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Preface

This volume comprises the proceedings of the 23rd Medical Image Understanding and
Analysis (MIUA 2019) Conference, an annual forum organized in the UK for com-
municating research progress within the community interested in biomedical image
analysis. Its goals are the dissemination and discussion of research in medical image
processing and analysis to encourage growth, raising the profile of this multidisci-
plinary field with an ever-increasing real-world applicability. The conference is an
excellent opportunity for researchers at all levels to network, generate new ideas,
establish new collaborations, learn about and discuss different topics, and listen to
speakers of international reputation, as well as presenting their own work in medical
image analysis development.

This year’s edition was organized by the Centre for Research in Image Analysis
(http://liv-cria.co.uk/) and Centre for Mathematical Imaging Techniques (www.
liverpool.ac.uk/mathematical-sciences/research/mathematical-imaging-techniques) at
the University of Liverpool, in partnership with Springer (www.springer.com),
MathWorks (https://uk.mathworks.com/), and Journal of Imaging (www.mdpi.com/
journal/jimaging); it was supported by the British Machine Vision Association
(BMVA) and OCF (www.ocf.co.uk). The diverse range of topics covered in these
proceedings reflect the growth in development and application of medical imaging. The
main topics covered in these proceedings are (i) Oncology and Tumour Imaging,
(ii) Lesion, Wound, and Ulcer Analysis, (iii) Biostatistics, (iv) Fetal Imaging,
(v) Enhancement and Reconstruction, (vi) Diagnosis, Classification, and Treatment,
(vii) Vessel and Nerve Analysis, (viii) Image Registration, (ix) Image Segmentation,
and (x) Ophthalmology.

The number and level of submissions of this year’s edition were excellent. In total,
70 technical papers and 20 abstracts showing clinical and technical applications of
image-processing techniques (the latter not considered for inclusion in this volume)
were reviewed and revised by an expert team of 93 reviewers. Submissions were
received from 20 countries across 4 continents, including the UK (126 authors), China
(34), Germany (20), USA (9), Pakistan (8), Italy (7), Denmark (6), Turkey (6),
Romania (5), Portugal (4), India (4), Spain (3), New Zealand (3), and one each from Sri
Lanka, Thailand, Malaysia, France, Japan, and Iraq. Each of the submissions was
reviewed by two to four members of the Program Committee. Based on their ranking
and recommendations, 43 of 70 papers were ultimately accepted, 15 were rejected and
12 were invited to present as a poster abstract. We hope you agree that the papers
included in this volume demonstrate high quality research and represent a step forward
in the medical image analysis field.

We thank all members of the MIUA 2019 Organizing, Program, and Steering
Committees and, in particular, all who supported MIUA 2019 by submitting work and
attending the conference. We also thank our invited speakers Professor Olaf Ron-
neberger, Professor Carola-Bibiane Schonlieb, Professor Shaohua K. Zhou, Professor

http://liv-cria.co.uk/
http://www.liverpool.ac.uk/mathematical-sciences/research/mathematical-imaging-techniques
http://www.liverpool.ac.uk/mathematical-sciences/research/mathematical-imaging-techniques
http://www.springer.com
https://uk.mathworks.com/
http://www.mdpi.com/journal/jimaging
http://www.mdpi.com/journal/jimaging
http://www.ocf.co.uk


Sebastien Ourselin, and Professor Simon P. Harding for sharing their success,
knowledge, and experiences. We hope you enjoy the proceedings of MIUA 2019.

July 2019 Yalin Zheng
Bryan M. Williams

Ke Chen
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Tissue Classification to Support Local Active
Delineation of Brain Tumors

Albert Comelli1,2,4(B) , Alessandro Stefano2 , Samuel Bignardi3 ,
Claudia Coronnello1 , Giorgio Russo2,5 , Maria G. Sabini5, Massimo Ippolito6,

and Anthony Yezzi3

1 Fondazione Ri.MED, via Bandiera 11, 90133 Palermo, Italy
acomelli@fondazionerimed.com

2 Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR),
Cefalù, Italy

3 Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta,
GA 30332, USA

4 Department of Industrial and Digital Innovation (DIID), University of Palermo, Palermo, Italy
5 Medical Physics Unit, Cannizzaro Hospital, Catania, Italy

6 Nuclear Medicine Department, Cannizzaro Hospital, Catania, Italy

Abstract. In this paper, we demonstrate how a semi-automatic algorithmwe pro-
posed in previous work may be integrated into a protocol which becomes fully
automatic for the detection of brain metastases. Such a protocol combines 11C-
labeledMethionine PET acquisitionwith our previous segmentation approach.We
show that our algorithm responds especially well to this modality thereby upgrad-
ing its status from semi-automatic to fully automatic for the presented application.
In this approach, the active contour method is based on the minimization of an
energy functionalwhich integrates the information provided by amachine learning
algorithm. The rationale behind such a coupling is to introduce in the segmenta-
tion the physician knowledge through a component capable of influencing the final
outcome toward what would be the segmentation performed by a human operator.
In particular, we compare the performance of three different classifiers: Naïve
Bayes classification, K-Nearest Neighbor classification, and Discriminant Analy-
sis. A database comprising seventeen patients with brain metastases is considered
to assess the performance of the proposed method in the clinical environment.

Regardless of the classifier used, automatically delineated lesions show high
agreement with the gold standard (R2 = 0.98). Experimental results show that
the proposed protocol is accurate and meets the physician requirements for
radiotherapy treatment purpose.

Keywords: Active contour algorithm · Naïve Bayes classification · K-Nearest
Neighbor classification · Discriminant Analysis · Segmentation

1 Introduction

Positron Emission Tomography (PET) has the advantage of providing crucial functional
information that can be used to evaluate the extent of tumor cell invasion and lead

© Springer Nature Switzerland AG 2020
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to an efficient detection of metastases. In particular, 11C-labeled Methionine (MET)
PET conveys complementary information to the anatomical information derived from
Magnetic Resonance (MR) imaging [1] or Computerized Tomography (CT) in the brain
district, and under favourable conditions, it can even deliver higher performances [2]. As
shown byGrosu et al. [3], tumor volumes defined byMRand PET can differ substantially
and the integration of the biological tumor volume (BTV) in the radiotherapy treatment
planning (RTP) involves a longer median survival than patients in which the RTP is
defined using MRI-only. As a final remark, since MET-PET is sensitive to metabolic
changes, it can be used for the early detection of the effects produced by radiotherapy.
An efficient BTVdelineation is crucial not only towards preciseRTP [4], but also towards
PET quantification accuracy [5].

Despite the fact thatmanual segmentation is time consuming and operator-dependent
(i.e., radiotherapy planning experts tend to draw larger contours than nuclear medicine
physicians), the manual approach is still widely adopted in the clinical environment,
mostly because of its simplicity. Automatic algorithms do exist, but there is no common
agreement on the best choice for a standard PET contouring method [6]. Although the
PET high contrast between tumor and healthy tissues can reduce the inter- and intra-
observer variability, the BTV delineation is strongly dependent on the segmentation
algorithm used [7] and suffers of the typically low resolution of PET images caused
by detector crystal size, scanner geometry, and positron range. In addition, image noise
is introduced by random coincidences, detector normalization, dead time, scatter, and
attenuation.

A well-designed contouring method must meet three basic properties: accuracy,
repeatability and efficiency. We refer to “accuracy” as the property of being able to
reproduce the segmentation an expert operator would draw, “repeatability” as the prop-
erty of reproducing the same segmentation starting from different initial segmentations,
and “efficiency” as the property of being computationally fast enough to be used in the
everyday clinical practice with reduced machine resources. Regarding the latter one,
running the algorithm on commercial laptops and in real time would be desirable. These
properties may be ensured only by computer-assisted methods supporting clinicians
in the planning phase. For this reason, several PET delineation approaches have been
proposed and the interested reader may refer to comprehensive reviews, i.e. [8].

In this study, we use an active contour based method which is characterized by
flexibility and efficiency in medical image segmentation task meeting the three afore-
mentioned basic characteristics (as reported in [9–12]). In particular, we show how a
semi-automatic algorithm we introduced in [13–15] is used to design a fully automatic
and operator independent protocol to delineate brain tumors. The approach leverages
both on the opportunity of using the MET radio-tracer and a local active contour seg-
mentation algorithm, which couples the local optimization guided by the information
contained in the PET images with additional information provided by machine learn-
ing elements [16–18]. The main idea is to use a properly trained classifier to help the
segmentation. Typically, active contour algorithms are formulated as an optimization
process where a scalar functional, referred to as “energy” or “objective function”, is to
be minimized. The objective function depends on the segmentation (i.e. on the shape of
a contour), and it is designed in such a way that its minimum corresponds to the best
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possible segmentation. Indeed, in our algorithm we use an adaptation of the original
active contour algorithm [19] to PET imaging and where the mathematical form of the
energy functional includes the classification information. In the specific, the classifier is
used to label PET tissues as “lesion” (i.e. abnormal tissue), “background” (i.e. normal
tissue) or “border-line” (i.e. tissue around the lesion of unclear nature) based on a pre-
vious training, which takes into account the portions of the tumor the physician would
discard or include [20]. In this way, the performance of the active contour algorithm in
the BTV segmentation are enhanced and more similar to a manual segmentation. The
idea behind coupling the local region-based active contour with a classifier is to intro-
duce in the segmentation some of the “wisdom” of the physician through a component
capable of influencing the final outcome toward what would be the segmentation per-
formed by an operator. In our previous studies [13–15], we proposed a semi-automatic
tool to segment oncological lesions and compare it with other state of the art BTV
segmentation methods. Results showed that the algorithm outperforms the other ones
tested for comparison (T42%, RG [21], FCM clustering [22], RW [23], and original
LAC [19]). In this study, we demonstrate how that approach may be integrated into a
protocol which becomes fully automatic for the detection of brain metastases. Such a
protocol combines 11C-labeled Methionine PET acquisition with our previous segmen-
tation approach. We show that our algorithm responds especially well to this modality
thereby upgrading its status from semi-automatic to fully automatic for the presented
application. As an additional contribution, we compare the performance of three dif-
ferent classifiers: Naïve Bayes classification, K-Nearest Neighbor classification, and
Discriminant Analysis, when these are used to supply information to the LAC method.
To assess the performance of the proposed method in clinical environment, seventeen
brain tumors have been considered.

2 Materials

2.1 Dataset

Seventeen patients with brain metastases referred to diagnostic MET PET/CT scan have
been retrospectively considered. The scan only interested the brain region.

Patients fasted 4 h before the PET examination, and successively were intravenously
injected with MET. The PET/CT oncological protocol started 10 min after the injection.
Tumor segmentation was performed off-line without influencing the treatment proto-
col or the patient management. The institutional hospital medical ethics review board
approved the study protocol and all patients involved were properly informed released
their written consent.

2.2 PET/CT Acquisition Protocol

PET/CT scans were performed using the Discovery 690 PET/CT scanner (General Elec-
tricMedical Systems,Milwaukee,WI, USA). The PET protocol includes a SCOUT scan
at 40 mA, a CT scan at 140 keV and 150 mA (10 s), and 3D PET scans. The 3D ordered
subset expectation maximization algorithm was used to for the PET imaging. Each PET
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image obtained consists of 256× 256 voxels with a grid spacing of 1.17 mm3 and thick-
ness of 3.27 mm3. Consequently, the size of each voxel is 1.17 × 1.17 × 3.27 mm3.
Thanks to the injected PET radiotracer, tumor appears as hyper-intense region. The CT
scanwas performed contextually to the PET imaging and used for attenuation correction.
Each CT image consists of 512 × 512 voxels with size 1.36 × 1.36 × 3.75 mm3.

3 Methods

3.1 The Proposed Segmentation

In this section we present a brief overview of the employed segmentation algorithm
(Fig. 1). Data from seventeen oncological patientswere used partly to train the classifiers,
and partly to assess the performances of the delineation algorithm.

Fig. 1. The segmentation approach [13–15]. (a) part of the dataset is used to train the classifier;
(b) samples are obtained for each tissue kind label; (c) training and validation of the classifier;
(d) the region containing the lesion is automatically localized; (e) RG is used to identify the user
independent mask; (f) once the initial mask is obtained, it is sent to the next logical block of
the system; (g) segmentation is performed using the LAC segmentation algorithm through a new
energy based on the tissue classification; (h) segmentation mask is propagated to the adjacent
slices using a slice-by-slice marching approach; (i) a stop condition is evaluated; (j) segmentation
on the next slices is performed until stop condition is false; (k) an operator independent BTV is
finally obtained.
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Classifiers are used to classify PET voxels according to three labels: tumor, back-
ground and border-line. Training and validation were accomplished using a moving
window, 3 by 3 voxels, in the PET slices of a data subset. Each window was then reorga-
nized in a 9-element sample vector. The obtained samples were generated and used for
training and validation purposes, as detailed in Sect. 3.2. Training and validation steps
are required to be performed only once. After, the classifier can be reused on any new
dataset. Concerning the practical use of the system on clinical cases, the first step is the
automatic identification of the optimal combination of starting ROI and slice containing
the tumor to input the subsequent logical steps of the system (Sect. 3.3). Once the ROI
is identified, the corresponding mask is feed into the next step of the system, where
the segmentation is performed combining a Local region-based Active Contour (LAC)
algorithm, appropriately modified to support PET images, and the information derived
from the classifiers, which locally drive the active contour (Sect. 3.4). The obtained
segmentation is then propagated to the adjacent slices using a slice-by-slice marching
approach. Each time convergence criteria are met for a slice, the obtained optimal con-
tour is propagated to the next slice, and evolution is resumed. Starting from the first slice
considered, propagation is performed in parallel both upward and downward within the
data volume and it is continued until a suitable stopping condition, designed to detect
tumor-free slice, is met. Finally, a user independent BTV is obtained.

3.2 Sampling, Training and Performance of Classifiers

In order to normalize the voxel activity and to take into account the functional aspects
of the disease, the PET images are pre-processed into SUV images [13]. The classifier
(either NB, KNN, or DA) are used to partition PET tissues into three labels: “normal”,
“abnormal”, and “border-line” regions. The goal is to combine each classification with
the PET image information which locally drive the LAC delineation. Before integrating
the classifier in the LAC method, training and validation phases are required to provide
the capability of efficiently classify a newly-encountered tissue into the afore mentioned
classes. However, the task requires to be performed only once. Once trained, the classifier
is ready to be used on any new case. In order to generate the training input to the
classifier, two brain metastases, for a total of 16 PET slices, were used (Fig. 1a). Each
PET image containing the lesion is investigated using a moving window of 3 × 3 voxels
in size. The ROI size was empirically determined to provide the best performance on
the present dataset. For each new position of the moving window, the selected portion
of data was compared with the gold standard. Windows entirely outside or inside the
gold standardwere labelled as normal or abnormal respectively.Windows comprising no
more than three lesion voxels were labeled as border-line tissue. Each window was then
reorganized as a 9-element vector (Fig. 1b). The sampling operation produced a total of
834095 samples; 1706 labeled as lesion vectors, 976 border-line, and 831412 labelled
as background. The processing time for single slice was: 54.03 s for NB, 40.48 s for
KNN, and 26.95 s for DA (iMac computer with a 3.5 GHz Intel Core i7 processor, 16 GB
1600 MHz DDR3 memory, and OS X El Capitan.). This task is performed only once.
The 80% of samples was used to train the three classifiers, while the remaining 20%
was used to verify the reliability in classifying newly encountered samples (Fig. 1c).
The K-Fold cross-validation was integrated in the classifiers to make it reliable and to
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limit problems such as over-fitting. Once the training step was completed, a validation
task was performed to verify the rate of success in classifying new scenarios.

3.3 The Fully Automatic Protocol

By taking advantage of the great sensitivity and specificity of MET in the discrimination
between healthy and tumor tissues in the brain district, the proposed protocol identifies
the PET slice containing the maximum SUV (SUVmax) in the whole PET volume to
identify the ROI enclosing the tumor without any operator intervention [24]. Once the
current slice with SUV j

max has been identified, an automatic procedure to identify the
corresponding ROI starts. The SUV j

max voxel is used as target seed for a rough 2D
segmentation based on the region growing (RG) method [25] (Fig. 1e). For each lesion,
the obtainedROI represents the output of this preliminary step (Fig. 1f) which is feed into
the next logical blockof the segmentation algorithm (Fig. 1g)where the actual delineation
takes place through the LAC approach. It is worth noting that the RG algorithm is used
only to obtain a rough estimate of the tumor contour(s).

3.4 The Modified Local Active Contour Method

In our previous work, the active contour methodology proposed by Lankton et al. [19]
was improved. For sake of completeness, we summarize the mathematical development
of [21, 22] regarding how the tissue classification, which separates the PET image into
lesion, background, and border-line tissues can be integrated in classical LAC in order to
further improve the segmentation process. Briefly, the contour energy to be minimized
is defined as:

E =
∮

C

(∫
Rin

χl(x, s)(I (x) − ul(s))
2dx +

∫
Rout

χl(x, s)(I (x) − vl(s))
2dx

)
ds (1)

• Rin denotes the regions inside the curve C
• Rout denotes the regions outside the curve C
• s denotes the arc length parameter of C
• χ denotes the characteristic function of the ball of radius l centered around a given
curve point C(s)

• I denotes the intensity function of the image to be delineated
• ul(s) and vl(s) represent the local mean image intensities within the portions of the

local neighborhood χl(x, s) inside and outside the curve.

Beyond the identification of the initial ROI, as described in the previous section,
the energy (1) has been modified to include a new energy term to separate the PET
image into three regions considering tissue classification: χlesion(x), χborder−line(x) and
χbackground(x) represent the characteristic functions of the tissue’s classification (using
KNN or NB or DA) respectively for lesion, background, and border-line tissues.

The first term of the formulated energy functional (1) is essentially a prior term
penalizing the overlap between regions which are classified in opposite ways by the
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contour versus the classifier (no penalty is paid in regions classified as “border-line”, for
this reason the “χborder−line(x)” classification is not included in the energy).

To integrate this new prior term and to incorporate SUV in the LAC algorithm, the
energy for the PET image segmentation approach is defined as:

E =
∮

C

λ

⎛
⎜⎝

∫

Rin

χl (x, s)P̄outl (x)dx +
∫

Rout

χl (x, s)P̄inl (x)dx

⎞
⎟⎠

+ (1 − λ)

⎛
⎜⎝

∫

Rin

χl (x, s)(SUV(x) − ul (s))
2dx +

∫

Rout

χl (x, s)(SUV(x) − vl (s))
2dx

⎞
⎟⎠ds

(2)

where the parameter λ ∈ R+ (range between 0 and 1) is chosen subjectively (in our
study λ equal to 0.01 provided the best result). P̄inl(x) and P̄outl(x) denote the local
mean tissue’s classification within the portions of the local neighborhood χl(x) inside
and outside the curve respectively (within �):

P̄inl(x) =
∫
�

χl(x)χlesion(x)dx∫
�

χl(x)dx
, P̄outl(x) =

∫
�

χl(x)χbackground(x)dx∫
�

χl(x)dx
(3)

ul(s) and vl(s) denote the localmean SUVswithin the portions of the local neighborhood
χl(x, s) inside and outside the curve. These neighborhoods are defined by the function
χ, the radius parameter l, and the position of the curve C.

Finally, as explained in [13], the process is automatically stopped avoiding the need
for any user intervention.

3.5 Framework for Performance Evaluation

A framework for the evaluation of the proposed protocol is presented. The effective-
ness of the tissue classification is calculated regarding correct/incorrect classification
using sensitivity, specificity, precision, and accuracy scores. Overlap-based and spatial
distance-based metrics are considered to determine the accuracy achieved by the pro-
posed computer-assisted segmentation system against the gold-standard (i.e., themanual
segmentations performed by three experts are used to define a consolidated reference as
described in the next section).

The sensitivity is the number of correctly classified positive samples divided by the
number of true positive samples, while the specificity is the number of correctly clas-
sified negative samples divided by the number of true negative samples. The precision
is related to reproducibility and repeatability and it is defined as the degree to which
repeated classifications under unchanged conditions show the same results. The accu-
racy is defined as the number of correctly classified samples divided by the number of
classified samples. Concerning segmentation algorithm performance, the formulations
proposed in [26] are used. In particular, mean, and standard deviation of sensitivity, pos-
itive predictive value (PPV), dice similarity coefficient (DSC), and Hausdorff distance
(HD) were calculated.
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3.6 Gold Standard

The ground truth requires exact knowledge of the tumor and the histopathology analysis
provides the only valid ground truth for the PET quantitative assessment. Neverthe-
less, the histopathology analysis is unavailable after the treatment. For this reason, the
manual delineations performed by expert clinicians are a commonly accepted substitute
for ground truth to assess the clinical effectiveness and feasibility of PET delineation
methods [27]. Nevertheless, manual delineation is often influenced by the clinical spe-
cialization of the operator. For example, oncologists will, on average, draw smaller BTVs
than radio-therapists. For this reason, the segmentations performed by three experts with
different expertise (the chief nuclear medicine physician –M.I. author-, the chief radio-
therapy physician –M.S. author- and an expert radiotherapy physician –G.R. author-)
were used as “ground truths”. A simultaneous ground truth estimation tool [28] was
employed, and the three segmentationswere combined to define a single and consolidated
ground truth for each study.

4 Results

4.1 Classifier Validation

The optimal K value of the K-Fold cross-validation integrated in the classifier has been
determined as 5 through the trial-and-error method (k range: 5–15, step size of 5) [29,
30]. It corresponds to the highest classification accuracy. The validation results are shown
in Table 1.

Table 1. Sensitivity, specificity, precision, and accuracy values for KNN, NB, and DA classifier
validations.

Sensitivity Specificity Precision Accuracy

KNN 97.13% 81.54% 98.88% 95.25%

NB 87.09% 94.94% 99.68% 86.73%

DA 90.00% 85.12% 99.02% 88.31%

4.2 Clinical Testing and Results on Dataset

Seventeen brain lesions were considered. From the initial dataset, two tumors were used
in the classifier training. Consequently, the performance of the presented algorithm is
investigated in the remaining cases against the ground truth provided by three expert
operators (Table 2).
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Table 2. Mean sensitivities, PPVs, DSCs and HDs for 15 lesions are reported to assess the
differences between the segmentations obtained using the LAC method with KNN, NB and DA
classifiers and the “ground truth” provided by the three operators.

Sensitivity (%) PPV (%) DSC (%) HD (voxels)

KNN 91.54 ± 1.35 85.36 ± 3.72 88.27 ± 1.91 1.18 ± 0.52

NB 89.58 ± 3.40 89.76 ± 3.31 89.58 ± 2.37 1.07 ± 0.61

DA 91.21 ± 1.93 90.78 ± 2.03 90.92 ± 1.35 0.79 ± 0.40

In addition, regardless of the classifier used, automatically segmented BTVs show
high agreement with the manually segmented BTVs (determination coefficient R2 =
0.98). Figure 2 reports the comparison between the proposed segmentations and the
gold-standards for two patients.

Fig. 2. Two example of brain tumor segmentation for each row using the LAC method coupled
with KNN (first column), NB (second column), and DA (third column) classifiers. The proposed
segmentations (red contours) and the gold standards (yellow contours) are superimposed. Blue and
green contours concern the tissue classification. The region outside the blue boundary represent the
“background”, while the region inside the green boundaries, and between the curves, represent the
“lesion”, and the “border-line” region, respectively. In the last column, all retrieved segmentations
are superimposed (gold standard in yellow, KNN in magenta, NB in cyan, and DA in light blue).
(Color figure online)

5 Discussion

In this study, we described a segmentation protocol which leverages on the properties of
MET PET to achieve the fully automatic segmentation of brain cancer. In this context,
we used a segmentation algorithm LAC which features an energy function specifically
adapted to the PET imaging and which combines the information from the PET data,
and feedback from a classifier. The aim of such a protocol is for radiotherapy treatment
purpose and for therapy response assessment. Each classifierwas purposely and indepen-
dently trained to label PET tissues into normal, abnormal, and border-line tissues. The
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training procedure is based on the ground truth obtained using a proper tool [28] starting
from the manual segmentations provided by three expert operators. In addition, a smart
sampling operation based on a moving window of 3 × 3 voxels has been implemented.
After this preparation step, each classifier was able to label tissues never encountered
before and to convey this useful information into the LAC algorithm. As a final remark,
a fully automatic stop condition was provided. In this way and by taking advantage of
the great sensitivity and specificity of MET PET studies to identify tumors in brain area,
the proposed system produces segmentation results which are completely independent
by the user.

Performance of the proposed method were obtained by patient studies, for which
the ground is impossible to obtain because the treatment alters the tissue morphology.
Consequently, although manual delineation may largely differ between different human
operators (for example, radiotherapy experts tend to draw larger boundaries than nuclear
medicine physicians), with obvious impact on the resulting surrogate of ground truth, the
delineation from experts is the only alternative. Here, for performance evaluation pur-
poses, the manual segmentations from three experts was used as a gold-standard. Such
manual delineations were used to produce a consolidated reference [28] which was then
used to assess the feasibility of the proposed method in the clinical environment. Sev-
enteen patients undergo a PET/CT scan have been considered. Results show that the
proposed protocol can be considered clinically feasible using any of the tested classi-
fier, although the DA delivered slightly better results. Automatically segmented BTVs
showed high agreement with the gold-standard (R2 = 0.98). Considering the relevance
of our study in oncological patient management we will add PET studies to expand our
database and, consequently, to improve and further assess the proposed method.

6 Conclusion

We demonstrated how a semi-automatic algorithm we proposed in previous work may
be integrated into a protocol which becomes fully automatic for the detection brain
metastases. Such a protocol combines 11C-labeled Methionine PET acquisition with
our previous segmentation approach. The key features of the protocol include the use of
MET radio tracer, the integration of patient-specific functional information obtained by
converting PET images to SUV images; a preliminary task to identify an initial, properly
localized, operator-independentROI to be used for theLACsegmentation; the integration
of tissue classification (either using KNN, NB, or DA) in the LAC method directly in
the formulation of the energy functional to be minimized to enhance the accuracy of the
BTV contouring; and a slice-by-slice marching approach with an automatic termination
condition. This features make the whole process fully automatic in the context of brain
cancer.

Brain metastases were used to assess the performance of the proposed protocol on
a statistical basis commonly considered as a reference practice in the PET imaging
field. Results showed that this protocol can be used to extract PET parameters for ther-
apy response evaluation purpose and to provide automatic the BTV delineation during
radiosurgery treatment planning in the special context of brain cancer.



Tissue Classification to Support Local Active Delineation 13

References

1. Comelli, A., et al.: Automatic multi-seed detection for MR breast image segmentation. In:
Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 706–
717. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_63

2. Astner, S.T., Dobrei-Ciuchendea, M., Essler, M., et al.: Effect of 11C-Methionine-Positron
emission tomography on gross tumor volume delineation in stereotactic radiotherapy of skull
base meningiomas. Int. J. Radiat. Oncol. Biol. Phys. 72, 1161–1167 (2008). https://doi.org/
10.1016/j.ijrobp.2008.02.058

3. Grosu, A.L., Weber, W.A., Franz, M., et al.: Reirradiation of recurrent high-grade gliomas
using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for
stereotactic fractionated radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 63, 511–519 (2005).
https://doi.org/10.1016/j.ijrobp.2005.01.056

4. Borasi, G., Russo, G., Alongi, F., et al.: High-intensity focused ultrasound plus concomitant
radiotherapy: a new weapon in oncology? J. Ther. Ultrasound 1, 6 (2013). https://doi.org/10.
1186/2050-5736-1-6

5. Banna, G.L., Anile, G., Russo, G., et al.: Predictive and prognostic value of early disease
progression by PET evaluation in advanced non-small cell lung cancer. Oncol. (2017). https://
doi.org/10.1159/000448005

6. Angulakshmi,M., Lakshmi Priya, G.G.: Automated brain tumour segmentation techniques—
a review. Int. J. Imaging Syst. Technol. (2017). https://doi.org/10.1002/ima.22211

7. Zaidi, H., El Naqa, I.: PET-guided delineation of radiation therapy treatment volumes: a
survey of image segmentation techniques. Eur. J. Nucl. Med. Mol. Imaging 37, 2165–2187
(2010). https://doi.org/10.1007/s00259-010-1423-3

8. Foster, B., Bagci, U., Mansoor, A., et al.: A review on segmentation of positron emis-
sion tomography images. Comput. Biol. Med. 50, 76–96 (2014). https://doi.org/10.1016/j.
compbiomed.2014.04.014

9. Khadidos, A., Sanchez, V., Li, C.T.: Weighted level set evolution based on local edge features
for medical image segmentation. IEEETrans. Image Process. (2017). https://doi.org/10.1109/
TIP.2017.2666042

10. Göçeri, E.: Fully automated liver segmentation using Sobolev gradient-based level set
evolution. Int. J. Numer. Method Biomed. Eng. (2016). https://doi.org/10.1002/cnm.2765

11. Min, H., Jia, W., Zhao, Y., et al.: LATE: a level-set method based on local approximation
of taylor expansion for segmenting intensity inhomogeneous images. IEEE Trans. Image
Process. (2018). https://doi.org/10.1109/TIP.2018.2848471

12. Goceri, E., Dura, E.: A level set method with Sobolev gradient and Haralick edge detection.
In: 4th World Conference on Information Technology (WCIT 2013), vol. 5, pp. 131–140
(2013)

13. Comelli, A., Stefano, A., Russo, G., et al.: A smart and operator independent system to
delineate tumours in positron emission tomography scans. Comput. Biol.Med. (2018). https://
doi.org/10.1016/J.COMPBIOMED.2018.09.002

14. Comelli, A., Stefano, A., Russo, G., et al.: K-nearest neighbor driving active contours to
delineate biological tumor volumes. Eng. Appl. Artif. Intell. 81, 133–144 (2019). https://doi.
org/10.1016/j.engappai.2019.02.005

15. Comelli, A., Stefano, A., Bignardi, S., et al.: Active contour algorithm with discriminant
analysis for delineating tumors in positron emission tomography. Artif. Intell. Med. 94, 67–78
(2019). https://doi.org/10.1016/J.ARTMED.2019.01.002

16. Comelli, A., et al.: A kernel support vector machine based technique for Crohn’s disease
classification in human patients. In: Barolli, L., Terzo, O. (eds.) CISIS 2017. AISC, vol. 611,
pp. 262–273. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-61566-0_25

https://doi.org/10.1007/978-3-319-68560-1_63
https://doi.org/10.1016/j.ijrobp.2008.02.058
https://doi.org/10.1016/j.ijrobp.2005.01.056
https://doi.org/10.1186/2050-5736-1-6
https://doi.org/10.1159/000448005
https://doi.org/10.1002/ima.22211
https://doi.org/10.1007/s00259-010-1423-3
https://doi.org/10.1016/j.compbiomed.2014.04.014
https://doi.org/10.1109/TIP.2017.2666042
https://doi.org/10.1002/cnm.2765
https://doi.org/10.1109/TIP.2018.2848471
https://doi.org/10.1016/J.COMPBIOMED.2018.09.002
https://doi.org/10.1016/j.engappai.2019.02.005
https://doi.org/10.1016/J.ARTMED.2019.01.002
https://doi.org/10.1007/978-3-319-61566-0_25


14 A. Comelli et al.

17. Licari, L., et al.:Useof theKSVM-based system for the definition, validation and identification
of the incisional hernia recurrence risk factors. Il Giornale di chirurgia 40(1), 32–38 (2019)

18. Agnello, L., Comelli, A., Ardizzone, E., Vitabile, S.: Unsupervised tissue classification of
brainMR images for voxel-basedmorphometry analysis. Int. J. ImagingSyst. Technol. (2016).
https://doi.org/10.1002/ima.22168

19. Lankton, S., Nain, D., Yezzi, A., Tannenbaum, A.: Hybrid geodesic region-based curve evo-
lutions for image segmentation. In: Proceedings of the SPIE 6510, Medical Imaging 2007:
Physics of Medical Imaging, 16 March 2007, p. 65104U (2007). https://doi.org/10.1117/12.
709700

20. Comelli, A., Stefano, A., Benfante, V., Russo, G.: Normal and abnormal tissue classification
in PET oncological studies. Pattern Recognit. Image Anal. 28, 121–128 (2018). https://doi.
org/10.1134/S1054661818010054

21. Day, E., Betler, J., Parda, D., et al.: A region growing method for tumor volume segmentation
on PET images for rectal and anal cancer patients. Med. Phys. 36, 4349–4358 (2009). https://
doi.org/10.1118/1.3213099

22. Belhassen, S., Zaidi, H.: A novel fuzzy C-means algorithm for unsupervised heterogeneous
tumor quantification in PET. Med. Phys. 37, 1309–1324 (2010). https://doi.org/10.1118/1.
3301610

23. Stefano, A., Vitabile, S., Russo, G., et al.: An enhanced randomwalk algorithm for delineation
of head and neck cancers in PET studies.Med.Biol. Eng.Comput. 55, 897–908 (2017). https://
doi.org/10.1007/s11517-016-1571-0

24. Stefano, A., Vitabile, S., Russo, G., et al.: A fully automatic method for biological target
volume segmentation of brain metastases. Int. J. Imaging Syst. Technol. 26, 29–37 (2016).
https://doi.org/10.1002/ima.22154

25. Stefano, A., et al.: An automatic method for metabolic evaluation of gamma knife treatments.
In: Murino, V., Puppo, E. (eds.) ICIAP 2015. LNCS, vol. 9279, pp. 579–589. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-23231-7_52

26. Taha, A.A., Hanbury, A.: Metrics for evaluating 3D medical image segmentation: analysis,
selection, and tool. BMC Med. Imaging 15, 29 (2015). https://doi.org/10.1186/s12880-015-
0068-x

27. Hatt, M., Laurent, B., Ouahabi, A., et al.: The first MICCAI challenge on PET tumor
segmentation. Med. Image Anal. 44, 177–195 (2018). https://doi.org/10.1016/j.media.2017.
12.007

28. Warfield, S.K., Zou, K.H.,Wells, W.M.: Simultaneous truth and performance level estimation
(STAPLE): an algorithm for the validation of image segmentation. IEEETrans.Med. Imaging
23, 903–921 (2004). https://doi.org/10.1109/TMI.2004.828354

29. Agnello, L., Comelli, A., Vitabile, S.: Feature dimensionality reduction for mammographic
report classification. In: Pop, F., Kołodziej, J., Di Martino, B. (eds.) Resource Management
for Big Data Platforms. CCN, pp. 311–337. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-44881-7_15

30. Comelli, A., Agnello, L., Vitabile, S.: An ontology-based retrieval system for mammographic
reports. In: Proceedings of IEEE Symposium Computers and Communication (2016). https://
doi.org/10.1109/ISCC.2015.7405644

https://doi.org/10.1002/ima.22168
https://doi.org/10.1117/12.709700
https://doi.org/10.1134/S1054661818010054
https://doi.org/10.1118/1.3213099
https://doi.org/10.1118/1.3301610
https://doi.org/10.1007/s11517-016-1571-0
https://doi.org/10.1002/ima.22154
https://doi.org/10.1007/978-3-319-23231-7_52
https://doi.org/10.1186/s12880-015-0068-x
https://doi.org/10.1016/j.media.2017.12.007
https://doi.org/10.1109/TMI.2004.828354
https://doi.org/10.1007/978-3-319-44881-7_15
https://doi.org/10.1109/ISCC.2015.7405644


Using a Conditional Generative
Adversarial Network (cGAN)
for Prostate Segmentation

Amelie Grall1, Azam Hamidinekoo1(B) , Paul Malcolm2 ,
and Reyer Zwiggelaar1

1 Department of Computer Science, Aberystwyth University, Aberystwyth, UK
ameliegrall5@gmail.com, {azh2,rrz}@aber.ac.uk

2 Department of Radiology, Norwich & Norfolk University Hospital, Norwich, UK
paul.malcolm@nnuh.nhs.uk

Abstract. Prostate cancer is the second most commonly diagnosed
cancer among men and currently multi-parametric MRI is a promising
imaging technique used for clinical workup of prostate cancer. Accurate
detection and localisation of the prostate tissue boundary on various
MRI scans can be helpful for obtaining a region of interest for Com-
puter Aided Diagnosis systems. In this paper, we present a fully auto-
mated detection and segmentation pipeline using a conditional Gener-
ative Adversarial Network (cGAN). We investigated the robustness of
the cGAN model against adding Gaussian noise or removing noise from
the training data. Based on the detection and segmentation metrics, de-
noising did not show a significant improvement. However, by including
noisy images in the training data, the detection and segmentation perfor-
mance was improved in each 3D modality, which resulted in comparable
to state-of-the-art results.

Keywords: Prostate MRI · Computer Aided Diagnosis ·
Segmentation · Detection · Generative Adversarial Network

1 Introduction

Prostate cancer is the second most commonly diagnosed cancer among men that
has been reported to account for nearly 14% of the total new cancer cases and
6% of the total cancer deaths in 2008 [12]. Incidence rates for prostate cancer are
projected to rise by 12% in UK between 2014 and 2035 and it has been estimated
that 1 in 8 men will be diagnosed with prostate cancer during their lifetime based
on the UK Cancer Research [2]. Commonly used multi-parametric MRI modal-
ities of the prostate include: DWI (Diffusion Weighted Imaging), T1W (T1-
weighted), T2W (T2-weighted), ADC (Apparent Diffusion Coefficient), DCE
(Dynamic Contrast Enhanced) and MRS (Magnetic Resonance Spectroscopy).
T1W and T2W MRI are the most common modalities in radiology and DWI is
one of the most recently established modalities, while DCE and MRS are popular
c© Springer Nature Switzerland AG 2020
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due to their ability to provide additional information not available in conven-
tional MRI [9]. Computer Aided Diagnosis (CAD) systems have been developed
as an alternative to double reading, improving clinicians’ accuracy and patient
outcomes. These systems are aimed at improving identification of prostate tissue
and detection of subtle abnormalities within the prostate gland [7].

For manual delineation of prostate boundaries, traditional machine learn-
ing methods have been used and many studies have proposed (semi-)automatic
methods, including multi-atlas based methods, model-based methods and graph
cut based approaches [7,16,22]. Recently, deep convolutional neural networks
(CNNs) have achieved unprecedented results in segmentation by learning a hier-
archical representation of the input data, without relying on hand-crafted fea-
tures [4], some of which performed well [13,19,26] in the “MICCAI PROMISE12”
challenge [16].

Among various deep learning based approaches, Generative models [8,11,20]
have shown to be one of the most promising models for the segmentation tasks.
To the best of our knowledge, no work has been done towards prostate MRI
segmentation using generative models.The goal of this work was to develop an
automatic detection and segmentation model based on a conditional Genera-
tive Adversarial Networks (cGAN) to detect the prostate tissue on various MR
modalities (T2W, DWI and ADC). We evaluated the effect of adding or remov-
ing noise to/from the training dataset to test the robustness and generalisability
of the model from the training to the testing samples.

2 Methodology

The goal of this work was to accurately segment prostate tissue in various MRI
modalities. Detecting and accurately localising prostate tissue boundaries is use-
ful for identifying the region of interest (RoI) in CAD systems to be used for
radiotherapy or tracking disease progression. We also investigated whether the
performance could be improved by adding/removing noise to/from the training
data in the learning process.

2.1 Datasets

Data from 40 patients with biopsy-proven prostate cancer was collected, which
included ADC, DWI and T2W MR imaging from the Department of Radiology
at the Norfolk and Norwich University Hospital, Norwich, UK. All images were
obtained with a 3 T magnet GE Medical Systems, using a phased array pelvic
coil, with a field of view equal to 100× 100 mm2, 6 mm slice thickness, acquiring
512 × 512 images, while covering the whole prostate and seminal vesicles in
both transverse and coronal planes. For each case, there were between 16 to 32
axial images. All images were manually annotated by an expert radiologist to
indicate the precise location of the prostate on a slice-by-slice basis. This dataset
was randomly split into training and testing sets as 75% and 25% of the whole
database, based on cases, ensuring that there was no case overlap between the
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Fig. 1. Samples images for various considered modalities with the prostate tissue being
annotated. from left to right: T2W, ADC and DWI.

splits. Figure 1 contains examples of raw images of each modality along with the
annotated prostate boundaries.

We aimed to investigate the consequences of additional noise and noise
removal in the training process for the detection and segmentation of the prostate
tissue. We created additional datasets from the raw images, where Gaussian
noise with different σ values (0.5, 1, 2) was added to all modalities (DWI, ADC,
T2W), resulting in three noisy datasets (representing low, medium, high level
noisy datasets) for each modality.

Over the past years, although the resolution, signal-to-noise ratio and speed
of magnetic resonance imaging technology have been increased, MR images are
still affected by artifacts and noise. MR images suffer significantly from Rician
noise: for low signal intensities (SNR< 2), the noise follows a Rice distribution;
however, according to [3], for SNR larger than 2, the noise distribution is nearly
Gaussian. There are a wide range of MRI de-noising algorithms; and among
them, the Non-Local Means (NLM) filter has been shown to be able to achieve
state-of-the-art de-nonising performance [3]. The NLM filter averages across vox-
els that capture similar structures instead of recovering the true intensity value
of a voxel by averaging the intensity values of neighboring voxels, as the Gaussian
smoothing filter does. Accordingly, in a patch-based approach, the NLM avoids
blurring structural details [3]. We have used the NLM filter to create datasets
of de-noised images from the raw images. In our de-noising implementation, the
required parameters in the NLM model (the search radius (M) and the neigh-
bourhood radius (d)) were empirically adjusted as M = 5 and d = 2. In order to
investigate the power of de-noising with regards to the value of hi that controls
the attenuation of the exponential function (see [4] for more details), two other
datasets were also created with different values of hi. For one dataset, the value
of hi was obtained based on [5] (denoted as h1

i ). In the second dataset, hi was
multiplied by 3 (denoted as h2

i ) to create further blurred images to enhance the
effects of de-noising.
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2.2 Model Architecture

Generative models have been studied as a fundamental approach in machine
learning to reconstruct or generate natural images [10]. These models, capture
the underlying structure in data by defining flexible probability distributions.
Image generation through a Generative Adversarial Network (GAN) was pro-
posed by Goodfellow et al. [8], which estimated a loss function aimed to classify
the output image as real or fake via a discriminative model. At the same time, the
network trained a generative model to minimize the loss function. Subsequently,
conditional GANs (cGANs) were introduced [11,20], which explored GANs in a
conditional setting, i.e. applying a specific condition on the input image to train
a conditional generative model.

Prostate tissue detection and segmentation on MRI scans in 3D can be
defined as translating each 2D MR scan into the corresponding semantic label
map representing the desired tissue in the image. In the architecture of the
utilised cGAN, a U-Net-based structure [11,23] was used as the generator (G)
and a convolutional PatchGAN classifier [11] was used as the discriminator (D).
The discriminator penalised structures at image patch scale, which was deter-
mined to be 70 × 70 due to the optimal patch size reported by [11]. The aim of
the generator was to minimise the overall loss function (G∗) in Eq. 1 with the
definition of LcGAN in Eq. 2,

G∗ = arg minG maxD LcGAN (G,D) + λL1 (1)

where

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1 − D(x,G(x, z)))] (2)

The generator was trained to generate mask images (y) from paired prostate
images z, with the aim of being similar to the mask images of the real observed
images from the training data repository (x) in an L1 sense. This was formulated
as G: x,y → y. Meanwhile, the adversarially trained discriminator attempted to
detect the generator’s fake images as much as possible. To achieve this, D was
updated by maximising [logD(x, y)+ log(1−D(x,G(x, z)))] and G was updated
by maximising [logD(x,G(x, z)) + L1(y,G(x, z))]. The schematic of this model
is shown in Fig. 2. This model converged when G recovered the training sample
distribution and D was equal to 0.5 everywhere (for the mathematical proof,
see [8].

2.3 Training and Post-processing

We combined raw images with de-noised images and images with added noise to
create various datasets as demonstrated in Fig. 3. For each targeted MRI modal-
ity (DWI, T2W and ADC), we trained a cGAN model on a specific dataset and
tested the detection and segmentation performance on the raw test images. The
model was trained via a stochastic gradient descent solver with a learning rate of
0.00004 and batch-Size of 16 based on the parameter tuning approach to select
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Fig. 2. Schematic of the used cGAN model.

Fig. 3. Generated datasets including raw, noisy and de-noised samples. In our experi-
ments, three levels of noise were added to the raw images and accordingly three noisy
datasets were generated. Besides, two de-noising models were applied to the raw images.
Overall, 12 datasets were created for training purpose for each targeted MRI modality
(T2W, DWI and ADC).
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Fig. 4. Two example cases: a poor (top row) and appropriate (bottom row) segmen-
tation example. From left to right: MR image, annotated mask, predicted mask, mask
after post processing, image with contours from the predicted mask (red) and contours
from the mask after post processing (green). Black mask image in (b) represents that
no prostate tissue was annotated on the slice. (Color figure online)

the most appropriate parameters. The network was trained till convergence with
the total number of iterations equal to 50. All network training was performed
within the Torch framework using pix2pix software1 with a NVIDIA GeForce
GTX 1080 GPU on Intel Core i7-4790 Processor with an Ubuntu 16.04 operat-
ing system. Additional programming was done in Python and the code can be
accessed at https://github.com/AzmHmd/Analysing-MRI-Prostate-scans-with-
cGANs.git.

In post-processing, objects close to the image border were removed and
only the objects that were located between 1/4 and 3/4 of the height, and 1/4
and 3/4 of the width were kept (based on the empirical observation of all the
images). Subsequently, using connected component analysis, the largest object
was extracted. In addition, the top and bottom slices of the prostate were disre-
garded. Figure 4 presents an appropriate and a poor detection and segmentation
output with respect to the average model performance.

3 Results and Discussion

The evaluation of the detection and segmentation performances were done using
common metrics [16]: (1) the Dice Similarity Coefficient (DSC), (2) the 95%
Hausdorff distance (HD), (3) Jaccard Index (JI), (4) Precision, (5) Recall, (6)
Accuracy and (7) F.Score for each image of the 10 unseen cases in the test set.
Table 1 reports the quantitative results in terms of mean and standard deviation
of the three segmentation metrics for each dataset and for each specific modal-
ity. Based on our quantitative results, across each modality, the best results
were obtained for the dataset combining raw and noisy images. Adding a low

1 https://phillipi.github.io/pix2pix.

https://github.com/AzmHmd/Analysing-MRI-Prostate-scans-with-cGANs.git
https://github.com/AzmHmd/Analysing-MRI-Prostate-scans-with-cGANs.git
https://phillipi.github.io/pix2pix
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Table 1. Quantitative results of the segmentation/detection for all datasets and
modalities.

Modality Dataset DSC JI HD95 F.Score

ADC Raw 0.665± 0.187 0.526± 0.202 12.327± 6.393 0.682

Noisy (σ = 0.5) 0.734±0.180 0.608±0.208 10.279±6.277 0.775

Raw+Noisy (σ = 0.5) 0.732±0.153 0.599±0.176 11.550±5.437 0.700

Noisy (σ = 1) 0.691± 0.229 0.569± 0.238 12.184± 10.517 0.721

Raw+Noisy (σ = 1) 0.707± 0.155 0.567± 0.171 11.647± 4.556 0.642

Noisy (σ = 2) 0.579± 0.204 0.435± 0.196 14.248± 8.235 0.678

Raw+Noisy (σ = 2) 0.654± 0.204 0.518± 0.218 13.515± 6.791 0.756

Denoised (hi1) 0.715± 0.186 0.587± 0.211 12.010± 6.791 0.693

Raw+Denoised (hi1) 0.709± 0.164 0.573± 0.183 10.967±5.733 0.698

Denoised (hi2) 0.648± 0.178 0.503± 0.184 12.514± 7.253 0.789

Raw+Denoised (hi2) 0.719± 0.197 0.593± 0.211 13.050± 5.313 0.716

Raw+Denoised (hi1)+Noisy

(σ = 0.5)

0.660± 0.184 0.518± 0.191 12.287± 7.063 0.693

DWI Raw 0.744± 0.254 0.644± 0.259 9.821± 9.895 0.664

Noisy (σ = 0.5) 0.788±0.156 0.675±0.191 8.656±8.910 0.656

Raw+Noisy (σ = 0.5) 0.787±0.146 0.670±0.177 11.744±5.223 0.735

Noisy (σ = 1) 0.772± 0.222 0.669± 0.224 10.178± 13.406 0.680

Raw+Noisy (σ = 1) 0.629± 0.233 0.498± 0.237 12.943± 7.100 0.754

Noisy (σ = 2) 0.718± 0.201 0.593± 0.216 9.578± 6.663 0.700

Raw+Noisy (σ = 2) 0.100± 0.102 0.056± 0.064 22.476± 8.905 0.466

Denoised (hi1) 0.709± 0.226 0.589± 0.234 10.516± 8.405 0.696

Raw+Denoised (hi1) 0.649± 0.202 0.512± 0.209 12.354± 7.731 0.731

Denoised (hi2) 0.719± 0.174 0.586± 0.186 12.670± 9.480 0.646

Raw+Denoised (hi2) 0.758± 0.185 0.642± 0.214 10.328± 10.409 0.678

Raw+Denoised (hi1)+Noisy

(σ = 0.5)

0.782± 0.172 0.670± 0.206 11.979± 5.471 0.656

T2W Raw 0.668± 0.160 0.521± 0.165 11.819± 7.036 0.750

Noisy (σ = 0.5) 0.670± 0.174 0.526± 0.174 12.591± 10.661 0.733

Raw+Noisy (σ = 0.5) 0.729± 0.144 0.592± 0.164 11.981± 11.293 0.777

Noisy (σ = 1) 0.496± 0.163 0.345± 0.147 15.553± 9.139 0.730

Raw+Noisy (σ = 1) 0.735±0.161 0.603±0.174 9.599±4.373 0.812

Noisy (σ = 2) 0.742±0.118 0.603±0.138 9.875±4.533 0.763

Raw+Noisy (σ = 2) 0.721± 0.154 0.584± 0.170 10.193± 4.601 0.761

Denoised (hi1) 0.707± 0.176 0.572± 0.192 12.603± 14.093 0.809

Raw+Denoised (hi1) 0.706± 0.191 0.574± 0.196 11.376± 8.836 0.790

Denoised (hi2) 0.692± 0.203 0.559± 0.198 13.365± 15.227 0.768

Raw+Denoised (hi2) 0.712± 0.178 0.577± 0.182 15.636± 19.430 0.746

Raw+Denoised (hi1)+Noisy

(σ = 0.5)

0.722± 0.171 0.589± 0.183 10.015± 4.608 0.793

noise level (σ = 0.5) to images and combining the original (raw) and noisy
images could enable the network to learn better by improving the regularisation
of the training procedure. We defined the model trained on the raw data as
the “base-learning”. In the ADC and DWI modalities, training the network on
images with low added noise (σ = 0.5) improved the results compared to the
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base-learning, while by adding more noise (σ = 1, σ = 2) to the raw images,
the results did not show improvement. For example, in the ADC modality, the
DSC mean for the raw dataset was 0.665 and improved to the value of 0.734
by adding a low noise level, but the performance did not change significantly or
even decreased to the values of 0.691 and 0.589 for σ = 1 and σ = 2, respectively.
The T2W modality provided similar outcome. By increasing the noise to σ = 1
in this modality, the dataset composed of only noisy images showed the worst
results, with a DSC mean value of 0.496, but increasing the noise (σ = 2), the
best results were achieved and the DSC mean reached the maximum value of
0.742. Despite differences between results from datasets composed of different
noise levels, datasets combining raw and noisy images achieved the best results
(with DSC vales of 0.73, 0.78 and 0.74 for the ADC, DWI and T2W modalities,
respectively, with the smallest spread of values from the average) and the out-
come was consistent between the different evaluation metrics for analysing the
segmentation performance. It was observed that the dataset composed of raw,
de-noised and noisy images did not show improvements compared to the combi-
nation of raw and noisy images, although this dataset clearly incorporated most
samples. Feeding a learning system with sharped, blurred and noisy samples -
resulting from different image effects- was expected to improve the outcome but
the results showed that not necessarily the number of training samples affects the
learning performance but also the number of discriminative samples is impor-
tant i.e. the difference between the raw and de-noised data was not significant
and so the obtained results did not differ much but the nature of raw and noisy
images was slightly different, which led to improvement in learning. Further-
more, the effect of noise on various modalities was different. Considering noisy
samples, T2W images were affected by higher levels of noise, while the ADC or
DWI images were affected by lower noise levels, considering that the additional
noise could affect the surrounding structures of the prostate. Applying a de-
noising method to the raw images did not improve the results significantly and
datasets composed of only de-noised images or both de-noised and raw images
provided the lowest results compared to datasests containing noisy images. We
have also tested the robustness of the model towards blurred images by mul-
tiplying the parameter h by 3 (indicated by h2

i in the results tables) and the
same results were obtained for de-noised images and blurred images, as well as
the combination of them with the raw images. Thus, we concluded that for the
model, they looked similar and no additional learning was achieved with more
blurred images used, which demonstrated the robustness of the model behaviour
towards such modifications in the training set that could be regarded as poor
image quality. Finally, in terms of detection performance, considering numeri-
cal values shown in Table 1, the best results (in term of the F.Score) from the
combination of raw plus noisy images was confirmed, which was in agreement
with our previous observations. Indeed, the F.Score reached an average score of
0.812 and 0.754 for the T2W and DWI modalities, using raw plus noisy images,
respectively, while the best score for the ADC modality for the detection was
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achieved with denoised images. Table 2 summarises and compares the segmenta-
tion performance of various methods using the dataset released in the “MICCAI
PROMISE12” challenge. In this challenge, multi-center and multi-vendor train-
ing data was released to train the models. To be mentioned, we have used a
different dataset (as explained in Sect. 2.1) for training our proposed model and
for testing. With these considerations and using the same evaluation metrics,
comparative results were obtained on the explained testing set. This work was
the first use of cGANs for prostate MRI analysis. The proposed pipeline can be
helpful in health-care appellations, due to its optimal performance, end-to-end
learning scheme with integrated feature learning, capability of handling complex
and multi-modality data plus simplicity of implementation.

Table 2. Comparison of state-of-the-art segmentation approaches for prostate T2W
images.

Reference Methodology HD DSC

[25] Active appearance models 5.54 ± 1.74 0.89 ± 0.03

[1] Region-specific hierarchical segmentation using

discriminative learning

6.04 ± 1.67 0.87 ± 0.03

[18] Interactive segmentation tool called Smart Paint 7.34 ± 3.08 0.85 ± 0.08

[27] Convex optimization with star shape prior 7.15 ± 2.08 0.84 ± 0.04

[17] 3D active appearance models 6.72 ± 1.42 0.83 ± 0.06

[14] Probabilistic active shape model 11.08 ± 5.85 0.77 ± 0.10

[6] Local appearance atlases and patch-based voxel

weighting

5.89 ± 2.59 0.76 ± 0.26

[15] Multi-atlas approach 7.95 ± 3.21 0.80 ± 0.07

[21] Zooming process with robust registration and atlas

selection

7.07 ± 1.64 0.65 ± 0.34

[24] Deformable landmark-free active appearance models 8.48 ± 2.53 0.75 ± 0.10

cGAN model Conditional generative adversarial model 9.59 ± 4.37 0.73 ± 0.16

4 Conclusion

Among many deep learning based models, Generative Adversarial Networks have
been among the successful supervised deep learning models, proposed as a gen-
eral purpose solution for image-to-image translation treated under specific con-
ditional settings. Our contribution in this paper was to present the simple but
effective cGAN model to analyse prostate tissue in 3D MRI sequences. Feeding
the model with a suitable input, it was able to compute parameters layer by layer
in the generator and the discriminator parts and estimate a final output that cor-
responded to prostate boundaries in different scans of various MRI modalities.
The objective of training was to minimise the difference between the prediction
of the network and the expected output (manual annotated boundaries by an
expert radiologist). Our quantitative results indicate the robustness and gener-
alisability of the model to image quality along with the effectiveness of including
noise in the training samples for the task of detection and segmentation.
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5 Future Work

In future, we extend the segmentation task to the related prostate structures
or substructures and subsequently put more focus on cancer localization and
lesion identification considering the discrimination between transitional, central
and peripheral zones (TZ, CZ, PZ), the neurovascular bundles or the seminal
vesicles. Tumor staging is another perspective of focus that we could investigate
when we acquire more case studies to be sufficient to train a deep network.
Investigating other data augmentation approaches is another perspective that
can be considered in future work.
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Abstract. This paper presents a novel image processing algorithm for automated
microcalcifications (MCs) detection in digital mammograms. In order to improve
the detection accuracy and reduce false positive (FP) numbers, two scales of sub-
images are considered for detecting varied sized MCs, and different processing
algorithms are used on them. Themain contributions of this researchwork include:
use of multifractal analysis based methods to analyze mammograms and describe
MCs texture features; development of adaptive α values selection rules for better
highlightingMCs patterns inmammograms; application of an effective SVMclas-
sifier to predict the existence of tiny MC spots. A full-field digital mammography
(FFDM) dataset INbreast is used to test our proposed method, and experimen-
tal results demonstrate that our detection algorithm outperforms other reported
methods, reaching a higher sensitivity (80.6%) and reducing FP numbers to lower
levels.

Keywords: Multifractal analysis · SVM · Mammogram · Microcalcifications
detection · Image enhancement

1 Introduction

In accordance with WHO’s statistics [1], over 1.5 million women are diagnosed with
breast cancer each year which makes it the most frequent cancer among women. The
greatest number of cancer-related deaths among women are caused by breast cancer. In
2015, 570,000 women died from breast cancer – that is approximately 15% of all cancer
deaths among women. In New Zealand also, breast cancer is the most common cancer
among women, with approximately nine women diagnosed every day [2]. There has
been no effective or proven method to prevent breast cancer, as its precise cause remains
unknown. Early detection of breast cancer therefore plays an important role in reducing
the risks and associatedmorbidity andmortality.Mammography, which uses low-energy
X-rays to identify abnormalities in the breast, is the onlywidely accepted imagingmethod
used for routine breast cancer screening. However, reading and interpreting suspicious
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regions in mammograms is a repetitive task for radiologists, leading to a 10%–30% rate
of undetected lesions [3]. To decrease this rate, computer-aided detection and diagnosis
(CAD) systems have been developed to assist radiologists in the interpretation of the
medical images [4–6].

The MCs are small deposits of calcium in the breast, and they can be a primary
indicator of breast cancer. However, accurate detection of MCs in mammograms can be
very challenging and difficult. Breasts contain variable quantities of glandular, fatty, and
connective tissues, and if there are a large number of glandular tissues, themammograms
could be very bright,making smallMCspoorly visible. Inmany countries, includingNew
Zealand, radiologists still analyze and interpret mammograms using manual operations
and visual observations, which cannot guarantee constantly identical criteria among a
large number of patients. Many parts of the world utilize double reading, where at least
two radiologists interpret each image, to reduce this variability. This is a time consuming
and expensive measure which may not be feasible in areas with staffing or budgetary
shortages.

Several methods for automatically detecting MCs have been reported in literature.
Simple nonlinear functions to modify contourlet coefficients and spectral approaches
were used in [5, 6] for enhancing MCs. These methods worked well with screen-film
mammogramgs (SFM) but were not tested on digital mammograms. A method using
morphological transformations and watershed segmentation was proposed to segment
MCs in [7]. A possibilistic fuzzy c-means (PFCM) clustering algorithm and weighted
support vector machine (WSVM) were integrated in [8] for detecting MCs.

However, problems such like high FP numbers and varied FP rate levels in different
experimental datasets are prominent and make those algorithms difficult to be applied
directly. A novel MCs detection method was developed in this research work by enhanc-
ing local image texture patterns based on multifractal analysis methods and designing
an SVM classifier. Multifractal features have been used as texture descriptors in appli-
cations in the field of medical image analysis [9, 10]. Although few research work have
considered using multifractal methods to analyze microcalcifications in mammograms
[11, 12], they all used a SFM dataset in experiments and the proposed methods were not
totally automatic. To the best of our knowledge, there is no other research work reported
before, extracting texture features from α-images for automatic MCs detection based on
digital mammogram dataset.

This paper is organized as follows: The next section gives a description of the dataset
used and a brief introduction of the processing pipeline. Section 3 introducesmultifractal
measures and their applications in image enhancement. Section 4 shows the main steps
of MCs detection using our proposed method, and Sect. 5 presents experimental results
and comparative analysis. Conclusions and some future work directions are given in
Sect. 6.

2 Materials and Methods

2.1 Microcalcifications Detection in Mammograms

MCs’ size, shape and local contrast vary differently in each mammogram, which leads
to the difficulty of accurate detection and frequent occurrence of FPs. In accordance with
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opinions of radiologists, individual MCs in size of 0.1 to 0.5 mm should be observed
and considered in mammograms, and if there are over 3 MC spots within 1 cm2 area,
we need to further consider clusters of MCs and their benign or malignant category.

For example, if the image resolution of mammograms is 50μm per pixel, then a MC
spot with size 0.1 mm corresponds to only two pixels size, and 0.5 mm corresponds to
ten pixels. Detecting tiny spots precisely from mammograms is a challenging task, as
there is not only MCs possessing high local contrast, but also other components, such
like gland or fibro tissues, which could be recognized as MCs incorrectly by detection
algorithms.

Obviously, the detecting accuracy of individual MCs affects the grouping of MC
clusters and their classification. High FPs will contribute to more MC clusters and may
lead to wrong classifications.

2.2 Dataset

INbreast [13] is a FFDM database which contains 115 cases and 410 images including
bilateral mediolateral oblique (MLO) and craniocaudal (CC) views. Over half of the
images in this database contain calcifications, which reflects the real population, where
calcifications are the most common finding in mammography. In addition, this dataset
offers carefully associated ground truth (GT) annotations. The ground truth for MCs
contain their image locations specified in pixel coordinates. Image resolution in digital
dataset is much higher than that in other SFM datasets [14], which is close to clini-
cal applications and more suitable for testing the proposed method. We therefore gave
importance to this digital mammogram dataset, INbreast, in our experiments.

2.3 Processing Stages

A processing pipeline containing the main steps in the proposed method is shown in
Fig. 1. As a necessary pre-processing step, breast region is segmented firstly from each
original mammogram. Some research work focused on precise breast region segmenta-
tion in mammograms due to artifacts or low contrast along the breast skin line in images
fromSFMdatabases [15, 16]. In our experiments, the pixel intensity based fractal dimen-
sion is computed and all pixels in a mammogram are grouped into 10 layers by using
their fractal dimension values. Then, breast region contours can be identified clearly and
corresponding mask images are generated. In order to avoid too high FP numbers, a
linear structure operator is imported to differentiate some line structures (gland or fibro
tissues) from MCs as mentioned in Sect. 2.1. More details of the proposed method are
given in next two sections.

3 Multifractal Analysis and Image Texture Enhancement

3.1 Multifractal Measures

There are four commonly used intensity measures in multifractal analysis: Maxi-
mum measure, Inverse-minimum measure, Summation measure and Iso measure [17].
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Fig. 1. Processing stages for detecting MCs in mammograms.

The function of a multifractal measure is denoted as μw(p), where p is the central pixel
within a square window of size w. Let g(k, l) represents the intensity value of the pixel
at the position of (k, l) inside the window, and Ω denotes the set of all neighbourhood
pixels of p in the window. Then the four measures can be formulated respectively as
follows:

Maximum : μw(p) = max (k,l∈�) g(k, l) (1)

I nverse − minimum : μw(p) = 1 − min(k,l)∈� g(k, l) (2)

Summation : μw(p) =
∑

(k,l)∈�
g(k, l) (3)

I so : μw(p) = #{(k, l)|g(p) ∼= g(k, l), (k, l) ∈ �} (4)

where, # is the number of pixels. In our experiments, pixel intensities in images are
firstly normalized into the range of [0, 1] by dividing the maximum grey level value
when consideringMaximumand Inverse-minimummeasures. Suchnormalizationbrings
better image enhancing results due to the amplifying effect of the logarithmic function
when computing the Hölder exponent (Sect. 3.2) in the domain of (0, 1).

3.2 Hölder Exponent and α-Image

The local singularity coefficient, also known as the Hölder exponent [18] or α-value,
is used to depict the pointwise singularity of the object and the multifractal property
quantitatively. Hölder exponent reflects the local behaviour of a function μw(p), which
can be calculated by different intensity based measures introduced in Sect. 3.1. The
variation of the intensity measure with respect to w can be characterized as follows:

μw(p) = Cwαp , w = 2i + 1, i = 0, 1, 2, . . . , d (5)

log(μw(p)) = αp log(w) + log(C) (6)

where, C is an arbitrary constant and d is the total number of windows used in the com-
putation of αp. The value of αp can be estimated from the slope of the linear regression
line in a log-log plot where log(μw(p)) is plotted against log(w).
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After computing the α value for each pixel in the processed image, α-images can
be generated by using the α value to replace the intensity value in the same position.
In α-images, some image features are highlighted and can be observed in more obvious
patterns than original images. All the α values in an α-image constitute a limited α value
range [αmin, αmax]. In this range, the pixels having the same α value are counted and
an α-histogram of the α-image can be obtained based on this counting, which can be
further used for extracting texture features [9, 10, 19]. Figure 2 shows some α-images
of a mammogram and their α-histograms using four multifractal measures.

Fig. 2. An original mammogram and its α-images calculated usingMaximum, Inverse-minimum,
Summation and Iso measures and their corresponding α-histograms.

3.3 Image Texture Enhancement

For better highlighting some image features which are not apparently clear in the inten-
sity image and its α-image, the α-range [αmin, αmax] could be further subdivided into
some subintervals within narrower α-ranges. In each subinterval, only the pixels pos-
sessing similar α values are retained, thus effectively enhancing partial features in the
image. An image only containing the pixels in one subinterval is called an α-slice.
In our experiments, we find that some α-slices under the deliberate subdivision of the
α-range enhance and highlight partial texture features significantly in mammograms,
which could be used to identify ROI and extract relevant features. In this research work,
such characteristics are used to detect MCs from background tissues. As seen in Fig. 3,
the selection of a narrow range of α values helps us to highlight MCs while eliminating
other neighbourhood pixels containing different α values.
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Fig. 3. Sub-images and their α-images (Inv-min measure) in different α value ranges.

3.4 α-Value Range Selection

Among different mammograms or even in two local regions from one image, the pixel
intensity and the local tissue density could vary, leading to various α-value ranges cor-
responding to α-images. Therefore, it is often difficult to select one fixed α-value range
in which α-slice describes MC features best. In our experiments, we found that in a
higher α-value sub-range MCs textures usually could be highlighted better than that in
a lower sub-range, as illustrated in Fig. 3. This can be ascribed to the much clearer local
contrast of MCs, which generates higher α value. In our proposed method, adaptive
α-value range selection rules are designed for 128 and 32 sized sub-images separately
as follows.

For one sub-image, its α-image and a whole α value range [αmin, αmax] are generated
as discussed above, then a specific percentage (P) of total points with the highestα values
in this sub-image are retained for selecting a suitable α-value range, which means that
there exist an α threshold value denoted by αt , and it satisfies:

αmin < αt < αmax (7)

∑max
i=t

n(αi ) = P × total pi xel numbers (8)

where, n(αi) denotes the number of points possessing the αi value in this α-image. After
testing different values of P (from 0.01 to 0.1) in our experiments, we found that when
P = 0.04, α-image in range of [αt , αmax] shows better MCs patterns in 128 sized sub-
images, and when P = 0.1, [αt , αmax] is more suitable for highlighting MCs in 32 sized
sub-images.

4 Microcalcifications Detection

4.1 Linear Structure Operator

Tissue regions having a nearly linear structure and high local contrast could poten-
tially be misclassified as MCs. Therefore, a line operator algorithm is used in the pro-
posedmethod for identifying such tissue structures. Research work in [20] demonstrated
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its effectiveness in detecting linear structures in mammograms. Traditionally, the line
operator algorithm is used as follows [21].

S(x) = L(x) − N (x) (9)

L(x) = maxθi∈[0,π) Lθi (x) (10)

where, x denotes each pixel’s location in mammograms; S(x) is the line strength signal;
N(x) denotes the average local background intensity around x; and Lθi (x) is the average
grey-level in the orientation of θ i, in our experiments, θ i uses 12 equally-spaced orienta-
tion angles. Here, a linear structure is defined as a straight line in length of 31 pixels and
with a specific angle of θ i, keeping the pixel x in its middle point. A 5× 5 square window
with x in the center is considered as the local background area when computing N(x).
Comparing to the line operator applied in other research work, our proposed method
does not use pixel intensity values to calculate Lθi (x) and N(x) but uses each pixel’s α

value to measure S(x).

4.2 MC Detection Based on Size

Due to the heterogeneous feature of MCs’ size, it will be difficult to detect separate MC
spots by using identical rules as their diameters range from 0.1 mm to over 1 mm. By
considering this fact, two scales of sub-images, 128 × 128 and 32 × 32 pixels slide
windows, are proposed to detect varied sized MCs.

Big MC Detection. Specifically, a threshold valueTarea for defining the size of bigMCs
is needed, and Tarea= 25 pixels is assigned in our experiments, aiming at recognizing
potential MC spots with the area over 25 pixels or the diameter over 5-pixel length in
128 sized sub-images. As MCs’ shapes are irregular as well, for example, they are not
limited to round shapes but could also be present in oval, rod, stellate or aciform shapes.
Therefore, there is no morphological detection rules designed for discerningMCs in this
method; instead, a line operator (Sect. 4.1) is considered to avoid incorrectly recognizing
some gland or fibro tissues in rod or line shapes as potential MCs. When there are too
much overlapping points (Tover) between a detected MC spot and a linear structure, the
current spot will not be considered as a MC.

Small MC Detection. For small MC spots with the area below 25 pixels or diameter
under 5 pixels, 32 sized patches are divided from the breast region in each original
mammogram and are used to detect the existence of small MCs. Because some very tiny
MCs only occupy 2 to 4 pixels area in a whole mammographic image and do not possess
as high image contrast as other bigMCs or gland tissues, it is almost impossible to detect
such small MC spots by using global texture features. However, after narrowing slide
window size to 32 pixels and performing the multifractal based image texture enhancing
scheme (Sect. 3.3), those tiny MC spots could be highlighted significantly in this local
region by calculating the α-image.

An SVM classifier based on α-values and intensities is designed and trained with
the aim of detecting tiny MCs in each patch. The feature vector X used in this classifier



A Novel Application of Multifractal Features 33

consists of six elements:X(p)= [α1,α2,α3, i1, i2, i3], where p is the currently considered
pixel in a patch, and α1, α2, α3 are average α-values calculated from neighborhood areas
of size 3 × 3 pixels, 5 × 5 pixels and 7 × 7 pixels respectively around p, and i1, i2, i3
are computed in the same way by using pixel intensities instead of α-values.

Training Set of the SVM Classifier. Alarge number of image patches of size 32 × 32
pixles containing breast region are cropped from mammograms and used as training set
for the proposed classifier. For example, one mammogram in INbreast dataset contains
3328 × 4084 pixels, and its breast region usually occupies about half of its total image
region after segmenting operations; therefore, about 2000 to 3000 sub-images could be
extracted from it. Finally, we selected 10 mammograms with pixel-level MC ground
truth information from INbreast dataset to prepare training samples. Those MCs spots
with 1 to 5 ground truth pixel-labels connecting together are picked out from each sub-
image and are used to calculate their feature vectors X(ph) = [α1, α2, α3, i1, i2, i3], h =
1, 2 … K1. These feature vectors are marked with a class label ‘1’ manually indicating
‘MC category’. And the other points without MC ground truth labels in sub-images are
used to generate feature vectors X’(pj) (j = 1,2..K-1) to form a ‘normal category’ part in
the training set with a manual class label ‘−1’.

For this SVM classifier, a linear kernel function is used and the training set contains
totally 150 training samples, with 50 (i.e. K1= 50) of them belonging to MC category
and remaining 100 (i.e. K-1= 100) samples are in the normal category.

5 Experimental Results and Analysis

First, breast region segmentation mentioned in Sect. 2.3 is done, then the linear operator
and two scales slide window policy both with 50% overlapping areas are executed
respectively in breast region areas.

After detecting MCs in 128 and 32 sized sub-images, their result images IMC1 and
IMC2 are combined to output a final detection image IMC = IMC1 + IMC2. In order to
audit and analyze experimental results, we define some rules for counting true positive
(TP) and FP. In IMC1, if one detected MC region overlaps the GT contour or its inside
area, this detected region is counted as one TP. Otherwise, this region is regarded as one
FP. In IMC2, due to some GT for tiny MCs only label one pixel in the mammogram, we
regulate that if one detected point in MCs is less than three pixels distance from a GT
point, then this point is counted as one TP. Otherwise, this point is sent to the FP group.
If SN denotes the total pixels number in the breast region of one mammogram and GTn

denotes ground truth number of negative points, then GTn = SN − GTp, where GTp is
the number of MCs offered by INbreast dataset. Figure 4 illustrates the main processing
steps in our experiment and one MC detection result image IMC in a local region.

FN = GTp− T P, T N = GTn− FP (11)

Sensi tivi t y = T P

T P + FN
, Speci f ici t y = T N

T N + FP
(12)

From the result image IMC , we find that FP number is still very high and majority
of them are caused by IMC2 (detected small MCs), as some spots with slightly high
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Fig. 4. Main processing steps in our experiments and an example of MC detection in a local
region.

contrast are recognized as MCs, indicating that the designed SVM classifier is very
sensitive towards local high contrasts. Therefore, a threshold value T is set for filtering
those spots and reducing FP numbers. Here, T means that in IMC2 there should be at
least T detected points around the target MC point and meantime these points satisfy
the judging rule mentioned above. In our experiments, five values (1, 2, 3, 4, and 5) are
assigned to T respectively.

In INbreast dataset, 50 mammograms with pixel-level MC ground truth information
are selected randomly and tested using our method. These mammograms have been
noted “MCs” by radiologists and classified into different Breast Imaging Reporting and
Data System (BI-RADS) [22] categories. Confusion matrices with different T values
are given in Table 1, showing the performance of the proposed method.

Table 1. Confusion matrices with different T values.

Predicted Predicted Predicted Predicted Predicted

T = 1 T = 2 T = 3 T = 4 T = 5

Positive Negative Positive Negative Positive Negative Positive Negative Positive Negative

Actual Positive 27.2 4.7 25.7 6.2 24.1 7.7 22 9.8 19.8 12.1

Negative 164 >106 89.7 >106 53.1 >106 32.9 >106 22.9 >106

Sensitivity 0.8527 0.8056 0.7579 0.6918 0.6207

Specificity 0.9998 0.9999 0.9999 1.0000 1.0000
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There are some other methods proposed for detecting MCs in the literature [23, 24],
including Bayesian surprise method, mathematical morphology and outlier detection,
and they are tested using the same dataset. Therefore, our methods are analyzed and
compared with the reported results in [23]. Results comparison in Table 2 and the free
response receiver operating characteristic (FROC) curve analysis in Fig. 5 show that
our detection result outperforms other methods. Bayesian surprise demonstrated a better
performance than othermethodswith a higher sensitivity (60.3%) in [23], but the average
FP number (108) indicated that a further improvement is needed. While by using our
method, 80.6%of sensitivity is achieved,which ismuch higher than the reportedmethods
and the averageFPnumber (90) is lower thanBayesian surprisemethod andmathematical
morphology. When the average FP number is reduced to 53 by setting T = 3, the
sensitivity (75.8%) still is the highest among these considered approaches.

Table 2. Results comparison between schemes reported in [23] and our method.

Method Sensitivity (%) FP (Average number per image)

Outlier detection 45.8 60

Mathematical morphology 40.3 225

Bayesian surprise 60.3 108

Our proposed method with
different threshold values

T = 2 80.6 90

T = 3 75.8 53

T = 4 69.2 33

T = 5 62.1 23

Fig. 5. FROC curves show the performance of the proposed method.
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Although the proposedmethoddisplayedbetter results than others did, theFPnumber
is still high for radiologists and improving work should be considered in the future work.
Some possible solutions and research directions are discussed in the next section.

6 Conclusions

This paper has introduced a novel MCs detection method in digital mammograms based
on image multifractal analysis and an SVM classifier. A breast region segmentation
scheme and a linear operator algorithm based on α values are discussed and used in
the pre-processing step. To the best of our knowledge, this is the first time an approach
based on image multifractal analysis and feature vectors extracted from α-images are
used with the aim of automatically identifying MCs in each whole mammographic
image. The usefulness of multifractal based feature descriptors and their applications
in image texture enhancing algorithms have been demonstrated through experimental
results. The proposed algorithm integrates a texture enhancing process in two scales
of sub-images for detecting MCs in different sizes, then a linear structure filter was
developed and an SVM classifier based on selected α-values and pixel intensity values
was trained for generating accurate detecting results. Experimental results show that
the proposed method works well in digital mammograms and outperforms other MCs
detection algorithms.

However, the highFPnumber still is a big challenge to improve the detection accuracy
to a higher level, and a rising recall rate caused by FP is unacceptable for radiologists
and their patients in the clinical screening mammography. Some other image texture
descriptors, such like gray-level co-occurrence matrix (GLCM), local binary patterns
(LBP), could be considered to be integrated into this approach. In addition, high breast
density areas contributed by fibroglandular tissues in breast regions should be paid more
attention to, as MCs detection usually is more difficult and higher FP numbers are
generated in such regions.
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Abstract. Wilms’ tumor or nephroblastoma is a kidney tumor and the
most common renal malignancy in childhood. Clinicians assume that
these tumors develop from embryonic renal precursor cells - sometimes
via nephrogenic rests or nephroblastomatosis. In Europe, chemotherapy
is carried out prior to surgery, which downstages the tumor. This results
in various pathological subtypes with differences in their prognosis and
treatment.

First, we demonstrate that the classical distinction between nephrob-
lastoma and its precursor lesion is error prone with an accuracy of 0.824.
We tackle this issue with appropriate texture features and improve the
classification accuracy to 0.932.

Second, we are the first to predict the development of nephroblastoma
under chemotherapy. We use a bag of visual model and show that visual
clues are present that help to approximate the developing subtype.

Last but not least, we provide our data set of 54 kidneys with nephrob-
lastomatosis in conjunction with 148 Wilms’ tumors.

1 Introduction

Wilms’ tumor, or nephroblastoma, accounts for 5% of all cancers in childhood
and constitutes the most frequent malignant kidney tumor in children and juve-
niles [16]. About 75% of all patients are younger than five years - with a peak
between two and three years [5,11]. Nephroblastoma is a solid tumor, consist-
ing mainly of three types of tissue: blastema, epithelium and stroma [21]. In
Europe, diagnosis and therapy follow the guidelines of the International Society
of Pediatric Oncology (SIOP) [6,10]. One of the most important characteristics
of this therapy protocol is a preoperative chemotherapy. During this therapy,
the tumor tissue changes, and a total of nine different subtypes can develop [6].
Depending on this and the local stage, the patient is categorized into one of the
three risk groups (low-, intermediate-, or high-risk patients) and further therapy
is adapted accordingly. Of course, it would be of decisive importance for ther-
apy and treatment planning to determine the corresponding subtype as early as
possible. It is currently not known how this can be achieved.
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However, there are very few research results in this direction so far: To the
best our knowledge, there is only the recent work of Hötker et al. [9], where they
show that diffusion-weighted MRI might be helpful in making this distinction.
Unfortunately, diffusion-weighted MR images are not yet recorded as standard.
Due to a relatively low incidence of this disease, it is also difficult to sensitise
the clinical staff in this direction. On the other hand, a T2 sequence is part
of the therapy protocol and always recorded - even if there are no parameter
specifications. We can show that even this standard sequence might be sufficient
to predict subtype tendencies.

In about 40% of all children with nephroblastoma, so-called nephrogenic rests
can be detected. Since these only occur in 0.6% of all childhood autopsies, they
are considered a premalignant lesion of Wilms’ tumors [2]. The diffuse or mul-
tifocal appearance of nephrogenic rests is called nephroblastomatosis [13,15].
Despite the histological similarity, nephroblastomatosis does not seem to have
any invasive or metastatic tendencies. In order to adapt the therapy accordingly
and not to expose children to an unnecessary medical burden on the one hand
and to maximize their chances of survival on the other, it is necessary to distin-
guish nephroblastoma and its precursor nephroblastomatosis at the beginning of
treatment. Its visual appearance has been described as homogenous and small
abdominal mass [4,18]. However, all existing publications describe the visual
appearance on usually very small data sets [7,18]. So far, it has never been
validated statistically to what extent the described features are sufficient for
classification. Thus, we review this current clinical practise. For this purpose, we
have created a data set and evaluate whether the assumed properties can solve
the classification problem between these two entities. In addition, we propose
further properties that dramatically simplify the problem.

In summary our main contributions are:

– We demonstrate that the assumptions about nephroblastomatosis are mostly
correct, but not sufficient to ensure a reliable classification. We solve this
problem by including more texture features in the classification procedure.

– We are the first to show that T2 imaging can be used to predict tumor devel-
opment under chemotherapy in advance. We extract a variety of features and
create a collection of visual properties from each image. We use this visual
vocabulary to create a histogram of the relative frequency of each pattern
in an image of a given subtype. We then use this information for subtype
determination.

– We provide a data set with images of nephroblastomatosis and nephroblas-
toma from a total of 202 different patients.1

1 The data set can be accessed at www.mia.uni-saarland.de/nephroblastomatosis.

www.mia.uni-saarland.de/nephroblastomatosis
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2 Materials and Methods

Nephroblastoma is the most common kidney tumor in childhood, although it is
always difficult to collect a sufficient amount of data from children and adoles-
cents. This problem is partially solved within large-scale multi-center studies on
Wilms’ tumor [17,22].

2.1 Data Sets

In recent years, the SIOP studies have collected clinical and imaging data from
more than 1000 patients, possible through networking of many hospitals. Unfor-
tunately, this has also caused a major problem: The MR images were taken on
devices from different manufacturers with different magnetic field strengths over
several years. In addition, there are no uniform parameter sets and the individual
sequences (of the same type) can vary dramatically.

Fig. 1. Exemplary images from our data set. From left to right: epithelial dominant,
stromal dominant, blastemal dominant, regressive, nephroblastomatosis.

We made sure that the main parameter settings of the T2 sequences included
in our data set are as similar as possible - this has drastically reduced the amount
of imaging data available. Nevertheless, we have compiled a data set of 202
patients, see Table 1. All data sets are T2-weighted images (axial 2D acquisition)
with 3.4 mm to 9.6 mm slice thickness and inslice-sampling ranging from 0.3 mm
to 1.8 mm.

In a first step, we cubically resampled all images to a grid size of one in x and
y direction, but refrained from resampling in z direction as the interpolation error
would be too high. Then, we linearly rescaled image intensities for simplicity to
the interval [0, 1]. In the end, a human expert with years of experience in the
field of nephroblastoma annotated the tumor regions using the method of Müller
et al. [14]. We mask everything except the tumor areas and embed them in a
square shaped image; see Fig. 1.

Research Ethics of the Study. All images were received as part of the
SIOP 2001 prospective clinical trial. This trial received Ethical Approval from
‘Ärztekammer des Saarlandes’, Germany, No.: 248/13. Informed consent was
given by parents or legal guardians of all enrolled children with nephroblastoma.
In addition, all DICOM files were anonymized before analysis.
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Table 1. Detailed information about our data set.

Patient characteristics

Age Range (month) 1–153

Average 34.3

Gender Female 50.9%

Male 49.1%

Metastasis (Wilms’ Tumor) 22 (14.86%)

Tumor characteristics

Nephroblastoma subtypes Diffuse anaplastic 3

Blastemal 18

Regressive 50

Mixed 29

Stromal 28

Epithelial 17

Necrotic 3

Total 148

Nephroblastomatosis 54

Total 202

2.2 Features

First, we like to investigate and improve the currently clinically applied distinc-
tion between nephroblastoma and nephroblastomatosis. In order to imitate the
clinically used properties as accurately as possible, we apply texture features
and evaluate their significance.

Next, we evaluate if it is possible to predict the development of a nephroblas-
toma under chemotherapy based on standard T2 sequences. Also in this case we
like to know if the overall structure of a tumor layer already contains information
about the subtype. For this purpose we use a Bag of Visual Words model.

Texture Features. Haralick et al. [8] established the basic assumption that
gray-level co-occurence matrices contain all available textural information of
an image. These second order Haralick texture features are extensively used in
recent years in the area of medical image analysis to diagnose and differentiate
cancer [20,23,24].

The basis of co-occurrence characteristics is the second-order conditional
probability density function of an given image. Here, the elements of the co-
occurrence matrix for the structure of interest represent the number of times
intensity levels occur in neighboring pixels. Several features can be extracted
from this matrix, e.g. contrast, homogeneity, entropy, autocorrelation [8,19]. We
use these features to distinguish nephroblastomatosis and Wilms’ tumors.
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Bag of Visual Words Model. The basic idea of a bag of visual words model
is to represent an image as a set of local visual features. For this purpose we
calculate the SURF features [1] of each 8th tumor pixel for a patch of size 7× 7.
The patches of the training images are then clustered with k-means [12] where
cluster centroids are visual dictionary vocabularies. This allows us to determine
a frequency histogram of the features in each training and test image. We use
this information to train a bagged random forest classifier with 300 decision trees
[3].

3 Experiments

We use our data set consisting of nephroblastomatoses and Wilms’ tumors to
perform several experiments. First, we want to know how accurate the clinical
assumption is that nephroblastomatosis and Wilms’ tumor can be distinguished
by size and homogeneity. Then, we analyze the effectiveness of texture features
and incorporate them to improve our classification results. In the second part of
our experiments, we address the problem of subtype classification of nephrob-
lastoma. We want to evaluate whether there is a possibility of estimating the
development of the tumor under chemotherapy. All parameters in our experi-
ments are empirically determined.

3.1 Nephroblastoma vs. Nephroblastomatosis

We first validate the general assumption that nephroblastoma can be distin-
guished from their predecessors by homogeneity and size. Subsequently, we show
how this distinction can be significantly improved.

For this purpose we randomly select 54 out of our 148 Wilms’ tumors. We
then subdivide these into 27 test and training data sets again by chance. We pro-
ceed analogously with nephroblastomatosis data sets. Since the diffuse anaplas-
tic and necrotic subtypes are under-represented, we made sure that they occur
exclusively in the test-sets. From each of our data sets we draw the middle slice
of the annotated tumor region and train a random forest classifier to distinguish
these two classes (nephroblastomatosis and Wilms’ tumor) with 3-fold cross val-
idation. We repeat this procedure 5 times and calculate the average accuracy at
the end.

Verifying Clinical Assumptions. In clinical practice, homogeneity and size of
an abdominal tumor are generally used to make a distinction between nephrob-
lastoma and nephroblastomatosis [15]. In order to validate this approach, we
calculated these two feature for all data sets and used it for classification, see
Table 2. The average accuracy of 0.824 indicates that homogeneity and size are
valuable properties to distinguish a nephroblastoma from its precursor lesion.
Nevertheless, it seems not sufficient to build clinical decisions on. Thus, we add
more visual texture properties to the classification procedure [8,19].
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Table 2. Evaluation of clinical assumptions for classification: Nephroblastoma versus
Nephroblastomatosis.

Predicted

Nephroblastoma Nephroblastomatosis

Nephroblastoma 0.833 ± 0.079 0.167 ± 0.079

Nephroblastomatosis 0.185 ± 0.067 0.815 ± 0.067

Feature Selection with Random Forests. Haralick et al. [8] and Soh and
Tsatsoulis [19] suggested a number of additional texture features. In a first step
we calculate all of these 23 features and train a bagged random forest classi-
fier with 300 ensemble learners. This also gives us the opportunity to evaluate
the influence of each feature on the final classification. It turned out that the
following nine features are decisive: size, information measure correlation 1 and
2, cluster prominence, sum entropy, dissimilarity, maximum probability, energy
and autocorrelation. Surprisingly, the feature of homogeneity is not important
when the above information is given. We evaluated these features as previously
on five randomly selected data sets and 3-fold cross validation. It turns out that
this additional information dramatically improves the classification performance
to an accuracy of 0.932, see Table 3.

Table 3. Classification result with appropriate feature selection: Nephroblastoma ver-
sus Nephroblastomatosis.

Predicted

Nephroblastoma Nephroblastomatosis

Nephroblastoma 0.926 ± 0.064 0.074 ± 0.064

Nephroblastomatosis 0.063 ± 0.027 0.937 ± 0.027
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Fig. 2. Subtype distribution without (red) and with (blue) pre-operative chemotherapy.
(Color figure online)
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3.2 Subtype Determination

A Wilms’ tumor consists of the tissue types stroma, epithelium, and blastema
[21]. Depending on the chosen therapy strategy, the subtypes are distributed
differently, see Fig. 2. In Europe, the key concept in therapy planning is a pre-
operative chemotherapy. This aims to shrink the tumor but also to make it
more resistant to ruptures [6]. During this phase of therapy, various subtypes
emerge, some of which differ dramatically in their prognosis. In the following
we consider the standard group of intermediate risk patients. This consists of
mainly regressive, epithelial dominant, stromal dominant, and mixed (none of
the tissue types predominates) tumors. Since the blastemal dominant type has
the worst prognosis, we also include it. Unfortunately, it is not yet possible to
predict which of the subtypes develops during chemotherapy. Clinicians assume
- based on subtype distributions before and after chemotherapy - that mainly
blastemal tissue is destroyed during this phase of therapy, see Fig. 2. However,
there is currently no possibility to determine the histological components without
a biopsy, exclusively based on imaging data.

We evaluate how far we can get in subtype determination with simple but
standard T2 sequences. Since this problem is much more complex than the dis-
tinction between nephroblastoma and nephroblastomatosis, we need more data.
Therefore, we select one slice from each annotated tumor from the lower third
of the annotation, one from the upper third and the middle slice. In this way we
generate a total of 54 images of a blastemal dominant tumor, 150 of a regres-
sive tumor, 87 of a mixed tumor, 84 of a stromal dominant tumor and 51 of an
epithelial dominant tumor.

Depending on the classification problem, we always take as many images as
there are in the smaller class and divide them randomly into training and test
sets. In this way we ensure that the results are not aimed at the frequency of the
images but only at the discrimination. Then we calculate the visual vocabulary
for each data set to generate a bag of visual words. With this information we then
train a random forest with 300 ensemble learners and 3-fold cross validation. We
repeat this process 5 times, analogous to the differentiation of nephroblastom-
atosis, including the newly generated training and test set. Here, we optimize
the size of the vocabulary on the training set and select a value from the interval
[10, 100].

We compare all selected subtypes with all others in Fig. 3. Our results are
strictly above the chance level (dashed line) while average accuracy of regres-
sive is 0.70, epithelial dominant 0.72, stromal dominant 0.66, mixed 0.67, and
blastemal dominant 0.64. This indicates that we are on the right way and that
it should be possible to distinguish these subtypes based on imaging data.

There are also several cases where our classification is surprisingly accu-
rate. The accuracy of the distinction between regressive and epithelial domi-
nant subtypes is 0.80. This leads to the following conclusions: 1. Tumors that
are epithelial dominant prior to chemotherapy are less likely to regress than
those that are rich in stroma or blastemal tissue. This coincides with subtype
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Fig. 3. Evaluation results showing mean and standard deviation of between-class clas-
sification accuracy for regressive, epithelial, stromal, mixed and blastemal subtypes.
Mean performance is indicated with black lines. The dashed line marks the chance
level. red: regressive, blue: epithelial, yellow: stromal, green: mixed, white: blastemal.
(Color figure online)

distributions before and after chemotherapy. 2. Epithelial areas can be distin-
guished from other types of tissue by visual features.

Furthermore, the differentiation between regressive and mixed subtypes is
relatively accurate with 0.73. This allows conclusions similar to those of the
epithelial type. In addition, the epithelial dominant subtype is also well distin-
guishable from the stromal dominant one, i.e. classification accuracy of 0.7. We
also tried to use neural networks to solve our classification problem. Unfortu-
nately it turned out that we do not have a sufficient amount of data to re-train
enough layers of a pretrained network. Therefore, all our attempts with neural
networks showed low performance.

We ensured that the main parameter settings of images included in our data
set are as similar as possible. However, several parameters differ dramatically in
many cases. Since these cannot be compensated, the data is unfortunately not
completely comparable and a considerable parameter noise is present. We firmly
believe that the classification would improve significantly if this kind of noise in
the data were lower. We therefore hope that in the near future a standardization
of MRI sequences will be established in the medical area.
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4 Conclusions

We demonstrated that the classical distinction between nephroblastomatosis and
nephroblastoma is not as trivial as previously assumed. However, we were able
to solve this problem by proposing further intuitive features that make the dis-
tinction much more reliable. This significantly reduces the risk of misdiagnosis
and thus minimizes the medical burden on affected children.

In addition, we are the first to address the considered unsolvable problem of
subtype determination prior to chemotherapy. We can show that it is basically
possible to estimate this development. Even though the imaging is not standard-
ized and therefore shows a high parameter noise, there are still visual features
that allow a distinction.

Finally, we also provide the data set we use. We hope that we will be able
to arouse the interest of other researchers. We hope that the estimation of the
subtype in particular will be of increased interest.

In our current research, we are working on the exact visual representation
of the individual classes, especially the epithelial dominant subtype. We hope
that we will be able to gain more information from this in order to identify at
least individual types with certainty. Most importantly, we are convinced that
this research will enhance the chances of survival of the affected children. If it
is possible to detect especially blastemal dominant tumors (after chemotherapy)
early, the therapy can be adapted much earlier such that the recovery process
of the child can be improved.

Acknowledgements. J. Weickert has received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation
programme (grant agreement no. 741215, ERC Advanced Grant INCOVID).
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Abstract. We propose a novel method for the classification of benign and malig-
nant micro-calcifications using a multi-scale tree-based modelling approach. By
taking the connectivity between individual calcifications into account, micro-
calcification trees were build at multiple scales along with the extraction of
several tree related micro-calcification features. We interlinked the distribution
aspect of calcifications with the tree structures at each scale. Classification results
show an accuracy of 85% for MIAS and 79% for DDSM, which is in-line with
the state-of-the-art methods.

Keywords: Micro-calcification · Classification · Computer Aided Diagnosis ·
Modelling · Benign · Malignant

1 Literature Review

Recent advances in image processing, pattern recognition and machine learning tech-
niques have been incorporated in Computer Aided Diagnosis (CAD) system develop-
ment [10]. CAD systems have been developed for diagnosis of micro-calcifications
in order to assist radiologists to improve their diagnosis [3–5,8]. The use of CAD sys-
tems in clinical practice could increase the sensitivity about 10% compared to diagnosis
without a CAD system [21]. Various aspects of micro-calcifications have been studied
in the past including morphology, shape, texture, distribution and intensity for the clas-
sification of benign and malignant micro-calcifications [5,8]. Some of the developed
approaches focused on the indivisual micro-calcification features [2,18,25] whereas
others used global features from clustered micro-calcifications [4,24,26,28].

Existing methods have used topological modelling of micro-calcifications in order
to extract cluster-level features to be used for classification [4,26]. Chen et al. [4]
presented a method for the classification of benign and malignant micro-calcification
based on the connectivity and topology of micro-calcification clusters. The method used
dilation at multiple scales in addition to building graph like structures at each scale.
They extracted eight graph-based features at each scale which were then aggregated
as a feature vector to classify between benign and malignant microcalcifications. They
c© Springer Nature Switzerland AG 2020
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used the segmented images in the binary format from three different dataset (MIAS,
DDSM and a non public database). Alternative work regarding topological modeling of
micro-calcification clusters has been done by [26], where they introduced meretopo-
logical barcodes for the classification of benign and malignant micro-calcifications.
They applied morphological operations on the segmented micro-calcification images
over multiple scales. The morphological operations they used were the implementation
of RCC8D (8 Region Connected Calculus) and their evaluation was based on image
patches from MIAS and DDSM dataset containing micro-calcifications. Both methods
used segmented micro-calcifications for experimental evaluation.

A lot of work has been presented in the area of selecting global or local fea-
tures (intensity, texture, etc.) [1,24] from Region of Interest (RoI) containing micro-
calcifications to classify them as benign or malignant. Getting inspired by the good
classification results achieved from topological modelling (85%) [4] and keeping in
mind the need to study different forms of the topology for micro-calcification clus-
ters, we proposed a novel method that extracted tree-based features at multiple scales.
Current work is an extension of the work done in [29] that involved extracting the
fixed-scale tree-based features to classify micro-calcifications as benign or malignant.
In recent years, deep learning based classification showed improved performance in the
classification accuracy particularly for medical images. Although deep learning based
methods have been widely used with different architectures [6,9,20], a more traditional
NaiveBayes classification gives promising results.

2 Approach: Scale-Invariant Modelling of Micro-calcification

In this section, we propose a novel method for the classification of benign and malignant
micro-calcifications using a multi-scale tree-based modelling approach. By taking the
connectivity between individual calcifications into account, micro-calcification trees
were build at multiple scales along with the extraction of several tree related micro-
calcification features. We interlinked the distribution aspect of calcifications with the
tree structures at each scale.

2.1 Dataset

DDSM Dataset. We used segmented RoIs extracted from the DDSM [13] database.
The dataset has been used by other researchers for the performance evaluation of their
algorithm [4,26]. The RoIs for the DDSM dataset are of variable sizes (average size of
image patches is 482×450 pixels), but the proposed algorithm is invariant to the image
size. There were 149 benign cases and 139 malignant cases in the dataset. The RoIs
were probability images regarding calcification presence [22]. For evaluation of our
algorithm, we used a subset of these 288 RoIs which were all classified as diffuse/scat-
tered micro-calcification clusters according to the BIRADS standard [17]. Only those
RoIs were used that did not contain mass. The BIRADS classification for the DDSM
database has been provided by expert radiologist and is provided as part of the dataset.
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Fig. 1. Original mammographic data from DDSM dataset with segmented benign (top row) and
malignant (bottom row) micro-calcifications RoIs.

This subset contains 129 RoIs, of which 71 were malignant and 58 benign. Some exam-
ple RoIs from the used database can be found in Fig. 1, where the 2nd and 4th columns
are representing the annotations/segmentations.

MIAS Dataset. Like DDSM, the MIAS dataset used for this work contains segmented
micro-calcifications [27]. Images in the dataset are 512 × 512 RoIs and digitized to
50µm/pixel with the linear optical density in the range of 0–3.2. The dataset consists of
20 RoIs (all are biopsy proven). Eleven RoIs are benign and 9 are malignant. The dataset
provides annotation where the central part of calcification have been marked by value
1 whereas the boundaries are marked by value 2. Some example RoIs from the MIAS
database are shown in Fig. 2, where the left image is showing micro-calcifications that
include the boundary (D1), whereas the right image is showing the micro-calcifications
without the boundary regions (D2). We used both RoIs (with and without the bound-
ary pixels), to highlight the overall effect of using boundary pixels on the classifica-
tion’s accuracy. The overall evaluation of using these two variation of dataset reveals an
important conclusion that the boundary area of micro-calcification is also important for
characterizing them as either benign or malignant.

2.2 Method

The proposed method used multi-scale tree-based modelling for micro-calcification
cluster classification. Unlike similar approaches presented in the literature [4,26] which
used multiple dilation operations (with different structuring elements) as scales to show
the connectivity/relationship between the calcifications, the original structure of micro-
calcification do not change at multiple scales instead we defined scales as the distance
between pixels.
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Fig. 2. Sample images from the MIAS database: The left image shows micro-calcifications that
included boundary pixels, whereas the right image shows micro-calcifications without the bound-
ary pixels included.

Input. The input to the scale-invariant approach were the datasets mentioned in
Sect. 2.1. For the DDSM dataset the binarized form of the probability images were
used, where only pixels with a probability higher than 0.27 were used:

∀i,jP (xi, yj) =

{
1, if P (xi, yj) ≥ 0.27
0, otherwise

The particular value of 0.27 as a threshold probability was based on work presented
in [29].

Whereas for MIAS dataset, two variations of the dataset were used, where D1 con-
tained the boundary as well as the central part of the calcification and D2 contained
only the central area of the calcification. For the MIAS dataset, D1 was defined as:

∀i,jP (xi, yj) =

{
255, if P (xi, yj) ∈ 1, 2
0, otherwise

Secondly, for D2, we take only the central part of the calcifications:

∀i,jP (xi, yj) =

{
255, if P (xi, yj) = 1
0, otherwise

Reducing RoIs to 1 Pixel/Calcification and Generating Leaf Nodes. We reduced all
individual micro-calcifications to a single point. For that, we extract the region-based
properties of the binary image after labeling it. We use a module ‘measure’ for both
labeling the image and getting regional properties, that was provided with the Scikit-
image image processing tool-kit available in Python (version 2.7.0). The extracted prop-
erties from the labeled binary image included a detailed description for each connected
component (area, bounding box, coordinates, etc.) in addition to the centroid of each
region as a tuple (x,y). We retained only the pixels corresponding to the centroid posi-
tion of each region and discard others. In this way we reduced all regions in the image to
a single pixel, that was representing the central position of each connected-component
(Fig. 3).
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Fig. 3. Process for the multi-scale tree based modelling and classification of micro-calcification
clusters in mammograms at different scales. In d. from top to bottom the scales are 16, 22 and 39.

These isolated pixels were converted into a node data structure [11], which was used
as the basis for a multi-scale tree-based modelling approach, for which we used the node
structure as defined in Table 1. Apart from the left and right child, we added node id’s
(unique for each node) and a connected-components list (that represents the connected
nodes) as application specific components to the traditional binary node structure. At
the initial stage each pixel was represented as a connected-component where left and
right child had been assigned NULL values.

Table 1. Node structure

Node-Id Representing Unique ID for each node

Left child Representing left child of the node

Right child Representing right child of the node

Connected-components List of connected pixels P(x,y)
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Distance-Map Computation. After creating node structures, we computed the dis-
tance between all leaf nodes to define their connectivity. A Euclidean distance was used
to represent the distance between leaf nodesNi andNj (using Eq. 1). This distance map
had n × n dimensions with n leaf nodes.

D(Ni,Nj) =
√

(xNj
− xNi

)2 + (yNj
− yNi

)2 (1)

Tree-Generation at Multiple Scales. Recursively, we build a tree-structure at a partic-
ular scale ‘s’ that took a list of leaf nodes as input. At each step the function searched for
the nodes having distance ≤ ‘s’ and if it found such a pair of nodes, it merged the nodes
by assigning both the nodes a new parent. At the same time the connected-component
list of newly created parent was populated by the pixels of both the child nodes. In this
way the recursive function continued until it found no node beyond a particular scale
‘s’ to be merged. The resulting representation for the RoIs at a particular scale ‘s’ was
a set of trees where some trees had height ≤ 1 and some had height ≥ 2. We assign a
label to each tree as: if height of the tree was ≤ 1 (i.e. tree contained 1 or at-most a
group of 2 micro-calcifications), the label is benign and if the tree height was ≥ 2, it
was given as malignant label.

Algorithm 1 elaborates the procedure of constructing binary trees recursively at a
particular scale ‘s’: This process of tree generation used scales 1, 2, 3 ... 79, where an
increasing number defines larger connected regions.

Algorithm 1. Trees construction at a particular scale ‘s’ from leaf nodes
Input: List of nodes (initially represented as leaf nodes)
do recursively connect leaf nodes by:

1. finding the closest pair of nodes (having distance ≤ s);
2. removing this pair from the list of nodes;
3. merge these nodes together as a binary tree where the nodes are now represented as leaf
nodes of a binary tree, and also appeared as connected-components for the root of binary
tree;
4. adding the root of the tree to the list of nodes;

while no further pairs of nodes below distance ‘s’ are found
return: list of nodes, in which closest nodes have been merged together as trees

Multiscale Tree-Based Micro-calcification Feature Extractions. The next step was
to extract features from the trees that have been generated at multiple scales. These
features were used as descriptors for benign and malignant RoIs. We took the following
features for all the trees:

– no. of benign trees (as defined in the previous section labels had been assigned for
all the constructed trees, this was a count of trees having a benign label).

– no. of malignant trees (count of constructed trees that have a malignant label).
– max. tree height (maximum height for all the constructed trees).
– min. tree height (minimum height for all the constructed trees).
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– no. of leaf nodes belonging to the benign trees (as each tree is composed of leaf
nodes, all the leaf nodes representing the pixels that are included in that tree, this
feature will count all the leaf nodes from all the constructed trees whose labels were
benign).

– no. of leaf nodes belonging to the malignant trees (count the leaf nodes for all the
constructed trees whose labels were malignant).

As we use 79 scales, the length of feature vector is equal to 474.

2.3 Results and Discussion

After feature extraction, the next step was classification. By using the NaiveBayes clas-
sifier, classification accuracy for D1 was 85% whereas for D2 the accuracy was 80%.
The Weka machine learning tool [12] was used for the performance evaluation (for both
MIAS and DDSM datasets). In addition, a 10-Fold Cross Validation (10-FCV) scheme
was used for evalating the results. The confusion matrix for the classification results for
the MIAS dataset (D1 and D2) can be found in Tables 2(A) and (B), respectively.

Figure 4 shows examples of the proposed algorithm at different scales (1, 16 and
39) for a malignant and benign RoI. As can be seen from Fig. 4 (top row) the malignant
RoI started creating more dense trees at lower scales as compared to the benign RoI
(bottom row). The final results for the benign and malignant RoIs showed different tree
structures (Fig. 4 (last column)), where the malignant RoI formed denser trees compared
to the benign RoI.

Table 2. Classification results for MIAS dataset.

Results for the DDSM dataset have been evaluated using multiple machine learn-
ing classifiers. As explained in Sect. 2.1, for DDSM there were in total 288 RoIs (149
benign and 139 malignant). The same features were selected for the DDSM dataset as
for the MIAS dataset for evaluating the classification performance. Overall classifica-
tion accuracy of 79% was achieved using the J48 classifier with bootstrap aggregation.
The J48 classifier is an implementation of the C4.5 algorithm [23]. In J48, a decision
tree was build that was then used for classification. For bootstrap aggregation, the bag
size was set to 70 and number of iterations was set to 20. The remaining parameters
were set at the default values as provided by Weka. Like MIAS, 10-FCV was used for
evaluating the results for the DDSM datset. The classification results for the DDSM
dataset can be found in Table 3.
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Fig. 4. Results of constructed trees for benign and malignant RoIs: first column showing the
sample RoIs (top row: malignant, bottom row: benign), second column shows constructed trees
at scale equal to 1; third column shows the trees constructed at scale 16, whereas the final column
shows trees at scale 39.

The results for the features extracted at multiple scales for tree based modeling
showed improved results for the entire DDSM dataset compared to the fixed scale app-
roach [29] (where 55% classification accuracy was achieved for the full DDSM dataset
and 55% and 60% accuracy was achieved for both variants of the MIAS dataset, respec-
tively). The results for the DDSM dataset (as shown in Table 3) were more consistent:
for 149 benign RoIs, 122 were reported as benign and for 139 malignant RoIs, 106 were
reported as malignant. For the MIAS dataset, the results for dataset D1 (Table 2(A))
seems more consistent compare to datasetD2 (Table 2(B)). This showed that the bound-
ary information of the calcifications was also important for the discrimination of benign
and malignant micro-calcifications.

Table 3. Classification results for DDSM dataset.

Benign Malignant

Benign 122 27

Malignant 33 106

3 Comparison

In this section, we compare the current approach with existing approaches developed
for the classification of micro-calcification using topological modeling. Ma et al. [18]
proposed a method for classifying benign and malignant micro-calcifications using
roughness of the individual micro-calcification. They reported overall 80% of classifi-
cation accuracy for 183 cases from DDSM dataset. Work proposed by Shen et al. [25],
used measures of compactness, moments and Fourier descriptors as shape features as
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a measure of roughness of the contours of calcifications for classifying the benign
and malignant micro-calcifications. They reported 100% classification accuracy on 18
mammographic cases, however the dataset used was unspecified. Topological mod-
elling has proven to provide more accurate results in terms of classifying micro-
calcification [4,26,28]. Recently, Suhail et al. [28] proposed a multiscale morphologi-
cal approach for the classification of micro-calcifications. Several class extractors were
used, where each class extractor computed the probability of pixels belong to a cer-
tain class. They achieved overall 90% accuracy for the MIAS and 79% accuracy for
the DDSM dataset. Chen et al. [4] proposed a topological modelling where a graphical
model was used to extract the features representing connectivity of calcification at mul-
tiple scales. Overall 86% and 95% classification accuracy was achieved for the DDSM
and MIAS dataset, respectively. Similar work was presenetd by Strange et al. [26],
where the mereotopological barcode was introduced combining concepts of discrete
mereotopology and computational topology. They reported classification accuracy of
80% and 95% for the DDSM and MIAS datasets respectively. The proposed approach
achieved good classification accuracy (79% for the DDSM dataset and 85% for the
MIAS). In addition, the tree based features can be visualized at each scale to observe
the cluster connectivity of micro-calcifications.

4 Future Work

The effect of using complete binary trees at each scale ‘s’ will be studied in the
future to study the effect of overall computation using a multi-scale approach. The
current approach of classifying micro-calcification using multi-scale tree-based fea-
tures can be extended to other application areas like surveillance and traffic control
systems [15,16,19].

5 Conclusion

Identification of benign and malignant calcification is an important part of the breast
cancer diagnostic process contributing towards correct treatment [7,14]. We have intro-
duced a novel methods for the identification of benign and malignant calcifications
based on a tree representation of the distribution of micro-calcifications and a distance
metric, where modelling of micro-calcifications has been presented by using a scale-
invariant approach. After building tree-like structures at multiple scales, feature-sets
were extracted at all scales and used as descriptors for benign and malignant micro-
calcifications’ classification. Feature-set representing the distribution of calcification
at each scale were defined by the distance between the individual calcifications. The
method showed good classification results (79% for the DDSM dataset and 85% for the
MIAS), comparable to other state-of-the-art approaches developed for the classification
of benign and malignant micro-calcifications.
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Abstract. Periodic image acquisition plays an important role in the
monitoring of different skin wounds. With a visual history, health pro-
fessionals have a clear register of the wound’s state at different evolution
stages, which allows a better overview of the healing progress and effi-
ciency of the therapeutics being applied. However, image quality and
adequacy has to be ensured for proper clinical analysis, being its util-
ity greatly reduced if the image is not properly focused or the wound
is partially occluded. This paper presents a new methodology for auto-
mated image acquisition of skin wounds via mobile devices. The main
differentiation factor is the combination of two different approaches to
ensure simultaneous image quality and adequacy: real-time image focus
validation; and real-time skin wound detection using Deep Neural Net-
works (DNN). A dataset of 457 images manually validated by a spe-
cialist was used, being the best performance achieved by a SSDLite
MobileNetV2 model with mean average precision of 86.46% using 5-fold
cross-validation, memory usage of 43MB, and inference speeds of 23ms
and 119 ms for desktop and smartphone usage, respectively. Addition-
ally, a mobile application was developed and validated through usability
tests with eleven nurses, attesting the potential of using real-time DNN
approaches to effectively support skin wound monitoring procedures.

Keywords: Skin wounds · Mobile health · Object detection · Deep
learning · Mobile devices

1 Introduction

Nowadays, chronic wounds are considered a worldwide problem and are one of
the major health issues prevailing in Europe. The annual incidence estimate for
acute and chronic wounds stands at 4 million in the region and the wound man-
agement market is expected to register a compound annual growth rate of 3.6%
during 2018–2023 [1]. Moreover, the numbers noted previously have a tendency
to increase due to the raise of life expectancy, the consequent population aging
and the fact that older people have higher risk for chronic wounds given that
wounds heal at a slower rate and incidences of diseases also increases [6].
c© Springer Nature Switzerland AG 2020
Y. Zheng et al. (Eds.): MIUA 2019, CCIS 1065, pp. 61–73, 2020.
https://doi.org/10.1007/978-3-030-39343-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39343-4_6&domain=pdf
http://orcid.org/0000-0002-0634-7852
http://orcid.org/0000-0002-8060-831X
https://doi.org/10.1007/978-3-030-39343-4_6


62 J. Faria et al.

Wound healing is a complex, dynamic and lengthy process that involves sev-
eral factors like skin condition and the presence of other pathologies. The mon-
itoring of skin wounds healing can be improved and its cost reduced by using
mobile health (m-Health), a rising digital health sector that provides healthcare
support, delivery and intervention via mobile technologies such as smartphones.
The usage of m-Health for skin wound monitoring opens a new range of unex-
plored possibilities, such as: improve the image acquisition process by embed-
ding automated quality and adequacy validation; enable remote monitoring of
patients at home through frequent sharing of skin wound pictures; or even enable
double-check and requests of second opinions between healthcare professionals.

This work presents a new approach for automated image acquisition of skin
wounds, by simultaneously merging automated image quality and adequacy con-
trol. Particularly, an image focus validation approach was developed to perform
real-time image quality control. From the adequacy perspective, it was assumed
that only images with a detected skin wound would be suitable for clinical mon-
itoring, so different deep learning algorithms were studied and tested for that
purpose. With this work, we aim to simplify the image acquisition process of skin
wounds via mobile device, and consequently facilitate monitoring procedures.

This paper is structured as follow: Sect. 1 presents the motivation and objec-
tives of this work; Sect. 2 summarizes the related work and applications found
on the literature; Sect. 3 describes the system, the algorithms and mobile appli-
cation developed; in Sect. 4, the results and discussion are presented; and finally
conclusions and future work are drawn in Sect. 5.

2 Related Work

Several m-Health solutions are already commercially available to share and
monitor skin wounds information, such as PointClickCare,1 +WoundDesk2 and
MOWA - Mobile Wound Analyzer3. In general, these applications take advantage
of mobile devices features like the embedded camera sensor and portability to
help healthcare professionals and patients in the collection of data (pictures and
textual information) for skin wounds monitoring. Regarding image processing
analysis, some of these applications already provide some automation in terms
of wound size and color, which can either be autonomous or semi-autonomous
(e.g. a reference marker is generally used to estimate wound size). However, to
the best of our knowledge, none of those solutions perform automated quality
assessment of the picture taken. Additionally, the image acquisition seems to be
always manual i.e. the user has to tap the smartphone screen to perform image
capture that can be a significant source of motion blur in close-up photos.

Regarding image processing and analysis approaches, two different tasks can
be considered relevant for skin wound images: object detection and segmenta-
tion. Object detection consists on detecting the wound localization by returning
1 https://pointclickcare.com/.
2 https://wounddesk.com/.
3 https://www.healthpath.it/mowa.html/.

https://pointclickcare.com/
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https://www.healthpath.it/mowa.html/
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a bounding-box, while segmentation consists in clearly defining the boundaries
of the wound and returning a mask of the area of interest. In recent years, Deep
Neural Networks (DNN) approaches have been proposed on the literature to
tackle both tasks. In terms of segmentation, one of the first approaches was pro-
posed by Wang et al., 2015 [17], where a Convolutional Neural Network (CNN)
was used to segment skin wounds area, coupled to a Support Vector Machine
(SVM) classifier to detect wound infection and estimate healing time. More
recently, Liu et al. [10] improved the previously defined model by adding data
augmentation and post-processing features, being tested and compared differ-
ent backbone networks like the MobileNetV1 [4]. In 2018, Li et al. [7] created a
composite model that combined traditional methods for pre-processing and post-
processing with DNN to improve the overall result. In terms of object detection,
Goyal et al., 2018 [3] recently proposed an algorithm to detect and locate dia-
betic foot ulcers in real-time. The trained final model was a Faster R-CNN [12]
with Inception-V2 [15] that detects the wound with a mean average precision of
91.8%. Still, this approach only detects diabetic foot ulcers, being necessary a
more generic approach to support the monitoring of different skin wound types.

In summary, the previously referred DNN approaches already report very
promising results in terms of skin wound image analysis. Segmentation method-
ologies are clearly much more addressed in the literature than object detection,
probably due to the more complex and challenging nature of the task. How-
ever, most of the reported segmentation approaches are unsuitable to support
image acquisition in real-time on mobile devices due to: (i) required process-
ing power; and (ii) the used DNN models are not currently compatible with
mobile operative systems. Nevertheless, it should be noted that object detection
tasks requires significantly less processing power, and the retrieved bounding-
box is enough to support real-time image acquisition. Thus, the search for new
approaches for skin wound automated localization, merged with simultaneous
image quality validation and suitable for mobile environments, is an area that
still needs further research and development.

3 System Overview

The proposed system allows the automated mobile image acquisition of skin
wounds and is comprised by an image acquisition methodology and a mobile
application. For each frame obtained from the camera preview, the image acqui-
sition methodology starts by checking the image quality through an image focus
validation approach, followed by the adequacy control where the skin wound
detection is performed (Fig. 1). After guaranteeing the quality and adequacy on
a certain number of consecutive frames, an image of the skin wound is automat-
ically acquired without additional user interaction. Also, a mobile application
was designed, developed and optimized through usability testing, to enable the
intuitive interaction between the developed methodology and the user.
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3.1 Image Focus Validation

Most mobile devices manufacturers already incorporate the autofocus function-
ality that is usually designed according to the specific characteristics of the
embedded camera. However, current API of Android OS only allow developers
to force the autofocus, not providing reliable methods neither to assess auto-
focus failed attempts nor focus check on acquired images. This is particularly
relevant for close-up photos (e.g. small skin wounds), where several autofocus
attempts might be needed until the desired focus distance is achieved by the
user. Therefore, in the presented approach we include an extra validation layer
to evaluate the focus of camera preview frames that can be executed in real-time
and is suited for different mobile devices models. In particular, the developed
algorithm starts by generating the image IGray by converting each camera pre-
view frame from the RGB colorspace to grayscale. A new image IBlur is then
generated by applying a median blur filter to IGray with kernel size kernelSize

that is calculated according to the following equation:

kernelSize =

⎧
⎨

⎩

min(IWidth
Gray ,IHeight

Gray )

125 , if
min(IWidth

Gray ,IHeight
Gray )

125 = odd
min(IWidth

Gray ,IHeight
Gray )

125 + 1, otherwise
(1)

The selected metric for focus assessment was the Tenenbaum gradient [16],
being separately calculated for IGray and IBlur using the formula:

TENG = Gx(i, j)2 + Gy(i, j)2, (2)

where Gx and Gy are the horizontal and vertical gradients computed by con-
volving the focus region image with the Sobel operators. The selection of this
focus metric was based on a previous work that compared a with range of focus
metrics and reported its remarkable discriminative power of the Tenenbaum gra-
dient [13]. It should be noted that the magnitude of the absolute TENG value
greatly depends on the specific characteristics of each frame (e.g. texture, edges,

Fig. 1. Frame validation diagram of the image acquisition methodology.
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etc.). So in order to achieve an adaptive approach that effectively generalizes
for different image characteristics, the difference between the mean Tenenbaum
gradient values TENGMEAN of IGray and IBlur was used:

TENGDIFF = TENGMEAN
IGray

− TENGMEAN
IBlur

. (3)

The rationale behind using an artificially blurred image is based on the fact
that a well-focused IGray will present a much higher TENGDIFF , when com-
pared with an IGray with motion and/or out-of-focus blur. After extensive testing
with different mobile devices models on distinct skin wound types, the thresh-
old TENGDIFF > 300 was empirically chosen to consider the focus of camera
preview frame properly validated.

3.2 Skin Wound Detection

Dataset: To the best of our knowledge, there is no publicly available image
database that includes skin wound images with respective localization ground
truth. Therefore, a database of skin wound images was collected with the collab-
oration of three healthcare institutions. The images were acquired by different
healthcare professionals during one year, under uncontrolled lighting environ-
ment and complex background, and using Android devices, such as Samsung
S8 and One Plus 1. After the removal of duplicate and low quality images, the
dataset contained a total of 166 images. Considering that this volume of data
might be insufficient for CNN’s training, 255 extra images were selected from
the public medetec dataset [11] to increase the dataset to a total of 457 images.
Padding and resize operations were latter applied in order to have final images
with 512 × 512 pixels of resolution. Additionally, the pre-annotation of the open
wound localization was firstly performed by the authors (inflamed area was not
considered), being the bounding-boxes following adjusted and/or validated by
an healthcare professional with several years of experience in this clinical field.
Unlike previous works [3], our dataset contains different types of skin wounds
(e.g. traumatic, ulcers, excoriations, etc.), which can be depicted in Fig. 2.

Fig. 2. Illustrative examples of skin wound images and respective ground truth local-
ization on the used dataset.
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Real-Time DNN for Skin Wound Detection: In this section we detail our
methodology in terms of DNN architecture, Transfer Learning, Data Augmen-
tation and Performance Metrics.

(i) Architecture: In order to select the most suitable DNN architecture, we
took into account our restrictions and requirements: mobile devices are lim-
ited in terms of processing power and memory, but we need an approach
that runs in real-time while delivering accurate results. For that purpose, we
used a recently proposed architecture that outperformed state-of-art real-
time detectors on COCO dataset, both in terms of accuracy and model
complexity [14]. In particular, this approach merges the Single Shot Multi-
Box Detector (SSD) [9] and the MobileNetV2 [14] architectures (see Fig. 3).
The SSD consists on a single feed-forward end-to-end CNN that directly
predicts classes and anchors offsets, without needing a second stage per-
proposal classification operation. The SSD can be divided in two main parts:
(i) the feature extractor, where high level features are extracted; and (ii)
the detection generator, which uses the features extracted to detect and
classify the different objects. In this work, we used the MobileNetV2 as the
feature extractor component and a lightweight CNN that uses bottleneck
depth-separable convolution with residuals as the basic building block. This
approach allows to build smaller models with a reasonable amount of accu-
racy, that are simultaneously tailored for mobile and resource constrained
environments.

(ii) Transfer Learning: In order to deal with the reduced dimension of our
dataset, we used transfer learning, a technique that allows to improve the
generalization capability of the model by embedding knowledge obtained
from the training of different datasets. The transfer learning techniques can
be divided in partial and full transfer learning: the former uses information
from only a few convolutional layers, while the latter uses all the layers
already trained. In the present work, we used full transfer learning from a
model previously trained with the MS-COCO, a dataset that consists on
more than 80000 images with 90 different classes [8].

Fig. 3. High level diagram of the SSD MobileNetV2 meta-architecture.
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(iii) Performance Metrics: Four metrics were used to evaluate the perfor-
mance of the different models: Inference Precision, Speed, Memory, and
Model Size. The Inference Precision is calculated via two similar, but dis-
tinct metrics: (a) the Mean Average Precision (mAP) used in the Pascal
VOC challenge (Pascal mAP) [2]; and (b) the mAP usually applied to
COCO dataset (COCO mAP) [8]. Both metrics start by calculating the
intersection over union (IoU ) between the ground truth and the predic-
tion. Being BBGT and BBP the bounding boxes of the ground truth and
prediction, the IoU is given by:

IoU =
Area(BBGT ∩ BBP )
Area(BBGT ∪ BBP )

. (4)

After obtaining the IoU for each prediction, the Precision is calculated:

Precision =
TruePositives

TruePositives + FalsePositives
. (5)

The Pascal mAP considers that every prediction with IoU greater than
0.5 is a true positive, and the respective Precision is calculated. On other
hand, the COCO mAP is the mean value of all Precisions calculated for
different IoU values, ranging from 0.5 to 0.95, with incremental intervals of
0.05 units.

3.3 Mobile Application

The mobile application aims to support healthcare professionals, such as nurses,
to effectively support skin wound monitoring procedures. With the purpose of
helping the image acquisition process and the construction of our database, a
mobile application was developed for the Android OS, with a minimum sup-
ported version of API 23, minimum resolution display 1920× 1080 pixels and 8
MP camera. The application allows the automatic and manual acquisition of skin
wounds in an easy and intuitive way, as explained next. Usability tests (detailed
in Sect. 4.2) were initially performed in a first version of the application (see
Fig. 4(a)), which led to a second version of the application (see Fig. 4(b) and
(c)).

The user is firstly guided to center the skin wound inside the square (see
Fig. 4(a)). When the camera preview frames are considered focused through our
image focus validation approach, the left icon on the top of the screen becomes
green and skin wound detection algorithm starts running. Once the skin wound
is detected, the right icon also becomes green and the image is automatically
acquired. In case the developed automated image acquisition presents unex-
pected behaviours, and to guarantee that the user is always able to acquire an
image, it is possible to change to manual capture mode by clicking on the bottom
left button of the screen. In the manual acquisition mode, both the image focus
validation and user acquisition guidance using the central square are still per-
formed, but it is required to click in the camera button to trigger image capture
(see Fig. 4(c)).
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(a) (b) (c)

Fig. 4. Application screenshots of: (a) first version of the automatic mode; (b) and (c):
second version of the automatic and manual mode, respectively.

4 Results and Discussion

4.1 DNN Performance for Skin Wound Detection

Experiments: Our models were trained using the Tensorflow Object Detec-
tion API [5] on a desktop with the following specifications: Intel core i7-7700K
4.20 GHz and Nvidia GeForce Titan X with 12 GB RAM. The experiments were
performed on the described dataset using 5-fold cross-validation. In order to
ensure that the whole dataset is evaluated, we randomly split the dataset in 5
sets with 91 images each (20%). For each fold, the remaining 366 images are
split into 70% for training (320 images) and 10% for validation (46 images).
To evaluate the proposed approach, a systematic analysis of 5 different network
hyperparameters and configurations were performed on the selected architecture:
(i) Data augmentation; (ii) Image size; (iii) Learning rate; (iv) L2 regularizer;
and (v) SDD vs SDDLite frameworks comparison. For data augmentation we
used image rotations, flips and resizes, as well as small brightness and contrast
adjustments. It is worth noting that color changes were limited to a maximum
of 10% variation after visual validation to ensure transformation adequacy.

Being the real-time execution in mobile devices one major requirement of our
application, three image sizes were tested (128 × 128, 256 × 256 and 512 × 512)
to assess the trade-off between inference precision and speed. For the considered
hyperparameters, we used four learning rates of 0.001, 0.004, 0.0001 and 0.0004,
as well as four L2 regularizer weights of 0.004, 0.0004 and 0.00004. The last
configuration tested was the usage of the SSD or SSDLite frameworks: SSDLite
is an adaptation of the SSD where all the regular convolutions are replaced by
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depthwise separable convolutions in the prediction layers, creating a friendlier
architecture for mobile devices [14].

Results: In terms of inference precision, the best performance was achieved
by a SSDLite MobileNetV2 model with the following configurations: RMS Prop
optimizer with learning rate of 0.004 and decay factor of 0.95; Momentum opti-
mizer value of 0.9, with a decay of 0.9 and epsilon of 1.0; L2 regularizer weight
of 0.00004 with truncated normal distribution, standard deviation of 0.03 and
mean of 0.0; and batch normalization with decay 0.9997 and epsilon of 0.001.
The model was trained with a batch size of 6 and maximum of 100000 epochs,
with early stopping if no gain in the loss value is verified after 10000 epochs.
The different evaluation metrics for the best performer model can be consulted
in Table 1, where results are detailed for different image sizes.

Table 1. Performance metrics for the best performer model (on desktop).

Image size
(px)

Pascal mAP
(%)

COCO mAP
(%)

Speed
(ms)

Memory
(MB)

Model size
(MB)

512× 512 86.98 63.29 85.47 168.22 12.9

256× 256 86.46 59.22 22.99 43.05 12.9

128× 128 73.76 40.57 9.81 10.66 12.9

As we can see in the Table 1, the usage of 512 × 512 images led to the best
inference precision, but it is by far the most resource-demanding model. In com-
parison, the model trained with 256× 256 images presents a slight reduction
in the precision, but the inference time and memory usage drops by 73.1%
and 74.4%, respectively. As a side note, the model presented a constant size
of 12.9 MB, which is suitable for deploy on mobile devices.

Since the inference speeds previously discussed were obtained on a desk-
top, the same models were following deployed on three mobile devices to assess
its applicability for real-time usage, namely: (i) Samsung S8 (12 MP camera,
4 GB RAM, Exynos 8895 Octa-core (4 × 2.3 GHz, 4 × 1.7 GHz) CPU and Mali-
G71 MP20); (ii) Google Pixel 2 (12 MP camera, 4 GB RAM, Qualcomm Snap-
dragon 835 Octa-core (4 × 2.35 GHz Kryo, 4× 1.9 GHz Kryo) CPU and Adreno
540 GPU); and (iii) Nexus 5 (8 MP camera, 2 GB RAM, Qualcomm Snapdragon
800 Quad-core 2.3 GHz Krait 400 CPU and Adreno 330 GPU). In particular,
two high-end devices were selected (Samsung S8 and Google Pixel 2) in order
to assess the performance of similar mobile devices, but from different manufac-
turers. In turn, the inclusion of a low-end device (Nexus 5) aims to evaluate the
impact of significantly lower processing power on inference time. It should be
noted that Tensorflow models can currently be executed in mobile devices via
two different approaches: Tensorflow Mobile (TFmobile) and Tensorflow Lite
(TFlite). The TFlite is a recent evolution of TFmobile, and in most cases allows
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to create lighter and faster models. However, only supports a limited set of oper-
ators, but our architecture is fully compatible with TFlite supported operators.
The results for the best performer model for the different mobile devices are
depicted on Table 2.

Table 2. Inference time of the best performer model for different mobile devices.

Image size (px) TFmobile inference speed (ms) TFlite inference speed (ms)

S8 Pixel 2 Nexus 5 S8 Pixel 2 Nexus 5

512× 512 787.67 604.39 4168.80 423.09 506.95 923.207

256× 256 212.05 179.09 1053.33 119.07 144.87 288.74

128× 128 98.96 73.41 430.10 51.19 49.83 105.12

As showed in Table 2, TFlite presents faster inference speeds, which makes
it the technology of choice for the deploy of our model on mobile platforms.
Additionally, these results also confirmed a critical issue on the 512 × 512 model:
despite delivering the highest inference precision, its memory usage and inference
speed are significantly worse, making it unsuitable for real-time usage on mobile
devices. In turn, the two remaining models showed much better inference speeds
and memory usage, but each one has its own advantages and drawbacks. In terms
of inference precision, the 256 × 256 model clearly outperforms the 128 × 128
model, particularly in terms of the COCO mAP. However, the 128 × 128 model
presents by far the best inference speed and smaller memory usage. In fact, the
inference speeds of the 256 × 256 model for the Nexus 5 is clearly not suitable
for real-time usage, so we envision the usage of the 256 × 256 model for high-end
devices and the 128 × 128 model for low-end devices.

4.2 User Interface Evaluation

The user interface of the mobile application was evaluated through the assistance
of usability tests. The primary objective of these tests was to identify whether
nurses could take photos of skin ulcers using the mobile application developed.
For that, formative usability tests were conducted, not only to detect the prob-
lems in the usability of the application but also to understand why it happened.
Iterative tests were performed in order to test the solutions implemented and
find new usability problems that might not be detected previously. The test was
performed using a Samsung S8 running the mobile application and an image of
a pressure ulcer printed on paper. The session was audio and sound recorded
and informed consents for the tests were obtained previously.

The usability test sessions took place in two healthcare institutions, with
eleven nurses with ages between 30 and 34 years old. Three iterations were per-
formed: the first with four participants, the second with four participants and
the third with five participants. The eleven participants were not all distinct,
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since two of them participated in two sessions. Participants were required to
complete a total of seven small tasks, such as acquiring the image in the auto-
matic mode or to test acquiring in the manual mode. Task success, assistance
and errors were collected in order to evaluate user performance and efficiency.

In the first iteration session the main usability problem identified by the
participants concerned with the automatic acquisition mode of the application.
The feedback provided was unanimously that the information showed on top
of the screen (“focused and wound”) was not clear or easy to understand (see
Fig. 4(a)). One should notice that there was no explanation how the participant
should use the application or what the symbols meant before the session. Also
in the first session none of the participants were able to change for the manual
acquisition mode by themselves. Based on the reported findings, design changes
were performed as observed in Fig. 4(b). In the second session the issues identified
previously did not persist and the participants were able to successfully complete
every tasks. However, this session took place in the same institution and some
of the participants were already acquainted with the application. Due to this
fact, the authors decided to perform another session with participants that have
never used the application. It was concluded that the problems found on the first
iteration did not occur in this last session and new problems did not emerged.

5 Conclusions and Future Work

In this work, a new methodology for automated image acquisition of skin wounds
via mobile devices is presented. Particularly, we propose a combination of two
different approaches to ensure simultaneous image quality and adequacy, by
using real-time image focus validation and real-time DNN for skin wound detec-
tion, respectively. Given the lack of freely available image datasets, a dataset of
457 images with different types of skin wounds was created, with ground truth
localization properly validated by a specialist. In our experiments we performed
a systematic analysis of the different network hyperparameters and configura-
tions for the selected architectures, being the best performance achieved by a
SSDLite MobileNetV2 model with mean average precision of 86.46%, memory
usage of 43 MB, and inference speeds of 23 ms and 119 ms for desktop and smart-
phone usage, respectively. Additionally, a mobile application was developed and
properly validated through usability tests with eleven nurses, which attests the
potential of using real-time DNN approaches to effectively support skin wound
monitoring.

As future work, we are focused in complementing our dataset with more
annotated images, in order to increase the robustness of our solution. Addi-
tionally, we also aim to obtain a more detailed annotation of those images to
explore new segmentation and classification tasks, namely the segmentation of
the inflamed area that usually surrounds the open wound, as well as the auto-
matic classification of the skin wound type (e.g. traumatic, ulcers, excoriations,
etc.).
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Abstract. Diabetic ulcers of the foot are a serious complication of diabetes with
huge impact on the patient’s life. Assessing which ulcer will heal spontaneously
is of paramount importance. Hyperspectral imaging has been used lately to com-
plete this task, since it has the ability to extract data about the wound itself and
surrounding tissues. The classification of hyperspectral data remains, however,
one of the most popular subjects in the hyperspectral imaging field. In the last
decades, a large number of unsupervised and supervised methods have been pro-
posed in response to this hyperspectral data classification problem. The aim of
this study was to identify a suitable classification method that could differenti-
ate as accurately as possible between normal and pathological biological tissues
in a hyperspectral image with applications to the diabetic foot. The performance
of four different machine learning approaches including minimum distance tech-
nique (MD), spectral angle mapper (SAM), spectral information divergence (SID)
and support vector machine (SVM) were investigated and compared by analyzing
their confusion matrices. The classifications outcome analysis revealed that the
SVM approach has outperformed theMD, SAM, and SID approaches. The overall
accuracy and Kappa coefficient for SVM were 95.54% and 0.9404, whereas for
the other three approaches (MD, SAM and SID) these statistical parameters were
69.43%/0.6031, 79.77%/0.7349 and 72.41%/0.6464, respectively. In conclusion,
the SVM could effectively classify and improve the characterization of diabetic
foot ulcer using hyperspectral image by generating the most reliable ratio among
various types of tissue depicted in the final maps with possible prognostic value.

Keywords: Minimum distance technique · Spectral angle mapper · Spectral
information divergence · Support vector machine · Classification map · Accuracy

1 Introduction

Diabetic ulcers of the foot are a serious complication of diabetes with huge impact on the
patient’s life. Assessingwhich ulcer will heal spontaneously is of paramount importance.
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Hyperspectral imaging (HSI) has been used lately to complete this task, since it has the
ability to extract data about the wound itself and surrounding tissues.

The HSI method, originally developed by Goetz [1] for remote sensing applications,
has been explored over the past two decades for various medical applications. Promising
results have been reported so far in the detection of cancer, diabetic foot ulcer, periph-
eral vascular disease, or for the assessment of blood oxygenation levels of tissue during
surgery [2]. Themethod consists of collecting a series of images inmany adjacent narrow
spectral bands and reconstruction of reflectance spectrum for every pixel of the image
[1]. The set of images (typically hundreds of images) is a three-dimensional hypercube,
known also as spectral cube. The hypercube includes two spatial dimensions (x and y)
and one spectral dimension (wavelength). Therefore, from the hypercube data analysis,
the information about an object can be extracted from spectral images in correlation with
spatial information for identification, detection, classification and mapping purposes of
the investigated scene. The abundant spatial and spectral information available provides
great opportunities to efficiently characterize objects in the scene, but the large amount
of data requires advanced analysis and classification methods. Although many unsuper-
vised or supervised methods have been proposed in recent decades as an answer to this
hyperspectral data classification problem in remote sensing area [3], their development
and application in the medical field are still in their infancy. Only a few classification
methods have been successfully tested for disease diagnosis and image-guided surgery
purposes, including: (1) support vector machines (SVMs) methods applied for tongue
diagnosis [4], gastric cancer detection [5], prostate cancer detection [6, 7], head and
neck tumor detection [8], brain cancer detection [9, 10] and mapping skin burn [11];
(2) artificial neural networks (ANN) was used in brain tumor detection [10], melanoma
detection [12], and kidney stone types characterization [13]; (3) spectral angle mapper
(SAM) method with applications in mapping skin burn [11], chronic skin ulcers diagno-
sis [14], melanoma detection [15], retinal vasculature characterization [16]; (4) spectral
information divergence (SID) method used for pathological white blood cells segmen-
tation [17] and retinal vasculature characterization [16]; and (5) maximum likelihood
classification (MLC) used for colon cancer diagnosis [18] and melanoma detection [15].

Most applications of these classification methods in hyperspectral medical imaging
have been focused on cancer detection, but their results in predicting the same cancerous
tissue attributes have proven to be variable [15]. Therefore, for a precise diagnosis,
choosing themost appropriate classificationmethod for each individual medical purpose
is a particularly important task.

In this study, the performance of four different supervised machine learning
approaches i.e. minimum distance technique (MD), spectral angle mapper (SAM), spec-
tral information divergence (SID), and support vector machine (SVM) were investigated
and compared to identify the most appropriate classification method that could differ-
entiate as accurately as possible between normal and pathological biological tissues in
hyperspectral images of diabetic foot ulcers.

The main objectives of the study were focused on: (1) establishing the experimen-
tal conditions for hyperspectral images acquisition; (2) improving the hyperspectral
image quality using appropriate preprocessing and processing methods; (3) implement-
ing the MD, SAM, SID, and SVM classifications method on hyperspectral images for
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tissue mapping and (4) assessing the performance of the classifiers in diabetic foot ulcer
characterisation using a confusion matrix.

2 Materials and Methods

2.1 Patient

The study was performed on a 42 years-old male patient with diabetic ulceration of
the leg. The wound was cleansed and any trace of povidone iodine (a brown antiseptic
solution) was washed away. Informed consent was obtained from the patient prior to
participation in this study. Approval for image acquisition was obtained from the Ethics
Committee of the Emergency Clinical Hospital for Plastic, Reconstructive Surgery and
Burns, Bucharest.

2.2 Hyperspectral Image Acquisition, Calibration and Processing

A visible/near-infrared (VNIR) pushbroom hyperspectral imaging systems was used to
acquire hyperspectral images of the wound and surrounding skin in the spectral range
between 400 and 800 nm (Fig. 1). The HSI system consists of five components: (1) an
imaging spectrograph (ImSpector V8E, Specim, Oulu, Finland) equipped with a 19 deg
field-of-view Xenoplan1.4/17 lens (Schneider, Bad Kreuznach, Germany) which allows
the acquisition of 205 spectral bands at a spectral resolution of 1.95 nm; (2) a charge-
coupled device (DX4 camera, Kappa, Gleichen, Germany); (3) an illumination unit
consisting of two 300 W halogen lamps (OSRAM, Munich, Germany) equipped with
diffusion filters (Kaiser Fototechnik GmbH & Co. KG, Buchen, Germany) fixed 50 cm
above the foot, on both sides and at an angle of 45° from the investigated area; (4) a
computer for acquisition, processing and analysis of hyperspectral data, and (5) a tripod
(Manfrotto 055XDB, Cassola, Italy) with mobile tripod head (Manfrotto MVH502AH).
The hyperspectral data acquisition was controlled by SpectralDAQ software (Specim,
Oulu, Finland) and the processing and analysis of data were performed with ENVI v.5.1
software (Exelis Visual Information Solutions, Boulder, Colorado, USA).

Before any other processing and analysis step, a correction of the acquired hyperspec-
tral images is required to eliminate the inherent spatial non-uniformity of the artificial
light intensity on the scene and the dark current in the CCD camera [19]. Therefore, the
hyperspectral images were calibrated with white and dark reference images using the
following expression:

IC = IO − ID
IW − ID

where IC is the calibrated hyperspectral image of the patient, IO is the original hyperspec-
tral image of the patient, ID is the dark reference image obtained by completely covering
the system lens and IW is the white reference image of a white PTFE reference tile
(model WS-2, Avantes, Apeldoorn, Netherlands) with approximately 98% reflectance
in spectral range 350–1800 nm.
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Fig. 1. The hyperspectral image of diabetic leg ulcer. (a) original HSI image (each pixel in the
image has an intensity value expressed by a digital number (DN)); (b) 3D hypercube; (c) cali-
brated HSI image (each pixel in the image has a normalized intensity value expressed by relative
reflectance (R))

The information contained in the calibrated HSI images is often accompanied by the
noise added to the signal by the pushbroom hyperspectral imaging system, which limits
the potential of different data analysis tasks such as classification or may even make
them ineffective. Therefore, data noise reduction is mandatory as a data processing step
before any data analysis to produce accurate results. To accomplish this data processing
task, minimum noise fraction (MNF) transform as modified from Green et al. [20] was
applied to calibrated HSI images (Fig. 2).

Fig. 2. The first twelve minimum noise fraction (MNF) images of hyperspectral image data from
the patient’s leg: (a) MNF image 1 (EV: 437.5037); (b) MNF image 2 (EV: 176.1214); (c) MNF
image 3 (EV: 52.8996); (d) MNF image 4 (EV: 34.1270); (e) MNF image 5 (EV: 32.0423); (f)
MNF image 6 (EV: 15.5353); (g) MNF image 7 (EV: 10.8718); (h) MNF image 8 (EV: 9.6374);
(i) MNF image 9 (EV: 4.7406); (j) MNF image 10 (EV: 2.2279); (k) MNF image 11 (EV: 1.9908);
and (l) MNF image 12 (EV: 1.7530)

MNF is a linear transformation that includes a forward minimum noise fraction
and an inverse MNF transform. The forward MNF transform reorders the hyperspectral
data cube according to the signal-to-noise ratio in two parts: one associated with large
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eigenvalues and coherent eigenimages, and a second with near-unity eigenvalues and
noise-dominated images [21]. In our case, a subset of 10 MNF images associated with
large eigenvalues (EV > 2) were identified as containing more signal than noise and the
remaining MNF images with small eigenvalues (EV < 2) were found as dominated by
noise.

The inverse MNF transform was than applied on these noise-reduced images to
obtain less noisy images (with the same number of bands as the calibrated HIS images)
in the spectral range (400–800) nm. These reduced-noise images were considered as a
basis for further data classification.

2.3 Hyperspectral Image Classification

Four classification methods i.e. minimum distance technique (MD), spectral angle map-
per (SAM), spectral information divergence (SID) and support vector machine (SVM)
were compared regarding their ability to accurately differentiate between normal and
pathological biological tissues in a hyperspectral image of diabetic leg ulcer.

In performing the image classification, two steps were taken. The first step consisted
of defining the training regions for each main tissue class identified in hyperspectral
image under the assistance of clinicians (chronically glabrous skin, new epithelial tissue,
granulating wound, cyanotic skin, hyperemic skin, less hyperemic glabrous skin, normal
hairy leg skin, exposed bone, superficial abrasion) using ROI tool of the ENVI software
(Table 1). A total of 9904 pixels were used as input to each classifier (approximately
32% of the total pixels) and the rest were used for testing.

Table 1. Training dataset: tissue class names and number of samples

Class no. Tissue type No. of samples

1 Chronically ischemic glabrous skin 4180

2 Granulating wound 235

3 New epithelial tissue 253

4 Cyanotic skin 478

5 Hyperemic skin 1830

6 Less hyperemic glabrous skin 1070

7 Normal hairy leg skin 1488

8 Abrasion 274

9 Exposed bone 96

TOTAL 9904

In the second step, the MD, SAM, SID, and SVM algorithms were run on the leg
hyperspectral image using as input data the training dataset representative of tissue
classes defined in the previous step as follows:
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• Minimum distance technique (MD)

The MD is a supervised approach that uses the mean vectors of each class and
calculates the Euclidean distance Dj(x) from each unknown pixel (x) to the mean vector
of each training class (mj), according to the following equation [22]:

Dj (x) = ∥
∥x − m j

∥
∥ for j = 1, 2, . . . ,M

where:

mj = mean vector of a training class, defined as:

m j = 1

N j

∑

x∈ω j
x for j = 1, 2, . . . ,M

Nj = number of training vectors from class ωj.
M = number of spectral bands

The distance is calculated for every pixel in the image and each pixel is classified
in the class of the nearest mean unless a standard deviation or distance threshold is
specified.

• Spectral Angle Mapper (SAM)

The SAM is a classification method that evaluates the spectral similarity by calcu-
lating the angle between each spectrum in the image (pixel) and the reference spectra
(“training classes”) extracted from the same image, considering each spectrum as vector
in a space with dimensionality equal to the number of spectral bands [23]. The angle
(α) between two spectral vectors, image spectrum (Xi) and reference spectrum (Xr) is
defined by the following equation:

α = cos−1 Xi · Xr

|Xi ||Xr |
Spectral angle (α) is calculated for each image spectrum and each reference spectrum

selected for hyperspectral image analysis. The smaller the spectral angle, the more the
image spectrum is more similar to a given reference spectrum.

• Spectral information divergence (SID)

Spectral divergence information (SID) is a spectral classification method that uses a
divergence measure to compare the spectral similarity between a given pixel spectrum
and a reference spectrum [24]. In this method, each spectrum is treated as a random
variable and SID measure is defined as follows:

SI D(x, y) = D(x‖y) + D(y‖x)
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where: x = (x1, x2, ……. xN) and y = (y1, y2, ……yN) refer to the two spectral vectors
that can come from ASCII files or spectral libraries, or can be extracted directly from
an image (as ROI average spectra) and D(x‖y) and D(y‖x) are the relative entropy of
y with respect to x defined as:

D(x‖y) =
N

∑

i=1

pi log

(
pi
qi

)

In the equations above, N refers to the number of spectral bands and pi =
xi/

∑N
j=1 x j , qi = yi/

∑N
j=1 y j are the probability measure for spectral vectors x and

y.
Therefore, SID measures the spectral similarity between two pixels by using the

relative entropy to account for the spectral information contained in each pixel. The
lower the SID value, the more likely the pixels are similar.

• Support vector machine (SVM)

SVM is the supervised learning algorithm most commonly used in the medical
hyperspectral data classification. The SVM approach consists in finding the optimal
hyperplane that maximizes the distance between the nearest points of each class (named
support vectors) and the hyperplane [25, 26]. Given a labeled training data set (xi, yi); i
= 1, 2, ……., l where xi ∈ Rn and y∈{1, −1}l, and a nonlinear mapping �(·), usually to
a higher dimensional (Hilbert) space, �: Rl → H, the SVM require the solution of the
following optimization problem [27]:

minw,b,ξ
1

2
wTw + C

l
∑

i=1

ξi

subject to constrains : yi
(

wT∅(xi ) + b
) ≥ 1 − ξi

ξi ≥ 0
∀i = 1, 2, . . . . . . , l
∀i = 1, 2, . . . . . . , l

where: w and b are the hyperplane parameters; C is a regularization parameter and
ξ is the slack variable that allows to accommodate permitted errors appropriately.
Given that the training algorithm depends only on the data obtained through the dot
products in H, i.e. the functions of the formula �(xi) · �(xj), a kernel function K(xi, xj)
= �(xi) · �(xj), can be defined and a nonlinear SVM can be constructed using only the
kernel function without considering the explicit mapping function � [25]. Commonly
used kernel functions in hyperspectral imaging are linear, polynomial, radial basis func-
tion or sigmoid kernels [28]. The classification accuracy of nonlinear SVM methods
strongly depends on the kernel type and parameters setting [29].

In this study the SVM with radial basis kernel function (RBF) as implemented in
ENVI v.5.1 software was used to classify different tissue type in the hyperspectral image
of the diabetic leg using the pairwise classification method. The default parameters of
this classifier (gamma in kernel function= 0.005, penalty parameter= 100.000, pyramid
level= 0 and classification probability threshold= 0.00) were used for leg hyperspectral
image classification.
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All four methods were used to classify the leg hyperspectral image to identify which
one is most effective in characterizing the ulcers. Their classification accuracies were
compared by analyzing the confusion matrices. The overall accuracy (OA), Kappa coef-
ficient (K), producer’s accuracy (PA) and the user’s accuracy (UA) were computed for
each classifier.

3 Results

The classification maps generated by all four classifiers MD, SAM, SID, and SVM from
the leg hyperspectral image are shown in Fig. 3.

Fig. 3. Classification maps obtained by implementing the MD, SAM, SID and SVM classifiers
on the hyperspectral image of the diabetic leg. (a) digital image; (b) MD classification; (c) SAM
classification; (d) SID classification; (e) SVM classification

From visual inspection, class 1 seems the best classified one by all methods, maybe
due to its uniformity and large number of pixels. Class 3 shows errors on all maps
(less with SVM), explained probably by the thinnest of skin in the shightely pigmented
area above the ulcer interpreted as newly formed epithelium. Class 9 (exposed bone) is
well classified while class 8 is more extended for MD, SAM, SID than clinical control.
Classes 5 and 6 show multiple variations, may be due to their dispigmentation.

The performances of the classifiers were evaluated using the confusion matrix and
the related accuracy statistics are illustrated in Fig. 4.

When comparing the statistical indicators of each classifier, the overall accuracy and
Kappa coefficient for SVM were higher than those of the MD, SAM and SID classi-
fiers. The overall accuracy and Kappa coefficient for SVM were 95.54% and 0.9404,
whereas for the other three approaches (MD, SAM and SID) these statistical parameters
were 69.43%/0.6031, 79.77%/0.7349 and 72.41%/0.6464, respectively. The individual
class accuracy also indicated that the SVM approach is the best in the discrimination
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of different normal and pathological tissue classes. Producer’s and user’s accuracy for
SVM ranged between (47.43–100)% and (55.05–99.98)% respectively. The lowest per-
formance was detected for MD, for which the producer’s and user’s accuracy varied
between (29.92–92.82)% and (20.41–99.97)% respectively. The producer’s and user’s
accuracy of the classification of classes 2, 3 and 4 (granulating wound, new epithelial
tissue, cyanotic skin) was reported to be always lower than 48.62% and 60.81% for MD,
SAM, and SID, respectively, but reaching values of 87.87% and 74.47% respectively
for SVM. For these classes the low producer’s accuracy reported by MD, SAM, and
SID suggests that not all collected training samples for each class were also found to
belong in the same class. For instance, for class 2, SAM reported that only 90 pixels,
out of a total of 235 pixels, belong to this class, the rest being classified as class 3 (53
pixels), class 4 (3 pixels), class 6 (27 pixels), class 7 (6 pixels), and class 9 (53 pixels).
Better classification results were obtained for SVM that reported a smaller number of
misclassified pixels (110 pixels) for class 2. For the same three classes, the low user’s
accuracy reported by MD, SAM, and SID suggests that only few pixels classified as
class 2, class 3 or class 4 can be expected to actually belong to these classes.

Fig. 4. Statistical indicators for the MD, SAM, SID, and SVM classifiers implemented on the leg
hyperspectral image. (a) producer’s accuracy for nine tissue classes; (b) user’s accuracy for nine
tissue classes; (c) overall accuracy and Kappa coefficient for all classifiers.

All the classifiers performed well for classes with a high number of training input
pixels (classes 1, 7, 8) in both user’s and producer’s accuracy as well as for class 9
representing a limited area of exposed bone in the central part of the ulcer (maybe due
to its uniformity and distinct reflectance spectrum). Differences between MD, SAM and
SID are hardly noticeable in this respect. Low values were recorded for classes 2, 3, 4
and occasionally 5 and 6, which are the ones related with the ulcer per se. SVM showed
by far better figures for both user’s and producer’s accuracy, even for classes in which
the other classifiers behaved poorly.

Overall, all tissue classes were clearly differentiated in all classification methods
investigated herein, but with poor producer’s as well as user’s accuracy for classes 2, 3
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and 4. A special position has SVM, which seems to be the best classifying method for
this type of image.

4 Discussion and Conclusion

For many applications of hyperspectral imaging in the medical field an important goal
is to discriminate as accurately as possible between the pathological tissue areas and
normal tissue areas or to identify the type of pathology using pattern recognition. This
requires a method to classify each pixel in the image into a particular class of tissue.
Various methods for classification of hyperspectral data have been developed, especially
for applications in the Earth observation area, and an enormous amount of literature is
now available [30]. Some of these classificationmethods could also be applied to classify
medical hyperspectral data.

In this study, the problem of the classification of a leg hyperspectral image using
four of the most popular classification methods, minimum distance technique (MD),
spectral angle mapper (SAM), spectral information divergence (SID) and support vector
machine (SVM), has been addressed. The main objective was to search for an optimal
classifier for diabetic ulcers and surrounding skin. The results of our study showed
that SVM is by far the best classification method for this type of images. It displayed
the best statistical accuracy tested with the confusion matrix at all parameters (overall
accuracy, Kappa coefficient, user’s and producer’s accuracy), and gave the best results
in classifying pixels related with the ulcer per se, which constitutes the main advantage
when considering future clinical applications.

The results reported here are generally in agreement with results reported by other
authors who implemented the same or other classifiers on medical hyperspectral images.
For example, Fei et al. [6] shown that the hyperspectral imaging and least squares support
vector machines (LS-SVMs) classifier were able to reliably detect prostate tumors in an
animal model. Ibraheem [15] performed a comparison of different classifiers, maximum
likelihood (ML), spectral angle mapper (SAM) and K-means algorithms, for melanoma
detection and reported true-positive results of 88.28%, 81.83% and 79% for ML, SAM,
and K-means, respectively. In a previous study [11], the authors compared spectral angle
mapper and support vector machine for mapping skin burn using hyperspectral imaging
and shown that the overall classification accuracy of support vector machine classifier
exceeded (91.94%) that of the spectral angle mapper classifier (84.13%).

Themajor limitations of this study are that it used only one case and the lownumber of
training pixels (mainly in the area strictly related to the ulcer). However, even under such
conditions, it is worth noting that the SVM is the best classifier for medical hyperspectral
images of chronic diabetic ulcers.

In conclusion, these preliminary data revealed that SVM had better performance
compared to the MD, SAM and SID approaches and could effectively classify and
improve the characterization of diabetic foot ulcer using hyperspectral image by gen-
erating the most reliable ratio among various types of tissue depicted in the final maps
with possible prognostic value.
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Abstract. This paper investigates the visual classification of the 10
skin lesions most commonly encountered in a clinical setting (includ-
ing melanoma (MEL) and melanocytic nevi (ML)), unlike the majority
of previous research that focuses solely on melanoma versus melanocytic
nevi classification. Two families of architectures are explored: (1) semi-
learned hierarchical classifiers and (2) deep net classifiers. Although
many applications have benefited by switching to a deep net architecture,
here there is little accuracy benefit: hierarchical KNN classifier 78.1%,
flat deep net 78.7% and refined hierarchical deep net 80.1% (all 5 fold
cross-validated). The classifiers have comparable or higher accuracy than
the five previous research results that have used the Edinburgh DER-
MOFIT 10 lesion class dataset. More importantly, from a clinical per-
spective, the proposed hierarchical KNN approach produces: (1) 99.5%
separation of melanoma from melanocytic nevi (76 MEL & 331 ML sam-
ples), (2) 100% separation of melanoma from seborrheic keratosis (SK)
(76 MEL & 256 SK samples), and (3) 90.6% separation of basal cell
carcinoma (BCC) plus squamous cell carcinoma (SCC) from seborrheic
keratosis (SK) (327 BCC/SCC & 256 SK samples). Moreover, combin-
ing classes BCC/SCC & ML/SK to give a modified 8 class hierarchical
KNN classifier gives a considerably improved 87.1% accuracy. On the
other hand, the deepnet binary cancer/non-cancer classifier had better
performance (0.913) than the KNN classifier (0.874). In conclusion, there
is not much difference between the two families of approaches, and that
performance is approaching clinically useful rates.

Keywords: Skin cancer · Melanoma · RGB image analysis

1 Introduction

The incidence of most types of skin cancer is rising in fair skinned people. The
causes of the increase are not certain, but it is hypothesized that increased ultra-
violet exposure and increasing population ages are the main causes. Irrespective
of the cause, skin cancer rates are increasing, as is awareness of skin cancer.
This increased awareness has also led to increased reporting rates. In addition
to the health risks associated with cancer, a second consequence is the increasing
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medical cost: more people are visiting their primary medical care practitioner
with suspicious lesions, and are then forwarded onto dermatology specialists.
As many, perhaps a majority, of the referrals are for normal, but unusual look-
ing, lesions, this leads to a considerable expense. Eliminating these unnecessary
referrals is a good goal, along with improving outcomes.

A second issue is that there are different types of skin cancer, in part arising
from different cell types in the skin. Most people are familiar with melanoma, a
dangerous cancer, but it is considerably less common than, for example, basal
cell carcinoma. Because of the rarity of melanoma, a primary care practitioner
might only encounter one of these every 5–10 years, leading to the risk of over
or under referring people onto a specialist. Hence, it is good to have tools that
can help discriminate between different skin cancer types.

A third issue is the priority of referrals, which might be routine or urgent.
Melanoma and squamous cell carcinoma metastasize and are capable of spread-
ing quickly, and thus need to be treated urgently. Other types of skin cancer
grow more slowly, and may not even need treatment. Moreover, there are many
normal lesion types that may look unusual at times. This also motivates the
need for discrimination between the types of cancer and other lesions.

This motivates the research presented here, which classifies the 10 lesion
types most commonly encountered by a general practice doctor. Because of the
healthcare costs arising from false positives, and the health and potentially life
costs of incorrect decisions, even small improvements in performance can result
in considerable cost reduction and health increases.

The research presented here uses standard RGB camera data. There is
another research stream based on dermoscopy [6], which is a device typically
using contact or polarized light. This device can give better results than RGB
image data, but has been typically limited to melanoma versus melanocytic
nevus (mole) discrimination. Here, we focus on 10 types of lesion instead of 2,
so use RGB images.

This paper presents two approaches to recognizing the 10 classes. The first
more traditional approach is based on a combination of generic and hand-crafted
features, feature selection from a large pool of potential features, and a hier-
archical decision tree using a K-nearest neighbor classifier. A second deepnet
approach is also presented for comparison. The cross-validated hierarchical 10
class accuracy (78.1%) and the cross-validated deepnet with refinement accuracy
(80.1%) are comparable to the best previous performances. The key contribu-
tions of the paper are: (1) a hierarchical decision tree structure and
associated features best suited for discrimination at each level, (2) a
deepnet architecture with BCC/SCC and ML/SK refinement that has
2% better performance, (3) improved classification accuracy (87.1%
for 8 merged classes as compared to 78.1% for 10 classes), (4) a malig-
nant melanoma versus benign nevi classification accuracy of 99.5%, (5)
a malignant melanoma versus seborrheic keratosis classification accu-
racy of 100%, and (6) a clinically relevant BCC/SCC versus seborrheic
keratosis classification accuracy of 90.6%.
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2 Background

There is a long history of research into automated diagnosis of skin cancer, in
part because skin cancer is the most common cancer [1]. A second factor is
the lesions appear on the skin, thus making them amenable to visual analy-
sis. The most commonly investigated issues are (1) the discrimination between
melanoma (the most serious form of skin cancer) and melanocytic nevi (the
most-commonly confused benign lesion) and (2) the segmentation of the bound-
ary between normal and lesion skin (typically because the boundary shape is one
factor commonly used for human and machine diagnosis). The most commonly
used imaging modalities are color and dermoscopy (a contact sensor) images. A
general review of this research can be found in [11,13,14].

A recent breakthrough is the Stanford deep neural network [5], trained using
over 129K clinical images (including those used here), and covering over 2000
skin diseases. Their experiments considered four situations: (1) classification of
a lesion into one of 3 classes (malignant, benign and non-neoplastic (which is not
considered in the work presented here)), (2) refined classification into 9 classes (5
of which correspond to the classes considered here), (3) keratinocyte carcinomas
(classes BCC and SCC here) versus benign seborrheic keratoses (class SK here)
and (4) malignant melanoma (class (MEL) versus melanocytic nevi (class ML).
In case 1, their deep net achieved 0.721 accuracy as compared to the dermatol-
ogist accuracy of approximately 0.658. In case 2, the deep net achieved 0.554
accuracy as compared to the dermatologist accuracy of 0.542. In cases 3 and 4,
accuracy values are not explicitly presented, but from the sensitivity/specificity
curves, one can estimate approximately 0.92 accuracy for the deepnet approach,
with the dermatologists performing somewhat worse.

One important issue raised in [11] is the absence of quality public benchmark
datasets, especially covering more than the classification of melanoma versus
melanocytic nevi. From 2013, the Edinburgh Dermofit Image Library [2] (1300
lesions in 10 classes, validated by two clinical dermatologists and one pathologist
- more details in Sect. 3) has been available. It was part of the training data for
the research of Esteva et al. described above, and is the core dataset for the
research results described below.

The first result was by Ballerini et al. [2] which investigated the automated
classification of 5 lesion classes (AK, BCC, ML, SCC, SK - see Sect. 2 for labels),
and achieved 3-fold cross-validated accuracy of 0.939 on malignant versus benign,
and 0.743 over 960 lesions from the 5 classes. A 2 level hierarchical classifier was
used. Following that work, Di Leo [4] extended the lesion analysis to cover all 10
lesion classes in the dataset of 1300 lesions. That research resulted in an accuracy
of 0.885 on malignant versus benign and 0.67 over all lesions from the 10 classes.

More recently, Kawahara et al. [9] developed a deep net to classify the 10
lesion classes over the same 1300 images. The algorithm used a logistic regression
classifier applied to a set of features extracted from the final convolutional layers
of a pre-trained deep network. Multiple sizes of image were input to enhance
scale invariance, and each image was normalized relative to its mean RGB value
to enhance invariance to skin tone. As well as substantially improving the 10
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lesion accuracy, the proposed method did not require segmented lesions (which
was required by the approach proposed here). Follow-on research by Kawahara
and Hamarneh [10] developed a dual tract deep network with the image at 2
resolutions through the two paths, which were then combined at the end. Using
auxiliary loss functions and data augmentation, the resulting 10-class perfor-
mance was 0.795, which was stated as an improvement on the methods of [9],
although the new methodology used less training data and so the initial baseline
was lower. A key benefit of the multi-scale approach was the ability to exploit
image properties that appear at both scales. As with the original research, the
proposed method did not require segmented lesions.

3 Edinburgh DERMOFIT Dataset

The dataset used in the experiments presented in this paper was the Edinburgh
DERMOFIT Dataset1 [2]. The images were acquired using a Canon EOS 350D
SLR camera. Lighting was controlled using a ring flash and all images were cap-
tured at the same distance (approximately 50 cm) with a pixel resolution of about
0.03 mm. Image sizes are typically 400 × 400 centered on the cropped lesions
plus about an equal width and height of normal skin. The images used here are
all RGB, although the dataset also contains some registered depth images. The
ground truth used for the experiments is based on agreed classifications by two
dermatologists and a pathologist. This dataset has been used by other groups
[4,5,9,10], as discussed above.

The dataset contains 1300 lesions from the 10 classes of lesions most com-
monly presented to consultants. The first 5 classes are cancerous or pre-
cancerous: actinic keratosis (AK): 45 examples, basal cell carcinoma (BCC):
239, squamous cell carcinoma (SCC): 88, intraepithelial carcinoma (IEC): 78,
and melanoma (MEL): 76. The other five classes are benign, but commonly
encountered: melanocytic nevus/mole (ML): 331 examples, seborrheic kerato-
sis (SK): 257, pyogenic granuloma (PYO): 24, haemangioma (VASC): 96, and
dermatofibroma (DF): 65.

4 Hierarchical Classifier Methodology

The process uses RGB images, from which a set of 2500+ features are extracted.
The key steps in the feature extraction are: (1) specular highlight removal, (2)
lesion segmentation, (3) feature extraction, (4) feature selection, (5) hierarchical
decision tree classification. Because some lesions had specular regions, the com-
bination of the ring-flash and camera locations results in specular highlights.
These were identified ([2], Section 5.2) using thresholds on the saturation and
intensity. Highlight pixels were not used in the feature calculations.

Lesion segmentation used a binary region-based active contour approach,
using statistics based on the lesion and normal skin regions. Morphological open-
ing was applied afterwards to slightly improve the boundaries. Details can be
found in [12]. This produced a segmentation mask which covers the lesion.
1 homepages.inf.ed.ac.uk/rbf/DERMOFIT/datasets.htm.

http://homepages.inf.ed.ac.uk/rbf/DERMOFIT/datasets.htm
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4.1 Feature Calculation

The majority of the 2551 features are calculated from generalized co-occurrence
texture matrices. More details of the features are given in Section 4.2 of [2].
The texture features are described by “XY FUNC DIST QUANT”, where X,Y
∈ { R, G, B }, { L, a, b } or { H, S, V } gives the co-occurring color chan-
nels from the lesion, DIST is the co-occurring pixel separation, (5, 10, ... 30),
QUANT is the number of gray levels ∈ {64, 128, 256}. The co-occurrence matri-
ces are computed at 4 orientations and then averaged. From each matrix, 12
summary scalar features are extracted, including FUNC ∈ { Contrast, Cluster-
Shade, Correlation, Energy, MaxProbability, Variance}, as described in [7]. As
well as using these features directly, the difference (l-s: lesion-normal skin) and
ratio (l/s: lesion/normal skin) features were computed.

After these features were calculated, a z-normalization process was applied,
where the mean and standard deviation were estimated from the inner 90% of
the values. Features above or below the 95th or 5th percentile were truncated.
Some of the top features selected (see next section) for use by the decision tree
are listed in Table 1.

Because there is much correlation between the color channels, and the dif-
ferent feature scales and quantizations, a feature reduction method was applied.
The feature calculation process described above resulted in 17079 features. These
features were cross-correlated over the 1300 lesions. The features were then
sequentially examined. Any feature whose absolute correlation was greater than
0.99 with a previously selected feature was removed. This reduced the potential
feature set to 2489. Some additional lesion-specific features (for each of R, G, B)
were added to give 2551 features (also normalized):

– Ratio of mean lesion periphery to lesion center color
– Ratio of mean lesion color to non-lesion color
– Std dev of lesion color
– Ratio of lesion color std dev to non-lesion color std dev
– Ratio of mean lesion color to lesion color std dev
– Six gray-level moment invariants
– Given a unit sum normalized histogram of lesion pixel intensities Hl and

normal skin pixel intensities Hn, use features mean(Hl.−Hn), std(Hl.−Hn),
mean(Hl./Hn), std(Hl./Hn), Hl.−Hn and Hl./Hn. The latter 2 features are
histograms and the Bhattacharyya distance is used.

4.2 Feature and Parameter Selection

From the 2551 initial features, greedy Forward Sequential Feature Selection
(en.wikipedia... .org/wiki/Feature selection) is used to select an effec-
tive subset of features for each of the 9 tests shown in Fig. 1. This stage results in
2–7 features selected for each test. Table 2 lists the number of features selected
and the top 2 for each of the tests. The full set of features used can be
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Table 1. Overview of top selected features. See text body for details.

68 GB Correlation d10 L64 222 HH ClusterShade d5 L128

245 HH Energy d5 L256 267 HH Correlation d30 L256

272 aa Contrast d5 L64 523 ns SS Correlation d15 L64

622 ns bb Homogeneity d10 L64 630 ns bb Correlation d5 L128

832 l-s SS Dissimilarity d5 L64 834 l-s HH Variance d5 L64

950 l-s aa Autocorrelation d5 L64 959 l-s La Variance d5 L64

1467 l/s HH ClusterShade d25 L256 1536 l/s La Variance d5 L64

1556 l/s aa Contrast d15 L64 1824 so sigma Im G s3 n4

2303 M-m lo sigma Re R s1 G s1 2422 sigma Im G s1

2433 l-s mu Re G s1 2441 l/s mu Re G s1

2503 G mean(l)/std(l) 2526 R std(hist(l)./ hist(s))

seen at: homepages.inf.ed.ac.uk/rbf/... DERMOFIT/SCusedfeatures.htm.
We tersely describe in Table 1 the top features of the tests. The tests use a
K-Nearest Neighbor classifier with a Euclidean distance measure

∑
r(xr − nr)2

where xr is the rth property of the test sample and nr is from a neighbor sample.
Also included in the parameter optimization stage was the selection of the

optimal value K value to use in the K-Nearest Neighbor algorithm. The K values
reported for the different tests reported in Table 2 were found by considering odd
values of K from 3 to 19. The best performing K was selected over multiple cross-
validated trials, but generally there was only 1–3% variation in the results for
K in 7–19. Performance evaluation, and parameter and feature selection used
5-fold cross validation (using the Matlab cvpartition function), with 1 of the
5 subsets as an independent test set. The splits kept the lesion classes balanced.

4.3 Hierarchical Decision Tree

The lesion classification uses a hierarchical decision tree, where a different K-NN
is trained for each decision node. Other classifiers (e.g. Random Forest or multi-
class SVM) or decision node algorithms (e.g. SVM) could be investigated, but we
chose a K-NN because of the intuition that there was much in-class variety and
so data-driven classification might perform better. Several varieties of deepnet
based classification are presented in the next section.

The choice of branching in the tree is motivated partly by clinical needs (i.e.
cancer versus non-cancer) and partly by classifier performance (i.e. the lower
levels are chosen based on experimental exploration of performance). Figure 1
shows the selected decision tree. Exploration (based on experience rather than
a full systematic search) of different cancer subtree structures showed that the
PYO/VASC branch was most effectively isolated first, with then a two way split
between IEC, MEL and DF versus the rest. These two initial decisions could be
performed almost perfectly, thus reducing the decision task to smaller decisions
(and without propogating errors).
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While a general classification is valuable, from a clinical perspective several
more focussed binary decisions are important, namely melanoma (MEL) versus
melanocytic nevi (ML), melanoma (MEL) versus seborrheic keratosis (SK), and
basal cell carcinoma (BCC) plus squamous cell carcinoma (SCC) versus sebor-
rheic keratosis (SK). We implemented these binary decisions each with a single
test, after again doing feature selection, also as reported in Table 2.

Table 2. Top 2 features for each of the key K-NN decisions in the decision tree and
cross-validated performance on ground-truthed data.

Test K Num of features used Feat 1 Feat 2 Accuracy

PYO/VASC vs rest 11 5 2503 834 0.974

MEL/IEC/DF vs rest 13 2 2433 2441 1.000

MEL vs IEC/DF 19 3 959 832 0.831

AK/BCC/SCC vs ML/SK 17 9 222 1536 0.916

AK vs BCC/SCC 17 4 2422 272 0.876

PYO vs VASC 15 3 523 622 0.852

IEC vs DF 15 7 630 1467 0.888

BCC vs SCC 15 7 245 1556 0.814

ML vs SK 11 7 950 267 0.850

MEL vs ML 9 2 2303 1824 0.995

MEL vs SK 3 1 2433 1.000

BCC/SCC vs SK 11 5 68 2526 0.906

5 Decision Tree Experiment Results

Evaluation of the classification performance using the decision tree presented
above used leave-one out cross-validation. The confusion matrix in Table 4 sum-
marizes the performance for the detailed classification results over the 10 classes.
The mean accuracy over all lesions (micro-average - averaging over all lesions)
was 0.781 and the accuracy over all classes (macro-average - averaging over the
performance for each class) was 0.705. Mean sensitivity is 0.705 and mean speci-
ficity is 0.972 (when averaging the sensitivities and specificities of each class over
all 10 classes). A comparison of the results with previous researchers is seen in
Table 3.

The new 10 class results are comparable those of [9,10] and considerably
better than the others. Combining classes BCC/SCC & ML/SK to give an 8 class
decision produces considerably better results. “Kawahara and Hamarneh [10]
repeated the experiments from Kawahara et al. [9], but changed the experimental
setup to use half the training images, and omitted data augmentation in order to
focus on the effect of including multi-resolution images.” (private communication
from authors).
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Fig. 1. Decision tree for lesion classification, also giving example images of the 10
lesion types. The numbers given at the decision boxes are the test data accuracies over
the relevant classes (i.e. ignoring other classes that also go down that tree path). The
numbers at the leaves of the tree are the final test accuracies over the whole dataset.

The confusion matrix for the final classification is shown in Table 4. There
are three significant observations: (1) The AK lesion class, which has the worst
performance, is mainly confused with the BCC and SCC classes. Visual inspec-
tion of the AK lesions shows that many of the lesions look a little like BCC
and SCC lesions. (2) Many of the misclassifications are between the ML and SK
classes. Neither of these are cancerous, so confusion between the classes has no
real consequences. (3) Many of the other misclassifications are between the BCC
and SCC classes. Both are cancers, but SCC needs more urgent treatment.

Merging BCC/SCC and ML/SK into 2 classes (and using the same tree)
improves the classification rate to 0.871 (i.e. over an 8 class decision problem.).

To compare with the third experiment of Esteva et al. [5] (keratinocyte carci-
nomas (classes BCC and SCC here) versus benign seborrheic keratoses (class SK
here)), we explored a KNN classifier with features selected from the same pool
of features. Best accuracy of 0.906 was achieved with K = 9 and top features 168
and 186 over 5-fold cross-validation using the set of 327 BCC + SCC and 257 SK
lesions. This is comparable to the accuracy (0.92) estimated from Esteva et al.’s
sensitivity/specificity curves. To compare with the fourth experiment of Esteva
et al. [5] (malignant melanoma (class (MEL) versus benign nevi (class ML)), we
again explored a KNN classifier with features selected from the same pool of fea-
tures. Accuracy of 0.995 (compared to their 0.92) was achieved with K = 9 and



94 R. B. Fisher et al.

Table 3. 10 class performance comparison with previous research.

Lesion Class

(Micro) (Macro)

Paper Accuracy Accuracy

Ballerini et al. [2] 0.743∗ 0.592

Di Leo et al. [4] 0.67 -

Esteva et al. [5] >0.554+ -

Kawahara et al. [9] 0.818x -

Kawahara et al. [10] 0.795 -

New algorithm 0.781 0.705

New algorithm (BCC/SCC & ML/SK merged) 0.871 0.736

*: The results of Ballerini et al. consider only 5 classes (AK, BCC, ML, SCC, SK).
+: The results of Esteva et al. cover 9 classes, 5 of which roughly correspond to those
considered in this paper. x: 0.818 was reported in [9] but 0.795 was reported and
compared to in the later publication [10].

Table 4. Confusion Matrix: Row label is true, Column label is classification. Micro-
average = 0.781. Macro-average accuracy = 0.705.

AK BC ML SC SK ME DF VA PY IE TOT ACC

AK 10 20 1 11 3 0 0 0 0 0 45 0.22

BCC 2 208 7 17 5 0 0 0 0 0 239 0.87

ML 2 10 280 0 39 0 0 0 0 0 331 0.85

SCC 0 34 0 46 8 0 0 0 0 0 88 0.52

SK 2 21 27 5 202 0 0 0 0 0 257 0.79

MEL 0 0 0 0 0 54 7 2 0 13 76 0.71

DF 0 0 0 0 0 4 54 3 0 4 65 0.83

VASC 0 0 0 0 0 6 1 82 3 5 97 0.85

PYO 0 0 0 0 0 2 0 7 14 1 24 0.58

IEC 0 0 0 0 0 5 5 1 2 65 78 0.83

only 2 features (2303 and 1824) over 5-fold cross-validation using the set of 331
ML and 76 MEL lesions. This compares to an accuracy of 0.92 estimated from
Esteva et al.’s sensitivy/specificity curves [5]. Similarly, the clinically important
discrimination between malignant melanoma (MEL) versus seborrheic keratosis
(SK) (256 SK + 76 MEL samples) in this dataset gave perfect 5-fold cross-
validated classification using K = 3 and 1 feature (2433). This high performance
suggests that the dataset should be enlarged; however, melanoma is actually a
rather uncommon cancer compared to, for example, BCC.
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6 Deep Net Classifier Methodology

Given the general success of deepnets in classification image tasks, we investi-
gated [3] three variations of a classifier based on the Resnet-50 architecture [8]
pretrained on the ImageNet dataset and then tuned on the skin lesion samples
in the same 5-fold cross-validation manner. The variations were:

1. A standard deepnet with 10 output classes, where the class with the highest
activation level is selected.

2. A hierarchy of classifiers with the same structure as the decision tree presented
above, except where each classification node is replaced with a Resnet-50
classifier.

3. A standard deepnet with 10 output classes, with a refinement stage. If the top
two activation levels for a lesion from the standard deepnet were either {BCC,
SCC} or {ML, SK}, then the lesion went to an additional binary Resnet-50
trained to discriminate the two classes.

Preprocessing of the segmented images: (1) produced standard 224 * 224
images, and (2) rescaled the RGB values of the whole image to give the back-
ground normal skin a standard value (computed by mean across the whole
dataset). Data augmentation was by flipping, translation and rotation as there
was no preferred orientation in the lesion images. Further augmentations such
as color transformations, cropping and affine deformations as proposed by [15]
could be added, which improved their melanoma classification accuracy by about
1% on the ISIC Challenge 2017 dataset. Training performance optimization used
a grid search over the network hyperparameters. As deepnets are known to train
differently even with the same data, the main result is an average over multiple
(7) trainings. This is configuration (1) below.

Several other configurations were investigated using the same general deep-
net: (2) The decision tree structure from Sect. 5, except each decision node is
replaced by a 2 class deep net. (2x) For comparison, we list the performance of
the decision tree from Sect. 5. (3) If the deepnet selected one of BCC, SCC, ML,
or SK and the activation level was less than 0.88, then the lesion was re-classified
using a 2 class BCC/SCC or ML/SK deep net. (4) A classifier for 8 classes, where
the cancerous classes SCC/BCC were merged, and the benign classes ML/SK
were merged. (4x) For comparison, the performance of the 8 class decision tree
from Sect. 5. (5) A deepnet producing only a two-class cancer/not cancer deci-
sion (5x) A two-class cancer/not cancer decision using the same KNN (K = 17,
10 features) methods used in the decision tree. The resulting performances are
shown in Table 5.

The results show that there is not much difference in cross-validated per-
formance between the basic decision tree (0.781) and basic deepnet (0.787).
Given the variability of deepnet training and cross-validation, there is probably
no statistical significance between these. Interestingly, the reproduction of the
decision tree with deepnets replacing the KNN classifiers produced distinctly
worse performance (0.742 vs 0.781). It is unclear why. It is clear that apply-
ing the refinement based on easily confused classes gives better 10-class results
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Table 5. Summary of deepnet results and comparisons with KNN classifier.

Case Algorithm Accuracy

1 Flat Resnet-50 0.787 ± 1.0

2 Decision tree with Resnet-50 nodes 0.742

2x 10 class decision tree from Sect. 5 0.781

3 Flat Resnet-50 with BCC/SCC and ML/SK refinement 0.801

4 8 class deep net with BCC/SCC and ML/SK merged 0.855 ± 0.4

4x 8 class decision tree from Sect. 5 0.871

5 Resnet-50 2 class cancer vs non-cancer 0.913 ± 0.71

5x KNN based 2 class cancer vs non-cancer 0.874 ± 0.01

(0.801 vs 0.787), but still not as good as combining the BCC/SCC and ML/SK
(0.855 vs 0.801). The 8-class deepnet performed worse than the 8-class decision
tree (0.855 vs 0.871). Possibly the binary cancer/non-cancer classifier performed
better when using the deepnet (0.913 vs 0.874).

7 Discussion

The approaches presented in this paper have achieved good performance on the
10 lesion type classification task and even better performance on the modified 8
class and binary problems. These lesions are those most commonly encountered
in a clinical context, so there is a clear potential for medical use. Of interest
is the fact that this was achieved using traditional features (and is thus more
‘explainable’) as well as using a deep learning algorithm.

Although the demonstrated performance is good, and generally better than
dermatologist performance [5], there are still limitations. In particular, the BCC
versus SCC, and ML versus SK portions of the classification tree have the low-
est performance. Another poorly performing decision is AK versus other can-
cers (although the performance rate looks good, the large imbalance between
the classes masks the poor AK identification - a class with few samples). We
hypothesize that part of the difficulties arise because of the small dataset size,
particularly for classes AK, DF, IEC, and PYO. When the K-NN classifier is
used, it is necessary to have enough samples to have a good set of neighbors. This
can also affect the other classes, because some lesion types may have difference
appearance subclasses (e.g. BCC).

Another complication related to the dataset size is the correctness of the
ground-truth for the lesion classes. Although 2 clinical dermatologists and a
pathologist concur on the lesion diagnosis for the 1300 lesions in the dataset, gen-
erating that consistent dataset also showed up many differences of opinion about
the diagnoses. It is probable that there are some lesions that were incorrectly
labeled by all three professionals (the real world is not tidy), although, since
one of the three was a pathologist, the dataset is probably reasonably correctly
labeled. Again, having additional correctly labeled samples would help overcome
outlying mis-labeled samples, given the nearest neighbor classifier structure.
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Another limitation arises from the fact that the images in this dataset are all
acquired under carefully controlled lighting and capture conditions. By contrast,
the images used by Esteva et al. [5] came from many sources, which is probably
one of the reasons their performance is so much lower. In order to make the
solution found here be practically usable, it must work with different cameras
and under different lighting conditions. This is a direction for future research.
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Abstract. Here we study the effects of age on facial shape in adolescents by using
a method called multilevel principal components analysis (mPCA). An associated
multilevel multivariate probability distribution is derived and expressions for the
(conditional) probability of age-group membership are presented. This formalism
is explored via Monte Carlo (MC) simulated data in the first dataset; where age is
taken to increase the overall scale of a three-dimensional facial shape represented
by 21 landmark points and all other “subjective” variations are related to the width
of the face. Eigenvalue plots make sense and modes of variation correctly identify
these twomain factors at appropriate levels of themPCAmodel.Component scores
for both single-level PCA and mPCA show a strong trend with age. Conditional
probabilities are shown to predict membership by age group and the Pearson
correlation coefficient between actual and predicted group membership is r =
0.99. The effects of outliers added to the MC training data are reduced by the use
of robust covariance matrix estimation and robust averaging of matrices. These
methods are applied to another dataset containing 12 GPA-scaled (3D) landmark
points for 195 shapes from 27 white, male schoolchildren aged 11 to 16 years old.
21% of variation in the shapes for this dataset was accounted for by age. Mode
1 at level 1 (age) via mPCA appears to capture an increase in face height with
age, which is consistent with reported pubertal changes in children. Component
scores for both single-level PCA and mPCA again show a distinct trend with age.
Conditional probabilities are again shown to reflect membership by age group and
the Pearson correlation coefficient is given by r = 0.63 in this case. These analyses
are an excellent first test of the ability of multilevel statistical methods to model
age-related changes in facial shape in adolescents.

Keywords: Multilevel principal components analysis ·Multivariate probability
distributions · Facial shape · Age-related changes in adolescents

1 Introduction

The importance of modeling the effects of groupings or covariates in shape or image
data is becoming increasingly recognized, e.g., a bootstrapped response-based imputa-
tion modeling (BRIM) of facial shape [1], a linear mixed model of optic disk shape [2],
or variational auto-encoders more generally (see, e.g., [3–5]). Multilevel principal com-
ponents analysis (mPCA) has also been shown [6–10] to provide an efficient method of
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modeling shape and image texture in such cases. Previous calculations using the mPCA
approach have focused on: facial shape for a population of subjects that demonstrated
groupings by ethnicity and sex [7, 8], image texture for two expressions (neutral and
smiling) [9, 10], and time-series shape data tracked through all phases of a smile [10].
Here we consider how age-related changes in facial shape can be modelled by multilevel
statistical approaches for Monte Carlo (MC) simulated data and for real data by using a
model that is illustrated schematically in Fig. 1.

Level 1 • Variations due to age

Level 2 • Between-subject variation, i.e., 
all other variations that are not 
dependent on age

Fig. 1. Multilevel model of the effects of age on facial shape.

2 Methods

2.1 Mathematical Formalism

3D landmark points are represented by a vector z for each shape. Single-level PCA is
carried out by finding the mean shape vector μ over all shapes and a covariance matrix

�k1,k2 =
1

N − 1

N∑

i=1

(zik1 − μik1)(zik2 − μik2). (1)

k1 and k2 indicate elements of this covariance matrix and i refers to a given subject.
The eigenvalues λl and (orthonormal) eigenvectors ul of this matrix are found readily.
For PCA, one ranks all of the eigenvalues into descending order and one retains the first
l1 components in the model. The shape z is modeled by

zmodel = μ +
l1∑

l=1

alul , (2)

The coefficients {al} (also referred to as “component scores” here) are found readily
by using a scalar product with respect to the set of orthonormal eigenvectors, i.e., al =
ul · (z − z̄), for a fit of the model to a new shape vector z. The component score al is
standardized by dividing by the square root of the eigenvalue λl .
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DataLevel 2Level 1

Fig. 2. Multilevel model represented as a tree. Shapes μ2
l at level 2 are average shapes over all

shape data z in a given group l (e.g., 3 shapes per group are shown above). The shape μ1 at level
1 is the average shape over all of the shape data μ2

l at level 2 (e.g., 3 groups at level 2 are shown
above).

Multilevel PCA (mPCA) allows us to isolate the effects of various influences on shape
at different levels of the model. This allows us to adjust for each subjects’ individual
facial shape in order to obtain a clearer picture of those changes due to the primary factor,
i.e., age here. The covariance matrix at level 2 is formed with respect to all subjects in
each age group l and then these covariance matrices are averaged over all age groups
to give the level 2 covariance matrix, �2. The average shape for group l at level 2 is
denoted by μ2

l . By contrast, the covariance matrix at level 1, �1, is formed with respect
to the shapes μ2

l at each age group at level 2. The overall “grand mean” shape at level
1 is denoted by μ1. These relationships for the multilevel model are illustrated as a
tree diagram in Fig. 2. mPCA uses PCA with respect to the covariance matrices at the
two levels separately. The l-th eigenvalue at level 1 is denoted by λ1l , with associated
eigenvector u1l , whereas the l-th eigenvalue at level 2 is denoted by λ2l , with associated
eigenvector u2l . We rank all of the eigenvalues into descending order at each level of the
model separately, and then we retain the first l1 and l2 eigenvectors of largest magnitude
at the two levels, respectively. The shape z is modeled by

zmodel = μ1 +
l1∑

l=1

a1l u
1
l +

l2∑

l=1

a2l u
2
l , (3)

where μ1 is the “grand mean” at level 1, as described above. The coefficients
{
a1l

}

and
{
a2l

}
(again referred to as “component scores” here) are determined for any new

shape z by using a global optimization procedure in MATLAB R2017 with respect to
an appropriate cost function [6–10]. The mPCA component scores a1l and a

2
l may again

be standardized by dividing by the square roots of λ1l and λ2l , respectively.
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From Fig. 2, we define that the probability along a branch linking level 1 to group l at
level 2 as P(l). Furthermore, we may define that the probability along a branch linking
group l at level 2 to the data z as P(z|l). The probability of both is therefore,

P(z, l) = P(l)P(z|l). (4)

Assuming m groups at level 2, we see immediately also that

P(z) =
m∑

l=1

P(z, l) =
m∑

l=1

P(l)P(z|l). (5)

These results lead on to Bayes theorem, which implies that

P(l|z) = P(l)P(z|l)
m∑
l=1

P(l)P(z|l)
. (6)

Here we shall use a multivariate normal distribution at level 2, which is given by

P(z|l) = N (z|μ2
l ,Σ2). (7)

For small numbers of groups m at level 2, one might set P(l) to be constant. In this
case, the conditional probability that a given shape z belongs to group l is given by,

P(l|z) = N (z|μ2
l ,Σ2)

m∑
l=1

N (z|μ2
l ,Σ2)

. (8)

For larger numbers of groups m at level 2, it might be more appropriate to model
P(l) as a multivariate normal distribution also, by using

P(l) = N (μ2
l |μ1,Σ1). (9)

The conditional probability that a given shape z belongs to group l is now given by,

P(l|z) = N (μ2
l |μ1,Σ1)N (z|μ2

l ,Σ2)
m∑
l=1

N (μ2
l |μ1,Σ1)N (z|μ2

l ,Σ2)

. (10)

The extension of this approach to three or more levels is straightforward.
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2.2 Image Capture, Preprocessing, and Subject Characteristics

Fig. 3. Illustration of the 21 landmark points for dataset 1.

MC simulations were used initially to explore age-related changes on facial shape in
dataset 1. A template facial shape containing 21 landmarks points in three dimensions
was constructed firstly, as shown in Fig. 3. The effects of age were simulated by applying
a scale factor that grew linearly with age (in arbitrary units) to all points in this template
equally. All other “subjective” variation was included by altering the width of the face
for all subjects randomly (irrespective of age). A small amount of normally distributed
random error was added to all shapes additionally. However, there were essentially just
two factors affecting facial shape in dataset 1. We expect the overall change in scale to
be reflected at level 1 (age) of the multilevel model shown in Fig. 1 and changes in the
width to be reflected at level 2 (all other sources of variation). All shapes were centered
on the origin and the average scale across all shapes was set to be equal to 1. Note that
30 age groups were used here with 300 subjects per group in forming the original model
and 100 per group for a separate testing dataset. The effects of outliers in the training set
for single-level PCA and mPCA were explored by carrying out additional calculations
with an extra 5% of the data containing strong outliers. Such shapes were outlying in
terms of facial width and overall scale. Dataset 2 contained real data of 195 shapes
from 27 white, male subjects (aged 11 to 16) selected from two large comprehensive
schools in the South Wales Valleys area in Rhonda Cynon Taf. Those with craniofacial
anomalies were excluded. Ethical approval was obtained from the director of education,
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head teachers, school committees, and the relevant ethics committees of Bro Taf.Written
informed consent was obtained before obtaining the 3D laser scans. 12 landmark points
along the centerline of the face and between the eyes were then used to describe facial
shape. All shapes were GPA transformed and the average scale across all shapes was
again set to be equal to 1.

3 Results

Fig. 4. Eigenvalues for single-level PCA and mPCA level 1 (age) and level 2 (all other variations)
for dataset 1.

Eigenvalues for single-level PCA and mPCA are shown in Fig. 4 for dataset 1. These
results for mPCA demonstrated a single non-zero eigenvalue for the level 1 (age) and
a single large eigenvalue for the level 2 (all other variations), as expected. Results for
the eigenvalues for single-level PCA are of comparable magnitude to those results of
mPCA, as one would expect, and they follow a very similar pattern.

Modes of variation of shape for dataset 1 are presented in Fig. 5. The first mode
at level 1 (age) via mPCA and mode 1 via single-level PCA both capture increases in
overall size of the face, as required. The first mode at level 2 (all other variations) for
mPCA clearly corresponds to changes in the width of the face, as required. However,
mode 2 via single-level PCA clearly mixes the effects of overall changes in size and also
width of the face. Such “mixing” is a limitation of single-level PCA.
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Fig. 5. Modes of shape variation in the frontal plane only for dataset 1: (upper left)=mode 1 via
single-level PCA; (upper right) = mode 2 via single-level PCA; (lower left) = mode 1 at level 1
(age) via mPCA; (lower right) = mode 1 at level 2 (all other variations) via mPCA. (Landmark
points are illustrated in Fig. 3).

Results for the standardized component ‘scores’ for mPCA for shape are shown in
Fig. 6. Component 1 for level 1 (age) mPCA demonstrates differences due to age clearly
because the centroids are strongly separated. Indeed, there is a clear progression of these
centroids with age. By contrast, component 1 for level 2 (all other variations except age)
via mPCA does not seem to reflect changes due to age very strongly (not shown here).
Results for both components 1 and 2 via single-level PCA also demonstrate a clear trend
with age.

Results for the (conditional) probabilities of group membership of Eq. (8) are shown
as a heat map in Fig. 7 for dataset 1. (Note that very similar results are seen by using
Eq. (10) for a multivariate normal distribution for P(l) and so these results are not pre-
sented here.) A strong trend in the maximal probabilities is observed in Fig. 7 that clearly
reflects the groupings by age. Age-group membership for each shape was predicted by
choosing the group for which the conditional probability was highest. The Pearson cor-
relation coefficient of actual versus predicted age group (from 1 to 30) is given by r =
0.99.
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Fig. 6. Centroids for each of the 30 age groups (indicated by labels) of standardized component
scores with respect to shape for dataset 1 for (left) single-level PCA (modes 1 and 2) and (right)
mPCA for mode 1 at level 1 (age).

Fig. 7. Heat map of (conditional) probabilities of group membership of Eq. (8) for the 3000 test
shapes used in dataset 1 (30 age groups and 100 shapes per group). High probabilities lie “along
the diagonal,” which reflects the groupings by age correctly.

The effects of adding outlying shapes to the training set were to increase the magni-
tude of eigenvalues and to add “random scatter” to points in the major modes of variation
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for both single-level PCA and mPCA. Model fits for the test set were seen to demon-
strate a progression with age with that was less clear than in Fig. 6 due to this source of
additional error. Furthermore, the overall scale of the (standardized) component scores
was increased and conditional probabilities of Eqs. (8) and (10) became less efficient at
predicting group membership, e.g., Pearson’s r was reduced. Robust covariance matrix
estimation and robust (median) averaging of covariance matrices was found to reduce
the effects of outliers in these initial studies.

Fig. 8. Eigenvalues for single-level PCA and mPCA level 1 (age) and level 2 (all other variations)
for dataset 2.

Eigenvalues for single-level PCA and mPCA are shown in Fig. 8 for dataset 2. The
results for mPCA demonstrate a single large non-zero eigenvalue for the level 1 (age)
only, which is presumably due to the small number of landmark points and/or the small
number of groups at this level. However, level 2 (all other variations) does now have
many large non-zero eigenvalues, which is reasonable for “real data.” Results for the
eigenvalues via single-level PCA are again of comparable magnitude to those results
of mPCA and they follow a very similar pattern. mPCA calculations suggest that age
contributed approximately 21% of the total variation for this 3D shape dataset.

Mode 1 at level 1 (age) via mPCA is shown in Fig. 9 for dataset 2. This mode
represents an overall increase in face height and a decrease in the distance between the
endocanthion and pronasale. Broadly, one might interpret this as an elongation in facial
shape (possibly also a flatter face), which is consistent with the growth of children [11,
12]. Subtle differences are observed only between modes 1 at levels 1 (age) and 2 (all
other variations) via mPCA, although we believe that these differences would become
more apparent with increased number of landmark points. Mode 1 via single-level PCA
is similar to both of these modes via mPCA. Mode 2 via single-level PCA and mode 2
at level 2 via mPCA are similar; both modes appear to relate to shape changes relating
to the eyes and prominence of the chin. However, all modes are difficult to resolve with
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so few landmark points, and future studies of age-related changes in facial shape in
adolescents will include more such landmark points.

Fig. 9. Mode1of shapevariation at level 1 (age) viamPCAfor dataset 2: (left) frontal plane; (right)
sagittal plane. Overall changes in shape indicate a longer and (possibly) flatter face with increasing
age. (Glabella (g), nasion (n), endocanthion left (enl), endocanthion right (enr), pronasale (prn),
subnasale (sn), labiale superius (ls), labiale inferius (li), pogonion (pg), gnathia (gn), philtrum
(dpc), and stomion (sto)).

Fig. 10. Standardized component scores with respect to shape for dataset 2 for (left) single-level
PCA and (right)mPCAat level 1 (age). A strong progression of the group centroidswith increasing
age is observed in both diagrams.

Results for the standardized component ‘scores’ via mPCA are shown in Fig. 10.
Component 1 for level 1 (age) via mPCA demonstrates differences due to age clearly
because the centroids are strongly separated. Indeed, a clear progression of these scores
with age is again seen via mPCA at level 1. Component 2 for level 1 (age) shows a
possible difference between ages 15 and 16, although this is probably due to random
error because the sample size for age 16 was quite small. Component scores for level
2 (all other variations) for mPCA again do not seem to reflect changes due to age very
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strongly (not shown here). This is an encouraging result given that we found only very
subtle differences between modes 1 at levels 1 and 2 via mPCA. A clear trend with age
is also seen in Fig. 10 for both components 1 and 2 via single-level PCA.

Fig. 11. Heatmap of (conditional) probabilities of groupmembership of Eq. (8) for the 195 shapes
in dataset 2 (27 white, male subjects, aged 11 to 16 years old) using “miss-one-out” testing. Higher
probabilities lie (broadly) “along the diagonal,” which reflects the groupings by age.

Results for the probabilities of group membership of Eq. (8) are shown as a heat map
in Fig. 11 for dataset 2. (Note that very similar results are again seen by using Eq. (10) for
a multivariate normal distribution for P(l) and so these results are not presented here.)
“Miss-one-out” testing was used here, i.e., the model in each case was formed from all
shape data except for the shape being tested. A trend is again observed in the maximal
probabilities in Fig. 11 that reflects the groupings by age, although this trend is not quite
as clear as for theMC-simulated data. We expect that this trend will become clearer with
increased number of landmark points. Again, age-group membership for each shape was
predicted by choosing the group for which the conditional probability was highest. The
Pearson correlation coefficient of actual versus predicted group membership (from 11
to 16 years old) is given by r = 0.63.
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4 Conclusions

The effect of age on 3D facial shape data has been explored in this article. The formalism
for mPCA has been described and it was seen that mPCA allows us to model variations
at different levels of structure in the data, i.e., age at one level of the model and all other
variations at another level. Two datasets were considered, namely, MC-simulated data
of 21 landmark points and real data for 195 shapes of 12 landmark points for 27 white,
male subjects aged 11 to 16 years old. Eigenvalues appeared to make sense for both
datasets. In particular, examination of these eigenvalues suggested that age contributed
approximately 21% to the total variation in the shapes for the real data in dataset 2.Modes
of variation also appeared to make sense for both datasets. Evidence of clustering by
age group was seen in the component scores for both the simulated data and also the
real data. An initial exploration of the associated multivariate probability distribution
for such multilevel architectures was presented. Conditional probabilities were used to
predict group membership. Results for the predicted and actual group memberships
were positively correlated and the Pearson correlation coefficients were r = 0.99 and
r = 0.63 for the MC-simulated and the real data, respectively. These results are an
encouraging initial exploration of the use of multilevel statistical methods to explore
and understand pubertal and age-related changes in facial shape. The interested reader
is referred, e.g., to Refs. [11–15] for more information about age-related facial shape
changes in adolescents.
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Abstract. For the diagnosis and monitoring of retinal diseases, the
spatial context of retinal thickness is highly relevant but often under-
utilised. Despite the data being spatially collected, current approaches
are not spatial: they involve analysing each location separately, or they
analyse all image sectors together but they ignore the possible spatial
correlations such as linear models, and multivariate analysis of variance
(MANOVA). We propose spatial statistical inference framework for reti-
nal images, which is based on a linear mixed effect model and which
models the spatial topography via fixed effect and spatial error struc-
tures. We compare our method with MANOVA in analysis of spatial
retinal thickness data from a prospective observational study, the Early
Detection of Diabetic Macular Oedema (EDDMO) study involving 89
eyes with maculopathy and 168 eyes without maculopathy from 149 dia-
betic participants. Heidelberg Optical Coherence Tomography (OCT) is
used to measure retinal thickness. MANOVA analysis suggests that the
overall retinal thickness of eyes with maculopathy are not significantly
different from the eyes with no maculopathy (p = 0.11), while our spa-
tial framework can detect the difference between the two disease groups
(p= 0.02). We also evaluated our spatial statistical model framework on
simulated data whereby we illustrate how spatial correlations can affect
the inferences about fixed effects. Our model addresses the need of correct
adjustment for spatial correlations in ophthalmic images and to improve
the precision of association in clinical studies. This model can be poten-
tially extended into disease monitoring and prognosis in other diseases
or imaging technologies.

Keywords: Spatial modelling · Correlated data · Simulation · Retinal
imaging · Diabetic Macular Oedema
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1 Introduction

Diabetic Macular Oedema (DMO) is a consequence of diabetes that involves
retinal thickness changes in the area of the retina called the macula. Although the
macula is only approximately 5 mm in diameter, the densely pack photoreceptors
in the macula give rise to our central high acuity and colour vision. A healthy
macula plays an essential role for activities such as reading, recognizing faces
and driving. Macular disease can cause loss of central vision; DMO is the most
common cause of vision loss among people with diabetic retinopathy.

DMO is caused by an accumulation of fluid (oedema) in the macula thought
to be secondary to vascular leakage. It has been proposed that macular thickness
is associated with visual loss [9]. For measuring retinal thickness, OCT is now
widely used for the diagnosis and monitoring of DMO as it is able to produce
high-resolution cross-sectional images of the retina [12].

The macula is often divided into nine subfields as initially described by the
Early Treatment of Diabetic Retinopathy Study (ETDRS) research group [11].
These subfields comprise three concentric circles/rings with radii of 500, 1500
and 3000µm subdivided into four regions (superior, temporal, inferior and nasal)
as shown in Fig. 1. These subfields are named by their location as the central
(CS), superior inner (SI), temporal inner (TI), nasal inner (NI), superior outer
(SO), temporal outer (TO), inferior outer (IO) and nasal outer (NO). OCT
measurements provide retinal thickness measurements for each of these nine
subfields.

The simplest approach to analyse retinal thickness in these nine subfields is to
analyse them separately in nine separate analyses. Sometimes only the measure-
ment of the central subfield is used and the other measurements are discarded.
However, this ignore the spatial context of measurements. If spatial dependency
between the measurements of different subfields is not analysed properly, it can
affect the precision of estimates and lead to inaccurate results in statistical tests.

A more complex approach is to properly spatially analyse the data [6]. Spa-
tial statistical model takes into account the spatial correlations [4] thus in our
data provides a means of incorporating spatial information from retinal thick-
ness measurements in different subfields into statistical analyses. It may provide
information of value in discriminating between disease states and for detection
of retinal disease [7]. It has already been applied widely in other medical imag-
ing contexts such as functional neuroimaging and cardiac imaging, where spa-
tial correlations are also captured in the model. For example, Bowman et al.
constructed a spatial statistical model for cardiac imaging from single photon
emission computed tomography (SPECT) [2], and Bernal-Rusiel et al. explored
the spatial structures in Magnetic Resonance Image (MRI) data in patients
with Alzheimer’s disease [1]. However, the application of spatial statistics to
ophthalmic images has not yet been extensively studied.

Another concern in the analysis of ophthalmic images is the unit of analysis
issue. Often, the correlation between two eyes from the same individual is ignored.
Treating the eyes as independent introduces spuriously small standard errors.
Although there is a continuing concern regarding this problemandmethods [15,16]
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are available for adjusting the correlation between the two eyes, the majority of
studies do not take this into account when data from both eyes are available. This
methodological problem has not improved much over the past two decades [17].

In this paper, we aimed to present a new statistical spatial inference frame-
work for retinal images and to study the effect of the spatial correlations on
the analysis of the spatial data. This framework is based on a linear mixed
effect model with a spatial (Gaussian, autoregressive-1, exponential and spher-
ical) error structure for the analysis of OCT imaging data, where correlation
between eyes from the same patient and demographic data is adjusted in the
model. We conducted a simulation study to validate our model and study the
benefits of using a spatial modelling framework when spatial correlations exist.

The organization of the rest of the paper is as follows. The image dataset
and the statistical modelling framework are presented in Sect. 2. In Sect. 3, we
present results from the real data set. Simulation setting and simulation results
are presented in Sect. 4. Discussion of our work and the conclusion are presented
in Sects. 5 and 6.

Fig. 1. Early Treatment of Diabetic Retinopathy (ETDRS) gird centred on the fovea
with the radii of the central circle being 500µm, inner circle 1500µm and outer circle
3000µm and the nine sectors (also called subfields).

2 Methods

2.1 Image Dataset

To illustrate the use of our proposed model, we apply it to retinal thickness mea-
surements from the Early Detection of Diabetic Macular Oedema (EDDMO)
study which is a prospective observational study conducted in the Royal Liv-
erpool University Hospital. This study was performed in accordance with the
ethical standards laid down in the Declaration of Helsinki, with local ethical and
governance approval.
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There were 150 participants with diabetes at their baseline visit in the study.
Self-reported ethnic background revealed that approximately 90% of the partic-
ipants were Caucasians. Participants with diabetes and co-existing pathologies
(intracranial lesions n = 1, and ocular pathologies n = 4) were excluded from the
analysis. A small number of participants did not have data collected from both
eyes. All participants were examined by an ophthalmologist with a slit lamp. All
the participants with diabetes had a dilated fundoscopy examination. Based on
examination findings, eyes of participants with diabetes were categorized into
two groups, either no maculopathy (M0) or maculopathy (M1). A summary of
the dataset stratified by clinical diagnosis based on slit lamp examination is
shown in Table 1. Retinal thickness measurements for both eyes were obtained
using Heidelberg Spectralis OCT. Although the measurements of both foveal
centre point thickness and central subfield mean thickness are available using
OCT, central subfield mean thickness is more commonly used in clinical research
when tracking center-involving DMO [3]. Therefore only central subfield mean
thickness (CS) is used in the statistical analysis in this paper.

Table 1. Number of eyes for the analysis of overall thickness of retina

M0 M1 Total

Left eyes 91 40 131

Right eyes 77 49 126

Total 168 89 257

2.2 Statistical Model

Our spatial statistical model has the general form described in Eq. (1), which is
based on a linear mixed effect model with two-level of nested random effects.

In the model, Y ij is the response vector for ith individual in the nested
level of grouping, Xij is the fixed effect vector (e.g. age, age, sex, glycated
haemoglobin (HbA1c), axial length) associated with beta, bi is the first level of
random effects (e.g. individual level random effect) associated with Zi, and uij

is the second level of random effects (e.g. eye level random effect nested within
each individual) associated with Dij .

Y ij =Xijβ + Zibi + Dijuij + εij , i = 1, ...,m; j = 1, ..., ni

bi ∼ N(0,G1), uij ∼ N(0,G2), εij ∼ N(0,Σs)
(1)

where the first level random effect bi is independent of the second level random
effect uij , and εij are within group error representing spatial correlation in the
images which is assumed to be independent of random effect.
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2.3 Spatial Dependency

The covariance matrix Σs for εij can be decomposed to Σs = σ2
sΨ ij where Ψ ij is

a positive-definite matrix which can be decomposed to Ψ ij = ΛijCijΛij . Λij is
a diagonal matrix and Cij is correlation matrix with parameter γ. In our model,
Λi is a identity matrix and it is easy to write that cor(εijk, εijk′ ) = [Cij ]kk′ .

The spatial dependency cor(εijk, εijk′ ) is modelled with four different struc-
tures where the correlation is modelled as autoregressive-1 model, Gaussian
model, exponential model and spherical model where γ can take the value of
γa, γg, γe, γs respectively.

For the lag autoregressive model, the correlation function decreases in abso-
lute value exponentially with lag δ (δ = 1, 2, ...) model has the form of

skk′ = γδ
a, (2)

For spatial structured correlation, if dkk′ is denoted as the Euclidean distance
between location k and k

′
. The Gaussian correlation has the form of,

skk′ = exp(−γgd
2
kk′ ), (3)

the exponential model has the form of

skk′ = exp(−γgdkk′ ), (4)

and the spherical model has the form of

skk′ = 1 − 1/2(3γsdkk′ − γ3
sd3

kk′ ). (5)

2.4 Statistical Inference

In a traditional mixed effect model defined by Laird and Ware [5], the maximum
likelihood estimator β̂ for fixed effect β is as follows,

β̂ = (X
′
ΣX)−1X

′
Σ−1(Y − Zb̂) (6)

with the prediction b̂ for random effect is obtained as follows,

b̂ = (Z
′
Σ−1

0 Z + G−1
0 )−1Z

′
Σ−1

0 (Y − Xβ0) (7)

where Y |b ∼ N(Xβ +Zb,Σ), b ∼ N(0, G) and Σ0, G0 β0 are given values in EM
algorithm during iterations. And the maximum likelihood estimator θ̂ for the
precision estimates which define the parameters in the overall covariance matrix
can be optimized through EM iterations or Newton-Raphson iterations [5].

If we describe a two level random effect model ignoring the spatial depen-
dency, which assume Ψij in model (1) as a identity matrix. We will have

Y ∗
ij = X∗

ijβ+Z∗
i bi + D∗

ijuij + ε∗
ij , i = 1, ...,m; j = 1, ..., ni

ε∗
ij ∼ N(0, σ2

sI)

(8)
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We define θ1 as parameter in matrix G1 and θ2 as parameter in matrix G2. The
likelihood function for model (2) can be written as

L(β, θ, σ2
s |y∗) =

m∏

i=1

∫ ni∏

j=1

[ ∫
p(y∗

ij |bi, uij , β, θ2s)p(uij |θ2, σ2
s)duij

]
p(bi|θ1, σ2

s)
(9)

where p(·) is the probability density function. Using the same idea in [5], we
have the profiled log-likelihood for l(θ1, θ2|y). And the maximum likelihood esti-
mator θ̂ = (θ̂1, θ̂2) can also be obtained via EM iterations or Newton-Raphson
iterations.

If we describe a two level random effect model with the spatial dependency as
shown in model (1), we use a linear transformation for yij with yij = (Ψ−1/2

ij )y∗
ij .

Then the likelihood function for model (1) can be written as

L(β, θ, σ2
s , γ|y) =

m∏

i=1

ni∏

j=1

p(yij |β, θ, σ2
s , γ)

=
m∏

i=1

ni∏

j=1

p(y∗
ij |β, θ, σ2

s)
∣∣Ψ−1/2

ij

∣∣

= L(β, θ, σ2
s |y∗)

m∏

i=1

ni∏

j=1

∣∣Ψ−1/2
ij

∣∣

(10)

Then Eq. (10) can be linked with Eq. (9), leading to a solution for all unknown
parameters in model (1).

2.5 Statistical Analysis

In our application for the analysis of the results from the EDDMO study, the
model used is described as follows,

yijk =xijkβ + bi + uij + εijk, i = 1, ..,m; j = 1, ..., ni; k = 1, .., 9

bi ∼ N(0, σ2
1), uij ∼ N(0, σ2

1), εij ∼ N(0, σ2
sΨij )

(11)

where β is a vector, xijk are covariates for ith participant from j eye in sector
k, bi denotes the random effect for participant i, uij denote the random effect
for j eye in participant i, m is the number of participant and maxni = 2. After
statistical analyses, uncorrelated covariates such as sex, duration of diabetes and
duration of diabetes were deleted from the model. In the final model, the fixed
effect β and the predictor variable xijk used are follows,

xijkβ = β0 + β1 ∗ Agei + β2 ∗ Diagnosisij

+ β3(k) ∗ Sectorijk + β4(k) ∗ Sectorijk ∗ Diagnosisij

(12)
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where Agei is a continuous variable which represent the age for ith participant;
Diagnosisij is a categorical variable represent the diagnosis for j eye from ith
participant, which include diabetic eye without maculopathy (baseline) and dia-
betic eye with maculopathy; Sectorijk is a categorical variable from 1 to 9 which
represent the 9 sectors in ETDRS grid with central subfield (CS) thickness as a
baseline; Sectorijk ∗ Diagnosisij represent interaction term between sector and
diagnosis with CS*Healthy as baseline.

The mixed effect model with two levels of random effects was fitted using
the nlme-R package [10] and the spatial dependency Ψij was fitted with struc-
tures as described in Sect. 2.3. Missing observations were tested whether they
were missing at random and then handled using multiple imputation method
in mice-R package [13]. Likelihood ratio test and information criterion (Akaike
Information Criterion, AIC; Bayesian information criterion, BIC) were used to
compare the models and to find the best model for the inference.

3 Results

To get the visual insight into the data, we made pairwise visualisations of mean
profiles of retinal thickness measurements for all nine sectors at patients’ baseline
visits as shown in Fig. 2. This shows a large within group variability and suggests
a pattern for the mean profiles of retinal thickness over the nine sectors. The
mean retinal thickness profile of maculopathy group was consistently higher than
the no-maculopathy group as shown in Fig. 2.

Fig. 2. Pairwise visualizations for mean profiles of retinal overall thickness over 9 sec-
tors at baseline visit
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Univariate MANOVA was performed and demonstrated that maculopathy vs
no-maculopathy eyes were not different in retinal thickness over the nine sectors
(p = 0.11 > 0.05). Then we considered the correlations between the two eyes and
the spatial correlation between the nine sectors in statistical analyses using our
model described in Sect. 2, which also allows heteroscedasticity between groups.
We investigated different spatial dependency structures described in Sect. 2.3;
an exponential correlation structure was the most informative with the lowest
AIC and BIC.

With the two levels of random effects model and an exponential correlation
structure, we can detect the difference in the main effect of diagnosis between
the maculopathy and no-maculopathy groups (p = 0.0218 < 0.05, Table 2). The
effect size between groups is 4.4982 with standard error equals 1.9543. Moreover,
compared with other correlation structures mentioned in Sect. 2.3, an exponen-
tial correlation structure gives the best model with the lowest AIC and BIC.
However, we did not detect a shape effect, which is measured as the interac-
tion term between diagnosis and sector mathematically, between maculopathy
group and no-maculopathy group (p = 0.9715). In the final model as described
in Eq. (11), estimators for age, main effect for diagnosis, variance component
estimators for random effect and residuals, and heteroscedicity range are shown
in Table 2.

Table 2. Estimator for age, main effect, variance component estimators for random
effect and residuals, and heteroscedicity range in the final model

Estimate (Std. Err) p value

Estimator for age β̂1 −0.2681 (0.0962) 0.0061*

Estimator for main effect β̂2 4.4982 (1.9543) 0.0218*

Variance component σ̂1 15.9307

σ̂2 7.9328

Σ̂s σ̂s 22.5541

γ̂e 0.6620

Heteroscedicity range
among diagnosis group

Maculopathy 1

No-maculopathy 0.5790

*statistically significant with p < 0.05

We also found a negative correlation between age and the mean retinal thick-
ness profile (p = 0.0011). And we further used a likelihood ratio test to con-
firm the significance of the eye within patient random effect (uij) in the model
(p = 0.0005).
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4 Simulation

We carried out a simulation study to check the performance of our final model
and to investigate the importance of incorporating spatial correlation in the sta-
tistical imaging analyses. We simplified the two-level of nested random effect
(11) into a one-level random effect model with spatial exponential correlation.
Covariates were chosen based on statistical analyses results from the EDDMO
study, including nine locations from the ETDRS grid and a negatively continu-
ous correlated risk factor (e.g. age in EDDMO). Only two disease groups (e.g.
maculopathy group versus no-maculopathy group) were considered in the simu-
lation as we are interested the effect of the spatial correlation and the power of
our model rather than the clinical outcomes. The aim of our simulation study
was to establish how well the spatial approach is able to estimate the risk factor

Table 3. Simulation studies: scenario 1: no correlation between simulated outcomes

Non-spatial approach using
linear regression

Spatial approach using linear mixed
effect without correlation

Risk factor Diagnosis for
main effect

Risk factor Diagnosis for
main effect

True −0.3 6.1 True −0.3 6.1

n = 200 β1 β2 n = 200 β1 β2

Estimates −0.2997 6.1013 Estimates −0.2999 6.1015

SE 0.0012 0.1549 SE 0.0013 0.1548

SD 0.0013 0.1449 SD 0.0013 0.1448

CP 95.5% 96.5% CP 98.5% 95.5%

SE, mean of standard error estimates; SD, Monte Carlo standard deviation of the
estimates across the simulated data; CP, coverage probability for the estimates.

Table 4. Simulation studies: scenario 2: moderate exponential spatial correlation
between simulated outcomes (γe = 0.5)

Non-spatial approach using
linear regression

Spatial approach using linear
mixed effect without correlation

Risk factor Diagnosis for
main effect

Risk factor Diagnosis for
main effect

True −0.3 6.1 True −0.3 6.1

n = 200 β1 β2 n = 200 β1 β2

Estimates −0.3001 6.0590 Estimates −0.3000 6.0585

SE 0.0056 0.6927 SE 0.0083 0.6927

SD 0.0077 0.6563 SD 0.0077 0.6569

CP 84.0% 96.0% CP 96.6% 95.9%

SE, mean of standard error estimates; SD, Monte Carlo standard deviation of the
estimates across the simulated data; CP, coverage probability for the estimates.
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and to test the difference between the diagnosis group in terms of the main effect
and the shape effect.

Sample size were chosen as n = 200 participants with one eye per individual
where 70% of the eyes does not have maculopathy and 30% of the eyes have
maculopathy. In order to investigate how the spatial correlation can change
the statistical inferences, we set three simulation scenarios in this section, one
without correlation, one with a moderate (γe = 0.5) and the other with a high
correlation (γe = 0.1) structure between different locations. All the simulation
results in this section are based on 1000 Monte Carlo replications. The simulation
results including the true parameter values, sample size, Monte Carlo standard
deviation, the mean of standard error estimates, the coverage probabilities for
the estimates and the power to detect the shape effect are reported in Tables 3,
4, 5 and 6.

In scenario 1 where no correlation exists between simulated outcomes, our
spatial approach performed the same as the non-spatial approach in terms of
the estimates when the sample size equals 200 (Table 3). The estimates were
practically unbiased, the Monte Carlo standard deviation agreed with the mean
of standard error estimates, and the coverage probability was around 95%, which
is reasonable.

Table 5. Simulation studies: scenario 3: high exponential spatial correlation between
simulated outcomes (γe = 0.1)

Non-spatial approach using
linear regression

Spatial approach using linear
mixed effect without correlation

Risk factor Diagnosis for
main effect

Risk factor Diagnosis for
main effect

True −0.3 6.1 True −0.3 6.1

n= 200 β1 β2 n = 200 β1 β2

Estimates −0.3000 6.1180 Estimates −0.3002 6.1120

SE 0.0056 0.6918 SE 0.0138 0.6927

SD 0.0170 0.7043 SD 0.0141 0.7033

CP 57.2% 95.1% CP 94.9% 95.1%

SE, mean of standard error estimates; SD, Monte Carlo standard deviation
of the estimates across the simulated data; CP, coverage probability for the
estimates.

Table 6. Power of detecting the difference in shape between groups in spatial approach
and non-spatial approach (p < 0.01)

Detection of shape
effect p < 0.01

Non-spatial approach
using linear regression

Spatial approach using
linear mixed effect

No correlation 100% 100%

Moderate correlation 88.1% 95.3%

High correlation 88.9% 100%
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For comparison, Tables 4 and 5 present the results based on moderate expo-
nential correlation where γe = 0.5, and a high exponential correlation where
γe = 0.1. In Table 4, we can see a lower coverage probability in the non-spatial
approach compared with our spatial approach. When higher spatial correlations
exist, the coverage probability for the estimates of β1 is much worse (Table 5).
Using our spatial approach, the estimates of the parameters were practically
unbiased with a reasonable coverage probability both in a moderate correlation
setting and a high correlation setting. As expected, when there is no correlation
between the simulated data as reported in Table 6, the spatial approach and
the non-spatial approach were the same in detecting the shape effect (i.e. the
interaction term). However, our spatial approach performed much better in the
other two correlation settings.

5 Discussion

Rather than analysing only the retinal thickness in central subfield (a Welch’s
test with winsorized variances was performed for retinal thickness between
groups in central subfield, p = 0.38 > 0.05), we proposed here a nested linear
mixed effect model to analyse spatially related data, generated from a study of
DMO. We showed that this approach is capable of incorporating spatial correla-
tions in images and the correlation between two eyes from the same patient, and
we found differences in mean retinal thickness between no-maculopathy versus
maculopathy group. We also showed an exponential spatial correlation between
sectors provides the best model. Simulations demonstrated that our spatial app-
roach is able to provide more accurate inference on the risk factor and has the
ability to detect the main effect and shape effect between diagnostic groups. A
further interesting study would be early detection of diabetic retinopathy to dis-
criminate between healthy eyes from eyes with retinopathy but without DMO,
which would be useful for clinicians in planning early treatment for patients.

Our approach can be applied to further investigate the spatial context of
other features [8] in images with other retinal diseases such as diabetic retinopa-
thy and central vascular occlusion with the aim of developing a flexible anistropic
spatial dependency structures which can be adapted to other medical images.
Moreover, it would be useful to predict the disease occurrence and the time of
occurrence by extending our spatial modelling into spatio-temporal modelling
which incorporates longitudinal images [14].

6 Conclusion

Spatially collected data from retinal images presents both important opportu-
nities and challenges for understanding, detecting and diagnosing eye disease.
We extend the standard analytic approach into spatial methods that adjust for
spatial correlations between the image sectors and correlation between eyes from
the same patients. Our simulation results confirmed the advantage of the spatial
modelling to provide more powerful statistical inference: power increases from
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88.1% to 95.3%, 88.9% to 100% for moderate or high spatial correlations. In
the future, the spatial approach has the ability to extend the model into pre-
diction or prognosis (i.e. the predictive modelling) and develop personal clinical
management and monitoring tool.
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Abstract. While medical image analysis has seen extensive use of deep
neural networks, learning over multiple tasks is a challenge for connec-
tionist networks due to tendencies of degradation in performance over
old tasks while adapting to novel tasks. It is pertinent that adaptations
to new data distributions over time are tractable with automated analy-
sis methods as medical imaging data acquisition is typically not a static
problem. So, one needs to ensure that a continual learning paradigm be
ensured in machine learning methods deployed for medical imaging. To
explore interpretable lifelong learning for deep neural networks in medical
imaging, we introduce a perspective of understanding forgetting in neural
networks used in ultrasound image analysis through the notions of atten-
tion and saliency. Concretely, we propose quantification of forgetting as
a decline in the quality of class specific saliency maps after each subse-
quent task schedule. We also introduce a knowledge transfer from past
tasks to present by a saliency guided retention of past exemplars which
improve the ability to retain past knowledge while optimizing parame-
ters for current tasks. Experiments on a clinical fetal echocardiography
dataset demonstrate a state-of-the-art performance for our protocols.

Keywords: Saliency · Interpretability · Continual learning

1 Introduction

Medical image analysis pipelines have made extensive use of deep neural net-
works in recent years with state-of-the-art performances on several tasks. In diag-
nostic ultrasound, the availability of trained sonographers and capital equipment
continues to be scarce. For congenital heart disease diagnosis in particular, the
challenges become even more pronounced with the actual identification and pro-
cessing of relevant markers in sonography scans being made difficult through the
presence of speckle, enhancements and artefacts over a small region of interest.
As with other applications of deep networks in medical image analysis [1], the
retention of performance on already learnt information while adapting to new
data distributions has been a challenge. Often, a requirement for deep networks
is the availability of large labeled datasets. In medical imaging tasks however,
c© Springer Nature Switzerland AG 2020
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data is often not abundant or legally available. There exist intra-patient vari-
ations, physiological differences, different acquisition methods and so on. Not
all necessary data may be available initially but accumulated over time, and be
used to establish overall diagnosis. Incremental learning systems are those that
leverage accumulated knowledge gained over past tasks to optimize adaptation
to new tasks. Such optimization may not always ensure the traversal through the
parameter space in a manner suitable for old tasks. This causes degradation in
the performance of old tasks while adapting to new ones, and a balance is desired
between stability of old knowledge and plasticity to absorb new information.

Literature Review. The loss of learnt features from prior tasks on retraining
for new tasks leading to a diminished performance on old tasks is a phenomenon
called ‘catastrophic forgetting’ [3]. Many methods have been proposed to build
a lifelong learner. These are broadly classified [4] into (i) architectural additions
to add new parameters for new data distributions, such as Progressive Networks
[11] where new parameter sets get initialised for new tasks with a hierarchical
conditional structure imposed in the latter case and the memory footprint is of
the order of the number of parameters added (ii) memory and rehearsal based
methods where some exemplars from the past are retained for replay (rehearsal
[16], or are derived by generative models in pseudo-rehearsal, for replay while
learning on new tasks. Examples include iCaRL [5], end-to-end lifelong learning
[6] etc. In these, certain informative exemplars from the past are retained and
used as representative of past knowledge on future learning sessions (iii) reg-
ularization strategies, which include methods to enforce preservation of learnt
logits in parts of the network like in distillation strategies in Learning without
Forgetting [7], or estimate parameter importance and assign penalties on them
to ensure minimal deviation from learnt values over future tasks like in Elas-
tic Weight Consolidation [8] and Synaptic Intelligence based continual learning
[9]. In medical imaging, incremental addition of new data has been sporadically
addressed, notably in [2,12], despite clinical systems often acquiring data in non-
deterministic phases. While there have been efforts apart from transfer learning
[10] to resolve the paucity of labeled data, these have concentrated on augmen-
tation, multitask learning [1], and so on. In the domain of interpretability of
medical images, there has been a focus on utilizing attention mechanisms to
understand decisions of machine learning models, such as attention mechanisms
for interpretation in ultrasound images in fetal standard plane classification [13],
pancreas segmentation [14] and so on. Utilizing the notions of interpretability in
a continual setting or for enabling learning in incremental sessions is yet to be
studied in literature and we introduce notions of class saliency and explainability
for assessing and influencing continual learning mechanisms.

Contributions. Our contributions are (a) a novel method to avoid catastrophic
forgetting in medical image analysis (b) quantifying model forgetting and incre-
mental performance via saliency map quality evolution over multiple learning ses-
sions (c) saliency quality in individual sessions to choose informative exemplars for
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Fig. 1. (a) Fetal cardiac anatomical classes (b) Classification and knowledge distillation
scheme for our model.

class-wise rehearsal over successive learning sessions. Usage of saliency map qual-
ity for evaluating incremental learning performance and saliency maps to select
exemplars to retain for replay and distillation based knowledge regularization are
new to computer vision and medical imaging to our knowledge. ‘Incremental learn-
ing’ and ‘continual learning’ are used interchangeably in literature.

2 Methodology

The aim of the study is to introduce the usage of interpretability as a building
block for incremental learning in clinical imaging using fetal cardiac anatomy
classification as a proof-of-concept. Our classes of interest are anatomical struc-
tures apparent in standard fetal cardiac planes (four-chamber or 4C, three-vessels
or 3V and left ventricular outflow tract or LVOT view). Our problem deals with
a class-incremental setting for detecting fetal cardiac structures- Ventricle Walls
(VW), Foramen ovale (FO), valves (mitral, tricuspid) (4C view structures), left
atrium (LA), right ventricles (RV), Aorta (LV and aorta are seen as a continu-
ous cavity and labeled as LV-Ao hereafter) and right atrium (LVOT structures),
Pulmonary Artery (PA), Aorta, Superior Vena Cava (SVC) (3V view). These
structures are considered for study because of their relevance in assessment of
congenital heart disease [17]. Out of these, structures are learnt in sets of 3, first
as base categories in the initial task, followed by incremental task sessions. The
remaining 3 are shown to the base-trained model in incremental stages in our
class incremental learning experiments. (VW, Valves, FO) and (RV, PA, Aorta)
and (LV-Ao, SVC, LA) are then the class groups introduced in successive task
sessions. This simulates a setting where the algorithm needs to adapt to new data
distributions in the absence of a majority of exemplars from past distributions.

We propose a dual utilization of saliency to implement this continual learn-
ing setting. First, we define novel quality metrics for class averaged attention
maps that also quantify the ability of a model to learn continually. CNNs learn
hierarchical features that are aggregated towards a low-dimensional represen-
tation and the inability of the model to retain knowledge is manifested in this
hierarchy as well. Since attention maps point out the most relevant pixels in an
input image towards the classification decision made on it by a model, a digres-
sion of focus from these pixels is indicative of degradation of past knowledge.
Thus, attention map quality can be used to quantify not only the overall decline



132 A. Patra and J. A. Noble

in performance over old tasks, but offer detailed insights into relative decline
at the level of individual classes in the task, and also for individual instances
in a class (which can be used as a measure of some examples being especially
‘difficult to retain’). This attention based analysis is motivated by the fact that
there has been no standard agreement on how continual learning performance
ought to be evaluated. Present measures of forgetting and knowledge transfer do
not allow a granular assessment of learning processes or distinctions on the basis
of ‘difficulty’ of an instance, nor do they allow a scope for explainability of the
continual learning process. Creating attention maps by finding class activations
allows for feature level explainability of model decision on every learning cycle.

2.1 Saliency Map Quality

At the conclusion of a given task of N classes, the validation set of each class is
passed through the model which is then subjected to class activation mappings
(CAM) to obtain attention maps using the GradCAM approach [15]. Note that
the specific method to obtain attention/saliency maps here is for demonstra-
tion only and any suitable method may replace it. We consider only the maps
resulting from correct predictions because the explanations are generated even
otherwise but is suboptimal for further inference. Each instance’s map represents
the understanding of the model for the decision taken on that instance. Averaged
over the validation set of a class in a task, this average saliency map represents
the average explanation of the model for the decisions of classification. In the
absence of a ground truth, estimating a quality metric for the explanation based
saliency map is non-trivial. We try to assess the extent of forgetting by tracking
the difference between the activations obtained just after the class or task has
been learnt and that after a few other tasks are learnt subsequently. This can be
performed both for individual instances of classes and by considering classwise
average saliency maps. Past literature has explored saliency map quality in terms
of being able to mimic human gaze fixations or as a weak supervision for seg-
mentation or detection tasks, in which ground truth signals were enforced, even
if weakly. That apart, saliency maps were evaluated by [16] in context of their
attempts at designing explainable deep models. They interpret the efficiency of
saliency maps as a reasonable self-sufficient unit for positive classification of the
base image. Then, the smaller the region that could give a confident classifica-
tion in the map the ‘better’ the saliency. Mathematically, this was expressed as
a log of the ratio of the area and the class probability if that area was fed to
the classifier alone. This quantity called the SSR (Smallest Sufficient Region) is
expressed in [16] as |log(a)-log(p)|, where a is the minimum area that gives a
class probability for the correct class as p. This method assumes that the con-
centration of informative pixels is a good indicator of attentive features, and is
unsuitable for cases where features of interest are distributed spatially in a non-
contiguous manner (say a fetal cardiac valve motion detection, lesions in x-rays
for lung cancer classification etc.). As such, considering our dataset of fetal heart
ultrasound, attentive regions may be distributed over a spatial region and the
non-contiguous informative regions can be adequately quantified only through
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metrics designed for multiple salient region estimation and cannot be adequately
expressed by SSR. We extend from the SSR concept, and instead of thinking in
terms of concentration of information consider the extent of regions of informa-
tive content. To do so, we consider a grid of fixed uniform regions on the input
image. Each grid region is taken as a small rectangular space whose information
content is evaluated, the size of these small regions is fixed as a hyperparameter
(we consider 224 × 224 image inputs, and 16 × 16 grid regions by optimizing
for computational cost and accuracy). Each of these grids is evaluated by the
trained model after a task for their prediction probabilities by themselves. Then
for each grid region, a quantity |log(Ag) – log(p)| can be used, with log(Ag)being
constant for fixed size grid regions, to estimate the contribution of the region to
the overall saliency map. The smaller this quantity, the more informative this
region is. A threshold can be imposed and all n grid regions contributing can be
summed up to express the Overall Saliency Quality (OSQ)as:

n∑

k=1

|log
(
Ak

g

) − log (p) | (1)

Fig. 2. Schematic of saliency curriculum based exemplar retention - After training for
a session, CAM modules compute attention maps from instances for OSQ calculations
and selecting retention examples. Figures for representation purposes only

This threshold depends on the desired class probability for the correct class
(this expression would be valid even for incorrect classifications, but we choose
regions only with correct predictions). Thus, a quality measure can be derived
for each saliency map at all stages of tasks. The expression above essentially
gives an ‘absolute’ measure of saliency map quality. Retention of exemplars for
efficient continual learning was done by random selection, by nearest class mean
and so on. These methods do not consider actual performance while making the
retention decision but derive from input distributions if not selecting randomly.
While in ideal cases, the class mean will reflect exemplars with high quality
saliency maps (as one would trivially expect that the average class representation
has the most volume of data and hence is more influential on the learning curve
for these classes), it is not always true in case of classes with significant diversity
and multiple sub-clusters of exemplars. In the latter, selecting exemplars by
methods like herding [5], the need for retaining exemplars close to the class
means is not optimal for retaining the diversity of class information, and the
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diversity of informative representations needs to be accounted for, which can be
informed by saliency based retention strategies (Fig. 2).

2.2 Saliency Driven Continual Curriculum

We attempt to use the attention maps of past representations to help actively
preserve knowledge and at the same time improve generalization to future classes.
This is similar to transfer of knowledge from Task N to Task (N+1) through the
attention maps of the former being used to condition the latter. After each task
schedule we generate class activation maps using [9] for the validation data per
class and estimate the quality measure defined in the first part. Following our
need for retaining prior knowledge while moving to the next task, we consider
a selective retention strategy. In order to account for fixed memory allocations
per class, a fixed number of exemplars may be retained. We try to establish the
most informative of instances through an optimal map quality curriculum over
available instances in a class. This relies on studies of explainable representation
learning that if a classification decision were established through an empirical
risk minimization objective, a majority of instances for that category would
have low-dimensional feature representations in a close vicinity and away from
hyperplanes separating different clusters [3]. We propose two ways of preparing a
saliency based exemplar retention: (1) Assuming the presence of definitely iden-
tifiable salient cues in available instances, an average class saliency map can be
understood as an overall class decision explanation. A relative proximity at the
pixel space of a given saliency map of a given instance to this average saliency
map would indicate the suitability of such an instance for being stored as a
representative exemplar for its class. This approach is termed the Average Rep-
resentative Distance Selection (ARDS). (2) Another alternative is to pre-select
a set of most representative exemplars from a validation dataset of the class, in
terms of the class confidence probabilities, and use the normalized cumulative
distance from their saliency maps to every other instance’s saliency map. This
is termed Distributed Exemplar Distance Selection (DEDS), and is primarily
useful for cases where the salient regions of interest have a non-trivial spatial
variation within the same class exemplar set. ARDS is suited when strong cues
are localised and class prototype saliency maps are useful. DEDS is useful in
cases of a diversity of cues not similarly located on all exemplars or when a
significant shift is caused by affine transformations. ARDS is computationally
more efficient as a prototype-to-exemplar distance is computed in a single step.
Actual choices between the two would depend on data characteristics. In both
cases, the saliency map is treated as a probability distribution and similarity is
assessed by KL divergence between reference saliency maps and instance maps,

DKL[e, d] =
∫

(e(x) − d(x))log(e(x)/d(x))dx (2)

considering that e(x) and d(x) are the respective saliency maps being compared.
As the computation over the pixel space is discretized, the integral form is
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replaced with a discrete summation,

DKL[e, d] =
Npixels∑

x=1

(e(x) − d(x))log(e(x)/d(x)) (3)

As for choosing instances for the ARDS or DEDS calculations, it would be
superfluous to compute for entire training sets. We choose 100 exemplars from
each class’s training set (based on their confidence probabilities in final epoch)
for this process. The retention examples are chosen from training sets as they
are replayed in future sessions and hence validation set examples cannot be used
except as saliency benchmarks, i.e, while the benchmarks for average saliency
or representative exemplar sets are derived from validation sets, these can’t be
retained as validation data can’t be used in any part of training. In both cases,
30 instances are finally chosen after a grid search over integral number of samples
between 10 and 50 (with the upper bound governed by memory constraints and
lower bound on performance thresholds), to be retained in memory for future
rehearsal. Choosing higher numbers of exemplars was found to lead to minimal
performance gains (a detailed study of these trade-offs is kept for future work).

3 Model and Objective Functions

For our architecture, we implement a convolutional network with 8 convolu-
tional layers, interspersed alternately with maxpooling and a dropout of 0.5
(Fig. 1(b)). This is followed by a 512-way fully-connected layer before a softmax
classification stage. The focus of the work is not to achieve possible state-of-the-
art classification accuracies on the tasks and datasets studied, but to investigate
catastrophic forgetting in learning incrementally. Thus, the base network used is
significantly simplified to keep the order of magnitude of the number of param-
eters within that of other continual learning approaches reported in literature
[4] and enable a fair benchmarking. For a loss function, we implement a dual-
objective of minimizing a shift on learnt representations in the form of prior
logits in the final model layers using a knowledge distillation approach [17], and
performing a cross-entropy classification on the current task classes. A quadratic
regularization is additionally imposed with a correction factor that is set as a
hyperparameter by grid search. The overall objective function is:

L = Lcur + LKD + Lr (4)

where L is the total objective composed of the softmax cross entropy as the
current loss, the knowledge distillation loss on past logits, and the regularization
term for the previously trained parameters.

Lcur(Xn, Yn) = − 1
|Nn|

Nn∑

i=1

Jn∑

j=1

yij
n .log(pijn ) (5)
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where Nn is the number of examples in a batch, Jn is the number of classes,
yn

ij is the one-hot encoded label for an instance, and pn
ij is the softmax pre-

diction. For the distillation terms, the original labels not being available, yo
ij

is computed with new and retained examples and compared to stored logits for
the old examples po

ij , giving a loss term:

LKD(Xn, Yo) = − 1
|Nn|

Nn∑

i=1

Jo∑

j=1

yij′
o . log(pij

′
o ) (6)

where yo
ij′

= (yo
ij)1/λ

∑
j(yo

ij)1/λ and po
ij′

= (po
ij)1/λ

∑
j(po

ij)1/λ , where the distillation temper-
ature λ is set at 2.0 over hyperparameter search on values from 1 to 10.

The parameter regularization is imposed for already trained weights for the
past classes and penalises the shift for current adaptation through a Frobenius
norm over the parameters as Lr = μ

∑
j ||wo−w′||2. μ is set to 0.4 by grid search.

The idea here is that while the retained exemplars from the past tasks are seen
with the present data, the process of optimization should update parameters in a
manner compatible with past prediction features. This ensures that parameters
are adapted to present distributions without drastic shifts that adversely affect
their ability to arrive at the optimal representations for previously seen examples.
A distillation framework is implemented here as such a loss term in conjunction
with a cross-entropy objective can enforce a regularization on representations
from the past, which is not achieved by a simple parametric regularization.

Data. For fetal echocardiography data, we consider a clinically annotated
dataset of 91 fetal heart videos from 12 subjects of 2–10 s with 25–76 fps. Obtain-
ing 39556 frames of different standard planes and background, we crop out rel-
evant anatomical structures in patches of 100 × 100 from the frames, leading
to a total of 13456 instances of 4 C view structures (Ventricle Walls, Valves,
Foramen ovule), 7644 instances of 3V view structures (Pulmonary Artery, Supe-
rior Vena Cava, Descending Aorta) and 6480 LVOT structures (Right Atrium,
Left ventricle-Aorta continuum and Right Ventricle). A rotational augmentation
scheme is applied with angular rotations of 10◦ considering the rotational sym-
metry of the actual acquisition process. Instances sourced from 10 subjects are
used for training sets and the rest for validation.

Training. For initial training, the number of base classes (N) are taken as 3. In
the (N + 1)th task (N> 1) following the creation of exemplar sets of the imme-
diate past task, the training process is started for the (N + 1)th task and so on
(this goes on for 3 sessions in total in our case as we deal with a total of 9
classes of sub-anatomies). Batches are created between old and new data, and
to further improve performance a distillation based regularization with repre-
sentative logits of the past tasks is used along with the cross-entropy loss for
the present task and exemplars. The training stage essentially involves a base
training with the first set of classes, carried over 50 epochs with a learning rate
of 0.001. This is followed by a class activation mapping stage with the recently
trained model, and an averaged saliency map calculation per class. This model
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is now fine-tuned for the group of classes for the next task with a joint distilla-
tion and cross-entropy loss over past logits and new labels for 50 epochs. The
process continues over the remaining task sessions. CAM stages are carried out
only after entire task session is completed and not in-between epochs. In those
models where past exemplars are retained and rehearsed, these are interspersed
with the batches during fine-tuning over the new class sets.

Baselines. For baseline comparisons, the network model described is adapted
with the protocol in iCaRL [5], where the representation learning stages are fol-
lowed by a storage of class-specific exemplars using a herding algorithm [5]. This
is implemented in our datasets by computing average prototype representations
through the penultimate fully-connected layers for the classes seen till the pre-
vious task. A multi-class adaptation of Learning without Forgetting (LwF.MC)
[7] is attempted with our network and objective function without the weight
regularization term, and logits for distillation are retained. For the end-to-end
learning (E2EL) [8] method adapted to our network, a fixed memory version is
followed to be a more accurate benchmark to our own fixed memory per class
assumptions. The representative memory fine-tuning protocol in E2EL is imple-
mented for baselines with the same training configurations as the initial training,
except that the learning rate is reduced to 1/10th the initial value. A progressive
distillation and retrospection scheme (PDR) [9] is implemented with replicated
versions of our network serving as the teacher network for the distillation and
the retrospection phases, with the exemplars generating ‘retrospection’ logits for
regularization while progressively learning on new data which are presented as a
second set of logits which have been learned separately in another replication of
the base network. In these implementations, storage of prior exemplars follows
the same protocols as used in the original implementations.

4 Results and Discussion

We consider configurations of our approach in terms of the exemplar retention
method used and adopt OSQ in tandem: (1) map quality with OSQ and ARDS,
(2) map quality with OSQ + DEDS. Variants of our approach without storing
rehearsal exemplars are also considered in terms of training a vanilla CNN with
similar architecture as the base CNN used in other approaches. This is same as
using a simple CNN baseline with transfer learning over task sessions. Another
version CNN (TL) also functions without retention strategies but with convolu-
tional layers frozen while further task finetuning (this would reflect in a much
higher difference between initial task performance and subsequent task values).
The reported performances include the average accuracies at incremental levels,
with and without using the salient retention scheme in step 2, benchmarked with
our adaptations of methods in iCaRL [5], LwF.MC [7], E2EL [18] and Progressive
distillation (PDR) [19]. Using these benchmarks indirectly also allow comparison
between different exemplar retention strategies, such as with naive and herding
based methods explored in iCaRL and LwF. Also reported is the average saliency
map quality in each stage. This OSQ metric is a proxy for the level of forgetting
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over multiple stages, and a difference between consecutive stages in the OSQ rep-
resents the decline in the model’s ability to seek out most salient image regions
over classes. Also, the OSQ is an indicator of stagewise model interpretability since
accurate model explanations rely directly on the quality of saliency maps for med-
ical images.

The reported OSQ over learning sessions is the saliency quality averaged over
all validation exemplars available for previously seen classes. We report the aver-
age value for tasks so far, since we want to look at broad trends in the overall
saliency to assess the overall ability to retain knowledge. For future extensions,
it is straight-forward to obtain these values at both class and instance level and
only requires them to be input to the trained model and class activation maps
processed before the OSQ calculation. There is a difference in accuracies for base-
line methods compared to original implementations due to our using the same
base network for all baselines and models for uniform assessments (e.g. iCarL
originally used embeddings from 32 layer ResNet on CIFAR 100 but we use the
iCaRL baseline on our data and our base network). A trend is established where
the inclusion of exemplars based on a saliency driven approach is seen to have
a marked improvement on mitigation of forgetting, based on the OSQ metrics
introduced here, and also on the validation accuracies averaged on previously
seen classes for the task sessions considered (the past accuracy % in Table 1
for a task stage refers to validation accuracy of validation sets from previously
seen classes, and the present accuracy % is the validation accuracy obtained on
the present validation set). The saliency quality variation roughly corresponds
to the past accuracy percentages demonstrating the efficacy of using map qual-
ity as a metric for evaluation of continual learning algorithms in medical image
analysis. The methods that consider the retention of exemplars from the past
overall show not only a better performance with respect to past task accura-
cies, but also demonstrate considerably higher current learning performances.
This implies that a feature importance based identification of informative exam-
ples for classes of physiological markers not only improves the ability to better
rehearse on past data during future learning stages but also transfers salient
representative knowledge leading to better initialization of the parameters for
improving performances on the present as well. Here, the diversity of the exam-
ples that can constitute a single class type representing a physiological region
requires that multiple salient features can be used to explain the final optimiza-
tion decisions and a diversity of informative exemplars need to be chosen for
optimal forward propagation of knowledge while learning on future increments
of tasks. The proposed pipeline ensures an inherent continual explainability of
the decisions and how they shift over new data arrivals (Fig. 3).

Conclusion. In this proof-of-concept for saliency aware continual learning
paradigms, we presented metrics for assessment of continual learning in terms
of saliency allowing for instance and class level understanding of the basis for
prediction and a shift in the learning of the same. We also utilised the saliency
from the past task as a selected representative for prior tasks during subsequent
learning and developed a joint curriculum for creating such sets of exemplars.
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Table 1. Evolution of model performance over task sessions. Past accuracy refers
to validation accuracy on past session classes (or past tasks). Map quality (MQ) is
reported for present task session (leftmost column for each task session head) and for
previous session classes.

Method Task 1 Task 2 Task 3

MQ Task 1
acc. %

MQ
(T2)

MQ
(T1)

Task 2
acc. %

Past
acc. %

MQ
(T3)

MQ
(T2)

Task 3
acc. %

Past
acc. %

Ours
(OSQ+ADRS)

0.933 0.812 0.942 0.915 0.845 0.704 0.913 0.876 0.632 0.568

Ours
(OSQ+DEDS)

0.946 0.812 0.938 0.923 0.863 0.691 0.887 0.843 0.636 0.593

OSQ+std.
CNN

0.871 0.811 0.840 0.631 0.778 0.592 0.852 0.802 0.661 0.455

OSQ+CNN
(TL)

0.827 0.813 0.822 0.612 0.702 0.511 0.772 0.647 0.560 0.322

iCaRL 0.811 0.775 0.831 0.622 0.713 0.616 0.834 0.674 0.658 0.321

LwF.MC 0.773 0.762 0.767 0.668 0.732 0.529 0.822 0.731 0.621 0.301

E2EL 0.818 0.793 0.792 0.703 0.742 0.554 0.785 0.706 0.603 0.295

PDR 0.842 0.802 0.837 0.711 0.759 0.514 0.791 0.721 0.581 0.342

Fig. 3. Map quality variation over successive tasks sequentially, for class examples seen
originally in task session 1. Saliency maps for these task 1 validation instances show
a shift in attentive features over subsequent task sessions (areas in red are of higher
salience) where models learn other classes. Quantification of this shift with the OSQ is
treated as a proxy metric for forgetting here. (Color figure online)

Our method makes the continual learning process interpretable to a degree,
and thereby ensures that the forgetting and retention characteristics of mod-
els are explainable. Given the foundations laid here, multiple future directions
are possible starting with an exploration of classwise characteristics in terms of
forgetting and retention performances and the trends of decline in map quality
over intra-class variations. This is likely to be a natural follow-up of the ideas
proposed here. Another immediate direction would be to study other strategies
for saliency-curriculum driven exemplar retention. While we used a fixed number
of exemplars for retention and rehearsal over future tasks, other approaches like
a variable retention based on class difficulty are possible. Future directions can
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also include expanding to different tasks and datasets, using the saliency based
exemplar scheme with other lifelong learning methods, using generative replay
for estimating past saliency maps and images without need to retain exemplars,
and so on. While we have demonstrated on approaches on distillation-based
preservation, and using class activation derived saliency maps, the concept is
generally applicable with any other continual learning pipeline, and can use
other methods of estimating saliency maps, with different base architectures or
objectives.
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Abstract. Ultrasound-based fetal head biometrics measurement is a key
indicator in monitoring the conditions of fetuses. Since manual measure-
ment of relevant anatomical structures of fetal head is time-consuming
and subject to inter-observer variability, there has been strong inter-
est in finding automated, robust, accurate and reliable method. In this
paper, we propose a deep learning-based method to segment fetal head
from ultrasound images. The proposed method formulates the detection
of fetal head boundary as a combined object localisation and segmen-
tation problem based on deep learning model. Incorporating an object
localisation in a framework developed for segmentation purpose aims to
improve the segmentation accuracy achieved by fully convolutional net-
work. Finally, ellipse is fitted on the contour of the segmented fetal head
using least-squares ellipse fitting method. The proposed model is trained
on 999 2-dimensional ultrasound images and tested on 335 images achiev-
ing Dice coefficient of 97.73±1.32. The experimental results demonstrate
that the proposed deep learning method is promising in automatic fetal
head detection and segmentation.

Keywords: Fetal ultrasound · Object detection and segmentation ·
Deep learning · CNN · FCN

1 Introduction

Ultrasound imaging (US) is the primary modality used in daily clinical prac-
tice for assessing the fetus condition such as detecting of possible abnormalities
and estimating of weight and gestational age (GA) [1]. Fetal biometrics from
ultrasound used in routine practice include occipital-frontal diameter (OFD),
femur length (FL), biparietal diameter (BPD), crown-rump length, abdominal
c© Springer Nature Switzerland AG 2020
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circumference, and head circumference (HC) [2,3]. Fetal head-related measure-
ments including BPD and HC are usually used for estimating the gestational age
and fetal weight between 13 and 25 weeks of gestation [4–6]. The 2-dimensional
fetal US scan is characterised by its non-invasive nature, real time capturing,
wide availability and low cost. However, the US manual examination is highly
dependent on the training, experience and skills of sonographer due to the image
artefacts and poor signal to noise ratio [7].

Manual investigation of US images is also a time-consuming process and
therefore developing automatic US image analysis methods is a significant task.
Automated fetal head boundary detection is often performed as a prerequisite
step for accurate biometric measurements. The automated fetal head contour
detection from US images can be basically fulfilled by developing effective seg-
mentation algorithms which is able to extract the segmented head structure.
A number of fetal head segmentation methods have been developed over the
past few years with varying degrees of success, including parametric deformable
models [8], Hough transform-based methods [9], active contour models [10], and
machine learning [11–13]. However, the presence of noise and shadow, intensity
inhomogeneity, and lack of contrast in US images make the traditional segmenta-
tion methods are not sufficient or have a limited success on fetal head detection.
It is a strong need to develop more accurate segmentation algorithm which is
able to tackle the presented fetal head detection problems in US images.

Recently, deep convolutional neural networks (CNNs) has revolutionised the
field of computer vision achieving great success in many medical image analysis
tasks including image segmentation, detection and classification. In terms of seg-
mentation accuracy, fully convolutional network (FCN) [14] has dominated the
field of segmentation. FCN has demonstrated improved results in automatic fetal
head detection and segmentation in [15–17]. However, FCN has some challenges
which need to be tackled. The challenges are represented by being expensive
to acquire pixel level labels for network training and having difficulties with
imbalanced data samples which lead to a biased representation learned by the
network.

In this paper, we propose deep learning based method to segment fetal head
in ultrasound. The proposed method aims to improve the segmentation accu-
racy by incorporating object localisation mechanism in segmentation framework
achieved by merging Faster R-CNN [18] with FCN [14]. This incorporation allows
to leverage object detection labels to help with the learning of network, alleviat-
ing the need for large scale pixel level labels. The rest of this paper is organised
as follows. In Sect. 2, the materials and proposed method are described. Results
of the proposed method are presented and discussed in Sect. 3. Finally, the work
is concluded in Sect. 4.
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2 Materials and Methods

2.1 Materials

A publicly available dataset has been used in the training and evaluation of
the proposed method [19]. The ultrasound images were captured from 551 preg-
nant women who received screening exam after (12–20) weeks of gestation. The
dataset includes 1334 2D ultrasound images of the standard plane and the cor-
responding manual annotation of the head circumference, which was made by
an experienced sonographer. The data is randomly spilt into a training set of
999 images and a test set of 335 images. The size of each ultrasound image is
800 × 540 pixels with a pixel size ranging from 0.052 to 0.326 mm.

2.2 Methods

The framework of our proposed method can be divided into two stages: (i) fetal
head segmentation by adapting Mask R-CNN (Regional Convolutional Neural
Network) [20], and (ii) fetal head ellipse fitting using least-squares ellipse fitting
method. Mask R-CNN [20] which was originally developed for object instance
segmentation combined both localisation and segmentation in one architecture
has been adapted to detect fetal head boundary. The proposed fetal head seg-
mentation method comprises four major parts:

1. The feature extraction module is the first step of our method. The feature
extraction module is a standard convolutional neural network consisting of
convolutional and pooling layers. This module serves as a backbone feature
extractor for the segmentation task. Ultrasound images and their masks are
resized into 512 × 512 × 3 and passed through the backbone network. We
use Resnet101 architecture [21] as a backbone network. Instead of training
the model from scratch, transfer learning is exploited by initialising the first
50 layers of the model with pre-trained Resnet50 weights from ImageNet
competition. The resulted feature map becomes the input for Faster R-CNN.

2. The object localisation represented by fetal head is achieved using Faster R-
CNN which is well-known deep learning based object detection model [18].
It is adopted to generate and predict a number of bounding boxes producing
multiple ROIs. The object localisation in Faster R-CNN is achieved by Region
Proposal Network (RPN). The RPN scans over the backbone feature maps
resulted from ResNet101 producing candidate region proposals/ anchors. The
candidate region proposals/anchors are examined by a classifier and regressor
to check the occurrence of foreground regions. Two outputs are generated
by RPN for each anchor which are anchor class (foreground or background)
and bounding box adjustment to refine the anchor box location. Then, the
top anchors/candidate bounding boxes which are likely to contain objects
are picked. The location and size of the candidate bounding boxes (ROIs)
are further refined to encapsulate the object. After that, the final selected
proposals (regions of interest) are passed to the next stage.
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3. The dimensions of candidate bounding boxes (ROIs) generated by the RPN
are adjusted by applying ROIAlign to have same dimensions as they have
different sizes. ROIAlign technique samples the feature map at different points
and then apply a bilinear interpolation to produce a fixed size feature maps.
These feature maps are fed into a classifier to make decision whether the ROI
is positive or negative region.

4. The positive regions (fetal head region) selected by the ROI classifier is passed
into the mask branch in Mask R-CNN which is known as mask network. The
mask network is fully convolutional neural network (FCN) that generates
masks on the localised ROI. The output of this stage is the segmented region
of fetal head.

The model is trained and weights are tuned using Adam optimiser for 75
epochs with adaptive learning rates (10−4 – 10−6) and momentums of 0.9. Due to
small training data set, heavily image augmentation is applied during training by
randomly cropping of images to 256×256×3, randomly rotate the images in the
range of (−15, 15)◦, random rotation 90 or −90◦, and random scaling of image
in the range (0.5, 2.0). The network is trained under multi-task cross-entropy
loss function combining the loss of classification, localisation and segmentation
mask: L = Lcls + Lbbox + Lmask, where Lcls and Lbbox are class and bounding
box loss of Faster R-CNN, respectively, and Lmask is mask loss of FCN.

Finally, an ellipse is fitted to the predicted segmentation contours of fetal
head using least-squares fitting method to mimic the measurement procedure
used by the trained sonographers.

3 Results and Discussion

All of the experiments were run on an HP Z440 with NVIDIA GTX TITAN
X 12 GB GPU card, an Intel Xeon E5 3.50 GHz and 16 GB RAM. Keras built
on the top of Tensorflow has been used to implement the proposed system.
The performance of the proposed method for segmenting the fetal head when
compared with the ground truth was evaluated using many evaluation metrics
such as Dice coefficient, mean absolute difference, mean difference, and mean
Hausdorff distance which measures the largest minimal distance between two
boundaries. The measurements can be defined as follows:

Dice(A,B) =
2|A.B|

|A| + |B| (1)

MeanAbsoluteDifference(A,B) =
∑ |A − B|
N × M

(2)

MeanDifference(A,B) =
∑

A − B

N × M
(3)

HausdorffDistance(A,B) = max(h(A,B), h(B,A)) (4)
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where
h(A,B) = maxa∈Aminb∈B ‖ a − b ‖

A, B are the ground truth mask and resulted segmentation map from the
proposed method, respectively. a, b are two sets of points from A and B, respec-
tively, which represent the points on fetal head contour. N , M represent the
dimensions of ground truth or predicted mask.

Figures 1 and 2 show some example of segmentation results. Figure 1 presents
image examples as resulted from trained model used for validation without ellipse
fitting. Figure 2 shows the image examples where ellipse is fitted and overlaid
the test images.

The proposed system was evaluated on 355 US images achieving Dice coeffi-
cient of 97.73 ± 1.32, mean absolute difference (mm) of 2.33 ± 2.21, mean differ-
ence (mm) of 1.49±2.85, and mean Hausdorff distance (mm) of 1.39±0.82. The
obtained results are comparable and often outperform the existing automated
fetal head segmentation methods. Our model achieves higher performance than
most recent work carried out by Heuvel et al. [19] who tested their method on
the same 355 test images reporting Dice coefficient of 97.10±2.73, mean absolute
difference (mm) of 2.83 ± 3.16, mean difference (mm) of 0.56 ± 4.21, and mean
Hausdorff distance (mm) of 1.83 ± 1.60.

Although Wu et al. [15] reported slightly better Dice coefficient of 98.4, yet,
they reported boundary distance of 2.05 which is higher error than the boundary
distance reported by our method. Furthermore, they tested their method on
only 236 fetal head images and their results are affected by a refinement stage
which is combing FCN with auto-context scheme. Sinclair et al. [16] reported
comparable Dice coefficient of 98, however, they trained their model on large
training set of 1948 images (double of our training data) and tested only on
100 images. Moreover, we obtain higher Dice coefficient than Li et al. [13] who
achieved 96.66 ± 3.15 on 145 test images.

4 Conclusions

In this paper, an automated method to segment fetal head in ultrasound images
has been presented. The developed method, which is based on merging Faster
R-CNN and FCN, has proved to be efficient in fetal head boundary detection.
Incorporating object localisation with segmentation has been proved to be com-
parable or superior to current approaches in extracting the fetal head mea-
surements from the US data. The proposed system has been evaluated on a
fairly large and independent dataset which included US images of all trimesters.
The obtained results demonstrated that the proposed deep learning method is
promising in segmenting anatomical structure of fetal head efficiently and accu-
rately. The proposed object localisation-segmentation framework is generic and
will be easily extended and developed to other ultrasound image segmentation
tasks.
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Fig. 1. Results of our model on four randomly images. Blue colour: without ellipse
fitting; comparing with the expert annotating (red colour). (Color figure online)
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Fig. 2. Image examples show the ellipse fitted on unseen test data demonstrating the
effectivity of our model.
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Abstract. To improve the performance of most neuroimage analysis
pipelines, brain extraction is used as a fundamental first step in the image
processing. However, in the case of fetal brain development for routing
clinical assessment, there is a need for a reliable Ultrasound (US)-specific
tool. In this work we propose a fully automated CNN approach to fetal
brain extraction from 3D US clinical volumes with minimal preprocess-
ing. Our method accurately and reliably extracts the brain regardless of
the large data variations in acquisition (eg. shadows, occlusions) inher-
ent in this imaging modality. It also performs consistently throughout
a gestational age range between 14 and 31 weeks, regardless of the pose
variation of the subject, the scale, and even partial feature-obstruction
in the image, outperforming all current alternatives.

Keywords: 3D ultrasound · Fetal · Brain · Extraction · Automated ·
3D CNN · Skull stripping

1 Introduction

Ultrasound (US) imaging is routinely used to study fetal brain development and
to screen for central nervous system malformations, and has become standard
clinical practice around the world thanks to its ability to capture the brain struc-
tures in the womb [1–3]. Three-dimensional (3D) US expands on this technique
by allowing for the imaging of the whole brain at once, instead of one slice at a
time. However, the positional variation of the brain inside the scan volume, as
well as the large amount of extra-cranial tissue observed in the volume, consti-
tute a serious challenge when analysing the data. This has led brain-extraction
tools to become a fundamental first step in most neuroimage analysis pipelines
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with several methods being developed for fetal Magnetic Resonance Imaging
(MRI) data but a reliable US-specific tool has not yet been developed.

Another challenge is that during gestation, the fetus is constantly moving
within the womb. This causes the position and orientation of the brain to vary
drastically from measurement to measurement. In order to compensate for this
high degree of variability, the standard clinical protocol is to position the soni-
fication plane such that it is perpendicular to the midsagittal plane. While this
reduces the pose variability to a degree, it is not consistent as it depends entirely
on the clinician to be accurate. There is therefore a need for a method that can
accurately and reliably determine the position, orientation, and volume of the
brain from a 3D US scan.

Besides the variation in position of both the fetus and the probe, the devel-
opment of the brain throughout gestation increases the variability of the data,
since the scale, ossification, and structural characteristics inside the skull change
for each gestational week. The physical interaction of the US beam with the
increasingly ossifying skull also causes reverberation artefacts and occlusions.
Most importantly, when imaging from one side of the skull, the brain hemi-
sphere farthest from the probe (distal) is visible while the closest (proximal)
hemisphere is mostly occluded [4].

Several methods have been developed for the purpose of brain extraction (a
comprehensive comparison of them for neonatal brain extraction can be found
in Serag et al. [5]), but very limited amount of work has been done in relation to
the extraction of the brain volume from fetal imaging and the vast majority of
it has been focused on MRI imaging. Publications such as [6] and [7] show the
difficulty in developing a reliable method that can accurately locate the brain
from the acquired images. To our knowledge, the only method developed for
automated fetal brain extraction from 3D US is the one proposed by Namburete
et al. [8]. This method uses a fully-convolutional neural network (FCN) to predict
the position of the brain from 2D slices of the 3D US volume. This prediction
is then used to generate a 3D probability mask of fetal brain localization. An
ellipsoid is then registered to the mask, resulting in an approximation of the
location, orientation, and spatial extent of the brain. While this method offers a
solution to the problem of brain extraction, it still relies on a 2D approach and
its ellipsoid approximation does not accurately represent the shape of the brain.

Here, we propose an end-to-end 3D Convolutional Neural Network (CNN)
approach for automated brain localization and extraction from standard clini-
cal 3D fetal neurosonograms. As opposed to Namburete et al. [8], this method
is a fully 3D approach to brain extraction and requires minimal pre- or post-
processing. We show that our network manages to accurately detect the complete
brain with a high degree of accuracy and reliability, regardless of the gestational
age (ranging from 14 to 30 weeks), brain and probe positions, and visible brain
structures.
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2 Brain Extraction Network

The general schematics of the CNN used for this work can be seen in Fig. 1. It is
a variation of the network used in Huang et al. [9] and is similar in structure to
the 3D U-Net network from [10]. This network design showed accurate and stable
results for extracting brain-structures from 3D US scans and was therefore chosen
as the starting point for this work. Our network comprises kernels of size k3, l
convolutional and down-sampling layers in hte encoder path, and l convolutional
and up-sampling layers in the decoder path. The first two convolutional layers
have f and 2f number of filters, with the remaining ones having 4f . After each
convolution, batch normalisation and ReLu activations were used. The network
was trained end-to-end with the Adam optimizer, with a learning rate of 10−3

and a Dice-Loss function. Both input and output are of size n× n× n.

Fig. 1. Schematics of the 3D CNN used for brain extraction. Each convolution block
performes the steps described, with the numbers of filters used being a multiple of the
first bock’s filters f and displayed above each block. This particular example shows
four pooling layers (MaxPooling and UpSampling).

3 Experiments

3.1 Data

A total of N = 1185 fetal brain volumes spanning between 14.4 and 30.9 weeks
of gestation were used for the training and testing of our networks. The distribu-
tion of the gestational ages is shown in Fig. 2. These volumes were obtained from
the multi-site INTERGROWTH-21st study dataset [11] and are from healthy
subjects that experienced a normal pregnancy. The original volumes have a
median size of 237× 214× 174 voxels. They were centre-cropped to a size of
160× 160× 160 voxels and resampled to an isotropic voxel size of 0.6 mm ×
0.6 mm × 0.6 mm.

In order to train our networks, labelled data representing the location of the
brain within the 3D US volume were required. Manual labelling by a clinician
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Fig. 2. Histogram of the number of volumes for each gestational week.

would be time-consuming and is likely to have a large degree of uncertainty due
to the artefacts and occlusions that are intrinsic to this imaging modality.

To circumvent this problem, the spatiotemporal fetal brain atlases generated
by Gholipour et al. [12] were used as templates. These atlases were generated
from fetal MRI data. It represents the average brain shape for each gestational
week and allows us to use it for semi-automated annotations.

To annotate our data, the complete dataset was aligned by hand and rigidly
scaled to the same coordinate system. Each brain mask from the age-matched
atlas was isotropically scaled to a selected reference using a similarity transfor-
mation to preserve the aspect ratio. The mask was then transformed back to the
original position of the brain in the 3D US scan by performing the inverse trans-
formation that was used to align the volumes in the first place. This resulted in a
consistent brain annotation for the complete dataset. Since Gholipour et al. [12]
atlases span a gestational age range of 21 to 38 weeks, a down-scaled version of
the brain mask at 21 gestational weeks was used to represent gestational weeks
14 to 18 of our dataset.

3.2 Performance Evaluation

To determine the best network for fetal brain extraction, eight networks with
different hyperparameters were created with the following characteristics: Input
size n (same in all dimensions), number of pooling layers l, kernel size k (same
in all dimensions), and number of filters of the first convolution f . For three-fold
cross-validation experiments, 885 training volumes were partitioned into a subset
of 685 for training and 200 for validation, three times. The best model was then
retrained with the full 885 volumes and tested with the 300 hold-out testing
set. A student’s t-test result of t = 1.26, p = 0.21 confirmed no statistically
significant difference in their age distributions.

To evaluate the performance of each network, we used four separate mea-
sures that could give an overall assessment of reliability. Firstly, the Euclidean
Distance (ED) between the centre of mass of the binary masks was calculated.
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This value gives a measure of the distance between the predicted centre and
known centre of the brain. Since the position of the fetal brain relative to the
3D US volume varies throughout our dataset, the ED is a good indication of the
accuracy of the predicted location of the brain. Secondly, the Hausdorff Distance
(HD) between the masks was calculated. This metric determines the maximum
distance between the prediction and the annotation and it allows for determina-
tion of local segmentation mismatch, regardless of the accuracy of the rest of the
predictions. Since the masks used for annotation were derived from fetal MRI
data which contains differences in observable structural information compared
to 3D US, the use of this metric is critical to assess the reliability of our network.
Thirdly, the Dice Similarity Coefficient (DSC) was calculated to determine the
amount of overlap between the annotation and the predicted binary mask (dif-
ferent threshold were explored). This coefficient gives a good general assessment
of the accuracy of the prediction. And fourthly, a Symmetry Coefficient (SC)
was calculated to represent the symmetry of the prediction. Since the interac-
tion between the 3D US beam and the skull causes the proximal hemisphere to
be occluded, the structural information within the skull is asymmetric. However,
the skull is generally symmetric about the sagittal plane, and therefore a predic-
tion that reflects this is imperative. To calculate the SC, the prediction masks
were aligned to a common set of coordinates with the sagittal, axial, and coronal
planes being the mid-planes of the volume (same used for the data annotation
described in Sect. 3.1). The right half of the brain mask prediction was then
mirrored and the DSC between it and the left half is the value of the SC.

Using the fourth measures described (ED, HD, DSC, SC), we assessed the
performance of our method under the intrinsic variability associated with fetal-
brain 3D US. We first analysed the pose dependence of the accuracy of the
prediction. As stated in Sect. 1, one of the main challenges of automatically
extracting the brain from a 3D US volume is the pose variation of both the
fetus relative to the probe. To assess the reliability of our network in regards
to the orientation of the fetal brain in the volume, the Euler angles needed for
the alignment of each volume to a set of common coordinates was compared
to the DSC of that particular prediction. This would determine if there is a
correlation between the orientation and the quality of the prediction. We then
determined the dependency of the network to the gestational week of the sub-
ject. Since the goal is to develop a model that can reliably extract the brain
regardless of the gestation week of the subject, their accuracy of the prediction
should be consistent throughout the 14.4 to 30.9 weeks of gestation that com-
prises our dataset. To assess this, the results from the first four experiments were
divided into gestational weeks and compared. Finally, we compared the predic-
tions to the annotations by observing the regions of false-positives (predicted
voxels not present in the annotation) and false-negatives (non-predicted voxels
present in the annotations) results. This is a good qualitative method to analyse
the regional accuracy of the prediction.
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4 Results

4.1 Cross-validation and Network Selection

A description of each tested network, as well as the cross-validation results of
each can be seen in Table 1. All networks managed to achieve a prediction with
ED below 2 mm. The best score in terms of the ED between the centre of mass
of the ground truth binary volume and the prediction of the network is from
network D (1.16 mm), closely followed by network A. For reference, the median
occipitofrontal diameter (OFD) for 22 weeks of gestation (the mean gestational
age of our dataset) is 62 mm [13] so an ED of 2 mm corresponds to 3.2% of OFD at
22 weeks. The HD results show network D outperforming all other networks again
with a result of 8.46 mm, followed by network F. Finally, the DSC results are
very consistent among all networks, managing to stay above 0.90, and achieving
a maximum of 0.94 for networks A, D, E, and F. Network D obtained the best
cross-validation results across all tests and was therefore selected to be trained
on the full dataset.

Table 1. Description of the eight tested networks as well as the cross-validation results.
Network D, in bold, shows the best results. n: Input size (same in all dimensions). l:
Number of pooling layers. k: Kernel size (same in all dimensions). f : Number of filters of
the first convolution. ED: Euclidean Distance between centres of masses. HD: Hausdorff
distance. DSC: Dice Similarity Coefficient. Param.: Number of trainable parameters in
the network.

Network (n) l k f ED [mm] HD [mm] DSC Param.

A (80) 4 3 16 1.17 ± 0.67 10.19 ± 6.40 0.94 ± 0.02 1.6 M

B 4 5 16 1.34 ± 0.95 9.53 ± 4.37 0.93 ± 0.03 7.4 M

C 4 7 16 1.33 ± 0.67 9.75 ± 4.30 0.93 ± 0.03 20.3 M

D 4 3 8 1.16±0.69 8.46±3.66 0.94±0.02 0.4 M

E 4 3 4 1.25 ± 0.81 9.82 ± 6.01 0.94 ± 0.02 0.1 M

F (160) 3 4 1.24 ± 0.73 9.14 ± 4.53 0.94 ± 0.02 0.1 M

G 3 3 4 1.33 ± 0.72 12.12 ± 6.87 0.93 ± 0.02 0.07 M

H 2 3 4 1.81 ± 1.26 23.12 ± 6.99 0.90 ± 0.05 0.03 M

4.2 Testing

As shown in Sect. 4.1, network D outperformed other networks, and so it was
used for further experiments. It was trained with the full 885 training volumes
and tested with the independent test set of 300 volumes. The testing results
are shown in Table 2. Five different prediction thresholds were tested to find
the best results. HD and SC values of threshold 1 are the best ones. However,
this threshold is too high and makes the DSC fall when compared to the overall
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best threshold of 0.5. The latter, while having a slightly worse HD and SC, has a
slightly better ED, and it has a statistically significant improvement of the DSC.
Considering the minimal variation of ED and HD throughout the thresholds,
using threshold 0.5 is the most appropriate, since it achieves a high degree of
overlap (0.94) with the annotations, while preserving symmetry (0.95).

Throughout the different thresholds, the results of our network are consis-
tent. This shows the high degree of confidence of the predictions generated. The
results are also very consistent with the ones observed during cross-validation
(see Table 1), which confirms that the network works with new data.

Table 2. Testing results of the fully-trained network. A threshold of 0.5 (in bold)
showed the most consistent results and was therefore the best. ED: Euclidean Distance
between centres of masses. HD: Hausdorff distance. DSC: Dice Similarity Coefficient.
SC: Symmetry Coefficient

Threshold ED [mm] HD [mm] DSC SC

0 8.34 ± 3.26 62.50 ± 7.91 0.27 ± 0.15 0.80 ± 0.02

0.25 1.43 ± 0.93 9.24 ± 4.77 0.94 ± 0.02 0.95 ± 0.02

0.5 1.36±0.72 9.05±3.56 0.94±0.02 0.95±0.02

0.75 1.36 ± 0.72 8.97 ± 3.54 0.93 ± 0.03 0.80 ± 0.02

1 1.42 ± 0.80 8.72 ± 4.23 0.90 ± 0.03 0.99 ± 0.01

4.3 Performance with Pose Variation

As mentioned in Sect. 3.2, it is crucial for our brain extraction network to work
consistently regardless of the orientation of the brain within the US volume.
This can be qualitatively observed in Fig. 3, which shows the outline of the
brain-extraction prediction and the corresponding ground-truth, in red and green
respectively, for six different 3D US volumes. These volumes have been selected
to demonstrate the amount of variation between each scan, with the position of
the fetus inside the womb as well as the position of the brain with respect to the
probe varying drastically across scans.

As shown in Fig. 3, the network’s prediction is remarkably close to the
ground-truth, regardless of the position of the brain in the volume. It also man-
ages to accurately predict the location of the brain when this is partially obscured
either by the cropping or the shape of the ultrasound beam.

The distribution of the DSC in relation to the Euler angles is shown in Fig. 4.
The Pearson’s correlation coefficient was calculated for each Euler angle, with
a rα = 0.15, rβ = −0.20, and rγ = −0.16 respectively. The results show no
significant correlation between the Euler angles and the DSC.
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14 Weeks 17 Weeks 20 Weeks 22 Weeks 26 Weeks 30 Weeks
α = 53.8◦ α = 84.4◦ α = -64.6◦ α = 82.3◦ α = -61.4◦ α = 75.5◦

β = -68.0◦ β = 60.4◦ β = -60.6◦ β = -74.6◦ β = 59.0◦ β = -58.6◦

γ = -39.0◦ γ = 92.2◦ γ = -114.2◦ γ = -83.6◦ γ = 119.6◦ γ = -107.8◦

Fig. 3. Comparison of the brain-extraction prediction (red) and the ground-truth
(green) superimposed onto the mid-planes of the 3D US volume. These volumes were
selected to demonstrate the amount of variation between each scan. Top: XY-plane.
Middle: XZ-plane. Bottom: YZ-plane. The gestation week of each volume and the Euler
angles are displayed underneath. (Color figure online)

Fig. 4. Plot of Euler angles vs DSC. The angles cluster around 90◦ because of the
manual alignment performed by the clinician being different to our coordinate system.
No correlation between the Euler angles and the DSC was found.

4.4 Performance with Different Gestational Ages

The results describing the performance of the network for each gestational week
are displayed in Fig. 5. The ED is consistently located between 1 mm and 3 mm
throughout the data, with no observable correlation (r = 0.14) with the gestational
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age of the fetus. The HD is generally consistent around 10 mm for weeks 14 to
22, with its value increasing for each week with a maximum of 15 mm at week 30.
This is likely a result of the different structural information observed in fetal brain
MRI and US particularly around the brain stem (which is typically occluded in
US images). The DSC show a slight increase between weeks 14 and 18, with a very
consistent behaviour with a weak correlation to gestational week (r = 0.27). This
is most likely caused by the atlas mask, since as mentioned in Sect. 3.1, the atlas
of week 19 was used for that gestational age range. Regardless, with the exception
of week 14, all DSCs are on average consistently above 0.90. Finally, the SC of the
predicted volume is consistently high throughout the complete gestational period
available in our data, with no significant correlation observed (r = 0.19).

Fig. 5. Network performance for each gestational week. ED is consistent throughout all
ages. HD increases after week 21 most likely due to the different structural information
obtained from US in comparison to the MRI-based annotation. DSC drops for weeks
earlier than 21, as expected due to the annotations for these weeks being based on the
atlas for 21 gestational weeks. SC shows no correlation with gestational age.

4.5 Regional Performance

The regional performance of the network is shown as a map of false-positives
and false-negatives for different gestational ages in Fig. 6. It can be observed
that overall the network is consistent throughout all regions of the brain with
the exception of the brain stem. This is most likely due to this structural infor-
mation not being visible in the US scan. There is, however, one region of the
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brain that has worse regional performance for later gestational weeks: the space
between the occipital cortex and the cerebellum. This is likely due to the fact
that the annotations are based on the brain tissue and do not include the cere-
brospinal fluid. As the brain develops, the separation between occipital cortex
and cerebellum becomes more pronounced. However, since US does not offer a
good contrast between the tissue and the cerebrospinal fluid, this separation is
not visible and therefore appears as a false positive.

Average Intensities False Positives False Negatives

Fig. 6. Regional performance comparison. False-positives (predicted voxels not present
in the annotation) and false-negatives (non-predicted voxels present in the annotations)
give a qualitative assessment of the performance of the predictions for particular regions
of the brain. Top: 14Weeks of gestation. Middle: 22 Weeks. Bottom: 30 Weeks. These
gestational ages have been selected to represent the age range in our dataset and the
results shown are the averages of all volumes tested in that gestational week. They
have all been aligned and rigidly scaled to the same coordinate set. The False Positives
and False Negatives values have been normalized to the number of volumes used in
that gestational week.

Table 3. Network results against method from [8]. Our network shows consistently
better results accross all evaluations.

Method ED [mm] HD [mm] DSC SC

Our work 1.36 ± 0.72 9.05 ± 3.56 0.94 ± 0.02 0.95 ± 0.02

Namburete et al. [8] 3.68 ± 4.44 15.12 ± 5.24 0.85 ± 0.08 0.74 ± 0.06

4.6 Comparison with Previous Method

To quantitatively compare our network to the only other brain extraction method
for fetal 3D US, the out test dataset was analysed with the method described
in Namburete et al. [8]. The same experiments were performed and the results
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Original Namb. 01 Namb. 02 Our work

Fig. 7. Comparison of our results with the method proposed by Namburete et al. [8].
Original: the three mid-planes of the original volume. Namb. 01 and Namb. 02: Proba-
bility mask generated from the 2D predictions and the ellipsoid fiting respectively [8].
Our work: The predictions obtained from our network. All columns but the first one
share the same colormap.

are shown in Table 3. Our network manages considerably better results through-
out all comparisons. This is expected, since the method propossed by Namburete
et al. [8] relies on an approximation of the brain volume as ellipsoid, which does not
accurately represent its shape. While an ellipsoid would be expected to have a high
SC, its correspondence to the probability mask results in an inaccurate alignment,
which is reflected in the low SC of 0.74, compared to our network’s 0.95. This can
be clearly seen in Fig. 7, where a comparison between the two methods is shown.

5 Discussion and Conclusion

In this work we present a method for automated brain extraction from fetal
3D US. A 3D CNN was developed and optimized to predict where the brain is
located without any need for pre- or post-processing, and its performance was
analysed over a variety of conditions usually presented in 3D US, such as the
variation in brain position, rotation, scale, as well as a variation in developmental
age and therefore internal brain structures.

Our network provided consistent results throughout all experiments, manag-
ing to accurately locate the brain to a mean ED of 1.36 mm. As a comparison,
this distance represents only 2% of the mean occipitofrontal diameter of a brain
of 22 weeks of gestation. The mean HD results of 9.05 mm is within the expected
range due to the annotation masks being created from MRI data. The mean
DSC of 0.94 shows that the predictions have a high level of overlap with the
annotations and that our network manages consistently accurate predictions,
which is also reflected on the mean SC of 0.95. The latter confirms that the
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network is not affected by the asymmetric structural information as a result of
the beam-skull interactions.

In terms of pose variation, the network shows no correlation between the
orientation of the brain and the accuracy of the prediction. The same consis-
tency was shown throughout all gestational ages with the exception of HD for
later gestational weeks (i.e.>25 weeks) and DSC for earlier gestational weeks
(i.e.<17 weeks). This is caused by two limitations of the proposed brain extrac-
tion tool: the annotation of the data being adapted from fetal MRI data, and
the earliest available gestational age for these annotations being 21 weeks (see
Sect. 3.1). The fetal MRI data (and therefore our annotations) manage to sepa-
rate the brain tissue and the cerebrospinal fluid, which is a distinction not visible
in 3D US. This inherent difference between the two imaging modalities creates
an annotation that does not accurately match our data around the edges of the
mask. This is most pronounced in the space between the occipital cortex and
the cerebellum, which becomes more pronounced as the gestational age increases,
and is therefore reflected in the increased HD over time as well as in the regional
performance analysis. The visibility of the brain stem in US is also not as good as
in MRI, causing similar results. However, the fact that our network consistently
extracts the brain including the cerebrospinal fluid is a good indication that our
network has not been overfitted. As for the earliest gestational week available for
annotations being week 21, it meant that our annotations for weeks 14–18 were
less accurate. While the network results during this period is still very good (ED
= 1.7 mm, HD = 7.14 mm, DSC = 0.92, SC = 0.95), it could be improved with
a more accurate annotation.

The results of our network are significantly better than the ones obtained
using the method proposed by Namburete et al. [8]. This was expected due
to that method using a 2D slice approach to the brain extraction predictions,
and requiring an ellipsoid approximation of the brain volume, which does not
represent the real structural characteristics of the organ.

In this work we have shown that our 3D CNN solution to fetal brain extrac-
tion from 3D US works accurately, reliably, and consistently, regardless of the
large data variation inherent in this imaging modality.
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B. W. Papież acknowledges Rutherford Fund at Health Data Research UK.
We thank INTERGROWTH-21st for access to the dataset.

References

1. Kim, M.S., Jeanty, P., Turner, C., Benoit, B.: Three-dimensional sonographic eval-
uations of embryonic brain development. J. Ultrasound Med. 27(1), 119–24 (2008)



Automated Fetal Brain Extraction from Clinical Ultrasound Volumes 163

2. Haratz, K.K., Lerman-Sagie, T.: Prenatal diagnosis of brainstem anomalies. Eur.
J. Paediatr. Neurol. 22(6), 1016–1026 (2018)

3. Namburete, A.I.L., van Kampen, R., Papageorghiou, A.T., Papież, B.W.: Multi-
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Abstract. The fetal brain undergoes extensive morphological changes
throughout pregnancy, which can be visually seen in ultrasound acquisi-
tions. We explore the use of convolutional neural networks (CNNs) for the
segmentation of multiple fetal brain structures in 3D ultrasound images.
Accurate automatic segmentation of brain structures in fetal ultrasound
images can track brain development through gestation, and can pro-
vide useful information that can help predict fetal health outcomes. We
propose a multi-task CNN to produce automatic segmentations from
atlas-generated labels of the white matter, thalamus, brainstem, and
cerebellum. The network as trained on 480 volumes produced accurate
3D segmentations on 48 test volumes, with Dice coefficient of 0.93 on
the white matter and over 0.77 on segmentations of thalamus, brainstem
and cerebellum.

1 Introduction

Fetal ultrasound scanning is a routine procedure during prenatal care, and is in
many countries part of standard obstetric care. The scans are visually inspected
to verify normal fetal development and to screen for disorders visible at specific
gestational timepoints. These scans can be used to discern anatomical struc-
tures and track brain development [1]. Cortical structures first become visible
within the fetal brain around 14 weeks of gestation and progressively develop
throughout pregnancy [1].

Most studies that have analysed brain development have relied on MR imag-
ing to perform segmentation and make quantitative measurements, due to its
higher image resolution and signal-to-noise ratio [2]. However, MRI scans are
relatively expensive and inaccessible, while ultrasound scans are a routine and
widely available modality. Ultrasound displays artifacts which are difficult to
interpret. Furthermore, due to the effects of increasing cranial ossification, the
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cerebral hemisphere proximal to the probe tends to be indistinct and it is dif-
ficult to discern structural boundaries [3], while the distal hemisphere is more
detailed.

A number of atlases have been constructed for fetal and neonatal brains using
MRI. Kuklisova-Murgasova et al. [4] generated a publicly available 4D proba-
bilistic atlas over a wider range of gestational ages (29–44 gestational weeks
(GW)) that could be used to segment specific structures within the brain; how-
ever, this atlas was constructed using images of neonatal brains born preterm,
and is therefore anatomically distinct from fetal brains. Most recently, Gholipour
et al. [5] proposed a 4D spatiotemporal atlas of the fetal brain spanning 19–39
GW, using 3D MRI scans of fetuses and producing atlas labels of tissue type
and structure.

Previous work on segmentation of fetal brain structures has proposed meth-
ods based on regression forests [6], and segmentation based on image atlases
[7]. Machine-learning techniques such as convolutional neural networks (CNNs)
can learn to distinguish important boundaries and artifacts and are increasingly
popular in the segmentation of fetal ultrasound images [8], as they can learn to
disregard some of the artifacts presented by ultrasound imaging and indepen-
dently learn important segmentation features. Ronneberger et al. have developed
the U-net [9], a CNN architecture for the segmentation of biomedical images.

We propose a machine learning-based method for automated segmentation
of multiple fetal brain structures. We implement a CNN structure based on the
U-net structure to perform multiple segmentations on 3D ultrasound volumes.
To the best of our knowledge, this is the first work that demonstrates a CNN-
based segmentation of individual fetal brain structures in 3D ultrasound. This
is also the first work to demonstrate that segmentation in ultrasound can be
achieved using a network trained exclusively on auxiliary generated labels.

2 Methods

2.1 Network Design

A 3D encoder-decoder network architecture based on the U-net architecture was
used to perform multi-task segmentation. The size of the network was limited by
memory constraints, so the top-level layer learned 16 3 ×3× 3 feature maps. To
satisfy memory constraints, the V-net architecture [10] was used. A softmax acti-
vation function was used at the output of the final convolutional layer to classify
each voxel. The output was a five-class segmentation Y ∈ R

n×Nx×Ny×Nz×5where
n is the number of volumes, and all volumes have dimensions Nx × Ny × Nz.
Segmentation maps for the thalamus, white matter, brainstem, cerebellum and
background were generated.1 Multi-label Dice coefficient, the sum of the Dice
coefficients of all classes, was used as the loss function, as this led to what visually

1 Due to the size of this network, we used a batch size of 1 volume for training.
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Fig. 1. The different network pipelines proposed. (a) The proposed 3D multi-task
architecture, based on V-net. (b) A 2D multi-task framework, based on U-net, with
QuickNAT-style merging of the different views. (c) A 3D single-task architecture, where
a different network is trained per structure.

appeared to be the best results. Multi-label Dice is given by

DSCml =
∑

i

2 (GTi ∩ Segi)
GTi + Segi

where GT and Seg are mappings of voxels corresponding to the ground truth
and generated segmentation, respectively. The other parameters for the net-
work’s training were replicated from Milletari et al.’s V-net study [10], but ReLU
activation functions were used instead of PReLU for simplicity.

The validation set was comprised of eight volumes per gestational week (for a
total of 48 volumes). The remaining 480 volumes were used for training. A sim-
ilar, single-task version of this network was also implemented for comparison.
The architecture was identical, but the final layer was given a sigmoid activation
function, similar to the original U-net architecture. Another technique which was
found to slightly improve performance further was the application of a simple
morphological operation (a 3× 3× 3 morphological closing followed by an open-
ing) to the resulting segmentation. This operation removes any small gaps from
the segmentation, and weakly enforces smoothness near the edges of the segmen-
tation. The edges are where the trained network shows the most uncertainty in
its segmentations: Fig. 3 shows that the most misclassifications occur near the
edge of the tissues of interest.

A classical 2D U-net architecture was also implemented for comparison. This
network took 2D slices as input, and output a segmentation map for each slice.
The segmentations of each slice were then stacked to obtain a full 3D semantic
segmentation. To incorporate contextual information from other views, the data
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was sliced in 3 different ways, corresponding to the 3 canonical views, in a strat-
egy similar to QuickNAT [11]. Each 2D network outputs “soft” segmentation
masks for each structure, with each voxel given a value between 0 and 1 for each
structure corresponding to the network’s confidence. Combining the output of
each network could exploit 3D information for segmentation, and therefore lead
to a better accuracy than networks trained on individual views. Each network’s
output for every voxel was averaged and a threshold was applied to obtain a
joint segmentation.

A comparison of all proposed network architectures can be seen in Fig. 1. All
training was done on an Nvidia GeForce GTX 1080 GPU. The CNN converged
to its highest Dice coefficient after 20 epochs, and after training each new volume
could be segmented in 250ms.

The data used for this study, to provide a dataset to train and test a
CNN-based solution, were from the Fetal Growth Longitudinal Study (FGLS)
of the INTERGROWTH-21st project. This was an international, multicentre,
population-based project, conducted between 2009 and 2016. In the FGLS, serial
2-dimensional (2D) and 3-dimensional (3D) fetal scans were performed every
5± 1 weeks from 14+ 0 weeks’ gestation to delivery. Women participating in
this study, who initiated antenatal care before 14 weeks’ gestation, were selected
based upon the WHO recommended criteria for optimal health, nutrition, educa-
tion and socioeconomic status needed to construct international standards [12].

The volumes used in this investigation are all of healthy fetuses between 20
and 25 weeks’ gestation. A total of 528 3D ultrasound volumes were selected
within this age range, based on a visual inspection of the anatomy and the sub-
jective visibility of brain structures of interest within each scan. This narrow
range of gestational ages is of particular interest, as women have a routine ultra-
sound scan at 20 weeks of gestation, and sulci and gyri in the cortex become
visible around this time in pregnancy [1].

All volumes were manually cropped to include just the cranium, and rotated
to a canonical reference space [13]. Each brain was centered and resampled to
a 160 × 160 × 160 volume, with the mean voxel sampled at 0.6 × 0.6 × 0.6mm.
The hemisphere distal to the ultrasound probe is always more detailed than
the proximal hemisphere due to interactions between the concave skull and the
ultrasound signal, but the acquisition protocol for this data was agnostic to
which hemisphere would be more visible.

2.2 Label Generation

Given the size of this dataset and the visual artifacts and subject-specific char-
acteristics inherent in ultrasound imaging, it is challenging and time-consuming
for human experts to manually segment this dataset. We used an atlas-based
method to generate a large amount of weak labels to compensate for this.

Gholipour et al. [5] recently proposed a 4D spatiotemporal atlas of the fetal
brain spanning 21–37 GW, using 3D MRI scans of fetuses and producing atlas
labels of tissue type and structure. This atlas can achieve segmentation quality
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comparable to human experts based on Dice coefficient [5]. This atlas was used
to generate auxiliary labels for this dataset, similar to what was done by Guha
Roy et al. [11] for the segmentation of brain structures in MRI with limited
annotations.

Labels:
brainstem 
thalamus
cerebellum
white matter

Atlas

Volume

Register Propagate

Skull labels Structural labels

(a) (b)

Fig. 2. The pipeline used to generate segmentation labels from the MRI atlas. The
skull was segmented in each volume, a similarity transform - based registration was
performed to find the correspondence, and then the structural labels were propagated.

To propagate the atlas labels to individual ultrasound volumes, a mask of the
skull was manually fitted to each ultrasound volume: since the skull is a strong
ultrasound reflector and has a predictable ellipsoidal shape, this could be done
quickly. Registration based on a similarity transform (comprising translation,
rotation and scaling) was then performed to find the transformation between
the skull mask of an age-matched atlas and the manually labeled skull in each
volume. The atlas-based segmentations of four structures, namely the thalamus,
brainstem, cerebellum, and white matter were generated in this way. These
structures were chosen because they are large and can be seen in ultrasound
acquisitions: some, such as the cerebellum, are also inspected as part of routine
clinical scans [14]. The transformation was applied to each of those structures,
using nearest-neighbor interpolation to adjust to the new coordinate system. A
schematic of the atlas-based segmentation framework can be seen in Fig. 2.

Since only the hemisphere distal to the ultrasound probe can be seen in
any detail, for structures that extend far from the midsagittal plane (the white
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matter and the thalamus) only the label distal to the probe was segmented. The
cerebellum and brainstem do cross the midsagittal plane, so the entire label was
segmented.

3 Results

Each single view was trained for 20 epochs. After this the network showed a
tendency to overfit and reduce validation accuracy.

Table 1. Segmentation performance of single-task and multi-task segmentation archi-
tectures, as measured by Dice coefficient (DSC), Euclidean distance of the centres of
mass (ED) and Hausdorff distance (HD). Across measures and brain structures, the
multi-task architecture outperforms the single-task network.

Network DSC ED (mm) HD (mm)
Thalamus

3D multi-task 0.811 ± 0.061 2.17 ± 1.35 3.80 ± 1.95
3D single-task 0.708 ± 0.070 2.82± 1.65 4.16 ± 2.39
2D 0.664 ± 0.081 2.09 ± 1.74 4.18 ± 2.87

Brainstem
3D multi-task 0.820 ± 0.081 2.09 ± 1.26 4.14 ± 1.29
3D single-task 0.723 ± 0.098 1.96 ± 1.76 5.47 ± 2.37
2D 0.716 ± 0.066 2.07 ± 1.95 4.95 ± 3.20

Cerebellum
3D multi-task 0.773 ± 0.149 2.42 ± 1.32 4.20 ± 2.39
3D single-task 0.689 ± 0.165 2.20 ± 1.72 4.42 ± 1.66
2D 0.681 ± 0.089 2.15 ± 1.96 3.78 ± 2.77

White matter
3D multi-task 0.921 ± 0.033 2.27 ± 1.46 5.93 ± 2.28
3D single-task 0.865 ± 0.036 2.32 ± 1.72 5.90 ± 2.04
2D 0.819 ± 0.040 2.23 ± 1.89 14.40 ± 8.21

Table 1 shows the improvement in performance when doing multi-task seg-
mentation compared to a single-task framework for each brain structure stud-
ied. For every brain structure, the multi-task segmentation framework performed
better, with a mean improvement in Dice coefficient improvement of more than
33% over identical network trained with the same data on single-task segmenta-
tion. This is a substantial performance improvement, likely due to the fact that
the brain structures analysed are spatially near to each other and often share
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False positives False negatives

0

20%

40%

Fig. 3. A schematic showing the position of false negatives and false positives at a
given axial slice for this data.

anatomical boundaries, meaning that the same features are useful to extract
them. A richer training label effectively increases the amount of training data
available, by providing important contextual information [15]. We expect that
with larger training datasets, this difference should therefore decrease.

It is notable that segmentation of smaller structures, such as the thalamus,
results in a significantly lower Dice coefficient than segmentation of the white
matter on the same network. This can be explained by their differing physical
characteristics: the thalamus is physically much smaller than the white matter
label. In the dataset used, the white matter typically has a volume 15 times
greater than the thalamus at 20 weeks, and 20 times greater at 24 weeks. The
Dice coefficient is therefore biased by the larger number of interior voxels that
can be predicted with high confidence, compared to voxels near the surface for
which classification is more uncertain.. On the other hand, measures such as
the Hausdorff distance are lower on smaller structures, showing that the overall
subjective segmentation quality is similar across all structures.

Some examples of the resulting segmentations can be seen in Fig. 4. Where
anatomical features are clearly visible in the ultrasound image, such as the
boundaries of the white matter near the skull, the CNN appears to improve
on the atlas-based labels: this is expected, as (beyond gestational age and skull
shape) the atlas-based labels do not take individual variation into account. On
the other hand, in regions where the ultrasound image is poor or subject to shad-
owing artifacts, such as the base of the medulla, the CNN appears to perform
worse than the atlas.

Visually, the prediction seems to be significantly smoother than the atlas-
based ground truth labels used for training, as seen in Fig. 6. This is likely due to
the roughness of the original atlas-based segmentation: since nearest-neighbour
interpolation is necessary, aliasing artifacts are likely to be introduced into the
image. The resulting learned images, while smoother, do also appear to lose some
of the detail available.
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(a)      (b)

Fig. 4. (a) the atlas-generated labels used to train the CNN. (b) the resulting predic-
tions on the same volumes (from the test set).

Fig. 5. Estimates of lengths, such as the transcerebellar diameter (TCD) derived from
our data are in general agreement with the literature [14].
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Labels:
thalamus
brainstem
cerebellum
white
matter

Ground truth Prediction

Fig. 6. Comparison of the visual appearance in 3D of the atlas-based ground truth
labels and the prediction for a volume.

It is also possible to compare the measurements we obtained to previous
results in the literature. Figure 5 shows the transcerebellar diameter (TCD),
a clinical biomarker often measured in scans [14]. Our proposed method finds
segmentations with lengths that seem to be in agreement with others that have
previously been done.

4 Conclusion

In this paper, we obtained multi-task segmentation maps of several brain struc-
tures from 3D ultrasound acquisitions, using only coarse atlas-based segmenta-
tions for training. The results show that a CNN can learn to segment these struc-
tures even from weak labels, and visually improve on the quality of the segmenta-
tion. A multi-task segmentation framework was also proposed that improves on
the performance of a similar single-task network, and we showed that a natively
3D architecture outperforms a 2D architecture. The methods developed here are
an interesting proof of concept, showing that this problem can be tackled with
the proposed approach.
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Abstract. For visual tasks like ultrasound (US) scanning, experts direct
their gaze towards regions of task-relevant information. Therefore, learn-
ing to predict the gaze of sonographers on US videos captures the spatio-
temporal patterns that are important for US scanning. The spatial dis-
tribution of gaze points on video frames can be represented through
heat maps termed saliency maps. Here, we propose a temporally bidi-
rectional model for video saliency prediction (BDS-Net), drawing inspi-
ration from modern theories of human cognition. The model consists
of a convolutional neural network (CNN) encoder followed by a bidirec-
tional gated-recurrent-unit recurrent convolutional network (GRU-RCN)
decoder. The temporal bidirectionality mimics human cognition, which
simultaneously reacts to past and predicts future sensory inputs. We
train the BDS-Net alongside spatial and temporally one-directional com-
parative models on the task of predicting saliency in videos of US abdom-
inal circumference plane detection. The BDS-Net outperforms the com-
parative models on four out of five saliency metrics. We present a qualita-
tive analysis on representative examples to explain the model’s superior
performance.

Keywords: Fetal ultrasound · Video saliency prediction · Gaze
tracking · Convolutional neural networks

1 Introduction

Recently, it has been demonstrated that sonographer gaze tracking can aid
standard plane detection in fetal ultrasound (US) imaging. Cai et al. [8] pro-
posed the SonoEyeNet model for abdominal circumference plain (ACP) detec-
tion. Recorded gaze tracking heat maps—hereafter referred to as saliency maps—
are used as attention on feature maps which are extracted with a fine-tuned
SonoNet model [4]. Next, Cai et al. [9] proposed the Multi-task SonoEyeNet.
Instead of relying on gaze data as an input, an attention module learns to predict
c© Springer Nature Switzerland AG 2020
Y. Zheng et al. (Eds.): MIUA 2019, CCIS 1065, pp. 174–186, 2020.
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saliency maps so that no gaze tracking data is required for inference. Recently,
Droste et al. [14] demonstrated that a saliency predictor trained entirely with-
out manual annotations can be transferred to perform standard plane detection
in routine clinical videos. These models perform standard plane detection and
saliency prediction on single-frames only. However, ultrasound data and human
eye movements are inherently spatio-temporal signals.

Fig. 1. BDS-Net predicted saliency
maps. The key structures are marked.
U. V. denotes umbilical vein and S. B.
stomach bubble.

In this work we aim at improving ultra-
sound saliency prediction through spatio-
temporal modeling, i.e. video saliency pre-
diction. Therefore, we aim to bridge the gap
between existing spatio-temporal models
which do not leverage gaze information, e.g.
for fetal cardiology [16,18] or US video par-
titioning [22], and models like SonoEyeNet
that do not utilize temporal information.
Chaabouni et al. [10] present an early convo-
lutional neural network (CNN) based app-
roach for video saliency prediction, adding
optical flow as an additional input chan-
nel to a single-frame CNN. Bak et al. [2]
propose to include optical flow via a two-
stream architecture [23]. Bazzani et al. [5]
achieve much larger temporal depth with a
recurrent mixture density network by aggregating feature vectors with a long
short-term memory (LSTM) model. Wang et al. [27] recently proposed a large
video saliency benchmark (DHF1K) and show that existing video saliency pre-
dictors do not outperform the best single-frame saliency predictors. In contrast,
Wang et al. achieve state-of-the-art on their benchmark with an architecture
consisting of a CNN encoder and a convolutional LSTM decoder.

The above mentioned spatio-temporal models predict the saliency map of
each video frame based on aggregated information of the previous frames. How-
ever, research in cognitive science suggests that human perception is not just
reacting to past and present stimuli. Clark [13] argues that the brain is a ‘pre-
diction machine’ that strives to minimize the prediction error between expecta-
tions versus sensory inputs. We transfer this insight to the problem of predicting
sonographer visual saliency on US videos. Since the sonographer’s expectations
about future visual stimuli are unknown, we use future video frames as a proxy
thereof, and ask the question: To what extent are future video frames predictive
for visual saliency? Song et al. [25] recently proposed a bidirectional model for
video salient object detection, which is a related application but aims at detect-
ing and segmenting the most salient object in a scene rather than predicting the
actual distribution of gaze points. Here, we propose an architecture combining
a CNN and a temporally bidirectional recurrent neural network, BDS-Net, that
predicts the visual saliency of each frame based on information of the entire
video sequence, and compare the performance of the BDS-Net to an equivalent
one-directional and a purely spatial model.



176 R. Droste et al.

Contributions. The contributions of this study are three-fold: (1) To the best
of our knowledge, this is the first study to propose a temporally bidirectional
model for video saliency prediction, both in medical imaging and in computer
vision more generally. Since the model considers the entire video sequence for
saliency prediction of each frame, this approach is fundamentally different from
previous models that only consider past and present frames. (2) We demonstrate
that it is possible to train an effective video saliency predictor with few more
than one hundred sequences, despite high inter-sequence variance. We achieve
high data-efficiency by employing effective transfer learning and regularization
techniques, and by reducing model complexity where possible, e.g. using a gated-
recurrent-unit recurrent convolutional network (GRU-RCN) instead of a convo-
lutional LSTM. (3) We demonstrate that the trained US video saliency predictor
has learned meaningful aspects of sonographers’ cognition in selecting the ACP.
Therefore, we expect the model to be beneficial as part of architectures such as
the Multi-task SonoEyeNet [9].

2 BDS-Net

The BDS-Net architecture consists of a truncated SonoNet-64 model as frame-
wise encoder, adaptation I that extracts the task-relevant features, a bidirectional
GRU-RCN to aggregate the features temporally, and adaptation II to assemble
the saliency map, followed by a softmax function (Fig. 2). In the following, we
will use the vector notation vt = [vt

0, v
t
1, ..., v

t
n]�.

Truncated SonoNet-64. The SonoNet model was recently proposed for US stan-
dard plane detection [4]. It is derived from the VGG-16 architecture [24], remov-
ing the final max-pooling and replacing the fully-connected layers with adapta-
tion layers of 1 × 1-convolutions followed by global average pooling. Also, batch
normalization [19] is added to each convolutional layer. The authors present
three model variants with different numbers of convolutional kernels and train
them on over 27 thousand US standard plane images. For this work, we use
the largest variant, SonoNet-64, which was shown to achieve the highest overall
precision. To use the model as a feature extractor, we remove the adaptation
layers since they are classification-task specific. Further, we truncate the model
by discarding the final three 3 × 3-convolutional layers to obtain lower-level fea-
tures. We use the remaining 10 convolutional layers as frame-wise encoder of the
BDS-Net. Since the SonoNet training data is substantially larger than the data
available for this work, we use the model with fixed pre-trained weights.

Bidirectional GRU-RCN. We propose a bidirectional gated-recurrent-unit recur-
rent convolutional network (GRU-RCN) as the spatio-temporal decoder of the
network. GRU networks [11] mitigate the exploding/vanishing gradient problem
of a regular RNN similarly to LSTM networks [17] by updating the hidden state
through element-wise additive and multiplicative gates instead of matrix mul-
tiplications. Compared to LSTM networks, however, they yield faster training
convergence and higher accuracy on tasks like video captioning, despite reduced
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Fig. 2. Schema of the BDS-Net architecture and training procedure. For better read-
ability, activation and normalization layers are not explicitly shown. The dashed part
of the SonoNet-64 is only used for an ablation study.

complexity and fewer learned parameters [12]. While the standard GRU oper-
ates on 1D feature vectors, the GRU-RCN [3] is a straightforward extension for
stacked 2D feature maps, replacing matrix products with convolutions. This mod-
ification vastly reduces the number of parameters compared to a fully-connected
GRU and preserves the spatial feature topology. The bidirectional GRU-RCN is
constructed from two separate GRU-RCN instances that propagate their hidden
states forwards and backwards through time, respectively.

In the forward GRU-RCN, denoted by ·�, the candidate activation ˜h�

t at
time t is computed from the feature activations aft and the previous hidden
state h�

t−1 as:

r�

t = σ(W�

r ∗ [h�

t−1|aft ] + b�

r ) (1)

˜h�

t = tanh
(

W�

h ∗ [r�

t ◦ h�

t−1 |aft ] + b�

h

)

, (2)

where r�

t is the reset gate, W�

· and b�

· are the respective convolutional filters
and biases, σ(·) is the logistic sigmoid function, ∗ is the convolution operator,
◦ denotes element-wise multiplication and [·|·] denotes concatenation along the
feature dimension. The reset gate controls the propagation of the previous hidden
state into the current hidden state. Next, the activation h�

t is computed as a
linear interpolation between the previous activation and the candidate activation,
modulated by the update gate z�

t :

z�

t = σ(W�

z ∗ [h�

t−1|aft ] + b�

z ) (3)

h�

t = (1 − z�

t ) ◦ h�

t−1 + z�

t ◦ ˜h�

t . (4)
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The backward GRU-RCN activation h�

t is computed equivalently, using the
activation h�

t+1 of time t + 1 as the previous activation. Finally, the activations
of the forward and backward RCNs are concatenated as ht = [h�

t |h�

t ].
We normalize the activations and gates throughout the GRU with layer nor-

malization [1]. We found no increase in performance by replacing the layer nor-
malization with instance normalization [26] in the GRU. Batch normalization is
not compatible since we set the batch size to one due to the high variability of
the sequence lengths. Further, we observed no improvement through dropout on
the GRU inputs [29] or variational recurrent dropout [15]. To avoid over-fitting,
the kernel size of Wr and Wz are set to size 1 × 1. Only the kernels of Wh for
computing the candidate activation are set to size 3 × 3.

Adaptations I & II. The first set of adaptation layers reduces the feature length
of the SonoNet output. Since the SonoNet features are learned on several fetal
anatomies, only a subset of the SonoNet features is likely to be relevant for
the fetal abdomen. A convolutional layer of dimension 1 × 1 × 128 × 512 (2D
kernel size × output dimension × input dimension) reduces the feature length,
followed by a layer of dimension 3 × 3 × 128 × 128 to adapt the feature maps.
Layer normalization [1] is performed after each layer. The final adaptation layer,
a single convolutional layer of dimension 1 × 1 × 1 × 128, assembles the final
saliency map.

Loss Function. At each time step t ∈ {0, 1, ..., T} and output pixel i ∈
{0, 1, ..., P}, we obtain the predicted saliency ŝti from the activations ŷt

i of the
final adaptation layer via the softmax function ŝti = eŷ

t
i (

∑P
j=0 eŷ

t
j )−1. Conse-

quently, we implicitly treat the saliency maps as generalized Bernoulli distri-
butions of fixations over the pixels of each frame [20]. We compute the loss
as the sum of the Kullback-Leibler Divergences between the predicted distribu-
tions1 and the downscaled ground truth distributions st as L =

∑T
t=0

∑P
i=0 sti ·

(log(sti) − log(ŝti)).

3 Experiments

3.1 Data

The gaze data for this study had previously been recorded based on 33 fetal US
videos, which were acquired according to a manual US sweep protocol, moving
the probe from the bottom to the top of pregnant women’s abdomen. Table 1
summarizes the data preparation procedure. (1) Discarding of irrelevant frames:
From each of the 33 full sweeps an ACP sweep was extracted by discarding the
frames which do not show the fetal abdomen. (2) ACP selection by sonographers:
Each ACP sweep was presented to eight sonographers independently with the
task of selecting the abdominal circumference plane (ACP). The sonographers
were able to scroll through the frames using a keyboard until deciding on one
1 In our implementation, for numerical stability, we compute log(ŝti) with a log-softmax

function instead of computing the softmax and logarithm sequentially.
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Table 1. Data preparation procedure.

Data preparation step Output

1) Discarding of irrelevant frames ACP sweeps

For each sweep:

2) ACP selection by sonographers ACP search
sequences

For each ACP search sequence:

3) Gaze point aggregation Gaze maps

4) Gaze map filtering Saliency maps

ACP frame. The gaze of the sonographers was recorded at 30 Hz using an eye
tracker (The EyeTribe) placed beneath the screen. In addition, the current sweep
frame was registered for each gaze point. This yielded 33 × 8 = 264 sequences
of gaze point-sweep frame pairs, which we will refer to as ACP search sequences.
The ACP search sequences represent the way the sonographers moved through
the frames to find the ACP. Therefore, they are a potentially useful approxima-
tion of freehand US video sequences where the sonographers find the ACP by
moving the probe. The sequences were manually inspected and recordings with
low-quality gaze data or miscalibration were discarded, leaving 116 sequences
for further processing. (3) Gaze point aggregation: Since we want our model to
learn the search strategy of sonographers from the first glance until the final
ACP plane decision, we want to train the model on entire ACP search sequences.
At 30 Hz, however, the sequences are too long (at least several hundred frames)
and contain high redundancy among consecutive frames. Therefore, the gaze
points were aggregated over intervals of 1000 ms at every 8th gaze sampling
time, reducing the sampling rate from 30 Hz to 3.75 Hz. Gaze points outside the
US image fan were discarded. A gaze map was computed for each aggregated set
of gaze points by setting each pixel value to its corresponding number of gaze
points. The frames were re-sampled at the same sampling times. The resulting
sequences of gaze map-sweep frame pairs are of length 13 to 147 (avg. 33.6).
(4) Gaze maps filtering: The saliency maps were computed by smoothing the
gaze maps with a Gaussian kernel. The resulting final sequences of saliency map-
sweep frame pairs are henceforth referred to as saliency sequences. The ACP
sweeps were divided into 30 sweeps for training and 3 sweeps for validation with
five-fold cross-validation.

3.2 Implementation Details

Preprocessing. The frames are preprocessed following Baumgartner et al. [4].
Data augmentation is performed by random rotation with an angle uniformly
sampled from [−25, 25] degrees and random horizontal flipping. Scale augmenta-
tion is omitted since it results in cropping of parts of the fetal abdomen. Next,
the frames are normalized to zero-mean and unit-variance, multiplied by 255 and



180 R. Droste et al.

resized to 288×224 px. For the calculation of the loss, the ground truth saliency
maps are transformed analogously and resized to 18×14 px, which is the output
dimension of the network for inputs of 288 × 224 px.

Training. The model is trained over 140 epochs via stochastic gradient descent
(SGD) with Nesterov momentum of 0.9 and initial learning rate 0.004. In accor-
dance with Keskar et al. [21], we find that SGD yields better generalization to
the validation set compared to ADAM. The learning rate is decayed by a factor
of 0.5 each time the validation loss stagnates. The batch size is one to allow for
varying sequence lengths. Sequences longer than 60 frames are truncated. The
model is regularized via weight decay of 1 ·10−6, dropout with rate 0.2 before the
second and the last adaptation layers, as well as clipping the gradients outside
the interval [−5, 5]. The z-gate bias is initialized to 1 to stabilize training by
learning the spatial features first.

Comparative Models. Two comparative models are implemented: A one-
directional GRU-RCN model and a purely spatial, single-frame model. The one-
directional model is constructed by removing the backward GRU-RCN module
from the BDS-Net. All other architectural and training parameters are identi-
cal. For the spatial model, the bidirectional GRU-RCN is simply replaced by
an additional convolutional layer of dimension 3 × 3 × 128 × 128. Moreover, the
layer normalization modules are removed and batch normalization is added to
each layer. Training is performed on batches of 16 randomly selected frames and
dropout with rate 0.5 is added to all layers. The initial learning rate is increased
to 0.01 and no weight-decay is performed. Furthermore, we perform an abla-
tion study to examine the effect of using the full SonoNet-64 (only adaptation
layers removed) or the truncated SonoNet-32 models instead of the truncated
SonoNet-64. The results are presented in Subsect. 4.3.

3.3 Evaluation Metrics

We evaluate the models on the metrics of the MIT Saliency Benchmark [7].
For this, we ported the MATLAB code published by the authors2 to Python.
We consider the fixation point (gaze map) based metrics Normalized Scanpath
Saliency (NSS) and Area Under the ROC Curve by Judd (AUC-J), as well
as the distribution (saliency map) based metrics Kullback-Leibler divergence
(KLD), Linear Correlation Coefficient (CC) and Similarity (SIM). AUC-J, KLD
and SIM are more sensitive to false negatives than to false positives, while NSS
and CC treat them symmetrically [6]. To compute the average scores on each
validation set, the scores are first averaged across time for each sequence and
then across sequences. Thus, shorter and longer sequences weigh equally in the
average. The differences between the respective cross-validated model scores are
tested for statistical significance with the Wilcoxon test.

2 https://github.com/cvzoya/saliency.

https://github.com/cvzoya/saliency
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Table 2. Cross-validation scores (mean ± standard deviation) of the BDS-Net and
the spatial and one-directional models. The best scores are marked in bold. The
superscripts ∗ and † denote an improvement with p < 0.05 over the spatial and one-
directional models, respectively.

Model NSS ↑ AUC-J ↑ KLD ↓ CC ↑ SIM ↑
Spatial 1.40 ± 0.36 0.83 ± 0.04 3.01 ± 0.37 0.26 ± 0.06 0.23 ± 0.04

One-directional 1.49 ± 0.34 0.85 ± 0.04 ∗ 2.22 ± 0.25 ∗ 0.27 ± 0.06 0.21 ± 0.03

BDS-Net 1.61 ± 0.33 ∗† 0.87 ± 0.03 ∗† 2.16 ± 0.27 ∗† 0.29 ± 0.06 ∗† 0.23 ± 0.04 †

4 Results

4.1 Quantitative Results

Table 2 shows the validation scores of the BDS-Net and comparative models.
The BDS-Net receives the best scores on all metrics except SIM. Moreover, both
spatio-temporal models perform better on average than the spatial model on all
metrics except SIM. For SIM, the BDS-Net scores better than the one-directional
model but is on par with the spatial model.

4.2 Representative Examples

Figures 1 and 3 show examples of the predictions of the BDS-Net model and the
comparative models on validation data. Since training and validation data were
divided scan-wise, the frames are entirely unseen by the networks. Moreover, the
networks are agnostic as to which sonographer is observing the scan.

Figure 1 shows input frames, ground truth saliency maps and BDS-Net pre-
dictions for three representative frames of one exemplary sequence. At frame
zero, the prediction is highly uncertain. Areas throughout the middle and the
upper boundary of the abdomen are predicted as fixation candidates. The high-
est probability is assigned to the area around the upper rib, which is not well
visible. The ground truth fixation is between the spine and the upper rib. At
frame seven, the BDS-Net assigns high saliency values to the spine and lower
values to the umbilical vein. The ground truth fixations are at the spine. At
frame nineteen, near the end of the sequence, the network assigns approximately
equal probabilities to umbilical vein and spine. The ground truth fixations are
indeed on umbilical vein and spine.

Figure 3 shows a more detailed example of BDS-Net predictions for five rep-
resentative frames of another exemplary sequence. Additionally, the predictions
of the spatial and one-directional models are shown. At frame zero, both spatio-
temporal models predict uncertain saliency maps with a spread-out peak between
spine and upper rib as denoted with (a) in the figure. The spatial model, which
does not have information about the position of the frame in the sequence, pre-
dicts saliency at the spine with high certainty. The ground truth fixations are
both at spine and the upper rib. Over the next frames, the recurrent models pre-
dict temporally smooth saliency maps with slightly varying maxima around the
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Fig. 3. Five frames from an exemplary ACP search sequence. The rows show the input
frames, the ground truth saliency annotations, and the saliency predictions of the BDS-
Net and the spatial and one-directional models, respectively. The relevant anatomical
structures are denoted in the last input frame (top right).

center of the abdomen and the spine. The maxima of the spatial model fall into
the same regions but the maps are less temporally smooth. Two key advantages
of the BDS-Net predictions are denoted with (b) and (c). At frame sixteen, in the
middle of the sequence, the sonographer fixates the center of the abdomen. The
spatial model predicts fixations around the spine and the one-directional model
predicts fixations at either the spine or the center. Only the bidirectional model,
which has information about both the previous and the subsequent frames, cor-
rectly predicts the fixation at the center and omits the spine, as denoted by (b).
On frames 24 and 32, towards the end of the search sequence, the sonographer
fixates on the spine, the center of the abdomen and the lower rib, which is not
well visible in these frames. Only the BDS-Net correctly assigns probability of
fixation to the lower rib, indicated by (c).
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Table 3. Scores for the ablation study of the feature extractor on one randomly chosen
validation set.

Feature extractor NSS ↑ AUC-J ↑ KLD ↓ CC ↑ SIM ↑
Full SonoNet-64 1.50 0.86 2.21 0.29 0.22

Truncated SonoNet-32 2.01 0.90 2.01 0.37 0.25

Truncated SonoNet-64 2.20 0.91 1.78 0.39 0.27

4.3 Ablation Study

The quantitative results for the ablation study of the feature extractor are shown
in Table 3. The ranking of the models is consistent across all five metrics: The
full SonoNet-64 with higher-level features performs least favorable, the smaller
truncated SonoNet-32 ranks second and the truncated SonoNet-64 performs best.

5 Discussion

The BDS-Net outperforms both comparative models on the AUC-J and NSS met-
rics, which are the default metrics of the MIT Saliency Benchmark [7]. Moreover,
the one-directional model outperforms or matches the score of the spatial model
on those metrics, despite the fact that training the spatial model is arguably eas-
ier for several reasons. First, gradient steps can be computed for each of the 3901
saliency maps per epoch separately. For the recurrent models, in contrast, gra-
dient steps can only be computed for the 104 sequences per epoch. Second, the
gradients are noisier for recurrent models in general. We mitigate this problem
through gradient clipping, but it is an ad-hoc solution, and it does not resolve
vanishing gradients. Finally, batch normalization is applied in the spatial model.
For the recurrent models, since we set the batch size to one to account for the
varying sequence lengths, we revert to layer normalization, which is known to
stabilize training less for most tasks [28]. The fact that the recurrent models per-
form better despite the more difficult training conditions is a strong indication
that spatial information (the current frame) alone is not sufficient to predict
US video saliency accurately. This is in accordance with the results of Wang
et al. [27] who have shown for natural videos that a recurrent architecture can
outperform sophisticated single-frame saliency predictors.

Moreover, we have shown quantitatively and qualitatively that the bidirec-
tional model performs better than the one-directional model. The added back-
wards GRU-RCN is the only difference between the two architectures, i.e. no
other layers were added or removed and the training procedures are identi-
cal. This supports our hypothesis that sonographers are implicitly predicting
future frames and focus their visual attention accordingly. Since predicting future
frames requires domain expertise, we see this approach as a step towards mod-
eling sonographer experience.

It is difficult to say how much room for improvement remains for the given
dataset. Naturally, there is a certain inter-observer variability in the ACP search
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strategies. The model can only learn to predict the saliency corresponding to
some average search strategy across all sonographers. To compute the actual
maximum saliency scores, the inter-observer congruence (IOC) would need to
be quantified. In our case, however, this is particularly difficult since each gaze
sequence corresponds to a unique frame-sequence controlled by the sonographer.
Therefore, there is no common reference frame for comparing the gaze sequences.

Nonetheless, despite the missing reference values for the quantitative evalua-
tions, the qualitative analyses have shown that the BDS-Net has learned mean-
ingful spatio-temporal patterns in the sonographers’ search strategies. The anal-
yses of Cai et al. [9] have shown that similar learned experience can significantly
improve US standard plane detection on single frames. We expect that our video
saliency predictor can further improve the performance of such models.

6 Conclusion and Outlook

We have presented a new model for predicting video saliency during ACP plane
selection. We have shown that the temporally bidirectional BDS-Net model pre-
dicts saliency more accurately than single-frame and one-directional comparative
models. The model has learned meaningful spatio-temporal patterns that attract
sonographers’ attention. Therefore, we expect the model to be beneficial for US
standard plane detection tasks. In future work we will transfer the model to a
larger dataset, which is currently being acquired. This will allow us to explore
the limits of this approach for learning sonographic experience. Furthermore, we
plan to integrate the model into architectures for US image analysis tasks such
as standard plane detection and video partitioning.
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Abstract. Noise in images presents a considerable problem, limiting
their readability and hindering the performance of post-processing and
analysis tools. In particular, optical coherence tomography angiography
(OCTA) suffers from stripe noise. In medical imaging, clinicians rely on
high quality images in order to make accurate diagnoses and plan man-
agement. Poor quality images can lead to pathology being overlooked
or undiagnosed. Image denoising is a fundamental technique that can
be developed to tackle this problem and improve performance in many
applications, yet there exists no method focused on removing stripe noise
in OCTA. Existing OCTA denoising methods do not consider the struc-
ture of stripe noise, which severely limits their potential for recovering
the image. The development of artificial intelligence (AI) have enabled
deep learning approaches to obtain impressive results and play a domi-
nant role in many areas, but require a ground truth for training, which
is difficult to obtain for this problem. In this paper, we propose a revised
U-net framework for removing the stripe noise from OCTA images, leav-
ing a clean image. With our proposed method, a ground truth is not
required for training, allowing both the stripe noise and the clean image
to be estimated, preserving more image detail without compromising
image quality. The experimental results show the impressive de-striping
performance of our method on OCTA images. We evaluate the effective-
ness of our proposed method using the peak-signal-to-noise ratio (PSNR)
and the structural similarity index measure (SSIM), achieving excellent
results as well.

Keywords: OCTA · Stripe noise removal · Image decomposition ·
Deep learning

1 Introduction

In recent years, deep convolutional networks have achieved considerable success
in image-level diagnostics in many areas of medical imaging [5,9], including oph-
thalmology [3,17]. Several deep learning (DL) algorithms have been very efficient
c© Springer Nature Switzerland AG 2020
Y. Zheng et al. (Eds.): MIUA 2019, CCIS 1065, pp. 189–197, 2020.
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in detecting clinically significant features for ophthalmic diagnosis and prognosis
of many diseases including diabetic retinopathy (DR) [6] and age related macular
degeneration (AMD) [1].

Optical Coherence Tomography (OCT) is a non-invasive imaging technique,
capable of providing tomographic images of the retina and contributing to the
clinical diagnosis of several diseases including glaucoma, AMD and DR. Partic-
ularly, OCT angiography (OCTA), which is functional extension of OCT mea-
suring motion of blood flow contrast, can provide a near-microscopic view of the
retina in-vivo with high resolution. This results in a fast imaging modality that
reveals structural detail of the retina vascular network [13]. Due to attractive
qualities and capabilities of OCTA, it is widely used in ophthalmology studies
to test for and predict DR and other diseases.

Although OCTA images provide high resolution retinal fundus information,
the images are composed of strip data, resulting is visible striped artefacts, which
hinder analysis and further processing. These strip OCTA artefacts can cause
incorrect evaluation in segmentation for both traditional and more recent DL
approaches, resulting in correct features not being detected with good accuracy
and ultimately false predictions. In order to eliminate this strip noise data from
OCTA images, with the help of Chang et al. [2], we propose a decomposition-
based loss function to separate the desired, clean OCTA image from the stripe
components.

The aim of this study is to build a model that is capable of reconstructing
OCTA images by estimating and removing strip noise by incorporating a suitable
loss function into a deep convolutional neural network. To the best of the authors’
knowledge, this paper is first study to incorporate stripe-noise removal into deep
learning framework.

With the recent improvements in deep neural networks and their excellent
results in medical imaging, we focus on developing a DL technique in this study.
The popular and widely used U-net, which is a fully convolutional network (FCN)
variant, has demonstrated state-of-the-art performance in various medical image
segmentation tasks [16], increasing sensitivity and prediction accuracy. In this
paper, we propose a revised U-net for estimating clean OCTA images from noisy
OCTA images. We estimate the strip noise within the model which enables us to
use the low rank matrix of the stripe noise as a constraint in the loss function. In
addition, the TV (total variational) norm of the estimated clean image is used
as a constraint on the image.

The main contributions of this paper: 1. We develop a stripe noise removal
framework based on U-net, introducing a new multi-outputs layer to estimate
both the clean image and the noisy image. 2. We design a loss function which
regularizes both the noise information and the predicted clean image. 3. We
introduce a novel training process that removes the need for ground truth data
which is important for applications where a ground truth is not available.

The rest of this paper is organized as follows. In the second section, we
review related work from the different aspects including image de-noising, stripe
noise removal, deep learning and loss functions. The third section introduces
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our method, and we present results with evaluation and discussion in the fourth
section before concluding this work in Sect. 5.

2 Related Work

There have been several developments in de-noising with deep learning in recent
years [10,11,21]. An adversarial and multi-scale feature extraction approach was
used to remove image noise with a three-stage training procedure, and it is
demonstrated that convolutional neural networks can be used for removing image
noise [4]. Nam et al. [14] explored a noise modelling and analysing method and
applied a cross-channel image noise method to show that the colour channels are
independent. However, the existing methods only focus on removing noise while
these noise types can be easily imitated.

Chang et al. introduced an image stripe noise removal method [2] on remote
sensing image dataset and explored both the clean image and noise image qual-
ity from image decomposition perspective. Johnson et al. [8] considered that an
input image can be transformed into an output image with training convolutional
neural networks by introducing a perceptual loss function. Their experimental
results proved that high-level features can be extracted from pre-trained net-
works by optimizing perceptual loss functions.

Zhao et al. researched the importance of perceptual loss for image restora-
tion and explored the image quality correlation between humans and algorithms.
Although the mean squared error plays a dominant role across diverse fields, it
does not correlate with human’s judgement of image quality. However, there is
still no individual loss function that can achieve impressive results across dif-
ferent problems [22]. Yair et al. applied the weighted nuclear norm values of a
whole image as a regularization term and considered the image restoration as
an optimization problem, and it can be solved by introducing a unique vari-
able splitting method and achieved leading results on deblurring and inpainting
problems [20].

Plotz et al. contributed a benchmark for real photograph denoising algo-
rithms when realistic ground truth data is lacking [15]. Generally speaking,
realistic settings limit the relevance of de-noising techniques from a scientific
evaluation perspective. Zhang et al. [21] introduced a residual deep learning
method for removing Gaussian noise of an image. The residual learning strategy
provides a certain to model different Gaussian noise level.

A fully convolutional net (FCN) has been shown to achieve impressive results
on many different tasks such as classification and segmentation [12]. Built upon
the FCN, Ronneberger et al. [16] proposed a fast neural network architecture
(U-net) for medical image segmentation. Benefiting from symmetric and skip
connections, one of the advantages of this architecture is that a large number of
feature maps can be extracted. In addition, it can predict the image pixel’s class.
Therefore, it is a favourable network in medical image processing area because
of the high-resolution nature.
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3 Method

3.1 Image Model

In this paper, we will focus on stripe noise removal in OCTA images, below is
the equation for describing the image model:

O = I + N (1)

Where O represents an original image corrupted by stripe noise, I denotes
the expected clean image without stripe noise, N is the stripe noise.

3.2 Model Architecture

The U-net, which is an extension of FCN [12], is used as the base network
because it is an encoder-decoder neural network. We revise the model for OCTA
de-striping and make it has two outputs. The advantages of our revised model
are: 1. A decoder enables the parallel computing of different features represen-
tation at pixel level without changing the original image resolution. It is very
important that all the fine-grained information of the OCTA image can be kept.
2. Multiresolution features and multilevel features (such as multiple scales and
abstraction levels) representation can be computed effectively with an encoder.
3. We introduced a multi-outputs layer and pass both the original image and
the noise image to the loss function, so there is no need to use the ground truth
for the training process.

Copy and crop
Conv 3*3
Max pool 2*2
Up-conv 2*2
Conv 1*1

Original image

Stripe noise

Clean image

Fig. 1. The framework of Deep De-striping Net. The input is a measure OCTA image
and the output is a de-noised image and a stripe noise image

Figure 1 demonstrates the framework we developed. At the final layer, we
introduce a multi-outputs layer which enables the model to output both the
de-striped image and the stripe noise image. We also use a fully convolutional
network to freely use different image sizes as input and output two images with
the same size. The estimated stripe noise can be used for exploring more accurate
stripe noise removal methods in future works.
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3.3 Loss Function

Different from previous loss functions for de-noising work, we build a loss function
with the TV norm and the low rank matrix as regularization terms.

min
I,N

{
1
2
||I + N − O||2F + τ ||I||TV + λrank (N)

}
(2)

Equation 2 defines our loss function. I is the predicted image, O is the original
image and N is the noise image.

The TV norm regularization is based on the principle of signal processing
and has been applied in noise removal issues [19]. The introduction of TV norm
has the advantage of being a close match to the desired image. There is a positive
correlation between the total variation and the integral of the absolute gradient.
The sharp boundaries of I can be preserved when minimizing the TV norm.
The low rank matrix was introduced for the stripe component with the low-rank
constraint. Therefore, the introduction of the low rank matrix and TV norm
makes the estimated image preserve important detail information.

4 Experiments and Discussion

Our experiments are implemented using Keras 2.2.4 with Tensorflow 1.12 as
backend and an Nvidia Titan XP GPU. The batch size is set as 64, the learning
rate is 10−4, τ is 0.005, λ is 0.005, epochs is 100, Adam is used as the optimizer,
MSE (mean square error) loss function is used for comparison. The results using
the method [2] are used for training our model with MSE loss function.

4.1 Dataset

We collected the OCTA images from 30 patients with 180 images (two eyes
from 13 patients). Four images per eye from SVP (superficial vascular plexus),
DVP (deep vascular plexus), AL (Avascular layer) and WR (whole retina) are
collected from The Royal Liverpool University Hospital. In this paper, we treat
each image separately for the purpose of training the deep learning models.

4.2 Results

Figure 2 shows the results of two selected examples including the original image,
ground truth (predicted image with one stripe noise removal method [2] from
the original image), predicted image with MSE loss function and our predicted
image.
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Fig. 2. Image denoising results on OCTA dataset
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4.3 Evaluation

Two well-known image quality metrics are used for evaluating the effectiveness of
our method, PSNR (peak-signal-to-noise) and SSIM (structural similarity index
measure) [7].

With using the predicted image O and the ground truth image I, the PSNR
is defined by:

PSNR(I,O) = 10log10((2552)/MSE(I,O)), (3)

where MSE is

MSE(I,O) =
1

MN

M∑
i=1

N∑
j=1

(Iij − Oij)2. (4)

The SSIM is defined by:

SSIM(I,O) = l(I,O)c(I,O)s(I,O), (5)

where l(I,O), c(I,O), s(I,O) are luminance the comparison, contrast comparison
and the structure comparison respectively [18].

Table 1. The performance in terms of image quality.

Methods (60 images) PSNR ([2] results as reference images) SSIM ([2] results as reference images)

MSE loss 33.09 0.949

Ours 33.29 0.951

4.4 Discussion

Our experimental results in Fig. 2 show our method can preserve detail infor-
mation and result in improved image quality compared with the original image.
Table 1 shows both PSNR and SSIM results calculated across 60 images. Our
method has a slightly better performance in terms of both PSNR and SSIM
compared with the MSE loss function. However, the ground truth is needed for
training with the MSE loss function while it is not necessary to use the ground
truth for our method. The introduction of the image decomposition and our
proposed deep learning framework enables us to pass both the original image
and the learned noise image to our loss function, thus the low rank matrix of
the noise and the TV norm of the predicted clean image can be used as regular-
ization terms of our loss function. The combination of our revised network and
the image decomposition model can be applied in many applications where no
ground truth is available.
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5 Conclusion

In this paper, we developed a stripe noise removal method for OCTA images
based on our revised U-net, using both the estimated clean image and noise
image structure information in constraint terms for our proposed loss function.
We compared our approach with a comparable approach using the MSE loss
function to verify the effectiveness of our loss function. The experimental results
showed that our estimated clean images preserved the image detail information.
In addition, both PSNR and SSIM have been used as the evaluation metrics to
prove our proposed method is effective in OCTA de-striping without the ground
truth during the training process. It is believed our method can be applied in
many deep learning applications where ground truth is not available.
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Abstract. Image segmentation has many important applications, par-
ticularly in medical imaging. Often medical images such as CTs have
little contrast in them, and segmentation in such cases poses a great
challenge to existing models without further user interaction. In this
paper we propose an edge enhancement method based on the theory of
reproducing kernel Hilbert spaces (RKHS) to model smooth components
of an image, while separating the edges using approximated Heaviside
functions. By modelling using this decomposition method, the approx-
imated Heaviside function is capable of picking up more details than
the usual method of using the image gradient. Further using this as an
edge detector in a segmentation model can allow us to pick up a region
of interest when low contrast between two objects is present and other
models fail.

Keywords: Image segmentation · RKHS · Heaviside function

1 Introduction

Image segmentation is a fundamental problem that has numerous applications in
various fields. Variational segmentation models broadly fall into two categories:
region based and edge based. Famous region based models include the Mumford-
Shah model [8] and the Chan-Vese model [4], the latter being a simplified version
of the former. Edge based methods aim to evolve a contour from some initial
region towards edges in an image by making use of an edge detector. The model
by Kass et al. [7] was among the first of this type, which was further developed
by Caselles et al. in the Geodesic active contours model (GAC) [3].
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Selective segmentation is a less studied subject and aims to identify a par-
ticular objects or objects of interest, and has particular important applications
in medical imaging. In order to selectively segment an object, a set of marker
points M are required from the user to indicate the object of interest. This
was used by Gout et al. [6] who introduced a distance constraint to the GAC
model, encouraging the contour to not evolve too far from the marker set. A
more popular method to achieve selective segmentation is to combine elements
from both edge based and region based models. Badshah and Chen [1] combined
the model by Gout et al. with the Chan-Vese model, encouraging the contour to
fit to the intensity of the object, as well as the edges. Rada and Chen [9] built
on the Badshah-Chen model by introducing a new term which penalises the
evolution of the contour from evolving too far away from the polygon formed
by the marker points. Then, Spencer and Chen [11] further improved on the
Rada-Chen model, incorporating the Euclidean distance as the constraint, as
well as proposing a convex version of the model. The Euclidean distance, while
achieving good results, is very parameter sensitive, and largely dependent on the
placement of the marker points.

Most recently, Roberts and Chen [10] improved on the Spencer-Chen model,
replacing the Euclidean distance with a more intuitive geodesic distance. The
geodesic distance proposed by the authors increases when an edge is detected.
This increases the robustness of marker placement and makes the parameter
selection less sensitive. This model however heavily depends on detecting on edge
detection. It is still a challenging problem when the contrast between the object
of interest and the rest of the image is low, and when there is dominant noise.
The commonly used image gradient information is not effective in detecting weak
edges and thus causes leakage in segmentation.

In this work, we present a reproducible Kernel Hilbert space (RKHS) method
to enhance certain features of an image, with the aim to make faint edges more
prominent. We then aim to utilize their boundary features to segment regions
of interest from images with low contrast.

2 RKHS

We employ methods from RKHS in order to detect weak edges where using the
image gradient may fail to detect anything significant. This is typically a problem
in images with noise and images in which seperate objects are present with little
contrast between them. We suppose we can model an image to be composed of
two parts: the smooth parts and the edges. Using our knowledge of RKHS, we
can use a basis of kernel functions to model the smooth parts of an image, while
edges can be represented by a set of Heaviside functions. In this section we will
review some key details about Reproducing kernel Hilbert spaces (RKHS), show
the kernel we use and lay out the details of the Heaviside function.

Consider an arbitrary set X, with a Hilbert space H of real functions on
X. Let F be the family of functions f : X → R. Then H is an RKHS on X
if there exists a symmetric function K : X × X → R such that: (i) for all
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x ∈ X, K ∈ H, (ii) there exists a reproducing relation f(x) = 〈f,K(·, x)〉 for all
f ∈ H. The function K is called a Kernel function if, for every distinct n points
{x1, x2, ..., xn} ⊂ X, K(xi, xj) ≥ 0, i.e. K is positive semi-definite function.
For every RKHS there is a unique reproducing kernel, and conversely for every
positive definite kernel K : X ×X → R, there is a unique RKHS on X such that
K is its reproducing kernel.

Therefore, the choice of kernel can be picked accordingly to which space
one wishes to work in. Choosing K to be polynomials of degree d: K(x,x′) =
(1+〈x,x′〉)d will correspond to a polynomial space. Whereas, if a Sobolev space is
sought, we can use K(x,x′) = 1

2e−γ|x−x′|. In addition, kernels such as K(x,x′) ∝
|x−x′|,K(x,x′) ∝ |x−x′|3 correspond to 1D piecewise linear and cubic splines
respectively.

For our case use the popular Gaussian kernel corresponding to C∞ space to
model the smooth parts, given by:

K(x,x′) =
( 1√

2πσ

)2

e− |x−x′|2
2σ2 .

Let I ∈ R
n×m be our discretised image intensity. We define the K on a

discretised version of the image domain: [0, 1] × [0, 1] with step size 1
n−1 , 1

m−1

respectively, so that K ∈ R
n×m.

Additionally, we extend the typical one dimensional approximated Heaviside
function,

ψ(t) =
1
2

+
1
π

arctan
( t

ξ

)
,

to two dimensions by considering x ∈ R
2 and the variation ψ(vi · x + ci). With

vi = (cos θi, sin θi), this two dimensional Heaviside function can describe an edge
with orientation θi at position ci. This will allow us to recover edges from an
image at different orientations. We can then consider the edge part of an image
to be modelled from a collection of these functions

g(x) =
k∑

i=1

βiψ
(
vi · x + ci

)
(1)

where θj are equally partitioned into � segments between [0, 2π). We choose
� = 24, given by

θj ∈ {0, π/12, 2π/12, ..., 23π/12},

and cj , describing the position of each edge, is taken from cj ∈
{0, 1

N−1 , 2
N−1 , ..., 1}, where N = nm is the number of pixels in our image and

k = �N . It is useful to know that 1 can be written as g = Ψβ, where Ψ ∈ R
�×k

and β ∈ R
k.
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In 2016, Deng, Guo and Huang [5] used tools from RKHS and the above
discussed Heaviside to obtain an image super-resolution model. Suppose L is a
given low resolution image and we wish to recover a higher resolution image, H.
Their model is given by the following

min
d,c,β

1
2
||L − (T ld + Klc + Ψlβ)||2 + λc′Klc + α||β||1. (2)

where the second terms ensures regularisation, the third term ensures sparsity
in the edges, and T l and Kl are matrices representing their choice of kernel and
residual respectively. The l superscript denotes that they are basis functions in
the low resolution space, and equivalent basis functions Th,Kh,Ψh are used to
find the high resolution image H = Thd + Khc + Ψhβ after recovering the three
coefficients from the model.

We use a similar model to this to recover the smooth parts and edge parts,
however since we are using the Gaussian kernel, we have two parts: Kd + Ψβ.

min
d,β

1
2
||z − (Kd + Ψβ)||2 + λd′Kd + α||β||1 + ν

∫

Ω

g(Ψβ)|∇Kd + Ψβ|dx, (3)

where g is some edge detector close to 1 away from edges (Ψβ ≈ 0) and 0 on
edges (Ψβ �= 0). This last term is the only major difference from (2), the purpose
of it is too encourage the contrast to be large on edges.

We solve the model using an ADMM method and perform the computation
of small patches of the image. By doing this, details which might otherwise go
unnoticed to the human eye when zoomed out may become enhanced.

(a) Original image. (b) Kd - Smooth part. (c) Ψβ - Edges.

Fig. 1. An example of the decomposition of an input image after using model (3).
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Figure 1 shows the two parts of an image, Fig. 1b the smooth parts, whereas
Fig. 1c is the Ψβ, representing the edges. This is of key interest as we aim to use
this in a segmentation model to improve reliability.

3 Proposed Segmentation Model Using RKHS

In this section we propose that we can use our RKHS + Heaviside representation
to achieve an improved segmentation result. In particular, since Ψβ denotes the
edges, we aim to use it in cases in where typically the image gradient is used in
order to detect edges. The image gradient is sensitive to noise and low contrast.
Particularly when both noise and regions of low contrast are present, the image
gradient struggles to detect the region of low contrast without detecting noise. It
is common to use a method of denoising when noise is present, however denoising
runs the risk of smoothing out already sensitive edges. The Ψβ term aims to
improve on this flaw of the image gradient.

We demonstrate the idea using the framework of the Roberts-Chen model
[10], but it could be applied to any segmentation model that relies on the gra-
dient. We choose to use the Roberts-Chen framework as it employs a geodesic
distance term which increases when an edge is detected. The model is given by
minimising the following energy:

min
u∈[0,1],c1,c2

∫

Ω

g(|∇z|)|∇u|dx + λ1

∫

Ω

(z − c1)2udx

+ λ2

∫

Ω

(z − c2)2(1 − u)dx + θ

∫

Ω

DG(x)udx. (4)

where g(s) = 1
1+ιs2 is an edge detector, u represents our segmentation result, c1

and c2 are the average intensity inside and outside u respectively, and DG is the
geodesic distance. The authors in [10] define the geodesic distance to be,

DG(x) =

{
0, x ∈ M

D0
G(x)

||D0
G(x)||L∞ , otherwise

(5)

where D0
G(x) is the solution of the Eikonal equation,

|∇D0
G(x)| = ε + βG|∇z(x)|2 + θGDE(x), (6)

where ε = 10−3, βG = 1000 and θG = 0.1 are fixed constants. We use a fast
sweeping method proposed by [12] to solve Eikonal equations.
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Overall, the model (4) makes use of the image gradient for edge detection in
both the g term, and the geodesic distance term, DG. We propose to replace ∇z
with Ψβ, so that our geodesic distance is now defined as follows:

|∇D0
G(x)| = ε + βG|Ψβ| + θGDE(x). (7)

In Fig. 2, we see the comparison between the geodesic distance function.
In particular, the version using the image gradient fails to penalise the region
indicated by the red arrow where there is low contrast and not much of an edge
to be detected. The geodesic distance using Ψβ shows an improvement, showing
a higher penalty to the bottom left region.

In addition to making use of the of the edge detection, we can use the repro-
duced image from the iterative model as our input in the segmentation. Let
I = Kd + Ψβ, then the segmentation model we use will be given as follows

min
u∈[0,1],c1,c2

∫

Ω

g(|Ψβ|)|∇u|dx + λ1

∫

Ω

(I − c1)2udx

+ λ2

∫

Ω

(I − c2)2(1 − u)dx + θ

∫

Ω

DG(x)udx + α

∫

Ω

νε(u)dx. (8)

where DG(x) is computed using (7) and (5).
Roberts and Chen find the associated Euler-Lagrange equations to solve their

model, using a modified AOS algorithm first introduced in [11] to solve the
resulting time dependent PDE. Instead of taking that approach, we use a primal
dual method similar to that detailed in [2].

4 Numerical Experiments

In this section we demonstrate how our Ψβ used in our segmentation model can
be an improvement over using the traditional |∇z|. We show the result of both
to show the difference in performance.

We first show a synthetic image in Fig. 3 which shows two neighbouring
ellipses with a slight edge between the two. The ellipse on the left has intensity
value of 1, whereas the one on the right has value roughly 0.95. Our aim is to
segment the ellipse on the left with the aid of a marker set placed inside, and we
can demonstrate the methods robustness to noise by artifically incrementing the
noise level. In the presence of no noise the image gradient is capable of selectively
segmenting the left circle, however as we artificially increase the noise, the image
gradient is unable to detect an edge even at 20% added noise. Figure 3 shows
results after adding 20%, 40% and 60% noise. We use a slight preprocess on these
images (such as TGV) before segmenting to just reduce the noise level slightly.
After smoothing, we find that the image gradient is unable to detect the edge in
all cases, whereas Ψβ does a good job for 20% and 40%, but begins to struggle
at 60%.



204 L. Burrows et al.

(a) Original image (b) Input M.

(c) DG calculated using ∇z. (d) DG calculated using Ψβ.

Fig. 2. Geodesic distance comparison. Clearly the unwanted region indicated by the
arrow has a higher penalty in (d) than (c). (Color figure online)
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(a) u using |∇z| (b) |Ψβ|. (c) u using |Ψβ|.

(d) u using |∇z| (e) |Ψβ|. (f) u using |Ψβ|.

(g) u using |∇z| (h) |Ψβ|. (i) u using |Ψβ|.

Fig. 3. Illustration of the new RKHS method produces robust solutions in presence of
noise. Row one: 20% noise. Row two: 40% noise. Row three: 60% noise.

Figure 4 demonstrates the advantages of using Ψβ in a segmentation model on
medical images - in particular focusing on abdominal aortic aneurysms. Obtain-
ing an accurate segmentation result is often challenging for this particular prob-
lem, as there is often very little contrast between the boundary of the blood vessel
and surrounding outside objects. Segmentation leaking is a common occurrence,
and as demonstrated in Fig. 4, Ψβ is capable of improved results in areas of low
contrast.
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(a) z (b) u using |∇z|. (c) |Ψβ|. (d) u using |Ψβ|.

(e) z (f) u using |∇z|. (g) |Ψβ|. (h) u using |Ψβ|.

(i) z (j) u using |∇z|. (k) |Ψβ|. (l) u using |Ψβ|.

Fig. 4. Examples of low contrast segmentation of abdominal aortic aneurysms. Clearly
segmentation using Ψβ yields a better result.

5 Conclusion

Enhancing image edges is important in medical imaging. In this paper we have
presented an alternative method to using the image gradient is a way of detecting
edges in segmentation models. We have demonstrated this is particularly effec-
tive in images were low contrast is present between objects. The method involves
running a pre-process in order to recover the edge part, Ψβ, from an image, and
then replacing it with the image gradient in a segmentation model. Future work
could be extended to more models than just the Roberts-Chen model discussed,
as this work could easily be generalised into other models where the image gra-
dient is commonly used by simply replacing it with Ψβ.
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Abstract. Time-resolved imaging becomes popular in radiotherapy in
that it significantly reduces blurring artifacts in volumetric images recon-
structed from a set of 2D X-ray projection data. We aim at developing
a neural network (NN) based machine learning algorithm that allows for
reconstructing an instantaneous image from a single projection. In our
approach, each volumetric image is represented as a deformation of a
chosen reference image, in which the deformation is modeled as a linear
combination of a few basis functions through principal component analy-
sis (PCA). Based on this PCA deformation model, we train an ensemble
of neural networks to find a mapping from a projection image to PCA
coefficients. For image reconstruction, we apply the learned mapping on
an instantaneous projection image to obtain the PCA coefficients, thus
getting a deformation. Then, a volumetric image can be reconstructed
by applying the deformation on the reference image. Experimentally, we
show promising results on a set of simulated data.

Keywords: Time-resolved volumetric imaging · X-ray projection ·
Principal component analysis · Neural network

1 Introduction

Radiation therapy or radiotherapy is a type of cancer treatment that uses high-
energy beams to destroy cancerous cells. Before the treatment, computerized
tomography (CT) scans are taken to obtain anatomical images of a cancer patient
so that physicians can determine how to deliver radiation beams to target at cer-
tain area. This preparatory process is called treatment planning and CT is often
referred to as planning CT (pCT). Afterwards, the patient typically receives
radiation sessions every day over several weeks. For each session, cone beam CT
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(CBCT) scans are taken for the purpose of positioning the patient in the same
way that the pCT is taken in order to match the treatment plan.

Both CT and CBCT aim to reconstruct a volumetric image based on a finite
number of X-ray projection images. Although the image quality of CBCT is much
worse than that of CT, it results in less radiation dose to patients so that it can
be used on a daily basis. One challenging problem for CT/CBCT is respiratory
movements that introduce blurring artifacts in the reconstructed images, greatly
reducing the accuracy of radiation treatments. In fact, respiratory motion has
been a critical issue in lung and abdomen radiotherapy [6].

A typical approach to mitigate motion blur is called phase binning [1]. In
particular, a breathing signal is captured during the CT/CBCT scan in order
to group the projection data into different breathing phases. Then these pro-
jection data are used to reconstruct one CT/CBCT image at each phase using
some standard reconstruction algorithms such as Feldkamp, Davis, and Kress
(FDK) [3]. Since the phase binning process involves temporal direction of a
fourth dimension as opposed to 3D volume, the approach is often referred to as
4D-CT [11] and 4D-CBCT [14]. It is true that 4D-CT/4D-CBCT significantly
reduces the motion blur, but the image quality is largely degraded by streaking
artifacts due to an insufficient number of projections at each phase.

We aim at developing a machine learning algorithm for 4D-CBCT reconstruc-
tion from the corresponding projection image, which is so called as instantaneous
image reconstruction [2,20]. We want to emphasize how difficult this problem
is, as the current 4D-CBCT approach is using a number of projection images,
while we only use one. We consider a dimension reduction technique via principal
component analysis (PCA) [8,9]. Since breathing is roughly periodic, it is rea-
sonable to assume that movements or deformations between phases have similar
structures. Specifically, we represent each volumetric images as a deformation of
a chosen reference image. It was reported in [9,21] that three principal compo-
nents capture the majority of the respiratory motion. As a result, we can model
the lung motion as a linear combination of three basis deformations, which suc-
cessfully reduces a high dimension of volumetric images down to three. Then we
consider to train an ensemble of neural networks (NNs) [5,7] to find a mapping
from a projection image to PCA coefficients. When it comes to image recon-
struction, we can obtain a volumetric image by applying the mapping on an
instantaneous projection image.

Our contributions are three-fold. First, we successfully adapt the NN app-
roach for CBCT image reconstruction from a single X-ray projection. Second, we
propose a data augmentation technique that does not require a lot of real-patient
data. Lastly, the proposed workflow is efficient enough to run on a personal lap-
top. This work also bears some clinical significance. On one hand, we offer a
solution to reconstruct the volumetric image in almost real-time, which facilities
other 4D treatment tasks such as tumor tracking. On the other hand, this pro-
posed approach has the potential to adjust the treatment plan according to the
in-treatment imaging, which may lead a better practice in radiotherapy.
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The rest of the paper is organized as follows. As preliminaries, we provide the
clinical feasibility for the proposed work, together with a brief review on PCA
model and neural network in Sect. 2. We then detail the proposed approach in
Sect. 3 including data augmentation, network structures, and training/testing
workflow. The experiments on simulated data are conducted in Sect. 4. Finally,
conclusions are given in Sect. 5.

2 Preliminaries

2.1 Clinical Feasibility

With the aforementioned clinical routine in radiotherapy, we have a set of 4D-
CT images (pCT) available at the time of treatment planning, from which we
can build an NN model for this specific patient. The training process includes
data augmentation and training an ensemble of neural networks. During the
treatment, the model is instantaneously applied to acquired CBCT projection
image in order to obtain a volumetric image. Since pCT and CBCT are taken
for the same patient, it is reasonable to assume that the lung motion model is
consistent at training and testing stages. Once the NN model is learned, image
reconstruction (the testing stage) can be realized in almost real-time.

2.2 PCA Deformation Model

Suppose there are N phases of volumetric images in one breath cycle, which
can be obtained by applying 4D-CT reconstruction technique on a set of pCT
images. One selects one image as a reference image and performs deformable
image registration (DIR) between this reference image and the other images, thus
leading to a set of deformation vector fields (DVFs). Specifically for a reference
image R(x) and a target image T (x), the goal of DIR is to find a deformation
vector field, denoted as u(x), that satisfies T (x) = R(x + u(x)),∀x ∈ Ω where
Ω is the image domain. Among a variety of DIR algorithms (refer to a recent
survey of [15]), we use Demon’s algorithm [4,17] for its popularity and efficiency.

By putting all the DVFs together, we obtain a matrix, denoted as X ∈
R|Ω|×(N−1), where each column represents the entire DVF for a corresponding
phase. Following the convention, we center the DVFs by subtracting the mean
and perform principal component analysis (PCA), thus leading to

X = x̄ +
N−1∑

k=1

ckuk, (1)

where x̄ is the mean of X, {uk} is a set of eigenvectors, and {ck} is a set of
coefficients. Due to nearly periodic motion of the lungs, it is reasonable to assume
that the DVF can be well approximated by only a few eigenvectors/coefficients
from the PCA. In fact, it was reported in [9,21] that three largest eigenvectors
are sufficient to describe the lung motion. Therefore, we assume that any DVF
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can be approximated as a weighted sum of three PCA components. We consider
neural network to estimate the PCA coefficient, while similar works using the
PCA model include 2D/3D registration approach [16] and sparse learning [20].

2.3 Neural Networks

Neural Networks (NN) [5] are information processing paradigms that are built to
simulate the way brain nerves process information. Just like human brains, the
more information one provides to the NN, the more the brain will “learn”. As a
result, once new information is passed to the NN, it will process the information
based on what it already “learned”. Mathematically speaking, the NN acts like
a black box that takes the input data I and outputs the information O. In
other words, NN aims to learn a mapping such that O = f(I) using training
pair of {Ij , Oj}. There are two challenges in this learning process. One is the
requirement of large training data. On the other hand, the function is generally
nonlinear and complex. Nowadays, deep learning allows a flexible representation
of this nonlinear mapping f using neural networks with several layers, so called
as deep neural network (DNN) [7]. In the context of CBCT reconstruction, Ma
et al. [10] considered a multilayered neural network, while Wei et al. adopted a
convolutional neural network (CNN) [19].

3 Our Method

The PCA deformation model successfully reduces a large dimension of the image
to be reconstructed to only three coefficients. The goal of this work is to find a
mapping from a projection image together with an angle where the projection is
taken to produce three coefficients. Once we have the coefficients, we can obtain
the corresponding DVF based on the PCA model (1) and hence a new volumetric
image by applying the DVF on the reference image. For this purpose, our method
consists of two stages: training and testing. We will detail the training stage in
Sect. 3.1, followed by the testing stage and overall procedure summarized in
Sect. 3.2.

3.1 Training

Since we only have limited volumetric images available (N ∼ 10 from pCT),
we need to generate training data on our own to learn the neural network. We
elaborate on how to generate training data and how to train an ensemble of
neural networks as follows.

Data Augmentation. From N phases of volumetric images in one breathing
cycle, we select one image as reference and obtain three eigenvectors correspond-
ing to the largest eigenvalues, as described in Sect. 2.2. We randomly generate
a set of 3 coefficients that are deviated from corresponding principal coefficients
with standard deviation proportional to their magnitudes. For each set of 3
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Fig. 1. An ensemble of neural networks, each is learned for a 32×32 patch of the X-ray
projection. The structure of NN is given in Fig. 2.

Fig. 2. The structure of a single neural network.

coefficients, we can obtain a DVF using the weighted sum of the principal com-
ponents, which leads to a volumetric image by applying the DVF to the reference
image. Finally, we simulate an X-ray projection corresponding to this volumet-
ric image with a randomly chosen angle by using Siddon’s ray tracing algorithm
[13]. To summarize, the combination of X-ray projection, projection angle, and
3 coefficients form one training example. This process is repeated to generate as
many training examples as we want. The goal for training is to find a mapping
from X-ray projection and projection angle to the three coefficients.

Neural Networks. We adopt a projection partitioning technique used in [20]
that considered a small patch of the projected data, which was found to be more
efficiently (smaller dimension) and more effectively (avoid overfitting) than using
the entire X-ray projection. In addition, we find empirically that patches of 32
by 32 pixels offer a good trade-off between information retrieval and compu-
tation time. Therefore, we divide the projection into a set of 32 × 32 patches
and train a neural network for each patch. As a preprocessing step, a patch is
normalized when the standard deviation σ and mean x̄ are computed. A nor-
malized patch along with σ, x̄, and the angle θ of the projection is passed into
the network, which outputs a set of three coefficients. Since we have a number of
such patches, we obtain an ensemble of neural networks. We take the median of
these coefficients to compute the DVF and hence obtain the volumetric image.
The workflow of the ensemble is depicted in Figure 1.
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Fig. 3. The flowchart of the proposed approach.

For the network structure, we do not consider the classic convolutional neural
network (CNN)1 [7,19]. Instead, we consider full connected (FC) layer together
with a rectified linear unit (ReLu). Specifically for FC, each unit of the previous
hidden layer is connected to every unit in next hidden layer, while ReLu is a
threshold operation to set any input value that is less than zero to be zero. Each
neural network has six FC layers of sizes 500, 250, 100, 50, 25, and 10, each
followed by ReLu as activation functions. The output layer has three outputs;
one for each principal component. The networks are trained using batch gradient
descent with momentum and L2 regularization. Please refer to Fig. 2 for the
network structure and MatConvNet [18] for implementation details.

3.2 Testing

For testing, we have an X-ray projection image together with an angle where it is
taken. To be consistent with training, we decompose the projection image into a
set of 32×32 patches. After the same preprocessing, each patch together with the
angle is passed through the learned NN to yield three PCA coefficients. Using the
predicted coefficients, we reconstruct the deformation vector field and apply it
to the reference image to get the reconstructed volumetric image. Figure 3 sum-
marizes the overall workflow of the proposed approach including both training
and testing stages.

4 Experiment

4.1 Simulated Data Sets

We test our algorithm on a set of simulated data using a non-uniform rational
B-spline (NURBS) based cardiactorso (NCAT) phanton [12]. Specifically in this
work, we consider two breathing parameters: amplitude (diaphragm motion: 1 cm
1 The projected image does not contain structural information, so CNN does not work

very well.
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Table 1. The RRE values with different training (column) and testing (row) pairs.

D1RP3 D1RP5 D3RP3 D3RP5

D1RP3 5.79 4.98 13.90 13.44

D1RP5 6.04 5.18 14.09 13.63

D3RP3 12.31 12.37 7.77 7.02

D3RP5 12.11 12.15 7.61 6.82

and 3 cm) and respiratory period (3 s and 5 s). We denote the data set generated
with diaphragm motion of 1 cm and respiratory period of 3 s as D1RP3; similarly
we have D1RP5, D3RP3, and D3RP5. For each dataset, we generate 300 dynamic
phantoms of size 256 × 256 × 100 and corresponding cone beam projections
using the Siddon’s algorithm [13] from angles that are uniformly distributed
over the angles of 0 to 180 degrees. Each projection image is of size 384 × 256
corresponding to a physical size of 40×30 cm2. We use 10 volumetric images from
the first period for training and test on the rest 290 images. We can also make two
different datasets for training and testing. For example, D1RP3-D3RP5 refers
to the case of using D1RP3 to train and testing on D3RP5.

)81.5(5PR1D)97.5(3PR1D

)28.6(5PR3D)77.7(3PR3D

Fig. 4. Histograms of relative reconstruction errors. In each case, mean value is
recorded in the parenthesis.
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Fig. 5. Relative error of each image. The solid line marks the mean value and ten
images used for training are denoted by ∗.

D1RP5-D3RP5 D3RP3-D1RP3

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

D1RP5-D3RP3 D3RP3-D1RP5

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

20

Fig. 6. Relative error of each image. The solid line marks the mean value and ten
images used for training are denoted by ∗.
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All the experiments are performed under Macintosh (OS X El Capitan)
and MATLAB R2017b running on a Macbook Pro laptop (2.6 GHz Intel(R)
Core(TM) i5). On average, it takes 1 s to generate one training image based on
our data augmentation technique. We consider 5000 images in total, which is
about 83 min. For training the neural networks, it takes approximately 1 h with
50 iterations (epochs). Finally it takes about 0.77 s to test on a single projection
image, which achieves real-time processing on a personal laptop.

To quantify the error, we adopt the relative reconstruction error (RRE),
defined as

RRE(I, J) =
‖I − J‖2

‖I‖2 ,

where I is the ground-truth (volumetric) image and J is the reconstructed image
from our approach. We first present the cases when the training and testing are
the same dataset. In Fig. 4, we plot four histograms of RRE, each corresponding
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Fig. 7. Image reconstruction results of D1RP3-D1RP3.
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Fig. 8. Image reconstruction results of D3PR5-D1PR3.

to one dataset (training on ten images and testing on the rest 290). Figure 4
reveals that D1PR5 gives the smallest RRE and D3PR3 results in the highest.
It is reasonable as quicker respiratory period and larger diaphragm motions tend
to produce more motion artifacts, thus difficult to predict.

In Table 1, we provide RRE values with all the combinations of training and
testing datasets. It shows that respiration period does not affect too much of the
performance. In other word, if we can train on a relatively good level of diagram
motion, our approach can be generalized to deal with different breathing periods.

In Figs. 5 and 6, we examine carefully the RRE values of each image in several
datasets. Both Figs. 5 and 6 show a rough periodic pattern with error getting big-
ger when the images is away from the training period. We include the ten images
used for training in Figs. 5 and 6, which follows the periodic pattern.
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5 Conclusion

With a PCA-based lung motion model, we developed an ensemble of neural
networks to reconstruct time-resolved volumetric CBCT images. The proposed
method gave reasonable reconstruction error and can be generalized to the case
when the testing setting is slightly different to training. Furthermore, we can
achieve real-time processing of CBCT reconstruction using one single projection
image on a personal laptop. The performance on real data will be explored in
the future.
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Abstract. Mammography is an X-ray image of the breast which has been widely
used for the management of breast cancer. However, in many cases, it is not easy
to identify a sign of cancer as tumour or malignancy due to clouding various
noise patterns caused by the low dose radiation from the X-ray machine. Mam-
mogram denoising is an important process to improve the visual quality of mam-
mogram to help the radiologist’s diagnosis when they screening mammogram.
This paper introduces denoising deep vectorization convolutional neural networks
using an enhanced image from direct contrast in a wavelet domain for training.
Then, Denoised mammogram is obtained from mapping between the original and
enhanced image. Mammogram image from the mini-MIAS database of mammo-
grams was used in this experiment. The experimental results demonstrate that the
proposed method can effectively suppress various noises in mammogram both
qualitative and subjective test by comparison to traditional denoising methods.

Keywords: Mammography · Deep vectorization convolutional neural
networks · Enhanced image ·Wavelet domain

1 Introduction

Breast cancer is the most common cancer in the world. It was estimated that there were
more than 522,000 deaths from breast cancer in 2012 [1] because the patient was diag-
nosed in the very late stages. At present, mammography screening is the most effective
tool in the early detection stage. However, the misdiagnosis rate is approximately 20%
[2] because mammograms from a low dose X-ray machine are corrupted by noise that
makes their interpretation very difficult. Thus, ways to achieve robust reductions of
noise in mammography has become a very important issue to improve the rate of correct
diagnosis and decrease the breast cancer mortality rate.

Digital image processing has been widely used to improve the visual quality of
images, and over the past decades, several denoising methods have been developed to
reduce noise in mammograms. To adapt discrete scales to fit the size of the abnormal
area, such as the size of micro-calcifications, Heinlein et al. [3] introduced an integrated
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wavelet based on filter banks derived from continuous wavelet transformation, which
has more flexibility to detect breast cancer. Mencattini et al. [4] developed a discrete
dyadic wavelet transform to reduce variable noise estimated by a local iterative fuzzy
method using adaptive thresholding. Elsherif et al. [5] introduced a wavelet packet to
remove noise and enhance contrast inmammograms, but the effectiveness of this method
depends on enhancement parameters.Matsuyama et al. [6]modifiedwavelet coefficients
to remove noise inmammograms using hierarchical correlation based on an undecimated
wavelet transform. This method is very simple, fast, and provides better visual quality
compared to conventional undecimated wavelet transforms [7].

Some work has investigated noise suppression in natural images. Buades et al. [8]
proposed a nonlocal means algorithm to preserve the structure in a digital image based
on analysis of the noise model that is defined by the difference between a digital image
and its denoised version. In this method, the visual quality of the image depends on filter-
ing parameters. Dabov et al. [9] proposed principal component analysis (PCA) as part of
a 3D transform that applied a shape adaptive transform to the input image. Their experi-
mental results showed that this denoising method can preserve the detail of the image,
but introduces some artifacts. Ender [10] developed block-matching and 3D filtering
(BM3D) for Magnetic Resonance Imaging (MRI). The performance of this method is
superior to traditionalBM3Dmodel.Gu et al. [11] proposedweightednuclear normmini-
mization (WNNM) for image denoising by exploiting the image nonlocal self-similarity.
The experimental results superior than state of the art denoising method both quantita-
tive measure and visual perception quality. Luisier et al. [12] introduced a new Stein’s
unbiased risk estimator (SURE) by minimizing an estimate of the mean square error
between a noisy and clean image. This approach illustrated better denoising performance
in peak signal-to-noise ratio (PSNR) compared to the BayerShrink [13] and Bayesian
least squares-Gaussian scale mixture (BLS-GSM) [14] methods. Blu et al. [15] mod-
ified the SURE method by adding a linear combination of the primary denoising pro-
cess referred to as a linear expansion of thresholds (LET). The results suggested that the
SURE-LET scheme led to improved images. Matsuyama et al. [16] proposed a SURE-
LET image denoisingmethodwith directional lapped orthogonal transforms (DirLOTS),
which differs from the SURE-LETmethod, and was used in [9] by adapting hierarchical
tree construction of directional lapped orthogonal transforms as a shrinkage function in
a wavelet transform to overcome the geometric problem in the SURE-LET method.

In addition, many researchers have investigated improvements to median filtering
in denoising files. Wang et al. [17] presented the local statistical characteristics based
on median filtering to remove noise. This method can be used to preserve edges in an
image. Bhateja et al. [18] proposed a non- iterative adaptive median filter in which the
experimental results were successful in suppressing impulses of high intensity noise.Wu
et al. [19] improved the median filter by adding a filter function, which demonstrated
gooddetail after filtering. Zhang et al. [20]modified themedianfilter further by designing
comfortable direction templates to remove noise in ultrasound images. The advantage
of this method is that it preserves edges and provides significant detail.

Recently, deep learning networks have become a role model to reduce noise in
images. Burger et al. [21, 22] proposed multi layer perception (MLPs) for image denois-
ing. The efficiency of MLPs depends on its architecture and the number of training
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examples. Jain and Seung [23] denoised a natural image successfully using convolutional
neural networks (CNNs). This method demonstrated higher performance compared to
the wavelet andMarkov random field (MRF) methods. Xie et al. [24] introduced stacked
sparse autoencoders that combine sparse coding and deep networks pre-trained with a
denoising auto-encoder (DA). This method delivered performance comparable to the K-
SVD algorithm. Agostinelli et al. [25] demonstrated a state of the art denoising method
that uses adaptive multi column deep learning networks. This can reduce a variety of
different noise types. Gondara [26] developed convolutional denoising autoencoders
(CDA) for medical images. The denoising performance of this method produced high
quality in objective tests such as structural similarity index (SSIM) but in subjective tests,
the denoising quality decreased when the noise level increased. Ren et al. [27] proposed
vectorization convolutional neural network (VCNN) to improve visuality of the image.
The experimental results save time computing and can be applied to a different platform.

However, in the real world, noise in mammogram come from various sources such
as quality of X-ray machine, the experience of user, even physical of breast. Then,
exist denoising deep neural networks using noise model not suitable for ground truth
mammogram. To overcome the limitations of prior work, denoising deep vectorization
convolutional neural networks using enhanced image is proposed to robust noise in
mammogram. Denoising neural networks can be estimate various noise from enhanced
image. Noise free image is obtained by mapping enhanced image and original image.
This scheme can decrease specific noise types in mammogram effectively.

The rest of this paper is organized as follows: Section II discusses several exist-
ing denoising methods that are to be compared with the proposed method. Section III
describes the proposed method. Section IV presents the experimental results of the
denoising method compared to state of the art methods, such as, BM3D-MRI, WNNM
and VCNN, followed by conclusion in Section V.

2 Background

This section briefly describes state of the art denoising method such as block- matching
and 3D filtering (BM3D) [10], weighted nuclear normminimization (WNNM) [11], and
vectorization convolutional neural network (VCNN) [27].

• Block-matching and 3D filtering (BM3D) [10]

The strategy of BM3D based on an image has a locally sparse representation in
transform domain. The enhancement of the image is achieved by is grouping similar 2D
image patches into 3D groups. Where, collaborative filtering is developed to decrease
noise in 3D image groups.

• Weighted nuclear norm minimization (WNNM) [11]

The weighted nuclear norm is proposed to improve the flexibility of nuclear norm
and study its minimization. This method is used to image denoising.

• Vectorization convolutional neural network (VCNN) [27]

The VCNN uses vectorized forms to replace convolution operators in deep CNNs
which decreases time consuming on training and testing network. The VCNN can be
apply in many image processing fields such as recognition, detection, denoise and image
deconvolution.
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3 The Proposed Method

Figure 1 illustrates the flowchart of proposed method for suppress noise in mammogram
which consist of 5 steps are described as follows.

Mammogram 
data set 

Enhanced 
image

Denoised 
mammogram

Enhanced 
mammogram

Train denoising networks

Denoising vectorization 
convolutional neural networks

Wavelet transform

Direct contrast enhancement 

Inverse wavelet transform

Fig. 1. The proposed method workflow
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• The original mammogram is first cropped to 512 × 512 pixels and decomposed with
4-level Daubechies-4 discrete wavelet transform.

• Direct contrast technique is used to enhance contrast in original mammogram by
multiplying the constant value (k) to all detail subbands in wavelet domain.

Dn
l,global(x, y) = k · Dn

l,original(x, y) (1)

• The enhanced image is obtained from inverse wavelet transform. Then, all detail
features in mammogram are boosted including noise.

• The enhanced mammogram is used to train in a training data set using VCNN model
[27]. The training network contains 3 vectorization convolutional layers, followed by
a ReLU layer for each convolution layer except the last one as shown in Fig. 2. The
training network parameters as patch dimension is 64 and learning rate is 0.01.
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N
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Fig. 2. The architecture of VCNN networks

• After training, denoised mammogram is obtained from mapping enhanced image to
original mammogram image.

4 Experimental Results

4.1 Data

Mammogram images used in this experiment are provided by the mini-MIAS database
of mammograms that contains 322 images [28]. 161 images are randomly selected for
training data and 161 images for test data, repectively. Both training and test data sets
are cropped from 1024 × 1024 to 512 × 512 pixels size.

4.2 Experimental Results

State of the art denoising method such as BM3D-MRI, WNNM and VCNN are selected
to comparison with the proposed method which code programs are online available. To
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evaluate the performance of the proposedmethod, peak signal-to-noise ratio (PSNR)was
used to measure the quality of the resulting image compared to well-known denoising
algorithms.

Figure 3 shows an example denosing result obtained from various denosing methods
compared to the original. It can be seen that BM3D-MRI, WNNM and VCNN can not
preserve edges and significant detail as shown in the red square on the bottom left.
In comparison, the denoising result obtained from the proposed method showed more
higher visual quality among other methods.

                  (a) Original                                         b) Noisy                                  (c) BM3D-MRI  

            (d) WNNM                                           (e) VCNN                             (f) The proposed method

Fig. 3. Denoising results (a) Original, (b) Noisy, (c) BM3D-MRI, (d) WNNM, (e) VCNN (f) The
proposed method

Table 1 demonstrates that the performance of denoising by comparing with PSNR
of BM3D-MRI, WNNM, VCNN and the proposed method. The average PSNR of the
proposed method is higher than the other methods. This clearifies that various noises in
mammogram are effectively suppressed.

Table 1. Comparison of average PSNR results in different denoising methods.

NOISY BM3D-MRI WNNM VCNN The proposed
method

PSNR (dB) 20.17 23.01 33.17 34.11 42.39
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5 Conclusion

Image denoising has been important to improve visual quality of an image. Especially,
medical image such as mammogram that widely used to diagnose breast cancer in the
early detection stage.

In this study, a denoising deep vectorization convolutional neural networks using
enhanced image replace synthetic noisy image. This strategy breakdown the limitation
existing denoising deep neural networks that suitable for noise model has been train in
training data set.

The experimental results illustrated that the proposedmethod can be remove complex
noise patterns and improved significant detailed features inmammograms, such asmicro-
calcification and malignant tissue. The advantages of this method can help radiologists
diagnose breast cancer more accurately during screening mammograms.

Acknowledgments. This research was funded by the Rajamangala University of Technology
Isan, Surin Campus.

References

1. WHO Homepage. http://www.who.int/cancer/detection/breastcancer/en/index1.html.
Accessed 27 June 2018

2. Diagnosisdelayed Homepage. http://www.diagnosisdelayed.com/breast-cancer-
misdiagnosis,. Accessed 27 June 2018

3. Heinlein, P., Drexl, J., Schneider, W.: Integrated wavelets for enhancement of micro
calcifications in digital mammography. IEEE Trans. Med. Imaging 22(3), 402–413 (2003)

4. Mencattini, A., Rabottino, G., Salmeri,M., Sciunzi, B., Lojacono, R.: Denoising and enhance-
ment ofmammmographic images under the assumption of heteroscedastic additive noise by an
optimal subband thresholding. Int. J. Wavelets Multiresolut. Inf. Process. 8, 713–741 (2010)

5. Elsherif,M.S., Elsayad,A.:Wavelet packet denoising formammogram enhancement. Circuits
Syst. 1, 180–183 (2001)

6. Matsuyama, E., Tsai, D.Y., Lee, Y., Tsurumaki, M.: Amodified undecimated discrete wavelet
transform based approach to mammographic image denoising. J. Digit. Imaging 26, 748–758
(2013)

7. Starck, J.L., Fadili, J., Murtagh, F.: The undecimated wavelet decomposition and its
reconstruction. IEEE Trans. Image Process. 16(2), 297–309 (2007)

8. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one.
Multiscale Model. Simul. 4, 490–530 (2005)

9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-
domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

10. Eksioglu, E.M.: Decoupled algorithm for MRI reconstruction using nonlocal block matching
model: BM3D-MRI. J. Math. Imaging Vis. 56, 430–440 (2016)

11. Gu, S., Zhang, L., Zuo, W., Feng, X.: Weighted nuclear norm minimization with application
to image denoising. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2862–2869 (2014)

12. Luisier, F., Blu, T., Unser, M.: A new SURE approach to image denoising: interscale
orthonormal wavelet thresholding. IEEE Trans. Image Process. 16, 593–606 (2007)

http://www.who.int/cancer/detection/breastcancer/en/index1.html
http://www.diagnosisdelayed.com/breast-cancer-misdiagnosis


Deep Vectorization Convolutional Neural Networks for Denoising in Mammogram 227

13. Chang, S.G., Yu, B., Vetterli, M.: Adaptive wavelet thresholding for image denoising and
compression. IEEE Trans. Image Process. 9, 1532–1546 (2000)

14. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mix-
tures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12, 1338–1351
(2003)

15. Blu, T., Luisier, F.: The SURE-LET approach to image denoising. IEEETrans. Image Process.
16, 2778–2786 (2007)

16. Matsuyama, E.: SURE-LET image denoising with directional LOTS. In: Picture Coding
Symposium, pp. 232–239 (2012)

17. Wang, J.,Wang,Y., Li, Y., Liu, J.: Improvedmedian filtering denoising algorithm and analysis.
In: International Conference on Information Science and Control Engineering (IET) (2012)

18. Bhateja, V., Rastogi, K., Verma, A., Malhotra, C.: A non-iterative adaptive median filter for
image denoising. In: International Conference on Signal Processing and Integrated Networks
(SPIN), pp. 113–118 (2014)

19. Wu, S., Chen, H., Xu, X., Long, H., Jiang, W., Xu, D.: An improved median filter algo-
rithm based on VC in image denoising. In: 10th International Conference on Computational
Intelligence and Security (CIS), pp. 193–196 (2014)

20. Zhang, X., Cheng, S., Ding, H., Wu, H., Gong, N., Cheng, R.: Ultrasound medical image
denoising based on multi-direction median filter. In: 8th International Conference on
Information Technology in Medicine and Education (ITME), pp. 835–839 (2016)

21. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising with multi-layer perceptrons,
part 1: comparison with existing algorithms and with bounds. arXiv:1211.1544 (2012)

22. Burger, H.C., Schuler, C.J., Harmeling, S.: Image denoising with multi-layer perceptrons,
part 2: training trade-offs and analysis of their mechanisms. arXiv:1211.1552. (2012)

23. Jain,V., Seung, S.:Natural image denoisingwith convolutional networks. In:AdvancesNeural
Information Processing Systems, pp. 769–776 (2009)

24. Xie, J., Xu, L., Chen, E.: Image denoising and inpainting with deep neural networks. In:
Advances Neural Information Processing Systems, pp. 341–349 (2012)

25. Agostinelli, F., Anderson, M.R., Lee, H.: Adaptive multi-column deep neural networks
with application to robust image denoising. In: Advances in Neural Information Processing
Systems, vol. 26, pp. 1493–1501 (2013)

26. Gondara, L.: Medical image denoising using convolutional denoising autoencoders. In: IEEE
16th International Conference on Data Mining Workshops (ICDMW), pp. 241–246 (2016)

27. Ren, J., Xu, L.: On vectorization of deep convolutional neural networks for vision tasks. In:
AAAI, pp. 1840–1846 (2015)

28. Suckling, J., et al.: The mammographic image analysis society digital mammogram exerpta
media. In: International Congress Sersis, vol. 1069, pp. 375–378 (1994)

http://arxiv.org/abs/1211.1544
http://arxiv.org/abs/1211.1552


Diagnosis, Classification and Treatment



A Hybrid Machine Learning Approach
Using LBP Descriptor and PCA

for Age-Related Macular Degeneration
Classification in OCTA Images

Abdullah Alfahaid1,2,3(B), Tim Morris1, Tim Cootes4, Pearse A. Keane2,
Hagar Khalid2, Nikolas Pontikos2,5, Panagiotis Sergouniotis6,

and Konstantinos Balaskas2

1 School of Computer Science, The University of Manchester, Oxford Road,
Manchester M13 9PL, UK

abdullah.alfahaid@manchester.ac.uk
2 Moorfields Eye Hospital, 162 City Road, London EC1V 2PD, UK

3 College of Computer Science and Engineering at Yanbu, Taibah University,
Medina, Kingdom of Saudi Arabia

4 Centre for Imaging Sciences, The University of Manchester, Oxford Road,
Manchester M13 9PL, UK

5 UCL Genetics Institute, University College London, Gower Street,
London WC1E 6BT, UK

6 School of Biological Sciences, The University of Manchester, Oxford Road,
Manchester M13 9PL, UK

Abstract. We propose a novel hybrid machine learning approach for
age-related macular degeneration (AMD) classification to support the
automated analysis of images captured by optical coherence tomog-
raphy angiography (OCTA). The algorithm uses a Rotation Invariant
Uniform Local Binary Patterns (LBP ) descriptor to capture local tex-
ture patterns associated with AMD and Principal Component Analysis
(PCA) to decorrelate texture features. The analysis is performed on the
entire image without targeting any particular area. The study focuses on
four distinct groups, namely, healthy; neovascular AMD (an advanced
stage of AMD associated with choroidal neovascularisation (CNV)); non-
neovascular AMD (AMD without the presence of CNV) and secondary
CNV (CNV due to retinal pathology other than AMD). Validation sets
were created using a Stratified K-Folds Cross-Validation strategy for lim-
iting the overfitting problem. The overall performance was estimated
based on the area under the Receiver Operating Characteristic (ROC)
curve (AUC). The classification was conducted as a binary classification
problem. The best performance achieved with the SVM classifier based
on the AUC score for: (i) healthy vs neovascular AMD was 100%, (ii)
neovascular AMD vs non-neovascular AMD was 85%; (iii) CNV (neovas-
cular AMD plus secondary CNV) vs non-neovascular AMD was 83%.

Keywords: Optical coherence tomography angiography (OCTA) ·
Age-related macular degeneration (AMD) · Texture features

c© Springer Nature Switzerland AG 2020
Y. Zheng et al. (Eds.): MIUA 2019, CCIS 1065, pp. 231–241, 2020.
https://doi.org/10.1007/978-3-030-39343-4_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39343-4_20&domain=pdf
https://doi.org/10.1007/978-3-030-39343-4_20


232 A. Alfahaid et al.

1 Motivation

Age-related macular degeneration (AMD) is a heterogeneous, multifactorial reti-
nal condition and a leading cause of visual impairment in the elderly popula-
tion [1,2]. AMD predominantly affects the macula, the central part of the retina
and it is clinically categorised into non-neovascular (or dry) AMD and neovas-
cular (or wet) AMD [3]. The hallmark of dry AMD is drusen, focal deposits of
extracellular debris located under the retina and the retinal pigment epithelium
(RPE); retinal pigment epithelial abnormalities including atrophy are common.
Wet AMD is characterised by the presence of a common, vision-threatening
complication of AMD called choroidal neovascularisation (CNV); this involves
the growth of abnormal blood vessels typically originating from the choroid (a
layer of tissue located underneath the retina and RPE) and involving the mac-
ular area [3]. Dry AMD is the more common subtype and it is associated with
gradual visual loss whereas wet AMD is linked to a more acute presentation [3].
Notably, wet AMD can be successfully treated with intravitreal injection. Early
detection and management are key and timely diagnosis is linked to improved
outcomes [4]. Significant effort and healthcare resources are therefore put to the
early identification of CNV and to the differentiation between individuals with
wet and dry forms of AMD.

Different medical imaging modalities have been developed to help with this
task. A promising recently introduced technique is Optical Coherence Tomog-
raphy Angiography (OCTA) which combines dye-free angiography and non-
invasive volumetric three-dimensional imaging. This modality has advantages
over the widely used Optical Coherence Tomography (OCT) as it enables
detailed visualisation of the retinal and choroidal circulation. Furthermore,
OCTA is fast and non-invasive unlike other established modalities, such as
Fundus Fluorescein Angiography (FFA) and Indocyanine Green Angiography
(ICG) [5–7]. Importantly, OCTA enables characterisation of moving and static
elements of retinal and choroidal blood flow and it allows visualisation of CNV
and other abnormalities that can help distinguish between dry and wet AMD.

OCTA produces clear images of the retinal vasculature in different retinal lay-
ers including the superficial inner retina, the deep inner retina, the outer retina
and the choriocapillaris layers. The current clinical standard for detecting CNV
and evaluating the efficacy of the treatments for wet AMD involves visually
examining the textural appearance of images from each of these layers. How-
ever, this is not a trivial task given the significant amount of data in each OCTA
scan, the pattern variations between individuals, and the fact that neovascular
and non-neovascular areas may appear similar [8]. It is therefore not uncommon
for clinicians to request a second opinion due to the difficulties involved in the
interpretation process. Figure 1 demonstrates the texture appearance of the reti-
nal vasculature in the various retinal layers in the OCTA images for different
eye conditions. Images from eyes with no pathology, dry AMD and wet AMD
are shown. The complexity of the blood vessels pattern variations between the
different retinal layers can be appreciated.
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Fig. 1. The textural appearance of blood vessels network in the superficial inner retina,
deep inner retina, outer retina and choriocapillaris layers in OCTA images. Each row
illustrates a different eye condition from the various layers. The first shows a healthy
eye, the second shows a dry AMD eye and the final row shows a wet AMD eye. It
can be observed how the similarities appear in the patterns of the abnormalities in all
layers for the dry and wet AMD eyes, while in some layers the patterns appear very
similar, even in the healthy eye, namely the superficial inner and deep inner layers.

As seen in the previous figure, the texture of OCTA images is affected by
AMD. Image texture is rich with very important information describing complex
visual patterns that can be distinguished by colour, brightness, size or shape [9].
However, there is evidence to demonstrate that it is problematic for the human
eye to recognise textural information which is related to higher-order statistics
or to the spectral properties of an image [10]. Therefore, both quantifying the
texture characteristics of OCTA images and building a predictive image classifi-
cation algorithm that is capable of detecting the early stages of AMD is desirable.
This could reduce the burden on ophthalmologists, remove the subjectivity due
to personal interpretation and ensure a greater efficiency and reliability in the
diagnosis process in daily clinical practice.

Image classification is an important component of computer-assisted medical
diagnostic tools. Apart from an algorithm (based on Rotation Invariant Uni-
form Local Binary Patterns (LBP ) as a texture descriptor) that was previously
explored by our group [11], to the best of our knowledge, there has been no prior
image classification work on AMD using OCTA images. The main contributions
of the work undertaken are:

• The construction of new measurements that contribute the most to quanti-
fying AMD presentation in OCTA images.
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• The development of a novel hybrid machine learning approach for AMD classi-
fication with less redundant and misrepresentative texture features compared
to our previous algorithm [11] as it has the additional advantageous capacity
to decorrelate texture features by applying Principal Component Analysis
(PCA).

• The application of our previous algorithm [11] and the new hybrid algorithm
to a new much larger dataset provided by Moorfields Eye Hospital, which
includes early stages of AMD disease.

2 Related Work

Numerous previous studies have focused on the development of methods to auto-
mate the analysis and detection of AMD in OCT or OCTA images. Most of these
follow either an image segmentation-based or an image classification-based app-
roach. The objective of image segmentation approaches is to partition the retinal
vascular texture into disjunct regions. This includes the use of smoothing tech-
niques as in [6], morphological operations as in [8] and manual-assistance by
tracing the borders of the regions of interest as in [12]. Then, the images are
labelled as healthy or AMD depending on either some measurements performed
over the segmented regions or the visibility of the object of interest. This is in
contrast with image classification, where the goal is to classify an unknown image
into one of the pre-defined classes based on features derived from the image tex-
ture using machine learning and pattern recognition techniques. Many ways of
deriving the features have been used, including handcrafted texture descriptors
as in [13–15] or potentially the features learned using deep learning technologies
as in [16–18].

When assessing image segmentation-based methods as clinical diagnostic
tools for AMD detection in OCTA images, there are several limitations. Impor-
tantly, such approaches require an adequate image quality so that the abnormal
blood vessel patterns are clearly visible; alternatively, the abnormalities can be
difficult to segment. This problem is amplified by the fact that the measure-
ments are likely to be derived from a deformed image texture structure due to
the inclusion of pre-processing steps. These steps make use of morphological or
smoothing operations as has occurred in [6] and [8] when part of the CNV, a key
indicator of the presence of AMD, was excluded. Furthermore, the measurements
may be influenced by human error/bias and often take considerable time when
manual assistance is involved, as in [12]. To overcome the challenges associated
with segmentation, an alternative path is to extract features from the whole
image and use these features to build an image classification-based method.

While there are several image classification-based methods proposed, the vast
majority were designed to be used on images produced from OCT rather than
OCTA scans. However, OCT is not designed to produce images of the retinal
vasculature and may fail to visualise/detect the abnormalities. What is more,
handcrafted texture descriptor-based methods proposed in [13–15] are sensitive
to noise such as image illumination variations and also include complex opera-
tions and pre-processing steps to tackle image noise. However, that may change
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image details. On the other hand, it may be argued that deep learning-based
methods using OCT images (including [16–18]) have greatly enhanced AMD
detection performance despite the fact that a significant amount of training data
was necessary to ensure that robust feature representations could be learned.

OCTA is an emerging imaging technique that enables visualisation of the reti-
nal vasculature texture with an unprecedented level of detail. Given the recent
introduction of robust OCTA imaging technologies only a limited amount of
labelled training data is presently available. This and the complexity of OCTA
images are important current limitations to the development of deep learning-
based methods. Other issues with these methods include high computational
complexity and memory requirements [19]. Moreover, they also present prob-
lems with the interpretation of outcomes due to the fact that the theoretical
foundation is not well understood and the results are empirical [19].

3 Proposed Approach

The hybrid algorithm discussed in this paper follows the same pipeline of a
previous algorithm reported by our group [11] but with an additional step of
feature dimensionality reduction. Briefly, the new hybrid algorithm consists
of three main steps. The first step is the texture feature extraction using the
LBP descriptor to characterise all relevant variations in image texture patterns
induced by AMD from the whole image. Subsequently, the feature dimensional-
ity reduction step applies the PCA, which decorrelates the extracted features.
Finally, there is a classification step, where the images are classified based on
the new features represented by the PCA. Figure 2 shows a brief overview of the
new hybrid algorithm pipeline for AMD classification.

OCTA Images

Texture Feature Extraction

Feature Dimensionality Reduction

Classification

1

2

3

Fig. 2. Overview of the new analysis procedure for the hybrid classification algorithm.
It begins with taking the OCTA images as an input, followed by feature extraction and
dimensionality reduction respectively, and finally the classification.
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3.1 Texture Feature Extraction

The study makes use of Rotation Invariant Uniform LBP , a handcrafted texture
descriptor introduced by Ojala et al. [20]. Although there are several texture
descriptors proposed in the literature, the choice of which one to use depends
on the issues associated with the image texture to be measured and on how
well the descriptor can cope with these issues [21]. Examples of common issues
are the variations caused by rotation and illumination. Notably, OCTA image
texture is affected by these changes [22]. Although the subjects’ eyes are not
purposefully rotated, there may be some orientation changes to the texture as
the central, avascular region is orbited. Consequently, the main motivation of
using the LBP in this study is that due to its various advantages (including
ease of implementation) it can work effectively under limited resources. Also, it
is capable of quantifying AMD in OCTA images while preserving the trade-off
between two fundamental goals: (i) to provide a high-quality description with
a balance between distinctiveness and robustness against the illumination and
rotation changes; (ii) to have the lowest level of computational complexity.

To accurately measure the image texture using the LBP , the values of two
important parameters need to be set up properly. The first parameter is the
number of neighbouring points p spread on a circle and the second parameter is
the radius r of the circle, which defines the length from the central point gc to
the neighbouring points gn. The measurements are then derived by comparing
a neighbouring point’s gn value, where n = (0, 1, 2, 3, . . . , p − 1), against the
central point gc value generating a binary pattern. The LBP values for each
pixel within each image are constructed according to the following equations:

LBP =
{∑n=p−1

n=0 S(gn − gc) if u(LBPp,r) ≤ 2
p + 1 Otherwise

Where S(x) =
{

1 if x ≥ 0
0 Otherwise

(1)

u(LBPp,r) = |S(gp−1 − gc) − S(g0 − gc)|

+
n=p−1∑
n=1

S(gn − gc) − S(gn−1 − gc)|
(2)

The u(LBPp,r) is a procedure to count the number of bitwise transitions and to
consider the uniform binary patterns that have at most two transitions, 1/0 or
0/1. When measuring the image texture, the number of uniform binary patterns
that can occur is p+1. In this study, the whole OCTA image is processed without
targeting any particular regions. Every image is described by a histogram with
p+ 2 bins that calculates the number of occurrences of the uniform LBP values
within each image, while the supplementary bin in the histogram is to calculate
the non-uniform binary patterns that occurred. Then, the generated histogram
will form the feature vector that represents each image.
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3.2 Feature Dimensionality Reduction

In image classification problems, the high dimensional and highly correlated
aspects of the feature vectors have a critical impact on the performance of the
machine learning algorithm used for conducting the classification. Techniques
that can significantly overcome these issues in an interpretable fashion while
maintaining most of the important information in the feature space are desir-
able. One of the most popular and commonly utilised techniques for this task
is Principal Component Analysis (PCA) [23]. PCA is a statistical technique
that uses a linear transformation to convert a high number of correlated fea-
tures into a lower number of linearly uncorrelated features, named the principal
components that successively maximise variance [23]. The use of PCA in our
new algorithm was mainly motivated by the fact that when we increase the
number of points around a particular circle (when calculating the LBP values),
the dimensionality of the feature vectors that represent each OCTA image also
increases. Consequently, this is likely to increase the chance of having correlated
and therefore redundant features; hence, PCA was applied, as it provides the
following advantages:

• It makes the method less biased since it eliminates redundant texture features;
• It improves the accuracy of the method as it reduces the occurrence of mis-

representative texture features;
• It reduces the time taken for training the machine learning algorithm since it

makes use of feature vectors of lower dimensionality.

In this step, the original dimensional feature vectors obtained from the OCTA
images were reduced into lower dimensional feature vectors. These retained 95%
of the variance which is a common percentage widely used when applying PCA.

3.3 Classification

Following the feature dimensionality reduction step, the newly constructed fea-
tures are passed to a classifier for classification. Two different machine learning
algorithms were tested in this work, namely K-Nearest Neighbour (KNN) and
Support Vector Machine (SVM). The kernel type used for the SVM classifier is
a linear kernel. The value of K neighbours for the KNN classifier was empirically
set to one similar to our previous algorithm [11].

4 Evaluation

The hybrid algorithm described here and our previous algorithm [11] were eval-
uated based on their ability to distinguish between the various classes of images
provided by Manchester Royal Eye Hospital and Moorfields Eye Hospital. The
Manchester dataset included 23 healthy and 23 wet AMD samples. The Moor-
fields dataset included 166 wet AMD and 79 dry AMD cases; 25 secondary CNV
cases were also included. In these secondary CNV samples the neovascularisation
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was due to causes other than AMD. Both datasets include four different images
of each eye captured from four retinal layers, namely the superficial inner retinal
layer, the deep inner retinal layer, the outer retinal layer and choriocapillaris
layer. Table 1 summarises the number of images used. The study makes use of
two-dimensional angiogram greyscale images captured from a 3 × 3 mm field of
view and utilises all the pre-segmented images through the retinal layers by the
default setting of the OCTA scan. This is because we wanted to avoid the addi-
tional complexity of manually segmenting the images. The addition of such a
step would make the algorithm less user-friendly and would probably introduce
bias.

Table 1. Summary for the number of images used in this study.

Hospital Classes Retinal layers All layers

Choriocapillaris Outer Deep Superficial

Manchester healthy 23 23 23 23 92

wet AMD 23 23 23 23 92

Moorfields wet AMD 166 166 166 166 664

non-CNV (dry AMD) 79 79 79 79 316

secondary CNV 25 25 25 25 100

4.1 Evaluation Setup and Criteria

The classification was performed on each separate layer and in all layers com-
bined as a binary classification problem. The motivations for performing the
classification this way (on each separate layer) are to identify the predictive
layer that has most information describing the abnormalities, and (in all lay-
ers combined) to investigate how well the algorithms operate on classifying the
various layers at once by throwing all layers together. The classification was
conducted as follows:

I healthy vs wet AMD for the Manchester dataset;
II wet AMD vs dry AMD for the Moorfields dataset;

III CNV (wet AMD plus secondary CNV) vs non-CNV (dry AMD) for the
Moorfields dataset.

As the Moorfields dataset is imbalanced and all classes are important for us to
detect, the following evaluation strategies for both algorithms were conducted
on both datasets:

• Use the Stratified K-Folds Cross-Validation strategy to split the data into
training and testing sets creating stratified folds; this means each fold is
created by preserving the number of samples of each class. This is to ensure
a consistent predictive performance for both algorithms and limitation of the
overfitting problem.
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• Use the Receiver Operating Characteristic (ROC) curve and compute the
area under the curve (AUC). This is to provide equal weight for both classes
in our binary classification problem.

These would give an accurate measure of insight into overall performance as well
as ensuring enhanced validation for both algorithms.

4.2 Example Results

The performance of both algorithms was compared based on their AUC scores.
The results are obtained by empirically choosing the same values of LBP param-
eters p and r that were used in our previous algorithm [11]. Two classifiers were
tested on both approaches and the following two tables provide a comparison
between their results. Table 2 provides the results of the SVM classifier and
Table 3 shows the results of the KNN classifier. In both tables, the new hybrid
algorithm is denoted as “Hybrid algorithm” while our previous algorithm [11] is
denoted as “Previous algorithm”.

Table 2. Classification results using both approaches with SVM classifier.

Algorithm Binary classification Retinal layers All layers

ChoriocapillarisOuter Deep Superficial

Hybrid algorithm healthy vs wet AMD 100% ± 0 99% ± 1 98% ± 395% ± 5 96% ± 2

wet AMD vs dry AMD 83% ± 2 85% ± 380% ± 475% ± 3 78% ± 4

CNV vs non-CNV 81% ± 3 83% ± 176% ± 269% ± 4 76% ± 2

Previous algorithmhealthy vs wet AMD 100% ± 0 96% ± 1 96% ± 391% ± 3 92% ± 3

wet AMD vs dry AMD 81% ± 2 83% ± 379% ± 471% ± 2 75% ± 3

CNV vs non-CNV 80% ± 3 82% ± 372% ± 467% ± 5 74% ± 3

Table 3. Classification results using both approaches with KNN classifier.

Algorithm Binary classification Retinal layers All layers

ChoriocapillarisOuter Deep Superficial

Hybrid algorithm healthy vs wet AMD 100% ± 0 99% ± 1 96% ± 293% ± 5 96% ± 3

wet AMD vs dry AMD 81% ± 3 84% ± 475% ± 573% ± 2 75% ± 4

CNV vs non-CNV 80% ± 4 81% ± 573% ± 368% ± 4 73% ± 2

Previous algorithmhealthy vs wet AMD 100% ± 0 98% ± 2 95% ± 490% ± 4 90% ± 2

wet AMD vs dry AMD 80% ± 1 78% ± 4 71% ± 470% ± 3 71% ± 2

CNV vs non-CNV 79% ± 4 79% ± 370% ± 566% ± 3 70% ± 1

The construction of discriminative features has a critical role in the performance
of machine learning algorithms. This is due to the fact that when using mislead-
ing or highly correlated texture features, even with the use of the most sophis-
ticated classifiers, attaining the desired performance level will not be possible.
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The preliminary results in Tables 2 and 3 show that the new hybrid algorithm
is robust against image noise and quality due to patient motion or illumination
changes as compared to our previously reported algorithm [11]. This was con-
firmed by challenging two different classifiers, namely the SVM and KNN. Fur-
thermore, the SVM classifier generally performs better than the KNN classifier
on both algorithms. Moreover, the initial results of our classification algorithms
show that the most predictable layers are the choriocapillaris and outer retinal
layers.

5 Conclusion and Future Work

This paper reports a hybrid algorithm for AMD classification in OCTA images
by combining the LBP descriptor with PCA. The LBP is responsible for cap-
turing the local textural features from the OCTA images while the PCA is
applied for eliminating the misrepresentative texture features. The algorithm is
capable of capturing all related image variations induced by AMD as analysis is
performed on the entire image. The results achieved so far have suggested that
the proposed hybrid algorithm may be clinically useful for AMD classification
in OCTA images. Deep learning methods might have superior performance, but
the size of the dataset currently available is too small to investigate them.

Future work exploring the performance of deep learning methods in similar
tasks would be of interest. To enable this, the collection of carefully curated
data will be required. Data augmentation techniques to increase the number of
images are generally inappropriate, since in this case they will distort the data in
undesirable ways. Testing the presented and other algorithms on more complex
tasks would also be of interest. Specifically, it would be clinically valuable to be
able to distinguish variations in AMD in the same patient, namely active CNV
(which requires treatment) from inactive CNV (which can be observed).
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1 Introduction

Diabetic patients are at constant risk of developing Diabetic Retinopathy (DR)
that may eventually lead to permanent vision loss if left unnoticed or untreated.
In such patients, increased blood sugar, blood pressure, and cholesterol can cause
small blood vessels in retina to protrude and, in due course, haemorrhage blood
into retinal layers and/or vitreous humour [4]. In severe conditions, scar tis-
sues and newly proliferated fragile blood vessels blanket the retina and obstruct
incoming light from falling on it. As a result, retina is unable to translate light
into neural signals which leads to blindness. Diabetic retinopathy advances slowly
and gradually and may take years to reach proliferative stage, however, almost
every diabetic patient is potentially susceptible to this complication.

Timely diagnosis is the key to appropriate prognosis. Ophthalmologists usu-
ally detect DR by examining retinal fundus and looking for any signs of microa-
neurysms (bulging of blood vessels), blood leakage, and/or neovascularization
[2]. While the indications of advanced stages of DR are rather prominent, these
symptoms remain largely discrete in early stages. Figure 1 shows progress of
DR from healthy to proliferative stage in Retinal Fundus Images (RFIs) taken
from EyePACS dataset1. It can be observed from the figure that the difference
between healthy and early stages of DR are very subtle and not readily dis-
cernible. Manual analysis of these images requires highly qualified and special-
ized ophthalmologists who may not be easily accessible in developing countries
or remote areas of developed countries. Even when medical experts are available,
large scale analysis of RFIs is highly time-consuming, labour-intensive and prone
to human error and bias. Furthermore, manual diagnosis by clinicians is largely
subjective and rarely reproducible and, therefore, inter-expert agreement for a
certain diagnosis is generally very poor.

Computer-Aided Diagnosis (CAD) based on deep learning can provide eas-
ily accessible, efficient and economical solution for large-scale initial screening
of many diseases including diabetic retinopathy. CAD can perform objective
analysis of the given image and predict standardized and reproducible diagno-
sis, which is free from any bias or tiredness. It can not only help physicians by

(a) Healthy (b) Mild (c) Moderate (d) Severe (e) Proliferative

Fig. 1. Progression of diabetic retinopathy from healthy to proliferative stage is subtle
and gradual. Images are taken from EyePACS train set.

1 https://www.kaggle.com/c/diabetic-retinopathy-detection/data.

https://www.kaggle.com/c/diabetic-retinopathy-detection/data
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reducing their workload but can also outreach to underprivileged population and
afford them the opportunity of swift and cost-effective initial screening, which
may effectively prevent advancement of disease into severer stage. Convolutional
Neural Networks (CNNs) are computer algorithms inspired by biological visual
cortex. They work especially well in visual recognition tasks. CNNs have been
used to perform at par with or even outperform humans in various challenging
image recognition problems [13,14]. Today automated image recognition can be
divided into coarse-grained classification and fine-grained classification. In for-
mer case, images are classified into high-level categories like humans, animals,
vehicles and other objects in a natural scene, for example. In later case, classifica-
tion is focused on low-level categories like species of dogs or models of cars etc.
Fine-grained classification is particularly challenging owing to high intra-class
variations and low inter-class variations. Although DR is also a fine-grained
classification task, it has normally been addressed using simple coarse-grained
classification algorithms.

In this work we used a combination of general and fine-grained deep CNNs
to analysed RFIs and predict automated diagnosis for DR. We used two of the
most popular conventional image classification architectures i.e. Residual Net-
works [11] and Densely Connected Networks [12], a network search framework
called NASNet [25] and two recently proposed methods for fine-grained classifi-
cation namely NTS-Net [24] and SBS Layer [18]. We tried to harvest the com-
bined potential of these two approaches by training them separately and taking
their ensemble during inference. We used EyePACS and Messidor datasets for
evaluation. Since previous researches have used vastly disparate experimental
setups, we cannot directly compare our results with most of them. However, we
performed a broad range of experiments, following the most common problem
settings in the literature like normal vs abnormal, referable vs non-referable,
ternary and quaternary classification in order to define benchmarks which will
afford future works with an opportunity of fair comparison.

1.1 Related Work

Over the past decade, machine learning and deep learning have been used to
detect various pathologies, segment blood vessels and classify DR grades using
RFIs. Welikala et al. [23] detected proliferative DR by identifying neovascu-
larization. They used an ensemble of two networks trained separately on 100
different patches for each network. The patches are taken from a selected set of
60 images collected from Messidor [8] and a private dataset. Since the dataset
had only 60 images they performed leave-one-out cross validation and achieved
0.9505 Area Under the Curve (AUC) and sensitivity of 1 with specificity of 0.95
at the optimal operating point. Wang et al. [22] identified suspicious regions
in RFIs and classified DR into normal (nDR) vs abnormal (aDR) and refer-
able (rDR) vs non-referable (nrDR). They developed a CNN based model called
Zoom-in-Network to identify important regions. To classify an image the network
uses the overview of the whole images and pays particular attention to impor-
tant regions. They took 182 images from EyePACS dataset and had a trained
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ophthalmologist draw bounding boxes around 306 lesions. On Messidor dataset
they achieved 0.921 AUC, 0.905 accuracy and 0.960 sensitivity at 0.50 specificity
for nDR vs aDR.

Gulshan et al. [10] conducted a comprehensive study to distinguish rDR
from nrDR grades. They trained a deep CNN on 128175 fundus images from a
private dataset and tested on 9963 images from EyePACS-I and 1748 images of
Messidor-2. They achieved AUC of 0.991 on EyePACS-I and 0.990 on Messidor-
2. Guan et al. [9] proposed that modelling each classifier after individual human
grader instead of training a single classifier using average grading of all human
experts improves classification performance. They trained 31 classifiers using a
dataset of total 126522 images collected from EyePACS and three other clinics.
The method is tested on 3547 images from EyePACS-I and Messidor-2, and
achieved 0.9728 AUC, 0.9025 accuracy, and 0.8181 specificity at 0.97 sensitivity.
However, it would have been more interesting if they had provided comparison of
their suggested approach with ensemble of 31 networks modelled after average
grading. Costa et al. [7] used adversarial learning to synthesize colour retinal
images. However, the performance of their classifier trained on synthetic images
was less than the classifier trained on real images. Aujih et al. [5] found that
blood vessels play important role in disease classification and fundus images
without blood vessels resulted in poor performance by the classifier.

The role of multiple filter sizes in learning fine-grained features was stud-
ied by Vo et al. [21]. To this end they used VGG network with extra kernels
and combined kernels with multiple loss networks. They achieved 0.891 AUC
for rDR vs nrDR and 0.870 AUC for normal vs abnormal on Messidor dataset
using 10-fold cross validation. Somkuwar et al. [20] performed classification of
hard exudates by exploiting intensity features using 90 images from Messidor
dataset and achieved 100% accuracy on normal and 90% accuracy on abnormal
images. Seoud et al. [19] focused on red lesions in RFIs, like haemorrhages and
microaneurysms, and detected these biomarkers using dynamic shape features in
order to classify DR. They achieved 0.899 and 0.916 AUC for nDR vs aDR and
rDR vs nrDR, respectively on Messidor. Rakhlin et al. [16] used around 82000
images taken from EyePACS for training and around 7000 EyePACS images and
1748 images from Messidor-2 for testing their deep learning based classifier. They
achieved 0.967 AUC on Messidor and 0.923 AUC on EyePACS for binary clas-
sification. Ramachandran et al. [17] used 485 private images and 1200 Messidor
images to test a third party deep learning based classification platform, which
was trained on more than 100000 images. Their validation resulted in 0.980 AUC
on Messidor dataset for rDR vs nrDR classification. Quellec et al. [15] capital-
ized a huge private dataset of around 110000 images and around 89000 EyePACS
images to train and test a classifier for rDR vs nrDR grades and achieved 0.995
AUC on EyePACS.
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2 Materials and Methods

This section provides details on the datasets used in this work and the ensemble
methodology employed to perform classification.

2.1 Datasets

We used EyePACS dataset published publicly by Kaggle for a competition on
Diabetic Retinopathy Detection. Table 1 gives overview of EyePACS dataset.
Although this dataset is very large in size, only about 75% of its images are of
reasonable quality that they can be graded by human experts [16]. EyePACS
is graded on a scale of 0 to 4 in accordance with International Clinical Dia-
betic Retinopathy (ICDR) guidelines [3]. However, low gradability of this dataset
raises suspicions on the fidelity of labels provided with each image. We pruned
the train set to get rid of 657 completely uninterpretable images. For testing on
EyePACS we used 33423 images randomly taken from test set.

Table 1. Overview of EyePACS Dataset. IRMA stands for IntraRetinal Microvascular
Abnormalities

Severity grade Criterion Train set Test set

Images Percentage Images Percentage

0 No abnormalities 25810 73.48 39533 73.79

1 Microaneurysms only 2443 6.95 3762 7.02

2 More than just
microaneurysms but
less than Grade 3

5292 15.07 7861 14.67

3 More than 20
intraretinal
hemorrhages in each of
4 quadrants

873 2.48 1214 2.27

OR definite venous
beading in 2+
quadrants

OR prominent IRMA
in 1+ quadrant

AND no signs of
proliferative
retinopathy

4 Neovascularization 708 2.02 1206 2.25

OR Vitreous/preretinal
hemorrhage

Total 35126 100 53576 100



Combining Fine- and Coarse-Grained Classifiers 247

Table 2. Overview of messidor dataset

Severity grade Criterion Images Percentage

0 No microaneurysms 546 45.50

AND No haemorrhages

1 Microaneurysms <= 5 153 12.75

AND No haemorrhages

2 5 <Microaneurysms <15 247 20.58

AND 0 <Haemorrhages <5

AND No Neovascularization

3 Microaneurysms >= 15 254 21.17

OR Haemorrhages >= 5

OR Neovascularization

Total 1200 100

Messidor dataset consists of 1200 images collected at three different clinics
in France. Each clinic contributed 400 images. This dataset is graded for DR
on a scale of 0 to 3 following the criteria given in Table 2. Messidor dataset is
validated by experts and is, therefore, of higher quality than EyePACS in terms
of both image quality and labels.

2.2 Methodology

Figure 2 illustrates complete pipeline of the system combining coarse-grained and
fine-grained classifiers. Before feeding an image to the network, we first applied
Otsu Thresholding to extract and crop retinal rim from RFI and get rid of irrele-
vant black background. Since the images in both datasets are taken with different
cameras and under different clinical settings, they suffer from large brightness
and colour variations. We used adaptive histogram equalization to normalize
brightness and enhance the contrast of visual artefacts which are critical for DR
detection. Since the images are in RGB colour space, we first translate them
into YCbCr colour space to distribute all luminosity information in Y channel
and colour information in Cb and Cr channels. Adaptive histogram equalization
is then applied on Y channel only and the resultant image is converted back
to RGB colour space. We further normalized the images by subtracting local
average colour from each pixel to highlight the foreground and help our network
detect small features. Figure 3 shows the effects of preprocessing steps on RFIs.
These pre-processed images are then used to train all five networks individually.
During inference, each network gives diagnosis which are ensembled to calculate
the final prediction.
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Fig. 2. System overview: combining coarse-grained and fine-grained classifiers

Experimental Setup. From EyePACS train set, we randomly selected 30000
images for training and rest of the 4469 images were used for validation. Test
set of EyePACS was used for reporting results on this dataset. From Messidor,
we used 800 images for training and 400 images from Lariboisière Hospital for
testing (as done by Lam et al. [6]). We employed a broad range of hyper param-
eters during training. All networks are initialized with pre-trained weights and

(a) Original Image before
Preprocessing

(b) After Contrast 
Enhancement

(c) After Local Average
Colour Subtraction

Fig. 3. Effects of preprocessing steps on retinal fundus images
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fine-tuned on ophthalmology datasets. To evaluate these models on EyePACS
and Messidor datasets under similar problem settings, we first parallelized DR
grades of both datasets using criteria given in Fig. 4.

Fig. 4. Conversion of EyePACS grades to quaternary, ternary and binary classification

3 Results and Analysis

From Sect. 1.1 we observe that previous works on EyePACS and Messidor have
used disparate train and test splits and different classification tasks for example
Quaternary, Ternary and Binary (rDR vs nrDR and nDR vs aDR). Further-
more, different researchers use different performance metrics to evaluate their
method. Therefore, in such scenario comparison of any two works in not directly
possible [1]. However, we conducted extensive experiments to perform all four
classification tasks mentioned above and report comprehensive results to allow
a rough comparison with some of the published state-of-the-art results on these
datasets.

3.1 Results of Binary Classification

As discussed above, many previous works focus primarily on binary classification
as nDR vs aDR or rDR vs nrDR grading. The criteria to convert 4 or 5 grades
into binary grades is given in Fig. 4. For our binary classification, the number of
images used for training, validation and testing from EyePACS and Messidor are
given in Tables 3 and 4. It can be seen from the tables that there is extensive class
imbalance between both classes. Table 5 provides detailed performance metrics
for all classification tasks including nDR vs aDR classification. Our results are
competitive to that of Wang et al. in terms of accuracy and for all other metrics
we outperform them. It should be noted here that Wang et al. performed 10-fold
cross validation and although their sensitivity of 96 is higher than our 89.75, it
is calculated at 50% specificity while ours is at 90% specificity.
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Table 3. Class distribution for
normal vs abnormal classification

Grade EyePACS Messidor

TrainValidate Test TrainValidateTest

Normal 22668 2744 24741 346 49 151

Abnormal 7332 1725 8682 354 51 249

Total 30000 4469 33423 700 100 400

Table 4. Class distribution for refer-
able vs non-referable classification

Grade EyePACS Messidor

TrainValidate Test TrainValidateTest

Non-Referable28825 4177 31937 453 65 181

Referable 1175 292 1486 247 35 219

Total 30000 4469 33423 700 100 400

Results of rDR vs nrDR classification can also be found in Table 5. All net-
works performed significantly better for this task than for normal vs abnormal
classification on EyePACS dataset reaching maximum accuracy around 96% with
99.44% AUC using SBS layer architecture. For Messidor dataset, both NTS-Net

Table 5. Detailed performance metrics for various classification settings

Results of binary (normal vs abnormal) classification

Model Accuracy (%) AUC (%) Sensitivity (%) Specificity (%)

EyePACS Messidor EyePACS Messidor EyePACS Messidor EyePACS Messidor

NTS-Net 88.19 88.00 92.72 95.20 88 88.00 72 87.51

SBS Layer 80.11 89.50 86.20 95.17 80 89.50 54 92.07

ResNet-50 82.86 87.75 89.46 95.06 83 87.75 75 90.49

DenseNet-201 82.66 87.75 89.69 95.89 83 87.75 77 88.14

NASNet 82.19 87.25 88.49 95.04 82 87.25 73 89.14

Ensemble 87.74 89.75 93.44 96.50 88 89.75 75 91.44

Vo et al. N/A 87.10 N/A 87.00 N/A 88.2 N/A 85.7

Wang et al. N/A 90.50 N/A 92.10 N/A 96 N/A 50

Soud et al. N/A N/A N/A 89.90 N/A N/A N/A N/A

Results of binary (referable vs non-referable) classification

NTS-Net 94.93 93.25 99.10 96.56 95 93 75 94

SBS Layer 95.89 88.75 99.44 94.90 96 89 67 90

ResNet-50 95.08 86.75 98.97 94.95 95 87 81 89

DenseNet-201 94.70 89.25 99.05 95.33 95 89 82 91

NASNet 91.98 87.50 97.45 95.16 92 88 85 89

Ensemble 95.34 89.25 99.23 96.45 95 89 81 91

Lam et al. N/A 74.5 N/A N/A N/A N/A N/A N/A

Vo et al. N/A 89.70 N/A 89.10 N/A 89.3 N/A 90

Wang et al. N/A 91.10 N/A 95.70 N/A 97.8 N/A 50

Seoud et al. N/A 74.5 N/A 91.60 N/A N/A N/A N/A

Results of ternary classification

NTS-Net 84.43 84.50 94.89 94.61 84 85 72 94

SBS Layer 76.93 84.50 90.95 94.12 77 85 50 91

ResNet-50 81.23 80.50 93.51 93.79 81 81 74 92

DenseNet-201 79.20 80.25 92.87 94.25 79 80 77 93

NASNet 78.95 81.75 91.93 94.00 79 82 71 89

Ensemble 84.94 85.25 95.28 95.40 85 85 73 92

Lam et al. N/A 68.8 N/A N/A N/A N/A N/A N/A

Results of quaternary classification

NTS-Net 82.53 74.50 95.72 91.84 83 75 76 92

SBS Layer 82.00 65.00 95.69 88.43 82 65 67 88

ResNet-50 81.82 70.25 95.53 91.31 82 70 71 89

DenseNet-201 79.38 74.00 95.04 92.26 79 74 75 91

NASNet 73.73 71.75 92.06 90.84 74 72 74 86

Emsemble 83.42 76.25 96.31 92.99 83 76 73 91

Lam et al. N/A 57.2 N/A N/A N/A N/A N/A N/A
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and SBS Layer stand out from traditional classifiers. NTS-Net outperforms all
other methods in all metrics, whereas ensemble of all methods gives sub-optimal
performance than individual fine-grained methods. This can happen when major-
ity of classifiers used for ensemble have a skewed performance towards downside
and only a few give standout results.

3.2 Results of Multi-class Classification

The complexity of classification task was gradually increased from binary to
ternary and quaternary classification. Tables 6 and 7 show the class distribu-
tion in train, validation and test splits for this multi-class setting. For ternary
classification we used the criterion used by [6], as shown in Fig. 4.

Table 6. Class distribution for 4-
class classification

Grade EyePACS Messidor

Train Validate Test Train Validate Test

0 22668 2744 24741 346 49 151

1 6157 1433 7196 107 16 30

2 685 166 753 155 22 70

3 490 126 733 92 13 149

Total 30000 4469 33423 700 100 400

Table 7. Class distribution for 3-class
classification

Grade EyePACS Messidor

Train Validate Test Train Validate Test

0 22668 2744 24741 346 49 151

1 6157 1433 7196 107 16 30

2 1175 292 1486 247 35 219

Total 30000 4469 33423 700 100 400

Performance of individual networks and their ensemble for ternary and qua-
ternary classification is given in Table 5. Ensemble of all models gave better
performance in this case. We also observe that the performance of NTS-Net is
higher than all other individual networks. Our accuracies for both ternary and
quaternary classification are superior than accuracies reported by Lam et al. [6].
Figure 5 provides a detailed overview of classification performance of ensemble.

N/AB EyePACS R/NR EyePACS 3-Class EyePACS 4-Class EyePACS

N/AB Messidor R/NR Messidor 3-Class Messidor 4-Class Messidor

Fig. 5. Confusion matrices for EyePACS and messidor for all classification tasks. N/AB
refers to normal vs abnormal; R/NR refers to referable vs non-referable
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4 Conclusion

Diabetic Retinopathy detection using retinal fundus images is a fine-grained
classification task. The biomarkers of this disease on retinal images are usually
very small in size, especially for early stages, and are scattered all across the
image. The ratio of pathologically important region to the whole input volume
is therefore minuscule. Due to this reason traditional deep CNNs usually struggle
to identify regions of interest and do not learn discriminatory features well. This
problem of small and distributed visual artefacts coupled with unavailability
of large publicly available high-quality dataset with reasonable class imbalance
makes DR detection particularly challenging for deep CNN models. However,
fine-grained classification networks have high potential to provide standardized
and large-scale initial screening of diabetic retinopathy and help in prevention
and better management of this disease. These networks are equipped with spe-
cialized algorithms to discover the important region from the image and pay
particular heed to learn characterizing features from those regions.

We achieved superior performance for diabetic retinopathy detection on
binary, ternary and quaternary classification tasks than many previously
reported results. However, due to hugely different experimental setups and choice
of performance metrics, it is unfair to draw a direct comparison with any of the
cited research. Nevertheless, we have provided a wide spectrum of performance
metrics and detailed experimental setup for comparison by any future work.
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Abstract. Investigations in how the retinal microvasculature correlates
with ophthalmological conditions necessitate a method for measuring the
microvasculature. Optical coherence tomography angiography (OCTA)
depicts the superficial and the deep layer of the retina, but quantifica-
tion of the microvascular network is still needed. Here, we propose an
automatic quantitative analysis of the retinal microvasculature. We use
a dictionary-based segmentation to detect larger vessels and capillaries in
the retina and we extract features such as densities and vessel radius. The
method is validated on repeated OCTA scans from healthy subjects, and
we observe high intraclass correlation coefficients and high agreement in
a Bland-Altman analysis. The quantification method is also applied to
pre- and postoperative scans of cataract patients. Here, we observe a
higher variation between the measurements, which can be explained by
the greater variation in scan quality. Statistical tests of both the healthy
subjects and cataract patients show that our method is able to differen-
tiate subjects based on the extracted microvascular features.

Keywords: OCTA · Dictionary-based segmentation · Quantification

1 Introduction

An important function of the retinal microvasculature is to supply the inner
retinal layers with nutrients and oxygen. Disturbances in the vasculature occur
in many eye diseases. Hence, the state of the retinal microvasculature could
be an important health indicator for certain eye-related conditions. One of the
specific clinical problems motivating our work is assessing the risk for developing
pseudophakic macular edema after cataract surgery. Our future objective is to
investigate the influence of parameters related to the risk of edema development.
We are therefore in need of a method to characterize the retinal microvasculature.
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The retinal microvasculature is visible in images captured using the non-
invasive modality, Optical Coherence Tomography Angiography (OCTA). The
visualisation of the microvasculature is often susceptible to noise, potentially
leading to misinterpretation by the operator. For the same reason, automated,
clinically useful methods for extracting the vasculature from OCTA images are
scarce. Methods based on user-provided annotations of various objects in large
image data sets are often capable of handling a significant noise level. Unfortu-
nately, obtaining sufficient pre-annotated data is time consuming and therefore
costly.

In this paper, we present an approach for quantifying retinal microvasculature
from OCTA images which utilizes a very limited amount of pre-annotated data.
We present an investigation of the method with a focus on reproducibility and
feasibility of extracting microvascular features.

1.1 Related Work

Since the first clinical studies on OCTA were published in 2014, several quantifi-
cation schemes for OCTA images have been invented with varying complexity
and quality. Most studies use their own quantification algorithm, where the ves-
sel detections vary from using global thresholding [11], binarization and skele-
tonization [12], to more complex filtering and thresholding approaches [3,14].
More advanced methods include local fractal dimension [9], and a probabilistic
model utilizing the 3D spatial information from both the superficial and the
deep layer [8]. Some OCTA devices provide proprietary software for extracting
vessel densities, e.g. the AngioVue OCTA system (Optovue, Inc., Fremont, CA,
USA) [16], Cirrus (Carl Zeiss Meditec, Inc., Dublin, CA, USA) [7], and RS-3000
Advance (NIDEK, Gamagori, Japan) [1].

Two groups compare available macular vessel density algorithms [18,20].
Shoji et al. [20] assess binarization algorithms in ImageJ (National Institutes
of Health, Bethesda, MD, USA) on data obtained from two OCTA systems,
while Rabiolo et al. [18] compare seven previously published quantification algo-
rithms, concluding that the estimated densities are significantly different for each
algorithm. Both studies therefore recommend using the same quantification algo-
rithm in longitudinal follow-up, and note that vessel density is dependent on both
the OCTA device, the acquisition size, and the post-processing algorithm, and
hence comparisons to other studies or databases should be done with care.

Due to the lack of a standardized quantification method, we choose to develop
an algorithm that in later work can be used for assessing the risk of edema
development. In our detection we differ between capillaries and larger vessels.
This is because larger vessels influence the estimate of the capillary density.
Other groups try to overcome this by filtering [2] or computing the skeleton den-
sity [14,18]. Our approach allows for more precise description of the vasculature.
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2 Proposed Approach

We propose using a dictionary-based method for segmenting and detecting the
vascular network in the parafoveal region, i.e. the region around fovea. Our
approach is motivated by the assumption that the appearance of the vascular
network may be described as a combination of a limited number of characteristic
image features.

2.1 Dictionary-Based Segmentation

The success of the quantification highly relies on its ability to detect capillaries
and larger vessels. We are using a probabilistic pixel classification method for
segmenting the OCTA images [5,6], where pre-segmented data is used to learn a
dictionary of image patches with corresponding label information. The method
was originally developed for texture segmentation [4].

In short, the dictionary-based method involves two steps: building the dic-
tionary by using pre-annotated data, and processing previously unseen images.
Building the dictionary relies on two processes: defining dictionary clusters which
encode local appearance of OCTA images, and learning the desired segmentation
for the dictionary clusters by incorporating manual annotations. In our case, the
pre-annotated data consists of one training image. For the clustering process, we
extract local features from the training image. We choose to use the following
features: the intensities from a patch around a pixel, and the first and the sec-
ond degree image derivatives computed in a patch around a pixel. To reduce the
dimensionality of the feature vectors, we perform principal component analysis
(PCA) on the set of features from the training image. Once we have extracted the
local features, we perform k-means clustering to obtain cluster centers, which
in our context constitute the dictionary. The assumption behind clustering is
that the variability in the local appearance of retinal images may be explained
using a limited set of clusters. The learning process is performed by extending
the dictionary with user-provided labeling. For each cluster in the dictionary,
we access the pixels belonging to this cluster, and average the available pre-
annotated information. The assumption behind learning is that pixels belonging
to the same cluster should have a similar segmentation.

The segmentation of the unseen image is now performed by extracting local
features and assigning them to the dictionary clusters. Then we obtain the
desired segmentation information from the dictionary. We refer the reader to
[6] for details.

Choosing the Appropriate Parameters. In our dictionary for retinal
microvasculature, we work with three classes: capillaries, larger vessels (arte-
rioles and venules), and background. Larger vessels are defined as vessels of
twice (or more) the radius of the capillaries. Similarly to the study by Eladawi
et al. [8], manual annotations are produced and used as ground truth (GT). Two
images acquired as described in Sect. 3.1 were annotated manually by AMEE.
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(a) Training image (b) GT

(c) Validation image (d) GT (e) Segmentation output

Fig. 1. Subfigures (a) and (b) show the image used for building the dictionary and cor-
responding ground truth annotation. Subfigures (c) and (d) show the validation image
and corresponding manual annotation used for choosing model parameters. Subfigure
(e) shows the segmentation output of the validation image.

One image is used for creating the dictionary (Fig. 1a and b), and the other is
used for choosing the parameters and for validation (Fig. 1c–e).

The dictionary is built using the features from both the image seen in Fig. 1a
and from a 90 degree rotated version. We use 50.000 patches of size 7× 7 pixels
to build the PCA co-variance matrix. The 10 biggest PCA features are kept.
Afterwards, we build a k-means tree with 5 layers and a branching factor of 5
from 100.000 training patches of size 13×13 pixels. Further, we compute a 3×3
weight matrix such that the resulting class probabilities of the training image
equal the annotated class labels.

We optimize the parameters for the PCA patch size and the cluster patch size
with respect to the validation image and GT image shown on Fig. 1c and d. Dice
scores between the manual segmentation (Fig. 1d) and the resulting segmentation
(Fig. 1e) are 0.82 for larger vessels, 0.71 for capillaries, and 0.76 for background.
The corresponding Jaccard scores are 0.70, 0.56, and 0.62.

2.2 Quantitative Analysis (Values VD, CD, BD, and VR)

We extract different measures in order to quantify the vascular network in the
superficial retinal layer (SRL) and the deep retinal layer (DRL) of OCTA data.
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(a) ETDRS grid (b) Segmented capillaries

0

42

(c) Vessel radius in µm.

Fig. 2. Illustration of the quantification. Subfigure (a) shows the modified ETDRS grid
where the foveal center is defined as the center of the avascular zone, the radius of the
central area is 0.5 mm, and the parafoveal zone is defined as the annulus with radius
0.5 mm and 1 mm. Letters F, S, I, N and T stand for fovea, superior, inferior, nasal
and temporal, respectively. Subfigure (b) shows detected capillaries used to compute
the capillary density. Subfigure (c) shows the radius of the larger vessels in µm.

We divide the parafoveal area into sections using the Early Treatment Diabetic
Retinopathy Study (ETDRS) grid [10], see Fig. 2a. Due to the size of the OCTA
images, the area of interest was limited to the circular radius of 1 mm from the
foveal center. In each section, we analyze the densities of capillaries, larger vessels
and background, and compute the mean radius of the larger vessels.

The area densities of each class are computed for each section as a unit-less
ratio between the amount of pixels belonging to that specific class and the total
amount of pixels in the section. Figure 2b shows the binary map of the capillaries
in the five sections. We compute the vessel density (VD), the capillary density
(CD) and the background density (BD) in the SRL. These abbreviations will be
used from now on in this paper. In the DRL, we assume that only capillaries are
present, so here we use the same segmentation model as in the SRL but combine
the classes for capillaries and larger vessels. In the SRL, we compute the vessel
radius of the larger vessels by first median filtering the binary class mask with
a 3 × 3 neighborhood. We then compute the skeletonization of the output and
compute the signed Euclidean distance field to the pixel center in order to obtain
the distance to the closest boundary. In order to visualize the vessel thickness
(Fig. 2c), the radius is plotted by dilating it with a disk shaped structure.

For every scan, the mentioned metrics in the five areas and in the two lay-
ers are concatenated into a feature vector, which is used in the analysis. The
complete approach was implemented in MATLAB v9.5 (Mathworks, Inc.).

3 Validation of Approach

The robustness of the proposed method is validated by applying it to data from
healthy subjects acquired under three different scenarios but with an expectancy
of no significant changes in the capillary network. We therefore hypothesize
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that there will be limited variation in the extracted features for each subject
throughout the different scans. In order to test the feasibility of the method
for abnormal eyes, we apply the method on OCTA data from cataract patients
before and after surgery. We here hypothesize that there will be more variation
in the extracted features.

3.1 Data and Scanning Protocol

All data are acquired using either a swept source DRI OCT Triton or a swept
source DRI OCT-1 Model Triton (plus), both from Topcon Medical Systems, Inc.
The size of the scanning frame is 3 × 3 mm2 centered on the macular region. The
participants are instructed to fixate on a central object in order for the fovea to
be located in the center. The retinal tissue layers are automatically segmented
by the Topcon Advanced Boundary Algorithm (Topcon Medical Systems, Inc.).
However, if the operator deems it necessary, the retinal layers are adjusted man-
ually in IMAGEnet 6, a browser-based software provided by Topcon Medical
Systems, Inc. The layers are accessed in order to find the foveal center for the
post-processing. Due to displacements from motion artefacts, different scans of
the same patient are inspected in order to determine the center across scans. En
face angiograms of the superficial retinal layer (SRL) and the deep retinal layer
(DRL) are exported in JPG format. The OCTA images have dimension 320×320
pixels with a pixel resolution of 9.38 µm. The OCTA images are included if the
image quality provided by the Triton OCT is 50 or more, if there are no blink- or
movement artefacts, and if an area with a radius of 1 mm from the foveal center
is visible.

Healthy Data Set (Scenarios H1, H2, and H3). To develop and validate
the analysis method, we have chosen to acquire a high quality data set contain-
ing OCTA images from 10 healthy subjects at three different scenarios denoted
H1, H2 and H3. In scenario H1, the pupil is undilated, in scenario H2, the
pupil is medically dilated (using eye drops; Tropicamid (Mydriacyl) 1%), and
in scenario H3, the pupil is dilated and the subject has just walked briskly 5–7
flight of stairs. Between the first and second scenario, the optical quality of the
eye changes because dilating the pupil allows more light to enter and exit the
eye. We can hence test the effect of the amount of entered light. Between the
second and the third scenario, we can test the robustness of the method with
respect to potential perfusion changes from the exercise. The OCTA recordings
are repeated until the quality-requirements described above are fulfilled. All sub-
jects have normal visual acuity and no systemic or ocular disease. The visual
acuity is measured in ETDRS letters. When converted into Snellen equivalent,
the mean best corrected visual acuity is 1.25 (range 1.0 to 2.0). Maximal refrac-
tion is within +/− 3 D. We examine one eye from each of the 10 subjects, where
5 are male and 5 are female, and there are 5 left eyes and 5 right eyes. The mean
age is 32.4 years with a standard deviation of 8.5.
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Cataract Data Set (Scenarios C1 and C2). For investigating how the
method performs with lower quality data, OCTA images from cataract patients
who underwent cataract surgery are obtained preoperatively (denoted C1) and
three weeks postoperatively (denoted C2). The pupil is medically dilated using
eye drops (Tropicamid (Mydriacyl) 1% and Phenylephrine (Metaoxedrin) 10%)
on the preoperative images but not on the postoperative ones. OCTA images
from 44 consecutive patient records are reviewed by AMEE and JHE, and 10
of these are found to comply with the above mentioned quality criteria on both
pre- and postoperative images. Of the 10 included patients, 8 are female and 2
are male, and there are 5 left eyes and 5 right eyes. The mean age is 70.3 years
with a standard deviation of 5.5.

3.2 Statistical Analysis

In order to estimate the reproducibility of the method, we compare the differ-
ent scanning scenarios of the healthy subjects. The intraclass correlation coef-
ficient (ICC) is computed along with its 95% confidence intervals. The ICC
describes both the correlation and the agreement of the measurements [17] and
is used in most repeatability studies [14,18,20]. We use a single-rating, absolute-
agreement and 2-way mixed-effect model using a MATLAB function provided
by Salarian [19]. ICC values under 0.5 indicate poor reliability, between 0.5 to
0.75 moderate reliability, between 0.75 and 0.9 good reliability, and over 0.9
excellent reliability [15]. We use Bolt-Altman analysis to evaluate the agreement
between the measurements, where we report the mean difference and the limits
of agreement, which are set to 1.96 standard deviation, as done in [18]. We also
perform a t-test for paired measurements as in [1,20], where p-values less than
0.05 are considered significant.

We use factor analysis for analyzing the healthy data set and the cataract
data set. Since we only have few observations and variables of high dimensions
(the feature vector for every scan), we apply a principal axis factoring in order
to decrease the number of dimensions. We use the varimax rotation to ease the
interpretation of the factors. The sample means of each factor score are then
compared using a multivariate two-sided analysis of variance (MANOVA) for
the different groups as well as between all subjects. These statistical analyses
are performed in SAS Studio, 3.8, SAS Institute Inc., Cary, NC, USA, and the
reported p-values are the Wilks’ lambda statistic.

4 Results

Figure 3a–d show a good quality OCTA scan from a healthy subject and
the resulting segmentation and radius information. Similarly, Fig. 3e–h show a
reduced quality OCTA scan from a healthy subject included in the study. The
average of the extracted metrics (used in the feature vector) of the healthy
patients can be seen in Table 1. The ICC and Bolt-Altman analysis for the
healthy subjects and cataract patients are reported in Table 2.
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Table 1. Mean and standard deviation of the features for all healthy subjects in all
three scenarios (F: Fovea, I: Inferior, S: Superior, N: Nasal, T: Temporal, VD: Vessel
density, CD: Capillary density, VR: Vessel radius in µm).

SRL-F SRL-I SRL-S SRL-N SRL-T

VD 0.0025 (0.0031) 0.047 (0.018) 0.053 (0.020) 0.026 (0.015) 0.034 (0.029)

CD 0.26 (0.067) 0.44 (0.069) 0.47 (0.048) 0.45 (0.054) 0.45 (0.069)

VR 5.89 (5.52) 13.66 (1.62) 14.73 (2.01) 13.24 (2.91) 12.70 (2.28)

DRL-F DRL-I DRL-S DRL-N DRL-T

CD 0.21 (0.075) 0.61 (0.062) 0.61 (0.055) 0.57 (0.061) 0.55 (0.067)

(a) SRL

0

52

(b) SRL output (c) DRL (d) DRL output

(e) SRL

0

71

(f) SRL output (g) DRL (h) DRL output

Fig. 3. Examples of segmentation output. Subfigures (a)–(d) illustrate the quantifica-
tion of a good and clear OCTA, and (e)–(h) illustrate the quantification of a blurry
OCTA. Subfigures (b) and (f) show the larger vessel radius in µm.

We apply a factor analysis on the healthy subjects containing 30 observa-
tions where each has a 20-dimensional variable. Six factors are selected, which
account for 84.65% of the variation in the data. An arbitrary threshold of ±0.5 is
applied to ease the interpretation of the rotated factor pattern. The linear com-
binations of the resulting variables explaining each factor are shown in Table 3.
When applying the MANOVA to the factor scores, we do not observe an effect
in-between the three pupil scenarios (p = 0.9513), but there is a highly signifi-
cant difference between the different subjects (p < 0.0001). We also perform a
factor analysis of the cataract patients in a similar way. Here, we obtain different
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Table 2. Comparisons between the different groups, H1: Healthy with undilated pupil,
H2: Healthy with dilated pupil, H3: Healthy with dilated pupil after exercise, C1:
Cataract patients preoperative, C2: Cataract patients postoperative. Reporting the
MD: mean difference, LoA: limits of agreement, ICC: Intraclass correlation coefficient,
CI: confidence interval. For the variables VD: Vessel density, CD: Capillary density,
BD: Background density, VR: Vessel radius.

Comparison Agreement Reliability Pairwise
comparison

Group 1Group 2 Metric MD LoA ICC (95% CI) P-value

H1 H2 SRL CD −0.0057 −0.11/0.10 0.86 (0.76, 0.92) 0.47

H1 H2 SRL VD −0.0014 −0.020/0.018 0.93 (0.88, 0.96) 0.32

H1 H2 SRL BD 0.0071 −0.11/0.12 0.85 (0.78, 0.92) 0.41

H1 H2 SRL VR −0.68 −6.32/4.97 0.79 (0.65, 0.87) 0.10

H1 H2 DRL CD −0.011 −0.14/0.12 0.92 (0.86, 0.95) 0.23

H2 H3 SRL CD 0.0039 −0.10/0.11 0.86 (0.77, 0.92) 0.67

H2 H3 SRL VD −0.00050 −0.018/0.017 0.94 (0.89, 0.96) 0.69

H2 H3 SRL BD −0.0027 −0.11/0.11 0.88 (0.79, 0.93) 0.74

H2 H3 SRL VR −0.50 −4.36/3.36 0.89 (0.81, 0.94) 0.079

H2 H3 DRL CD 0.0040 −0.12/0.11 0.93 (0.89, 0.96) 0.63

C1 C2 SRL CD 0.049 −0.12/0.22 0.65 (0.36, 0.81) <0.001

C1 C2 SRL VD 0.0026 −0.029/0.035 0.80 (0.67, 0.88) 0.27

C1 C2 SRL BD −0.052 −0.23/0.13 0.68 (0.41, 0.83) <0.001

C1 C2 SRL VR 0.65 −6.90/8.20 0.73 (0.57, 0.84) 0.13

C1 C2 DRL CD −0.018 −0.18/0.14 0.90 (0.82, 0.94) 0.24

linear combinations describing 7 factors (accounting for 89.15% of the variation
in the data). We do not observe a significant difference between the pre- and
postoperative scans (p = 0.2471), but the difference between the subjects is still
very significant (p < 0.0001).

5 Discussion

The relatively high Dice and Jaccard scores of the validation image in Fig. 1e indi-
cate an adequate segmentation performance of the proposed dictionary model. A
typical misclassification seen in our results is when bigger capillaries and smaller
vessels are not distinguished. However, this is to be expected, as it is also difficult to
manually set the border between the two classes. The quality of the OCTA image
in Fig. 3e–h makes it difficult to distinguish the capillaries manually, and the algo-
rithm is challenged as well.
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Table 3. Factors for healthy subjects, where SRL: Superficial retinal layer, DRL: Deep
retinal layer, F: Fovea, I: Inferior, S: Superior, N: Nasal, T: Temporal, VD: Vessel
density, CD: Capillary density, BD: Background density, VR: Vessel radius.

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

SRL-F CD: 0.64 SRL-S VR: −0.72SRL-F CD: 0.54 SRL-S CD: 0.73 SRL-I CD: 0.85 SRL-N CD: 0.84

SRL-T VD: 0.83SRL-N VR: 0.66 SRL-N VD: 0.83 SRL-T CD: 0.82 DRL-S CD: −0.53SRL-I VD: −0.52

SRL-F VD: 0.95 SRL-I VR: −0.68 SRL-N VR: 0.55 SRL-S VD: −0.68DRL-I CD: 0.83

SRL-T VR: 0.60DRL-S CD: 0.57 SRL-T VR: 0.61

SRL-F VR: 0.85 DRL-N CD: 0.67 DRL-F CD: 0.66

DRL-T CD: 0.91

5.1 Discussion of Healthy Subjects

The retinal capillary density is generally reported to be between 30–60%, and
the great variation in different studies is due to different OCTA devices and
methods [13]. Our capillary density estimates lie within this range (see Table 1)
and are hence realistic, although cross-study comparisons should be done with
care. The ICC values in Table 2 between H1 and H2 all vary between moderate to
excellent, being highest for SRL VD and lowest for SRL VR. Similar trends can
be seen when comparing H2 and H3, although here all ICC values are higher. We
also see that the mean differences all lie close to zero, although the radius seems
to have a small bias as well as a higher dispersion in the measurements. When
looking at the pairwise comparison, no significant difference is observed between
the different scanning scenarios. One reason why the vessel radius stands out in
high dispersion could be due to a greater variation in the segmentation at the
border between larger vessels and capillaries, and because of the hard margins
between the ETDRS-sections.

When investigating the estimated factors from the factor analysis seen in
Table 3, one can observe anatomical patterns. E.g. Factor 1 explains the capillary
and vessel densities as well as the radius in the foveal and temporal region in
the superficial layer. The MANOVA-test on the factor scores shows no difference
between the three scenarios (H1, H2 and H3), and hence we can conclude that
neither the dilation nor the exercise has an effect on the extracted metrics. We
did however observe a difference between subjects, which means that each feature
vector is representative of its subject, and hence that the extracted metrics are
subject-specific.

5.2 Discussion for Cataract Patients

In Table 2, we see more variation in the quantitative metrics for the cataract
patients, and decreased agreement and reliability compared to the healthy sub-
jects. The quality of the cataract OCTA data is generally lower compared to
the healthy subjects. Although it should be noted that all images used in this
study were subjected to high quality requirements (compared to the common
state of cataract patient data) in our selection process. The quality did however
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vary in both scenarios (pre- and postoperative). One reason for the great vari-
ation could be the optical deterioration of the lens preoperatively which results
in a more blurry image, whereas the postoperative images were performed on an
undilated pupil. Even though we did not observe a difference between undilated
and dilated pupils for the healthy subjects, this could still have an effect for the
older population. Obtaining an OCTA image with good image quality is chal-
lenging in cataract patients due to several reasons. The cataract itself worsens
the optic quality of the image and patients may have difficulty focusing, which
in turn may lead to small movements of the eye when the image is taken, caus-
ing artefacts. Furthermore, many cataract patients suffer from dry eyes and/or
blepharitis, which causes irritation and blinking during the acquisition. Finally,
the quality of the procedure is also dependent on the operator in terms of giving
good instructions to the patient and securing a well focused image.

Finer details, like capillaries, typically suffer most by the reduced quality in
the cataract patients. This is supported by the significantly different SRL CD
and SRL BD in the pairwise comparison. We did not observe any significant
difference between the pre- and postoperative scans in the factor analysis, which
can also be explained by the varying data quality in both scenarios – although
a smaller p-value (p = 0.2471) suggests using a larger sample size.

Only a small circular area is used in the quantitative analysis. The method
and the analysis could be improved by extending the area of interest through
technical adjustments such that more information would be included. Ongoing
improvements in OCTA systems to obtain a larger acquisition size would also
facilitate this. Furthermore, additional metrics describing the microvasculature
could be interesting to include. This can easily be added in the analysis pipeline,
since the factor analysis is able to handle more variables than observations, while
still explaining most of the variability in the data. This is only a preliminary
investigation of the approach, and therefore there is still a need to evaluate it in
other pathological conditions and on images captured in different devices.

6 Conclusion

This paper presents a new method that automatically quantifies the retinal vas-
culature in the superficial and deep layer. This is done through feature-based
segmentation of the larger vessels and capillaries and through extracting metrics
like densities and vessel radius from the segmentation. The method is validated
on three repeated scans on healthy subjects in normal state (undilated pupil),
with dilated pupil, and dilated pupil combined with exercise. The repeated scans
are highly correlated showing that the reproducibility of our method is good. We
do not see a difference between the scanning scenarios, although there is a dif-
ference between each subject demonstrating that the method is sensitive to vari-
ation in the structure of the vasculature. We also show that the method can be
applied to cataract operated patients. This shows great promise for extending the
method in order to investigate if there are features in the microvasculature that
are important for the risk of developing macular edema after cataract surgery.
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Abstract. The zebrafish is an established vertebrate model to study
development and disease of the cardiovascular system. Using transgenic
lines and state-of-the-art microscopy it is possible to visualize the vascu-
lar architecture non-invasively, in vivo over several days. Quantification
of the 3D vascular architecture would be beneficial to objectively and reli-
ably characterise the vascular anatomy. So far, no method is available
to automatically quantify the 3D cardiovascular system of transgenic
zebrafish, which would enhance their utility as a pre-clinical model. Vas-
cular segmentation is essential for any subsequent quantification, but
due to the lack of a segmentation “gold standard” for the zebrafish
vasculature, no in-depth assessment of vascular segmentation methods
in zebrafish has been performed. In this study, we examine vascular
enhancement using the Sato et al. enhancement filter in the Fiji image
analysis framework and optimise the filter scale parameter for typical ves-
sels of interest in the zebrafish cranial vasculature; and present method-
ological approaches to address the lack of a segmentation gold-standard
of the zebrafish vasculature.

Keywords: 3D · Analysis · in vivo · LSFM · Sato filter ·
Segmentation · Vasculature · Zebrafish

1 Introduction

1.1 Zebrafish as a Model in Cardiovascular Research

Zebrafish are an increasingly used vertebrate model to study mechanisms of car-
diovascular development and disease. Characteristics, such as genomic similarity
to human, high fecundity, and rapid ex utero development allow use of zebrafish
in various fields of translational biology [1].

In zebrafish, establishment of a basic cardiovascular system occurs within 24
hours post fertilization (hpf) in parallel to basic body-plan establishment [2],
allowing the study of vascular development in a short time window.
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The availability of cell-specific fluorescent transgenic reporter lines allows visu-
alization of structures of interest, such as endothelial cells which outline the vas-
cular lumen, and imaging of these in living animals. Moreover, with the emer-
gence of new microscopy techniques, such as light sheet fluorescence microscopy
(LSFM), it is now possible to acquire vascular information in greater anatomical
detail and over prolonged periods of time [3]. Together, transgenic lines and LSFM
have replaced the need for laborious microangiography to visualize the vascula-
ture and helped overcome limitations of tissue penetration during image acquisi-
tion. Hence, datasets acquired are highly rich in information as well as anatomical
depth and detail. This means that the limitation of experimental throughput and
assessment has become data analysis, rather than data acquisition.

1.2 Previous Work Aimed at Quantifying the Vascular System
in Zebrafish

While some aspects of the zebrafish vascular architecture are obvious without
quantification (such as increasing network complexity during development), oth-
ers may be too subtle for human perception (such as diameter changes). Compu-
tational quantification of the vascular architecture in 3D is not just more com-
prehensive (eg. vessel diameter, length, branching, etc.), but also reproducible
(eg. overcoming subjective bias or inter-observer variability) than human assess-
ment. However, while quantification of vascular geometry is widely applied in
the medical field, it has received less attention in pre-clinical models such as
zebrafish.

Analysis of the zebrafish trunk vasculature was previously investigated by
Feng et al. [4–7] using microangiography to visualize perfused vessels with seg-
mentation based on active contours with the assumption of locally tubularity of
vessels. Segmentation of the trunk vasculature in a transgenic reporter line visu-
alized with LSFM was presented in a technical report using a vascular enhance-
ment method based on the assumption that vessels were locally tubular [8,9].
This report did not give further specification about parameter optimization
or applicability of the presented method to other vascular beds or transgenic
reporter lines. Quantification of left hind-brain vessels in zebrafish was previ-
ously performed by Tam et al. [10]. Measurements of vessel density and diameter
were performed using commercial software. Unfortunately, no further specifica-
tion was given about pre-processing steps or parameter settings, so replication
of this method is not possible. Quantification of the mid-brain vasculature in
zebrafish was performed by Chen et al. [11]. Measurements obtained included
branching points, diameter, and vascular hierarchy. However, the use of commer-
cial software and lack of documentation again prevented any further assessment
of the proposed approach. In addition, the implemented method focused only on
a sub-region of the cranial vasculature (mid-brain vessels called middle mesen-
cephalic cerebral arteries and posterior mesencephalic cerebral arteries), rather
than the whole cranial vasculature.
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Previously we presented methods to enhance the zebrafish cranial vascu-
lature using general filtering (GF; Median Filter and Rolling ball) [12] and
enhancement utilizing the Hessian matrix with the assumption of local vessel
tubularity, based on the filter proposed by Sato et al. [9,13]. This was further
complemented by investigation of different segmentation approaches which were
readily implemented in the Fiji image analysis framework [14]. We showed that
Otsu thresholding delivered more robust segmentation results than the tested
k-means clustering, statistical region merging, or fast-marching level set method
implementations.

We showed that lumenized vessels displayed a cross-sectional double-peak
intensity distribution, while small/unlumenized vessels had a single-peak distri-
bution. The appearance of both within the same sample cautioned us to produce
an image analysis pipeline, which would enhance and segment lumenized and
unlumenized vessels to a similar degree.

1.3 Contributions of This Work

In this work, we extend our previous study by providing an analysis of the
impact of input shapes (modelled tubes) as well as of the scale (sigma) of the
Sato filter on the segmentation outcome; and also quantitative measures using
the Full-Width Half Maximum (FWHM).

While reasonably extensive anatomical knowledge and some phantom models
are available in the medical field for validation of vessel segmentation and quan-
tification approaches, these points of reference are lacking for zebrafish. Hence,
we present several methodological approaches to allow the assessment of seg-
mentation robustness and sensitivity without the availability of a gold-standard
or phantom model for the zebrafish cranial vasculature. This was achieved by
analysis of datasets which challenged segmentation robustness and sensitivity
to understand whether true biological quantifications could be extracted. These
examined datasets were composed as follows: (i) Investigation of data with a
controlled decrease of image quality by reduction of laser power during repeated
image acquisition to assess noise sensitivity. (ii) Vascular volume quantification
in a double-transgenic line with two reporter lines displaying different image
properties (signal levels and fluorophore expression pattern), to assess whether
similar segmentation robustness could be achieved. (iii) Segmentation and vol-
ume quantification in samples prior to and after exsanguination to assess seg-
mentation sensitivity to subtle biological changes.

2 Materials and Methods

2.1 Zebrafish Husbandry

Conduction of experiments was done conforming to the rules and guide-
lines of institutional and UK Home Office regulations under the Home Office
Project Licence 70/8588 held by TC. Maintenance of adult transgenic zebrafish
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Tg(fli1a:eGFP)y1 [15] and Tg(kdrl:HRAS-mCherry)s916 [16] was conducted
according to previously described standard husbandry protocols [17]. Embryos,
obtained from controlled mating, were kept in E3 medium (5mM NaCl, 0.17mM
KCl, 0.33mM CaCl and 0.33mM MgSO4 diluted to 1X E3 with distilled H2O)
buffer with methylene blue and staged according to Kimmel et al. [2].

2.2 Image Acquisition Settings, Properties and Data Analysis

Anaesthetized embryos were embedded in 2% LM-agarose with 0.01% Tricaine
in E3 (MS-222, Sigma). Data acquisition of the cranial vasculature was per-
formed using a Zeiss Z.1 light sheet microscope, Plan-Apochromat 20x/1.0 Corr
nd = 1.38 objective, dual-side illumination with online fusion, activated Pivot
Scan, image acquisition chamber incubation at 28 ◦C, and a scientific com-
plementary metaloxide semiconductor (sCMOS) detection unit. The properties
of acquired data were as following: 16bit image depth, 1920× 1920× 400-600
voxel (x, y, z) image with an approximate voxel size of 0.33× 0.33× 0.5µm,
respectively. Multi-colour images in double-transgenic embryos were acquired in
sequential mode. All image analysis, pre-processing and segmentation were per-
formed using the open-source software Fiji [14]. Motion correction was performed
as in [12].

2.3 Datasets

Modelled Tubes. Modelled tubes (hollow, filled and Gaussian blurred) were
produced manually with uniform signal intensity of 255 against zero background
intensity circular ROI selection using Fiji [14]. Tubes were produced to resem-
ble the following biological settings: (i) hollow tubes - 20µm outer diameter
(1.13µm wall thickness), 8.3µm outer diameter (0.8µm wall thickness), 5µm
outer diameter (0.6µm wall thickness); resembling lumenized vessels; (ii) filled
tubes - resembling unlumenized vessels (with the same outer diameter as above);
(iii) Gaussian blurred tubes - Gaussian filter with sigma 5vx; resembling a
more realistic intensity distribution of fluorescence; (iv) increasing noise -
Gaussian white noise with standard deviation 25, 50 or 100 (zero background
intensity); resembling autofluorescence and background noise.

Transgenic Zebrafish. Data were acquired as described in Sect. 2.2. Data to
test vascular enhancement approaches were acquired at 4 days post fertiliza-
tion (dpf). Data analysed for assessment of segmentation robustness included
the following: (i) Dataset with controlled decrease of vascular contrast-to-
noise ratio (CNR) by decrease of laser power during repeated acquisition [12]
(laser power 1.2%, 0.8% and 0.4%; exposure 30 ms for all; n = 10 embryos
from 2 experimental repeats); (ii) 4dpf double-transgenic Tg(fli1a:eGFP)y1,
Tg(kdrl:HRAS-mCherry)s916 (n = 21 embryos from 2 experimental repeats); (iii)
Exsanguination by mechanical opening of heart cavity with forceps was done in
4dpf Tg(kdrl:HRAS-mCherry)s916 (n = 16 embryos from 2 experimental repeats).
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2.4 Image Enhancement, Segmentation and Total Vascular Volume
Measurement

The following vascular enhancement methods were studied: (i) General filtering
(GF): 2D median filter with a radius of 6 voxels (13-by-13 neighbourhood) [18]
and rolling ball algorithm of size 200 [19], as presented in [12]. (ii) Tubular Filter-
ing (TF): Enhancement based on the line enhancement filter presented by Sato
et al. [9] with the assumption of local vessel tubularity, as implemented into the
Fiji Tubeness Plugin by Mark Longair, Stephan Preibisch and Johannes Schin-
delin [14], as presented in [13]. Segmentation of enhanced images was performed
using global Otsu thresholding [20] to distinguish vascular from non-vascular
information. Following segmentation, the total dorsal cranial vascular volume
was quantified in the cranial region of interest (ROI) as described in [12].

2.5 Tubular Filtering Enhancement Evaluation

The modelled tubes were used to establish the Sato filter response for different
types of tubes when the filter is applied with varying scale parameters. We
were particularly interested in establishing how the filter responds to a double-
peak distribution from a hollow tube, as typically found in lumenized vessels.
At present, these responses were judged by visual assessment. Manual diameter
measurements were taken from a variety of cranial vessels using original images
in the dataset consisting of 4dpf embryos (single measurement in z-plane at
the middle of vessel; n = 12 4dpf embryos). Vessels studied in this work were the
central artery (CtA), middle mesencephalic central artery (MMCtA), primordial
midbrain channel (PMBC) and basal aorta (BA). Intensity profiles were plotted
for each vessel using a line ROI in original, enhanced, and segmented images
(obtained from same measurement position as manual measurement). FWHM
was quantified from extracted cross-sectional line ROIs using Matlab. Images
were segmented using the global Otsu thresholding approach [13] to extract
the vasculature and produce binary masks from which corresponding intensity
profiles could be plotted and vessel diameters identified. For data representation
intensity profiles and vessel diameter measurements were averaged.

2.6 Statistics and Data Representation

Gaussian distribution conformation was evaluated using the D’Agostino-Pearson
omnibus test [21]. Statistical analysis was performed using One-way ANOVA
or paired Students t-test in GraphPad Prism Version 7 (GraphPad Software,
La Jolla California USA). Statistical significance was represented as: p<0.05 *,
p<0.01 **, p<0.001 ***, p<0.0001 ****. Graphs show mean values ± standard
deviation. Image representation and visualization was done with Inkscape Version
0.48 (https://www.inkscape.org). Images were visualized as maximum intensity
projections (MIPs) using false-colour representation and intensity inversion where
appropriate.

https://www.inkscape.org
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3 Results and Discussion

3.1 Sato Enhancement in Fiji

The Sato filter was originally developed for vessels visualized with MRI, which
display a single-peak cross-sectional intensity profile that can be modelled with a
Gaussian distribution. In our data, we found that enhancement of vessels with a
filter scale (sigma) equivalent to the vessel diameter changed the original double-
peak distributions to a single-peak (Fig. 1A), while this was not the case when
vessels exceeded sigma size (Fig. 1b). To understand how the filter would enhance
possible scenarios of the vasculature in transgenic zebrafish we examined the fol-
lowing modelled tubes:
(i) hollow tubes: edges were successfully enhanced at a smaller scale (5µm).
Hollow tubes were converted to filled tubes (double-to-single peak conversion)
when enhancement scale was at the size of tubes (10µm; Fig. 1C). (ii) filled
tubes: tubes were successfully enhanced (Fig. 1D). (iii) Gaussian blurred tubes:
enhancement was similar to unblurred tubes (Fig. 1E). (iv) increasing noise:
addition of artificial noise at levels of 25 and 50 did significantly not alter
enhancement (Fig. 1F), while addition at a level of 100 noticeably decreased
enhancement quality.

Fig. 1. (A, B) Vessel enhancement based on the filter proposed by Sato et al. [9]
successfully enhanced vessels. Filter responses were tested on modelled tubes with (C)
3D hollow tubes, (D) 3D filled tubes, (E) 3D filled tubes with Gaussian blur, and (F)
increasing noise levels.

Together, these data suggested that enhancement at the scale of tubes of
interest would return single-peak intensity distributions regardless of the start-
ing model. Thus, lumenized and unlumenized vessels should be equally well
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enhanced when enhancement filter size was at the size of vessels of interest. Our
data also suggest that the Sato filter resulted in equivalent enhancement over
a reasonable range of noise levels. However, visual assessment of the enhanced
modelled tubes does suggest that there may be some enlargement of the apparent
vessel size, when the filter is applied at a scale equivalent to the vessel diameter,
although this is not obvious in the zebrafish data. This finding requires further
investigation.

3.2 Influence of Sato Vessel Enhancement Scale on Measured
Vessel Diameter

We next wanted to assess quantitatively the impact of the Sato enhancement
scale parameters on measured vascular diameter. This is particularly important
given the possible enlargement of apparent vessel size identified in the previous
section. We also examined whether Full-Width at Half Maximum (FWHM) was
an appropriate measure to estimate vessel diameter in our datasets and could
be used in the future to automatically quantify vessel diameters. Hence, we
compared manually measured vessel diameters to FWHM from original cross-
sectional intensity distributions (henceforth referred to as manual and original
FWHM, respectively). Four vessels of interest with different diameters were cho-
sen. Namely, central artery (CtA) 8.15± 1.27µm, middle mesencephalic cen-
tral artery (MMCtA) 9.78± 2.09µm, primordial midbrain channel (PMBC)
11.14± 1.68µm, basal aorta (BA) 22.28± 3.89µm (manual measurements). No
statistically significant differences between manual and original FWHM mea-
surements were found (Fig. 2A; CtA p> 0.9999, MMCtA p> 0.9999, PMBC
p> 0.9999, BA p 0.9879) and absolute error was as follows: CtA 1.47± 0.38µm
(17.98% from manual), MMCtA 0.92± 0.23µm (9.39% from manual), PMBC
1.38± 0.44µm (12.29% from manual), BA 3.89± 1.23µm (17.41% from man-
ual). Assessment of Pearson Correlation and Bland-Altman test showed no sys-
tematic error, suggesting that the observed differences were random. We antic-
ipate that the encountered differences were mainly due to human error during
manual measurements as well as outliers in the original measurements (Fig. 2A,
black arrowhead). The observed outliers (3 out of 48 measurements) were found
to be caused by strongly asymmetric cross-sectional double-peak intensity dis-
tributions. Together, we suggest that the FWHM can be used as a measure of
vascular diameter with the caveat that outliers need to be considered.

Quantification of vessel FWHM after Sato enhancement and diameter after
segmentation following enhancement at varying scales (5.3424µm to 30.718µm)
was performed. For the CtA, MMCtA and PMBC, the highest correlation
between manual measurements and vessel diameter after enhancement and seg-
mentation were found when the enhancement scale was at the size of the vessel
of interest (Fig. 2C, D, E). When the enhancement scale exceeded the size of
the vessel of interest, segmented vessel diameter was increased and led to over-
estimation (Fig. 2C, E; green and red). The only exception for this was found
in the BA, for which segmented vessel diameter was not drastically changed by
changes of scale size (Fig. 2E). Thus, we examined the cross-sectional intensity
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distributions in more detail and found that double-to-single peak conversions
were observed at the following scales in the CtA 8.0232, MMCtA 9.3604 and
PMBC 10.6848, while in the BA this conversion was only observed at a scale of
23.718.

To further examine the overall impact of enhancement scales on the segmen-
tation outcome, we quantified the dorsal cranial vascular volume after enhance-
ment at varying scales. We found that the vascular volume increased with
enhancement scale size (Fig. 2G); highlighting the necessity for in-depth param-
eter assessments tp avoid introducing systematic errors.

As the scale 10.6848 showed double-to-single peak conversion of most exam-
ined vessels, the following experiments were performed at this scale. In future,
it needs to be examined whether optimum scales for individual vessels can be
combined into a multi-scale approach to further improve enhancement and seg-
mentation outcomes.

3.3 Assessment of Segmentation Robustness and Sensitivity

Images with Decreasing Image Quality. To evaluate quantitatively whether
TF was more accurate and robust than the previously suggested GF approach [12],
both pre-processing methods were applied to a dataset with decreasing image qual-
ity (decreasing CNR by decrease of laser power (LP) during image acquisition).
After segmentation, the vascular volume was quantified. For both pre-processing
methods, the returned volume was not statistically significantly changed by the
CNR decrease (Fig. 3). However, the coefficient of variation (CoV), within groups
was higher after GF (LP 0.4: GF 17.56%, TF 9.14%; LP 0.8: GF 14.63%,
TF 6.97%; LP 1.2: GF 18.76%, TF 7.81%). Visual assessment showed that GF
returned more noise-speckles as vascular-positive-voxels in images with lower qual-
ity. This was probably the reason for an increase of volume with decrease of image
quality after GF, which was not observed after TF.

Double-Transgenic Samples. To further quantify segmentation robustness,
images were acquired in the double-transgenic Tg(kdrl:HRAS-mCherry)s916,
Tg(fli1a:eGFP)y1. For these, it has been previously shown that CNR levels are
statistically significantly lower [12], but, also, that the fli1a construct has a
broader expression pattern (pan-endothelial; not exclusively vascular).

Hence, segmentation was expected to be more challenging for this trans-
genic due to lower image quality and that it would return a slightly larger
vascular volume, as additional non-vascular anatomy would be segmented.
Again, GF and TF pre-processing were applied and segmentation performed.
Visual assessment showed that Tg(fli1a:eGFP)y1 was markedly less well
extracted after GF than TF. This was confirmed by quantitative comparison
of the extracted vascular volume (Fig. 3B). The volume extracted from the
Tg(kdrl:HRAS-mCherry)s916 was not statistically significantly different between
GF and TF approaches (p> 0.9999), but the extracted volume after GF showed a
higher CoV (CoV 24.37%) than after TF (CoV 10.84%). Extracted volume from
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Fig. 2. (A) FWHM was found to be a suitable measurement of vessel width (n = 12).
(B) FWHM of enhanced and segmented profiles highly correlated. (C–F) Vessel width
after enhancement and segmentation increased with enhancement scale size (black line
is original intensity profile). Best agreement of manual measurements and vessel width
was found when enhancement scale was at the size of the vessel of interest. (G) Vascular
volume quantification after enhancement and segmentation was found to increase with
scale size during the enhancement step. (Color figure online)
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the Tg(fli1a:eGFP)y1 was not statistically significantly different (p = 0.1016),
but was more variable after GF (CoV 35.97%) than TF (17.28%; p 0.1016).
These data suggested that TF prior to segmentation was more accurate in com-
parison to GF, especially in data with lower CNR.

Exsanguinated Samples. To test whether subtle biological changes could
successfully be detected, the vascular volume was quantified in embryos with
decreased vascular volume (exsanguinated) but preserved anatomy. We there-
fore compared data acquired in the same animals pre- and post-exsanguination.
Quantification after GF showed no statistically significant difference between
control and exsanguinated samples (p = 0.2596; Fig. 4A), while volumes were
statistically significant different after TF (p<0.0001; Fig. 4B; n = 16 4dpf larvae;
2 experimental repeats). Again, high CoVs were found for volumes after GF
(control 38.26%; exsanguinated 26.28%), while lower CoVs were found after TF
(control 10.22%; exsanguinated 9.65%). These data suggested that TF is more
sensitive, allowing the detection of true biological differences, while the high
variance after GF would not allow for this.

3.4 Conclusion

In this work, we presented an in-depth investigation of the Sato filter implemen-
tation, in the Fiji image analysis framework, when applied to the enhancement
of the zebrafish cranial vasculature. We presented an analysis of the impact of
scale size on modelled tubes as well as real data, finding that Sato enhancement
worked equally well on hollow tubes, filled tubes and was robust to the effect
of noise, suggesting that lumenized and unlumenized vessels would be enhanced

0

50

100

150

C
N

R

LP 1.2 LP 0.8 LP 0.4
0

0.001

0.002

0.003

0.004

Laser power [%]CNR
Segmented volume after GF
Segmented volume after TF

(n=10)

A
ns

ns

GF kd
rl

GF fli
1a

TF kd
rl

TF fli
1a

0.000

0.002

0.004

0.006

0.008

0.010

Vo
lu

m
e 

[m
m

3 ]

(n=21)

****
ns

**

Vo
lu

m
e 

[m
m

3 ]

B

Fig. 3. (A) Vascular volume in images with decreasing CNR was statistically sig-
nificantly different for GF (black bars p 0.3248) or TF (gray bars p 0.9981; n = 10
4dpf larvae). (B) The vascular volume of Tg(kdrl:HRAS-mCherry)s916 was not statis-
tically significant different (p> 0.9999; n = 21 4dpf larvae from 2 experimental repeats,
Kruskal-Wallis test). Segmentation of the Tg(fli1a:eGFP)y1 resulted in highly variable
segmentation after GF (35.97%), while TF had a lower coefficient of variance with
17.28%.
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similarly. We optimised the enhancement scale parameter for typical vessels of
interest in the zebrafish cranial vasculature and demonstrated that our auto-
mated segmentation approach produced vessel diameter measurements that were
in excellent agreement with manual measurements. As neither phantom data nor
a gold-standard for the zebrafish vasculature exist, we suggested methodologi-
cal approaches to further evaluate our segmentation performance, studying its
robustness to the artificial decrease of image quality, assessment of transgenic
reporter lines with different CNR levels, as well as vascular volume quantification
pre- and post-exsanguination. Concluding, the proposed segmentation approach
allowed for the objective quantification of cranial vascular volume as a read-
out of the vascular phenotype in embryonic transgenic zebrafish; facilitating the
study of mechanisms of vascular development and disease, as well as the effect
of drugs or chemical components. This shall contribute to the use of zebrafish
as a pre-clinical model in cardiovascular research.
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Abstract. Cerebral small vessel disease (SVD) comprises all the patho-
logical processes affecting small brain vessels and, consequently, dam-
aging white and grey matter. Although the cause of SVD is unknown,
there seems to be a dysfunction of the small vessels. In this paper, we
propose a framework comprising tissue segmentation, spatial spectral
feature extraction, and statistical analysis to study intravenous contrast
agent distribution over time in cerebrospinal fluid, normal-appearing and
abnormal brain regions in patients with recent mild stroke and SVD fea-
tures. Our results show the potential of the power spectrum for the anal-
ysis of dynamic contrast-enhanced brain MRI acquisitions in SVD since
significant variation in the data was related to vascular risk factors and
visual clinical variables that characterise the burden of SVD features.
Thus, our proposal may increase sensitivity to detect subtle features of
small vessel dysfunction. A public version of our framework can be found
at https://github.com/joseabernal/DynamicBrainMRIAnalysis.git.

Keywords: Spatial spectral analysis · Functional principal component
analysis · Dynamic brain magnetic resonance image · Cerebral small
vessel disease

1 Introduction

Small vessel disease of the brain (SVD) comprises multiple pathological processes
affecting small cerebral arteries leading to damage of white and grey matter (WM
and GM, respectively) [17]. SVD is a serious problem that has been associated
with cognitive decline, physical fragility, depression, dementia, and stroke [17].
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Although the cause(s) of SVD remain unclear, there seems to be dysfunction of
the small vessels. This issue may be studied using dynamic contrast-enhanced
MRI (DCE-MRI). However, factors such as scanner signal drift, tissue variations,
and imaging artefacts introduce systematic errors hampering assessing small
vessel dysfunction accurately.

Dynamic brain MRI acquisitions are commonly temporally sparse and spa-
tially dense. Thus, proposals usually find alternative data representations to
reduce the dimensionality of the data while retaining critical information [7,8].
The power spectrum [1] is a common approach in digital signal processing to
describe the strength of frequency components into the overall signal. It has
been successfully applied in dynamic susceptibility contrast brain MRI to char-
acterise neurophysiological and hemodynamic patterns of Alzheimer’s disease [8].
We hypothesise that spatial spectral feature analysis of dynamic post-contrast
signal changes can identify tissue differences in tissues that relate to the burden
of SVD features and clinical factors.

In this paper, we propose a framework to study contrast signal-time tra-
jectory in healthy and pathological brain regions in dynamic contrast-enhanced
(DCE) brain MRI acquisitions. The framework comprises segmentation, spatial
spectral and functional data analyses, and statistical group comparison. The
contributions of this work are: (i) we showcase a fully functional framework to
analyse DCE-MRI acquisitions using spatial spectral and functional data anal-
yses jointly, and (ii) we describe an application of our framework to the study
of DCE-MRI signals of a relatively large cohort (n = 201) with various extents
of SVD features.

2 Methods

2.1 Analysis Framework

The processing pipeline consists of three steps. First, all regions of interest are
segmented for each patient in the cohort. Second, signals measured in each brain
region are described using the power spectrum. Third, spectral features are
examined using statistical tests to establish whether they vary with any of the
clinical variables. A scheme of the pipeline applied per patient is displayed in
Fig. 1. Further details of each step are provided in the following sections.

2.2 Subjects and Clinical Scores

We used data from a prospective study of patients with recent mild stroke and
SVD features (n = 201 subjects, 79 women). The sample clinical characteristics
have been published previously [13,15]; those relevant to this study are sum-
marised in Table 1. The DCE-MRI acquisition parameters have been detailed
in [6]. Patients were scanned at approximately one month after the first stroke
presentation. Following a pre-contrast acquisition, an intravenous bolus injec-
tion of gadolinium was administered with the start of 20 further acquisitions
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Fig. 1. High level schematic of our processing pipeline per patient. RPS refers to the
radial power spectrum. On the left, T1, T2, ..., TTP refer to each one of the time
points. The inputs are the post intravenous gadolinium contrast brain MRI sequences,
T1-w, T2-w, FLAIR and the susceptibility-weighted images. Initially, we segment the
regions of interest using the different imaging sequences. Then, we study the dynamic
signals per region of interest using the obtained segmentation masks. Next, we convert
the signals to the spatial frequency domain using the Fourier transform. Finally, we
average power values over all frequencies in concentric rings of a specific width. In
the RPS column, the lines represent the RPS compute for cerebrospinal fluid (blue),
deep grey matter (orange), normal-appearing white matter (yellow), and white matter
hyperintensities (purple). (Color figure online)

with a temporal resolution of 73s, leading to a DCE-MRI duration of about 24
minutes (≈ 21 time points). We considered only those after the 4th time point
to minimise initial perfusion effects that occur before the contrast agent is well
mixed within the blood/intravascular compartment.

The following baseline clinical and demographic variables were obtained from
the study database: biological sex (m/f), smoker (y/n), diabetes (y/n), hyper-
lipidemia (y/n) defined as a previous diagnosis, or diagnoses at time of stroke
of a total cholesterol over 5mmol/L, hypertension (y/n) defined as a previous
history of hypertension, or hypertension diagnosed at presented of stroke. Addi-
tionally, we considered visual clinical ratings recorded at inclusion. In particular,
we utilised Fazekas [2], basal ganglia perivascular spaces (BGPVS) [10], and total
SVD [12] scores to account for the location, presence and size of WMH, the exis-
tence of enlarged PVS on the basal ganglia, and the burden of four MRI features
of the SVD (lacunes, microbleeds, PVS, and WMH). We summed up periven-
tricular and deep WM scores to obtain a total Fazekas score that ranged from
zero to six [4,14]. A senior and experienced neuroradiologist generated all visual
scores.
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Table 1. Clinical variables from the sample relevant for this study. The first column
lists the variables of interest, the second one shows the frequency and approximated
relative frequency of that variable.

Clinical variable No. of patients (% of the total)

Hypertension 150 (74.6%)

Diabetes 25 (12.4%)

Hyperlipidemia 120 (59.7%)

Smoker 130 (64.7%)

Fazekas score

0 6 (3.0%)

1 16 (8.0%)

2 74 (36.8%)

3 23 (11.4%)

4 32 (14.9%)

5 20 (10.0%)

6 32 (15.9%)

BGPVS score

0 3 (1.5%)

1 102 (50.7%)

2 54 (26.9%)

3 26 (12.9%)

4 16 (8.0%)

Total SVD score

0 67 (33.3%)

1 48 (23.9%)

2 46 (22.9%)

3 27 (13.4%)

4 13 (6.5%)

2.3 Segmentation of Regions of Interest

We examined four regions of interest comprising both normal-appearing and
abnormal brain regions: cerebrospinal fluid (CSF), deep GM (DGM), normal-
appearing WM (NAWM), and WMH. Each segmentation was performed follow-
ing the protocol described in [13]. Trained analysts double-checked and manually
edited all segmentation masks under the supervision of an experienced neuroradi-
ologist. To avoid partial volume effects, we eroded the resulting binary masks. The
segmentation methods were evaluated previously against manually obtained ref-
erence segmentations, in images acquired with similar scanning parameters and
on the same scanner like the ones this study uses [13]. On 150 individuals, the
meandifference for ICV segmentationswas 2.7% (95%CI±7%).On20 individuals,
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the Jaccard Index was 0.98 (95% CI = ±0.03) for WM, 0.46 (95% CI = ±0.12) for
CSF, and 0.61 (95% CI = ±0.37) for WMH. In a test-retest analysis on 14 cases
comprising volunteers and patients with mild non-disabling stroke, the coefficient
of variation for repeated measurements of the segmentation technique was 0.21 [5].
Further information concerning inter-analyst agreements can be found in [13].

2.4 Power Spectral Features of the Regions of Interest

We characterised the signals gauged within normal-appearing and abnormal
tissues in dynamic brain MRI acquisitions using the radial power spectrum
(RPS) [1]. The steps to compute it for each time point and each region of inter-
est are three-fold. First, we selected the signal in the region of interest using
the segmentation masks. Second, we used the 2D discrete Fourier transform to
obtain a representation of each axial slice forming the region of interest in the
frequency domain. Let I ∈ R

N×N×K be a brain MR volume with K axial slices
and fk(x, y) be its k-th axial slice, the corresponding discrete Fourier transform
for each slice, Fk(u, v), is expressed as follows

Fk(u, v) =
N−1∑

i=0

N−1∑

j=0

fk(i, j) exp
(

−2ιπ

(
ui

N
+

vj

N

))
. (1)

Third, we computed the magnitude spectra and averaged all the frequencies over
concentric rings of width 1 using the following formula

R(s) =
1
K

K∑

k=1

1
2π

∫ 2π

0

|Fk(s cos(θ), s sin(θ))| dθ, (2)

where s =
√

u2 + v2 and θ = tan−1
(

v
u

)
are polar coordinates. For each time

point and each region of interest, the signal was described using 129 frequencies.

2.5 Functional Data Analysis

Each one of the elements of the RPS can be seen as a function in time. In such
a way, we could find the eigenvalues and eigenfunctions that better describe the
different observations. We followed the method proposed by Happ & Greven [3].
Let D = 129 be the number of elements under study at each time point, P =
201 the number of patients, and R = {R(1), ..., R(D)} the set of elements, each
of them described by the corresponding measurements, r

(j)
1 , r

(j)
2 , ..., r

(j)
P , the

overall process is four-fold. First, each variable was centred by subtracting its
mean value. Second, eigenfunctions and scores were calculated for each variable
using the functional PCA. The principal component functions were obtained
constructively by finding orthogonal functions Φ

(j)
k , k = 1, ...,M (j), for which

principal component scores ξ
(j)
ik , i = 1, ..., P , mathematically expressed as

ξ
(j)
ik (t) =

∫
Φ
(j)
k (t) r

(j)
i (t)dt, (3)
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maximised
∑

i ξ
(j)
ik

2
, subject to ||Φ(j)

k ||2 = 1, were t ∈ [4, 5, 6, ..., 21] repre-
sents each time point. We set M (j) to five as resulting eigenvectors account-
ing for the 99% of the univariate variation. Third, all of these scores ξ

(j)
ik were

arranged in a matrix form, Ξ ∈ R
P×∑

M(j)
, such that the ith row contained

(ξ(1)i1 , ..., ξ
(1)

iM(1) , ..., ξ
(p)
i1 , ..., ξ

(p)

iM(p)). Fourth, scores were calculated using eigenanal-
ysis on the covariance matrix of Ξ. We resorted to using the first three modes
of variation which explained around the 99% of the data variation. The output
at this stage was a score for per mode of variation for each subject.

2.6 Validation Against Clinical Parameters

We used the Kruskal-Wallis test to determine whether the features vary with
any of the clinical parameters. We verified that the analysed variables were not
normally distributed using the Shapiro-Wilk test. The null hypothesis was that
subjects with different clinical scores exhibit similar feature values. We computed
the test in R version 3.5.1 and corrected the p-values for multiple comparisons
using the Benjamini-Hochberg false discovery rate control method.

3 Experiments and Results

The application of our framework to the case study was performed as follows. We
segmented each of the 201 DCE-MRI scans, measured the signal gauged in each
region of interest using the resulting tissue masks, calculated the RPS of each
time point and each region of interest, and extracted spectral measurements.
Once we obtained the spectral features for each patient, we compared them
using statistical analysis to explore whether they vary with clinical variables.
An example of the radial power spectra calculated from signals gauged in the
WM hyperintense (WMH) regions with the lowest and highest WMH burden
is shown in Fig. 2. As it can be observed, the two groups of patients exhibit
different spectra.

We compared two functional data analysis approaches: a time-averaged and
a dynamic RPS, the latter taking signal over time into account. The corre-
sponding significance values obtained from the Kruskal-Wallis test are presented
in Tables 2 and 3, respectively. Apart from considering the RPS of each region
of interest independently, we analysed them jointly as well. The correspond-
ing results are displayed in the column “All” of both tables. In most of the
cases, both approaches coincided. However, there were slight differences. The
spectral features computed in the CSF region varied with Fazekas scores, but
the method considering the temporal dimension exhibited stronger evidence (p-
value < 0.0001) than the time-averaged scheme (p-value < 0.001). Similarly, the
scores yielded by the dynamic RPS showed more evidence of variation with the
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Fig. 2. Radial power spectra calculated from real signals in the white matter hyperin-
tense regions for patients with Fazekas score 6 (red) and Fazekas score 0 and 1 (blue).
Each line corresponds to the spectrum of a patient in the time point 4. The values were
normalised by the DC value for visualisation purposes. (Color figure online)

Table 2. Kruskal-Wallis test results obtained when comparing the functional principal
component (PC) scores extracted from the time-averaged RPS of subjects grouped by
clinical variables. The percentages under each one of the PC correspond to the portion
of data variability each of them describe. The column “All” refers to the result obtained
when analysing principal components of all regions of interest jointly. Significant values
are shown in bold. For each univariate test, the number of samples was 201.

Clinical variableCSF DGM NAWM WMH All

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

98% 1% 1% 98% 1% 1% 98% 1% 1% 99% 1% 1% 84% 15% 1%

Biological sex 0.0030.0010.0010.0020.0310.0080.0210.0320.0180.562 0.379 0.297 0.0090.1370.001

Smoker 0.386 0.949 0.184 0.055 0.238 0.063 0.281 0.310 0.330 0.274 0.392 0.297 0.195 0.2110.733

Diabetes 0.060 0.697 0.0420.825 0.874 0.892 0.281 0.168 0.287 0.0320.392 0.596 0.259 0.9380.004

Hyperlipidemia 0.785 0.921 0.618 0.0350.460 0.136 0.374 0.495 0.414 0.508 0.392 0.297 0.259 0.1240.503

Hypertension 0.060 0.380 0.0470.471 0.874 0.752 0.0210.0120.0220.0210.379 0.297 0.0190.9380.091

Fazekas 0.060 0.921 0.0020.0070.238 0.091 0.0010.0010.0010.0010.0010.0010.0010.1370.001

BGPVS 0.060 0.697 0.0020.106 0.419 0.313 0.0210.0120.0340.0010.0130.0010.0060.1620.001

Total SVD 0.090 0.921 0.0020.054 0.669 0.313 0.0010.0010.0010.0010.0010.0010.0010.1370.001

burden of SVD features in the DGM region (p-value < 0.05) compared to the
time-averaged RPS (p-value > 0.05). These outcomes suggest that the temporal
component is of relevance, consistent with our hypothesis [16].

The power spectrum (expressed through PC1, PC2, and PC3) varied
(p-value < 0.05) when grouped by visual clinical ratings regardless of the region
of interest, indicating that burden of SVD influenced the spectral findings.
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Table 3. Kruskal-Wallis test results obtained when comparing the functional principal
component (PC) scores extracted from the RPS of subjects grouped by clinical vari-
ables. The percentages under each one of the PC correspond to the portion of data
variability each of them describe. The column “All” refers to the result obtained when
analysing principal components of all regions of interest jointly. Significant values are
shown in bold. For each univariate test, the number of samples was 201.

Clinical variableCSF DGM NAWM WMH All

PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3 PC1 PC2 PC3

96% 3% 1% 90% 8% 2% 94% 5% 1% 93% 5% 1% 84% 15% 1%

Biological sex 0.0010.0010.563 0.0010.0010.8490.0190.0010.5730.554 0.273 0.102 0.060 0.1210.001

Smoker 0.313 0.209 0.939 0.066 0.110 0.7690.292 0.346 0.2630.257 0.985 0.740 0.216 0.2390.456

Diabetes 0.051 0.991 0.376 0.828 0.317 0.6070.292 0.319 0.9410.0350.985 0.979 0.251 0.9940.048

Hyperlipidemia 0.784 0.209 0.563 0.0440.980 0.6070.403 0.425 0.5730.481 0.985 0.583 0.251 0.0980.862

Hypertension 0.051 0.991 0.563 0.486 0.801 0.8490.0230.708 0.5380.0190.261 0.372 0.0170.9940.686

Fazekas 0.0410.257 0.0010.0090.0260.9410.0010.0010.5730.0010.0010.0010.0010.0980.001

BGPVS 0.0410.828 0.0010.124 0.0260.1590.0230.0010.7510.0010.0010.102 0.066 0.1420.001

Total SVD 0.051 0.164 0.0010.067 0.0130.4960.0010.0010.8360.0010.0010.0010.0010.1210.001

The measurements gathered from all the regions of interest varied significantly
with biological sex (p-value < 0.05), overall WMH burden (p-value < 0.001),
BGPVS scores (p-value < 0.05), and total SVD (p-value < 0.001). An example
of the distribution of principal component scores in CSF, DGM, and NAWM,
according to deep and periventricular Fazekas scores, is shown in Fig. 3. The
tendency overall was that scores decreased significantly (p-value < 0.05) with
increased WMH burden.

The power spectrum appeared to change concerning covariates such as dia-
betes, hypertension, and hyperlipidemia (p-value < 0.05), but the variations were
observed in specific regions: hypertension in NAWM, WMH and All, diabetes
in WMH and All, and hyperlipidemia in DGM. When stratified by smoker vs
non-smoker, the signals did not differ (p-value > 0.05). In general, the power
spectrum calculated from normal-appearing and abnormal regions of interest
varied significantly mostly with clinical SVD ratings.

In terms of computational time, the manual rectification of the segmentation
boundaries consumed most of the time, being it reported to take between 20
and 60 min per patient for WM and WMH depending on the expertise of the
analyst. [13]. The calculation of the RPS per patient can take up to one minute,
and the computation of the PCA scores for a region of interest for all 201 patients
takes approximately two minutes on a Microsoft Windows 10 machine with 8GB
RAM (i5-4590 CPU Intel(R) processor @ 3.30 GHz).
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Fig. 3. Distribution of PCA scores obtained for the CSF (blue), DGM (orange), and
NAWM (yellow) regions grouped by the Fazekas periventricular WM (left) and deep
WM (right) scores of the patients. The scores correspond to PC3 for CSF, PC2 for
DGM, and PC2 for NAWM. Significant differences between pairs of groups have been
highlighted with ∗p < 0.05 ∗∗p < 0.001. (Color figure online)
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4 Discussion

In this paper, we propose, for the first time, a framework incorporating power
spectrum analysis to study dynamic brain MRI signals of brain-related patholog-
ical processes. Our team implemented the segmentation protocols and methods,
the computation of the power spectrum features, and the integration of each
processing module into the proposed framework. In particular, we applied our
processing pipeline to the study of SVD tissue changes using DCE-MRI acquisi-
tions. The power spectrum gauged from normal-appearing and abnormal brain
regions of a population with features of SVD of differing extents was analysed
to explore whether patients with biological sex, hypertension and visual ratings
(namely Fazekas, BGPVS, total SVD scores) exhibited distinctive spectra. To
the best of our knowledge, this is the first time that the power spectrum has
been examined for this purpose in a relatively large cohort (n = 201) with a
wide range of SVD features. Of note, we applied our framework to the study
of DCE-MRI signals. Nonetheless, this does not prevent it from being used for
analysing other dynamic and non-dynamic brain MR acquisitions.

Due to the relative temporal sparsity and spatial density of the dynamic brain
MRI acquisitions, the number of techniques that can be used to process them
is reduced. Thus, finding adequate alternative representations is crucial. In this
paper, we explored the spectral density for studying dynamic brain MRI signals
in SVD. According to our evaluation results, we found that spectral features of
the DCE-MRI acquisitions vary significantly with biological sex, hypertension,
and clinical visual ratings (namely, Fazekas, BGPVS, and total SVD scores). This
outcome suggests that the use of the power spectrum is suitable for examining
these types of acquisitions.

We evaluated two approaches for extracting features out of the RPS. The first
one contemplated computing the mean RPS over time and studying it through
univariate functional PCA. The second one consisted of describing each element
of the dynamic RPS through multivariate functional PCA. In both cases, we
retrieved the scores resulting in the direction of the first three modes of variation.
We observed that the two approaches coincide most of the time. However, as the
former method summarises the temporal changes in the data, the latter should
be preferred. Our experimental results support this claim and are consistent with
our hypothesis.

The spatial spectral features extracted from the signal in the NAWM region
differed significantly with SVD features and their extents. This observation
agrees with previous finding in which the differentiation between “normal” and
“abnormal” tissues becomes less evident with increased age and SVD feature
severity [14]. Interestingly, a small percentage of the variations of the spectral
features in the CSF region differed significantly with SVD features and their
extents. This situation might be related to leakage of gadolinium in CSF with
increased SVD burden [14]. The Fazekas score has been found to be associ-
ated with increasing BBB leakage [9,16] and as the spectral features of patients
grouped by this visual rating were statistically different, this outcome suggests
that our framework can be used in the study of small vessel dysfunction.
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Differences regarding biological sex (and presumably brain size as well) are
expected as a direct consequence of the scaling theorem of the Fourier transform
in which the size of the region of interest is linked to its Fourier representa-
tion [11]. Thus, the size of brain structures within a region of interest is expected
to be, in principle, encoded in the spectral features used. This problem may be
alleviated by processing the regions of interest in a short-time Fourier transform
or sliding-window processing fashion or by manually selecting matching and rel-
evant regions of interest with exactly the same area/volume on all scans. In the
future, we plan to explore alternatives in these regards.

In the present work, we showed that a strategy based on the study of
the power spectrum could be used to investigate dynamic post-contrast signal
changes in tissues that relate to the extents of SVD features, vascular risk factors
and clinical visual ratings. The outcomes of our experiments add confidence to
previous findings in which DCE-MRI signals from patients with different age,
health status, and premorbid brain condition exhibited different tendencies [16].
For instance, a pre- and post-contrast texture analysis concluded that local signal
variations, measured in terms of homogeneity and contrast, differed significantly
depending on the extents of SVD features [14]. Future work should consider
understanding what physiopathological processes cause these power spectrum
variations and which aspects of the spectrum are different among patient groups.

Acknowledgements. JB holds an MRC Precision Medicine Doctoral Training Pro-
gramme studentship from the University of Edinburgh. This work was supported by
the Row Fogo Charitable Trust (MVH) grant no. BRO-D.FID3668413, Wellcome Trust
(patient recruitment, scanning, primary study Ref No. WT088134/Z/09/A), Fondation
Leducq (Perivascular Spaces Transatlantic Network of Excellence), and EU Horizon
2020 (SVDs@Target) and the MRC UK Dementia Research Institute (Wardlaw pro-
gramme). The authors thank participants in the study, the radiographers and staff at
the Edinburgh Imaging Facilities (www.ed.ac.uk/clinical-sciences/edinburgh-imaging/
research/facilities-and-equipment/edinburgh-imaging-facilities), the UK Dementia
Research Institute at the University of Edinburgh, and the Row Fogo Centre for Ageing
and the Brain.

References

1. Naidu, P.S., Mathew, M.: Chapter 3 Power spectrum and its applications. In:
Naidu, P.S., Mathew, M. (eds.) Analysis of Geophysical Potential Fields, Advances
in Exploration Geophysics, vol. 5, pp. 75–143. Elsevier, Amsterdam (1998)

2. Fazekas, F., et al.: White matter signal abnormalities in normal individuals: corre-
lation with carotid ultrasonography, cerebral blood flow measurements, and cere-
brovascular risk factors. Stroke 19(10), 1285–1288 (1988)

3. Happ, C., Greven, S.: Multivariate functional principal component analysis for
data observed on different (dimensional) domains. J. Am. Statistical Assoc. 113,
649–652 (2018)

4. Hernández, M.D.C.V., et al.: Metric to quantify white matter damage on brain
magnetic resonance images. Neuroradiology 59(10), 951–962 (2017)

www.ed.ac.uk/clinical-sciences/edinburgh-imaging/research/facilities-and-equipment/edinburgh-imaging-facilities
www.ed.ac.uk/clinical-sciences/edinburgh-imaging/research/facilities-and-equipment/edinburgh-imaging-facilities


Analysis of Spatial Spectral Features of DCE-MRI for Studying SVD 293

5. Hernández, M.D.C.V., Ferguson, K.J., Chappell, F.M., Wardlaw, J.M.: New multi-
spectral MRI data fusion technique for white matter lesion segmentation: method
and comparison with thresholding in FLAIR images. Eur. Radiol. 20(7), 1684–1691
(2010)

6. Heye, A.K., et al.: Tracer kinetic modelling for DCE-MRI quantification of subtle
blood-brain barrier permeability. Neuroimage 125, 446–455 (2016)

7. Khalifa, F., et al.: Models and methods for analyzing DCE-MRI: a review. Med.
Phys. 41(12), 124301 (2014)

8. Mattia, D., et al.: Quantitative EEG and dynamic susceptibility contrast MRI
in Alzheimer’s disease: a correlative study. Clin. Neurophysiol. 114(7), 1210–1216
(2003)
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Abstract. Cerebral arteriovenous malformations (AVM) are prone to rupture,
which will lead to life-threatening conditions. Because of the complexity and
high mortality and disability rate of AVM, it has been a severe problem in surgery
for many years. In this paper, we propose a new method of AVM location and
segmentation based on graph theory. A weighted breadth-first search tree is cre-
ated from the result of vascular skeletonization, and the AVM is automatically
detected and extracted. The feeding arteries, draining veins and the AVM nidus
are segmented according to the topological structure of the vessel. We evaluate the
proposed method on clinical data sets and achieve an average accuracy of 95.14%,
sensitivity of 82.28% and specificity of 94.88%. The results show that our method
is effective and is helpful for the treatment of vascular interventional surgery.

Keywords: Arteriovenous malformation · Image segmentation · Graph theory

1 Introduction

The pathological characteristics of cerebral arteriovenous malformations are that there
are no capillaries between arteries and veins, but a group of abnormal vascular struc-
ture with uneven diameter and thickness of vessel wall, which lacks elastic layer and
muscular layer and is prone to rupture and bleed [1]. At present, the main treatment
methods for cerebral arteriovenous malformations include surgical resection of mal-
formations, endovascular embolization and stereotactic radiotherapy [2]. Therefore, a
detailed knowledge of the structure of the feeding arteries, draining veins and the AVM
nidus is helpful to optimize the surgical planning.

Bullitt et al. [3] have proposed a kind of software for three-dimensional (3D) visu-
alization of vessels to display previously manually segmented AVM nidus by volume
rendering technology. Saring et al. [4] measured and counted the temporal intensity
curve of blood flow and obtained the 3D blood flow parameters of spatial dynamic char-
acteristics by using the 4D magnetic resonance angiography (MRA) image sequences
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and used the registration of the parameter space and 3D MRA data to support the visual
evaluation of the AVM.

Nyui et al. used factor analysis method [5] and principal component analysis (PCA)
method [6] to analyze dynamic X-ray CT images with contrast and opaque media for
AVM extraction. Babin et al. used pixel profiling approach [7] and centerline analysis
method [8] to detect and segment the AVM region. So far, there have been several
methods to analyze the internal structure of AVM in detail, which including feeding
arteries, draining veins and the AVM nidus. Forkert et al. [9] used blood flow velocity
features, vessel radii, vascular tubular features and spherical features to train support
vector machine (SVM) classifier to segment AVM nidus, and combined with the time
intensity parameter diagram of blood flow in the 4D MRA images to divide vessels
within a certain radius around the nidus into feeding arteries or draining veins. Using the
information of vascular density and variance combined with manual tagging, Clarencon
et al. [10] described a method for label propagation on 3D digital rotational angiography
(3DRA) images to segment AVMnidus, feeding arteries and draining veins, respectively.
This process requires a lot of manual interaction and a high degree of experience and
is not suitable for clinical practice. Babin et al. [11], based on centerline analysis [8],
constructed a vascular tree to locate and segment the AVM nidus and then segmented the
feeding arteries and draining veins according to the radii and gray values of the vessels
connected to the nidus. However, the skeleton method they used will produce cavities
or holes, destroy the original topological structure, and their AVM extraction method is
only valid for the compact spherical nidus, but in fact, most AVM nidi are not like this.

In this paper, we propose a novel method of AVM location and segmentation based
on graph theory. We segment cerebral vessels from time-of-flight magnetic resonance
angiography (TOF-MRA) images based on our previous method [12]. Then, a weighted
breadth-first search (BFS) method is used to create a spanning tree from the results of
skeletonization, and a topological path is constructed from the root point of the carotid
artery through the feeding artery to the AVM nidus and then to the draining vein. We
implement the automatic detection and extraction of AVM and segment the feeding
arteries and the draining veins according to the sequence of the paths connecting the
AVM nidus in the spanning tree.

The paper is organized as follows. The second part introduces our method. In the
third part, we use 10 sets of clinical data to verify our method. Finally, we summarize
and discuss in the fourth part.

2 Methodology

The process of localization and segmentation of AVM Nidus is shown in Fig. 1. Firstly,
we segment the cerebral vessels from the 3DMRA image based on our previous method
[12] and generate the vascular skeletonization image using the method of Lee et al. [13].
After that, we use the weight-based breadth-first searchmethod to create a spanning tree.
The vertex with the highest degree is obtained from the adjacency matrix. And we use
our extraction method to locate the AVM nidus in the skeleton image. A topological path
is established to segment the feeding artery and draining vein connected to the AVM
nidus.



296 Z. Wu et al.

Fig. 1. The process of localization and segmentation of AVM Nidus, (a) the segmentation of
cerebrovascular, (b) the skeletonization image, (c) the spanning tree, (d) the localization of AVM
nidus in skeleton image, (e) the result of vessel reconstruction and (f) the segmentation result of
feeding artery and draining vein.

2.1 Weighted Breadth-First Search Tree

To analyze the vascular topology, we need to transform the vascular skeletonization
image represented by voxels into an undirected graph represented by vertices and edges.
We connect each voxel with all its adjacent voxels (26-connected voxels), and take all
voxels with degree 1 or greater than 2 as vertices of the graph, discarding isolated voxels
with degree 0. And the node degree is the number of edges associated with the node. A
series of voxels with degree 2 connected between two adjacent vertices are used as the
edge of the graph, and the number of voxels is used as the length of the edge.

Then we use a weighted breadth-first search method to create a spanning tree of the
undirected graph, and construct a topological path from the root point of the carotid
artery through the feeding artery to the AVM nidus and then to the draining vein. The
process of search method is as follows:
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Algorithm 1 Weighted Breadth-first Search 

Input: The undirected graph  , where is a set of vertices and is a set of
edges.
1. For each vertex , compute the minimum path length to the root

vertex (carotid artery root point) as the weight . 
2. Put into the queue Vertex. 
3. Take the first vertex of Vertex and add it to the array Visited. 
4. Add the new vertices adjacent to that has not been visited into Vertex, and add

the edges between and the new vertices into the adjacency matrix Graph. 
5. Delete in Vertex and rank the vertices in Vertex from small to large according to

. 
6. Loop 3-5 steps until there are no vertices in Vertex. 

Output: The adjacency matrix Graph, which is the spanning tree. 

Due to the existing imaging techniques and segmentation algorithms, the branches of
cerebral arteries and veins are directly connected. In addition to the feeding artery, other
arterial branches can also be connected to the AVM nidus through the venous sinus and
draining veins. Therefore, it is necessary to disconnect the loop in the cerebrovascular
network to ensure that only the arterial branch where the blood supply artery is located
can be connected to the AVM nidus, and it is also necessary to preserve the integrity
of the AVM nidus and the draining vein. The weight-based breadth-first search method
is used to disconnect the loops in the undirected graph at the location far from the root
vertex, ensuring that a topological path is from the root of the carotid artery to the
AVM nidus through the feeding artery and then to the draining vein. As illustrated in
Fig. 2, the circle is equivalent to the loop in the cerebrovascular system, and the green
part with dense nodes is equivalent to the AVM area. The breadth-first search method
will disconnect the loop at where the number of nodes on both sides is nearly average.
However, due to a large number of nodes in the AVM, the use of BFS may destroy the
topological structure from feeding artery to AVM nidus and then to the draining vein,
and the use of weight-based BFS can avoid such a situation, instead.

2.2 Localization and Extraction of AVM Nidus

As shown in Fig. 3, the higher the degree of vertices in the skeleton image, the redder
the color. It can be observed that the internal vertices of the AVM nidus are dense and
the degrees of them are relatively higher. Therefore, the position and density of vertices
with higher degrees can be used to locate and extract AVM nidus. Since the node with
the highest degree is observed inside the AVM, we define the area of the AVM nidus as
all vertices within the range of 8 neighborhood of the vertex with the highest degree in
the spanning tree:

VAVM = {v|(Graph + Graph′)1∼8
(v, vH ) �= 0} (1)

where VAVM is the set of AVM vertices, Graphn is the nth power of the adjacency
matrix Graph, and vH is the vertex with the highest degree. The degree represents the
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Fig. 2. The difference between the BFS method and weight-based BFS method, (a) the original
image, (b) the result of the BFS method, (c) the result of the weight-based BFS method. The
circle is equivalent to the loop in the cerebrovascular system, the green part with dense nodes is
equivalent to the AVM area, the red and blue arcs represent the feeding artery and the draining
vein, respectively. And the numbers represent the order in which the nodes are visited. (Color
figure online)

Fig. 3. The axial, sagittal, and coronal views of skeleton image. The color of vertices represents its
degree, and the higher the degree, the redder the color. (Color figure online)

number of incident links of the node.Graph+Graph′ transforms the directed spanning
tree into an undirected graph to facilitate the acquisition of neighborhood vertices. If the
position of coordinates (x, y) inGraphn is not zero, it represents that there is a path from
x to y through n edges. The paths in the skeleton image between vH and all the vertices
v satisfying the conditions constitute the AVM nidus. 8 is the best neighborhood range
we have obtained through experiments.

2.3 Segmentation of Feeding Arteries and Draining Veins

Through Sects. 2.1 and 2.2, we have found a topological path from the root point of the
carotid artery through the feeding artery to the AVM nidus and then to the draining vein.
So the path connecting the ancestor vertex of the AVM vertex in the spanning tree is the
feeding artery, and the path connecting its descendant vertex is the draining vein.

artery = {Pv,vH |Graph10(v, vH ) �= 0} (2)
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vein = {Pv,vH |Graph10(vH , v) �= 0} (3)

where Pv,vH is the path in the skeleton image between vH and all the vertices v satisfying
the conditions, and we use the Dijkstra shortest path method [14] here. Our method
can find a feeding artery, one or more draining veins. The range of ancestor vertex and
descendant vertex can be adjusted to control the length of the feeding artery and draining
vein.

3 Experiments

Our experimental data consists of 10 time-of-flight magnetic resonance angiography
(TOF-MRA) clinical data, which are collected using a GE Signa HDx 3.0TMRI scanner
(TR = 25.0, TE = 3.5, flip angle = 20). Each volume has the size of 512 × 512 × 381
(voxels), and the resolution is uniformly 0.34 mm × 0.34 mm × 0.25 mm.

3.1 Localization and Segmentation of AVM Nidus

Fig. 4. The result of localization and segmentation ofAVMNidus, (a)–(c) the result of ourmethod,
(d)–(f) the result of Babin’s method.

The proposed method achieved good segmentation results on these 10 sets of data,
accurately located and segmented AVM nidus. The method of Babin et al. only works
well for compact spherical structures, but in fact, there are gaps between the segmented
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vessels affected by MRA imaging and vascular segmentation algorithm. As shown in
Fig. 4, our method can segment AVM nidus with gaps or even sparse vessels very well.

To derive a quantitative comparison of the segmentation results, the manual segmen-
tation results of AVM nidus by three experts were treated as the ground truth. We used
three segmentation evaluation metrics to evaluate the proposed method, i.e. accuracy
(Acc), sensitivity (Sen) and specificity (Spe). They were defined as:

⎧
⎪⎨

⎪⎩

Acc = T P+T N
T P+T N+FP+FN

Sen = T P
T P+FN

Spe = T N
T N+FP

(4)

where TP, FP, TN, and FN denote the number of voxel segmentation results of true-
positive, false-positive, true-negative and false-negative, respectively. The proposed
method showed an averageAcc of 95.14%, Sen of 82.28% and Spe of 94.88% comparing
to ground truth.

3.2 Segmentation of Feeding Artery and Draining Vein

Fig. 5. The segmentation results of feeding artery and draining vein, (a) the result of our method,
(b) the result of Babin’s method. The red part is the feeding artery, the green part is the AVM
nidus, and the blue part is the draining vein. (Color figure online)

Segmentation of feeding artery and draining vein based on the topological path of
the spanning tree is shown in Fig. 5. Our method can segment the feeding artery and the
draining vein very well, while Babin’s method is similar to the region growing method
based on gray value and vascular radius. However, due to the uneven thickness of AVM
vessels, their method sometimes fails to find the correct feeding artery and draining vein,
which is prone to over-segmentation and mis-segmentation.

4 Conclusion

In this work, we proposed a novel weight-based breadth-first search method for AVM
location and segmentation. The AVM nidus was located in the spanning tree of the
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skeleton image using our method. A topological path was established to segment the
feeding artery and draining vein connected to the AVM nidus. The AVM localization
and extraction method was validated on 3DMRA clinical data sets of cerebral vessels
and showed an accuracy of 95.14%, sensitivity of 82.28% and specificity of 94.88%.
The results show that our method is effective and helpful to optimize the operation plan.
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Abstract. Image segmentation and registration are closely related
image processing techniques and often required as simultaneous tasks. In
this work, we introduce an optimization-based approach to a joint reg-
istration and segmentation model for multimodal images deformation.
The model combines an active contour variational term with a mutual
information smoothing fitting term and solves in this way the difficul-
ties of simultaneously performed segmentation and registration models
for multimodal images. This combination takes into account the image
structure boundaries and the movement of the objects, leading in this
way to a robust dynamic scheme that links the object boundaries infor-
mation that changes over time. Comparison of our model with state of
art shows that our method leads to more consistent registrations and
accurate results.

1 Introduction

In the last decades, the development of imaging devices significantly increased
image data collections and consecutively the need of human interpretation. To
reduce labor hours of specialists new image processing techniques are developed.
Two main image processing techniques are image registration and segmenta-
tion. Image registration provides understanding of the data behavior in two or
more different scenarios taken in different times. Meanwhile, image segmenta-
tion is the process of partitioning objects or features considering characteris-
tics of each pixel. In a wide range of problems, such as comparison of images
taken at different time or modalities, image registration depend on image seg-
mentation and vice-versa. Erdt et al. [10] indicates that more than 20% of sci-
entific research in medical imaging area requires a combined registration and
segmentation scheme. The combined registration and segmentation models can
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be divided into two different categories: simultaneous registration and segmen-
tation or joint segmentation and registration which lastly has been referred as
regmentation. In the last years, regmentation functional models have been intro-
duced on monomodal imaging frameworks. These models are variational rigid
registration based models [9,27], variational nonrigid registration based models
[2,24], or atlas based models [12]. Recently, Ibrahim-Rada-Chen [14] present a
linear curvature regmentation variational based model which gets profit on the
global and local deformation and easily can cope with images which contain
more than one object.

In difference with monomodal images, multimodal image processing requires
spatial correspondence estimation or extract a certain information from images
with different modalities (or protocols). Such example, can be from imaging using
CT and MRI protocols, which brings different image perspective into the med-
ical field of clinical and pre-clinical diagnostics. Even though, assessing image
similarity becomes challenging for multimodal images, multimodal images are
desired as they bring different image perspectives and properties. In difference
with monomodal images registration, where simple image similarity measures
between image pairs can provide a good spatial transformation, dealing with
multimodalities is substantially more difficult. Registering multimodal images,
which are acquired through different mechanisms and have distinct modalities,
involves the alignment of both images in terms of shapes and salient components
while preserving the modality of one given image. For a comprehensive overview
of registration techniques in a systematic manner, the work of Sotiras et al. [23]
is referred. Results performed simultaneous registration and segmentation are
shown in Fig. 1. The same images are processed with the new proposed joint
regmentation model and the results shown in the last section indicate that the
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Fig. 1. Simultaneous segmentation and linear curvature registration based on MI model
noisy synthetic image and CT image. First column segmented template image, T &
φ0(x); Second column reference image R; Third column the deformation field; Forth
column the transformed template image R & φ0(x + u(x); Last column the template
image after transformation, T (x + u(u)).
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combination of segmentation and registration tasks into a single framework is
relevant as avoids the errors produced from simultaneously tasks. The existing
registration models for mono modal-images can be classified as unsupervised and
supervised methods. Among different registration similarity measure, the most
popular one is mutual information (MI), introduced by Viola et al. [25]. Recently,
learning-based approaches to measure image similarity have been proposed as
well. Techniques involving KL-divergence [4], max-margin structured learning
[6], boosting [11], or deep learning [22] have been investigated. However, their
large training sets make them limited by the lack of generalization to previously
unseen object classes and the registration performance depends on numerical
optimization of the optimal registration parameters. There are a few unsuper-
vised works to solve the joint segmentation and registration problem. The work
proposed by Wang and Vemuri [26] introduces a registration driven by segmen-
tation of a reference image without varying degrees of non-rigidity. The model
applies cross cumulative residual entropy as a distance measure [26] and piece-
wise constant Chan-Vese model for segmentation [5]. Although, the algorithm
can accommodate image pairs having very distinct intensity distributions but
fails in deforming large objects. Droske et al. [8] presented variational method
based on a local energy density which uses a generalized motion of image mor-
phology for multimodal image registration. Similar idea was lastly proposed by
Aganj and Fischl [1] where segmentation score was applied to register two mul-
timodal brain images. This model is not designed for general image deformation
as the model applies rigid image transformation. Recently, a joint segmentation
and registration model has been proposed by Debroux and Le Guyader [7], which
is formulated based on the combination of nonlocal total variation and nonlocal
shape descriptors. The fitting term of this model uses a weighted sum of squared
difference distance measure, similar to [14] and the model depends on the many
parameters such as window size, patch size, number of neighbors pixels, etc. To
overcome the difficulties mentioned above we propose a new variational model
which combines linear curvature, known for its ability to generate smooth trans-
formations [3,18], and mutual information (MI) as a distance measure [16,25]
for the spatial transform.

The outline of this paper is as follows. In Sect. 2, we review the existing mod-
els for monomodal image regmentation and multimodal image registration. In
Sect. 3, we introduce our proposed new model for multimodal image regmenta-
tion. In the last section, we show some numerical tests including comparison.

2 Related Work

Deformable multimodal registration attempts to find spatial correspondence
between image pairs that are acquired with distinct scanning protocols. In regis-
tration process, these correspondences are estimated by determining the spatial
transformation which is applied to transformed image to make similar to the
reference image. Generally, image registration is driven by the chosen similarity
measure and the chosen deformation model. For images taken from the same
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modality, the image similarity usually is consider to be high, thus simple and
direct image similarity measures are used, for instance the sum of squared inten-
sity differences (SSD). We start this section with an overview of the work intro-
duced by Ibrahim-Rada-Chen [14] for monomodal regmentation of two given
images. The model jointly merges the segmentation and registration into a vari-
ational function represented in a level set. This method improves the Guyader-
Vese model [13] by replacing the nonlinear elastic term with linear curvature
model and adding a weighted Heaviside sum of SSD term. Let R be a refer-
ence image and T template image in a given domain Ω ⊂ Rd, where d is the
spatial dimensional of the given data. The registration problem is formulated
as a transformation vector φ(x) such that T (φ(x)) = R(x). In the variational
approach, image registration, the transformation is φ(x) = x+u(x), with u(x)
the displacement vector field u(x) = (u1(x), u2(x)). The aim of the Ibrahim-
Rada-Chen [14] model is to match the contour of the template image and at the
same time segment the reference image to show the deformation of displacement
field lead by segmentation process. The segmentation of the template image T
is represented by the zero level line φx : Ω → � which is the template contour
Γ , denoted as in [14]. The joint functional proposed by Ibrahim-Rada-Chen [14]
monomodal image regmentation is given as follows:

min
c1,c2,u (x)

J =λ3DSSDH(T, R, φ0(x),u(x)) + λ1

∫
Ω
|R(x)− c1|2Hε(φ0(x + u(x))) dx

+ λ2

∫
Ω
|R(x)− c2|2(1− Hε(φ0(x + u(x)))) dx + αSLC(u)

(1)

where λ1, λ2, λ3 are numerical constants. u(x) = (u1(x), u2(x)) is the displace-
ment vector field, φ0 is a zero-level-set, DSSDH is the sum of squared difference
distance measure

DSSDH =
∫

Ω

(T (x + u(x)) − R(x))2Hε(φ0(x + u(x))) dx (2)

which is weighted by the regularised Heaviside function

Hε(φ0(x + u(x))) =
1
2
(1 +

2
π

arctan
φ0(x + u(x))

ε
). (3)

The term SLC(u) in (1) is the curvature regulariser term

SLC(u) =
∫

Ω

(Δu1)2 + (Δu2)2 dx. (4)

The values of c1 and c2 in Eq. (1) present the average intensity values inside and
outside the boundary φ0(x) in the reference image. By minimizing the functional
(1) containing the SSD term and linear curvature term, we get:

c1 =

∫
Ω

R(x)Hε(φ0(x + u)) dx∫
Ω

Hε(φ0(x + u)) dx
, c2 =

∫
Ω

R(x)(1 − Hε(φ0(x + u))) dx∫
Ω

1 − Hε(φ0(x + u)) dx
. (5)
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In multilevel representation, the registration problem is solved using quasi-
Newton method by updating the deformation field u(x) on each level. Even
though the model shows a good performance, it cannot cope with multimodal
images.

Referring to registration for multimodality, different techniques have been
introduced [15,20,21]. A significant work, proposed by Modersitzki [18], based
on mutual information and curvature regularizer, competes the other registration
models. The joint functional for multimodal registration is given as follows:

J(x + u(x)) = D[T,R] + αSLC (6)

where SLC is the curvature regularization term, α is a numerical constant and
D[T,R] presents the distance measures considered as functionals in multimodal
image pair T and R. Modersitzki [18] suggested to use mutual information
(MI) (shortly reviewed below as CASE 1) or Normalized Gradient Field (NGF)
(shortly reviewed below as CASE 2) to measure the similarity distance between
two multimodal images.
CASE 1: The joint functional based on MI, D[T,R] = DMI

J(x + u(x)) = DMI + αSLC (7)

where DMI presents mutual information as a distance measure between the given
images T and R and it is given with the formula:

DMI =
∫

Ω

ρ[T ] log ρ[T ]dt +
∫

Ω

ρ[R] log ρ[R]dr −
∫

Ω2
ρ[T,R] log ρ[T,R]d(t, r) (8)

where ρ[T ](t) and ρ[R](r) are marginal densities which are expressed as:

ρ[T ](t) =
∫

Ω

ρ[T,R](t, r)dr, ρ[R](r) =
∫

Ω

ρ[T,R](t, r)dt (9)

and ρ[T,R](t, r) presents joint gray value distributions. Its discretized form is
expressed as:

ρ[T,R](t, r) =
1
m

m∑
j=1

K(t − T (x + u(x)), σ)K(r − R(x), σ) (10)

with σ that stands for the width of Parzen density estimator and K for kernel
and m presents the size of the sample image. The kernel positions in template
and reference image are represented with t and r respectively in the gray value
space for j = 1.

CASE 2: The joint functional based on NGF, D[T,R] = DNGF

J(x + u(x)) = DNGF + αSLC, (11)

DNGF presents Normalized Gradient Force distance measure for two given mul-
timodal images, T and R which is defined as follows

DNGF =
∫

Ω

1 − (n[T (x + u(x))]Tn[R(x)])2dx (12)
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where

n[T (x + u(x))]Tn[R(x)] ≈ ∇TT
i ∇Ri√||∇Ti||2 + η2
√||∇Ri||2 + η2

(13)

where the term η is an important constant parameter because it determines the
edge and what has to be within the specified noise level. Moreover, the terms
∇Ti and ∇Ri present gradient intensity of template image and reference image,
respectively which are computed as

∇Ti = [(∂h
1 T (x + u(x)))i, (∂h

2 T (x + u(x)))i]T , (14)

∇Ri = [∂h
1 R(x)i, ∂

h
2 R(x)i]T , (15)

The NGF can be considered as the L2 norm of r, the residual of the alignment
of the normalised gradients of two images at a pixel position x,

rh
x = 1 − (n[T (x + u(x))]Tn[R(x)])2 (16)

for discrete images T and R of size N × N using finite difference method. The
images are discretised on a uniform mesh using vertex centred discretisation
where xi,j denotes the pixel position or on a non-uniform mesh with finite dif-
ference method. The gradient is calculated using

∂x1T h(xi,j) =
T h(xi+1,j)− T h(xi−1,j)

2h
, ∂x2T h(xi,j) =

T h(xi,j+1)− T h(xi,j−1)

2h
,

where the first order central finite difference scheme is used to approximate the
first order derivatives. The discretized form of NGF distance measure:

NGF = hd

N2∑
i

(1 − (ri)2) (17)

where hd = h1...hd. In short words, NGF is based on the alignment of the
edges in the reference and template images. The gradient is normalised with its
magnitude.

3 The Proposed New Joint Regmentation Model
for Multimodality

Our joint functional model for multimodal image regmentation combines an
active contour without edges, a curvature regulariser, and a mutual informa-
tion distance measure. Our proposed regmentation functional is given with the
formula:

min
c1,c2,u(x)

J = λ1

∫
Ω

|R(x) − c1|2Hε(φ0(x + u(x))) dx

+ λ2

∫
Ω

|R(x) − c2|2(1 − Hε(φ0(x + u(x)))) dx + γSLC(u)

+ μDMIH(T,R, φ0(x),u(x))
(18)



A Variational Joint Segmentation and Registration Framework 311

where SLC is the linear curvature, DMIH represents the mutual information dis-
tance term which is weighted by the parameter μ. The DMIH term is evaluated
as the mutual information between foreground of the template and the reference,
THε and RHε, respectively:

DMIH =

∫
Ω

ρ[T Hε] log ρ[T Hε]dt +

∫
Ω

ρ[RHε] log ρ[RHε]dr −
∫

Ω2
ρ[T Hε,RHε] log ρ[T Hε,RHε]d(t, r)

The joint functional is solved with respect to the displacement field using dis-
cretise then optimise approach based on the quasi-Newton method in multilevel
framework for faster implementation. The grid points are located at the center
of the cell Ωh = {xi,j = (x1,i, x2,j) = ((i − 0.5)h, (j − 0.5)h)}, 1 ≤ i, j ≤ N . We

re-define the solution vector U =
[
u1

u2

]
2N2×1

,x =
[
x1

x2

]
2N2×1

, where u1, u2

present displacement vectors and x1, x2 position vectors. Thus, the discretised
form of the joint functional in (18), by a finite difference method is:

min
c1,c2,U

J =λ1

N∑
i,j=1

|R(xi,j)− c1|2Hε(φ0(xi,j + u(xi,j)))

+ λ2

N∑
i,j=1

|R(xi,j)− c2|2(1− Hε(φ0(xi,j + u(xi,j))))

+ μηtηr

nt∑
i=1

nr∑
j=1

ρi,j log(ρi,j + ε) + γ
2∑

l=1

N∑
i,j=1

(
− 4ul(xi,j) + ul(xi+1,j)

+ ul(xi−1,j) + ul(xi,j+1) + ul(xi,j−1)
)2

.

where ηt = (tn − t0)/nt and ηr = (rn − r0)/nr, nt and nr present the number of
grid. The ε term is just a small numerical constant to prevent extra considerations
such as “0log0”. Furthermore, we are using homogeneous Neumann boundary
conditions approximated by one side differences ul(xi,1) = ul(xi,2), ul(x1,j) =
ul(x2,j), ul(xi,N−1) = ul(xi,N ), ul(xN−1,j) = ul(xN,j), l = 1, 2.

Minimizing Eq. (3) brings a system of nonlinear equation with unknown U:

ΔJ (c1, c2,U) = 0 (19)

where

ΔJ =λ1

N∑
i,j=1

|R(xi,j) − c1|2Hε(φ0(xi,j + u(xi,j))

+ λ2

N∑
i,j=1

|R(xi,j) − c2|2(1 − Hε(φ0(xi,j + u(xi,j)))

+ μDMIH + γuTBu).

(20)

The gradient of the regularization term is computed as the multiplication of B
matrix(constant matrix) of size 2N1N2 ×2N1N2 that contains the coefficients of
U. The matrix B is written as

B =
[

LT L 0
0 LT L

]
, (21)
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where L is a a block tridiagonal matrix from the regularization term. For finding
the solution of our minimization problem, we start with zero initial guess, U = 0,
solving

HδU = −G (22)

where G = ∇uTH(x+u) = ∂DMIH

∂u(x)
∂TH(x+u)

∂u(x) , for δU and update U ← U + τδU

with τ as the Armijo line search parameter [19]. H and G are the Hessian and
gradient matrix for the functional J in Eq. (3) with respect to the displacement
vector U .

4 Numerical Results and Conclusions

In this section, we present several examples for synthetic as well as real data in
comparison with the linear curvature model based on MI applied on a synthetic
image and a set of real images. In addition, results of our proposed joint reg-
mentation are compared to image registration applying mutual information as a
distance measure and image segmentation simultaneously. The image pairs used
in all our experiments have significantly different intensity profiles, deformation
and presence of noise. In each iteration we compute the Jacobian matrix of the
transformation,

J =

[
1 + ∂u1

∂x1

∂u1
∂x2

∂u2
∂x1

1 + ∂u2
∂x2

]
(23)

and the minimal value of Jacobian matrix F = min(det(J)) is also calculated
to make sure there is no folding or cracking in the deformation field if its value
is greater than 0. Figures 2 and 3 present the results of the proposed model in
comparison with Ibrahim et al. [14] regmentation model, and linear curvature
image registration model based on MI and NGF proposed by Modersitzki et al.
[17]. The results show that the Ibrahim et al. [14] model, which uses the SSD
similarity measure, is not capable to register and segment the given synthetic
multimodal images whereas the proposed model can successfully cope with it.
The fail of the method proposed by Ibrahim et al. [14] is expected as the model
is not designed for multimodal images. On the other hand, the linear curvature
registration model which applies MI, proposed by Modersitzki et al. [17], provides
larger deformation than the same model using NGF, referring to Fig. 3. Even
though, this model still has a poor registration in comparison with the proposed
method, shown in Fig. 2 last three columns.

Figures 4 and 5 show the results on real multimodal data images. In the first
row of both figures we show comparison results between the proposed model and
linear curvature model [17] of two chest images (T1 and T2 weighted images).
The second and the third row have the thorax (PET and CT images [17]) and
brain images with high deformation and presence of noise. We clearly see that
the proposed model delivers good results, referring to the fifth, sixth, and seventh
column of Fig. 4, whereas the linear curvature model [17] shown in the third and
fourth column stuck in local minima due to highly non convexity of MI functional.
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Fig. 2. Comparison between the proposed model and monomodal image regmentation
[14]. The proposed model successfully deforms the given template image, whereas the
monomodal joint regmentation fails to segment and register with parameters λ1 =
λ2 = λ3 = 1 and α = 5. The proposed joint functional is calculated with λ1 = λ2 =
λ3 = 0.0005 and μ = 2.0e − 05.

Table 1. The first, second and third columns show the linear curvature model [17]
parameters and distance measurements before and after, while the other columns are
referring to our model, shown in Fig. 4.

Figure 4 α Before DMI After DMI λ1 λ2 μ γ Before DMIH After DMIH

Chest 0.05 −1.4938 −1.3204 0.01 0.01 0.01 0.00045 −1.1677 −1.6247

Thorax 0.5 −0.2478 −0.2608 2 2 0.1 2 −0.40906 −0.88796

Brain 0.003 −1.1994 −1.2234 0.002 0.002 0.002 0.000035 −1.4477 −1.5911
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Fig. 3. Comparison between the proposed model and Modersitzki et al. [17] models
which use linear curvature in combination with MI measure and NGF for synthetic
images. First and second column shows the deformation for MI model, The third and
the forth column NGF model. The distance measure of mutual information before of lin-
ear curvature model is DMI = −1.0303 and our proposed model is DMIH = −0.22806,
whereas the value of distance measure after the registration is DMI = −1.0426 and
after image registration and segmentation is DMIH = −0.53424

Our multimodal joint regmentation provides accurate segmentation and regis-
tration in comparison also to linear curvature based on NGF model [17]. These
results are shown in Fig. 5. The gradient field distance measure involves sec-
ond order image derivatives, as a consequence there can be a problem dealing
with noisy images. Table 1 shows the parameters and distances measurements
before and after the performance of linear curvature model [17] and our model.
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Fig. 4. Comparison between linear curvature model using MI [17] and the proposed
model for real images data.
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Fig. 5. Comparison between linear curvature model using NGF [17] and the proposed
model for real images data.
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In conclusion, the proposed model is suitable for jointly segmenting and register-
ing images with intensity difference, severe deformation, and presence of noise.
The model avoids in this way the need of pre-or post-processes such as pre-
registration step which might be required for the segmentation task or vice-versa.
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Abstract. Different from image segmentation, developing a deep learn-
ing network for image registration is less straightforward because training
data cannot be prepared or supervised by humans unless they are trivial.
In this paper we present an unsupervised deep leaning model in which
the deformation fields are self-trained by an image similarity metric and
a regularization term. The latter consists of a smoothing constraint on
the derivatives and a constraint on the determinant of the transforma-
tion in order to obtain spatially smooth and plausible solution.

The proposed algorithm is first trained and tested on synthetic and
real mono-modal images. The results show how it deals with large defor-
mation registration problems and leads to a real time solution with no
folding. It is then generalised to multi-modal images. Although any vari-
ational model may be used to work with our the deep learning algo-
rithm, we present a new model using the reproducing Kernel Hilbert
space theory, where an initial given pair of images, which are assumed
non-linearly correlated, are first processed and optimized to serve the
purpose of “intensity or edge correction” and to yield intermediate new
images which are more strongly correlated and will be used for training
the model. Experiments and comparisons with learning and non-learning
models demonstrate that this approach can deliver good performance and
simultaneously generate an accurate diffeomorphic transformation.

Keywords: Deep learning · Image registration · Variational model ·
Multi-modality images · Similarity measures · Mappings

1 Introduction

Image registration consists of constructing a reasonable geometrical correspon-
dence between given two or more images of the same object taken at different
times or using the same or different devices in order to locate different or com-
plementary information. Applications of image registration include diverse fields
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such as astronomy, optics, biology, chemistry, medical imaging and remote sens-
ing and particularly in medical imaging. For an overview of image registration
methodology, approaches and applications, we refer to [7,8,14–16]. Though the
topic is actively studied and useful models exist, there remain many challenges
to be tackled mathematically, particularly in the registration of images from dif-
ferent modalities. There exist various deformable variational models for image
registration where the unknown u is sought in a properly chosen functional space
[2,5,10,13,17]. Generally speaking, the variational problem consists of solving
the optimization problem

min
u

{
L(u) = S(u) +

λ

2
D(T (ϕ), R)

}
(1)

where ϕ(x) = x+ u(x) and u is a displacement field. In (1), S(u) is a regulari-
sation term which controls the smoothness of u and reflects our expectations by
penalising unlikely transformations. The second part D(T (ϕ), R) is a similarity
term which measures the goodness of the registration. These models are called
non-learning based models as the optimization problem (1) should be solved
for each pair for images T and R. Although various non-learning-based models
have been proposed in the recent years and many numerical and computational
algorithms have been developed to accelerate the numerical resolution of these
models, it remains a very challenging question of achieving both an accurate
solution and fast speed for real time applications.

In deep learning approaches proposed in the recent years where the aim is
to optimize and learn spatial transformations between pairs of images to be
registered [3,4,9,11,12], often, they require ground-truth deformation fields for
the training task. They are called supervised models and their main drawback
is the inability to predict transformations that may not be in the same range
or class of the training transformations. As example, a deep learning model,
which is learned and trained on a dataset where the ground-truth contains only
small displacement fields, fails to predict and to give accurate results for large
displacement.

In order to remedy these drawbacks, another class of deep leaning models was
proposed. These unsupervised models do not require ground-truth deformation
fields for training. The deformation fields are self-trained and driven by image
similarity metrics computed on the input data. In [11], a spatial transformer net-
work is developed to learn transformations for 2D images; however only affine
and thin plate spline transformations were used. More general non-parametric
transformations were considered in [9,12] for mono-modal images where the loss
function is regularized by penalizing the first derivatives of the displacement u,
e.g, the total variation of u, which promotes smoothness of predicted displace-
ment fields during training. However, two issues are outstanding: (i) extension of
the work to multi-modal images; and (ii) control of folding in the deformations
by suitable regularizations leading to physically accurate transformations. For
this latter reason, such models are generally not suitable for real life problems
where deformation is large and folding can occur.
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2 A Learning Model

In this work, we present a learning based diffeomorphic model for both mono-
and multi-modal image registration. Our focus is on the multi-modal case. The
idea is that the deformation fields are self-trained by an image similarity metric
and a regularization term. In Fig. 1, we present an overview of the method:

(i) The pair of images T and R are fed as input to the network which computes
the transformation ϕ(x). Any network that can captures the image features
may work well in our model. Here, we used a network with four blocks
containing different kernels with different sizes and PReLU activation is
used at each of the block. The last block is responsible for generating the
deformation filed u.

(ii) An estimated transformation ϕ(x) is then computed based on these features.
(iii) The loss function L(·) in our model takes the form of the energy (1) i.e.

L(u) = S(u) +
λ

2
D(T (ϕ), R). (2)

Fig. 1. The model architecture in mono-modality

Generally, only the similarity measures depend on the image modality. We
discuss in the sequel the choice of the regularizer and the similarity measures for
both mono- and multi-modality registration.

Regularization S(u). The regularization that we use consists of a smoothing
constraint on the derivatives and a constraint on the determinant of the trans-
formation in order to obtain spatially smooth and plausible solutions [2,6]. The
transformations are constrained by a regularization term which combines first-
and second order derivatives and promotes smoothness. The second-order deriva-
tives allow getting smooth transformations and penalize affine linear transfor-
mations which are not included in the kernel of the first-order derivatives based
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regularizers [18]. To ensure the map to be locally invertible, we also add an addi-
tional regularization term depending on det(∇ϕ(x)) to help avoiding the mesh
folding problem. More precisely, we consider

S(u) = ‖∇u‖22 + ‖∇2u‖22 + ‖φ(det(∇ϕ)|‖22 (3)

where φ(v) = v2

(v−1)2 . This term is originally used in the non-learning hyper-
elastic model and is known to be very efficient in getting diffeomorphic maps. To
compare between different common regularizers, we consider 10 synthetic images
drawn in order to compare the regularizers for possible large deformations. We
trained our network with these images where each image can serve as a template
and reference at the same time (so that we have 9! = 362880 pairs of images). As
shown in Fig. 2, different S(u) leads to different results that we can distinguish
between them visually and by also checking the value of Qmin = min det(∇ϕ).
This part of the work is to tune our model.

Fig. 2. Dataset of 9! pairs based on 10 images used for the training, testing and com-
paring between different regularizers for large displacement.

T R i) diffu ii) TV iii) new

Fig. 3. Comparison between different regularizers—registration of an unseen pair of
images. From left to right, Template T , Reference R, registered using different regu-
larization terms: (i) the diffusion (Qmin = 0.38), (ii) Total-Variation (Qmin = −0.24)
and (iii) S(u) in (3) (Qmin = 0.71), respectively. Clearly (iii) gives the best result.
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Similarity D(T (ϕ), R). Various similarity terms can be used to measure the
goodness of the registration. In this work, we use an alternative measure to
the correlation coefficient which is well suitable for measuring linear dependence
between images, hence mono-modal images. More precisely, we use the following
combined correlation-like measure (CLM):

CLM(T,R) =

∥∥∥∥∥
(T − mT )√
Var(T )

− (R − mR)√
Var(R)

∥∥∥∥∥
2

2

(4)

+ (
√
E(T − mT )2 +

√
E(R − mR)2 −

√
E(T + R − mT+R)2)2

where mT = 1
|Ω|

∫
Ω

T dx, Var(T ) = E((T − mT )2) is the variance of T and
Var(R) is defined similarly. For multi-modal images, i. e., non-linearly correlated
images, we consider a preprocessing approach in which the given pair of images
T,R are first processed and optimized to serve the purpose of ‘intensity or edge
correction’, to yield intermediate images T ∗ = g1(T ), R∗ = g2(R) (which are
more strongly correlated than T,R) respectively. The model architecture in this
case is represented by the following diagram (Fig. 4):

Fig. 4. Our model architecture for multi-modality registration

The optimization step to obtain g1(T ), g2(R) is a standalone step. We aim
to find g1 andg2 as the minimum CLM (MCLM):

MCLM(T,R) := inf
g1,g2∈V

CLM(g1(T ), g2(T )), (5)

where V is the space of Borel measurable functions. The MCLM measure pro-
motes stronger dependence than linear ones. The following proposition shows
the utility of the MCLM in describing general dependence between T and R.
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Proposition 1. The MCLM measure has the following properties:

1. MCLM(T,R) = 0 if T = φ(R) or T = φ(R) where φ(·) is not necessary
invertible;

2. MCLM(T,R) = 0 implies g1(T ) = g2(R) where g1, g2 ∈ V .

Approximation of (5) by RKHS. In order to approximate the infimum in (5), we
employ the theory of reproducing kernel Hilbert space [1]. For given T,R, we first
employ a k-means algorithm to find suitable n respective clusters {ti}, {rj} for
images T,R. Then these intensity values {ti}, {rj} will define the RKHS bases
and we denote by such RKHS images g1(T ) and g2(R) respectively

T ∗ = g1(T (x)) :=
n∑

i=1

αiK(T (x), ti),

R∗ = g2(R(x)) :=
n∑

j=1

βjK(R(x), rj). (6)

In this work, the Gaussian kernel K(x, y) = 1√
2πσ

exp{− (x − y)2

2σ2
} is used but

there are many possible alternatives. Hence the new similarity measure for multi-
modality registration will be denoted as

MCLM(T,R) := inf
α,β

CLM(T ∗, R∗). (7)

Fig. 5. The effect of RKHS approximation applied to two pairs of images T and R. (a)
Initial CT image R. (b) Intermediate R∗. (c) Initial MRI image T . (d) Intermediate
T ∗. For both tests, the transformed intermediate images R∗ and T ∗ and more strongly
correlated than R and T . Here, we used m = 74, σ = 0.05 in the Gaussian Kernel and
α and β are obtained by minimizing (7).
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In Fig. 2, we illustrate the benefits of using the RKHS approximation in trans-
forming the image T and R into new images T ∗ and R∗ which are visually more
suitable and may be seen as linearly correlated (Fig. 5).

3 Numerical Tests

In the numerical validation, we assess the performance of the proposed model
that we call DL Model in registering mono-and multi-modal images. We com-
pare with the classical variational model that optimizes the same loss function,
i.e., the same regularizer and similarity measure, in a non-learning approach
which we call NL Model. Registration quality is evaluated using the MI (the
larger the better) between the two images T (ϕ) and R. We also assess if the
map ϕ is diffeomorphic by checking the minimum of the Jacobian determinant
det(∇ϕ(x)) i.e. yes if positive.

Mono-modal Images: For mono-modality registration, we train our model on
160 pairs of MRI heat images. We test our model on 20 unseen images and we
display in Table 1 4 (typical) comparison results with the NL model in term
of CPU time and accuracy. For the CPU time, DL Model is by far faster and
predict the transformation in 1 s for a pair of images with a resolution of 256×256.
The NL model achieves the same result in term of accuracy but it takes more
than 1 min, to 100 times difference.

Table 1. Comparison between learning DL Model and non-learning NL Model for
the images in Fig. 3 in Speed (time) and Quality (MI). One sees that DL is about 100
times faster for a similar result.

Examples

Exp 1 Exp 2 Exp 3 Exp 4

Time (s) for DDLmodel 1.18 ± 0.6

Time (s) for NLmodel 112.54 120.31 107.11 112.5

MI for DLmodel 1.49 1.66 1.53 1.57

MI for NLmodel 1.52 1.64 1.54 1.59

Qmin for DLmodel 0.45 0.63 0.65 0.67

Qmin for NLmodel 0.61 0.47 0.69 0.54

Multi-modal Images: For multi-modal images, we train the network on 120
pairs of CT and MRI images. In this example, we test the registration of a MRI
image to a CT with much noise and texture, where prominent edges do not
correspond to each other. We present the prediction result for registering 4 pairs
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Fig. 6. Pairwise registration results for 4 pair of MRI images. Each row represents
the result for a pair test. (a) Moving images T . (b) Fixed images R. (c) and (d)
are the registered images using DL Model and NL Model, respectively. The mutual
information errors and the values of Qmin related to these tests are given in Table 1

of MRI and CT images. To see the quality visually, we show the fused CT and
MRI images for the four examples before and after registration. Clearly after
the registration the images are well aligned while the learning approach is about
100 times faster for a comparable quality of NL (Figs. 6 and 7).
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Fig. 7. Pairwise registration results for 4 pair of MRI-CT images by the learning model.
Each row represents the result for a pair where: (a) Fixed images R. (b) Moving images
T . (c) Registered images using DL Model. (d) and (e) are the fused images before
and after the registration, receptively.

4 Conclusions

We have developed and presented an unsupervised deep learning approach for
mono-and multi-modal images registration. We tested and compared different
choices of regularization constraints on the deformation fields. The results have
shown that control on the Jacobian determinant of the deformation is necessary
in the loss function in order to get a diffeomorphic map, mainly for large dis-
placements. The learning model was first designed and tested for mono-modal
images. Adding a preprocessing step based on the reproducing kernels Hilbert
space techniques, we found that the same learning approach works effectively for
multi-modal images. Future work will consider generalizations to 3 dimensional
images registration.

References

1. Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404
(1950)

2. Burger, M., Modersitzki, J., Ruthotto, L.: A hyperelastic regularization energy for
image registration. SIAM J. Sci. Comput. 35, 132–148 (2013)



326 A. Theljani and K. Chen

3. Cao, X., Yang, J., Wang, L., Xue, Z., Wang, Q., Shen, D.: Deep learning based
inter-modality image registration supervised by intra-modality similarity. In: Shi, Y.,
Suk, H.-I., Liu, M. (eds.) MLMI 2018. LNCS, vol. 11046, pp. 55–63. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-00919-9 7

4. de Vos, B.D., Berendsen, F.F., Viergever, M.A., Sokooti, H., Staring, M., Isgum, I.: A
deep learning framework for unsupervised affine and deformable image registration.
Med. Image Anal. 52, 128–143 (2019)

5. Droske, M., Ring, W.: A mumford-shah level-set approach for geometric image
registration. SIAM J. Appl. Math. 66, 2127–2148 (2006)

6. Droske, M., Rumpf, M.: A variational approach to nonrigid morphological image
registration. SIAM J. Appl. Math. 64, 668–687 (2004)

7. Fischer, B., Modersitzki, J.: Ill-posed medicine - an introduction to image regis-
tration. Inverse Prob. 24, 034008 (2008)

8. Gigengack, F., Ruthotto, L., Burger, M., Wolters, C.H., Jiang, X., Schafers, K.P.:
Motion correction in dual gated cardiac pet using mass-preserving image registra-
tion. IEEE Trans. Med. Imaging 31, 698–712 (2012)

9. Haskins, G., Kruger, U., Yan, P.: Deep learning in medical image registration: a
survey. arXiv preprint arXiv:1903.02026 (2019)

10. Henn, S.: A multigrid method for a fourth-order diffusion equation with application
to image processing. SIAM J. Sci. Comput. 27, 831–849 (2005)

11. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks.
In: Advances in Neural Information Processing Systems, pp. 2017–2025 (2015)

12. Li, H., Fan, Y.: Non-rigid image registration using fully convolutional networks
with deep self-supervision. arXiv preprint arXiv:1709.00799 (2017)

13. Mang, A., Biros, G.: Constrained h1-regularization schemes for diffeomorphic
image registration. SIAM J. Imaging Sci. 9, 1154–1194 (2016)

14. Modersitzki, J.: FAIR: Flexible Algorithms for Image Registration. SIAM,
Philadelphia (2009)

15. Oliveira, F., Tavares, J.M.: Medical image registration: a review. Comput. Methods
Biomech. Biomed. Eng. 17, 73–93 (2014)

16. Sotiras, A., Davatzikos, C., Paragios, N.: Deformable medical image registration:
a survey. IEEE Trans. Med. Imaging 32, 1153–1190 (2013)

17. Theljani, A., Chen, K.: An augmented Lagrangian method for solving a new vari-
ational model based on gradients similarity measures and high order regulariation
for multimodality registration. Inverse Prob. Imaging 13, 309–335 (2019)

18. Zhang, J., Chen, K., Yu, B.: A novel high-order functional based image registration
model with inequality constraint. Comput. Math. Appl. 72, 2887–2899 (2016)

https://doi.org/10.1007/978-3-030-00919-9_7
http://arxiv.org/abs/1903.02026
http://arxiv.org/abs/1709.00799


Automatic Detection and Visualisation
of Metastatic Bone Disease

Nathan Sjoquist1(B), Tristan Barrett2, David Thurtle3,
Vincent J. Gnanapragasam3, Ken Poole4, and Graham Treece1

1 Department of Engineering, University of Cambridge, Cambridge, UK
ns706@cam.ac.uk

2 Department of Radiology, University of Cambridge, Cambridge, UK
3 Department of Urology, University of Cambridge, Cambridge, UK

4 Department of Medicine, University of Cambridge, Cambridge, UK

Abstract. This paper presents a novel method of finding and visual-
ising metastatic bone disease in computed tomography (CT). The app-
roach we suggest locates disease by comparing trabecular bone density
between symmetric bony regions. Areas of strong difference could indi-
cate metastatic bone disease as bone lesions either increase or decrease
bone density. Our detection method is completely automatic and only
requires raw CT data as input. Results are visualised in an interactive 3-
dimensional viewer which displays a polygonal mesh of the bone structure
overlaid with colour combined with resliced CT data. Diseased regions
are clearly highlighted in both the mesh and in the resliced CT data. We
test our method on both healthy and diseased CT data to demonstrate
the validity of the technique. Experimental results show that our method
can detect metastatic bone disease, although further work is needed to
improve the robustness of the technique and to decrease false positives.

Keywords: Metastatic bone disease · Disease asymmetry · CT
analysis · CT segmentation · Articulated registration · Computer aided
detection

1 Introduction

Metastatic bone disease (MBD) is a common secondary feature of prostate can-
cer, breast cancer and many other malignancies. Bone scintigraphy is the usual
imaging detection technique but has limitations in detecting changes over time
and is only 2-dimensional. With improvements in bone-targeting therapies, bet-
ter evaluation of therapeutic response is now a Europe-wide research priority.
Positron-emission tomography is promising, but the expense and inaccessibil-
ity means CT is increasingly used for serial assessment. This requires time-
consuming reviews of many CT cross-sectional images looking for small and
diffuse bony changes – the summary of which is difficult to demonstrate in a
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multidisciplinary review setting as well as to demonstrate to the patient. To
address these challenges, we have designed and implemented a new method for
the detection and visualisation of MBD.

The human skeleton is nearly symmetric in both shape and bone density.
When two healthy symmetric bony regions are compared with each other, the
regions will hence contain little difference. However, metastatic bone disease
causes sclerotic and lytic bone lesions to form, increasing the density (sclerotic
lesions) or decreasing the density (lytic lesions) of the bone. When the bone
density of symmetric regions containing bone lesions is compared, the difference
is greatly increased as the lesions do not generally form symmetrically across
both regions.

Our algorithm can automatically find these bone lesions by symmetrically
comparing the bone density in the human skeleton and grouping areas of large
difference. The method displays these differing densities through a novel visu-
alisation. We believe this method has the potential to improve accuracy and to
reduce the time-consuming review of the individual inspection of hundreds of
cross-sectional images. We envisage our technique being used to identify poten-
tial areas of concern, although the final reporting of a bone lesion will require
multi-planar assessment of the source data by the radiologist, oncologist and
surgical team. In this paper, we describe our method in detail and show that it
can automatically locate and visualise MBD in CT.

2 Background

Bone is a common site for metastasis by malignant tumours such as the lung,
breast, and prostate cancer. This is significant as MBD can cause more devastat-
ing effects than the primary cancer does. MBD substantially increases morbid-
ity due to its complications which include pain, impaired mobility, pathological
fracture, spinal cord compression, cranial nerve palsies, nerve root lesions, hyper-
calcaemia and suppression of bone marrow [6] making it an important area of
research.

In normal bone, development and maintenance of bone tissues is sustained
through a balance of osteoclasts and osteoblasts resorbing and depositing bone
tissue. With MBD, this process is disrupted as cancerous cells from the primary
site contribute to the establishment of bone metastatic lesions. Most metastases
are osteoblastic, causing an increase in bone density, although some metastases
are osteolytic causing a reduction of bone density. In both cases, MBD causes
an abnormal change in the density of bone.

Publications describe methods that can semi-automatically or automatically
detect bone lesions by comparing learned features (generated by hand or through
an automated machine learning technique) to raw and segmented CT data
[3–5,10–12,16,18]. While these methods are promising, they have a limited spa-
tial scope (only the vertebral column), offer poor visualisation of the results
(only 2-dimensional) and often have a low accuracy. Machine learning in general
also requires large quantities of accurately marked training data which can be
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difficult to obtain in a medical imaging setting due to patient agreements and
lack of experts to mark the data.

Instead of using a machine learning approach, our paper explores a completely
new approach to the problem. Rather than using training data to learn features
distinct to bone lesions, we compare each CT data set to itself through symmetry
in order to find irregularities. This removes the need for training data and bypasses
the problem often encountered with machine learning algorithms – poor results
when the training data does not contain a specific, never before encountered pat-
tern. Also, instead of searching directly for 2-dimensional bone regions, we com-
pare the modelled bone density between each symmetric pair of points in our 3-
dimensional mesh, which reduces the dimensionality of the problem (when com-
pared to searching for all combinations of 2-dimensional slices through an entire
CT data set).

Using symmetry to locate disease has been shown to be a successful approach
in a variety of situations [13,17]. Although results from these papers could be
improved, they demonstrate the feasibility of the approach. We have extended
these ideas and have applied them to the problem of locating MBD. When
compared to the previous approaches [13,17], the rigidity of the 3-dimensional
bone improves symmetric matching as the bone surface is not malleable like
soft tissue. We do not compare shape differences directly (which is a harder
problem) but only the bone density between each pair of points. This leads to
improved accuracy. We chose to compare the less dense inner trabecular bone
density instead of the more dense outer cortical bone, as the trabecular density
measurements are more often affected by the disease.

3 Methodology

Our method first extracts regions containing bone in the CT data. It converts
these 2-dimensional segmentations into a 3D polygonal (target) mesh that encap-
sulates the bone structure. Using the Cortical Bone Mapping (CBM) method
[15], we measure the trabecular bone density. Our method then solves for sym-
metric point correspondence between left and right sides by registering the seg-
mented target mesh with an atlas mesh. Finally, we display differences in tra-
becular bone across symmetric regions in an interactive 3-dimensional viewer.

3.1 Segmentation

In order to measure trabecular bone density and to find bone symmetry, the
contours that surround regions of bone are first located within the CT images
through the process of segmentation. In this process, pixels are classified as being
either of a bone type or of a non-bone type.

Pixels labelled as bone generally contain a higher intensity than that of non-
bone (unless the CT data contains a metal implant or a contrast agent). Bone
has a radiodensity typically greater than 1200 Hounsfield units (HU) while soft
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tissue and fat have a radiodensity typically between −70 HU and 100 HU. How-
ever, in the region between 100 HU and 1200 HU, there is much overlap between
the radiodensity of trabecular bone, fat and soft tissue. Because of this, a single
intensity threshold cannot be used to separate bone from non-bone, as a thresh-
old set low enough to include all bone will include also fat and soft tissue. A
threshold set high enough to exclude fat and soft tissue will also exclude bone.
To overcome this issue, context from surrounding pixels must be combined with
pixel intensity to correctly classify a pixel as being bone or non-bone.

Many approaches have been developed that can segment bone in CT. How-
ever, the problem has yet to be fully and accurately solved. Approaches can be
placed into general groups including adaptive thresholding, hysteresis threshold-
ing, region growing, watershed, active contour, edge based, level set, graph cuts,
statistical shape models, articulated registration based and machine learning
based.

We chose to use a hysteresis thresholding technique as regions of bone and
non-bone can be generally divided into high intensity (bone) and low intensity
(non-bone) regions making it a natural thresholding type problem. Hysteresis
thresholding addresses the overlapping regions of bone and non-bone by pro-
vided context which greatly improves the accuracy when compared to global
thresholding. Furthermore, the Cortical Bone Mapping (CBM) method used for
measuring bone density, produces the best results when the contour lines sur-
rounding the bone lie exactly between the bone and non-bone pixels. Because
we use a thresholding technique, we can produce contour lines with sub-pixel
accuracy by interpolating between threshold pixels, improving both the density
calculation and the segmentation accuracy.

First, we select all pixels that are very likely bone (dense outer cortical bone).
Then, a second lower threshold is used to select all pixels that may be bone but
also may contain some soft tissue and fat. The pixels segmented at this lower
level are only kept if they are connected to a pixel segmented at the higher
threshold.

Additionally, we developed a new method to improve accuracy based on the
gap filling ideas from Gelaude [9]. We found that using a third threshold slightly
lower than the second was useful in filling gaps. These gaps occur as the hard
cortical bone is sometimes non-existent in the CT. They can severely decrease
segmentation accuracy as the contour traces the inside of the bone structure
instead of the outside. Figure 1a shows an example.

To address this, we first generate a contour line using a third slightly lower
threshold. We then compare this contour line with the contour line generated by
the hysteresis thresholding technique. As the third threshold is lower than both
the hysteresis thresholds, its contour line lies on the outside of the hysteresis
contour at all points. By following these contour lines in counter clockwise direc-
tion, each time these two contours diverge, the path lengths are compared. The
contour lines lie relatively close to each other until gaps in the cortical bone are
reached. In these locations, the contours often diverge as the hysteresis contour
traces the gap and then re-joins with the lower contour. The hole is filled if the
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path length of the hysteresis threshold contour is more than three times longer
than that of the lower contour. Figure 1b shows an example of a hole being filled.
The green (hysteresis) contour follows the blue (lower threshold) contour until
they diverge at the gap. The yellow contour shows the divergence. Its length is
compared to the length of the blue line during the divergence, causing the final
hysteresis contour to skip the gap.

(a) Gaps in the contour can severely
decrease segmentation accuracy.

(b) Joining a gap in the contour to improve
segmentation accuracy.

Fig. 1. Generic segmentation of bone from CT data. (Color figure online)

3.2 Bone Mesh Creation and Cortical Bone Mapping (CBM)

Once contours are found in each original CT image, the marching tetrahedra
algorithm is used to create a polygonal mesh of the bone structure. We used the
Stradwin software implementation [14] for this. Figure 2a shows the results of
our segmentation and mesh

(a) This figure shows what a typical fully
automatic segmentation looks like, as well
as indicating the typical range over which
we attempt to detect MBD.

(b) This figure shows the target mesh (in
yellow) being registered to the atlas mesh
(multi-coloured) using articulated registra-
tion.

Fig. 2. Segmentation and registration. (Color figure online)
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Once the 3D polygonal meshes are formed, the Cortical Bone Mapping
(CBM) technique is used to accurately estimate trabecular bone density [15].
In CBM, the trabecular bone density is estimated by following the vector nor-
mal at each triangle in the mesh into the bone. The distribution of bone density
along this line is modelled, which crucially allows average trabecular density to
be estimated without any bias from the nearby, and much denser, cortical bone.
Figure 3a shows the outline of the segmented bone in red running parallel to the
cortical bone and a line normal to the cortical bone running through the bone
surface in cyan while Fig. 3b shows the density being measured.

(a) Measuring the cortical thickness along
the cyan line through the segmented bone.

(b) Measuring the bone density by mod-
elling the cortical thickness.

Fig. 3. CBM can measure cortical bone mineral density (CBMD), trabecular bone
mineral density (ECTD), cortical thickness (CTh), and cortical mass surface density
(CMSD). (Color figure online)

3.3 Finding Symmetry

In order to compare the density of symmetric regions, we search for a symmetric
point correspondence for each point in the segmented target mesh. To do this
we register the target segmentation to an atlas containing a polygonal mesh of a
healthy skeleton where each point has been symmetrically paired with another.

3.4 Atlas Creation

To create our atlas, a healthy CT data set was initially segmented using the
threshold feature in the Stradwin software [14]. The segmentation was then
thoroughly corrected by hand again using the Stradwin software. The full seg-
mentation of the skeleton was also split into multiple regions by labelling general
bone regions (pelvis, left femur, right femur, individual ribs and vertebrae).

Each segmentation was then paired with a symmetric region by mirroring
one to match the other (e.g. left femur matched to right femur). In the case of
a bone region without a corresponding symmetry match (vertebrae and pelvis),
the region is matched with an x-axis inverted copy of itself. Similarity-based
rigid registration was first used to register each pair of symmetric regions using
the wxRegSurf software [8]. Where necessary, deformable registration was used
to improve accuracy.
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3.5 Articulated Registration

The atlas is registered to the target segmentation using an articulated registra-
tion technique. Our registration method was inspired by the techniques used
to segment skeletons in mouse CT [1] and human CT [7]. Registration in gen-
eral produces the best results when initial placement is as accurate as possible.
Articulated registration takes advantage of this through a series of steps. The
entire skeleton as a whole is first registered for initial placement. Then smaller
and smaller sub-regions of the skeleton are registered following a hierarchical
anatomical tree atlas. This guides the small subsections of the skeleton into a
generally correct location before final registration. This greatly improves accu-
racy as the whole skeleton guides the registration but each bony region can move
independently of each other. For each registration step, a rotation, translation
and scale is found that minimizes the distance between each point on the atlas (or
bony sub-region) and the target mesh. We implemented the classic registration
method described by Besl [2]. Figure 2b shows the atlas mesh being registered
to the target mesh using articulated registration.

Our method differs from the papers above [1,7] as their purpose is to segment
the skeleton. Instead, we use this registration technique to find the symmetry
between each point. At the end of the registration, for each point in the target
mesh, we look up the closest point in the atlas mesh. Each point in the atlas has
a symmetric point, so we use that symmetric point to lookup the closest point
in the target mesh. In this way we can find the symmetric mappings between
all points in the target mesh. We compare vector normals and point distances
(between atlas and target) and only set symmetric mappings if these are within
a reasonable range. Our current registration method is only rigid with scaling—
in future we plan to implement a non-rigid registration to improve upon the
performance shown in Fig. 2b.

4 Visualisation of Disease

Once every point on the left side has been mapped to a corresponding point
on the right side, the trabecular bone density at every point on one side of
the skeleton is compared with the other side. As long as one side is diseased,
the difference in trabecular bone density between left and right is significant.
We wrote a specialized viewer to visualise the results by displaying a polygonal
mesh of the skeleton and uniquely colouring each vertex. Figure 4a shows the
trabecular bone density (i.e. not using symmetrical difference) overlaid on the
mesh. A darker blue indicates a more dense bone. Figure 4b shows the segmented
mesh with a raw CT slice.

Areas of large difference are grouped together, and each group has the poten-
tial to be either healthy or diseased. Healthy regions are still included with
diseased regions at this point, as all groups with large differences in trabecu-
lar bone density between left and right sides are selected without taking into
account which side caused the differences. Intuitively, trabecular bone density in
healthy tissue will be relatively constant, while diseased bone that has increased
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(a) Polygonal mesh overlaid
with colour map.

(b) CT slice data included
with mesh.

(c) Colour scale of trabecu-
lar bone density.

Fig. 4. The segmentation result is overlaid with a colour map representing the trabec-
ular bone density measurements. (Color figure online)

or decreased bone density will have certain intense changes in trabecular bone
density. When the gradient of trabecular bone density of healthy bone is com-
pared to the gradient of its difference in trabecular bone density, the differences
are generally high. However, when the gradient of trabecular bone density of
diseased bone is compared to the gradient of its difference in trabecular bone
density, the differences are generally low. In this way, regions are determined to
be either diseased or healthy. Figure 5a shows the trabecular bone being sub-
tracted from each side. In Fig. 5b, the density differences greater or less than
200 HU are grouped together. In Fig. 5c, only the diseased areas are shown.

(a) The density of each side
is subtracted from the other
side.

(b) Regions of strong
density differences are
grouped together.

(c) Healthy regions are
removed by comparing
gradients.

Fig. 5. Disease is visualized by comparing trabecular bone density differences and
gradients of symmetric regions.

A user can click on any point in the mesh and find it’s symmetric point pair.
A green line is drawn between the points, and their surface normals are drawn
in red and blue. A new, re-slice image plane is defined using the vector pointing
from first point to the second, and the vector created by adding the two normals
together. In Fig. 6a, a user has clicked on the diseased right side. The CT is
automatically re-sliced to show the diseased region. Figure 6b shows MBD on
the right side of the pelvis. In Fig. 6b, it can be seen that the right side contains
a much greater trabecular bone density than the left side does.
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(a) Re-slicing the CT data at the user
selected location.

(b) The diseased right side can be seen in
the re-sliced CT image.

Fig. 6. A user can click on the mesh to calculate a re-sliced CT image at that location.

5 Results and Discussion

We tested our method using eleven diseased CT data sets and one healthy CT
data set. All of our CT data sets are under an ethics agreement enabling us to
use them for research and publication. We compared the diseased areas found
in our viewer (areas of high colour contrast) to metastatic scoring sheets from
conventional CT review marked by experts. We also compared our results to
3-dimensional bone lesions marked by an expert which can be seen in Fig. 7a.
Areas were marked as being either malignant or suspicious. Malignant areas are
diseased regions and suspicious areas are abnormal regions that could be disease.
Table 1 shows our results.

(a) 3-dimensional lesions marked by an expert are
displayed in red inside the mesh and compared to
our results displayed on the surface of the mesh.

(b)  Results  correctly  show  our
healthy atlas to be mostly disease
free.

Fig. 7. Results are visually compared to 3-dimensional lesions marked by an expert to
determine accuracy.

5.1 Evaluation

Our method found 73.1% of suspicious areas and 79.2% of malignant areas cor-
rectly. It found 77.0% of all diseased areas. Our results also contained a number
of false positives in each data set - most of which are small in size. This can be
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seen in Fig. 8. However, there are limitations in finding the true accuracy of our
results as the clinician-defined areas of suspicion may not be perfect. This may
be the cause of some of the false positives as they may actually be abnormal
regions missed by the expert.

Fig. 8. A typical result showing suspicious areas (Sus), malignant areas (Mal) and false
positives.

Table 1. Sensitivity of the viewer finding diseased regions.

Name Suspicious areas Malignant areas

Case 1 3/4 1/1

Case 2 4/4 1/1

Case 3 2/3 5/8

Case 4 1/2 None

Case 5 1/2 None

Case 6 1/2 1/1

Case 7 None 4/4

Case 8 2/3 3/4

Case 9 2/3 3/4

Case 10 3/3 9/13

Case 11 None 11/12

We also tested our method on a healthy CT data set (our atlas) by processing
its raw CT data. The method found the healthy data mostly disease free although
it incorrectly displays small spots of disease in a few locations. This can be
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seen in Fig. 7b. Some of these spots of disease are due to natural and healthy
asymmetry. This can be seen in the sacroiliac joint which is shown as partially
diseased. These areas of healthy asymmetry will need to be addressed in the
future.

5.2 Discussion

These results demonstrate that our technique can successfully detect and visu-
alise metastases in bone. Our method already has a relatively high sensitivity in
finding areas of diseased bone, but can be improved. It can find bone metastases
in the vertebra, pelvis and upper femurs, which is an improvement over existing
methods which are mostly limited to the vertebra.

Our results currently contain many false positives. These are due to errors in
the automatic segmentation, registration and symmetry point matching although
in some cases, our method may be correctly identifying abnormal regions missed
by the expert. One important next step to reduce false positives, is to use a
deformable registration technique that can both preserve atlas symmetry but
also provide more accurate matching with the target mesh. After this step, the
deformed atlas mesh can be used to measure the trabecular bone density instead
of using the target segmentation mesh. This should greatly improve the accuracy,
as errors will be reduced both in the trabecular bone density measurement and
in the symmetric point matching.

Our method produces poor results in the ribs. This is due to significant
errors in the registration as there is much variability between rib shape and size.
Poor registration produces poor symmetric point matching severely decreasing
the accuracy of this method. Deformable registration as well as improvements to
the rib components of the articulated registration should help with this problem.

6 Conclusions

We have introduced a new algorithm that can automatically detect and display
metastasized cancer in bones. Preliminary results demonstrate that the algo-
rithm can successfully find areas of bone disease and visualise them in a unique
way. It already has a relatively high sensitivity in finding areas of diseased bone
but it can still be improved. The technique currently suffers from a high false
positive rate, which will need to be addressed. It is fully automatic, and success-
fully works as a diagnostic tool providing a unique way to visualise disease.
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Abstract. Deformable image registration is an important tool in medical image
analysis. In the case of lung four dimensions computed tomography (4D CT) reg-
istration, there is a major problem that the traditional image registration methods
based on continuous optimization are easy to fall into the local optimal solution
and lead to serious misregistration. In this study, we proposed a novel image
registration method based on high-order Markov Random Fields (MRF). By ana-
lyzing the effect of the deformation field constraint of the potential functions with
different order cliques in MRF model, energy functions with high-order cliques
form are designed separately for 2D and 3D images to preserve the deformation
field topology. For the complexity of the designed energy function with high-
order cliques form, the Markov Chain Monte Carlo (MCMC) algorithm is used
to solve the optimization problem of the designed energy function. To address the
high computational requirements in lung 4D CT image registration, a multi-level
processing strategy is adopted to reduce the space complexity of the proposed reg-
istration method and promote the computational efficiency. Compared with some
other registration methods, the proposed method achieved the optimal average
target registration error (TRE) of 0.93 mm on public DIR-lab dataset with 4D CT
images, which indicates its great potential in lung motion modeling and image
guided radiotherapy.

Keywords: Image registration · 4D CT · Markov Random Field · Topology
preservation

1 Introduction

In the lung 4D CT image registration, due to the influence of heart beats and respira-
tory movements, the local intensity inhomogeneity of the 4D CT images and the large
deformation of the fine textures are caused. In this case, some traditional continuous
optimization-based image registration methods are easy to fall into local optimal solu-
tions [1], and obtain unacceptable results, which are not suitable for the registration of
lung images.

The image registration method based on MRF model is a non-rigid registration
method using discrete optimization. For the MRF-based image registration method,
according to whether the high-order clique structure is included in the energy function,
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it can be divided into a low-orderMRF-based image registrationmethod and a high-order
MRF-based image registration method [2]. In general, the low-order MRF-based image
registration method only considers the energy function based on pairwise interactions
between the variables of the field. Therefore, most of the modern discrete optimization
algorithms such as message passing [3, 4] and graph cuts [5] are used to solve the
optimization problem.

In high-order MRF-based image registration, the energy functions are composed of
complex high-order cliques above two-element cliques. Although the high-order cliques
can impose constraints more effectively on the deformation field and can further improve
the registration accuracy, but the discrete optimization algorithms introduced above can’t
solve the energy functions with the high-order cliques. In response to the above prob-
lem, the Quadratic Pseudo-Boolean Optimization (QPBO) algorithm [6] was proposed
to improve the graph cuts algorithm, so that QPBO can solve the non-submodular opti-
mization problems. After that, Cordero-Grande et al. [7] proposed a 2D image reg-
istration method that could maintain the topology by using parameter estimation and
MCMC-based optimization algorithm.

In lung 4D CT image registration, in order to solve the problem of large motion of
small features in the lung, Han et al. [8] proposed an image registration method based
on robust 3D SURF (Speeded Up Robust Features) descriptors for feature detection and
matching. For lung images with local intensity inhomogeneity, Normalized Gradient
Fields (NGF) [9] or Modality Independent Neighborhood Descriptors (MIND) [10] are
usually used. In recent related researches, Vishnevskiy et al. [11] proposed an isopTV
method that used an isotropic total variation regularization term to constrain the defor-
mation field, it’s result is the best in the DIR-lab dataset with 4D CT images. In the
same year, Rühaak et al. [12] proposed a method for estimate large motion in lung CT
by integrating regularized keypoint correspondences into dense deformable registration
which is best in the COPD dataset. In 2018, Eppenhof et al. [13] used 3D convolutional
neural networks for 4D CT lung image registration, although the registration time can be
greatly shortened while ensuring a certain registration accuracy, its registration accuracy
has no advantage compared with other methods.

In order to further improve the accuracy of lung 4D CT image registration, a high-
orderMRF-based 4DCT image registrationmethod (HO-MRF) is proposed in this paper.
Based on high-order MRF, an energy function with high-order cliques is designed to
maintain the topology of deformation field and MCMC algorithm is used to solve the
optimizationproblemof the energy function. In viewof the fact that the lung4DCT image
hasmanyvoxels and large localmotion range, an effectivemulti-level processing strategy
is adopted to reduce the complexity of the algorithm and improve the computational
efficiency.

2 High-Order MRF Registration Model

2.1 General Form of the MRF Model

Manyproblems in image processing can be expressed as label problems inMRF. In image
registration, consider the N-dimensional target image I: � → R

N and N-dimensional
moving image J: � → R

N , for each point p ∈ � (with spatial location xp), there
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is a set of labels L, which corresponds to N-dimensional discrete displacements d =
(d1, d2, d3 . . . dN ) ∈ L. Therefore, an energy function in image registration can be
expressed as the following form

E =
∑

p∈�

∣∣I
(
xp

) − J
(
xp + D

(
xp

))∣∣+ω · R(D) (1)

where D is the deformation field composed of d and D = ∑
p∈� dp, I

(
xp

)
represents

the intensity of the target image at point p, J
(
xp + D

(
xp

))
represents the intensity of

the point p on the moving image after the deformation field is applied, R is a function
of the deformation field D, and ω is a weight parameter, which determines the influence
of the constraint term on the whole energy function.

In MRF, the constraint R is usually determined by the three elements of the neigh-
borhood system N , the cliques C and the potential functions V in the random field. In
a 2D image, a common neighborhood system is a 4-neighborhood system as shown in
Fig. 1(a) or 8-neighborhood system as shown in Fig. 1(b). Accordingly, in a 3D image,
there are 6-neighborhood system, 18-neighborhood system and 26-neighborhood sys-
tem. On this basis, we can define clique as a subset of points according to the set
of pixel points in the neighborhood. According to the size of clique (the number of
points p included in the clique), a one-element clique, a two-element clique and a three-
element clique can be defined as: C1 = {p|p ∈ � }, C2 = {(p, q)|p ∈ � q ∈ Np},
C3 = {(p, q, r)

∣∣p ∈ �, q, r ∈ Np }, where Np (light blue dots in Fig. 1) represents the
neighborhood of the point p (dark blue dots in Fig. 1) and Fig. 1(c), (d) and (e) show the
structure of each clique in the 8-neighborhood system of the 2D image respectively.

Fig. 1. Neighborhood system and clique categories in 2D image: (a) 4-neighborhood system
(b) 8-neighborhood system (c) One-element cliques (d) Two-element cliques (e) Three-element
cliques. See also the orientation of the coordinate system {x, y}. (Color figure online)
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In MRF, the potential functions V are the core factor that determines the constraints.
According to the Hammersley-Clifford theorem, the energy function E can be repre-
sented by the potential functions V . Usually, a potential function is generally defined as
a function of cliques, and its purpose is to calculate the cost of the corresponding poten-
tial function according to different order cliques. In image registration, the potential
functions with one-element cliques represent a data term, the potential functions with
two-element cliques and above are used to constrain the deformation field. The role of
various potential functions with different cliques in image registration will be described
in detail below.

2.2 Potential Functions with Different Cliques

Potential Functions with One-Element Cliques. In MRF, a potential function with
one-element cliques (also called data term) is usually used to measure the similarity
of control points in two images, that is, the data term in the energy function. In the CT
image registration of the lung, due to the compression of the lungs and the local intensity
inhomogeneity of the lung 4D CT images, in this paper, the Local Correlation (LCC)
metric proposed in [14] is mainly used to construct the following potential function with
one-element cliques

V1
(
xp

) = 1 −
〈
Ip, Jp

〉

σ(Ip)σ (Jp)
(2)

where Ī p = Hw ⊗ Ip, J̄p = Hw ⊗ Jp, σ 2(Ip) = I 2p − Ī 2P , σ 2(Ip) = I 2p − Ī 2P ,〈
Ip, Jp

〉 = Ip Jp − Ī p J̄p, Hw is a spatial-invariant Gaussian weighting kernel with
standard deviation w.

Potential Functions with Two-Element Cliques. In MRF, since the set of labels for
each point is defined as a set of the displacement vectors, so labels can represent the dis-
placement vectors. In order to make the deformation field satisfy a certain smoothness,
the potential functions with two-element cliques are usually used to apply the smooth-
ing constraint to the deformation field. In the lung image, the deformation field is not
necessarily continuous because of the respiratory motion, so the following truncation
model in [15] is used in this paper

V2
(
dp,dq

) = min(r · ∥∥dp − dq
∥∥, n) (3)

where dp,dq (the correspond displacement vector) represent the labels of point p and
point q respectively. ‖•‖ represent the vector norm, n is themaximumcost of the potential
function V2 and r is a linear increasing coefficient such that r · ∥∥dp − dq

∥∥ satisfies
r · ∥∥dp − dq

∥∥ � n.

Potential Functions with High-Order Cliques. Since the high-order cliques can
describe the complex relationship between the labels, it can not only constrain the
smoothness, but also maintain the topology of the deformation field, so that the defor-
mation can be better constrained. In 2D images, the topology preservation term is built
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according to three-elements cliques, as shown in Fig. 1(e). Note that the four three-
element cliques defined in Fig. 1(e) are analogous to the four corners from which the
Jacobian is computed in [16], and we can get the Jacobian discriminants according to
the different forms of the three-element cliques in Fig. 1(e)

J f f (dp1 ,dp2 , dp3
) = (

1 + dp2x − dp1x
)(
1 + dp3y − dp1y

)
− (

dp3x − dp1x
)(
dp2y − dp1y

)

Jb f
(
dp1 ,dp2 , dp3

) = (
1 + dp1x − dp2x

)(
1 + dp3y − dp1y

)
− (

dp3x − dp1x
)(
dp1y − dp2y

)

J f b(dp1 ,dp2 , dp3
) = (

1 + dp2x − dp1x
)(
1 + dp1y − dp3y

)
− (

dp1x − dp3x
)(
dp2y − dp1y

)

Jbb
(
dp1 ,dp2 , dp3

) = (
1 + dp1x − dp2x

)(
1 + dp1y − dp3y

)
− (

dp1x − dp3x
)(
dp1y − dp2y

)
(4)

where, in the isosceles right-angled triangle (the length of the right angle is the
unit distance 1) formed by the clique elements p1, p2, p3 (as shown in Fig. 1(e)),
dp1 ,dp2 ,dp3 ∈ D represents the displacement vector of the right-angled vertex, the
displacement vector of the vertical right-angled vertex, and the displacement vector of
the horizontal right-angled vertex, Eq. (4) is the Jacobian discriminant of the invariance
of the constrained topology we need. According to the characteristics of the MCMC
algorithm, in order to avoid the excessive cost value of the topology preservation terms
composed of high-order cliques,we propose to use the logarithm function form to impose
penalties on different deformations. Therefore, for 2D image, the topology preservation
term can be expressed as follows:

V3
(
dp1 ,dp2 ,dp3

) =
{
s · log(J(

dp1 ,dp2 ,dp3

) + 1), J
(
dp1 ,dp2 ,dp3

) ≥ 0,
m, otherwise.

(5)

where s is a linear increasing coefficient,m is themaximum cost valuewhen the topology
is not preserved and satisfies max(s · log(J(

dp1 ,dp2 ,dp3

) + 1)) � m < 1.
For 3D images, the corresponding topological constraint is mainly composed of an

eight-element clique shown in Fig. 2(a). Calculating the eight-element clique constraint
requires at least 64 Jacobian determinants, which imposes a huge computation burden in
practice. Therefore, according to the literature [16], we constrain the topology by using 8
Jacobian matrices corresponding to the eight four-element cliques as shown in Fig. 2(b).
In this way, not only the topology in the 3D image can be effectively maintained, but
also the amount of calculation can be effectively reduced. Therefore, we can express a
potential function with four-element cliques as follows

V4
(
dp1 , dp2 , dp3 ,dp4

) =
{
s · log(J(

dp1 , dp2 , dp3 ,dp4
) + 1), J

(
dp1 , dp2 , dp3 ,dp4

) ≥ 0,
m, otherwise.

(6)

2.3 High-Order MRF Registration Model

In the high-order MRF registration model, the energy function is usually composed of
three-element cliques or higher-order cliques. It can be seen from the above potential
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Fig. 2. Four-element cliques and eight-element clique in 3D image (a) Eight-element clique (b)
Four-element cliques.

function analysis that in order to ensure that the deformation field can maintain the
topology while having a certain smoothness, in the energy function, it is necessary to
add not only a smoothing constraint term corresponding to two-element clique potential
functions, but also it is necessary to add a topology preservation termwith three-element
clique potential functions or the four-element clique potential functions. Therefore, for
2D image registration, an energy function with the highest clique is a three-element
clique can be expressed as follows:

E =
∑

p∈C1
V1(xp) +

∑

p,q∈C2
V2(dp, dq) +

∑

p,q,r∈C3
V3(dp, dq , dr ) (7)

In the above equation, Ci represents a set of all i-element cliques, Vi is the potential
function corresponding to i-element cliques.Correspondingly, in the 3D image, an energy
function with the highest clique is a four-element clique can be expressed as follows:

E =
∑

p∈C1
V1(xp) +

∑

p,q∈C2
V2(dp, dq) +

∑

p,q,r,s∈C4
V4(dp, dq , dr , ds) (8)

3 Model Analysis

In this section, we use the following images to discuss the role of the potential functions
with one-element cliques, two-element cliques and three-element cliques corresponding
to the data term, smooth term and topology preservation term in image registration.
The main concern here is the effect of the potential functions with high-order cliques
(three-element cliques) on the topological structure of the image deformation field.

In the experiments, we select Fig. 3(a) as the moving image, Fig. 3(b) is the target
image. The size of both images is 128×128. It can be known from theMCMC algorithm
that the data term consisting of one-element cliques is the main deformation driving
factor, the regular term with two-element cliques and other high-order cliques are the
secondary deformation driving factor. Therefore, in the parameter selection, we should
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choose the parameters to control the cost value of the regular term does not exceed the
cost value of the data term. According to this, it is more appropriate to select 0.3 for the
smoothing parameter n and select 0.5 for the topology preservation parameter m. Under
this criterion, selecting other parameters has little effect on the result.

First, we only rely on the similarity metric (data term) to register the moving and
target image. It can be seen from Fig. 3(c) that the deformation field is distorted and
folded. Figure 3(d) is the deformation field after registration by using the data term and
the smoothing term, the smoothness of the deformation field is significantly improved
compared to the deformation field after registration using only the data term. However, it
can be seen from the partial enlarged image (Fig. 3(e)) of Fig. 3(d) that the deformation
field of the image is still folded, and the topology cannot be maintained. Figure 3(f) is the
deformation field after adding the topology preservation term in addition to the data term
and the smoothing term in the energy function. Comparing Fig. 3(e) with Fig. 3(g), it
can be seen that the folding phenomenon of the deformation field after the application of
the potential functions with three-element cliques disappears obviously, which proves
that the potential functions with three-element cliques are introduced into the energy
function as the topology preservation term can maintain the topology of the deformation
effectively.

4 Results

Since the lung 4D-CT image has high resolution and large range of local anatomical
features, so it is difficult to directly register on the original resolution. To solve this
problem, we use the multi-level processing strategy [17] to reduce the computational
complexity. In the multi-level processing strategy, firstly, the original moving image and
the original target image are respectively divided according to the preset multi-level
number and corresponding grids of different spacing, and a corresponding number of
multi-level control point grid maps are obtained. Secondly, the average intensity values
of all the points in the corresponding grid map of the target image and the moving image
of the first level are respectively calculated in the first level processing, and then use
them as the intensity values of the control point of the grid map for the target image and
the moving image in the level respectively. After applying the smoothing term constraint
and the topology preservation term constraint in the energy function of the first level, the
MCMC optimization algorithm is used to solve the optimization problem of the energy
function and obtain the deformation field of the grid map. Finally, the deformation
field grid map obtained by up-sampling the deformation field of the first level grid map
according to the grid size of the next-level is used as the initial value of the next-level
registration constraint.

Themulti-level processing is performed until the preset levels, and the final level grid
mapdeformationfield is obtained, and then is up-sampled according to the original image
size to obtain a final deformation field. The registered image is obtained by applying the
final deformation field to the original moving image.
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Fig. 3. Experimental results of the topology preservation for 2D deformation field. (a) Moving
image. (b) Target image. (c) The deformation field after registration only based on data term.
(d) The deformation field after registration based on data term and smoothing term. (e) Partial
enlarged image of the red box area in Fig. 3(d). (f) The deformation field after registration based
on data term, smoothing term and topology preservation term. (g) Partial enlarged image of the
red box area in Fig. 3(f). (Color figure online)

On this basis, we evaluated our proposed HO-MRF method using DIR-lab dataset1

that represents three-dimensional abdominal time series in respiratory motion. The DIR-
lab dataset consists of 10 different sequences labeled 4D CT1-4D CT10, each of which
is further divided into ten respiratory phase sequences from T00 to T90, where the
maximum inspiratory phase (T00) and maximum the expiratory phase (T50) provides
300 expert landmarks. The average voxel resolution of the dataset is 1 × 1 × 2.5mm3.
Therefore, we clipped the image intensities between 50 and 1200 HU, and then select
the image corresponding to the maximum inspiratory phase (T00) of each case as the
moving image, and the image corresponding to the maximum expiratory phase (T50) as
the target image for registration.

Figure 4 shows the lung CT coronal overlay image of the proposed HO-MRFmethod
and the isopTV method for the fourth case in the 4D CT dataset. The overlay image is
obtained by superimposing the T00 phase image or the registered T00 phase image and
the T50 phase image. In the overlay image, the red portion and the green portion respec-
tively indicate image under registration and image over registration. If the difference
between the two images is small, the overlay image is dominated by gray. Otherwise,
more red or green portions appear in the image. It can be seen from Fig. 4(a) that the
T00 phase image and the T50 phase image have a large difference, in particular, there is
a large displacement in the lower part of the lung, and there are many red regions in the
figure, indicating severe under registration. Compared with Fig. 4(a), the overlay images
of Fig. 4(b) and (c) obtained by HO-MRF method and isopTV method respectively are

1 https://www.dir-lab.com/index.html.

https://www.dir-lab.com/index.html
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obviously improved, but there are still over registration and under registration. Compar-
ing the HO-MRF method with the isoPTV method, it can be seen that, in general, the
under-registered red region and the over-registered green region in Fig. 4(c) are signifi-
cantly less than those in Fig. 4(b) respectively. For obvious areas, see the corresponding
red frame area marked in the Fig. 4.

Fig. 4. Coronal overlay images for case 4 of 4D CT dataset. (a) Non-registered overlay image.
(b) isopTV overlay image. (c) HO-MRF overlay image. (Color figure online)

In order to show the validity of the registration more intuitively, we take case 4 in the
DIR-lab dataset as an example, and give the schematic diagrams of registration vector
displacement error of the isopTVmethod (Fig. 5(a)) and the proposed HO-MRFmethod
(Fig. 5(b)) respectively. The blue dots in the figure indicate the landmarks in the T50
phase, the red dots represent the landmarks in the T00 phase, and the lines connecting
the registered points and the blue points are used as the displacement vectors of the
landmarks. The range of the registration displacement vector error is marked by different
colors. It can be seen from the Fig. 5 that for these two methods, the deformation of the
registered landmarks basically maintains a smooth consistency, and the displacement
vectors of the landmarks in the red squares marked in the two images are compared, it
can be seen that the proposed HO-MRF method has better registration accuracy in the
right lung than the isopTV method.

We also use the TRE (Target Registration Error) indicator to further evaluate the
effect of image registration. The TRE is defined as the Euclidean distance between the
coordinate of the expert landmarks and the coordinate of the landmarks registered by
the deformation field transformation. The smaller the distance, the better the registration
effect of the method. Table 1 provides the average TRE for various methods in the DIR-
lab dataset. Among them, the MRF-based method (deeds [18]) can be used as a baseline
tomeasure the validity of the registration. TheNGF [19]method is currently bestmasked
method (0.94 mm), which estimates the displacement field only inside the lungs. The
isoPTV [12] method is currently the best among all mask-free methods in the DIR-Lab
dataset. By comparison, it can be found that the registration results of the proposed
HO-MRF method is better than the deeds method except that case1 is slightly higher
than the deeds algorithm by 0.04 mm. Compared with the isoPTVmethod, the proposed
HO-MRFmethod has one case equivalent and four cases superior to the isoPTVmethod.
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Fig. 5. The schematic diagrams of registration vector displacement errors for case 4 of 4D CT
dataset. (a) isopTV method. (b) HO-MRF method. (Color figure online)

Table 1. Average TRE for various methods in DIR-lab dataset

Methods TRE for 4D CT cases (mm) Mean

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10

No regis 4.01 4.65 6.73 9.42 7.10 11.10 11.59 15.16 7.82 7.63 8.52

cEPE [19] 0.80 0.77 0.92 1.22 1.21 0.90 0.98 1.16 1.00 0.99 1.00

NLR [20] 0.77 0.78 0.93 1.27 1.11 0.91 0.86 1.03 0.97 0.87 0.95

LMP [21] 0.74 0.78 0.91 1.24 1.17 0.90 0.87 1.04 0.98 0.89 0.95

SGM3D
[22]

0.76 0.72 0.94 1.24 1.15 0.90 0.89 1.13 0.91 0.83 0.95

NGF [18] 0.78 0.79 0.93 1.27 1.07 0.90 0.85 1.03 0.94 0.86 0.94

aTV [23] 0.76 0.78 0.82 1.31 1.25 1.11 0.97 1.28 1.04 0.99 1.03

deeds [17] 0.80 0.86 1.14 1.17 1.77 1.88 2.21 2.78 1.35 1.50 1.60

isoPTV
[11]

0.76 0.77 0.90 1.24 1.12 0.85 0.80 1.34 1.92 0.82 0.95

HO-MRF 0.80 0.79 1.01 1.03 1.25 0.81 0.80 0.98 0.95 0.84 0.93

In comparison with NGF method, the proposed method has one case equivalent and five
cases better than NGF method. In addition, in the average TRE of all methods for 10
cases, the average TRE of the HO-MRF method is the best (0.93 mm).

5 Conclusions

The purpose of the high-order MRF-based image registration method proposed in this
paper is to maintain the topological structure of the deformation field by introducing
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high-order clique constraints in the energy function. By comparing and analyzing the
topological structure of the 2D image model deformation fields, we can find that com-
pared with the low-order MRF registration algorithm with only smooth constraint in the
energy function, although the energy function designed in this paper is more compli-
cated, its ability to maintain the topological structure of the deformation field is also
stronger, indicating that the design of the energy function with high-order groups is wor-
thy of further study. The lung image registration experiments in 4DCT dataset show that
the proposed method has obvious advantages in registration accuracy compared with the
current optimal methods such as isoPTV and NGF.
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Abstract. In this paper, we present an automatic system for the brain metastasis
delineation in Positron Emission Tomography images. The segmentation process
is fully automatic, so that intervention from the user is never required making the
entire process completely repeatable. Contouring is performed using an enhanced
local active segmentation.

The proposed system is, at first instance, evaluated on four datasets of phantom
experiments to assess the performance under different contrast ratio scenarios, and,
successively, on ten clinical cases in radiotherapy environment.

Phantom studies show an excellent performance with a dice similarity coeffi-
cient rate greater than 92% for larger spheres. In clinical cases, automatically delin-
eated tumors show high agreement with the gold standard with a dice similarity
coefficient of 88.35 ± 2.60%.

These results show that the proposed system can be successfully employed in
Positron Emission Tomography images, and especially in radiotherapy treatment
planning, to produce fully automatic segmentations of brain cancers.

Keywords: Active contour algorithm · Positron emission tomography imaging ·
Biological target volume · Segmentation

1 Introduction

Radiotherapy is often used to treat brain tumors otherwise inaccessible to conventional
surgery. The classic and widespread approach to the identification of the volume to
be treated is through the use of Magnetic Resonance Imaging (MRI). In particular,
when soft-tissue contrast resolution needs to be high, as in brain malignancies, MRI is
preferred over other approaches, e.g. computed tomography (CT). MRI has proved to
be very efficient in reconstructing the anatomical properties of the investigated brain
areas and for this reason, it has been almost the only diagnostic method employed
for cancer delineation and treatment planning purposes [1–3]. Recently, the Positron
Emission Tomography (PET) has been considered as a valuable source of information,
in particular when the 11C-labeled Methionine (MET) radio-tracer is considered. MET-
PET conveys complementary information to the anatomical information derived from

© Springer Nature Switzerland AG 2020
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MRI or CT, and under favorable conditions, it may even deliver higher performance [4].
For these reasons, the integration of PET imaging in radiotherapy planning represents a
desirable step forward in the treatment of gliomas and brain metastases.

Several PET delineation approaches have been proposed so far [5–8], and for a
comprehensive review, the interested reader may refer to Foster et al. [9] and refer-
ences therein. In general, segmentation algorithms can be categorized as semi-automatic
or automatic. When the 18F-fluoro-2-deoxy-d-glucose (FDG) radio-tracer is used, for
example, the lesionmust be initially highlighted by the operator. Indeed, for somehealthy
structures a high FDG uptake is normal; the brain is a typical example. As a result, seg-
mentation methods in FDG PET studies are exclusively semi-automatic. However, MET
radio-tracer shows great sensitivity and specificity for the discrimination of healthy ver-
sus brain cancer tissues, making automatic approaches feasible. In the present study
we used MET-PET to deploy a fully automatic method to delineate brain cancer and
metastases.

Starting from our previous study [10] where we proposed a semi-automatic tool
to segment general oncological lesions in PET studies, we obtained a fully automatic
and operator independent system for MET PET studies on the brain. In the proposed
application, the system performs all segmentation step automatically by individuating
an optimal, operator independent, initial mask located on an automatically selected PET
slice. Once the initial region of interest (ROI) has been identified, it is fed to an enhanced
local active contour segmentation algorithm. The objective function was adapted to PET
imaging and designed in such a way that its minimum corresponds to the best possible
segmentation. To assess the performance of the system and to verify its suitability as
medical decision tool in radio-treatments, four phantom experiments, and ten patient
studies were considered.

2 Materials and Methods

2.1 Overview of the Proposed System

The main subject of the present study is a fully automatic and operator independent
system for brain cancer segmentation, to be used in radiotherapy treatments. While
the following subsections will illustrate different components of the system and their
validation, in this section we present a brief overview of the system design. The data
hereby discussed comprise a total of four phantom experiments and ten oncological
patients (Sects. 2.2 and 2.3, respectively). Data from phantoms were used to assess the
performances of the delineation algorithm. Concerning the practical use of the system
on clinical cases, in order to normalize the voxel activity and to take into account the
functional aspects of the disease, the PET images were pre-processed into SUV images
(Sect. 2.5). The first step is the automatic identification of the optimal combination of
starting ROI and slice containing the tumor. Then, this information is input to the subse-
quent components of the system (Sect. 2.6). Once theROI is identified, the corresponding
mask is fed into the next step of the system, where the segmentation is performed com-
bining a Local region-based Active Contour (LAC) algorithm, appropriately adapted to
handle PET images. The resulting segmentation is then propagated to the adjacent slices
using a slice-by-slice marching approach. Each time convergence criteria are met for a
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specific slice, the corresponding optimal contour is propagated to the next, where the
evolution is continued. Starting from the initial slice, the propagation is performed by
contemporarily sweeping the data volume both upward and downward, until a suitable
stopping condition, designed to detect a tumor-free slice, is met. Finally, the algorithm
outputs a user independent Biological Tumor Volume (BTV). Detailed explanation of
this task is provided in Sect. 2.7.

2.2 Phantom Studies

Four phantom experiments were used for preliminary assessment of the performance.
The phantom is composed of an elliptical cylinder (minor axis = 24 cm, major axis =
30 cm, h = 21 cm) containing six different spheres (diameters: 10, 13, 17, 22, 28, and
37 mm) placed at 5.5 cm from the center of the phantom. The ratio between sphere
and background radioactivity concentration ranged from 3:1 to 8:1. Performances were
evaluated by grouping the results with respect to sphere diameters: small spheres, i.e.
diameter smaller than 22 mm, and large spheres, with a diameter greater than 17 mm.
This choice was motivated by the fact that large biases are introduced by the partial
volume effect [11] in PET imaging.

2.3 Clinical Studies

Ten patients with brain metastases were retrospectively considered. These patients were
referred to diagnostic PET/CT scan before Gamma Knife (Elekta, Stockholm, Sweden)
treatment. Tumor segmentation was performed off-line without actually influencing the
treatment protocol or the patient management. No sensitive patient data were accessed.
As such, after all patients were properly informed and released their written consent, the
institutional hospital medical ethics review board approved the present study protocol.
Patients fasted 4 h before the PET examination, and successively were intravenously
injected with MET. The PET/CT oncological protocol started 10 min after the injection.

2.4 PET/CT Acquisition Protocol

All acquisitions in this study were performed within the same hospital department and
using the same equipment, a Discovery 690 PET/CT scanner (General Electric Medical
Systems, Milwaukee, WI, USA). The PET protocol included a SCOUT scan at 40 mA,
a CT scan at 140 keV and 150 mA (10 s), and 3D PET scans. The 3D ordered subset
expectation maximization algorithm was used for the PET imaging. Each PET image
consists of 256× 256 voxels with a grid spacing of 1.17mm3 and thickness of 3.27mm3.
Consequently, the size of each voxel is 1.17 × 1.17 × 3.27 mm3. Thanks to the injected
PET radio-tracer, tumor appears as hyper-intense region. The CT scan was performed
contextually to the PET imaging and used for attenuation correction. Each CT image
consists of 512 × 512 voxels with size 1.36 × 1.36 × 3.75 mm3.
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2.5 Pre-processing of PET Dataset

Pre-processing PET images is mandatory for inter-patient and follow-up comparisons.
Among PET quantification parameters, body-weight SUV is the most widely used in
clinical routine. For this reason, it was embedded in our system. SUV is the ratio of
tissue radioactivity concentration (RC) and injected dose (ID) at the time of injection,
divided by body weight. The RC is calculated as the ratio between the image intensity
and the image scale factor. The ID is calculated as the product between actual activity
and dose calibration factor.

2.6 Interesting Uptake Region Identification

In order to obtain a fully automatic BTV segmentation, an initial ROI enclosing the
tumor must be produced, obviously without any intervention by the operator. Therefore,
the system identifies the PET slice containing themaximumSUV (SUVmax) in thewhole
PET volume. By taking advantage of the great sensitivity and specificity of MET radio-
tracers in discriminating between healthy and tumor tissues, we can confidently assume
that such SUVmax resides inside the main lesion [12].

While this process takes place, an additional test is performed, in order to investigate
the presence of isolated local maxima which may indicate metastases separated from
the main lesion.

In the case that the presence of multiple (say “n”) independent anomalies are rec-
ognized, each one is independently processed. A different local maximum (SUV j

max ,
with j = 1:n) is identified for each lesion and, consequently, n regions are automati-
cally identified. By design, the first identified lesion contains the global SUVmax (i.e.,
SUV 1

max ).

Once the current slice with SUV j
max has been identified, an automatic procedure to

identify the corresponding ROI starts. The SUV j
max voxel is used as target seed for a

rough 2D segmentation based on the region growing (RG) method [13]. For each lesion,
the obtained ROI represents the output of this preliminary step which is input to the
next component of the system, where the actual delineation takes place. The latter is
performed through an enhanced LAC segmentation algorithm. It is worth noting that the
RG algorithm is used only to obtain a rough estimate of the tumor contour(s).

The sameworkflow is used to segment eachmetastasis independently, and the process
is designed to carry on automatically. However, in case of multiple lesions the user will
receive a warning message and if necessary, will be able to override the default behavior.
In such a case, the algorithm can be paused, while the operator inspects the multiple
metastases.

2.7 The Enhanced Local Active Contour Method

The model proposed by Lankton et al. [14] benefits of purely local edge based active
contours and fully global region based active contours. At each point along a prominent
intensity edge of the target, nearby points inside and outside the target will be modelled
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well by the mean intensities within the local neighborhoods on either side of the edge.
The contour energy to be minimized is defined as:

E =
∮
C

(∫
Rin

χl(x, s)(I (x) − ul(s))
2dx +

∫
Rout

χl(x, s)(I (x) − vl(s))
2dx

)
ds (1)

• Rin and Rout represent the regions inside and outside the curve C
• s represents the arc length parameter of C
• χ represents the characteristic function of the ball of radius l (local neighborhood)
centered around a given curve point C(s)

• I represents the intensity function of the image to be segmented
• ul(s) and vl(s) denote the local mean image intensities within the portions of the local

neighborhood χl(x, s) inside and outside the curve respectively (within Rin and Rout).

These neighborhoods are defined by the function χ, the radius parameter l, and
the position of the curve C. Note that the function χl(x, s) evaluates to 1 in a local
neighborhood around each contour point C(s) and 0 elsewhere. The contour C then
divides each such local region into interior and exterior local pixels in accordance with
the contour’s rule to segment the domain of I.

Beyond the optimal identification of the starting slice containing the lesion, and, con-
sequently, the identification of an initial operator independent mask for LAC segmenta-
tion (see Sect. 2.6) further improvements have been introduced in the LAC algorithm.
In the following we summarize part of the method, described in [10]. To incorporate
metabolic information, the intensity function I in (1) is replaced by the SUV, and ul(s)
and vl(s) denote the local mean SUV intensities within the portions of the local neigh-
borhood χl(x, s) inside and outside the curve. The shape of the contour C then divides
each such local region into interior local points and exterior local points in accordance
with the contour’s segmentation of the SUV. The local means are specified as the ratios
of SIl(s), SEl(s), AIl(s), andAEl(s)which represent the local sums of SUV intensities and
the areas of their respective portions of the local neighborhoodχl(x, s) inside and outside
the curve. More precisely, the local interior region may be expressed as Rin ∩ χl(x, s)
and local exterior region as Rout ∩ χl(x, s).

ul(s) = SIl (s)

AIl (s)
, vl(s) = SEl (s)

AEl (s)

SIl (s) =
∫

Rin

χl(x, s)SUV (x) dx, SEl (s) =
∫

Rout

χl(x, s)SUV (x) dx

AIl (s) =
∫

Rin

χl(x, s) dx, AEl (s) =
∫

Rout

χl(x, s) dx

χl(x, s) =
{
1 when x ∈ l − Ball(C(s));
0 otherwise;
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Once the ROI encircling the highest radio-tracer uptake area has been automatically
identified (previous section), the resulting mask is used to initiate parallel segmentations
on the neighboring slices above and below. Subsequently, for all the other slices in both
directions, we similarly use the segmentation results of the previous slices as the initial
mask inputs. The LAC method is inherently capable of locally widening or tightening
where necessary when the contour is propagated from slice to slice. Since, this behavior
is driven by the image properties rather than by an inherent knowledge of whether the
cancer is present, a stopping criterion is necessary to prevent the LAC algorithm from
misbehaving, or even diverging, when it reaches a slice where the cancer is absent (i.e.
when there is nothing to be segmented).

Therefore, a fully automatic stopping condition is implemented. For the slice under
consideration, at each point on the cancer edge, nearby points inside and outside the can-
cer must have a different local mean SUV. If the cancer is present, a positive difference
between background and foreground intensity must occur, and consequently the algo-
rithm can safely proceed with the next neighboring slice. When the system encounters a
slice where the local mean vl(s) on Rout is greater or equal to the local mean SUV ul(s)
on Rin, which is the opposite of what is expected, the slice is recognized as cancer-free
and the slice-to-slice propagation is terminated in that direction. In this way, one slice at
a time, the BTV is generated. Finally, the segmentation process is automatically stopped,
thereby avoiding the need for any user intervention.

2.8 Framework for Performance Evaluation

Overlap-based and spatial distance-based metrics are considered to determine the accu-
racy achieved by the automatic segmentation system against the gold-standard [15]. In
particular, the formulations of dice similarity coefficient (DSC), and Hausdorff distance
(HD) are used.

DSC measures the spatial overlap between the reference volume and the segmenta-
tion system: a DSC value equal to 100% indicates a perfect match between two volumet-
ric segmentations, while DSC = 0% indicates no overlap. Nevertheless, overlap-based
metrics are not well suited for small anomalies. For this reason, distance-based metrics
are preferable, especially when the boundary segmentation is critical, such as in BTV
delineation for RTP. In particular, HD is used to measure the most mismatched boundary
voxels between automatic and manual BTV: small HDmeans an accurate segmentation,
while a large HD is synonymous of poor accuracy.

Finally, the performance of the proposed method is compared to other state of the
art BTV segmentation methods: the original LACmethod [17], the RGmethod [18], the
enhanced RW method such as described in [19], and the FCM clustering method [20].

3 Results

3.1 Phantom Studies

Performance results from phantom experiments were divided considering small and
large spheres, in four independent cases, each carried out with different signal ratios.
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The accuracy improved for all spheres, regardless of their volume, when the signal ratio
increased. In general, due to the partial volume effect, the separation of small targets
from the background is very challenging, and the difficulty increases in condition of
low signal contrast. The sphere volumes are underestimated with more false negatives
than false positives. The dice similarity coefficient (DSC) rate is 77.51 ± 3.46% and
the Hausdorff distance (HD) is 1.12 ± 0.15 voxels. For the spheres with a diameter
greater than 17 mm, excellent performances are obtained with a DSC rate greater than
92% (HD = 1.06 ± 0.09). The mean difference between segmented and actual volumes
is positive (the sphere volumes are overestimated); larger margins can help to prevent
the extension of tumor infiltration.

The performance of the system was compared to other state of the art PET image
segmentation methods. In particular, the original LAC [17], the RG [18], the RW [19],
and the FCM [20] methods have been used for comparison. Table 1 summarizes the
results and shows that this automatic segmentation outperforms the methods tested for
comparison for all the considered cases.

Table 1. DSC and HD values for the proposed method and other state of the art PET image
segmentation methods.

DSC HD (voxels)

Our system 84.79 ± 8.00% 1.09 ± 0.12

Original LAC 82.55 ± 7.56% 1.44 ± 0.55

RW 82.12 ± 8.78% 1.22 ± 0.43

RG 79.01 ± 9.34% 1.67 ± 0.57

FCM 77.13 ± 8.79% 1.68 ± 0.49

3.2 Clinical Studies

The performance of the presented system is investigated considering ten metastases
against the ground truth provided by three expert operators. In clinical cases, the
histopathology analysis is unavailable after the gamma knife treatment. For this rea-
son, the manual delineation performed by expert clinicians is a commonly accepted
substitute for ground truth to assess the clinical effectiveness and feasibility of PET
delineation methods. Consequently, manual segmentations performed by three experts
are used to define a consolidated reference using STAPLE algorithm [16]. This simulta-
neous ground truth estimation tool combines a collection of segmentations into a single
and consolidated ground truth segmentation. It computes a probabilistic estimate of
the true segmentation estimating an optimal combination of the segmentations. This
algorithm is formulated as an instance of the expectation maximization (EM).

Differently from the phantom studies, no discussion of the tumor volumes is provided
here, mostly because all considered BTVs are greater than 2.5 ml (lesions with a sphere-
equivalent diameter greater than 17 mm). In particular, tumor volumes ranged from
2.69 ml to 20.49 ml (mean ± std = 7.08 ± 5.81 ml). The ratio between lesion and
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background radioactivity concentration ranged from 2.76:1 to 7.40:1 (mean ± std =
3.88:1 ± 1.45:1). These values are included in the range of the phantom experiments
used for preliminary performance testing. For this reason, although phantom studies
don’t replicate all the properties of real lesions, they represent a useful tool to assess
performances across different segmentation methods.

Table 2 summarizes the comparison between this automatic segmentation and the
original LAC and RW approaches. Since LAC and RW outperformed RG, and FCM
methods on the phantom experiments, the latter algorithms were not considered in
patient studies. The automatic algorithm performed better than LAC and RW methods
minimizing the difference between references and automated BTVs.

Table 2. DSCs and HDs using the proposed system, original LAC and RW methods.

DSC HD

Our system 88.35 ± 2.60% 1.42 ± 0.57

Original LAC 83.77 ± 8.53% 2.97 ± 0.68

RW 87.01 ± 5.16% 1.38 ± 0.74

Figure 1 reports the comparison between the proposed segmentations and the gold-
standards.

Fig. 1. Examples of automatic segmentations. The retrieved segmentations and the gold standards
are shown in red and yellow, respectively. (Color figure online)
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4 Discussion

In this study, a complex, semi-automatic system featuring an enhanced LAC algorithm
purposely adapted to the PET imaging was further adapted to achieve the fully automatic
BTV segmentations of brain cancers. The fully automatic approach leverages on the
fact that MET-PET is capable of selectively highlight the ill regions of the brain, so
avoiding false positives commonly encountered in other anatomic regions (e.g. as in
FDG-PET studies). An automatic and operator-independent ROI is generated around
the tumor(s) and used as input to an enhanced LAC algorithm. Then, the LAC performs
the BTV delineation. The BTV is built by a slice-by-slice marching approach where the
segmentation is performed on subsequent slices. In principle, segmentation through the
evolution of a full 3D surface would be preferable. Indeed, while on the one hand we are
currently investigating such a 3D approach, on the other hand, the present work moves
an important step toward 3D data segmentation improving upon the model proposed
by Lankton et al. [14] considering the issue of the PET slices thickness (3.27 mm3) far
greater than planar resolution (1.17 mm3) which partially justifies the 2D approach. As
a final remark, a fully automatic stop condition is provided. In this way, the proposed
system produces segmentation results which are completely independent by the user.

Performance of the automatic system has been obtained by phantom studies consist-
ing of hot spheres in a warm background. Nevertheless, phantom experiments cannot
replicate all the aspects of a real clinical case but they represent a useful way to assess
common performances across different algorithms. DSC greater than 92% for the larger
spheres confirm better results in minimizing the difference between reference and auto-
mated BTVs than the other state-of-the-art algorithms. We would like to emphasize that
original algorithms for both enhanced RW and original LAC methods [17, 19] were
optimized for MET-PET brain metastases [10, 12]. Concerning RG and FCM methods,
we used the source codes available on the web, and we adapted it to our PET dataset.

In patient studies, since radiotherapy treatment alters the cancer morphology over
time, histopathology cannot provide a reliable ground truth. Consequently,manual delin-
eation by experts, although it may differ between operators (for example, radiotherapy
experts tend to draw larger boundaries than nuclearmedicine physicians), is often used as
surrogate gold-standard. In this study, we used manual delineations from three experts.
To overcome the issue of differences in the manual delineations, a consolidated refer-
ence was built [16] and then used to assess the feasibility of the automatic segmentation.
PET/CT data from ten patients before Gamma Knife treatment were considered. Results
show that the proposed approach can be considered clinically feasible and could be
used to extract PET parameters for therapy response evaluation purpose and to assist the
BTV delineation during stereotactic radiosurgery treatment planning avoiding cancer
recurrence. Finally, further investigations will be carried out to assess the usefulness to
introduce in the segmentation a PET tissue classifier capable of influencing the local
active contour toward what would be the segmentation performed by a human operator
[21–25].
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Abstract. Low back pain is a leading cause of disability that has been
associated with intervertebral disc (IVD) degeneration by various clinical
studies. With MRT being the imaging technique of choice for IVDs due
to its excellent soft tissue contrast, we propose a fully automatic approach
for localizing and locally segmenting spatially correlated objects—tailored
to cope with a limited set of training data while making very few domain
assumptions—and apply it to lumbar IVDs in multi-modality MR images.
Regression tree ensembles spatially regularized by a conditional random
field are used to find the IVD centroids, which allows to cut fixed-size sec-
tions around each IVD to efficiently perform the segmentation on the sub-
volumes. Exploiting the similar imaging characteristics of IVD tissue, we
build an IVD-agnostic V-Net to perform the segmentation and train it on
all IVDs (instead of a specific one). In particular, we compare the usage of
binary (i.e., pairwise) CRF potentials combined with a latent scaling vari-
able to tackle spine size variability with scaling-invariant ternary poten-
tials. Evaluating our approach on a public challenge data set consisting of
16 cases from 8 subjects with 4 modalities each, we achieve an average Dice
coefficient of 0.904, an average absolute surface distance of 0.423 mm and
an average center distance of 0.59 mm.

Keywords: Object localization · Segmentation · Intervertebral discs ·
Multi modality · MRI

1 Introduction

Low back pain (LBP) is still a dominant health problem in the population affect-
ing general well-being and work ability. Furthermore, it is a major cause of dis-
ability. Various clinical studies (e.g., [7]) repeatedly reported a strong association
between LBP and the degeneration of the intervertebral discs (IVDs). Although
all major medical imaging modalities were used to evaluate IVD degeneration,
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magnetic resonance imaging (MRI) is still the imaging technique of choice. Its
excellent soft tissue contrast without using ionizing radiation renders it ideal
for the assessment of lumbar IVD anomalies. This created a major interest in
methods for the automatic analysis and quantification of intervertebral discs in
MR images of the lumbar spine [19].

Various approaches [1,4,5,9,18,20] have already been proposed to tackle the
problem of segmenting intervertebral discs. A number of methods have been com-
pared in a MICCAI grand challenge [18] focusing on T2-weighted MR images. In
general, the approaches cover different modalities, e.g., T2-weighted MR images
[3,18], CT images [17] and X-ray images [15], and different solution strategies,
e.g., specifically crafted neural networks like the IVD-Net [4], graph-based meth-
ods [1] and approaches using mathematical morphology [2]. However, most of
these approaches have in common that they either are not (or not easily) trans-
ferable to other applications, make strong assumptions about the application
domain, generate sub-optimal results or are specifically crafted for the modality
and/or the target object.

In this paper, we combine two existing generic methods for the localization of
key points and the segmentation of objects to create a pipeline that requires lit-
tle training data and makes very little domain assumptions. This yields an easily
transferable framework to perform the localization and segmentation (or another
local image analysis task) of arbitrary spatially correlated objects in arbitrary
modalities. Here, we apply our framework to the segmentation of repetitive struc-
tures, namely lumbar intervertebral discs, in multi-modality MR images. First,
regression tree ensembles regularized by a conditional random field (CRF) [11]
are used to perform the labeled localization of the spatially correlated IVD cen-
troids. We specifically compare binary (i.e., pairwise) CRF energy potentials—
which are not scaling invariant—enhanced with a latent scaling variable, with
ternary potentials which are designed to be scaling invariant, to tackle the spine
size variability (caused, e.g., by growth or tissue degradation of the IVDs). Sec-
ond, the well-known fully convolutional neural network V-Net [12] is used to
perform an IVD-agnostic segmentation of the soft tissue in a volume-of-interest
around each IVD centroid. To this end, we cut fixed-size reoriented sections
around each IVD’s centroid, effectively reducing the data to be segmented to a
very small portion containing just the object. Moreover, the repetitive nature
of the IVDs allows an effective V-Net training on only a few training cases.
We evaluate the performance of our approach on the public data of the “MIC-
CAI 2018 Challenge on Automatic IVD Localization and Segmentation from 3D
Multi-modality MR (M3) Images” called “IVDM3Seg” [19].

2 Method

The task is to segment seven well-defined intervertebral discs (IVDs) in multi
modality MR images (1.5T Dixon protocol in this case). For this we propose
an algorithm consisting of four steps as illustrated in Fig. 1 and explained in
detail in the following subsections. The key idea is to localize and label the



366 A. O. Mader et al.

IVD centroids prior to performing the segmentation locally in small sections cut
around each IVD centroid. Note, this is a general and fully automatic approach
that requires very little domain assumptions, like the target object size to cut
out fixed-size volumes of interest, and works in theory in 2D and 3D and with
all major imaging modalities.
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Fig. 1. Illustration of the four steps to predict labeled IVD segmentations.

2.1 Step 1: Localizing and Labeling IVD Centroids

The task of the first step is to localize the centroid of each individual IVD.
This is achieved by utilizing the key point detection and localization framework
proposed in [11]. This framework uses ensembles of regression trees—one for each
key point—to regress voxel-wise pseudo probabilities by evaluating randomized
intensity difference patterns of very few voxels taken from a patch (the size of
which is derived from the target object size) centered around the regressed voxel.
Alternatively, deep neural networks can be used for this purpose [10]. To prevent
confusions between ambiguous key points, a conditional random field, modelling
the global shape, is used to perform spatial regularization. This framework has
been successfully applied to different detection and localization tasks in 2D and
3D images of different modalities, i.e., X-ray and CT, but not yet to multi-
modality MR images. Here, we make the natural extension to multi channel
volumes (e.g., aligned multi-modality MR images) by performing the intensity
difference computations for each channel (4 in this case) and concatenating the
individual intensity difference vectors.

Formally, we define an energy function

E(X | Λ) =
L∑

l=1

λl · φl(Xφl
) (1)

that is parameterized by L weighted (Λ = {λl}) potential functions φl(·). The
ensemble pseudo probabilities (see above) are represented as unary potentials in
this setup, one for each key point. Together with binary and/or ternary poten-
tials, Eq. (1) computes the energy for a set of positions X = {x1, . . . ,xN} (one
for each key point to localize) with Xφl

being the subset of positions whose key
points are in φl’s clique. To find the best position for each key point, given by

X̂ = arg min
X

E(X), (2)
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various inference strategies [16] can be used, potentially exploiting the graph
structure for better runtime behavior.

Binary Potentials with Latent Scaling Variable. A very commonly used
potential to manifest the spatial structure is a binary (i.e., pairwise) Gaussian
vector potential. The idea is to model the vector spanned between two key points
using a multivariate Gaussian distribution. Assuming that we estimated the
distribution’s mean μi,j and covariance Σi,j on training data, we can define the
potential as

φvec
i,j (xi,xj) = − log

[
f(s(xi − xj) | μi,j ,Σi,j)

]
, (3)

with f(·) being the probability density function (PDF) of a multivariate Gaussian
distribution and s being a latent scaling variable.

Using such a potential allows to perform polynomial time inference on tree-
structured graphs while providing scaling invariance, which—as we will see—is
important for good performance on a data set showing for example the spine.
Using a chain topology for the 7 IVD centroids and cliques formed between direct
neighbors along the spinal chain, we obtain a graph with 6 pairwise potentials
that we refer to as “binary w/latent variable” in the following. We apply belief
propagation for CRF inference, which for a chain topology generates exact results
in polynomial time.

Inherently Scaling Invariant Ternary Potentials. Alternatively, ternary
potentials can be used to achieve scaling invariance without the need for a latent
variable. The disadvantage is that the inference on graphs containing ternary
potentials is more expensive. Here, we define two types of ternary potentials
capturing the same information as the binary vector potential. The first one
captures the relative distances between three key points by using a Gaussian
distribution to model the ratio between two distances. With g(·) being the PDF
of a Gaussian distribution and its mean μdist

i,j,k and variance σi,j,k (of distance
ratios) being estimated on training data, we define this potential as

φdist
i,j,k(xi,xj ,xk) = − log

[
g

(‖xi−xj‖2/‖xj−xk‖2

∣∣ μdist
i,j,k, σi,j,k

) ]
. (4)

The second ternary potential assesses the relative angle between two vectors
projected to one plane by modeling this angle using a von Mises distribution.
With h(·) being the PDF of such a distribution—its mean direction μang

i,j,k and
concentration κi,j,k again being estimated on training data—and α(·, ·) being a
function to compute the minimal angle between two vectors projected onto a
given plane, we can define our second ternary potential as

φang
i,j,k(xi,xj ,xk) = − log

[
h(α(xi − xj ,xj − xk) | μang

i,j,k, κi,j,k)
]

. (5)

Note that the latent variable of the binary potentials allows to explicitly model
the scale s of the spatial model to match the patient, which is not the case with
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the ternary potentials Eqs. (4) and (5). Again, using cliques of triplets formed
along the spinal chain, we obtain a graph with 5 + 2 · 5 potentials (one distance
and two rotation potentials for the sagittal and coronal plane per clique) that
we refer to as “ternary” in the following. For efficient and exact inference we
apply an A* inference algorithm (we can not use belief propagation since it is
not a tree structure anymore).

Recursive Non-maximum Suppression to Generate Localization
Hypotheses. Efficient runtime behavior is achieved by reducing the search
domain of each key point in the CRF from the whole image domain to a set of
localization hypotheses. These localization hypotheses are generated by apply-
ing non-maximum suppression to the regressed pseudo-probability maps of each
key point. The quality of the selected localization hypotheses creates a natural
upper bound on the CRF in terms of localization performance. Here, we pro-
pose a recursive non-maximum suppression strategy to find local maxima in the
generated pseudo-probability maps. In contrast to standard non-maximum sup-
pression (NMS), which uses a fixed distance D between maxima to be generated,
we recursively apply NMS with different distances D1 and D2: First, we look
for n1 strong maxima using a rather large minimal distance D1 between them.
For each maximum found, we re-apply NMS in a local neighborhood to look
for n2 maxima using a much smaller minimal distance D2 � D1; this gener-
ates n = n1n2 localization hypotheses in total. This procedure can be repeated
multiple times depending on the structure of the search space. An example is
illustrated in Fig. 2. Although both methods generate the same amount of local-
ization hypotheses in this example, it is clearly visible that the recursive app-
roach better samples the local neighborhood of large probability regions in the
pseudo probability maps. The such sampled positions are closer to the IVD

(a) Test image (b) Prob. map (c) Standard NMS (d) Recursive NMS

Fig. 2. Recursive non-maximum suppression (d) compared to standard non-maximum
suppression (c) applied to a pseudo probability map (b) generated by a regression tree
ensemble on a cropped test image (a). A sagittal projection is shown with the white
cross indicating the true position and red points being the derived local maxima. Best
viewed in color with zooming. (Color figure online)
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centroids and thus more meaningful. In our experiments we use the minimal
per-axis distances D1 =

(
2.4 1.875 1.875

)
cm and D2 =

(
0.2 0.125 0.125

)
cm to

find n1 = 10 strong maxima and sample n2 = 10 points around each one.

Training. The regression tree ensembles are trained as described in [11] using
a patch size of roughly 7 × 8.9 × 8.9 cm to match the target object, IVDs in
this case. To estimate the weights Λ of the CRF and also optimize the graph
topology, we minimize a max-margin hinge loss

L(Λ) =
1
K

K∑

k=1

max(0,m + E(X+
k | Λ) − E(X−

k | Λ)) (6)

on the K training samples using stochastic gradient descent in form of the Adam
[8] optimizer. The key idea is to increase the difference in energy between the
correct configuration of positions X+

k for training example k and the currently
best rated incorrect set of positions X−

k , determined by inference in each iter-
ation, until the energy difference exceeds a margin m = 1. We carry out the
optimization for 100 iterations using a learning rate of 0.01. Note that we train
the regression tree ensembles and potentials on 60% of the training set and esti-
mate the weights Λ on the remaining, exclusive 40% of the training set for better
generalization.

2.2 Step 2: Sampling Reoriented IVD Sections

Given the IVD locations predicted by the previous step, we sample small reori-
ented fixed-size sections around each prediction. The size (7.4 × 7.2 × 3.1 cm),
statistically estimated on training data, is chosen such that the IVD is fully con-
tained plus some safety margin to compensate for slight localization errors. The
sections are reoriented such that the IVDs are level inside the sections w.r.t. the
transversal plane (see second step in Fig. 1). PCA was applied to the training
segmentations to find the standard orientation of each IVD.

2.3 Step 3: Segmenting IVD Tissue Using a V-Net

As third step, we perform the actual segmentation of the disc tissue using the
fully convolutional network V-Net [12]. To tackle the problem of few training
data, we already reduced the original input image size to fixed size sections
around each IVD. Additionally, we use an IVD-agnostic model to segment all
seven IVD sections, effectively using the network to discriminate disc tissue from
non-disc tissue (2-class problem instead of 8-class problem).

Training. We use the training setup as proposed by the V-Net authors Milletari
et al. in [12] with a mini-batch size of 7 in combination with the generalized
Dice loss optimized by the Adam optimizer [8]. The training data was created by
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cutting sections around the IVD centroids true positions. We also performed data
augmentation in form of slight rotations (≤10 deg) and translations (≤5mm) to
create 24 additional augmented sections per original training section, effectively
increasing the training set size by a factor of 25. The optimization was carried
out for 5 epochs (1750 iterations) with a learning rate of 1e-4.

2.4 Step 4: Projecting Segmentations into Original Label Space

Finally, the resulting segmentations are transformed back into the original label
space and relabeled according to the label predicted by the CRF in the first step.

3 Results and Discussion

3.1 IVDM3Seg Data

We evaluate our approach on the data used in the MICCAI 2018 IVDM3seg
challenge [19]. It consists of 24 3D multi-modality MRI data sets, each showing
at least the 7 well-defined IVDs, collected from 12 subjects in two time-spaced
sessions to investigate potential IVD degeneration. The data sets were gener-
ated using a Dixon protocol with a 1.5T Siemens MRI scanner, thus each 3D
multi-modality MRI data set is made of four aligned volumes (i.e., in-phase,
opposed-phase, fat and water). Each volume has an anisotropic resolution of
2 × 1.25 × 1.25mm/px and comes with an unlabeled ground truth segmentation
for all seven IVDs. We additionally labeled these segmentations and derived IVD
centroids in form of center of mass positions.

Of the 24 MRI data sets, 16 (both data sets from 8 patients) were made
publicly available for model training and validation; this data set is named
“released (IVDM3Seg) data” in the following. The remaining 8 data sets remain
non-disclosed as test data—named “non-disclosed (IVDM3Seg) data” in the
following—for the organizers to perform a fair evaluation and comparison of
methods (i.e., on these data, the algorithms are sent to and evaluated by the
challenge organizers only). Note that we used histogram matching [13] prior to
any processing to perform data normalization for each modality.

3.2 Metrics

We report the segmentation performance of our algorithm (calculated for the
released data and reported as obtained from the challenge organizers for the non-
released data) in terms of the evaluation metrics used by the challenge organizers
[19]: The Dice coefficient, the average absolute surface distance (ASD) in mm
and the center distance in mm, the latter being the distance between the center
of mass position calculated for the predicted (step 4) and the true segmentation.
These metrics are averaged over the individual IVDs and the test cases. Note that
the IVD labels are ignored in assessing the segmentation performance reflecting
the challenge design.
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To assess the localization performance of step 1 of our algorithm (regression
tree ensembles plus CRF) on the released data, we use the mean localization error
(i.e., the Euclidean distance between the true IVD centroid and the location
predicted by step 1 in mm). We also compute the localization rate measuring
the number of correctly localized IVD centroids; a predicted centroid position
is considered correct if the position is inside the IVD’s true segmentation and if
its localization error is less than 10 mm.

3.3 Evaluation on Released IVDM3Seg Data

We evaluated our method in detail on the released part of the data, i.e., on 16
data sets from 8 subjects. Since no subject identifiers were made available, we
cannot perform a standard 8-fold cross-validation (CV) based on subject splits
(such that data from a given subject appears only in the training or in the
test data). Instead, we decided to apply our algorithm (training and evaluation)
to every (out of

(
16
2

)
= 120) possible CV configuration. These 120 configura-

tions contain the 8 true subject-splits (testing on one subject, training on the
7 remaining subjects) and 112 configurations where the second image from the
two test subjects is contained in the training set. This renders our results on the
released part of the data slightly over-optimistic. Nevertheless, we feel that this
is a fair way to avoid a bias either towards a single test subject (with probability
8/120 = 6.67%) or still using a non-correct subject split (with probability 93.3%)
when using a single, randomly selected CV fold. The goal of the evaluations on
the released part of the data is to analyze each component of our algorithm in
detail, which cannot be performed on the non-disclosed part of the data.

Localization Performance. We compare the localization performance of step
1 of our algorithm (regression tree ensemble plus CRF) for the IVD’s centroids
in the two previously defined CRF setups (Sect. 2.1). The average results over
all 120 CV configurations are depicted in Fig. 3 for different numbers of scaling

Fig. 3. Comparison of two different CRF setups used in step 1 of our approach in
terms of localization rate (in %, see Sect. 3.2; first graph), mean error (in mm; second
graph) and CRF computation plus inference time (in sec; third graph) as a function
of a different number S of values for the latent scaling variable s in the pairwise CRF
potentials (the ternary potentials are independent of s).
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values, i.e., s ∈ {1} ∪ {0.8 + 0.4 · i/S | i = 1 . . S}. Looking at the graphs we can
see that scaling invariance has to be considered to achieve optimal performance.
Furthermore, we see that the CRF setup that utilizes binary potentials with a
latent scaling variable performs better than the setup using ternary potentials,
evaluated over all metrics. It correctly localized the 7 IVDs in all test images
in all 120 CV folds with an average localization error of 1.72 mm for S ≥ 12.
In contrast, the CRF setup using ternary potentials failed in three of the 120
configurations, mis-localizing 10 of the 1680 IVDs, resulting in a localization
rate of 99.4% and an average error of 2.12 mm. Looking at the runtime, we can
see that the pairwise CRF potentials are faster to evaluate as long as S ≤ 12
and provide better accuracy as the ternary CRF potentials if S ≥ 5. In general,
the increased amount of energy values to compute per potential (n3 � n2) plus
the slower runtime of the A* inference algorithm make the ternary setup slower
while not providing a better localization performance compared to pairwise CRF
potentials as long as scaling invariance is accounted for in the latter setup.
Note that we used a näıve Python implementation which was not optimized
for runtime, but still allowed us to compare both setups. We set S = 100 in the
following.

Segmentation Performance Given Perfect Localizations. Prior to run-
ning the full approach, we also assessed the optimal segmentation performance
when excluding errors of the previous localization step 1. To this end, we used
the ground truth IVD centroids to initialize step 2 of our algorithm (see Fig. 1)
in a “cheating” experiment. Averaged over all 120 CV splits, we achieved a Dice
coefficient of 0.903±0.027, an ASD of 0.431 mm and a center distance of 0.64 mm.

Further analysis revealed that by projecting the re-oriented, segmented IVDs
back to the original image space, the Dice coefficient is slightly degraded, i.e.,
from 0.922 in re-oriented space to 0.903 in original space. This is likely caused by
the small size of the volumes in relation to the surface of the IVDs and a voxel-
based none-interpolating evaluation of the overlap, which results in an imprecise
evaluation in the surface area.

Full Pipeline. Finally, we evaluated the segmentation performance running
the full pipeline as depicted in Fig. 1. Again, we compare results for the two
CRF setups to analyze the influence of different CRF parameterizations on the
final segmentation output, the results of which are listed in Table 1. Looking

Table 1. Evaluation of our (full) approach comparing the two CRF parameterizations
as mean ± standard deviations of the challenge evaluation metrics (Sect. 3.2), averaged
over all 120 CV splits of the released IVD3MSeg data.

CRF setup Dice ASD/mm Center dist./mm

Binary w/latent scale 0.904 ± 0.027 0.423 ± 0.085 0.59 ± 0.394

Ternary 0.902 ± 0.056 0.535 ± 2.238 0.715 ± 2.525
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at the results, we can see that the better performance of the binary potentials
in combination with a latent scaling variable manifested also in a better final
segmentation result with lower mean ASD and center distance and much smaller
standard deviation for all evaluation metrics. Also, we see that the small mean
localization errors of step 1 (1.72 mm and 2.12 mm for the binary and ternary
CRF parameterizations, respectively) barely have an influence on the segmenta-
tion performance.

3.4 Evaluation on Non-disclosed IVDM3Seg Data

For our approach to be evaluated on the non-disclosed data, we prepared a
Docker container of our method and sent it to the challenge organizers to produce
the results on the non-disclosed data. For this Docker container, we randomly
selected 8 of the 120 models trained in the CV setup, requiring balanced training
(i.e., each of the 16 training images was used in exactly 7 CV training runs),
to form an ensemble of experts [14]. The final ensemble output is a voxel-wise
majority vote on the (binary) segmentation outputs of the 8 ensemble members.
The idea is that the deficiencies of each model from the low number of training
subjects cancel out. Again, we compare our two CRF parameterizations w.r.t.
the final segmentation output.

For the two cases 05 and 06 of the non-disclosed data, the entire IVD chain
was shifted towards the head in both CRF configurations. An example is shown
in Fig. 4 with the white arrow indicating the true start of the chain. Note that the
IVD tissue was still accurately and precisely segmented. It is very surprising that
the 8 localization models, the parts of which were trained on exclusive random
training subsets (i.e., the decision tree ensemble was trained on a different subset
of the training images than the CRF) and produced excellent CV results, majorly

Table 2. Comparison of our algorithm to the currently best performing method on the
non-disclosed IVDM3Seg challenge data, again illustrating the mean ± the standard
deviation of the challenge metrics (Sect. 3.2). We ignore (/) values where an artificial
penalty was introduced by the challenge organizers for mis-localized IVDs, which does
not allow for valid interpretation.

Method Dice ASD/mm Center dist./mm

All 56 IVDs

smartsoftV2 [6] 0.911 ± 0.024 0.599 ± 0.200 0.756 ± 0.404

Ours (ternary) 0.871 ± 0.177 / /

Ours (binary w/lat. scale) 0.870 ± 0.177 / /

52 matching out of totally 56 IVDs

Ours (ternary) 0.912 ± 0.021 0.57 ± 0.153 0.737 ± 0.375

Ours (binary w/lat. scale) 0.912 ± 0.021 0.572 ± 0.153 0.741 ± 0.377

smartsoftV2 [6] 0.911 ± 0.025 0.602 ± 0.206 0.771 ± 0.408
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agreed that the chain should be shifted. However, since the test data are not dis-
closed and only the final segmentation output was produced, the reason for the
mis-localization cannot be determined. This mis-localization reduced the overall
Dice coefficient to 0.870 and 0.871 for the binary w/latent variable and ternary
configuration, respectively. By selectively looking at the data we can get a better
view on the actual segmentation performance, i.e., differentiating between local-
ization and segmentation errors. We do so by excluding the 4 none-matching (i.e.,
not overlapping) of the total 8 · 7 = 56 IVDs. We compare these numbers to the
best reported numbers so far by Georgiev and Asenov [6] called “smartsoftV2”,

Fig. 4. Test image with an
incorrect shift of all segmen-
tations towards the head by
one IVD (left: sagittal view;
right: 3D rendering).

computed over all 56 IVDs and the 56 minus 4 IVDs
for equal comparison. Looking at the results listed
in Table 2, we can see that our approach is on par
(favorable) with state of the art in terms of seg-
mentation performance. Interestingly, the superior-
ity of the binary setup in contrast to the ternary one
suggested by the previous experiments is inverted
(if only slightly) on the non-disclosed data, which
might be caused by the ensemble setup and is sta-
tistically insignificant. Comparing the segmentation
performance on the released data with the one on
the non-disclosed data, we see an improvement of
the Dice (0.912 > 0.904) that is likely caused by
the ensemble setup.

The full evaluation results and the used Docker
containers are publicly available1.

4 Conclusions and Future Work

In this paper, we combined a general localization method (regression tree ensem-
bles spatially regularized by a conditional random field) with a general segmen-
tation method (a fully convolutional neural network) to create an approach that
can segment arbitrary spatially correlated objects in various modalities requir-
ing very few training data and very few domain assumptions (i.e., target object
size). The key idea is that localizing the object’s centroids and exploiting the
spatial information provided by the conditional random field one can cut object-
specific sections to perform the segmentation on a much smaller sub-volume.
This greatly reduces the amount of required training data, increases segmenta-
tion performance and reduces the runtime.

Here, we applied the approach to the task of segmenting seven well-defined
intervertebral discs in multi-modality MR images using the data set provided
by the MICCAI 2018 IVDM3Seg challenge [19]. We evaluated each part of our
approach in detail and compared binary (i.e., pairwise) CRF potentials utilizing
a latent scaling variable with ternary potentials to tackle the required scaling
invariance in the spatial model. Averaged over all 120 cross-validation splits on
1 https://github.com/fhkiel-mlaip/ivdm3seg.

https://github.com/fhkiel-mlaip/ivdm3seg
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the released data, the first step correctly localized all 1680 IVDs with a mean
localization error of 1.72 mm. Following this first step, the final segmentation
achieved an average Dice of 0.904, an absolute surface distance of 0.423 mm and
a center distance of 0.59 mm. Evaluating the approach on the non-disclosed data
showed that in two cases the whole spinal structure was shifted by one, i.e., the
localization failed. However, evaluating the actual segmentation performance on
the 52 (out of the totally 56) matching IVDs showed that our approach performs
on par with the state-of-the-art, i.e., resulting in a Dice coefficient of 0.912, an
ASD of 0.57 mm and a center distance of 0.737 mm.

For future work, we are currently tackling the common problem of group
shifts in CRF setups on repetitive structures. Furthermore, we are actively look-
ing for other data sets featuring spatially correlated objects, few data and chal-
lenging small objects.
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Abstract. Analyses of polyp images play an important role in an early detection
of colorectal cancer. An automated polyp segmentation is seen as one of the meth-
ods that could improve the accuracy of the colonoscopic examination. The paper
describes evaluation study of a segmentation method developed for the Endo-
scopic Vision Gastrointestinal Image ANAlysis – (GIANA) polyp segmentation
sub-challenges. The proposed polyp segmentation algorithm is based on a fully
convolutional network (FCN) model. The paper describes cross-validation results
on the training GIANA dataset. Various tests have been evaluated, including net-
work configuration, effects of data augmentation, and performance of the method
as a function of polyp characteristics. The proposed method delivers state-of-the-
art results. It secured the first place for the image segmentation tasks at the 2017
GIANA challenge and the second place for the SD images at the 2018 GIANA
challenge.

Keywords: Fully convolutional dilation neural networks · Polyp segmentation ·
Data augmentation · Cross-Validation · Ablation tests

1 Introduction

Colorectal cancer is one of the leading causes of cancer deaths worldwide. To decrease
mortality, an assessment of polypmalignancy is performed during colonoscopy examina-
tion, so it can be removed at an early stage.Currently, during colonoscopy, polyps are usu-
ally examine visually by a trained clinician. To automate analysis of colonoscopy images,
machine learning methods have been utilised and shown to support polyp detectability
and segmentation objectivity.

Polyp segmentation is a challenging task due to inherent variability of polyp mor-
phology and colonoscopy image appearance. The size, shape and appearance of a polyp
are different at different stages. In an early stage, colorectal polyps are typically small,
may not have a distinct appearance, and could be easily confused with other intesti-
nal structures. In the later stages, the polyp morphology changes and the size begin to
increase. Illumination in colon screening is also variable, producing local overexposure
highlights and specular reflections. Some polypsmay look very differently fromdifferent
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camera positions, do not have a visible transition between the polyp and its surrounding
tissue, be affected by intestinal content and luminal regions (Fig. 1), inevitably leading
to segmentation errors.

Fig. 1. Typical polyps in the GIANA SD training dataset: (a, h) Small size; (b) Blur; (c) Intestinal
content; (d) Specular highlights/defocused; (e) Occlusion; (f) Large size; (g) Overexposed areas;
(a, e, h) Luminal region.

The research reported here has been motivated by the limitations of previously pro-
posedmethods. This paper evaluates a novel fully convolutional neural network designed
to accomplish this challenging segmentation task. The developed FCN method outputs
polyp occurrence confidence maps. The final polyp delineation is either obtained by a
simple thresholding of these maps or the hybrid level-set [1, 2] is used to smooth the
polyp contour and eliminate small noisy network responses. The proposed method has
been introduced in [3]. This paper aims to provide more in depth analysis of the method
characteristics, focusing on the selection of the design parameters, adopted data aug-
mentation scheme as well as overall validation of the proposed method. This analysis
has not been published before.

2 Related Work

In literature on colonoscopy image analysis, various terms have been used to describe
similar objectives. For example, some of the reported polyp detection and localisa-
tion methods provide heat maps and/or different levels of polyp boundary approxima-
tions, which could be interpreted as segmentation. On the other hand segmentation tools
could be also seen as providing polyp detection and localisation functionality. Most of
the reported techniques relevant to polyp segmentation can be divided into two main
approaches based on either apparent shape or texture, with the methods using machine
learning gradually gaining popularity. Some of the early approaches attempted to fit a
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predefined polyp shape models. Hwang et al. [4] used ellipse fitting techniques based
on image curvature, edge distance and intensity values for polyp detection. Gross et al.
[5] used Canny edge detector to process a prior-filtered images, identifying the relevant
edges using a template matching technique for polyp segmentation. Breier et al. [6, 7]
investigated applications of active contours for finding polyp outline. Although these
methods perform well for typical polyps, they require manual contour initialisation.

The above mentioned techniques rely heavily on a presence of complete polyp con-
tours. To improve the robustness, further research was focused on the development of
robust edge detectors. Bernal et al. [8] presented a “depth of valley” concept to detect
more general polyp shapes, then segment the polyp through evaluating the relationship
between the pixels and detected contour. Further improvements of this technique are
described in [9–11]. In the subsequent work, Tajbakhsh et al. [12] put forward a series
of polyp segmentation method based on edge classification, utilising the random forest
classifier and a voting scheme producing polyp localisation heat maps. In the follow-up
work [13, 14] that approach was refined via use of several sub-classifiers.

Another class of polyp segmentation methods is based on texture descriptors, typ-
ically operating on a sliding window. Karkanis et al. [15] combined Grey-Level Co-
occurrence Matrix and wavelets. Using the same database and classifier, Iakovidis et al.
[16] proposed a method, which provided the best results in terms of area under the curve
metric.

More recently, with the advances of deep learning, a hand-crafted feature descriptors
are gradually being replaced by convolutional neural networks (CNN) [17, 18]. Ribeiro
et al. [19] compared CNN with the state-of-art hand-crafted features on polyp classifi-
cation problem, and found that CNN has superior performance. That method is based
on a sliding window approach. The general problem with a sliding widow technique is
that it is difficult to use image contextual information and approach is very inefficient.
This has been addressed by the so called fully convolutional networks (FCN), with two
key architectures proposed in [20, 21]. These methods can be trained end-to-end and
output complete segmentation results, without a need for any post-processing. Vázquez
et al. [22] directly segmented the polyp images using an off-the-shelf FCN architecture.
Zhang et al. [23] use the same FCN, but they add a random forest to decrease the false
positive. The U-net [21] is one of the most popular architectures for biomedical image
segmentation. It has been also used for polyp segmentation. Li et al. [24] designed a
U-net architecture for polyp segmentation to encourage smooth contours.

In recent years, it has been noticed that there is a relationship between size of CNN
receptive field and the quality of segmentation results. A new layer, called dilation
convolution, has been proposed [25] to control the CNN receptive field in amore efficient
way. Chen et al. [26] utilised dilation convolution and developed architecture called
atrous spatial pyramid pooling (ASPP) to learn the multi-scale features. The ASPP
module consists of multiple parallel convolutional layers with different dilations.

In summary, colonoscopy image analysis (including polyp segmentation) is becom-
ing more and more automated and integrated. Deep feature learning and end-to-end
architectures are gradually replacing the hand-crafted and deep features operating on a
sliding window. Polyp segmentation can be seen as a semantic instance segmentation
problem and therefore, a large number of techniques developed in computer vision for
generic semantic segmentation could be possibly adopted, providing effective and more
accurate methods for polyp segmentation.
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3 Method

The full processing pipeline of the proposedmethodology is described in [3]. This section
provides only the key information necessary for understating of the method evaluation
described in the subsequent sections.

The proposed Dilated ResFCN polyp segmentation network is shown in Fig. 2. This
architecture is inspired by [20, 26], and the Global Convolutional Network [27]. The
proposed FCN consists of three sub-networks preforming specific tasks: feature extrac-
tion, multi-resolution classification, and fusion (deconvolution). The feature extraction
sub-network is based on the ResNet-50 model [28]. The ResNet-50 has been selected,
as for the polyp segmentation problem it has showed to provide a reasonable balance
between network capacity and required resources. The multi-resolution classification
sub-network consists of four parallel paths connected to the outputs from Res2 - Res5.
Each such parallel path includes a dilation convolutional layer, which is used to increase
the receptive field without increasing computational complexity. The larger receptive
fields are needed to access contextual information about polyp neighborhood areas. The
dilation rate is determined by the statistics of polyp size in the database used for train-
ing. For the lowest resolution path (the bottom path in Fig. 2) the 3 × 3 kernel can only
represent a part of most polyps and the 7× 7 kernel is too large. Therefore, 5× 5 kernel,
corresponds to dilation rate of 2, has been experimentally selected, as it can adequately
represent 91% of all polyps in the training dataset. The regions of dilation convolu-
tions should be overlapping and therefore the dilation rates increase with resolution.
The dilation rates for sub-nets connected to Res5-Res2 are 2, 4, 8, 16 and the corre-
sponding kernel sizes are 5, 9, 17, and 33. The fusion sub-network, corresponds to the
deconvolution layers of FCN model. The segmentation results from each classification
sub-network are up-sampled and fused by a bilinear interpolation.

Fig. 2. Architecture of the proposed Dilated ResFCN network: feature extraction sub-network
shown in blue, multiresolution feature classification sub-network shown in yellow, and fusion
sub-network shown in green. (Color figure online)
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Fig. 3. The number of valid weights in bottom and top dilation networks in Fig. 2. (Color figure
online)

Following the methodology described in [29], the number of active kernel weights at
the top and bottom paths of the classification subnetwork are shown in Fig. 3. It can be
seen, that with the dilation rate too high, the 3 × 3 kernel is effectively being reduced to
a 1 × 1 kernel. On the other hand too small dilation rate leads to a small receptive field
negatively affecting performance of the network. The selected dilation rates of 2 and 16
respectively for the “bottom” and “top” networks provide compromise with a sufficient
number of kernels having 4–9 valid weights.

4 Implementation

4.1 Dataset

The proposed polyp segmentation method has been developed and evaluated on the data
from the 2017EndoscopicVisionGIANAPolyp SegmentationChallenge [30]. That data
consist of Standard Definition (SD) and High Definition (HD) colonoscopy databases.
The SD database has two datasets: training dataset, consisting of 300 low resolution,
500-by-574 pixel RGB images with the corresponding ground truth binary images. The
images in that training dataset were obtained from 15 video sequences showing different
polyps. The SD test dataset consists of 612 images with 288-by-384 pixels resolution.
The HD database is composed of independent high-resolution RGB images of 1080-
by-1920 pixels. The HD database includes 56 training images (with the corresponding
ground truth) and 108 images used for testing. The results reported in this paper are
based on a cross-validation approach using the training datasets only. Selected results
obtained on the SD test dataset were reported in [3].

4.2 Data Augmentation

For the purpose of the method validation the SD and HD training datasets have been
combined giving in total 355 training images. The performance of the CNN-based meth-
ods relies heavily on the size of training data used. Clearly, a set of 355 training images
is very limited, at least from the perspective of a typical training set used in a context of
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deep learning. Moreover, some polyp types are not represented in the database, and for
some others there are just a few exemplar images available. Therefore, it is necessary
to enlarge the training set via data augmentation. Data augmentation is designed to pro-
vide more polyp images for CNN training. Although this method cannot generate new
polyp types, it can provide additional data samples based on modelling different image
acquisition conditions, e.g. illumination, camera position, and colon deformations.

All HD and SD images are rescaled to a common image size (250-by-287 pixels)
in such a way that image aspect ratio is preserved. This operation includes random
cropping equivalent to image translation augmentation. Subsequently, all images are
augmented using four transformations. Specifically, each image is: (i) rotated with the
ration angle randomly selected from [0°–360°) range, (ii) scaled with the scale factor
randomly selected between 0.8 and 1.2, (iii) deformed using a thin plate spline (TPS)
model with a fixed 10 × 10 grid and a random displacement of the each grid point
with the maximum displacement of 4 pixels, (iv) colour adjusted, using colour jitter,
with the Hue, Saturation, Value randomly changed, with the new values drawn from the
distributions derived from the original training images [31]. In total after augmentation
the training dataset consists of 19,170 images (Fig. 4).

Fig. 4. A sample of augmented images using rotation, local deformation, colour jitter, and scale.

4.3 Evaluation Metrics

For a single segmented polyp, Dice coefficient (also known as F1 score), Precision,
Recall, and Hausdorff distance are used to compare the similarity between the binary
segmentation results and the ground truth. Precision and Recall are standard measures
used in a context of binary classification:

Precision = T P
T P+FP Recall = T P

T P+FN (1)

where: TP, FN, and FP denotes respectively true positive, false negative and false posi-
tive. Precision and Recall could be used as indicators of over- and under- segmentation.
Dice coefficient is often used in a context of image segmentation and is defined as:

Dice = 2×T P
2×T P+FN+FP (2)

Hausdorff Distance is the measure used to determine similarities between the
boundaries G and S of two objectives. It is defined as:

H(G, S) = max
{
supx∈Gin fy∈Sd(x, y), supx∈Sin fy∈Gd(x, y)

}
(3)

where: d(x, y) denotes the distance between points x and y. The best result of this
measure is 0, which means that the shapes of two objectives are completely overlapping.
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4.4 Cross-Validation Data

For the purpose of validation original training images are divided into four V1-V4 cross-
validation subsets with 56, 96, 97 and 106 images respectively. Following augmentation
corresponding sets have 4784, 4832, 4821 and 4733 images for training. Following
standard 4-fold validation scheme any three of these subsets are used for training (after
image augmentation) and the remaining subset (without augmentation) for validation.
Frames extracted from the same video are always in the same validation sub-set, i.e.
they are not used for training and validation at same time.

5 Results

5.1 Comparison with Benchmark Methods

Two reference network architectures FCN8s [20] and ResFCN have been selected as
benchmarks for evaluation of the proposed method. Whereas FCN8s is a well known
fully convolutional network, the ResFCN is a simplified version of the network from
Fig. 2 with the dilation kernels removed from the parallel classification paths. Table 1
lists the results (mean and standard deviation) for all three tested methods and all four-
evaluation metrics. As it can be seen from that table the Dilated ResFCN achieves the
best mean results for all the four metrics (the highest value for dice, precision, recall and
the smallest value for the Hausdorff distance), as well as the smallest standard deviations
for all the metrics, demonstrating the stability of the proposed method.

Table 1. Mean values and standard deviation obtained for different metrics on 4-fold validation
data using FCN8s, ResFCN and Dilated ResFCN.

Dice Precision Recall Hausdorff

Mean Std Mean Std Mean Std Mean Std

FCN8s 0.63 0.11 0.68 0.1 0.65 0.12 193 76

ResFCN 0.71 0.08 0.75 0.07 0.74 0.09 201 110

Dilated ResFCN 0.79 0.08 0.81 0.07 0.81 0.09 54 21

Figure 5 demonstrates results’ statistics for all the methods and all the metrics using
box-plot, with median represented by the central red line, the 25th and 75th percentiles
represented by the bottom and top of each box and the outliers shown as red points. It
can be concluded that the proposed method achieves better results than the benchmark
methods. For all the metrics the true medians for the proposed method are better, with
the 95% confidence, than for the other methods.

Significantly smaller Hausdorff distance measure obtained for the Dilated ResFCN
results indicates a better stability of the proposed method with boundaries of segmented
polyps better fitting to the ground truth data.
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Fig. 5. The box-plot for different evaluation metrics. (Color figure online)

5.2 Data Augmentation Ablation Tests

As mentioned above, due to a very small training dataset, the data augmentation is
an important step required for a suitable network training. In this section various data
augmentations are investigated with the proposed Dilated ResFCN architecture. The
result obtained after combining all the augmentations is also presented. Table 2 shows
the mean Dice index obtained on each cross-validation subset along the overall mean
dice index averaged across the four subsets. It is clear that the rotation seems to be
the most informative augmentation method, followed by local deformations and colour
jitter. It is also evident that the combination of different augmentation methods improves
overall performance. It should be noted that for the “combined” augmentation, the same
number of augmented images are used as for any other augmentation method tested.

Table 2. Mean Dice index obtained on 4-fold validation data using Dilated ResFCN network

Network V1 V2 V3 V4 Mean

Combination 0.7583 0.7420 0.6086 0.8518 0.7402

Rotation 0.7602 0.7146 0.6145 0.8361 0.7314

Deformation 0.6772 0.7058 0.5917 0.7483 0.6807

Color jitter 0.6241 0.6957 0.5696 0.8019 0.6728

Scale 0.6536 0.6368 0.4742 0.7817 0.6366
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The box-plots of the augmentation ablation tests are shown in Fig. 6. This confirms
the conclusions drawn from the Table 2. Furthermore, it also demonstrates that the
combined augmentation significantly improves the segmentation results when compared
to any other standalone augmentation, with the real combined method median, being
better than any other individual augmentation median with the 95% confidence level.
Figure 6 shows also the distribution of the results as a function of the cross-validation
folds. It can be seen that the results obtained on the fourth and third folds are respectively
the best and worst. A closer examination of these folds reveals that images in the fourth
fold are mostly showing larger polyps, whereas images in third fold are mostly depicting
small polyps.

Fig. 6. Dice coefficient ofDilatedResFCN for cross-validation folds (left); and data augmentation
ablation tests (right).

To further investigate the performance of the proposed method as a function of
the polyp size, Fig. 7 shows the box-plot showing Dice index as a function of the
polyp size. The “Small” and “Large” polyps are defined as having size smaller than
the 25th and larger than 75th percentile of the polyp sizes in the training dataset. The
remaining polyps as denoted as “Normal”. The results demonstrate that the small polyps
are hardest to segment. However it should be said that themetrics used are biased towards
a larger polyps as a relatively small (absolute) over and under segmentation for a small
polyps would led to more significant deterioration of the metrics. To combat this effect
the authors proposed a secondary network, so called SE-Unet, designed specifically to
segment small polyps [3]. The description of that method is though beyond the scope of
this paper.

A typical segmentation results obtained using the Dilated ResNet network are shown
in Fig. 8 with the blue and red contour representing respectively ground truth and the
segmentation results1.

1 It is envisaged that supplementary results of the ongoing research on polyp segmentation will
be gradually made available at: https://github.com/ybguo1/Polyp-Segmentation.

https://github.com/ybguo1/Polyp-Segmentation
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Fig. 7. Validation results obtained for the Dilated ResFCN network grouped as function of polyp
size.

Fig. 8. Typical results, with Dice index (from left to right) of 0.97, 0.96, 0.71, and 0.69. (Color
figure online)

6 Conclusion

The paper describes a validation framework for evaluation of the newly proposed
Dilated ResFCN network architecture, specifically designed for segmentation of polyps
in colonoscopy images. The method has been compared against two benchmark meth-
ods: FCN8s and ResFCN. It has been shown that suitably selected dilation kernels can
improve performance of polyp segmentation on multiple evaluation metrics. In particu-
lar it has been shown that the proposed method matches well the shape of the polyp with
the smallest and most consistent value of the Hausdorff distance. Due to a small number
of training images, the data augmentation is the key for improving segmentation results.
It has been shown that in that case the rotation is the strongest augmentation technique
followed by local image deformation and colour jitter. Overall combination of differ-
ent augmentation techniques has a significant effect on the results. The performance
of the method as a function of the polyp size has been also analysed. Although some
improvement on segmentation of small polyps have been achieved using architecture not
reported in this paper a further improvement is still required, possibly through further
optimisation of the dilation spatial pooling. The proposedmethod has been tested against
state-of-the-art at the MICCAI’s Endoscopic Vision GIANA Challenges, securing the
first place for the SD and HD image segmentation tasks at the 2017 challenge and the
second place for the SD images at the 2018 challenge.
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Abstract. Neural networks have become a standard for classifying
images. However, by their very nature, their internal data representa-
tion remains opaque. To solve this dilemma, attention mechanisms have
recently been introduced. They help to highlight regions in input data
that have been used for a network’s classification decision. This arti-
cle presents two attention architectures for the classification of medical
images. Firstly, we are explaining a simple architecture which creates
one attention map that is used for all classes. Secondly, we introduce an
architecture that creates an attention map for each class. This is done
by creating two U-nets - one for attention and one for classification -
and then multiplying these two maps together. We show that our archi-
tectures well meet the baseline of standard convolutional classifications
while at the same time increasing their explainability.

Keywords: Neural networks · Convolutional neural networks ·
Attention

1 Introduction

When images of patients’ eyes are created using OCT, a doctor has to look at
them in order to check whether something pathologic can be identified. In order
to support the doctor, we would like to create a model that gives an assessment
of an eye’s condition and tell whether an image shows a healthy eye or signs of
a macular edema. To be of real help, the model should not just give a prediction
which will be unquestionably used, but rather aid a doctor in his or her decision.
To do this, along its prediction the model should also give some reasoning why it
has come to its decision. In the visual context this should be a highlight of regions
of the image which have been most helpful for that decision. The technique used
for this visual highlighting is called attention.

Neural networks are designed as black boxes. When training, their task is to
lower the training loss on a given training data set. During the course of train-
ing its layers and weights try to find abstract representations of the given data.
c© Springer Nature Switzerland AG 2020
Y. Zheng et al. (Eds.): MIUA 2019, CCIS 1065, pp. 391–398, 2020.
https://doi.org/10.1007/978-3-030-39343-4_33
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Here, with each added layer, the data representation becomes more and more
abstract [21]. Finally, the representationhasbecome that abstract that thenetwork
can classify complex images [6,10] and for some use cases even outperforms
humans [4].

When using convolutional neural networks, it is possible to visualize its fil-
ters.1,2 But as more and more layers are added to the network, the filters’ learned
features become more abstract and, in effect, less understandable. To tackle that
problem, attention mechanisms have been created which all try to create a spe-
cial connection between the input data and the network’s output. Visualizations
of this connection can then be used to explain the network’s decision. It is an
architectural trick to force the network not to use all of its given input data but
only parts of it, and then do its classification task on that subset. One of the
first architectures of visual attention exactly was created in order to create a
link between images and their textual description [19], so that the authors were
able to show which word of an image’s description was linked to which region of
the input image. In the medical field, visual attention has been used to segment
images and extract objects [8,11,13]. Attention mechanisms have also been pop-
ular recently when working with text, especially when working with language
tasks such as machine translation [1,9,12,16] or speech recognition [2,3].

When working with visual data, an attention map is created and functions as
a bottle neck: The network is forced to create a feature map which is multiplied
with the input data. The feature map is constrained by having the value 1 as a
sum, which is done using softmax activation. Since the network has to do the
classification task using the attention map, it has to decide which part of the
input data it wants to keep and which part should be removed. A downside of
this architecture is that the attention map has to keep information for all the
classes: When the network has to decide between several classes, the attention
map has to contain the information for all classes. But then it is not possible to
trace which part of the input data has been used for which class.

In this paper, we are presenting two different attention architectures. The
first architecture creates an attention map and classifies the images using that
map. That way it can be visualized which part of the input image was used for
the classification decision. Secondly, we introduce a modified architecture which
is able to create an attention map for each class. We then use these architectures
on a dataset of images of eyes, which are either healthy or show signs of a macular
edema. We visualize our architectures’ attention and are able to show that the
classification results are better compared to a basic convolutional network, while
at the same time being more expressive.

2 Visual Attention

Attention architectures enable users to understand which region of the input
data has lead to a network’s classification decision, but when having multiple
1 https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html.
2 https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html.

https://ai.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://blog.keras.io/how-convolutional-neural-networks-see-the-world.html
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classes the attention map is used for all classes. Thus, it cannot be seen which
part of the input is used for which class. We first introduce a basic architecture
for visual attention when classifying data, and then introduce a modification to
have an attention map for each class.

2.1 Basic Visual Attention

Input data

Feature Unet

Softmax

Multiply

Classify

Classification

Fig. 1. Architecture for basic visual attention.

Starting point shall be a basic classifying neural network. When doing image
classification, these networks often consist of several multiple layers [5,15] with
multiple convolutions that take an input image and map that image onto several
classes (Fig. 1).

When extending the network using attention, the input has to be multiplied
by a feature map before being classified (similar to the approach presented in
[17]). For creating such a feature map, a U-net [14] is a well suited choice: It
contains an encoder and a decoder and shall be called Feature U-net. The encoder
maps the input to a high dimensional vector using several convolutional layers
and pooling steps, so that the encoded data contains all context information.
When decoding, after each upsampling the values are concatenated with the
values from the corresponding encoding step. At the last decoding step, the
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U-net’s input will be combined with all the contextual information from the
encoding-decoding layers. Given the fact that we need to multiply the U-net’s
output with the input data, we need its output to be the same size as the input
and to have only one feature dimension. That feature dimension will be activated
using softmax, so that its sum equals 1. The effect of using softmax is that the
network has to give high values to regions of the image that are needed for the
classification, unimportant regions will get a low value.

2.2 Multi-class Attention

Input data

Feature Unet

Softmax

Classifying Unet

Linear

Multiply

Sum

Sigmoid

Classification

Fig. 2. Architecture for multi-class visual attention.

For the basic visual attention, one attention map was used to force the network
to visualize the input image’s regions that lead to its classification decision.
When multiple classes exist, we want to have an attention map for each class.
However, by doing this, multiple attention maps cannot be fed into our classifier
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since then no connection could be learned between each attention map and its
corresponding class (Fig. 2).

Thus, we are adding a Classifying U-net (CU) of the same structure as the
Feature U-net except for having a linear output. That output is being multiplied
with the attention map, then summed and activated using sigmoid. The result
is the network’s confidence of a class being present in a given input image.

The effect is as follows: The CU has to learn for each class where that class
can be seen in a given input image. In areas where it can be seen, the values have
to be high so that when being multiplied with the attention map, the resulting
value will also be high as well. If a class cannot be seen in a given image, the
CU has to output small values to the feature map.

3 Experiments

Fig. 3. Two examplary images from the dataset. Both images show the macula, whereas
in the left image a macula edema can be seen, the right one is healthy.

The described architectures are being used on a dataset with OCT images of
the macula of eyes. The eyes are either healthy or show signs of a macula edema
(see Fig. 3). The dataset consists of 2821 images with signs of macular edema
and 1161 images with no signs, which have been used for training. Additionally
for testing, we have also used 722 images with signs of macular edema and 275
images with no sign. The images have been scaled to 128 × 128 pixels and are
greyscale. First, we have been using a neural network without attention as base
line. Then, we have been implementing the described attention architectures
in Sect. 2. The models have all been trained using mean squared error for 100
epochs, one epoch consisting of 100 batches and each batch containing 16 training
images.
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3.1 Architectures

Simple Classifying Model. The basic convolutional neural network consists of 7
blocks, whereas each block contains 3 convolutional layers with batch normal-
ization [7] and sigmoid activation. We are also using skip connections as seen
in [18,20] in each block. Lastly, we are adding a so-called fully-connected layer
before the final output layer. The output layer has two nodes, which represent
either healthy or edema.

Simple Attention Model. The simple attention model implements the architec-
ture described in Sect. 2.1. The encoding part of the U-net, the decoding part
of the U-net as well as the classifying part of the model all consist of 7 blocks
with exactly the same properties as the previously explained simple classifying
model.

Multi-class Attention Model. As described in Sect. 2.2, the multiclass-attention
model consists of two U-nets, which have the same properties as the previously
described U-net.

3.2 Results

Table 1. Test results of the three architectures to investigate.

Train loss Train accuracy Test loss Test accuracy

Baseline 0.0669 0.9613 0.0916 0.9729

Simple attention 0.0514 0.9054 0.0383 0.9379

Multi-class attention 0.0117 0.9752 0.0116 0.9825

As can be seen in Table 1, the architecture with the basic attention is performing
comparably well as our baseline classifying model. The multi-class attention with
the two U-nets is performing significantly better. The reason for this may be
that the basic attention model has to create an attention map which needs to
contain interesting regions for both possible classes. When the classifying model
is given the attention map, it has to identify patterns in that map that result in
a class definition. Due to the softmax activation used for the attention maps, the
information in these attention maps is very limited. The multi-class attention
model on the other hand has dedicated attention maps which can concentrate
on their own classes. Thus, whenever a region in these maps is highlighted, it is
easy for the feature U-net to highlight the same region and create a high class
confidence.

In Fig. 4, the multi-class attention can be seen. One can see that the attention
highlights specific parts of the images. If there is no edema to be seen, the center
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Fig. 4. Top row: input images. middle row: healthy attention, bottom row: macula
edema attention.

of the image is highlighted. This can be interpreted that this area of the image
is the most important one for checking for signs of edema. On the other hand,
for the images with signs of macular edema, the corresponding area is always
highlighted correctly.

4 Conclusion

We have introduced two architectures for highlighting parts of input images
that result in a better understanding of why a network has come to its decision.
The multi-class attention architecture presented has shown a better performance
than the basic attention architecture and even a better performance than the
baseline model that has been used just to classify the given data.
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Abstract. We propose a convolutional neural network for localising the
centres of the optic disc (OD) and fovea in ultra-wide field of view scan-
ning laser ophthalmoscope (UWFoV-SLO) images of the retina. Images
captured in both reflectance and autofluorescence (AF) modes, and cen-
tral pole and eyesteered gazes, were used. The method achieved an OD
localisation accuracy of 99.4% within one OD radius, and fovea locali-
sation accuracy of 99.1% within one OD radius on a test set comprising
of 1790 images. The performance of fovea localisation in AF images was
comparable to the variation between human annotators at this task. The
laterality of the image (whether the image is of the left or right eye) was
inferred from the OD and fovea coordinates with an accuracy of 99.9%.

Keywords: Optic disc detection · Fovea detection · Laterality
determination · Retinal images · Convolutional neural networks

1 Introduction

The optic disc (OD) and fovea are two anatomical landmarks found in the retina.
The OD is where vasculature and nervous connections are made to the rest of
body, and appears as a bright disc or oval in retinal images. The fovea, the centre
of vision, is the area with the highest density of cone receptor cells, and is found
on-axis to the lens of the eye.

Automating the location of these landmarks in retinal images is an important
first step in the computer-aided diagnosis of many retinal diseases. For example,
glaucoma can be graded by measuring morphology parameters of the OD [25],
and automation of this measurement requires the OD to be located [8]. In the
detection of diabetic retinopathy, it is often necessary to identify the OD before
detection of exudates [5].
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Fig. 1. Example UWFoV-SLO and fundus camera (FC) images; (a) Right eye autofluo-
rescence (AF) central pole gaze (CP), (b) Left eye red-green (RG) reflectance eyesteered
gaze (ES) Superior (c) Left eye optic disc (d) Left eye RG ES Nasal (approximate FoV
of FC superimposed) (e) Left eye RG CP (f) Left eye RG ES Temporal (g) Right eye
FC [16] (h) Left eye RG ES Inferior (i) Left eye Fovea. Images (b), (d): (f) and (h)
make a complete set of CP and ES images of a left eye. (Color figure online)

The automatic classification of the laterality of the image, i.e., whether the
image is of the right or left eye, is of clinical interest as it allows the image to
be labeled without manual input from an operator. This can save valuable time
in the clinical environment, with the benefit of classification accuracy similar to
human grading [11], as operators are prone to error due to the repetitive nature
of this task. The laterality of an image can be inferred from the coordinates of
the OD and fovea; in images of the left eye, the OD is to the left of the fovea.
The opposite is true for the right eye (see Fig. 1).

A fundus camera captures white-light photographs of the retina, whereas
an scanning laser ophthalmoscope (SLO) uses directed laser beams to measure
reflectance at each point on the retina to build a reflectance image. This tech-
nique allows imaging of a wider field of view—for instance, Optos ultra-wide
field of view scanning laser ophthalmoscopes (UWFoV-SLOs) used in this study
attain 200◦ field of view (FoV), covering 82% of the retina. Fundus camera
images cover a smaller FoV (typically 45◦), resulting in features such as the OD
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appearing proportionally larger with respect to the imaged area in fundus cam-
era images compared to UWFoV-SLOs images. See Fig. 1(d) and (g) for a FoV
comparison between fundus camera images and UWFoV-SLO images.

In addition to red-green (RG) reflectance images, UWFoV-SLO systems are
capable of capturing autofluorescence (AF) images, in which a laser is used
to stimulate emission at longer wavelengths. This allows cell respiration to be
visualised, and aids the detection and diagnosis of retinal diseases [9]. AF images
have higher intensity levels than reflectance images, and exhibit higher levels of
noise. Figure 1 shows examples of RG and AF images for comparison.

The work presented here is novel for a number of reasons. Firstly, to the
best of our knowledge this is the first time an OD and fovea localisation method
has been reported on UWFoV-SLO images. Secondly, we are the first to inves-
tigate images captured in the AF modality. Thirdly, we show that the proposed
convolutional neural network (CNN) architecture can be trained and tested with
retinal images captured in multiple modalities. Lastly, we show that the accu-
racy of the laterality inferred from the OD and fovea coordinates predicted by
the proposed method is higher than that of a second CNN which was specifically
trained to perform laterality classification.

2 Related Work

Sinthanayothin et al. [22] were the first to propose an automated method to
estimate the locations of the OD and fovea in digital fundus camera photographs.
The OD was located by finding the region of highest intensity variation to the
surrounding pixels, and the fovea located by finding the darkest region near the
OD. Hoover et al. [10] showed that the direction of the retinal vasculature could
be used to locate the OD, as vasculature extends from there.

Foracchia et al. [7] used the technique of fitting parametric models to the
blood vessels to locate the OD after extracting the vasculature. Fleming et al.
[6] showed that the retinal vasculature could be modeled as an elliptical form and
analysed with the Hough transform, yielding approximate locations of the OD
and fovea. These locations were refined with edge and intensity measurements.
Tobin et al. [26] took the segmented retinal vasculature map, and spatially mea-
sured parameters such as vessel density and thickness. This was used with a
geometric model of the retina for OD and fovea location estimation.

Niemeijer et al. [18] was first to treat retinal landmark localisation as a
regression problem, in which the landmark coordinates were to be estimated.
They showed that parameters estimated from the vasculature could be used
to train a kNN regressor to return the coordinates of both the OD and fovea.
Morphological operations on the blood vessels have also been used to determine
the location of the OD, for example the work of Marin et al. [13].

With the advent of deep learning, methods employing these have been devel-
oped to locate retinal landmarks in fundus camera images. Calimeri et al. [3]
employed transfer-learning of a CNN trained for face-detection for OD detec-
tion. Niu et al. [19] showed the region in the image containing the OD could be
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determined by generating saliency maps from the image (maps which indicate
‘interesting’ features, such as high spatial frequency). From these maps, a num-
ber of candidate OD regions were selected. These were then processed with a
CNN, which was trained to classify each region as containing OD or not. Simi-
larly, Mitra et al. [17] used a CNN to return a region-of-interest containing the
OD, and Meng et al. [14] used a CNN trained on images where the blue channel
is replaced with a vasculature map, to locate the OD.

Simultaneous OD and fovea localisation in fundus camera images with CNNs
has been shown by Al-Bander et al. [1], whereby a single CNN returned four
outputs, the x and y coordinates of the OD and fovea. This was further developed
[2], in which two networks were utilised—the first gave an approximate location
of the coordinates of both features, which were used to extract two image patches
centred around the OD and fovea respectively. These image patches were then
passed to the second network for refined feature centre estimation.

Recently, Meyer et al. [15] showed that a U-net architecture [20] could be
used to predict the distance of each pixel from the nearest landmark. A predicted
distance map was calculated, and image processing techniques were employed to
identify the two landmarks in the map. At this stage, it was not known which
landmark was the OD and which the fovea. A further step, based on assumptions
of retinal brightness, was used to label the landmarks.

Automated laterality determination using fundus camera images has also
been studied. For example Tan et al. [24] extracted blood vessels and the OD
which were passed to a support vector machine for laterality classification. Roy
et al. [21] deployed transfer-learning with a CNN, which also contained auxiliary
inputs for extracted image data, such as blood vessel density and orientation.
More recently, Jang et al. [11] demonstrated that CNNs could be put to this
task, achieving 99.0% classification accuracy.

3 Materials

Images captured in both RG and AF modes were used in this experiment. The
majority of images were captured in the central-pole (CP) gaze, in which the
scan is centred on the fovea. Images were also captured with the eyesteered (ES)
gazes, in which the scan was centred on the superior, inferior, nasal or temporal
fields of the retina (Fig. 1). The private data set contained 4732 left eye images
and 4786 right eye images. Images are not necessarily captured as left/right eye
pairs, leading to the discrepancy in the number of left and right images. The
data set was doubled in size by generating a horizontally-flipped version of each
image, and the associated laterality class was swapped. Whilst this did not add
new information, it allowed extra verification of the method when applied to
laterality classification.

Table 1 shows the number of images and subjects from the RG and AF modes,
split by gaze (CP or ES), including the horizontally flipped version of each
original image. Some subjects were imaged in CP and ES or RG and AF so
subject totals are not the sum of rows and columns.
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Table 1. Number of images, including horizontally flipped versions, split by modality
and gaze. Number of subjects indicated in parentheses.

Mode Gaze

CP ES Total

RG 11132 (1153) 1818 (87) 12950 (1157)

AF 5792 (987) 294 (77) 6086 (993)

Total 16924 (2139) 2112 (164) 19036 (2149)

Annotations of all original images in the data set were obtained from a trained
observer, who was required to annotate the location of the OD and fovea, and the
image laterality and gaze. Three additional graders were required to annotate
100 RG and 100 AF images, so that inter-grader variation could be assessed.

4 Method

A CNN was devised, which accepted an UWFoV-SLO retinal image as input,
and predicted four parameters; the OD and fovea x and y coordinates.

4.1 Preprocessing

To avoid overfitting and obtain a fair evaluation of results, images were split into
training, validation and test sets on the constraints that (1) all images from any
one subject were not put into more than one of the training, validation or test
sets (2) The training, validation or test sets contained approximately 70%, 20%
and 10% of the data set, respectively.

Images were downsampled from 3072× 3900 to 768× 975 pixels to reduce
computational complexity. Only the green reflectance channel was used, so a
single network could be devised to accept both reflectance and AF images, which
are composed of one channel. The green reflectance channel was selected because
the vasculature (the topography of which can be used for inferring laterality)
contrast was higher. Images were not cropped, as landmarks can be located in
the extremes of the capture area in ES images (Fig. 1). Image intensity values
were scaled to have zero mean and unit standard deviation.

OD and fovea coordinates were normalised by dividing both x and y coor-
dinates by the image width, W , so all coordinates were in the range [0, 1], and
the loss function was not biased in favour of the y coordinate. Predicted values
were mapped back to image coordinates at the inference stage. In the case of
horizontally flipped images, the flipped x coordinates of the OD and fovea, x′,
were calculated by x′ = W − x.

4.2 Architecture

The proposed architecture was selected based on performance of candidate archi-
tectures on the validation set. In the proposed network, five blocks of four convo-
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lutional layers were stacked, and convolutional layers in the same block had the
same number of kernels. Blocks 1 and 2 had 32 kernels, 3 and 4 had 64 kernels,
5 had 128 kernels. The initial convolutional layer of each block had a stride of 2,
all subsequent convolutional layers in each block had stride 1. The output from
the final convolutional block was flattened, and two fully connected layers of 512
nodes followed, each preceded by dropout layers of dropout probability p = 0.3
[23]. The output layer was a fully connected layer of four nodes, one for each x
and y coordinate of OD and fovea (Fig. 2).

Fig. 2. Illustration of the proposed architecture for landmark localisation.

The network was optimised using the Adam optimiser [12] with learning rate
of 0.0001 and decay rate parameters β1 = 0.9 and β2 = 0.999. The norm of the
gradients was clipped at 1.0 to avoid instability of the loss during training. The
mean squared error loss function between the ground truth landmark coordinates
and the predicted coordinates was used.

The network (containing 49,882,660 trainable parameters) was trained using
Keras with TensorFlow backend, and was performed on a mixture of RG and
AF images presented in batches of 16 images. 13,550 training images from 1,587
subjects were used.

4.3 Landmark Localisation Evaluation

To allow direct comparison of results, the evaluation measure used by Meyer
et al [15] was employed. The OD and fovea localisation accuracy was defined as
the percentage of images for which the Euclidean distance between the predicted
landmark location and the ground truth was below n OD radii (r).

To determine the OD radius, a modification to the OD diameter approxima-
tion proposed by Al-Bander et al. was used [2]. The OD radius r for each image
was estimated from the Euclidean distance between the ground truth x and y



Landmark Localisation in Retinal Images 405

coordinates of the OD and fovea (Eq. 1) as

r =

√
(xOD − xfovea)2 + (yOD − yfovea)2

5
(1)

The OD and fovea annotations of three additional graders for 100 RG and
100 AF images were compared to the ground-truth labels. The mean Euclidean
distance between the annotations and the ground-truth labels, and the standard
deviation, was calculated.

An open-source implementation [16] of the method for OD and fovea locali-
sation in fundus camera images proposed by Meyer et al. [15] was tested on RG
and AF UWFoV-SLO images. Given the constraints on the input size of the pre-
trained network, RG and AF images were resized to 384× 512 pixels, and padded
with zeros to 512 × 512 pixels. Distance probability maps were analysed with the
image processing pipeline presented [16] to predict the OD and fovea coordinates.

4.4 Laterality Classification Evaluation

Laterality accuracy was calculated as the percentage of images which were clas-
sified as belonging to the correct class, from left or right eye. The class sizes were
balanced as a result of the flipping operation, thus the accuracy did not require
weighting.

The laterality of the input image can be inferred from the OD and fovea x
coordinates, as shown in Eq. 2.

Laterality =

{
L, if xOD < xfovea.

R, if xOD > xfovea.
(2)

A modified version of the proposed architecture was used to implement a
laterality classifier. The output layer was replaced with a fully connected layer
with a single, Sigmoid activated node to predict the laterality class of the input
image. This allowed the laterality inferred from the landmark coordinates pre-
dicted by the proposed method to be compared with a classifier baseline. The
classification network was trained in the same fashion as the landmark localisa-
tion network, but using binary cross-entropy loss between the ground truth class
and predicted class labels.

5 Results

Results for landmark localisation accuracy and laterality classification accuracy
for 1790 test images are shown in Table 2. Results of the proposed method are
split by modality and gaze. Other methods demonstrated on fundus camera
images are presented for comparison. Plots of OD and fovea accuracy as a func-
tion of distance are shown in Figs. 3 and 4. The accuracy of laterality inferred
from the x coordinates of the OD and fovea is shown in Table 2. The laterality
classification network accuracy is also shown.
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Table 2. Accuracy for landmark localisation (expressed in OD radii, r), and accuracy of
laterality classification inferred (Inf.) from the landmark x coordinates, and classified by
classifier network (Class.). Results are split by mode and gaze. Accuracies are expressed
as percentages. Fundus camera (FC) methods shown for comparison.

Method Mode Gaze OD Accuracy Fovea accuracy Lat. Acc. Images

0.25r 0.5r 1r 0.25r 0.5r 1r Inf. Class.

Jang [11] FC x x x x x x x 99.0 5180

Niemeijer [18] FC x x x 93.3 96.0 97.4 x x 800

Marin [13] FC 97.8 99.5 99.8 x x x x x 1200

Al-Bander [2] FC 83.6 95.0 97.0 66.8 91.4 96.6 x x 1200

Meyer [15] FC 93.6 97.1 98.9 94.0 97.7 99.7 x x 1136

Proposed RG All 67.6 93.7 99.5 56.0 88.2 99.1 99.8 99.0 1144

Proposed RG CP 71.3 95.1 99.5 58.7 90.4 99.0 99.8 98.9 1006

Proposed RG ES 40.6 83.3 99.3 36.2 72.5 100.0 100.0 100.0 138

Proposed AF All 73.4 96.3 99.2 48.6 85.3 99.1 100.0 100.0 646

Proposed AF CP 74.9 97.0 99.3 49.3 85.9 99.3 100.0 100.0 610

Proposed AF ES 47.2 83.3 97.2 36.1 75.0 94.4 100.0 100.0 36

Proposed All All 69.7 94.6 99.4 53.4 87.2 99.1 99.9 99.4 1790

Proposed All CP 72.6 95.9 99.4 55.2 88.7 99.1 99.9 99.3 1616

Proposed All ES 42.0 83.3 98.9 36.2 73.0 98.9 100.0 100.0 174

The mean Euclidean distance μ and standard deviation σ, normalised by r,
between three additional graders and the ground-truth landmark coordinates is
shown in Table 3. 100 RG and 100 AF images were used. The proposed method,
tested on 1790 test images, is shown for comparison.

The pixel landmark distance prediction method proposed by Meyer [15]
achieved 0% accuracy for both OD and fovea localisation within 1r on 1790
UWFoV-SLO images. The inferred laterality classification accuracy was 52.7%.
These results could be expected given the model was trained on fundus camera
images, and highlight the difference between the two image capturing systems.

Table 3. Mean Euclidean distance μ and standard deviation σ between three graders
and the ground-truth landmark coordinates for 100 RG and 100 AF images. Distances
normalised by r. The mean of grader scores, as well as the proposed method when
tested on 1790 test images, are shown for comparison.

Grader RG AF

OD μ OD σ Fovea μ Fovea σ OD μ OD σ Fovea μ Fovea σ

1 0.127 0.074 0.205 0.159 0.117 0.073 0.323 0.222

2 0.126 0.082 0.167 0.112 0.139 0.078 0.318 0.238

3 0.164 0.089 0.198 0.120 0.139 0.093 0.331 0.239

Mean 0.139 0.082 0.190 0.130 0.132 0.081 0.324 0.233

Proposed 0.226 0.174 0.278 0.219 0.207 0.160 0.302 0.205
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Fig. 3. Optic disc localisation accuracy for the proposed method as a function of
Euclidean distance, expressed in optic disc radii. Results of other methods, achieved
on fundus camera datasets, are shown for comparison.

Fig. 4. Fovea localisation accuracy for the proposed method as a function of Euclidean
distance, expressed in optic disc radii. Results of other methods, achieved on fundus
camera datasets, are shown for comparison.
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6 Conclusion

In this paper, we have proposed a CNN architecture for the localisation of the
OD and the fovea in UWFoV-SLO images of two modalities—RG reflectance
and AF emission. The method achieved an OD localisation accuracy of 99.4%
within one OD radius, and fovea localisation accuracy of 99.1% within one OD
radius (Table 2). These values are higher than those from other methods applied
to fundus camera images, found in the literature, at 0.5r and 1r distances, but
not at 0.25r. However, a fair, direct comparison between these results cannot be
made due to the differences between the imaging techniques. The UWFoV-SLO
has a larger field of view (FoV), which results in features such as the OD and
fovea appearing smaller compared to fundus camera images (Fig. 1).

Accuracy on CP images was found to be marginally higher than ES images.
This may be due to imaging artefacts which are more prevalent when performing
ES scans. For example, Fig. 1 shows bright artefacts appearing in the inferior and
superior gaze images. ES images may also contain more lash. These artefacts may
have contributed to the lower performance. The OD localisation accuracy was
also found to be higher than the fovea localisation. This is expected, as the OD
shows as a bright oval, whereas the centre of the fovea is less clearly-defined. This
was reflected in the human annotation comparison results (Table 3), where inter-
grader agreement was higher for the OD location than the fovea. When compar-
ing performance with human graders, the proposed method achieved AF fovea
localisation distance errors comparable with human graders (Table 3). However,
for the remaining landmarks, humans achieved a higher accuracy. This may have
been due to image downsampling during preprocessing.

We have shown that this CNN can also be used to infer the laterality of the
input image by considering the predicted x coordinates of the retinal landmarks.
This method achieves laterality classification accuracy values higher than a sim-
ilar network trained only to predict the laterality of the input image (99.9% vs
99.4%), and results are in line with literature using fundus camera images [11].

Testing of a CNN with weights trained on fundus camera images [15,16]
on UWFoV-SLO images lead to extremely low accuracy values. This highlights
the inherent differences between the images captured by fundus cameras and
UWFoV-SLOs, and confirms that direct transfer of pre-trained networks between
the two image types is not possible.

In the cases where landmarks are not correctly identified, this may have
repercussions on further automated image processing operations which require
the locations of the OD and fovea. Examples include image projection and visu-
alisation [4], biological feature segmentation and disease grading pipelines [25].

Future work will involve retraining the Meyer model on UWFoV-SLO images
to compare performance. However, modification to the image processing tech-
nique for determining which landmark is the OD and fovea will be required, as
the existing method assumes that the OD is brighter than the fovea, which does
not hold in the case of AF images. Future work will also include training and
testing our method on fundus camera data sets, ideally of subjects also imaged
with UWFoV-SLOs, so direct comparison can be made.
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Abstract. We study the deployment of a deep learning medical image
segmentation pipeline, which sees new input data, not contained in the
training and evaluation database. Like in application, although this data
shows the same properties, it may stem from a slightly different distri-
bution than the training set because of differences in the hardware setup
or environmental conditions. We show that, although cross-validation
results suggest high generalization, segmentation score drops significantly
with pre-processed data from a new database. The positive effects of a
short fine-tuning phase after deployment, which seems to be necessary
under such conditions, can be observed. To enable this study, we develop
a segmentation pipeline comprising pre-processing steps to homogenize
the data contained in 4 databases (DRIONS, DRISHTI-GS, RIM-ONE,
REFUGE) and an artificial neural network (NN) segmenting optic disc
and cup. This NN can be trained using exactly the same hyperparameters
on all 4 databases, while achieving performance close to state-of-the-art
methods specifically designed for the individual databases. Furthermore
we deduct a hierarchy of the 4 databases with respect to complexity and
broadness of contained samples.

Keywords: Image segmentation · Deep learning · Biomedical imaging

1 Introduction

Due to the great success of Machine Learning (ML) especially in the form of Deep
Learning (DL) in the last decade, Neural Networks (NNs) became the state-
of-the-art method for biomedical image segmentation and understanding [14].
That has led experts to arguably assume that practitioners will be replaced
by DL algorithms [12]. While their application is not limited to the domain of
biomedical image analysis, the consequences are particularly discussed in this
field, as they have a great impact on society [6].

The question remains to what extent the results achieved with training data
sets can be transferred to a real application in everyday clinical or laboratory
business. This topic, also called generalizability, has been discussed mainly with
a focus on overfitting a training data set. In this paper we extend this view to
the deployment of trained algorithms to everyday application by practitioners.
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Y. Zheng et al. (Eds.): MIUA 2019, CCIS 1065, pp. 411–422, 2020.
https://doi.org/10.1007/978-3-030-39343-4_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39343-4_35&domain=pdf
https://doi.org/10.1007/978-3-030-39343-4_35


412 S. Klemm et al.

Our findings are based on an exemplary problem: Automatic segmentation of
two areas of the retina, optic disc (OD) and optic cup (OC). The diameter ratio
of OD and OC, called cup to disc ratio (CDR), is predictive to glaucoma, which
is a widely spread disease affecting more than 64 million individuals worldwide
by 2013 [21]. Ophthalmoscopy or funduscopy is the visual analysis of the fun-
dus of the eye to determine, amongst others, the diameter of the OC and OD
and is the most common diagnostic method for glaucoma. While not curable,
early treatment of glaucoma can reduce the risk of blindness by 50%. Automatic
segmentation will help to find signs of glaucoma earlier in many patients.

The need for such methods caused a wave of research projects that tackle
the automatic detection of glaucoma by calculating the CDR, many of which
use ML approaches [15,19,22,24].

We show that a shrinked version of the famous U-Net architecture [17] can be
trained to perform comparably to state-of-the-art methods on 4 different training
data sets. By evaluating training and testing results, we estimate a hierarchy of
the available databases with respect to complexity and self similarity of the
contained data sets. As our common pre-processing pipeline allows inference
on all databases using the same NN, we can furthermore gain insights about
generalization of NNs not only from training to test sets but also to unseen
databases. The latter can be seen as a simulated deployment to productive use,
where different hardware or changes in environmental conditions might lead to
shifts in the distribution of input data.

The remainder of the paper is structured as follows: In the next section, we
give a brief overview of published research on generalization of DL methods, as
well as disc and cup segmentation. In Sect. 3, we describe our training and testing
data sets as well as the pre- and post-processing steps and the DL architecture
trained to perform the segmentation task. The results of our study, especially
the effect of fine-tuning and the limited significance of cross-validation results
for generalization after deployment, are shown subsequently. In the last section,
we discuss our results against the background of deployment of ML models in
clinical applications.

2 Related Work

2.1 Generalization of ML Algorithms

In the last years, research on generalization of ML methods, especially NNs,
increased with the growing popularity of DL. At the beginning of the broad
application of DL, specific methods to improve generalization, like dropout, were
proposed. Zhang et al. [23] published extensive theoretical research on the gener-
alization properties of NNs focusing on the imbalance between trainable param-
eters and data samples. Furthermore, they claimed that common regularizers
(data augmentation, dropout, weight decay) have less impact than changes to
the model architecture.
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Kawaguchi et al. suggest that architectures with increased trainability might
be prone to less generalization [13]. While they focused on synthetic manipula-
tions of the labels of the well known CIFAR10 and MNIST datasets, Geirhos et
al. took a different approach and used artificially degraded input images from
the ImageNet data set [9]. They concluded that NNs can be trained to be robust
against noisy input. This robustness, however, does only apply to the specific
degradations shown during training and has little to no effect on other types of
noise. The same approach was taken by Dodge and Karam who showed that NNs
outperforming humans on a subset of ImageNet rapidly loose their advantage as
soon as noise and distortions are applied [4].

Only recently Recht et al. showed that quantitative results of state-of-the-art
NNs are not matched if unseen data, which was not part of the original data set,
is shown for inference [16].

2.2 Disc/Cup Segmentation

One key issue of ophthalmological image analysis is the detection of important
image structures such as retinal blood vessels [2], retinal layers [5], disc and
cup. The latter two are the focus of this work. Mahapatra et al. [15] published
an approach for cup and disc segmentation in a pipeline of Field of Experts
for feature selection, Random Forests to estimate probability maps for OD and
OC and post-processing with an elliptical Hough transform and Graph Cuts
to achieve smooth regions. Zilly et al. [24] employed a Convolutional Neural
Network, trained with a boosting approach instead of gradient descent. They
furthermore utilize entropy sampling to find image patches for the training pro-
cedure. Although their NN is rather small and shallow, with only 2 layers and
34 filter kernels, they achieve highly competitive results on both segmentation
tasks. In the same year, Sevastopolski used the U-Net architecture [17,18] and
minimal pre-processing to apply the DL philosophy to the CDR problem, achiev-
ing results comparable with Zilly et al. at the expense of a more than 300-fold
larger parameter space to be learned. In 2018 Sevastopolsky et al. [19] proposed
the stacked U-Net an application of the residual network approach [11] with
U-Nets as building blocks. Their 15-fold stacked U-Net increases the number of
trainable parameters again, while achieving only small improvements on some
benchmarks. Wang et al. [22] participated at the REFUGE challenge [3] with a
cascade of three NNs, consecutively applied to first pre-segment a region of inter-
est (ROI) around the OD and later performing fine-segmentation of OC and OD.
To increase the available training data, they use a method called source adaption.
Source adaption employs the generative adversarial network (GAN) approach to
learn a mapping from the feature space of the DRISHTI-GS database to the
REFUGE feature space.

3 Methods

As we want to study the deployment of a trained machine learning model, we need
a NN trainable on different databases. In addition, the available databases differ
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significantly in terms of resolution and data acquisition. Hence, we apply a pre-
processing pipeline to all data sets that homogenizes the input data of the NN.

3.1 Databases

While many of the previous works perform training and validation on samples
from the same database, we investigate the performance of trained models on
samples from a different database, taken under similar conditions. We conduct
our study on 4 databases. Figure 1 shows examples from all databases after pre-
processing, which is described in the next section.

The DRISHTI-GS database [20] consists of a total of 101 images in PNG
format. The images of the data set were taken from patients at the Aravind
Eye Clinic in Madurai, India. The images were first taken with centered papilla
and a resolution of 2896 × 1944 pixels and then tailored to the region with
the structures of the retina, which causes slight variations in the resolutions
of the images. Ground truth data was created with the help of four experts.
The majority vote procedure is used to determine whether at least three of the
four experts agree on the segmentation as ground truth. This corresponds to the
procedure proposed by the editor of the database, which was also used in related
publications.

Images of the RIM-ONE v.3 database [8] were taken from patients from
three Spanish hospitals: Hospital Universitario de Canarias, Hospital Clinico
San Carlos and Hospital Universitario Miguel Servet. The third version of the
database, published in 2015, contains 159 stereo recordings in JPEG format.
Since the presented algorithm does not deal with stereo recordings, only the
left view is used. The resolution of a single image is 1072 × 1424 pixels. In
contrast to DRISHTI-GS, the images have already been manually cropped to
the approximate area of the OD. The database contains masks for the disc and
cup segmentation of two experts, as well as an average of the two segmentations,
which was used as ground truth in the presented procedure.

DRIONS-DB [1] comprises 110 images of patients from the Miguel Servet
Hospital in Zaragoza, Spain and was released in 2008. DRIONS-DB has two sig-
nificant differences compared to the other records used: First, images were taken
with an analog fundus camera and later digitized with a scanner. Second, the
database contains only ground truth data for the segmentation of the disc. The
images have a resolution of 600 × 400 pixels and were taken with an approxi-
mately centered disc. Two experts labeled the contour of the disc with 36 points.
The convex hull of all points was used as ground truth segmentation.

The data set of the REFUGE Challenge contains 1200 recordings, which are
divided into training, test and validation sets of identical size. Since we only had
access to the training set, the 400 recordings of this set are used for training and
evaluation. The images are in JPEG format and have a resolution of 2124× 2056
pixels. The database contains ground truth data in the form of a segmentation
mask for disc and cup. To create these masks, seven experts from the Zhongshan
Ophthalmic Center at Sun Yat-Sen University in China first created segmenta-
tions, which were then merged into a single mask by another expert [3].
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3.2 Pre- & Post-processing

DRIONS DRISHTI REFUGE RIM-ONE

Fig. 1. Examples of the images after pre-processing. All images have been cropped and
scaled to 512× 512 pixels. Larger vessels were partially removed using in-painting and
contrast limited adaptive histogram equalization was applied. Every column shows two
images of the same database.

First, all input images are cropped to a quadratic ROI around the OD and
then scaled to 512 × 512 pixels, using bilinear interpolation.

Larger blood vessels in the area of the disc, which are known to have a
detrimental effect on segmentation performance [10], are removed. The green
color channel is used for segmenting the blood vessels as follows.

The image is inverted and a Gaussian filter with a standard deviation of 0.45
is applied. This serves as a basis for further processing by a morphological top-hat
transformation with a circular structuring element of 18 pixels in size. A binary
mask is created, with a threshold value selected such that at least 75% of the gray
values lie beneath it. This is because about 12.5% of the pixels of a fundus camera
image belong to blood vessels [7]. However, since the area of the disc selected as
the region of interest in the first step of the pre-processing contains significantly
more and wider blood vessels than the rest of the retina, we use the doubled
value. To remove possible artifacts from the created binary image, a smoothed
version of the mask is created using a 15× 15 pixel median filter. The new mask
is the union of all pixels in the original mask and the result of smoothing by the
median filter. The result is dilated with a 5-pixel circular structuring element
to close any gaps and smooth the contours of the segmented blood vessels. The
segmentation is concluded with an analysis of the 8-connected components. In
the final mask, only those components are retained that are responsible for at
least five percent of the overall pixels on the mask after the dilation. With the
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Fig. 2. The architecture of the neural network used for evaluation is very close to the
original U-Net as proposed in [17]. To reduce the number of free parameters, we halve
the number of channels in every step of the contraction and expansion path. Following
the same philosophy, the up-sampling is realized using bilinear interpolation instead of
deconvolution.

created mask the segmented blood vessels are removed from the image by in-
painting. All points on contours of the mask in the image are simply replaced by
the arithmetic mean of all points from a 9× 9 neighborhood, while points that
are part of the mask are not considered. If the neighborhood exceeds the image
dimensions, zero padding is used. In the last step of the pre-processing, contrast
limited adaptive histogram equalization is performed.

After the NN has inferred a segmentation, the continuous probabilities are
binarized using a threshold of 0.5. Afterwards, only the largest connected compo-
nent is retained in order to remove small artifacts. Because it is known that OD
and OC are convex objects, the convex hull of this largest connected component
is taken as predicted segmentation.

3.3 Deep Learning

The architecture used for image segmentation is a shrinked version of the
U-Net [17]. While the neural network is trained individually for segmentation of
disc and cup, the architecture and hyperparameters are identical in both cases and
across all databases. Figure 2 shows a design overview of this architecture. Each
blue rectangle represents a blob of data being passed from one layer to the next.
The numbers in the upper left corner display the number of channels. The sizes of
the rectangles give an impression of the spatial dimensions of each blob. For the
main part, our implementation is very close to the original implementation. We
use 3 × 3 convolutions, 2× 2 max-pooling and ReLU activations for the contract-
ing path. In the expansive path we use bilinear interpolation for the upsampling
step instead of deconvolution. Throughout the whole network, the number of chan-
nels in the feature maps are halved compared to the original implementation. This
reduces the number of free parameters and increases trainability of the network
architecture.
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For the training of this architecture, we use the multinomial logistic loss:

E = − 1
N

N∑

n=1

log (yn · ln) , (1)

where N is the total number of training pixels, yn is the output of the last
network layer at pixel n, ln is the corresponding one-hot-encoded label vector
and · is the scalar product. We furthermore use an Adam optimizer with standard
parameters (β1 = 0.9, β2 = 0.999, ε = 10−8) and a base learning rate η = 5·10−4.
To prevent overfitting, L2 weight regularization with a weight decay of 5 · 10−4

is used. The training is run for 300 epochs. As it is known that dropout is a
powerful regularization method, we also train a variant of our network with 20%
dropout in the input layer.

All networks are trained using exactly this hyperparameter set and NN archi-
tecture.

4 Results

We evaluate the performance of our trained models using the F1 score:

F1 = 2 · PR · RC

PR + RC
=

2 · TP

2 · TP + FN + FP
(2)

with PR and RC as precision and recall, respectively. In other terms, TP , FN
and FP are true positives, false negatives and false positives. All measures are
taken pixel-wise across the whole test data set. Afterwards, the F1 score is cal-
culated on the cumulative values.

As we perform five-fold cross-validation, we generate five models per training
database. For every model we calculate the F1 score on every test data set, which
is either the left-out set from cross-validation or another database. If the test
data stems from a different database, we test the models on all data sets of this
database. Our reported values are the mean and standard deviation across all
five trained models.

Table 1. Mean F1-Score of state-of-the-art methods compared to the best results
achieved with our evaluated architecture. While the scores achieved by our model
are the results of training on different data sets, the model architecture and training
parameters were not changed throughout all training runs.

Method DRIONS DRISHTI REFUGE RIM-ONE
disc disc cup disc cup disc cup

Zilly et al. [24] - 0.97 0.87 - - 0.94 0.82
Sevastopolsky et al. [18] 0.96 0.97 0.89 - - 0.95 0.84

Haleem et al. [10] - 0.95 0.81 - - 0.91 0.89
Wang et al. [22] - 0.96 0.86 0.95 0.89 - -

shrinked U-Net 0.96 0.93 0.85 0.95 0.87 0.96 0.87
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Table 2. Mean F1 scores and standard deviation (small numbers) across all five models
trained per database in the cross-validation. All models were evaluated against unseen
data sets. These are either part of a different database or part of the left-out cross-
validation set. Results of the latter case are shaded gray.

tested on→ DRIONS DRISHTI REFUGE RIM-ONE MEAN
↓trained on disc disc cup disc cup disc cup disc cup
DRIONS 0.87 .05 0.90 .02 - 0.86 .01 - 0.73 .03 - 0.84 -
w. dropout 0.67 .13 0.49 .09 - 0.73 .06 - 0.14 .07 - 0.51 -

DRISHTI 0.76 .06 0.93 .04 0.85 .02 0.89 .02 0.73 .01 0.79 .02 0.60 .03 0.84 0.73
w. dropout 0.82 .02 0.92 .04 0.79 .09 0.89 .01 0.72 .01 0.64 .05 0.52 .06 0.82 0.68

REFUGE 0.73 .06 0.87 .04 0.50 .04 0.95 .00 0.84 .02 0.66 .03 0.47 .02 0.80 0.60
w. dropout 0.56 .14 0.67 .19 0.47 .10 0.94 .03 0.87 .04 0.37 .12 0.43 .08 0.64 0.59

RIM-ONE 0.67 .07 0.72 .05 0.57 .08 0.77 .02 0.38 .14 0.88 .02 0.70 .05 0.76 0.55
w. dropout 0.70 .06 0.80 .08 0.44 .06 0.78 .05 0.59 .05 0.96 .03 0.75 .10 0.81 0.59
MEAN 0.76 0.86 0.64 0.87 0.65 0.77 0.59
w. dropout 0.69 0.72 0.58 0.84 0.72 0.54 0.57

Results of our best-performing models are shown in Table 1. It becomes clear
that, although it is not the goal of our study to achieve best segmentation per-
formance, the performance of our model including the pre- and post-processing
steps is comparable to other methods. More importantly, our shrinked U-Net
can be trained with the same hyperparameters across all databases and achieves
comparable performance to state-of-the-art methods, tuned specifically for one
database.

At the end of our first evaluation step, we have trained specialized models
that have seen data from only one database and produce a probability map for
either disc or cup. As five-fold cross-validation is applied, we train five models per
database and segmentation goal. In our deployment study we apply these modes
to different databases. The complete results of this deployment study are shown
in Table 2. Large numbers show the mean F1 score across all five cross-validation
models. Smaller numbers show the standard deviation. Diagonal entries show the
standard evaluation protocol, where every model is evaluated on the kept-out
data sets of cross-validation. All off-diagonal entries represent models evaluated
on a different database than what they were trained on. In those cases, the
whole database was used for evaluation. Although pre-processing is limiting the
influence of database specifics, the scores drop significantly if models are evalu-
ated on a different database. The only exception to that observation are models
trained with DRIONS, which perform comparably on REFUGE and even better
on DRISHTI if no dropout is used. When observing results of the models using
dropout, the effects are less clear. While dropout seems to have a stabilizing
effect on DRISHTI models, it has an opposite effect for models trained on the
REFUGE database.



Deploying Deep Learning into Practice 419

Table 3. F1 scores after transfer learning a model for 10 and 50 epochs after pre-
training on DRISHTI for 300 epochs. For reference, the first two rows repeat the scores
of the pre-trained model from Table 2. Evaluations on the database used for fine tuning
are shaded.

tested on→ DRIONS DRISHTI REFUGE RIM-ONE MEAN
↓trained on disc disc cup disc cup disc cup disc cup
baseline 0.76 .06 0.93 .04 0.85 .02 0.89 .02 0.73 .01 0.79 .02 0.60 .03 0.84 0.73
w. dropout 0.82 .02 0.92 .04 0.79 .09 0.89 .01 0.72 .01 0.64 .05 0.52 .06 0.82 0.68
DRIONS
10 epochs 0.93 .04 0.92 .00 - 0.89 .00 - 0.75 .02 - 0.87 -
w. dropout 0.75 .08 0.71 .08 - 0.84 .02 - 0.35 .12 - 0.66 -

50 epochs 0.96 .02 0.93 .01 - 0.89 .01 - 0.75 .01 - 0.88 -
w. dropout 0.74 .08 0.71 .07 - 0.85 .02 - 0.32 .09 - 0.66 -

RIM-ONE
10 epochs 0.72 .02 0.84 .01 0.56 .09 0.78 .02 0.65 .04 0.94 .01 0.82 .01 0.82 0.68
w. dropout 0.73 .03 0.86 .01 0.60 .09 0.70 .02 0.70 .04 0.91 .02 0.81 .04 0.80 0.70

50 epochs 0.70 .03 0.80 .03 0.49 .09 0.73 .03 0.67 .05 0.94 .04 0.87 .04 0.79 0.68
w. dropout 0.73 .01 0.84 .01 0.55 .09 0.71 .02 0.66 .04 0.93 .01 0.86 .03 0.80 0.69

As models trained on the DRISHTI database show the best overall perfor-
mance, we do another evaluation step, which involves transfer learning of these
models. Out of the five models trained on DRISHTI for each task, we chose the
model reaching the median score. We now have four models, each trained for disc
or cup segmentation, with or without dropout on DRISHTI respectively. These
are now fine-tuned on the DRIONS and RIM-ONE databases, using the same
cross-validation folds as before. We train for 10 and 50 more epochs, simulating
translation into clinical use, where some more labeled images are shown to the
models before deployment. The results of this transfer learning approach can be
seen in Table 3. As before, we make sure that evaluation takes place on previously
unseen data only, i.e. evaluation is performed on the left-out cross-validation set
for DRISHTI and DRIONS or RIM-ONE respectively. The results clearly show
that a short transfer learning phase after the simulated deployment increases the
performance on the new database by a large margin for models trained without
dropout. Transfer learning on models trained with dropout, however, shows no
benefits.

Figure 3 illustrates how fine tuning affects individual training samples. The
scatter plots show segmentation quality before and after the fine-tuning phase of
50 epochs without dropout for the disc segmentation task. On the left, it is clear
that DRISHTI samples performing sub-par before the fine-tuning, profit from
the additional training. Training on RIM-ONE causes higher improvement than
training on DRIONS. For samples performing well before, fine-tuning generally
has an adverse effect, especially for RIM-ONE. The following plots show changes
for samples from the databases used for fine-tuning. As expected, almost all sam-
ples from the database used for fine-tuning profit from the additional training.
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Fig. 3. Change of disc segmentation F1 score for all individual samples from the differ-
ent databases after fine tuning for 50 epochs without dropout. The diagonal in every
graph shows the improvement boundary. Samples above this diagonal are segmented
better after fine-tuning, samples below suffered from degradation. The additional tick
on the x-axis marks the average score across all databases after pre-training (F1 = 0.84).

The comparison of these two plots also shows that negative effects on samples
from DRIONS are more severe when fine-tuned on RIM-ONE than the other
way around. This is supported by the overall statistics shown in Table 3. The
reasoning from that table is also supported in the right plot, where fine-tuning on
RIM-ONE has more negative effects on the samples from the unseen REFUGE
database. Three of the four plots show a tendency of well performing samples
degrading drastically. Clusters in the bottom right of the respective sub-plots
indicate this. The causes for that are worth a deeper investigation in the future.

5 Discussion and Conclusion

We have shown that after deployment of a DL model, a short period of transfer
learning should be applied in order to adopt to slight differences in the input
data. In case of the DRIONS database, the model trained with transfer learning
produced much better results than the model trained solely on this database.
Furthermore, we could not observe any positive effects on generalization when
using dropout in the input layer. In some cases, especially when training on
the RIM-ONE database, training seems to benefit slightly from dropout. There
are also instances, where the use of dropout causes large drops in the overall
performance.

We can also draw the conclusion that the REFUGE database, which is by
far the largest available to us, is relatively easy to segment and seems to be very
homogeneous. First, the mean score across all training databases is the highest
for segmentation of OC and OD, which can be seen in the bottom rows of Table 2.
Second, models trained with REFUGE only perform relatively bad on all other
databases. RIM-ONE, which constantly produces the worst results when models
trained on it are evaluated on other databases, is also hard to segment for models
trained on other databases. This suggests that many of the data sets included
in RIM-ONE differ from the data included in all other databases. On the other
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hand, DRIONS is also hard to segment, but produces good evaluation results
with other databases. This implies coverage of a larger feature space that includes
many of the other data sets.

This assumption is also seconded by the results after transfer learning, where
the DRISHTI model tuned on DRIONS outperforms the model tuned on RIM-
ONE across all databases by a large margin. Tuning on RIM-ONE actually
decreases the scores on all databases but itself. This also seconds the idea of a
small overlap of the samples contained in RIM-ONE and the others.

In summary, we have shown that great care has to be taken when deploying
a ML algorithm into practice. Although cross-validation results might suggest
a high generalizability of the trained method, slight differences in the input
data might cause a drastic performance drop. We have also shown that fine-
tuning the already trained network with examples from the deployment domain
quickly leads to good results. Hence, this approach seems not only advisable
but necessary. Nevertheless, in our study, fine-tuning only lead to a performance
increase for the new data but did not lead to an improvement for any other
database. This training stage should hence only be performed on data samples
taken on site with the actual hardware setup. Furthermore, we have shown that
the relatively new REFUGE database might - despite its size - not be a good
choice for a training database of a general OC and OD segmentation pipeline,
whereas the DRISHTI database seems to provide the best training baseline.

We can not yet draw conclusions on how to select training samples or
databases to achieve a high generalization. A deeper analysis of individual sam-
ples and their influence on the performance has to be carried out in the future.
We currently do not see why this should not be applicable to other machine
learning tasks, but hope for further insights in the future, when those factors are
taken into account and are investigated further.
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Abstract. As an innovative retinal imaging technology, optical coher-
ence tomography angiography (OCTA) can resolve and provide impor-
tant information of fine retinal vessels in a non-invasive and non-contact
way. The effective analysis of retinal blood vessels is valuable for the
investigation and diagnosis of vascular and vascular-related diseases,
for which accurate segmentation is a vital first step. OCTA images are
always affected by some stripe noises artifacts, which will impede correct
segmentation and should be removed. To address this issue, we present
a two-stage strategy for stripe noise removal by image decomposition
and segmentation by an active contours approach. We then refine this
into a new joint model, which improves the speed of the algorithm while
retaining the quality of the segmentation and destriping. We present
experimental results on both simulated and real retinal imaging data,
demonstrating the effective performance of our new joint model for seg-
menting vessels from the OCTA images corrupted by stripe noise.

Keywords: Vessels segmentation · Destriping · OCTA

1 Introduction

Retinal blood vessels health is integral to high quality human vision. Changes
in the retinal vasculature have a close relationship with many ophthalmological
and cardiovascular diseases, such as diabetic retinopathy (DR) and age-related
macular degeneration (AMD) [13]. As an important computer-aided image anal-
ysis technique, retinal vessel segmentation is the first and most important step to
detect the retinal vasculature. The segmentation of retinal vessels is a valuable
precursor for further processing and analysis, such as retinal image registration,
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feature extraction and localization of retinal structures, such as the fovea and
optic disk [18].

To acquire imagery of fine retinal vessels, the commonly used techniques are
fluorescein angiography (FA) and indocyanine green angiography (ICGA) [8].
Both FA and ICGA require intravenous dye injections, which can have adverse
side effects and still only provide information relating to superficial blood ves-
sels. Recently, an innovative technology called optical coherence tomography
angiography (OCTA) has emerged as an effective way of visualizing the retinal
vessels up to capillary level [14]. Retinal vessels at different depths of the retina
revealed by OCTA are illustrated in Fig. 1. OCTA generates structural images
of the retina based on laser light reflectance on the surface of moving red blood
cells. Unlike FA and ICGA, OCTA is a non-invasive, fast, depth-resolved app-
roach. OCTA can fully visualize choroidal neovascularization in AMD and small
retinal neovascularization in DR, which are difficult to identify in FA. Therefore,
the usage of OCTA in the diagnosis of vascular diseases is expected to increase
significantly in the near future. Our work concerns the automated segmentation
of retinal blood vessels in OCTA images.

Fig. 1. OCTA images taken from different retinal layers. (a) Superficial vascular plexus
(SVP): from internal limiting membrane to inner plexiform layer. (b) Deep vascular
plexus (DVP): from inner plexiform layer to outer plexiform layer. (c) Avascular layer
(AL): from outer plexiform layer to Bruch’s membrane. (d) Whole retina (WR): from
internal limiting membrane to Bruch’s membrane.

As a relatively new modality, few studies exist and analyze the retinal vessels
in OCTA and work in the OCTA vessel segmentation is still at an early stage in
its development. Eladawi et al. [9] presented a joint Markov-Gibbs random field
method to segment blood vessels from OCTA scans. The authors further esti-
mated three local features from the segmented vessels to distinguish the status
of DR patients [10]. Compared with OCTA, research in retinal vessel segmen-
tation with color fundus images has a longer history. Many methods have been
proposed over the last two decades, such as active contour models, wavelets
methods, Gaussian mixture models, Adaboost and support vector machine, to
name a few. One of the most commonly used segmentation approaches is active
contours, such as the Chan-Vese model [5]. Chan-Vese model applied global
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statistics to the extraction of objects and was useful for objects with homoge-
neous intensity. To handle the non-uniform situation of the Chan-Vese model,
Sum et al. [15] developed a modified version by combining the local image con-
trast into a level set based active contour. Bashir et al. [1] grew a Ribbon of
Twins active contour model to locate vessel edges under different conditions.
Zhao et al. [17] segmented retinal vessels by developing an infinite perimeter
active counter model with hybrid region information.

There are two limitations in the mentioned literatures in contributing to
clinical diagnostics. Firstly, previous work on OCTA images have neglected the
unavoidable noise problem. Additional image noise can arise from the OCTA
image acquisition, eye motion and image pre-processing strategies. One of the
most common types of noise is white horizontal stripe noise (see Fig. 1), which
results from patient eye motion [12]. This problem has to be tackled before
segmenting the retinal vessels to achieve effective, good-quality segmentation.
Secondly, color fundus images can not provide depth information, limiting the
analysis of choroidal neovascularization and small retinal neovascularization.

To overcome the above limitations, we first present a two-stage strategy for
stripe noise removal and retinal vessel segmentation in OCTA images. This strat-
egy removes stripe noise and Guassian noise from the image before segmenting
the denoised image. Then we propose a joint model which achieves the two tasks
simultaneously. Although there is no literature about removing stripe noise in
OCTA images, remote sensing images suffer from similar noise and lots of related
works have been explored. Image decomposition based methods have been con-
sidered for remote sensing image destriping in recent years and achieve good
results [7]. Thus, image decomposition theory is chosen for the OCTA destrip-
ing problem. For vessel segmentation, a good choice is active contour models,
which can not only provide smooth and closed contours but also achieve subpixel
accuracy on vessel boundaries.

2 Methodology

2.1 Two-Stage Strategy for Segmenting OCTA Images Corrupted
by Stripe Noise

A two-stage strategy is designed for segmenting OCTA images affected by stripe
noise. In this strategy, we first remove the stripe noise and subsequently segment
the retinal vessels.

Stripe Noise Removal. Considering the stripe acquired along with the image
content, we proceed with an image decomposition strategy, i.e. the given noisy
image is decomposed to the desired clean image, the stripe noise and Guassian
white noise. The model of the observed image can be formulated as:

Y = I + S + N (1)
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where Y is the given noisy image; I denotes the desired clean image; S is the
additive stripe component; and N represents the linear assumption error and
Gaussian white noise. Stripe noise removal aims to estimate both I and S simul-
taneously from Y .

As shown in Fig. 1, the stripe noise has a salient structural characteristic,
showing only in the horizontal direction. This is characterized by small rank
for both periodical and nonperiodical stripes based on the analysis of [7]. Thus,
the low-rank constraint is used for the stripe component. For the clean image,
the anisotropic total variation (TV) regularization is used to achieve sharper
boundaries in the reconstructed image, which will be important for segmenting
vessels accurately. The image decomposition model is given as follows:

min
I,S

1
2
‖I + S − Y ‖2

F + τ‖I‖TV + λrank(S) (2)

where ‖I‖TV =
∫
Ω

|∇I|dx, τ and λ are two positive regularization parameters
balancing the three terms. Ω is an open set representing the image domain, and
∇ = (∇x;∇y) is the horizontal and vertical derivative operators of I, respec-
tively. Due to the non-convexity of the rank constraint, the nuclear norm is
introduced to replace the low-rank constraint as its convex substituted function
[11]. The nuclear norm based image decomposition model is given by

min
I,S

1
2
‖I + S − Y ‖2

F + τ‖I‖TV + λ‖S‖∗. (3)

Segmentation of Vessels from Stripe Denoised Images. Active contour
models have demonstrated excellent performance in dealing with challenging
segmentation problems including vessel segmentation [1,17]. The Global Mini-
mization of the Active Contour/Snake model (GMAC) [3] is introduced here for
vessel segmentation. This model provides a convex solution for the well-known
Chan-Vese (CV) model [5] and incorporates information from an edge detector.
The GMAC model can be formulated as the energy minimization problem below:

min
u,c1,c2

∫

Ω

g(x, y)|∇u(x, y)|dxdy + β

∫

Ω

u(x, y)(I(x, y) − c1)2dxdy

+ β

∫

Ω

(1 − u(x, y))(I(x, y) − c2)2dxdy

(4)

where u is a characteristic function of a closed set ΩC , C represents the bound-
aries of Ω, c1 and c2 are the average of I(x, y) inside and outside of the segmented
region respectively, and β is a small, positive balancing parameter. The first term
is the TV-norm of u with weighted edge indicator function g(x, y).

Thus, the vessel segmentation from stripe removed images is achieved by
solving the problem (3) to obtain the stripe removed and denoised image I,
followed segmenting I by solving the problem (4). The solvers of these two
problems will be described later.
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Fig. 2. Illustration of our joint model for segmentation images with stripe noise.

2.2 A New Joint Model for Segmenting Images Corrupted
by Stripe Noise

In this section, we develop a joint model for simultaneously removing stripe noise
and segmenting images. The model tackles the problems of image segmentation
and considers the possible presence of stripe noise in a single model. The new
joint model is formed by replacing the function I in the segmentation model
(4) with the stripe-removed and denoised image term. Furthermore, the con-
straints of the decomposition problem (3) should be included in the joint model.
The illustration of our proposed joint model is shown in Fig. 2. Building the
constraints into the segmentation model, the new joint minimisation model is
presented as follows:

min
I,S,u,c1,c2

1
2
‖I + S − Y ‖2

F + τ‖I‖TV + λ‖S‖∗ + α‖u‖TV,g +
β

2
u‖I − c1‖2

F

+
β

2
(1 − u)‖I − c2‖2

F

(5)

where ‖·‖TV,g is the TV-norm with weighted function, α, β are small, positive
balancing parameters. If α and β equal to 0, then the model (5) becomes the
destriping model (3). The segmentation terms (fourth, fifth and sixth terms of
(5)) obtain the intensity and spatial information from the stripe removed image
I. To solve the joint model, each of the arguments is solved in turn. The detailed
optimization process is presented as follows.

Stripe Component S. Fixing other arguments, S is evaluated by minimising
the following function:

Ŝ = arg min
S

1
2
‖I + S − Y ‖2

F + λ‖S‖∗ (6)
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which can be solved by the following soft-thresholding operation:
{

Sk+1 = U(shrink L∗(
∑

, λ))V T

shrink L∗(
∑

, λ) = diag{max(
∑

ii −λ, 0)}i
(7)

where Y − I = U
∑

V T is the singular value decomposition of Y − Ik, and
∑

ii

is the diagonal element of the singular value matrix
∑

.

Clean Image I. Keeping other arguments fixed and minimising with respect
to I, we have

Î = arg min
I

1
2
‖I + S − Y ‖2

F + τ‖I‖TV +
β

2
u‖I − c1‖2

F +
β

2
(1−u)‖I − c2‖2

F (8)

where ‖I‖TV can be decomposed along the directions x and y:

‖I‖TV = τx‖∇xI‖1 + τy‖∇yI‖1 (9)

where ‖ · ‖1 represents the sum of absolute value of matrix elements. The weight
τ along directions x and y is different due to the directional characteristics of
the stripe component. The alternative direction multiplier method (ADMM) is
introduced to solve the problem (8) efficiently. We convert this problem into
two sub-problems. Let Dx = ∇xI, Dy = ∇yI, D = [Dx,Dy]T, ∇ = [∇x,∇y]T,
τ = [τx, τy]T, (8) equals to the following problem:

{Î , D̂} = arg min
I,Dx,Dy

1
2
‖I + S − Y ‖2

F + τ‖D‖1 +
β

2
u‖I − c1‖2

F

+
β

2
(1 − u)‖I − c2‖2

F +
γ

2
‖D − ∇I − J

γ
‖2

F .

(10)

The I-related sub-problem is followed by

Î = arg min
I,Dx,Dy

1
2
‖I + S − Y ‖2

F +
β

2
u‖I − c1‖2

F

+
β

2
(1 − u)‖I − c2‖2

F +
γ

2
‖D − ∇I − J

γ
‖2

F .

(11)

We can obtain a closed form of (11) via fast 2-D Fourier transform (FFT):

Ik+1 = F−1(
F(Y − Sk+1 + βukc1

k + β(1 − uk)c2
k) + ∇T(γkDk − Jk)

1 + β + γk(F(∇))2
) (12)

The D-related sub-problem is followed by

D̂ = arg min
D

τ‖D‖1 +
γ

2
‖D − ∇I − J

γ
‖2

F (13)

which can be solved by a soft shrinkage operator
{

Dk+1 = shrink L1(∇Ik+1 + Jk

γk , τ
γk )

shrink L1(r, ξ) = r
|r| ∗ max(r − ξ, 0).

(14)
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Region Average Intensity Values c1, c2. Keeping other arguments fixed and
minimising with respected c1 and c2, respectively. We have the equations for c1

and c2

c1 =

∫
Ω

u(x, y)I(x, y)dxdy
∫

Ω
u(x, y)dxdy

, c2 =

∫
Ω

(1 − u(x, y))I(x, y)dxdy
∫

Ω
(1 − u(x, y))dxdy

(15)

which can be evaluated directly by giving the average intensities inside and
outside of the segmentation contour. c1 and c2 in GMAC can be solved in a
same way.

Segmentation Indicator Function u. Minimising model (5) with respecting
to u and fixing the other arguments, we have

û = arg min
u

α‖u‖TV,g +
β

2
u‖I − c1‖2

F +
β

2
(1 − u)‖I − c2‖2

F . (16)

A convex regularization variational model is used according to [2]:

{û, v̂} =arg min
u,v

α‖u‖TV,g +
1
2θ

‖u + v − I‖2
F

+
β

2
(I − v)‖I − c1‖2

F +
β

2
(1 − I + v)‖I − c2‖2

F

(17)

where the parameter θ is small so that we can approximate I = u + v. The
function u denotes the geometric information, while v represents the texture
information in the clean image I. Problem (17) can be solved by minimizing u
and v iteratively.

The u-related sub-problem is followed by

û = arg min
u

α‖u‖TV,g +
1
2θ

‖u + v − I‖2
F . (18)

The solution of (18) can be achieved efficiently by a fast dual projection
algorithm. The derived solution is:

uk+1 = vk − αθdivpk+1 (19)

where p is given by a fixed point method as follows:

pk+1 =
pk + δt∇(div(pk) − v/(αθ))

1 + δt
g(x,y) |∇(div(pk) − v/(αθ))

. (20)

where δt ≤ 1/8 is the temporal step.
The v-related sub-problem is followed by

v̂ = arg min
v

1
2θ

‖u + v − I‖2
F +

β

2
(I −v)‖I − c1‖2

F +
β

2
(1−I +v)‖I − c2‖2

F . (21)

The v-minimization can be achieved through the following update:

vk+1 = min{max{u(x, y) − βθ

2
[(I(x, y) − c2)2 − (I(x, y) − c1)2], 0}, 1}. (22)

u in GMAC can be solved in a similar way. The overall algorithm is presented
in Algorithm 1.
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Algorithm 1 . Segmenting Images Corrupted by Stripe Noises by the Joint
Model
Require: Image Y with stripe noise, parameters τ, λ, α, β, γ, θ, ρ.
Ensure: Clean image I, stripe component S and segmentation indicator funcion u.
1: Initialize: set J1 = 0, I1 = Y, u1 = 0, v1 = 0
2: for k = 1 : N do
3: Compute Sk+1 by solving (7)
4: Compute Ik+1 by solving (12)
5: Compute Dk+1 by solving (14)
6: Compute ck+1

1 and ck+1
2 by solving (15)

7: Compute uk+1 by solving (19)
8: Compute vk+1 by solving (22)
9: Update Lagrangian multipliers Jk+1 = Jk + γk(∇Ik+1 − Sk+1)

10: Update penalization parameters γk+1 = γk · ρ
11: end for

3 Results and Discussion

The proposed algorithms are evaluated in two parts: the effectiveness of destrip-
ing and the effectiveness of segmentation. All experiments are run in MATLAB
(R2018a) (Mathworks, MA) on a desktop with 8GB RAM, Intel (R) Core (TM)
i5-7500 CPU @ 3.40 GHz. We denote the models to be compared and tested as
follows:

D1: The weighted median filter denoising method [4].
D2: The wavelet denoising method [6].
N1: The two-stage strategy presented in this paper by destriping model (3)
followed by segmentation model (4).
N2: The proposed joint model (5) for destriping and segmentation simulta-
neously.

3.1 Effectiveness of Destriping

In the experiment of stripe noise removal, simulated data and real data are
employed to compare the performance of our methods (N1 and N2) with two
denoising methods (D1 and D2). Two evaluation metrics are utilized. i.e. the
peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) [16].
The two metrics are calculated by using Eqs. (23) and (24), respectively.

PSNR = 10 · log10

(
MAX2

I

MSE

)

(23)

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(24)

where MAXI is the maximum pixel value of the noise-free image and MSE is
the mean squared error between noise-free image and noisy image. x and y are
two windows of an image. μx, μy, σ2

x, σ2
y are the average of x, y and the variance

of x, y, respectively. σxy is the covariance of x and y. c1, c2 are two variables.
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Simulated Experiments. In simulated experiments, stripe noise is added into
an FA image. As shown in Fig. 3(b), the destriping results of four methods are
shown in Fig. 3 (c)–(f). Both D1 and D2 fail to remove the stripe noise. The
proposed N1 and N2 can remove the stripes and retain stripe-free areas well.

The highest PSNR and SSIM values in each intensity scenario of simulated
experiments are marked in bold in Table 1. Five different levels of stripes are
added to the original image to test the robustness of our methods. The inten-
sity denotes the mean absolute value of the stripe lines. Our joint model N2
achieves the best performance according to Table 1. As the stripe level increase,
the advantage of our methods N1 and N2 over other methods becomes clearer.

Fig. 3. Illustration of simulated destriping results. (a) Original image. (b) Image with
added stripe noise. (c) Result of D1. (d) Result of D2. (e) Result of N1. (f) Result
of N2.

Table 1. Quantitative results (PSNR (dB) and SSIM values) on simulated data.

Method Stripe Noise

Intensity=10 Intensity=20 Intensity=30 Intensity=40 Intensity=50

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

Degraded 26.65 0.636 21.24 0.360 18.29 0.230 16.33 0.161 14.90 0.120

D1 26.78 0.624 21.27 0.377 18.15 0.254 16.09 0.187 14.60 0.147

D2 29.81 0.763 22.99 0.447 19.35 0.266 16.99 0.177 15.42 0.128

N1 34.99 0.945 33.81 0.942 31.31 0.923 28.61 0.896 26.03 0.858

N2 35.00 0.947 33.82 0.942 31.94 0.928 28.66 0.896 26.11 0.859
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Real Experiments. The real OCTA stripe images are tested in this subsec-
tion. The proposed method is evaluated on 30 images collected from the Royal
Liverpool University Hospital. Each image is taken in a 3 mm * 3 mm field of
view centered on the fovea from the internal limiting membrane (ILM) to the
inner plexiform layer (IPL). We choose a representative image (see Fig. 4) and
zoom in two regions of this image, i.e. R1 and R2. It is shown that our proposed
method N1 and N2 can remove most stripe noise, while D1 and D2 can just
remove a little stripe noise.

R2
R1

Original D1 D2 N1 N2
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 R
2

Fig. 4. Illustration of real OCTA destriping results. The first column shows the original
OCTA image. The destriping results of D1, D2, N1 and N2 are shown from the second
to fifth columns, respectively. The second and third rows show the zoomed regions R1
and R2 of the whole image, respectively.

3.2 Effectiveness of Segmentation

All images of the OCTA dataset mentioned in the real experiments (Sect. 3.1)
are evaluated. The quantitative evaluation metric is accuracy, which is calculated
as follows [17]:

Accuracy =
TP + TN

TP + FP + TN + FN
(25)

where TP, FP, TN,FN indicate the true positive, false positive, true negative
and false negative, respectively.

The computation of accuracy is based on the center line of the segmenta-
tion results and the center line annotation (see Fig. 5(d)). The average accuracy
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values and CPU times of N1 and N2 are listed in Table 2. Compared to the
two-stage strategy N1, our proposed joint model N2 can achieve higher accuracy
in less time. We also give two segmentation examples in Fig. 5. N2 can generate
competitive segmentation results to N1 efficiently.

Fig. 5. Illustration of OCTA segmentation results. (a) Original image. (b) Segmenta-
tion result of N1. (c) Segmentation result of N2. (d) Center line annotation.

Table 2. Average accuracy values and cpu times of OCTA images segmentation.

Method Accuracy Times (s)

N1 0.9204 97.63

N2 0.9356 67.45

4 Conclusion

This paper presented a two-stage strategy and proposed a new joint model for
segmenting retinal blood vessels in OCTA images corrupted by stripe noise.
The two-stage strategy removed the stripe noise by a low-rank representation
model, and then segmented the retinal blood vessels by an active contour model
called GMAC. The joint model combined the models of stripe noise removal
and vessel segmentation. These models solved the two problems efficiently, with
the joint model solving the problems simultaneously, faster and more accurately.
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We tested the performance of our methods on an OCTA dataset from the Royal
Liverpool University Hospital. The quantitative and efficiency comparison results
showed that our proposed joint model provided excellent vessel segmentation
results. It is believed that our work can inspire a way to consider the inclusion
of stripe removal and clinical vessel analysis models.
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Abstract. Cerebral Malaria (CM) as one of the most common and
severe diseases in sub-Saharan Africa, claimed the lives of more than
435,000 people each year. Because Malarial Retinopathy (MR) is as one
of the best clinical diagnostic indicators of CM, it may be essential to
analysing MR in fundus images for assisting the CM diagnosis as an
applicable solution in developing countries. Image segmentation is an
essential topic in medical imaging analysis and is widely developed and
improved for clinic study. In this paper, we aim to develop an automatic
and fast approach to detect/segment MR haemorrhages in colour fun-
dus images. We introduce a deep learning-based haemorrhages detection
of MR inspired by Dense-Net based network called one-hundred-layers
tiramisu for the segmentation tasks. We evaluate our approach on one
MR dataset of 259 annotated colour fundus images. For keeping the orig-
inality of raw MR colour fundus images, 6,098 sub-images are extracted
and split into a training set (70%), a validation set (10%) and a test-
ing set (20%). After implementation, our experimental results testing
on 1,669 annotated sub-images, show that the proposed method outper-
forms commonly mainstream network architecture U-Net.

Keywords: Malarial Retinopathy · Retinal haemorrhage · Fundus
imaging · Deep learning · Image segmentation

1 Introduction

Cerebral Malaria (CM), as a form of severe malaria, is one of the most common
diseases in sub-Saharan Africa, which is transmitted by the Anopheles mosquito
when it feeds on previously infected humans. According to the World Malaria
Report 2018 [20], malaria affected over 219 million cases of malaria in 2017 and
claimed the lives of more than 435,000 people per year. 266,000 (61%) malaria
deaths were children aged under 5 years. Retinopathy is clinically significant in
c© Springer Nature Switzerland AG 2020
Y. Zheng et al. (Eds.): MIUA 2019, CCIS 1065, pp. 439–449, 2020.
https://doi.org/10.1007/978-3-030-39343-4_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39343-4_37&domain=pdf
https://doi.org/10.1007/978-3-030-39343-4_37


440 X. Chen et al.

CM because the similarity of eye and brain embryonic origins have led to shared
features of the relevant microvascular systems [18]. Lewallen et al. [15] coined
the term malarial retinopathy (MR), which is one of the best clinical diagnos-
tic indicators of CM. MR is characterized by retinal whitening, papilledema,
capillary non-perfusion (CNP) and varying haemorrhage presence in the ocular
fundus [2]. Therefore, screening MR may assist in improving the accuracy of
diagnosis of CM by using binocular indirect ophthalmoscopy (BIO) or analysing
fundus images by ophthalmic expert team [4,19]. In developing countries, how-
ever, there is a barrier to use BIO widely because of expensive equipment and
technical expertise required. A fully automated analysing fundus images for MR
may provide fast diagnostic assistance. MR detection methods for CM diagnosis
using retinal colour images were proposed [1,8,9].

Fig. 1. An example of a montaged colour fundus image showing the presence of haem-
orrhages

As retinal haemorrhages are one of the visible signs on colour fundus images
of MR as well as diabetic retinopathy (DR), retinal haemorrhages detection is
of high importance in both MR and DR detection steps for further automated
diagnosis [17]. Figure 1 shows an example of a colour fundus image showing the
presence of haemorrhages of MR. In the previous works of retinal haemorrhages
detection for DR diagnosis, approaches based on splat feature classification [23]
and mathematical morphology [10] were proposed. For MR haemorrhages detec-
tion, Joshi et al. [9] developed an automated segmentation method based on
splat classification for the detection of retinal haemorrhages to characterize MR.
However, this work has a few limitations. the performance and running time of
haemorrhages segmentation are sensitive to the size of splats so this study may
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not be robust for other various retinal haemorrhages case. A new deep learning
network based on Dense-Net called one-hundred-layers tiramisu (Tiramisu) was
proposed for medical image segmentation by Jégou et al. [7]. Tiramisu model
overcomes this limitation of U-Net in various medical image applications [7,16].

To the best knowledge of the authors, this is the first work that applied Deep
Learning-based methods on MR. We use Tiramisu method to segment haemor-
rhages within colour fundus images. In this paper, we make the following con-
tributions: (i) We develop a deep learning-based framework for segmentation in
colour fundus photography. (ii) Based on this, we implement the Tiramisu model
for automatic MR related haemorrhages detection and compare with general
U-Net. (iii) We evaluate our segmentation performance on a supervised bio-
medical segmentation setting. The remaining of the paper is organised as fol-
lows. Section 2 describes the proposed method. Section 3 provides a description
of the experimental settings. In Section 4, experimental results are presented
and compared to existing methods. Section 5 & Section 6 gives discussion, future
directions and conclusions.

2 Methodology

For many challenging tasks in computer vision, Convolutional Neural Networks
(CNNs), as a branch of deep neural networks, show remarkable performance,
which is able to work by extracting hierarchical features for learning. Decades
later, since the power of graphical computing in the hardware field was increased
through the improvements in graphical processor units (GPUs), CNNs-based
methods are viable for more complex computer vision tasks, e.g, object seg-
mentation, scene reconstruction, motion estimation, image restoration etc. [13].
There are many different CNNs architectures, such as LeNet-5 [14] proposed
in 1995, Alex-Net [12], VGG-Net [22], ResNet [5] and Dense-Net [6] have been
developed and introduced into various computer vision tasks. In terms of image
segmentation, since CNNs-based models achieved state-of-the-art results, the
image segmentation problem was transformed and solved as a problem of pixel-
wise classification. In which, each pixel from images will be treated as single
independent objects for classification [3]. On the other hand, such as U-Net
proposed by Ronneberger et al. [21] treats each image as the input and the
output of neural network model as an end-to-end fashion and the performance
is better when compared to pixel-wised approaches [7,16,24]. However, there
are a few limitations in this image-wise method. Small objects would be seg-
mented wrongly by U-Net framework around target annotations, because of the
lack of consideration on the outside region of the object. In order to tackle this
limitation, Tiramisu model makes each layer to connect with others in a feed-
forward fashion for encouraging extracted features to be reused efficiently as well
as strengthening feature propagation for ignoring gradually the influence from
outside of targets.
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2.1 CNNs Architectures

In this subsection, the architectures of U-Net and Dense-Net based Tiramisu
will be described respectively.

U-Net: U-Net was proposed and widely for semantic segmentation with high
precise results. There are two essential paths: the down-sampling path and up-
sampling path composing U-Net main architecture. In the down-sampling path
of U-Net, the architecture is as similar as a typical CNNs in which each layer
consists of two convolution layers with kernel size 3 × 3, rectified linear unit
(ReLU) and pooling layers. In the other path, each layer consists of a 2 × 2
up-convolution layer, one concatenation operation with related feature map by
skipped connections and two convolution layers with kernel size 3 × 3. As one
of the important components in the U-Net architecture, skipped connections
are designed for forwarding feature maps from down-sampling path to the up-
sampling path to localize high resolution features for generating the segmentation
result as final output. At the end of the last layer, a softmax classifier is attached
to provide the probability distribution for each pixel. In total, the architecture
of U-Net has 23 layers.

Fig. 2. Overview of our proposed method which takes the object’s area and length of
the boundaries into account during training.
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Tiramisu: Compared to U-Net architecture, the most difference in the Dense-
Net based Tiramisu architecture are: (1) Dense Block (DB) including Batch
Normalization (BN) layer, ReLU, convolution layer with kernel size 3 × 3 and
dropout layer with probability p = 0.2; (2) Transition down composed of BN,
ReLU, 3 × 3 convolution and dropout with p = 0.2; (3) Transition up including
one transposed convolution with kernel size 3 × 3. In each DB, every layer is
connected densely with other layers. The benefits of introducing DB is for pre-
serving the feed-forward nature and reusing extracted features more efficiently
and effectively. 5 Transition Down and 5 Transition Up are introduced following
DB layers. Skipped connections and concatenation operations are used as well.
At the end of the last layer in Tiramisu, softmax is attached as a classification
layer for generating the final probability distribution. Overall, there are 38 layers
in the down-sampling path and up-sampling path, respectively. The bottleneck
path consists of 15 layers. Tiramisu network has 103 layers totally including
Transition Down and Transition Up blocks. In Fig. 2, Tiramisu architecture is
presented.

2.2 Loss Functions

In order to train a CNNs-based model for achieving prediction with high accu-
racy, loss function could play an essential role in the machine learning field. Loss
function is a measure of prediction which can be back-propagated to the previ-
ous layers for updating and optimising the weights of CNNs. As one of the most
commonly used loss functions, Cross-Entropy (CE) Loss is a pixel-wise measure
function. CE loss is expressed in the following Eq. 1:

lossCE(T, P ) = −
Ω∑

i=1

[Ti · log(Pi) + (1 − Ti) · log(1 − Pi)] (1)

where, ground truth image and the prediction are denoted as T , P ∈ [0, 1]
respectively; i indexes each pixel value in image spatial space Ω.

3 Experiments

We used Tiramisu as our MR haemorrhages segmentation framework with loss
function CE. The performance will be compared with U-Net framework.

3.1 Dataset

We demonstrate our model on a sample of 259 montaged MR colour fundus
images from a sample of children suffering from CM that had been admitted
to the Paediatric Research Ward, Queen Elizabeth Central Hospital Malawi.
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Various patients who had met the WHO criteria for CM were involved, that were
sampled for haemorrhage analysis. The original fundus images were captured
with the use of a Nikon-E1 digital camera and produced a field view of 50◦. These
images were derived from two groups of patients labelled died vs survived, and
consist of one image per patient. After approval by the local ethics committees
at the University of Malawi College of Medicine and the University of Liverpool,
Nick Beare collected the representative images for the further CM analysis. The
mentioned image montages were formed by stitching together multiple original
images of the same eye to visualise a larger area of the retina as shown in
Fig. 1. The corresponding ground truth label maps (haemorrhage regions and
background) are annotated by Melissa Leak.

3.2 Data Preprocessing

In order to keep the originality of raw colour fundus image as well as increase
the number of MR fundus images for training and validation, all 259 fundus
images and the corresponding annotation are cropped into about 23 overlapped
sub-images/patches for each image with relatively smaller sizes: 512 × 512 as
a new dataset with 6098 sub-images. Example images and their corresponding
ground truth are shown in the first left columns of Fig. 3. In our experiment, the
new dataset is partitioned into three subsets: training (3,543), validation (886)
and testing (1,669). And then, all of the 1,669 sub-images will be recombined
back to the original image size for a better demonstration.

(a) An Original Image (2924 × 2623 × 3 pixels)
,

(b) MR Related Haemorrhage Annotation

Fig. 3. An example of MR colour fundus images and the corresponding annotation of
haemorrhage
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3.3 Implementation

We implemented our networks using Keras-gpu 2.0.5 and Tensorflow-gpu 1.7 as
backend. We trained our models with Adam optimizer [11] by learning rate of
10−5. All the experiments were performed by using an NVIDIA K40 GPU and
32 GB memory.

3.4 Evaluation Criteria

Dice Coefficient (DC) Score: DC score is widely used for evaluating the
performance of segmentation. DC score measures the size of overlapping regions
from the ground truth reference and segmentation results. Higher DC score
means better segmentation performance. DC score can be expressed as:

DC(T, P ) = 2 ·
∑Ω

i=1(Ti × Pi)∑Ω
i=1(Ti + Pi)

(2)

where, T , P are represented as the ground truth and the prediction of segmen-
tation, respectively; i is an index of each pixel value within an image spatial
space Ω.

Area Under Receiving Operator Characteristics (ROC) Curve (AUC):
And also, AUC is calculated as another evaluation metric. AUC is able to
reflect the trade-offs between the true-positive rate (sensitivity) and the false-
positive rate (specificity) at various threshold settings. Higher AUC means better
performance.

4 Results

We test our MR haemorrhages segmentation framework with 1669 sub-images
with manual annotation. As shown in Fig. 4, four examples from testing dataset
are randomly selected to present the segmentation performance compared with
one of general segmentation solutions: U-Net framework. From left to right,
the example fundus image, manual annotation, segmentation results by U-Net
and Tiramisu are shown respectively. DC score is introduced to quantify the
segmentation performance. For MR haemorrhages segmentation, the DC scores
of U-Net (0.9062) are lower than the DC scores of Tiramisu which is 0.9950.
As shown in Fig. 5, the segmentation framework of Dense-Net based Tiramisu
model achieves better AUC results (0.9358) than U-Net segmentation framework
(0.6307) under the same segmentation task.
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(a) Fundus Image (b) Ground Truth (c) U-Net (d) Tiramisu
,

Fig. 4. Haemorrhage segmentation results of four random examples images. From left
to right, the original MR fundus image, ground truth, segmentation results by U-Net
and Tiramisu are shown respectively.
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(a) U-Net
,

(b) Tiramisu

Fig. 5. Performance of different segmentation methods, in terms of area under the
curve (AUC) for MR haemorrhage detection with 1,669 annotated fundus sub-images

5 Discussion

Our method based on the idea of Tiramisu is able to detect the location of
MR haemorrhage. We also present one general segmentation models U-Net as
the basic model to prove that our proposed method is better and more robust
than U-Net in the same segmentation tasks, because of the MR haemorrhage
feature reuse enabled by dense connections. However, in order to extract sub-
images with the size of 512 × 512 for preserving the originality of raw colour
fundus images, the size of training and validation datasets are increased so that
it needs more memory for loading and is time-consuming also. In future work,
we will investigate new strategies for optimising memory during the training
process or preserving details of a dataset. And also, because in clinical practice,
the number of MR haemorrhage is concerned, the function of automatically
counting haemorrhage will be developed for the benefits of the clinic.

6 Conclusions

In this paper, we introduced an AI-based haemorrhages detection of MR in
colour fundus images inspired by Dense-Net for the segmentation tasks. After
implementation, the results showed that the proposed approach outperforms
state-of-the-art U-Net approaches. It is believed that this new development will
be applied to other challenging segmentation tasks. The experiment results have
proved that the performance is better than commonly mainstream architectures
when we test on a 1669 annotated fundus images dataset.
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Abstract. Accurate segmentation of lungs and clavicles on chest radiographs
plays a pivotal role in screening, diagnosis, treatment planning, and prognosis
of many chest diseases. Although a number of solutions have been proposed,
both segmentation tasks remain challenging. In this paper, we propose an ensem-
ble of deep segmentation models (enDeepSeg) that combines the U-Net and
DeepLabv3+ to address this challenge. We first extract image patches to train
the U-Net and DeepLabv3+ model, respectively, and then use the weighted sum
of the segmentation probability maps produced by both models to determine the
label of each pixel. The weight of each model is adaptively estimated according to
its error rate on the validation set.We evaluated the proposed enDeepSegmodel on
the Japanese Society of Radiological Technology (JSRT) database and achieved
an average Jaccard similarity coefficient (JSC) of 0.961 and 0.883 in the segmen-
tation of lungs and clavicles, respectively, which are higher than those obtained
by ten lung segmentation and six clavicle segmentation algorithms. Our results
suggest that the enDeepSeg model is able to segment lungs and clavicles on chest
radiographs with the state-of-the-art accuracy.

Keywords: Lung segmentation · Clavicle segmentation · Chest radiograph ·
Deep learning

1 Introduction

Chest diseases pose serious health threats to human beings. For instance, pneumo-
nia alone affects approximately 450 million people globally per year (i.e. 7% of the
world population), resulting in about 4 million deaths, mostly in third-world coun-
tries, and lung cancer accounts for about 27% of all cancer deaths, which is considered
as the leading cause of cancer-associated death worldwide [1]. Among various med-
ical imaging modalities, the chest radiography, colloquially called chest X-ray, is one
of themost commonly accessible radiological examinations, due to its cost-effectiveness
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and dose-effectiveness. It is treated as a basic and important radiological tool for screen-
ing, diagnosis, treatment planning, and prognosis of many chest diseases, in which the
segmentation of critical regions, such as lungs and clavicles, is an essential step. Such
segmentation, however, is a challenging task, since the complex anatomical structures
of tissues and organs may mutually overlap on a radiograph.

A number of algorithms for the segmentation of lungs and clavicles on chest radio-
graphs have been proposed in the literature. Many of them incorporate the prior domain
knowledge into the segmentation process. Seghers et al. [2] incorporated object-specific
gray-level appearance and shape characteristics into a supervised scheme for model-
based segmentation ofmedical images. Shao et al. [3] proposed a hierarchical deformable
framework that integrates the scale-dependent shape and appearance information to seg-
ment lungs on chest radiographs. Candemir et al. [4] presented a nonrigid registration-
driven robust lung segmentation algorithm, which consists of a content-based image
retrieval approach for identifying training images, creating the initial patient-specific
anatomical model of lung shape using SIFT-flow for deformable registration, and a
graph cut based refinement of lung boundaries. Ibragimov et al. [5] presented an app-
roach to landmark detection for landmark-based lung field segmentation, in which the
appearance of individual landmarks is characterized by Haar-like features and a random
forest classifier, and the spatial relationships among landmarks are modeled by Gaus-
sian distributions augmented by shape-based random forest classifiers. Ginneken et al.
[6] compared several methods for lung and clavicle segmentation, including the active
shape model (ASM), active appearance model (AAM), pixel classification method, and
combinations thereof.

Recently, deep convolutional neural networks (DCNNs) have led to major break-
throughs on many image segmentation tasks, since they provide an ‘end-to-end’ frame-
work to learn image representation and classification and thus free users from the
troublesome handcrafted feature extraction. Such breakthroughs have prompted many
researchers to apply DCNNs to the segmentation of lungs and clavicles on chest radio-
graphs. Novikov et al. [7] proposed fully convolutional architectures, which combine
delayed subsampling, exponential linear units, highly restrictive regularization, and a
large number of high-resolution low-level abstract features, to segment lungs, clavi-
cles, and the heart on chest radiographs. Dai et al. [8] proposed the structure correcting
adversarial network (SCAN) to segment lung fields and the heart on chest radiographs,
which incorporates a critic network to impose structural regularities on the convolutional
segmentation network and guide the segmentation model to achieve realistic outcomes.
The state-of-art methods have a Jaccard similarity coefficient (JSC) of 0.954 for lung
segmentation [4] and 0.868 for clavicle segmentation [7], which still have much room
for improvement.

The U-Net [9] is a widely used convolutional network architectures for fast and
precise segmentation of images and is known to work with less number of images. The
DeepLabv3+ model [10] is one of the latest semantic image segmentation model, which
is based on an inverted residual structure where the shortcut connections are between
the thin bottle-neck layers. In this paper, we propose an ensemble of deep segmentation
models (enDeepSeg) that combines the U-Net and DeepLabv3+ for the segmentation
of lungs and clavicles on chest radiographs. We evaluated the proposed model against



452 J. Zhang et al.

several existing solutions on the Japanese Society of Radiological Technology (JSRT)
database [11] and achieved the state-of-the-art performance.

2 Dataset

For this study, we used the publicly available JSRT database [11], which consists of 247
chest radiographs collected from13 institutions in Japan andone in theUnitedStates. The
images were scanned from films to a size of 2048 × 2048 pixels, a spatial resolution of
.175mm/pixel and 12 bit gray levels. The ground truth annotations of lungs and clavicles,
which are available in the Segmentation in Chest Radiographs (SCR) database [6], were
acquired by two trained observers independently, who were allowed to zoom and adjust
brightness and image contrast, and could take unlimited time for segmentation. When
in doubt, they reviewed cases with the same radiologist and the radiologist provided
the segmentation he believed to be correct. Following other studies [2–8], we use the
segmentations of the first observer,who is amedical student familiarwithmedical images
and medical image analysis, as gold standard. However, the ground truths in the SCR
database have a size of 1024× 1024 pixels. For the ease of comparison, we resized each
chest radiograph to 1024 × 1024 for this study.

3 Method

The proposed enDeepSeg model consists of three steps (1) extracting 512 × 512 image
patches on each radiograph with a horizontal stride of 64 and a vertical stride of 512,
(2) training the U-Net and DeepLabv3+ model, respectively, and (3) fusing the obtained
segmentation results. A diagram that summarizes the proposed algorithm is shown in
Fig. 1. We now delve into the second and third steps.

1024×1024 images 512×512 images

U-Net

DeepLabv3+

Fusion Results

Fig. 1. Diagram of the proposed enDeepSeg model.

3.1 Training U-Net

The structure of the U-Net used for this study is shown in Fig. 2. It consists of an input
layer that accepts 512 × 512 chest radiograph patches, nine blocks (namely Block-1 to
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Block-9), and a Softmax output layer. Block-1 has two convolutional layers and a 2 ×
2 max-pooling layer, where each convolutional layer consists of 64 kernels of size 3 ×
3 and uses a padding of 1. Block-2 to Block-5 are similar to Block-1, except for the
number of kernels. In addition, Block-5 has an extra up-sampling layer. Block-6 accepts
the combined output of Block-4 and Block-5. Block-7 to Block-9 are similar to Block-6.
Exceptionally, Block-9 has a 1 × 1 convolutional layer. We use the cross entropy as the
loss function.

3 64 64

821 821

512 512

Input 
Image 

Patches

256 256

652 652

1282

215 215
642

1024
322

1024 512
642

512 256

1282

256 128

1

256 256

512×512

Output 
Segmentation 

Map

Conv 3×3, ReLU
Copy and Crop
Max Pool 2 2
Up-conv 2
Conv 1 1

821 4646

Fig. 2. Architecture of the U-Net used for this study.

We employed a pre-trained VGG16 model [12] to initialize the parameters of the
U-Net. To fine tune this model, we adopted the online data augmentation technique, in
which the augmentation operations include rotation of any angle, blurring, horizontal
flip, vertical flip, and zooming, to increase the number of training patches to five times.
We set themaximum iteration number to 200 and the batch size to 4, and chose the Adam
optimizer with an initial learning rate of 1 × 10−4 to update parameters. The learning
rate was reduced by a default factor of 0.1 after 100 epochs.

3.2 Training DeepLabv3+ Model

TheDeepLabv3+model [10] combines the spatial pyramid poolingmodule and encoder-
decoder structure. This model has an encoder-decoder architecture, which is able to
capture sharper object boundaries by gradually recovering the spatial information. The
encoder block mainly applies several parallel atrous convolution with different rates,
called the atrous spatial pyramid pooling (ASPP), which can encode multi-scale con-
textual information by probing the input with multiple fields-of-view. The output of the
encoder block is upsampled bilinearly by a factor of 4, followed by the concatenation
with the low-level features in the decoder block. The concatenated features are first fed
into a 3 × 3 convolutional layer, and then bilinearly upsampled again to produce the
output segmentation maps.
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We adopted a ResNet-101 model [13] that has been converged on the ImageNet
dataset to initialize the DeepLabv3+ model. We chose the momentum optimizer to
minimize the cross entropy loss. We fixed the maximum iteration number to 150, set the
batch size to 4, the initial learning rate to 7 × 10−3, and the end learning rate to 10−6.

3.3 Fusing Segmentation Maps

Let the segmentation probability maps obtained by feeding an image patch to both
models be denoted by MU and MD , respectively. To combine the advantages from both
models, we define the segmentation map produced by the ensemble model as follows
[14]

Men = 1

αU + αD
(αUMU + αDMD) (1)

where the weighting parameters αU and αD can be estimated as

α# = 1

2
ln

(
1 − ε#

ε#

)
(2)

where ε# is the error rate of the model # on the validation set. Finally, we applied the
soft-max function to the probability of each pixel to determine if it belongs to the target
(i.e. lungs or clavicles) or not.

3.4 Evaluation

The proposed enDeepSeg model was evaluated on the JSRT database using the three-
fold cross-validation (3-Fold CR). In the training stage, we randomly choose 10% of
training images to form a validation set, aiming to estimate the error rate of each sub-
model. In the testing stage, each test image of size 1024 × 1024 was split into four
non-overlapping patches of size 512 × 512. Those four patches were fed to the trained
enDeepSeg model sequentially, and the obtained results were concatenated to form
the image-level segmentation. The segmentation results of lungs and clavicles were
quantitatively assessed by JSC and Dice similarity coefficient (DSC), which can be
calculated as follows

JSC = |GT ∩ SR|
|GT ∪ SR| (3)

DSC = 2|GT ∩ SR|
|GT | + |SR| (4)

where GT represents the ground truth region, SR represents the segmented region, and
|R| denotes the number of pixels in the region R. The values of JSC and DSC range
from 0 to 1, with a higher value representing a more accurate segmentation result.
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4 Experiment and Results

Figure 3 shows four example test images, the corresponding results of lung and clavicle
segmentation obtained by the proposed enDeepSeg model, and the ground truth. Since
the lungs and clavicles are partly overlapped, the segmentation results and ground truth
of them were given in different subfigures. It shows that the obtained segmentation
results are highly similar to the ground truth.

Lung
Ground-truth

Clavicle
Prediction

Lung
Prediction

Input
Image

Clavicle
Ground-truth

Fig. 3. Illustration of segmentation results: (1st row) four example test images, (2nd and 4th rows)
the results of lung and clavicle segmentation, and (3rd and 5th rows) the ground truth.

Table 1 gives the average lung segmentation performance of the proposed enDeepSeg
model and 10 existing algorithms on the JSRT database. To ensure a fair comparison,
the performance of existing algorithms was adopted in the literature. It shows that the
proposed model achieved an average JSC value of 0.961 and an average DSC value of
0.980, which are higher than the performance achieved by other algorithms and set the
new state of the art on this database.
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Table 2 gives the average clavicle segmentation performance of the proposed
enDeepSeg model and six existing algorithms on the JSRT database. Similarly, the
performance of existing algorithms was adopted in the literature. It shows that the pro-
posed model achieved an average DSC value of 0.935, which is slightly higher than
that obtained in [7], and an average JSC value of 0.883, which is substantially better
than other algorithms except for human observer. And the advantage of human observer
comes from the guidance of a professional radiologist. The results reported in Tables 1
and 2 reveal that our model is able to produce, to our knowledge, the most accurate
segmentation of lungs and clavicles on chest radiographs.

Table 1. Average lung segmentation performance of the proposed enDeepSeg model and 10
existing algorithms on the JSRT database.

Algorithm Validation JSC DSC

Human observer [6] SCR Split 0.946 ± 0.018 /

Hybrid AAM and PC [6] SCR Split 0.933 ± 0.026 /

Hybrid ASM and PC [6] SCR Split 0.934 ± 0.037 /

PC [6] SCR Split 0.938 ± 0.027 /

Hybrid voting [6] SCR Split 0.949 ± 0.020 /

Seghers et al. [2] SCR Split 0.930 ± 0.045 /

Shao et al. [3] 2-Fold CR 0.946 ± 0.019 0.972 ± 0.010

Ibragimov et al. [5] Not Clear 0.953 ± 0.020 /

Novikov et al. [7] 3-Fold CR 0.950 0.974

Candemir et al. [4] Not Clear 0.954 ± 0.015 0.967 ± 0.008

Proposed 3-Fold CR 0.961 ± 0.004 0.980 ± 0.002

Table 2. Average clavicle segmentation performance of the proposed enDeepSeg model and six
existing algorithms on the JSRT database.

Algorithm Validation JSC DSC

Human observer [6] SCR Split 0.896 ± 0.037 /

Hybrid AAM and PC [6] SCR Split 0.613 ± 0.206 /

Hybrid ASM and PC [6] SCR Split 0.663 ± 0.157 /

ASM tuned [6] SCR Split 0.734 ± 0.137 /

Hybrid voting [6] SCR Split 0.736 ± 0.106 /

Novikov et al. [7] 3-Fold CR 0.868 0.929

Proposed 3-Fold CR 0.883 ± 0.013 0.935 ± 0.010
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5 Discussion

5.1 Ablation Study

The proposed enDeepSeg model is an ensemble of U-Net and the DeepLabv3+ model,
each of which has its merit. To demonstrate that the ensemble of both models results in
performance gain, we compared the performance of the proposed model to that of U-Net
and theDeepLabv3+model in Table 3. It shows that theDeepLabv3+model outperforms
U-Net on both segmentation tasks, and combining U-Net with the DeepLabv3+ model
leads to further performance improvement, which is slight in lung segmentation, but
substantial in clavicle segmentation. The reason may lies in the fact that, since lung
segmentation is much easier than clavicle segmentation, it is hard to further improve the
already-high accuracy of lung segmentation.

Table 3. Accuracy comparison of lung between U-Net and DeepLabv3+

Organ JSC DSC

U-Net DeepLabv3+ Proposed U-Net DeepLabv3+ Proposed

Lungs 0.953 0.959 0.961 0.975 0.979 0.980

Clavicles 0.873 0.870 0.883 0.928 0.928 0.935

5.2 Time Complexity

It took about 13 h to train the U-Net and about 19 h to train the DeepLabv3+ model
(Intel Xeon E5-2640 V4 CPU, NVIDIA Titan Xp GPU, 512 GB Memory). However,
applying the proposed enDeepSeg model to the segmentation of lungs and clavicles on
each chest radiograph costs less than one second. The fast online testing suggests that
this model could be used in a routine clinical workflow.

6 Conclusion

This paper proposes the enDeepSeg model for the segmentation of lungs and clavicles
on chest radiographs, which is an ensemble of U-Net and the DeepLabv3+ model.
Our results show that the proposed model outperforms ten existing lung segmentation
algorithms and six clavicle segmentation algorithms on the JSRT database. In our future
work, we plan to use synthetic data generated by generative adversarial networks to
improve the accuracy of clavicle segmentation.
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Abstract. There has been increasing interest in the analysis of corneal
nerve fibers to support examination and diagnosis of many diseases, and
for this purpose, automated nerve fiber segmentation is a fundamental
step. Existing methods of automated corneal nerve fiber detection con-
tinue to pose difficulties due to multiple factors, such as poor contrast and
fragmented fibers caused by inaccurate focus. To address these problems,
in this paper we propose a novel weighted local phase tensor-based curvi-
linear structure filtering method. This method not only takes into account
local phase features using a quadrature filter to enhance edges and lines,
but also utilizes the weighted geometric mean of the blurred and shifted
responses to allow better tolerance of curvilinear structures with irregular
appearances. To demonstrate its effectiveness, we apply this framework to
1578 corneal confocal microscopy images. The experimental results show
that the proposed method outperforms existing state-of-the-art methods
in applicability, effectiveness, and accuracy.

Keywords: Corneal nerve · Curvilinear structure · Segmentation ·
Local phase

1 Introduction

Over the last decade, several studies [1–3] have confirmed that numerous corneal
nerve properties, such as nerve fiber branching, density, length, tortuosity, etc.,
are linked to both systemic diseases and conditions of the eye [4,5]. Early detec-
tion of these properties may help to reduce the incidence of vision loss and
c© Springer Nature Switzerland AG 2020
Y. Zheng et al. (Eds.): MIUA 2019, CCIS 1065, pp. 459–469, 2020.
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blindness. For this to be possible, accurate detection and analysis of the nerve
fiber is essential [6].

In vivo confocal microscopy (IVCM) is the common technique of choice
for the imaging and inspection of corneal nerves: in particular, for the non-
invasive acquisition of the subbasal nerve plexus [7]. The manual identification
of nerve fiber by ophthalmologists is tedious, highly labour-intensive and subject
to human error, while the available commercial software still relies heavily on
manual refinement. Consequently, development of an automatic vascular tracing
method is indispensable to overcome time constraints and avoid human error.

Extensive work has been carried out on automatic curvilinear structure seg-
mentation (see [8,9] for extensive reviews). Although it bears a superficial simi-
larity to other curvilinear structure segmentation tasks, segmenting corneal nerve
fiber is more challenging because of poor contrast and fragmented and multiple
scales of tortuous fiber in the image, as shown as Fig. 1. Moreover, many images
contain potentially confusing non-target structures such as dendritic cells that
can be easily mistaken for fiber given their similar appearance.

Fig. 1. Corneal nerves images with poor contrast (left), non-target structures (middle),
and discontinuous and multiple spatial scales of fibers (right).

In this work, we introduce a new curvilinear feature enhancement metric:
namely a weighted local phase tensor. This tensor is enabled by log-Gabor filter,
Hessian transform, blurring and shifting functions, to resolve the weak response
and discontinuities yielded by most filter-based methods.

1.1 Related Works

Numerous corneal nerve fiber segmentaion methods have been proposed during
the last decade. Ruggeri et al. [10] and Scarpa et al. [11] adopted Gabor filtering
to enhance nerve visibility: a tracking procedure was then implemented, starting
from a set of automatically-defined seed points. Fuzzy c-mean clustering was
then applied to classify the pixels as nerve or non-nerve pixels. Poletto [12]
further extended the method of [10] to a dataset consisting of 30 epithelium
corneal images, the nerves were extracted by connecting the seed points using
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their minimum cost paths. Dabbah et al. [13] further proposed a multi-scale
adaptive dual-model detection algorithm, based on random forest and neural
networks.

Ferreira et al. [14] enhanced IVCM images using phase-shift analysis,
then identified the nerve structures by using a phase symmetry-based filter.
Guimaraes et al. [15] removed illumination artefacts by applying top-hat filter-
ing and a bank of log-Gabor filters. The hysteresis threshold approach was used
to determine the candidate nerve segments, and true and false nerve segments
were distinguished using support vector machines (SVM). Annunziata et al. [16]
proposed a hand-crafted ridge detector, SCIRD, which utilized curved-support
Gaussian models to compute the second order directional derivative in the gra-
dient direction at each pixel. Al-Fahdawi et al. [17] used a coherence filter to
improve the IVCM image quality: morphological operations were then applied
to remove epithelial cells; the corneal nerves were extracted using an improved
edge detection method which was able to bridge the nerve discontinuities. More
recently, Colonna et al. [18] used a deep learning approach, the U-Net-based
Convolutional Neural Network [19], to trace the corneal nerve. It consisted of a
contracting path, which captured nerve descriptors, and a symmetric expanding
path, which enabled precise nerve localization.

However, the above-mentioned corneal nerve tracing methods need further
improvement, as confocal corneal images contain spurious illumination artefacts,
and the whole image may appear dimmed due to focusing problems. Moreover,
bright, elongated structures other than nerve segments (e.g., cells), are normally
present, and these may cause false-positives. For these reasons, image and nerve
enhancement are two essential steps in the process of discriminating the corneal
nerve tree.

2 Method

A quadrature filter is a well-designed tool for distinguishing intrinsic features
in the image that are invariant to changes in illumination. In this section, we
propose the use of a weighted local phase tensor to enhance the fiber structures
within the IVCM images.

2.1 Local Phase Tensor

For a one-dimensional (1D) problem, by using the so-called analytical function,
the amplitude A(x) and phase φ(x) of a given signal f(x) is defined as A(x) =
‖f(x)− ifH(x)‖ =

√
f2(x) + f2

H(x), and φ(x) = arctan
( f(x)

fH(x)

)
, where i =

√
−1,

and fH(x) is the Hilbert transform of f(x) [20].
In order to enhance spatial localization and to avoid the problems posed by

the analytic signal for 2D or higher dimensions and the 2D Hilbert transform,
the analysis of the signal must be take over a narrow range of frequencies at
different locations in the 2D signal. Boukerroui et al. [20] suggested that local
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phase should be estimated by a quadrature filter with even-symmetric and odd-
symmetric parts. In consequence, the definition of local phase in 2D application
may be rewritten as:

φ(x) = arctan
(fe(x) ∗ f(x)

fo(x) ∗ f(x)

)
= arctan

(E(x)
O(x)

)
. (1)

where fe(x)∗f(x) is the even (symmetric) band-pass filter and denotes as E(x),
while fo(x) = H(fe(x)) is the Hilbert transform of the even filter fe(x), and
denotes as O(x). In particular, the log-Gabor (log normal) filter is a commonly
used quadrature filter, and E(x) and O(x) are the responses of even and odd
quadrature pair filter to an image can be estimated by:

E(x) = real{F−1(LG(ω) × F (x))}, (2)

O(x) = imag{F−1(LG(ω) × F (x))}, (3)

where LG, F and F−1 indicate the log-Gabor filtering, the forward and inverse
Fourier transforms, respectively.

Then the local phase tensor in symmetric and asymmetric aspects TE and
TO are calculated as [21]:

TE = [H(E(x))] · [H(E(x))]T , (4)

TO = − 1
2
([∇(O(x))] · [∇∇2(O(x))]T

+ [∇∇2(O(x))] · [∇(O(x))]T ),
(5)

where H denotes the Hessian operation, and ∇, ∇2 indicates the Gradient
and Laplacian operations, respectively. The superscript T denotes the transpose
operation.

According to the monogenic signal analysis [22], the local phase tensor can
be obtained by:

T =
Θ∑

θ=1

{√
(T θ

E )2 + (T θ
O)2

}
· cos(ϕ). (6)

In practice, multiple orientations are needed to capture structures at differ-
ent directions. Furthermore, in order to achieve a rationally invariant tensor,
filters for all directions have to be combined. Θ indicates the set of directions
under consideration: Θ = { π

16 , 2π
16 , 3π

16 , · · · , 15π
16 , π}. The instantaneous phase ϕ

presenting the local contrast independently of feature type (line and edge), and
may be defined as

ϕ(x) = Eθ(x) + |Oθ(x)|i, (7)

As observed from Eqs. (2) and (3), E(x) reaches the maximal response at lines
while O(x) is almost 0, the filter response is purely real, and leads to a line-like
signal. While for edges, the E(x) is 0 and O(x) has the maximal response, and
the filter response is purely imaginary. This suggests that image edges align with
the zero crossing of the real part of the phase map. Therefore, the real part of
the response Eθ(x) and the absolute value of the imaginary part Oθ(x) are used,
with a view to avoid confusion caused by changes in structural direction.
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2.2 Weighted Local Phase Tensor

In real applications, due to poor contrast the extracted responses of the corneal
nerves are represented as discontinuities. In consequence, in order to permit
greater tolerance of the positions, deformations and scales of the respective con-
tours, blurring and shifting operations are applied to the local phase tensor. The
blurring operation is able to suppress the noise or background, and the shifting
operation is used to enhance the response of the quadrature filter by maximizing
all neighboring pixels in low-contrast in the dark and low contrast regions [23].

The blurring consists of a dilation of the filter response with a Gaussian
function Gσ with standard deviation σ: σ = σ0 + αρ. The σ0 and α are the
constants that regulate the tolerance to deformation of the concerned responses,
and ρ is the radius parameter, representing a linear function of the distance from
the centre of the quadrature filter. We then shift each blurred local phase tensor
by a distance ρi in the direction opposite to φi. Formally, the i-th blurred and
shifted responses Sσi,ρi,φi

of the local phase tensor T can be calculated by:

Sρi,φi
(u, v)

= max
u′,v′

{Tσi
(u − Δui − u′, v − Δvi − v′)Gσ′(u′, v′)}. (8)

where −3σ ≤ u′, v′ ≤ −3σ. The above configuration process represents a con-
volution of the weighting function with respect to the filter center u, v, and
S = {(ρi, φi)|i = 1, . . . , n}, where n indicates the number of quadrature
responses. Δui = −ρicosφi and Δvi = −ρisinφi is the shift vector of i-th quadra-
ture responses in Cartesian coordinates. This shift operation is able to assemble
all the responses at the proposed filter centre. The parameter values of S can be
automatically determined from the aforementioned filter settings of the standard
deviation of the filter responses, kernel size, and orientations: ρi ∈ {0, 2, 4} and
φi ∈ {0, 0.5π, π, 1.5π}.

Then the weighted local phase tensor T̂ for a given image is defined as a
threshold ε of a multiplication of Sρi,φi

:

T̂ =
∣∣∣∣

|S|∏

i=1

(Sρi,φi
)
∣∣∣∣

ε

. (9)

where ε denotes the control parameter that sets the threshold of the response at
a fraction ε (0 ≤ τ ≤ 1) of the maximum response.

In order to enhance curvilinear structures of different sizes present within a
single image, multiple scales fusion is needed. In our study, the given image is
uniformly down-sampled to 1/m of its original size, and the fused local phase
tensor is defined as:

T̂ =
∑M

m=1 Tm|Tm|γ
∑M

m=1 |Tm|γ
(10)

where m ∈ {1, · · · M}, and M denotes the number of scales (M = 3 in this work).
γ is the order number of the power of the magnitude of the filter response at
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each scale. Figure 2 demonstrates that the proposed weighted local phase tensor
acts as a general curvilinear structure indicator, providing an improved local
phase tensor. It may be observed that the proposed weighted local phase tensor
is able to better preserve poorly-imaged, low-contrast fibers, which appear as
discontinuous to the unweighted tensor (Fig. 2(c) and (d): red arrows).

Fig. 2. Illustrative enhancement results using the local phase tensor and weight local
phase tensor. (a) original image; (b) groundtruth; (c) response of local phase tensor;
(d) response of weighted local phase tensor. (Color figure online)

3 Materials and Evaluation Metrics

3.1 Dataset

A total of 1578 images of corneal subbasal epithelium from 108 normal and
pathological subjects were acquired using a Heidelberg Retina Tomograph
equipped with a Rostock Cornea Module (HRT-III) microscope (Heidelberg
Engineering Inc.). The 108 subjects included: 30 healthy subjects; 18 subjects
with diabetes; and 60 subjects with dry eye disease. The image resolution was
384 × 384 pixels, and the field of view was 400 × 400µm2. The nerves appear
as bright curvilinear structures lying over a darker background. The reference
groundtruth was segmented manually by an ophthalmologist, who traced the
centerlines of all visible nerves using an in-house program written in Matlab
(Mathworks R2017, Natwick).

3.2 Evaluation Metrics

To compare the nerve fiber tracing performance of the proposed method with the
corresponding groundtruth, we computed the sensitivity and false discovery rate
(FDR) [15] between the predicted centerlines and groundtruth centerlines. Sen-
sitivity is the fraction of the number of pixels in the correctly detected nerve seg-
ments (true positives) nerves over the total number of pixels in the groundtruth
nerves. FDR is defined as the fraction of the total number of pixels incorrectly
detected as nerve segments (false positives) nerves over the total number of pix-
els of the traced nerves in groundtruth. The use of specificity, defined as the
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number of pixels correctly rejected as non-nerve structures (true negatives), is
not adequate for the evaluation of this tracing task, since the vast majority of
pixels do not belong to corneal nerves.

It is worth noting that, as is customary in the evaluation of methods extract-
ing one pixel-wide curves [15], a three-pixel tolerance region around the manually
traced nerves is considered to be a true positive. In other words, a predicted cen-
terline point is considered as true positive if is no more than three pixels distant
from the nearest ground truth centerline point.

4 Experimental Results

We validated the effectiveness of the proposed weighted local phase tensor-based
nerve fiber segmentation method against three other state-of-the-art curvilinear
structure enhancement methods: Frangi’s Vesselness filter (FVF) [24], multiscale
hessian filter (MHF) [25], and combination of shifted filter responses (COS-
FIRE) [23]. An infinite perimeter active contour with hybrid region (IPACHR)
method [26] is used to segment the fibers from the filtered curvilinear structures.
However, other sophisticated segmentation methods may work equally well. For
a fair comparison, the parameters of these filters were optimized for best per-
formance as follows. FVF scales: 1–8, scale ratio: 2; MHF scales: 1–3, spac-
ing resolution: [3; 3]; COSFIRE scales: 1–4, orientation: θ ∈ {πi

8 |i = 0, · · · 7},
threshold value: 0.35.

Figure 3 demonstrates the filtered curvilinear structures obtained by applying
these different methods. Overall, all methods demonstrated similar performance
on fibers with large diameters. It can be seen that FVF is able to enhance most
larger fibers, but falsely enlarges background features where intensity inhomo-
geneities are present. MHF misses most fibers with small diameters, and also
enhances some background regions, which leads to inaccurate identification of
the fiber structures. As for the COSFIRE, the fiber edges are clearly enhanced,
and this method achieves better results in distinguishing fiber from background.
However, the COSFIRE also enhanced some surrounding non-target structures.

Fig. 3. Illustrative results of corneal nerve filtered by different curvilinear structure
enhancement methods.
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In contrast to these filters, we can see that the proposed method generally
demonstrated superior performance in detecting nerve fiber regions (uniform
responses at both high and low intensities), and provided relatively stronger
responses to small fibers than other methods. In other words, the proposed
method is not only able to enhance fiber regions so as to stand out more con-
spicuously from background, but also has the ability to reject non-fiber features.
Such properties are due to the proposed filter retaining the intrinsic informa-
tion of features that are invariant to changes in intensity, location and scale,
which permits better detection of curvilinear structures under varying condi-
tions. Table 1 shows this superior segmentation performance based on the pro-
posed curvilinear structures enhancement method, demonstrating both higher
sensitivity and lower FDR by significant margins.

Fig. 4. Illustrative results of corneal nerves traced by U-Net and by the proposed
method.

It is interesting to note that the visual results (Fig. 4) and evaluation metrics
(Table 1) demonstrate that our method performs better than the deep learning-
based approach: U-Net [19], which has recently attracted attention. We employed
the U-Net-based convolutional neural network [18] for the fully automatic seg-
mentation of corneal nerves from the IVCM image. This network comprises a
contracting-encoder and an expanding-decoder, which allows the user to obtain a
label classification for every single pixel. We trained the U-Net on randomly sam-
pled images from the database, reserving 20% of this database as a validation set.

Table 1. Performance of five different segmentation methods.

Methods Sensitivity FDR

FVF 0.912 ± 0.25 0.181 ± 0.12

MHF 0.933 ± 0.19 0.142 ± 0.11

COSFIRE 0.950 ± 0.24 0.113 ± 0.09

U-Net 0.956 ± 0.17 0.105 ± 0.08

Proposed 0.963 ± 0.12 0.096 ± 0.09
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5 Conclusions

Nerve fiber segmentation is the fundamental step in automated diagnosis of
many nerve-related diseases, and it remains a challenging medical image analy-
sis problem despite considerable effort in research. Many factors come together
to make this problem difficult to address, such as uneven illumination and noise
in the original image. In this paper, we have presented a weighted local phase
tensor-based curvilinear structure filtering method, and have applied it success-
fully to corneal nerve fiber segmentation. The proposed filter exploits the advan-
tages of a local phase tensor, making use of the geometric mean of blurred and
shifted quadrature filter responses to allow more tolerance in the position of the
respective contours. The evaluation results demonstrate the superiority of our
model when compared with other state-of-the-art methods. It is our intention in
our future work to measure the tortuosity, length, and density of the extracted
nerves, so as to further evaluate the significance of changes in these morpholog-
ical features and their association with nerve-related diseases, such as diabetic
neuropathy.
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Abstract. This paper presents a preliminary study on macrophages
migration in Drosophila embryos, comparing two types of cells. The
study is carried out by a framework called macrosight which analyses
the movement and interaction of migrating macrophages. The frame-
work incorporates a segmentation and tracking algorithm into analysing
motion characteristics of cells after contact. In this particular study, the
interactions between cells is characterised in the case of control embryos
and Shot3 mutants, where the cells have been altered to suppress a spe-
cific protein, looking to understand what drives the movement. Statistical
significance between control and mutant cells was found when comparing
the direction of motion after contact in specific conditions. Such discov-
eries provide insights for future developments in combining biological
experiments to computational analysis.

Keywords: Segmentation · Cell tracking · Track analysis ·
Macrophages

1 Introduction

Cell migration is highly involved in development and adult life, in maintaining
homeostasis with processes such as wound healing and immune response [1,2].
Moreover, pathological conditions such as cancer or autoimmune disease, are
related to dysfunctional cell migration. At present, many aspects of cell migra-
tion are known, however no single model is able to integrate all the cues driving
motion [3]. Macrophages are highly migratory cells of the immune system that
have ranges of functions ranging from tissue repair to immune responses to for-
eign pathogens [4]. However, excessive migration can be related to autoimmune
disease and cancer [5]. An ideal model system to study in vivo cell migration are
the embryonic macrophages of Drosophila megalonaster, as they are amenable
to high spatio-temporal resolution live imaging [6]. In [7], contact inhibition of
locomotion was described in these cells, showing that these cell-cell interactions
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are needed for functional migration. In the present study, macrophages from
control embryos were compared to Shot3 embryos.

Cell tracking is defined as the linking between objects in a temporal context.
In this work, tracking of cells is achieved by segmenting the cells to obtain posi-
tions and then linking between the same object in two positions in consecutive
time frames. Segmentation and tracking of cells is a widely studied area [8,9].
However, few studies have been made on identifying patterns in the migration or
providing a biological context to the tracks obtained. In previous work, the anal-
ysis of macrophages’ movement has been studied in the context of the cell-shape
evolution [10], as well as the comparison of movement patterns of interacting
cells from non-interacting [11]. In [12], a framework was presented to analyse
the tracks of migrating macrophages, analysing the movement related to the
interactions.

In this work, a study on novel data is presented, where time sequences of
control and mutant macrophages were acquired and an underlying difference in
the motion is searched for. The main contribution in this work consists of the use
of a software framework to provide quantitative measurements to provide com-
parative quantitative measurements of different conditions. Figure 1 represents
the differences in movement patterns hypothesised in this work: to distinguish
through image analysis cases of (a) control and (b) mutant cells.

Fig. 1. Illustration of the hypothesis behind this paper. Different movement patterns
from control to mutant experiments are represented by the different types of line and
colours in the diagram. (Color figure online)

2 Materials

Fourteen time sequences of macrophages in Drosophila embryos were acquired
following the protocol described in [6,7], with nuclei labelled in red and micro-
tubules in green. Each image in the time-lapse sequences was obtained every ten
seconds at a pixel density of 0.21µm. The 14 experiments consist of images of
size (nw, nh, nd) = (512, 672, 3).

The datasets are classified as control or mutant experiments. Four control
and ten Shot3 mutant experiments were analysed, in which mutation affects the
cytoskeletal crosslinking. The number of frames within the control experiments
range between 137 and 272, while the mutant experiments range between 135
and 422 frames. Figure 2 shows a comparison between four frames of a control
experiment against four frames of a mutant experiment.
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Fig. 2. Comparison between five frames of (a) control against five of (b) mutant exper-
iments. The datasets were chosen because they had a similar number of frames and
thus a similar spacing between the frames in both experiments could be shown (≈95).
Yellow lines have been manually added to the first and last frames on both experi-
ments to showcase the apparent change of focus of the microscope as time evolves.
(Color figure online)

Overlapping events, defined as clumps are relevant to the study of interac-
tions caused by cell-cell contact, as presented in Fig. 3. Given certain circum-
stances, cells have been shown to align their microtubules and drastically change
their direction of movement [7]. The contact observed in certain clumps suggest
an alteration of the migration patterns of the cells involved. This type of interac-
tion was measured first in [12], where cell-cell contact was shown to be influential
in the movement of cells.

Fig. 3. Representation of clumps in control and mutant experiments. Both datasets
present overlapping events, where clumps are formed. The detail of two frames from
Fig. 2 is shown, highlighting clumps in both types of experiment.

3 Methods

Macrosight [12] is a framework for the analysis of moving macrophages capable
of segmenting the two layers of fluorescence in the dataset presented previously,
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and apply the keyhole tracking algorithm inside the PhagoSight framework [13]
on the centroids of the segmented nuclei.

Figure 4 shows an illustration of the flow of information in macrosight. Each
track generated Tr contains information on the (i) position xt at a given time
frame t, (ii) track identifier r, (iii) velocity vt, and whether the cell is part of a
clump.

Fig. 4. Illustration of part of the macrosight framework. (a) Represents the original
image sequences. The two levels of fluorescence are segmented in (b) based on a hys-
teresis threshold where the levels are selected by the [14] algorithm. The segmentation
of the red channel provides the positions necessary to produce the tracks (d) of the
cells using the keyhole tracking algorithm [13]. Finally, the tracks’ information is com-
bined with the clump information from the segmented green channel to allow analysis
of movement based on contact events (e).

Each clump can be uniquely identified through a code c(r, q), where r > q
indicate that at a certain time frame t, tracks Tr and Tq belong in the same
clump. This allows for each interaction to be analysed. Several tracks can come
together into a single clump, thus the clump codes evolve. Figure 5 represents
the evolution of a given track T2 and its involvement in two different clumps.

Fig. 5. Illustration of clump codes to the different time frames for a particular track
T2. The horizontal axis represents the time, and the detail of five frames is presented
to illustrate the evolution of track T2 as it interacts with other cells. In (a) and (e),
track T2 is not in contact with any other cell, thus no clump is present. (b) Represents
the moment when T2 and T1 start interacting in clump 2001. Following in (c), tracks
T3 and T5 become present in the clump, thus the clump code changes to 5003002001.
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3.1 Movement Analysis Experiments

The events of interest in this paper consist of analysing cell-cell contact events
of two cells. The change of direction θx ∈ (−π, π) is calculated by taking the
positions of the tracks Tr and Tq up to S frames prior the first contact at time
frame tk0 , as well as the positions up to S frames after the last time frame of
contact tkc

. The time in clump TC = tkc
− tk0 refers to the number of frames

the two tracks interact in a given instance of the clump, and it is not taken into
consideration for the calculation of angle θx. A diagram of the calculation of θx
is provided in Fig. 6, where the positions on the image x = (x, y) get translated
and rotated into new frame of reference (x′, y′).

Fig. 6. Illustration of direction change (θx) measurement. Three markers represent
different positions of a given track. The markers are (◦) represents S frames before
contact; (�) represents the starting instant of the clump; and (∗) represents the position
where the experiment is finalised. Notice the translation and rotation into the new
frame of reference (x′, y′).

3.2 Selection of Experiments

All available datasets were segmented and tracked. The tracks’ information was
searched to find types of clumps which fulfil the criteria: (i) only two cells
interacting; (ii) full interaction, where at least one of the cells would enter
and exit the clump; and (iii) immediate reaction, with a value of S ranging
from 3 to 5.

The changing direction angles, θx, for each case were calculated, recording
the time in clump TC and change of direction. It is worth noting that a single
clump could provide more than one experiment in different time spans, as the
two interacting tracks could interact with each other back and forth.

4 Results

After the processes of segmentation, tracking, and selection of suitable experi-
ments, twenty four control and thirty nine mutant cases were selected for anal-
ysis. Table 1 shows the number of cases per dataset selected, it is worth noting
the different numbers of experiments fitting the criteria between datasets.
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Table 1. Number of suitable experiments per dataset. Notice that not all datasets
provided the same number of experiments for the analysis, as one or more of the
selecting criteria would not be fulfilled. Also, the mutant datasets 01,02 and 09 did not
provide any suitable experiments due to clumps always involving more than two cells.

Dataset ID n experiments Dataset ID n experiments
CONTROL01 14 MUTANT03 10 MUTANT07 3
CONTROL02 4 MUTANT04 2 MUTANT08 2
CONTROL04 4 MUTANT05 2 MUTANT10 4
CONTROL05 2 MUTANT06 9 MUTANT11 7

TOTAL 24 TOTAL 39

The resulting tracks representing changes of direction are shown in Fig. 7 for
(a) control and (b) mutant. Differences can be observed in the displacement of
the cells towards and from the centre, in the horizontal direction x′.

Boxplots showing the change of direction angle θx, time in clump TC and dis-
tances from the centre in the x′ are presented in Fig. 8. Notice that in Fig. 8(a),
the angle θx for mutant experiments appear to be distributed with more cases
towards the lower angles, or a smaller change of direction after the contact.
However, on its own, this measurement did not provide a statistically signifi-
cant difference. The data points where θx < 90 were chosen, as seen in Fig. 9. A
t-test was calculated between the remaining angles showing statistical signifi-
cance (p = 0.03 < 0.05).

Fig. 7. Comparison of aligned tracks for (a) Control and (b) Mutants experiments.
Refer to Fig. 6 on how to read this figure.
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Fig. 8. Comparison of relevant variables between Control (blue) and Mutant (red)
experiments. (a) Change of direction angle, θx, coming from Fig. 7. (b) Time in clump
TC in frames. Finally, (c) shows the distances to the centre. (Color figure online)

Fig. 9. Change of direction differences between Control (blue) and Mutant (red) exper-
iments for angles under 90◦. After observation of Fig. 7(a), the smaller angles show a
significant difference between the control and mutant experiments. (Color figure online)

5 Discussion

The previous work presented in [12] presented a novel framework for the analysis
of macrophages migration in a controlled environment. In this work, the frame-
work was extensively used in different datasets comparing control and mutant
cells. While some of the calculations still did not provide a statistically signif-
icant difference between control and mutant cells, some insights were found.
Apart from the qualitative differences between the measurements presented it
can be noted, as seen in Fig. 9, there is a difference between control and mutant
experiments in cells that do not change direction drastically. Future work will
improve on the number of variables collected from the tracking.
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Abstract. Segmentation of medical images is typically one of the first
and most critical steps in medical image analysis. Manual segmentation
of volumetric images is labour-intensive and prone to error. Automated
segmentation of images mitigates such issues. Here, we compare the more
conventional registration-based multi-atlas segmentation technique with
recent deep-learning approaches. Previously, 2D U-Nets have commonly
been thought of as more appealing than their 3D versions; however, recent
advances in GPU processing power, memory, and availability have enabled
deeper 3D networks with larger input sizes. We evaluate methods by com-
paring automated liver segmentations with gold standard manual anno-
tations, in volumetric MRI images. Specifically, 20 expert-labelled ground
truth liver labels were compared with their automated counterparts. The
data used is from a liver cancer study, HepaT1ca, and as such, presents
an opportunity to work with a varied and challenging dataset, consist-
ing of subjects with large anatomical variations responding from differ-
ent tumours and resections. Deep-learning methods (3D and 2D U-Nets)
proved to be significantly more effective at obtaining an accurate delin-
eation of the liver than the multi-atlas implementation. 3D U-Net was the
most successful of the methods, achieving a median Dice score of 0.970. 2D
U-Net and multi-atlas based segmentation achieved median Dice scores of
0.957 and 0.931, respectively. Multi-atlas segmentation tended to overes-
timate total liver volume when compared with the ground truth, while U-
Net approaches tended to slightly underestimate the liver volume. Both U-
Net approaches were also much quicker, taking around one minute, com-
pared with close to one hour for the multi-atlas approach.

Keywords: Deep learning · Multi-atlas segmentation · Biomedical
image segmentation

1 Introduction

Over the last few decades, the rapid development of non-invasive imaging tech-
nologies has given rise to large amounts of data; analysis of such large datasets
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has become an increasingly complex task for clinicians. For example, in abdom-
inal magnetic resonance imaging (MRI), image segmentation can be used for
measuring and visualising internal structures, analysing changes, surgical plan-
ning, and extracting quantitative metrics. The high variability of location, size,
and shape of abdominal organs makes segmentation a challenging problem. Seg-
mentation of medical images is often one of the first and most critical steps in
medical image analysis. Manual segmentation of volumetric medical images is a
labour-intensive task that is prone to inter-rater and intra-rater variability. There
is a need to automate the process to increase both efficiency and reproducibility
and decrease subjectivity. Developing a robust automated segmentation method
using deep learning has been an area of intense research in recent years [1].

Popular automated segmentation techniques include: using statistical mod-
els [2], image registration, classical machine learning algorithms [3] and, most
recently, deep learning. Statistical models and classical machine learning algo-
rithms do not generalise as well. Classical machine learning algorithms require
careful feature engineering which is a time consuming and complex process.
In this paper we compare ‘feature engineering free’ state-of-the-art multi-atlas
based segmentation to recent deep-learning approaches.

Multi-atlas segmentation (MAS) was first introduced and popularised by
Rohlfing et al. in 2004 [4]. Since then, substantial progress has been made [5].
MAS is a process that warps a number an expert-labelled atlas images (the
moving images) into the coordinate space of a target image, via non-linear
image registration. The iterative process of image registration involves optimis-
ing some similarity metric, such as cross-correlation, between the warped and
target image by means of deformation of the ‘moving’ image [5]. Atlas labels are
then propagated onto the target image and fused together in a way that can use
the relationship between the target image and registered atlases, alongside the
propagated labels [6]. MAS has the ability to capture anatomical variation much
better than a model-based average or registration to one chosen case [4]. MAS
is a computationally intensive process and has consequently grown in popularity
due to an increase in computational resources [5].

Deep learning refers to neural networks with numerous layers that are capa-
ble of automatically extracting features [1]. This self-learning capability has a
significant advantage over traditional machine learning algorithms, namely that
features do not have to be hand-crafted. Deep learning has been applied to
numerous fields [1]; image analysis tasks, such as object recognition, is one such.
Convolutional neural networks (CNNs) were first introduced in 1989 [7] but have
only recently become popular after a breakthrough in 2012 [9], along with rapid
increases in GPU power, memory and accessibility. CNNs are currently by far
the most popular approach for image analysis tasks [8].

Advancements in algorithms, and GPU technology, along with increased
availability of training sets, has enabled larger, more robust networks. CNNs
can automatically learn representations of image data with increasing levels of
abstraction via convolutional layers [1]. These convolutional layers drastically
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reduce the number of parameters, when compared with traditional ‘fully con-
nected’ neural networks, as weights are shared among convolutional layers [9].

U-Net was first introduced in 2015 by Ronneberger et al. as a deep CNN
architecture geared towards biomedical image segmentation [10]. U-Net is a
development of the fully convolutional network architecture [11]. A contract-
ing encoder, which analyses the full image, is followed by an expanding decoder
to provide the final segmentation; shallower layers in the network capture local
information while deeper layers, whose retrospective field is much larger, capture
global information [10]. The expanding decoder aims to recover a full-resolution
pixel-to-pixel label map, from the different feature maps created in the contract-
ing layers. Previously, 2D U-Net architectures have been thought of as more
appealing than their 3D versions due to limitations in computational cost and
GPU memory [12]. This said, current advancements in GPU memory and acces-
sibility (cloud services such as Amazon Web Services) has enabled deeper 3D
networks, with larger input sizes.

Here we compare the performance of a state-of-the-art multi-atlas segmen-
tation approach with more recent 2D and 3D U-Net approaches. We evaluate
the performance of each method by comparing manual ground truth liver labels
with their automated counterparts, in challenging volumetric MRI images. Seg-
menting the liver is a process often used in surgical planning [13].

2 Materials

Data for the evaluation of methods was from ‘HepaT1ca’ a liver cancer study.
T1-weighted 3D-SPGR images of the abdomen were collected according to the
HepaT1ca study protocol [14]. HepaT1ca data implies working with a varied
and challenging dataset, consisting of subjects with large anatomical variations
responding from different tumours and resections. The different segmentation
methods should ideally be robust to such dramatic changes between different
images, and complicates both testing and training.

Fig. 1. Example 2D slice from a volumetric MRI image in the dataset with the corre-
sponding liver label.
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135 livers were labelled by a trained analyst. Subjects in the dataset have
various tumours and resections of different shapes and sizes. The dataset was
split into: 115 training cases and 20 test cases (Fig. 1).

3 Methods

3.1 Multi-atlas Segmentation Method

For the multi-atlas segmentation, 45 subjects were chosen at random from the
‘training’ set. A number of random atlases were used in order to capture anatom-
ical variation within a population (one of the underlying principles of MAS). For
each subject in the test set, the 45 random atlases were non-linearly registered
to the test image.

The registration step was divided into two parts: affine registration (scaling,
translation, rotation and shear mapping), followed by non-linear registration.
We used the affine transform from ANTs (advanced normalisation tools) pack-
age [15]. We chose the DEEDS (dense displacement sampling) algorithm [16]
for the non-linear part. DEEDS has been shown to yield the best registration
performance in abdominal imaging [17], when compared with other common
registration algorithms. Image grids are represented as a minimum spanning
tree; a global optimum of the cost function is found using discrete optimisation.
After all of the atlases (and their corresponding labels) had been registered to
the target image, we used STEPS [6], as a template selection and label fusion
algorithm, to produce the final liver segmentation.

3.2 Deep Learning Segmentation Methods

For the deep learning methods, we used slightly different model architectures
for the 3D and 2D U-Net implementations. Figure 2 illustrates architecture of
the 2D U-Net implementation; an expansion of the network previously used for
quantitative liver segmentation [18].

Fig. 2. Architecture of the extended 2D U-Net method used in the comparison
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Like the original 2D U-Net, our implementation has a contracting and
expanding path. The input size of the network is a 288 × 224 image with 1
channel (black and white image). Images were padded to ensure the output size
of feature maps were the same size as the input image. We used batch normal-
isation (BN), after each convolution, to improve performance and stability of
the network [19]. BN was followed by a rectified linear unit (ReLu) activation
function. As suggested in [20], in the contracting path we doubled the number
of channels, prior to max pooling, to avoid any bottlenecks in the network. We
also applied this same principle in the expanding path. An addition of two max
pooling (downsampling) layers, that further reduce the dimensionality of the
image, resulted in better localisation, and as such, improve final segmentation
performance of the network.

The 3D U-Net implementation was essentially identical to the 2D network,
but with 3D operations instead, e.g. a 3 × 3 × 3 convolution instead of a 3 × 3
convolution. The input size to the network was 224 × 192 × 64 voxels. We also
used one fewer max pooling layer; the lowest resolution/ highest dimensional
representation of an image was 14 × 12 × 4. This allowed for better depth local-
isation. If we still had 2 additional max pooling layers there would only have
been 2 layers in the depth dimension.

Each model was implemented using the Keras framework, with Tensorflow
as the backend.

Pre-processing. Each image underwent some pre-processing before being fed
into the network. First, we applied 3 rounds of N4 Bias Field Correction [21]
to remove any image contrast variations due to magnetic field inhomogeneity.
All intensity values were then normalised between a standard reference scale
(between 0 and 100). We also winsorised images, by thresholding the maximum
intensity value to the 98th percentile; a heuristic that gives a reasonable balance
between the reduction of high signal artefacts and image contrast.

For the 2D U-Net network, volumes were split into their respective 2D slices
in the axial plane. Slices could then be reassembled into their respective volumes
after a liver segmentation had been predicted by the network.

Training and Data Augmentation. Both networks were trained on NVIDIA
Tesla V100 GPUs for 100 epochs, with a learning rate of 0.00005. We used a
batch size of 10 and 1 for the 2D and 3D networks, respectively. During training
we employed strategies to prevent overfitting; an important process that ensures
that true features of images are learnt, instead of specific features that only exist
in the training set. In addition to batch normalisation, when training the 2D
network, slices were randomly shuffled between all subjects and batches for each
epoch. Batch order was also randomized during each epoch when training the
3D network. Anatomically plausible data augmentation was applied ‘on-the-fly’
to further reduce the risk of overfitting. We applied small affine transformations
with 5 degrees of rotation, 10% scaling and 10% translation. Both networks
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used Adam optimisation [22] with binary cross-entropy as the loss function.
Each network took around 6 h to train.

After each network was trained, liver masks were predicted for each volumet-
ric image in the test set.

3.3 Evaluation

Methods were evaluated by comparing the automated liver segmentations, pro-
duced by the automated segmentation methods, with the expert-labelled ground
truth image. The first comparison metric we used was the Dice overlap score.

Dice =
(2 × ∑

(X ∩ Y ))
(
∑

X +
∑

Y )
(1)

Dice measures the number of voxels that overlap between the ground truth
segmentation (X) and the automated segmentation (Y). A score of 1 represents
a perfect overlap between two 3D segmentations, while 0 represents no overlap
between segmentations. In addition to Dice, we also measured performance by
calculating the percentage difference in volume between the ground truth and
automated segmentations. This highlighted if methods tended to underestimate
or overestimate total liver volume.

dV =
V 2 − V 1

V 1
× 100 (2)

V1 represents the liver volume of the ground truth segmentation. V2 repre-
sents the liver volume of the automated segmentation. The time taken for each
segmentation method to run was also recorded for each test image.

We then used a paired t-test, to evaluate the differences in mean and variance
between Dice metrics and volume percentage differences, between the segmen-
tations produced by each method.

4 Results

Figure 3 shows a boxplot of the Dice overlap scores between the automated liver
segmentations and ground truth annotations, for all images in the test set.

The multi-atlas approach was found to perform significantly worse than
both the 3D U-Net (t = 3.397, p = 0.003)1 and 2D U-Net (t = 2.628, p = 0.017)2

approaches, while between the U-Net approaches, the 3D version slightly out-
performs the 2D version (t = 2.016, p = 0.051) (Fig. 4).

Figures 5 and 6 show examples of a single slice from different volumetric
images, their corresponding automated liver segmentations and the ground truth
liver segmentations. Figure 5 shows a more challenging case in the test set,
whereby the subject has had a previous liver resection and is missing a sub-
stantial part of the liver. Figure 6 highlights an image with an exemplar liver.
1 (t = 4.886, p= 0.0001) excluding the MAS outlier.
2 (t = 3.499, p= 0.003) excluding the MAS outlier.
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Fig. 3. Boxplot of dice scores for each segmentation method. The box extends from
the lower to upper quartile values of the data, with a line at the median. The whiskers
extend from the box to show the range of the data. Flier points are those past the end
of the whiskers. The outlier seen in the multi-atlas dice scores is 3.8 standard deviations
away from the mean.

Fig. 4. Numerical values from the dice scores

The multi-atlas approach tended to overestimate the overall volume of
the liver. The percentage differences in volume, of the automated multi-atlas
segmentations with the ground truth, were significantly different than differ-
ences in volume for the 2D U-Net (t = 3.432, p = 0.003)3 and the 3D U-Net
(t = 3.812, p = 0.001)4. The 3D U-Net tended to underestimate the volume

3 (t = 4.906, p = 0.0001) excluding the MAS outlier.
4 (t = 5.381, p = 0.00004) excluding the MAS outlier.
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Fig. 5. A more challenging case for the automated techniques. (A) 3D U-Net, (B) 2D
U-Net, (C) Multi-atlas, (D) Manual annotation.

Fig. 6. A case with an exemplar liver. (A) 3D U-Net, (B) 2D U-Net, (C) Multi-atlas,
(D) Manual annotation.

(median = −3.01%) more the then 2D U-Net (median =−0.15%). The distri-
butions in volume differences between the 2D U-Net and 3D U-Net are different
(t = 3.824, p = 0.001).

The multi-atlas based approach took close to 1 h to compute a liver segmen-
tation. The deep-learning based approaches, once trained, took around 1 min to
compute a liver segmentation (Fig. 7).
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Fig. 7. Boxplot of the percentage differences in volumes for all test cases for each
segmentation method. The box extends from the lower to upper quartile values of the
data, with a line at the median. The whiskers extend from the box to show the range
of the data. Flier points are those past the end of the whiskers. The outlier seen in the
multi-atlas volume percentage difference scores is 3.8 standard deviations away from
the mean.

5 Discussion

Both deep learning models significantly outperformed the multi-atlas based app-
roach, with the 3D U-Net achieving slightly better performance, in terms of over-
lap with the ground truth, than the 2D U-Net. This could be due to spatial encod-
ing in the 3D U-Net; inputs to the 2D network are completely independent slices
that have no information about where, within the volume, the slice was located.

A disadvantage of fully convolutional 3D networks is that they have much
larger computational cost and GPU memory requirements. Previously, this has
limited the depth of a network and the filters’ field-of-view, two key factors
for performance gains, resulting in better performance from 2D networks. More
complex network architectures have been developed to avoid some of these draw-
backs by using 2D networks with encoded spatial information [12]. However,
recently state-of-the-art GPUs are now easily accessible on Cloud services, such
as Amazon Web Services, and have increasingly larger amounts of GPU pro-
cessing power and memory, allowing for deeper networks and larger inputs. We
believe utilising these state-of-the-art GPUs was a contributing factor to the
superior performance from the 3D network. We did not have to employ patch-
based methods in order to effectively use a 3D network. Input images were only
slightly downsampled (to around 90% of the original dimension) to fit the 3D
model in GPU memory. This slight downsampling could be a reason why the 3D
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U-Net underestimated liver volume more than the 2D U-Net. 2D U-Nets could
be more useful for automated liver volumetry; however, this does not mean 2D
U-Nets are the best for other applications such as surgical planning and extract-
ing quantitative metrics.

The deep learning approaches were several orders of magnitude faster than
the multi-atlas based approach. Although, in a clinical workflow for fully-
automated segmentation, this may not be a limiting factor, faster segmentation
time does provide significant advantages when analysing larger datasets. Inter-
observer variability is a factor to consider when assessing the performance of
an automated segmentation. However, here ground-truth delineations were pro-
vided by a single annotater which was appropriate given the tests were of how
close the methods resembled the annotations they were trained on.

When using the multi-atlas segmentation method, we saw a much larger
variation in segmentation accuracy when compared with the deep learning
approaches (Fig. 3). The probabilistic multi-atlas approach did not generalize
well when compared with the deep learning approaches, this could be due to
insensitivity to biologically-relevant variance (as seen in Fig. 5). Variance could
be more apparent in this dataset due to a larger variation in liver shapes and sizes
between subjects, from tumours and previous liver resections. That being said,
although not studied in depth here, the number of tumours within a liver did not
seem to alter the segmentation performance of any of the automated techniques.
There are more advance atlas selection techniques [23] which could reduce the
variance; however, it does not alleviate the computational time drawback of a
multi-atlas technique.

In conclusion, the U-Net approaches were much more effective at automated
liver delineation (once trained), both in terms of time and accuracy, than the
multi-atlas segmentation approach.
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Abstract. Optical Coherence Tomography (OCT) is commonly used to
visualise tissue composition of the retina. Previously, deep learning has
been used to analyse OCT images to automatically classify scans by the
disease they display, however classification often requires downsampling
to much lower dimensions. Downsampling often loses important features
that may contain useful information. In this paper, a method is proposed
which incorporates DAISY descriptors as ‘intelligent downsampling’. By
avoiding random downsampling, we are able to keep more of the useful
information to achieve more accurate results. The proposed method is
tested on a publicly available dataset of OCT images, from patients with
diabetic macula edema, drusen, and choroidal neovascularisation, as well
as healthy patients. The method achieves an accuracy of 76.6% and an
AUC of 0.935, this is an improvement to a previously used method which
uses InceptionV3 with an accuracy of 67.8% and AUC of 0.912. This
shows that DAISY descriptors do provide good representations of the
image and can be used as an alternative to downsampling.

Keywords: DAISY descriptors · Deep learning · Retina · OCT · GRU

1 Introduction

Optical Coherence Tomography (OCT) is an imaging method commonly used to
analyse tissue composition [1]. It has recently been shown that deep learning has
the ability to detect several retinal diseases from OCT images [6,10]. One chal-
lenge encountered when analysing OCT data is the high resolution of the scans,
passing these images straight to a deep learning network often results in an out
of memory error. Current methods often require downsampling to much lower
resolutions to make computation practical. Conventional downsampling methods
often lose important features [7]. Previous methods often focus on making the
image appear similar to a human observer, who may rely on different features
to those which a computer may recognise. The method proposed here incorpo-
rates DAISY image descriptors to greatly reduce image dimension, followed by
c© Springer Nature Switzerland AG 2020
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a three layer Gated Recurrent Unit (GRU) network [5] to classify the images
according to disease (see Fig. 1). The use of image descriptors provides a data
efficient alternative to downsampling and allows us to use more of the useful
information contained in each image. The aim of this study is to demonstrate
that DAISY descriptors can successfully represent images, acting as ‘intelligent
downsampling’, we aim to demonstrate that the method is a viable alternative
to downsampling.

We demonstrated the method on a publicly available dataset of OCT scans
[10]. The OCT images are split into four groups; normal, drusen, choroidal neo-
vascularisation (CNV), and diabetic macular edema (DME). The normal group
have no visible disease from the OCT scan and are classed as being healthy.
The drusen group have small lipid deposits in the macula, which are commonly
found in older people. Patients with drusen are more likely to develop age related
macular degeneration (AMD) in the future [12] AMD is a leading cause of vision
loss in older patients and greatly affects daily activities. The CNV group have
signs of CNV which is indicative of wet AMD [12], this is when new blood vessels
begin to form in the choroid [9]. CNV can often lead to blindness, although there
are some treatments options available [3]. The final group consists of patients
with DME. DME is a common result of diabetic retinopathy and causes vision
problems in patients with diabetes [2].

Out of 
memory

Downsample

Daisy descriptors

Input image

Traditional classification 
network

eg. Inception V3

Three layer GRU network

CNV

Out of memory 
error

Traditional method

Proposed method

Fig. 1. The proposed framework aims to utilise DAISY descriptors as ‘intelligent down-
sampling’, followed by a GRU network to classify the images from the descriptors.
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2 Methods

The method is extendible to many different types of images, here demonstrate
the method using OCT, which has been likened to ultrasound, using light instead
of sound to produce a cross-sectional view of tissue composition [1]. Often OCT
images are combined to produce a 3D representation of the tissue. OCT is com-
monly used to image the back of the eye (fundus) to diagnose eye disease.

2.1 Dataset

The data consists of OCT images, collected by Shiley Eye Institute and made
publicly available [10]. In this dataset, a single OCT B-scan made up each image.
Examples of OCT images are shown (see Fig. 3), depicting the 4 ocular diseases
contained in this dataset. The original dataset contains 108,314 training images
from 4,686 patients and 1,000 validation images from a separate 663 patients,
split into 4 groups according to the disease type they display. In this preliminary
work, we used a subset of this data to save time, 20,020 images were used for
training, 4,112 images for validation, and the original 1,000 images were used
for testing (Fig. 2). Original images ranged in size from 512× 496 to 1536 × 496.
Images were first rescaled to 1500 × 1000 pixels, as all images must be the same
size in this method.

Fig. 2. Visual representation of the dataflow.

2.2 DAISY

DAISY is a method of image description which is similar to SIFT but is much
faster to compute, due to it’s implementation of Gaussian kernels. DAISY has
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Fig. 3. Examples from each of the four groups included in the dataset. Arrows indicate
areas highlighting the identified pathology.

previously been used for both classification [11] and matching problems [13,14].
DAISY takes a greyscale image as an input, I, and creates orientation maps
using the gradient norm, GO, for a specified number of directions, where O is
the direction of the gradient. The orientation maps are calculated as:

GO = max

(
0,

∂I

∂O

)
.

Gaussian kernels are then used to produce convolved orientation maps. The
use of the Gaussian kernel in the convolutions makes the computation fast and
efficient. Large Gaussian kernels can be calculated efficiently using many convo-
lutions from much smaller kernels. For Σ1 < Σ2:

GΣ2
O = GΣ2 ∗ max

(
0,

∂I

∂O

)
= GΣ ∗ GΣ1 ∗ max

(
0,

∂I

∂O

)
= GΣ ∗ GΣ1

O ,

using Σ =
√

Σ2
2 − Σ2

1 [14].
At each pixel location, DAISY produces a vector of values obtained from the

convolved orientation maps. The final output is a 3D tensor representation of the
image, which is smaller than the original image. DAISY hyperparameters can
be chosen to produce either sparse or dense descriptions of images, DAISY is
mainly used for dense description as it is efficient compared to similar methods,
such as SIFT and GLOH [14]. A visual representation of DAISY descriptors is
displayed on an example image (Fig. 4).
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Fig. 4. Visual representation of DAISY descriptors on an example image. The DAISY
hyperparameters were chosen to produce a sparse representation to clearly display the
rings in DAISY. Each descriptor consists of a centre ring, 8 middle rings, and 8 outer
rings, each with 8 directions. The output of the DAISY descriptors algorithm shown
here is a 4× 6× 136 tensor of descriptors. This example shows a sparse representation
to highlight how DAISY describes the images.

2.3 Classification Network

The classification network consists of a 3 layer GRU network [4]. GRU networks
are a recurrent neural network, which uses gated units to control the flow of
information, update and reset gates. GRU has been shown to perform better
than older recurrent units such as tanh and is at least as good as LSTM [5].

This network was trained using Keras 2.2.4 on an Ubuntu 18.04 machine
with a Titan X 12 GB GPU and 32 GB of memory. Training was performed for
500 epochs of 200 steps each using the Nesterov Adam optimiser, batch size was
set to 32, with categorical cross-entropy used as the loss function. Parametric
Rectified Linear Unit (PReLU) was used as the activation function for the hidden
GRU layers and Softmax was used in the output layer. Early stopping with a
patience of 10 epochs was used to prevent overfitting, model checkpoints were
used to select the best classification model, based on the loss in the validation
dataset.

2.4 Model Performance

Model performance was assessed using loss, accuracy, and the Area Under the
receiver operating Curve (AUC), with categorical cross-entropy used as the loss
function. The dataset included a testing dataset with patients independent to
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those in the training and validation dataset [10]. The model was assessed on this
testing dataset, with bootstrapping used to construct confidence intervals.

3 Results

3.1 Training and Validation

The output of the DAISY algorithm was a 16 × 24 × 200 tensor which is a
suitable size for computation. This took an average of 4.9 s per image to produce,
training the deep learning model then took 29 s per epoch. The model was trained
until convergence (see Fig. 5), at this point the best model based on validation
accuracy was chosen. In the training dataset we achieved an overall accuracy
of 93.7% and AUC of 0.9358, in the validation dataset accuracy was 76.5% and
AUC was 0.9359.

(a) Categorical cross-entropy loss (b) Categorical accuracy

(c) AUC

Fig. 5. Model performance at each epoch in the testing and validation datasets, for
loss 5(a), accuracy 5(b), and AUC 5(c). After around 90 epochs, model performance
appears to have converged and no further epochs were required.
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3.2 Testing Dataset Performance

Bootstrapping [8] was performed on 1,000 samples, the median values and 95%
confidence intervals were 77.1% (74.3%, 79.7%) for accuracy and 0.928 (0.928,
0.929) for AUC. Bootstrapping required no further model training and was very
quick to calculate confidence intervals.

3.3 Comparisons

To assess the usefulness of our method, we compared our results to results using
Inception V3, which has previously been used on the full dataset [10]. To provide
a fair comparison we use exactly the same conditions as before, only changing
the network itself. The results are presented in Table 1.

Table 1. Our method shows improved performance over the previously used Inception
V3 network. All performance measures show improved performance, with the exception
of loss in the testing dataset which showed a non-statistically significant improvement.
Confidence intervals were calculated using a 1000 iteration bootstrap procedure.

Method Measure Training Validation Testing (95% confidence interval)

Inception V3 Loss 0.901 0.830 0.729 (0.668, 0.790)

Accuracy 62.4% 68.1% 67.8% (65.1, 70.9)

AUC 0.705 0.709 0.912 (0.912, 0.914)

Our method Loss 0.433 0.347 0.614 (0.559, 0.677)

Accuracy 83.7% 86.3% 76.6% (74.0, 79.1)

AUC 0.918 0.918 0.935 (0.935, 0.936)

4 Discussion and Conclusions

This paper has briefly outlined a two-stage method which combines DAISY
descriptors with a deep learning network. This has provided a more data effi-
cient alternative to downsampling. On an example dataset of OCT images, the
two-stage method achieved an overall multi-class accuracy of 76.6%, an improve-
ment over a previously used method. With large volumes of high dimensional
OCT images, the proposed method has given a quick method of classifying dis-
ease type. Acting as a type of ‘intelligent downsampling’, DAISY descriptors
have enabled our method to maintain more of the information contained within
images, while only using a three layer recurrent neural network. In future this
method can provide a better alternative to random downsampling.

The main limitation of this study is that DAISY descriptors give a 3D output,
there are very few pretrained deep neural networks for 3D data such as those
for 2D images. Model performance is expected to greatly increase with further
exploration of the classification network.
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Abstract. The segmentation of Left Ventricle (LV) is currently carried out manu-
ally by the experts, and the automation of this process has proved challenging due
to the presence of speckle noise and the inherently poor quality of the ultrasound
images. This study aims to evaluate the performance of different state-of-the-art
Convolutional Neural Network (CNN) segmentation models to segment the LV
endocardium in echocardiography images automatically. Those adopted methods
include U-Net, SegNet, and fully convolutional DenseNets (FC-DenseNet). The
prediction outputs of the models are used to assess the performance of the CNN
models by comparing the automated results against the expert annotations (as the
gold standard). Results reveal that the U-Net model outperforms other models by
achieving an average Dice coefficient of 0.93 ± 0.04, and Hausdorff distance of
4.52 ± 0.90.

Keywords: Deep learning · Segmentation · Echocardiography

1 Introduction

To evaluate the cardiac function in 2D ultrasound images, quantification of the LV
shape and deformation is crucial, and this relies on the accurate segmentation of the
LV contour in end-diastolic (ED) and end-systolic frames [1, 2]. Currently, the manual
segmentation of the LV has the following problems such as, it needs to be performed
only by an experienced clinician, the annotation suffers from inter-and intra-observer
variability, and it should be repeated for each patient. Consequently, it is a tedious and
time-costing task. Therefore, the automatic segmentation methods have been proposed
to resolve this issue that can lead to increase patient throughput and can reduce the
inter-user discrepancy.

There are many proposed methods for 2D LV segmentation. Recently deep CNN has
shown very promising results for image segmentation [8, 9, 11].

This study aims to adapt and evaluate the performance of different state-of-the-art
deep learning semantic segmentation methods to segment the LV border on 2D echocar-
diography images automatically. The rest of the paper is structured as follows. In Sect. 2,
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the dataset and the several neural networks models are described. In Sect. 3, evaluation
measures of the performance and accuracy of the neural network are addressed. Exper-
imental results and discussion are presented in Sect. 4. Finally, conclusion and future
work are provided in Sect. 5.

2 Methodology

2.1 Dataset

The study population consisted of 61 patients (30 males), with a mean age of 64 ± 11,
who were recruited from patients who had undergone echocardiography with Imperial
College Healthcare NHS Trust. Only patients in sinus rhythm were included. No other
exclusion criteria were applied. The study was approved by the local ethics committee
and written informed consent was obtained.

Each patient underwent standard Transthoracic echocardiography using a commer-
cially available ultrasoundmachine (Philips iE33, Philips Healthcare, UK), and by expe-
rienced echocardiographers. Apical 4-chamber views were obtained in the left lateral
decubitus position as per standard clinical guidelines [3].

All recordings were obtained with a constant image resolution of 480 × 640 pixels.
The operators performing the exam were advised to optimise the images as would typi-
cally be done in clinical practice. The acquisition period was 10 s to make sure at least
three cardiac cycles were present in all cine loops. To take into account, the potential
influence of the probe placement (the angle of insonation) on the measurements, the
entire process was conducted three times, with the probe removed from the chest and
then placed back on the chest optimally between each recording. A total of three 10-s
2D cine loops was, therefore, acquired for each patient. The images were stored digitally
for subsequent offline analysis.

To obtain the gold-standard (ground-truth) measurements, one accredited and expe-
rienced cardiology expert manually traced the LV borders. Where the operator judged
a beat to be of extremely low quality, the beast was declared invalid, and no annota-
tion was made. We developed a custom-made program which closely replicated the
interface of echo hardware. The expert visually inspected the cine loops by controlled
animation of the loops using arrow keys and manually traced the LV borders using a
trackball for the end-diastolic and end-systolic frames. Three heartbeats (6manual traces
for end-diastolic and end-systolic frames) were measured within each cine loop. Out of
1098 available frames (6 patients × 3 positions × 3 heartbeats × 2 ED/ES frames), a
total of 992 frames were annotated. To investigate the inter-observer variability, a sec-
ond operator repeated the LV tracing on 992 frames, blinded to the judgment of the
first operator. A typical 2D 4-chamber view is shown in Fig. 1, where the locations of
manually segmented endocardium by the two operators are highlighted.

2.2 Neural Network for Semantic Segmentation

All images were resized to a smaller dimension of 320 × 240 pixels for feeding into the
deep learning models. From the total of 992 images, 595 (60%) were randomly selected
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Fig. 1. An example 2D 4-chamber view. The blue and yellow curves represent the annotations
by Operator-A and Operator-B, respectively. (Color figure online)

for training, 20% of total data used for validation, and the remaining 20% was used for
testing.

Standard and well-established U-Net neural network architecture was firstly used
since this architecture is applicable to multiple medical image segmentation problems
[4]. The U-Net architecture comprises of three main steps such as down-sampling, up-
sampling steps and cross-over connections. During the down-sampling stage, the number
of features will increase gradually while during up-sampling stage the original image
resolution will recover. Also, cross-over connection is used by concatenating equally
size feature maps from down-sampling to the up-sampling to recover features that may
be lost during the down-sampling process.

Eachdown-sampling andup-samplinghasfive levels, and each level has twoconvolu-
tional layerswith the same number of kernels ranging from64 to 1024 from top to bottom
correspondingly. All convolutions kernels have a size of (3 × 3). For down-sampling
Max pooling with size (2 × 2) and equal strides was used.

In addition to the U-net, SegNet and FC-DenseNet models were also investigated.
The SegNet model contains an encoder stage, a corresponding decoder stage followed
by a pixel-wise classification layer. In SegNet model, to accomplish non-linear up-
sampling, the decoder performs pooling indices computed in the max-pooling step of
the corresponding encoder [5]. The number of kernels and kernel size was the same as
the U-Net model.

FC-DenseNet model is a relatively more recent model which consists of a down-
sampling and up-sampling path made of dense block. The down-sampling path is com-
posed of two Transitions Down (TD) while an up-sampling path is containing two
Transitions Up (TU). Before and after each dense block, there is concatenation and
skip connections (see Fig. 2). The connectivity pattern in the up-sampling is different
from the down-sampling path. In the down-sampling path, the input to a dense block is
concatenated with its output, leading to linear growth of the number of feature maps,
whereas in the up-sampling path, it is not [6].
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Fig. 2. Diagram of FC-DenseNet architecture for semantic segmentation [6].

All models produce the output with the same spatial size as the input image
(i.e., 320 × 240). Pytorch was used for the implementations [10], where Adam opti-
miser with 250 epochs and learning rate of 0.00001 were used for training the models.
The network weights are initialised randomly but differ in range depending on the size
of the previous layer [7]. Negative log-likelihood loss is used as the network’s objective
function. All computations were carried using an Nvidia GeForce GTX 1080 Ti GPU.

All models were trained separately and indecently using the annotations provided
by either of the operators, and following acronyms are used for the sake of simplicity:
GTOA and TOB as ground-truth segmentations provided by Operator-A and Operator-B,
respectively; POA and POB as Predicted LV borders by deep learning models trained
using GTOA and TOB.

3 Evaluation Measures

The Dice Coefficient (DC), Hausdorff distance (HD), and intersection-over-union (IoU)
also knownas the Jaccard indexwere employed to evaluate the performance and accuracy
of the CNNmodels in segmenting the LV region. The DC (1) was calculated to measure
the overlapping regions of the Predicted segmentation (P) and the ground truth (GT).
The range of DC is a value between 0 and 1, which 0 indicates there is not any overlap
between two sets of binary segmentation results while 1, indicates complete overlap.

DC = 2|P ∩ GT |
|P| + |GT | (1)
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Also, the HD was calculated using the following formula for the contour of segmen-
tation where, d(j, GT, P) is the distance from contour point j inGT to the closest contour
point in P. The number of pixels on the contour of GT and P specified with O and M
respectively.

HD = max
(
max j∈[0,O−1]d( j,GT, P),max j∈[0,M−1]d( j, P,GT )

)
(2)

Moreover, the IoU was calculated image-by-image between the Predicted segmen-
tation (IP) and the ground truth (GT). For a binary image (one foreground class, one
background class), IoU is defined for the ground truth and predicted segmentation GT
and IP as

I oU (GT, IP ) = |GT ∩ IP |
|GT ∪ IP | (3)

4 Experiment Results and Discussion

Figure 3 shows example outputs from the three models when trained using annotation
provided by Operator-A (i.e., GTOA). The contour of the predicted segmentation was
used to specify the LV endocardium border. The red, solid line represents the automated
results, while the green line represents the manual annotation.

As can be seen, the U-Net model achieved higher DC (0.98), higher IoU (0.99), and
lower HD (4.24) score. A visual inspection of the automatically detected LV border also
confirms this. The LV border obtained from the SegNet and FC-DenseNet models seems
to be less smooth compared to that in the U-Net model. However, all three models seem
to perform with reasonable accuracy.

U-Net SegNet FC-DenseNet
DC = 0.98 0.96 0.91
HD = 4.24 6 6.78
IoU = 0.99 0.98 0.96

Fig. 3. Typical outputs from U-Net, SegNet, and FC-DenseNet models. (Color figure online)

Figure 4 illustrates the results for a sample failed case, for which all three models
seem to struggle with the task of LV segmentation. By closer scrutiny of the echo images
for such cases, it is evident that the image quality tends to be lower due tomissing borders,
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U-Net SegNet FC-DenseNet
DC = 0.77 0.49 0.00
HD = 4.12 4.00 4.35
IoU = 0.96 0.94 0.91

Fig. 4. Failed case example outputs from U-Net, SegNet, and FC-DenseNet models.

presence of speckle noise or artefacts, and poor contrast between the myocardium and
the blood pool.

Table 1 provides the average Dice coefficient, Hausdorff distance, and Intersection-
over-Union for the three models, across all testing images (199 images). The U-Net
model, in comparison with the SegNet and FC-DenseNet models, achieved relatively
better performance. The average Hausdorff distance, however, was higher for the FC-
DenseNet, compared to the other two models.

Table 1. Comparison of evaluation measures of dice coefficient (DC), Hausdorff distance (HD),
and intersection-over-union (IoU) between the three examine models, expressed as mean ± SD.

Model DC HD IoU

U-Net 0.93 ± 0.04 4.52 ± 0.90 0.98 ± 0.01

SegNet 0.91 ± 0.06 4.65 ± 0.89 0.98 ± 0.01

FC-DenseNet 0.84 ± 0.11 5.05 ± 0.69 0.96 ± 0.02

For each image, there were four assessments of the LV border; two human and two
automated (trained by the annotation of either of human operators). As shown in Table 2,
the automated models perform similarly to human operators. The automated model
disagrees with the Operator-A, but so does the Operator-B. Since different experts make
different judgments, it is not possible for any automated model to agree with all experts.
However, it is desirable for the automated models do not have larger discrepancies when
compared with the performance of human judgments; that is, to behave approximately
as well as human operators.
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Table 2. Comparison of evaluation measures (Dice coefficient, Hausdorff distance, and
intersection-over-union) for the U-Net model between five possible scenarios.

Compared scenarios DC HD IoU

OA vs OB 0.88 ± 0.06 4.50 ± 0.87 0.83 ± 0.03

POA vs OA 0.93 ± 0.04 4.52 ± 0.90 0.98 ± 0.01

POA vs OB 0.89 ± 0.04 4.76 ± 0.91 0.97 ± 0.01

POB vs OB 0.91 ± 0.05 4.87 ± 0.85 0.98 ± 0.01

POB vs OA 0.89 ± 0.06 4.82 ± 0.82 0.98 ± 0.01

5 Conclusion and Future Work

The time-consuming and operator-dependent process of manual annotation of left ven-
tricle border on a 2D echocardiographic recording could be assisted by the automated
models that do not require human intervention. Our study investigated the feasibility of
such automated models which perform no worse than human experts.

The automated models demonstrate larger discrepancies with the gold-standard
annotations when encountered with the lower image qualities. This is potentially caused
by the lack of balanced data in terms of different image quality levels. Since the patient
data in our study was obtained by the expert echocardiographers, the distribution leans
more towards higher average and higher quality images. This may result in the model
forming a bias towards the more condensed quality-level images. Future investigations
will examine the correlation between the performance of the deep learning model and
the image qualities, as well as using more balanced datasets.

The patients were a convenience sample drawn from those attending a cardiology
outpatient clinic. They, therefore, may not be representative of patients who enter trials
with particular enrolment criteria or of inpatients or the general population. A further
investigation will look at a wide range of subjects in any cardiovascular disease setting.
The segmentation of other cardiac views, and using data acquired by various ultrasound
vendors can also be considered for a comprehensive examination of the deep learning
models in echocardiography.
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