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Abstract. In the paper we investigate the expressibility of partial pred-
icates in the Kleene algebra extended with the composition of predicate
complement and give a necessary and sufficient condition of this express-
ibility in terms of the existence of an optimal solution of an optimization
problem. We also investigate the expressibility in the first-order Kleene
algebra with predicate complement. The obtained results may be useful
for software verification using an extension of the Floyd-Hoare logic for
partial pre- and postconditions.
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1 Introduction

A popular approach to software verification is based on application of Floyd-
Hoare logic [1,2] which allows one to derive valid assertions (triples) of the form
{p}f{q}, where f is a program, p is a precondition, and q is a postcondition.
Assertions are interpreted as follows: if an input data d of the program f sat-
isfies the precondition p, and the program terminates on d, then the program’s
output satisfies the postcondition q. The classical Floyd-Hoare logic admits the
case when the program f has an undefined execution result (e.g. due to nonter-
mination). However, the pre- and postcondition predicates are assumed to have
a definite truth value (true or false). In some situations the latter assumption is
not convenient and it makes sense to consider pre- and postconditions expressed
by partial predicates which can be undefined on some data. This can happen,
e.g., if pre- and postconditions can be most easily expressed using partial oper-
ations such as division of numbers. Then one has to either reinterpret/change
the meaning of classical Floyd-Hoare triples and take into account partiality of
predicates, or try to eliminate the need to ever deal with undefined predicate
values by performing special well-formedness checks which imply that predicates
are applied only to values on which they can be guaranteed to be defined.
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Both approaches lead to certain complications: the former one leads to mul-
tiple possible triple interpretations, some of which make the rules of the clas-
sical Floyd-Hoare logic unsound; the latter one complicates triple derivations
by requiring definedness of predicates in all intermediate derivation steps which
may be inessential to the validity of a target triple.

When explicit unrestricted partial pre- and postconditions are allowed, at least
two obvious generalized interpretations of a triple {p}f{q} can be given [9]:

(a) “strong triple”: if the precondition p is defined and true on the program’s
input, and the program terminates with a result y, then the postcondition
q is defined on y, and q is true on y.

(b) “weak triple”: if the precondition p is defined and true on the program’s
input, and the program terminates with a result y, and the postcondition q
is defined on y, then q is true on y.

The “weak triple” interpretation makes the rules of the classical Floyd-Hoare
logic unsound [14,15], but this interpretation is attractive in the case of high-
level verification of code implementing numerical algorithms in environments
like Matlab or Octave and in other similar applications. In this sort of situa-
tions, during formal verification it is difficult to take into account all details of
implementation of floating-point arithmetic and give precise error bounds for an
algorithm implementation. Algorithm verification using the model of ideal real
number/rational number arithmetic can be much more feasible and can be useful
for detecting high-level flaws (unrelated to floating point arithmetic). In particu-
lar, such models are used in VerSAA [1] verifier for Matlab code and in Simulink
Design Verifier. However, e.g., during high-level verification of a numerical algo-
rithm in the model of ideal real number arithmetic in most cases it makes no
sense to formally prove that zero values never appear in the denominators of
division expressions in postconditions, since, anyway, the behavior of a verifica-
tion model is an inexact approximation of the behavior of an actual program.
So, in order to ensure validity of a triple under “strong triple” interpretation
one is required to prove more (i.e. to prove a stronger statement) than what is
necessary to prove the validity of a triple under “weak triple” interpretation,
while the information content in the statement about triple validity relevant to
the real-world decision making is essentially the same in both cases.

In the previous papers [4,5,9,11–13,16] we investigated an inference system
for a variant of an extension of Floyd-Hoare logic for partial pre- and post-
conditions which is sound under “weak triple” interpretation. The formulation
of the rules of this inference system requires the change of semantics (and, it
turns out, syntax) of the logical language which is used to express the pre- and
postcondition formulas. Note that the formulation of the rules of the classical
Floyd-Hoare logic depends on the usual boolean compositions (¬, ∧) which are
applied to total predicates which appear in the program’s body and/or pre- and
postconditions, e.g. the loop rule uses both the conjunction and negation:
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{r ∧ p} f {p}
{p} while r do f end {¬r ∧ p}

Here p represents the loop invariant.
The formulation of the rules of the mentioned extension of Floyd-Hoare logic

depends on compositions of partial predicates (from program’s body and/or
pre- and postconditions). In this situation one needs to express and interpret
compositions of predicates in terms of a certain three-valued logic, where the
third truth value corresponds to the case where a predicate is undefined.

From the viewpoint of pragmatics, propositional compositions of such a logic
have to be based on a finite system of functions of three-valued logic (P3) which
contains reasonable generalized versions of boolean negation and conjunction. In
P3 there exist multiple sets of functions which, arguably, fit this description. One
choice is the system {fT , fF , fU , f¬, f∧}, where fT , fF , fU are pairwise different
constant functions (T for “true”, F for “false”, U for “undefined”), and f¬, f∧
are, respectively, an unary and binary operation on a 3 element set defined in
accordance with the truth tables for negation and conjunction of Kleene’s strong
3-valued logic, i.e.

x F U T
f¬(x) T U F

x F U T
f∧(x, F ) F F F
f∧(x,U) F U U
f∧(x, T ) F U T

This system is not functionally complete in P3, and, it turns out, the cor-
responding propositional compositions of predicates are not sufficient for repre-
senting the sequence and loop rules of the inference system of [9] for “weak triple”
interpretation. A functionally complete (in P3) extension of {fT , fF , fU , f¬, f∧}
is sufficient for this purpose, but, from the results of [9] it turns out that a certain
extension of {fT , fF , fU , f¬, f∧} which is not functionally complete in P3 is also
sufficient. Such an extension can be obtained by adjoining to {fT , fF , fU , f¬, f∧}
an unary function f∼ defined as follows:

x F U T
f∼(x) U T U

The propositional composition of partial predicates corresponding to f∼ was
called in [9] the predicate complement and denoted as ∼. This composition can
be used to extend the signature of the Kleene algebra of partial predicates [10].
Using such an extended signature, the loop rule of an extended Floyd-Hoare
logic for partial pre- and postconditions with “weak triple” interpretation can
be reformulated as [9]:

{r ∧ p} f {p}, {r ∧ (∼ p)}f{p}
{p} while r do f end {¬r ∧ p}

In this paper we investigate the question of expressibility of partial predicates
in the Kleene algebra extended with the composition of predicate complement
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and give a necessary and sufficient condition of this expressibility in terms of the
existence of an optimal solution of a special constrained optimization problem.

This is closely related to the properties of the functional closure of
{fT , fF , fU , f¬, f∧, f∼}. The number of n-ary functions in this closure is
23

n+O(2n) (see Proposition 2 in Sect. 3), which is asymptotically lower than the
cardinality of the set of all n-ary operations on a three element set (33

n

), and
these functions have special properties that can be useful for software verifi-
cation using the above mentioned extended Floyd-Hoare logic for partial pre-
and postconditions and “weak triple” interpretation. For example (see Lemma
4 in Sect. 5), when checking satisfiability of an expression E(x1, ..., xn) over
{fT , fF , fU , f¬, f∧, f∼} by searching for a “true” value of E in some search space
S, any evaluation of E(x1, ..., xn) which gives the “false” value can be used to
eliminate from S elements which belong a metric ball with center (x1, ..., xn)
and radius 1 in the sense of Chebyshev distance (the cardinality of which is at
least 2n).

2 Notation

Unless indicated otherwise, n will denote an integer number.
The notation f : A →̃ B means that f is a partial function on a set A with

values in a set B, and f : A → B means that f is a total function from A to B.
The notation x �→ e(x), where e is some expression, denotes a function which

maps x to e(x). The domain of this function should be clear from the context.
For a function f : A →̃ B:

– f(x) ↓ means that f is defined on x;
– f(x) ↓= y means that f is defined on x and f(x) = y;
– f(x) ↑ means that f is undefined on x;
– dom(f) = {x ∈ A | f(x) ↓} is the domain of a function.

We will denote as f1(x1) ∼= f2(x2) the strong equality, i.e. f1(x1) ↓ if and
only if f2(x2) ↓, and if f1(x1) ↓, then f1(x1) = f2(x2).

The symbols T , F will denote the “true” and “false” values of predicates and
Bool = {T, F}. The symbol ⊥ will denote a nowhere defined partial predicate.

Depending on the context, | · | will denote either the cardinality of a set, or
the absolute value of an (integer) number.

We will use ◦ to denote functional composition: (f ◦ g)(x) ∼= f(g(x)).

3 Preliminaries

Let D �= ∅ be a set, n ≥ 1, and P1, ..., Pn be partial predicates on D.
The Kleene algebra of partial predicates on D with predicate complement

and constants P1, ..., Pn is the algebra

APrP1,...,Pn
(D) = (D →̃ {T, F};∨,∧,¬,∼, P1, P2, ..., Pn),
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where

1. ∨,∧,¬ are the operations of disjunction, conjunction and negation on partial
predicates defined in accordance with Kleene’s strong three-valued logic as
follows:

(P ∨ Q)(d) =

⎧
⎪⎨

⎪⎩

T, if P (d) ↓= T or Q(d) ↓= T ;
F, if P (d) ↓= F and Q(d) ↓= F ;
undefined in other cases.

(P ∧ Q)(d) =

⎧
⎪⎨

⎪⎩

T, if P (d) ↓= T and Q(d) ↓= T ;
F, if P (d) ↓= F or Q(d) ↓= F ;
undefined in other cases.

(¬P )(d) =

⎧
⎪⎨

⎪⎩

T, if P (d) ↓= F ;
F, if P (d) ↓= T ;
undefined in other case.

2. ∼ is the unary operation of predicate complement :

(∼ P )(d) =

{
T, if P (d) ↑;
undefined, if P (d) ↓ .

Let V , W be non-empty sets, n ≥ 1, and Q1, ..., Qn be partial predicates
on V →̃ W (i.e. the set of all partial functions on V which take values in W ).
The elements of V will be interpreted as variable names, the elements of W as
values, and the elements of V →̃ W as partial variable assignments.

Denote QPrVW = (V →̃W )→̃{T, F}. We will call the elements of the set
QPrVW partial quasiary predicates over V and W . For a fixed finite V , such
elements can be considered as continuations of partial n-ary predicates on W for
n = |V | to the cases when some arguments are undefined with the possibility of
having a defined (“true” or “false”) value when some arguments are undefined,
e.g. if Q ∈ QPrVW , Q(d) may take the “true” value when d is nowhere defined
on V (empty variable assignment).

An existential quantification composition ∃v (with parameter v ∈ V ) is an
unary operation on QPrVW such that for each Q ∈ QPrVW :

(∃v(Q))(d) =

⎧
⎪⎨

⎪⎩

T, if Q(d∇va) ↓= T for some a ∈ W ;
F, if Q(d∇va) ↓= F for all a ∈ W ;
undefined in other cases,

where d∇va denotes the element of V →̃ W with the graph

{(v, a)} ∪ {((v′, d(v′)) | v′ ∈ V \{v}, d(v′) ↓}.
When one restricts attention to total predicates and total variable assign-

ments over a fixed finite V , ∃v has the meaning corresponding to the meaning
of the existential quantifier in the classical first order logic.
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Similarly, a universal quantification composition ∀v (with parameter v ∈ V )
is an unary operation on QPrVW such that for each Q ∈ QPrVW :

(∀v(Q))(d) =

⎧
⎪⎨

⎪⎩

T, if Q(d∇va) ↓= T for all a ∈ W ;
F, if Q(d∇va) ↓= F for some a ∈ W ;
undefined in other cases.

A renomination (variable renaming) composition Rū
v̄ with parameters ū =

(u1, ..., un) ∈ V n and v̄ = (v1, ..., vn) ∈ V n (where n ≥ 1) such that u1, u2, ..., un

are pairwise different, is an unary operation on QPrVW such that for each
Q ∈ QPrVW and d ∈ V W :

Rū
v̄ (Q)(d) ∼= Q(rūv̄ (d)),

where rūv̄ (d) = d ◦ rnū
v̄ and rnū

v̄ : V → V is the function with the graph
{(u1, v1), ..., (un, vn)} ∪ {(u, u) | u ∈ V \{u1, ..., un}}.

The first-order Kleene algebra of partial predicates over the set of variable
names V and values W with predicate complement and constants Q1, ..., Qn is
the algebra

AQPrQ1,...,Qn
(V,W )

= (QPrVW ;∨,∧,¬,∼, {Rū
v̄}n′≥1,ū∈V n′

�= ,v̄∈V n′ , {∃v}v∈V , {∀v}v∈V , Q1, ..., Qn),

where ∨,∧,¬,∼ are defined as above for D = V →̃ W , and V n′
�= is the set of

tuples (v1, ..., vn′) ∈ V n′
such that vi �= vj for all i, j ∈ {1, 2, ..., n′} such that

i �= j.
Note that for a finite V the signature of AQPrQ1,...,Qn

(V,W ) contains only
finitely many unary operation symbols.

We will also use the following algebra which we call the renominative
Kleene algebra of partial predicates with predicate complement and constants
Q1, ..., Qn:

ARPrQ1,...,Qn
(V,W ) = (QPrVW ;∨,∧,¬,∼, {Rū

v̄}n′≥1,ū∈V n′
�= ,v̄∈V n′ , Q1, ..., Qn).

We will say that a variable name v ∈ V is unessential for a quasiary predicate
Q : (V →̃W )→̃Bool, if Q(d|V \{v}) ∼= Q(d) for all d ∈ V →̃W .

Let X = {−1, 0, 1} and F (n) be the set of all n-ary functions (operations)
f : Xn → X. The elements of F (n) will represent functions of 3-valued logic
P3 (where 1 corresponds to the “true” value and −1 corresponds to the “false”
value, and 0 is an intermediate truth value).

Let F =
⋃

n≥0 F (n).
We will denote as x̄ = (x1, x2, ..., xn) a tuple of values xi ∈ X.
Consider Xn as a metric space with Chebyshev distance:

ρn((x1, ..., xn), (y1, ..., yn)) =
n

max
i=1

|xi − yi|.
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Proposition 1. For n ≥ 1, the equilateral metric dimension1 of the metric
space (Xn, ρn) is 2n.

Proof. Let us show by induction on n that |A| ≤ 2n for any set A ⊆ Xn such
that ρn(x̄, ȳ) = ρn(x̄′, ȳ′) for all x̄, ȳ, x̄′, ȳ′ ∈ A such that x̄ �= ȳ and x̄′ �= ȳ′

(equidistant subset).
Induction base (n = 1). The set {−1, 0, 1} is not an equidistant subset, so

|A| ≤ 2 for any equidistant subset A ⊆ X.
Induction step. Assume that for n ≥ 1 it holds that |A| ≤ 2n for any equidis-

tant subset A in (Xn, ρn). Let A′ be an equidistant subset in (Xn+1, ρn+1). Let
Aj = {(x1, ..., xn) | (x1, ..., xn, j) ∈ A′} for j ∈ {−1, 0, 1}.

For each j ∈ {−1, 1}, x̄ = (x1, ..., xn) ∈ A0∪Aj , and ȳ = (y1, ..., yn) ∈ A0∪Aj

such that x̄ �= ȳ we have:

1. there exist k, l ∈ {0, j} such that x̄ ∈ Ak and ȳ ∈ Al and |k − l| ≤ 1.
2. moreover, ρn(x̄, ȳ) = maxn

i=1 |xi − yi| = max(maxn
i=1 |xi − yi|, |k − l|)

= ρn+1((x1, ..., xn, k), (y1, ..., yn, l)), where (x1, ..., xn, k) and (y1, ..., yn, l) are
distinct elements of A′.

Since A′ is an equidistant subset, we have that A0 ∪ A−1 and A0 ∪ A1 are
equidistant subsets in (Xn, ρn). By induction hypothesis, |A0 ∪ Aj | ≤ 2n for
j ∈ {−1, 1}.

Also note that A−1 ∩ A0 ∩ A1 = ∅, because otherwise, there exists a tuple
(x1, ..., xn) ∈ Xn such that (x1, ..., xn, j) ∈ A′ for each j ∈ {−1, 0, 1}, which
contradicts the assumption that A′ is an equidistant subset.

Then |A′| = |A−1| + |A0| + |A1| = |A−1 ∪ A0| + |A−1 ∩ A0| + |A1|
= |A−1 ∪ A0| + |(A−1 ∩ A0) ∪ A1| + |A−1 ∩ A0 ∩ A1|
≤ |A−1 ∩ A0| + |A0 ∪ A1| ≤ 2 · 2n = 2n+1.

We conclude that |A| ≤ 2n for each n ≥ 1 and each equidistant subset A in
(Xn, ρn).

On the other hand, for each n ≥ 1 we have |{0, 1}n| = 2n and {0, 1}n is an
equidistant subset in (Xn, ρn), since ρn(x̄, ȳ) = maxn

i=1 |xi − yi| = 1 for each
x̄ = (x1, ..., xn) ∈ {0, 1}n and ȳ = (y1, ..., yn) ∈ {0, 1}n such that x̄ �= ȳ.

Thus for n ≥ 1 the equilateral metric dimension of (Xn, ρn) is 2n. ��
We will say that a function f ∈ F (n) is short, if it is a short map, i.e. if for

all x̄, ȳ we have
|f(x̄) − f(ȳ)| ≤ ρn(x̄, ȳ).

Let M (n) be the set of all short functions from F (n).

Proposition 2. |M (n)| = 23
n+O(2n)

1 The maximum cardinality of a subset such that any two of its distinct points are at
the same distance.
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Proof. Since Xn has 23
n

subsets, it is sufficient to show that for any n ≥ 1 and
Z ⊆ Xn the number of distinct functions from M (n) which have the set of zeros
Z belongs to {1, 2, 3, ..., 22

n}.
Let n ≥ 1 and Z ⊆ Xn. Denote M

(n)
Z = {f ∈ M (n) | f−1({0}) = Z}.

Let fZ ∈ F (n) be a function such that fZ(x̄) = 1 for x̄ ∈ Xn\Z and fZ(x̄) = 0
for x̄ ∈ Z. Then for each x̄, ȳ ∈ Xn such that x̄ �= ȳ we have |fZ(x̄)−fZ(ȳ)| ≤ 1 ≤
≤ ρn(x̄, ȳ). This and the definition of fZ imply that fZ ∈ M

(n)
Z . Then |M (n)

Z | ≥ 1.
If Z = Xn, then |M (n)

Z | = 1 ∈ {1, 2, ..., 22
n}.

Now assume that Z �= Xn.
Let G = (Xn, E) be the {1}-distance graph of the metric space (Xn, ρn), i.e.

vertices x̄, ȳ ∈ Xn are connected by an edge in E if and only if ρn(x̄, ȳ) = 1,
and let GZ be a subgraph induced in G by the set of vertices Xn\Z �= ∅. Each
f ∈ M

(n)
Z is a graph homomorphism from GZ to the graph ({−1, 1}, {{−1}, {1}})

({a} denotes a loop), because for each x̄, ȳ ∈ Xn\Z such that ρn(x̄, ȳ) = 1 we
have |f(x̄) − f(ȳ)| ≤ 1, f(x̄) �= 0, and f(ȳ) �= 0, whence f(x̄) = f(ȳ). Hence f is
constant on the vertex set of each connected component of GZ .

Denote as CZ the set of connected components of GZ . There exists a choice
function c : CZ → Xn which selects a vertex from each element of CZ . Then for
each f1, f2 ∈ M

(n)
Z , f1 ◦ c = f2 ◦ c implies f1|Xn\Z = f2|Xn\Z and f1|Z = f2|Z ,

whence f1 = f2. Then the map f �→ f ◦ c is injective on M
(n)
Z and takes values

in {−1, 1}CZ . Then |M (n)
Z | ≤ |{−1, 1}CZ | = 2|CZ |.

Denote as c(CZ) the image of CZ under c. We have |CZ | = |c(CZ)|, since the
sets of vertices of connected components are pairwise disjoint and c in injective.
Moreover, c(CZ) is an equidistant subset in the metric space (Xn, ρn), because
distinct elements x̄, ȳ ∈ c(CZ) belong to different connected components of GZ

and are not connected by an edge in E, and this implies ρn(x̄, ȳ) = 2. Then
Proposition 1 implies that |c(CZ)| ≤ 2n. Hence |M (n)

Z | ≤ 2|CZ | ≤ 22
n

.
Thus the number of distinct functions from M (n) which have the set of zeros

Z belongs to {1, 2, 3, ..., 22
n} and we conclude that |M (n)| = 23

n+O(2n). ��

4 Expressibility in Kleene Algebra

As before, let X = {−1, 0, 1}.
For any set D and a partial predicate P : D →̃ {T, F} denote by Φ(P ) a

function from D → X such that for all d ∈ D:

Φ(P )(d) =

⎧
⎪⎨

⎪⎩

1, if P (d) ↓= T,

0, if P (d) ↑,

−1, if P (d) ↓= F.

Note that Φ is a bijection between D →̃ {T, F} and D → X.
Let D �= ∅ be a fixed set, P0, P1, ..., Pn : D →̃ {T, F} be partial predicates,

and pi = Φ(Pi) for i = 0, 1, 2, ..., n.
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Denote ||f || =
∑

x̄∈Xn |f(x̄)| for f ∈ F (n) and consider the following (con-
strained) optimization problem2:

||f || → min (1)

f(p1(d), p2(d), ..., pn(d)) = p0(d), d ∈ D (2)

The following theorem characterizes expressibility in the Kleene algebra of
partial predicates with predicate complement.

Theorem 1. If n ≥ 1, a predicate P0 is expressible in the algebra
APrP1,...,Pn

(D) if and only if on the set F (n) the problem (1)–(2) has an optimal
solution which is a short function.

The proof of this theorem is given in the next section.
APrP1,...,Pn

(D) induces the following pseudo-metric ρ̃P1,...,Pn
on D:

ρ̃P1,...,Pn
(d, d′) = ρn((p1(d), ..., pn(d)), (p1(d′), ..., pn(d′))).

Note that the sum of ρ̃P1,...,Pn
and any metric on D is a metric on D.

A predicate P0 is called short with respect to (w.r.t.) P1, ..., Pn, if p0 is a
short map between the pseudo-metric space (D, ρP1,...,Pn

) and (X, ρ1).

Theorem 2. If n ≥ 1, P0 is expressible in the algebra APrP1,...,Pn
(D) if and

only if P0 is short with respect to P1, P2, ..., Pn.

Proof. “If”: Assume that P0 is short w.r.t. P1, P2, ..., Pn. Then for all d, d′ ∈ D:

|p0(d) − p0(d′)| ≤ ρ̃P1,...,Pn
(d, d′) = ρn((p1(d), ..., pn(d)), (p1(d′), ..., pn(d′))).

For each x̄ = (x1, ..., xn) ∈ X let F (x̄) = {p0(d) | d ∈ D ∧ ∧n
i=1 pi(d) = xi}

and f : Xn → X be a function such that f(x̄) ∈ F (x̄), if F (x̄) �= ∅, and f(x̄) = 0,
if F (x̄) = ∅. Since p0 is a short map, F (x̄) is a singleton set whenever F (x̄) �= ∅.
Then f(p1(d), p2(d), ..., pn(d)) = p0(d) for all d ∈ D.

Let x̄ = (x1, ..., xn) ∈ Xn, ȳ = (y1, ..., yn) ∈ Xn. Assume that x̄ �= ȳ. If
F (x̄) = ∅ or F (ȳ) = ∅, then f(x̄) = 0 or f(ȳ) = 0, whence |f(x̄) − f(ȳ)| ≤ 1 ≤
ρn(x̄, ȳ). Otherwise, F (x̄) �= ∅ and F (ȳ) �= ∅, so f(x̄) = p0(dx) and f(ȳ) = p0(dy)
for some dx, dy ∈ D such that pi(dx) = xi and pi(dy) = yi for i = 1, 2, ..., n.
Then |f(x̄) − f(ȳ)| = |p0(dx) − p0(dy)| ≤ ρn(x̄, ȳ). We conclude that f ∈ M (n).

Let g ∈ F (n) be a function such that g(p1(d), ..., pn(d)) = p0(d) for all d ∈
D, Then f(x̄) = g(x̄) whenever F (x̄) �= ∅. Then ||f || ≤ ||g||, since f(x̄) = 0
when F (x̄) = ∅. Thus on the set F (n) the problem (1)–(2) has an optimal
solution which is a short function. Then by Theorem1, P0 is expressible in
APrP1,...,Pn

(D).
“Only if”: Assume that P0 is expressible in APrP1,...,Pn

(D). Then by Theo-
rem 1, there exists f ∈ M (n) such that f(p1(d), p2(d), ..., pn(d)) = p0(d) for all
2 If one interprets partiality in terms as possibility, minimization of ||f || may be related

to the principle of minimum specificity of D. Dubois et al. from possibility theory,
or other similar principles.
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d ∈ D. Then for all d, d′ ∈ D:

|p0(d) − p0(d′)| ≤ |f(p1(d), ..., pn(d)) − f(p1(d′), ..., pn(d′))| ≤ ρ̃P1,...,Pn
(d, d′).

��
Let V �= ∅, W �= ∅ be fixed sets, Q0, Q1, ..., Qn : (V →̃W ) →̃ {T, F} be partial

quasiary predicates, and qi = Φ(Qi) for i = 0, 1, 2, ..., n.
If k ≥ 0 and m ∈ [0, 2k−1] are integers, and v̄ = (v1, ..., vk) ∈ V k (we assume

V 0 consists of the single empty tuple), denote by Qk
m,v̄(P ), where P is a partial

predicate, the k-th element of the finite sequence of predicates Tj , j = 0, 1, ..., k
such that T0 = P and for all j = 1, 2, ..., k:

Tj+1 =

{
∃vj(Tj), bj = 0;
∀vj(Tj), bj = 1,

where (bj) is the j-th digit in the binary expansion of m (starting from the least
significant digit).

The following theorem characterizes expressibility in the first-order Kleene
algebra of partial predicates with predicate complement.

Theorem 3. Assume that n ≥ 1 and there exists an infinite set V ′ ⊆ V such
that each name in V ′ is unessential for each predicate in {Q0, Q1, ..., Qn}. Then
Q0 is expressible in the algebra AQPrQ1,...,Qn

(V,W ) if and only if there exist

– integers l ≥ 1, k ≥ 0, m ∈ [0, 2k − 1],
– a tuple v̄ ∈ V k,
– finite sequences of integers kj ≥ 1 and nj ∈ [1, n] for j = 1, 2, ..., l,
– finite sequences of tuples ūj ∈ V

kj

�= , v̄j ∈ V kj for j = 1, 2, ..., l,
– and a partial predicate P on V →̃W , short w.r.t. R

ūj

v̄j
(Qnj

) for j = 1, 2, ..., l,

such that Q0 = Qk
m,v̄(P ).

We will give a proof of this theorem in Sect. 6.

5 Proof of Theorem 1

In order to prove Theorem1, first let us formulate and prove a number of
auxiliary lemmas.

Denote for all x, y ∈ X:
¬x = −x

∼ x = 1 − |x|

x[y] =

⎧
⎪⎨

⎪⎩

x, if y = 1
∼ x, if y = 0
¬x, if y = −1
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Lemma 1. ρn(x̄, ȳ) = 1 − minn
i=1 x

[yi]
i for every n ≥ 1 and x̄, ȳ ∈ Xn.

Proof. It is easy to see that for all x, y ∈ X:

x[y] = 1 − |x − y|

Then ρn(x̄, ȳ) = maxn
i=1 |xi − yi| = maxn

i=1(1 − x
[yi]
i ) = 1 − minn

i=1 x
[yi]
i . ��

Consider X as a lattice with operations:

x ∨ y = max(x, y);

x ∧ y = min(x, y).

Below we will assume that in expressions involving operations on X the
operation x[y] has the highest priority, and is followed (by priority) by the unary
operations ¬, ∼, which are followed by the binary operations ∧ and ∨. As usual,
among ∧,∨, the operation ∧ has higher priority.

Lemma 2. For each short function f ∈ F (n) and x̄ ∈ Xn:

f(x̄) = f̂(x̄) ∧ f�=0(x̄) ∨ ¬f�=0(x̄)

where

f̂(x̄) =

{∨
ȳ:f(ȳ)=1

∧n
i=1 x

[yi]
i , if ∃ȳ f(ȳ) = 1

−1, otherwise

f�=0(x̄) =

{∨
ȳ:f(ȳ) �=0

∧n
i=1 ∼ (x[yi]

i ∧ ∼ x
[yi]
i )∧ ∼∼ x

[yi]
i , if ∃ȳ f(ȳ) �= 0

0, otherwise.
.

Proof. It is easy to see that for each x, y ∈ X:

∼ (x[y]∧ ∼ x[y])∧ ∼∼ x[y] =

{
1, if x = y

0, if x �= y.

Then

f�=0(x̄) =

{
1, if f(x̄) �= 0
0, if f(x̄) = 0.

By Lemma 1,

f̂(x̄) =

{∨
ȳ:f(ȳ)=1(1 − ρn(x̄, ȳ)), if ∃ȳ f(ȳ) = 1,

−1, otherwise.

If f(x̄) = 1, then f̂(x̄) = 1 and f�=0(x̄) = 1, so f̂(x̄) ∧ f�=0(x̄) ∨ ¬f�=0(x̄) = 1.
If f(x̄) = 0, then f�=0(x̄) = 0, so
f̂(x̄) ∧ f�=0(x̄) ∨ ¬f�=0(x̄) = (f̂(x̄) ∧ 0) ∨ 0 = 0.
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If f(x̄) = −1, then for each ȳ such that f(ȳ) = 1 we have ρn(x̄, ȳ) ≥ |f(x̄) −
f(ȳ)| = 2 which implies that 1−ρn(x̄, ȳ) = −1. Then f̂(x̄) = −1 and f�=0(x̄) = 1,
so f̂(x̄) ∧ f�=0(x̄) ∨ ¬f�=0(x̄) = −1.

Thus
f(x̄) = f̂(x̄) ∧ f�=0(x̄) ∨ ¬f�=0(x̄).

��
Lemma 3. The set of all short functions from F is a precomplete class in F
and is the functional closure of the set {fU , f¬, f∼, f∨, f∧}, where fU ∈ F (0),
f¬, f∼ ∈ F (1), f∨, f∧ ∈ F (2), fU = 0, f¬(x) = −x, f∼(x) = 1 − |x|, f∨(x, y) =
max(x, y), f∧(x, y) = min(x, y).

Proof. Denote by S the set of all short functions from F . In accordance with its
definition, a short function from F can be alternatively characterized as a func-
tion Xn → X (n ≥ 0) which does not change sign on each of the sets

∏n
i=1{0, ai},

where a1, ..., an ∈ {−1, 1}n. In the terminology of [19], such functions correspond
to the precomplete class T 3

E1,1
of functions for which the image of the product

of sets, 1-equivalent to E1 is a subset of a set, 1-equivalent to E1, where two sets
are 1-equivalent, if their symmetric difference has no more than 1 element. Thus
S is a precomplete class in F . Obviously, {fU , f¬, f∼, f∨, f∧} ⊆ S. On the other
hand, since the constant function with value −1 is expressible as f¬ ◦ f∼ ◦ fU ,
from Lemma 2 and the definition of x[y] it follows that each f ∈ S can be
expressed as a composition of elements of {fU , f¬, f∼, f∨, f∧} and of projections
πn
k (x1, ..., xn) = xk (n ≥ 1, k = 1, 2, ..., n). Thus S is the functional closure of

{fU , f¬, f∼, f∨, f∧}. ��
Lemma 4. The set of all short functions from F is the functional closure of the
set {fT , fF , fU , f¬, f∧, f∼}, where fF , fU , fT ∈ F (0), f¬, f∼ ∈ F (1), f∧ ∈ F (2),
fF = −1, fU = 0, fT = 1, f¬(x) = −x, f∼(x) = 1 − |x|, f∧(x, y) = min(x, y).

Proof. From the equalities f∼(0) = 1, f¬(f∼(0)) = −1 and the De-Morgan law
it follows that the set {fT , fF , fU , f¬, f∧, f∼} has the same functional closure as
the set {fU , f¬, f∼, f∨, f∧} (where f∨(x, y) = max(x, y)), which is the set of all
short functions from F by Lemma 3. ��
Lemma 5. For each P,Q : D →̃ {T, F} and d ∈ D we have:

Φ(⊥)(d) = 0
Φ(¬P )(d) = −(Φ(P )(d))
Φ(∼ P )(d) = 1 − |Φ(P )(d)|
Φ(P ∨ Q)(d) = max(Φ(P )(d), Φ(Q)(d))
Φ(P ∧ Q)(d) = min(Φ(P )(d), Φ(Q)(d))

Proof. Follows immediately from the definition Φ and operations ¬,∼,∨,∧ on
partial predicates. ��
Lemma 6. The problem (1)–(2) has an optimal solution on F (n) if and only
if p0 is continuous in the initial topology on D induced by p1, ..., pn (where the
codomain of pi, i.e. X, is considered as a discrete space).
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Proof. “If”: assume that p0 is continuous in the initial topology on D induced
by p1, ..., pn. Then there exists f ∈ F (n) such that p0(d) = f(p1(d), ..., pn(d)) for
all d ∈ D. Then since the set F (n) is finite, the problem (1)–(2) has an optimal
solution on F (n).

“Only if”: assume that the problem (1)–(2) has an optimal solution f ∈ F (n).
Then p0(d) = f(p1(d), ..., pn(d)) for all d ∈ D, so p0 is continuous in the initial
topology on D induced by p1, ..., pn. ��
Lemma 7. If the problem (1)–(2) has an optimal solution on F (n), then this
solution is unique.

Proof. Assume that the problem (1)–(2) has optimal solutions f, g ∈ F (n). Then
||f || = ||g|| and f(p1(d), ..., pn(d)) = p0(d) = g(p1(d), ..., pn(d)) for all d ∈ D.

Suppose that f �= g. Then there exists x̄∗ = (x∗
1, ..., x

∗
n) ∈ Xn such that

f(x̄∗) �= g(x̄∗).
Consider the case when f(x̄∗) �= 0. Let us define a function h ∈ F (n) as

follows: h(x̄) = f(x̄), if x̄ �= x̄∗, and h(x̄) = 0, if x̄ = x̄∗. Then for all d ∈ D,
(p1(d), ..., pn(d)) �= x̄∗, so h(p1(d), ..., pn(d)) = p0(d). Moreover, ||h|| = ||f || −
|f(x̄∗)| = ||f || − 1 < ||f || which contradicts the assumption that f is an optimal
solution of (1)–(2).

Consider the case when f(x̄∗) = 0. Then |g(x̄∗)| = 1. Let us define a function
h ∈ F (n) as follows: h(x̄) = g(x̄), if x̄ �= x̄∗, and h(x̄) = 0, if x̄ = x̄∗. Then
for all d ∈ D, (p1(d), ..., pn(d)) �= x̄∗, so h(p1(d), ..., pn(d)) = p0(d). Moreover,
||h|| = ||g|| − |g(x̄∗)| = ||g|| − 1 < ||g|| which contradicts the assumption that g
is an optimal solution of (1)–(2).

Thus f = g. So if the problem (1)–(2) has an optimal solution on F (n), then
this solution is unique. ��
Lemma 8. Let f ∈ M (n), g ∈ F (n) and g(x̄) ∈ {f(x̄), 0} for each x̄ ∈ Xn.
Then g ∈ M (n).

Proof. Let x̄, ȳ ∈ Xn. Consider the following cases.

(1) g(x̄) = f(x̄), g(ȳ) = f(ȳ). Then |g(x̄) − g(ȳ)| = |f(x̄) − f(ȳ)| ≤ ρ(x̄, ȳ).
(2) g(x̄) = f(x̄), g(ȳ) = 0. Then |g(x̄) − g(ȳ)| = |f(x̄)| ≤ ρ(x̄, ȳ), if x̄ �= ȳ, and

|g(x̄) − g(ȳ)| = 0 ≤ ρ(x̄, ȳ), if x̄ = ȳ.
(3) g(x̄) = 0, g(ȳ) = f(ȳ). Then |g(x̄) − g(ȳ)| = |f(ȳ)| ≤ ρ(x̄, ȳ), if x̄ �= ȳ, and

|g(x̄) − g(ȳ)| = 0 ≤ ρ(x̄, ȳ), if x̄ = ȳ.
(4) g(x̄) = 0, g(ȳ) = 0. Then |g(x̄) − g(ȳ)| ≤ ρ(x̄, ȳ).

Thus g ∈ M (n). ��
Lemma 9. The problem (1)–(2) has an optimal solution on M (n) if and only
if it has an optimal solution on F (n) which belongs to M (n).

Proof. “If”: assume that the problem (1)–(2) has an optimal solution f ∈ F (n)

which belongs to M (n). Then f(p1(d), p2(d), ..., pn(d)) = p0(d) for all d ∈ D.
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Moreover, for each g ∈ M (n) such that g(p1(d), p2(d), ..., pn(d)) = p0(d) for all
d ∈ D, we have g ∈ F (n), so ||f || ≤ ||g||. So f is an optimal solution of (1)–(2)
on M (n).

“Only if”: assume that the problem (1)–(2) has an optimal solution f on
M (n). Then f(p1(d), p2(d), ..., pn(d)) = p0(d) for all d ∈ D. Then since F (n) is
finite, the problem (1)–(2) has an optimal solution on F (n). By Lemma 7, the
problem (1)–(2) has a unique optimal solution of F (n). Denote it as g. Then
g(p1(d), p2(d), ..., pn(d)) = p0(d) for all d ∈ D and ||g|| ≤ ||f ||. Let us define
a function h ∈ F (n) as follows: for each x̄ ∈ Xn, h(x̄) = f(x̄), if g(x̄) �= 0,
and h(x̄) = g(x̄), if g(x̄) = 0. Then for all d ∈ D, h(p1(d), ..., pn(d)) = p0(d).
Moreover, h ∈ M (n) by Lemma 8. Then ||h|| = ||f ||, so for each x̄ such that
g(x̄) = 0 we have f(x̄) = 0. Then ||f || ≤ ||g||. Since ||g|| ≤ ||f || as mentioned
above, we have ||f || = ||g||. The f is an optimal solution of (1)–(2) on F (n) and
f belongs to M (n). ��

Now we can give a proof of Theorem 1.

Proof (of Theorem 1). “If”: assume that the problem (1)–(2) has an optimal
solution on the set F (n) which is a short function. Denote by f such a solution.
Then we have p0(d) = f(p1(d), p2(d), ..., pn(d)) for all d ∈ D. By Lemma 3, f
belongs to the functional closure of {fU , f¬, f∼, f∨, f∧}, where the functions
f· are defined as in Lemma 3. From Lemma 5 it follows that p0(d) = Φ(P )(d)
for all d ∈ D for some predicate P : D →̃ {T, F} expressible in the algebra
(D →̃ {T, F};∨,∧,¬,∼,⊥, P1, P2, ..., Pn). Since n ≥ 1 and the predicate ⊥ can
be expressed as ∼ P1∧ ∼∼ P1, we conclude that P is expressible in the algebra
APrP1,...,Pn

(D). Then Φ(P0)(d) = Φ(P )(d) for all d ∈ D. Then the definition of
Φ implies that P0 = P , so P0 is expressible in APrP1,...,Pn

(D).
“Only if”: assume that a predicate P0 is expressible in algebra

APrP1,...,Pn
(D). Then Lemma 5 implies that Φ(P0)(d) = f(Φ(P1)(d), Φ(P2)(d),

..., Φ(Pn)(d)) for all d ∈ D for some function f ∈ F (n) which belongs to the func-
tional closure of {fU , f¬, f∼, f∨, f∧}, where the functions f· are defined as in
Lemma 3. Then by Lemma 3, f is a short function and p0(d) = f(p1(d), ..., pn(d))
for all d ∈ D. Then since M (n) ⊆ F (n) is a finite set, the problem (1)–(2) has
an optimal solution on the set M (n). Then Lemma 9 implies that the problem
(1)–(2) has an optimal solution on F (n) which is a short function. ��

Note that the problem (1)–(2) has the following addition property.

Lemma 10. If the problem (1)–(2) has an optimal solution on M (n), then this
solution is unique.

Proof. Assume that f, g are optimal solutions of (1)–(2) on M (n). Then by
Lemma 9, (1)–(2) has an optimal solution on F (n) which belongs to M (n). By
Lemma 7 this solution is unique. Denote it as h. Then ||h|| ≤ ||f || and ||h|| ≤ ||g||.
Then h is an optimal solution of (1)–(2) on M (n) and ||h|| = ||f || = ||g||. Then
f , g are optimal solutions of (1)–(2) on F (n). Then by Lemma 7, f = g. ��
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6 Proof of Theorem3

First, let us prove auxiliary lemmas.

Lemma 11. Let V and W �= ∅ be sets, Q ∈ QPrVW , and v ∈ V . Then

∼ (∃v Q) = (∃v(∼ Q)) ∧ (∀v(∼ Q ∨ ¬Q)).

Proof. Let us fix d ∈ V →̃W and consider the following cases.

1. Assume that (∼ (∃vQ))(d) ↓= T . Then (∃vQ)(d) ↑, so there exists a ∈ W
such that Q(d∇va) ↑ and there is no b ∈ W such that Q(d∇vb) ↓= T .
Then (∼ Q)(d∇va) ↓= T , so (∃v(∼ Q))(d) ↓= T . Moreover, for each b ∈
W , either Q(d∇vb) ↑, or Q(d∇vb) ↓= F , so either (∼ Q)(d∇vb) ↓= T , or
(¬Q)(d∇vb) ↓= T , whence (∼ Q ∨ ¬Q)(d∇vb) ↓= T . Hence (∀v(∼ Q ∨
¬Q))(d) ↓= T . Thus ((∃v(∼ Q)) ∧ (∀v(∼ Q ∨ ¬Q)))(d) ↓= T .

2. Assume that (∼ (∃vQ))(d) ↑. Then (∃vQ)(d) ↓. Then either there exists
a ∈ W such that Q(d∇va) ↓= T , or Q(d∇vb) ↓= F for all b ∈ W .

2.1. Consider the case when there exists a ∈ W such that Q(d∇va) ↓= T .
Then (∼ Q)(d∇va) ↑ and (∼ Q ∨ ¬Q)(d∇ua) ↑. Note that (∼ Q ∨
¬Q)(d∇ub) is not false for any b ∈ W , since (∼ Q)(d∇ub) cannot be
false. Then (∀v(∼ Q∨¬Q))(d) ↑. Besides, (∃v(∼ Q))(d) is not false, since
(∼ Q)(d∇va) ↑. Then ((∃v(∼ Q)) ∧ (∀v(∼ Q ∨ ¬Q)))(d) ↑.

2.2. Consider the case when Q(d∇vb) ↓= F for all b ∈ W . Then (∃v(∼
Q))(d) ↑ (since W �= ∅). Moreover, (∼ Q∨¬Q)(d∇ub) ↓= T for all b ∈ W .
Then (∀v(∼ Q∨¬Q))(d) ↓= T . Hence ((∃v(∼ Q))∧(∀v(∼ Q∨¬Q)))(d) ↑.

Since (∼ (∃vQ))(d) cannot be false for any d, we conclude that (∼
(∃vQ))(d) ∼= ((∃v(∼ Q)) ∧ (∀v(∼ Q ∨ ¬Q)))(d) for all d ∈ V →̃ W .
Thus ∼ (∃vQ) = (∃v(∼ Q)) ∧ (∀v(∼ Q ∨ ¬Q)). ��
Corollary 1. Let V and W �= ∅ be sets, Q ∈ QPrVW , u, v ∈ V , u �= v, and u is
unessential for Q. Then ∼ (∃v Q) = ∀u∃v(∼ Q ∧ (∼ Ru

v (Q) ∨ ¬Ru
v (Q))).

The proof follows immediately from Lemma11 by renaming the right-most
bound variable v to u.

Lemma 12. Let V and W �= ∅ be sets, Q ∈ QPrVW , and v ∈ V . Then

∼ (∀v Q) = (∃v(∼ Q)) ∧ (∀v(∼ Q ∨ Q)).

Proof. By taking into account Lemma 11 and that ∀v Q = ¬∃v(¬Q), ¬¬Q = Q,
and ∼ (¬Q) = ∼ Q, we have:

∼ (∀v Q) =∼ (¬∃v (¬Q)) =∼ (∃v (¬Q))

= (∃v(∼ (¬Q))) ∧ (∀v(∼ (¬Q) ∨ ¬¬Q)) = (∃v(∼ Q)) ∧ (∀v(∼ Q ∨ Q)).

��
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Corollary 2. Let V and W �= ∅ be sets, Q ∈ QPrVW , u, v ∈ V , u �= v, and u is
unessential for Q. Then ∼ (∀v Q) = ∀u∃v(∼ Q ∧ (∼ Ru

v (Q) ∨ Ru
v (Q))).

The proof follows immediately from Lemma12 by renaming the right-most
bound variable v to u.

Proof (Of Theorem 3). “If”: By Theorem 2, P is expressible in the algebra
APrP1,...,Pl

(V →̃W ), where Pj = R
ūj

v̄j
(Qnj

) for j = 1, 2, ..., l. Then it is easy
to see that Qk

m,v̄(P ) is expressible in AQPrQ1,...,Qn
(V,W ). Thus Q0 is express-

ible in AQPrQ1,...,Qn
(V,W ).

“Only if”: Assume that Q0 is expressible in the algebra AQPrQ1,...,Qn
(V,W ).

From Corollary 1 and Corollary 2 given above, and elementary properties of ¬, ∨,
∧, ∃u, ∀u and renomination [20], it is easy to see (by using a process analogous to
the process of construction of the prenex normal form in the classical first-order
logic) that there exists a predicate P expressible in ARPrQ1,...,Qn

(V,W ) such
that Q0 = Qk

m,v̄(P ) for some integers k ≥ 0, m ∈ [0, 2k − 1] and a tuple v̄ ∈ V k.
Since renomination distributes with ∨, ∧, ¬, and ∼ [20] (e.g. Rū

v̄ (P1 ∨ P2) =
Rū

v̄ (P1)∨Rū
v̄ (P2)), and the composition of renominations is again a renomination

(i.e. Rū
v̄ (Rū′

v̄′ (P )) is equal to Rū′′
v̄′′ (P ) for some ū′′, v̄′′), there exists an integer

l ≥ 1, finite sequences of integers kj ≥ 1 and nj ∈ [1, n] for j = 1, 2, ..., l, and
finite sequences of tuples ūj ∈ V

kj

�= , v̄j ∈ V kj for j = 1, 2, ..., l such that P

is expressible in APrQ1,...,Ql(V →̃W ), where Qj = R
ūj

v̄j
(Qnj

) for j = 1, 2, ..., l.
Then by Theorem 2, P is short w.r.t. R

ūj

v̄j
(Qnj

) for j = 1, 2, ..., l. ��

7 Conclusion

We have investigated the expressibility of partial predicates in the Kleene alge-
bra with predicate complement and have given a necessary and sufficient condi-
tion of this expressibility in terms of the existence of an optimal solution of an
optimization problem. We have also investigated expressibility in the first-order
Kleene algebra with predicate complement. The obtained results may be useful
for software verification using an extension of the Floyd-Hoare logic for partial
pre- and postconditions and “weak triple” interpretation.
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