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Abstract. Compiler optimizations may break or weaken the security
properties of a source program. This work develops a translation valida-
tion methodology for secure compilation. A security property is expressed
as an automaton operating over a bundle of program traces. A refinement
proof scheme derived from a property automaton guarantees that the
associated security property is preserved by a program transformation.
This generalizes known refinement methods that apply only to specific
security properties. In practice, the refinement relations (“security wit-
nesses”) are generated during compilation and validated independently
with a refinement checker. This process is illustrated for common opti-
mizations. Crucially, it is not necessary to formally verify the compiler
implementation, which is infeasible for production compilers.

1 Introduction

Optimizing compilers are used to improve the run time performance of soft-
ware programs. An optimization is correct if it preserves input-output behavior.
A number of approaches, including automated testing (cf. [13,28]), translation
validation (cf. [22,25,31]), and full mathematical proof (cf. [14]) have been devel-
oped to gain confidence in the correctness of compilation.

Correctness does not, however, guarantee the preservation of security prop-
erties. It is known that common optimizations may weaken or break security
properties that hold of a source program (cf. [10,12]). A secure compiler is one
that, in addition to being correct, also preserves security properties. This work
provides a methodology for formally establishing secure compilation.

int x := read_secret_key();
use(x);
x := 0; // clear secret data
rest_of_program();

int x := read_secret_key();
use(x);
skip; // dead store removed
rest_of_program();

Fig. 1. Information leakage through optimization. Source program on left, optimized
program on right.
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Figure 1 shows an instance of the dead store removal optimization. This opti-
mization eliminates stores (i.e., assignment statements) that have no effect on
the input-output behavior of the source program. If variable x is not referenced
in rest_of_program, the optimization correctly replaces x := 0 with skip. The
replacement, however, exposes the secret key stored in x to the rest of the pro-
gram, which may be vulnerable to an attack that leaks this secret, thus breaking
a vital security property of the source program.

Compiler directives can be used to prevent this optimization from taking
effect. Such fixes are unsatisfactory and brittle, however, as they assume that
programmers are aware of the potential security issue and understand enough
of a compiler’s workings to choose and correctly place the directives. Moreover,
the directives may not be portable across compilers [29].

It is far more robust to build security preservation into a compiler. The clas-
sical approach constructs a mathematical proof of secure compilation, applicable
to all source programs. This is highly challenging for at least two reasons. The
first is that of proof complexity. Past experience shows that such proofs can
take man-years of effort, even for compact, formally designed compilers such as
CompCert [4,14]. Constructing such proofs is entirely infeasible for production
compilers such as GCC or LLVM, which have millions of lines of code written in
hard-to-formalize languages such as C and C++. The second reason is that, unlike
correctness, secure compilation is not defined by a single property: each source
program may have its own notion of security. Even standard properties such as
non-interference and constant-time have subtle variants.

This work addresses both issues. To tackle the issue of proof complexity, we
turn to Translation Validation [25] (TV), where correctness is established at
compile time only for the program being compiled. We use a form of TV that we
call “witnessing” [21,26], where a compiler is designed to generate a proof (also
called a “certificate” or a “witness”) of property preservation. For correctness
properties, this proof takes the form of a refinement relation relating single traces
of source and target programs. For security preservation, it is necessary to have
refinement relations that relate “bundles” of k traces (k ≥ 1) from the source
and target programs.

To address the second issue, we show how to construct property-specific
refinement proof rules. A security property is defined as an automaton operat-
ing on trace bundles, a flexible formulation that encompasses standard security
properties such as non-interference and constant-time. The shape of the induced
refinement proof rule follows the structure of the property automaton.

Refinement rules are known for the important security properties of non-
interference [3,8,17] and constant-time execution [4]. We show that these rules
arise easily and directly from an automaton-based formulation. As automata
can express a large class of security properties, including those in the HyperLTL
logic [6], the ability to derive refinement proof rules from automata considerably
expands the reach of the refinement method.

We now discuss these contributions in more detail. We use a logic akin to
HyperLTL [6] to describe security hyperproperties [7,27], which are sets of sets
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of sequences. A security property ϕ is represented by a formula of the shape
Q1π1, . . . , Qkπk : κ(π1, . . . , πk), where the πi’s represent traces over an observa-
tion alphabet, the Qi’s stand for either existential or universal quantification,
and κ is a set of bundles of k program traces, represented by a Büchi automaton
Aκ whose language is the complement of κ. The structure of this automaton is
reflected in the derived refinement proof rule for ϕ.

A transformation from program S to program T preserves a security property
ϕ if every violation of ϕ by T has a matching violation of ϕ by S. Intuitively,
matching violations have the same inputs and are of the same type.

The first refinement scheme applies to purely universal properties, those of
the form ∀π1 . . . ∀πk : κ(π1, . . . , πk). The witness is a refinement relation between
the product transition systems Aκ × T k and Aκ × Sk. The second refinement
scheme applies to arbitrary properties (∀∃ alternation is used to express limits
on an attacker’s knowledge). Here, the witness is a pair of relations: one being
a refinement relation between Aκ × T k and Aκ × Sk, as before; the second
component is an input-preserving bisimulation relation between T and S.

We define refinement relations for several common compiler optimizations.
Those relations are logically simple, ensuring that their validity can be checked
automatically with SMT solvers. Crucially, the witnessing methodology does
not require one to verify either the compiler implementation or the proof gen-
erator, considerably reducing the size of the trusted code base and making the
methodology applicable to production compilers.

2 Example

To illustrate the approach, consider the following source program, S.

L1: int x := read_secret_input();
L2: int y := 42;
L3: int z := y - 41;
L4: x := x * (z - 1);
L5:

In this program, x stores the value of a secret input. As will be described in
Sect. 3.1, this program can be modeled as a transition system. The states of the
system can be considered to be pairs (α, �). The first component α : V → Int
is a partial assignment mapping variables in V = {x, y, z} to values in Int, the
set of values that a variable of type int can contain. The second component
� ∈ Loc = {L1, L2, L3, L4, L5} is a location in the program, indicating the next
instruction to be executed. In the initial state, α is empty and � points to location
L1. Transitions of the system update α according to the variable assignment
instructions, and � according to the control flow of the program.

To specify a notion of security for this program, two elements are neces-
sary: an attack model describing what an attacker is assumed to be capable of
observing (Sect. 3.2) and a security property over a set of program executions
(Sect. 4). Suppose that an attacker can see the state of the memory at the end
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of the program, represented by the final value of α, and the security property
expresses that for every two possible executions of the program, the final state of
the memory must be the same, regardless of the secret input, thus guaranteeing
that the secret does not leak. Unlike correctness properties, this is a two-trace
property, which can be written as a formula of the shape ∀π1, π2 : κ(π1, π2),
where κ(π1, π2) expresses that the memory at the end of the program is the
same for traces π1 and π2 (cf. Section 4). The negation of κ can then be trans-
lated into an automaton A that detects violations of this property.

It is not hard to see that the program satisfies the security property, since
y and z have constant values and at the end of the program x is 0. However,
it is important to make sure that this property is preserved after the compiler
performs optimizations that modify the source code. This can be done if the
compiler can provide a witness in the form of a refinement relation (Sect. 5).
Consider, for example, a compiler which performs constant folding, which sim-
plifies expressions that can be inferred to be constant at compile time. The
optimized program T would be:

L1: int x := read_secret_input();
L2: int y := 42;
L3: int z := 1;
L4: x := 0;
L5:

By taking the product of the automaton A with two copies of S or T (one for
each trace πi considered by κ), we obtain automata A × S2 and A × T 2 whose
language is the set of pairs of traces in each program that violates the property.
Since this set is empty for S, it should be empty for T as well, a fact which
can be certified by providing a refinement relation R between the state spaces
of A × T 2 and A × S2.

As the transformation considered here is very simple, the refinement relation
is simple as well: it relates configurations (q, t0, t1) and (p, s0, s1) of the two
spaces if the automaton states p, q are identical, corresponding program states
t0, s0 and t1, s1 are also identical (including program location), and the variables
in s0 and s1 have the constant values derived at their location (see Sect. 6 for
details). The inductiveness of this relation over transitions of A × T 2 and A × S2

can be easily checked with an SMT solver by using symbolic representations.

3 Background

We propose an abstract program and attack model defined in terms of labeled
transition systems. We also define Büchi automata over bundles of program
traces, which will be used in the encoding of security properties, and describe
a product operation between programs and automata that will assist in the
verification of program transformations.
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Notation. Let Σ be an alphabet, i.e., a set of symbols, and let Γ be a subset
of Σ. An infinite sequence u = u(0), u(1), . . ., where u(i) ∈ Σ for all i, is said to
be a “sequence over Σ”. For variables x, y denoting elements of Σ, the notation
x =Γ y (read as “x and y agree on Γ”) denotes the predicate where either x and
y are both not in Γ , or x and y are both in Γ and x = y. For a sequence u over
Σ, the notation u|Γ (read as “u projected to Γ”) denotes the sub-sequence of u
formed by elements in Γ . The operator compress(v) = v|Σ , applied to a sequence
v over Σ ∪ {ε}, removes all ε symbols in v to form a sequence over Σ. For a
bundle of traces w = (w1, . . . , wk) where each trace is an infinite sequence of Σ,
the operator zip(w) defines an infinite sequence over Σk obtained by choosing
successive elements from each trace. In other words, u = zip(w) is defined by
u(i) = (w1(i), . . . , wk(i)), for all i. The operator unzip is its inverse.

3.1 Programs as Transition Systems

A program is represented as a transition system S = (C,Σ, ι,→):

– C is a set of program states, or configurations;
– Σ is a set of observables, partitioned into input, I, and output, O;
– ι ∈ C is the initial configuration;
– (→) ⊆ C × (Σ ∪ {ε}) × C is the transition relation.

Transitions labeled by input symbols in I represent instructions in the pro-
gram that read input values, while transitions labeled by output symbols in O
represent instructions that produce observable outputs. Transitions labeled by
ε represent internal transitions where the state of the program changes without
any observable effect.

An execution is an infinite sequence of transitions (c0, w0, c1)(c1, w1, c2) . . . ∈
(→)ω such that c0 = ι and adjacent transitions are connected as shown. (We
may write this as the alternating sequence c0, w0, c1, w1, c2, . . ..) To ensure that
every execution is infinite, we assume that (→) is left-total. To model programs
with finite executions, we assume that the alphabet has a special termination
symbol ⊥, and add a transition (c,⊥, c) for every final state c. We also assume
that there is no infinite execution where the transition labels are always ε from
some point on.

An execution x = (c0, w0, c1)(c1, w1, c2) . . . has an associated trace, denoted
trace(x), given by the sequence w0, w1, . . . over Σ ∪ {ε}. The compressed trace
of execution x, compress(trace(x)), is denoted ctrace(x). The final assumption
above ensures that the compressed trace of an infinite execution is also infinite.
The sequence of states on an execution x is denoted by states(x).

3.2 Attack Models as Extended Transition Systems

The choice of how to model a program as a transition system depends on the
properties one would like to verify. For correctness, it is enough to use the stan-
dard input-output semantics of the program. To represent security properties,
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however, it is usually necessary to extend this base semantics to bring out inter-
esting features. Such an extension typically adds auxiliary state and new obser-
vations needed to model an attack. For example, if an attack is based on program
location, that is added as an auxiliary state component in the extended program
semantics. Other examples of such structures are modeling a program stack as
an array with a stack pointer, explicitly tracking the addresses of memory reads
and writes, and distinguishing between cache and main memory accesses. These
extended semantics are roughly analogous to the leakage models of [4]. The base
transition system is extended to one with a new state space, denoted Ce; new
observations, denoted Oe; and a new alphabet, Σe, which is the union of Σ with
Oe. The extensions do not alter input-output behavior; formally, the original
and extended systems are bisimular with respect to Σ.

3.3 Büchi Automata over Trace Bundles

A Büchi automaton over a bundle of k infinite traces over Σe is specified as
A = (Q,Σk

e , ι,Δ, F ), where:

– Q is the state space of the automaton;
– Σk

e is the alphabet of the automaton, each element is a k-vector over Σe;
– ι ∈ Q is the initial state;
– Δ ⊆ Q × Σk

e × Q is the transition relation;
– F ⊆ Q is the set of accepting states.

A run of A over a bundle of traces t = (t1, . . . , tk) ∈ (Σω)k is an alternating
sequence of states and symbols, of the form (q0 = ι), a0, q1, a1, q2, . . . where for
each i, ai = (t1(i), . . . , tk(i))—that is, a0, a1, . . . equals zip(t)—and (qi, ai, qi+1) is
in the transition relation Δ. The run is accepting if a state in F occurs infinitely
often along it. The language accepted by A, denoted by L(A), is the set of all
k-trace bundles that are accepted by A.

Automaton-Program Product. In verification, the set of traces of a program
that violate a property can be represented by an automaton that is the product
of the program with an automaton for the negation of that property. Security
properties may require analyzing multiple traces of a program; therefore, we
define the analogous automaton as a product between an automaton A for the
negation of the security property and the k-fold composition P k of a program
P . For simplicity, assume for now that the program P contains no ε-transitions.
Programs with ε-transitions can be handled by converting A over Σk

e into a new
automaton Â over (Σe ∪ {ε})k (see full version [20] for details).

Let A = (QA, Σk
e ,ΔA, ιA, FA) be a Büchi automaton (over a k-trace bundle)

and P = (C,Σe, ι,→) be a program. The product of A and P k, written A×P k,
is a Büchi automaton B = (QB , Σk

e ,ΔB , ιB , FB), where:

– QB = QA × Ck;
– ιB = (ιA, (ι, . . . , ι));



Witnessing Secure Compilation 7

– ((q, s), u, (q′, s′)) is in ΔB if, and only if, (q, u, q′) is in ΔA, and (si, ui, s
′
i) is

in (→) for all i;
– (q, s) is in FB iff q is in FA.

Lemma 1. Trace zip(t1, . . . , tk) is in L(A × P k) if, and only if, zip(t1, . . . , tk)
is in L(A) and, for all i, ti = trace(xi) for some execution xi of P .

Bisimulations. For programs S = (CS , Σe, ι
S ,→S) and T = (CT , Σe, ι

T ,→T ),
and a subset I of Σe, a relation B ⊆ CT × CS is a bisimulation for I if:

1. (ιT , ιS) ∈ B;
2. For every (t, s) in B and (t, v, t′) in (→T ) there is u and s′ such that (s, u, s′)

is in (→S) and (t′, s′) ∈ B and u =I v.
3. For every (t, s) in B and (s, u, s′) in (→S) there is v and t′ such that (t, v, t′)

is in (→T ) and (t′, s′) ∈ B and u =I v.

4 Formulating Security Preservation

A temporal correctness property is expressed as a set of infinite traces. Many
security properties can only be described as properties of pairs or tuples of
traces. A standard example is that of noninterference, which models potential
leakage of secret inputs: if two program traces differ only in secret inputs, they
should be indistinguishable to an observer that can only view non-secret inputs
and outputs. The general notion is that of a hyperproperty [7,27], which is a set
containing sets of infinite traces; a program satisfies a hyperproperty H if the
set of all compressed traces of the program is an element of H. Linear Temporal
Logic (LTL) is commonly used to express correctness properties. Our formulation
of security properties is an extension of the logic HyperLTL, which can express
common security properties including several variants of noninterference [6].

A security property ϕ has the form (Q1π1, . . . , Qnπk : κ(π1, . . . , πk)), where
the Qi’s are first-order quantifiers over trace variables, and κ is set of k-trace
bundles, described by a Büchi automaton whose language is the complement
of κ. This formulation borrows the crucial notion of trace quantification from
HyperLTL, while generalizing it, as automata are more expressive than LTL,
and atomic propositions may hold of k-vectors rather than on a single trace.

The satisfaction of property ϕ by a program P is defined in terms of the fol-
lowing finite two-player game, denoted G(P,ϕ). The protagonist, Alice, chooses
an execution of P for each existential quantifier position, while the antagonist,
Bob, chooses an execution of P at each universal quantifier position. The choices
are made in sequence, from the outermost to the innermost quantifier. A play
of this game is a maximal sequence of choices. The outcome of a play is thus
a “bundle” of program executions, say σ = (σ1, . . . , σk). This induces a corre-
sponding bundle of compressed traces, t = (t1, . . . , tk), where ti = ctrace(σi) for
each i. This play is a win for Alice if t satisfies κ and a win for Bob otherwise.

A strategy for Bob is a function, say ξ, that defines a non-empty set of
executions for positions i where Qi is a universal quantifier, in terms of the
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earlier choices σ1, . . . , σi−1; the choice of σi is from this set. A strategy for
Alice is defined symmetrically. A strategy is winning for player X if every play
following the strategy is a win for X. This game is determined, in that for any
program P one of the players has a winning strategy. Satisfaction of a security
property is defined by the following.

Definition 1. Program P satisfies a security property ϕ, written |=P ϕ, if the
protagonist has a winning strategy in the game G(P,ϕ).

4.1 Secure Program Transformation

Let S = (CS , Σe, ι
S ,→S) be the transition system representing the original

source program and let T = (CT , Σe, ι
T ,→T ) be the transition system for the

transformed target program. Any notion of secure transformation must imply
the preservation property that if S satisfies ϕ and the transformation from S to
T is secure for ϕ then T also satisfies ϕ.

Preservation in itself is, however, too weak to serve as a definition of
secure transformation. Consider the transformation shown in Fig. 1, with use(x)
defined so that it terminates execution if the secret key x is invalid. As the source
program violates non-interference by leaking the validity of the key, the trans-
formation would be trivially secure if the preservation property is taken as the
definition of secure transformation. But that conclusion is wrong: the leak intro-
duced in the target program is clearly different and of a more serious nature, as
the entire secret key is now vulnerable to attack.

This analysis prompts the formulation of a stronger principle for secure trans-
formation. (Similar principles have been discussed in the literature, e.g., [11].)
The intuition is that every instance and type of violation in T should have a
matching instance and type of violation in S. To represent different types of
violations, we suppose that the negated property is represented by a collection
of automata, each checking for a specific type of violation.

Definition 2. A strategy ξS for the antagonist in G(S, ϕ) (representing a viola-
tion in S) matches a strategy ξT for the antagonist in game G(T, ϕ) (representing
a violation in T ) if for every maximal play u = u1, . . . , uk following ξT , there
is a maximal play v = v1, . . . , vk following ξS such that (1) the two plays are
input-equivalent, i.e., ui|I = vi|I for all i, and (2) if u is accepted by the m-th
automaton for the negated property, then v is accepted by the same automaton.

Definition 3. A transformation from S to T preserves security property ϕ if
for every winning strategy for the antagonist in the game G(T, ϕ), there is a
matching winning strategy for the antagonist in the game G(S, ϕ).

As an immediate consequence, we have the preservation property.

Theorem 1. If a transformation from S to T preserves security property ϕ and
if S satisfies ϕ, then T satisfies ϕ.
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In the important case where the security property is purely universal, of the
form ∀π1, . . . ,∀πk : κ(π1, . . . , πk), a winning strategy for the antagonist is simply
a bundle of k traces, representing an assignment to π1, . . . , πk that falsifies κ.

In the rest of the paper, we consider ϕ to be specified by a single automaton
rather than a collection, to avoid notational clutter.

5 Refinement for Preservation of Universal Properties

We define an automaton-based refinement scheme that is sound for purely-
universal properties ϕ, of the form (∀π1, . . . ,∀πk : κ(π1, . . . , πk)). In Sect. 8,
this is generalized to properties with arbitrary quantifier prefixes. We assume
for simplicity that programs S and T have no ε-transitions; we discuss how to
remove this assumption at the end of the section. An automaton-based refine-
ment scheme for preservation of ϕ is defined below.

Definition 4. Let S, T be programs over the same alphabet, Σe, and A be a
Büchi automaton over Σk

e . Let I be a subset of Σe. A relation R ⊆ (QA ×
(CT )k) × (QA × (CS)k) is a refinement relation from A × T k to A × Sk for I if

1. Initial configurations are related, i.e., ((ιA, ιT
k

), (ιA, ιS
k

)) is in R, and
2. Related states have matching transitions. That is, if ((q, t), (p, s)) ∈ R and

((q, t), v, (q′, t′)) ∈ΔA×Tk

, there are u, p′, and s′ such that the following hold:
(a) ((p, s), u, (p′, s′)) is a transition in ΔA×Sk

;
(b) u and v agree on I, that is, ui =I vi for all i;
(c) the successor configurations are related, i.e., ((q′, t′), (p′, s′)) ∈ R; and
(d) acceptance is preserved, i.e., if q′ ∈ F then p′ ∈ F .

Lemma 2. If there exists a refinement from A × T k to A × Sk then, for every
sequence v in L(A × T k), there is a sequence u in L(A × Sk) such that u and v
are input-equivalent.

Theorem 2 (Universal Refinement). Let ϕ = (∀π1, . . . , πk : κ(π1, . . . , πk))
be a universal security property; S and T be programs over a common alphabet
Σe = Σ ∪ Oe; A = (Q,Σk

e , ι,Δ, F ) be an automaton for the negation of κ; and
R ⊆ (Q× (CT )k)× (Q× (CS)k) be a refinement relation from A × T k to A×Sk

for I. Then, the transformation from S to T preserves ϕ.

Proof. A violation of ϕ by T is given by a bundle of executions of T that violates
κ. We show that there is an input-equivalent bundle of executions of S that also
violates κ. Let x = (x1, . . . , xk) be a bundle of executions of T that does not
satisfy κ. By Lemma 1, v = zip(trace(x1), . . . , trace(xk)) is accepted by A × T k.
By Lemma 2, there is a sequence u accepted by A × Sk that is input-equivalent
to v. Again by Lemma 1, there is a bundle of executions y = (y1, . . . , yk) of S
such that u = zip(trace(y1), . . . , trace(yk)) and y violates κ. As u and v are input
equivalent, trace(xi) and trace(yi) are input-equivalent for all i, as required. 
�
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The refinement proof rule for universal properties is implicit: a witness is a
relation R from A × T k to A × Sk; this is valid if it satisfies the conditions set
out in Definition 4. The theorem establishes the soundness of this proof rule.
Examples of witnesses for specific compiler transformations are given in Sect. 6,
which also discusses SMT-based checking of the proof requirements.

To handle programs that include ε-transitions, we can convert the automaton
A over Σk

e into a buffering automaton Â over (Σe ∪ {ε})k, such that Â accepts
zip(v1, . . . , vk) iff A accepts zip(compress(v1), . . . , compress(vk)). The refinement
is then defined over Â × Sk and Â × T k. Details can be found in the full ver-
sion [20]. Another useful extension is the addition of stuttering, which can be
necessary for example when a transformation removes instructions. Stuttering
relaxes Definition 4 to allow multiple transitions on the source to match a sin-
gle transition on the target, or vice-versa. This is a standard technique for
verification [5] and one-step formulations suitable for SMT solvers are known
(cf. [14,18]).

6 Checking Transformation Security

In this section, we formulate the general construction of an SMT formula for
the correctness of a given refinement relation. We then show how to express a
refinement relation for several common compiler optimizations.

6.1 Refinement Checking with SMT Solvers

Assume that the refinement relation R, the transition relations Δ, (→T ) and
(→S) and the set of accepting states F are described by SMT formulas over
variables ranging over states and alphabet symbols.

To verify that the formula R is indeed a refinement, we perform an inductive
check following Definition 4. To prove the base case, which says that the initial
states of A × T k and A × Sk are related by R, we simply evaluate the formula
on the initial states. The proof of the inductive step requires establishing that R
is closed under automaton transitions. This can be expressed by an SMT query
of the shape (∀qT , qS , pT , t, s, t′, σT : (∃σS , pS , s′ : ϕ1 → ϕ2)), where:

ϕ1 ≡ R((qT , t), (qS , s)) ∧ Δ(qT , σT , pT ) ∧
k∧

i=1

(ti
σT
i−−→T t′i)

ϕ2 ≡ Δ(qS , σS , pS) ∧
k∧

i=1

(si
σS
i−−→S s′

i) ∧
k∧

i=1

(σT
i =I σS

i )

∧ R((pT , t′), (pS , s′)) ∧ (F (pT ) → F (pS))

This formula has a quantifier alternation, which is difficult for SMT solvers to
handle. It can be reduced to a quantifier-free form by providing Skolem functions
from the universal to the existential variables. We expect the compiler to generate
these functions as part of the witness generation mechanism.
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As we will see in the examples below, in many cases the compiler can choose
Skolem functions that are simple enough so that the validity of the formula can
be verified using only equality reasoning, making it unnecessary to even expand
the definitions of Δ and F . The general expectation is that a compiler writer
must have a proof in mind for each optimization and should therefore be able
to provide the Skolem functions necessary to establish refinement.

6.2 Refinement Relations for Compiler Optimizations

We consider three common optimizations below. In addition, further exam-
ples for dead-branch elimination, expression flattening, loop peeling and register
spilling can be found in the full version [20]. All transformations are based on
the examples in [4].

Example 1: Constant Folding. Section 2 presented an example of a program
transformation by constant folding. We now proceed to show how a refinement
relation can be defined to serve as a witness for the security of this transforma-
tion, so its validity can be checked using an SMT solver as described above.

Recall that states of S and T are of the form (α, �), where α : V → Int and
� ∈ Loc. Then, R can be expressed by the following formula over states qT , qS

of the automaton A and states t of T k and s of Sk, where ti = (αT
i , �T

i ):

(qT = qS) ∧ (t = s) ∧
k∧

i=1

(�T
i = L3 → αT

i (y) = 42)

∧
k∧

i=1

(�T
i = L4 → αT

i (z) = 1) ∧
k∧

i=1

(�T
i = L5 → αT

i (x) = 0)

The final terms express known constant values, necessary to establish inductive-
ness. In general, if the transformation relies on the fact that at location � variable
v has constant value c, the constraint

∧k
i=1(�

T
i = � → αT

i (v) = c) is added to
R. Since this is a simple transformation, equality between states is all that is
needed to establish a refinement.

R can be checked using the SMT query described in Sect. 6.1. For this trans-
formation, the compiler can choose Skolem functions that assign σS = σT and
pS = pT . In this case, from (qT = qS) (given by the refinement relation) and
Δ(qT , σT , pT ) the solver can automatically infer Δ(qS , σS , pS), (σT

i =I σS
i ) and

F (pT ) → F (pS) using only equality reasoning. Therefore, the refinement check is
independent of the security property. This applies to several other optimizations
as well, as the reasons for preserving security are usually simple.

Example 2: Common-Branch Factorization. Common-branch factoriza-
tion is a program optimization applied to conditional blocks where the instruc-
tions at the beginning of the then and else blocks are the same. If the condition
does not depend on a variable modified by the common instruction, this instruc-
tion can be moved outside of the conditional. Consider for example:
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// Source program S

L1: if (j < arr_size) {

L2: a := arr[0];

L3: b := arr[j];

L4: } else {

L5: a := arr[0];

L6: b := arr[arr_size-1];

L7: }

// Target program T

L1: a := arr[0];

L2: if (j < arr_size) {

L3: b := arr[j];

L4: } else {

L5:

L6: b := arr[arr_size-1];

L7: }

Suppose that the attack model allows the attacker to observe memory
accesses, represented by the index j of every array access arr[j]. We assume
that other variables are stored in registers rather than memory (see full ver-
sion [20] for a discussion on register spilling). Under this attack model the com-
pressed traces produced by T are identical to the ones of S, therefore the trans-
formation is secure regardless of the security property ϕ. However, because the
order of instructions is different, a more complex refinement relation R is needed,
compared to constant folding:

((t = s) ∧ (qT = qS))∨
k∧

i=1

((�T
i = L2)

∧ ((αS
i (j) < αS

i (arr size)) ? (�S
i = L2) : (�S

i = L5))

∧ (αT
i = αS

i [a := arr[0]]) ∧ Δ(qS , (0, . . . , 0), qT ))

The refinement relation above expresses that the states of the programs and
the automata are identical except when T has executed the factored-out instruc-
tion but S has not. At that point, T is at location L2 and S is either at location
L2 or L5, depending on how the guard was evaluated. It is necessary for R to
know that the location of S depends on the evaluation of the guard, so that it
can verify that at the next step T will follow the same branch. The states of
Â × Sk and Â × T k are then related by saying that after updating a := arr[0]
on every track of S the two states are identical. (The notation α[x := e] denotes
the state α′ that is identical to α except at x, where its value is given by α(e).)
As this instruction produces an observation representing the index of the array
access, the states of the automata are related by Δ(qS , (0, . . . , 0), qT ), indicating
that the access has been observed by Â × T k but not yet by Â × Sk.

Example 3: Switching Instructions. This optimization switches two sequen-
tial instructions if the compiler can guarantee that the program’s behavior will
not change. For example, consider the following source and target programs:

// Source program S

L1: int a[10], b[10], j;

L2: a[0] := secret_input();

L3: b[0] := secret_input();

L4: for (j:=1; j<10; j++) {

L5: a[j] := b[j-1];

L6: b[j] := a[j-1];

L7: public_output(j);

L8: }

// Target program T

L1: int a[10], b[10], j;

L2: a[0] := secret_input();

L3: b[0] := secret_input();

L4: for (j:=1; j<10; j++) {

L5: b[j] := a[j-1];

L6: a[j] := b[j-1];

L7: public_output(j);

L8: }
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The traces produced by T and S have identical public outputs. Therefore,
a refinement relation for this pair of programs can be given by the following
formula, regardless of the security property under verification:

(qS = qT )∧
k∧

i=1

((�S
i = �T

i ) ∧ (�S
i �= L6 → αS

i = αT
i )

∧ (�S
i = L6 → αS

i [b[j] := a[j-1]] = αT
i [a[j] := b[j-1]]))

The formula expresses that the state of the source and target programs is the
same except between executing the two switched instructions. At that point, the
state of the two programs is related by saying that after executing the second
instruction in each of the programs they will again have the same state.

More generally, a similar refinement relation can be used for any source-target
pair that satisfies the assumptions that (a) neither of the switched instructions
produces an observable output, and (b) after both switched instructions are
executed, the state of the two programs is always the same. All that is neces-
sary in this case is to replace L6 by the appropriate location �S

switch where the
switch happens and αS

i [b[j] := a[j-1]] = αT
i [a[j] := b[j-1]] by an appropri-

ate formula δ(αS
i , αT

i ) describing the relationship between the states of the two
programs at that location.

If the instructions being switched do produce observations, setting up the
refinement relation becomes harder. This is due to the fact that the relationship
(qS = qT ) might not hold in location �S

switch, but expressing the true relationship
between qS and qT is complex and might require knowledge of the state of all
copies of S and T at once. In general, reordering transformations require the
addition of history variables to set up an inductive refinement relation. Details
can be found in the full version [20].

7 Connections to Existing Proof Rules

We establish connections to known proof rules for preservation of the non-
interference [3,8,17] and constant-time [4] properties. We show that under the
assumptions of those rules, there is a simple and direct definition of a relation
that meets the automaton-based refinement conditions for automata represent-
ing these properties. The automaton-based refinement method is thus general
enough to serve as a uniform replacement for the specific proof methods.

7.1 Constant Time

We first consider the lockstep CT-simulation proof rule introduced in [4] to show
preservation of the constant-time property. For lack of space, we refer the reader
to the original paper for the precise definitions of observational non-interference
(Definition 1), constant-time as observational non-interference (Definition 4),
lockstep simulation (Definition 5, denoted ≈), and lockstep CT-simulation (Def-
inition 6, denoted (≡S ,≡C)).
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We do make two minor adjustments to better fit the automaton notion,
which is based on trace rather than state properties. First, we add a dummy
initial source state Ŝ(i) with a transition with input label i to the actual initial
state S(i); and similarly for the target program, C. Secondly, we assume that a
final state has a self-loop with a special transition label, ⊥. Then the condition
(b ∈ Sf ↔ b′ ∈ Sf ) from Definition 1 in [4] is covered by the (existing) label
equality t = t′. With these changes, the observational non-interference property
can be represented in negated form by the automaton shown in Fig. 2, which
simply looks for a sequence starting with an initial pair of input values satisfying
φ and ending in unequal transition labels. The states are I (initial), S (sink), M
(mid), and F (fail), which is also the accepting state.

I M FS
φ(i1, i2)¬φ(i1, i2)

true truet1 = t2

t1 �= t2

Fig. 2. A Büchi automaton for the negation of the constant-time property.

We now define the automaton-based relation, using the notation in Theorem
1 of [4]. Define relation R by (q, α, α′)R(p, a, a′) if a ≈ α, a′ ≈ α′, and

1. p = F , i.e., p is the fail state, or
2. p = q = S, or
3. p = q = I, and α = Ĉ(i), α′ = Ĉ(i′), a = Ŝ(i), a = Ŝ(i′), for some i, i′, or
4. p = q = M , and α ≡C α′, and a ≡S a′.

Theorem 3. If (≡S ,≡C) is a lockstep CT-simulation with respect to the lockstep
simulation ≈, the relation R is a valid refinement relation.

Proof. Every initial state of A × C2 has a related initial state in A × S2.
As related configurations are pairwise connected by ≈, which is a simulation,
it follows that any pairwise transition from a C-configuration is matched by a
pairwise transition from the related S-configuration, producing states b, b′ and
β, β′ that are pointwise related by ≈. These transitions have identical input
labels, as the only transitions with input labels are those from the dummy initial
states.

The remaining question is whether the successor configurations are connected
by R. We reason by cases.

First, if p = F , then the successor p′ is also F . Hence, the successor configu-
rations are related. This is also true of the second condition, where p = q = S,
as the successor states are p′ = q′ = S.

If p = q = I the successor states are β = C(i), β′ = C(i′) and b = S(i), b′ =
S(i′), and the successor automaton state is either p′ = q′ = S, if φ(i, i′) does
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not hold, or p′ = q′ = M , if it does. In the first possibility, the successor con-
figurations are related by the second condition; in the second, they are related
by the final condition, as C(i) ≡C C(i′) and S(i) ≡S S(i′) hold if φ(i, i′) does
[Definition 6 of [4]].

Finally, consider the interesting case where p = q = M . Let τ, τ ′ be the
transition labels on the pairwise transition in C, and let t, t′ be the labels on the
corresponding pairwise transition in S. We consider two cases:

(1) Suppose t �= t′. Then p′ = F and the successor configurations are related,
regardless of q′.

(2) Otherwise, t = t′ and p′ = M . By CT-simulation [Definition 6 of [4]: a ≡S a′

and α ≡C α′ by the relation R], it follows that b ≡S b′ and β ≡C β′ hold,
and τ = τ ′. Thus, the successor automaton state on the C-side is q′ = M
and the successor configurations are related by the final condition.

This completes the case analysis. Finally, the definition of R implies that if q = F
then p = F , as required.


�

7.2 Non-Interference

Refinement-based proof rules for preservation of non-interference have been
introduced in [3,8,17]. The rules are not identical but are substantially similar
in nature, providing conditions under which an ordinary simulation relation, ≺,
between programs C and S implies preservation of non-interference. We choose
the rule from [8], which requires, in addition to the requirement that ≺ is a sim-
ulation preserving input and output events, that (a) A final state of C is related
by ≺ only to a final state of S (precisely, both are final or both non-final), and
(b) If t0 ≺ s0 and t1 ≺ s1 hold, and all states are either initial or final, then the
low variables of t0 and t1 are equal iff the low variables of s0 and s1 are equal.

We make two minor adjustments to better fit the automaton notion, which
is based on trace rather than state properties. First, we add a dummy initial
source state Ŝ(i) with a transition that exposes the value of local variables and
moves to the actual initial state S(i) (i is the secret input); and similarly for the
target program, C. Secondly, we assume that a final state has a self-loop with a
special transition label that exposes the value of local variables on termination.
With these changes, the negated non-interference can be represented by the
automaton shown in Fig. 3. It accepts an pair of execution traces if, and only if,
initially the low-variables on the two traces have identical values, and either the
corresponding outputs differ at some point, or final values of the low-variables
are different. (The transition conditions are written as Boolean predicates which
is a readable notation for describing a set of pairs of events; e.g., the Low1 �=
Low2 transition from state I represents the set of pairs (a, b) where a is the
init(Low = i) event, b is the init(Low = j) event, and i �= j.)

Define the automaton-based relation R by (q, t0, t1)R(p, s0, s1) if p = q and
t0 ≺ s0 and t1 ≺ s1. We have the following theorem.
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IS M F

true true true

Low1 = Low2Low1 �= Low2

Final1 ∧ Final2
∧Low1 �= Low2

Out1 �= Out2

Fig. 3. A Büchi automaton for the negation of the non-interference property.

Theorem 4. If the simulation relation ≺ between C and S satisfies the addi-
tional properties needed to preserve non-interference, then R is a refinement.

Proof. Consider (q, t0, t1)R(p, s0, s1). As ≺ is a simulation, for any joint tran-
sition from (t0, t1) to (t′0, t

′
1), there is a joint transition from (s0, s1) to (s′

0, s
′
1)

such that t′0 ≺ s′
0 and t′1 ≺ s′

1 holds. This transition preserves input and output
values, as ≺ is an input-output preserving simulation.

We have only to establish that the automaton transitions also match up. If
the automaton state is either F or S, the resulting state is the same, so by the
refinement relation, we have p′ = p = q = q′.

Consider q = I. If q′ = S then the values of the low variables in t0, t1 differ;
in which case, by condition (b), those values differ in s0, s1 as well, so p′ is also
S. Similarly, if q′ = M , then p′ = M .

Consider q = M . If q′ = F then either (1) t0, t1 are both final states and
the values of the low variables differ, or (2) the outputs of the transitions from
t0, t1 to t′0, t

′
1 differ. In case (1), by condition (a), s0, s1 are also final states, and

therefore by condition (b) the values of the low variables differ in s0, s1 as well,
so p′ is also F . In case (2) the outputs of the transitions from t0, t1 to t′0, t

′
1

differ; in which case, as ≺ preserves outputs, this is true also of the transition
from s0, s1 to s′

0, s
′
1, so p′ is also F . If q′ = M then, since p = M and M has a

self-loop on true, then p′ can just be chosen to be M as well.
Finally, by the relation R, if q = F , the accepting state, then p = F as well.

This completes the case analysis and the proof.

�

8 Witnessing General Security Properties

The notion of refinement presented in Sect. 5 suffices for universal hyperproper-
ties, as in that case a violation corresponds to a bundle of traces rejected by the
automaton. Although many important hyperproperties are universal in nature,
some require quantifier alternation. One example is generalized noninterference,
as formalized in [6], which says that for every two traces of a program, there is a
third trace that has the same high inputs as the first but is indistinguishable from
the second to a low-clearance individual. A violation for such hyperproperties,
as defined in Sect. 4, is not simply a bundle of traces, but rather a winning strat-
egy for the antagonist in the corresponding game. A refinement relation does
not suffice to match winning strategies. Therefore, we introduce an additional
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input-equivalent bisimulation B from T to S, which is used in a back-and-forth
manner to construct a matching winning strategy for the antagonist in G(S, ϕ)
from any winning strategy for the antagonist in G(T, ϕ).

A bisimulation B ensures, by induction, that any infinite execution in T has
an input-equivalent execution in S, and vice-versa. For an execution x of T , we
use B(x) to denote the non-empty set of input-equivalent executions in S induced
by B. The symmetric notion, B−1(y), refers to input-equivalent executions in T
induced by B for an execution y of S.

Definition 5. Let ξT be a strategy for the antagonist in G(T, ϕ) and B be a
bisimulation between T and S. Then, the strategy ξS = S(ξT , B) for the antag-
onist in G(S, ϕ) proceeds in the following way to produce a play (y1, . . . , yk):

– For every i such that πi is existentially quantified, let yi be chosen by the
protagonist in G(S, ϕ). Choose an input-equivalent execution xi from B−1(yi);

– For every i such that πi is universally quantified, choose xi in T from
ξT (x1, . . . , xi−1) and choose yi from B(xi).

Thus, the bisimulation helps define a strategy ξS to match a winning antag-
onist strategy ξT in T . We can establish that this strategy is winning for the
antagonist in S in two different ways. First, we do so under the assumption that
S and T are input-deterministic, i.e., any two executions of the program with the
same input sequence have the same observation sequence. This is a reasonable
assumption, covering sequential programs with purely deterministic actions.

Theorem 5. Let S and T be input-deterministic programs over the same input
alphabet I. Let ϕ be a general security property with automaton A representing
the negation of its kernel κ. If there exists (1) a bisimulation B from T to S,
and (2) a refinement relation R from A × T k to A × Sk for I, then T securely
refines S for ϕ.

Proof. We have to show, from Definition 3, that for any winning strategy ξT for
the antagonist in G(T, ϕ), there is a matching winning strategy ξS in G(S, ϕ).
Let ξS = S(ξT , B). Let y = (y1, . . . , yk) be the bundle of executions resulting
from a play following the strategy ξS , and x = (x1, . . . , xk) the corresponding
bundle resulting from ξT . By construction, y and x are input-equivalent.

Since ξT is a winning strategy, the trace of x is accepted by A × T k. Then,
from the refinement R and Lemma 2, there is a bundle z = (z1, . . . , zk) accepted
by A × Sk that is input-equivalent to x. Therefore, z is a win for the antag-
onist. Since z is input-equivalent to x, it is also input-equivalent to y. Input-
determinism requires that z and y are identical, so y is also a win for the antag-
onist. Thus, ξS is a winning strategy for the antagonist in G(S, ϕ). 
�

If S and T are not input-deterministic, a new notion of refinement is defined
that intertwines the automaton-based relation R with the bisimulation B. A
relation R ⊆ (QA × (CT )k)× (QA × (CS)k) is a refinement relation from A×T k

to A × Sk for I relative to B ⊆ CT × CS , if
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1. ((ιA, ιT
k

), (ιA, ιS
k

)) is in R and (ιT
k

i , ιS
k

i ) ∈ B for all i; and
2. If ((q, t), (p, s)) is in R, (ti, si) is in B for all i, ((q, t), v, (q′, t′)) is in ΔA×Tk

,
(s, u, s′) is in (→Sk

), u and v agree on I, and (t′i, s
′
i) ∈ B, there is p′ such

that all of the following hold:
(a) ((p, s), u, (p′, s′)) ∈ ΔA×Sk

;
(b) ((q′, t′), (p′, s′)) ∈ R;
(c) if q′ ∈ F then p′ ∈ F .

Refinement typically implies, as in Lemma 2, that a run in A×T k is matched
by some run in A × Sk. The unusual refinement notion above instead considers
already matching executions of T and S, and formulates an inductive condition
under which a run of A on the T -execution is matched by a run on the S-
execution. The result is the following theorem, establishing the new refinement
rule, where the witness is the pair (R,B).

Theorem 6. Let S and T be programs over the same input alphabet I. Let ϕ be
a general security property with automaton A representing its kernel κ. If there
exists (1) a bisimulation B from T to S, and (2) a relation R from A × T k to
A × Sk that is a refinement relative to B, then T securely refines S for ϕ.

8.1 Checking General Refinement Relations

The main difference when checking security preservation of general hyperproper-
ties, compared to the purely-universal properties handled in Sect. 5, is the neces-
sity of the compiler to provide also the bisimulation B as part of the witness. The
verifier must also check that B is a bisimulation, which can be performed induc-
tively using SMT queries in a manner similar to the refinement check. If the
language semantics guarantees input-determinism, then Theorem 5 holds and
checking B and R separately is sufficient. Otherwise, the check for R described
in Sect. 6.1 has to be modified to follow Theorem 6 to determine whether R is a
refinement relative to B.

The optimizations discussed in Sect. 6 produce bisimular programs; the rela-
tion B in each case is defined as follows.

1. Constant Folding: (t = s) ∧ (�T = L3 → αT (y) = 42) ∧ (�T = L4 →
αT (z) = 1) ∧ (�T = L5 → αT (x) = 0)

2. Common-Branch Factorization: (t = s) ∨ ((�T = L2) ∧ ((αS(i) <
αS(arr size)) ? (�S = L2) : (�S = L5)) ∧ (αT = αS [a := arr[0]]))

3. Switching Instructions: (�S = �T ) ∧ (�S �= L6 → αS = αT ) ∧ (�S = L6 →
αS [b[j] := a[j-1]] = αT [a[j] := b[j-1]])

There are clear similarities between the bisimulations and the corresponding
refinement relations defined in Sect. 6. When the transformation does not alter
the observable behavior of a program, it is often the case that the refinement
relation between Â × T k and Â × Sk is essentially formed by the k-fold product
of a bisimulation between T and S across the bundle of executions.
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9 Discussion and Related Work

This work tackles the important problem of ensuring that the program transfor-
mations carried out by an optimizing compiler do not break vital security proper-
ties of the source program. We propose a methodology based on property-specific
refinement rules, with the refinement relations (witnesses) being generated at
compile time and validated independently by a generic refinement checker. This
structure ensures that neither the code of the compiler nor the witness generator
have to be formally verified in order to obtain a formally verifiable conclusion. It
is thus eminently suited to production compilers, which are large and complex,
and are written in hard-to-formalize languages such as C or C++.

The refinement rules are constructed from an automaton-theoretic definition
of a security property. This construction applies to a broad range of security
properties, including those specifiable in the HyperLTL logic [6]. When applied to
automaton-based formulations of the non-interference and constant-time prop-
erties, the resulting proof rules are essentially identical to those developed in the
literature in [3,8,17] for non-interference and in [4] for constant-time. Manna
and Pnueli show in a beautiful paper [15] how to derive custom proof rules for
deductive verification of an LTL property from an equivalent Büchi automaton;
our constructions are inspired by this work.

Refinement witnesses are in a form that is composable: i.e., for a security
property ϕ, if R is a refinement relation establishing a secure transformation
from A to B, while R′ witnesses a secure transformation from B to C, then
the relational composition R;R′ witnesses a secure transformation from A to C.
Thus, by composing witnesses for each compiler optimization, one obtains an
end-to-end witness for the entire optimization pipeline.

Other approaches to secure compilation include full abstraction, proposed
in [1] (cf. [23]), and trace-preserving compilation [24]. These are elegant formu-
lations but difficult to check fully automatically, and are therefore not suitable
for translation validation. The theory of hyperproperties [7] includes a definition
of refinement in terms of language inclusion (i.e., T refines S if the language
of T is a subset of the language of S), which implies that any subset-closed
hyperproperty is preserved by this notion of refinement. Language inclusion is
also not easily checkable and thus cannot be used for translation validation.
The refinement theorem in this paper for universal properties (which are subset-
closed) uses a tighter step-wise inductive check that is suitable for automated
validation.

Translation validation through compiler-generated refinement relations was
proposed in work on “Credible Compilation” by [16,26] and “Witnessing”
by [21]. As the compiler and the witness generator do not require formal veri-
fication, the size of the trusted code base shrinks substantially. Witnessing also
requires less effort than a full mathematical proof: as observed in [19], a mathe-
matical correctness proof of SSA (Static Single Assignment) conversion in Coq is
about 10,000 lines [30], while refinement checking can be implemented in around
1,500 lines of code; much of this code comprises a reusable witness validator.
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Our work shows how to extend this concept, originally developed for correct-
ness checking, to the preservation of a large class of security properties, with the
following important distinction. Refinement relations for correctness preserve all
linear-time properties defined over propositions common to both programs. This
is necessary as a complete specification of correctness is usually not available
in practice. On the other hand, security properties are likely to be known in
advance (e.g., “do not leak secret keys”). This motivates our construction of
property-specific refinement relations.

The refinement rules defined here implicitly require that a security specifica-
tion apply equally well to the target and source programs. Thus, they are most
applicable when the target and source languages and attack models are identi-
cal. That is the case in the optimization phase of a compiler, where a number of
transformations are applied to code that remains within the same intermediate
representation. To complete the picture, it is necessary to look more generally
at transformations that convert a higher-level language (say LLVM bytecode)
to a lower-level one (say x86 machine code). The so-called “attack surface” is
then different, so it is necessary to incorporate a notion of back-translation of
failures [9] in the refinement proof rules. How best to do so is an intriguing topic
for future work.

Another question for future work is the completeness of the refinement rules.
We have shown that a variety of common compiler transformations can be proved
secure through logically simple refinement relations. The completeness question
is whether every secure transformation has an associated stepwise refinement
relation. In the case of correctness, this is a well-known theorem by Abadi and
Lamport [2]. To the best of our knowledge, a corresponding theorem is not known
for security hyperproperties.

A number of practical concerns must be addressed to implement this method-
ology. An important one is the development of a convenient notation for specify-
ing the desired security properties at the source program level. It is also necessary
to define how a security property is transformed through a program optimiza-
tion. For instance, if a transformation introduces fresh variables, it is necessary
to determine whether those variables are assigned a high or low security level
for a non-interference property.
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