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Abstract. Human speech processing is a multimodal and cognitive
activity, with visual information playing a role. Many lipreading sys-
tems use English speech data, however, Chinese is the most spoken lan-
guage in the world and is of increasing interest, as well as the devel-
opment of lightweight feature extraction to improve learning time. This
paper presents an improved character-level Gabor-based lip reading sys-
tem, using visual information for feature extraction and speech classifica-
tion. We evaluate this system with a new Audiovisual Mandarin Chinese
(AVMC) database composed of 4704 characters spoken by 10 volunteers.
The Gabor-based lipreading system has been trained on this dataset,
and utilizes the Dlib Region-of-Interest(ROI) method and Gabor filtering
to extract lip features, which provides a fast and lightweight approach
without any mouth modelling. A character-level Convolutional Neural
Network (CNN) is used to recognize Pinyin, with 64.96% accuracy, and
a Character Error Rate (CER) of 57.71%.

Keywords: Audiovisual · Speech recognition · Chinese · Gabor
transform

1 Introduction

Human speech is multimodal, with audio and visual information used both in
the perception and production of speech. This relationship has been heavily
investigated in the literature, with a detailed summary in Abel and Hussain [2].
Lipreading is an approach that interprets lip movement [13], inspired by human
cognitive abilities. This can be used in speech recognition, identity recognition,
human-computer intelligent interfaces and multimedia systems. Many proposed
lipreading systems have very high recognition rates, for instance, the LipNet [4]
and ‘Watch, Listen, Attend, and Spell’ (WLAS) [12] systems. However, most of
them use an English corpus such as Grid. Chinese is spoken by around one fifth of
the world’s population, but written Chinese does not indicate its pronunciation
from its character. However, “Pinyin” can be used to mark the pronunciation of
Chinese Mandarin [6]. Lipreading is a difficult task to apply to Pinyin, with dif-
ficult to identify ambiguities, like similar lip shapes (e.g. ‘p’ and ‘b’), liquids and
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nasals (e.g. ‘n’ and ‘l’, are similar to ‘ni’ and ‘li’), blade-alveolars and retroflexes
(e.g. ‘ci’ and ‘chi’), and front and back nasal sounds (e.g. ‘nin’ and ‘ning’).

In this paper proposes an improved Chinese lipreading system to recognize
Pinyin and tone in Chinese speech. To evaluate this, we introduce a new AVMC
database, composed of 4704 Pinyin words spoken by 10 volunteers in a clean
visual and acoustic environment. For feature extraction, an improved fast and
lightweight architecture based on Gabor transforms was developed. A CNN was
used to test these lip features, with a character-level performance of 64.96%.

2 Related Work

Traditionally, lipreading has two key components: feature extraction and recog-
nition. Recently, some end-to-end lipreading systems have been developed, such
as LipNet [4], and Long Short-Term Memory (LSTM) systems [17]. Chung et al.
[12] proposed a character-level architecture called WLAS, with a 3% Word Error
Rate(WER), Weng [18] achieved 82.0% word recognition rate for the LRW cor-
pus, and Petridis et al. [11] obtained a 94.7% recognition rate for OuluVS2.
These end-to-end approaches use an image directly to self-learn features, and
are difficult to explain. We are more interested in extracting lip features, as they
can be used for more than just model results. Classic methods are arguably
more lightweight and explainable [3]. These include Active Appearance Mod-
els (AAM), Discrete Cosine Transform (DCT), and Gabor Wavelet Transform
(GWT). DCT is good at concentrating energy into lower order coefficients, but
is sensitive to illumination changes, and is difficult to form an intuitive under-
standing of [1].

Gabor features are insensitive to variance in illumination, rotation, and scale.
They can focus on facial features such as eyes, mouth and nose, with optimal
localization properties in both spatial and frequency domains [5]. We propose
GWT to extract lip features, which is a fast and lightweight approach without
any mouth modelling. Compared to deep learning models, GWT reduces speech
recognition training time, and is more suitable for small datasets. Sujatha and
Santhanam [14] used GWT to correct mouth openness after using a height-width
model when extracting 2D lip features, with word recognition of 66.83%. We
extract seven lip features, which includes six 2D features and one 3D feature.
Hursig et al. used Gabor features to detect the overall lip region [10], while
we obtain detailed features. Dakin and Watt proposed that horizontal Gabor
feature performance is good for facial feature recognition by using Gabor filters
of different orientations [7], and was implemented by the authors [1]. Here, we
present an improved visual feature extraction system.

3 A New Audiovisual Mandarin Speech Corpus

Many English-language audiovisual speech corpora have been published, includ-
ing LRS [12], AVLetter, AV-TIMIT, CUAVE, Grid,OuluVS and XM2VTSDB
[20]. However, Chinese lipreading research suffers from a shortage of published
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and available corpora. Zhang et al. in 2009 collected a large-scale Chinese corpus
by recording CCTV news broadcasts, which includes 20495 natural Chinese sen-
tences [19]. However, there is a complex visual background and a noisy speech
environment. This paper introduces a new audiovisual Chinese corpus recorded
in a clean environment. Chinese is a tonal language, consisting of individual char-
acters, each of which have an initial, a final, and a tone associated with them.
To perform accurate initial speech recognition and further analysis, we require
a labelled video corpus of distinct Chinese characters, recorded in a clean envi-
ronment, and we therefore created the AVMC dataset.

Data Acquisition: 162 Chinese characters were collected from the general spec-
ification table published by the Chinese ministry of education. These characters
are chosen with a reasonable distribution of initials, finals and tones. 10 native
Mandarin Chinese volunteers were used (see Fig. 1). The data acquisition proce-
dure for each volunteer was: (1) sign participant information and consent form;
(2) read caption list; (3) practice recording for 1–2 min; (4) record for all captions
and repeat 3 times. During recording, volunteers were asked to pause between
each word, and if they made mistakes, paused and repeated. Mistakes not identi-
fied during recording were identified later in the editing process. This produced
30 videos, each being a volunteer reciting all 162 characters in a quiet envi-
ronment, with a plain blue screen as background. To ensure they were looking
directly at the screen, a teleprompter was used. As some Chinese characters have
the same pronunciation, there are in total 158 types of pronunciations including
both correct and wrong utterances. The video was recorded at a resolution of
1920 × 1080, at 50 fps, and the audio was recorded at 48 kHz.

Fig. 1. Example frames of all speakers in AVMC

Data Pre-processing: The 30 raw videos were edited using Adobe Premiere
Pro to remove silent pauses, breaks, coughs, off-camera noise, and maintain a
consistent order of characters. The processed videos are stored in mp4 format.

Data Labeling: The pauses were manually identified, and video captioning soft-
ware (Arctime) was used to label initial, final, tone and Pinyin. The occasional
vocalized mistakes were not corrected but labelled with actual pronunciations.
In a character level representation, the classes for initials, finals, and tones are
given shown as follows:
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– initials: 0, b, c, d, f, g, h, j, k, l, m, n, p, q, r, s, t, w, x, y, z
– finals 0, a, e, g, i, n, o, r, u and v
– tones 1, 2, 3, 4

For lipreading, the model uses a distinct Pinyin character representation,
as shown in Fig. 2. Here, the Pinyin for zhong with the first tone would be
represented as having the characters ‘1’, ‘z’, ‘h’, ‘o’, ‘n’, ‘g’. However, Pinyin
such as ‘ban’ with second tone would be shorter and could be represented as ‘2’,
‘b’, ‘a’, ‘n’, ‘0’, ‘0’. Here, 0 means there is no character in this location.

Fig. 2. Character level representation of Pinyin for “zhong” with the first tone

4 Improved Gabor-Based Lip Feature Extraction System

Previous research identified that horizontal Gabor features could be used to
identify facial features [7]. This resulted in an initial lightweight Gabor-based lip
feature extraction system in previous work by the authors [1]. Here, we present
an improved visual feature extraction system. Due to space limitations, we will
give a general introduction to the system, while focusing on changes. Our system
is now quicker, implemented in Python, more accurate, and can calculate height
as an additional feature. The feature extraction system is shown in Fig. 3.

Frame Extraction: First, image frames are extracted from a video by using
the Python cap.read() function.

ROI Identification: Lip regions are extracted using the Dlib method, an
improvement on the Viola-Jones method used in [1]. We also identify the centre
point to select the correct region after Gabor filtering. To demonstrate this, the
image in Fig. 4 is labelled with 68 points, with the ROI located using points 6,
10, and 13. The x and y centre co-ordinates are calculated as follows:

X = (point(48).x − point(6).x) +
point(54).x − point(48).x

2
(1)

Y = (point(51).x − point(13).x) + (shape.part(62).y − shape.part(51).y)

+
point(66).x − point(62).x

2
(2)
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Fig. 3. Key steps of lip feature extraction

Gabor Features: Lip region was identified by using GWT. In OpenCV Python,
this can be done using cv2.getGaborKernel(ksize, σ, θ, λ, γ, ψ, ktype). This
requires a number of parameters, and after experimentation, optimal parameters
for this dataset are listed in Table 1.

The parameters chosen in Table 1 are heavily dependent on factors such
as image size, distance from the camera, and speaker pose. The parameters
were suitable for the majority of videos, although some occasional small adjust-
ments ± 1 were made to optimise results. It should be noted that no changes
were needed within video sequences. Example results are shown in Fig. 5. Here,
Fig. 5(a) shows an original frame, and (b) and (c) show an extracted open and
closed mouth respectively. The effect of the GWT is shown in Fig. 5(d) and (e)
showing an open mouth and a closed mouth. It can be seen that the dark area of
the open mouth is obvious, but the closed mouth is very faint. Finally, Fig. 5(f)
shows precise feature extraction, as will be discussed next.

Feature Extraction: The Python function skimage.filters.threshold yen
determines whether each pixel in transformed image should belong to the tar-
get or background region, calculated automatically depending on the individual
image. This produces a corresponding binary image. This method returned a
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Fig. 4. The ROI and centre points of example speech frames

Table 1. Suitable parameters for Gabor-based feature extraction of AVMC data

Parameter Description Value

Wavelength (λ) Cosine factor of the Gabor filter kernel 16

Orientation (θ) Orientation of the normal to the parallel
stripes of a Gabor function

90

Phase offset (φ) Phase offset of Gabor cosine factor 0

Aspect ratio (γ) The ellipticity of the support of the
Gabor function

0.5

St. deviation (σ) The standard deviation of the Gabor
filter Gaussian function

4

ktype The type and range of values that each
pixel in the Gabor kernel can hold

CV 32F

Ksize The size of the Gabor kernel 12

Fig. 5. Example of the feature extraction process from one frame

higher threshold value which more accentuated lip features in comparison to the
skimage.filters.threshold otsu function.
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The Python regionprops function is then used to label all connected pixels
and to find the mouth region according to the distance between ROI centre
point and the centre point of the labelled regions. The Regionprops function
identifies region properties in an image, and the result of GWT is a number of
regions, with the closest region to the ROI centre point being chosen as the lip
region R, with several parameters then obtained. Figure 5(f) shows a final result.
Seven properties of the blue region represent the lip features. These are:

– Width: The width of R.
– Height: The height of R. Width and height temporal changes provide intuitive

and effective lip information.
– Centre (X,Y): Centre point of R. Tracks lip position.
– Mass: Sum of each pixel value within R. Provides 3D mouth depth informa-

tion, including tongue and teeth changes.
– Area: Number of pixels within R. A clear measurement of mouth openness.
– Orientation: the mouth angle in degrees, mapping pose of speaker.

Table 2. Configuration of Pinyin recognition network for visual speech recognition

Input Layer: (None, 35, 7)

Conv1D Conv1D Conv1D Conv1D Conv1D Conv1D

filter: 64 filter: 128 filter: 256 filter: 256 filter: 256 filter: 960

kernel: 3 kernel: 8 kernel: 13 kernel: 18 kernel: 25 kernel: 35

strides: 1 strides: 1 strides: 1 strides: 1 strides: 1 strides: 1

padding: same padding: same padding: same padding: same padding: same padding: valid

activation: linear activation: linear activation: linear activation: linear activation: linear activation: linear

bias: true bias: true bias: true bias: true bias: true bias: true

MaxPooling1D MaxPooling1D MaxPooling1D MaxPooling1D MaxPooling1D

strides: 2 strides: 2 strides: 2 strides: 2 strides: 2

pool:2 pool:2 pool:2 pool:2 pool:2

padding: valid padding: valid padding: valid padding: valid padding: valid

Concatenate

Add

Batch Normalization

Conv1D

filter: 256

kernel: 6

stride: 1

padding: valid

activation: linear

bias: true

MaxPooling1D

strides: 2

pool: 2

padding: valid

Dropout

rate: 0.25

TimeDistributed(Dense)

units: 31

activation: softmax

bias: true

Output Layer: (None, 6, 31)
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Table 3. Precision, recall, and f1-score for all Pinyin characters

precision recall f1-score precision recall f1-score
0 0.743 0.949 0.833 p 0.462 0.250 0.321
a 0.597 0.573 0.583 q 0.294 0.375 0.328
b 0.535 0.618 0.573 r 0.579 0.500 0.532
c 0.559 0.284 0.374 s 0.324 0.486 0.387
d 0.187 0.186 0.182 t 0.606 0.375 0.457
e 0.624 0.183 0.281 u 0.550 0.482 0.507
f 0.067 0.040 0.050 v 0.800 0.200 0.314
g 0.494 0.099 0.164 w 0.212 0.300 0.247
h 0.551 0.250 0.343 x 0.343 0.361 0.349
i 0.541 0.714 0.615 y 0.238 0.391 0.295
j 0.331 0.311 0.317 z 0.258 0.267 0.261
k 0.393 0.200 0.257 1 0.431 0.453 0.440
l 0.316 0.459 0.368 2 0.438 0.192 0.255
m 0.470 0.435 0.444 3 0.491 0.685 0.569
n 0.450 0.243 0.313 4 0.512 0.524 0.516
o 0.511 0.147 0.227

total 0.449 0.372 0.377

4.1 Lipreading with Inception-ResNet, Results and Discussion

To test our improved feature extraction system with our new corpus, we perform
visual speech recognition in an Inception-ResNet network [16]. This combines
the Inception CNN module with residual connections. The Inception module
has an efficient utilization of the computing resources inside the network, which
increases network depth and width while keeping the computational cost low.
Residual connections have been shown to contribute to faster training of the
Inception network [15]. Based on initial trials, the proposed architecture of this
network is shown in Table 2. This model is character based, meaning that rather
than estimating the Pinyin, given a sequence of visual vectors, it attempts to
identify each character.

After 5 runs, the overall character level validation accuracy of this system
is 64.96% with an Interquartile Range (IQR) of 0.003, and the CER is 57.72%
with an IQR of 0.005. This is in line with other visual systems that consider
only single words without sentence level context. The detailed results are shown
in Table 3. However, some analysis of the table is required. Firstly, a single
model was trained for all characters, and this meant there were more cases of
0 (i.e. no character present), which is a result of having more smaller Pinyin
words (i.e. ‘1yi’ has 3 more ‘0’ characters than ‘1zhong’). Despite the data being
evenly distributed at Pinyin level, at character level, this results in a skew to
‘0’, affecting the results. It should also be noted that when the character results
are combined into a single Pinyin character, the overall word accuracy is only
11.76%. However, this is not an unexpected result.

Table 3 shows that according to both accuracy scores and f1-scores of 26
letters, the most accurate characters are ‘a’, ‘t’, and ‘r’. Furthermore, ‘v’ is
distinctive, with highest precision but low recall, which may due to the lower
distribution rate. It should also be pointed out that the results can be grouped
into initials, finals, shared initials and finals, and tones. Excluding zeros, the
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respective mean f1-score for the 16 dedicated initials is 0.327, for the 6 dedicated
finals it is 0.421, for the 3 shared initials and finals, it is 0.335, and for tones it
is 0.445. This suggests that performance is better for finals than initials, with
the shared initials and finals likely causing confusion. In addition, the overall
validation accuracy is likely to be much higher for finals than for initials, which
is unsurprising, given that more information is present in the visualisation of a
final. Also, conventional deep learning algorithms are likely to not perform well
in this test, due to a lack of training data. So above all, an overall character level
validation accuracy of 64.96% is along the lines of what is expected.

The results support that recognition is being performed accurately in many
cases, considering that visual information alone will only ever generate incom-
plete information, and that tone is overwhelmingly a function of the vocal cord,
and is not visualised. To generate accurate Pinyin matching, then separate mod-
els should be trained for initials, finals, and tones, since we are dealing with three
distinct word components. We can also improve the very low word accuracy
scores by training these separate models, and also improving the formulation of
Pinyin, post character generation. There is always likely to be skew in the data,
this is a feature of character-level Pinyin generation, and the structure of Pinyin
makes direct comparison to English language lip-reading challenging.

Much research has found that it is possible to train deep learning models
at the character level, as it allows the model to learn internal word structures.
However, to the best knowledge of the authors, this approach has not been used
widely for Chinese, with research limited to been text based work, such as by
Huang and Wang [9]. Due to the new approaches, we have used in this paper, and
the new form of analysis, there is no direct comparison between our results and
other results in the literature, as other research tends to consider the Pinyin at a
word level, rather than considering it separately at a character level, which as our
research has shown, is an important factor. Overall, we can conclude that firstly,
the improved feature extraction method improved on that proposed by Abel
et al. [1], using a more advanced ROI detection method (Dlib rather than Viola-
Jones). Qualitative comparisons identified that our features were more reliable
and accurate, with additional features (i.e. height measurements). In addition,
using Gabor features rather than CNN features is more suitable for a smaller
corpus, and also reduced the training time considerably. Our new AVMC corpus
is available on request, and fills a role of clean Chinese speech data, focusing
on individual characters, that other corpora do not currently meet. Finally, the
initial experiments presented in this paper suggested that results were along the
lines of what was expected, and that using a different approach to what is used
for non-tonal languages will improve results.

5 Conclusions

This paper introduced a new audiovisual speech corpus, AVMC, which is
recorded in a good quality studio environment, and contains 10 speakers reading
distinct Chinese characters from a teleprompter. This dataset is fully labelled,
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and is freely available on request. To demonstrate its effectiveness, we performed
initial visual speech recognition with an improved lightweight Gabor-based fea-
ture extraction system, with character based recognition results of 64.96% for
recognition rate and 57.72% CER when trained with a deep neural network.
Future work will be to improve the feature extraction process by making it more
robust and easier to configure, as well as improving our database by adding more
speakers and more utterances to make it more suitable for deep learning use, and
considering training with individual models for different speech components. In
addition, for the recognition model, it could be improved to a different Inception-
ResNet network by adding 1*1 convolution to reduce the computational cost [15].
Furthermore, after getting lip Gabor images, the stacked denoising autoencoders
need to be used to reduce noisy and hypothesis ROI regions [8].
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