
Chapter 9
Collapse Prediction and Safety
of Masonry Arches

Georgios E. Stavroulakis , Ioannis Menemenis, Maria E. Stavroulaki
and Georgios A. Drosopoulos

Abstract Masonry structures without mortar or with mortar of low quality are used
in several infrastructures, like bridges and retaining walls Unilateral contact plays a
crucial role in their stability. Limit analysis and nonexistence of solution are related to
the creation of collapse mechanisms. Open source and freely available software can
beused for the analysis of such structures, usuallywith an acceptable for post-disaster,
emergency situations. Numerical results related to a recently collapsed masonry
bridge demonstrate the usage of the proposed method.
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9.1 Introduction

Masonry arch bridges and walls are traditional structures, consisting of stone blocks
and mortar. The ability of the material and the joints to transfer compressive load-
ing, and their inability to accept reliably tensile loading are optimally exploited. The
modern approach to structural analysis of masonry arches is based on limit analysis
concepts or unilateral contact mechanics, after suitable simplifications. These con-
cepts can be used for the assessment of limit load and collapse modes or existing
structures after a natural disaster.

Masonry arches are examples of structures where form meets mechanical func-
tion: stones and mortar, if it exists, of relatively high strength in compression and
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limited, unreliable, practically zero strength in tension are used in such a way so that
self-weight keeps them stable in place and the whole structure in a functional state.
Life loading is usually a small quantity in classical heavy structures, therefore this
disturbance can be accommodated. If not, for example due to an accidental loading
during a disaster, hinges develop due to unilateral contact separation, the degree of
indeterminacy is reduced and finally a mechanism of collapse develops.

The main purpose of this contribution is to demonstrate a different approach to
static analysis of structures subjected to extreme loading cases and facilitate the usage
of these techniques by indicating suitable software packages which can be used for
a first and quick assessment.

9.2 Modelling and Limit Analysis of Masonry Structures

Modelling of a structure with unilateral interfaces is based on concrete tools of non-
smooth and contact mechanics (Demyanov et al. 1996; Mistakidis and Stavroulakis
1998; Leftheris et al. 2006; Bolzon 2017). For rigid body or linearly deformable
structures, the structural analysis problem can be transformed in known forms of
mathematical programming problems, like quadratic optimization with inequality
constraints or complementarity problems. Stability of amulti-block structure is based
on the ability of unilateral contact joints to transfer compressive loading from the
one part to the other and finally to the supports. The peculiarity of the unilateral
contact mechanism is the different behaviour in compression and tension. For the
whole structure self-weight in cooperation with the shape of the structure usually
stabilizes the system. Any additional load could potentially lead to collapse, since
the total loading may become prohibitive for the structure. In other words the arising
contact problem has no solution.

For the simplest case of frictionless contact, the structural analysis problem can be
formulated as a potential energy minimization which includes the unilateral contact
inequality constraint (non-penetration). This is given by the relation:

min
u

( 12u
T ku − PT u)

Nnu − g ≤ 0
(9.1)

For the quadratic minimization problem, the Karush-Kuhn-Tucker (KKT) opti-
mality conditions lead to the linear complementarity problem (LCP) of relations.

Ku + NT
n rn = Po + λP

Nnu − g ≤ 0
rn ≥ 0

(Nnu − g)T rn = 0

(9.2)
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The first equation expresses the equilibrium of the discretized unilateral contact
problem without friction, where K is the stiffness matrix and u the displacement
vector.Po denotes the self-weight of the structure andP represents the live loadvector,
multiplied by a scalar loadmultiplierλ.Nn is an appropriate geometric transformation
matrix and vector g contains the initial gaps for the description of the unilateral
contact joints. The next relations represent the constraints of the unilateral contact
problem for the whole discretized structure. For the consideration of the constraints,
the vector rn representing Lagrange multipliers is used to depict contact pressure.
The problem described above is a non-smooth parametric linear complementarity
problem (LCP) parametrized by the one-dimensional load parameter λ. Values for
solutions in the interval 0 ≤ λ ≤ λfailure are investigated.

One of the first approaches to masonry arches using parallels to contact and plas-
ticity is given in the classical monograph of Heyman (1982). Analytical studies have
been published in several classical references which will not be given here. Numer-
ical approaches which lead to easily solvable models suitable for quick evaluation
purposes, are based on rigid blocks with unilateral contact (Gilbert and Melbourne
1994; Livesley 1978; Melbourne and Gilbert 1995; Ferris and Tin-Loi 2001; Orduna
and Lourenço 2005; Gilbert et al. 2006; Portioli et al. 2013). The initial model has
been extended in order to cover sliding between adjacent blocks, multiple spans and
multiple arch rings spandrel walls as well as masonry with finite strength. Another
approach constitutes the usage of the discrete element method, see for instance Caliò
et al. (2010).

The most general approach, which incorporates the previously mentioned ones,
is the usage of finite element models for deformable bodies with unilateral contact
interfaces (Drosopoulos et al. 2006, 2008). Solvability of the underlying unilateral
contact problem and suppression of possible rigid bodymotions due to the absence of
classical bilateral supports and the inactive contact interfaces, corresponds to collapse
of the structure under given loadings (Stavroulakis et al. 1991). The ability to have an
automatic and relatively quick model of the structure in the actual geometric shape
using scanners, provides us with additional strength related with the evaluation of
structures in deformed, partially damaged condition (Stavroulaki et al. 2016).

It should be noted that accidental loadings due to natural disasters have been
studied in a few works with results that indicate the importance of computational
modeling for the remaining strength evaluation of existing structures. For instance,
analysis of the influence of flooding on the collapse analysis of masonry arh bridges
indicates that the load-carrying capacity of a fully flooded arch bridge backfilled
with cohesionless fill could typically be reduced by a factor of 1.6–1.8, or even more
in specific circumstances, as it has been shown in Hulet et al. (2006). Flood and
post-flood performance of historic stone bridges has been investigated in Drdácký
and Slížková (2007). Discrete elements are used in Liu et al. (2018), Fukumoto et al.
(2014) and Quezada et al. (2019), for the evaluation of various accidental scenarios.
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9.3 Computational Tools

A general approach to consider multi-block structures with unilateral interaction is
the usage of finite element or boundary element nonlinear contact analysis. Especially
the usage of linear complementarity techniques and the relation with solvability
investigations gives us invaluable insight into the mechanics of these structures and
a rigor mathematical framework to work. Every available general purpose finite
element program able to solve contact problems is, in principle, suitable for this
study.

The simplified approach of rigid blocks and the transformation of the collapse
analysis into a linear programming program can be used for a quick assessment of
existing, mainly two-dimensional structures like bridges and vaults. This approach
has been used in Ring software, which is freely available for use. http://www.shef.
ac.uk/ring, (see Gilbert 2001; Gilbert and Melbourne 1994).

For three-dimensional problems the softwareLiABlock_3D is available.Within it,
structures are represented as 3Dassemblages of rigid blocks interacting at no-tension,
frictional contact interfaces. The mathematical programming problems arising are
solved by Mosek optimization software, while collapse load and failure mechanism
are plotted (Cascini et al. 2018).

Finally two recent software packages are mentioned, which nevertheless have not
been thoroughly tested till now (Chiozzi et al. 2015; Galassi and Tempesta 2019).

9.4 Results Related to Keritis Bridge

Keritis bridge, which is located in Chania, Crete, Greece, was constructed in 1912. It
was used by the residents for more than 100 years and it played a crucial role in the
communication of the local population during historical periods and wars. Today, it
is considered to be a monument. Unfortunatelly this structure collapsed on February
25, 2019, during an extremmely high flooding.

Keritis bridge has 3 arched spans. The geometry and dimensions of the bridge
are presented in Fig. 9.1. The out of plane width of the bridge is equal to 8 m. The
material properties of the structure, which must be used for its structural evaluation,
have been estimated and shown in Table 9.1. For the fill material, the angle of internal
friction and cohesion are received equal to 37° and 10 KN/m2, respectively. For the
asphalt material over the fill, the angle of load distribution is 26.60° and the density is
18 KN/m3. Elasticity modulus and Poisson’s ratio have been estimated from similar
structures, due to lack of information.

For the determination of the ultimate response of Keritis bridge, the limit analysis
software RING was used. As shown in Fig. 9.2, the arches which comprise the main
structural system, the fill over the arch and the abutments are simulated within the
software.

http://www.shef.ac.uk/ring
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Fig. 9.1 Geometry and dimensions (m) of Keritis bridge

Table 9.1 Estimated material
properties of Keritis bridge

Part of the
structure

Density
(KN/m3)

Compressive
strength
(MPa)

Friction
coefficient

Arch 19.60 5.00 0.60

Fill 19.00 0.60

Fig. 9.2 Keritis bridge designed in RING software

To evaluate the influence of the self-weight and vehicle loading on the bridge,
first each arch is independently loaded. Then, the total bridge is numerically tested.
For every simulation, the ultimate safety factor λ, defined as the ratio of the ultimate
load over the applied load, is calculated. For the determination of the influence of
the vehicle loading, several scenarios for the positioning of more than one vehicle
on each arch of the bridge are investigated.

When the first arch is considered and the self-weight loading is examined, five trial
positions of a unit force are tested and the corresponding safety factors are estimated,
as shown in Fig. 9.3 and Table 9.2.
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Fig. 9.3 Trial unit force positions for the first arch of the bridge

Table 9.2 Influence of
self-weight loading on the
strength of the first arch

Load position (m) Safety factor λ

0 6.03E+03

5 603

10 384

15 970

20 3.1E+04

To investigate the real vehicle loading, several scenarios for the positioning of
more than one vehicle shown in Table 9.3, are investigated. The length for each
vehicle is considered equal to 12.3 m. A number of vehicles densely placed along
the length of the bridge have been assumed.

Similar results for the second and third arches and for self-weight and vehicle
loading, are given in Tables 9.4, 9.5, 9.6, and 9.7.

When the overall bridge is considered, the safety factors which are obtained for
several trial positions of unit force along the spans are shown in Table 9.8. From the
given safety factor values is shown that the structure is safe for self-weight loading.

When only one vehicle loading is applied to several positions of the bridge, the
corresponding safety factors which are obtained, are shown in Table 9.9.

Table 9.3 Influence of
vehicle loading on the
strength of the first arch

Load position (m) Safety factor λ

0.0
12.5

3.88

−9.0
3.5
16.0

5.81

−5.545
6.955
19.455

11.70
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Table 9.4 Influence of
self-weight loading on the
strength of the second arch

Load position (m) Safety factor λ

0 6.03E+03

5 603

10 384

15 603

20 6.03E+03

Table 9.5 Influence of
vehicle loading on the
strength of the second arch

Load position (m) Safety factor λ

0.0
12.5

3.87

−9.0
3.5
16.0

5.81

−5.545
6.955
19.455

11.70

Table 9.6 Influence of
self-weight loading on the
strength of the third arch

Load position (m) Safety factor λ

0 3.1E+04

5 970

10 384

15 603

20 6.03E+03

Table 9.7 Influence of
vehicle loading on the
strength of the third arch

Load position (m) Safety factor λ

0.0
12.5

12.7

−9.0
3.5
16.0

6.39

−5.545
6.955
19.455

15.2

When more than one vehicle loading is considered on the bridge as shown in
Fig. 9.4, the safety factor shown in Table 9.10 is obtained. This is an example of
a severe load case, used to indicate the load bearing capacity of the bridge for an
extreme loading scenario.
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Table 9.8 Influence of
self-weight loading on the
strength of overall bridge

Load position (m) Safety factor λ

0 1.71E+05

10 6.26E+04

20 1.71E+05

30 5.87E+04

40 5.87E+04

50 1.71E+05

60 6.26E+04

70 1.71E+05

Table 9.9 Influence of
self-weight loading on the
strength of overall bridge: one
load case, see Fig. 9.3

Load position (m) Safety factor λ

0 138

10 91.9

20 257

30 97.5

40 99

50 138

60 91.9

70 275

Fig. 9.4 Load case of seven vehicle forces applied along the length of the overall bridge

Table 9.10 Influence of
self-weight loading on the
strength of overall
bridge: multiple loadings
case, see Fig. 9.4

Load position (m) Safety factor λ

0 93

12.5

25

37.5

50

62.5

75
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Fig. 9.5 Distribution of moments along the length of the bridge

Fig. 9.6 Distribution of axial forces along the length of the bridge

Fig. 9.7 Distribution of shear forces along the length of the bridge

Fig. 9.8 Collapse mechanism and plastic hinges distribution obtained for the ultimate limit state

To finalize this investigation, the ultimate limit state of the bridge has been deter-
mined, by considering: (λ) × (Applied load) = (ultimate limit load), as the loading
of the bridge. Figures 9.5, 9.6, 9.7, and 9.8 show the moment, axial and shear distri-
bution along the length of the bridge, as well as the collapse mechanism, which are
obtained for this ultimate limit load.

9.5 Conclusions

Methods which can be used to numerically assess the structural performance of
masonry bridges and walls, under static and dynamic loading, have been presented in
this article. Emphasis is posed on simplified limit analysis, which can be performed
by openly available software. More detailed studies, including the application of
non-linear finite element analysis and numerical homogenization can be found in the
literature.

Extension to other structures can be found in the literature, e.g. Tralli et al. (2014).
Using these methods collapse mechanisms and ultimate loads can be estimated



200 G. E. Stavroulakis et al.

quickly. Input of geometrical data can be automatized, by using modern photogram-
metry techniques, for instance terrestrial laser scanners (Stavroulaki et al. 2016;
Riveiro et al. 2016).
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