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Abstract. This paper presents a novel method of finding and visual-
ising metastatic bone disease in computed tomography (CT). The app-
roach we suggest locates disease by comparing trabecular bone density
between symmetric bony regions. Areas of strong difference could indi-
cate metastatic bone disease as bone lesions either increase or decrease
bone density. Our detection method is completely automatic and only
requires raw CT data as input. Results are visualised in an interactive 3-
dimensional viewer which displays a polygonal mesh of the bone structure
overlaid with colour combined with resliced CT data. Diseased regions
are clearly highlighted in both the mesh and in the resliced CT data. We
test our method on both healthy and diseased CT data to demonstrate
the validity of the technique. Experimental results show that our method
can detect metastatic bone disease, although further work is needed to
improve the robustness of the technique and to decrease false positives.

Keywords: Metastatic bone disease · Disease asymmetry · CT
analysis · CT segmentation · Articulated registration · Computer aided
detection

1 Introduction

Metastatic bone disease (MBD) is a common secondary feature of prostate can-
cer, breast cancer and many other malignancies. Bone scintigraphy is the usual
imaging detection technique but has limitations in detecting changes over time
and is only 2-dimensional. With improvements in bone-targeting therapies, bet-
ter evaluation of therapeutic response is now a Europe-wide research priority.
Positron-emission tomography is promising, but the expense and inaccessibil-
ity means CT is increasingly used for serial assessment. This requires time-
consuming reviews of many CT cross-sectional images looking for small and
diffuse bony changes – the summary of which is difficult to demonstrate in a
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multidisciplinary review setting as well as to demonstrate to the patient. To
address these challenges, we have designed and implemented a new method for
the detection and visualisation of MBD.

The human skeleton is nearly symmetric in both shape and bone density.
When two healthy symmetric bony regions are compared with each other, the
regions will hence contain little difference. However, metastatic bone disease
causes sclerotic and lytic bone lesions to form, increasing the density (sclerotic
lesions) or decreasing the density (lytic lesions) of the bone. When the bone
density of symmetric regions containing bone lesions is compared, the difference
is greatly increased as the lesions do not generally form symmetrically across
both regions.

Our algorithm can automatically find these bone lesions by symmetrically
comparing the bone density in the human skeleton and grouping areas of large
difference. The method displays these differing densities through a novel visu-
alisation. We believe this method has the potential to improve accuracy and to
reduce the time-consuming review of the individual inspection of hundreds of
cross-sectional images. We envisage our technique being used to identify poten-
tial areas of concern, although the final reporting of a bone lesion will require
multi-planar assessment of the source data by the radiologist, oncologist and
surgical team. In this paper, we describe our method in detail and show that it
can automatically locate and visualise MBD in CT.

2 Background

Bone is a common site for metastasis by malignant tumours such as the lung,
breast, and prostate cancer. This is significant as MBD can cause more devastat-
ing effects than the primary cancer does. MBD substantially increases morbid-
ity due to its complications which include pain, impaired mobility, pathological
fracture, spinal cord compression, cranial nerve palsies, nerve root lesions, hyper-
calcaemia and suppression of bone marrow [6] making it an important area of
research.

In normal bone, development and maintenance of bone tissues is sustained
through a balance of osteoclasts and osteoblasts resorbing and depositing bone
tissue. With MBD, this process is disrupted as cancerous cells from the primary
site contribute to the establishment of bone metastatic lesions. Most metastases
are osteoblastic, causing an increase in bone density, although some metastases
are osteolytic causing a reduction of bone density. In both cases, MBD causes
an abnormal change in the density of bone.

Publications describe methods that can semi-automatically or automatically
detect bone lesions by comparing learned features (generated by hand or through
an automated machine learning technique) to raw and segmented CT data
[3–5,10–12,16,18]. While these methods are promising, they have a limited spa-
tial scope (only the vertebral column), offer poor visualisation of the results
(only 2-dimensional) and often have a low accuracy. Machine learning in general
also requires large quantities of accurately marked training data which can be
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difficult to obtain in a medical imaging setting due to patient agreements and
lack of experts to mark the data.

Instead of using a machine learning approach, our paper explores a completely
new approach to the problem. Rather than using training data to learn features
distinct to bone lesions, we compare each CT data set to itself through symmetry
in order to find irregularities. This removes the need for training data and bypasses
the problem often encountered with machine learning algorithms – poor results
when the training data does not contain a specific, never before encountered pat-
tern. Also, instead of searching directly for 2-dimensional bone regions, we com-
pare the modelled bone density between each symmetric pair of points in our 3-
dimensional mesh, which reduces the dimensionality of the problem (when com-
pared to searching for all combinations of 2-dimensional slices through an entire
CT data set).

Using symmetry to locate disease has been shown to be a successful approach
in a variety of situations [13,17]. Although results from these papers could be
improved, they demonstrate the feasibility of the approach. We have extended
these ideas and have applied them to the problem of locating MBD. When
compared to the previous approaches [13,17], the rigidity of the 3-dimensional
bone improves symmetric matching as the bone surface is not malleable like
soft tissue. We do not compare shape differences directly (which is a harder
problem) but only the bone density between each pair of points. This leads to
improved accuracy. We chose to compare the less dense inner trabecular bone
density instead of the more dense outer cortical bone, as the trabecular density
measurements are more often affected by the disease.

3 Methodology

Our method first extracts regions containing bone in the CT data. It converts
these 2-dimensional segmentations into a 3D polygonal (target) mesh that encap-
sulates the bone structure. Using the Cortical Bone Mapping (CBM) method
[15], we measure the trabecular bone density. Our method then solves for sym-
metric point correspondence between left and right sides by registering the seg-
mented target mesh with an atlas mesh. Finally, we display differences in tra-
becular bone across symmetric regions in an interactive 3-dimensional viewer.

3.1 Segmentation

In order to measure trabecular bone density and to find bone symmetry, the
contours that surround regions of bone are first located within the CT images
through the process of segmentation. In this process, pixels are classified as being
either of a bone type or of a non-bone type.

Pixels labelled as bone generally contain a higher intensity than that of non-
bone (unless the CT data contains a metal implant or a contrast agent). Bone
has a radiodensity typically greater than 1200 Hounsfield units (HU) while soft
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tissue and fat have a radiodensity typically between −70 HU and 100 HU. How-
ever, in the region between 100 HU and 1200 HU, there is much overlap between
the radiodensity of trabecular bone, fat and soft tissue. Because of this, a single
intensity threshold cannot be used to separate bone from non-bone, as a thresh-
old set low enough to include all bone will include also fat and soft tissue. A
threshold set high enough to exclude fat and soft tissue will also exclude bone.
To overcome this issue, context from surrounding pixels must be combined with
pixel intensity to correctly classify a pixel as being bone or non-bone.

Many approaches have been developed that can segment bone in CT. How-
ever, the problem has yet to be fully and accurately solved. Approaches can be
placed into general groups including adaptive thresholding, hysteresis threshold-
ing, region growing, watershed, active contour, edge based, level set, graph cuts,
statistical shape models, articulated registration based and machine learning
based.

We chose to use a hysteresis thresholding technique as regions of bone and
non-bone can be generally divided into high intensity (bone) and low intensity
(non-bone) regions making it a natural thresholding type problem. Hysteresis
thresholding addresses the overlapping regions of bone and non-bone by pro-
vided context which greatly improves the accuracy when compared to global
thresholding. Furthermore, the Cortical Bone Mapping (CBM) method used for
measuring bone density, produces the best results when the contour lines sur-
rounding the bone lie exactly between the bone and non-bone pixels. Because
we use a thresholding technique, we can produce contour lines with sub-pixel
accuracy by interpolating between threshold pixels, improving both the density
calculation and the segmentation accuracy.

First, we select all pixels that are very likely bone (dense outer cortical bone).
Then, a second lower threshold is used to select all pixels that may be bone but
also may contain some soft tissue and fat. The pixels segmented at this lower
level are only kept if they are connected to a pixel segmented at the higher
threshold.

Additionally, we developed a new method to improve accuracy based on the
gap filling ideas from Gelaude [9]. We found that using a third threshold slightly
lower than the second was useful in filling gaps. These gaps occur as the hard
cortical bone is sometimes non-existent in the CT. They can severely decrease
segmentation accuracy as the contour traces the inside of the bone structure
instead of the outside. Figure 1a shows an example.

To address this, we first generate a contour line using a third slightly lower
threshold. We then compare this contour line with the contour line generated by
the hysteresis thresholding technique. As the third threshold is lower than both
the hysteresis thresholds, its contour line lies on the outside of the hysteresis
contour at all points. By following these contour lines in counter clockwise direc-
tion, each time these two contours diverge, the path lengths are compared. The
contour lines lie relatively close to each other until gaps in the cortical bone are
reached. In these locations, the contours often diverge as the hysteresis contour
traces the gap and then re-joins with the lower contour. The hole is filled if the
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path length of the hysteresis threshold contour is more than three times longer
than that of the lower contour. Figure 1b shows an example of a hole being filled.
The green (hysteresis) contour follows the blue (lower threshold) contour until
they diverge at the gap. The yellow contour shows the divergence. Its length is
compared to the length of the blue line during the divergence, causing the final
hysteresis contour to skip the gap.

(a) Gaps in the contour can severely
decrease segmentation accuracy.

(b) Joining a gap in the contour to improve
segmentation accuracy.

Fig. 1. Generic segmentation of bone from CT data. (Color figure online)

3.2 Bone Mesh Creation and Cortical Bone Mapping (CBM)

Once contours are found in each original CT image, the marching tetrahedra
algorithm is used to create a polygonal mesh of the bone structure. We used the
Stradwin software implementation [14] for this. Figure 2a shows the results of
our segmentation and mesh

(a) This figure shows what a typical fully
automatic segmentation looks like, as well
as indicating the typical range over which
we attempt to detect MBD.

(b) This figure shows the target mesh (in
yellow) being registered to the atlas mesh
(multi-coloured) using articulated registra-
tion.

Fig. 2. Segmentation and registration. (Color figure online)
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Once the 3D polygonal meshes are formed, the Cortical Bone Mapping
(CBM) technique is used to accurately estimate trabecular bone density [15].
In CBM, the trabecular bone density is estimated by following the vector nor-
mal at each triangle in the mesh into the bone. The distribution of bone density
along this line is modelled, which crucially allows average trabecular density to
be estimated without any bias from the nearby, and much denser, cortical bone.
Figure 3a shows the outline of the segmented bone in red running parallel to the
cortical bone and a line normal to the cortical bone running through the bone
surface in cyan while Fig. 3b shows the density being measured.

(a) Measuring the cortical thickness along
the cyan line through the segmented bone.

(b) Measuring the bone density by mod-
elling the cortical thickness.

Fig. 3. CBM can measure cortical bone mineral density (CBMD), trabecular bone
mineral density (ECTD), cortical thickness (CTh), and cortical mass surface density
(CMSD). (Color figure online)

3.3 Finding Symmetry

In order to compare the density of symmetric regions, we search for a symmetric
point correspondence for each point in the segmented target mesh. To do this
we register the target segmentation to an atlas containing a polygonal mesh of a
healthy skeleton where each point has been symmetrically paired with another.

3.4 Atlas Creation

To create our atlas, a healthy CT data set was initially segmented using the
threshold feature in the Stradwin software [14]. The segmentation was then
thoroughly corrected by hand again using the Stradwin software. The full seg-
mentation of the skeleton was also split into multiple regions by labelling general
bone regions (pelvis, left femur, right femur, individual ribs and vertebrae).

Each segmentation was then paired with a symmetric region by mirroring
one to match the other (e.g. left femur matched to right femur). In the case of
a bone region without a corresponding symmetry match (vertebrae and pelvis),
the region is matched with an x-axis inverted copy of itself. Similarity-based
rigid registration was first used to register each pair of symmetric regions using
the wxRegSurf software [8]. Where necessary, deformable registration was used
to improve accuracy.
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3.5 Articulated Registration

The atlas is registered to the target segmentation using an articulated registra-
tion technique. Our registration method was inspired by the techniques used
to segment skeletons in mouse CT [1] and human CT [7]. Registration in gen-
eral produces the best results when initial placement is as accurate as possible.
Articulated registration takes advantage of this through a series of steps. The
entire skeleton as a whole is first registered for initial placement. Then smaller
and smaller sub-regions of the skeleton are registered following a hierarchical
anatomical tree atlas. This guides the small subsections of the skeleton into a
generally correct location before final registration. This greatly improves accu-
racy as the whole skeleton guides the registration but each bony region can move
independently of each other. For each registration step, a rotation, translation
and scale is found that minimizes the distance between each point on the atlas (or
bony sub-region) and the target mesh. We implemented the classic registration
method described by Besl [2]. Figure 2b shows the atlas mesh being registered
to the target mesh using articulated registration.

Our method differs from the papers above [1,7] as their purpose is to segment
the skeleton. Instead, we use this registration technique to find the symmetry
between each point. At the end of the registration, for each point in the target
mesh, we look up the closest point in the atlas mesh. Each point in the atlas has
a symmetric point, so we use that symmetric point to lookup the closest point
in the target mesh. In this way we can find the symmetric mappings between
all points in the target mesh. We compare vector normals and point distances
(between atlas and target) and only set symmetric mappings if these are within
a reasonable range. Our current registration method is only rigid with scaling—
in future we plan to implement a non-rigid registration to improve upon the
performance shown in Fig. 2b.

4 Visualisation of Disease

Once every point on the left side has been mapped to a corresponding point
on the right side, the trabecular bone density at every point on one side of
the skeleton is compared with the other side. As long as one side is diseased,
the difference in trabecular bone density between left and right is significant.
We wrote a specialized viewer to visualise the results by displaying a polygonal
mesh of the skeleton and uniquely colouring each vertex. Figure 4a shows the
trabecular bone density (i.e. not using symmetrical difference) overlaid on the
mesh. A darker blue indicates a more dense bone. Figure 4b shows the segmented
mesh with a raw CT slice.

Areas of large difference are grouped together, and each group has the poten-
tial to be either healthy or diseased. Healthy regions are still included with
diseased regions at this point, as all groups with large differences in trabecu-
lar bone density between left and right sides are selected without taking into
account which side caused the differences. Intuitively, trabecular bone density in
healthy tissue will be relatively constant, while diseased bone that has increased



334 N. Sjoquist et al.

(a) Polygonal mesh overlaid
with colour map.

(b) CT slice data included
with mesh.

(c) Colour scale of trabecu-
lar bone density.

Fig. 4. The segmentation result is overlaid with a colour map representing the trabec-
ular bone density measurements. (Color figure online)

or decreased bone density will have certain intense changes in trabecular bone
density. When the gradient of trabecular bone density of healthy bone is com-
pared to the gradient of its difference in trabecular bone density, the differences
are generally high. However, when the gradient of trabecular bone density of
diseased bone is compared to the gradient of its difference in trabecular bone
density, the differences are generally low. In this way, regions are determined to
be either diseased or healthy. Figure 5a shows the trabecular bone being sub-
tracted from each side. In Fig. 5b, the density differences greater or less than
200 HU are grouped together. In Fig. 5c, only the diseased areas are shown.

(a) The density of each side
is subtracted from the other
side.

(b) Regions of strong
density differences are
grouped together.

(c) Healthy regions are
removed by comparing
gradients.

Fig. 5. Disease is visualized by comparing trabecular bone density differences and
gradients of symmetric regions.

A user can click on any point in the mesh and find it’s symmetric point pair.
A green line is drawn between the points, and their surface normals are drawn
in red and blue. A new, re-slice image plane is defined using the vector pointing
from first point to the second, and the vector created by adding the two normals
together. In Fig. 6a, a user has clicked on the diseased right side. The CT is
automatically re-sliced to show the diseased region. Figure 6b shows MBD on
the right side of the pelvis. In Fig. 6b, it can be seen that the right side contains
a much greater trabecular bone density than the left side does.
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(a) Re-slicing the CT data at the user
selected location.

(b) The diseased right side can be seen in
the re-sliced CT image.

Fig. 6. A user can click on the mesh to calculate a re-sliced CT image at that location.

5 Results and Discussion

We tested our method using eleven diseased CT data sets and one healthy CT
data set. All of our CT data sets are under an ethics agreement enabling us to
use them for research and publication. We compared the diseased areas found
in our viewer (areas of high colour contrast) to metastatic scoring sheets from
conventional CT review marked by experts. We also compared our results to
3-dimensional bone lesions marked by an expert which can be seen in Fig. 7a.
Areas were marked as being either malignant or suspicious. Malignant areas are
diseased regions and suspicious areas are abnormal regions that could be disease.
Table 1 shows our results.

(a) 3-dimensional lesions marked by an expert are
displayed in red inside the mesh and compared to
our results displayed on the surface of the mesh.

(b)  Results  correctly  show  our
healthy atlas to be mostly disease
free.

Fig. 7. Results are visually compared to 3-dimensional lesions marked by an expert to
determine accuracy.

5.1 Evaluation

Our method found 73.1% of suspicious areas and 79.2% of malignant areas cor-
rectly. It found 77.0% of all diseased areas. Our results also contained a number
of false positives in each data set - most of which are small in size. This can be
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seen in Fig. 8. However, there are limitations in finding the true accuracy of our
results as the clinician-defined areas of suspicion may not be perfect. This may
be the cause of some of the false positives as they may actually be abnormal
regions missed by the expert.

Fig. 8. A typical result showing suspicious areas (Sus), malignant areas (Mal) and false
positives.

Table 1. Sensitivity of the viewer finding diseased regions.

Name Suspicious areas Malignant areas

Case 1 3/4 1/1

Case 2 4/4 1/1

Case 3 2/3 5/8

Case 4 1/2 None

Case 5 1/2 None

Case 6 1/2 1/1

Case 7 None 4/4

Case 8 2/3 3/4

Case 9 2/3 3/4

Case 10 3/3 9/13

Case 11 None 11/12

We also tested our method on a healthy CT data set (our atlas) by processing
its raw CT data. The method found the healthy data mostly disease free although
it incorrectly displays small spots of disease in a few locations. This can be
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seen in Fig. 7b. Some of these spots of disease are due to natural and healthy
asymmetry. This can be seen in the sacroiliac joint which is shown as partially
diseased. These areas of healthy asymmetry will need to be addressed in the
future.

5.2 Discussion

These results demonstrate that our technique can successfully detect and visu-
alise metastases in bone. Our method already has a relatively high sensitivity in
finding areas of diseased bone, but can be improved. It can find bone metastases
in the vertebra, pelvis and upper femurs, which is an improvement over existing
methods which are mostly limited to the vertebra.

Our results currently contain many false positives. These are due to errors in
the automatic segmentation, registration and symmetry point matching although
in some cases, our method may be correctly identifying abnormal regions missed
by the expert. One important next step to reduce false positives, is to use a
deformable registration technique that can both preserve atlas symmetry but
also provide more accurate matching with the target mesh. After this step, the
deformed atlas mesh can be used to measure the trabecular bone density instead
of using the target segmentation mesh. This should greatly improve the accuracy,
as errors will be reduced both in the trabecular bone density measurement and
in the symmetric point matching.

Our method produces poor results in the ribs. This is due to significant
errors in the registration as there is much variability between rib shape and size.
Poor registration produces poor symmetric point matching severely decreasing
the accuracy of this method. Deformable registration as well as improvements to
the rib components of the articulated registration should help with this problem.

6 Conclusions

We have introduced a new algorithm that can automatically detect and display
metastasized cancer in bones. Preliminary results demonstrate that the algo-
rithm can successfully find areas of bone disease and visualise them in a unique
way. It already has a relatively high sensitivity in finding areas of diseased bone
but it can still be improved. The technique currently suffers from a high false
positive rate, which will need to be addressed. It is fully automatic, and success-
fully works as a diagnostic tool providing a unique way to visualise disease.
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