
Chapter 10
A Discrete Inspired Bat Algorithm
for Firetruck Dispatch in Emergency
Situations
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Abstract This research considers the case where a large fire has developed beyond
the possibility of suppression and resources need to be deployed to reduce the risk
to critical assets. Thus, to determine an optimal deployment of the firetrucks to mul-
tiple assets in a large area, a mathematical formulation is proposed, focusing on
the maximization of the aggregated value of the protected assets that are critically
selected, and on the minimization of the dispatch strategy cost. Moreover, the nov-
elty of the presented formulation is the incorporation of the CO2 emissions of the
firetrucks in the cost function, and, hence, the formulation of theGreen-Prize Collect-
ing Vehicle Routing Problem. Moreover, a hybrid Bat Algorithm (BA) is developed
for the optimization of the aforementioned problem, namely the Discrete Inspired
Bat Algorithm (DIBA). The effectiveness of the proposed algorithmic approach is
demonstrated over computational experiments, in comparison with the results of a
commercial exact solver.

Keywords Discrete bat algorithm · Prize-collecting vehicle routing problem · CO2

emissions

10.1 Introduction

In case of an emergency situation, such as a large fire, incidences may result in the
loss of or damage to houses, schools, bridges, factories and hospitals, often referred
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to as community assets. In order to prevent the loss of assets, sufficient resources are
dispatched to them in a timely manner. The issue that an incident management team
(IMT) faces in case of a large fire is the allocation of the available resources. The
typical resource units being assigned are fire trucks, commonly referred to as tankers.
When dealingwithmajor fire disasters, especiallywhenmultiple fire points occurring
in one region simultaneously, time is an indispensable and primary factor for each
decision-maker. As, Martell (2007) stated: the fire management can be viewed from
a supply chain management perspective as delivering the right amount of the right
fire to the right place at the right time at the right cost. Thus, the objective of an
optimal allocation is the maximization of the value of the assets protected and at
the same time, the minimization of the response time and cost, subject to several
constraints, and among them, the number of the available vehicles. The response
time corresponds to the travel duration of a firetruck from the central station to the
various points of fire. Moreover, apart from enhancing the cost-effectiveness of the
fire suppression activities, the environmental sustainability should be considered in
the decision-making and planning of suppression efforts. Thus, fire managers need
to be able to incorporate into their response strategies, the consumed fuel amount
and the impact of the corresponding CO2 emissions of the firetrucks.

The focus of the presented research is the formulation of an asset protection prob-
lem, in case of a large fire, that takes into account the environmental cost efficiency
of the dispatch planning. Thus, the Green-Prize Collecting Vehicle Routing Problem
(Green-PCVRP) is proposed. In addition, a hybrid Bat Algorithm (BA) is developed
for the optimization of the aforementioned problem, namely the Discrete Inspired
Bat Algorithm (DIBA). The effectiveness of the proposed algorithmic approach is
demonstrated over computational experiments, in comparison with the results of a
commercial exact solver. The rest of the paper is organized as follows: Sect. 10.2 con-
tains a brief literature review; in Sect. 10.3 the mathematical model of the PCVRP is
described; in Sect. 10.4 the proposedmathematical formulation of theGreen-PCVRP
is described; in Sect. 10.5 the original BA is presented; in Sect. 10.6 the DIBA is
introduced and described in detail; Sect. 10.7 contains the experimental results; and
Sect. 10.8 gives the conclusions.

10.2 Brief Literature Review

The main objective of the presented research is the asset protection optimization in
case of a large forest fire, where each node, in the respective problem, is associ-
ated with a prize value, i.e. the benefit of protecting the corresponding asset. Van Der
Merwe et al. (2014) proposed the Cooperative Orienteering Problemwith TimeWin-
dows (COPTW), and in their formulation each asset/node needs a predefined number
of firetrucks towork simultaneously on it, to be protected. The same authors (VanDer
Merwe et al. 2014b) presented a mixed integer programming model formulation for
asset protection during escaped wildfires, with the aim of maximizing the total saved
asset value. The aforementioned model, solved using CPLEX, incorporates mixed
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vehicle types with interchangeable capabilities and with vehicle travel times deter-
mined by vehicle specific speeds and road network information, while the protection
requirements of locations/nodes are defined in terms of the vehicles’ capabilities.
The Asset Protection Problem (APP) after the initial work of Van Der Merwe et al.,
was also, solved by an Adaptive Large Neighbourhood Search (ALNS), proposed by
Roozbeh et al. (2018), while their two-stage stochastic programming approach was
developed to handle the unusual feature of uncertainty in the timing of changes in
conditions, such as wind direction and velocity. These changes determine new time
windows during which assets must be serviced and hence the optimal deployment
schedule and routing of vehicles.

Another formulation was proposed by Tian et al. (2016) who pioneered a bi-
objective optimization model to simultaneously optimize the total fire-extinguishing
time and the total number of fire engines dispatched. They proposed aMulti-objective
Hybrid Differential Evolution Particle Swarm Optimization (MHDP) algorithm to
create a set of Pareto solutions for this problem, while the proposed model considers
the fire spread speed as a crucial factor. Based on the latter work, Wu et al. (2017)
developed an improved bi-objective integer program, containing less variables and
constraints, that based on the computational experiments outperforms the work of
Tian et al. (2016). Moreover, Wu et al. (2019) presented an emergency scheduling
problem for forest fires with limited rescue team resources and priority disaster
areas. Such, each fire point is associated with a priority level based on the severity
of the fire situation and the formulated integer linear-programming (ILP) model
aims to minimize the total travel distance of all rescue teams, which was exactly
solvedbyCPLEX.Consequently, the commonpractice to simulate an asset protection
problem, is the formulation of Vehicle Routing Problem variants that incorporate
nodes with prize values, and aim at the maximization of the completed service (as
is the aggregated prize from the nodes serviced) and/or at the minimization of total
distance travel, i.e. fast response in case of emergency. Thus, we adopt a variation of
the Prize-Collecting Vehicle Routing Problem (PCVRP).

In 2006, Tang andWang formulated the PCVRP to solve the hot rolling production
scheduling problem. The proposed mathematical formulation of the PCVRP incor-
porated a linear combination of three objectives: the total distance minimization;
the number of utilized vehicles minimization and the maximization of the collected
prizes. Thus, the model can satisfy different requirements by altering the value of
the three coefficients, respectively (Tang and Wang 2006). To optimize the PCVRP,
they utilized an Iterated Local Search algorithm (ILS) based on Very Large-Scale
Neighbourhood (VLSN). In the same field, Zhang et al. (2009) proposed a multi-
objective PCVRP-based model for the hot-rolling batch scheduling problem, that
included penalty for the non-visited customers and a fixed number of vehicles, and
solved it using a Particle Swarm Optimization (PSO) variant. The aforementioned
problem with similar mathematical formulation was also solved by Jia et al. (2013)
using a Pareto Max-Min Ant System (P-MMAS).

Hence, two variants of the PCVRP formulation have been derived from the liter-
ature: when the number of vehicles to be utilized is predetermined (PCVRP-P) and
when is not predetermined (PCVRP-NP) (Long et al. 2019). In 2015, Tiwari et al.
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(2015) proposed a hybrid edge recombination approach for the PCVRP-P. Subse-
quently, Li and Tian (2016) developed a two-level self-adaptive variable neighbour-
hood search for the PCVRP-NP, aggregating the multiple objectives in one function
through the weighted sum method. Lately, in 2018, Long et al. studied both version
of the PCVRP as a multi-objective problem, using a Pareto-based evolutionary algo-
rithm, combined with a local search strategy. In order to handle the PCVRP-NP, they
proposed a decomposition strategy that divides the problem into multiple PCVRP-P
problems (Long et al. 2019). The proposed research focuses on the solution of a vari-
ant of the PCVRP-P, the Green-PCVRP, that takes into account the CO2 emissions of
the vehicles that follow the generated routes, and which, at least in our knowledge,
has never been proposed and particularly, incorporating firetrucks and the action
of unloading the vehicle that, actually, significantly affects the proposed objective
function.

The Bat Algorithm has been utilized in the solution of several variants of the
Vehicle Routing Problem (VRP). In 2015, Taha et al. proposed an adapted variant of
the BA for the solution of the CapacitatedVRP (CVRP). TheAdapted BA, developed
in that study, utilizes three parameters (frequency, wavelength and direction search),
and allowing a diversity of the population, swifts between global and local search.
Also, for the solution of the CVRP, in 2016, Zhou et al. (2016) presented a Hybrid
Bat Algorithm with path relinking (HBA-PR), which apart from the BA logic, it
integrates theGreedyRandomizedAdaptive SearchProcedure (GRASP) and the path
relinking. Moreover, in the aforementioned approach the random sub-sequences and
single-point local search are operatedwith certain loudness/probability. Furthermore,
in 2016, Osaba et al. proposed a discrete Bat Algorithm for solving the Traveling
Salesman Problem and theAsymmetric Traveling Salesman Problem, in their version
bats are endowed with some kind of “intelligence”. This intelligence makes the bats
follow different patterns of movement depending on the point of the solution space
in which they are located, while they adopted the Hamming distance to the velocity
equation for bat movement and extend an additional mechanism of 3-opt moves
into local search part. Regarding the same application, also in 2016, Saji and Riffi
presented a discrete version of the BA that includes the 2-opt local search technique.

Furthermore, in 2017, Taha et al. presented a discrete version of the BA for solving
VRP with Time-Windows (VRPTW), which was utilized in combination with the
Large Neighborhood Search (LNS), namely the BA-LNS. Their method incorporates
operators that perform selective extractions of customers in an attempt to minimize
the number of vehicles and the traveling distance, allowing the bat to discover a large
part of the solution space. In 2018, Osaba et al. proposed an evolutionary and discrete
variant of the Bat Algorithm (EDBA) for solving theVRPTW, combinedwith diverse
heuristic operators that achieve hybridization using selective node extractions and
subsequent reinsertions, as an extension of their previous work. Recently, in 2019
Osaba et al. focused on a Rich VRP (RVRP), the Clustered Vehicle Routing Problem
with Pickups and Deliveries, Asymmetric Variable Costs, Forbidden Roads and Cost
Constraints. They developed aDiscrete and ImprovedBatAlgorithm (DaIBA),which
employs two different neighborhood structures, that are explored depending on the
bat’s distance regarding the best individual of the swarm.
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10.3 Prize-Collecting Vehicle Routing Problem

The present paper is focused on the solution of the Prize-Collecting Vehicle Routing
Problem (PCVRP), as such a predefined number of vehicles have to be used, i.e. a
predefined number of feasible routes M have to be constructed to visit the available
assets to be protected. Following the formulation presented in Li and Tian (2016),
the Prize-collecting Vehicle Routing Problem can be described through a complete
graph G = (V, A), where V = {0, . . . , N } is the node set and A = {(i, j)|i, j ∈ V }
is the set of corresponding arcs. Each node i included in the set {1, . . . , N }, represents
an asset and such, specific values of prize, pi and demand di are associated to it. The
depot, as the initial/starting point, is denoted by node 0, and no prize of demand value
is attributed to it. In addition, for each pair of nodes i, j , the travelling time between
them can be expressed by their Euclidean distance, noted as ci j . The symmetry
of the problem defines that ci j = c ji . Furthermore, each vehicle has a maximum
capacity Q and a large fixed usage cost G associated to it. Additionally, by r the
task completion parameter (minimum ratio) is denoted, obtained by dividing the
predetermined amount of demand by the total demand of all nodes. Finally, as Nm

is considered the set of nodes that are visited by vehicle m, (m ∈ 1, . . . , M). The
following decision variables are used:

• xi j (i �= j) = 1 when node j is visited immediately after node i in the optimal
solution, otherwise xi j = 0, (i, j ∈ N ).

• xii = 1 when customer i is visited in the optimal solution, otherwise xii = 0,
(i ∈ N ).

The mathematical formulation of the PCVRP is:

Minimize :
∑

i∈N

∑

j∈N
ci j xi j + G ∗ M −

N∑

i=1

pi (1 − xii ) (10.1)

s.t

N∑

i=1

xi0 =
N∑

i=1

x0i = M (10.2)

N∑

i=1

xi j ≤ 1, j = 1, . . . , N (10.3)

N∑

j=1

xi j ≤ 1, i = 1, . . . , N (10.4)

∑

i∈Nm

di (1 − xii ) ≤ Q, m = 1, . . . , M (10.5)
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∑

i∈S

∑

j∈S,( j �=i)

xi j ≤ |S| − 1, ∀S ⊂ N (10.6)

∑N
i=1 di (1 − xii )∑N

i=1 di
≥ ratioQ (10.7)

xi j ∈ {0, 1}, i, j ∈ N (10.8)

The goal of the objective function Eq. (10.1) is the minimization of the total cost
(travelled distance and fixed vehicle usage) by taking into account the total collected
prize from the visited nodes, the protected assets. Constraint (10.2) requires that each
vehicle conducts a route that initiates from the depot and returns to it. Constraints
(10.3) and (10.4) ensure that each node is visited at most once, while Constraints
(10.5) facilitate the capacity restrictions of the vehicle. Additionally, Constraints
(10.6) are used to eliminate the sub-tours for each vehicle route. Constraint (10.7)
ensures the minimum ratio of demand to be covered. Finally, Constraints (10.8)
specify the integrity conditions on the variables.

10.4 Green Prize-Collecting Vehicle Routing Problem

In order to incorporate the environmental impact of the firetrucks dispatch in case of
a large forest fire, the objective function of the PCVRP is adjusted accordingly. The
linear formulation of emission volume, as presented by El Bouzekri et al. (2013),
considering a Heavy Duty Vehicle (HDV) which has average speed of 80 km/h and
fully loaded weights 25 tons, is given below, where:

• Ei j (q, d): is the CO2 emissions from a vehicle in kg/km with the variable of load
q in ton and d in km,

• e f : is the CO2 emissions of a fully loaded vehicle (1.096 kg/km for a HDV truck)
and

• ee: is the CO2 emissions of an empty vehicle (0.772 kg/km for a HDV truck).

Ei j (q, d) = ci j ∗
[(

e f − ee
)

Q

(
qi j

) + ee

]
(10.9)

The above formulation, Eq. (10.9), is based on the percentage that the vehicle
is loaded, while according to the PCVRP mathematical formulation the continuous
parameter qi j represents the aggregated volume of demand that the vehicle carries as
it traverses from node i to node j . However, in case of a tanker firetruck, the vehicle
initiates from the depot fully loaded and, progressively, as it protects the assets,
the volume that carries decreases. Hence, the element of the objective function that
relates to the cost minimization, i.e. the minimization of the total distance travelled,
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is adjusted as shown in Eq. (10.10).

Min :
N∑

i=0

N∑

j=0

M∑

m=1

ci j x
m
i j

[(
e f − ee

)

Q

(
Q − qm

i j

) + ee

]
+ G ∗ M −

N∑

i=1

M∑

m=1

pi yim

(10.10)

Thus, the proposedmathematical formulation of the Green Prize-Collecting Vehi-
cle Routing Problem (Green-PCVRP) emerges, by replacing the objective function
and expanding the decision variables with respect to each vehicle/route m. In addi-
tion, a binary auxiliary decision variable yim is used to define whether the node i
is included into route m. Moreover, the following constraints should be included to
control the parameter qm

i j , see Constraints (10.18), (10.19) and (10.20). Particularly,
Constraints (10.18) indicate the reduced cargo of the vehicle and, also, do not permit
any illegal sub-tours.

N∑

i=1

yi0 =
N∑

i=1

y0i = M (10.11)

M∑

m=1

yim ≤ 1, i = 1, . . . , N (10.12)

N∑

i=1

yim ≥ 1, k = 1, . . . , M (10.13)

N∑

j=1,i �= j

xmi j = yim, i = 1, . . . , N and m = 1, . . . , M (10.14)

N∑

i=1,i �= j

xmi j = y jm, j = 1, . . . , N and m = 1, . . . , M (10.15)

N∑

i=1

yim ∗ di ≤ Q, k = 1, . . . , M (10.16)

N∑

i=1

M∑

m=1

yim ∗ di ≥ Qr (10.17)

N∑

i=0,i �= j

qm
ji −

N∑

i=0,i �= j

qm
i j = d j ∗ y jm, j = 1, . . . , N and m = 1, . . . , M

(10.18)

0 ≤ qm
i j ≤ xmi j , i, j = 1, . . . , N (i �= j) and m = 1, . . . , M (10.19)
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qm
1i = 0, i = 2, . . . , N and m = 1, . . . , M (10.20)

Constraint (10.11) establish the correct number of routes to be formulated. Con-
straints (10.12) guarantee that each node is included into a route no more than once
and Constraints (10.13) ensure that each route should include at least one node. Con-
straints (10.14) and (10.15) ensure the continuity of the route. Finally, Constraints
(10.16) and (10.17) are established to avoid the overload of a vehicle and ensure
that the required ratio of capacity volume is to service by the complete solution,
respectively.

10.5 Bat Algorithm

The Bat Algorithm (BA), proposed by Yang in 2010, is a nature-inspired meta-
heuristic algorithm based on the echolocation behavior of microbats, which can find
their prey and discriminate different kinds of insects even in complete darkness. In
the nature, bats emit ultrasonic pulses to the surrounding environment to hunt and
properly navigate. Bats are listening to the echoes, produced by the emitted pulses
and based on them they can locate themselves and also identify and locate preys and
obstacles. Moreover, each bat is able to find the most nutritious areas performing
an individual search, or moving towards a nutritious location previously found by
any other bat of the swarm. Yang established the following approximate or idealized
rules:

1. All bats use echolocation to detect the distance, and they have the ability to
distinguish between an obstacle and a prey.

2. All bats fly randomly with a velocity vi at position xi with a fixed frequency
fmin , varying wavelength λ and loudness Ai to search for prey. In this idealized
rule, it is assumed that every bat can adjust in an automatic way the frequency (or
wavelength) of the emitted pulses, and the rate of these pulses emission r ∈ [0, 1].
This automatic adjustment depends on the proximity of the targeted prey.

3. In the real world, the bats emissions loudness can vary in many different ways.
Nevertheless, we assume that this loudness can vary from a large positive A0 to
a minimum constant value Amin .
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Following the pseudo-code of the original BA (see Algorithm 1), every bat of the
population (swarm) represents one possible solution of the problem to be optimized.
At first, the population is initialized and the respective parameters to each solution
are defined, these are the frequency fi , the velocity vi , the loudness Ai and the pulse
rate ri . In the main phase, for each generation t , every bat of the population moves
by updating its position and velocity following the Eqs. (10.21), (10.22) and (10.23).

fi = fmin + ( fmax − fmin)β, β ∈ rand[0, 1] (10.21)

vt
i = vt−1

i + [
xti − x∗

]
fi , x∗ : best solution in the swarm (10.22)

xti = xt−1
i + vt

i (10.23)

With respect to the local search phase a new solution is found around one of the
best ones, based on a random walk: xnew = xold + rand[−1, 1] ∗ At , where At is
the average loudness of the swarm at generation t . Finally, the loudness Ai and the
rate ri of each bat are updated following these formulas:

At+1
i = αAt

i , α ∈ [0.90, 0.99] (10.24)

r t+1
i = r0i

[
1 − exp(−γ t)

]
, γ > 0 (10.25)
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10.6 Discrete Inspired Bat Algorithm

The Bat Algorithm has been initially design for the solution of continuous opti-
mization problems. Such, it could not be directly applied in the solution of the
Green-PCVRP, since the representation of the solutions is made by ordinal number
encoding, i.e. discrete values that represent a sequence of nodes. As an instance,
considering N = 12 number of nodes and M = 3 vehicles/routes, a feasible solu-
tion could be represented in a vector as: [1, 4, 7, 10, 8, 1, 5, 6, 2, 3, 1, 9, 1], where
all three routes initiate from and return to node 1, the duplication of node 1 among
consecutive routes in a vector is omitted for simplification. Thus, we proposed a
discrete version of the BA, namely, the Discrete Inspired Bat Algorithm (DIBA),
in which similar to previous researches, the movement equations are replaced by
heuristic techniques that search the local area around a solution to retrieve a new
one, that will be described in the following. Moreover, the frequency parameter fi ,
in order to reduce the complexity of the algorithmic scheme, is omitted while the
pulse rate ri and loudness Ai follow the original logic.

Furthermore, the velocity parameter vi , depends on the position of the best solution
in the population, and in our proposed version, since the original formula includes
the frequency parameter, it is calculated as the distance among the respective solution
and the best solution in the population. As solution distance, we refer to the number
of element-wise similarity among the compared solution vectors, i.e. the number of
positions at which the corresponding elements in both vectors are the same. Due
the selective nature of the Green-PCVRP, the population is not uniform in terms
of length, and, thus, other widely-used distance measures, e.g. Hamming Distance,
Manhattan Distance could not be utilized. Also, we adopt the proposal of Osaba
et al. (2019), that the velocity value could be represented by the number of neighbor
solutions to be found, and that the best among them represents the new solution. The
complete proposed algorithmic framework, the DIBA, is presented in Algorithm 2
and the respective flowchart is depicted in Fig. 10.1.
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Fig. 10.1 Flowchart of the proposed DIBA
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Following the proposed DIBA algorithm, after the parametrization step, the initial
population should be generated and evaluated according to the fitness function, see
Eq. 10.10. For that, the I ni tial-Population heuristic method is employed, see
Algorithm 3. A predefined number of routes are initialized by a random node and
combined to form a single vector. In order to satisfy the task completion constraint,
a ratio of demand volume should be covered by the complete solution. Thus, until
the aforementioned constraint is satisfied, non-included nodes in the initial solution,
are inserted based on their most efficient position, in terms of distance travelled,
when the rest of the imposed constraints of the PCVRP are not violated. In order to
produce solutions of sufficient quality, the non-included nodes are previously sorted
based on their prize value.

In the following, the local search phase is conducted, and such for a specific
number of iterations the local search techniques Remove-node, Rein f orcement
and Exchange-node are implemented to each solution in the current population.
The number of iterations for this phase is a random value, ranging from one to vi ,
while the velocity of the solution i is calculated as described earlier.
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With respect to the embedded local search techniques of this phase, the
Rein f orcement aims to amplify the solution by inserting non-included, so far,
nodes into the solution vector, taking into account the feasibility of the solution and
the improvement of the solution’s quality, while nodes to be inserted are randomly
chosen, aiding to the increase of the exploration capability of the procedure. The
previously employed one, is the Remove-node technique, during which nodes with
low prize value are extracted from the solution vector, with a dual objective: (1) the
fitness value of the solution could be improved, when the prize decrease offsets the
new travel distance and emissions; and (2) the solution is reduced in terms of capacity
Q per route, and when the Rein f orcement is employed, different nodes could be
inserted, exploiting that capacity gap.

Regarding the Exchange-node local search technique, a simple iterative
exchange of nodes between randomly selected routes is conducted, to further exploit
the solution, with respect to all imposed constraints of the problem.
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After the completion of the local search phase, the best neighbor solution is
selected, from all generated over the conducted iterations. According to the original
BA scheme, the neighbor solution is accepted following a probability based on the
loudness parameter of the initial solution, even when the newly formed one is better.
When a solution is accepted and replaces the initial one, the loudness parameter
of the respective solution is decreased and the pulse ration is increased. All the
above described processes should be followed for every member of the population.
Then, the current best fitness value is retrieved. Subsequently, the best fraction of
the current population is selected, denoted by W ∗, and the solutions included in this
elite population are randomly selected with a probability based on their respective
pulse ratio value to undergo a second local search phase. The aforementioned phase
is enriched with one more heuristic technique, in which a number of permutations of
the nodes included into the solution of interested is tested, aiming to obtain a more
efficient node sequence, in terms of distance traveled and emissions minimization.
Nevertheless, it is possible that over the evolution of the population, following the
local search phases, the algorithmic process could not obtain amore effective solution
i.e. smaller fitness value. Thus, in the proposed DIBA, a restart procedure is applied,
that introduces to the current population, newly generated solutions, that should
replace the worst fraction of the current population and by that avoiding the fast
converge of the solution method.

10.7 Computational Experiments

This section presents the experimental results of this study, solving the Green-
PCVRP, in order to prove the solution quality of the proposed DIBA. The benchmark
instances are drawn form the recent literature (Long et al. 2019), while there is a lack
of comparison with other publish algorithms, since the research focuses on a pro-
posed mathematical formulation, as a variant of the PCVRP. Thus, the obtained
results of DIBA are compared with the solutions of the Gurobi exact solver on the
same instances.
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Table 10.1 Parameter setting Parameter Description Expression

N P Population size 80

L Number of iterations 200

W ∗ Elite population size 0.2 * N P

A0 Initial loudness rand[0.7, 0.1]

r0 Initial pulse ratio rand[0.1, 4]

γ , α BA constants 0.98

i termax Local search iterations 100

K restart parameter 0.1 * N P

10.7.1 Benchmark Instances

As the PCVRP has not been studied extensively, previous publications used the
benchmark instances of the Capacitated Vehicle Routing Problem (CVRP), incorpo-
rating a prize value to each customer and a minimum demand served ratio ratioQ ,
both generated uniformly from [1, 80] or [1, 100] and [0.6, 0.8], respectively. How-
ever, recently, Long et al. publish a set of 120 instances for the PCVRPP, accessible
at https://github.com/longjianyuGH/PCVRP.git (2019). In this study, we consider a
set that consists in total of 120 benchmark problems, as for each of the 24 CVRP
instances (group: A, B, E, M), 5 versions were generated, by changing the ratio
ratioQ : {0.60, 0.65, 0.70, 0.75, 0.80}. The different variants include problems with
number of nodes from 32 to 200, and number of vehicles from 4 to 17. The parameter
setting used for the conducted computational experiments is presented in Table 10.1.

10.7.2 Computational Results

In the following, the conducted experimental results on the benchmark instances
are presented in Tables 10.2, 10.3, 10.4 and 10.5. For each of the 120 considered
instances, the fitness function value of the best solution obtained by theGurobi solver,
is presented, denoted by gmin . In addition, the minimum (wmin) and average wavg

achieved values of the objective function, over five algorithmic executions of the
proposed DIBA can be seen in the aforementioned tables. Moreover, the columns
labeled as rpe and rpeavg present the average percentage error of the best and the
average solution, from the corresponding gmin , for each tested instance.

It is important to highlight that the exact solutionmethod is able to find the optimal
results within 10 min, with respect to the small instances, i.e. small number of nodes
and routes, while regarding the larger ones the solution deviation from the optimal
(MIPgap) is significant, while in some cases the solver could not return a feasible
solution within 20 min of execution time, as seen in Table 10.5, when the number of
nodes ranges between [101, 200] and the number of routes between [7, 17]. Overall,

https://github.com/longjianyuGH/PCVRP.git
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Table 10.2 Group A: computational results

Instance Gurobi solver DIBA

gmin wmin rpe (%) wavg rpeavg (%)

A-n32-k5-1 4.357E+03 4.396E+03 −0.89 4.410E+03 −1.20

A-n32-k5-2 4.436E+03 4.459E+03 −0.52 4.473E+03 −0.84

A-n32-k5-3 4.337E+03 4.404E+03 −1.55 4.411E+03 −1.72

A-n32-k5-4 4.367E+03 4.410E+03 −0.98 4.415E+03 −1.09

A-n32-k5-5 4.644E+03 4.703E+03 −1.26 4.713E+03 −1.48

A-n37-k6-1 5.419E+03 5.490E+03 −1.30 5.501E+03 −1.50

A-n37-k6-2 5.450E+03 5.520E+03 −1.28 5.525E+03 −1.38

A-n37-k6-3 5.385E+03 5.454E+03 −1.28 5.459E+03 −1.37

A-n37-k6-4 5.428E+03 5.511E+03 −1.53 5.515E+03 −1.61

A-n37-k6-5 5.181E+03 5.239E+03 −1.11 5.241E+03 −1.16

A-n44-k6-1 5.053E+03 5.115E+03 −1.23 5.117E+03 −1.26

A-n44-k6-2 4.884E+03 4.928E+03 −0.91 4.943E+03 −1.22

A-n44-k6-3 5.249E+03 5.316E+03 −1.26 5.328E+03 −1.50

A-n44-k6-4 4.828E+03 4.887E+03 −1.21 4.892E+03 −1.31

A-n44-k6-5 5.032E+03 5.122E+03 −1.80 5.123E+03 −1.83

A-n48-k7-1 5.941E+03 6.008E+03 −1.13 6.009E+03 −1.16

A-n48-k7-2 6.217E+03 6.277E+03 −0.96 6.282E+03 −1.04

A-n48-k7-3 6.074E+03 6.112E+03 −0.61 6.117E+03 −0.69

A-n48-k7-4 6.056E+03 6.103E+03 −0.77 6.108E+03 −0.85

A-n48-k7-5 6.033E+03 6.125E+03 −1.53 6.128E+03 −1.57

A-n53-k7-1 5.948E+03 6.013E+03 −1.08 6.016E+03 −1.13

A-n53-k7-2 5.704E+03 5.790E+03 −1.50 5.795E+03 −1.59

A-n53-k7-3 5.716E+03 5.811E+03 −1.67 5.826E+03 −1.93

A-n53-k7-4 5.553E+03 5.627E+03 −1.34 5.642E+03 −1.61

A-n53-k7-5 6.008E+03 6.065E+03 −0.94 6.075E+03 −1.11

A-n60-k9-1 7.969E+03 8.083E+03 −1.43 8.093E+03 −1.56

A-n60-k9-2 8.031E+03 7.971E+03 0.75 7.976E+03 0.68

A-n60-k9-3 9.923E+03 8.211E+03 17.25 8.219E+03 17.17

A-n60-k9-4 7.801E+03 7.926E+03 −1.60 7.931E+03 −1.66

A-n60-k9-5 8.069E+03 8.157E+03 −1.10 8.173E+03 −1.30

A-n65-k9-1 7.848E+03 7.661E+03 2.39 7.761E+03 1.11

A-n65-k9-2 9.680E+03 7.599E+03 21.50 7.649E+03 20.98

A-n65-k9-3 8.931E+03 7.448E+03 16.61 7.598E+03 14.93

A-n65-k9-4 9.049E+03 7.692E+03 14.99 7.697E+03 14.94

A-n65-k9-5 7.546E+03 7.355E+03 2.53 7.405E+03 1.87

(continued)



10 A Discrete Inspired Bat Algorithm for Firetruck Dispatch … 219

Table 10.2 (continued)

Instance Gurobi solver DIBA

gmin wmin rpe (%) wavg rpeavg (%)

A-n69-k9-1 9.410E+03 7.599E+03 19.25 7.634E+03 18.88

A-n69-k9-2 9.785E+03 7.607E+03 22.26 7.647E+03 21.85

A-n69-k9-3 9.450E+03 7.492E+03 20.72 7.542E+03 20.19

A-n69-k9-4 9.877E+03 7.395E+03 25.13 7.410E+03 24.98

A-n69-k9-5 9.819E+03 7.503E+03 23.58 7.511E+03 23.50

A-n80-k10-1 1.099E+04 9.009E+03 18.05 9.059E+03 17.59

A-n80-k10-2 1.121E+04 8.951E+03 20.16 8.976E+03 19.93

A-n80-k10-3 1.102E+04 8.789E+03 20.27 8.814E+03 20.05

A-n80-k10-4 1.130E+04 9.078E+03 19.64 9.118E+03 19.29

A-n80-k10-5 1.097E+04 8.606E+03 21.57 8.621E+03 21.43

the proposed DIBA approach performs efficiently since, allowing 3 min of max
execution time, it obtained 58/120 solutions better than the corresponding of the
exact solver, and for 62/120 instances resulted in a worst solution. Nevertheless, the
average relative percentage error over these 62 instances does not exceed the 0.98%,
which taking into account the different allowed execution time of the two utilized
methods, is an effective and competitive result.

With respect to the instance groups A, B and E, for which a comparison among
the proposed DIBA and the exact solver can be made, the experimental results are
summarized as follows, while the main attribute of the DIBA behaviour is that per-
forms better over the exact solver for instances with more than 60 number of nodes
N:

• GroupA: with number of nodes N ε {32, 37, 44, 48, 53, 60, 65, 69, 80} and number
of routes M ε {5, 6, 7, 9}, the DIBA performed worst with−1.21% and better with
14.94% average deviation from the Gurobi exact solver.

• Group B: with number of nodes N ε {39, 41, 50, 56, 63, 78} and number of routes
M ε {5, 6, 7, 10}, the DIBA performed worst with−0.52% and better with 16.81%
average deviation from the Gurobi exact solver.

• Group E: with number of nodes N ε {23, 33, 51, 76, 101} and number of routes
M ε {3, 4, 5, 10, 14}, the DIBA performed worst with −1.20% and better with
7.14% average deviation from the Gurobi exact solver.

10.8 Conclusions

The presented research introduces the Green-Prize Collecting Vehicle Routing Prob-
lem, to optimize the resource of firetrucks, allocation in case of a large fire, where
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Table 10.3 Group B: computational results

Instance Gurobi Solver DIBA

gmin wmin rpe (%) wavg rpeavg

B-n39-k5-1 4.015E+03 4.027E+03 −0.30 4.042E+03 −0.67

B-n39-k5-2 4.085E+03 4.112E+03 −0.64 4.114E+03 −0.69

B-n39-k5-3 3.975E+03 4.001E+03 −0.65 4.011E+03 −0.90

B-n39-k5-4 4.058E+03 4.065E+03 −0.17 4.070E+03 −0.29

B-n39-k5-5 3.944E+03 3.969E+03 −0.62 3.984E+03 −1.00

B-n41-k6-1 5.100E+03 5.112E+03 −0.24 5.127E+03 −0.54

B-n41-k6-2 5.090E+03 5.132E+03 −0.83 5.182E+03 −1.81

B-n41-k6-3 4.914E+03 4.919E+03 −0.09 4.924E+03 −0.19

B-n41-k6-4 4.807E+03 4.821E+03 −0.29 4.851E+03 −0.91

B-n41-k6-5 5.009E+03 5.014E+03 −0.11 5.064E+03 −1.10

B-n50-k7-1 6.054E+03 6.060E+03 −0.10 6.079E+03 −0.41

B-n50-k7-2 5.509E+03 5.528E+03 −0.34 5.538E+03 −0.53

B-n50-k7-3 5.718E+03 5.787E+03 −1.20 5.807E+03 −1.55

B-n50-k7-4 5.747E+03 5.780E+03 −0.58 5.790E+03 −0.74

B-n50-k7-5 5.815E+03 5.823E+03 −0.14 5.838E+03 −0.40

B-n56-k7-1 5.311E+03 5.352E+03 −0.76 5.357E+03 −0.86

B-n56-k7-2 5.317E+03 5.350E+03 −0.62 5.395E+03 −1.47

B-n56-k7-3 5.289E+03 5.366E+03 −1.45 5.371E+03 −1.55

B-n56-k7-4 5.478E+03 5.518E+03 −0.73 5.549E+03 −1.31

B-n56-k7-5 5.468E+03 5.500E+03 −0.5 5.570E+03 −1.87

B-n63-k10-1 9.320E+03 9.170E+03 1.61 9.210E+03 1.18

B-n63-k10-2 9.287E+03 9.003E+03 3.06 9.053E+03 2.52

B-n63-k10-3 1.104E+04 9.415E+03 14.70 9.465E+03 14.25

B-n63-k10-4 1.088E+04 9.096E+03 16.36 9.146E+03 15.90

B-n63-k10-5 1.022E+04 9.436E+03 7.65 9.446E+03 7.55

B-n78-k10-1 1.092E+04 7.892E+03 27.72 7.895E+03 27.69

B-n78-k10-2 1.070E+04 8.037E+03 24.90 8.087E+03 24.43

B-n78-k10-3 1.104E+04 8.357E+03 24.31 8.362E+03 24.27

B-n78-k10-4 1.059E+04 8.069E+03 23.84 8.104E+03 23.51

B-n78-k10-5 1.109E+04 8.440E+03 23.92 8.465E+03 23.70

multiple points/assets need to be protected. The problem includes selective attributes,
capacity constraints and concerns a predefined number of vehicles. The objective of
the Green-PCVRP, is the maximization of the collected prize from the assets pro-
tected and the cost-efficiency in terms of fuel-consumption emissions of the operating
vehicles, based on the formulated dispatch plan. Considering the optimization of the
aforementioned problem, theDiscrete InspiredBat Algorithm has been developed, as
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Table 10.4 Group E: computational results

Instance Gurobi solver DIBA

gmin wmin rpe (%) wavg rpeavg (%)

E-n23-k3-1 2.597E+03 2.593E+03 0.15 2.613E+03 −0.62

E-n23-k3-2 2.670E+03 2.693E+03 −0.87 2.713E+03 −1.60

E-n23-k3-3 2.659E+03 2.707E+03 −1.80 2.752E+03 −3.49

E-n23-k3-4 2.490E+03 2.515E+03 −1.00 2.535E+03 −1.81

E-n23-k3-5 2.509E+03 2.544E+03 −1.38 2.547E+03 −1.50

E-n33-k4-1 3.751E+03 3.820E+03 −1.85 3.855E+03 −2.79

E-n33-k4-2 3.491E+03 3.479E+03 0.35 3.489E+03 0.07

E-n33-k4-3 3.377E+03 3.416E+03 −1.14 3.466E+03 −2.62

E-n33-k4-4 3.396E+03 3.443E+03 −1.38 3.493E+03 −2.85

E-n33-k4-5 3.347E+03 3.413E+03 −1.99 3.513E+03 −4.98

E-n51-k5-1 3.354E+03 3.382E+03 −0.84 3.383E+03 −0.88

E-n51-k5-2 3.503E+03 3.541E+03 −1.09 3.541E+03 −1.09

E-n51-k5-3 3.439E+03 3.473E+03 −0.99 3.508E+03 −2.01

E-n51-k5-4 3.416E+03 3.457E+03 −1.20 3.482E+03 −1.93

E-n51-k5-5 3.540E+03 3.589E+03 −1.37 3.596E+03 −1.57

E-n76-k10-1 1.002E+04 8.135E+03 18.84 8.165E+03 18.54

E-n76-k10-2 9.686E+03 7.710E+03 20.40 7.710E+03 20.40

E-n76-k10-3 9.447E+03 7.720E+03 18.28 7.720E+03 18.28

E-n76-k10-4 9.982E+03 7.811E+03 21.75 7.811E+03 21.75

E-n76-k10-5 1.004E+04 7.935E+03 20.93 7.935E+03 20.93

E-n101-k14-1 1.336E+04 1.097E+04 17.92 1.147E+04 14.17

E-n101-k14-2 1.399E+04 1.143E+04 18.33 1.168E+04 16.54

E-n101-k14-3 1.390E+04 1.109E+04 20.21 1.154E+04 16.97

E-n101-k14-4 1.356E+04 1.095E+04 19.21 1.095E+04 19.21

E-n101-k14-5 1.401E+04 1.134E+04 19.00 1.134E+04 19.00

a hybridization of the original BA, omitting only the frequency parameter and altering
the original algorithmic scheme by enhancing the local search phase and introducing
new solution in the population. To demonstrate the effective performance of the pro-
posed DIBA, computational experiments have been conducted, in comparison with
the results of a commercial exact solver.

To further explore the capabilities of DIBA, as future research, we propose the
exploration of the Green-PCVRP-NP, where the number of vehicles to be utilized is
not a specified value. Finally, in order to enrich the capabilities of the mathematical
formulation, by capturing real-life circumstances, time windows and service time
for each asset should be taken into consideration.
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Table 10.5 Group M: computational results

Instance Gurobi solver DIBA

gmin wmin rpe wavg rpeavg

M-n101-k10-1 – 7.043E+03 – 7.074E+03 –

M-n101-k10-2 – 7.211E+03 – 7.238E+03 –

M-n101-k10-3 – 7.167E+03 – 7.167E+03 –

M-n101-k10-4 – 7.006E+03 – 7.075E+03 –

M-n101-k10-5 – 7.072E+03 – 7.089E+03 –

M-n121-k7-1 – 3.195E+03 – 3.196E+03 –

M-n121-k7-2 – 3.483E+03 – 3.495E+03 –

M-n121-k7-3 – 3.391E+03 – 3.397E+03 –

M-n121-k7-4 – 3.151E+03 – 3.156E+03 –

M-n121-k7-5 – 3.346E+03 – 3.349E+03 –

M-n151-k12-1 – 7.573E+03 – 7.585E+03 –

M-n151-k12-2 – 7.013E+03 – 7.039E+03 –

M-n151-k12-3 – 7.360E+03 – 7.365E+03 –

M-n151-k12-4 – 6.974E+03 – 6.989E+03 –

M-n151-k12-5 – 6.726E+03 – 6.738E+03 –

M-n200-k17-1 – 6.726E+03 – 8.693E+03 –

M-n200-k17-2 – 1.094E+04 – 1.095E+04 –

M-n200-k17-3 – 1.045E+04 – 1.045E+04 –

M-n200-k17-4 – 1.030E+04 – 1.031E+04 –

M-n200-k17-5 – 1.044E+04 – 1.045E+04 –
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