
Generalized Property-Directed
Reachability for Hybrid Systems

Kohei Suenaga1,2(B) and Takuya Ishizawa1

1 Kyoto University, Kyoto, Japan
ksuenaga@gmail.com

2 JST PRESTO, Tokyo, Japan

Abstract. Generalized property-directed reachability (GPDR) belongs
to the family of the model-checking techniques called IC3/PDR. It has
been successfully applied to software verification; for example, it is the
core of Spacer, a state-of-the-art Horn-clause solver bundled with Z3.
However, it has yet to be applied to hybrid systems, which involve a
continuous evolution of values over time. As the first step towards GPDR-
based model checking for hybrid systems, this paper formalizes HGPDR,
an adaptation of GPDR to hybrid systems, and proves its soundness.
We also implemented a semi-automated proof-of-concept verifier, which
allows a user to provide hints to guide verification steps.

Keywords: Hybrid systems · Property-directed reachability · IC3 ·
Model checking · Verification

1 Introduction

A hybrid system is a dynamical system that exhibits both continuous-time
dynamics (called a flow) and discrete-time dynamics (called a jump). This com-
bination of flows and jumps is an essential feature of cyber-physical systems
(CPS), a physical system governed by software. In the modern world where
safety-critical CPS are prevalent, their correctness is an important issue.

Model checking [14,19] is an approach to guaranteeing hybrid system safety.
It tries to prove that a given hybrid system does not violate a specification by
abstracting its behavior and by exhaustively checking that the abstracted model
conforms to the specification.

In the area of software model checking, an algorithm called property-directed
reachability (PDR), also known as IC3, is attracting interest [5,7,12]. IC3/PDR
was initially proposed in the area of hardware verification; it was then trans-
ferred to software model checking by Cimatti et al. [10]. Its effectiveness for soft-
ware model checking is now widely appreciated. For example, the SMT solver
Z3 [29] comes with a Horn-clause solver Spacer [21] that uses PDR internally;
Horn-clause solving is one of the cutting-edge techniques to verify functional
programs [6,8,17] and programs with loops [6].

c© Springer Nature Switzerland AG 2020
D. Beyer and D. Zufferey (Eds.): VMCAI 2020, LNCS 11990, pp. 293–313, 2020.
https://doi.org/10.1007/978-3-030-39322-9_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-39322-9_14&domain=pdf
http://orcid.org/0000-0002-7466-8789
https://doi.org/10.1007/978-3-030-39322-9_14

294 K. Suenaga and T. Ishizawa

We propose a model checking method for hybrid automata [3] based on the
idea of PDR; the application of PDR to hybrid automata is less investigated com-
pared to its application to software systems. Concretely, we propose an adapta-
tion of a variant of PDR called generalized property-directed reachability (GPDR)
proposed by Hoder and Bjørner [20]. Unlike the original PDR, which is special-
ized to jump-only automata-based systems, GPDR is parametrized over a map
over predicates on states (i.e., a forward predicate transformer); the detail of
the underlying dynamic semantics of a verified system is encapsulated into the
forward predicate transformer. This generality of GDPR enables the application
of PDR to systems outside the scope of the original PDR by itself; for example,
Hoder et al. [20] show how to apply GPDR to programs with recursive function
calls.

An obvious challenge in an adaptation of GPDR to hybrid automata is how
to deal with flow dynamics that do not exist in software systems. To this end,
we extend the logic on which the forward predicate transformer is defined so
that it can express flow dynamics specified by an ordinary differential equation
(ODE). Our extension, inspired by the differential dynamic logic (dL) proposed
by Platzer [32], is to introduce continuous reachability predicates (CRP) of the
form 〈D | ϕI〉ϕ where D is an ODE and ϕI and ϕ are predicates. This CRP
is defined to hold under valuation σ if there is a continuous transition from σ
to certain valuation σ′ that satisfies the following conditions: (1) the continuous
transition is a solution of D, (2) the valuation σ′ makes ϕ true, and (3) ϕI is true
at every point on the continuous transition. With this extended logic, we define
a forward predicate transformer that faithfully encodes the behavior of a hybrid
automaton. We find that we can naturally extend GPDR to hybrid automata
by our predicate transformer.

We formalize our adaptation of GPDR to hybrid automata, which we call
HGPDR. In the formalization, we define a forward predicate transformer that
precisely expresses the behavior of hybrid automata [3] using dL. We prove the
soundness of HGPDR. We also describe our proof-of-concept implementation
of HGPDR and show how it verifies a simple hybrid automaton with human
intervention.

In order to make this paper self-contained, we detail GPDR for discrete-time
systems before describing our adaptation to hybrid automata. After fixing the
notations that we use in Sect. 2, we define a discrete-time transition system and
hybrid automata in Sect. 3. Section 4 then reviews the GPDR procedure. Section 5
presents HGPDR, our adaptation of GPDR to hybrid automata, and states the
soundness of the procedure. We describe a proof-of-concept implementation in
Sect. 6. After discussing related work in Sect. 7, we conclude in Sect. 8.

For readability, several definitions and proofs are presented in the appendices.

2 Preliminary

We write R for the set of reals. We fix a finite set V := {x1, . . . , xN} of variables.
We often use primed variables x′ and x′′. The prime notation also applies to a
set of variables; for example, we write V ′ for {x′

1, . . . , x
′
N}. We use metavariable

GPDR for Hybrid Systems 295

x for a finite sequence of variables. We write Fml for the set of quantifier-free
first-order formulas over V ∪V ′ ∪V ′′; its elements are ranged over by ϕ. We call
elements of the set Σ : =(V ∪ V ′ ∪ V ′′) → R a valuations; they are represented
by metavariable σ. We use the prime notation for valuations. For example, if
σ ∈ V → R, then we write σ′ for {x′

1 �→ σ(x1), . . . , x′
N �→ σ(xN)}. We write

σ[x �→ r] for the valuation obtained by updating the entry for x in σ with r. We
write σ |= ϕ if σ is a model of ϕ; σ �|= ϕ if σ |= ϕ does not hold; |= ϕ if σ |= ϕ
for any σ; and �|= ϕ if there exists σ such that σ �|= ϕ. We sometimes identify a
valuation σ with a logical formula

∧
x∈V x = σ(x).

3 State-Transition Systems and Verification Problem

We review the original GPDR for discrete-time systems [20] in Sect. 4 before
presenting our adaptation for hybrid systems in Sect. 5. This section defines the
models used in these explanations (Sects. 3.1 and 3.2) and formally states the
verification problem that we tackle (Sect. 3.3).

3.1 Discrete-Time State-Transition Systems (DTSTS)

We model a discrete-time program by a state-transition system.

Definition 3.1. A discrete-time state-transition system (DTSTS) is a tuple
〈Q, q0, ϕ0, δ〉. We use metavariable SD for DTSTS. Q = {q0, q1, q2, . . .} is a
set of locations. q0 is the initial location. ϕ0 is the formula that has to be satis-
fied by the initial valuation. δ ⊆ Q × Fml × Fml × Q is the transition relation.
We write 〈q, σ1〉 →δ 〈q′, σ2〉 if 〈q, ϕ, ϕc, q

′〉 ∈ δ where σ1 |= ϕ and σ1 ∪ σ′
2 |= ϕc;

we call relation →δ the jump transition. A run of a DTSTS 〈Q, q0, ϕ0, δ〉 is a
finite sequence

〈
q0, σ0

〉
,
〈
q1, σ1

〉
, . . . ,

〈
qN , σN

〉
where (1) q0 = q0, (2) σ0 |= ϕ0,

and (3)
〈
qi, σi

〉 →δ

〈
qi+1, σi+1

〉
for any i ∈ [0, N − 1].

〈q, ϕ, ϕc, q
′〉 ∈ δ intuitively means that, if the system is at the location q with

valuation σ1 and σ1 |= ϕ, then the system can make a transition to the location
q′ and change its valuation to σ′

2 such that σ1 ∪ σ′
2 |= ϕc. We call ϕ the guard

of the transition. ϕc is a predicate over V ∪ V ′ that defines the command of the
transition; it defines how the value of the variables may change in this transition.
The elements of V represent the values before the transition whereas those of
V ′ represent the values after the transition.

q0x ≥ 0 ∧ sum = 0 q1

x > 0 ∧ sum = sum+ x ∧ x = x − 1

x ≤ 0

Fig. 1. An example of DTSTS

296 K. Suenaga and T. Ishizawa

Example 3.2. Figure 1 is an example of a DTSTS that models a program
to compute the value of 1 + · · · + x; Q := {q0, q1} and ϕ0 := x ≥ 0 ∧
sum = 0. In the transition from q0 to q0, the guard is x > 0; the com-
mand is sum′ = sum + x ∧ x′ = x − 1. In the transition from q0 to q1,
the guard is x ≤ 0; the command is x′ = x ∧ sum′ = sum because this
transition does not change the value of x and sum. Therefore, the transition
relation δ =

{ 〈q0, x > 0, sum′ = sum + x ∧ x′ = x − 1, q0〉 , 〈q0, x ≤ 0, x′ =
x ∧ sum′ = sum, q1〉

}
. The finite sequence 〈q0, {x �→ 3, sum �→

0}〉, 〈q0, {x �→ 2, sum �→ 3}〉 , 〈q0, {x �→ 1, sum �→ 5}〉 , 〈q0, {x �→ 0, sum �→ 6}〉 ,
〈q1, {x �→ 0, sum �→ 6}〉 is a run of the DTSTS Fig. 1.

3.2 Hybrid Automaton (HA)

We model a hybrid system by a hybrid automaton (HA) [3]. We define an HA
as an extension of DTSTS as follows.

Definition 3.3. A hybrid automaton (HA) is a tuple 〈Q, q0, ϕ0, F, inv , δ〉. The
components Q, q0, ϕ0, and δ are the same as Definition 3.1. We use metavariable
SH for HA. F is a map from Q to ODE on V that specifies the flow dynamics
at each location; inv is a map from Q to Fml that specifies the stay condition1

at each state.

A state of a hybrid automaton is a tuple 〈q, σ〉. A run of 〈Q, q0, ϕ0, F, inv , δ〉
is a sequence of states 〈q0, σ0〉 〈q1, σ1〉 . . . 〈qn, σn〉 where σ0 |= ϕ0. The system
is allowed to make a transition from 〈qi, σi〉 to 〈qi+1, σi+1〉 if (1) σi reaches a
valuation σ′ along with the flow dynamics specified by F (qi), (2) inv(qi) holds
at every point on the flow, and (3) 〈qi, σ

′〉 can jump to 〈qi+1, σi+1〉 under the
transition relation δ. In order to define the set of runs formally, we need to define
the continuous-time dynamics that happens within each location.

Definition 3.4. Let D be an ordinary differential equation (ODE) on V and let
x1(t), . . . , xn(t) be a solution of D where t is the time. Let us write σ(t) for the
valuation {x1 �→ x1(t), . . . , xn �→ xn(t)}. We write σ→D,ϕσ′ if (1) σ = σ(0) and
(2) there exists t′ ≥ t such that σ′ = σ(t′) and σ(t′′) |= ϕ for any t′′ ∈ (0, t′]. We
call relation →D,ϕ the flow transition.

q0
ẋ = −y
ẏ = x
y ≥ 0

q1
ẋ = −y
ẏ = x
y ≤ 0

y ≤ 0

y ≥ 0

Fig. 2. An example of a hybrid
automaton.

Intuitively, the relation σ→D,ϕσ′ means that
there is a trajectory from the state represented
by σ to that represented by σ′ such that (1) the
trajectory is a solution of D and (2) ϕ holds
at any point on the trajectory. For example,
let D be ẋ = v, v̇ = 1, where x and v are
time-dependent variables; ẋ and v̇ are their time
derivative. The solution of D is v = t + v0 and

1 We use the word “stay condition” instead of the standard terminology “invariant”
following Kapur et al. [23].

GPDR for Hybrid Systems 297

x = t2

2 +v0t+x0 where t is the elapsed time, x0 is the initial value of x, and v0 is
the initial value of v. Therefore, {x �→ 0, v �→ 0} →D,true

{
x �→ 1

2 , v �→ 1
}

holds
because (x, v) = (1

2 , 1) is the state at t = 1 on the above solution with x0 = 0
and v0 = 0. {x �→ 0, v �→ 0} →D,x≥0

{
x �→ 1

2 , v �→ 1
}

also holds because the con-
dition x ≥ 0 continues to hold along with the trajectory from (x, v) = (0, 0) to
(1
2 , 1). However, {x �→ 0, v �→ 0} →D,x≥ 1

4

{
x �→ 1

2 , v �→ 1
}

does not hold because
the condition x ≥ 1

4 does not hold for the initial 1√
2

seconds in this trajectory.
Using this relation, we can define a run of an HA as follows.

Definition 3.5. A finite sequence
〈
q0, σ0

〉
,
〈
q1, σ1

〉
, . . . ,

〈
qN , σN

〉
is called a

run of an HA 〈Q, q0, ϕ0, F, inv , δ〉 if (1) q0 = q0, (2) σ0 |= ϕ0, (3) for
any i, if 0 ≤ i ≤ N − 2, there exists

〈
qi, ϕi, ϕ

i
c, q

i+1
〉 ∈ δ and σI such

that σi→F (qi),inv(qi)σ
I and σI |= ϕi and

〈
qi, σI

〉 →δ

〈
qi+1, σi+1

〉
, and (4)

σN−1→F (qN−1),inv(qN−1)σN .

Remark 3.6. This definition is more complicated than that of runs of DTSTS
because we need to treat the last transition from

〈
qN−1, σN−1

〉
to

〈
qN , σN

〉
dif-

ferently than the other transitions. Each transition from
〈
qi, σi

〉
to

〈
qi+1, σi+1

〉
,

if 0 ≤ i ≤ N − 2, is a flow transition followed by a jump transition; however, the
last transition consists only of a flow transition.

Example 3.7. Figure 2 shows a hybrid automaton with Q := {q0, q1} schemati-
cally. Each circle represents a location q; we write F (q) for the ODE associated
with each circle. Each edge between circles represents a transition; we present
the guard of the transition on each edge. We omit the ϕc part; it is assumed to
be the do-nothing command represented by ∧x∈V x′ = x.

Both locations are equipped with the same flow that is the anticlockwise
circle around the point (x, y) = (0, 0) on the xy plane. The system can stay at
q0 as long as y ≥ 0 and at q1 as long as y ≤ 0. y = 0 holds whenever a transition
is invoked. Indeed, for example, inv(q0) = y ≥ 0 and the guard from q0 to q1 is
y ≤ 0; therefore, when the transition is invoked, inv(q0) ∧ y ≤ 0 holds, which is
equivalent to y = 0.

Starting from the valuation σ0 := {x �→ 1, y �→ 0} at location q0, the system
reaches σ1 := {x �→ −1, y �→ 0} by the flow F (q0) along which inv(q0) ≡ y ≥ 0
continues to hold; then the transition from q0 to q1 is invoked. After that, the sys-
tem reaches σ2 := {x �→ 0, y �→ −1} by F (q1). Therefore, 〈q0, σ0〉 〈q1, σ1〉 〈q1, σ2〉
is a run of this HA.

3.3 Safety Verification Problem

Definition 3.8. We say that σ is reachable in DTSTS SD (resp., HA SH)
if there is a run of SD (resp., SH) that reaches 〈q, σ〉 for some q. A safety
verification problem (SVP) for a DTSTS 〈SD, ϕ〉 (resp., HA 〈SH , ϕ〉) is the
problem to decide whether σ′ |= ϕ holds for all the reachable valuation σ′ of the
given SD (resp., SH).

298 K. Suenaga and T. Ishizawa

If an SVP is affirmatively solved, then the system is said to be safe; otherwise,
the system is said to be unsafe. One of the major strategies for proving the safety
of a system is discovering its inductive invariant.

Definition 3.9. – Let 〈SD, ϕP 〉 be an SVP for DTSTS where SD =
〈Q, q0, ϕ0, δ〉. Then, a function R : Q → Fml is called an inductive invari-
ant if (1) |= ϕ0 =⇒ R(q0); (2) if σ |= R(q) and 〈q, σ〉 →δ 〈q′, σ′〉, then
σ′ |= R(q′); and (3) |= R(q) =⇒ ϕP for any q.

– Let 〈SH , ϕP 〉 be an SVP for HA where SH = 〈Q, q0, ϕ0, F, inv , δ〉. Then, a
function R : Q → Fml is called an inductive invariant if (1) |= ϕ0 =⇒ R(q0);
(2) if σ |= R(q) and 〈q, σ〉 →F (q),inv(q) 〈q′′, σ′′〉 and 〈q′′, σ′′〉 →δ 〈q′, σ′〉, then
σ′ |= R(q′); and (3) |= R(q) =⇒ ϕP for any q.

Unsafety can be proved by discovering a counterexample.

Definition 3.10. Define SD, ϕP , and SH as in Definition 3.9. A run
〈σ0, q0〉 . . . 〈σN , qN 〉 of SD (resp. SH) is called a counterexample to the SVP
〈SD, ϕP 〉 (resp. 〈SH , ϕP 〉) if σN |= ¬ϕP .

GPDR is a procedure that tries to find an inductive invariant or a counterex-
ample to a given SVP. SVP is in general undecidable. Therefore, the original
GPDR approach [20] and our extension with hybrid systems presented in Sect. 5
do not terminate for every input.

4 GPDR for DTSTS

Before presenting our extension of GPDR with hybrid systems, we present
the original GPDR procedure by Hoder and Bjørner [20] in this section. (The
GPDR presented here, however, is slightly modified from the original one; see
Remark 4.4.)

Given a safety verification problem 〈SD, ϕP 〉 where SD = 〈Q, q0, ϕ0, δ〉,
GPDR tries to find (1) an inductive invariant to prove the safety of SD, or
(2) a counterexample to refute the safety. To this end, GPDR (nondetermin-
istically) manipulates a data structure called configurations. A configuration is
either Valid, ModelM , or an expression of the form M || R0, . . . , RN ;N . We
explain each component of the expression M || R0, . . . , RN ;N in the following.
(Valid and ModelM are explained later.)

– R0, . . . , RN is a finite sequence of maps from Q to Fml (i.e., elements of Fml).
Each Ri is called a frame. The frames are updated during an execution of
GPDR so that Ri(qj) is an overapproximation of the states that are reachable
within i steps from the initial state in SD and whose location is qj .

– N is the index of the last frame.
– M is a finite sequence of the form 〈σi, qi, i〉 , 〈σi, qi, i + 1〉 , . . . , 〈σN , qN , N〉.

This sequence is a candidate partial counterexample that starts from the one
that is i-step reachable from the initial state and that ends up with a state
〈σN , qN 〉 such that σN |= ¬ϕP . Therefore, in order to prove the safety of SD,
a GPDR procedure needs to prove that 〈qi, σi〉 is unreachable within i steps
from an initial state.

GPDR for Hybrid Systems 299

In order to formalize the above intuition, GPDR uses a forward predicate
transformer determined by SD. In the following, we fix an SVP 〈SD, ϕP 〉.
Definition 4.1. F(R)(q′), where F is called the forward predicate transformer
determined by SD, is the following formula:

(q′ = q0 ∧ ϕ0) ∨
∨

(q,ϕ,ϕc,q′)∈δ

∃x′′.
(

[x′′/x]R(q)
∧ [x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc

)

,

where x′′ is the sequence x′′
1 , . . . , x′′

N .

Notice that F(λq.false) is equivalent to ϕ0. Intuitively, σ′ |= F(R)(q′) holds
if 〈q′, σ′〉 is an initial state (i.e., q′ = q0 and σ′ |= ϕ0) or 〈q′, σ′〉 is reachable
in 1-step transition from a state that satisfies R. The latter case is encoded by
the second disjunct of the above definition: The valuation σ′ satisfies the second
disjunct if there are q, ϕ, and ϕc such that (q, ϕ, ϕc, q

′) ∈ δ (i.e., q′ is 1-step after
q in δ) and there is a valuation σ such that σ |= R(q) ∧ ϕ (i.e., σ satisfies the
precondition R(q) and the guard ϕ) and σ′ is a result of executing command c
under σ.

The following lemma guarantees that F soundly approximates the transition
of an DTSTS.

Lemma 4.2. If σ1 |= R(q1) and 〈q1, σ1〉 →δ 〈q2, σ2〉, then σ2 |= F(R)(q2).

Proof. Assume σ1 |= R(q1) and 〈q1, σ1〉 →δ 〈q2, σ2〉. Then, by definition,
(q1, ϕ, ϕ′, q2) ∈ δ and σ1 |= ϕ and σ1 ∪ σ′

2 |= ϕc for some ϕ and ϕc.
σ′′

1 ∪ σ2 |= [x′′/x]R(q1) follows from σ1 |= R(q1). σ′′
1 ∪ σ2 |= [x′′/x]ϕ fol-

lows from σ1 |= ϕ. σ′′
1 ∪ σ2 |= [x/x′,x′′/x]ϕc follows from σ1 ∪ σ′

2 |= ϕc.
Therefore, σ′′

1 ∪ σ2 |= [x′′/x]R(q1) ∧ [x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc. Hence, we have
σ2 |= ∃x′′.[x′′/x]R(q) ∧ [x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc as required.

By using the forward predicate transformer F , we can formalize the intuition
about configuration M || R0, . . . , RN ;N explained so far as follows.

Definition 4.3. Let SD be 〈Q, q0, ϕ0, δ〉, F be the forward predicate transformer
determined by SD, and ϕP be the safety condition to be verified. A configura-
tion C is said to be consistent if it is (1) of the form Valid, (2) of the form
Model 〈σ, q0, 0〉 M , or (3) of the form M || R0, . . . , RN ;N that satisfies all of
the following conditions:

– (Con-A) R0(q0) = ϕ0 and R0(qi) = false if qi �= q0;
– (Con-B) |= Ri(q) =⇒ Ri+1(q) for any q;
– (Con-C) |= Ri(q) =⇒ ϕP for any q and i < N ;
– (Con-D) |= F(Ri)(q) =⇒ Ri+1(q) for any i < N and q;
– (Con-E) if 〈σ, q,N〉 ∈ M , then σ |= RN (q) ∧ ¬ϕP

2; and
– (Con-F) if 〈σ1, q1, i〉 , 〈σ2, q2, i + 1〉 ∈ M and i < N , then 〈q1, ϕ, ϕc, q2〉 ∈ δ

and σ1, σ
′
2 |= Ri(q1) ∧ ϕ ∧ ϕc.

If C is consistent, we write Con(C).

300 K. Suenaga and T. Ishizawa

Initialize R0 := (λq.false);N := 0
if ∀q ∈ Q. |= R0(q) =⇒ ϕP

Valid M || A Valid
if ∃i < N.∀q ∈ Q. |= Ri(q) =⇒ Ri−1(q)

Unfold M || A ∅ || A[RN+1 := λq.true;N := N + 1]
if ∀q ∈ Q. |= RN (q) =⇒ ϕP

Induction M || A ∅ || A[Rj := λq.Rj(q) ∧ R(q)]i+1
j=1

if ∀q ∈ Q. |= (λq.Ri(q) ∧ R(q))(q) =⇒ R(q)
Candidate ∅ || A σ, q, N A

if σ |= RN (q) ∧ ¬ϕP

Decide σ2, q2, i + 1 M || A σ1, q1, i σ2, q2, i + 1 M || A
if q1, ϕ, ϕc, q2 δ andσ1, σ2 |= Ri(q1) ∧ ϕ ∧ ϕc

Model σ, q0, 0 M || A Model σ, q0, 0 M

Conflict σ , q , i + 1 M || A ∅ || A[Rj ← λq.Rj(q) ∧ R(q)]i+1
j=1

if |= R(q) =⇒ ¬σ and∀q ∈ Q. |= (Ri)(q) =⇒ R(q)

Fig. 3. The rules for the original PDR. Recall that ¬σ′ in the rule Conflict denotes

the formula ¬
(∧

x∈V

x = σ′(x)

)
.

The GPDR procedure rewrites a configuration following the (nondeterminis-
tic) rewriting rules in Fig. 3. We add a brief explanation below; for more detailed
exposition, see [20]. Although the order of the applications of the rules in Fig. 3
is arbitrary, we fix one scenario of the rule applications in the following for
explanation.

1. The procedure initializes M to ∅, R0 to F(λq.false), and N to 0 (Initialize).
2. If there are a valuation σ and a location q such that σ |= RN (q) ∧ ¬ϕP

(Candidate), then the procedure adds 〈σ, q,N〉 to M . The condition σ |=
RN (q)∧¬ϕP guarantees that the state 〈q, σ〉 violates the safety condition ϕP ;
therefore, the candidate 〈σ, q,N〉 needs to be refuted. If not, then the frame
sequence is extended by setting N to N + 1 and RN+1 to λq.true (Unfold);
this is allowed since ∀q ∈ Q. |= RN (q) =⇒ ϕP in this case.

3. The discovered 〈q, σ〉 is backpropagated by successive applications of Decide:
In each application of Decide, for 〈q2, σ2, i + 1〉 in M , the procedure tries to
find σ and q such that 〈q1, ϕ, ϕc, q2〉 ∈ δ and σ1, σ

′
2 |= Ri(q1) ∧ ϕ ∧ ϕc where

σ′
2 is the valuation obtained by replacing the domain of σ2 with their primed

counterpart. These conditions in combination guarantee 〈q1, σ1〉 →δ 〈q2, σ2〉
and σ1 |= Ri(q1).
(a) If this backpropagation reaches R0 (the rule Model), then it reports the

trace of the backpropagation returning Model M .
(b) If it does not reach R0, in which case there exists i such that σ′∧F(Ri)(q′)

is not satisfiable, then we pick a frame R such that |= R(q′) =⇒ ¬σ′ and
|= F(Ri)(q) =⇒ R(q) for any q (the rule Conflict). Intuitively, R is a
frame that separates (1) the union of the initial states denoted by ϕ0 and
the states that are one-step reachable from a state denoted by Ri(q′) and

2 We hereafter write 〈σ, q, i〉 ∈ M to express that the element 〈σ, q, i〉 exists in the
sequence M although M is a sequence, not a set.

GPDR for Hybrid Systems 301

(2) the state denoted by 〈q′, σ′〉. In a GPDR term, R is a generalization
of ¬σ′. This formula is used to strengthen Rj for j ∈ {1, . . . , i + 1}.

4. The frame R obtained in the application of the rule Conflict is propa-
gated forward by applying the rule Induction. The condition ∀q ∈ Q. |=
F(λq.Ri(q) ∧ R(q))(q) =⇒ R(q) forces that R holds in the one-step transi-
tion from a states that satisfies Ri. If this condition holds, then R holds for
i + 1 steps (Theorem 4.5); therefore, we conjoin R to R1(q), . . . , Ri+1(q). In
order to maintain the consistency conditions (Con-E) and (Con-F), this rule
clears M to the empty set to keep its consistency to the updated frames.3

5. If ∀q ∈ Q. |= Ri(q) =⇒ Ri−1(q) for some i < N , then the verification
succeeds and Ri is an inductive invariant (Valid). If such i does not exist,
then we go back to Step 2.

Remark 4.4. One of the differences of the above GPDR from the original one [20]
is that ours deals with the locations of a given DTSTS explicitly. In the original
GPDR, information about locations are assumed to be encoded using a variable
that represents the program counter. Although such extension was proposed for
IC3 by Lange et al. [26], we are not aware of a variant of GPDR that treats
locations explicitly.

Soundness. We fix one DTSTS 〈Q, q0, ϕ0, δ〉 in this section. The correctness of
the GPDR procedure relies on the following lemmas.
Lemma 4.5. Con is invariant to any rule application of Fig. 3.

Theorem 4.6. If the GPDR procedure is started from the rule Initialize and
leads to Valid, then the system is safe. If the GPDR procedure is started from the
rule Initialize and leads to Model 〈σ0, q0, 0〉 . . . 〈σN , qN , N〉, then the system
is unsafe.

5 HGPDR

We now present our procedure HGPDR that is an adaptation of the original
GPDR to hybrid systems. An adaptation of GPDR to hybrid systems requires
the following two challenges to be addressed.
1. The original definition of F (Definition 4.1) captures only a discrete-time

transition. In our extension of GPDR, we need a forward predicate trans-
former that can mention a flow transition.

2. A run of an HA (Definition 3.5) differs from that of DTSTS in that its last
transition consists only of flow dynamics; see Remark 3.6.

In order to address the first challenge, we extend the logic on which F is
defined to be able to mention flow dynamics and define F on the extended
logic (Sect. 5.1). To address the second challenge, we extend the configuration
used by GPDR so that it carries an overapproximation of the states that are
reachable from the last frame by a flow transition; the GPDR procedure is also
extended to maintain this information correctly (Sect. 5.2).
3 We could filter M so that it is consistent for the updated frame. We instead discard

M here for simplicity.

302 K. Suenaga and T. Ishizawa

5.1 Extension of Forward Predicate Transformer

In order to extend F to accommodate flow dynamics, we extend the logic on
which F is defined with continuous reachability predicates (CRP) inspired by
the differential dynamic logic (dL) proposed by Platzer [33].

Definition 5.1. Let D be an ODE over Y := {y1, . . . , yk} ⊆ V . Let us write
σ for {y1 �→ e1, . . . , yk �→ ek} and σ′ for {y1 �→ e′

1, . . . , yk �→ e′
k}. We define a

predicate 〈D | ϕ〉ϕ′ by: σ |= 〈D | ϕ〉ϕ′ iff. ∃σ′.σ→D,ϕσ′ ∧ σ′ |= ϕ′. We call a
predicate of the form 〈D | ϕI〉ϕ a continuous reachability predicate (CRP).

Using the above predicate, we extend F as follows.

Definition 5.2. For an HA 〈Q, q0, ϕ0, F, inv , δ〉, the forward predicate trans-
former FH(R)(q′) is the following formula:

(q′ = q0 ∧ ϕ0)∨
∨

(q,ϕ,ϕc,q′)∈δ

∃x′′.
(

[x′′/x]R(q)
∧ 〈[x′′/x]F (q) | [x′′/x]inv(q)〉([x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc)

)

.

In the above definition, [x′′/x]F (q) is the ODE obtained by renaming the vari-
ables x that occur in ODE F (q) with x′′.

We also define predicate FC(R)(q′) as follows:

∃x′′.([x′′/x]R(q′) ∧ 〈[x′′/x]F (q′) | [x′′/x]inv(q′)〉x = x′′).

Intuitively, σ′ |= FH(ϕ)(q′) holds if either (1) 〈q′, σ′〉 is an initial state or (2) it
is reachable from R by a flow transition followed a jump transition. Similarly,
σ′ |= FC(R)(q′) holds if σ′ is reachable in a flow transition (not followed by
a jump transition) from a state denoted by R(q′). This definition of FH is an
extension of Definition 4.1 in that it encodes the “flow-transition” part of the
above intuition by the CRP. In the case of FC , the postcondition part of the
CRP is x = x′′ because we do not need a jump transition in this case.

Lemma 5.3. If σ1 |= R(q1) and σ1→F (q1),inv(q1)σ
I and

〈
q1, σ

I
〉 →δ 〈q2, σ2〉,

then σ2 |= FH(R)(q2).

Proof. Assume (1) σ1 |= R(q1), (2) σ1→F (q1),inv(q1)σ
I , and (3)

〈
q1, σ

I
〉 →δ

〈q2, σ2〉. Then, by definition, (4) (q1, ϕ, ϕc, q2) ∈ δ and (5) σI |= ϕ
and (6) σI ∪ σ′

2 |= ϕc for some ϕ and ϕc. We show ∃x′′. ([x′′/x]R(q)∧
〈[x′′/x]F (q) | [x′′/x]inv(q)〉([x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc)). (5) implies (7) σI ∪
σ′

2 |= ϕ. (6) and (7) imply (8) σI ′′ ∪ σ′
2 |= [x′′/x]ϕ ∧ [x′′/x]ϕc.

(2) implies (9) σ′′
1→[x′′/x]F (q1),[x

′′/x]inv(q1)σ
I ′′. Therefore, from (8) and (9),

we have (10) σ′′
1 ∪ σ2 |= 〈[x′′/x]F (q1) | [x′′/x]inv(q1)〉([x′′/x]ϕ ∧

[x′′/x,x/x′]ϕc). (Note that the variables in x′ appear only in ϕc.) σ′′
1 ∪ σ2 |=

[x′′/x]R(q1) follows from (1); therefore, we have σ′′
1 ∪ σ2 |= [x′′/x]R(q1) ∧

〈[x′′/x]F (q1) | [x′′/x]inv(q1)〉([x′′/x]ϕ ∧ [x′′/x,x/x′]ϕc). This implies
∃x′′. ([x′′/x]R(q) ∧ 〈[x′′/x]F (q) | [x′′/x]inv(q)〉([x′′/x]ϕ ∧ [x/x′,x′′/x]ϕc)) as
required.

GPDR for Hybrid Systems 303

Initialize R0 := H(λq.false);Rrem := λq.true;N := 0
if ∀q ∈ Q. |= R0(q) =⇒ ϕP

Valid M || A Valid
if ∃i < N.∀q ∈ Q. |= Ri(q) =⇒ Ri−1(q)

Unfold M || A ∅ || A[RN+1 := λq.true;Rrem := λq.true;N := N + 1]
if ∀q ∈ Q. |= Rrem(q) =⇒ ϕP

Induction M || A ∅ || A[Rj := λq.Rj(q) ∧ R(q)]i+1
j=1

if ∀q ∈ Q. |= H(λq.Ri(q) ∧ R(q))(q) =⇒ R(q)
Decide σ2, q2, i + 1 M || A σ1, q1, i σ2, q2, i + 1 M || A

if q1, ϕ, ϕc, q2 δ andσ1, σ2 |= Ri(q1) F (q1) | inv(q1) (ϕ ∧ ϕc)
Model σ, q0, 0 M || A Model σ, q0, 0 M

Conflict σ , q , i + 1 M || A ∅ || A[Rj := λq.Rj(q) ∧ R(q)]i+1
j=1

if |= R(q) =⇒ ¬σ and ∀q ∈ Q. |= H(Ri)(q) =⇒ R(q)
PropagateCont M || A M || A[Rrem := λq.Rrem(q) ∧ R(q)]

if ∀q ∈ Q. |= RN (q) ∨ C(RN)(q) =⇒ R(q)
CandidateCont ∅ || A σ, q, rem A

if σ |= Rrem(q) ∧ ¬ϕP

DecideCont σ2, q, rem A σ1, q, N σ2, q, rem A
if σ1, σ2 |= RN (q) F (q) | inv(q) (x = x)

ConflictCont σ , q , rem || A ∅ || A[Rrem := λq.Rrem(q) ∧ R(q)]
if R(q) =⇒ ¬σ , and |= RN (q) ∨ C(RN)(q) =⇒ R(q)

Fig. 4. The rules for HGPDR.

Lemma 5.4. If σ1 |= R(q1) and σ1→F (q1),inv(q1)σ2, then σ2 |= FC(R)(q1).

Proof. Almost the same argument as the proof of Lemma 5.3.

5.2 Extension of GPDR

We present our adaptation of GPDR for hybrid systems, which we call
HGPDR. Recall that the original GPDR in Sect. 4 maintains a configuration
of the form M || R0, . . . , RN ;N . HGPDR uses a configuration of the form
M || R0, . . . , RN ;Rrem ;N . In addition to the information in the original config-
urations, we add Rrem which we call remainder frame. Rrem overapproximates
the states that are reachable from RN within one flow transition.

Figure 4 presents the rules for HGPDR. The rules from Initialize to
Conflict are the same as Fig. 3 except that (1) Initialize and Unfold are
adapted so that they set the remainder frame to λq.true and (2) Candidate is
dropped. We explain the newly added rules.

– PropagateCont discovers a fact that holds in Rrem . The side condition
|= RN (q) ∨ FC(RN)(q) =⇒ R(q) for any q guarantees that R(q) is true at
the remainder frame; hence R is conjoined to Rrem .

– CandidateCont replaces Candidate in the original procedure. It tries to
find a candidate from the frame Rrem . The candidate 〈q, σ〉 found here is
added to M in the form 〈σ, q, rem〉 to denote that 〈q, σ〉 is found at Rrem .

– DecideCont propagates a counterexample 〈σ′, q′, rem〉 found at Rrem to the
previous frame RN . This rule computes the candidate to be added to M by
deciding σ ∪ σ′ |= RN (q) ∧ 〈F (q) | inv(q)〉(x = x′), which guarantees that σ
evolves to σ′ under the flow dynamics determined by F (q) and inv(q).

– Conflict uses FH instead of F in the original GPDR. As in the rule
Conflict in GPDR, the frame R in this rule is a generalization of ¬σ′

which is not backward reachable to Ri.

304 K. Suenaga and T. Ishizawa

– ConflictCont is the counterpart of Conflict for the frame Rrem . This
rule is the same as Conflict except that it uses FC instead of FH; hence,
R separates σ′ from both the states denoted by ϕ0 and the states that are
reachable from Ri in a flow transition (not followed by a jump transition).

5.3 Soundness

In order to prove the soundness of HGPDR, we adapt the definition of Con in
Definition 4.3 for HGPDR.

Definition 5.5. Let SH be 〈Q, q0, ϕ0, F, inv , δ〉, FH and FC be the forward pred-
icate transformers determined by SH , and ϕP be the safety condition to be veri-
fied. A configuration C is said to be consistent if it is Valid, Model 〈σ, q0, 0〉 M ,
or ConH(M || R0, . . . , RN ;Rrem ;N) that satisfies all of the following:

– (Con-A) R0(q0) = ϕ0 and R0(qi) = false if qi �= q0;
– (Con-B-1) |= Ri(q) =⇒ Ri+1(q) for any q and i < N ;
– (Con-B-2) |= RN (q) =⇒ Rrem(q) for any q;
– (Con-C) |= Ri(q) =⇒ ϕP if i < N ;
– (Con-D-1) |= FH(Ri)(q) =⇒ Ri+1(q) for any i < N and q;
– (Con-D-2) |= FC(RN)(q) =⇒ Rrem(q) for any q;
– (Con-E) if 〈σ, q, rem〉 ∈ M , then σ |= Rrem(q) ∧ ¬ϕP ;
– (Con-F-1) if 〈σ1, q1, i〉 , 〈σ2, q2, i + 1〉 ∈ M and i < N , then 〈q1, ϕ, ϕc, q2〉 ∈ δ

and σ1, σ
′
2 |= Ri(q1) ∧ ϕ ∧ ϕc; and

– (Con-F-2) if 〈σ1, q1, N〉 , 〈σ2, q2, rem〉 ∈ M , then 〈q1, ϕ, ϕc, q2〉 ∈ δ and
σ1, σ

′
2 |= Ri(q1) ∧ ϕ ∧ ϕc.

The soundness proof follows the same strategy as that of the original GPDR.

Lemma 5.6. ConH is invariant to any rule application of Fig. 4.

Theorem 5.7. If HGPDR is started from the rule Initialize and leads to
Valid, then the system is safe. If HGPDR is started from the rule Initialize
and leads to Model 〈σ0, q0, 0〉 . . . 〈σN , qN , N〉 〈σrem , qrem , rem〉, then the system
is unsafe.

5.4 Operational Presentation of HGPDR

The definition of HGPDR in Fig. 4 is declarative and nondeterministic. For the
sake of convenience of implementation, we derive an operational procedure from
HGPDR; we call the operational version DetHybridPDR, whose definition is
in Algorithm 1.

GPDR for Hybrid Systems 305

Input: Hybrid automaton SH := 〈Q, q0, ϕ0, F, inv , δ〉
Output: Model(M) if SH is unsafe; M is a witnessing trace. Valid(R) if SH is

safe; R is an inductive invariant.
// Initialize

1 N := 0; R0 := λq.(if q = q0 then ϕ0 else false)
2 R1 := true; Rrem := true; M := ∅
3 while true do
4 for q ∈ Q do
5 switch querySat(Rrem(q) ∧ ¬ϕP) do
6 case Sat(σ′) do

// CandidateCont

7 M := 〈q, σ, rem〉
8 switch RemoveTrace(M , R0, . . . , RN , Rrem , N) do
9 case Valid(R) do

10 return Valid(R)
11 case Cont(R0, . . . , RN , Rrem) do
12 M := ∅
13 Update R0, . . . , RN , Rrem to the returned frames

14 case Model(M) do
15 return Model(M)

16 end

17 case Unsat do
// Unfold

18 M := ∅; RN+1 := λq.true; Rrem := λq.true; N := N + 1

19 end

20 end

21 end

Algorithm 1. Definition of DetHybridPDR.

Discharging Verification Conditions. An implementation of HGPDR needs to
discharge verification conditions during verification. In addition to verification
conditions expressed as a satisfiability problem of a first-order predicate, which
can be discharged by a standard SMT solver, DetHybridPDR needs to dis-
charge conditions including a CRP predicate. Specifically, DetHybridPDR
needs to deal with the following three types of problems.

– Checking whether δ := ψ ∧ 〈D | ϕI〉(∧x∈V x = σ′(x)) is satisfiable or not
for given first-order predicates ψ and ϕI , an ODE D, and a valuation σ′.
DetHybridPDR needs to discharge this type of predicates when it decides
which of DecideCont and ConflictCont should be applied if the top of M
is 〈σ′, q′, rem〉. We use Algorithm 3 for discharging δ. This algorithm searches
for a valuation σi that witnesses the satisfiability of δ by using a time-inverted
simulation of D as follows. Concretely, this algorithm numerically simulates
D−1, the time-inverted ODE of D, starting from the point {x �→ σ′(x)}. If
it reaches a point σi that satisfies ψ and if all σi+1 . . . σ′ in the obtained
solution satisfy ϕI , then σi witnesses the satisfiability of δ. If such σi does

306 K. Suenaga and T. Ishizawa

Input: Hybrid automaton SH := 〈Q, q0, ϕ0, F, inv , δ〉; Trace of counterexamples M ; Frames
R0, . . . , RN , Rrem ; Natural number N .

Output:
1 while M 	= ∅ do
2 if M =

〈
q′, σ′, rem

〉
M ′ then

3 switch querySatC(RN (q′) ∧ 〈F (q′) | inv(q′)〉(x = σ′(x)) do
// DecideCont

4 case Sat(σ) do
5 M :=

〈
q′, σ, N

〉
M

// ConflictCont
6 case Unsat(R) do
7 M := ∅; Rrem := λq.Rrem(q) ∧ R(q)

// PropagateCont

8 for ψ ∈ Formulas(RN (q′)) do
9 switch querySatC(RN (q′) ∧ 〈F (q′) | inv(q′)〉¬ψ) do

10 case Unsat do
11 Rrem (q′) := Rrem(q′) ∧ ψ

12 end

13 end

14 end

15 else if M =
〈
q′, σ′, 0

〉
M ′ then

// Model
16 return Model(M)

17 else if M =
〈
q′, σ′, i

〉
M ′ and 0 < i 	= rem then

18 for
〈
q, ϕ, ϕc, q′〉 ∈ δ do

19 switch querySatC(Ri−1(q) ∧ 〈F (q) | inv(q)〉(ϕ ∧ ϕc ∧ x = σ′(x))) do
// Decide

20 case Sat(σ) do
21 M := 〈q, σ〉 M

// Conflict
22 case Unsat(R) do
23 for j ∈ [1, i + 1] do
24 Rj := λq.Rj(q) ∧ R(q); M := ∅;
25 end

// Induction

26 for i ∈ [1, N − 1], ψ ∈ Formulas(Ri(q
′)) do

27 switch querySatC(Ri(q
′) ∧ ψ ∧ 〈F (q′) | inv(q′)〉¬ψ) do

28 case Unsat do
29 Rj(q

′) := Rj(q
′) ∧ ψ for j ∈ [1, i + 1]

30 end

31 end

32 end

33 end

34 end

35 end
36 if There exists i such that ∀q. |= Ri+1(q) =⇒ Ri(q) then

// Valid
37 return Valid(Ri)

38 else
// Inductive invariant is not reached yet.

39 return Cont(R0, . . . , RN , Rrem)

40 end

Algorithm 2. Definition of RemoveTrace.

not exist but there is σi such that σi �|= ϕI , then ψ is not backward reachable
from σ′ and hence δ is unsatisfiable. In this case, Algorithm 3 needs to return
a predicate that can be used as ψ′ in the rule ConflictCont in Fig. 4.
Currently, we assume that the user provides this predicate. We expect that
we can help this step of discovering ψ′ by using techniques for analyzing

GPDR for Hybrid Systems 307

Input: Formula δ := ψ ∧ 〈D | ϕI〉(∧x∈V x = σ′(x)) to be discharged; Number T > 0.
Output: Sat(σi) if σi |= δ; Unsat(ψ′) if δ is unsatisfiable and ψ′ is a generalization of σ′;

aborts if satisfiability nor unsatisfiability is proved.
// D−1 is the time-inverted ODE of D. Therefore, p is the backward solution of D

from σ′.
1 D−1 := the ODE obtained by replacing all the occurrences of the variable t corresponding

to the time to −t and negating each time derivative;

2 Solve D−1 numerically from the initial point σ0 := σ′;
3 Let p := σ0σ1 . . . σT−1 be the solution obtained at the Step 2;

// i1 is set to ∞ if there is no such i.
4 i1 := the minimum i such that σj |= ϕI for any j < i and σi |= ψ;

// i2 is set to ∞ if there is no such i.
5 i2 := the minimum i such that σj |= ϕI for any j < i;
6 if i1 < ∞ then

// σi1 witnesses the satisfiability of δ.

7 return Sat(σi1)

8 else if i2 < ∞ then
// σi2 is the end point of the D−1 with the stay condition ϕI, but σi2 	|= ψ.

Therefore, ψ is not backward reachable from σ′ along with D. Currently, the
user needs to provide a predicate that can be used for further refinement.

9 Obtain ψ′ such that |= ∃x0.[x0/x]ψ ∧ 〈[x0/x]D | [x0/x]ϕI〉x0 = x =⇒ ψ′ and

σ′ 	|= ψ′ from the user;

10 return Unsat(ψ′)
11 end

// Cannot conclude neither satisfiability nor unsatisfiabililty.
12 abort

Algorithm 3. Algorithm for discharging δ := ψ ∧ 〈D | ϕI〉(∧x∈V x = σ′(x)).

continuous dynamics (e.g., automated synthesizer of barrier certificates [34]
and Flow* [9] in combination with Craig interpolant synthesis procedures [2,
31]). If neither holds, then we give up the verification by aborting; this may
happen if, for example, the value of T is too small.

– Checking whether δ′ := ψ ∧ 〈F (q) | inv(q)〉(ϕ ∧ ϕc ∧ x = σ′(x)) is satisfiable
or not. DetHybridPDR needs to solve this problem in the choice between
Decide and Conflict. This query is different from the previous case in that
the formula that appears after 〈F (q) | inv(q)〉 in δ′ is ϕ ∧ ϕc ∧ x = σ′(x),
not x = σ′(x); therefore, we cannot use numerical simulation to discharge
δ′. Although it is possible to adapt Algorithm 3 to maintain the sequence of
predicates α0α1 . . . αT−1 instead of valuations so that each αi becomes the
preimage of αi−1 by D, the preimage computation at each step is prohibitively
expensive. Instead, the current implementation restricts the input system so
that there exists at most one σ such that σ |= ϕ∧ϕc ∧x = σ′(x) for any σ′; if
this is met, then one can safely use Algorithm 3 for discharging δ′. Concretely,
we allow only ϕc that corresponds to the command whose syntax is given by
c:: = skip | x := r1x + r2 | x := r1x − r2 where skip is a command that does
nothing; r1 and r2 are real constants.

– Checking whether ϕ1 ∧ 〈D | ϕI〉¬ϕ2 is unsatisfiable. DetHybridPDR
needs to discharge this type of queries when it applies Induction or
PropagateCont. This case is different from the previous case in that (1)
DetHybridPDR may answer Otherwise without aborting the entire verifi-
cation if unsatisfiability nor satisfiability is proved, and (2) DetHybridPDR

308 K. Suenaga and T. Ishizawa

Input: Formula ϕ1 ∧ 〈ẋ = f (x) | ϕI〉¬ϕ2 to be discharged; Number r > 0.
Output: Unsat or Otherwise; if Unsat is returned then the input formula is

unsatisfiable.
1 if ϕ1 ∧ ϕ2 is satisfiable then
2 return Otherwise

3 end
4 Let dt be a fresh symbol;

// Checking ϕ1 is invariant throughout the dynamics determined by

ẋ = f (x) and |= ϕ1 =⇒ ¬ϕ2.

5 if r > dt > 0 ∧ ϕ1 ∧ ϕI ∧ ¬[x + f (x)dt/x]ϕ1 and ϕ1 ∧ ϕ2 are unsatisfiable then
6 return Unsat

7 end
// Checking ¬ϕ2 is invariant throughout in the dynamics determined

by ẋ = f (x) and |= ϕ1 =⇒ ¬ϕ2.

8 if r > dt > 0 ∧ ¬ϕ2 ∧ ϕI ∧ [x + f (x)dt/x]ϕ2 and ϕ1 ∧ ϕ2 are unsatisfiable then
9 return Unsat

10 end
11 return Otherwise

Algorithm 4. Algorithm for discharging ϕ1 ∧ 〈ẋ = f(x) | ϕI〉¬ϕ2.

does not need to return a generalization if the given predicate is unsatisfi-
able. We use Algorithm 4 to discharge this type of queries. This algorithm first
checks the satisfiability of ϕ1 ∧ ϕ2 in Step 1; if it is satisfiable, then so is the
entire formula. Then, Step 5 tries to prove that the entire formula is unsatis-
fiable by proving (1) ϕ1 is invariant with respect to the dynamics specified by
D and ϕI and (2) ϕ1 ∧ ϕ2 is unsatisfiable. In order to prove the former, the
algorithm tries the following sufficient condition: For any positive dt that is
smaller than a positive real number r, |= ϕi∧ϕI =⇒ [x+f(x)dt/x]ϕ1, where
D ≡ ẋ = f(x).4 Step 8 tries the same strategy but tries to prove that ¬ϕ2 is
invariant. If both attempts fail, then the algorithm returns Otherwise.5 This
algorithm could be further enhanced by incorporating automated invariant-
synthesis procedures [15,28,35]; exploration of this possibilities is left as
future work.

6 Proof-of-Concept Implementation

We implemented DetHybridPDR as a semi-automated verifier. We note that
the current implementation is intended to be a proof of concept; extensive exper-
iments are left as future work. The snapshot of the source code as of writing can
be found at https://github.com/ksuenaga/HybridPDR/tree/master/src.
4 This strategy is inspired by the previous work by one of the authors on nonstandard

programming [18,30,36,37].
5 If the flow specified by D is a linear or a polynomial, then we can apply the procedure

proposed by Liu et al. [28], which is proved to be sound and complete for such a
flow.

https://github.com/ksuenaga/HybridPDR/tree/master/src

GPDR for Hybrid Systems 309

The verifier takes a hybrid automaton SH specified with SpaceEx modeling
language [27], the initial location q0, the initial condition ϕ0, and the safety
condition ϕP as input; then, it applies DetHybridPDR to discover an inductive
invariant or a counterexample. The frontend of the verifier is implemented with
OCaml; in the backend, the verifier uses Z3 [29] and ODEPACK [1] to discharge
verification conditions.

As we mentioned in Sect. 5.4, when a candidate counterexample 〈q′, σ′, i + 1〉
turns out to be backward unreachable to Ri, then our verifier asks for a gen-
eralization of σ′ to the user; concretely, for example in an application of the
rule Conflict, the user is required to give ψ such that |= ψ =⇒ ¬σ′ and |=
(q, ϕ, ϕc, q

′) ∈ δ ∧ [x0/x]Ri(q) ∧ 〈[x0/x]F (q) | [x0/x]inv(q)〉[x0/x,x0/x](ϕ ∧
ϕc) =⇒ ψ and |= R0(q′) =⇒ ψ. Instead of throwing this query at the user in
this form, the verifier asks the following question in order to make this process
easier for the user for each (q, ϕ, ϕc, q

′) ∈ δ:

Pre:Ri(q); Flow:F (q); Stay:inv(q); Guard:ϕ; Cmd:ϕc; CE:σ′; Init:R0(q
′).

In applying ConflictCont, the verifier omits the fields Guard and Cmd.
We applied the verifier to the hybrid automaton in Fig. 2 with several initial

conditions and the safety condition ϕP := x ≤ 1. We remark that the outputs
from the verifier presented here are post-processed for readability. We explain
how verification is conducted in each setting; we write D for the ODE ẋ =
−y, ẏ = x.

– Initial condition x = 0 ∧ y = 0 at location q0: The verifier finds the inductive
invariant {q0 �→ x = 0 ∧ y = 0, q1 �→ x = 0 ∧ y = 0} after asking for proofs of
unsatisfiability to the user 5 times.

– Initial condition x ≤ 1
2 at location q0: The verifier finds a coun-

terexample {x �→ 0.490533, y �→ 1.93995}, from which the system reaches
{x �→ 2.00100, y �→ 0}. The verifier asks 5 questions, one of which is the fol-
lowing:

Pre: (x ≤ 1 ∧ y ≥ 0) ∨ x ≤ 0.5; Flow: D; Stay: y ≥ 0;
Guard: y ≤ 0; Cmd: skip; CE: {x �→ 0.998516; y �→ −1.889365};
Init: x ≤ 0.5.

Notice that the stay condition is y ≥ 0 and the guard is y ≤ 0; therefore
the predicate y = 0 holds when a jump transition happens. Since the flow
specified by D is an anticlockwise circle whose center is {x �→ 0, y �→ 0} with
the stay condition y ≥ 0, the states after the flow dynamics followed by a
jump transition is x ≤ 0.5 ∧ y = 0, which indeed does not intersect with
x = 0.998516 ∧ y = −1.889365. The verification proceeds by giving y ≥ 0 as
a generalization in this case.

– Initial condition 0 ≤ x ≤ 1
2 ∧ 0 ≤ y ≤ 1

2 at location q0: The verifier finds an
inductive invariant

R :=
{

q0 �→ (y = 0 ∧ 0 ≤ x ≤ 0.707107) ∨ (0 ≤ x ≤ 0.5 ∧ 0 ≤ y ≤ 0.5),
q1 �→ y = 0 ∧ −0.707107 ≤ x ≤ 0

}

310 K. Suenaga and T. Ishizawa

after asking for 8 generalizations to the user. This is indeed an inductive
invariant. Noting 0.707107 ≈ 1√

2
, we can confirm that (1) the states that are

reachable by flow dynamics followed by a jump transition is the set denoted
by R(q0); the same holds for the transition from R(q1); (2) it contains the
initial condition 0 ≤ x ≤ 0.5 ∧ 0 ≤ y ≤ 0.5 at location q0; and (3) it does not
intersect with the unsafe region x > 1. The following is one of the questions
that are asked by the verifier:

Pre: (y = 0 ∧ −0.707107 ≤ x ≤ 0) ∨ (0 ≤ x ≤ 0.5 ∧ 0 ≤ y ≤ 0.5);
Flow: D; Stay: y ≤ 0; CE: {x �→ 0.998516; y �→ −1.889365};
Init: false.

Instead of a precise overapproximation (x2 + y2 = 0.5 ∧ y ≤ 0) ∨ (0 ≤ x ≤
0.5 ∧ 0 ≤ y ≤ 0.5) of the reachable states, we give (−0.707107 ≤ y ≤ 0 ∧
−0.707107 ≤ x ≤ 0.707107) ∨ (0 ≤ x ≤ 0.5 ∧ 0 ≤ y ≤ 0.5), which progresses
the verification.

7 Related Work

Compared to its success in software verification [5,10,12,20,21], IC3/PDR for
hybrid systems is less investigated. HyComp [11,13] is a model checker that can
use several techniques (e.g., IC3, bounded model checking, and k-induction) in
its backend. Before verifying a hybrid system, HyComp discretizes its flows so
that the verification can be conducted using existing SMT solvers that do not
directly deal with continuous-time dynamics. Compared to HyComp, HGPDR
does not necessarily require prior discretization for verification. We are not aware
of an IC3/PDR-based model checking algorithm for hybrid systems that does
not require prior discretization.

Kindermann et al. [24,25] propose an application of PDR for a timed
system—a system that is equipped with clock variables; the flow dynamics of
a clock variable c is limited to ċ = 1. A clock variable may be also reset to a
constant in a jump transition. Kindermann et al. finitely abstract the state space
of clock variables by using region abstraction [38]. The abstracted system is then
verified using the standard PDR procedure. Later Isenberg et al. [22] propose
a method that abstracts clock variables by using zone abstraction [4]. They do
not deal with a hybrid system whose flow behavior at each location cannot be
described by ċ = 1; the system in Fig. 2 is out of the scope of their work.

Our continuous-reachability predicates (CRP) are inspired by Platzer’s
dL [33]. We may be able to use the theorem prover KeYmaera X for dL predi-
cates [16] for our purpose of discharging CRP.

8 Conclusion

We proposed an adaptation of GPDR to hybrid systems. For this adaptation, we
extended the logic on which the forward predicate transformer is defined with the

GPDR for Hybrid Systems 311

continuous reachability predicates 〈D | ϕI〉ϕ inspired by the differential dynamic
logic dL. The extended forward predicate transformer can precisely express the
behavior of hybrid systems. We formalized our procedure HGPDR and proved
its soundness. We also implemented it as a semi-automated procedure, which
proves the safety of a simple hybrid system in Fig. 2.

On top of the current proof-of-concept implementation, we plan to implement
a GPDR-based model checker for hybrid systems. We expect that we need to
improve the heuristic used in the application of the rule Induction, where we
currently check sufficient conditions of the verification condition. We are also
looking at automating part of the work currently done by human in verification;
this is essential when we apply our method to a system with complex continuous-
time dynamics.

Acknowledgements. We appreciate the comments from the anonymous reviewers,
John Toman, and Naoki Kobayashi. This work is partially supported by JST PRESTO
Grant Number JPMJPR15E5, JSPS KAKENHI Grant Number 19H04084, and JST
ERATO MMSD project.

References

1. Hindmarsh, A.C.: ODEPACK, a systematized collection of ODE solvers. In: Steple-
man, R.S., et al. (eds.) Scientific Computing, North-Holland, Amsterdam, vol. 1
of IMACS Transactions on Scientific Computation, pp. 55–64 (1983). http://www.
llnl.gov/CASC/nsde/pubs/u88007.pdf

2. Albarghouthi, A., McMillan, K.L.: Beautiful interpolants. In: Sharygina, N., Veith,
H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 313–329. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39799-8 22

3. Alur, R., Courcoubetis, C., Henzinger, T.A., Ho, P.-H.: Hybrid automata: an
algorithmic approach to the specification and verification of hybrid systems. In:
Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) HS 1991-1992. LNCS,
vol. 736, pp. 209–229. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-
57318-6 30

4. Behrmann, G., Bouyer, P., Larsen, K.G., Pelánek, R.: Lower and upper bounds in
zone-based abstractions of timed automata. STTT 8(3), 204–215 (2006)

5. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to induction-
guided abstraction-refinement (CTIGAR). In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 831–848. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9 55

6. Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn clause solvers for
program verification. In: Beklemishev, L.D., Blass, A., Dershowitz, N., Finkbeiner,
B., Schulte, W. (eds.) Fields of Logic and Computation II. LNCS, vol. 9300, pp.
24–51. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23534-9 2

7. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

8. Champion, A., Chiba, T., Kobayashi, N., Sato, R.: ICE-based refinement type
discovery for higher-order functional programs. In: Beyer, D., Huisman, M. (eds.)
TACAS 2018. LNCS, vol. 10805, pp. 365–384. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89960-2 20

http://www.llnl.gov/CASC/nsde/pubs/u88007.pdf
http://www.llnl.gov/CASC/nsde/pubs/u88007.pdf
https://doi.org/10.1007/978-3-642-39799-8_22
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/3-540-57318-6_30
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-23534-9_2
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-319-89960-2_20
https://doi.org/10.1007/978-3-319-89960-2_20

312 K. Suenaga and T. Ishizawa

9. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

10. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7 23

11. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Parameter synthesis with IC3. In:
Formal Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA,
October 20–23, 2013, pp. 165–168 (2013). http://ieeexplore.ieee.org/document/
6679406/

12. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 46–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8 4

13. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: HyComp: an SMT-based model
checker for hybrid systems. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS,
vol. 9035, pp. 52–67. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-46681-0 4

14. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cam-
bridge (1999)

15. Colón, M.A., Sankaranarayanan, S., Sipma, H.B.: Linear invariant generation using
non-linear constraint solving. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS,
vol. 2725, pp. 420–432. Springer, Heidelberg (2003). https://doi.org/10.1007/978-
3-540-45069-6 39

16. Fulton, N., Mitsch, S., Quesel, J.-D., Völp, M., Platzer, A.: KeYmaera X: an
axiomatic tactical theorem prover for hybrid systems. In: Felty, A.P., Middeldorp,
A. (eds.) CADE 2015. LNCS (LNAI), vol. 9195, pp. 527–538. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-21401-6 36

17. Hashimoto, K., Unno, H.: Refinement type inference via horn constraint optimiza-
tion. In: Blazy, S., Jensen, T. (eds.) SAS 2015. LNCS, vol. 9291, pp. 199–216.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48288-9 12

18. Hasuo, I., Suenaga, K.: Exercises in nonstandard static analysis of hybrid systems.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 462–478.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31424-7 34

19. Henzinger, T.A., Ho, P., Wong-Toi, H.: HYTECH: a model checker for hybrid
systems. STTT 1(1–2), 110–122 (1997). https://doi.org/10.1007/s100090050008

20. Hoder, K., Bjørner, N.: Generalized property directed reachability. In: Cimatti, A.,
Sebastiani, R. (eds.) SAT 2012. LNCS, vol. 7317, pp. 157–171. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31612-8 13

21. Hoder, K., Bjørner, N., de Moura, L.: μZ – an efficient engine for fixed points
with constraints. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol.
6806, pp. 457–462. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22110-1 36

22. Isenberg, T., Wehrheim, H.: Timed automata verification via IC3 with zones. In:
Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS, vol. 8829, pp. 203–218. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-11737-9 14

23. Kapur, A., Henzinger, T.A., Manna, Z., Pnueli, A.: Proving safety properties of
hybrid systems. In: Langmaack, H., de Roever, W.-P., Vytopil, J. (eds.) FTRTFT
1994. LNCS, vol. 863, pp. 431–454. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-58468-4 177

https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-31424-7_23
http://ieeexplore.ieee.org/document/6679406/
http://ieeexplore.ieee.org/document/6679406/
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-662-46681-0_4
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-540-45069-6_39
https://doi.org/10.1007/978-3-319-21401-6_36
https://doi.org/10.1007/978-3-662-48288-9_12
https://doi.org/10.1007/978-3-642-31424-7_34
https://doi.org/10.1007/s100090050008
https://doi.org/10.1007/978-3-642-31612-8_13
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-642-22110-1_36
https://doi.org/10.1007/978-3-319-11737-9_14
https://doi.org/10.1007/3-540-58468-4_177
https://doi.org/10.1007/3-540-58468-4_177

GPDR for Hybrid Systems 313

24. Kindermann, R.: SMT-based verification of timed systems and software. Ph.
D. thesis, Aalto University, Helsinki, Finland (2014). https://aaltodoc.aalto.fi/
handle/123456789/19852

25. Kindermann, R., Junttila, T., Niemelä, I.: SMT-based induction methods for
timed systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS,
vol. 7595, pp. 171–187. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33365-1 13

26. Lange, T., Neuhäußer, M.R., Noll, T.: IC3 software model checking on control flow
automata. In: Formal Methods in Computer-Aided Design, FMCAD 2015, Austin,
Texas, USA, September 27–30, 2015, pp. 97–104 (2015)

27. Lebeltel, O., Cotton, S., Frehse, G.: The SpaceEx modeling language (December
2010)

28. Liu, J., Zhan, N., Zhao, H.: Computing semi-algebraic invariants for polyno-
mial dynamical systems. In: Proceedings of the 11th International Conference
on Embedded Software, EMSOFT 2011, Part of the Seventh Embedded Systems
Week, ESWeek 2011, Taipei, Taiwan, October 9–14, 2011, pp. 97–106 (2011).
https://doi.org/10.1145/2038642.2038659

29. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

30. Nakamura, H., Kojima, K., Suenaga, K., Igarashi, A.: A nonstandard functional
programming language. In: Chang, B.-Y.E. (ed.) APLAS 2017. LNCS, vol. 10695,
pp. 514–533. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71237-
6 25

31. Okudono, T., Nishida, Y., Kojima, K., Suenaga, K., Kido, K., Hasuo, I.: Sharper
and simpler nonlinear interpolants for program verification. In: Chang, B.-Y.E.
(ed.) APLAS 2017. LNCS, vol. 10695, pp. 491–513. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-71237-6 24

32. Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reason. 41(2),
143–189 (2008). https://doi.org/10.1007/s10817-008-9103-8

33. Platzer, A.: Differential dynamic logics. KI 24(1), 75–77 (2010). https://doi.org/
10.1007/s13218-010-0014-6

34. Prajna, S., Jadbabaie, A.: Safety verification of hybrid systems using barrier certifi-
cates. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 477–492.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24743-2 32

35. Sankaranarayanan, S., Sipma, H., Manna, Z.: Non-linear loop invariant generation
using gröbner bases. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, POPL 2004, Venice, Italy, January
14–16, 2004, pp. 318–329 (2004). https://doi.org/10.1145/964001.964028

36. Suenaga, K., Hasuo, I.: Programming with infinitesimals: a While-language for
hybrid system modeling. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011.
LNCS, vol. 6756, pp. 392–403. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-22012-8 31

37. Suenaga, K., Sekine, H., Hasuo, I.: Hyperstream processing systems: nonstan-
dard modeling of continuous-time signals. In: The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2013,
Rome, Italy - January 23–25, 2013, pp. 417–430 (2013). https://doi.org/10.1145/
2429069.2429120

38. Wang, F.: Efficient verification of timed automata with bdd-like data structures.
STTT 6(1), 77–97 (2004). https://doi.org/10.1007/s10009-003-0135-4

https://aaltodoc.aalto.fi/handle/123456789/19852
https://aaltodoc.aalto.fi/handle/123456789/19852
https://doi.org/10.1007/978-3-642-33365-1_13
https://doi.org/10.1007/978-3-642-33365-1_13
https://doi.org/10.1145/2038642.2038659
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-319-71237-6_25
https://doi.org/10.1007/978-3-319-71237-6_25
https://doi.org/10.1007/978-3-319-71237-6_24
https://doi.org/10.1007/s10817-008-9103-8
https://doi.org/10.1007/s13218-010-0014-6
https://doi.org/10.1007/s13218-010-0014-6
https://doi.org/10.1007/978-3-540-24743-2_32
https://doi.org/10.1145/964001.964028
https://doi.org/10.1007/978-3-642-22012-8_31
https://doi.org/10.1007/978-3-642-22012-8_31
https://doi.org/10.1145/2429069.2429120
https://doi.org/10.1145/2429069.2429120
https://doi.org/10.1007/s10009-003-0135-4

	Generalized Property-Directed Reachability for Hybrid Systems
	1 Introduction
	2 Preliminary
	3 State-Transition Systems and Verification Problem
	3.1 Discrete-Time State-Transition Systems (DTSTS)
	3.2 Hybrid Automaton (HA)
	3.3 Safety Verification Problem

	4 GPDR for DTSTS
	5 HGPDR
	5.1 Extension of Forward Predicate Transformer
	5.2 Extension of GPDR
	5.3 Soundness
	5.4 Operational Presentation of HGPDR

	6 Proof-of-Concept Implementation
	7 Related Work
	8 Conclusion
	References

