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Abstract. In this paper, we present an automatic system for the brain metastasis
delineation in Positron Emission Tomography images. The segmentation process
is fully automatic, so that intervention from the user is never required making the
entire process completely repeatable. Contouring is performed using an enhanced
local active segmentation.

The proposed system is, at first instance, evaluated on four datasets of phantom
experiments to assess the performance under different contrast ratio scenarios, and,
successively, on ten clinical cases in radiotherapy environment.

Phantom studies show an excellent performance with a dice similarity coeffi-
cient rate greater than 92% for larger spheres. In clinical cases, automatically delin-
eated tumors show high agreement with the gold standard with a dice similarity
coefficient of 88.35 ± 2.60%.

These results show that the proposed system can be successfully employed in
Positron Emission Tomography images, and especially in radiotherapy treatment
planning, to produce fully automatic segmentations of brain cancers.

Keywords: Active contour algorithm · Positron emission tomography imaging ·
Biological target volume · Segmentation

1 Introduction

Radiotherapy is often used to treat brain tumors otherwise inaccessible to conventional
surgery. The classic and widespread approach to the identification of the volume to
be treated is through the use of Magnetic Resonance Imaging (MRI). In particular,
when soft-tissue contrast resolution needs to be high, as in brain malignancies, MRI is
preferred over other approaches, e.g. computed tomography (CT). MRI has proved to
be very efficient in reconstructing the anatomical properties of the investigated brain
areas and for this reason, it has been almost the only diagnostic method employed
for cancer delineation and treatment planning purposes [1–3]. Recently, the Positron
Emission Tomography (PET) has been considered as a valuable source of information,
in particular when the 11C-labeled Methionine (MET) radio-tracer is considered. MET-
PET conveys complementary information to the anatomical information derived from
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MRI or CT, and under favorable conditions, it may even deliver higher performance [4].
For these reasons, the integration of PET imaging in radiotherapy planning represents a
desirable step forward in the treatment of gliomas and brain metastases.

Several PET delineation approaches have been proposed so far [5–8], and for a
comprehensive review, the interested reader may refer to Foster et al. [9] and refer-
ences therein. In general, segmentation algorithms can be categorized as semi-automatic
or automatic. When the 18F-fluoro-2-deoxy-d-glucose (FDG) radio-tracer is used, for
example, the lesionmust be initially highlighted by the operator. Indeed, for somehealthy
structures a high FDG uptake is normal; the brain is a typical example. As a result, seg-
mentation methods in FDG PET studies are exclusively semi-automatic. However, MET
radio-tracer shows great sensitivity and specificity for the discrimination of healthy ver-
sus brain cancer tissues, making automatic approaches feasible. In the present study
we used MET-PET to deploy a fully automatic method to delineate brain cancer and
metastases.

Starting from our previous study [10] where we proposed a semi-automatic tool
to segment general oncological lesions in PET studies, we obtained a fully automatic
and operator independent system for MET PET studies on the brain. In the proposed
application, the system performs all segmentation step automatically by individuating
an optimal, operator independent, initial mask located on an automatically selected PET
slice. Once the initial region of interest (ROI) has been identified, it is fed to an enhanced
local active contour segmentation algorithm. The objective function was adapted to PET
imaging and designed in such a way that its minimum corresponds to the best possible
segmentation. To assess the performance of the system and to verify its suitability as
medical decision tool in radio-treatments, four phantom experiments, and ten patient
studies were considered.

2 Materials and Methods

2.1 Overview of the Proposed System

The main subject of the present study is a fully automatic and operator independent
system for brain cancer segmentation, to be used in radiotherapy treatments. While
the following subsections will illustrate different components of the system and their
validation, in this section we present a brief overview of the system design. The data
hereby discussed comprise a total of four phantom experiments and ten oncological
patients (Sects. 2.2 and 2.3, respectively). Data from phantoms were used to assess the
performances of the delineation algorithm. Concerning the practical use of the system
on clinical cases, in order to normalize the voxel activity and to take into account the
functional aspects of the disease, the PET images were pre-processed into SUV images
(Sect. 2.5). The first step is the automatic identification of the optimal combination of
starting ROI and slice containing the tumor. Then, this information is input to the subse-
quent components of the system (Sect. 2.6). Once theROI is identified, the corresponding
mask is fed into the next step of the system, where the segmentation is performed com-
bining a Local region-based Active Contour (LAC) algorithm, appropriately adapted to
handle PET images. The resulting segmentation is then propagated to the adjacent slices
using a slice-by-slice marching approach. Each time convergence criteria are met for a
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specific slice, the corresponding optimal contour is propagated to the next, where the
evolution is continued. Starting from the initial slice, the propagation is performed by
contemporarily sweeping the data volume both upward and downward, until a suitable
stopping condition, designed to detect a tumor-free slice, is met. Finally, the algorithm
outputs a user independent Biological Tumor Volume (BTV). Detailed explanation of
this task is provided in Sect. 2.7.

2.2 Phantom Studies

Four phantom experiments were used for preliminary assessment of the performance.
The phantom is composed of an elliptical cylinder (minor axis = 24 cm, major axis =
30 cm, h = 21 cm) containing six different spheres (diameters: 10, 13, 17, 22, 28, and
37 mm) placed at 5.5 cm from the center of the phantom. The ratio between sphere
and background radioactivity concentration ranged from 3:1 to 8:1. Performances were
evaluated by grouping the results with respect to sphere diameters: small spheres, i.e.
diameter smaller than 22 mm, and large spheres, with a diameter greater than 17 mm.
This choice was motivated by the fact that large biases are introduced by the partial
volume effect [11] in PET imaging.

2.3 Clinical Studies

Ten patients with brain metastases were retrospectively considered. These patients were
referred to diagnostic PET/CT scan before Gamma Knife (Elekta, Stockholm, Sweden)
treatment. Tumor segmentation was performed off-line without actually influencing the
treatment protocol or the patient management. No sensitive patient data were accessed.
As such, after all patients were properly informed and released their written consent, the
institutional hospital medical ethics review board approved the present study protocol.
Patients fasted 4 h before the PET examination, and successively were intravenously
injected with MET. The PET/CT oncological protocol started 10 min after the injection.

2.4 PET/CT Acquisition Protocol

All acquisitions in this study were performed within the same hospital department and
using the same equipment, a Discovery 690 PET/CT scanner (General Electric Medical
Systems, Milwaukee, WI, USA). The PET protocol included a SCOUT scan at 40 mA,
a CT scan at 140 keV and 150 mA (10 s), and 3D PET scans. The 3D ordered subset
expectation maximization algorithm was used for the PET imaging. Each PET image
consists of 256× 256 voxels with a grid spacing of 1.17mm3 and thickness of 3.27mm3.
Consequently, the size of each voxel is 1.17 × 1.17 × 3.27 mm3. Thanks to the injected
PET radio-tracer, tumor appears as hyper-intense region. The CT scan was performed
contextually to the PET imaging and used for attenuation correction. Each CT image
consists of 512 × 512 voxels with size 1.36 × 1.36 × 3.75 mm3.
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2.5 Pre-processing of PET Dataset

Pre-processing PET images is mandatory for inter-patient and follow-up comparisons.
Among PET quantification parameters, body-weight SUV is the most widely used in
clinical routine. For this reason, it was embedded in our system. SUV is the ratio of
tissue radioactivity concentration (RC) and injected dose (ID) at the time of injection,
divided by body weight. The RC is calculated as the ratio between the image intensity
and the image scale factor. The ID is calculated as the product between actual activity
and dose calibration factor.

2.6 Interesting Uptake Region Identification

In order to obtain a fully automatic BTV segmentation, an initial ROI enclosing the
tumor must be produced, obviously without any intervention by the operator. Therefore,
the system identifies the PET slice containing themaximumSUV (SUVmax) in thewhole
PET volume. By taking advantage of the great sensitivity and specificity of MET radio-
tracers in discriminating between healthy and tumor tissues, we can confidently assume
that such SUVmax resides inside the main lesion [12].

While this process takes place, an additional test is performed, in order to investigate
the presence of isolated local maxima which may indicate metastases separated from
the main lesion.

In the case that the presence of multiple (say “n”) independent anomalies are rec-
ognized, each one is independently processed. A different local maximum (SUV j

max ,
with j = 1:n) is identified for each lesion and, consequently, n regions are automati-
cally identified. By design, the first identified lesion contains the global SUVmax (i.e.,
SUV 1

max ).

Once the current slice with SUV j
max has been identified, an automatic procedure to

identify the corresponding ROI starts. The SUV j
max voxel is used as target seed for a

rough 2D segmentation based on the region growing (RG) method [13]. For each lesion,
the obtained ROI represents the output of this preliminary step which is input to the
next component of the system, where the actual delineation takes place. The latter is
performed through an enhanced LAC segmentation algorithm. It is worth noting that the
RG algorithm is used only to obtain a rough estimate of the tumor contour(s).

The sameworkflow is used to segment eachmetastasis independently, and the process
is designed to carry on automatically. However, in case of multiple lesions the user will
receive a warning message and if necessary, will be able to override the default behavior.
In such a case, the algorithm can be paused, while the operator inspects the multiple
metastases.

2.7 The Enhanced Local Active Contour Method

The model proposed by Lankton et al. [14] benefits of purely local edge based active
contours and fully global region based active contours. At each point along a prominent
intensity edge of the target, nearby points inside and outside the target will be modelled
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well by the mean intensities within the local neighborhoods on either side of the edge.
The contour energy to be minimized is defined as:

E =
∮
C

(∫
Rin

χl(x, s)(I (x) − ul(s))
2dx +

∫
Rout

χl(x, s)(I (x) − vl(s))
2dx

)
ds (1)

• Rin and Rout represent the regions inside and outside the curve C
• s represents the arc length parameter of C
• χ represents the characteristic function of the ball of radius l (local neighborhood)
centered around a given curve point C(s)

• I represents the intensity function of the image to be segmented
• ul(s) and vl(s) denote the local mean image intensities within the portions of the local

neighborhood χl(x, s) inside and outside the curve respectively (within Rin and Rout).

These neighborhoods are defined by the function χ, the radius parameter l, and
the position of the curve C. Note that the function χl(x, s) evaluates to 1 in a local
neighborhood around each contour point C(s) and 0 elsewhere. The contour C then
divides each such local region into interior and exterior local pixels in accordance with
the contour’s rule to segment the domain of I.

Beyond the optimal identification of the starting slice containing the lesion, and, con-
sequently, the identification of an initial operator independent mask for LAC segmenta-
tion (see Sect. 2.6) further improvements have been introduced in the LAC algorithm.
In the following we summarize part of the method, described in [10]. To incorporate
metabolic information, the intensity function I in (1) is replaced by the SUV, and ul(s)
and vl(s) denote the local mean SUV intensities within the portions of the local neigh-
borhood χl(x, s) inside and outside the curve. The shape of the contour C then divides
each such local region into interior local points and exterior local points in accordance
with the contour’s segmentation of the SUV. The local means are specified as the ratios
of SIl(s), SEl(s), AIl(s), andAEl(s)which represent the local sums of SUV intensities and
the areas of their respective portions of the local neighborhoodχl(x, s) inside and outside
the curve. More precisely, the local interior region may be expressed as Rin ∩ χl(x, s)
and local exterior region as Rout ∩ χl(x, s).

ul(s) = SIl (s)

AIl (s)
, vl(s) = SEl (s)

AEl (s)

SIl (s) =
∫

Rin

χl(x, s)SUV (x) dx, SEl (s) =
∫

Rout

χl(x, s)SUV (x) dx

AIl (s) =
∫

Rin

χl(x, s) dx, AEl (s) =
∫

Rout

χl(x, s) dx

χl(x, s) =
{
1 when x ∈ l − Ball(C(s));
0 otherwise;
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Once the ROI encircling the highest radio-tracer uptake area has been automatically
identified (previous section), the resulting mask is used to initiate parallel segmentations
on the neighboring slices above and below. Subsequently, for all the other slices in both
directions, we similarly use the segmentation results of the previous slices as the initial
mask inputs. The LAC method is inherently capable of locally widening or tightening
where necessary when the contour is propagated from slice to slice. Since, this behavior
is driven by the image properties rather than by an inherent knowledge of whether the
cancer is present, a stopping criterion is necessary to prevent the LAC algorithm from
misbehaving, or even diverging, when it reaches a slice where the cancer is absent (i.e.
when there is nothing to be segmented).

Therefore, a fully automatic stopping condition is implemented. For the slice under
consideration, at each point on the cancer edge, nearby points inside and outside the can-
cer must have a different local mean SUV. If the cancer is present, a positive difference
between background and foreground intensity must occur, and consequently the algo-
rithm can safely proceed with the next neighboring slice. When the system encounters a
slice where the local mean vl(s) on Rout is greater or equal to the local mean SUV ul(s)
on Rin, which is the opposite of what is expected, the slice is recognized as cancer-free
and the slice-to-slice propagation is terminated in that direction. In this way, one slice at
a time, the BTV is generated. Finally, the segmentation process is automatically stopped,
thereby avoiding the need for any user intervention.

2.8 Framework for Performance Evaluation

Overlap-based and spatial distance-based metrics are considered to determine the accu-
racy achieved by the automatic segmentation system against the gold-standard [15]. In
particular, the formulations of dice similarity coefficient (DSC), and Hausdorff distance
(HD) are used.

DSC measures the spatial overlap between the reference volume and the segmenta-
tion system: a DSC value equal to 100% indicates a perfect match between two volumet-
ric segmentations, while DSC = 0% indicates no overlap. Nevertheless, overlap-based
metrics are not well suited for small anomalies. For this reason, distance-based metrics
are preferable, especially when the boundary segmentation is critical, such as in BTV
delineation for RTP. In particular, HD is used to measure the most mismatched boundary
voxels between automatic and manual BTV: small HDmeans an accurate segmentation,
while a large HD is synonymous of poor accuracy.

Finally, the performance of the proposed method is compared to other state of the
art BTV segmentation methods: the original LACmethod [17], the RGmethod [18], the
enhanced RW method such as described in [19], and the FCM clustering method [20].

3 Results

3.1 Phantom Studies

Performance results from phantom experiments were divided considering small and
large spheres, in four independent cases, each carried out with different signal ratios.
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The accuracy improved for all spheres, regardless of their volume, when the signal ratio
increased. In general, due to the partial volume effect, the separation of small targets
from the background is very challenging, and the difficulty increases in condition of
low signal contrast. The sphere volumes are underestimated with more false negatives
than false positives. The dice similarity coefficient (DSC) rate is 77.51 ± 3.46% and
the Hausdorff distance (HD) is 1.12 ± 0.15 voxels. For the spheres with a diameter
greater than 17 mm, excellent performances are obtained with a DSC rate greater than
92% (HD = 1.06 ± 0.09). The mean difference between segmented and actual volumes
is positive (the sphere volumes are overestimated); larger margins can help to prevent
the extension of tumor infiltration.

The performance of the system was compared to other state of the art PET image
segmentation methods. In particular, the original LAC [17], the RG [18], the RW [19],
and the FCM [20] methods have been used for comparison. Table 1 summarizes the
results and shows that this automatic segmentation outperforms the methods tested for
comparison for all the considered cases.

Table 1. DSC and HD values for the proposed method and other state of the art PET image
segmentation methods.

DSC HD (voxels)

Our system 84.79 ± 8.00% 1.09 ± 0.12

Original LAC 82.55 ± 7.56% 1.44 ± 0.55

RW 82.12 ± 8.78% 1.22 ± 0.43

RG 79.01 ± 9.34% 1.67 ± 0.57

FCM 77.13 ± 8.79% 1.68 ± 0.49

3.2 Clinical Studies

The performance of the presented system is investigated considering ten metastases
against the ground truth provided by three expert operators. In clinical cases, the
histopathology analysis is unavailable after the gamma knife treatment. For this rea-
son, the manual delineation performed by expert clinicians is a commonly accepted
substitute for ground truth to assess the clinical effectiveness and feasibility of PET
delineation methods. Consequently, manual segmentations performed by three experts
are used to define a consolidated reference using STAPLE algorithm [16]. This simulta-
neous ground truth estimation tool combines a collection of segmentations into a single
and consolidated ground truth segmentation. It computes a probabilistic estimate of
the true segmentation estimating an optimal combination of the segmentations. This
algorithm is formulated as an instance of the expectation maximization (EM).

Differently from the phantom studies, no discussion of the tumor volumes is provided
here, mostly because all considered BTVs are greater than 2.5 ml (lesions with a sphere-
equivalent diameter greater than 17 mm). In particular, tumor volumes ranged from
2.69 ml to 20.49 ml (mean ± std = 7.08 ± 5.81 ml). The ratio between lesion and
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background radioactivity concentration ranged from 2.76:1 to 7.40:1 (mean ± std =
3.88:1 ± 1.45:1). These values are included in the range of the phantom experiments
used for preliminary performance testing. For this reason, although phantom studies
don’t replicate all the properties of real lesions, they represent a useful tool to assess
performances across different segmentation methods.

Table 2 summarizes the comparison between this automatic segmentation and the
original LAC and RW approaches. Since LAC and RW outperformed RG, and FCM
methods on the phantom experiments, the latter algorithms were not considered in
patient studies. The automatic algorithm performed better than LAC and RW methods
minimizing the difference between references and automated BTVs.

Table 2. DSCs and HDs using the proposed system, original LAC and RW methods.

DSC HD

Our system 88.35 ± 2.60% 1.42 ± 0.57

Original LAC 83.77 ± 8.53% 2.97 ± 0.68

RW 87.01 ± 5.16% 1.38 ± 0.74

Figure 1 reports the comparison between the proposed segmentations and the gold-
standards.

Fig. 1. Examples of automatic segmentations. The retrieved segmentations and the gold standards
are shown in red and yellow, respectively. (Color figure online)
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4 Discussion

In this study, a complex, semi-automatic system featuring an enhanced LAC algorithm
purposely adapted to the PET imaging was further adapted to achieve the fully automatic
BTV segmentations of brain cancers. The fully automatic approach leverages on the
fact that MET-PET is capable of selectively highlight the ill regions of the brain, so
avoiding false positives commonly encountered in other anatomic regions (e.g. as in
FDG-PET studies). An automatic and operator-independent ROI is generated around
the tumor(s) and used as input to an enhanced LAC algorithm. Then, the LAC performs
the BTV delineation. The BTV is built by a slice-by-slice marching approach where the
segmentation is performed on subsequent slices. In principle, segmentation through the
evolution of a full 3D surface would be preferable. Indeed, while on the one hand we are
currently investigating such a 3D approach, on the other hand, the present work moves
an important step toward 3D data segmentation improving upon the model proposed
by Lankton et al. [14] considering the issue of the PET slices thickness (3.27 mm3) far
greater than planar resolution (1.17 mm3) which partially justifies the 2D approach. As
a final remark, a fully automatic stop condition is provided. In this way, the proposed
system produces segmentation results which are completely independent by the user.

Performance of the automatic system has been obtained by phantom studies consist-
ing of hot spheres in a warm background. Nevertheless, phantom experiments cannot
replicate all the aspects of a real clinical case but they represent a useful way to assess
common performances across different algorithms. DSC greater than 92% for the larger
spheres confirm better results in minimizing the difference between reference and auto-
mated BTVs than the other state-of-the-art algorithms. We would like to emphasize that
original algorithms for both enhanced RW and original LAC methods [17, 19] were
optimized for MET-PET brain metastases [10, 12]. Concerning RG and FCM methods,
we used the source codes available on the web, and we adapted it to our PET dataset.

In patient studies, since radiotherapy treatment alters the cancer morphology over
time, histopathology cannot provide a reliable ground truth. Consequently,manual delin-
eation by experts, although it may differ between operators (for example, radiotherapy
experts tend to draw larger boundaries than nuclearmedicine physicians), is often used as
surrogate gold-standard. In this study, we used manual delineations from three experts.
To overcome the issue of differences in the manual delineations, a consolidated refer-
ence was built [16] and then used to assess the feasibility of the automatic segmentation.
PET/CT data from ten patients before Gamma Knife treatment were considered. Results
show that the proposed approach can be considered clinically feasible and could be
used to extract PET parameters for therapy response evaluation purpose and to assist the
BTV delineation during stereotactic radiosurgery treatment planning avoiding cancer
recurrence. Finally, further investigations will be carried out to assess the usefulness to
introduce in the segmentation a PET tissue classifier capable of influencing the local
active contour toward what would be the segmentation performed by a human operator
[21–25].
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