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Abstract. Segmentation of medical images is typically one of the first
and most critical steps in medical image analysis. Manual segmentation
of volumetric images is labour-intensive and prone to error. Automated
segmentation of images mitigates such issues. Here, we compare the more
conventional registration-based multi-atlas segmentation technique with
recent deep-learning approaches. Previously, 2D U-Nets have commonly
been thought of as more appealing than their 3D versions; however, recent
advances in GPU processing power, memory, and availability have enabled
deeper 3D networks with larger input sizes. We evaluate methods by com-
paring automated liver segmentations with gold standard manual anno-
tations, in volumetric MRI images. Specifically, 20 expert-labelled ground
truth liver labels were compared with their automated counterparts. The
data used is from a liver cancer study, HepaT1ca, and as such, presents
an opportunity to work with a varied and challenging dataset, consist-
ing of subjects with large anatomical variations responding from differ-
ent tumours and resections. Deep-learning methods (3D and 2D U-Nets)
proved to be significantly more effective at obtaining an accurate delin-
eation of the liver than the multi-atlas implementation. 3D U-Net was the
most successful of the methods, achieving a median Dice score of 0.970. 2D
U-Net and multi-atlas based segmentation achieved median Dice scores of
0.957 and 0.931, respectively. Multi-atlas segmentation tended to overes-
timate total liver volume when compared with the ground truth, while U-
Net approaches tended to slightly underestimate the liver volume. Both U-
Net approaches were also much quicker, taking around one minute, com-
pared with close to one hour for the multi-atlas approach.

Keywords: Deep learning · Multi-atlas segmentation · Biomedical
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1 Introduction

Over the last few decades, the rapid development of non-invasive imaging tech-
nologies has given rise to large amounts of data; analysis of such large datasets
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has become an increasingly complex task for clinicians. For example, in abdom-
inal magnetic resonance imaging (MRI), image segmentation can be used for
measuring and visualising internal structures, analysing changes, surgical plan-
ning, and extracting quantitative metrics. The high variability of location, size,
and shape of abdominal organs makes segmentation a challenging problem. Seg-
mentation of medical images is often one of the first and most critical steps in
medical image analysis. Manual segmentation of volumetric medical images is a
labour-intensive task that is prone to inter-rater and intra-rater variability. There
is a need to automate the process to increase both efficiency and reproducibility
and decrease subjectivity. Developing a robust automated segmentation method
using deep learning has been an area of intense research in recent years [1].

Popular automated segmentation techniques include: using statistical mod-
els [2], image registration, classical machine learning algorithms [3] and, most
recently, deep learning. Statistical models and classical machine learning algo-
rithms do not generalise as well. Classical machine learning algorithms require
careful feature engineering which is a time consuming and complex process.
In this paper we compare ‘feature engineering free’ state-of-the-art multi-atlas
based segmentation to recent deep-learning approaches.

Multi-atlas segmentation (MAS) was first introduced and popularised by
Rohlfing et al. in 2004 [4]. Since then, substantial progress has been made [5].
MAS is a process that warps a number an expert-labelled atlas images (the
moving images) into the coordinate space of a target image, via non-linear
image registration. The iterative process of image registration involves optimis-
ing some similarity metric, such as cross-correlation, between the warped and
target image by means of deformation of the ‘moving’ image [5]. Atlas labels are
then propagated onto the target image and fused together in a way that can use
the relationship between the target image and registered atlases, alongside the
propagated labels [6]. MAS has the ability to capture anatomical variation much
better than a model-based average or registration to one chosen case [4]. MAS
is a computationally intensive process and has consequently grown in popularity
due to an increase in computational resources [5].

Deep learning refers to neural networks with numerous layers that are capa-
ble of automatically extracting features [1]. This self-learning capability has a
significant advantage over traditional machine learning algorithms, namely that
features do not have to be hand-crafted. Deep learning has been applied to
numerous fields [1]; image analysis tasks, such as object recognition, is one such.
Convolutional neural networks (CNNs) were first introduced in 1989 [7] but have
only recently become popular after a breakthrough in 2012 [9], along with rapid
increases in GPU power, memory and accessibility. CNNs are currently by far
the most popular approach for image analysis tasks [8].

Advancements in algorithms, and GPU technology, along with increased
availability of training sets, has enabled larger, more robust networks. CNNs
can automatically learn representations of image data with increasing levels of
abstraction via convolutional layers [1]. These convolutional layers drastically



480 J. Owler et al.

reduce the number of parameters, when compared with traditional ‘fully con-
nected’ neural networks, as weights are shared among convolutional layers [9].

U-Net was first introduced in 2015 by Ronneberger et al. as a deep CNN
architecture geared towards biomedical image segmentation [10]. U-Net is a
development of the fully convolutional network architecture [11]. A contract-
ing encoder, which analyses the full image, is followed by an expanding decoder
to provide the final segmentation; shallower layers in the network capture local
information while deeper layers, whose retrospective field is much larger, capture
global information [10]. The expanding decoder aims to recover a full-resolution
pixel-to-pixel label map, from the different feature maps created in the contract-
ing layers. Previously, 2D U-Net architectures have been thought of as more
appealing than their 3D versions due to limitations in computational cost and
GPU memory [12]. This said, current advancements in GPU memory and acces-
sibility (cloud services such as Amazon Web Services) has enabled deeper 3D
networks, with larger input sizes.

Here we compare the performance of a state-of-the-art multi-atlas segmen-
tation approach with more recent 2D and 3D U-Net approaches. We evaluate
the performance of each method by comparing manual ground truth liver labels
with their automated counterparts, in challenging volumetric MRI images. Seg-
menting the liver is a process often used in surgical planning [13].

2 Materials

Data for the evaluation of methods was from ‘HepaT1ca’ a liver cancer study.
T1-weighted 3D-SPGR images of the abdomen were collected according to the
HepaT1ca study protocol [14]. HepaT1ca data implies working with a varied
and challenging dataset, consisting of subjects with large anatomical variations
responding from different tumours and resections. The different segmentation
methods should ideally be robust to such dramatic changes between different
images, and complicates both testing and training.

Fig. 1. Example 2D slice from a volumetric MRI image in the dataset with the corre-
sponding liver label.
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135 livers were labelled by a trained analyst. Subjects in the dataset have
various tumours and resections of different shapes and sizes. The dataset was
split into: 115 training cases and 20 test cases (Fig. 1).

3 Methods

3.1 Multi-atlas Segmentation Method

For the multi-atlas segmentation, 45 subjects were chosen at random from the
‘training’ set. A number of random atlases were used in order to capture anatom-
ical variation within a population (one of the underlying principles of MAS). For
each subject in the test set, the 45 random atlases were non-linearly registered
to the test image.

The registration step was divided into two parts: affine registration (scaling,
translation, rotation and shear mapping), followed by non-linear registration.
We used the affine transform from ANTs (advanced normalisation tools) pack-
age [15]. We chose the DEEDS (dense displacement sampling) algorithm [16]
for the non-linear part. DEEDS has been shown to yield the best registration
performance in abdominal imaging [17], when compared with other common
registration algorithms. Image grids are represented as a minimum spanning
tree; a global optimum of the cost function is found using discrete optimisation.
After all of the atlases (and their corresponding labels) had been registered to
the target image, we used STEPS [6], as a template selection and label fusion
algorithm, to produce the final liver segmentation.

3.2 Deep Learning Segmentation Methods

For the deep learning methods, we used slightly different model architectures
for the 3D and 2D U-Net implementations. Figure 2 illustrates architecture of
the 2D U-Net implementation; an expansion of the network previously used for
quantitative liver segmentation [18].

Fig. 2. Architecture of the extended 2D U-Net method used in the comparison
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Like the original 2D U-Net, our implementation has a contracting and
expanding path. The input size of the network is a 288 × 224 image with 1
channel (black and white image). Images were padded to ensure the output size
of feature maps were the same size as the input image. We used batch normal-
isation (BN), after each convolution, to improve performance and stability of
the network [19]. BN was followed by a rectified linear unit (ReLu) activation
function. As suggested in [20], in the contracting path we doubled the number
of channels, prior to max pooling, to avoid any bottlenecks in the network. We
also applied this same principle in the expanding path. An addition of two max
pooling (downsampling) layers, that further reduce the dimensionality of the
image, resulted in better localisation, and as such, improve final segmentation
performance of the network.

The 3D U-Net implementation was essentially identical to the 2D network,
but with 3D operations instead, e.g. a 3 × 3 × 3 convolution instead of a 3 × 3
convolution. The input size to the network was 224 × 192 × 64 voxels. We also
used one fewer max pooling layer; the lowest resolution/ highest dimensional
representation of an image was 14 × 12 × 4. This allowed for better depth local-
isation. If we still had 2 additional max pooling layers there would only have
been 2 layers in the depth dimension.

Each model was implemented using the Keras framework, with Tensorflow
as the backend.

Pre-processing. Each image underwent some pre-processing before being fed
into the network. First, we applied 3 rounds of N4 Bias Field Correction [21]
to remove any image contrast variations due to magnetic field inhomogeneity.
All intensity values were then normalised between a standard reference scale
(between 0 and 100). We also winsorised images, by thresholding the maximum
intensity value to the 98th percentile; a heuristic that gives a reasonable balance
between the reduction of high signal artefacts and image contrast.

For the 2D U-Net network, volumes were split into their respective 2D slices
in the axial plane. Slices could then be reassembled into their respective volumes
after a liver segmentation had been predicted by the network.

Training and Data Augmentation. Both networks were trained on NVIDIA
Tesla V100 GPUs for 100 epochs, with a learning rate of 0.00005. We used a
batch size of 10 and 1 for the 2D and 3D networks, respectively. During training
we employed strategies to prevent overfitting; an important process that ensures
that true features of images are learnt, instead of specific features that only exist
in the training set. In addition to batch normalisation, when training the 2D
network, slices were randomly shuffled between all subjects and batches for each
epoch. Batch order was also randomized during each epoch when training the
3D network. Anatomically plausible data augmentation was applied ‘on-the-fly’
to further reduce the risk of overfitting. We applied small affine transformations
with 5 degrees of rotation, 10% scaling and 10% translation. Both networks
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used Adam optimisation [22] with binary cross-entropy as the loss function.
Each network took around 6 h to train.

After each network was trained, liver masks were predicted for each volumet-
ric image in the test set.

3.3 Evaluation

Methods were evaluated by comparing the automated liver segmentations, pro-
duced by the automated segmentation methods, with the expert-labelled ground
truth image. The first comparison metric we used was the Dice overlap score.

Dice =
(2 × ∑

(X ∩ Y ))
(
∑

X +
∑

Y )
(1)

Dice measures the number of voxels that overlap between the ground truth
segmentation (X) and the automated segmentation (Y). A score of 1 represents
a perfect overlap between two 3D segmentations, while 0 represents no overlap
between segmentations. In addition to Dice, we also measured performance by
calculating the percentage difference in volume between the ground truth and
automated segmentations. This highlighted if methods tended to underestimate
or overestimate total liver volume.

dV =
V 2 − V 1

V 1
× 100 (2)

V1 represents the liver volume of the ground truth segmentation. V2 repre-
sents the liver volume of the automated segmentation. The time taken for each
segmentation method to run was also recorded for each test image.

We then used a paired t-test, to evaluate the differences in mean and variance
between Dice metrics and volume percentage differences, between the segmen-
tations produced by each method.

4 Results

Figure 3 shows a boxplot of the Dice overlap scores between the automated liver
segmentations and ground truth annotations, for all images in the test set.

The multi-atlas approach was found to perform significantly worse than
both the 3D U-Net (t = 3.397, p = 0.003)1 and 2D U-Net (t = 2.628, p = 0.017)2

approaches, while between the U-Net approaches, the 3D version slightly out-
performs the 2D version (t = 2.016, p = 0.051) (Fig. 4).

Figures 5 and 6 show examples of a single slice from different volumetric
images, their corresponding automated liver segmentations and the ground truth
liver segmentations. Figure 5 shows a more challenging case in the test set,
whereby the subject has had a previous liver resection and is missing a sub-
stantial part of the liver. Figure 6 highlights an image with an exemplar liver.
1 (t = 4.886, p = 0.0001) excluding the MAS outlier.
2 (t = 3.499, p = 0.003) excluding the MAS outlier.
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Fig. 3. Boxplot of dice scores for each segmentation method. The box extends from
the lower to upper quartile values of the data, with a line at the median. The whiskers
extend from the box to show the range of the data. Flier points are those past the end
of the whiskers. The outlier seen in the multi-atlas dice scores is 3.8 standard deviations
away from the mean.

Fig. 4. Numerical values from the dice scores

The multi-atlas approach tended to overestimate the overall volume of
the liver. The percentage differences in volume, of the automated multi-atlas
segmentations with the ground truth, were significantly different than differ-
ences in volume for the 2D U-Net (t = 3.432, p = 0.003)3 and the 3D U-Net
(t = 3.812, p = 0.001)4. The 3D U-Net tended to underestimate the volume

3 (t = 4.906, p = 0.0001) excluding the MAS outlier.
4 (t = 5.381, p = 0.00004) excluding the MAS outlier.
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Fig. 5. A more challenging case for the automated techniques. (A) 3D U-Net, (B) 2D
U-Net, (C) Multi-atlas, (D) Manual annotation.

Fig. 6. A case with an exemplar liver. (A) 3D U-Net, (B) 2D U-Net, (C) Multi-atlas,
(D) Manual annotation.

(median = −3.01%) more the then 2D U-Net (median =−0.15%). The distri-
butions in volume differences between the 2D U-Net and 3D U-Net are different
(t = 3.824, p = 0.001).

The multi-atlas based approach took close to 1 h to compute a liver segmen-
tation. The deep-learning based approaches, once trained, took around 1 min to
compute a liver segmentation (Fig. 7).



486 J. Owler et al.

Fig. 7. Boxplot of the percentage differences in volumes for all test cases for each
segmentation method. The box extends from the lower to upper quartile values of the
data, with a line at the median. The whiskers extend from the box to show the range
of the data. Flier points are those past the end of the whiskers. The outlier seen in the
multi-atlas volume percentage difference scores is 3.8 standard deviations away from
the mean.

5 Discussion

Both deep learning models significantly outperformed the multi-atlas based app-
roach, with the 3D U-Net achieving slightly better performance, in terms of over-
lap with the ground truth, than the 2D U-Net. This could be due to spatial encod-
ing in the 3D U-Net; inputs to the 2D network are completely independent slices
that have no information about where, within the volume, the slice was located.

A disadvantage of fully convolutional 3D networks is that they have much
larger computational cost and GPU memory requirements. Previously, this has
limited the depth of a network and the filters’ field-of-view, two key factors
for performance gains, resulting in better performance from 2D networks. More
complex network architectures have been developed to avoid some of these draw-
backs by using 2D networks with encoded spatial information [12]. However,
recently state-of-the-art GPUs are now easily accessible on Cloud services, such
as Amazon Web Services, and have increasingly larger amounts of GPU pro-
cessing power and memory, allowing for deeper networks and larger inputs. We
believe utilising these state-of-the-art GPUs was a contributing factor to the
superior performance from the 3D network. We did not have to employ patch-
based methods in order to effectively use a 3D network. Input images were only
slightly downsampled (to around 90% of the original dimension) to fit the 3D
model in GPU memory. This slight downsampling could be a reason why the 3D
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U-Net underestimated liver volume more than the 2D U-Net. 2D U-Nets could
be more useful for automated liver volumetry; however, this does not mean 2D
U-Nets are the best for other applications such as surgical planning and extract-
ing quantitative metrics.

The deep learning approaches were several orders of magnitude faster than
the multi-atlas based approach. Although, in a clinical workflow for fully-
automated segmentation, this may not be a limiting factor, faster segmentation
time does provide significant advantages when analysing larger datasets. Inter-
observer variability is a factor to consider when assessing the performance of
an automated segmentation. However, here ground-truth delineations were pro-
vided by a single annotater which was appropriate given the tests were of how
close the methods resembled the annotations they were trained on.

When using the multi-atlas segmentation method, we saw a much larger
variation in segmentation accuracy when compared with the deep learning
approaches (Fig. 3). The probabilistic multi-atlas approach did not generalize
well when compared with the deep learning approaches, this could be due to
insensitivity to biologically-relevant variance (as seen in Fig. 5). Variance could
be more apparent in this dataset due to a larger variation in liver shapes and sizes
between subjects, from tumours and previous liver resections. That being said,
although not studied in depth here, the number of tumours within a liver did not
seem to alter the segmentation performance of any of the automated techniques.
There are more advance atlas selection techniques [23] which could reduce the
variance; however, it does not alleviate the computational time drawback of a
multi-atlas technique.

In conclusion, the U-Net approaches were much more effective at automated
liver delineation (once trained), both in terms of time and accuracy, than the
multi-atlas segmentation approach.
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