)

Check for
updates

Program-Oriented Logics of Renominative
Level with Extended Renomination
and Equality

Mykola Nikitchenko®™® , Oksana Shkilniak®,
and Stepan Shkilniak

Taras Shevchenko National University of Kyiv,
60 Volodymyrska Street, City of Kyiv 01033, Ukraine
mykola.nikitchenko@gmail. com, me. oksana@gmail. com,
sssh@unicyb. kiev. ua

Abstract. The formalism of program logics is the main instrument for software
verification. Such logics are based on formal program models and reflect main
program properties. Among various program logics, Floyd-Hoare logic and its
variants take a special place because of its naturalness and simplicity. But such
logics are oriented on total pre- and post-conditions, and in the case of partial
conditions they become unsound. Different methods to overcome this problem
were proposed in our previous works. One of the methods involves extension of
program algebras with the composition of predicate complement. This permits
to modify rules of the logic making them sound. Such modification requires
introduction of undefinedness conditions into logic rules. To work with such
conditions, an underlying predicate logic should become more expressive. In
this paper we continue our research of such logics. We investigate a special
program-oriented predicate logic called logic of renominative (quantifier-free)
level with the composition of predicate complement, extended renomination,
and equality predicate. This logic is a constituent part of the program logic. We
introduce a special consequence relation for this logic, construct a sequent
calculus, and prove its soundness and completeness.

Keywords: Software verification - Program-oriented logic - Partial predicate -
Renomination - Equality - Soundness - Completeness

1 Introduction

The formalism of program logics is the main instrument for software verification [1].
To be effective, such logics should reflect main program properties. Therefore, ade-
quate formal program models should be constructed which will form a base for a
program logic. Among such logics we should point to Floyd-Hoare logic and its
variants as quite natural and simple [2—4]. But such logics are oriented on total pre- and
post-conditions, and in the case of partial conditions (predicates) they become unsound.

In our previous works [5—7] we considered several methods to extend Floyd-Hoare
logic for partial predicates, in particular, we proposed such methods: (1) introduction of
special rule constraints; (2) restriction of the class of program assertions (of Hoare

© Springer Nature Switzerland AG 2020
V. Ermolayev et al. (Eds.): ICTERI 2019, CCIS 1175, pp. 68-88, 2020.
https://doi.org/10.1007/978-3-030-39459-2_4

http://orcid.org/0000-0002-4078-1062
http://orcid.org/0000-0003-4139-2525
http://orcid.org/0000-0001-8624-5778
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39459-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39459-2_4&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39459-2_4&domain=pdf
https://doi.org/10.1007/978-3-030-39459-2_4

Program-Oriented Logics of Renominative Level 69

triples), and (3) extending program logics with the composition of predicate comple-
ment. All methods make a logic sound but the first two are difficult for practical usage
or are rather restrictive. Here we concentrate on the third method. Introduction of the
complement composition permits to modify rules of Floyd-Hoare logic in such a way
that they become sound, but a negative side of this proposal is that logic becomes more
complicated because undefinedness conditions for predicates should be taken into
account. To work with such conditions, an underlying predicate logic should become
more expressive. We add to this logic equality predicates and extended renominations
that permit processing of undefined variables.

In this paper we continue our research of program-oriented logics of partial
quasiary predicates [8—12]. We focus on a logic L ®= of renominative (quantifier-free)
level with the predicate complement, extended renomination, and equality predicate.
We construct a special predicate algebra and study its properties. Then we define a
consequence relation with undefinedness conditions and investigate its properties. At
last, we construct a sequent calculus for this logic and prove its soundness and
completeness.

2 Program Algebras with Predicate Complement, Extended
Renomination, and Equality

According to the principles of composition-nominative approach [8, 13] we construct
program logics based on program algebras. Such algebras are defined in the following
way [9, 14]:

(1) aset D of data processed by programs is defined;

(2) the classes of partial predicates Pr = D 2, Bool and partial functions Fn = D EN))
are defined;
(3) operations (compositions) over Pr and Fn are specified.

This scheme leads to two-sorted program algebras. In our previous works we
considered program algebras with traditional compositions. Here we concentrate on a
program algebra extended with the composition of predicate complement. This unary
predicate composition is defined in the following way (p € Pr, d € D):

- _ T, if p(d) is undefined,
("p)(d) = {undefined, if p(d) is defined.

Specifying D as the class D¢cc(V, A) of hierarchical nominative data [15, 16] with
complex names and values built over the set of basic names V and the set of basic
values A, we can define a complemented program algebra as a two-sorted algebra

CPANDcc(V,A) = (Prcc(V,A),Fncc(V7A);
AS" id, IF, WH, 8%, % = v,v =4, V, =, 3x, ™)

70 M. Nikitchenko et al.

where Prec(V,A) and Fnec(V,A) are classes of partial predicates and partial function
over Dcc(V, A) respectively; AS", id, IF, WH, S%, S% are compositions of assignment,
identity, conditional, cycle, superposition into predicate, superposition into function
respectively; = v and v =, are naming and denaming functions; VvV, —, 3x, ~ are
composition of disjunction, negation, existential quantification, and predicate comple-
ment; v, u, x € V' are complex names, i € U is a sequence of complex names. This
algebra is quite expressive to present formal semantics of rather complex programs.

A special program logic of Floyd-Hoare type based on such algebras is presented in
[15]. Its distinctive feature is introduction of new rules which are sound for partial
predicates and which use preconditions constructed with the help of the composition of
predicate complement.

Obtained program logic can be an important instrument of program verification. So,
its thorough investigation is required. This is a rather complicated challenge; therefore,
we start with more simple logics. First, we identify a special predicate logic as a
constituent part of the program logic. Such predicate logic can be considered as a logic
defining constraints (program annotations). Second, we will consider here only logic
LR= of renominative level which can be characterized as quantifier-free predicate logic
of partial quasiary predicates with the composition of predicate complement, extended
renomination, and equality. For simplicity, we call this logic extended logic of partial
quasiary predicates of renominative level. The case of first-order logic with quantifiers
and functions is planned to study in the forthcoming papers.

3 Extended Logic of Partial Quasiary Predicates
of Renominative Level

To define a logic L*= we should define [9, 14]

its class of algebras;

— its language (based on logic signature);

— its class of interpretations;

— its consequence relation;

— its inference relation based on some calculus.

Formal definitions will be given in the next subsections. We will use the following
notations:

- sty (SL S’} is the class of partial (total) mappings from S to §';

— p(d)|(p(d)7) means that p is defined (undefined) on d;

- p(d)] =T (p(d)] = F) means that p is defined on d with value T (F). For this case
we also use simpler notation p(d) = T (p(d) = F);

— p(d) = q(d) means that both p(d) and g(d) are simultaneously undefined or defined,
and in this case their values are equal.

The terms and notations, not defined here, are treated in the sense of [11].

Program-Oriented Logics of Renominative Level 71

3.1 Extended Algebras of Partial Quasiary Predicates of Renominative
Level

Let V be a set of names (variables) and A be a set of values. The class VA of nominative
sets (partial assignments, partial data) is defined as the class of all partial mappings

from V to A, thus, YA = V 2 A.
Nominative sets represent states of program variables.
We use a special symbol L&V that denotes the absence of the variable value.
The main operation for nominative sets is parametric operation of extended

renomination ')t VA VA, where vi, ..., Vi, X1, X, Ui - - - Uy AT€ NAMES,
and vy, ...,V uy,. .., Uy, are distinct, is defined by the following formula (d € YA):
V1geeos Vi ULy ool —
rAI, I R O () - d||7{v e VUL el U [Vl = d('xl) 5 Vn d(xn)]

Intuitively, given nominative set d this operation yields a new nominative set
changing the values of vy, . .., v, to the values of xy, .. ., x,, respectively and making the
variables uy, ..., u, to be undefined. We also use simpler notation for this renomina-
tion: r” ’1 We write x € v to denote that x is a variable from v; we write ¥ U X to denote
the set of variables that occur in the sequences v and x; names from V (maybe with
indexes) are denoted x, y, z, v, u, .

The order of names is not important, therefore r'7" , 1" """ denote the same
operation.

Traditional renomination rf? [9, 11] is a special case of extended renomination r?r'j_

Lemma 1. The operation of extended renomination has the following properties (d, dj,
d, € VA):

— it is monotone: d; Cdy = rviZ (dy)Cr)l(h);
z,
rZ

i R

— identical renomination can be eliminated: r [i(d) =" (d);
vu vu
— if d(2)1 then 3, (d) =1 Lyj_(d)
— successive renominations r% l and ry | can be represented by one renomination

denoted ry', Lo 91

Proof follows directly from definitions.

LetPry =" A L, Bool be the set of all partial predicates over VA. Such predicates
are called partial quasiary predicates. For a predicate p € Pry its truth, falsity, and
undefinedness domains are denoted T(p), F(p), and L (p) respectively. Please note that
these domains do not intersect pairwise and their union is equal to VA; thus, predicate
p is defined by T(p) and F(p) only, because L (p) =" A\(T(p) UF(p)).

A predicate p is

— irrefutable (partially valid) if F(p) = &
— satisfiable if T(p) # .

72 M. Nikitchenko et al.

A name (variable) z is unessential for p if for any d € VA the value of p does not
depend on the value of z in d [9, 11].

Operations over Pr} are called compositions. Basic compositions of renominative
level over quasiary predicates are disjunction V, negation —, predicate complement ~
and extended renomination Rv;l

These compositions are defined by the following formulas (p,q € Pr)):

- T(pVq)=Tp)UT(q);F(pVq) =F(p)NF(q);
—- T(-p) =F(p);F(-p) =T(p);
- T("p) = L) F("p) = I;

(

~ T(RYL(p)) = {d € A|F"L(d) € T(p)}; F(RY (p){d € VA|1(d) € F(p)}.

Please note that definitions of disjunction and negation are similar to strong
Kleene’s connectives [17]. Properties of such compositions are described in [18].

Traditional renomination R” is a special case of extended renomination R.".

To enrich expressivity of the logic we also add parametric variable assignment
predicate Ex and parametric equality =,,.

Variable assignment predicate Ex checks whether a variable x has a value in
nominative data. It is defined by the following formulas:

T(Ez) = {d|d(z)|}; F(Ez) = {d|d(2)1}.
At last, we introduce parametric equality predicate =, by the following formulas:
T(Zqeyy) = {dld(x)],d(y)|, d(x) = d(y)} U{d|d(x)T andd(y)T},
F(Zpyy) = {dld(x)],d(y)|,d(x) # d(y)} U{d|d(x)|,d(y)T ord(x)T,d(y)]}.

Please note that =,, is strong equality.
A tuple

.ARE(V,A) = <PrX;\/,—|,R;Z'1, TLEX, =y >

is called an extended algebra of partial quasiary predicates of renominative level.
A class of such algebras (with different A) forms a semantic base for logic L *=.
Now we describe the main properties of A%=(V,A). We do not formulate tradi-
tional properties of propositional compositions of disjunction and negation [9, 11], but
concentrate on properties of compositions of extended renomination and equality.

Lemma 2. Extended renomination, variable assignment predicates, and equality have
the following properties (p,q € Pry, d €” A) :

R)R(p) =p;
R.I) R (p) = RYL(P);

R,U) RV (p) = Ry, (p) if z € V is unessential for p;

Ry DRY.(p)(d) = Ry (p)(d) if d()T;

Program-Oriented Logics of Renominative Level 73

R, Ev) RV (Ez) = Ey;

R.E) R} (Ez) = Ezif z ¢ VU3

R =) R;i (Ew) ==u;

Ry EZ)R;ET,zys(EW) ==z

R. =m)R)TY | (Zy) = ~Ez;

R, El)R;?ﬁZ(EXy) ==, ifygauUv, x #y;

Ry ElE)R‘;’Z’TL(Ex},) =-Eyify duUv, x # y;

Ry EO)R;?L(EX),) ==, ifyuuv, x #y;

= RuDR;T(p)(d) = Ry, (p)(d) if =y (d) =T.

w,L.x w, L.y

Proof is trivial.

3.2 Language (Signature and Formulas) of L *=

Let Ps be a set of predicate symbols, V be an infinite set of names (variables). Usually,
within V a subset Vi, of unessential variables is identified [11]. A tuple

=R = (V,Vui Vv, ~, RV, ™ Ex, =, Ps)

is called the language signature.

For simplicity, we use the same notation for symbols of compositions and com-
positions themselves.

Given Xf=, we define inductively the language of LR= — the set of formulas
denoted Fr (=) or simply Fr:

— if P € Ps then P € Fr. Formulas of such forms are called atomic;

— if ®, W € Frthen @V ¥,~®, R} ®, ~®, Ex, =€ Fr.

Formulas of the form R;i (P) are called primitive (P € Ps).

3.3 L *=-Interpretations

Let A= (V,A) = <Pr};V, —|,R;ﬁ, ~,Ex,=,, > be an extended algebra of a signa-
ture XF= = (V, Vy; V, ﬂ,Rzﬁ,N VEx, =,; Ps); I} = Ps—t>PrX be an interpretation
mapping of predicate symbols. Then a tuple J (E*=) = (A*=(V, A), I5¥) is called an LR=-
interpretation.

We simplify notation for L®=-interpretation J(Z*=) omitting L*= and =,

74 M. Nikitchenko et al.

In interpretation J, algebra ARE(V,A) defines interpretations of composition
symbols while Igs defines interpretations of predicate symbols.

For given interpretation J and formula @, we can define by induction on the
structure of @ its value in J. Obtained predicate is denoted @;.

Formula ® is irrefutable in J (denoted J |= @) if predicate ®@; is irrefutable. Formula
® is irrefutable (denoted |=®) if J |= ® for any interpretation J. Irrefutability may be
treated as partial validity.

Formula @ is satisfiable in J (denoted J | ~ @) if predicate @, is satisfiable. Formula
@ is satisfiable (denoted | ~ @) if J |~ @ for some interpretation J.

Variable x is unessential for ® if for any J variable x is unessential for ®,. Variable
x is unessential for I' C Fr if for any J variable x is unessential for any formula ® € T'.
The set of all variables (names) that occur in ® is denoted nm(®).

The set fu(®) = Vi \ nm(®) is called the set of fresh unessential variables for @.

For any I' C Fr we define nm(I") = U gernm(®) and fu(®) = N gerfu (D).

We generalize notation fu(I") on sequences of formulas and sets of formulas.

Lemma 3. Let x € V, ® € Fr, I' C Fr. Then

(1) x is unessential for @ if x € fu(®);
(2) x is unessential for I" if x € fu(I).

Proof. Induction on the structure of ®.

3.4 Logical Consequence Relation Under Conditions of Undefinedness

Introduction of composition requires more complicated consequence relation
because undefinedness domains should be taken into consideration. Here we use new
consequence relation between sets of formulas denoted):IRL [7] which generalizes
irrefutability relation =g [9, 11].

Let £ C Fr and J be an interpretation. We denote:

Tyas{®;| DX}, (| T(®)asT" (X)), (| F(®)asF"(Z)),) L(®s)as L7 (Z)).
Pex Pex Pex

Set X can be empty. In this case
T7(5) =7 (@) = F"(5) = F" (@) = L"(2) = L7(&) = "A.

Let I, U, A C Fr. Then A is irrefutable consequence of I' under undefinedness
conditions U in interpretation J (denoted U/T" ; Ert A) if

T(T)NL"(U)NF"(A)) = &.

In particular, for U = & we obtain irrefutability consequence relation ' ;=R A.
A is logical irrefutable consequence of T under undefinedness conditions U (de-
noted U/T" =t A) if U/T ; gt A for any interpretation J.

Program-Oriented Logics of Renominative Level 75

In particular, for U = &, we get traditional logical irrefutability relation T |=jz A.
Let us now describe the main properties of the consequence relation |+ for
propositional level.

By definition of |:1RJ-, we obtain monotonicity:

M) LetI' C A, UC W, and A C X; then UT Rt A = W/A it X

Let us introduce on Fr the binary relation ~ of logical strong equality. Namely,
O ~ V¥ if ®; =¥, for any interpretation J.

Theorem 1. Let ® ~ W. Then:

U/(I)7 F'ZIRLA = U/ ‘“P, r ':IRLA;
U/F'ZIRLA, [ORS U/F)ZIRLA, lP,
U,(D/F'ZIRLA = U,T/F'ZIRLA.

Proof. Proof is based on set-theoretical transformation of definitions of |:1RL and ~.
For |z the following properties of formula decomposition hold.

Theorem 2. For any U, I', ACFr,®, ¥, 9 € Fr:

\/L)U/(D \Y “P, F'ZIRJ'A = U/q), F):]RJ‘A and U/lP, F}:IRJ'A;

VR)UITERA, O V¥ & UTER A, 0, ¥;

Vvu) U, @V 9/ TER A <U,®,9/TER"A and U,®/TEx"9,A and
U, S/F}ZIRJ'(D, A;

|L)U/|(D, F':]RJ‘A -~ U/F’ZIRA, (I),

—R)UITERTA, =@, TERTA;

U, ~3/TER*A < U, 8/TER*A;

~ U)U,N @/F'ZIRLA < [J/(D7 F'ZIRLA and IJ/F'ZIRLA7 (D’

~ L)U/N (D, r':]RLA 4 U, (D/F'ZIRLA.

Proof. Property Vy holds because
L(®y V) = (L(Dy) NL(W))) U (L(P)NF(F,)) U (F(Ds)NL(Wy)).

Property —y holds because L(—®;) = L(D,).

Property ™~y holds because L(~ ®;) = T(D,;) UF(D,).

Properties =, —r, Vi, Vg are similar to properties of |=& [9, 11, 12]. Properties —y,
Vu, ~L, ~u are special for L*=,

Let us consider properties of relation |=g . of a renominative level. Each of the
properties R,R | I,R| U,R;R,R,;V,R; -, R]" of Lemma 2 induces three correspond-
ing properties for |=jz., depending on the position of a formula (in the left side of
|=jg:, in the right side of |=p:, in the undefinedness conditions of |=j;.). Such
properties are formulated in a similar way, for example, the following properties
R VL, RiVR,RiVyand R ~, R| ~r, R| ~y and are induced by R,V and R7":

RIVOU/RY (@ VW), TERA < U/RYL(®) VR (F), GEr®A;

Ry VR)U/TERA R (@ VW) & U/TER*A R (®) VR (P);

76 M. Nikitchenko et al.

RyVO)U R (@ VW) /TERA < URY (D) VR (V) /TER"A;
Ry~)URY (@), TEr*A < U/~ Ry (@), TER*A;

Ry ~p)U/TERA R (T ®) & U/TEr*A, ~ R (D);

Ry ~y)URY (7 @) /TErtAsU, ~ Ry (0)/TEr*A.

Property R 1 induces the following properties of =z

Ry fp) URYY (@), T Ert A, Ez & URYY (0).T Ert A, Ez;
RiTp) UT Egt A, Ry (9),Ez & UL it A, R (D), Ez;
RJ_TU) U, R\;ulyz()/F ':]RJ‘ A, Ez & U, vaulyL()/F ':IRJ' A, Ez.

Based on renomination properties of variable assignment predicates (Lemma 2) we
obtain:

Ryip) URY (E2), T Ert A < U/EZ, T Ert Aifz¢vUi;
Rigr) UT Ext A, RxJ_(Ez) & U Ert A Ezifz ¢ vUa;
Ripy) U,RY (E2)/ T it A < U, EJT gt Aif 2 ¢ vUin;
Ryg) U/RY ”fy(Ez) I Ert A& UEY, T Ert A;

RJ_EVR) umr | —J' A R;‘izy(EZ) < umr):IRJ' A Ey,

RJ_EVU) U, R)—‘: izy(EZ)/ r ':]RL A& U Ey/F ':[RL A.
For renomination of equality predicates we obtain:

R=.1) U/R) (=u), T Ert A& U/=.. T Ert A

R=,r) U/T | =f ARv” (=Zn) © U/T Ert A =

R=,0) R;”L(:xx) U/T Ert A & =, U/T Ert A

Ri=5) U/R) (=), T | =f A & U/=,, T gt A;

R =) U/T | =5 ARLT’}Y(_W) & U/T Ert A, =

Ri=u) U, R} (=4)/T ' A& U, =/T gt A;

R =5g1) U/R;“j‘gl(_xy),r ':IRL A& U/~Ez, T):IR A;

Ri=er) U/T Frt AR (=) € U/T Ert A, —Ez;

Ri=x0) U, R (=4)/T Ert A & U, ~EZ/T Er* A;

Ri=1) U/R (=), T Ert Ao U/=,, T Ert Aify g auv, x #y;

w, 1,z
R,i=r) U/T Er* ARaufz(:xy) & U/T gt A, =, ifyduly, x#y;
RJ_EIU) U, Rtv”fz(:x})/F ':]RL A = U, Ezy/r):]Rl A lfy g ftUl_), X 7é y;

Ri=gL) U/R:V"fL(_xy),l" Ert A U/~Ey, T Ert AifyguUv, x#y;
Ri=g) U/T Ert AR (=y) € U/T gt A, —Eyif y € uUv, x # y;
Ri=gy) U,Rgi’)fl(zxy)/lﬁ Ert A U —Ey/T Ert AifyguUv, x#y;
Ri=o) U/R%_(E,‘y),l" Ert A& U/Ex}, I Ert Aifx,y duuv, x #y;
Ri=pr)U/T it A,R;‘;i(z,ry) = A& U/T Ert A, =, ifx,y g uUv, x #
R, =) U,Rf{l(zxy)/l" FrtAe U =,/T Ert Aifx,y g uUv, x # y.

Program-Oriented Logics of Renominative Level 77

Properties of substitution of equals:

=Rur) U/=y, BT (@), T et A & U/=g, RS (0), R (©), T it A;

w,L.x
=R.rg) U/—xy r | IR+ vaul_zx() A U/—xw r | IR+ R:V”lzx(Q)),Rtgf‘iiy(QJ), A;
=Ryrp) Ry (0),U/ =T Ert A R (), Ry (D), U/ =41 Er* A

Transitivity of equality:
S/ =y, = = AU/ =y, ==, T =5 A

Property for insertion of variable assignment predicates specify variables
—parameters of equality predicate — as assigned or unassigned:

=E)U/ =y, I| = A= U/ =, Ex,Ey,T'| =jp. AandU/ =, T'| =5p. A, Ex, Ey.

The following properties describe conditions under which =z holds.
Theorem 3. For any U, I', A C Fr, ® € Fr we have that:
C) U/(D, I ':[Rl A, (D,

Cur) U0/, T Ert A;
Cur) U, OIT Ert A, @,

Proof. Property C holds because T(®;) N F(®;) = <.
For property Cy; we take into consideration that L(®,) N T(®)) = &
For property Cyr we take into consideration that L(®;) N F(®;) = &.

Theorem 4. For any U, I', A C Fr, ® € Fr we have:
Cr)U/T| =t A, ~ D;
CR=)U Tt A R | (=20
CR)U/F'ZIRLA R:}VMJ_(:XX)’
CR)U/TER*A, =
CRE)U/R;’TZL(EZ) TRt A;
CHRGL (Zy), U/T FrTA;
C5) =u, U/Thr A
CREVR}' (Ez2), U/TEr*A;
CE)Ey, U/TER*A.

Proof. Properties C ~ g, CR+=,CR=, C% hold due to such equalities:

() ®7 (VWuJ_xJZ_J_<—XZ)) @ F(W J_()) @7 (—xx]) @

Property Cf* holds due to equality T(R}"", (Ez),) = .

78 M. Nikitchenko et al.

Properties CX=, C7;, CR¢ CE hold due to equalities:
L(Rf*,;i(zx_v)‘/) = @7 J—(Eny) = @7 J—(R;i(EZ)J) = gv J—(Eyl) = @

Based on considered properties of =z* a calculus of sequent type for L®= will be
constructed.

4 Sequent Calculus for L *=

Usually, inference relations are defined by some axiomatic systems (calculi). We
present here a system that formalizes logical consequence relation between sets of
formulas. Such systems are called sequent calculi.

We construct a sequent calculus CR= that specify relation =+ for L £=.

The main objects of this calculus are sequents. Here we consider only the case with
finite sequents. We construct calculus in the style of semantic tableau, so, we will treat
sequents as finite sets of formulas signed (marked, indexed) by symbols |, _, and ;.

Formulas from I' (they are signed by |.) are called T-formulas, formulas from A
(they are signed by _)) are called F-formulas, and formulas from U (they are signed
by) are called L -formulas.

Sequents are denoted |_T" LU_|A, in abbreviated form X.

The rules of sequent calculus are called sequent forms. They are syntactical analogs
of the semantic properties of the corresponding relations of logical consequence.

Closed sequents are axioms of the sequent calculus. A closed sequent is specified in
such a way that the following condition should hold:

if sequent|_T" U_|Ais closed, then U/TEr*A.

Sequent calculus is defined by basic sequent forms and closure conditions of
sequents.

For C *= closeness of sequent |-’ U_A is induced by properties C;x, Cyyr, Cyr,
C~rg,CRI= CR= C5, CRE CR=,C5, CRE| CE that guarantee '

Crr) there is formula ® such that ® € I and ® € A;
Cyp) there is formula @ such that ® € U and ® € T
Cur) there is formula @ such that ® € U and ® € A;
C ~) there is formula ® such that ~® € A;

CR1=) there is formula R, | (=) € A;
CR=) there is formula RV" (=,,) € A;
Cg) there is formula =, € A;

CRE) there is formula R} (Ez) € T;
CR=) there is formula R”" (=) € U;
Cg) there is formula =,, € U;

CRE there is formula Rﬁ'i (Ez) € U;

CE) there is formula Ey € U.

Sequent |_I'; U A is closed if the following condition holds:

Program-Oriented Logics of Renominative Level 79

Cir VCur VCur VC~R VCR= VCR=VCR VCRE VT VCG VCEE VO

Closeness of | .I'y U A guarantees that U/I" =k A. This follows directly from
properties Crz, Cpr, Cpr (Theorem 3) and C~ g, CR-= CR= Cx, CRE CR=,
Ccy, Cf,E, CLE, (Theorem 4).

The properties of relation |=;z*, presented in the previous sections, induce corre-
sponding basic sequent forms of CX=. These are simplification forms (of types R, R, I,
R, U, R, 7T), forms of equivalent transformations (of types R, R, R;—~, R V, R ™),
formula decomposition forms, and special for L*= form =E (variable assignments of
equality parameters), simplification of renomination in equality (of type R, =), tran-
sitivity of equality Tr=, and substitution of equals (type of =R).

The labels of sequent forms are agreed with the labels of properties of =z™.

Theorem 5. If sequent | I'; U A is closed, then U/T" Ert A

Proof. The theorem statement follows directly from Theorems 3 and 4.

The sequent forms of decomposition of compositions V, =, ~ are induced by the
corresponding properties of formulas decomposition, in particular, basic sequent forms
of C %= calculus are induced by the formula decomposition properties —, ~r, Vi, Vg,

v Vu, T u L

,‘(DZ 18 ‘ (I) > 4 L(I)’E .
[- pcbza L= %0
LD, | ¥,T. L0, P,3 10,8 D, 9T D, 9,3
% Love,r 0 Vv @w v LV VYT)
" 10T Lo 0
-~ T~ 1 T~Dx

Introduction of undefinedness formulas additionally leads to new sequent forms
with three premises (rule V).

For the composition of extended renomination we use the following forms of
simplification:

-0x | KO
|- R‘ R((D)” R ((D)Z’
: R (@)
J_Rllma
,‘R‘ " (<I)) z LR‘ " ((D) z
—\RLUWa LRLUma

SR (@),
Ry 1 R (@), B

—|Ez X LRYY (D), ~|E2X

R tLL
R T @), R

For R, U-forms the constraint is y € fu(®).

80 M. Nikitchenko et al.

Forms of equivalent transformations:

R (cD)VR;NP),Z

,‘EZZ . Lt
7‘RLE7‘R‘“(EZ)Z7 :

- 1Ey.E Ey,S
R By —=o— R, Ey—t2=—
IBLEV DR () 2 LAV R (Bo) 3

For R E-forms the constraint is z & vUz.
Forms of renomination of equality:

For R, =; and R =;g-forms the constraint is y € vUu, x # y;

For R, =y-forms the constraint is x,y &€ vUu, x # y.

Special form for insertion of variable assignment predicates permits to specify
variables — parameters equality predicate — as assigned or unassigned:

gk =y~ Ex, - Ey, X |- =y, Ex,|Ey, X
|- Exya 2z

Form of equality transitivity:

Tr = = =xyy |- =yzs |- =xzs z

- S |- Sy 2

Program-Oriented Logics of Renominative Level 81

Forms of substitution of equals (P € Ps):

=R I‘|7 —XV7| Rliufx(P) \ Réujv(P%E =R I'|* EX}"*‘ R\?EL x()7 \R;)u (P)72
|- =KL y - = RL
= =xys |- vaufx(P)az = =xys— \Rtvul r()

|- —XHLR:/»MLZX() RI‘:VMLy()

- S LRYTL(P),Z

L =Ryr

The above-written closeness conditions and basic sequent forms specify C*= cal-
culus. For basic rules of C®= we have the following main properties.

Theorem 6. Let "r“U“:‘FAL‘ﬁ‘:kALUk"Ak be basic sequent form of CR= (k € {1, 2, 3}).

Then U/T’ }:[RL A& U1y ':[RL Al and ... UJ/Ty ':]RL Ay).

Proof. For each form the proof follows directly from its corresponding property of
relation f=;z* formulated in Subsect. 3.4.

The derivation in CR= has the form of a tree, the vertices of which are sequents.
Such trees are called sequent trees. Details of the definition of sequent tree can be
found in [19]. A sequent tree is closed if every its leaf is a closed sequent. A sequent X
is derivable if there is a closed sequent tree with the root X. During construction of a
sequent tree the following cases are possible:

— construction procedure is completed: all sequents on the leaves are closed; we have
a finite closed tree;

— construction procedure is not completed; we have a finite or infinite unclosed tree.
Such tree has at least one path called unclosed, all vertices of which are unclosed
sequents.

We meet the first case while proving soundness and the second one while proving
completeness of CF=.

5 Soundness and Completeness of C =

Now we prove soundness and completeness theorems for CK=.

Theorem 7 (soundness). Let sequent | _I'y/U_JA be derivable in CR=. Then
Ul Er* A.

Proof. If |,F LU,|A is derivable, then a finite closed tree was constructed. From this
follows that for any leaf of this tree its sequent |_LA; W_K is closed. Thus, by Theo-
rem 5, W/A):,RL K holds. Therefore, for the root of the tree (sequent |_.I'; U A) we
have that U/T" =z A holds (Theorem 6).

The completeness is traditionally proved on the basis of theorems of the existence
of a counter-model for the set of formulas of an unclosed path in the sequent tree. In
this case a method of Hintikka sets is used [20].

We apply this method to the CF= calculus.

82 M. Nikitchenko et al.

A Hintikka set for L®= is a set H of signed formulas satisfying two types of
conditions:

(1) wuncloseness conditions derived from closeness conditions for sequents;
(2) decomposition or transformation conditions derived from sequent forms.

Uncloseness conditions for H are the following conditions obtained by negation of
closeness conditions of sequents:

HCyR) there is no formula ® such that |_|® € H and |® € H;
HCy,) there is no formula ® such that ,® € H and | -® € H;
HCyg) there is no formula @ such that ,® € H and | ® € H;
HC ~) there is no formula ® such that oY o e H;

HCR*=) there is no formula R;ufj | (=x) such that _‘Rfvufj (=) €H;
HC™%) there is no formula R}’ (=x) such that _|R}" (=) € H;
HC™) there is no formula =, such that | =, € H;

HCR) there is no formula R}, (Ez) such that |_R}" (Ez) € H;
HCE=) there is no formula R;v[l (=) such that LR;’?L (=w) € H;
HCYy) there is no formula =,, such that ,=,, € H;

HCFE) there is no formula R;i (Ez) such that | R)" (Ez) € H;

HCY) there is no formula Ey such that | Ey € H.
Decomposition conditions for propositional compositions:

H—p) if . ~® € H, then @ € H;

H—g) if j~® € H, then | .D € H,;

H—y) if | —-® € H, then | ® € H,

Hvyp) if |®VY € H, then || ® € Hor | .Y € H;
Hvy) if ,|<I)\/‘~I’ € H, then ,|<D € H and ,|‘~I’ € H,
Hvy)if ®Vv3 € H,then ® € Hand |3 € H
or (e Hand 3 € Hor j® € Hand |8 € H;
H~p) if |,~(I) € H, then | ® € H;

H~y)if | ~® € H, then . ® € Hor |® € H.

Transformation conditions based on forms R, R, I, R,;U, R, T, R;R, R;—, RV,
R, ~, and HR |E, HR | Evy :

HRyp) if |_LR(®) € H, then | | ® € H;
HRg) if 4R(®) € H, then @ € H;
HRU) if J_R(q)) €H, then J_(I) € H;
HR,T;) if |_RZY" (@) € H, then |_R}' (®) € H;

— Tz, L
HR,Ig) if _|R2Y (®) € H, then _|RY' (®) € H;
HRIy) if RE' (®) € H, then (R} (D) € H;
HR Uy) if y € fu(®) and |_R)}"| (D) € H, then |_R}"| (D) € H
HR Up) if y € fu(®) and _|R)}" (®) € H, then _|R}"| (D) € H;

HRUy) if y € fu(®) and | R’} (D) € H, then | R} (®) € H;

zZ,X, L

Program-Oriented Logics of Renominative Level 83

HR 1) -RYP.(®),|Ez€ H = _ R} (D), Ez € H;
HR Tp) Ry (@), |Ez€ H = | Ry} (D), Ez € H;
HR, Ty) LRuz(cb), \EzeH = | R} (®),_|Ez € H;

HRRy) if |_Ry" (R} RY ()) € H, then |_R} o ;1 (®) € H;
HR, Ry) if ,‘RM(R (®)) € H, then _|R) o j;i (@) € H;
HR, Ry) if R (R; (®)) € H, then LRfL v (®) € H:

HR,Vy) if |_R l(c1> W) € H, then |_R' (D) VR (¥) € H;
HR, V) if |R§C‘1(<D ¥) € H, then R (®) VR (¥) € H;
HR Vy) if | Ry (@ VW) € H, then | R (®) V Ry (¥) € H;

R,—) if ,|R € H, then ,‘—\R;i‘_((b) € H,

Ry~) if LR}" (~®) € H, then | ~R}" (®) € H;

HR| ~y) if |_R}' (~®) € H, then |_ ~R}" (D) € H;
HR, ~g) if ,‘R;:'i(~®) € H, then _| ~R." (D) € H;
HR | ~yp) if LR;:Z_(N(D) € H, then | NR;‘i(d)) € H,
HRE,) if z ¢ uUv and |_R}'| (Ez) € H, then |_Ez € H;
HR Eg) if z ¢ uUv and _|RY" (Ez) € H, then _|Ez € H;
HR,Ey) if z € aUv and J_R\—/’j_<EZ) € H, then (Ez € H;
HREvy) if |_R}"",(Ez) € H, then |_Ey € H;

HR Evg) if _|RY"" (Ez) € H, then_|Ey € H;

HR Evy) if LR; ”fy(Ez) € H, then ,Ey € H.

\Y

R~y if - i'i(®) € H, then |,—\R;13‘_((D) € H,
(= D)
D)

Transformation conditions based on forms R=,,, R, =>, R, =, R1 =, R, =,
R, =¢:

HR=,,) if _R (E

HR=,R) if _‘Rw ! (=,

HR=,,p) if lR (=

) € H, then |_ =€ H;
) € H, then _| =€ H;
)

€ H, then | =€ H;

HR =) if |,RW’MJ_XZVS(xy) € H, then - =€ H;
HR =) if R} (=) € H, then _| =,,€ H;
HR | =5y) if LR:;MLXZy‘(Exy) € H, then | =,€ H;

HR) =5gp) if |- V”A’Z‘,L(E) € H, then _|Ez € H;

HR | =ogp) if |R””L(ny) € H, then |_Ez € H;

HR | =5gu) if LR:Vuf;l() € H, then | Ez € H;

HR =) if y¢uUv, x#yand RV (=), then - =5€ H;

=, Lz
HR,=R)if y g uUv, x #y and _|Rgllxz(zxy), then _| =€ H;
HR,=,y) ify g aUv, x #y and LR:vufz(—xv) then | =, € H,;

HR =) if y g uUv, x #y and _ ;Vf‘jl(_)@), then _|Ey € H;

84 M. Nikitchenko et al.

HR =gr) if y g uUv, x # y and ,‘R:}VHJL(E), then |_Ey € H;
HR,=gy) if y € uUV, x # y and LR:}ufJ_(E), then | Ey € H,
HR, =) if x,y ¢ #UV, x #y and |_R." (=), then |- =€ H;
HR =) if x,y € UV, x # y and ,|R§V’? (=x), then | =€ H;
HR =) if x,y € UV, x # y and | R"" (=,,), then | =,,€ H.

Transformation conditions related to equality predicates (P € Ps):

H=E) -=o €H, then |-Ex, -Ey € H or jEx, 4Ey € H,
HTr=) . =, € Hand | =,. € H, then . =, € H;

H=R 1) if |- =y, - R;(P) € H, then |_ =, - R}’ (P), - Ry (P) € H;
H=R,ry) if |— =xys— \R;MEX(P) € H, then |- =xys— \RwLx(), |vaufy(P) € H;
H=R.1y) if |- =y, (R,(P) € H, then |- =, (R, (P), LR (P) € H.

A set H of signed formulas is called satisfiable if there exist a set A, an interpre-
tation J = (AR=(V, A), 1}*), and a nominative set 3 € ¥ A such that

— if L@ € H, then ®; (8)] = T;
- if @ € H, then @, (§)] = F;
— if | ® € H, then ®; (d)].

Theorem 8. Let H be a Hintikka set for LX=. Then H is satisfiable.

Proof. Given a Hintikka set H, we should first construct a set A and a nominative set
8 €V A. Then we specify an interpretation of predicate symbols IgJ that gives us an
interpretation J. And at last, we prove for all formulas from H satisfiability conditions.
These constructions are rather complicated therefore here we do not present the proof

in all details but demonstrate its main parts.
Let W=nm(H)\ {x|_ Ex € H} be a set of names (variables) that are not explicitly

specified as unassigned.
Equality predicates induce on W the equivalence relation

xX~y<& | =h€H.

Sequent form =E guarantees correctness of this definition because when
l- =« € H we have that |_ Ex, | _.Ey € H or | Ex, |Ey € H and it is not possible that
- Ex, |-Ey € Hor | Ey, | .Ex € H.
Let S = W/ ~ be a quotient set of W induced by ~ . Let (v) be an equivalence class
represented by v. Take & = [v—(v) | v.€ W 1. Such 9 is a surjection of Won S.
For values of predicates Ex on & we obtain:

- |-Ex € H gives x € W, therefore Ex; (8)| = T;
- _Ex € H gives x¢W, therefore 6(x)T, whence Ex; (8)] = F.

By H=E from | =,, € H follows |_Ex, | Ey € H or jEx, |Ey € H. Then in Igs we
obtain:

Program-Oriented Logics of Renominative Level 85

- if - =, € H and |_Ex, |_Ey € H, then x ~ y, therefore by construction of o we
have =,, ; (8)| =T

- if L =, € H and _Ex, 4Ey € H, then d(x)T and 6(y)T, therefore =,, ; (8)] = T;

- if | =,, € H, then it is not true that x ~ y, therefore by construction of 0 we have
Exy./ (6)l =F.

— it is not possible that | =,, € H and not possible that ; Ey € H due to HCj and
HCY.
Let us specify values of basic predicate P € Ps on 6 and on the nominative sets of

the form 3" (3):

- if L P € H,then P; (8)] =T;

— if ;P € H, then P; (8)] = F;

— if P € H, then P; (5)7;

— if LR} (P) € H, then P (1" (3))| =

— if _|Ry" (P) € H, then Py ()] F;

— if LRy (P) € H, then P, (1", (8))1.

v,
X
v,
)?

Values of P on other data can be chosen in arbitrary way with respect to unessential
variables from V.

No ambiguity arises in these definitions due to uncloseness conditions for H.

For atomic and primitive formulas, the satisfiability statements follow from their
definitions.

Now the proof goes on by induction on the formula structure. All decomposition
and transformation conditions should be checked except of types H=E, HTr=, H=R r.

The conditions of the types HR, HR, I, HR; U, HR R, HR,—, HR;V, H R ~,
HR,E, HR,Ev, HR=,,, HR,=,, HR, =,5, HR |, =, HR | =5, HR | =, are related to
equivalent transformations or simplification of formulas; they are induced by the
equality of corresponding predicates.

Let us write explicitly these predicate equalities for the considered conditions:

HR: ®; = R(D);;

HR,T RV (D), = R (@),

HR,U: R} (@), = Ry'L(®),; here y € fi(®);

HR.R: R (R (@), = Ry} °§§1 (@),3

HR, V: Rﬁi(q) VW), = R (D) VR (W),:
HR, ~: R (V) = ~ R (@),

HR, E: R;:"l (Ez); = Ezy; here z ¢ vUu;

HR, Ev: R} (Ez), = Eys:

HR=,.: fv"[l(:xx)j ==/
HR , =;: R:vufzvs(:)o)J = =y

HR | =: RKMLYZVL(:X}’)J = ~Ezy;

86 M. Nikitchenko et al.

HR,=;: R:VTZ(:XV)J ==,y herey ¢ vUu, x #y;

HR, =g: RI’V,UJ_A,L(:W)J = —Ey,; here y & {u,v}, x £ y;

HR, = R;?l(zxy)J ==,y here x,y € vUu, x # y.

Let us prove as an example satisfiability for HR V.

Let|_R}" (® Vv ¥) € H.By HRV| we have |_R}"| () V R (¥) € H.By induction
hypothesis we have (R (@) Vv R;”i(‘l‘)) (8)] = T, whence R¥1(® VY¥),0)l=T

Let _ ‘Rv” (®V ¥) € H. By HRVR we have ,|R}7l(<l)) VR (¥) € H.By induction
hypothesis we have (R ((I)) Y, R;li(‘P)) (8)] = F, whence R;'i (dVY),)|=F

Let R} (®V¥) € H. By HRVy we have LRV (@) VR (W) € H. By induc-
tion hypothesis we have (R}" (@) V R} (¥)),(8)T, whence RL(® V W¥),(3)1.

Let us prove the theorem for conditions H—, H—, H—y, HV, HVR, HVy, H ~ ¢
H~ .

Let | ~® € H. By H we have _|® € H. By induction hypothesis @, ()| = F,
therefore ~®; (8)| = T.

Let ~® € H. By H7g we have | ® € H. By induction hypothesis ®, (5)| =T,
therefore ~®; (d)| = F.

Let ,~® € H. By Hy we have ;® € H. By induction hypothesis ®; (3)7,
therefore —~®; (8)7.

et LOVY € H. By HVy we have || ® € H or | _'¥ € H. By induction hypothesis
®; (8)] = T and ¥, (8) = T, therefore (PVYW); (8)| = T.

Let j®VY € H. By HVRr we have |® € H and ¥ € H. By induction hypothesis
®; (8)] = F and ¥, (8)] = F, therefore (dVP); (8)] = F.

Let ,\ VY € H By Hvy ;@€ Hand ;W€ Hor ;®cHand |¥€Hor
4® € Hand |'¥ € H. By induction hypothesis ®, (3)T and ¥, (8)T or @, (6)T and
Y; (8)] = F or ®; (8)] = F and ¥, (). Therefore (dDVY), (8)7.

Let | ~® € H. By H~y we have | ® € H or |® € H. By induction hypothesis
@; (8)] =T or ®y(0) = F, this gives @, ()], therefore ~ @, (d)].

Let |_~® € H. By H~1 we have ;® € H. By induction hypothesis @, (5)1,
therefore ~®;(d)| =T

Let us prove the theorem for conditions HR; T;, HR | T, HR Ty-

Let |_ R;”Lyz((l)) _|Ez € H. By HR 7, we have |_ R;”Lyl((b) € H. By induction
hypothesis R”x'j_y (@),(8)] =T, then J8()7 since _Eze€ H, whence
va’ﬁyz(q))J((S) =R (®),®)=T.

et |R"’.(®), |Ez € H. By HR g we have _|R}"’ (®) € H. By induction
hypothem RD;‘L (®),(0)l =F, then 8(z)] since _Ez € H, whence
R (®),(8) = RYY (@),(8) = F.

Let R} (@), |Ez € H. By HR Ty we have R}’ (®) € H. By induction

hypothesis Ri'j_vl(),(8)1, then |Ez € H since 8(z)T, whence R%" (®),(3)7.

X1,z

Theorem 9. For C ®= there exists a sequent tree construction procedure such that
unclosed paths form Hintikka sets.

Program-Oriented Logics of Renominative Level 87

Proof. Such procedure for constructing a sequent tree in C %= is defined in the same
way as for other sequent calculi for finite sequents [19], therefore we will not go into
details.

The completeness theorem follows from Theorems 8 and 9.

Theorem 10 (completeness). Let U/I" it A hold. Then sequent FOLUSA s
derivable in C *=.

Proof. Assume that U/T° }:IRL A and 1-I'1 U_jA is not derivable. In this case a sequent
tree for |_LI"; U_A is not closed. Thus, an unclosed path ¢ exists in this tree. Let H be
the set of all formulas of this path. By Theorem 9, H is a Hintikka set. By Theorem 8
this means that a counter-model for |_LI"; U_JA was constructed. But this contradicts to
U/T f=ptnnnnn A.

6 Conclusion

The efficiency of program verification heavily depends on program logics supporting
corresponding verification methods. Traditional Floyd-Hoare logic and its variants are
oriented on total pre- and post-conditions (total predicates) and do not support partial
predicates. In this paper we have studied a new predicate logic used in constructing
sound program logics. This program-oriented predicate logic includes the compositions
of predicate complement, extended renominations, and equality predicates.

For this logic we have defined and investigated a special consequence relation
called irrefutability consequence relation with undefinedness conditions. For a case of
quantifier-free predicate logic of partial quasiary predicates (renominative level) we
have constructed a calculus of sequent type and proved its soundness and
completeness.

In the future we plan to construct and implement sequent calculi for first-order
predicate logic and a logic over hierarchical nominative data and prove their soundness
and completeness. Such logics more adequately represent data structures used in
programming. First steps in this direction were made in [21, 22].

References

1. Abramsky, S., Gabbay, D., Maibaum, T. (eds.): Handbook of Logic in Computer Science,
vol. 1-5. Oxford University Press, (1993-2000)

2. Hoare, C.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576-580
(1969)

3. Apt, K.: Ten years of Hoare’s logic: a survey - part . ACM Trans. Program. Lang. Syst. 3
(4), 431-483 (1981)

4. Blass, A., Gurevich, Y.: The underlying logic of Hoare logic, Current Trends in Theoretical
Computer Science. In: Entering the 21st Century, World Scientific, pp. 409—436 (2001)

5. Kryvolap, A., Nikitchenko, M., Schreiner, W.: Extending Floyd-Hoare logic for partial pre-
and postconditions. In: Ermolayev, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A.,
Zholtkevych, G. (eds.) ICTERI 2013. CCIS, vol. 412, pp. 355-378. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03998-5_18

https://doi.org/10.1007/978-3-319-03998-5_18

88

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

M. Nikitchenko et al.

Ivanov, I., Nikitchenko, M.: Inference rules for the partial Floyd-Hoare logic based on
composition of predicate complement. In: Ermolayev, V., Sudrez-Figueroa, M.C.,
Yakovyna, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A. (eds.) ICTERI 2018. CCIS,
vol. 1007, pp. 71-88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13929-2_4
Nikitchenko, M., Shkilniak, O., Shkilniak S.: Program logics based on algebras with the
composition of predicate complement. In: 9th International Conference on Advanced
Computer Information Technologies (ACIT), Ceske Budejovice, Czech Republic, pp. 285—
288 (2019)

Nikitchenko, M., Shkilniak, S.: Mathematical Logic and Theory of Algorithms. VPC
Kyivskyi Universytet, Kyiv (2008). in Ukrainian

Nikitchenko, M., Shkilniak, S.: Applied Logic. VPC Kyivskyi Universytet, in Ukrainian,
Kyiv (2013)

Nikitchenko, M., Shkilniak, O., Shkilniak, S.: Pure first-order logics of quasiary predicates.
Prob. Program. 2-3, 73-86 (2016). in Ukrainian

Nikitchenko, M., Shkilniak, S.: Algebras and logics of partial quasiary predicates. Algebra
Discrete Math. 23(2), 263-278 (2017)

Shkilniak, O.: Relations of logical consequence of logics of partial predicates with
composition of predicate complement. Prob. Program. 3, 11-27 (2019). in Ukrainian
Nikitchenko, N.S.: A composition-nominative approach to program semantics. Technical
report, IT-TR 1998-020, Technical University of Denmark (1998)

Nikitchenko, M., Tymofieiev, V.: Satisfiability in Composition-Nominative Logics. Open
Computer Science (former Central European Journal of Computer Science) 2(3), 194-213
(2012)

Nikitchenko, M., Ivanov, 1., Kornitowicz, A., Kryvolap, A.: Extended Floyd-Hoare logic
over relational nominative data. In: Bassiliades, N., Ermolayev, V., Fill, H.-G., Yakovyna,
V., Mayr, H.C., Nikitchenko, M., Zholtkevych, G., Spivakovsky, A. (eds.) ICTERI 2017.
CCIS, vol. 826, pp. 41-64. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
76168-8_3

Nikitchenko, M., Ivanov, 1., Skobelev, V.: Proving properties of programs on hierarchical
nominative data. Comput. Sci. J. Moldova 24(3(72)), 371-398 (2016)

Kleene, S.: Introductions to Metamathematics. Amsterdam (North-Holland), New York -
Toronto (Van Nostrand) (1952)

Kornitowicz, A., Ivanov, L., Nikitchenko, M.: Kleene algebra of partial predicates.
Formalized Math. 26, 11-20 (2018)

Gallier, J.: Logic for Computer Science: Foundations of Automatic Theorem Proving, 2nd
edn. Dover, New York (2015)

Hintikka, J.: Modality and quantification. In: Models for Modalities. Synthese Library
(Monographs on Epistemology, Logic, Methodology, Philosophy of Science, Sociology of
Science and of Knowledge, and on the Mathematical Methods of Social and Behavioral
Sciences), vol. 23, pp. 57-70. Springer, Dordrecht (1969). https://doi.org/10.1007/978-94-
010-1711-4_4

Kornilowicz, A., Kryvolap, A., Nikitchenko, M., Ivanov, I.: Formalization of the nominative
algorithmic algebra in Mizar. In: Swiqtek, J., Borzemski, L., Wilimowska, Z. (eds.) ISAT
2017, AISC, vol. 656, pp. 176-186. Springer, Cham (2018)

Nikitchenko, M., Shkilniak, O., Shkilniak, S., Mamedov, T.: Completeness of the First-
Order logic of partial quasiary predicates with the complement composition. Comput. Sci.
J. Moldova 27(2(80)), 162-187 (2019)

https://doi.org/10.1007/978-3-030-13929-2_4
https://doi.org/10.1007/978-3-319-76168-8_3
https://doi.org/10.1007/978-3-319-76168-8_3
https://doi.org/10.1007/978-94-010-1711-4_4
https://doi.org/10.1007/978-94-010-1711-4_4

	Program-Oriented Logics of Renominative Level with Extended Renomination and Equality
	Abstract
	1 Introduction
	2 Program Algebras with Predicate Complement, Extended Renomination, and Equality
	3 Extended Logic of Partial Quasiary Predicates of Renominative Level
	3.1 Extended Algebras of Partial Quasiary Predicates of Renominative Level
	3.2 Language (Signature and Formulas) of L ^{R \equiv }
	3.3 L ^{R \equiv } -Interpretations
	3.4 Logical Consequence Relation Under Conditions of Undefinedness

	4 Sequent Calculus for L ^{R \equiv }
	5 Soundness and Completeness of C ^{R \equiv }
	6 Conclusion
	References

