the existing approaches are based on simple statistical measures like frequency
count and co-occurrence count ignoring the contextual semantics between the
terms. Secondly, to the best of our knowledge, all existing approaches except [9]
are for lexicon generation rather than expansion. Finally, no approach exists
that utilizes the strengths of both the contrasting-corpora and graph-based
approaches incorporating contextual semantics towards initial lexicon expan-
sion over the OSN data. To this end, this paper utilizes the advantages of both
the statistics of contrasting-domain corpora and contextual semantics of latest
word vector representation for domain-centric lexicon expansion. Further, pro-
posed approach exploits an initial lexicon of few seed terms to bias the initial
contextual semantic-based scores of corpus-words towards the target domain.

2 Proposed Approach

2.1 Candidate Words Extraction

The selection of content-bearing candidate words from the corpus is an impor-
tant step of the lexicon expansion process. OSNs are a conversation platform
where users generally use an informal and noisy language. Therefore, firstly,
uninformative symbols and special characters like “@”, “#”, “RT” are filtered
out from tweets, which are further converted to lower case to avoid ambiguity
between words. The filtered tweets are further passed to a part-of-speech tagger
to find noun and adjective phrases [5], which are generally important words in
user-generated contents conceptualizing the text corpus. Finally, identified noun
and adjective phrases are lemmatized to construct the set of potential candidate
words for graph modeling.
1 https://hatebase.org/.
2 https://nlp.stanford.edu/projects/socialsent/.

https://hatebase.org/
https://nlp.stanford.edu/projects/socialsent/

218 M. Abulaish et al.

2.2 Contextual Semantic-Based Graph Construction

The candidate words are modeled as a word co-occurrence graph G = 〈W,E〉,
where W is the set of nodes representing the candidate words and E is the set of
links connecting the nodes (words). Further, we compute the initial vertex score
of each word representing the contextual semantic-based association between the
word and target domain, and edge weight is assigned to show the co-occurrence
frequency between every pair of words. An edge between a pair of words is
created only when they have co-occurred in at least one document of the corpus
(in our case, it is a tweet).

Vertex Relevance Score. The initial weight assigned to a node (word) w ∈ W
is based on three association measures – (i) contextual semantic-based similarity
of w with S, (ii) domain relevance of w with respect to a set of contrasting
corpora, and finally (iii) occurrence-probability of w with seed words.

Embedding-Based Semantic Similarity. The semantic similarity of w with the
seed words of S is based on numeric vector representation of words. In the
existing literature, several neural network-based methods have been presented
to train the low dimensional numeric vector representation of words. In such
an approach, Mikolov et al. [6] presented a computationally efficient and widely
accepted approach to learn the word representation from unlabeled corpus using
two models – (i) a continuous bag of words (CBOW) representation model and
(ii) skip-gram model. In the proposed approach, we use the CBOW model to
train a word embedding model that maps each word of the corpus into a low-
dimensional vector in a vector space of latent concepts. Thereafter, semantic sim-
ilarity between the lexicon of seed words and each word in the graph is computed
based on the trained word-embedding vectors. The contextual semantic-based
similarity of each word of G is the average of cosine similarity of the word with
each seed word of S as given in Eq. 1, where ew and es represent the embedding
vectors of w and s ∈ S respectively.

S(w) =

∑

s∈S

Cos(ew, es)

|S| (1)

Domain Relevance. In the proposed approach, domain relevance of a word w is
defined as the ratio of the occurrence probability of w in domain-specific corpus
to the average of its occurrence probability in the contrasting corpora. If the
domain-specific corpus is D and contrasting corpora C, then domain relevance
D(w) of a word w is defined as given in Eq. 2, where PD

w represents the occurrence
probability of w in D and PC

w represents the average of the occurrence probability
of w in C.

D(w) =
PD
w

PC
w

=
tfD

w /ND

∑
c∈C

tfc
w

Nc /|C|
(2)

Domain-Centric Lexicon Expansion 219

Co-occurrence-Based Contextual Proximity. The frequent occurrence of a word
with seed words reflects its contextual proximity with seed words. Therefore, we
define a metric called co-occurrence-based contextual proximity, P, to capture
the co-occurrence of a word with seed words. For a word w, it is the average of
conditional probability of w with each s ∈ S as defined using Eq. 3, where p(s/w)
represents the conditional probability of s given that w has already occurred.

P(w) =

(
∑

s∈S

p(s/w)

)

/|S| (3)

Finally, vertex score V(w) of w is defined as given in Eq. 4

V(w) = (S(w) + D(w) + P(w)) /3 (4)

Edge Score. This section captures the contextual semantic-aware association
between every pair of words (wi, wj) ∈ G to create edges between them. We
define the edge weight between a pair of words (wi, wj) of G as the number of
tweets in which they co-occur regardless of any window size to incorporate tweet-
level context. It is defined using Eq. 5, where It(wi, wj) is the identify function
which is one when both the words occur in a tweet t otherwise zero as given
using Eq. 6.

E(wi, wj) =
∑

t∈D

It(wi, wj) (5)

It(wi, wj) =

{
1 if wi ∈ t and wj ∈ t

0 otherwise
(6)

Finally, we normalize the edges weight using Eq. 7, where Emax represents
the weight of the edge with the highest value.

E(wi, wj) =
E(wi, wj)

Emax
(7)

V ′
(wi) =

1 − d

N
+

∑

w
′
i∈Adj(wi)

C ∗ E(w
′
i, wi) ∗ V(w

′
i)

|Adj(w′
i)|

(8)

2.3 Words Ranking and Lexicon Expansion

In PageRank, initial weight of nodes follows uniform distribution with an equal
weight of 1. Thus, every node has equal probability of random jump to other
nodes of the graph. On contrast, in the proposed approach, weights on nodes
follow a non-uniform distribution such that the nodes having higher contextual
semantic with seed words are assigned higher weights emulating the personal-
ized PageRank. The non-uniform distribution of weights biases the computation

220 M. Abulaish et al.

towards certain nodes in the recursive procedure. It allows the nodes of the
graph to spread their importance to other nodes depending on their weights.
This spread of a node score is also affected by the weights of adjacent edges
such that the flow of weight will be higher between two strongly connected
nodes. Therefore, the final weight of a node is not only based on its contextual
semantic with the seed words but also depends on the strength of co-occurrence.
Finally, a modified PageRank [2] is applied on G to identify the most relevant
words for expansion of the initial lexicon of seed words. In the modified PageRank
algorithm, importance score of a word is updated using Eq. 8, where V ′

(w) rep-
resents the updated score of w ∈ W , d is a damping constant (0.85), C is a
scaling constant (0.95), and N is the number of words (nodes) in the graph. The
iterative procedure of score updation of each word is repeated until a stationary
distribution of words score is reached. Thereafter, words are sorted based on
their final scores and high ranked words are selected for lexicon expansion.

3 Experimental Setup and Results

This section presents a detailed description of datasets and embedding learning,
evaluation results, and comparative analysis.

3.1 Dataset and Embedding Learning

The proposed approach is evaluated on five different domains of datasets pre-
pared using two main datasets – D1 and D2. The dataset D1 is a benchmark
dataset of 80000 tweets related to three categories of offensive languages – hate-
ful, spam, and abusive [1] including normal tweets. We crawled 64963 tweets
(remaining were suspended) and their related metadata information from the
provided tweet-ids to construct D1 and learn the 100-d word-embeddings using
Word2Vec model. Thereafter, a random set of 1000 tweets, called Dh, Ds, and
Da respectively, each from hateful, spam, and abusive categories are selected to
evaluate the proposed approach. Further, three sets of 286, 343 and 264 keywords
are extracted from Dh, Ds and Da, respectively using the Natural Language
Understanding tool. Thereafter, three annotators are asked to rate the extracted
keywords on a 11-point scale from 0 to 10, where 0 is assigned when annotator
is 100% confident that keyword does not belong to a particular category and
it is assigned 10 when annotator is 100% confident that keyword belongs to a
particular category. Finally, average of the three rating scores is compared with
5 to create an annotated set of 76 hate words (Ah), 130 spam words (As), and
105 abusive words (Aa).

To further evaluate the proposed approach, another dataset D2 is crawled
during August 5, 2019 to August 28, 2019 using Twitter based on 14 radical
keyphrases related to Khalistan and Kashmir movements. Thereafter, same pro-
cedure is repeated on D2 as on D1 to learn embedding vectors and generate the
set of ground-truth keywords. As a result, we have annotated sets of 48 and
90 keywords for Khalistan and Kashmir related tweets represented as Akh and

Domain-Centric Lexicon Expansion 221

Table 1. A brief statistic of five datasets

Benchmark dataset D1 Crawled dataset D2

Category Abusive Hateful Spam Normal Total Khalistan Kashmir Total

Total
tweets

12878 2740 9048 40297 64963 3888 560 4448

Evaluation
tweets

1000 1000 1000 1000 4000 1000 560 1560

Aka, respectively. A brief statistic about the five evaluation datasets is given in
Table 1.

Table 2. Performance evaluation results using an initial lexicon of 3 seed words

Datasets with 1000 tweets Datasets with 500 tweets

Dh Ds Da Dkh Dka Dh Ds Da Dkh Dka

P@80 0.350 0.738 0.500 0.463 0.600 0.338 0.588 0.437 0.337 0.537

R@80 0.368 0.454 0.381 0.771 0.533 0.355 0.362 0.333 0.562 0.477

F@80 0.359 0.562 0.432 0.578 0.565 0.346 0.447 0.378 0.421 0.506

3.2 Evaluation Results

The proposed approach is evaluated using three standard evaluation metrics –
precision, recall, and f-score at K. The domain relevance D(w) for each word
w of G is computed using a single contrasting corpus Dc of 1000 normal tweets
from D1. Table 2 presents the evaluation results of the proposed approach at
K = 80 over the five datasets using S containing 3 seed words. This table
shows that in terms of P@80, proposed approach exhibits lower performance over
Dh because the ground-truth set Ah has a number of words like nazi, muslim,
crazy which are contextually used in hateful tweets but they were labeled by the
annotators as non-hatred words. Moreover, many words like terrorism, russia,
gay, which are used as hatred words in certain contexts were not extracted by the
NLU. Accordingly, they are missing from the annotated set of words. In terms
of P@80, proposed approach performs best on Ds as shown in bold typeface
in the third row of Table 2, whereas, in terms of R@80, it performs best over
Dkh dataset as shown in the fourth row of Table 2. It is because that Dkh has
the least number of manually annotated keywords, thereby, increases the recall.
Similarly, performance evaluation results over the five datasets of 500 tweets in
each is shown in the last five columns of Table 2. On analysis of evaluation results
over 1000 and 500 tweets from Table 2, it can be observed that the performance
of the proposed approach goes down as we decrease the number of tweets in

222 M. Abulaish et al.

0

0.2

0.4

0.6

0.8

1

Dh Ds Da Dkh Dka

Pr
ec
is
io
n

Datasets

(a)

0

0.2

0.4

0.6

0.8

1

Dh Ds Da Dkh Dka

R
ec
al
l

Datasets

(b)

0

0.2

0.4

0.6

0.8

1

Dh Ds Da Dkh Dka

Fs
co
re

Datasets

(c)

Fig. 1. Performance evaluation results at different k values (80, 60 and 40)

Table 3. Comparative performance evaluation results

Approach Datasets

Dh Ds Da Dkh Dka

P@80 R@80 F@80 P@80 R@80 F@80 P@80 R@80 F@80 P@80 R@80 F@80 P@80 R@80 F@80

Proposed

approach

0.3500.3680.3590.7380.4540.5620.5000.3810.4320.4630.7710.5780.6000.5330.565

Sarna and

Bhatia [9]

0.244 0.128 0.168 0.318 0.121 0.175 0.209 0.086 0.122 0.250 0.102 0.144 0.286 0.106 0.155

Park et al.

[8]

0.175 0.184 0.179 0.149 0.085 0.108 0.175 0.133 0.151 0.075 0.083 0.079 0.100 0.067 0.080

Kit and Liu

[3]

0.163 0.171 0.167 0.350 0.215 0.267 0.025 0.019 0.022 0.075 0.125 0.094 0.125 0.111 0.118

tf 0.175 0.184 0.179 0.150 0.092 0.114 0.175 0.133 0.151 0.262 0.437 0.328 0.263 0.233 0.247

tf-idf 0.063 0.066 0.064 0.238 0.146 0.181 0.138 0.105 0.119 0.025 0.041 0.031 0.038 0.033 0.035

Embedding-

based

similarity

0.075 0.079 0.077 0.113 0.069 0.086 0.325 0.248 0.281 0.262 0.438 0.328 0.388 0.344 0.364

the evaluation datasets to 500. A comparative evaluation of performance of the
purposed approach over different values of k over the five evaluation datasets
of 1000 words is shown in Fig. 1. It can be observed from this figure that as
we select less number of top ranked keywords for lexicon expansion, precision
increases sharply whereas recall shows downgrading pattern as expected.

3.3 Comparative Analysis

The proposed approach is compared with three baselines and three state-of-the-
art approaches [3,8,9]. In the first baseline, we ranked and extracted the words
based on their frequency count in text-corpus, whereas, second baseline extracts
the top-ranked words based on their tf-idf value. Finally, in the third baseline,
the embedding-based similarity of words with the lexicon of seed words is com-
puted to extract the top ranked contextually semantic terms. Table 3 presents
the performance evaluation results of the proposed approach in terms of all the
three evaluation metrics for K = 80 in comparison to six approaches. It can be
observed from this table that the proposed approach performs significantly better
than all the comparison approaches. Among the three standard state-of-the-art
approaches, [9] performs best though it shows poor performance in comparison

Domain-Centric Lexicon Expansion 223

to the proposed approach. Among the three baseline methods, words extracted
using embedding-based similarity performs best over Da, Dkh, and Dka datasets
whereas tf-idf based relevant word extraction performs worst. The tf -based rel-
evant words extraction also shows good performance but not comparable to the
proposed approach. The better results by embedding-based similarity also con-
firm the strength of the proposed approach, which uses contextual semantics
based on the distributional representation of words as a measure of association
between the corpus words and initial lexicon of seed words.

4 Conclusion

In this paper, we presented a contextual semantic-based approach utilizing the
strengths of both the distributional word representation and contrasting-domain
corpus for domain-specific lexicon expansion from text-corpus. We validated the
performance of our approach by conducting experiments on five different Twit-
ter datasets. Our approach performs significantly better in comparison to three
baselines and three state-of-the-art approaches. The proposed approach is very
useful for the domains in which the text corpus is not fixed, rather keeps incre-
menting with time.

Acknowledgment. The authors would like to thank the South Asian University,
Delhi, for the financial support under the start-up research grant provided to the first
author.

References

1. Founta, A.M., et al.: Large scale crowdsourcing and characterization of Twitter
abusive behavior. In: Proceedings of the 12th International Conference on Web
and Social Media, pp. 491–500. AAAI, Palo Alto, June 2018

2. Hassan, S., Mihalcea, R., Banea, C.: Random-walk term weighting for improved
text classification. In: Proceedings of the International Conference on Semantic
Computing, California, USA, pp. 242–249, September 2007

3. Kit, C., Liu, X.: Measuring mono-word termhood by rank difference via corpus
comparison. Terminology. Int. J. Theor. Appl. Issues in Specialized Commun.
14(2), 204–229 (2008)

4. Matsuo, Y., Ishizuka, M.: Keyword extraction from a single documentusing word
co-occurrence statistical information. In: Proceedings of the 16th Int’l Florida Arti-
ficial Intelligence Research Society Conference, pp. 392–396. AAAI, Florida, May
2003

5. Mihalcea, R., Tarau, P.: Textrank: bringing order into text. In: Proceedings of the
International Conferences Empirical Methods in Natural Language Processing, pp.
404–411. ACL, Barcelona, July 2004

6. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations invector space. arXiv:1301.3781 (2013)

7. Mohammad, S., Turney, P.: Crowdsourcing a word-emotion association lexicon.
Comput. Intell. 29(3), 436–465 (2013)

http://arxiv.org/abs/1301.3781

224 M. Abulaish et al.

8. Park, Y., Patwardhan, S., Visweswariah, K., Gates, S.C.: An empirical analysis of
word error rate and keyword error rate. In: Proceedings of the 9th Annual Confer-
ence of the International Speech Communication Association, Brisbane, Australia,
pp. 270–273, September 2008

9. Sarna, G., Bhatia, M.: A probalistic approach to automatically extract new words
from social media. In: Proceedings of the International Conference on Advances in
Social Networks Analysis and Mining, San Francisco, USA, pp. 719–725, August
2016

10. Staiano, J., Guerini, R.M.: Depechemood: a lexicon for emotion analysis from
crowd-annotated news. In: Proceedings of the 52nd Annual Meeting of the ACL,
Maryland, USA, pp. 427–433, June 2014

Data-Driven Hierarchical Neural Network
Modeling for High-Pressure Feedwater

Heater Group

Jiao Yin1,2, Mingshan You3, Jinli Cao1(B), Hua Wang4, MingJian Tang5,
and Yong-Feng Ge1

1 Department of Computer Science and Information Technology,
La Trobe University, Melbourne, VIC 3083, Australia

{j.yin,j.cao,g.ge}@latrobe.edu.au
2 School of Artificial Intelligence, Chongqing University of Arts and Sciences,

Chongqing 402160, China
3 Shenhua Tianming Power Generation Company, Sichuan 621700, China

youmingshan2019@gmail.com
4 Institute for Sustainable Industries & Liveable Cities, Victoria University,

Melbourne, VIC 3083, Australia
Hua.Wang@vu.edu.au

5 Huawei Technologies Co., Ltd., Shenzhen 518129, China
tang.ming.jian@huawei.com

Abstract. This paper proposes a data-driven hierarchical neural net-
work modeling method for a high-pressure feedwater heater group
(HPFHG) in power generation industry. An HPFHG is usually made
up of several cascaded high-pressure feedwater heaters (HPFH). The
challenge of modeling an HPFHG is to formulate not only the HPFHG
as a whole but also its components at the same time. Physical mod-
eling techniques based on dynamic thermal calculation can hardly be
applied in practice because of lacking necessary parameters. Based on
big operating data, modeling by neural networks is feasible. However,
traditional artificial neural networks are black boxes, which are difficult
to describe the subsystems or inner components of a system. The pro-
posed modeling approach is inspired by the physical cascade structure of
the HPFHG to tackle this problem. Experimental results show that our
modeling approach is effective for the entire HPFHG as well as its every
single component.

Keywords: High-pressure feedwater heater group · Hierarchical
neural networks · Modeling techniques

1 Introduction

A feedwater heater is a power plant component used to preheat feedwater deliv-
ered to a steam-generating boiler [2]. To fully make use of the regenerative extrac-
tion steam, most fossil fuel-fired power plants contain a low-pressure feedwater
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 225–233, 2020.
https://doi.org/10.1007/978-3-030-39469-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_19&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_19

226 J. Yin et al.

heater group (LPFHG) and a high-pressure feedwater heater group (HPFHG).
Both LPFHG and HPFHG play a vital role in improving the thermal efficiency
of a power plant and reducing certain emissions, such as carbonic oxide [4].

Simulating and modeling an HPFHG is important for finding out its optimal
operating conditions in a dynamic industrial environment, improving operational
efficiency and detecting faults [5,7]. Traditional physical modeling techniques
based on accurate mathematical expressions are ideal for theoretically under-
standing of how an HPFHG works. However, in practice, it is very difficult to
determine the heat transfer coefficient, because it changes dynamically accord-
ing to operating status [9,12]. Furthermore, some key coefficients have no sensor
to measure in industrial fields, such as the extraction steam flow and the drain
water flow of the superior heater in the same heater group [1].

Leveraging big operational data, data-driven and machine-learning-based
methods are widely used in thermal power plant component modeling, including
the feedwater heater group [3,8]. Artificial neural network (ANN) is a nonlinear
statistical data modeling tool by imitating the structure and function of human
brain. According to the universal approximation theorem, a feedforward net-
work with a single layer is sufficient to represent any function [6]. However, the
mechanics of the ANN models are mysterious. They are regarded as black boxes
and their internal relationships are uninterpreted. For many applications, espe-
cially for those industry applications with physical prototypes, it is desirable to
model a system as a whole as well as to model its subsystems at the same time.
Thus, the traditional “black-box” neural networks need to be improved. Hierar-
chical Neural Networks [10,11] allow designing the model architecture based on
some pre-set rules, which can be used for industry system modeling, including
HPFHGs.

An HPFHG could be treated as a system consisted of several subsystems—
HPFHs. Considering the physical cascade structure of an HPFHG, we proposed
a data-driven hierarchical regression model. It models the relationship between
the feedwater outlet temperature and other related variables recorded by the
sensors in the industrial field. Compared with the “black-box” neural network
model, the proposed model can formulate not only the working state of the entire
HPFHG but also every single HPFH of the group in detail.

The remaining sections are organized as follows. Section 2 introduces the
industrial background. Section 3 presents the architecture and training method
of the proposed data-driven hierarchical neural network model. Experimental
setting and results are reported in Sect. 4. At last, a brief summary is made in
Sect. 5.

2 Industrial Background

2.1 Thermal Power Plant Regenerative System

The high-pressure feedwater heater group is important equipment in the regen-
erative system of a thermal power plant. In this part, we introduce the basic
principle of a typical thermal power plant regenerative system. As shown in

Data-Driven Hierarchical Neural Network Modeling 227

Fig. 1, feedwater is heated by a boiler to generate steam, which pushes the tur-
bine to rotate, causing the turbo generator to generate electricity. After working
through the turbine, one part of the discharging steam condenses into conden-
sated water and then enters into the LPFHG; while another part is working as
regenerative extraction steam to heat the feedwater in the LPFHG and HPFHG.
Being heated, feedwater re-enters the boiler and produces steam for the turbine.
Such a regenerative system is beneficial for the thermal power plant to improve
thermal efficiency, save fuel and reduce pollution.

Boiler Turbine

Turbo
Generator

Steam
Condenser

Condensate
Pump

LPFHGHPFHG

Deaerator

Feedwater
Pump

#1 #2 #3

steam

re
ge

ne
ra

tiv
e

ex
tr

ac
tio

n
st

ea
m

fe
ed

w
at

er

condensated
water

discharging
steam

re
ge

ne
ra

tiv
e

ex
tr

ac
tio

n
st

ea
m

fe
ed

w
at

er

GG

Fig. 1. A thermal power plant regenerative system

2.2 High-Pressure Feedwater Heater Group

The HPFHG is a complex system, which usually consists of three high-pressure
feed-water heaters, numbered by #3, #2, #1 respectively, as shown in Fig. 2.
Feedwater flows into the HPFH #3 first to be heated and then flows into #2
and lastly #1 for getting a higher temperature. Among them, #1 is the most
superior HPFH connected with the boiler, and #3 is the most inferior HPFH.

#3 #3
2 2,w wt P

#3 #3,h st P

#3 #3
1 1, ,w w wt P G#2 #2

2 2,w wt P

#2 #2,h st P

#2
st

#2L

#2
odt

#2 #2
1 1,w wt P

#1 #1,h st P

#1L

#1
odt

#1 #1
1 1,w wt P#1 #1

2 2,w wt P

#3L

#3
odt

#3
st

#1 #2 #3

Fig. 2. The input/output relationship of a high-pressure feedwater heater group

228 J. Yin et al.

Based on thermodynamics, the higher the feedwater outlet temperature of an
HPFHG is, the less fuel will be consumed by the boiler to heat the feedwater and
the thermal power plant regenerative system would be more efficient. Therefore,
modeling the HPFHG is to find out the relationship between the feedwater
outlet temperature and other variables. Based on the data could be collected in
the industrial field and the domain knowledge, we define the notations below to
represent the related variables of an HPFH.

tw2 (◦C)—the feedwater outlet temperature of an HPFH
tw1 (◦C)—the feedwater inlet temperature of an HPFH
th (◦C)—the inlet steam temperature of an HPFH
Ps (MPa)—the inlet steam pressure of an HPFH
L (mm)—the water level in an HPFH
Pw1 (MPa)—the feedwater inlet pressure of an HPFH
Pw2 (MPa)—the feedwater outlet pressure of an HPFH
Gw (t/s)—the feedwater flow throughout an HPFHG
tod (◦C)—the drain temperature of an HPFH
ts (◦C)—the superior drain temperature of an HPFH

Because of the physical cascade structure, HPFHs #1, #2, #3 share the same
input feedwater flow Gw. Besides that, for the HPFH #3, its feedwater out-
let temperature t#3

w2 and outlet pressure P#3
w2 are the input variables for the

HPFH #2, which means t#2
w1 = t#3

w2 and P#2
w1 =P#3

w2 . The drain temperature t#2
od

of the HPFH #2 is the superior drain temperature t#3
s of the HPFH #3, which

means t#2
od =t#3

s , as demonstrated in Fig. 2. Similarly, t#1
w1 = t#2

w2 , P#1
w1 = P#2

w2 and
t#1
od = t#2

s .
From the perspective of modeling, the output of the HPFH #3 is t#3

w2 , and
the input is x#3 = [Gw, t#3

w1 , t#3
h , P#3

s , L#3, P#3
w1 , P#3

w2 , t#3
od , t#3

s]. Similarly, for
the HPFH #2, the output is t#2

w2 , and the input is x#2 = [Gw, t#2
w1 , t#2

h , P#2
s ,

L#2, P#2
w1 , P#2

w2 , t#2
od , t#2

s]; for the HPFH #1, the output is t#1
w2 , and the input

is x#1 = [Gw, t#1
w1 , t#1

h , P#1
s , L#1, P#1

w1 , P#1
w2 , t#1

od]. Obviously, to model the
HPFHG composed by HPFHs #3, #2, #1, the output is y = t#1

w2 and the input
is X=x#3 ∪ x#2 ∪ x#1. Based on the big operational history data, it is easy
to establish a regression model to fit the functional relationship y = f(X) for a
HPFHG using a fully connected neural network. However, the challenge is how
we can get the accurate models for the three single HPFH #3, #2, #1 based on
the model y = f(X).

3 Data-Driven Hierarchical Neural Network Modeling

To provide one possible solution for the challenging problem mentioned in Sect. 2,
we propose a data-driven hierarchical neural network modeling method to for-
mulate the relationship between the output y = t#1

w2 and the input X =x#3 ∪
x#2 ∪ x#1 of an HPFHG.

Data-Driven Hierarchical Neural Network Modeling 229

3.1 Architecture of the Proposed Model

The proposed data-driven hierarchical neural network model is designed based
on traditional “black-box” neural networks. Figure 3 presents a 3-layer full con-
nection neural network. The first layer is the input layer, which stands for all
variables related to the output, denoted as x= [x1, x2,. . ., xn], where n is the
dimension of inputs. The middle layer is a hidden layer, denoted as a(2) = [a(2)

1 ,
a
(2)
2 , . . ., a

(2)
nh], where nh stands for the number of hidden nodes and the super-

script (2) indicates this is the second layer of the network. The last layer is the
output layer, which can be denoted as y = a

(3)
1 =hΘ(x), where h stands for the

hypothesis of the model and Θ stands for all parameters of the networks.

1x

2x

(2)
1a

(2)
2a (3)

1a

... ...

input layer hidden layer

output layer

(2)
hn

anx

()h x

Fig. 3. A traditional 3-layer
neural networks

shared input

hidden
layer of #3

output
of #3

hidden
layer of #2

other inputs
of #1

output
of #2

hidden
layer of #1

output
of #1

other inputs
of #2

other inputs
of #3

net #3 net #2 net #1

...

...

...

...

...

...
...

Fig. 4. The architecture of the pro-
posed data-driven hierarchical neural
network mode

The proposed model consists of three full connection networks with hierarchi-
cal relationships, namely, net #3, net #2 and net #1, as demonstrated in Fig. 4.
This hierarchical structure is enlightened by the psychical cascaded structure of
the HPFHG illustrated in Fig. 2.

Net #3 is the most inferior 3-layer fully connection neural network. The input
layer of net #3 includes a shared input Gw and other inputs of the HPFH #3,
namely, t#3

w1 , t#3
h , P#3

s , L#3, P#3
w1 , P#3

w2 , t#3
od and t#3

s . The output of net #3 is
t#3
w2 .

Similarly, net #2 is the middle 3-layer fully connected neural network. The
input layer of net #2 includes three parts, namely, the shared input Gw, the
output of net #3 t#3

w2 and other inputs of the HPFH #2, namely, t#2
h , P#2

s , L#2,
P#2

w1 , P#2
w2 , t#2

od and t#2
s . The output of net #2 is t#2

w2 .
Net #1 is the most superior 3-layer fully connection neural network. The

input layer of net #1 includes the shared input Gw, the output of net #2 t#2
w2

and other inputs of the HPFH #1, namely, t#1
h , P#1

s , L#1, P#1
w1 , P#1

w2 and t#1
od .

The output of #1 is t#1
w2 , which is also the output of the whole hierarchical neural

network model.

230 J. Yin et al.

3.2 Model Training Process

To formulate not only a HPFHG but also every single HPFH, we jointly train
net #3, #2 and #1 at the same time. More generally, for a hierarchical network
model with N subnets, the loss function to be minimized is a weighted sum of
Mean Squared Error (MSE) of all subnets, expressed in (1),

L =
N∑

j=1

(
Wj

m∑

i=1

(
y
(i)
j − ŷ

(i)
j

)2
)

(1)

where N is the number of subnets in the hierarchical network model; Wj is the
weight of subnet j; m is the number of training samples; y

(i)
j is the true output

of the i-th sample of subnet j and ŷ
(i)
j is the predicted output of subnet j. In our

cases, N = 3 and each subnet corresponding to an HPFH. It is easy to extend
this modeling method to other HPFHGs with different number of HPFHs.

4 Experiments

4.1 Experimental Data

We collected all experimental data from a thermal power unit whose capacity
is 1000 MW. The data is collected over a month without interruption, and the
sampling interval is 5 min. The total number of samples m = 10081. All data are
valid without abnormal values. Three datasets corresponding to HPFHs #3, #2,
#1 are collected: (t#3

w2 , x#3), (t#2
w2 , x#2) and (t#1

w2 , x#1).

4.2 Performance Evaluation Criteria

The HPFHG modeling problem is a nonlinear regression problem, so we
choose four widely used criteria to evaluate the proposed modeling method,
namely, mean average error (MAE), root mean square error (RMSE),
mean absolute percentage error (MAPE) and root mean squared percent-
age error (RMSPE). We denote the true output values as y, and the
predicted values as ŷ, then, MAE = 1

m

∑m
i=1 |y(i) − ŷ(i)|; RMSE =

2

√
1
m

∑m
i=1 (y(i) − ŷ(i))2; MAPE =

(
1
m

∑m
i=1 |(y(i) − ŷ(i))/y(i)|) × 100% and

RMSPE =
(

2

√
1
m

∑m
i=1 ((y(i) − ŷ(i))/y(i))2

)
× 100%.

4.3 Experimental Setting and Results

All datasets are in chronological order and divided into a training set and a
test set by a 70%:30% ratio. The layer “DenseNN” and the functional API
“Model” in Keras are used to implement the hierarchical model. Hidden nodes
for all three subnets are set to 10. Other parameters are set as defaults. We set
W3 : W2 : W1 = 1 : 1 : 1 in (1) to make the three subnets equally important.

Data-Driven Hierarchical Neural Network Modeling 231

Fig. 5. Results on the proposed hierar-
chical neural network

Fig. 6. Results on a black-box neural
network

Figure 5 shows the regression results of the first 50 samples on the test set.
The left four subplots are the regression results for HPFHs #3, #2, #1 and the
whole PHFHG, in which the blue lines with dot markers are the true values while
the red lines with “x” markers are the predicted values. The right four subplots
are the percentage error (PE) of each model, where PE = y(i)−ŷ(i)

y(i) × 100%.
To compare our method with a “black-box” neural network, we built a full

connection neural network with three hidden layers and each hidden layer has
10 nodes. When training the model, the output is y = t#1

w2 and the input set is
X = x#3 ∪ x#2 ∪ x#1. The regression results of this black-box neural network
are shown in Fig. 6. As shown in Fig. 6, although the black-box neural network
modeling method can model the HPFHG with a comparative performance, it
failed to model every single HPFH.

Table 1 lists four regression modeling evaluation criteria to compare the per-
formance of the proposed method and the black-box neural network model-
ing method on the whole test set. It also shows that the proposed model can

Table 1. Performance comparison

Methods The proposed method The ‘black-box’ method

Criteria MAE
(◦C)

RMSE
(◦C)

MAPE
(%)

RMSPE
(%)

MAE
(◦C)

RMSE
(◦C)

MAPE
(%)

RMSPE
(%)

HPFH#3 0.936 1.073 0.458 0.525 125.14 125.17 61.19 61.22

HPFH#2 1.764 1.980 0.731 0.832 120.70 120.78 49.03 49.03

HPFH#1 0.691 0.894 0.253 0.326 102.89 103.01 37.75 37.75

HPFHG 0.691 0.894 0.453 0.326 1.1254 1.3643 0.409 0.494

232 J. Yin et al.

achieve good performance not only on the HPFHG model but also on every sin-
gle model for HPFHs #3, #2, #1, while the ‘black-box’ method can only model
the HPFHG.

5 Conclusion

Inspired by the physical cascade structure of the HPFHG, a data-driven hierar-
chical neural network modeling method is proposed to formulate the HPFHG.
Experimental results show that it can model not only the entire high-pressure
heater group accurately but also every single high-pressure heater in the group.

Acknowledgment. This first author is partially supported by the Science and
Technology Research Program of Chongqing Municipal Education Commission of
China (Grant No. KJQN201901306 and KJQN201801325) and the Industrial Tech-
nology Development Project of Chongqing Development and Reform Commission of
China(Grant No.2018148208).

References

1. Almedilla, J., Pabilona, L., Villanueva, E.: Performance evaluation and off design
analysis of the HP and LP feed water heaters on a 3× 135 MW coal fired power
plant. J. Appl. Mech. Eng. 7(3), 14 (2018)

2. Blair, T.H.: Energy Production Systems Engineering. 1st edn. Wiley-IEEE Press
(2016)

3. De, S., Kaiadi, M., Fast, M., Assadi, M.: Development of an artificial neural network
model for the steam process of a coal biomass cofired combined heat and power
(CHP) plant in Sweden. Energy 32(11), 2099–2109 (2007)

4. Devandiran, E., Shaisundaram, V., Ganesh, P.S., Vivek, S.: Influence of feed water
heaters on the performance of coal fired power plants. Int. J. Latest Technol. Eng.
Manag. Appl. Sci, 5, 115–119 (2016)

5. Gong, M., Peng, M., Zhu, H.: Research of multiple refined degree simulating and
modeling for high pressure feed water heat exchanger in nuclear power plant. Appl.
Therm. Eng. 140, 190–207 (2018)

6. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are uni-
versal approximators. Neural Netw. 2(5), 359–366 (1989)

7. Hossienalipour, S., Karbalaee, S., Fathiannasab, H.: Development of a model to
evaluate the water level impact on drain cooling in horizontal high pressure feed-
water heaters. Appl. Therm. Eng. 110, 590–600 (2017)

8. Kang, Y.K., Kim, H., Heo, G., Song, S.Y.: Diagnosis of feedwater heater perfor-
mance degradation using fuzzy inference system. Expert Syst. Appl. 69, 239–246
(2017)

9. Kumar, A.A., Buckshumiyanm, A.: Performance analysis of regenerative feedwater
heaters in 210 MW thermal power plant. Int. J. Mech. Eng. Technol. 8(8), 1490–
1495 (2017)

10. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Hierarchical neural
network generative models for movie dialogues. arXiv preprint arXiv:1507.04808.
7(8) (2015)

http://arxiv.org/abs/1507.04808

Data-Driven Hierarchical Neural Network Modeling 233

11. Serban, I.V., Sordoni, A., Bengio, Y., Courville, A., Pineau, J.: Building end-to-end
dialogue systems using generative hierarchical neural network models. In: Thirtieth
AAAI Conference on Artificial Intelligence. AAAI Press (2016)

12. Weber, G., Worek, W.: Development of a method to evaluate the design perfor-
mance of a feedwater heater with a short drain cooler. J. Eng. Gas Turbines Power
116(2), 434–441 (1994)

Early Detection of Diabetic Eye Disease
from Fundus Images with Deep Learning

Rubina Sarki(B), Khandakar Ahmed, Hua Wang, Sandra Michalska,
and Yanchun Zhang

Institute for Sustainable Industries and Liveable Cities,
Victoria University, Ballarat Road, Melbourne 3011, Australia

rubina.sarki@live.vu.edu.au

Abstract. Diabetes is a life-threatening disease that affects various
human body organs, including eye retina. Advanced Diabetic Eye disease
(DED) leads to permanent vision loss, thus an early detection of DED
symptoms is essential to prevent disease escalation and timely treatment.
Up till now, research challenges in early DED detection can be sum-
marised as follows: Firstly, changes in the eye anatomy during its early
stage are frequently untraceable by human eye due to subtle nature of the
features, and Secondly, large volume of fundus images puts a significant
strain on limited specialist resources, rendering manual analysis practi-
cally infeasible. Thus, Deep Learning-based methods have been practiced
to facilitate early DED detection and address the issues currently faced.
Despite promising, highly accurate detection of early anatomical changes
in the eye using Deep Learning remains a challenge in wide scale prac-
tical application. Consequently, in this research we aim to address the
main three research gaps and propose the framework for early automated
DED detection system on fundus images through Deep Learning.

Keywords: Diabetic disease · Diabetic Retinopathy · Deep Learning ·
Glaucoma · Image processing · Macular Edema · Transfer Learning

1 Introduction

The World Health Organization (WHO) has been publishing general guidelines
for DED detection and classification for more than 50 years. According to the
indication of the International Diabetes Federation (IDF) in 2013, around 385
million people worldwide were diagnosed with Diabetes. What is more, the num-
ber of sufferers is predicted to rise to 592 million by 2035. Medical, social and
economical expenses of Diabetes already constitute an overwhelming burden in
public health governance.

Effects of Diabetes can be observed in various part of the body including eye
retina. Eye diseases caused by Diabetes, i.e. Diabetic Retinopathy (DR), Diabetic
Macular Edema (DME), and Glaucoma (GL), eventually lead towards the vision
loss and permanent blindness. These conditions mainly occur due to a high blood
c© Springer Nature Switzerland AG 2020
R. Borovica-Gajic et al. (Eds.): ADC 2020, LNCS 12008, pp. 234–241, 2020.
https://doi.org/10.1007/978-3-030-39469-1_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39469-1_20&domain=pdf
https://doi.org/10.1007/978-3-030-39469-1_20

Early Detection of Diabetic Eye Disease from Fundus Images 235

sugar level in the body causing uneven growth of blood vessels, damage of optic
nerve due to intraocular pressure, and formation of hard exudates area near
macula region. Detection of the anatomical changes in the eye using fundus
photography has brought up the number of challenges. Firstly, the continuously
increasing scale of information on patient’s health, such as medical images poses
a significant strain in terms of diagnosis, treatment and check-up using limited
specialist resources. Manual identification of features from high volume of retinal
images as well as beneficial knowledge extraction cause unnecessary time delays
between detection and treatment. The time taken for diagnosis further depends
on the years of practice and professional experience. Secondly, manual retinal
image analysis and grading of DED performed by the ophthalmologist does not
always produce accurate results as the very minute changes in the eye anatomy
are not always detectable by the human eye. Moreover, the human evaluation
tends to suffer from subjectivity leading to potentially inconsistent diagnoses
across practices. At this point, early automated detection proves essential to
provide early treatment and minimise the risk of future vision loss. Finally,
automatic retinal image analysis already plays an important role in screening
for early DED detection. Since the last few decades, many efforts have been
made to establish a reliable computer-based DED analysis systems. With the
help of image processing techniques and Deep Learning methods, the workload
associated with manual detection can be avoided to eventually reduce the time
and cost associated with DED diagnosis. Currently, the most common binary
classification of DED and non-DED using Deep Learning has already achieved
high validation accuracy. At the same time, early DED classification and multi-
stage classification from colour fundus images are still an open problem [1].

Thus, we focus our research on the main three research gaps in the develop-
ment of Deep Learning-based early (normal and mild) DED classification sys-
tems, and propose a conceptual framework to achieve this goal. In our literature
study, it is observed that none of the previous work addresses the early detection
of Diabetic Eye Disease, i.e Diabetic Retinopathy, Glaucoma, Diabetic Macular
Edema and Cataract jointly in one system. Detection of DED in one system is
considered to be a crucial factor for treatment in terms of specific areas of lesions.
Identification of lesions in those specific areas can provide specialist treatment
to the target region of the eye, which is mostly affected.

2 Literature Review

Diabetic Eye Disease leads to blindness and its prevalence is predicted to rise con-
tinuously. A group of DED damages eye retina at its various parts. Severe DED
is the main cause of blindness among adults between 20–70 years of age. Glau-
coma is the main leading cause in the group of DED, which causes irreversible
blindness. Diabetic Retinopathy (DR) can be classified as Non-Proliferative DR
(NPDR) and Proliferative DR (PDR). Specific DR features can define the dif-
ferent stages of condition advancement. The following are the three subclasses of
NPDR as well as PDR, namely Mild NPDR, Moderate NPDR, Severe NPDR,
and PDR [17].

236 R. Sarki et al.

Gulshan et al. [10] proposed a DL algorithm for detection of DR. They yielded
a result in two validation sets of 1748 and 9963 images. The algorithm achieved
the Sensitivity of 90.3% and 87.0%, and 98.1% and Specificity of 98.5% for each
data set respectively. Vahadane et al. [11] proposed a system to detect DME
in optical coherence tomography scans using deep Convolutional Neural Net-
work (CNN). Their method achieved Precision of 96.43%, Recall of 89.45%, and
F1-score of 0.9281. Prentasic et al. [12] presented a fusion approach based on
CNN and landmark detection for identification of exudates. They obtained 0.78
in F1 measure. Otalora et al. [13] introduced a CNN model that used gradient
length. Automated segmentation of exudates and other features using 10 lay-
ers of CNN was employed by Tan et al. [14]. Their system used 149 images for
training and another 149 images for testing which yielded 0.8758 and 0.7158 in
terms of Sensitivity for exudates and dark lesions, respectively. In their work,
Chai et al. [15] used DL model with retinal images for automatic diagnosis of
Glaucoma. They used Multi-Branch Neural Network (MB-NN) model to obtain
the features. The Accuracy achieved was 0.9151, with Sensitivity of 0.9233, and
Specificity of 0.9090. Li et al. [16] developed a DL method for automatic detection
of Non-Glaucoma and Glaucoma based on visual fields (VFs). Their CNN-based
algorithm achieved 0.876 of Accuracy, 0.826 of Specificity, and 0.932 of Sensi-
tivity. Raghavendra et al. [17] proposed the 18 layers CNN framework for Glau-
coma diagnosis. They evaluated their model with 589 Normal and 837 Glaucoma
images, for which they obtained the Accuracy of 98.13%, Sensitivity of 98%, and
Specificity of 98.3%.

3 Research Challenges

Deep Neural Network model use advance mathematical operations to process
pixel value in the image [2], where the training is conducted by introducing the
network with diversified examples, as opposed to solid rule-based programming
underlying the conventional methodologies [3]. Deep Learning have been used
extensively for knowledge finding and Predictive Analysis for example [18,19].
In Deep Learning, Convolutional Neural Network (CNN) has been extensively
explored in the domain of DED [4–6], surpassing previous methodologies such
as image recognition. In literature, numerous challenges have been identified
in automatic DED detection. Neural Networks strive to learn deep, and often
nuanced, features to detect the sophisticated aspect of mild DED [6]. Regardless,
the research on DED detection using Deep Learning persistently reports the
high performance on severe cases, while mild DED detection remains still an
open challenge. In order to address the current challenges in automatic DED
detection using Deep Learning, our research questions can be formulated as
follows:

1. How the nature of the images affect the accuracy of Deep Learning techniques
in terms of (i) image quality (ii) image volume, and (iii) an object in the
image?

Early Detection of Diabetic Eye Disease from Fundus Images 237

2. How the concept of the Transfer Learning can be effective to detect the fea-
tures of mild DED and enhance the accuracy?

3. How to design more robust Deep Learning models that will produce promising
results in the field of DED?

4 Contribution to Knowledge

In this sub-section, we present different research gaps that academic researchers
were not fully able to address in the previous studies on Diabetic Eye Disease
detection. Thorough research, it is still required to enhance the performance of
Deep Learning techniques for early Diabetic Eye Disease detection. The image
pre-processing for feature extractions is considered crucial for classification per-
formance enhancement. It is often observed that publicly available images con-
sist of low fidelity data, and the images were taken with various fundus cameras
that leads to large variation in image quality. The identified issues along with
the proposed solutions are detailed below:

1. Image Enhancement: Retinal image pre-processing is considered a cru-
cial step due to its capability to enhance the visual aspect of an image for
improved classification performance. Following is a brief description of the
pre-processing techniques, which we aim to adopt in our research. Green
Channel Extraction is employed to extract the green band from an RGB of
an image. Green channel of an image provides more insight into the relevant
information from an image. Many researchers have used this method to pre-
process fundus images in their experiments. Contrast enhancement based on
CLAHE (Contrast Limited Adaptive Histogram Equalization) is used in our
research to enhance the contrast of the images. An example before and after
CLAHE application to fundus images is presented in Fig. 1. After contrast
enhancement, illumination correction is applied to increase the brightness
and luminance of the images. Finally, the noise is removed to smooth out an
image using Gaussian filtering.

Fig. 1. Contrast Limited Adaptive Histogram Equalization enhances contrast in an
image: A. Before and B. After CLAHE application. (Color figure online)

238 R. Sarki et al.

2. Image Augmentation: Another issue that needs to be addressed is the
annotated data limitation. In order to train a Deep Learning architecture, a
large set of data is required. If training sample size is insufficient, the model
can easily overfit the data resulting in poor classification performance on
unseen fundus images. This problem can be solved by applying data augmen-
tation methods such as cropping, rotating, and mirroring of the images.
Lastly, the same labelled data from different sources can be combined to
increase the volume and improve accuracy. For example, the number of
normal-labelled Kaggle image set K0 images can be combined with the num-
ber of normal-labelled Messidor image set M0 (Eq. 1). Similarly, the number
of mild-labelled Kaggle image set K1 can be combined with the number of
mild-labelled Messidor image set M1 (Eq. 2).

K0

⋃
M0 = x : ∀x ∈ K0 or ∀x ∈ M0 (1)

K1

⋃
M1 = x : ∀x ∈ K1 or ∀x ∈ M1 (2)

Hence, we can input K0

⋃
M0 and K1

⋃
M1 number of images into the model

training to increase the volume of dataset.
3. Region of Interest: Colour fundus images are used as an input to build an

early DED detection system. RGB fundus images for DR, Gl and DME are
used as an input. To detect DR, the most important region of interest is a
blood vessel. Similarly, to detect Gl and DME, the most significant regions
of interest are optic disk and macular region, respectively. Hence, instead of
training the entire retinal image, the region of interest can be extracted for
training the system.

4.1 Analysis of Diabetic Eye Disease Using Deep Learning

This section discusses Deep Learning (DL) based approaches for DED detection.
Deep learning is the extension of Machine Learning, where the multiple-layered
network is designed to extract the most salient features from images using the
examples provided. Here, the term “deep” signifies the depth of the network in
Deep Learning architecture. Firstly, training and testing data sets are collected.
Then, the pre-processing techniques are applied to images in order to increase
their clarity, and improve subsequent features extraction. For feature extraction
and classification the previously pre-processed images are forwarded to the DL
model. In DL training process, output of the previous layer is passed onto the
next layer as an input. Lastly, the top, or the last, layer produces the result.
Various studies employed Deep Learning methods for detection of DR, Gl and
DME. In our study, we aim to use Deep Learning-based approach with Trans-
fer Learning, as well as own built Deep Learning architecture for classification
performance comparison.

1. Transfer Knowledge application: For object identification several pre-
trained Convolutional Neural Network (CNN) architectures are available in

Early Detection of Diabetic Eye Disease from Fundus Images 239

Fig. 2. Learning features and knowledge transferred using Convolutional Neural Net-
work for detection of Diabetic Eye Disease.

the field of Deep Learning namely: VGG16, VGG19, ResNet50, Inception
V3, InceptionResNet V2, Xception, MobileNET, MobileNET V2, DenseNet
121, DenseNet 169, DenseNet 201, NASNetMobile, and NASNetLarge. The
top layers of these architectures can be retrained with the target task (nor-
mal/mild Diabetic Eye Disease) for feature extraction and classification. The
concept of knowledge transfer from source task to target task can be useful
in the case of limited training data. However, these pre-trained architectures
are not suitable for medical images in terms of classification performance
enhancement as they were initially developed for generic images identifica-
tion, such as animals, foods, cars, etc. Therefore, Deep Learning models have
to be re-adapted for Diabetic Eye Disease detection task shown in Fig. 2,
usually by removal and re-train of the final layers in the network. The com-
parison of various architectures implementing Transfer Learning has to be
conducted to demonstrate their applicability in niche domains such as mild
DED detection.

2. CNN architecture development: Another option is to develop and train
the CNN model entirely from scratch, without reliance on the pre-trained
architectures adopted from Transfer Learning. This approach necessitates
large number of annotated data, which can also be generated through appro-
priate augmentation techniques, e.g. mirroring, rotating. CNN has already
produced promising results in the classification of normal/severe DED, but
normal/mild is still an open challenge. To increase the performance of the
classifier one can increase the computational power by increasing the size
of the network. Another solution could be object-oriented identification, i.e.
blood vessels, optic disc, macular region. Object-oriented detection is more
beneficial than the use of an entire image-based. Still an extensive evaluation
has to be conducted in order to provide empirical validation for their practi-
cal usage due to an increased computational resources required for new CNN
network development.

240 R. Sarki et al.

4.2 Statement of Significance

Like academic contribution, our work on early DED detection has a strong prac-
tical significance. Prior research has already investigated the automatic detection
of various stages of Diabetic Retinopathy (normal, Non Proliferative Diabetic
Retinopathy and Proliferative Diabetic Retinopathy) using Deep Learning tech-
niques [4–6]. Similarly, other researchers have managed to detect various stages
of Glaucoma (normal to severe) [7], Diabetic Macular Edema [8] and Cataract
[9], all using Deep Learning models. In our research, we aim to analyse, classify
and detect all types of DED in the end-to-end fashion. Moreover, we aim to
develop a system which will detect the early stage of all potential forms of DED.

5 Conclusions

This paper presents a Deep Learning-based conceptual framework, while address-
ing the three main research challenges in the domain of early Diabetic Eye
Disease detection, as identified from the most recent literature. We have dis-
cussed the limitations of publicly available data sets (low fidelity, lack of publicly
available dataset for specific conditions such as Cataract, etc.), and how they
can be corrected by appropriate image pre-processing approaches application.
Techniques such as Green Channel Extraction and contrast enhancement using
CLAHE has improved subtle features visibility.

References

1. Carson Lam, D.Y., Guo, M., Lindsey, T.: Automated detection of diabetic retinopa-
thy using deep learning. AMIA Summits Transl. Sci. Proc. 2018, 147 (2018)

2. Poplin, R., et al.: Prediction of cardiovascular risk factors from retinal fundus
photographs via deep learning. Nat. Biomed. Eng. 2(3), 158 (2018)

3. Gardner, G.G., Keating, D., Williamson, T.H., Elliott, A.T.: Automatic detection
of diabetic retinopathy using an artificial neural network: a screening tool. Br. J.
Ophthalmol. 80(11), 940–944 (1996)

4. Mateen, M., Wen, J., Song, S., Huang, Z.: Fundus image classification using VGG-
19 architecture with PCA and SVD. Symmetry 11(1), 1 (2019)

5. Sankar, M., Batri, K., Parvathi, R.: Earliest diabetic retinopathy classification
using deep convolution neural networks. pdf. Int. J. Adv. Eng. Technol. (2016)

6. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional
neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 200–205 (2016)

7. Orlando, J.I., Prokofyeva, E., del Fresno, M., Blaschko, M.B.: Convolutional neu-
ral network transfer for automated glaucoma identification. In: 12th International
Symposium on Medical Information Processing and Analysis, January 26, vol.
10160, p. 101600U). International Society for Optics and Photonics (2017)

8. Gelman, R.: Evaluation of transfer learning for classification of: (1) dia-
betic retinopathy by digital fundus photography and (2) diabetic macular
edema, choroidal neovascularization and drusen by optical coherence tomography.
arXiv: 1902.04151. 26 January 2019

http://arxiv.org/abs/1902.04151

Early Detection of Diabetic Eye Disease from Fundus Images 241

9. Pratap, T., Kokil, P.: Computer-aided diagnosis of cataract using deep transfer
learning. Biomed. Signal Process. Control. 53, 101533 (2019)

10. Gulshan, V., et al.: Development and validation of a deep learning algorithm for
detection of diabetic retinopathy in retinal fundus photographs. Jama 316(22),
2402–2410 (2016)

11. Vahadane, A., Joshi, A., Madan, K., Dastidar, T.R.: Detection of diabetic macular
edema in optical coherence tomography scans using patch based deep learning.
In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018),
April 4, pp. 1427–1430. IEEE (2018)

12. Prentašić, P., Lončarić, S.: Detection of exudates in fundus photographs using
deep neural networks and anatomical landmark detection fusion. Comput. Methods
Programs Biomed. 137, 281–292 (2016)

13. Otálora, S., Perdomo, O., González, F., Müller, H.: Training deep convolutional
neural networks with active learning for exudate classification in eye fundus images.
In: Cardoso, M.J., et al. (eds.) LABELS/CVII/STENT -2017. LNCS, vol. 10552,
pp. 146–154. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67534-
3 16

14. Tan, J.H., et al.: Automated segmentation of exudates, haemorrhages, microa-
neurysms using single convolutional neural network. Inf. Sci. 420, 66–76 (2017)

15. Chai, Y., Liu, H., Xu, J.: Glaucoma diagnosis based on both hidden features and
domain knowledge through deep learning models. Knowl.-Based Syst. 161, 147–
156 (2018)

16. Li, F., Wang, Z., Qu, G., Qiao, Y., Zhang, X.: Visual field based automatic diag-
nosis of glaucoma using deep convolutional neural network. In: Stoyanov, D., et al.
(eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 285–293. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00949-6 34

17. Raghavendra, U., Fujita, H., Bhandary, S.V., Gudigar, A., Tan, J.H., Acharya,
U.R.: Deep convolution neural network for accurate diagnosis of glaucoma using
digital fundus images. Inf. Sci. 441, 41–49 (2018)

18. Subramani, S., Michalska, S., Wang, H., Du, J., Zhang, Y., Shakeel, H.: Deep
learning for multi-class identification from domestic violence online posts. IEEE
Access 7, 46210–46224 (2019)

19. Peng, M., et al.: Neural sparse topical coding. In: Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics, vol. 1, Long Papers, pp.
2332–2340 (July 2018)

https://doi.org/10.1007/978-3-319-67534-3_16
https://doi.org/10.1007/978-3-319-67534-3_16
https://doi.org/10.1007/978-3-030-00949-6_34

Author Index

Abulaish, Muhammad 216
Adeleye, Olayinka 198
Ahmed, Khandakar 234
Anwar, Md Musfique 206
Anwar, Tarique 216

Bedru, Hayat Dino 81
Borovica-Gajic, Renata 68
Buntine, Wray 134

Cao, Jinli 225
Chao, Pingfu 121
Cheema, Muhammad Aamir 147

Duan, Jiasheng 93

Fazil, Mohd 216

Ge, Yong-Feng 225
Guo, Teng 81

He, Dan 29
Hettige, Bhagya 134
Hossain, Bayzid Ashik 3
Hua, Wen 105, 121
Huang, Zeyu 173
Huang, Zi 16, 93, 189

Ishikawa, Yoshiharu 55

Kunchala, Jyothi 42

Li, Lei 105
Li, Mengqi 29
Li, Yang 189
Li, Yuan-Fang 134
Luo, Yadan 16, 93, 189

Michalska, Sandra 234

Pan, Hanxiao 81

Qin, Hongchao 161
Qing, Qing 81

Ruan, Ji 198
Rubinstein, Benjamin I. P. 68

Sarki, Rubina 234
Schwitter, Rolf 3
Setiawan, Naufal Fikri 68
Sheng, Quan Z. 198
Sohail, Ammar 147
Sugiura, Kento 55

Takao, Daiki 55
Tang, MingJian 225
Taniar, David 147

Wang, Guiling 42
Wang, Hua 225, 234
Wang, Weiqing 134
Wang, Zezhong 161
Wang, Ziwei 16, 93
Wen, Zeyi 173

Xia, Feng 81
Xu, Yehong 121

Yin, Jiao 225
Yongchareon, Sira 42
You, Mingshan 225
Yu, Jian 42, 198
Yuan, Ye 161

Zhang, Dongyu 81
Zhang, Mengxuan 105
Zhang, Rui 173
Zhang, Yanchun 234
Zhou, Xiangmin 161
Zhou, Xiaofang 29, 105, 121

	Preface
	General Chair’s Welcome Message
	Organization
	Contents
	Full Research Papers
	Semantic Round-Tripping in Conceptual Modelling Using Restricted Natural Language
	1 Introduction
	2 Motivation
	3 Proposed Approach
	3.1 Scenario

	4 RNL Specification to DL ALCQI Representation
	5 DL ALCQI Representation to SQL Script
	6 Conceptual Model Generation
	7 Database Schema to DL ALCQI Representation
	8 DL ALCQI Representation to RNL verbalisation
	9 Evaluation
	10 Conclusion
	References

	PAIC: Parallelised Attentive Image Captioning
	1 Introduction
	2 Related Work
	2.1 Image Captioning
	2.2 Attention Model

	3 Methodology
	3.1 Problem Formulation
	3.2 Preliminaries
	3.3 The Attentive Encoder-Decoder
	3.4 Visual Feature Encoder
	3.5 Language Decoder

	4 Experiments
	4.1 Experimental Settings
	4.2 Quantitative Analysis
	4.3 Qualitative Analysis
	4.4 Training Efficiency Analysis
	4.5 Model Structure Comparison

	5 Conclusion
	References

	Efficient kNN Search with Occupation in Large-Scale On-demand Ride-Hailing
	1 Introduction
	2 Related Work
	2.1 kNN Queries
	2.2 Shortest Path Queries

	3 Preliminary
	4 AkNN Query Algorithms
	4.1 Dijkstra AkNN
	4.2 Grid-Based AkNN

	5 Experimental Study
	5.1 Experiment Setup
	5.2 Case Study
	5.3 Different Indexes
	5.4 AkNN Search Algorithms

	6 Conclusion
	References

	Trace-Based Approach for Consistent Construction of Activity-Centric Process Models from Data-Centric Process Models
	1 Introduction
	2 Motivating Example
	3 Preliminaries
	4 Transformation Approach
	4.1 Model Construction
	4.2 Extract Model Traces
	4.3 Trace-Based Analysis

	5 Case Study
	6 Related Work and Discussion
	7 Conclusion
	References

	Approximate Fault Tolerance for Sensor Stream Processing
	1 Introduction
	2 Preliminaries
	2.1 Data Streams
	2.2 Estimation Based on a Multivariate Gaussian Distribution
	2.3 Aggregation Queries

	3 Problem Definition
	3.1 Backup Cost
	3.2 Confidence Score of Recovery
	3.3 Problem Definition

	4 Backup Selection for Approximate Fault Tolerance
	4.1 Upper Bounds Derivation for Variance of Sensors
	4.2 Greedy-Based Backup Selection

	5 Experimental Evaluation
	5.1 Experimental Settings
	5.2 Experimental Results

	6 Conclusion
	References

	Function Interpolation for Learned Index Structures
	1 Introduction
	2 Related Work
	3 Background
	3.1 Range Indexes as Cumulative Distribution Functions
	3.2 Polynomial Interpolation

	4 Indexes by Function Approximation
	4.1 Interpolant Construction
	4.2 Query Processing

	5 Experimental Results
	5.1 Model Creation Time
	5.2 Memory Footprint
	5.3 Query Accuracy and Time
	5.4 Rate of Convergence of Polynomial Models

	6 Conclusion
	References

	DEFINE: Friendship Detection Based on Node Enhancement
	1 Introduction
	2 Related Work
	2.1 Network Representation Learning
	2.2 Friendship Prediction

	3 Problem Formulation
	4 Design of DEFINE
	5 Experiments
	5.1 Datasets
	5.2 Prediction

	6 Conclusion
	References

	Semi-supervised Cross-Modal Hashing with Graph Convolutional Networks
	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Preliminaries
	3.2 Problem Formulation
	3.3 Dual-Branch Graph Convolutional Network Hashing
	3.4 Objective Function
	3.5 Learning and Testing

	4 Experiments
	4.1 Datasets and Features
	4.2 Experiment Settings
	4.3 Implementation Details
	4.4 Experiment Results and Analysis

	5 Conclusion
	References

	Typical Snapshots Selection for Shortest Path Query in Dynamic Road Networks
	1 Introduction
	2 Related Work
	2.1 Shortest Path Algorithm
	2.2 Graph Similarity Measurement

	3 Problem Definition
	4 Time-Based Typical Snapshot Selection
	4.1 Uniform Sampling
	4.2 Non-uniform Sampling

	5 Graph Representation-Based Selection
	5.1 Edge-Based Representation
	5.2 Vertex-Based Representation
	5.3 Graph Clustering and Snapshot Matching

	6 Experiments
	6.1 Experimental Setup
	6.2 Typical Snapshot Selection
	6.3 Snapshot Matching

	7 Conclusion
	References

	A Survey on Map-Matching Algorithms
	1 Introduction
	2 Preliminaries
	2.1 Problem Definition
	2.2 Related Work

	3 Survey of Map-Matching Algorithm
	3.1 Similarity Model
	3.2 State-Transition Model
	3.3 Candidate-Evolving Model
	3.4 Scoring Model

	4 Challenges and Evaluations
	4.1 Experimental Settings
	4.2 Data Quality Challenges

	5 Conclusion
	References

	Gaussian Embedding of Large-Scale Attributed Graphs
	1 Introduction
	2 Related Work
	3 GLACE Methodology
	3.1 Notations and Problem Definition
	3.2 Overall Architecture
	3.3 Node Attribute Encoding
	3.4 Graph Structure Encoding
	3.5 Model Optimization
	3.6 Complexity Analysis

	4 Experiments
	4.1 Datasets
	4.2 Compared Algorithms and Setup
	4.3 Link Prediction
	4.4 Multi-class Node Classification
	4.5 Inductive Learning
	4.6 Scalability
	4.7 Visualization

	5 Conclusion
	References

	Geo-Social Temporal Top-k Queries in Location-Based Social Networks
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Definition
	3.2 Framework Overview

	4 Proposed Techniques
	4.1 Social-First Based Approach
	4.2 Spatial-First Based Approach
	4.3 Hybrid Approach

	5 Experiments
	5.1 Experimental Setup
	5.2 Performance Evaluation
	5.3 Conclusions

	References

	Effective and Efficient Community Search in Directed Graphs Across Heterogeneous Social Networks
	1 Introduction
	2 Related Work
	2.1 Community Search
	2.2 User Identity Linkage

	3 Problem Definition
	4 Our User Identity Linkage Approach
	4.1 Retrieval of Valid User Sets
	4.2 Comparisons of Users
	4.3 Matching Users
	4.4 Combination of Social Networks

	5 Our Community Search Approach
	5.1 Cores Decomposition
	5.2 Index Construction

	6 Cost Analysis
	7 Experiment Evaluation
	7.1 Experimental Setup
	7.2 Evaluation Methodology
	7.3 Effectiveness Evaluation
	7.4 Efficiency Comparison

	8 Conclusion
	References

	Entity Extraction with Knowledge from Web Scale Corpora
	1 Introduction
	2 Related Work
	3 The 2ED Algorithm
	3.1 Features of the 2ED Algorithm
	3.2 Drawbacks of the 2ED Algorithm

	4 Improvement on 2ED
	4.1 Distinguishing a Typo from an Intended Token
	4.2 Using Language Models
	4.3 Estimating Word Similarity
	4.4 Other Improvements

	5 Implementation
	5.1 Obtain Candidate Pairs
	5.2 Rescore Candiadte Pairs

	6 Experimental Studies
	7 Conclusion and Future Work
	References

	Short Papers
	Graph-Based Relation-Aware Representation Learning for Clothing Matching
	1 Introduction
	2 Related Work
	2.1 Fashion Compatibility Learning
	2.2 Graph Neural Networks

	3 Proposed Approach
	3.1 Problem Formulation
	3.2 Part 1: Item Representation Generation
	3.3 Part 2: Type-Aware Compatibility Prediction
	3.4 Training Strategy

	4 Experiments
	4.1 Dataset
	4.2 Baselines
	4.3 Implementation Details
	4.4 Task Description
	4.5 Performance Comparison

	5 Conclusion
	References

	Evaluating Random Walk-Based Network Embeddings for Web Service Applications
	1 Introduction
	2 Web Service Networks and Their Properties
	2.1 Composition - Service Network
	2.2 Popularity and Fitness-Based Service Evolving Networks

	3 Analysis and Results
	4 Conclusion and Future Work
	References

	Query-Oriented Temporal Active Intimate Community Search
	1 Introduction
	2 Related Work
	3 Preliminary and Problem Definition
	4 AIC Detection Algorithm
	4.1 Baseline Solution
	4.2 Improved Greedy Algorithm

	5 Experiment and Result
	5.1 Efficiency
	5.2 Community Quality Evaluation

	6 Conclusion
	References

	A Contextual Semantic-Based Approach for Domain-Centric Lexicon Expansion
	1 Introduction
	2 Proposed Approach
	2.1 Candidate Words Extraction
	2.2 Contextual Semantic-Based Graph Construction
	2.3 Words Ranking and Lexicon Expansion

	3 Experimental Setup and Results
	3.1 Dataset and Embedding Learning
	3.2 Evaluation Results
	3.3 Comparative Analysis

	4 Conclusion
	References

	Data-Driven Hierarchical Neural Network Modeling for High-Pressure Feedwater Heater Group
	1 Introduction
	2 Industrial Background
	2.1 Thermal Power Plant Regenerative System
	2.2 High-Pressure Feedwater Heater Group

	3 Data-Driven Hierarchical Neural Network Modeling
	3.1 Architecture of the Proposed Model
	3.2 Model Training Process

	4 Experiments
	4.1 Experimental Data
	4.2 Performance Evaluation Criteria
	4.3 Experimental Setting and Results

	5 Conclusion
	References

	Early Detection of Diabetic Eye Disease from Fundus Images with Deep Learning
	1 Introduction
	2 Literature Review
	3 Research Challenges
	4 Contribution to Knowledge
	4.1 Analysis of Diabetic Eye Disease Using Deep Learning
	4.2 Statement of Significance

	5 Conclusions
	References

	Author Index

